WorldWideScience

Sample records for satellite precipitation algorithms

  1. Advances in Satellite Microwave Precipitation Retrieval Algorithms Over Land

    Science.gov (United States)

    Wang, N. Y.; You, Y.; Ferraro, R. R.

    2015-12-01

    Precipitation plays a key role in the earth's climate system, particularly in the aspect of its water and energy balance. Satellite microwave (MW) observations of precipitation provide a viable mean to achieve global measurement of precipitation with sufficient sampling density and accuracy. However, accurate precipitation information over land from satellite MW is a challenging problem. The Goddard Profiling Algorithm (GPROF) algorithm for the Global Precipitation Measurement (GPM) is built around the Bayesian formulation (Evans et al., 1995; Kummerow et al., 1996). GPROF uses the likelihood function and the prior probability distribution function to calculate the expected value of precipitation rate, given the observed brightness temperatures. It is particularly convenient to draw samples from a prior PDF from a predefined database of observations or models. GPROF algorithm does not search all database entries but only the subset thought to correspond to the actual observation. The GPM GPROF V1 database focuses on stratification by surface emissivity class, land surface temperature and total precipitable water. However, there is much uncertainty as to what is the optimal information needed to subset the database for different conditions. To this end, we conduct a database stratification study of using National Mosaic and Multi-Sensor Quantitative Precipitation Estimation, Special Sensor Microwave Imager/Sounder (SSMIS) and Advanced Technology Microwave Sounder (ATMS) and reanalysis data from Modern-Era Retrospective Analysis for Research and Applications (MERRA). Our database study (You et al., 2015) shows that environmental factors such as surface elevation, relative humidity, and storm vertical structure and height, and ice thickness can help in stratifying a single large database to smaller and more homogeneous subsets, in which the surface condition and precipitation vertical profiles are similar. It is found that the probability of detection (POD) increases

  2. Impact of Missing Passive Microwave Sensors on Multi-Satellite Precipitation Retrieval Algorithm

    Directory of Open Access Journals (Sweden)

    Bin Yong

    2015-01-01

    Full Text Available The impact of one or two missing passive microwave (PMW input sensors on the end product of multi-satellite precipitation products is an interesting but obscure issue for both algorithm developers and data users. On 28 January 2013, the Version-7 TRMM Multi-satellite Precipitation Analysis (TMPA products were reproduced and re-released by National Aeronautics and Space Administration (NASA Goddard Space Flight Center because the Advanced Microwave Sounding Unit-B (AMSU-B and the Special Sensor Microwave Imager-Sounder-F16 (SSMIS-F16 input data were unintentionally disregarded in the prior retrieval. Thus, this study investigates the sensitivity of TMPA algorithm results to missing PMW sensors by intercomparing the “early” and “late” Version-7 TMPA real-time (TMPA-RT precipitation estimates (i.e., without and with AMSU-B, SSMIS-F16 sensors with an independent high-density gauge network of 200 tipping-bucket rain gauges over the Chinese Jinghe river basin (45,421 km2. The retrieval counts and retrieval frequency of various PMW and Infrared (IR sensors incorporated into the TMPA system were also analyzed to identify and diagnose the impacts of sensor availability on the TMPA-RT retrieval accuracy. Results show that the incorporation of AMSU-B and SSMIS-F16 has substantially reduced systematic errors. The improvement exhibits rather strong seasonal and topographic dependencies. Our analyses suggest that one or two single PMW sensors might play a key role in affecting the end product of current combined microwave-infrared precipitation estimates. This finding supports algorithm developers’ current endeavor in spatiotemporally incorporating as many PMW sensors as possible in the multi-satellite precipitation retrieval system called Integrated Multi-satellitE Retrievals for Global Precipitation Measurement mission (IMERG. This study also recommends users of satellite precipitation products to switch to the newest Version-7 TMPA datasets and

  3. A Comparison of Different Regression Algorithms for Downscaling Monthly Satellite-Based Precipitation over North China

    Directory of Open Access Journals (Sweden)

    Wenlong Jing

    2016-10-01

    Full Text Available Environmental monitoring of Earth from space has provided invaluable information for understanding land–atmosphere water and energy exchanges. However, the use of satellite-based precipitation observations in hydrologic and environmental applications is often limited by their coarse spatial resolutions. In this study, we propose a downscaling approach based on precipitation–land surface characteristics. Daytime land surface temperature, nighttime land surface temperature, and day–night land surface temperature differences were introduced as variables in addition to the Normalized Difference Vegetation Index (NDVI, the Digital Elevation Model (DEM, and geolocation (longitude, latitude. Four machine learning regression algorithms, the classification and regression tree (CART, the k-nearest neighbors (k-NN, the support vector machine (SVM, and random forests (RF, were implemented to downscale monthly TRMM 3B43 V7 precipitation data from 25 km to 1 km over North China for the purpose of comparison of algorithm performance. The downscaled results were validated based on observations from meteorological stations and were also compared to a previous downscaling algorithm. According to the validation results, the RF-based model produced the results with the highest accuracy. It was followed by SVM, CART, and k-NN, but the accuracy of the downscaled results using SVM relied greatly on residual correction. The downscaled results were well correlated with the observations during the year, but the accuracies were relatively lower in July to September. Downscaling errors increase as monthly total precipitation increases, but the RF model was less affected by this proportional effect between errors and observation compared with the other algorithms. The variable importances of the land surface temperature (LST feature variables were higher than those of NDVI, which indicates the significance of considering the precipitation–land surface temperature

  4. Hail detection algorithm for the Global Precipitation Measuring mission core satellite sensors

    Science.gov (United States)

    Mroz, Kamil; Battaglia, Alessandro; Lang, Timothy J.; Tanelli, Simone; Cecil, Daniel J.; Tridon, Frederic

    2017-04-01

    By exploiting an abundant number of extreme storms observed simultaneously by the Global Precipitation Measurement (GPM) mission core satellite's suite of sensors and by the ground-based S-band Next-Generation Radar (NEXRAD) network over continental US, proxies for the identification of hail are developed based on the GPM core satellite observables. The full capabilities of the GPM observatory are tested by analyzing more than twenty observables and adopting the hydrometeor classification based on ground-based polarimetric measurements as truth. The proxies have been tested using the Critical Success Index (CSI) as a verification measure. The hail detection algorithm based on the mean Ku reflectivity in the mixed-phase layer performs the best, out of all considered proxies (CSI of 45%). Outside the Dual frequency Precipitation Radar (DPR) swath, the Polarization Corrected Temperature at 18.7 GHz shows the greatest potential for hail detection among all GMI channels (CSI of 26% at a threshold value of 261 K). When dual variable proxies are considered, the combination involving the mixed-phase reflectivity values at both Ku and Ka-bands outperforms all the other proxies, with a CSI of 49%. The best-performing radar-radiometer algorithm is based on the mixed-phase reflectivity at Ku-band and on the brightness temperature (TB) at 10.7 GHz (CSI of 46%). When only radiometric data are available, the algorithm based on the TBs at 36.6 and 166 GHz is the most efficient, with a CSI of 27.5%.

  5. Regional Bias of Satellite Precipitation Estimates

    Science.gov (United States)

    Modrick, T. M.; Georgakakos, K. P.; Spencer, C. R.

    2012-12-01

    Satellite-based estimates of precipitation have improved the spatial availability of precipitation data particularly for regions with limited gauge networks due to limited accessibility or infrastructure. Understanding the quality and reliability of satellite precipitation estimates is important, especially when the estimates are utilitized for real-time hydrologic forecasting and for fast-responding phenomena. In partnership with the World Meteorological Organization (WMO), the U.S. Agency of International Development (USAID) and the National Ocean and Atmospheric Administration (NOAA), the Hydrologic Research Center has begun implementation of real-time flash flood warning systems for diverse regions around the world. As part of this effort, bias characteristics of satellite precipitation have been examined in these various regions, such includes portions of Southeastern Asia, Southeastern Europe, the Middle East, Central America, and the southern half of the African continent. The work has focused on the Global Hydro-Estimator (GHE) precipitation product from NOAA/NESDIS. These real-time systems utilize the GHE given low latency times of this product. This presentation focuses on the characterization of precipitation bias as compared to in-situ gauge records, and the regional variations or similarities. Additional analysis is currently underway considering regional bias for other satellite precipitation products (e.g., CMORPH) for comparison with the GHE results.

  6. The Day-1 GPM Combined Precipitation Algorithm: IMERG

    Science.gov (United States)

    Huffman, G. J.; Bolvin, D. T.; Braithwaite, D.; Hsu, K.; Joyce, R.; Kidd, C.; Sorooshian, S.; Xie, P.

    2012-12-01

    The Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (GPM) mission (IMERG) algorithm will provide the at-launch combined-sensor precipitation dataset being produced by the U.S. GPM Science Team. IMERG is being developed as a unified U.S. algorithm that takes advantage of strengths in three current U.S. algorithms: - the TRMM Multi-satellite Precipitation Analysis (TMPA), which addresses inter-satellite calibration of precipitation estimates and monthly scale combination of satellite and gauge analyses; - the CPC Morphing algorithm with Kalman Filtering (KF-CMORPH), which provides quality-weighted time interpolation of precipitation patterns following storm motion; and - the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks using a Cloud Classification System (PERSIANN-CCS), which provides a neural-network-based scheme for generating microwave-calibrated precipitation estimates from geosynchronous infrared brightness temperatures, and filters out some non-raining cold clouds. The goal is to provide a long-term, fine-scale record of global precipitation from the entire constellation of precipitation-relevant satellite sensors, with input from surface precipitation gauges. The record will begin January 1998 at the start of the Tropical Rainfall Measuring Mission (TRMM) and extend as GPM records additional data. Although homogeneity is considered desirable, the use of diverse and evolving data sources works against the strict long-term homogeneity that characterizes a Climate Data Record (CDR). This talk will briefly review the design requirements for IMERG, including multiple runs at different latencies (most likely around 4 hours, 12 hours, and 2 months after observation time), various intermediate data fields as part of the IMERG data file, and the plans to bring up IMERG with calibration by TRMM initially, transitioning to GPM when its individual-sensor precipitation algorithms are fully functional

  7. A global satellite-assisted precipitation climatology

    Science.gov (United States)

    Funk, C.; Verdin, A.; Michaelsen, J.; Peterson, P.; Pedreros, D.; Husak, G.

    2015-10-01

    Accurate representations of mean climate conditions, especially in areas of complex terrain, are an important part of environmental monitoring systems. As high-resolution satellite monitoring information accumulates with the passage of time, it can be increasingly useful in efforts to better characterize the earth's mean climatology. Current state-of-the-science products rely on complex and sometimes unreliable relationships between elevation and station-based precipitation records, which can result in poor performance in food and water insecure regions with sparse observation networks. These vulnerable areas (like Ethiopia, Afghanistan, or Haiti) are often the critical regions for humanitarian drought monitoring. Here, we show that long period of record geo-synchronous and polar-orbiting satellite observations provide a unique new resource for producing high-resolution (0.05°) global precipitation climatologies that perform reasonably well in data-sparse regions. Traditionally, global climatologies have been produced by combining station observations and physiographic predictors like latitude, longitude, elevation, and slope. While such approaches can work well, especially in areas with reasonably dense observation networks, the fundamental relationship between physiographic variables and the target climate variables can often be indirect and spatially complex. Infrared and microwave satellite observations, on the other hand, directly monitor the earth's energy emissions. These emissions often correspond physically with the location and intensity of precipitation. We show that these relationships provide a good basis for building global climatologies. We also introduce a new geospatial modeling approach based on moving window regressions and inverse distance weighting interpolation. This approach combines satellite fields, gridded physiographic indicators, and in situ climate normals. The resulting global 0.05° monthly precipitation climatology, the Climate

  8. A global satellite assisted precipitation climatology

    Directory of Open Access Journals (Sweden)

    C. Funk

    2015-05-01

    Full Text Available Accurate representations of mean climate conditions, especially in areas of complex terrain, are an important part of environmental monitoring systems. As high-resolution satellite monitoring information accumulates with the passage of time, it can be increasingly useful in efforts to better characterize the earth's mean climatology. Current state-of-the-science products rely on complex and sometimes unreliable relationships between elevation and station-based precipitation records, which can result in poor performance in food and water insecure regions with sparse observation networks. These vulnerable areas (like Ethiopia, Afghanistan, or Haiti are often the critical regions for humanitarian drought monitoring. Here, we show that long period of record geo-synchronous and polar-orbiting satellite observations provide a unique new resource for producing high resolution (0.05° global precipitation climatologies that perform reasonably well in data sparse regions. Traditionally, global climatologies have been produced by combining station observations and physiographic predictors like latitude, longitude, elevation, and slope. While such approaches can work well, especially in areas with reasonably dense observation networks, the fundamental relationship between physiographic variables and the target climate variables can often be indirect and spatially complex. Infrared and microwave satellite observations, on the other hand, directly monitor the earth's energy emissions. These emissions often correspond physically with the location and intensity of precipitation. We show that these relationships provide a good basis for building global climatologies. We also introduce a new geospatial modeling approach based on moving window regressions and inverse distance weighting interpolation. This approach combines satellite fields, gridded physiographic indicators, and in situ climate normals. The resulting global 0.05° monthly precipitation climatology

  9. A global satellite assisted precipitation climatology

    Science.gov (United States)

    Funk, Christopher C.; Verdin, Andrew P.; Michaelsen, Joel C.; Pedreros, Diego; Husak, Gregory J.; Peterson, P.

    2015-01-01

    Accurate representations of mean climate conditions, especially in areas of complex terrain, are an important part of environmental monitoring systems. As high-resolution satellite monitoring information accumulates with the passage of time, it can be increasingly useful in efforts to better characterize the earth's mean climatology. Current state-of-the-science products rely on complex and sometimes unreliable relationships between elevation and station-based precipitation records, which can result in poor performance in food and water insecure regions with sparse observation networks. These vulnerable areas (like Ethiopia, Afghanistan, or Haiti) are often the critical regions for humanitarian drought monitoring. Here, we show that long period of record geo-synchronous and polar-orbiting satellite observations provide a unique new resource for producing high resolution (0.05°) global precipitation climatologies that perform reasonably well in data sparse regions. Traditionally, global climatologies have been produced by combining station observations and physiographic predictors like latitude, longitude, elevation, and slope. While such approaches can work well, especially in areas with reasonably dense observation networks, the fundamental relationship between physiographic variables and the target climate variables can often be indirect and spatially complex. Infrared and microwave satellite observations, on the other hand, directly monitor the earth's energy emissions. These emissions often correspond physically with the location and intensity of precipitation. We show that these relationships provide a good basis for building global climatologies. We also introduce a new geospatial modeling approach based on moving window regressions and inverse distance weighting interpolation. This approach combines satellite fields, gridded physiographic indicators, and in situ climate normals. The resulting global 0.05° monthly precipitation climatology, the Climate

  10. A hybrid framework for verification of satellite precipitation products

    Science.gov (United States)

    Li, J.; Hsu, K.; AghaKouchak, A.; Sorooshian, S.

    2011-12-01

    Advances in satellite technology have led to the development of many remote-sensing algorithms to estimate precipitation at quasi-global scales. A number of satellite precipitation products are provided at high spatial and temporal resolutions that are suitable for short-term hydrologic applications. Several coordinated validation activities have been established to evaluate the accuracy of satellite precipitation. Traditional verification measures summarize pixel-to-pixel differences between observation and estimates. Object-based verification methods, however, extend pixel based validation to address errors related to spatial patterns and storm structure, such as the shape, volume, and distribution of precipitation rain-objects. In this investigation, a 2D watershed segmentation technique is used to identify rain storm objects and is further adopted in a hybrid verification framework to diagnose the storm-scale rainfall objects from both satellite-based precipitation estimates and ground observations (radar estimates). Five key scores are identified in the objective-based verification framework, including false alarm ratio, missing ratio, maximum of total interest, equal weight and weighted summation of total interest. These scores indicate the performance of satellite estimates with features extracted from the segmented storm objects. The proposed object-based verification framework was used to evaluate PERSIANN, PERSIANN-CCS, CMORPH, 3B42RT against NOAA stage IV MPE multi-sensor composite rain analysis. All estimates are evaluated at 0.25°x0.25° daily-scale in summer 2008 over the continental United States (CONUS). The five final scores for each precipitation product are compared with the median of maximum interest (MMI) of the Method for Object-Based Diagnostic Evaluation (MODE). The results show PERSIANN and CMORPH outperform 3B42RT and PERSIANN-CCS. Different satellite products presented distinct features of precipitation. For example, the sizes of

  11. Precipitation retrieval from satellite within EUMETSAT's H-SAF

    Science.gov (United States)

    Mugnai, A.; Dietrich, S.; Levizzani, V.; Casella, D.; Cattani, E.; di Paola, F.; Formenton, M.; Laviola, S.; Sanò, P.

    2010-09-01

    The EUMETSAT Satellite Application Facility on support to Operational Hydrology and Water Management (H-SAF) was established by the EUMETSAT Council on July 3, 2005 and started activity at the official date of September 1, 2005. The Italian Meteorological Service serves as "Host Institute" on behalf of 12 European countries. The Project Plan focuses on the generation of the following products for the European and Mediterranean regions: • instantaneous and accumulated precipitation, including liquid/solid discrimination; • soil moisture in the surface layer and in the roots region; • snow parameters such as effective cover, wet/dry discrimination and water equivalent. In addition to products development and generation, the project includes a products validation programme and a hydrological validation programme. The development programme duration is 5 years, ending on August 31, 2010. A follow-on Continuous Development and Operations Phase (CDOP) will start in September 2010 to provide long-term perspective (2010-2017) to the initiative. Precipitation products are being generated according to algorithms developed by CNR-ISAC in collaboration with the international community, by exploiting the following satellites and instruments: • MW conically-scanning radiometers (SSM/I and SSMIS) on LEO satellites (DMSP); • MW cross-track scanning radiometers (AMSU-A and AMSU-B / MHS) on LEO operational satellites (NOAA and MetOp); • VIS/IR imagers (SEVIRI) on GEO satellites (MSG). These products are generated routinely at the Italian Centro Nazionale di Meteorologia e Climatologia Aeronautica (CNMCA), which is responsible of operational product generation and dissemination. Whilst precipitation products continue to be developed and improved, major focus is now on product validation. Products are generated in a pre-operational fashion, with a delay of few minutes to few hours from observation, depending on product and satellite data access. Access to products is

  12. A Generalized Statistical Uncertainty Model for Satellite Precipitation Products

    Science.gov (United States)

    Sarachi, S.

    2013-12-01

    A mixture model of Generalized Normal Distribution and Gamma distribution (GND-G) is used to model the joint probability distribution of satellite-based and stage IV radar rainfall under a given spatial and temporal resolution (e.g. 1°x1° and daily rainfall). The distribution parameters of GND-G are extended across various rainfall rates and spatial and temporal resolutions. In the study, GND-G is used to describe the uncertainty of the estimates from Precipitation Estimation from Remote Sensing Information using Artificial Neural Network algorithm (PERSIANN). The stage IV-based multi-sensor precipitation estimates (MPE) are used as reference measurements .The study area for constructing the uncertainty model covers a 15°×15°box of 0.25°×0.25° cells over the eastern United States for summer 2004 to 2009. Cells are aggregated in space and time to obtain data with different resolutions for the construction of the model's parameter space. Result shows that comparing to the other statistical uncertainty models, GND-G fits better than the other models, such as Gaussian and Gamma distributions, to the reference precipitation data. The impact of precipitation uncertainty to the stream flow is further demonstrated by Monte Carlo simulation of precipitation forcing in the hydrologic model. The NWS DMIP2 basins over Illinois River basin south of Siloam is selected in this case study. The data covers the time period of 2006 to 2008.The uncertainty range of stream flow from precipitation of GND-G distributions calculated and will be discussed.

  13. Online Assessment of Satellite-Derived Global Precipitation Products

    Science.gov (United States)

    Liu, Zhong; Ostrenga, D.; Teng, W.; Kempler, S.

    2012-01-01

    Precipitation is difficult to measure and predict. Each year droughts and floods cause severe property damages and human casualties around the world. Accurate measurement and forecast are important for mitigation and preparedness efforts. Significant progress has been made over the past decade in satellite precipitation product development. In particular, products' spatial and temporal resolutions as well as timely availability have been improved by blended techniques. Their resulting products are widely used in various research and applications. However biases and uncertainties are common among precipitation products and an obstacle exists in quickly gaining knowledge of product quality, biases and behavior at a local or regional scale, namely user defined areas or points of interest. Current online inter-comparison and validation services have not addressed this issue adequately. To address this issue, we have developed a prototype to inter-compare satellite derived daily products in the TRMM Online Visualization and Analysis System (TOVAS). Despite its limited functionality and datasets, users can use this tool to generate customized plots within the United States for 2005. In addition, users can download customized data for further analysis, e.g. comparing their gauge data. To meet increasing demands, we plan to increase the temporal coverage and expanded the spatial coverage from the United States to the globe. More products have been added as well. In this poster, we present two new tools: Inter-comparison of 3B42RT and 3B42 Inter-comparison of V6 and V7 TRMM L-3 monthly products The future plans include integrating IPWG (International Precipitation Working Group) Validation Algorithms/statistics, allowing users to generate customized plots and data. In addition, we will expand the current daily products to monthly and their climatology products. Whenever the TRMM science team changes their product version number, users would like to know the differences by

  14. Analysis of satellite precipitation over East Africa during last decades

    Science.gov (United States)

    Cattani, Elsa; Wenhaji Ndomeni, Claudine; Merino, Andrés; Levizzani, Vincenzo

    2016-04-01

    Daily accumulated precipitation time series from satellite retrieval algorithms (e.g., ARC2 and TAMSAT) are exploited to extract the spatial and temporal variability of East Africa (EA - 5°S-20°N, 28°E-52°E) precipitation during last decades (1983-2013). The Empirical Orthogonal Function (EOF) analysis is applied to precipitation time series to investigate the spatial and temporal variability in particular for October-November-December referred to as the short rain season. Moreover, the connection among EA's precipitation, sea surface temperature, and soil moisture is analyzed through the correlation with the dominant EOF modes of variability. Preliminary results concern the first two EOF's modes for the ARC2 data set. EOF1 is characterized by an inter-annual variability and a positive correlation between precipitation and El Niño, positive Indian Ocean Dipole mode, and soil moisture, while EOF2 shows a dipole structure of spatial variability associated with a longer scale temporal variability. This second dominant mode is mostly linked to sea surface temperature variations in the North Atlantic Ocean. Further analyses are carried out by computing the time series of the joint CCI/CLIVAR/JCOMM Expert Team on Climate Change Detection and Indices (ETCCDI, http://etccdi.pacificclimate.org/index.shtml), i.e. RX1day, RX5day, CDD, CDD, CWD, SDII, PRCPTOT, R10, R20. The purpose is to identify the occurrenes of extreme events (droughts and floods) and extract precipitation temporal variation by trend analysis (Mann-Kendall technique). Results for the ARC2 data set demonstrate the existence of a dipole spatial pattern in the linear trend of the time series of PRCPTOT (annual precipitation considering days with a rain rate > 1 mm) and SDII (average precipitation on wet days over a year). A negative trend is mainly present over West Ethiopia and Sudan, whereas a positive trend is exhibited over East Ethiopia and Somalia. CDD (maximum number of consecutive dry days) and

  15. Heavy precipitation retrieval from combined satellite observations and ground-based lightning measurements

    Science.gov (United States)

    Mugnai, A.; Dietrich, S.; Casella, D.; di Paola, F.; Formenton, M.; Sanò, P.

    2010-09-01

    We have developed a series of algorithms for the retrieval of precipitation (especially, heavy precipitation) over the Mediterranean area using satellite observations from the available microwave (MW) radiometers onboard low Earth orbit (LEO) satellites and from the visible-infrared (VIS-IR) SEVIRI radiometer onboard the European geosynchronous (GEO) satellite Meteosat Second Generation (MSG), in conjunction with lightning data from ground-based networks - such as ZEUS and LINET. These are: • A new approach for precipitation retrieval from space (which we call the Cloud Dynamics and Radiation Database approach, CDRD) that incorporates lightning and environmental/dynamical information in addition to the upwelling microwave brightness temperatures (TB’s) so as to reduce the retrieval uncertainty and improve the retrieval performance; • A new combined MW-IR technique for producing frequent precipitation retrievals from space (which we call PM-GCD technique), that uses passive-microwave (PM) retrievals in conjunction with lightning information and the Global Convection Detection (GCD) technique to discriminate deep convective clouds within the GEO observations; • A new morphing approach (which we call the Lightning-based Precipitation Evolving Technique, L-PET) that uses the available lightning measurements for propagating the rainfall estimates from satellite-borne MW radiometers to a much higher time resolution than the MW observations. We will present and discuss our combined MW/IR/lightning precipitation algorithms and analyses with special reference to some case studies over the western Mediterranean.

  16. Next-Generation Satellite Precipitation Products for Understanding Global and Regional Water Variability

    Science.gov (United States)

    Hou, Arthur Y.

    2011-01-01

    A major challenge in understanding the space-time variability of continental water fluxes is the lack of accurate precipitation estimates over complex terrains. While satellite precipitation observations can be used to complement ground-based data to obtain improved estimates, space-based and ground-based estimates come with their own sets of uncertainties, which must be understood and characterized. Quantitative estimation of uncertainties in these products also provides a necessary foundation for merging satellite and ground-based precipitation measurements within a rigorous statistical framework. Global Precipitation Measurement (GPM) is an international satellite mission that will provide next-generation global precipitation data products for research and applications. It consists of a constellation of microwave sensors provided by NASA, JAXA, CNES, ISRO, EUMETSAT, DOD, NOAA, NPP, and JPSS. At the heart of the mission is the GPM Core Observatory provided by NASA and JAXA to be launched in 2013. The GPM Core, which will carry the first space-borne dual-frequency radar and a state-of-the-art multi-frequency radiometer, is designed to set new reference standards for precipitation measurements from space, which can then be used to unify and refine precipitation retrievals from all constellation sensors. The next-generation constellation-based satellite precipitation estimates will be characterized by intercalibrated radiometric measurements and physical-based retrievals using a common observation-derived hydrometeor database. For pre-launch algorithm development and post-launch product evaluation, NASA supports an extensive ground validation (GV) program in cooperation with domestic and international partners to improve (1) physics of remote-sensing algorithms through a series of focused field campaigns, (2) characterization of uncertainties in satellite and ground-based precipitation products over selected GV testbeds, and (3) modeling of atmospheric processes and

  17. Making Satellite Precipitation Data Work for the Developing World

    Science.gov (United States)

    Gebregiorgis, A. S.; Hossain, F.

    2013-12-01

    The traditional approach to measuring precipitation by placing a probe on the ground will likely never be adequate or affordable in most parts of the world. Fortunately, satellites today provide a continuous global bird's-eye view (above ground) at any given location.However, the usefulness of such precipitation products for hydrological applications depends on their error characteristics and how intelligently we can harness the implications of uncertainty for surface hydrology. Satellite precipitation data is most useful where there exists little to none conventional measurements. As a result, the conventional method of comparing satellite estimate against in-situ records to 'harness' the uncertainty is unrealistic and impractical. As a community tasked with the job of making satellite precipitation 'work' for applications in most parts of the world, there is now a need think outside the box. The manuscript aims to describe a method that will 'truly' work in the developing world. The proposed manuscript aims to provide a broad view summary of our work on making hydrologically merged precipitation data work in the Middle East, Europe, Asia and Mediterranean regions. The aim will be to appeal to a broad range of water managers, climate decision makers and policy and planners in the developing world. The merged precipitation data has already been created for 2002-2010 and will be made freely available to BAMS readers through our ftp site. Globally selected study regions for developing and validating error variance regression model and satellite rainfall products merging scheme

  18. A novel algorithm for satellite data transmission

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    For remote sensing satellite data transmission,a novel algorithm is proposed in this paper.It integrates different type feature descriptors into multistage recognizers.In the first level,the dynamic clustering algorithm is used.In the second level,the improved support vector machines algorithm demonstrates its validity.In the third level,the shape matrices similarity comparison algorithm shows its excellent performance.The single child recognizers are connected in series,but they are independent of each other.Objects which are not recognized correctly by the lower level recognizers are then put into the higher level recognizers.Experimental results show that the multistage recognition algorithm improves the accuracy greatly with higher level feature descriptors and higher level recognizers.The algorithm may offer a new methodology for high speed satellite data transmission.

  19. Satellite cloud and precipitation property retrievals for climate monitoring and hydrological applications

    Science.gov (United States)

    Wolters, E. L. A.

    2012-03-01

    This thesis presents the retrieval, evaluation, and application of cloud physical property datasets (cloud phase, cloud particle effective radius, and precipitation occurrence and intensity) obtained from Spinning Enhanced Visible and Infrared Imager (SEVIRI) reflectance measurements using the Cloud Physical Properties (CPP) retrieval algorithm. In Chapter 3 it is shown that the CPP cloud-phase retrieval algorithm has sufficient accuracy (West Africa. During the afternoon, precipitation occurrence frequency over dry soils becomes significantly higher than over wet soils, whereas for precipitation intensity no significant difference is discerned. The study demonstrates that the combination of satellite-based soil moisture and precipitation observations can be helpful in improving the understanding of the land surface-precipitation interaction over tropical areas. The thesis concludes with a number of recommendations on future algorithm improvements and potential research applications. For both cloud phase and precipitation properties, extension of the algorithm to include nighttime observations would be desirable to enable detailed studies on the full diurnal cycle. Further, the SEVIRI High-Resolution Visible (HRV) channel could be incorporated to correct retrieved cloud physical properties for broken and inhomogeneous cloud cases. Finally, the accurate cloud phase and precipitation datasets combined with the high SEVIRI spatial and temporal sampling resolution enables possibilities for detailed research on climate monitoring, nowcasting applications, evaluation of cloud schemes in climate models, studies on land surface-precipitation interactions (with a special focus on the diurnal cycle), and assimilation of the datasets in weather and climate models

  20. Comparison of satellite reflectance algorithms for estimating ...

    Science.gov (United States)

    We analyzed 10 established and 4 new satellite reflectance algorithms for estimating chlorophyll-a (Chl-a) in a temperate reservoir in southwest Ohio using coincident hyperspectral aircraft imagery and dense water truth collected within one hour of image acquisition to develop simple proxies for algal blooms and to facilitate portability between multispectral satellite imagers for regional algal bloom monitoring. Narrow band hyperspectral aircraft images were upscaled spectrally and spatially to simulate 5 current and near future satellite imaging systems. Established and new Chl-a algorithms were then applied to the synthetic satellite images and then compared to calibrated Chl-a water truth measurements collected from 44 sites within one hour of aircraft acquisition of the imagery. Masks based on the spatial resolution of the synthetic satellite imagery were then applied to eliminate mixed pixels including vegetated shorelines. Medium-resolution Landsat and finer resolution data were evaluated against 29 coincident water truth sites. Coarse-resolution MODIS and MERIS-like data were evaluated against 9 coincident water truth sites. Each synthetic satellite data set was then evaluated for the performance of a variety of spectrally appropriate algorithms with regard to the estimation of Chl-a concentrations against the water truth data set. The goal is to inform water resource decisions on the appropriate satellite data acquisition and processing for the es

  1. Depiction of global drought by reanalysis and real-time satellite precipitation products

    Science.gov (United States)

    Wood, Eric; Zhan, Wang

    2017-04-01

    Reanalysis precipitation is routinely used as a surrogate of observations due to its high spatial and temporal resolution and global coverage, and thus widely used in hydrologic and agricultural applications. The resultant product is largely dependent on the accuracy of reanalysis precipitation datasets. With advances in satellite remote sensing technology, the latest generation of reanalysis systems starts to include real time satellite precipitation estimates as inputs to their assimilation system. In this presentation, reanalysis precipitations datasets and real-time satellite rainfall products are used for the depiction of global drought events by comparing them against an observational reference dataset, namely the Princeton Global Forcing (PGF) dataset, during the period of March 2000 to December 2012. The selected reanalyses are the Climate Forecast System Reanalysis (CFSR), ERA-Interim, and the Modern-Era Retrospective Analysis for Research and Applications, version 1 (MERRA) and 2 (MERRA-2). Three real-time satellite precipitation estimates; namely the Tropical Rainfall Measuring Mission (TRMM) Multi-Satellite Precipitation Analysis (TMPA) 3B42RT, the Climate Prediction Center (CPC) morphing algorithm (CMORPH) and the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN) are included in the study. Our results show that all datasets depict Sub-Saharan African drought events with limited skill, as opposed to mid latitude regions. Reanalyses and satellite real-time precipitation datasets have comparative skill in the low latitudes. Specific drought events are analyzed that demonstrate the drought depiction from the various datasets. In North America, Asia and Europe, drought events are better replicated and inter-dataset variability is significantly smaller. Overall, temporal characteristics of identified drought events are better estimated than their spatial extent.

  2. Japanese Global Precipitation Measurement (GPM) mission status and application of satellite-based global rainfall map

    Science.gov (United States)

    Kachi, Misako; Shimizu, Shuji; Kubota, Takuji; Yoshida, Naofumi; Oki, Riko; Kojima, Masahiro; Iguchi, Toshio; Nakamura, Kenji

    2010-05-01

    . Collaboration with GCOM-W is not only limited to its participation to GPM constellation but also coordination in areas of algorithm development and validation in Japan. Generation of high-temporal and high-accurate global rainfall map is one of targets of the GPM mission. As a proto-type for GPM era, JAXA has developed and operates the Global Precipitation Map algorithm in near-real-time since October 2008, and hourly and 0.1-degree resolution binary data and images available at http://sharaku.eorc.jaxa.jp/GSMaP/ four hours after observation. The algorithms are based on outcomes from the Global Satellite Mapping for Precipitation (GSMaP) project, which was sponsored by the Japan Science and Technology Agency (JST) under the Core Research for Evolutional Science and Technology (CREST) framework between 2002 and 2007 (Okamoto et al., 2005; Aonashi et al., 2009; Ushio et al., 2009). Target of GSMaP project is to produce global rainfall maps that are highly accurate and in high temporal and spatial resolution through the development of rain rate retrieval algorithms based on reliable precipitation physical models by using several microwave radiometer data, and comprehensive use of precipitation radar and geostationary infrared imager data. Near-real-time GSMaP data is distributed via internet and utilized by end users. Purpose of data utilization by each user covers broad areas and in world wide; Science researches (model validation, data assimilation, typhoon study, etc.), weather forecast/service, flood warning and rain analysis over river basin, oceanographic condition forecast, agriculture, and education. Toward the GPM era, operational application should be further emphasized as well as science application. JAXA continues collaboration with hydrological communities to utilize satellite-based precipitation data as inputs to future flood prediction and warning system, as well as with meteorological agencies to proceed further data utilization in numerical weather prediction

  3. A Bayesian kriging approach for blending satellite and ground precipitation observations

    Science.gov (United States)

    Verdin, Andrew; Rajagopalan, Balaji; Kleiber, William; Funk, Chris

    2015-02-01

    Drought and flood management practices require accurate estimates of precipitation. Gauge observations, however, are often sparse in regions with complicated terrain, clustered in valleys, and of poor quality. Consequently, the spatial extent of wet events is poorly represented. Satellite-derived precipitation data are an attractive alternative, though they tend to underestimate the magnitude of wet events due to their dependency on retrieval algorithms and the indirect relationship between satellite infrared observations and precipitation intensities. Here we offer a Bayesian kriging approach for blending precipitation gauge data and the Climate Hazards Group Infrared Precipitation satellite-derived precipitation estimates for Central America, Colombia, and Venezuela. First, the gauge observations are modeled as a linear function of satellite-derived estimates and any number of other variables—for this research we include elevation. Prior distributions are defined for all model parameters and the posterior distributions are obtained simultaneously via Markov chain Monte Carlo sampling. The posterior distributions of these parameters are required for spatial estimation, and thus are obtained prior to implementing the spatial kriging model. This functional framework is applied to model parameters obtained by sampling from the posterior distributions, and the residuals of the linear model are subject to a spatial kriging model. Consequently, the posterior distributions and uncertainties of the blended precipitation estimates are obtained. We demonstrate this method by applying it to pentadal and monthly total precipitation fields during 2009. The model's performance and its inherent ability to capture wet events are investigated. We show that this blending method significantly improves upon the satellite-derived estimates and is also competitive in its ability to represent wet events. This procedure also provides a means to estimate a full conditional distribution

  4. Inter-Comparison of High-Resolution Satellite Precipitation Products over Central Asia

    Directory of Open Access Journals (Sweden)

    Hao Guo

    2015-06-01

    Full Text Available This paper examines the spatial error structures of eight precipitation estimates derived from four different satellite retrieval algorithms including TRMM Multi-satellite Precipitation Analysis (TMPA, Climate Prediction Center morphing technique (CMORPH, Global Satellite Mapping of Precipitation (GSMaP and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN. All the original satellite and bias-corrected products of each algorithm (3B42RTV7 and 3B42V7, CMORPH_RAW and CMORPH_CRT, GSMaP_MVK and GSMaP_Gauge, PERSIANN_RAW and PERSIANN_CDR are evaluated against ground-based Asian Precipitation-Highly Resolved Observational Data Integration Towards Evaluation of Water Resources (APHRODITE over Central Asia for the period of 2004 to 2006. The analyses show that all products except PERSIANN exhibit overestimation over Aral Sea and its surrounding areas. The bias-correction improves the quality of the original satellite TMPA products and GSMaP significantly but slightly in CMORPH and PERSIANN over Central Asia. 3B42RTV7 overestimates precipitation significantly with large Relative Bias (RB (128.17% while GSMaP_Gauge shows consistent high correlation coefficient (CC (>0.8 but RB fluctuates between −57.95% and 112.63%. The PERSIANN_CDR outperforms other products in winter with the highest CC (0.67. Both the satellite-only and gauge adjusted products have particularly poor performance in detecting rainfall events in terms of lower POD (less than 65%, CSI (less than 45% and relatively high FAR (more than 35%.

  5. Assessment and Comparison of TMPA Satellite Precipitation Products in Varying Climatic and Topographic Regimes in Morocco

    Directory of Open Access Journals (Sweden)

    Adam Milewski

    2015-05-01

    Full Text Available TRMM Multi-satellite Precipitation Analysis (TMPA satellite precipitation products have been utilized to quantify, forecast, or understand precipitation patterns, climate change, hydrologic models, and drought in numerous scientific investigations. The TMPA products recently went through a series of algorithm developments to enhance the accuracy and reliability of high-quality precipitation measurements, particularly in low rainfall environments and complex terrain. In this study, we evaluated four TMPA products (3B42: V6, V7temp, V7, RTV7 against 125 rain gauges in Northern Morocco to assess the accuracy of TMPA products in various regimes, examine the performance metrics of new algorithm developments, and assess the impact of the processing error in 2012. Results show that the research products outperform the real-time products in all environments within Morocco, and the newest algorithm development (3B42 V7 outperforms the previous version (V6, particularly in low rainfall and high-elevation environments. TMPA products continue to overestimate precipitation in arid environments and underestimate it in high-elevation areas. Lastly, the temporary processing error resulted in little bias except in arid environments. These results corroborate findings from previous studies, provide scientific data for the Middle East, highlight the difficulty of using TMPA products in varying conditions, and present preliminary research for future algorithm development for the GPM mission.

  6. Investigating Satellite Microwave observations of Precipitation in Different Climate Regimes

    Science.gov (United States)

    Wang, N.; Ferraro, R. R.

    2013-12-01

    Microwave satellite remote sensing of precipitation over land is a challenging problem due to the highly variable land surface emissivity, which, if not properly accounted for, can be much greater than the precipitation signal itself, especially in light rain/snow conditions. Additionally, surfaces such as arid land, deserts and snow cover have brightness temperature characteristics similar to precipitation Ongoing work by GPM microwave radiometer team is constructing databases through a variety of means, however, there is much uncertainty as to what is the optimal information needed for the wide array of sensors in the GPM constellation, including examination of regional conditions. The original data sets will focus on stratification by emissivity class, surface temperature and total perceptible water. We'll perform sensitivity studies to determine the potential role of ancillary data (e.g., land surface temperature, snow cover/water equivalent, etc.) to improve precipitation estimation over land in different climate regimes, including rain and snow. In other words, what information outside of the radiances can help describe the background and subsequent departures from it that are active precipitating regions? It is likely that this information will be a function of the various precipitation regimes. Statistical methods such as Principal Component Analysis (PCA) will be utilized in this task. Databases from a variety of sources are being constructed. They include existing satellite microwave measurements of precipitating and non-precipitating conditions, ground radar precipitation rate estimates, surface emissivity climatology from satellites, surface temperature and TPW from NWP reanalysis. Results from the analysis of these databases with respect to the microwave precipitation sensitivity to the variety of environmental conditions in different climate regimes will be discussed.

  7. Evaluating cloud precipitation efficiency with satellite retrievals of water isotopologues

    Science.gov (United States)

    Bailey, A.; Noone, D. C.; Wood, R.

    2015-12-01

    The efficiency with which clouds precipitate is believed to influence climate by modifying cloud lifetime and, ultimately, cloud amount. Aerosols can influence this linkage by reducing the effective radii of cloud droplets and suppressing precipitation. This relationship, however, is not unidirectional. Cloud precipitation efficiency can also regulate particle concentrations, since precipitation effectively scavenges aerosols from the atmosphere. One challenge in studying how aerosols, clouds, and precipitation processes interrelate is that observational constraints are difficult to attain. This work evaluates the ability of isotope ratios in water vapor to quantify cloud precipitation efficiency across the tropical and subtropical oceans. Theory suggests isotope ratios will record the precipitation efficiency of a convective plume, since heavier isotopologues precipitate preferentially; and a recent analysis of in situ measurements from the Mauna Loa Observatory (MLO, Hawaii, USA) verifies this to be the case. The challenge now lies in understanding whether satellite retrievals of isotope ratios in water vapor are sensitive enough to track precipitation efficiency globally. To answer this question, vertical profiles of the D/H ratio derived from NASA's Tropospheric Emission Spectrometer (TES) are first compared with the MLO in situ measurements. A qualitative match indicates the satellite retrievals can distinguish high from low precipitation efficiency convection. To expand the analysis geographically, TES profiles between 40°S and 40°N are compared with estimates of precipitation efficiency derived from the Tropical Rainfall Measuring Mission (TRMM) and ECMWF's ERA-Interim. Retrievals are binned by lower-tropospheric humidity and by vertical velocity in order to minimize large-scale thermodynamical influences. Co-located cloud retrievals provide the context necessary to evaluate the utility of these new estimates in elucidating cloud feedbacks on climate.

  8. Hydrological Utility and Uncertainty of Multi-Satellite Precipitation Products in the Mountainous Region of South Korea

    Directory of Open Access Journals (Sweden)

    Jong Pil Kim

    2016-07-01

    Full Text Available Satellite-derived precipitation can be a potential source of forcing data for assessing water availability and managing water supply in mountainous regions of East Asia. This study investigates the hydrological utility of satellite-derived precipitation and uncertainties attributed to error propagation of satellite products in hydrological modeling. To this end, four satellite precipitation products (tropical rainfall measuring mission (TRMM multi-satellite precipitation analysis (TMPA version 6 (TMPAv6 and version 7 (TMPAv7, the global satellite mapping of precipitation (GSMaP, and the climate prediction center (CPC morphing technique (CMORPH were integrated into a physically-based hydrologic model for the mountainous region of South Korea. The satellite precipitation products displayed different levels of accuracy when compared to the intra- and inter-annual variations of ground-gauged precipitation. As compared to the GSMaP and CMORPH products, superior performances were seen when the TMPA products were used within streamflow simulations. Significant dry (negative biases in the GSMaP and CMORPH products led to large underestimates of streamflow during wet-summer seasons. Although the TMPA products displayed a good level of performance for hydrologic modeling, there were some over/underestimates of precipitation by satellites during the winter season that were induced by snow accumulation and snowmelt processes. These differences resulted in streamflow simulation uncertainties during the winter and spring seasons. This study highlights the crucial need to understand hydrological uncertainties from satellite-derived precipitation for improved water resource management and planning in mountainous basins. Furthermore, it is suggested that a reliable snowfall detection algorithm is necessary for the new global precipitation measurement (GPM mission.

  9. Towards the Consideration of Surface and Environment variables for a Microwave Precipitation Algorithm Over Land

    Science.gov (United States)

    Wang, N. Y.; You, Y.; Ferraro, R. R.; Guch, I.

    2014-12-01

    Microwave satellite remote sensing of precipitation over land is a challenging problem due to the highly variable land surface emissivity, which, if not properly accounted for, can be much greater than the precipitation signal itself, especially in light rain/snow conditions. Additionally, surfaces such as arid land, deserts and snow cover have brightness temperatures characteristics similar to precipitation Ongoing work by NASA's GPM microwave radiometer team is constructing databases for the GPROF algorithm through a variety of means, however, there is much uncertainty as to what is the optimal information needed for the wide array of sensors in the GPM constellation, including examination of regional conditions. The at-launch database focuses on stratification by emissivity class, surface temperature and total precipitable water (TPW). We'll perform sensitivity studies to determine the potential role of environmental factors such as land surface temperature, surface elevation, and relative humidity and storm morphology such as storm vertical structure, height, and ice thickness to improve precipitation estimation over land, including rain and snow. In other words, what information outside of the satellite radiances can help describe the background and subsequent departures from it that are active precipitating regions? It is likely that this information will be a function of the various precipitation regimes. Statistical methods such as Principal Component Analysis (PCA) will be utilized in this task. Databases from a variety of sources are being constructed. They include existing satellite microwave measurements of precipitating and non-precipitating conditions, ground radar precipitation rate estimates, surface emissivity climatology from satellites, surface temperature and TPW from NWP reanalysis. Results from the analysis of these databases with respect to the microwave precipitation sensitivity to the variety of environmental conditions in different climate

  10. Evaluation of satellite-based precipitation estimates in winter season using an object-based approach

    Science.gov (United States)

    Li, J.; Hsu, K.; AghaKouchak, A.; Sorooshian, S.

    2012-12-01

    Verification has become an integral component of satellite precipitation algorithms and products. A number of object-based verification methods have been proposed to provide diagnostic information regarding the precipitation products' ability to capture the spatial pattern, intensity, and placement of precipitation. However, most object-based methods are not capable of investigating precipitation objects at the storm-scale. In this study, an image processing approach known as watershed segmentation was adopted to detect the storm-scale rainfall objects. Then, a fuzzy logic-based technique was utilized to diagnose and analyze storm-scale object attributes, including centroid distance, area ratio, intersection area ratio and orientation angle difference. Three verification metrics (i.e., false alarm ratio, missing ratio and overall membership score) were generated for validation and verification. Three satellite-based precipitation products, including PERSIANN, CMORPH, 3B42RT, were evaluated against NOAA stage IV MPE multi-sensor composite rain analysis at 0.25° by 0.25° on a daily scale in the winter season of 2010 over the contiguous United States. Winter season is dominated by frontal systems which usually have larger area coverage. All three products and the stage IV observation tend to find large size storm objects. With respect to the evaluation attributes, PERSIANN tends to obtain larger area ratio and consequently has larger centroid distance to the stage IV observations, while 3B42RT are found to be closer to the stage IV for the object size. All evaluation products give small orientation angle differences but vary significantly for the missing ratio and false alarm ratio. This implies that satellite estimates can fail to detect storms in winter. The overall membership scores are close for all three different products which indicate that all three satellite-based precipitation products perform well for capturing the spatial and geometric characteristics of

  11. The new automatic precipitation phase distinction algorithm for OceanRAIN data over the global ocean

    Science.gov (United States)

    Burdanowitz, Jörg; Klepp, Christian; Bakan, Stephan

    2015-04-01

    The hitherto lack of surface precipitation data over the global ocean limits the capabilities to validate recent and future precipitation satellite retrievals. The first systematic ship-based surface precipitation data set OceanRAIN (Ocean Rain And Ice-phase precipitation measurement Network) aims at providing in-situ precipitation data through particle size distributions (PSDs) from optical disdrometers deployed on research vessels (RVs). From the RV Polarstern, OceanRAIN currently contains more than four years of 1-minute resolution precipitation data, which corresponds to more than 200,000 minutes of precipitation. The calculation of the precipitation rate requires to know the precipitation phase (PP) of the falling particles. We develop a novel algorithm to automatically retrieve the PP using OceanRAIN data and ancillary meteorological measurements from RVs. The main objective is to improve accuracy and efficiency of the current time-consuming manual method of discriminating liquid and solid precipitation particles. The new PP distinction algorithm is based on the relation of air temperature and relative humidity (T-rH) with respect to PP. For first-time usage over oceanic areas, the land-retrieved coefficients of this empirical relationship are adjusted to OceanRAIN data. The measured PSD supports determining the PP in certain cases where large snow aggregates exist at distinctly positive air temperatures. The classification, based on T-rH and PSD, is statistically exploited and weighed with respect to the current weather conditions to obtain an overall PP probability at 1-minute resolution. The new PP distinction algorithm agrees in more than 92% (94% excl. mixed-phase) of precipitating cases with the manually-determined PP in the RV Polarstern data. The PP distinction algorithm complements the valuable information of OceanRAIN surface precipitation over the ocean.

  12. Early assessment of Integrated Multi-satellite Retrievals for Global Precipitation Measurement over China

    Science.gov (United States)

    Guo, Hao; Chen, Sheng; Bao, Anming; Behrangi, Ali; Hong, Yang; Ndayisaba, Felix; Hu, Junjun; Stepanian, Phillip M.

    2016-07-01

    Two post-real time precipitation products from the Integrated Multi-satellite Retrievals for Global Precipitation Measurement Mission (IMERG) are systematically evaluated over China with China daily Precipitation Analysis Product (CPAP) as reference. The IMERG products include the gauge-corrected IMERG product (IMERG_Cal) and the version of IMERG without direct gauge correction (IMERG_Uncal). The post-research TRMM Multisatellite Precipitation Analysis version 7 (TMPA-3B42V7) is also evaluated concurrently with IMERG for better perspective. In order to be consistent with CPAP, the evaluation and comparison of selected products are performed at 0.25° and daily resolutions from 12 March 2014 through 28 February 2015. The results show that: Both IMERG and 3B42V7 show similar performances. Compared to IMERG_Uncal, IMERG_Cal shows significant improvement in overall and conditional bias and in the correlation coefficient. Both IMERG_Cal and IMERG_Uncal perform relatively poor in winter and over-detect slight precipitation events in northwestern China. As an early validation of the GPM-era IMERG products that inherit the TRMM-era global satellite precipitation products, these findings will provide useful feedbacks and insights for algorithm developers and data users over China and beyond.

  13. Earth Observation Satellites Scheduling Based on Decomposition Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Feng Yao

    2010-11-01

    Full Text Available A decomposition-based optimization algorithm was proposed for solving Earth Observation Satellites scheduling problem. The problem was decomposed into task assignment main problem and single satellite scheduling sub-problem. In task assignment phase, the tasks were allocated to the satellites, and each satellite would schedule the task respectively in single satellite scheduling phase. We adopted an adaptive ant colony optimization algorithm to search the optimal task assignment scheme. Adaptive parameter adjusting strategy and pheromone trail smoothing strategy were introduced to balance the exploration and the exploitation of search process. A heuristic algorithm and a very fast simulated annealing algorithm were proposed to solve the single satellite scheduling problem. The task assignment scheme was valued by integrating the observation scheduling result of multiple satellites. The result was responded to the ant colony optimization algorithm, which can guide the search process of ant colony optimization. Computation results showed that the approach was effective to the satellites observation scheduling problem.

  14. Bayesian Estimation of Precipitation from Satellite Passive Microwave Observations Using Combined Radar-Radiometer Retrievals

    Science.gov (United States)

    Grecu, Mircea; Olson, William S.

    2006-01-01

    Precipitation estimation from satellite passive microwave radiometer observations is a problem that does not have a unique solution that is insensitive to errors in the input data. Traditionally, to make this problem well posed, a priori information derived from physical models or independent, high-quality observations is incorporated into the solution. In the present study, a database of precipitation profiles and associated brightness temperatures is constructed to serve as a priori information in a passive microwave radiometer algorithm. The precipitation profiles are derived from a Tropical Rainfall Measuring Mission (TRMM) combined radar radiometer algorithm, and the brightness temperatures are TRMM Microwave Imager (TMI) observed. Because the observed brightness temperatures are consistent with those derived from a radiative transfer model embedded in the combined algorithm, the precipitation brightness temperature database is considered to be physically consistent. The database examined here is derived from the analysis of a month-long record of TRMM data that yields more than a million profiles of precipitation and associated brightness temperatures. These profiles are clustered into a tractable number of classes based on the local sea surface temperature, a radiometer-based estimate of the echo-top height (the height beyond which the reflectivity drops below 17 dBZ), and brightness temperature principal components. For each class, the mean precipitation profile, brightness temperature principal components, and probability of occurrence are determined. The precipitation brightness temperature database supports a radiometer-only algorithm that incorporates a Bayesian estimation methodology. In the Bayesian framework, precipitation estimates are weighted averages of the mean precipitation values corresponding to the classes in the database, with the weights being determined according to the similarity between the observed brightness temperature principal

  15. Utilizing Satellite-derived Precipitation Products in Hydrometeorological Applications

    Science.gov (United States)

    Liu, Z.; Ostrenga, D.; Teng, W. L.; Kempler, S. J.; Huffman, G. J.

    2012-12-01

    Each year droughts and floods happen around the world and can cause severe property damages and human casualties. Accurate measurement and forecast are important for preparedness and mitigation efforts. Through multi-satellite blended techniques, significant progress has been made over the past decade in satellite-based precipitation product development, such as, products' spatial and temporal resolutions as well as timely availability. These new products are widely used in various research and applications. In particular, the TRMM Multi-satellite Precipitation Analysis (TMPA) products archived and distributed by the NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC) provide 3-hourly, daily and monthly near-global (50° N - 50° S) precipitation datasets for research and applications. Two versions of TMPA products are available, research (3B42, 3B43, rain gauge adjusted) and near-real-time (3B42RT). At GES DISC, we have developed precipitation data services to support hydrometeorological applications in order to maximize the TRMM mission's societal benefits. In this presentation, we will present examples of utilizing TMPA precipitation products in hydrometeorological applications including: 1) monitoring global floods and droughts; 2) providing data services to support the USDA Crop Explorer; 3) support hurricane monitoring activities and research; and 4) retrospective analog year analyses to improve USDA's world agricultural supply and demand estimates. We will also present precipitation data services that can be used to support hydrometeorological applications including: 1) User friendly TRMM Online Visualization and Analysis System (TOVAS; URL: http://disc2.nascom.nasa.gov/Giovanni/tovas/); 2) Mirador (http://mirador.gsfc.nasa.gov/), a simplified interface for searching, browsing, and ordering Earth science data at GES DISC; 3) Simple Subset Wizard (http://disc.sci.gsfc.nasa.gov/SSW/ ) for data subsetting and format conversion; 4) Data

  16. PM-GCD - a combined IR-MW satellite technique for frequent retrieval of heavy precipitation

    Science.gov (United States)

    Casella, D.; Dietrich, S.; di Paola, F.; Formenton, M.; Mugnai, A.; Porcù, F.; Sanò, P.

    2012-01-01

    Precipitation retrievals based on measurements from microwave (MW) radiometers onboard low-Earth-orbit (LEO) satellites can reach high level of accuracy - especially regarding convective precipitation. At the present stage though, these observations cannot provide satisfactory coverage of the evolution of intense and rapid precipitating systems. As a result, the obtained precipitation retrievals are often of limited use for many important applications - especially in supporting authorities for flood alerts and weather warnings. To tackle this problem, over the past two decades several techniques have been developed combining accurate MW estimates with frequent infrared (IR) observations from geosynchronous (GEO) satellites, such as the European Meteosat Second Generation (MSG). In this framework, we have developed a new fast and simple precipitation retrieval technique which we call Passive Microwave - Global Convective Diagnostic, (PM-GCD). This method uses MW retrievals in conjunction with the Global Convective Diagnostic (GCD) technique which discriminates deep convective clouds based on the difference between the MSG water vapor (6.2 μm) and thermal-IR (10.8 μm) channels. Specifically, MSG observations and the GCD technique are used to identify deep convective areas. These areas are then calibrated using MW precipitation estimates based on observations from the Advanced Microwave Sounding Unit (AMSU) radiometers onboard operational NOAA and Eumetsat satellites, and then finally propagated in time with a simple tracking algorithm. In this paper, we describe the PM-GCD technique, analyzing its results for a case study that refers to a flood event that struck the island of Sicily in southern Italy on 1-2 October 2009.

  17. Application of Multi-Satellite Precipitation Analysis to Floods and Landslides

    Science.gov (United States)

    Adler, Robert; Hong, Yang; Huffman, George

    2007-01-01

    Satellite data acquired and processed in real time now have the potential to provide the spacetime information on rainfall needed to monitor flood and landslide events around the world. This can be achieved by integrating the satellite-derived forcing data with hydrological models and landslide algorithms. Progress in using the TRMM Multi-satellite Precipitation Analysis (TMPA) as input to flood and landslide forecasts is outlined, with a focus on understanding limitations of the rainfall data and impacts of those limitations on flood/landslide analyses. Case studies of both successes and failures will be shown, as well as comparison with ground comparison data sets both in terms of rainfall and in terms of flood/landslide events. In addition to potential uses in real-time, the nearly ten years of TMPA data allow retrospective running of the models to examine variations in extreme events. The flood determination algorithm consists of four major components: 1) multi-satellite precipitation estimation; 2) characterization of land surface including digital elevation from NASA SRTM (Shuttle Radar Terrain Mission), topography-derived hydrologic parameters such as flow direction, flow accumulation, basin, and river network etc.; 3) a hydrological model to infiltrate rainfall and route overland runoff; and 4) an implementation interface to relay the input data to the models and display the flood inundation results to potential users and decision-makers. In terms of landslides, the satellite rainfall information is combined with a global landslide susceptibility map, derived from a combination of global surface characteristics (digital elevation topography, slope, soil types, soil texture, and land cover classification etc.) using a weighted linear combination approach. In those areas identified as "susceptible" (based on the surface characteristics), landslides are forecast where and when a rainfall intensity/duration threshold is exceeded. Results are described

  18. Genetic Algorithms for Satellite Scheduling Problems

    Directory of Open Access Journals (Sweden)

    Fatos Xhafa

    2012-01-01

    Full Text Available Recently there has been a growing interest in mission operations scheduling problem. The problem, in a variety of formulations, arises in management of satellite/space missions requiring efficient allocation of user requests to make possible the communication between operations teams and spacecraft systems. Not only large space agencies, such as ESA (European Space Agency and NASA, but also smaller research institutions and universities can establish nowadays their satellite mission, and thus need intelligent systems to automate the allocation of ground station services to space missions. In this paper, we present some relevant formulations of the satellite scheduling viewed as a family of problems and identify various forms of optimization objectives. The main complexities, due highly constrained nature, windows accessibility and visibility, multi-objectives and conflicting objectives are examined. Then, we discuss the resolution of the problem through different heuristic methods. In particular, we focus on the version of ground station scheduling, for which we present computational results obtained with Genetic Algorithms using the STK simulation toolkit.

  19. Utilization of Precipitation and Moisture Products Derived from Satellites to Support NOAA Operational Precipitation Forecasts

    Science.gov (United States)

    Ferraro, R.; Zhao, L.; Kuligowski, R. J.; Kusselson, S.; Ma, L.; Kidder, S. Q.; Forsythe, J. M.; Jones, A. S.; Ebert, E. E.; Valenti, E.

    2012-12-01

    NOAA/NESDIS operates a constellation of polar and geostationary orbiting satellites to support weather forecasts and to monitor the climate. Additionally, NOAA utilizes satellite assets from other U.S. agencies like NASA and the Department of Defense, as well as those from other nations with similar weather and climate responsibilities (i.e., EUMETSAT and JMA). Over the past two decades, through joint efforts between U.S. and international government researchers, academic partners, and private sector corporations, a series of "value added" products have been developed to better serve the needs of weather forecasters and to exploit the full potential of precipitation and moisture products generated from these satellites. In this presentation, we will focus on two of these products - Ensemble Tropical Rainfall Potential (eTRaP) and Blended Total Precipitable Water (bTPW) - and provide examples on how they contribute to hydrometeorological forecasts. In terms of passive microwave satellite products, TPW perhaps is most widely used to support real-time forecasting applications, as it accurately depicts tropospheric water vapor and its movement. In particular, it has proven to be extremely useful in determining the location, timing, and duration of "atmospheric rivers" which contribute to and sustain flooding events. A multi-sensor approach has been developed and implemented at NESDIS in which passive microwave estimates from multiple satellites and sensors are merged to create a seamless, bTPW product that is more efficient for forecasters to use. Additionally, this product is being enhanced for utilization for television weather forecasters. Examples will be shown to illustrate the roll of atmospheric rivers and contribution to flooding events, and how the bTPW product was used to improve the forecast of these events. Heavy rains associated with land falling tropical cyclones (TC) frequently trigger floods that cause millions of dollars of damage and tremendous loss

  20. The validation service of the hydrological SAF geostationary and polar satellite precipitation products

    Science.gov (United States)

    Puca, S.; Porcu, F.; Rinollo, A.; Vulpiani, G.; Baguis, P.; Balabanova, S.; Campione, E.; Ertürk, A.; Gabellani, S.; Iwanski, R.; Jurašek, M.; Kaňák, J.; Kerényi, J.; Koshinchanov, G.; Kozinarova, G.; Krahe, P.; Lapeta, B.; Lábó, E.; Milani, L.; Okon, L'.; Öztopal, A.; Pagliara, P.; Pignone, F.; Rachimow, C.; Rebora, N.; Roulin, E.; Sönmez, I.; Toniazzo, A.; Biron, D.; Casella, D.; Cattani, E.; Dietrich, S.; Di Paola, F.; Laviola, S.; Levizzani, V.; Melfi, D.; Mugnai, A.; Panegrossi, G.; Petracca, M.; Sanò, P.; Zauli, F.; Rosci, P.; De Leonibus, L.; Agosta, E.; Gattari, F.

    2014-04-01

    The development phase (DP) of the EUMETSAT Satellite Application Facility for Support to Operational Hydrology and Water Management (H-SAF) led to the design and implementation of several precipitation products, after 5 yr (2005-2010) of activity. Presently, five precipitation estimation algorithms based on data from passive microwave and infrared sensors, on board geostationary and sun-synchronous platforms, function in operational mode at the H-SAF hosting institute to provide near real-time precipitation products at different spatial and temporal resolutions. In order to evaluate the precipitation product accuracy, a validation activity has been established since the beginning of the project. A Precipitation Product Validation Group (PPVG) works in parallel with the development of the estimation algorithms with two aims: to provide the algorithm developers with indications to refine algorithms and products, and to evaluate the error structure to be associated with the operational products. In this paper, the framework of the PPVG is presented: (a) the characteristics of the ground reference data available to H-SAF (i.e. radar and rain gauge networks), (b) the agreed upon validation strategy settled among the eight European countries participating in the PPVG, and (c) the steps of the validation procedures. The quality of the reference data is discussed, and the efforts for its improvement are outlined, with special emphasis on the definition of a ground radar quality map and on the implementation of a suitable rain gauge interpolation algorithm. The work done during the H-SAF development phase has led the PPVG to converge into a common validation procedure among the members, taking advantage of the experience acquired by each one of them in the validation of H-SAF products. The methodology is presented here, indicating the main steps of the validation procedure (ground data quality control, spatial interpolation, up-scaling of radar data vs. satellite grid

  1. PoPSat: The Polar Precipitation Satellite Mission

    Science.gov (United States)

    Binder, Matthias J.; Agten, Dries; Arago-Higueras, Nadia; Borderies, Mary; Diaz-Schümmer, Carlos; Jamali, Maryam; Jimenez-Lluva, David; Kiefer, Joshua; Larsson, Anna; Lopez-Gilabert, Lola; Mione, Michele; Mould, Toby JD; Pavesi, Sara; Roth, Georg; Tomicic, Maja

    2017-04-01

    The terrestrial water cycle is one of many unique regulatory systems on planet Earth. It is directly responsible for sustaining biological life on land and human populations by ensuring sustained crop yields. However, this delicate balanced system continues to be influenced significantly by a changing climate, which has had drastic impacts particularly on the polar regions. Precipitation is a key process in the weather and climate system, due to its storage, transport and release of latent heat in the atmosphere. It has been extensively investigated in low latitudes, in which detailed models have been established for weather prediction. However, a gap has been left in higher latitudes above 65°, which show the strongest response to climate changes and where increasing precipitations have been foreseen in the future. In order to establish a global perspective of atmospheric processes, space observation of high-latitude areas is crucial to produce globally consistent data. The increasing demand for those data has driven a critical need to devise a mission which fills the gaps in current climate models. The authors propose the Polar Precipitation Satellite (PoPSat), an innovative satellite mission to provide enhanced observation of light and medium precipitation, focusing on snowfall and light rain in high latitudes. PoPSat is the first mission aimed to provide high resolution 3D structural information about snow and light precipitation systems and cloud structure in the covered areas. The satellite is equipped with a dual band (Ka and W band) phased-array radar. These antennas provide a horizontal resolution of 2 km and 4 km respectively which will exceed all other observations made to date at high-latitudes, while providing the additional capability to monitor snowfall. The data gathered will be compatible and complementary with measurements made during previous missions. PoPSat has been designed to fly on a sun-synchronous, dawn-dusk orbit at 460 km. This orbit

  2. Performance of the Dual-frequency Precipitation Radar on the GPM core satellite

    Science.gov (United States)

    Iguchi, Toshio; Seto, Shinta; Awaka, Jun; Meneghini, Robert; Kubota, Takuji; Oki, Riko; Chandra, Venkatchalam; Kawamoto, Nozomi

    2016-04-01

    The GPM core satellite was launched on February 28, 2014. This paper describes some of the results of precipitation measurements with the Dual-Frequency Precipitation Radar (DPR) on the GPM core satellite. The DPR, which was developed by Japan Aerospace Exploration Agency (JAXA) and National Institute of Information and Communications Technology (NICT), consists of two radars: Ku-band precipitation radar (KuPR) and Ka-band radar (KaPR). The performance of the DPR is evaluated by comparing the level 2 products with the corresponding TRMM/PR data and surface rain measurements. The scanning geometry and footprint size of KuPR and those of PR are nearly identical. The major differences between them are the sensitivity, visiting frequency, and the rain retrieval algorithm. KuPR's sensitivity is twice as good as PR. The increase of sensitivity reduces the cases of missing light rain. Since relatively light rain prevails in Japan, the difference in sensitivity may cause a few percentage points in the bias. Comparisons of the rain estimates by GPM/DPR with AMeDAS rain gauge data over Japan show that annual KuPR's estimates over Japan agree quite well with the rain gauge estimates although the monthly or local statistics of these two kinds of data scatter substantially. KuPR's esimates are closer to the gauge estimates than the TRMM/PR. Possible sources of the differences that include sampling errors, sensitivity, and the algorithm are examined.

  3. How Well Can We Estimate Error Variance of Satellite Precipitation Data Around the World?

    Science.gov (United States)

    Gebregiorgis, A. S.; Hossain, F.

    2014-12-01

    The traditional approach to measuring precipitation by placing a probe on the ground will likely never be adequate or affordable in most parts of the world. Fortunately, satellites today provide a continuous global bird's-eye view (above ground) at any given location. However, the usefulness of such precipitation products for hydrological applications depends on their error characteristics. Thus, providing error information associated with existing satellite precipitation estimates is crucial to advancing applications in hydrologic modeling. In this study, we present a method of estimating satellite precipitation error variance using regression model for three satellite precipitation products (3B42RT, CMORPH, and PERSIANN-CCS) using easily available geophysical features and satellite precipitation rate. The goal of this work is to explore how well the method works around the world in diverse geophysical settings. Topography, climate, and seasons are considered as the governing factors to segregate the satellite precipitation uncertainty and fit a nonlinear regression equation as function of satellite precipitation rate. The error variance models were tested on USA, Asia, Middle East, and Mediterranean region. Rain-gauge based precipitation product was used to validate the errors variance of satellite precipitation products. Our study attests that transferability of model estimators (which help to estimate the error variance) from one region to another is practically possible by leveraging the similarity in geophysical features. Therefore, the quantitative picture of satellite precipitation error over ungauged regions can be discerned even in the absence of ground truth data.

  4. JPSS Preparations at the Satellite Proving Ground for Marine, Precipitation, and Satellite Analysis

    Science.gov (United States)

    Folmer, M. J.; Berndt, E.; Clark, J.; Orrison, A.; Kibler, J.; Sienkiewicz, J. M.; Nelson, J. A., Jr.; Goldberg, M.

    2016-12-01

    The National Oceanic and Atmospheric Administration (NOAA) Satellite Proving Ground (PG) for Marine, Precipitation, and Satellite Analysis (MPS) has been demonstrating and evaluating Suomi National Polar-orbiting Partnership (S-NPP) products along with other polar-orbiting satellite platforms in preparation for the Joint Polar Satellite System - 1 (JPSS-1) launch in March 2017. The first S-NPP imagery was made available to the MPS PG during the evolution of Hurricane Sandy in October 2012 and has since been popular in operations. Since this event the MPS PG Satellite Liaison has been working with forecasters on ways to integrate single-channel and multispectral imagery from the Visible Infrared Imaging Radiometer Suite (VIIRS), the Moderate Resolution Imaging Spectroradiometer (MODIS), and the Advanced Very High Resolution Radiometer (AVHRR)into operations to complement numerical weather prediction and geostationary satellite savvy National Weather Service (NWS) National Centers. Additional unique products have been introduced to operations to address specific forecast challenges, including the Cooperative Institute for Research in the Atmosphere (CIRA) Layered Precipitable Water, the National Environmental Satellite, Data, and Information Service (NESDIS) Snowfall Rate product, NOAA Unique Combined Atmospheric Processing System (NUCAPS) Soundings, ozone products from the Atmospheric Infrared Sounder (AIRS), Cross-track Infrared Sounder/Advanced Technology Microwave Sounder (CrIS/ATMS), and Infrared Atmospheric Sounding Interferometer (IASI). In addition, new satellite domains have been created to provide forecasters at the NWS Ocean Prediction Center and Weather Prediction Center with better quality imagery at high latitudes. This has led to research projects that are addressing forecast challenges such as tropical to extratropical transition and explosive cyclogenesis. This presentation will provide examples of how the MPS PG has been introducing and integrating

  5. Operational Estimation of Accumulated Precipitation using Satellite Observation, by Eumetsat Satellite Application facility in Support to Hydrology (H-SAF Consortium).

    Science.gov (United States)

    di Diodato, A.; de Leonibus, L.; Zauli, F.; Biron, D.; Melfi, D.

    2009-04-01

    Operational Estimation of Accumulated Precipitation using Satellite Observation, by Eumetsat Satellite Application facility in Support to Hydrology (H-SAF Consortium). Cap. Attilio DI DIODATO(*), T.Col. Luigi DE LEONIBUS(*), T.Col Francesco ZAULI(*), Cap. Daniele BIRON(*), Ten. Davide Melfi(*) Satellite Application Facilities (SAFs) are specialised development and processing centres of the EUMETSAT Distributed Ground Segment. SAFs process level 1b data from meteorological satellites (geostationary and polar ones) in conjunction with all other relevant sources of data and appropriate models to generate services and level 2 products. Each SAF is a consortium of EUMETSAT European partners lead by a host institute responsible for the management of the complete SAF project. The Meteorological Service of Italian Air Force is the host Institute for the Satellite Application Facility on Support to Operational Hydrology and Water Management (H-SAF). HSAF has the commitment to develop and to provide, operationally after 2010, products regarding precipitation, soil moisture and snow. HSAF is going to provide information on error structure of its products and validation of the products via their impacts into Hydrological models. To that purpose it has been structured a specific subgroups. Accumulated precipitation is computed by temporal integration of the instantaneous rain rate achieved by the blended LEO/MW and GEO/IR precipitation rate products generated by Rapid Update method available every 15 minutes. The algorithm provides four outputs, consisting in accumulated precipitation in 3, 6, 12 and 24 hours, delivered every 3 hours at the synoptic hours. These outputs are our precipitation background fields. Satellite estimates can cover most of the globe, however, they suffer from errors due to lack of a direct relationship between observation parameters and precipitation, the poor sampling and algorithm imperfections. For this reason the 3 hours accumulated precipitation is

  6. Real-Time Application of Multi-Satellite Precipitation Analysis for Floods and Landslides

    Science.gov (United States)

    Adler, Robert; Hong, Yang; Huffman, George

    2007-01-01

    Satellite data acquired and processed in real time now have the potential to provide the spacetime information on rainfall needed to monitor flood and landslide events around the world. This can be achieved by integrating the satellite-derived forcing data with hydrological models and landslide algorithms. Progress in using the TRMM Multi-satellite Precipitation Analysis (TMPA) as input to flood and landslide forecasts is outlined, with a focus on understanding limitations of the rainfall data and impacts of those limitations on flood/landslide analyses. Case studies of both successes and failures will be shown, as well as comparison with ground comparison data sets-- both in terms of rainfall and in terms of flood/landslide events. In addition to potential uses in real-time, the nearly ten years of TMPA data allow retrospective running of the models to examine variations in extreme events. The flood determination algorithm consists of four major components: 1) multi-satellite precipitation estimation; 2) characterization of land surface including digital elevation from NASA SRTM (Shuttle Radar Terrain Mission), topography-derived hydrologic parameters such as flow direction, flow accumulation, basin, and river network etc.; 3) a hydrological model to infiltrate rainfall and route overland runoff; and 4) an implementation interface to relay the input data to the models and display the flood inundation results to potential users and decision-makers, In terms of landslides, the satellite rainfall information is combined with a global landslide susceptibility map, derived from a combination of global surface characteristics (digital elevation topography, slope, soil types, soil texture, and land cover classification etc.) using a weighted linear combination approach. In those areas identified as "susceptible" (based on the surface characteristics), landslides are forecast where and when a rainfall intensity/duration threshold is exceeded. Results are described

  7. A Hybrid Algorithm for Satellite Data Transmission Schedule Based on Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    LI Yun-feng; WU Xiao-yue

    2008-01-01

    A hybrid scheduling algorithm based on genetic algorithm is proposed in this paper for reconnaissance satellite data transmission. At first, based on description of satellite data transmission request, satellite data transmission task modal and satellite data transmission scheduling problem model are established. Secondly, the conflicts in scheduling are discussed. According to the meaning of possible conflict, the method to divide possible conflict task set is given. Thirdly, a hybrid algorithm which consists of genetic algorithm and heuristic information is presented. The heuristic information comes from two concepts, conflict degree and conflict number. Finally, an example shows the algorithm's feasibility and performance better than other traditional algorithms.

  8. Hydrologic evaluation of a Generalized Statistical Uncertainty Model for Satellite Precipitation Products

    Science.gov (United States)

    Sarachi, S.; Hsu, K. L.; Sorooshian, S.

    2014-12-01

    Development of satellite based precipitation retrieval algorithms and using them in hydroclimatic studies have been of great interest to hydrologists. It is important to understand the uncertainty associated with precipitation products and how they further contribute to the variability in stream flow simulation. In this study a mixture model of Generalized Normal Distribution and Gamma distribution (GND-G) is used to model the joint probability distribution of satellite-based (PERSIANN) and stage IV radar rainfall. The study area for constructing the uncertainty model covers a 15°×15°box of 0.25°×0.25° cells over the eastern United States for summer 2004 to 2009. Cells are aggregated in space and time to obtain data with different resolutions for the construction of the model's parameter space. This uncertainty model is evaluated using data from National Weather Service (NWS) Distributed Hydrologic Model Intercomparison Project - Phase 2 (DMIP 2) basin over Illinois River basin south of Siloam, OK. This data covers the time period of 2006 to 2008.The uncertainty range of precipitation is estimated. The impact of precipitation uncertainty to the stream flow estimation is demonstrated by Monte Carlo simulation of precipitation forcing in the Sacramento Soil Moisture Accounting (SAC-SMA) model. The results show that using precipitation along with its uncertainty distribution as forcing to SAC-SMA make it possible to have an estimation of the uncertainty associated with the stream flow simulation ( in this case study %90 confidence interval is used). The mean of this stream flow confidence interval is compared to the reference stream flow for evaluation of the model and the results show that this method helps to better estimate the variability of the stream flow simulation along with its statistics e.g. percent bias and root mean squared error.

  9. Performance of the Falling Snow Retrieval Algorithms for the Global Precipitation Measurement (GPM) Mission

    Science.gov (United States)

    Skofronick-Jackson, Gail; Munchak, Stephen J.; Ringerud, Sarah

    2016-01-01

    Retrievals of falling snow from space represent an important data set for understanding the Earth's atmospheric, hydrological, and energy cycles, especially during climate change. Estimates of falling snow must be captured to obtain the true global precipitation water cycle, snowfall accumulations are required for hydrological studies, and without knowledge of the frozen particles in clouds one cannot adequately understand the energy and radiation budgets. While satellite-based remote sensing provides global coverage of falling snow events, the science is relatively new and retrievals are still undergoing development with challenges remaining). This work reports on the development and testing of retrieval algorithms for the Global Precipitation Measurement (GPM) mission Core Satellite, launched February 2014.

  10. An enhanced algorithm to estimate BDS satellite's differential code biases

    Science.gov (United States)

    Shi, Chuang; Fan, Lei; Li, Min; Liu, Zhizhao; Gu, Shengfeng; Zhong, Shiming; Song, Weiwei

    2016-02-01

    This paper proposes an enhanced algorithm to estimate the differential code biases (DCB) on three frequencies of the BeiDou Navigation Satellite System (BDS) satellites. By forming ionospheric observables derived from uncombined precise point positioning and geometry-free linear combination of phase-smoothed range, satellite DCBs are determined together with ionospheric delay that is modeled at each individual station. Specifically, the DCB and ionospheric delay are estimated in a weighted least-squares estimator by considering the precision of ionospheric observables, and a misclosure constraint for different types of satellite DCBs is introduced. This algorithm was tested by GNSS data collected in November and December 2013 from 29 stations of Multi-GNSS Experiment (MGEX) and BeiDou Experimental Tracking Stations. Results show that the proposed algorithm is able to precisely estimate BDS satellite DCBs, where the mean value of day-to-day scattering is about 0.19 ns and the RMS of the difference with respect to MGEX DCB products is about 0.24 ns. In order to make comparison, an existing algorithm based on IGG: Institute of Geodesy and Geophysics, China (IGGDCB), is also used to process the same dataset. Results show that, the DCB difference between results from the enhanced algorithm and the DCB products from Center for Orbit Determination in Europe (CODE) and MGEX is reduced in average by 46 % for GPS satellites and 14 % for BDS satellites, when compared with DCB difference between the results of IGGDCB algorithm and the DCB products from CODE and MGEX. In addition, we find the day-to-day scattering of BDS IGSO satellites is obviously lower than that of GEO and MEO satellites, and a significant bias exists in daily DCB values of GEO satellites comparing with MGEX DCB product. This proposed algorithm also provides a new approach to estimate the satellite DCBs of multiple GNSS systems.

  11. Improved global high resolution precipitation estimation using multi-satellite multi-spectral information

    Science.gov (United States)

    Behrangi, Ali

    In respond to the community demands, combining microwave (MW) and infrared (IR) estimates of precipitation has been an active area of research since past two decades. The anticipated launching of NASA's Global Precipitation Measurement (GPM) mission and the increasing number of spectral bands in recently launched geostationary platforms will provide greater opportunities for investigating new approaches to combine multi-source information towards improved global high resolution precipitation retrievals. After years of the communities' efforts the limitations of the existing techniques are: (1) Drawbacks of IR-only techniques to capture warm rainfall and screen out no-rain thin cirrus clouds; (2) Grid-box- only dependency of many algorithms with not much effort to capture the cloud textures whether in local or cloud patch scale; (3) Assumption of indirect relationship between rain rate and cloud-top temperature that force high intensity precipitation to any cold cloud; (4) Neglecting the dynamics and evolution of cloud in time; (5) Inconsistent combination of MW and IR-based precipitation estimations due to the combination strategies and as a result of above described shortcomings. This PhD dissertation attempts to improve the combination of data from Geostationary Earth Orbit (GEO) and Low-Earth Orbit (LEO) satellites in manners that will allow consistent high resolution integration of the more accurate precipitation estimates, directly observed through LEO's PMW sensors, into the short-term cloud evolution process, which can be inferred from GEO images. A set of novel approaches are introduced to cope with the listed limitations and is consist of the following four consecutive components: (1) starting with the GEO part and by using an artificial-neural network based method it is demonstrated that inclusion of multi-spectral data can ameliorate existing problems associated with IR-only precipitating retrievals; (2) through development of Precipitation Estimation

  12. Evaluation of Six High-Resolution Satellite and Ground-Based Precipitation Products over Malaysia

    Directory of Open Access Journals (Sweden)

    Mou Leong Tan

    2015-01-01

    Full Text Available Satellite precipitation products (SPPs potentially constitute an alternative to sparse rain gauge networks for assessing the spatial distribution of precipitation. However, applications of these products are still limited due to the lack of robust quality assessment. This study compares daily, monthly, seasonal, and annual rainfall amount at 342 rain gauges over Malaysia to estimations using five SPPs (3B42RT, 3B42V7, GPCP-1DD, PERSIANN-CDR, and CMORPH and a ground-based precipitation product (APHRODITE. The performance of the precipitation products was evaluated from 2003 to 2007 using continuous (RMSE, R2, ME, MAE, and RB and categorical (ACC, POD, FAR, CSI, and HSS statistical approaches. Overall, 3B42V7 and APHRODITE performed the best, while the worst performance was shown by GPCP-1DD. 3B42RT, 3B42V7, and PERSIANN-CDR slightly overestimated observed precipitation by 2%, 4.7%, and 2.1%, respectively. By contrast, APHRODITE and CMORPH significantly underestimated precipitations by 19.7% and 13.2%, respectively, whereas GPCP-1DD only slightly underestimated by 2.8%. All six precipitation products performed better in the northeast monsoon than in the southwest monsoon. The better performances occurred in eastern and southern Peninsular Malaysia and in the north of East Malaysia, which receives higher rainfall during the northeast monsoon, whereas poor performances occurred in the western and dryer Peninsular Malaysia. All precipitation products underestimated the no/tiny (<1 mm/day and extreme (≥20 mm/day rainfall events, while they overestimated low (1–20 mm/day rainfall events. 3B42RT and 3B42V7 showed the best ability to detect precipitation amounts with the highest HSS value (0.36. Precipitations during flood events such as those which occurred in late 2006 and early 2007 were estimated the best by 3B42RT and 3B42V7, as shown by an R2 value ranging from 0.49 to 0.88 and 0.52 to 0.86, respectively. These results on SPPs’ uncertainties

  13. Developments and applications of the Global Satellite Mapping of Precipitation (GSMaP) for the Global Precipitation Measurement (GPM)

    Science.gov (United States)

    Kachi, Misako; Aonashi, Kazumasa; Kubota, Takuji; Shige, Shoichi; Ushio, Tomoo; Mega, Tomoaki; Yamamoto, Munehisa; Hamada, Atsushi; Seto, Shinta; Takayabu, Yukari N.; Oki, Riko

    2016-04-01

    The Global Satellite Mapping of Precipitation (GSMaP) is a global rainfall map based on a blended Microwave-Infrared product and has been developed in Japan for the Global Precipitation Measurement (GPM) mission. To fulfill gaps of passive microwave observations, we developed a method to interpolate observations between each microwave imager by utilizing information from the Infrared imagers on board the geostationary satellites, and achieved production of an hourly global rainfall map in 0.1-degree latitude/longitude grid. The latest GSMaP version 6 product was released in September 2014 to the public as one of Japanese GPM products after the launch of the GPM Core Observatory, which is Japan and U.S. joint mission and carrying both the Dual-frequency Precipitation Radar (DPR) and GPM Microwave Imager (GMI), in February 2014. In the next version (version 7), which is scheduled to be released in the summer 2016, we plan to apply databases produced from DPR instead of those from PR, and to introduce snow retrieval algorithm for the passive microwave instruments that have higher frequency channels. The GSMaP near-real-time version (GSMaP_NRT) product is available 4-hour after observation through the "JAXA Global Rainfall Watch" web site (http://sharaku.eorc.jaxa.jp/GSMaP) since 2008. To assure near-real-time data availability, the GSMaP_NRT system simplified part of the algorithm and its processing procedure. Therefore, the GSMaP_NRT product gives higher priority to data latency than accuracy. Since its data release, GSMaP_NRT data has been used by various users for various purposes, such as rainfall monitoring, flood alert and warning, drought monitoring, crop yield forecast, and agricultural insurance. There are, however, several requirements from users for GSMaP improvements not only for accuracy but also specification. Among those requests for data specification, the most popular ones are shortening of data latency time and higher horizontal resolution. To reduce

  14. Global Precipitation Measurement (GPM) Microwave Imager Falling Snow Retrieval Algorithm Performance

    Science.gov (United States)

    Skofronick Jackson, Gail; Munchak, Stephen J.; Johnson, Benjamin T.

    2015-04-01

    Retrievals of falling snow from space represent an important data set for understanding the Earth's atmospheric, hydrological, and energy cycles. While satellite-based remote sensing provides global coverage of falling snow events, the science is relatively new and retrievals are still undergoing development with challenges and uncertainties remaining. This work reports on the development and post-launch testing of retrieval algorithms for the NASA Global Precipitation Measurement (GPM) mission Core Observatory satellite launched in February 2014. In particular, we will report on GPM Microwave Imager (GMI) radiometer instrument algorithm performance with respect to falling snow detection and estimation. Since GPM's launch, the at-launch GMI precipitation algorithms, based on a Bayesian framework, have been used with the new GPM data. The at-launch database is generated using proxy satellite data merged with surface measurements (instead of models). One year after launch, the Bayesian database will begin to be replaced with the more realistic observational data from the GPM spacecraft radar retrievals and GMI data. It is expected that the observational database will be much more accurate for falling snow retrievals because that database will take full advantage of the 166 and 183 GHz snow-sensitive channels. Furthermore, much retrieval algorithm work has been done to improve GPM retrievals over land. The Bayesian framework for GMI retrievals is dependent on the a priori database used in the algorithm and how profiles are selected from that database. Thus, a land classification sorts land surfaces into ~15 different categories for surface-specific databases (radiometer brightness temperatures are quite dependent on surface characteristics). In addition, our work has shown that knowing if the land surface is snow-covered, or not, can improve the performance of the algorithm. Improvements were made to the algorithm that allow for daily inputs of ancillary snow cover

  15. A Minimum Cost Handover Algorithm for Mobile Satellite Networks

    Institute of Scientific and Technical Information of China (English)

    Zhang Tao; Zhang Jun

    2008-01-01

    For mobile satellite networks,an appropriate handover scheme should be devised to shorten handover delay with optimized application of network resources.By introducing the handover cost model of service,this article proposes a rerouting triggering scheme for path optimization after handover and a new minimum cost handover algorithm for mobile satellite networks.This algorithm ensures the quality of service (QoS) parameters,such as delay,during the handover and minimizes the handover costs.Simulation indicates that this algorithm is superior to other current algorithms in guaranteeing the QoS and decreasing handover costs.

  16. Packet routing algorithm for polar orbit LEO satellite constellation network

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Broadband satellite networks are capable of providing global coverage and support various services. The networks constructed by Low Earth Orbit (LEO) satellite constellations have attracted great interests because of their short round-trip delays and wide bandwidths. A challenging problem is to develop a simple and efficient packet routing algorithm for the LEO satellite constellation network. This paper presents a SpiderWeb Topological Network (SWTN) and a distributed packet routing algorithm for the LEO satellite constellation network based on the SWTN. The algorithm gives the minimum propagation delay paths with low computational complexity and requires no routing tables, which is practical for on-board processing. The performance of the algorithm is demonstrated through simulations.

  17. Algorithm of orbit determination using one or two GPS satellites

    Institute of Scientific and Technical Information of China (English)

    刘艳芳; 洪炳荣; 郭建宁; 巨涛

    1999-01-01

    The problem of orbit determination using one or two GPS satellites is discussed. Methods of getting initial values based on linear translation is presented; the Secant method and the descend Newton iterative procedure and the continuation algorithm are used synthetically to solve the nonlinear equations. Computer simulation shows that this algorithm can give preliminary state of satellite orbit with a certain precision in short time.

  18. Evaluation of the latest satellite-gauge precipitation products and their hydrologic applications over the Huaihe River basin

    Science.gov (United States)

    Sun, Ruochen; Yuan, Huiling; Liu, Xiaoli; Jiang, Xiaoman

    2016-05-01

    Satellite-gauge quantitative precipitation estimate (QPE) products may reduce the errors in near real-time satellite precipitation estimates by combining rain gauge data, which provides great potential to hydrometeorological applications. This study aims to comprehensively evaluate four of the latest satellite-gauge QPEs, including NASA's Tropical Rainfall Measuring Mission (TRMM) 3B42V7 product, NOAA's Climate Prediction Center (CPC) MORPHing technique (CMORPH) bias-corrected product (CMORPH CRT), CMORPH satellite-gauge merged product (CMORPH BLD) and CMORPH satellite-gauge merged product developed at the National Meteorological Information Center (NMIC) of the China Meteorological Administration (CMA) (CMORPH CMA). These four satellite-gauge QPEs are statistically evaluated over the Huaihe River basin during 2003-2012 and applied into the distributed Variable Infiltration Capacity (VIC) model to assess hydrologic utilities. Compared to the China Gauge-based Daily Precipitation Analysis (CGDPA) newly developed at CMA/NMIC, the four satellite-gauge QPEs generally depict the spatial distribution well, with the underestimation in the southern mountains and overestimation in the northern plain of the Huaihe River basin. Specifically, both TRMM and CMORPH CRT adopt simple gauge adjustment algorithms and exhibit relatively poor performance, with evidently deteriorated quality in winter. In contrast, the probability density function-optimal interpolation (PDF-OI) gauge adjustment procedure has been applied in CMORPH BLD and CMORPH CMA, resulting in higher quality and more stable performance. CMORPH CMA further benefits from a merged dense gauge observation network and outperforms the other QPEs with significant improvements in rainfall amount and spatial/temporal distributions. Due to the insufficient gauge observations in the merging process, CMORPH BLD features the similar error characteristics of CMORPH CRT with a positive bias of light precipitation and a negative

  19. Error Analysis of Satellite Precipitation-Driven Modeling of Flood Events in Complex Alpine Terrain

    Directory of Open Access Journals (Sweden)

    Yiwen Mei

    2016-03-01

    Full Text Available The error in satellite precipitation-driven complex terrain flood simulations is characterized in this study for eight different global satellite products and 128 flood events over the Eastern Italian Alps. The flood events are grouped according to two flood types: rain floods and flash floods. The satellite precipitation products and runoff simulations are evaluated based on systematic and random error metrics applied on the matched event pairs and basin-scale event properties (i.e., rainfall and runoff cumulative depth and time series shape. Overall, error characteristics exhibit dependency on the flood type. Generally, timing of the event precipitation mass center and dispersion of the time series derived from satellite precipitation exhibits good agreement with the reference; the cumulative depth is mostly underestimated. The study shows a dampening effect in both systematic and random error components of the satellite-driven hydrograph relative to the satellite-retrieved hyetograph. The systematic error in shape of the time series shows a significant dampening effect. The random error dampening effect is less pronounced for the flash flood events and the rain flood events with a high runoff coefficient. This event-based analysis of the satellite precipitation error propagation in flood modeling sheds light on the application of satellite precipitation in mountain flood hydrology.

  20. An automatic precipitation-phase distinction algorithm for optical disdrometer data over the global ocean

    Science.gov (United States)

    Burdanowitz, Jörg; Klepp, Christian; Bakan, Stephan

    2016-04-01

    The lack of high-quality in situ surface precipitation data over the global ocean so far limits the capability to validate satellite precipitation retrievals. The first systematic ship-based surface precipitation data set OceanRAIN (Ocean Rainfall And Ice-phase precipitation measurement Network) aims at providing a comprehensive statistical basis of in situ precipitation reference data from optical disdrometers at 1 min resolution deployed on various research vessels (RVs). Deriving the precipitation rate for rain and snow requires a priori knowledge of the precipitation phase (PP). Therefore, we present an automatic PP distinction algorithm using available data based on more than 4 years of atmospheric measurements onboard RV Polarstern that covers all climatic regions of the Atlantic Ocean. A time-consuming manual PP distinction within the OceanRAIN post-processing serves as reference, mainly based on 3-hourly present weather information from a human observer. For automation, we find that the combination of air temperature, relative humidity, and 99th percentile of the particle diameter predicts best the PP with respect to the manually determined PP. Excluding mixed phase, this variable combination reaches an accuracy of 91 % when compared to the manually determined PP for 149 635 min of precipitation from RV Polarstern. Including mixed phase (165 632 min), an accuracy of 81.2 % is reached for two independent PP distributions with a slight snow overprediction bias of 0.93. Using two independent PP distributions represents a new method that outperforms the conventional method of using only one PP distribution to statistically derive the PP. The new statistical automatic PP distinction method considerably speeds up the data post-processing within OceanRAIN while introducing an objective PP probability for each PP at 1 min resolution.

  1. An automatic precipitation phase distinction algorithm for optical disdrometer data over the global ocean

    Science.gov (United States)

    Burdanowitz, J.; Klepp, C.; Bakan, S.

    2015-12-01

    The lack of high quality in situ surface precipitation data over the global ocean so far limits the capability to validate satellite precipitation retrievals. The first systematic ship-based surface precipitation dataset OceanRAIN (Ocean Rainfall And Ice-phase precipitation measurement Network) aims at providing a comprehensive statistical basis of in situ precipitation reference data from optical disdrometers at 1 min resolution deployed on various research vessels (RVs). Deriving the precipitation rate for rain and snow requires a priori knowledge of the precipitation phase (PP). Therefore, we present an automatic PP distinction algorithm using available data based on more than four years of atmospheric measurements onboard RV Polarstern that covers all climatic regions of the Atlantic Ocean. A time-consuming manual PP distinction within the OceanRAIN post-processing serves as reference, mainly based on 3 hourly present weather information from a human observer. For automation, we find that the combination of air temperature, relative humidity and 99th percentile of the particle diameter predicts best the PP with respect to the manually determined PP. Excluding mixed-phase, this variable combination reaches an accuracy of 91 % when compared to the manually determined PP for about 149 000 min of precipitation from RV Polarstern. Including mixed-phase (165 000 min), 81.2 % accuracy are reached with a slight snow overprediction bias of 0.93 for two independent PP distributions. In that respect, a method using two independent PP distributions outperforms a method based on only one PP distribution. The new statistical automatic PP distinction method significantly speeds up the data post-processing within OceanRAIN while introducing an objective PP probability for each PP at 1 min resolution.

  2. PACKET ROUTING ALGORITHM FOR LEO SATELLITE CONSTELLATION NETWORK

    Institute of Scientific and Technical Information of China (English)

    Wang Kaidong; Tian Bin; Yi Kechu

    2005-01-01

    A novel distributed packet routing algorithm for Low Earth Orbit (LEO) satellite networks based on spiderweb topology is presented. The algorithm gives the shortest path with very low computational complexity and without on-board routing tables, which is suitable and practical for on-board processing. Simulation results show its practicability and feasibility.

  3. Dynamic Routing Algorithm for Increasing Robustness in Satellite Networks

    Institute of Scientific and Technical Information of China (English)

    LI Dong-ni; ZHANG Da-kun

    2008-01-01

    In low earth orbit(LEO)and medium earth orbit(MEO)satellite networks,the network topology changes rapidly because of the high relative speed movement of satellites.When some inter-satellite links (ISLs)fail,they can not be repaired in a short time.In order to increase the robustness for LEO/MEO satellite networks,an effective dynamic routing algorithm is proposed.All the routes to a certain node are found by constructing a destination oriented acyclic directed graph(DOADG)with the node as the destination.In this algorithm,multiple routes are provided,loop-free is guaranteed,and as long as the DOADG maintains,it is not necessary to reroute even if some ISLs fail.Simulation results show that comparing to the conventional routing algorithms,it is more efficient and reliable,costs less transmission overhead and converges faster.

  4. Assimilation of radar precipitation and satellite data into a NWP model using a physical initialisation scheme

    Science.gov (United States)

    Milan, M.; Schüttemeyer, D.; Venema, V.; Simmer, C.

    2009-04-01

    We implemented a PI (Physical Initialization) method in the non hydrostatic limited-area model COSMO (version 4.2) of the DWD (German Meteorological Service). The goal is the improvement of quantitative rain nowcasting with a high resolution NWP model. Input radar data is a DWD product: the national radar composite for 16 radars with a spatial resolution of one kilometer and a time resolution of 5 minutes. The conversion from reflectivity to rain rate is already made by DWD. This data is interpolated on the LM grid ( 2.8 × 2.8 km resolution) in order to calculate the analysed precipitation rate which depends on the observed precipitation and the model precipitation. The PIB (Physical Initialization Bonn) takes as input the radar based precipitation product and a cloud top height field retrieved from satellite observations, in our case we are using the SAFNWC products generated from Meteosat Second Generation data by DWD. During the assimilation window PIB adjusts the vertical wind, humidity, cloud water and cloud ice in order to force the model state towards the measurements. The most distinctive feature of the algorithm is the adjustment of the vertical wind profile in the framework of a simple precipitation scheme. The PIB assumes that the rain rate is proportional to the vertical humidity flux at cloud base and the vertical wind is adapted according to the conversion efficiency of saturated water vapor into rain water at the cloud base. This parameter is dynamically adjusted by the comparison between the model precipitation and the radar precipitation. The model is tested in convective cases over Germany, an identical twin experiment is used in order to demonstrate the consistency of PIB with the physics of the NWP model. In the tests which we have already performed this method has improved the forecast of the precipitation patterns, as well as the dynamics of the events. These improvements are found both during the assimilation window and for the first hours

  5. Effects of the Forecasting Methods, Precipitation Character, and Satellite Resolution on the Predictability of Short-Term Quantitative Precipitation Nowcasting (QPN from a Geostationary Satellite.

    Directory of Open Access Journals (Sweden)

    Yu Liu

    Full Text Available The prediction of the short-term quantitative precipitation nowcasting (QPN from consecutive gestational satellite images has important implications for hydro-meteorological modeling and forecasting. However, the systematic analysis of the predictability of QPN is limited. The objective of this study is to evaluate effects of the forecasting model, precipitation character, and satellite resolution on the predictability of QPN using images of a Chinese geostationary meteorological satellite Fengyun-2F (FY-2F which covered all intensive observation since its launch despite of only a total of approximately 10 days. In the first step, three methods were compared to evaluate the performance of the QPN methods: a pixel-based QPN using the maximum correlation method (PMC; the Horn-Schunck optical-flow scheme (PHS; and the Pyramid Lucas-Kanade Optical Flow method (PPLK, which is newly proposed here. Subsequently, the effect of the precipitation systems was indicated by 2338 imageries of 8 precipitation periods. Then, the resolution dependence was demonstrated by analyzing the QPN with six spatial resolutions (0.1atial, 0.3a, 0.4atial rand 0.6. The results show that the PPLK improves the predictability of QPN with better performance than the other comparison methods. The predictability of the QPN is significantly determined by the precipitation system, and a coarse spatial resolution of the satellite reduces the predictability of QPN.

  6. Effects of the Forecasting Methods, Precipitation Character, and Satellite Resolution on the Predictability of Short-Term Quantitative Precipitation Nowcasting (QPN) from a Geostationary Satellite.

    Science.gov (United States)

    Liu, Yu; Xi, Du-Gang; Li, Zhao-Liang; Ji, Wei

    2015-01-01

    The prediction of the short-term quantitative precipitation nowcasting (QPN) from consecutive gestational satellite images has important implications for hydro-meteorological modeling and forecasting. However, the systematic analysis of the predictability of QPN is limited. The objective of this study is to evaluate effects of the forecasting model, precipitation character, and satellite resolution on the predictability of QPN using images of a Chinese geostationary meteorological satellite Fengyun-2F (FY-2F) which covered all intensive observation since its launch despite of only a total of approximately 10 days. In the first step, three methods were compared to evaluate the performance of the QPN methods: a pixel-based QPN using the maximum correlation method (PMC); the Horn-Schunck optical-flow scheme (PHS); and the Pyramid Lucas-Kanade Optical Flow method (PPLK), which is newly proposed here. Subsequently, the effect of the precipitation systems was indicated by 2338 imageries of 8 precipitation periods. Then, the resolution dependence was demonstrated by analyzing the QPN with six spatial resolutions (0.1atial, 0.3a, 0.4atial rand 0.6). The results show that the PPLK improves the predictability of QPN with better performance than the other comparison methods. The predictability of the QPN is significantly determined by the precipitation system, and a coarse spatial resolution of the satellite reduces the predictability of QPN.

  7. Assessment of Satellite-based Precipitation Products (TRMM) in Hydrologic Modeling: Case Studies from Northern Morocco

    Science.gov (United States)

    EL kadiri, R.; Milewski, A.; Durham, M.

    2012-12-01

    Precipitation is the most important forcing parameter in hydrological modeling, yet it is largely unknown in the arid Middle East. We assessed the magnitude, probability of detection, and false alarm rates of various rainfall satellite products (e.g., TRMM, RFE2.0) compared to in situ gauge data (~79 stations) across the Our Er Rbia, Sebou, and Melouya Watersheds in Northern Morocco. Precipitation over the area is relatively high with an average of ~400mm/year according to TRMM (1998-2008). The existing gauges indicate that the average annual precipitation across the Tadla and Coastal Plains region is 260mm/year and 390mm/year across the Atlas Mountains. Following the assessment of satellite products against in situ gauge data, we evaluated the effects (e.g., runoff and recharge amounts) of using satellite driven hydrologic models using SWAT. Specifically, we performed a four-fold exercise: (1) The first stage focused on the analysis of the rainfall products; (2) the second stage involved the construction of a rainfall-runoff model using gauge data; (3) the third stage entailed the calibration of the model against flow gauges and/or dams storage variability, and (4) model simulation using satellite based rainfall products using the calibrated parameters from the initial simulation. Results suggest the TRMM V7 has a much better correlation with the field data over the Oum Er Rbia watershed. The Correlation E (Nash-Suncliffe coefficient) has a positive value of 0.5, while the correlation coefficient of TRMM V6 vs. gauges data is a negative value of -0.25. This first order evaluation of the TRMM V7 shows the new algorithm has partially overcame the underestimation effect in the semi-arid environments. However, more research needs to be done to increase the usability of TRMM V7 in hydrologic models. Low correlations are most likely a result of the following: (1) snow at the high elevations in the Oum Er Rbia watershed, (2) the ocean effect on TRMM measurements along

  8. Correcting satellite-based precipitation products from SMOS soil moisture data assimilation using two models of different complexity

    Science.gov (United States)

    Román-Cascón, Carlos; Pellarin, Thierry; Gibon, François

    2017-04-01

    Real-time precipitation information at the global scale is quite useful information for many applications. However, satellite-based precipitation products in real time are known to be biased from real values observed in situ. On the other hand, the information about precipitation contained in soil moisture data can be very useful to improve precipitation estimation, since the evolution of this variable is highly influenced by the amount of rainfall at a certain area after a rain event. In this context, the soil moisture data from the Soil Moisture Ocean Salinity (SMOS) satellite is used to correct the precipitation provided by real-time satellite-based products such as CMORPH, TRMM-3B42RT or PERSIANN. In this work, we test an assimilation algorithm based on the data assimilation of SMOS measurements in two models of different complexity: a simple hydrological model (Antecedent Precipitation Index (API)) and a state-of-the-art complex land-surface model (Surface Externalisée (SURFEX)). We show how the assimilation technique, based on a particle filter method, leads to the improvement of correlation and root mean squared error (RMSE) of precipitation estimates, with slightly better results for the simpler (and less expensive computationally) API model. This methodology has been evaluated for six years in ten sites around the world with different features, showing the limitations of the methodology in regions affected by mountainous terrain or by high radio-frequency interferences (RFI), which notably affect the quality of the soil moisture retrievals from brightness temperatures by SMOS. The presented results are promising for a potential near-real time application at the global scale.

  9. Bridging Ground Validation and Algorithms: Using Scattering and Integral Tables to Incorporate Observed DSD Correlations into Satellite Algorithms

    Science.gov (United States)

    Williams, C. R.

    2012-12-01

    The NASA Global Precipitation Mission (GPM) raindrop size distribution (DSD) Working Group is composed of NASA PMM Science Team Members and is charged to "investigate the correlations between DSD parameters using Ground Validation (GV) data sets that support, or guide, the assumptions used in satellite retrieval algorithms." Correlations between DSD parameters can be used to constrain the unknowns and reduce the degrees-of-freedom in under-constrained satellite algorithms. Over the past two years, the GPM DSD Working Group has analyzed GV data and has found correlations between the mass-weighted mean raindrop diameter (Dm) and the mass distribution standard deviation (Sm) that follows a power-law relationship. This Dm-Sm power-law relationship appears to be robust and has been observed in surface disdrometer and vertically pointing radar observations. One benefit of a Dm-Sm power-law relationship is that a three parameter DSD can be modeled with just two parameters: Dm and Nw that determines the DSD amplitude. In order to incorporate observed DSD correlations into satellite algorithms, the GPM DSD Working Group is developing scattering and integral tables that can be used by satellite algorithms. Scattering tables describe the interaction of electromagnetic waves on individual particles to generate cross sections of backscattering, extinction, and scattering. Scattering tables are independent of the distribution of particles. Integral tables combine scattering table outputs with DSD parameters and DSD correlations to generate integrated normalized reflectivity, attenuation, scattering, emission, and asymmetry coefficients. Integral tables contain both frequency dependent scattering properties and cloud microphysics. The GPM DSD Working Group has developed scattering tables for raindrops at both Dual Precipitation Radar (DPR) frequencies and at all GMI radiometer frequencies less than 100 GHz. Scattering tables include Mie and T-matrix scattering with H- and V

  10. Efficient Satellite Scheduling Based on Improved Vector Evaluated Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Tengyue Mao

    2012-03-01

    Full Text Available Satellite scheduling is a typical multi-peak, many-valley, nonlinear multi-objective optimization problem. How to effectively implement the satellite scheduling is a crucial research in space areas.This paper mainly discusses the performance of VEGA (Vector Evaluated Genetic Algorithm based on the study of basic principles of VEGA algorithm, algorithm realization and test function, and then improves VEGA algorithm through introducing vector coding, new crossover and mutation operators, new methods to assign fitness and hold good individuals. As a result, the diversity and convergence of improved VEGA algorithm of improved VEGA algorithm have been significantly enhanced and will be applied to Earth-Mars orbit optimization. At the same time, this paper analyzes the results of the improved VEGA, whose results of performance analysis and evaluation show that although VEGA has a profound impact upon multi-objective evolutionary research,  multi-objective evolutionary algorithm on the basis of Pareto seems to be a more effective method to get the non-dominated solutions from the perspective of diversity and convergence of experimental result. Finally, based on Visual C + + integrated development environment, we have implemented improved vector evaluation algorithm in the satellite scheduling.

  11. Satellite derived precipitation and freshwater flux variability and its dependence on the North Atlantic Oscillation

    Science.gov (United States)

    Andersson, Axel; Bakan, Stephan; Graßl, Hartmut

    2010-08-01

    The variability of satellite retrieved precipitation and freshwater flux from the `Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data' (HOAPS) is assessed with special emphasis on the `North Atlantic Oscillation' (NAO). To cover also land areas, a novel combination of the satellite derived precipitation climatology with the rain gauge based `Full Data Reanalysis Product Version 4', of the `Global Precipitation Climatology Centre' (GPCC) is used. This yields unique high-resolution, quasi-global precipitation fields compiled from two independent data sources. Over the ocean, the response of the freshwater balance and the related parameters to the NAO is investigated for the first time by using a purely satellite based data set. A strong dependence of precipitation patterns to the state of the NAO is found. On synoptic scale this is in accordance with earlier findings by other satellite based and reanalysis products. Furthermore, the consistency of the combined HOAPS-3/GPCC data set allows also detailed regional analyses of precipitation patterns. The response of HOAPS-3 freshwater flux to the NAO is dominated by precipitation at mid and high latitudes, while for the subtropical regions the feedback of the evaporation is stronger.

  12. Evaluating Satellite Products for Precipitation Estimation in Mountain Regions: A Case Study for Nepal

    Directory of Open Access Journals (Sweden)

    Tarendra Lakhankar

    2013-08-01

    Full Text Available Precipitation in mountain regions is often highly variable and poorly observed, limiting abilities to manage water resource challenges. Here, we evaluate remote sensing and ground station-based gridded precipitation products over Nepal against weather station precipitation observations on a monthly timescale. We find that the Tropical Rainfall Measuring Mission (TRMM 3B-43 precipitation product exhibits little mean bias and reasonable skill in giving precipitation over Nepal. Compared to station observations, the TRMM precipitation product showed an overall Nash-Sutcliffe efficiency of 0.49, which is similar to the skill of the gridded station-based product Asian Precipitation-Highly Resolved Observational Data Integration Towards Evaluation of Water Resources (APHRODITE. The other satellite precipitation products considered (Global Satellite Mapping of Precipitation (GSMaP, the Climate Prediction Center Morphing technique (CMORPH, Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks-Cloud Classification System (PERSIANN-CCS were less skillful, as judged by Nash-Sutcliffe efficiency, and, on average, substantially underestimated precipitation compared to station observations, despite their, in some cases, higher nominal spatial resolution compared to TRMM. None of the products fully captured the dependence of mean precipitation on elevation seen in the station observations. Overall, the TRMM product is promising for use in water resources applications.

  13. Mapping cultivable land from satellite imagery with clustering algorithms

    Science.gov (United States)

    Arango, R. B.; Campos, A. M.; Combarro, E. F.; Canas, E. R.; Díaz, I.

    2016-07-01

    Open data satellite imagery provides valuable data for the planning and decision-making processes related with environmental domains. Specifically, agriculture uses remote sensing in a wide range of services, ranging from monitoring the health of the crops to forecasting the spread of crop diseases. In particular, this paper focuses on a methodology for the automatic delimitation of cultivable land by means of machine learning algorithms and satellite data. The method uses a partition clustering algorithm called Partitioning Around Medoids and considers the quality of the clusters obtained for each satellite band in order to evaluate which one better identifies cultivable land. The proposed method was tested with vineyards using as input the spectral and thermal bands of the Landsat 8 satellite. The experimental results show the great potential of this method for cultivable land monitoring from remote-sensed multispectral imagery.

  14. A Fast Prediction Algorithm of Satellite Passes

    OpenAIRE

    Palmer, P. L.; Mai, Yan

    2000-01-01

    Low cost, fast access and multi-functional small satellites are being increasingly used to provide and exchange information for a wide variety of professions. They are particularly useful, for example, as a resource in very remote areas where they can provide useful information such as to rescue teams for changing conditions in a disaster zone and monitoring the sea state to warn approaching shipping. Unlike terrestrial communication systems, the receiver/transmitter in these di_erent applica...

  15. PM-GCD – a combined IR–MW satellite technique for frequent retrieval of heavy precipitation

    Directory of Open Access Journals (Sweden)

    D. Casella

    2012-01-01

    Full Text Available Precipitation retrievals based on measurements from microwave (MW radiometers onboard low-Earth-orbit (LEO satellites can reach high level of accuracy – especially regarding convective precipitation. At the present stage though, these observations cannot provide satisfactory coverage of the evolution of intense and rapid precipitating systems. As a result, the obtained precipitation retrievals are often of limited use for many important applications – especially in supporting authorities for flood alerts and weather warnings. To tackle this problem, over the past two decades several techniques have been developed combining accurate MW estimates with frequent infrared (IR observations from geosynchronous (GEO satellites, such as the European Meteosat Second Generation (MSG. In this framework, we have developed a new fast and simple precipitation retrieval technique which we call Passive Microwave – Global Convective Diagnostic, (PM-GCD. This method uses MW retrievals in conjunction with the Global Convective Diagnostic (GCD technique which discriminates deep convective clouds based on the difference between the MSG water vapor (6.2 μm and thermal-IR (10.8 μm channels. Specifically, MSG observations and the GCD technique are used to identify deep convective areas. These areas are then calibrated using MW precipitation estimates based on observations from the Advanced Microwave Sounding Unit (AMSU radiometers onboard operational NOAA and Eumetsat satellites, and then finally propagated in time with a simple tracking algorithm. In this paper, we describe the PM-GCD technique, analyzing its results for a case study that refers to a flood event that struck the island of Sicily in southern Italy on 1–2 October 2009.

  16. SOLUTION OF THE SATELLITE TRANSFER PROBLEM WITH HYBRID MEMETIC ALGORITHM

    Directory of Open Access Journals (Sweden)

    A. V. Panteleyev

    2014-01-01

    Full Text Available This paper presents a hybrid memetic algorithm (MA to solve the problem of finding the optimal program control of nonlinear continuous deterministic systems based on the concept of the meme, which is one of the promising solutions obtained in the course of implementing the procedure for searching the extremes. On the basis of the proposed algorithm the software complex is formed in C#. The solution of satellite transfer problem is presented.

  17. Heuristic Scheduling Algorithm Oriented Dynamic Tasks for Imaging Satellites

    Directory of Open Access Journals (Sweden)

    Maocai Wang

    2014-01-01

    Full Text Available Imaging satellite scheduling is an NP-hard problem with many complex constraints. This paper researches the scheduling problem for dynamic tasks oriented to some emergency cases. After the dynamic properties of satellite scheduling were analyzed, the optimization model is proposed in this paper. Based on the model, two heuristic algorithms are proposed to solve the problem. The first heuristic algorithm arranges new tasks by inserting or deleting them, then inserting them repeatedly according to the priority from low to high, which is named IDI algorithm. The second one called ISDR adopts four steps: insert directly, insert by shifting, insert by deleting, and reinsert the tasks deleted. Moreover, two heuristic factors, congestion degree of a time window and the overlapping degree of a task, are employed to improve the algorithm’s performance. Finally, a case is given to test the algorithms. The results show that the IDI algorithm is better than ISDR from the running time point of view while ISDR algorithm with heuristic factors is more effective with regard to algorithm performance. Moreover, the results also show that our method has good performance for the larger size of the dynamic tasks in comparison with the other two methods.

  18. Evaluation of Satellite and Ground Based Precipitation Products for Flood Forecasting

    Science.gov (United States)

    Chintalapudi, S.; Sharif, H.; Yeggina, S.

    2012-04-01

    The development in satellite-derived rainfall estimates encouraged the hydrological modeling in sparse gauged basins or ungauged basins. Especially, physically-based distributed hydrological models can benefit from the good spatial and temporal coverage of satellite precipitation products. In this study, three satellite derived precipitation datasets (TRMM, CMORPH, and PERSIANN), NEXRAD, and rain gauge precipitation datasets were used to drive the hydrological model. The physically-based, distributed hydrological model Gridded Surface Subsurface Hydrological Analysis (GSSHA) was used in this study. Focus will be on the results from the Guadalupe River Basin above Canyon Lake and below Comfort, Texas. The Guadalupe River Basin above Canyon Lake and below Comfort Texas drains an area of 1232 km2. Different storm events will be used in these simulations. August 2007 event was used as calibration and June 2007 event was used as validation. Results are discussed interms of accuracy of satellite precipitation estimates with the ground based precipitation estimates, predicting peak discharges, runoff volumes, time lag, and spatial distribution. The initial results showed that, model was able to predict the peak discharges and runoff volumes when using NEXRAD MPE data, and TRMM 3B42 precipitation product. The results also showed that there was time lag in hydrographs driven by both PERSIANN and CMORPH data sets.

  19. Microwave retrievals of terrestrial precipitation over snow-covered surfaces: A lesson from the GPM satellite

    Science.gov (United States)

    Ebtehaj, A. M.; Kummerow, C. D.

    2017-06-01

    Satellites are playing an ever-increasing role in estimating precipitation over remote areas. Improving satellite retrievals of precipitation requires increased understanding of its passive microwave signatures over different land surfaces. Snow-covered surfaces are notoriously difficult to interpret because they exhibit both emission from the land below and scattering from the ice crystals. Using data from the Global Precipitation Measurement (GPM) satellite, we demonstrate that microwave brightness temperatures of rain and snowfall transition from a scattering to an emission regime from summer to winter, due to expansion of less emissive snow cover. Evidence suggests that the combination of low- (10-19 GHz) and high-frequency (89-166 GHz) channels provides the maximum amount of information for snowfall detection. The results demonstrate that, using a multifrequency matching method, the probability of snowfall detection can even be higher than rainfall—chiefly because of the information content of the low-frequency channels that respond to the (near) surface temperature.

  20. Evaluating satellite-derived long-term historical precipitation datasets for drought monitoring in Chile

    Science.gov (United States)

    Zambrano, Francisco; Wardlow, Brian; Tadesse, Tsegaye

    2016-10-01

    Precipitation is a key parameter for the study of climate change and variability and the detection and monitoring of natural disaster such as drought. Precipitation datasets that accurately capture the amount and spatial variability of rainfall is critical for drought monitoring and a wide range of other climate applications. This is challenging in many parts of the world, which often have a limited number of weather stations and/or historical data records. Satellite-derived precipitation products offer a viable alternative with several remotely sensed precipitation datasets now available with long historical data records (+30 years), which include the Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR) datasets. This study presents a comparative analysis of three historical satellite-based precipitation datasets that include Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) 3B43 version 7 (1998-2015), PERSIANN-CDR (1983-2015) and CHIRPS 2.0 (1981-2015) over Chile to assess their performance across the country and evaluate their applicability for agricultural drought evaluation when used in the calculation of commonly used drought indicator as the Standardized Precipitation Index (SPI). In this analysis, 278 weather stations of in-situ rainfall measurements across Chile were initially compared to the satellite-based precipitation estimates. The study area (Chile) was divided into five latitudinal zones: North, North-Central, Central, South-Central and South to determine if there were a regional difference among these satellite-based estimates. Nine statistics were used to evaluate the performance of satellite products to estimate the amount and spatial distribution of historical rainfall across Chile. Hierarchical cluster analysis, k-means and singular value decomposition were used to

  1. Optimal reconfiguration of satellite constellations with the auction algorithm

    Science.gov (United States)

    de Weck, Olivier L.; Scialom, Uriel; Siddiqi, Afreen

    2008-01-01

    Traditionally, satellite constellation design has focused on optimizing global, zonal or regional coverage with a minimum number of satellites. In some instances, however, it is desirable to deploy a constellation in stages to gradually expand capacity. This requires launching additional satellites and reconfiguring the existing on-orbit satellites. Also, a constellation might be retasked and reconfigured after it is initially fielded for operational reasons. This paper presents a methodology for optimizing orbital reconfigurations of satellite constellations. The work focuses on technical aspects for transforming an initial constellation A into a new constellation, B, typically with a larger number of satellites. A general framework was developed to study the orbital reconfiguration problem. The framework was applied to low Earth orbit constellations of communication satellites. This paper specifically addresses the problem of determining the optimal assignment for transferring on-orbit satellites in constellation A to constellation B such that the total ΔV for the reconfiguration is minimized. It is shown that the auction algorithm, used for solving general network flow problems, can efficiently and reliably determine the optimum assignment of satellites of A to slots of B. Based on this methodology, reconfiguration maps can be created, which show the energy required for transforming one constellation into another as a function of type (Street-of-Coverage, Walker, Draim), altitude, ground elevation angle and fold of coverage. Suggested extensions of this work include quantification of the tradeoff between reconfiguration time and ΔV, multiple successive reconfigurations, balancing propellant consumption within the constellation during reconfiguration as well as using reconfigurability as an objective during initial constellation design.

  2. Improvements and Extensions for Joint Polar Satellite System Algorithms

    Science.gov (United States)

    Grant, K. D.

    2016-12-01

    The National Oceanic and Atmospheric Administration (NOAA) and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation civilian weather satellite system: the Joint Polar Satellite System (JPSS). JPSS replaced the afternoon orbit component and ground processing of the old POES system managed by NOAA. JPSS satellites carry sensors designed to collect meteorological, oceanographic, climatological, and solar-geophysical observations of the earth, atmosphere, and space. The ground processing system for JPSS is the Common Ground System (CGS), and provides command, control, and communications (C3), data processing and product delivery. CGS's data processing capability provides environmental data products (Sensor Data Records (SDRs) and Environmental Data Records (EDRs)) to the NOAA Satellite Operations Facility. The first satellite in the JPSS constellation, S-NPP, was launched in October 2011. The second satellite, JPSS-1, is scheduled for launch in January 2017. During a satellite's calibration and validation (Cal/Val) campaign, numerous algorithm updates occur. Changes identified during Cal/Val become available for implementation into the operational system for both S-NPP and JPSS-1. In addition, new capabilities, such as higher spectral and spatial resolution, will be exercised on JPSS-1. This paper will describe changes to current algorithms and products as a result of S-NPP Cal/Val and related initiatives for improved capabilities. Improvements include Cross Track Infrared Sounder high spectral processing, extended spectral and spatial ranges for Ozone Mapping and Profiler Suite ozone Total Column and Nadir Profiles, and updates to Vegetation Index, Snow Cover, Active Fires, Suspended Matter, and Ocean Color. Updates will include Sea Surface Temperature, Cloud Mask, Cloud Properties, and other improvements.

  3. A new algorithm for agile satellite-based acquisition operations

    Science.gov (United States)

    Bunkheila, Federico; Ortore, Emiliano; Circi, Christian

    2016-06-01

    Taking advantage of the high manoeuvrability and the accurate pointing of the so-called agile satellites, an algorithm which allows efficient management of the operations concerning optical acquisitions is described. Fundamentally, this algorithm can be subdivided into two parts: in the first one the algorithm operates a geometric classification of the areas of interest and a partitioning of these areas into stripes which develop along the optimal scan directions; in the second one it computes the succession of the time windows in which the acquisition operations of the areas of interest are feasible, taking into consideration the potential restrictions associated with these operations and with the geometric and stereoscopic constraints. The results and the performances of the proposed algorithm have been determined and discussed considering the case of the Periodic Sun-Synchronous Orbits.

  4. Handoff algorithm for mobile satellite systems with ancillary terrestrial component

    KAUST Repository

    Sadek, Mirette

    2012-06-01

    This paper presents a locally optimal handoff algorithm for integrated satellite/ground communication systems. We derive the handoff decision function and present the results in the form of tradeoff curves between the number of handoffs and the number of link degradation events in a given distance covered by the mobile user. This is a practical receiver-controlled handoff algorithm that optimizes the handoff process from a user perspective based on the received signal strength rather than from a network perspective. © 2012 IEEE.

  5. A sustainable genetic algorithm for satellite resource allocation

    Science.gov (United States)

    Abbott, R. J.; Campbell, M. L.; Krenz, W. C.

    1995-01-01

    A hybrid genetic algorithm is used to schedule tasks for 8 satellites, which can be modelled as a robot whose task is to retrieve objects from a two dimensional field. The objective is to find a schedule that maximizes the value of objects retrieved. Typical of the real-world tasks to which this corresponds is the scheduling of ground contacts for a communications satellite. An important feature of our application is that the amount of time available for running the scheduler is not necessarily known in advance. This requires that the scheduler produce reasonably good results after a short period but that it also continue to improve its results if allowed to run for a longer period. We satisfy this requirement by developing what we call a sustainable genetic algorithm.

  6. Satellite Constellation Design with Adaptively Continuous Ant System Algorithm

    Institute of Scientific and Technical Information of China (English)

    He Quan; Han Chao

    2007-01-01

    The ant system algorithm (ASA) has proved to be a novel meta-heuristic algorithm to solve many multivariable problems. In this paper, the earth coverage of satellite constellation is analyzed and a (n + 1)-fold coverage rate is put forward to evaluate the coverage performance of a satellite constellation. An optimization model of constellation parameters is established on the basis of the coverage performance. As a newly developed method, ASA can be applied to optimize the constellation parameters. In order to improve the ASA,a rule for adaptive number of ants is proposed, by which the search range is obviously enlarged and the convergence speed increased.Simulation results have shown that the ASA is more quick and efficient than other methods.

  7. Bias adjustment of satellite-based precipitation estimation using gauge observations: A case study in Chile

    Science.gov (United States)

    Yang, Zhongwen; Hsu, Kuolin; Sorooshian, Soroosh; Xu, Xinyi; Braithwaite, Dan; Verbist, Koen M. J.

    2016-04-01

    Satellite-based precipitation estimates (SPEs) are promising alternative precipitation data for climatic and hydrological applications, especially for regions where ground-based observations are limited. However, existing satellite-based rainfall estimations are subject to systematic biases. This study aims to adjust the biases in the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Cloud Classification System (PERSIANN-CCS) rainfall data over Chile, using gauge observations as reference. A novel bias adjustment framework, termed QM-GW, is proposed based on the nonparametric quantile mapping approach and a Gaussian weighting interpolation scheme. The PERSIANN-CCS precipitation estimates (daily, 0.04°×0.04°) over Chile are adjusted for the period of 2009-2014. The historical data (satellite and gauge) for 2009-2013 are used to calibrate the methodology; nonparametric cumulative distribution functions of satellite and gauge observations are estimated at every 1°×1° box region. One year (2014) of gauge data was used for validation. The results show that the biases of the PERSIANN-CCS precipitation data are effectively reduced. The spatial patterns of adjusted satellite rainfall show high consistency to the gauge observations, with reduced root-mean-square errors and mean biases. The systematic biases of the PERSIANN-CCS precipitation time series, at both monthly and daily scales, are removed. The extended validation also verifies that the proposed approach can be applied to adjust SPEs into the future, without further need for ground-based measurements. This study serves as a valuable reference for the bias adjustment of existing SPEs using gauge observations worldwide.

  8. Assessing the performance of satellite-based precipitation products over the Mediterranean region

    Science.gov (United States)

    Xaver, Angelika; Dorigo, Wouter; Brocca, Luca; Ciabatta, Luca

    2017-04-01

    Detailed knowledge about the spatial and temporal patterns and quantities of precipitation is of high importance. This applies especially in the Mediterranean region, where water demand for agricultural, industrial and touristic needs is growing and climate projections foresee a decrease of precipitation amounts and an increase in variability. In this region, ground-based rain gauges are available only limited in number, particularly in northern Africa and the Middle East and lack to capture the high spatio-temporal character of precipitation over large areas. This has motivated the development of a large number of remote sensing products for monitoring rainfall. Satellite-based precipitation products are based on various observation principles and retrieval approaches, i.e. from thermal infra-red and microwaves. Although, many individual validation studies on the performance of these precipitation datasets exist, they mostly examine only one or a few of these rainfall products at the same time and are not targeted at the Mediterranean basin as a whole. Here, we present an extensive comparative study of seven different satellite-based precipitation products, namely CMORPH 30-minutes, CMORPH 3-hourly, GPCP, PERSIANN, SM2Rain CCI, TRMM TMPA 3B42, and TRMM TMPA 3B42RT, focusing on the whole Mediterranean region and on individual Mediterranean catchments. The time frame of investigation is restricted by the common availability of all precipitation products and covers the period 2000-2013. We assess the skill of the satellite products against gridded gauge-based data provided by GPCC and E-OBS. Apart from common characteristics like biases and temporal correlations we evaluate several sophisticated dataset properties that are of particular interest for Mediterranean hydrology, including the capability of the remotely sensed products to capture extreme events and trends. A clear seasonal dependency of the correlation results can be observed for the whole Mediterranean

  9. The precipitation products generation chain for the EUMETSAT Hydrological Satellite Application Facility at C.N.M.C.A.

    Science.gov (United States)

    Biron, Daniele; Melfi, Davide; Zauli, Francesco

    2008-08-01

    The EUMETSAT Satellite Application Facility in support to Hydrology (H-SAF) focuses on development of new geophysical products on precipitation, soil moisture and snow parameters and the utilisation of these parameters in hydrological models, NWP models and water management. The development phase of the H-SAF started in September 2005 under the leadership of Italian Meteorological Service. The "Centro Nazionale di Meteorologia e Climatologia Aeronautica (C.N.M.C.A.)", the Italian National Weather Centre, that physically hosts the generation chain of precipitation products, carried on activities to reach the final target: development of algorithms, validation of results, implementation of operative procedure to supply the service and to monitor the service performances. The paper shows the architectural status of the H-SAF precipitation group and stress the component of operations. It is shown the full correspondence with the EUMETSAT approved H-SAF documents, in particular the Algorithm Theoretical Design Document (ATDD), where products characteristics are referenced. Are also reported the first results, produced during the first H-SAF Workshop, held in Rome in October 2007, of validation activities performed on version 1 products, and last results of products distribution to beta-users in preparation of distributing version 2.

  10. Global Precipitation: Means, Variations and Trends During the Satellite Era (1979-2014)

    Science.gov (United States)

    Adler, Robert F.; Gu, Guojun; Sapiano, Matthew; Wang, Jian-Jian; Huffman, George J.

    2017-07-01

    Global precipitation variations over the satellite era are reviewed using the Global Precipitation Climatology Project (GPCP) monthly, globally complete analyses, which integrate satellite and surface gauge information. Mean planetary values are examined and compared, over ocean, with information from recent satellite programs and related estimates, with generally positive agreements, but with some indication of small underestimates for GPCP over the global ocean. Variations during the satellite era in global precipitation are tied to ENSO events, with small increases during El Ninos, and very noticeable decreases after major volcanic eruptions. No overall significant trend is noted in the global precipitation mean value, unlike that for surface temperature and atmospheric water vapor. However, there is a pattern of positive and negative trends across the planet with increases over tropical oceans and decreases over some middle latitude regions. These observed patterns are a result of a combination of inter-decadal variations and the effect of the global warming during the period. The results reviewed here indicate the value of such analyses as GPCP and the possible improvement in the information as the record lengthens and as new, more sophisticated and more accurate observations are included.

  11. High-resolution satellite-gauge merged precipitation climatologies of the Tropical Andes

    Science.gov (United States)

    Manz, Bastian; Buytaert, Wouter; Zulkafli, Zed; Lavado, Waldo; Willems, Bram; Robles, Luis Alberto; Rodríguez-Sánchez, Juan-Pablo

    2016-02-01

    Satellite precipitation products are becoming increasingly useful to complement rain gauge networks in regions where these are too sparse to capture spatial precipitation patterns, such as in the Tropical Andes. The Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (TPR) was active for 17 years (1998-2014) and has generated one of the longest single-sensor, high-resolution, and high-accuracy rainfall records. In this study, high-resolution (5 km) gridded mean monthly climatological precipitation is derived from the raw orbital TPR data (TRMM 2A25) and merged with 723 rain gauges using multiple satellite-gauge (S-G) merging approaches. The resulting precipitation products are evaluated by cross validation and catchment water balances (runoff ratios) for 50 catchments across the Tropical Andes. Results show that the TPR captures major synoptic and seasonal precipitation patterns and also accurately defines orographic gradients but underestimates absolute monthly rainfall rates. The S-G merged products presented in this study constitute an improved source of climatological rainfall data, outperforming the gridded TPR product as well as a rain gauge-only product based on ordinary Kriging. Among the S-G merging methods, performance of inverse distance interpolation of satellite-gauge residuals was similar to that of geostatistical methods, which were more sensitive to gauge network density. High uncertainty and low performance of the merged precipitation products predominantly affected regions with low and intermittent precipitation regimes (e.g., Peruvian Pacific coast) and is likely linked to the low TPR sampling frequency. All S-G merged products presented in this study are available in the public domain.

  12. Evaluating satellite-derived long-term historical precipitation datasets for drought monitoring in Chile

    Science.gov (United States)

    Zambrano, Francisco; Wardlow, Brian; Tadesse, Tsegaye; Lillo-Saavedra, Mario; Lagos, Octavio

    2017-04-01

    Precipitation is a key parameter for the study of climate change and variability and the detection and monitoring of natural disaster such as drought. Precipitation datasets that accurately capture the amount and spatial variability of rainfall is critical for drought monitoring and a wide range of other climate applications. This is challenging in many parts of the world, which often have a limited number of weather stations and/or historical data records. Satellite-derived precipitation products offer a viable alternative with several remotely sensed precipitation datasets now available with long historical data records (+30years), which include the Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR) datasets. This study presents a comparative analysis of three historical satellite-based precipitation datasets that include Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) 3B43 version 7 (1998-2015), PERSIANN-CDR (1983-2015) and CHIRPS 2.0 (1981-2015) over Chile to assess their performance across the country and for the case of the two long-term products the applicability for agricultural drought were evaluated when used in the calculation of commonly used drought indicator as the Standardized Precipitation Index (SPI). In this analysis, 278 weather stations of in situ rainfall measurements across Chile were initially compared to the satellite data. The study area (Chile) was divided into five latitudinal zones: North, North-Central, Central, South-Central and South to determine if there were a regional difference among these satellite products, and nine statistics were used to evaluate their performance to estimate the amount and spatial distribution of historical rainfall across Chile. Hierarchical cluster analysis, k-means and singular value decomposition were used to analyze

  13. Clouds-Aerosols-Precipitation Satellite Analysis Tool (CAPSAT

    Directory of Open Access Journals (Sweden)

    I. M. Lensky

    2008-03-01

    Full Text Available A methodology for representing much of the physical information content of the METEOSAT Second Generation (MSG geostationary satellite using red-green-blue (RGB composites of the computed physical values of the picture elements is presented. The physical values are the solar reflectance in the solar channels and brightness temperature in the thermal channels. The main RGB compositions are (1 "Day Natural Colors", presenting vegetation in green, bare surface in brown, sea surface in black, water clouds as white, ice as magenta; (2 "Day Microphysical", presenting cloud microstructure using the solar reflectance component of the 3.9 μm, visible and thermal IR channels; (3 "Night Microphysical", also presenting clouds microstructure using the brightness temperature differences between 10.8 and 3.9 μm; (4 "Day and Night", using only thermal channels for presenting surface and cloud properties, desert dust and volcanic emissions; (5 "Air Mass", presenting mid and upper tropospheric features using thermal water vapor and ozone channels. The scientific basis for these rendering schemes is provided, with examples for the applications. The expanding use of these rendering schemes requires their proper documentation and setting as standards, which is the main objective of this publication.

  14. TCP-ATCA: Improved Transmission Control Algorithm in Satellite Network

    Institute of Scientific and Technical Information of China (English)

    Liu Feng; Liu Hengna; Zhao Han

    2008-01-01

    An adaptive transmission control algorithm based on TCP (TCP-ATCA) is proposed to reduce the effects of long propagation de- lay and high link error rate of the satellite network on the performances. The flow control and the error recovery are differentiated by combined dynamic random early detection-explicit congestion notification (DRED-ECN) algorithm, and, moreover, the pertaining con- gestion control methods are used in TCP-ATCA to improve the throughput. By introducing the entire recovery algorithm, the unneces- sary congestion window decrease is reduced, and the throughput and fairness are improved. Simulation results show that, compared with TCP-Reno, TCP-ATCA provides a better throughput performance when the link capacity is higher (≥ 600 packet/s), and roughly the same when it is lower. At the same time, TCP-ATCA also increases fairness and reduces transmission delay.

  15. Study on the Algorithm to Retrieve Precipitation with X-Band Synthetic Aperture Radar

    Institute of Scientific and Technical Information of China (English)

    XIE Yanan; HUAN Jianping; TAO Yang

    2010-01-01

    In order to obtain the global precipitation distribution data,this paper investigates the precipitation distribution model,the normalized radar cross-section model,and the retrieval algorithm with X-band synthetic aperture radar(X-SAR).A new retrieval algorithm based on the surface-scattering reference attenuation is developed to retrieve the rain rate above the ground surface.This new algorithm needs no statistical work load and has more extensive applications.Calculations using the new algorithm for three cases verify that the rainfall is retrieved with high precision,which proves the capability of the algorithm.

  16. Assessment of North Atlantic Precipitation and Freshwater Flux from the HOAPS-3 satellite climatology

    Science.gov (United States)

    Andersson, A.; Klepp, C.; Bakan, S.; Schulz, J.

    2009-04-01

    To attain a better understanding and modeling of climate processes attaining a proper knowledge of global water cycle components is essential. For the assessment of the freshwater flux at the ocean surface on global scale, exchange processes at the air-sea interface play a key-role. With the ability to derive ocean latent heat flux and precipitation from satellite data with acceptable accuracy, and frequent global coverage, a climatological assessment of the crucial processes has become possible. The HOAPS-3 climatology (Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data) contains fields of precipitation, surface fluxes and atmospheric parameters over the global ice-free ocean between 1987 and 2005. Except for the NOAA Pathfinder SST, all basic state variables needed for the derivation of the fluxes are calculated from SSM/I passive microwave radiometer measurements. Multi-satellite averages, inter-sensor calibration, and an efficient sea ice detection procedure make HOAPS a suitable data set for climatological applications as well as for case studies. Gridded 0.5 degree monthly, pentad and twice daily data products are freely available from www.hoaps.org. For the precipitation parameter, quasi-global coverage is achieved by complementing HOAPS-3 over land areas using the rain gauge based "Full Data Reanalysis Product Version 4", which is provided by the Global Precipitation Climatology Centre (GPCC). North Atlantic intra-decadal precipitation variability is investigated using this combined data set. The mutual response of the two independent precipitation data sources to the North Atlantic Oscillation (NAO) reveals coherent patterns and a detailed view on the structural changes in precipitation during the high and low states of the NAO. A second focus will be put on the evaluation of HOAPS-3 ocean surface freshwater fluxes and their interaction with the NAO.

  17. Interannual Variability of Tropical Precipitation: How Well Do Climate Models Agree With Current Satellite Estimates?

    Science.gov (United States)

    Robertson, Franklin R.; Marshall, Susan; Roads, John; Oglesby, Robert J.; Fitzjarrald, Dan; Goodman, H. Michael (Technical Monitor)

    2001-01-01

    Since the beginning of the World Climate Research Program's Global Precipitation Climatology Project (GPCP) satellite remote sensing of precipitation has made dramatic improvements, particularly for tropical regions. Data from microwave and infrared sensors now form the most critical input to precipitation data sets and can be calibrated with surface gauges to so that the strengths of each data source can be maximized in some statistically optimal sense. Recent availability of the TRMM (Tropical Rainfall Measuring Mission) has further aided in narrowing uncertainties in rainfall over die tropics and subtropics. Although climate modeling efforts have long relied on space-based precipitation estimates for validation, we now are in a position to make more quantitative assessments of model performance, particularly in tropical regions. An integration of the CCM3 using observed SSTs as a lower boundary condition is used to examine how well this model responds to ENSO forcing in terms of anomalous precipitation. An integration of the NCEP spectral model used for the Reanalysis-H effort is also examined. This integration is run with specified SSTs, but with no data assimilation. Our analysis focuses on two aspects of inter-annual variability. First are the spatial anomalies that are indicative of dislocations in Hadley and Walker circulations. Second, we consider the ability of models to replicate observed increases in oceanic precipitation that are noted in satellite observations for large ENSO events. Finally, we consider a slab ocean version of the CCM3 model with prescribed ocean beat transports that mimic upwelling anomalies, but which still allows the surface energy balance to be predicted. This less restrictive experiment is used to understand why model experiments with specified SSTs seem to have noticeably less interannual variability in precipitation than do the satellite observations.

  18. Continued development of a global precipitation dataset from satellite and ground-based gauges

    Science.gov (United States)

    Dietzsch, Felix; Andersson, Axel; Schröder, Marc; Ziese, Markus; Becker, Andreas

    2017-04-01

    The project framework MiKlip ("Mittelfristige Klimaprognosen") is focused on the development of an operational forecast system for decadal climate predictions. The objective of the "Daily Precipitation Analysis for the validation of Global medium-range Climate predictions Operationalized" (DAPAGLOCO) project, is the development and operationalization of a global precipitation dataset for forecast validation of the MPI-ESM experiments used in MiKlip. The dataset is a combination of rain gauge measurement data over land and satellite-based precipitation retrievals over ocean. Over land, gauge data from the Global Precipitation Climatology Centre (GPCC) at Deutscher Wetterdienst (DWD) are used. Over ocean, retrievals from the Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data (HOAPS) dataset are used as data source. The currently available dataset consists of 21 years of data (1988-2008) and is provided in different spatial resolutions of 1° and 2.5° on the global scale, and 0.5° for Europe. Rain rates over ocean are currently derived from satellite microwave imagers by using a neuronal network. For the future it is intended to switch this retrieval method to a 1D-Var method. The current state of the dataset is presented, an introduction to the future retrieval and its features is given and first results from evaluation and application are shown.

  19. The Evolution of El Nino-Precipitation Relationships from Satellites and Gauges

    Science.gov (United States)

    Curtis, Scott; Adler, Robert F.; Starr, David OC (Technical Monitor)

    2002-01-01

    This study uses a twenty-three year (1979-2001) satellite-gauge merged community data set to further describe the relationship between El Nino Southern Oscillation (ENSO) and precipitation. The globally complete precipitation fields reveal coherent bands of anomalies that extend from the tropics to the polar regions. Also, ENSO-precipitation relationships were analyzed during the six strongest El Ninos from 1979 to 2001. Seasons of evolution, Pre-onset, Onset, Peak, Decay, and Post-decay, were identified based on the strength of the El Nino. Then two simple and independent models, first order harmonic and linear, were fit to the monthly time series of normalized precipitation anomalies for each grid block. The sinusoidal model represents a three-phase evolution of precipitation, either dry-wet-dry or wet-dry-wet. This model is also highly correlated with the evolution of sea surface temperatures in the equatorial Pacific. The linear model represents a two-phase evolution of precipitation, either dry-wet or wet-dry. These models combine to account for over 50% of the precipitation variability for over half the globe during El Nino. Most regions, especially away from the Equator, favor the linear model. Areas that show the largest trend from dry to wet are southeastern Australia, eastern Indian Ocean, southern Japan, and off the coast of Peru. The northern tropical Pacific and Southeast Asia show the opposite trend.

  20. ALGORITHM OF SAR SATELLITE ATTITUDE MEASUREMENT USING GPS AIDED BY KINEMATIC VECTOR

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In this paper, in order to improve the accuracy of the Synthetic Aperture Radar (SAR)satellite attitude using Global Positioning System (GPS) wide-band carrier phase, the SAR satellite attitude kinematic vector and Kalman filter are introduced. Introducing the state variable function of GPS attitude determination algorithm in SAR satellite by means of kinematic vector and describing the observation function by the GPS wide-band carrier phase, the paper uses the Kalman filter algorithm to obtian the attitude variables of SAR satellite. Compared the simulation results of Kalman filter algorithm with the least square algorithm and explicit solution, it is indicated that the Kalman filter algorithm is the best.

  1. South African Weather Service operational satellite based precipitation estimation technique: applications and improvements

    Directory of Open Access Journals (Sweden)

    E. de Coning

    2010-11-01

    Full Text Available Extreme weather related to heavy or more frequent precipitation events seem to be a likely possibility for the future of our planet. While precipitation measurements can be done by means of rain gauges, the obvious disadvantages of point measurements are driving meteorologists towards remotely sensed precipitation methods. In South Africa more sophisticated and expensive nowcasting technology such as radar and lightning networks are available, supported by a fairly dense rain gauge network of about 1500 gauges. In the rest of southern Africa rainfall measurements are more difficult to obtain. The availability of the local version of the Unified Model and the Meteosat Second Generation satellite data make these products ideal components of precipitation measurement in data sparse regions such as Africa. In this article the local version of the Hydroestimator (originally from NOAA/NESDIS is discussed as well as its applications for precipitation measurement in this region. Hourly accumulations of the Hydroestimator are currently used as a satellite based precipitation estimator for the South African Flash Flood Guidance system. However, the Hydroestimator is by no means a perfect representation of the real rainfall. In this study the Hydroestimator and the stratiform rainfall field from the Unified Model are both bias corrected and then combined into a new precipitation field which can feed into the South African Flash Flood Guidance system. This new product should provide a more accurate and comprehensive input to the Flash Flood Guidance systems in South Africa as well as southern Africa. In this way the southern African region where data is sparse and very few radars are available can have access to more accurate flash flood guidance.

  2. Object-based Evaluation of Satellite Precipitation Retrievals: A Case Study of the Summer Season over CONUS

    Science.gov (United States)

    Li, J.; Xu, P.

    2015-12-01

    Satellite precipitation retrievals that have high spatial and temporal resolutions are suitable for various applications, such as hydrologic modeling and watershed management. Many validation studies have been established to understand the strengths and limitations of these satellite precipitation retrievals. In this study, an object-based validation approach is adopted to evaluate several satellite precipitation retrievals focusing on the spatial and geometric patterns of precipitation. This object-based validation approach identifies precipitation objects using an image processing technique referred to as watershed transform. Several object attributes are diagnosed and analyzed based on the distance measurement. Three object-based verification scores are summarized to determine the overall performances of satellite precipitation retrievals. The Integrated Multi-satellitE Retrievals for GPM (IMERG) and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN) were evaluated using the object-based approach. The NOAA stage IV MPE multi-sensor composite rain analysis was utilized as the ground observations. The comparative assessments were conducted at 0.25° by 0.25° on a daily scale in the summer season of 2014 over the continental United States (CONUS). The results suggest that IMERG possesses the similar spatial pattern of local-scale precipitation areas against stage IV observations. In addition, IMERG depicts the sizes and locations of precipitation areas more accurately against stage IV.

  3. A satellite schedulability prediction algorithm for EO SPS

    Institute of Scientific and Technical Information of China (English)

    Li Jun; Li Jun; Jing Ning; Hu Weidong; Chen Hao

    2013-01-01

    With notably few exceptions,the existing satellite mission operations cannot provide the ability of schedulability prediction,including the latest satellite planning service (SPS) standard-Sensor Planning Service Interface Standard 2.0 Earth Observation Satellite Tasking Extension (EO SPS) approved by Open Geospatial Consortium (OGC).The requestor can do nothing but waiting for the results of time consuming batch scheduling.It is often too late to adjust the request when receiving scheduling failures.A supervised learning algorithm based on robust decision tree and bagging support vector machine (Bagging SVM) is proposed to solve the problem above.The Bagging SVM is applied to improve the accuracy of classification and robust decision tree is utilized to reduce the error mean and error variation.The simulations and analysis show that a prediction action can be accomplished in near real-time with high accuracy.This means the decision makers can maximize the probability of successful scheduling through changing request parameters or take action to accommodate the scheduling failures in time.

  4. Image Dodging Algorithm for GF-1 Satellite WFV Imagery

    Directory of Open Access Journals (Sweden)

    HAN Jie

    2016-12-01

    Full Text Available Image dodging method is one of the important processes that determines whether the mosaicking image can be used for remote sensing quantitative application. GF-1 satellite is the first satellite in CHEOS (Chinese high-resolution earth observation system. WFV multispectral sensor is one of the instruments onboard GF-1 satellite which consist of four cameras to mosaic imaging. According to the characteristics of WFV sensor, this paper proposes an image dodging algorithm based on cross/inter-radiometric calibration method. First, the traditional cross calibration method is applied to obtain the calibration coefficients of one WFV camera. Then statistical analysis and simulation methods are adopted to build the correlation models of DN and TOA (top of atmosphere radiances between adjacent cameras. The proposed method can not only accomplish the radiation performance transfer, but also can fulfill the image dodging. The experimental results show the cross/inter-radiometric calibration coefficients in this paper can effectively eliminate the radiation inconsistency problem of the adjacent camera image which realizes the image dodging. So our proposed dodging method can provide an important reference for other similar sensor in future.

  5. A statistical method to get surface level air-temperature from satellite observations of precipitable water

    Digital Repository Service at National Institute of Oceanography (India)

    Pankajakshan, T.; Shikauchi, A.; Sugimori, Y.; Kubota, M.

    Vol. 49, pp. 551 to 558. 1993 A Statistical Method to Get Surface Level Air-Temperature from Satellite Observations of Precipitable Water PANKAJAKSHAN THADATHIL*, AKIRA SHIKAUCHI, YASUHIRO SUGIMORI and MASAHISA KUBOTA School of Marine Science... observations for getting the estimates of heat flux across the air-sea boundary (Miller, 1981; Liu, 1988). Bulk method has widely been used for this purpose and the parameters required are: sea surface temperature, and wind speed, air-temperature and specific...

  6. Bias reduction for Satellite Based Precipitation Estimates using statistical transformations in Guiana Shield

    Science.gov (United States)

    Ringard, Justine; Becker, Melanie; Seyler, Frederique; Linguet, Laurent

    2016-04-01

    Currently satellite-based precipitation estimates exhibit considerable biases, and there have been many efforts to reduce these biases by merging surface gauge measurements with satellite-based estimates. In Guiana Shield all products exhibited better performances during the dry season (August- December). All products greatly overestimate very low intensities (50 mm). Moreover the responses of each product are different according to hydro climatic regimes. The aim of this study is to correct spatially the bias of precipitation, and compare various correction methods to define the best methods depending on the rainfall characteristic correcting (intensity, frequency). Four satellites products are used: Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) research product (3B42V7) and real time product (3B42RT), the Precipitation Estimation from Remotely-Sensed Information using Artificial Neural Network (PERSIANN) and the NOAA Climate Prediction Center (CPC) Morphing technique (CMORPH), for six hydro climatic regimes between 2001 and 2012. Several statistical transformations are used to correct the bias. Statistical transformations attempt to find a function h that maps a simulated variable Ps such that its new distribution equals the distribution of the observed variable Po. The first is the use of a distribution derived transformations which is a mixture of the Bernoulli and the Gamma distribution, where the Bernoulli distribution is used to model the probability of precipitation occurrence and the Gamma distribution used to model precipitation intensities. The second a quantile-quantile relation using parametric transformation, and the last one is a common approach using the empirical CDF of observed and modelled values instead of assuming parametric distributions. For each correction 30% of both, simulated and observed data sets, are used to calibrate and the other part used to validate. The validation are test with statistical

  7. An adaptive spatial model for precipitation data from multiple satellites over large regions

    KAUST Repository

    Chakraborty, Avishek

    2015-03-01

    Satellite measurements have of late become an important source of information for climate features such as precipitation due to their near-global coverage. In this article, we look at a precipitation dataset during a 3-hour window over tropical South America that has information from two satellites. We develop a flexible hierarchical model to combine instantaneous rainrate measurements from those satellites while accounting for their potential heterogeneity. Conceptually, we envision an underlying precipitation surface that influences the observed rain as well as absence of it. The surface is specified using a mean function centered at a set of knot locations, to capture the local patterns in the rainrate, combined with a residual Gaussian process to account for global correlation across sites. To improve over the commonly used pre-fixed knot choices, an efficient reversible jump scheme is used to allow the number of such knots as well as the order and support of associated polynomial terms to be chosen adaptively. To facilitate computation over a large region, a reduced rank approximation for the parent Gaussian process is employed.

  8. Visibility conflict resolution for multiple antennae and multi-satellites via genetic algorithm

    Science.gov (United States)

    Lee, Junghyun; Hyun, Chung; Ahn, Hyosung; Wang, Semyung; Choi, Sujin; Jung, Okchul; Chung, Daewon; Ko, Kwanghee

    Satellite mission control systems typically are operated by scheduling missions to the visibility between ground stations and satellites. The communication for the mission is achieved by interacting with satellite visibility and ground station support. Specifically, the satellite forms a cone-type visibility passing over a ground station, and the antennas of ground stations support the satellite. When two or more satellites pass by at the same time or consecutively, the satellites may generate a visibility conflict. As the number of satellites increases, solving visibility conflict becomes important issue. In this study, we propose a visibility conflict resolution algorithm of multi-satellites by using a genetic algorithm (GA). The problem is converted to scheduling optimization modeling. The visibility of satellites and the supports of antennas are considered as tasks and resources individually. The visibility of satellites is allocated to the total support time of antennas as much as possible for users to obtain the maximum benefit. We focus on a genetic algorithm approach because the problem is complex and not defined explicitly. The genetic algorithm can be applied to such a complex model since it only needs an objective function and can approach a global optimum. However, the mathematical proof of global optimality for the genetic algorithm is very challenging. Therefore, we apply a greedy algorithm and show that our genetic approach is reasonable by comparing with the performance of greedy algorithm application.

  9. Downscaling Satellite Precipitation with Emphasis on Extremes: A Variational 1-Norm Regularization in the Derivative Domain

    Science.gov (United States)

    Foufoula-Georgiou, E.; Ebtehaj, A. M.; Zhang, S. Q.; Hou, A. Y.

    2013-01-01

    The increasing availability of precipitation observations from space, e.g., from the Tropical Rainfall Measuring Mission (TRMM) and the forthcoming Global Precipitation Measuring (GPM) Mission, has fueled renewed interest in developing frameworks for downscaling and multi-sensor data fusion that can handle large data sets in computationally efficient ways while optimally reproducing desired properties of the underlying rainfall fields. Of special interest is the reproduction of extreme precipitation intensities and gradients, as these are directly relevant to hazard prediction. In this paper, we present a new formalism for downscaling satellite precipitation observations, which explicitly allows for the preservation of some key geometrical and statistical properties of spatial precipitation. These include sharp intensity gradients (due to high-intensity regions embedded within lower-intensity areas), coherent spatial structures (due to regions of slowly varying rainfall),and thicker-than-Gaussian tails of precipitation gradients and intensities. Specifically, we pose the downscaling problem as a discrete inverse problem and solve it via a regularized variational approach (variational downscaling) where the regularization term is selected to impose the desired smoothness in the solution while allowing for some steep gradients(called 1-norm or total variation regularization). We demonstrate the duality between this geometrically inspired solution and its Bayesian statistical interpretation, which is equivalent to assuming a Laplace prior distribution for the precipitation intensities in the derivative (wavelet) space. When the observation operator is not known, we discuss the effect of its misspecification and explore a previously proposed dictionary-based sparse inverse downscaling methodology to indirectly learn the observation operator from a database of coincidental high- and low-resolution observations. The proposed method and ideas are illustrated in case

  10. The SUMO Ship Detector Algorithm for Satellite Radar Images

    Directory of Open Access Journals (Sweden)

    Harm Greidanus

    2017-03-01

    Full Text Available Search for Unidentified Maritime Objects (SUMO is an algorithm for ship detection in satellite Synthetic Aperture Radar (SAR images. It has been developed over the course of more than 15 years, using a large amount of SAR images from almost all available SAR satellites operating in L-, C- and X-band. As validated by benchmark tests, it performs very well on a wide range of SAR image modes (from Spotlight to ScanSAR and resolutions (from 1–100 m and for all types and sizes of ships, within the physical limits imposed by the radar imaging. This paper describes, in detail, the algorithmic approach in all of the steps of the ship detection: land masking, clutter estimation, detection thresholding, target clustering, ship attribute estimation and false alarm suppression. SUMO is a pixel-based CFAR (Constant False Alarm Rate detector for multi-look radar images. It assumes a K distribution for the sea clutter, corrected however for deviations of the actual sea clutter from this distribution, implementing a fast and robust method for the clutter background estimation. The clustering of detected pixels into targets (ships uses several thresholds to deal with the typically irregular distribution of the radar backscatter over a ship. In a multi-polarization image, the different channels are fused. Azimuth ambiguities, a common source of false alarms in ship detection, are removed. A reliability indicator is computed for each target. In post-processing, using the results of a series of images, additional false alarms from recurrent (fixed targets including range ambiguities are also removed. SUMO can run in semi-automatic mode, where an operator can verify each detected target. It can also run in fully automatic mode, where batches of over 10,000 images have successfully been processed in less than two hours. The number of satellite SAR systems keeps increasing, as does their application to maritime surveillance. The open data policy of the EU

  11. Simulation of Ship-Track versus Satellite-Sensor Differences in Oceanic Precipitation Using an Island-Based Radar

    Directory of Open Access Journals (Sweden)

    Jörg Burdanowitz

    2017-06-01

    Full Text Available The point-to-area problem strongly complicates the validation of satellite-based precipitation estimates, using surface-based point measurements. We simulate the limited spatial representation of light-to-moderate oceanic precipitation rates along ship tracks with respect to areal passive microwave satellite estimates using data from a subtropical island-based radar. The radar data serves to estimate the discrepancy between point-like and areal precipitation measurements. From the spatial discrepancy, two statistical adjustments are derived so that along-track precipitation ship data better represent areal precipitation estimates from satellite sensors. The first statistical adjustment uses the average duration of a precipitation event as seen along a ship track, and the second adjustment uses the median-normalized along-track precipitation rate. Both statistical adjustments combined reduce the root mean squared error by 0.24 mm h − 1 (55% compared to the unadjusted average track of 60 radar pixels in length corresponding to a typical ship speed of 24–34 km h − 1 depending on track orientation. Beyond along-track averaging, the statistical adjustments represent an important step towards a more accurate validation of precipitation derived from passive microwave satellite sensors using point-like along-track surface precipitation reference data.

  12. Efficient Algorithm for Railway Tracks Detection Using Satellite Imagery

    Directory of Open Access Journals (Sweden)

    Ali Javed

    2012-10-01

    Full Text Available Satellite imagery can produce maps including roads, railway tracks, buildings, bridges, oceans, lakes, rivers, etc. In developed countries like USA, Canada, Australia, Europe, images produced by Google map are of high resolution and good quality. On the other hand, mostly images of the third world countries like Pakistan, Asian and African countries are of poor quality and not clearly visible. Similarly railway tracks of these countries are hardly visible in Google map. We have developed an efficient algorithm for railway track detection from a low quality image of Google map. This would lead to detect damaged railway track, railway crossings and help to schedule/divert locomotive movements in order to avoid catastrophe.

  13. Improved interpretation of satellite altimeter data using genetic algorithms

    Science.gov (United States)

    Messa, Kenneth; Lybanon, Matthew

    1992-01-01

    Genetic algorithms (GA) are optimization techniques that are based on the mechanics of evolution and natural selection. They take advantage of the power of cumulative selection, in which successive incremental improvements in a solution structure become the basis for continued development. A GA is an iterative procedure that maintains a 'population' of 'organisms' (candidate solutions). Through successive 'generations' (iterations) the population as a whole improves in simulation of Darwin's 'survival of the fittest'. GA's have been shown to be successful where noise significantly reduces the ability of other search techniques to work effectively. Satellite altimetry provides useful information about oceanographic phenomena. It provides rapid global coverage of the oceans and is not as severely hampered by cloud cover as infrared imagery. Despite these and other benefits, several factors lead to significant difficulty in interpretation. The GA approach to the improved interpretation of satellite data involves the representation of the ocean surface model as a string of parameters or coefficients from the model. The GA searches in parallel, a population of such representations (organisms) to obtain the individual that is best suited to 'survive', that is, the fittest as measured with respect to some 'fitness' function. The fittest organism is the one that best represents the ocean surface model with respect to the altimeter data.

  14. Utilizing Satellite Precipitation Products to Understand the Link Between Climate Variability and Malaria

    Science.gov (United States)

    Maggioni, V.; Mousam, A.; Delamater, P. L.; Cash, B. A.; Quispe, A.

    2015-12-01

    Malaria is a public health threat to people globally leading to 198 million cases and 584,000 deaths annually. Outbreaks of vector borne diseases such as malaria can be significantly impacted by climate variables such as precipitation. For example, an increase in rainfall has the potential to create pools of water that can serve as breeding locations for mosquitos. Peru is a country that is currently controlling malaria, but has not been able to completely eliminate the disease. Despite the various initiatives in order to control malaria - including regional efforts to improve surveillance, early detection, prompt treatment, and vector management - malaria cases in Peru have risen between 2011 and 2014. The purpose of this study is to test the hypothesis that climate variability plays a fundamental role in malaria occurrence over a 12-year period (2003-2014) in Peru. When analyzing climate variability, it is important to obtain high-quality, high-resolution data for a time series long enough to draw conclusion about how climate variables have been and are changing. Remote sensing is a powerful tool for measuring and monitoring climate variables continuously in time and space. A widely used satellite-based precipitation product, the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA), available globally since 1998, was used to obtain 3-hourly data with a spatial resolution of 0.25° x 0.25°. The precipitation data was linked to weekly (2003-2014) malaria cases collected by health centers and available at a district level all over Peru to investigate the relationship between precipitation and the seasonal and annual variations in malaria incidence. Further studies will incorporate additional climate variables such as temperature, humidity, soil moisture, and surface pressure from remote sensing data products and climate models. Ultimately, this research will help us to understand if climate variability impacts malaria incidence

  15. Statistical and Hydrological Evaluation of TRMM-Based Multi-Satellite Precipitation Analysis over the Wangchu Basin of Bhutan: Are the Latest Satellite Precipitation Products 3B42V7 Ready for Use in Ungauged Basins?

    Science.gov (United States)

    Xue, Xianwu; Hong, Yang; Limaye, Ashutosh S.; Gourley, Jonathan; Huffman, George J.; Khan, Sadiq Ibrahim; Dorji, Chhimi; Chen, Sheng

    2013-01-01

    The objective of this study is to quantitatively evaluate the successive Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) products and further to explore the improvements and error propagation of the latest 3B42V7 algorithm relative to its predecessor 3B42V6 using the Coupled Routing and Excess Storage (CREST) hydrologic model in the mountainous Wangchu Basin of Bhutan. First, the comparison to a decade-long (2001-2010) daily rain gauge dataset reveals that: 1) 3B42V7 generally improves upon 3B42V6s underestimation both for the whole basin (bias from -41.15 to -8.38) and for a 0.250.25 grid cell with high-density gauges (bias from -40.25 to 0.04), though with modest enhancement of correlation coefficients (CC) (from 0.36 to 0.40 for basin-wide and from 0.37 to 0.41 for grid); and 2) 3B42V7 also improves its occurrence frequency across the rain intensity spectrum. Using the CREST model that has been calibrated with rain gauge inputs, the 3B42V6-based simulation shows limited hydrologic prediction NSCE skill (0.23 in daily scale and 0.25 in monthly scale) while 3B42V7 performs fairly well (0.66 in daily scale and 0.77 in monthly scale), a comparable skill score with the gauge rainfall simulations. After recalibrating the model with the respective TMPA data, significant improvements are observed for 3B42V6 across all categories, but not as much enhancement for the already well-performing 3B42V7 except for a reduction in bias (from -26.98 to -4.81). In summary, the latest 3B42V7 algorithm reveals a significant upgrade from 3B42V6 both in precipitation accuracy (i.e., correcting the underestimation) thus improving its potential hydrological utility. Forcing the model with 3B42V7 rainfall yields comparable skill scores with in-situ gauges even without recalibration of the hydrological model by the satellite precipitation, a compensating approach often used but not favored by the hydrology community, particularly in ungauged basins.

  16. Correlating Global Precipitation Measurement satellite data with karst spring hydrographs for rapid catchment delineation

    Science.gov (United States)

    Longenecker, Jake; Bechtel, Timothy; Chen, Zhao; Goldscheider, Nico; Liesch, Tanja; Walter, Robert

    2017-05-01

    To protect karst spring water resources, catchments must be known. We have developed a method for correlating spring hydrographs with newly available, high-resolution, satellite-based Global Precipitation Measurement data to rapidly and remotely locate recharge areas. We verify the method using a synthetic comparison of ground-based rain gage data with the satellite precipitation data set. Application to karst springs is proven by correlating satellite data with hydrographs from well-known springs with published catchments in Europe and North America. Application to an unknown-catchment spring in Pennsylvania suggests distant recharge, requiring a flow path that crosses topographic divides, as well as multiple lithologies, physiographic provinces, and tectonic boundaries. Although surprising, this latter result is consistent with published geologic/geophysical, monitoring well, and stream gage data. We conclude that the method has considerable potential to improve the speed and accuracy of catchment identification and hydrodynamic characterization, with applications to water resource protection and groundwater exploration, among others.

  17. Hierarchical Supervisor and Agent Routing Algorithm in LEO/MEO Double-layered Optical Satellite Network

    Science.gov (United States)

    Li, Yongjun; Zhao, Shanghong

    2016-09-01

    A novel routing algorithm (Hierarchical Supervisor and Agent Routing Algorithm, HSARA) for LEO/MEO (low earth orbit/medium earth orbit) double-layered optical satellite network is brought forward. The so-called supervisor (MEO satellite) is designed for failure recovery and network management. LEO satellites are grouped according to the virtual managed field of MEO which is different from coverage area of MEO satellite in RF satellite network. In each LEO group, one LEO satellite which has maximal persistent link with its supervisor is called the agent. A LEO group is updated when this optical inter-orbit links between agent LEO satellite and the corresponding MEO satellite supervisor cuts off. In this way, computations of topology changes and LEO group updating can be decreased. Expense of routing is integration of delay and wavelength utilization. HSARA algorithm simulations are implemented and the results are as follows: average network delay of HSARA can reduce 21 ms and 31.2 ms compared with traditional multilayered satellite routing and single-layer LEO satellite respectively; LEO/MEO double-layered optical satellite network can cover polar region which cannot be covered by single-layered LEO satellite and throughput is 1% more than that of single-layered LEO satellite averagely. Therefore, exact global coverage can be achieved with this double-layered optical satellite network.

  18. How reliable are satellite precipitation estimates for driving hydrological models: a verification study over the Mediterranean area

    Science.gov (United States)

    Camici, Stefania; Ciabatta, Luca; Massari, Christian; Brocca, Luca

    2017-04-01

    Floods are one of the most common and dangerous natural hazards, causing every year thousands of casualties and damages worldwide. The main tool for assessing flood risk and reducing damages is represented by hydrologic early warning systems that allow to forecast flood events by using real time data obtained through ground monitoring networks (e.g., raingauges and radars). However, the use of such data, mainly rainfall, presents some issues firstly related to the network density and to the limited spatial representativeness of local measurements. A way to overcome these issues may be the use of satellite-based rainfall products (SRPs) that nowadays are available on a global scale at ever increasing spatial/temporal resolution and accuracy. However, despite the large availability and increased accuracy of SRPs (e.g., the Tropical Rainfall Measurement Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA); the Satellite Application Facility on Support to Operational Hydrology and Water Management (H-SAF); and the recent Global Precipitation Measurement (GPM) mission), remotely sensed rainfall data are scarcely used in hydrological modeling and only a small number of studies have been carried out to outline some guidelines for using satellite data as input for hydrological modelling. Reasons may be related to: 1) the large bias characterizing satellite precipitation estimates, which is dependent on rainfall intensity and season, 2) the spatial/temporal resolution, 3) the timeliness, which is often insufficient for operational purposes, and 4) a general (often not justified) skepticism of the hydrological community in the use of satellite products for land applications. The objective of this study is to explore the feasibility of using SRPs in a lumped hydrologic model (MISDc, "Modello Idrologico Semi-Distribuito in continuo", Masseroni et al., 2017) over 10 basins in the Mediterranean area with different sizes and physiographic characteristics. Specifically

  19. A random forest algorithm for nowcasting of intense precipitation events

    Science.gov (United States)

    Das, Saurabh; Chakraborty, Rohit; Maitra, Animesh

    2017-09-01

    Automatic nowcasting of convective initiation and thunderstorms has potential applications in several sectors including aviation planning and disaster management. In this paper, random forest based machine learning algorithm is tested for nowcasting of convective rain with a ground based radiometer. Brightness temperatures measured at 14 frequencies (7 frequencies in 22-31 GHz band and 7 frequencies in 51-58 GHz bands) are utilized as the inputs of the model. The lower frequency band is associated to the water vapor absorption whereas the upper frequency band relates to the oxygen absorption and hence, provide information on the temperature and humidity of the atmosphere. Synthetic minority over-sampling technique is used to balance the data set and 10-fold cross validation is used to assess the performance of the model. Results indicate that random forest algorithm with fixed alarm generation time of 30 min and 60 min performs quite well (probability of detection of all types of weather condition ∼90%) with low false alarms. It is, however, also observed that reducing the alarm generation time improves the threat score significantly and also decreases false alarms. The proposed model is found to be very sensitive to the boundary layer instability as indicated by the variable importance measure. The study shows the suitability of a random forest algorithm for nowcasting application utilizing a large number of input parameters from diverse sources and can be utilized in other forecasting problems.

  20. The Passive microwave Neural network Precipitation Retrieval (PNPR algorithm for AMSU/MHS observations: description and application to European case studies

    Directory of Open Access Journals (Sweden)

    P. Sanò

    2014-09-01

    Full Text Available The purpose of this study is to describe a new algorithm based on a Neural Network approach (Passive microwave Neural network Precipitation Retrieval – PNPR for precipitation rate estimation from AMSU/MHS observations, and to provide examples of its performance for specific case studies over the European/Mediterranean area. The algorithm optimally exploits the different characteristics of AMSU-A and MHS channels, and their combinations, including the TB differences of the 183.31 channels, with the goal of having a single neural network for different types of background surfaces (vegetated land, snow covered surface, coast and ocean. The training of the neural network is based on the use of a cloud-radiation database, built from cloud-resolving model simulations coupled to a radiative transfer model, representative of the European and Mediterranean basin precipitation climatology. The algorithm provides also the phase of the precipitation and a pixel-based confidence index for the evaluation of the reliability of the retrieval. Applied to different weather conditions in Europe, the algorithm shows good performance both in the identification of precipitation areas and in the retrieval of precipitation, particularly valuable over the extremely variable environmental and meteorological conditions of the region. In particular, the PNPR is particularly efficient in: (1 screening and retrieval of precipitation over different background surfaces, (2 identification and retrieval of heavy rain for convective events, (3 identification of precipitation over cold/iced background, with some uncertainties affecting light precipitation. In this paper, examples of good agreement of precipitation pattern and intensity with ground-based data (radar and rain gauges are provided for four different case studies. The algorithm has been developed in order to be easily tailored to new radiometers as they become available (such as the cross-track scanning Suomi NPP

  1. Evaluation of clouds and precipitation in the ECHAM5 general circulation model using CALIPSO and CloudSat satellite data

    OpenAIRE

    Nam, Christine C. W.; Quaas, Johannes

    2015-01-01

    Observations from Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) and CloudSat satellites are used to evaluate clouds and precipitation in the ECHAM5 general circulation model. Active lidar and radar instruments on board CALIPSO and CloudSat allow the vertical distribution of clouds and their optical properties to be studied on a global scale. To evaluate the clouds modeled by ECHAM5 with CALIPSO and CloudSat, the lidar and radar satellite simulators of the Cloud ...

  2. New dynamic routing algorithm based on MANET in LEO/MEO satellite network

    Institute of Scientific and Technical Information of China (English)

    LI Zhe; LI Dong-ni; WANG Guang-xing

    2006-01-01

    The features of low earth orbit/medium earth orbit (LEO/MEO) satellite networks routing algorithm based on inter-satellite link are analyzed and the similarities between satellite networks and mobile Ad Hoc network (MANET) are pointed out.The similar parts in MANET routing protocol are used in the satellite network for reference.A new dynamic routing algorithm based on MANET in LEO/MEO satellite networks,which fits for the LEO/MEO satellite communication system,is proposed.At the same time,the model of the algorithm is simulated and features are analyzed.It is shown that the algorithm has strong adaptability.It can give the network high autonomy,perfect function,low system overhead and great compatibility.

  3. A Multicast Routing Algorithm for Datagram Service in Delta LEO Satellite Constellation Networks

    Directory of Open Access Journals (Sweden)

    Yanpeng Ma

    2014-04-01

    Full Text Available Satellites can broadcast datagram over wide areas, therefore, the satellite network has congenital advantages to implement multicast service. LEO satellite has the property of efficient bandwidth usage, lower propagation delay and lower power consumption in the user terminals and satellites. Therefore, the constellation network composed by LEO satellites is an essential part of future satellite communication networks. In this paper, we propose a virtual center based multicast (VCMulticast routing algorithm for LEO satellite constellation network. The algorithm uses the geographic center information of group users to route multicast datagrams, with less memory, computer power and signaling overhead. We evaluate the delay and performance of our algorithm by means of simulations in the OPENET simulator. The results indicate that the delay of the proposed multicast method exceeds the minimum propagation by at most 29.1% on the average, which is a quite acceptable achievement, considering the resource overhead reduction that can be introduced by our proposal

  4. Evaluating the performance of real-time streamflow forecasting using multi-satellite precipitation products in the Upper Zambezi, Africa

    Science.gov (United States)

    Demaria, E. M.; Valdes, J. B.; Wi, S.; Serrat-Capdevila, A.; Valdés-Pineda, R.; Durcik, M.

    2016-12-01

    In under-instrumented basins around the world, accurate and timely forecasts of river streamflows have the potential of assisting water and natural resource managers in their management decisions. The Upper Zambezi river basin is the largest basin in southern Africa and its water resources are critical to sustainable economic growth and poverty reduction in eight riparian countries. We present a real-time streamflow forecast for the basin using a multi-model-multi-satellite approach that allows accounting for model and input uncertainties. Three distributed hydrologic models with different levels of complexity: VIC, HYMOD_DS, and HBV_DS are setup at a daily time step and a 0.25 degree spatial resolution for the basin. The hydrologic models are calibrated against daily observed streamflows at the Katima-Mulilo station using a Genetic Algorithm. Three real-time satellite products: Climate Prediction Center's morphing technique (CMORPH), Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN), and Tropical Rainfall Measuring Mission (TRMM-3B42RT) are bias-corrected with daily CHIRPS estimates. Uncertainty bounds for predicted flows are estimated with the Inverse Variance Weighting method. Because concentration times in the basin range from a few days to more than a week, we include the use of precipitation forecasts from the Global Forecasting System (GFS) to predict daily streamflows in the basin with a 10-days lead time. The skill of GFS-predicted streamflows is evaluated and the usefulness of the forecasts for short term water allocations is presented.

  5. Investigation of S3-2 satellite data for local time variation of energetic electron precipitation

    Science.gov (United States)

    Robbe, S.; Sheldon, W. R.; Benbrook, J. R.; Bering, E. A.; Vampola, A. L.

    1994-01-01

    Data on precipitating electrons from the S3-2 satellite were investigated for local time variation at four L = 4 stations in the southern hemisphere. The equatorial pitch angles of electrons mirroring at 100 km, assumed to be the edge of the bounce loss cone, are calculated for L = 4 using the International Geomagnetic Reference Field for the epoch of the S3-2 data, along with the variation in mirror altitude per degree of equatorial pitch angle. The largest obstacle to the investigation was uneven sampling in terms of local time for all of the stations. However, this situation was improved upon by the use of S3-2 measurements at the conjugate locations of the four stations which provided additional data on electrons in the southern hemisphere bounce loss cone. Evidence for an effect of the dawn-to-dusk geoelectric field was found at two of the stations, Halley Bay and Siple, in the form of a minimum in electron precipitation at dusk. However, the present study does not completely resolve the question of local time modulation of electron precipitation at L = 4 in the southern hemisphere. Furthermore, while the average precipitation was lowest at the Kerguelen site, as would be expected on the basis of drift loss cone (DLC) theories, the intensity at that site exceeds the level that is expected on the basis of these DLC theories.

  6. Statistical assessment and hydrological utility of the latest multi-satellite precipitation analysis IMERG in Ganjiang River basin

    Science.gov (United States)

    Li, Na; Tang, Guoqiang; Zhao, Ping; Hong, Yang; Gou, Yabin; Yang, Kai

    2017-01-01

    This study aims to statistically and hydrologically assess the hydrological utility of the latest Integrated Multi-satellitE Retrievals from Global Precipitation Measurement (IMERG) multi-satellite constellation over the mid-latitude Ganjiang River basin in China. The investigations are conducted at hourly and 0.1° resolutions throughout the rainy season from March 12 to September 30, 2014. Two high-quality quantitative precipitation estimation (QPE) datasets, i.e., a gauge-corrected radar mosaic QPE product (RQPE) and a highly dense network of 1200 rain gauges, are used as the reference. For the implementation of the study, first, we compare IMERG product and RQPE with rain gauge-interpolated data, respectively. The results indicate that both remote sensing products can estimate precipitation fairly well over the basin, while RQPE significantly outperforms IMERG product in almost all the studied cases. The correlation coefficients of RQPE (CC = 0.98 and CC = 0.67) are much higher than those of IMERG product (CC = 0.80 and CC = 0.33) at basin and grid scales, respectively. Then, the hydrological assessment is conducted with the Coupled Routing and Excess Storage (CREST) model under multiple parameterization scenarios, in which the model is calibrated using the rain gauge-interpolated data, RQPE, and IMERG products respectively. During the calibration period (from March 12 to May 31), the simulated streamflow based on rain gauge-interpolated data shows the highest Nash-Sutcliffe coefficient efficiency (NSCE) value (0.92), closely followed by the RQPE (NSCE = 0.84), while IMERG product performs barely acceptable (NSCE = 0.56). During the validation period (from June 1 to September 30), the three rainfall datasets are used to force the CREST model based on all the three calibrated parameter sets (i.e., nine combinations in total). RQPE outperforms rain gauge-interpolated data and IMERG product in all validation scenarios, possibly due to its advantageous capability

  7. Evaluation of Satellite Precipitation Products with Rain Gauge Data at Different Scales: Implications for Hydrological Applications

    Directory of Open Access Journals (Sweden)

    Ruifang Guo

    2016-07-01

    Full Text Available Rain gauge and satellite-retrieved data have been widely used in basin-scale hydrological applications. While rain gauges provide accurate measurements that are generally unevenly distributed in space, satellites offer spatially regular observations and common error prone retrieval. Comparative evaluation of gauge-based and satellite-based data is necessary in hydrological studies, as precipitation is the most important input in basin-scale water balance. This study uses quality-controlled rain gauge data and prevailing satellite products (Tropical Rainfall Measuring Mission (TRMM 3B43, 3B42 and 3B42RT to examine the consistency and discrepancies between them at different scales. Rain gauges and TRMM products were available in the Poyang Lake Basin, China, from 1998 to 2007 (3B42RT: 2000–2007. Our results show that the performance of TRMM products generally increases with increasing spatial scale. At both the monthly and annual scales, the accuracy is highest for TRMM 3B43, with 3B42 second and 3B42RT third. TRMM products generally overestimate precipitation because of a high frequency and degree of overestimation in light and moderate rain cases. At the daily scale, the accuracy is relatively low between TRMM 3B42 and 3B42RT. Meanwhile, the performances of TRMM 3B42 and 3B42RT are highly variable in different seasons. At both the basin and pixel scales, TRMM 3B43 and 3B42 exhibit significant discrepancies from July to September, performing worst in September. For TRMM 3B42RT, all statistical indices fluctuate and are low throughout the year, performing worst in July at the pixel scale and January at the basin scale. Furthermore, the spatial distributions of the statistical indices of TRMM 3B43 and 3B42 performed well, while TRMM 3B42RT displayed a poor performance.

  8. Evaluating Cloud and Precipitation Processes in Numerical Models using Current and Potential Future Satellite Missions

    Science.gov (United States)

    van den Heever, S. C.; Tao, W. K.; Skofronick Jackson, G.; Tanelli, S.; L'Ecuyer, T. S.; Petersen, W. A.; Kummerow, C. D.

    2015-12-01

    Cloud, aerosol and precipitation processes play a fundamental role in the water and energy cycle. It is critical to accurately represent these microphysical processes in numerical models if we are to better predict cloud and precipitation properties on weather through climate timescales. Much has been learned about cloud properties and precipitation characteristics from NASA satellite missions such as TRMM, CloudSat, and more recently GPM. Furthermore, data from these missions have been successfully utilized in evaluating the microphysical schemes in cloud-resolving models (CRMs) and global models. However, there are still many uncertainties associated with these microphysics schemes. These uncertainties can be attributed, at least in part, to the fact that microphysical processes cannot be directly observed or measured, but instead have to be inferred from those cloud properties that can be measured. Evaluation of microphysical parameterizations are becoming increasingly important as enhanced computational capabilities are facilitating the use of more sophisticated schemes in CRMs, and as future global models are being run on what has traditionally been regarded as cloud-resolving scales using CRM microphysical schemes. In this talk we will demonstrate how TRMM, CloudSat and GPM data have been used to evaluate different aspects of current CRM microphysical schemes, providing examples of where these approaches have been successful. We will also highlight CRM microphysical processes that have not been well evaluated and suggest approaches for addressing such issues. Finally, we will introduce a potential NASA satellite mission, the Cloud and Precipitation Processes Mission (CAPPM), which would facilitate the development and evaluation of different microphysical-dynamical feedbacks in numerical models.

  9. Real-time, Quasi-Global, Multi-Satellite Precipitation Analysis Using TRMM and other Satellite Observations

    Science.gov (United States)

    Adler, Robert F.; Huffman, George; Curtis, Scott; Bolvin, David; Nelkin, Eric

    2003-01-01

    A TRMM-based 3-hr analyses that use TRMM observations to calibrate polar-orbit microwave observations from SSM/I (and other satellites) and geosynchronous IR observations and merges the various calibrated observations into a final, 3-hr resolution map is described. This TRMM standard product will be available for the entire TRMM period (January 1998-present) in 2003 as part of Version 6 of the TRMM products. A real-time version of this merged product is being produced and is available at 0.25" latitude-longitude resolution over the latitude range from 50 N-500S. Examples will be shown, including its use in monitoring flood conditions and in relating weather-scale patterns to climate-scale patterns. Plans to incorporate the TRMM data and 3-hourly analysis into the Global Precipitation Climatology Project (GPCP) products are outlined. The outcome in the near future should be an improved global analysis and climatology on monthly scales for the 23 year period and finer time scale analyses for more recent periods, including 3-hourly analyses over the globe. These technique developments are potential prototypes for analyses with the Global Precipitation Measurement (GPM) mission.

  10. Evaluation of Satellite Precipitation and Hydrological Model Predictions for Flood Events Over The Guadalupe River Basin, Texas

    Science.gov (United States)

    Sharif, H. O.; Furl, C.

    2016-12-01

    In this study, we evaluate the quality of several satellite precipitation products in comparison to gauge corrected ground based radar estimaties for moderate to high magnitude events across the Guadalupe River system in south Texas. The analysis is conducted across four partially nested watersheds (200-10,000 km2) such that scale effects can also be examined. Additionally, the precipitation data sets are used as input to the fully-distributed, physics-based Gridded Surface Subsurface Hydrologic Analysis (GSSHA) model to examine rainfall error propagation through the hydrologic model predictions. Both gauge corrected and uncorrected satellite products are used encompassing a variety of latent delivery times, spatial resolutions, and temporal resolutions. Satellite precipitation datasets used in the study include various products from GPM, the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN) system, the NOAA CPC Morphing Technique (CMORPH), and the Tropical Rainfall Measuring Mission (TRMM).

  11. Towards stochastically downscaled precipitation in the Tropics based on a robust 1DD combined satellite product and a high resolution IR-based rain mask

    Science.gov (United States)

    Guilloteau, Clement; Roca, Rémy; Gosset, Marielle

    2015-04-01

    In the Tropics where the ground-based rain gauges network is very sparse, satellite rainfall estimates are becoming a compulsory source of information for various applications: hydrological modeling, water resources management or vegetation-monitoring. The tropical Tropical Amount of Precipitation with Estimate of Error (TAPEER) algorithm, developed within the framework of Megha-Tropiques satellite mission is a robust estimate of surface rainfall accumulations at the daily, one degree resolution. TAPEER validation in West Africa has proven its accuracy. Nevertheless applications that involve non-linear processes (such as surface runoff) require finer space / time resolution than one degree one day, or at least the statistical characterization of the sub-grid rainfall variability. TAPEER is based on a Universally Adjusted Global Precipitation Index (UAGPI) technique. The one degree, one day estimation relies on the combination of observations from microwave radiometers embarked on the 7 platforms forming the GPM constellation of low earth orbit satellites together with geostationary infra-red (GEO-IR) imagery. TAPEER provides as an intermediate product a high-resolution rain-mask based on the GEO-IR information (2.8 km, 15 min in Africa). The main question of this work is, how to use this high-resolution mask information as a constraint for downscaling ? This work first presents the multi-scale evaluation of TAPEER's rain detection mask against ground X-band polarimetric radar data and TRMM precipitation radar data in West Africa, through wavelet transform. Other algorithms (climate prediction center morphing technique CMORPH, global satellite mapping of precipitation GSMaP, multi-sensor precipitation estimate MPE) detection capabilities are also evaluated. Spatio-temporal wavelet filtering of the detection mask is then used to compute precipitation probability at the GEO-IR resolution. The wavelet tool is finally used to stochastically generate rain / no rain field

  12. Improvement and Simulation of an Autonomous Time Synchronization Algorithm for a Layered Satellite Constellation

    Directory of Open Access Journals (Sweden)

    Feijiang Huang

    2013-01-01

    Full Text Available Autonomous time synchronization for satellite constellations is a key technology to establish a constellation system time without the use of a ground station. The characteristics of satellite visibility time for layered satellite constellations containing geostationary earth orbit (GEO, inclined geosynchronous orbit (IGSO, and medium earth orbit (MEO satellites are simulated by establishing a visible satellite model. Based on the satellite visible simulation results for a layered constellation, this study investigates the autonomous time synchronization algorithm that corresponds to the layered constellation structure, analyzes the main error of the time synchronization algorithm, and proposes methods to improve the characteristics of satellite movement in the constellation. This study uses an improved two-way time synchronization algorithm for autonomous time synchronization in the GEO-MEO satellite layer of a layered satellite constellation. The simulation results show that in a condition with simulation errors, the time synchronization precision of this improved algorithm can be controlled within 5 ns and used in high-precision autonomous time synchronization between layered satellite constellations.

  13. Capabilities and uncertainties of aircraft measurements for the validation of satellite precipitation products – a virtual case study

    Directory of Open Access Journals (Sweden)

    Andrea Lammert

    2015-08-01

    Full Text Available Remote sensing sensors on board of research aircraft provide detailed measurements of clouds and precipitation which can be used as reference data to validate satellite products. Such satellite derived precipitation data using passive microwave radiometers with a resolution of typically 50×50km2$50\\times50\\,\\text{km}^2$ stands against high spatial and temporal resolved airborne measurements, but only along a chosen line. This paper focuses on analysis on the uncertainty arising from the different spatial resolution and coverage. Therefore we use a perfect model approach, with a high resolved forecast model yielding perfect virtual aircraft and satellite observations. The mean precipitation and standard deviation per satellite box were estimated with a Gaussian approach. The comparison of the mean values shows a high correlation of 0.92, but a very wide spread. As criterion to define good agreement between satellite mean and reference, we choose a deviation of one standard deviation of the virtual aircraft as threshold. Considering flight tracks in the range of 50 km (one overflight, the perfect agreement of satellite and aircraft observations is only detected in 65 % of the cases. To increase this low reliability the precipitation distributions of the virtual aircraft were fitted by a gamma density function. Using the same quality criterion, the usage of gamma density fit yields an improvement of the Aircraft reliability up to 80 %.

  14. Forecasting Lake-Effect Precipitation in the Great Lakes Region Using NASA Enhanced-Satellite Data

    Science.gov (United States)

    Cipullo, Michelle; Molthan, Andrew; Shafer, Jackie; Case, Jonathan; Jedlovec, Gary

    2011-01-01

    Lake-effect precipitation is common in the Great Lakes region, particularly during the late fall and winter. The synoptic processes of lake-effect precipitation are well understood by operational forecasters, but individual forecast events still present a challenge. Locally run, high resolution models can assist the forecaster in identifying the onset and duration of precipitation, but model results are sensitive to initial conditions, particularly the assumed surface temperature of the Great Lakes. The NASA Short-term Prediction Research and Transition (SPoRT) Center has created a Great Lakes Surface Temperature (GLST) composite, which uses infrared estimates of water temperatures obtained from the MODIS instrument aboard the Aqua and Terra satellites, other coarser resolution infrared data when MODIS is not available, and ice cover maps produced by the NOAA Great Lakes Environmental Research Lab (GLERL). This product has been implemented into the Weather Research and Forecast (WRF) model Environmental Modeling System (WRF-EMS), used within forecast offices to run local, high resolution forecasts. The sensitivity of the model forecast to the GLST product was analyzed with a case study of the Lake Effect Storm Echinacea, which produced 10 to 12 inches of snowfall downwind of Lake Erie, and 8 to 18 inches downwind of Lake Ontario from 27-29 January 2010. This research compares a forecast using the default Great Lakes surface temperatures from the Real Time Global sea surface temperature (RTG SST), in the WRF-EMS model to the enhanced NASA SPoRT GLST product to study forecast impacts. Results from this case study show that the SPoRT GLST contained less ice cover over Lake Erie and generally cooler water temperatures over Lakes Erie and Ontario. Latent and sensible heat fluxes over Lake Ontario were decreased in the GLST product. The GLST product decreased the quantitative precipitation forecast (QPF), which can be correlated to the decrease in temperatures and heat

  15. Improving Quantitative Precipitation Estimation via Data Fusion of High-Resolution Ground-based Radar Network and CMORPH Satellite-based Product

    Science.gov (United States)

    Cifelli, R.; Chen, H.; Chandrasekar, V.; Xie, P.

    2015-12-01

    A large number of precipitation products at multi-scales have been developed based upon satellite, radar, and/or rain gauge observations. However, how to produce optimal rainfall estimation for a given region is still challenging due to the spatial and temporal sampling difference of different sensors. In this study, we develop a data fusion mechanism to improve regional quantitative precipitation estimation (QPE) by utilizing satellite-based CMORPH product, ground radar measurements, as well as numerical model simulations. The CMORPH global precipitation product is essentially derived based on retrievals from passive microwave measurements and infrared observations onboard satellites (Joyce et al. 2004). The fine spatial-temporal resolution of 0.05o Lat/Lon and 30-min is appropriate for regional hydrologic and climate studies. However, it is inadequate for localized hydrometeorological applications such as urban flash flood forecasting. Via fusion of the Regional CMORPH product and local precipitation sensors, the high-resolution QPE performance can be improved. The area of interest is the Dallas-Fort Worth (DFW) Metroplex, which is the largest land-locked metropolitan area in the U.S. In addition to an NWS dual-polarization S-band WSR-88DP radar (i.e., KFWS radar), DFW hosts the high-resolution dual-polarization X-band radar network developed by the center for Collaborative Adaptive Sensing of the Atmosphere (CASA). This talk will present a general framework of precipitation data fusion based on satellite and ground observations. The detailed prototype architecture of using regional rainfall instruments to improve regional CMORPH precipitation product via multi-scale fusion techniques will also be discussed. Particularly, the temporal and spatial fusion algorithms developed for the DFW Metroplex will be described, which utilizes CMORPH product, S-band WSR-88DP, and X-band CASA radar measurements. In order to investigate the uncertainties associated with each

  16. A DISTRIBUTED QOS ROUTING BASED ON ANT ALGORITHM FOR LEO SATELLITE NETWORK

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Low Earth Orbit (LEO) satellites provide short round-trip delays and are becoming increasingly important. One of the challenges in LEO satellite networks is the development of specialized and efficient routing algorithms. To satisfy the QoS requirements of multimedia applications, satellite routing protocols should consider handovers and minimize their effect on the active connections. A distributed QoS routing scheme based on heuristic ant algorithm is proposed for satisfying delay bound and avoiding link congestion. Simulation results show that the call blocking probabilities of this algorithm are less than that of Shortest Path First (SPF) with different delay bound.

  17. PM-GCD - A combined IR-MW satellite technique for frequent retrieval of heavy precipitation: Application to the EU FLASH project

    Science.gov (United States)

    Casella, Daniele; Dietrich, Stefano; di Paola, Francesco; Formenton, Marco; Mugnai, Alberto; Sanò, Paolo

    2010-05-01

    Precipitation retrievals based on measurements from microwave (MW) radiometers onboard low-Earth-orbit (LEO) satellites can reach a high level of accuracy - and especially so, for deep convective precipitating systems. However, these observations do not provide a satisfactorily coverage of the rapid evolution of intense precipitating systems. As a result, the obtained precipitation retrievals are often of limited use for many important applications -- including support to authorities in activating flood alarms. To avoid this problem, several techniques have been developed that combine accurate MW estimates with frequent infrared (IR) observations from geosynchronous (GEO) satellites, such as the European Meteosat Second Generation (MSG). Within the European Union FP6 FLASH project, we have developed a new combined MW-IR technique for producing frequent precipitation retrievals from space (which we call PM-GCD technique). This technique uses passive-microwave (PM) retrievals in conjunction with the Global Convection Detection (GCD) technique that discriminates deep convective clouds within the GEO observations, based on the difference between the water vapor (6.2 μm ) and thermal-IR (10.8 μm ) channels. In essence, within the PM-GCD technique, deep convective areas are defined from MSG observations, then calibrated using MW-AMSU precipitation retrievals and finally propagated over time with a simple tracking algorithm. In this paper, we describe the PM-GCD technique and discuss the results of its application to a flood event that occurred on September 12-15, 2006 over the north-western Mediterranean coastal areas, and that has been selected for joint research by the EU FLASH and HYDRATE projects.

  18. An algorithm for retrieval of precipitation using microwave humidity sounder channels around 183 GHz

    Science.gov (United States)

    Varma, A. K.; Piyush, D. N.

    2016-05-01

    An algorithm is developed to identify precipitation affected pixels and quantitatively measure the precipitation using Megha-Tropiques humidity sounder (SAPHIR) channels around water vapor absorption line at 183 GHz. Based on observed brightness temperatures at all the six channels of the SAPHIR, a probabilistic rain identification algorithm is proposed. The rain thus identified is subjected to intensive testing using SAPHIR and PR collocated dataset, that showed that false alarm and missing rain is below 0.9 mm/h. Further a radiative transfer simulations supported rain retrieval algorithm is developed that explained a correlation of 0.7 and rmse of 0.81 mm/h. When both precipitation detection and retrieval algorithms are applied the correlation marginally deteriorates but rmse reduces to 0.55 mm/h. Further comparisons are made of monthly, daily and instantaneous rain over different geographical regions from SAPHIR with corresponding rain values from GSMap, TRMM-3B42 V7 and TRMM-TMI/PR, etc. The paper provides details of algorithm development and validation results.

  19. Online Tools for Uncovering Data Quality (DQ) Issues in Satellite-Based Global Precipitation Products

    Science.gov (United States)

    Liu, Zhong; Heo, Gil

    2015-01-01

    Data quality (DQ) has many attributes or facets (i.e., errors, biases, systematic differences, uncertainties, benchmark, false trends, false alarm ratio, etc.)Sources can be complicated (measurements, environmental conditions, surface types, algorithms, etc.) and difficult to be identified especially for multi-sensor and multi-satellite products with bias correction (TMPA, IMERG, etc.) How to obtain DQ info fast and easily, especially quantified info in ROI Existing parameters (random error), literature, DIY, etc.How to apply the knowledge in research and applications.Here, we focus on online systems for integration of products and parameters, visualization and analysis as well as investigation and extraction of DQ information.

  20. Flood forecasting in Niger-Benue basin using satellite and quantitative precipitation forecast data

    Science.gov (United States)

    Haile, Alemseged Tamiru; Tefera, Fekadu Teshome; Rientjes, Tom

    2016-10-01

    Availability of reliable, timely and accurate rainfall data is constraining the establishment of flood forecasting and early warning systems in many parts of Africa. We evaluated the potential of satellite and weather forecast data as input to a parsimonious flood forecasting model to provide information for flood early warning in the central part of Nigeria. We calibrated the HEC-HMS rainfall-runoff model using rainfall data from post real time Tropical Rainfall Measuring Mission (TRMM) Multi satellite Precipitation Analysis product (TMPA). Real time TMPA satellite rainfall estimates and European Centre for Medium-Range Weather Forecasts (ECMWF) rainfall products were tested for flood forecasting. The implication of removing the systematic errors of the satellite rainfall estimates (SREs) was explored. Performance of the rainfall-runoff model was assessed using visual inspection of simulated and observed hydrographs and a set of performance indicators. The forecast skill was assessed for 1-6 days lead time using categorical verification statistics such as Probability Of Detection (POD), Frequency Of Hit (FOH) and Frequency Of Miss (FOM). The model performance satisfactorily reproduced the pattern and volume of the observed stream flow hydrograph of Benue River. Overall, our results show that SREs and rainfall forecasts from weather models have great potential to serve as model inputs for real-time flood forecasting in data scarce areas. For these data to receive application in African transboundary basins, we suggest (i) removing their systematic error to further improve flood forecast skill; (ii) improving rainfall forecasts; and (iii) improving data sharing between riparian countries.

  1. Statistical Downscaling of ERA-Interim Forecast Precipitation Data in Complex Terrain Using LASSO Algorithm

    Directory of Open Access Journals (Sweden)

    Lu Gao

    2014-01-01

    Full Text Available Precipitation is an essential input parameter for land surface models because it controls a large variety of environmental processes. However, the commonly sparse meteorological networks in complex terrains are unable to provide the information needed for many applications. Therefore, downscaling local precipitation is necessary. To this end, a new machine learning method, LASSO algorithm (least absolute shrinkage and selection operator, is used to address the disparity between ERA-Interim forecast precipitation data (0.25° grid and point-scale meteorological observations. LASSO was tested and validated against other three downscaling methods, local intensity scaling (LOCI, quantile-mapping (QM, and stepwise regression (Stepwise at 50 meteorological stations, located in the high mountainous region of the central Alps. The downscaling procedure is implemented in two steps. Firstly, the dry or wet days are classified and the precipitation amounts conditional on the occurrence of wet days are modeled subsequently. Compared to other three downscaling methods, LASSO shows the best performances in precipitation occurrence and precipitation amount prediction on average. Furthermore, LASSO could reduce the error for certain sites, where no improvement could be seen when LOCI and QM were used. This study proves that LASSO is a reasonable alternative to other statistical methods with respect to the downscaling of precipitation data.

  2. Assessment of GPM and TRMM Multi-Satellite Precipitation Products in Streamflow Simulations in a Data-Sparse Mountainous Watershed in Myanmar

    National Research Council Canada - National Science Library

    Fei Yuan; Limin Zhang; Khin Wah Wah Win; Liliang Ren; Chongxu Zhao; Yonghua Zhu; Shanhu Jiang; Yi Liu

    2017-01-01

    ...) final run and the TRMM Multi-satellite Precipitation Analysis 3B42V7 precipitation products, and their feasibility in streamflow simulations in the Chindwin River basin, Myanmar, from April 2014...

  3. Performance of TCP Vegas, Bic and Reno Congestion Control Algorithms on Iridium Satellite Constellations

    Directory of Open Access Journals (Sweden)

    M.Nirmala

    2012-11-01

    Full Text Available Satellite networking is different from wired or wireless networks. The behavior and the performance of TCP/IP in normal wireless network as well as in wired network are different from one another. The TCP/IP protocol was not designed to perform well over high-latency or noisy channels so its performance over satellite networks are totally different. Each satellite networks/constellations have different properties. The deployment height, motion, direction, link capacity – all differ from one satellite constellations to another. So, certainly the behavior of TCP/IP will considerably differ from one satellite constellations than another.The Performance of three different TCP Congestion algorithms, Vegas, Reno and Bic are taken for evaluation on the simulated satellite network Iridium and the performance of the three algorithms under the satellites constellation is measured using suitable metrics. It is observed that, irrespective of the high end to end delay, the behavior of TCP/IP under Satellite network is somewhat resembling a high latency wired network. TCP under satellite network is not like that of a mobile ADHOC network. The observation resulted that the overall performance of Vegas was good in Iridium constellations. These reasons should be explored for designing a better congestion control algorithm exclusively for Satellite Networks.

  4. Contemporary ground-based and satellite precipitating system characterization for desertification studies in Southern Italy

    Directory of Open Access Journals (Sweden)

    M. Casazza

    2008-07-01

    is, in fact, confirmed and to show the capability of PLUDIX to detect the fast local variations related to the temporal evolution of more extended systems. The potentiality of PLUDIX as a real-time detector of precipitation events, together with the development of an adequate number of algorithms, that give a complete microphysical description of the observed events, finally, opens the way for developing a new Present Weather Sensor.

  5. The Contribution Of Sampling Errors In Satellite Precipitation Estimates To High Flood Uncertainty In Subtropical South America

    Science.gov (United States)

    Demaria, E. M.; Valdes, J. B.; Nijssen, B.; Rodriguez, D.; Su, F.

    2009-12-01

    Satellite precipitation estimates are becoming increasingly available at temporal and spatial scales of interest for hydrological applications. Unfortunately precipitation estimated from global satellites is prone to errors hailing from different sources. The impact of sampling errors on the hydrological cycle of a large-size basin was assessed with a macroscale hydrological model. Synthetic precipitation fields were generated in a Monte Carlo fashion by perturbing observed precipitation fields with sampling errors. Three sampling intervals were chosen to generate the precipitation fields: one-hour, three-hours which is the canonical Global Precipitation Mission (GPM) sampling interval, and six-hours. The Variable Infiltration Capacity (VIC) model was used to assess the impact of sampling errors on hydrological fluxes and states in the Iguazu basin in South America for the period 1982-2005. The propagation of sampling errors through the hydrological cycle was evaluated for high flow events that have the 2% chance of being exceeded in any given time. Results show that observed event volumes are underestimated for small volumes for the three and six-hours sampling intervals but for the one-hour sampling interval the difference is almost negligible.The timing of the hydrograph is not affected by uncertainty existent in satellite-derived precipitation when it propagates through the hydrological cycle. Results of two non-parametric tests: the Kruskal-Wallis test on the mean ranks of the population and the Ansari-Bradley test on the equality of the variances indicate that sampling errors do no affect the occurrence of high flows since their probability distribution is not affected. The applicability of these results is limited to a humid climate. However the Iguazu basin is representative of several basins located in subtropical regions around the world, many of which are under-instrumented catchments, where satellite precipitation might be one of the few available data

  6. Comparison and evaluation of satellite- and reanalysis-based precipitation products for water resources management in the Brahmaputra River basin

    Science.gov (United States)

    Saleh Khan, Abu; Sohel Masud, Md.; Abdulla Hel Kafi, Md.; Sultana, Tashrifa; Lopez Lopez, Patricia

    2017-04-01

    The Brahmaputra River, with a transboundary basin area of approx. 554,500 km2, has its origin on the northern slope of the Himalayas in China, from where it flows through India, Bhutan and finally Bangladesh. Brahmaputra basin's climatology is heavily conditioned by precipitation during the monsoon months, concentrating about the 85 % of the rainfall in this period and originating severe and frequent floods that impact specially the Bangladeshi population in the delta region. Recent campaigns to increase the quality and to share ground-based hydro-meteorological data, in particular precipitation, within the basin have provided limited results. Global rainfall data from satellite and reanalysis may improve the temporal and spatial availability of in-situ observations for advanced water resources management. This study aims to evaluate the applicability of several global precipitation products from satellite and reanalysis in comparison with in-situ data to quantify their added value for hydrological modeling at a basin and sub-basin scale for the Brahmaputra River. Precipitation products from CMORPH, TRMM-3B42, GsMAP, WFDEI, MSWEP and various combinations with ground-based data were evaluated at basin and sub-basin level at a daily and monthly temporal resolution. The Brahmaputra was delineated into 54 sub-basins for a more detailed evaluation of the precipitation products. The data were analysed and inter-compared for the time period from 2002 to 2010. Precipitation performance assessment was conducted including several indicators, such as probability of detection (POD), false alarm ratio (FAR), Pearson's correlation coefficient (r), bias and root mean square error (RMSE). Preliminary results indicate high correlation and low bias and RMSE values between WFDEI, TRMM-3B42 and CMORPH precipitation and in-situ observations at a monthly time scale. Lower correlations and higher bias and RMSE values were found between GsMAP and MSWEP and ground-observed precipitation

  7. Mediterranean hurricanes: large-scale environment and convective and precipitating areas from satellite microwave observations

    Directory of Open Access Journals (Sweden)

    C. Claud

    2010-10-01

    Full Text Available Subsynoptic scale vortices that have been likened to tropical cyclones or polar lows (medicanes are occasionally observed over the Mediterranean Sea. Generated over the sea, they are usually associated with strong winds and heavy precipitation and thus can be highly destructive in islands and costal areas. Only an accurate forecasting of such systems could mitigate these effects. However, at the moment, the predictability of these systems remains limited.

    Due to the scarcity of conventional observations, use is made of NOAA/MetOp satellite observations, for which advantage can be taken of the time coverage differences between the platforms that carry it, to give a very complete temporal description of the disturbances. A combination of AMSU-B (Advanced Microwave Sounding Unit-B/MHS (Microwave Humidity Sounder observations permit to investigate precipitation associated with these systems while coincident AMSU-A (Advanced Microwave Sounding Unit-A observations give insights into the larger synoptic-scale environment in which they occur.

    Three different cases (in terms of intensity, location, trajectory, duration, and periods of the year – May, September and December, respectively were investigated. Throughout these time periods, AMSU-A observations show that the persisting deep outflow of cold air over the sea together with an upper-level trough upstream constituted a favourable environment for the development of medicanes. AMSU-B/MHS based diagnostics show that convection and precipitation areas are large in the early stage of the low, but significantly reduced afterwards. Convection is maximum just after the upper-level trough, located upstream of cold mid-tropospheric air, reached its maximum intensity and acquired a cyclonic orientation.

  8. Evaluation of TRMM satellite-based precipitation indexes for flood forecasting over Riyadh City, Saudi Arabia

    Science.gov (United States)

    Tekeli, Ahmet Emre; Fouli, Hesham

    2016-10-01

    Floods are among the most common disasters harming humanity. In particular, flash floods cause hazards to life, property and any type of structures. Arid and semi-arid regions are equally prone to flash floods like regions with abundant rainfall. Despite rareness of intensive and frequent rainfall events over Kingdom of Saudi Arabia (KSA); an arid/semi-arid region, occasional flash floods occur and result in large amounts of damaging surface runoff. The flooding of 16 November, 2013 in Riyadh; the capital city of KSA, resulted in killing some people and led to much property damage. The Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) Real Time (RT) data (3B42RT) are used herein for flash flood forecasting. 3B42RT detected high-intensity rainfall events matching with the distribution of observed floods over KSA. A flood early warning system based on exceedance of threshold limits on 3B42RT data is proposed for Riyadh. Three different indexes: Constant Threshold (CT), Cumulative Distribution Functions (CDF) and Riyadh Flood Precipitation Index (RFPI) are developed using 14-year 3B42RT data from 2000 to 2013. RFPI and CDF with 90% captured the three major flooding events that occurred in February 2005, May 2010 and November 2013 in Riyadh. CT with 3 mm/h intensity indicated the 2013 flooding, but missed those of 2005 and 2010. The methodology implemented herein is a first-step simple and accurate way for flash flood forecasting over Riyadh. The simplicity of the methodology enables its applicability for the TRMM follow-on missions like Global Precipitation Measurement (GPM) mission.

  9. Validation of Satellite Precipitation (trmm 3B43) in Ecuadorian Coastal Plains, Andean Highlands and Amazonian Rainforest

    Science.gov (United States)

    Ballari, D.; Castro, E.; Campozano, L.

    2016-06-01

    Precipitation monitoring is of utmost importance for water resource management. However, in regions of complex terrain such as Ecuador, the high spatio-temporal precipitation variability and the scarcity of rain gauges, make difficult to obtain accurate estimations of precipitation. Remotely sensed estimated precipitation, such as the Multi-satellite Precipitation Analysis TRMM, can cope with this problem after a validation process, which must be representative in space and time. In this work we validate monthly estimates from TRMM 3B43 satellite precipitation (0.25° x 0.25° resolution), by using ground data from 14 rain gauges in Ecuador. The stations are located in the 3 most differentiated regions of the country: the Pacific coastal plains, the Andean highlands, and the Amazon rainforest. Time series, between 1998 - 2010, of imagery and rain gauges were compared using statistical error metrics such as bias, root mean square error, and Pearson correlation; and with detection indexes such as probability of detection, equitable threat score, false alarm rate and frequency bias index. The results showed that precipitation seasonality is well represented and TRMM 3B43 acceptably estimates the monthly precipitation in the three regions of the country. According to both, statistical error metrics and detection indexes, the coastal and Amazon regions are better estimated quantitatively than the Andean highlands. Additionally, it was found that there are better estimations for light precipitation rates. The present validation of TRMM 3B43 provides important results to support further studies on calibration and bias correction of precipitation in ungagged watershed basins.

  10. Analysis of long-term precipitation pattern over Antarctica derived from satellite-borne radar

    Science.gov (United States)

    Milani, L.; Porcù, F.; Casella, D.; Dietrich, S.; Panegrossi, G.; Petracca, M.; Sanò, P.

    2015-01-01

    Mass accumulation is a key geophysical parameter in understanding the Antarctic climate and its role in the global system. The local mass variation is driven by a number of different mechanisms: the deposition of snow and ice crystals on the surface from the atmosphere is generally modified by strong surface winds and variations in temperature and humidity at the ground, making it difficult to measure directly the accumulation by a sparse network of ground based instruments. Moreover, the low cloud total water/ice content and the varying radiative properties of the ground pose problems in the retrieval of precipitation from passive space-borne sensors at all frequencies. Finally, numerical models, despite their high spatial and temporal resolution, show discordant results and are difficult to be validated using ground-based measurements. A significant improvement in the knowledge of the atmospheric contribution to the mass balance over Antarctica is possible by using active space-borne instruments, such as the Cloud Profiling Radar (CPR) on board the low earth orbit CloudSat satellite, launched in 2006 and still operating. The radar measures the vertical profile of reflectivity at 94 GHz (sensitive to small ice particles) providing narrow vertical cross-sections of clouds along the satellite track. The aim of this work is to show that, after accounting for the characteristics of precipitation and the effect of surface on reflectivity in Antarctica, the CPR can retrieve snowfall rates on a single event temporal scale. Furthermore, the CPR, despite its limited temporal and spatial sampling capabilities, also effectively observes the annual snowfall cycle in this region. Two years of CloudSat data over Antarctica are analyzed and converted in water equivalent snowfall rate. Two different approaches for precipitation estimates are considered in this work. The results are analyzed in terms of annual and monthly averages, as well as in terms of instantaneous values. The

  11. Analysis of long-term precipitation pattern over Antarctica derived from satellite-borne radar

    Directory of Open Access Journals (Sweden)

    L. Milani

    2015-01-01

    Full Text Available Mass accumulation is a key geophysical parameter in understanding the Antarctic climate and its role in the global system. The local mass variation is driven by a number of different mechanisms: the deposition of snow and ice crystals on the surface from the atmosphere is generally modified by strong surface winds and variations in temperature and humidity at the ground, making it difficult to measure directly the accumulation by a sparse network of ground based instruments. Moreover, the low cloud total water/ice content and the varying radiative properties of the ground pose problems in the retrieval of precipitation from passive space-borne sensors at all frequencies. Finally, numerical models, despite their high spatial and temporal resolution, show discordant results and are difficult to be validated using ground-based measurements. A significant improvement in the knowledge of the atmospheric contribution to the mass balance over Antarctica is possible by using active space-borne instruments, such as the Cloud Profiling Radar (CPR on board the low earth orbit CloudSat satellite, launched in 2006 and still operating. The radar measures the vertical profile of reflectivity at 94 GHz (sensitive to small ice particles providing narrow vertical cross-sections of clouds along the satellite track. The aim of this work is to show that, after accounting for the characteristics of precipitation and the effect of surface on reflectivity in Antarctica, the CPR can retrieve snowfall rates on a single event temporal scale. Furthermore, the CPR, despite its limited temporal and spatial sampling capabilities, also effectively observes the annual snowfall cycle in this region. Two years of CloudSat data over Antarctica are analyzed and converted in water equivalent snowfall rate. Two different approaches for precipitation estimates are considered in this work. The results are analyzed in terms of annual and monthly averages, as well as in terms of

  12. A strategy for merging objective estimates of global daily precipitation from gauge observations, satellite estimates, and numerical predictions

    Science.gov (United States)

    Nie, Suping; Wu, Tongwen; Luo, Yong; Deng, Xueliang; Shi, Xueli; Wang, Zaizhi; Liu, Xiangwen; Huang, Jianbin

    2016-07-01

    This paper describes a strategy for merging daily precipitation information from gauge observations, satellite estimates (SEs), and numerical predictions at the global scale. The strategy is designed to remove systemic bias and random error from each individual daily precipitation source to produce a better gridded global daily precipitation product through three steps. First, a cumulative distribution function matching procedure is performed to remove systemic bias over gauge-located land areas. Then, the overall biases in SEs and model predictions (MPs) over ocean areas are corrected using a rescaled strategy based on monthly precipitation. Third, an optimal interpolation (OI)-based merging scheme (referred as the HL-OI scheme) is used to combine unbiased gauge observations, SEs, and MPs to reduce random error from each source and to produce a gauge—satellite-model merged daily precipitation analysis, called BMEP-d (Beijing Climate Center Merged Estimation of Precipitation with daily resolution), with complete global coverage. The BMEP-d data from a four-year period (2011-14) demonstrate the ability of the merging strategy to provide global daily precipitation of substantially improved quality. Benefiting from the advantages of the HL-OI scheme for quantitative error estimates, the better source data can obtain more weights during the merging processes. The BMEP-d data exhibit higher consistency with satellite and gauge source data at middle and low latitudes, and with model source data at high latitudes. Overall, independent validations against GPCP-1DD (GPCP one-degree daily) show that the consistencies between BMEP-d and GPCP-1DD are higher than those of each source dataset in terms of spatial pattern, temporal variability, probability distribution, and statistical precipitation events.

  13. Evaluation of the Potential of NASA Multi-satellite Precipitation Analysis in Global Landslide Hazard Assessment

    Science.gov (United States)

    Hong, Yang; Adler, Robert F.; Huffman, George J.

    2007-01-01

    Landslides are one of the most widespread natural hazards on Earth, responsible for thousands of deaths and billions of dollars in property damage every year. In the U.S. alone landslides occur in every state, causing an estimated $2 billion in damage and 25- 50 deaths each year. Annual average loss of life from landslide hazards in Japan is 170. The situation is much worse in developing countries and remote mountainous regions due to lack of financial resources and inadequate disaster management ability. Recently, a landslide buried an entire village on the Philippines Island of Leyte on Feb 17,2006, with at least 1800 reported deaths and only 3 houses left standing of the original 300. Intense storms with high-intensity , long-duration rainfall have great potential to trigger rapidly moving landslides, resulting in casualties and property damage across the world. In recent years, through the availability of remotely sensed datasets, it has become possible to conduct global-scale landslide hazard assessment. This paper evaluates the potential of the real-time NASA TRMM-based Multi-satellite Precipitation Analysis (TMPA) system to advance our understanding of and predictive ability for rainfall-triggered landslides. Early results show that the landslide occurrences are closely associated with the spatial patterns and temporal distribution of rainfall characteristics. Particularly, the number of landslide occurrences and the relative importance of rainfall in triggering landslides rely on the influence of rainfall attributes [e.g. rainfall climatology, antecedent rainfall accumulation, and intensity-duration of rainstorms). TMPA precipitation data are available in both real-time and post-real-time versions, which are useful to assess the location and timing of rainfall-triggered landslide hazards by monitoring landslide-prone areas while receiving heavy rainfall. For the purpose of identifying rainfall-triggered landslides, an empirical global rainfall intensity

  14. A Novel Method for Optimum Global Positioning System Satellite Selection Based on a Modified Genetic Algorithm.

    Science.gov (United States)

    Song, Jiancai; Xue, Guixiang; Kang, Yanan

    2016-01-01

    In this paper, a novel method for selecting a navigation satellite subset for a global positioning system (GPS) based on a genetic algorithm is presented. This approach is based on minimizing the factors in the geometric dilution of precision (GDOP) using a modified genetic algorithm (MGA) with an elite conservation strategy, adaptive selection, adaptive mutation, and a hybrid genetic algorithm that can select a subset of the satellites represented by specific numbers in the interval (4 ∼ n) while maintaining position accuracy. A comprehensive simulation demonstrates that the MGA-based satellite selection method effectively selects the correct number of optimal satellite subsets using receiver autonomous integrity monitoring (RAIM) or fault detection and exclusion (FDE). This method is more adaptable and flexible for GPS receivers, particularly for those used in handset equipment and mobile phones.

  15. Validation and Application of the Modified Satellite-Based Priestley-Taylor Algorithm for Mapping Terrestrial Evapotranspiration

    Directory of Open Access Journals (Sweden)

    Yunjun Yao

    2014-01-01

    Full Text Available Satellite-based vegetation indices (VIs and Apparent Thermal Inertia (ATI derived from temperature change provide valuable information for estimating evapotranspiration (LE and detecting the onset and severity of drought. The modified satellite-based Priestley-Taylor (MS-PT algorithm that we developed earlier, coupling both VI and ATI, is validated based on observed data from 40 flux towers distributed across the world on all continents. The validation results illustrate that the daily LE can be estimated with the Root Mean Square Error (RMSE varying from 10.7 W/m2 to 87.6 W/m2, and with the square of correlation coefficient (R2 from 0.41 to 0.89 (p < 0.01. Compared with the Priestley-Taylor-based LE (PT-JPL algorithm, the MS-PT algorithm improves the LE estimates at most flux tower sites. Importantly, the MS-PT algorithm is also satisfactory in reproducing the inter-annual variability at flux tower sites with at least five years of data. The R2 between measured and predicted annual LE anomalies is 0.42 (p = 0.02. The MS-PT algorithm is then applied to detect the variations of long-term terrestrial LE over Three-North Shelter Forest Region of China and to monitor global land surface drought. The MS-PT algorithm described here demonstrates the ability to map regional terrestrial LE and identify global soil moisture stress, without requiring precipitation information.

  16. Optimization of Determinant Factors of Satellite Electrical Power System with Particle Swarm Optimization (PSO Algorithm

    Directory of Open Access Journals (Sweden)

    Mojtaba Biglarahmadi

    2014-03-01

    Full Text Available Weight and dimension, cost, and performance are determinant factors for design, fabrication, and launch the satellites which are related to the mission type of the satellites. Each satellite includes several subsystems such as Electrical Power Subsystem (EPS, Navigation Subsystem, Thermal Subsystem, etc. The purpose of this paper is to optimize these determinant factors by Particle Swarm Optimization (PSO algorithm, for Electrical Power Subsystem. This paper considers the effects of selecting various types of Photovoltaic (PV cells and batteries on weight and dimension, cost, and performance of the satellite. We have used two various types of PVs and two various type of batteries in optimization of the Electrical Power Subsystem (EPS

  17. On the balance of precipitation and evaporation over global oceans in satellite based and reanalysis data sets

    Science.gov (United States)

    Bakan, S.; Andersson, A.; Fennig, K.; Klepp, C.; Klocke, D.; Schulz, J.

    2009-04-01

    Over the global oceans, precipitation should be smaller than evaporation and the balance should be compensated by the global runoff from land surfaces. But to which extent do satellite climatologies and reanalysis products reproduce this basic feature of the global water cycle? The Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data set, HOAPS-3 (www.hoaps.org), contains fields of precipitation and evaporation over the global ocean and all basic state variables needed for the derivation of the fluxes. Except for the NOAA Pathfinder SST data set, all variables are derived from SSM/I satellite data over the ice free global ocean between 1987 and 2005. Special emphasis has been put into quality control and inter-satellite calibration in order to derive the data fields as homogeneous as possible. One of the major design goals of HOAPS was to provide a data set that is based exclusively on retrieval procedures which avoid any additional model or reanalysis input. On a global scale, the average evaporation since 1987 exceeds precipitation rate over the oceans in HOAPS-3 systematically, with almost negligible yearly cycle and small monthly variations. While the globally averaged precipitation time series does not exhibit any significant trend over the study period, evaporation shows a continuous increase during this time. Regionally, this increase concentrates in the subtropics and is, together with some reduction in precipitation, consistent with a strengthening of the Hadley circulation during the observation period. These results are compared with similar data fields of the same period from various satellite climatologies to insure the consistency of our results and to the NCEP and ERA40 as well as ERAInterim reanalysis products. Remarkable similarities and differences between the different information sources have been found and will be discussed in the presentation.

  18. Advantages of using satellite soil moisture estimates over precipitation products to assess regional vegetation water availability and activity

    Science.gov (United States)

    Chen, Tiexi

    2017-04-01

    To improve the understanding of water-vegetation relationships, direct comparative studies assessing the utility of satellite remotely sensed soil moisture, gridded precipitation products, and land surface model output are needed. A case study was investigated for a water-limited, lateral inflow receiving area in northeastern Australia during December 2008 to May 2009. In January 2009, monthly precipitation showed strong positive anomalies, which led to strong positive soil moisture anomalies. The precipitation anomalies disappeared within a month. In contrast, the soil moisture anomalies persisted for months. Positive anomalies of Normalized Difference Vegetation Index (NDVI) appeared in February, in response to water supply, and then persisted for several months. In addition to these temporal characteristics, the spatial patterns of NDVI anomalies were more similar to soil moisture patterns than to those of precipitation and land surface model output. The long memory of soil moisture mainly relates to the presence of clay-rich soils. Modeled soil moisture from four of five global land surface models failed to capture the memory length of soil moisture and all five models failed to present the influence of lateral inflow. This case study indicates that satellite-based soil moisture is a better predictor of vegetation water availability than precipitation in environments having a memory of several months and thus is able to persistently affect vegetation dynamics. These results illustrate the usefulness of satellite remotely sensed soil moisture in ecohydrology studies. This case study has the potential to be used as a benchmark for global land surface model evaluations. The advantages of using satellite remotely sensed soil moisture over gridded precipitation products are mainly expected in lateral-inflow and/or clay-rich regions worldwide.

  19. Evaluating Frontal Precipitation with a Spectral Microphysics Mesoscale Model and a Satellite Simulator as Compared to Radar and Radiometer Observations

    Science.gov (United States)

    Han, M.; Braun, S. A.; Matsui, T.; Iguchi, T.; Williams, C. R.

    2013-12-01

    The Advanced Microwave Scanning Radiometer for EOS (AMSR-E) onboard NASA Aqua satellite and a ground-based precipitation profiling radar sampled a frontal precipitation event in the US west coast on 30 to 31 December 2005. Simulations with bulk microphysics schemes in the Weather Research and Forecast (WRF) model have been evaluated with those remote sensing data. In the current study, we continue similar work to evaluate a spectral bin microphysics (SBM) scheme, HUCM, in the WRF model. The Goddard-Satellite Data Simulation Unit (G-SDSU) is used to simulate quantities observed by the radar and radiometer. With advanced representation of cloud and precipitation microphysics processes, the HUCM scheme predicts distributions of 7 hydrometeor species as storms evolve. In this study, the simulation with HUCM well captured the structure of the precipitation and its microphysics characteristics. In addition, it improved total precipitation ice mass simulation and corrected, to a certain extent, the large low bias of ice scattering signature in the bulk scheme simulations. However, the radar reflectivity simulations with the HUCM scheme were not improved as compared to the bulk schemes. We conducted investigations to understand how microphysical processes and properties, such as snow break up parameter and particle fall velocities would influence precipitation size distribution and spectrum of water paths, and further modify radar and/or radiometer simulations. Influence by ice nuclei is going to be examined as well.

  20. A COMBINED ADMISSION CONTROL ALGORITHM WITH DA PROTOCOL FOR SATELLITE ATM NETWORKS

    Institute of Scientific and Technical Information of China (English)

    Lu Rong; Cao Zhigang

    2006-01-01

    Admission control is an important strategy for Quality of Service (QoS) provisioning in Asynchronous Transfer Mode (ATM) networks. Based on a control-theory model of resources on-Demand Allocation (DA) protocol, the paper studies the effect of the protocol on the statistical characteristics of network traffic,and proposes a combined connection admission control algorithm with the DA protocol to achieve full utilization of link resources in satellite communication systems. The proposed algorithm is based on the cross-layer-design approach. Theoretical analysis and system simulation results show that the proposed algorithm can admit more connections within certain admission thresholds than one that does not take into account the DA protocol. Thus, the proposed algorithm can increase admission ratio of traffic sources for satellite ATM networks and improve satellite link utilization.

  1. Development of a polarimetric radar based hydrometeor classification algorithm for winter precipitation

    Science.gov (United States)

    Thompson, Elizabeth Jennifer

    The nation-wide WSR-88D radar network is currently being upgraded for dual-polarized technology. While many convective, warm-season fuzzy-logic hydrometeor classification algorithms based on this new suite of radar variables and temperature have been refined, less progress has been made thus far in developing hydrometeor classification algorithms for winter precipitation. Unlike previous studies, the focus of this work is to exploit the discriminatory power of polarimetric variables to distinguish the most common precipitation types found in winter storms without the use of temperature as an additional variable. For the first time, detailed electromagnetic scattering of plates, dendrites, dry aggregated snowflakes, rain, freezing rain, and sleet are conducted at X-, C-, and S-band wavelengths. These physics-based results are used to determine the characteristic radar variable ranges associated with each precipitation type. A variable weighting system was also implemented in the algorithm's decision process to capitalize on the strengths of specific dual-polarimetric variables to discriminate between certain classes of hydrometeors, such as wet snow to indicate the melting layer. This algorithm was tested on observations during three different winter storms in Colorado and Oklahoma with the dual-wavelength X- and S-band CSU-CHILL, C-band OU-PRIME, and X-band CASA IP1 polarimetric radars. The algorithm showed success at all three frequencies, but was slightly more reliable at X-band because of the algorithm's strong dependence on KDP. While plates were rarely distinguished from dendrites, the latter were satisfactorily differentiated from dry aggregated snowflakes and wet snow. Sleet and freezing rain could not be distinguished from rain or light rain based on polarimetric variables alone. However, high-resolution radar observations illustrated the refreezing process of raindrops into ice pellets, which has been documented before but not yet explained. Persistent

  2. Using R for analysing spatio-temporal datasets: a satellite-based precipitation case study

    Science.gov (United States)

    Zambrano-Bigiarini, Mauricio

    2017-04-01

    Increasing computer power and the availability of remote-sensing data measuring different environmental variables has led to unprecedented opportunities for Earth sciences in recent decades. However, dealing with hundred or thousands of files, usually in different vectorial and raster formats and measured with different temporal frequencies, impose high computation challenges to take full advantage of all the available data. R is a language and environment for statistical computing and graphics which includes several functions for data manipulation, calculation and graphical display, which are particularly well suited for Earth sciences. In this work I describe how R was used to exhaustively evaluate seven state-of-the-art satellite-based rainfall estimates (SRE) products (TMPA 3B42v7, CHIRPSv2, CMORPH, PERSIANN-CDR, PERSIAN-CCS-adj, MSWEPv1.1 and PGFv3) over the complex topography and diverse climatic gradients of Chile. First, built-in functions were used to automatically download the satellite-images in different raster formats and spatial resolutions and to clip them into the Chilean spatial extent if necessary. Second, the raster package was used to read, plot, and conduct an exploratory data analysis in selected files of each SRE product, in order to detect unexpected problems (rotated spatial domains, order or variables in NetCDF files, etc). Third, raster was used along with the hydroTSM package to aggregate SRE files into different temporal scales (daily, monthly, seasonal, annual). Finally, the hydroTSM and hydroGOF packages were used to carry out a point-to-pixel comparison between precipitation time series measured at 366 stations and the corresponding grid cell of each SRE. The modified Kling-Gupta index of model performance was used to identify possible sources of systematic errors in each SRE, while five categorical indices (PC, POD, FAR, ETS, fBIAS) were used to assess the ability of each SRE to correctly identify different precipitation intensities

  3. Performance of TMPA satellite precipitation product over the Northern Great Plains

    Science.gov (United States)

    Kharel, G.; Kirilenko, A.; Zhang, X.

    2011-12-01

    Satellite derived precipitation can be used as supplement and/or replacement to ground data in various applications including modeling and weather forecasting based on its accuracy, reliability and validity. We analyzed Tropical Rainfall Measuring Mission Multisatellite Precipitation Analysis (TMPA) 3B42 v.6 Level 3 product (0.25° × 0.25°, 3-hour resolution) against the United States Historical Climatology Network (USHCN) ground data from 98 stations in the Northern Great Plains (NGP) over the period of seven years (2003 to 2009). NGP, comprised of Wyoming, Montana, North Dakota, Minnesota, South Dakota and Nebraska states of the US, is located between the latitudes 41° - 49° N and longitudes 94° - 113.5° E within the TMPA product latitude band (50° NS).The goal of this research was to investigate the performance of TMPA over the NGP region. Results showed that the TMPA daily data has poor rainfall detection ability (POD ~ 0.3), weak correlation with the meteorological data (ρ=0.46) and high root mean square deviation (RMSD = 4.9 mm/day). We also found noticeable seasonal differences in the daily TMPA product performance. It underperformed during cold season (November to March) with weaker correlation (0.25) and worse POD (~ 0.15), as compared to relatively modest correlation (0.47) and POD (~0.30) during warm season (April to October). Our analysis at monthly scale revealed significantly better performance of TMPA with higher correlation (0.82) and lower RMSD (0.72 mm/day). Based on our findings, the TMPA daily data might be a poor replacement to ground data, however, at a monthly scale, TMPA can be used to estimate spatial rainfall distribution in NGP and/or as an input to a stochastic daily weather generator.

  4. Development of Radar-Satellite Blended QPF (Quantitative Precipitation Forecast) Technique for heavy rainfall

    Science.gov (United States)

    Jang, Sangmin; Yoon, Sunkwon; Rhee, Jinyoung; Park, Kyungwon

    2016-04-01

    Due to the recent extreme weather and climate change, a frequency and size of localized heavy rainfall increases and it may bring various hazards including sediment-related disasters, flooding and inundation. To prevent and mitigate damage from such disasters, very short range forecasting and nowcasting of precipitation amounts are very important. Weather radar data very useful in monitoring and forecasting because weather radar has high resolution in spatial and temporal. Generally, extrapolation based on the motion vector is the best method of precipitation forecasting using radar rainfall data for a time frame within a few hours from the present. However, there is a need for improvement due to the radar rainfall being less accurate than rain-gauge on surface. To improve the radar rainfall and to take advantage of the COMS (Communication, Ocean and Meteorological Satellite) data, a technique to blend the different data types for very short range forecasting purposes was developed in the present study. The motion vector of precipitation systems are estimated using 1.5km CAPPI (Constant Altitude Plan Position Indicator) reflectivity by pattern matching method, which indicates the systems' direction and speed of movement and blended radar-COMS rain field is used for initial data. Since the original horizontal resolution of COMS is 4 km while that of radar is about 1 km, spatial downscaling technique is used to downscale the COMS data from 4 to 1 km pixels in order to match with the radar data. The accuracies of rainfall forecasting data were verified utilizing AWS (Automatic Weather System) observed data for an extreme rainfall occurred in the southern part of Korean Peninsula on 25 August 2014. The results of this study will be used as input data for an urban stream real-time flood early warning system and a prediction model of landslide. Acknowledgement This research was supported by a grant (13SCIPS04) from Smart Civil Infrastructure Research Program funded by

  5. Bias correction of satellite precipitation products for flood forecasting application at the Upper Mahanadi River Basin in Eastern India

    Science.gov (United States)

    Beria, H.; Nanda, T., Sr.; Chatterjee, C.

    2015-12-01

    High resolution satellite precipitation products such as Tropical Rainfall Measuring Mission (TRMM), Climate Forecast System Reanalysis (CFSR), European Centre for Medium-Range Weather Forecasts (ECMWF), etc., offer a promising alternative to flood forecasting in data scarce regions. At the current state-of-art, these products cannot be used in the raw form for flood forecasting, even at smaller lead times. In the current study, these precipitation products are bias corrected using statistical techniques, such as additive and multiplicative bias corrections, and wavelet multi-resolution analysis (MRA) with India Meteorological Department (IMD) gridded precipitation product,obtained from gauge-based rainfall estimates. Neural network based rainfall-runoff modeling using these bias corrected products provide encouraging results for flood forecasting upto 48 hours lead time. We will present various statistical and graphical interpretations of catchment response to high rainfall events using both the raw and bias corrected precipitation products at different lead times.

  6. Weather from 250 Miles Up: Visualizing Precipitation Satellite Data (and Other Weather Applications) Using CesiumJS

    Science.gov (United States)

    Lammers, Matt

    2017-01-01

    Geospatial weather visualization remains predominately a two-dimensional endeavor. Even popular advanced tools like the Nullschool Earth display 2-dimensional fields on a 3-dimensional globe. Yet much of the observational data and model output contains detailed three-dimensional fields. In 2014, NASA and JAXA (Japanese Space Agency) launched the Global Precipitation Measurement (GPM) satellite. Its two instruments, the Dual-frequency Precipitation Radar (DPR) and GPM Microwave Imager (GMI) observe much of the Earth's atmosphere between 65 degrees North Latitude and 65 degrees South Latitude. As part of the analysis and visualization tools developed by the Precipitation Processing System (PPS) Group at NASA Goddard, a series of CesiumJS [Using Cesium Markup Language (CZML), JavaScript (JS) and JavaScript Object Notation (JSON)] -based globe viewers have been developed to improve data acquisition decision making and to enhance scientific investigation of the satellite data. Other demos have also been built to illustrate the capabilities of CesiumJS in presenting atmospheric data, including model forecasts of hurricanes, observed surface radar data, and gridded analyses of global precipitation. This talk will present these websites and the various workflows used to convert binary satellite and model data into a form easily integrated with CesiumJS.

  7. Precipitation Analysis at Fine Time Scales Using Multiple Satellites: Real-time and Research Products and Applications

    Science.gov (United States)

    Adler, Robert; Huffman, George; Bolvin, David; Nelkin, Eric; Curtis, Scott; Pierce, Harold

    2004-01-01

    Quasi-global precipitation analyses at fine time scales (3-hr) are described. TRMM observations (radar and passive microwave) are used to calibrate polar-orbit microwave observations from SSM/I (and other satellites instruments, including AMSR and AMSU) and geosynchronous IR observations. The individual data sets are then merged using a priority order based on quality to form the Multi-satellite Precipitation Analysis (MPA). Raingauge information is used to help constrain the satellite-based estimates over land. The TRMM standard research product (Version 6 3B-42 of the TRMM products) will be available for the entire TRMM period (January 1998-present) in 2004. The real-time version of this merged product has been produced over the past two years and is available on the U.S. TRMM web site (trmm.gsfc.nasa.gov) at 0.25" latitude-longitude resolution over the latitude range from 5O"N-5O0S. Validation of daily totals indicates good results, with limitations noted in mid-latitude winter over land and regions of shallow, orographic precipitation. Various applications of these estimates are described, including: 1) detecting potential floods in near real-time; 2) analyzing Indian Ocean precipitation variations related to the initiation of El Nino; 3) determining characteristics of the African monsoon; and 4) analysis of diurnal variations.

  8. Precipitation Analysis at Fine Time Scales using TRMM and Other Satellites: Real-time and Research Products and Applications

    Science.gov (United States)

    Adler, Robert; Huffman, George; Bolvin, David; Nelkin, Eric; Curtis, Scott; Pierce, Harold; Gu, Guo-Jon

    2004-01-01

    Quasi-global precipitation analyses at fine time scales (3-hr) are described. TRMM observations (radar and passive microwave) are used to calibrate polar-orbit microwave observations from SSM/I (and other satellites instruments, including AMSR and AMSU) and geosynchronous IR observations. The individual data sets are then merged using a priority order based on quality to form the TRMM Multi-satellite Precipitation Analysis (MPA). Raingauge information is used to help constrain the satellite-based estimates over land. The TRMM standard research product (Version 6 3B-42 of the TRMM products) will be available for the entire TRMM period (January 1998-present) by the end of 2004. The real-time version of this merged product has been produced over the past two years and is available on the U.S. TRMM web site (trmm.gsfc.nasa.gov) at 0.25" latitude-longitude resolution over the latitude range from 5O0N-50"S. Validation of daily totals indicates good results, with limitations noted in mid-latitude winter over land and regions of shallow, orographic precipitation. Various applications of these estimates are described, includmg: 1) detecting potential floods in near real-time; 2) analyzing Indian Ocean precipitation variations related to the initiation of El Nino; 3) determining characteristics of the African monsoon; and 4) analysis of diurnal variations.

  9. Development of Deep Learning Based Data Fusion Approach for Accurate Rainfall Estimation Using Ground Radar and Satellite Precipitation Products

    Science.gov (United States)

    Chen, H.; Chandra, C. V.; Tan, H.; Cifelli, R.; Xie, P.

    2016-12-01

    Rainfall estimation based on onboard satellite measurements has been an important topic in satellite meteorology for decades. A number of precipitation products at multiple time and space scales have been developed based upon satellite observations. For example, NOAA Climate Prediction Center has developed a morphing technique (i.e., CMORPH) to produce global precipitation products by combining existing space based rainfall estimates. The CMORPH products are essentially derived based on geostationary satellite IR brightness temperature information and retrievals from passive microwave measurements (Joyce et al. 2004). Although the space-based precipitation products provide an excellent tool for regional and global hydrologic and climate studies as well as improved situational awareness for operational forecasts, its accuracy is limited due to the sampling limitations, particularly for extreme events such as very light and/or heavy rain. On the other hand, ground-based radar is more mature science for quantitative precipitation estimation (QPE), especially after the implementation of dual-polarization technique and further enhanced by urban scale radar networks. Therefore, ground radars are often critical for providing local scale rainfall estimation and a "heads-up" for operational forecasters to issue watches and warnings as well as validation of various space measurements and products. The CASA DFW QPE system, which is based on dual-polarization X-band CASA radars and a local S-band WSR-88DP radar, has demonstrated its excellent performance during several years of operation in a variety of precipitation regimes. The real-time CASA DFW QPE products are used extensively for localized hydrometeorological applications such as urban flash flood forecasting. In this paper, a neural network based data fusion mechanism is introduced to improve the satellite-based CMORPH precipitation product by taking into account the ground radar measurements. A deep learning system is

  10. Comparison of the characteristic energy of precipitating electrons derived from ground-based and DMSP satellite data

    Directory of Open Access Journals (Sweden)

    M. Ashrafi

    2005-01-01

    Full Text Available Energy maps are important for ionosphere-magnetosphere coupling studies, because quantitative determination of field-aligned currents requires knowledge of the conductances and their spatial gradients. By combining imaging riometer absorption and all-sky auroral optical data it is possible to produce high temporal and spatial resolution maps of the Maxwellian characteristic energy of precipitating electrons within a 240240 common field of view. These data have been calibrated by inverting EISCAT electron density profiles into equivalent energy spectra. In this paper energy maps produced by ground-based instruments (optical and riometer are compared with DMSP satellite data during geomagnetic conjunctions. For the period 1995-2002, twelve satellite passes over the ground-based instruments' field of view for the cloud-free conditions have been considered. Four of the satellite conjunctions occurred during moderate geomagnetic, steady-state conditions and without any ion precipitation. In these cases with Maxwellian satellite spectra, there is 71% agreement between the characteristic energies derived from the satellite and the ground-based energy map method.

  11. Analysis of TRMM 3-Hourly Multi-Satellite Precipitation Estimates Computed in Both Real and Post-Real Time

    Science.gov (United States)

    Huffman, George J.; Adler, Robert F.; Stocker, Erich; Bolvin, David T.; Nelkin, Eric J.

    2002-01-01

    Satellite data form the core of the information available for estimating precipitation on a global basis. While it is possible to create such estimates solely from one sensor, researchers have increasingly moved to using combinations of sensors in an attempt to improve accuracy, coverage, and resolution. This poster updates a long-term project in which the authors are working to provide routine combined-sensor estimates of precipitation over the entire globe at relatively fine time and space intervals. The goal is to produce these globally complete precipitation estimates on a 25-km grid every 3 hours. Since late January 2002 we have been estimating precipitation for the latitude band 50 degrees N-S within about 6 hours of observation time. This work is 1 of only 2 or 3 such efforts in the world. Now we are preparing to provide similar estimates for the last 5 years. All of this work is being carried out as part of the Tropical Rainfall Measuring Mission (TRMM). Initially, TRMM was focused on providing excellent long-term averages of precipitation in tropical regions, but since its launch in November 1997 continued research has allowed the same satellite and data system to be used for addressing weather-scale problems as well.

  12. Improved weather generator algorithm for multisite simulation of precipitation and temperature

    CERN Document Server

    King, Leanna M; Simonovic, Slobodan P

    2016-01-01

    The KnnCAD Version 4 weather generator algorithm for nonparametric, multisite simulations of temperature and precipitation data is presented. The K-nearest neighbour weather generator essentially reshuffles the historical data, with replacement. In KnnCAD Version 4, a block resampling scheme is introduced to preserve the temporal correlation structure in temperature data. Perturbation of the reshuffled variable data is also added to enhance the generation of extreme values. A case study of the Upper Thames River Basin in Ontario, Canada is performed and the model is shown to simulate effectively the historical characteristics at the site. The KnnCAD Version 4 approach offers a major advantage over parametric and semi-parametric weather generators as it can be applied to multiple sites for simulation of temperatures and precipitation amounts without making assumptions regarding the spatial correlations and the probability distributions for each variable.

  13. First Evaluation of the Climatological Calibration Algorithm in the Real-time TMPA Precipitation Estimates over Two Basins at High and Low Latitudes

    Science.gov (United States)

    Yong, Bin; Ren, Liliang; Hong, Yang; Gourley, Jonathan; Tian, Yudong; Huffman, George J.; Chen, Xi; Wang, Weiguang; Wen, Yixin

    2013-01-01

    The TRMM Multi-satellite Precipitation Analysis (TMPA) system underwent a crucial upgrade in early 2009 to include a climatological calibration algorithm (CCA) to its realtime product 3B42RT, and this algorithm will continue to be applied in the future Global Precipitation Measurement era constellation precipitation products. In this study, efforts are focused on the comparison and validation of the Version 6 3B42RT estimates before and after the climatological calibration is applied. The evaluation is accomplished using independent rain gauge networks located within the high-latitude Laohahe basin and the low-latitude Mishui basin, both in China. The analyses indicate the CCA can effectively reduce the systematic errors over the low-latitude Mishui basin but misrepresent the intensity distribution pattern of medium-high rain rates. This behavior could adversely affect TMPA's hydrological applications, especially for extreme events (e.g., floods and landslides). Results also show that the CCA tends to perform slightly worse, in particular, during summer and winter, over the high-latitude Laohahe basin. This is possibly due to the simplified calibration-processing scheme in the CCA that directly applies the climatological calibrators developed within 40 degrees latitude to the latitude belts of 40 degrees N-50 degrees N. Caution should therefore be exercised when using the calibrated 3B42RT for heavy rainfall-related flood forecasting (or landslide warning) over high-latitude regions, as the employment of the smooth-fill scheme in the CCA bias correction could homogenize the varying rainstorm characteristics. Finally, this study highlights that accurate detection and estimation of snow at high latitudes is still a challenging task for the future development of satellite precipitation retrievals.

  14. Comparision of Clustering Algorithms usingNeural Network Classifier for Satellite Image Classification

    Directory of Open Access Journals (Sweden)

    S.Praveena

    2015-06-01

    Full Text Available This paper presents a hybrid clustering algorithm and feed-forward neural network classifier for land-cover mapping of trees, shade, building and road. It starts with the single step preprocessing procedure to make the image suitable for segmentation. The pre-processed image is segmented using the hybrid genetic-Artificial Bee Colony(ABC algorithm that is developed by hybridizing the ABC and FCM to obtain the effective segmentation in satellite image and classified using neural network . The performance of the proposed hybrid algorithm is compared with the algorithms like, k-means, Fuzzy C means(FCM, Moving K-means, Artificial Bee Colony(ABC algorithm, ABC-GA algorithm, Moving KFCM and KFCM algorithm.

  15. Low Complexity Multiuser Detection Algorithm for Multi-Beam Satellite Systems

    Institute of Scientific and Technical Information of China (English)

    Yang Wang; Danfeng Zhao; Xi Liao

    2015-01-01

    The minimum mean square error⁃successive interference cancellation ( MMSE⁃SIC ) multiuser detection algorithm has high complexity and long processing latency. A multiuser detection algorithm is proposed for multi⁃beam satellite systems in order to decrease the complexity and latency. The spot beams are grouped base on the distance between them in the proposed algorithm. Some groups are detected in parallel after a crucial group⁃wise interference cancellation. Furthermore, the multi⁃stage structure is introduced to improve the performance. Simulation results show that the proposed algorithm can achieve better performance with less complexity compared with the existing group detection algorithm. Moreover, the proposed algorithm using one stage can reduce the complexity over the fast MMSE⁃SIC and existing group detection algorithm by 9% and 20�9%. The processing latency is reduced significantly compared with the MMSE⁃SIC.

  16. Comparison and evaluation of satellite derived precipitation products for hydrological modeling of the Zambezi River Basin

    Directory of Open Access Journals (Sweden)

    T. Cohen Liechti

    2011-08-01

    Full Text Available In the framework of the African Dams ProjecT (ADAPT, an integrated water resource management study in the Zambezi Basin is currently under development. In view of the sparse gauging network for rainfall monitoring, the observations from spaceborne instrumentation currently produce the only available rainfall data for a large part of the basin.

    Three operational and acknowledged high resolution satellite derived estimates: the Tropical Rainfall Measuring Mission product 3B42 (TRMM 3B42, the Famine Early Warning System product 2.0 (FEWS RFE2.0 and the National Oceanic and Atmospheric Administration/Climate Prediction Centre (NOAA/CPC morphing technique (CMORPH are analyzed in terms of spatial and temporal repartition of the precipitations. They are compared to ground data for the wet seasons of the years 2003 to 2009 on a point to pixel basis at daily, 10-daily and monthly time steps and on a pixel to pixel basis for the wet seasons of the years 2003 to 2007 at monthly time steps.

    The general North-South gradient of precipitation is captured by all the analyzed products. Regarding the spatial heterogeneity, FEWS pixels are much more inter-correlated than TRMM and CMORPH pixels. For a rainfall homogeneity threshold criterion of 0.5 global mean correlation coefficient, the area of each subbasin should not exceed a circle of 2.5° latitude/longitude radius for FEWS and a circle of 0.75° latitude/longitude radius for TRMM and CMORPH considering rectangular mesh.

    In terms of reliability, the correspondence of all estimates with ground data increases with the time step chosen for the analysis. The volume ratio computation indicates that CMORPH is overestimating by nearly 1.5 times the rainfall. The statistics of TRMM and FEWS estimates show quite similar results.

    Due to the its lower inter-correlation and longer data set, the TRMM 3B42 product is chosen as input for the hydraulic-hydrologic model of the basin.

  17. Differences in estimating terrestrial water flux from three satellite-based Priestley-Taylor algorithms

    Science.gov (United States)

    Yao, Yunjun; Liang, Shunlin; Yu, Jian; Zhao, Shaohua; Lin, Yi; Jia, Kun; Zhang, Xiaotong; Cheng, Jie; Xie, Xianhong; Sun, Liang; Wang, Xuanyu; Zhang, Lilin

    2017-04-01

    Accurate estimates of terrestrial latent heat of evaporation (LE) for different biomes are essential to assess energy, water and carbon cycles. Different satellite- based Priestley-Taylor (PT) algorithms have been developed to estimate LE in different biomes. However, there are still large uncertainties in LE estimates for different PT algorithms. In this study, we evaluated differences in estimating terrestrial water flux in different biomes from three satellite-based PT algorithms using ground-observed data from eight eddy covariance (EC) flux towers of China. The results reveal that large differences in daily LE estimates exist based on EC measurements using three PT algorithms among eight ecosystem types. At the forest (CBS) site, all algorithms demonstrate high performance with low root mean square error (RMSE) (less than 16 W/m2) and high squared correlation coefficient (R2) (more than 0.9). At the village (HHV) site, the ATI-PT algorithm has the lowest RMSE (13.9 W/m2), with bias of 2.7 W/m2 and R2 of 0.66. At the irrigated crop (HHM) site, almost all models algorithms underestimate LE, indicating these algorithms may not capture wet soil evaporation by parameterization of the soil moisture. In contrast, the SM-PT algorithm shows high values of R2 (comparable to those of ATI-PT and VPD-PT) at most other (grass, wetland, desert and Gobi) biomes. There are no obvious differences in seasonal LE estimation using MODIS NDVI and LAI at most sites. However, all meteorological or satellite-based water-related parameters used in the PT algorithm have uncertainties for optimizing water constraints. This analysis highlights the need to improve PT algorithms with regard to water constraints.

  18. Mapping Surface Broadband Albedo from Satellite Observations: A Review of Literatures on Algorithms and Products

    Directory of Open Access Journals (Sweden)

    Ying Qu

    2015-01-01

    Full Text Available Surface albedo is one of the key controlling geophysical parameters in the surface energy budget studies, and its temporal and spatial variation is closely related to the global climate change and regional weather system due to the albedo feedback mechanism. As an efficient tool for monitoring the surfaces of the Earth, remote sensing is widely used for deriving long-term surface broadband albedo with various geostationary and polar-orbit satellite platforms in recent decades. Moreover, the algorithms for estimating surface broadband albedo from satellite observations, including narrow-to-broadband conversions, bidirectional reflectance distribution function (BRDF angular modeling, direct-estimation algorithm and the algorithms for estimating albedo from geostationary satellite data, are developed and improved. In this paper, we present a comprehensive literature review on algorithms and products for mapping surface broadband albedo with satellite observations and provide a discussion of different algorithms and products in a historical perspective based on citation analysis of the published literature. This paper shows that the observation technologies and accuracy requirement of applications are important, and long-term, global fully-covered (including land, ocean, and sea-ice surfaces, gap-free, surface broadband albedo products with higher spatial and temporal resolution are required for climate change, surface energy budget, and hydrological studies.

  19. Satellite Imagery Cadastral Features Extractions using Image Processing Algorithms: A Viable Option for Cadastral Science

    Directory of Open Access Journals (Sweden)

    Usman Babawuro

    2012-07-01

    Full Text Available Satellite images are used for feature extraction among other functions. They are used to extract linear features, like roads, etc. These linear features extractions are important operations in computer vision. Computer vision has varied applications in photogrammetric, hydrographic, cartographic and remote sensing tasks. The extraction of linear features or boundaries defining the extents of lands, land covers features are equally important in Cadastral Surveying. Cadastral Surveying is the cornerstone of any Cadastral System. A two dimensional cadastral plan is a model which represents both the cadastral and geometrical information of a two dimensional labeled Image. This paper aims at using and widening the concepts of high resolution Satellite imagery data for extracting representations of cadastral boundaries using image processing algorithms, hence minimizing the human interventions. The Satellite imagery is firstly rectified hence establishing the satellite imagery in the correct orientation and spatial location for further analysis. We, then employ the much available Satellite imagery to extract the relevant cadastral features using computer vision and image processing algorithms. We evaluate the potential of using high resolution Satellite imagery to achieve Cadastral goals of boundary detection and extraction of farmlands using image processing algorithms. This method proves effective as it minimizes the human demerits associated with the Cadastral surveying method, hence providing another perspective of achieving cadastral goals as emphasized by the UN cadastral vision. Finally, as Cadastral science continues to look to the future, this research aimed at the analysis and getting insights into the characteristics and potential role of computer vision algorithms using high resolution satellite imagery for better digital Cadastre that would provide improved socio economic development.

  20. Evaluation of GPM-based Multi-satellite IMERG Precipitation Products Over the Lower Colorado River Basin, Texas

    Science.gov (United States)

    Omranian, S. E.; Sharif, H. O.

    2016-12-01

    This study evaluates the Global Precipitation Measurement (GPM) satellite products by analyzing extreme rainfall events over the Lower Colorado River Basin, Texas that resulted in unprecedented flash floods in May 2015. Records of a dense rain gauge network (241 stations) are compared with Integrated Multi-satellite Retrievals for GPM (IMERG) products. The spatial resolution of the GPM satellite product is 0.1º x 0.1º and the temporal resolution is 30 minutes. Reference gauge-based observations are distributed through the basin with total area of over 5,000 square kilometers at 15-minute time intervals. A preliminary assessment of GPM-based IMERG precipitation products shows reasonable correlation, especially when for periods of high amounts of rainfall. the results indicate that GPM satellite products can potentially be employed in hydrologic modeling, especially for large events. Moreover, since the IMERG products have semi-global coverage, it can be extremely useful in hydrological modeling and analysis studies over ungauged or poorly gauged regions.

  1. Flood modelling with global precipitation measurement (GPM) satellite rainfall data: a case study of Dehradun, Uttarakhand, India

    Science.gov (United States)

    Sai Krishna, V. V.; Dikshit, Anil Kumar; Pandey, Kamal

    2016-05-01

    Urban expansion, water bodies and climate change are inextricably linked with each other. The macro and micro level climate changes are leading to extreme precipitation events which have severe consequences on flooding in urban areas. Flood simulations shall be helpful in demarcation of flooded areas and effective flood planning and preparedness. The temporal availability of satellite rainfall data at varying spatial scale of 0.10 to 0.50 is helpful in near real time flood simulations. The present research aims at analysing stream flow and runoff to monitor flood condition using satellite rainfall data in a hydrologic model. The satellite rainfall data used in the research was NASA's Integrated Multi-satellite Retrievals for Global Precipitation Measurement (IMERG), which is available at 30 minutes temporal resolution. Landsat data was used for mapping the water bodies in the study area. Land use land cover (LULC) data was prepared using Landsat 8 data with maximum likelihood technique that was provided as an input to the HEC-HMS hydrological model. The research was applied to one of the urbanized cities of India, viz. Dehradun, which is the capital of Uttarakhand State. The research helped in identifying the flood vulnerability at the basin level on the basis of the runoff and various socio economic parameters using multi criteria analysis.

  2. Precipitation effects on the selection of suitable non-variant targets intended for atmospheric correction of satellite remotely sensed imagery

    Science.gov (United States)

    Themistocleous, Kyriacos; Hadjimitsis, Diofantos G.; Retalis, Adrianos; Chrysoulakis, Nektarios; Michaelides, Silas

    2013-09-01

    One of the most well-established atmospheric correction methods of satellite imagery is the use of the empirical line method using non-variant targets. Non-variant targets serve as pseudo-invariant targets since their reflectance values are stable across time. A recent adaptation of the empirical line method incorporates the use of ground reflectance measurements of selected non-variant targets. Most of the users are not aware of the existing conditions of the pseudo-invariant targets; i.e., whether they are dry or wet. Any omission of such effects may cause erroneous results; therefore, remote sensing users must be aware of such effects. This study assessed the effects of precipitation on five types of commonly located surfaces, including asphalt, concrete and sand, intended as pseudo-invariant targets for atmospheric correction. Spectroradiometric measurements were taken in wet and dry conditions to obtain the spectral signatures of the targets, from January 2010 to May 2011 (46 campaigns). An atmospheric correction of eleven Landsat TM/ETM + satellite images using the empirical line method was conducted. To identify the effects of precipitation, a comparison was conducted of the atmospheric path radiance component for wet and dry conditions. It was found that precipitation conditions such as rainfall affected the reflectance values of the surfaces, especially sand. Therefore, precipitation conditions need to be considered when using non-variant targets in atmospheric correction methods.

  3. A Short-Range Quantitative Precipitation Forecast Algorithm Using Back-Propagation Neural Network Approach

    Institute of Scientific and Technical Information of China (English)

    FENG Yerong; David H.KITZMILLER

    2006-01-01

    A back-propagation neural network (BPNN) was used to establish relationships between the shortrange (0-3-h) rainfall and the predictors ranging from extrapolative forecasts of radar reflectivity, satelliteestimated cloud-top temperature, lightning strike rates, and Nested Grid Model (NGM) outputs. Quantitative precipitation forecasts (QPF) and the probabilities of categorical precipitation were obtained.Results of the BPNN algorithm were compared to the results obtained from the multiple linear regression algorithm for an independent dataset from the 1999 warm season over the continental United States. A sample forecast was made over the southeastern United States. Results showed that the BPNN categorical rainfall forecasts agreed well with Stage Ⅲ observations in terms of the size and shape of the area of rainfall. The BPNN tended to over-forecast the spatial extent of heavier rainfall amounts, but the positioning of the areas with rainfall ≥25.4 mm was still generally accurate. It appeared that the BPNN and linear regression approaches produce forecasts of very similar quality, although in some respects BPNN slightly outperformed the regression.

  4. Optimization of regional navigation satellite constellation by improved NSGA-II algorithm

    Science.gov (United States)

    Chang, Hui; Hu, Xiulin; Zhang, Yunyu; Zeng, Yujiang; Wang, Ying

    2009-12-01

    In this paper, the non-dominated sorting genetic algorithm II (NSGA-II) based on the concept of Pareto optimal is improved. A new algorithm with lower O(MNlogN) computational complexity to construct non-dominated set replaces the NSGA-II original fast non-dominated sorting algorithm with O(MN2) com-putational complexity. The new algorithm improves operating efficiency of NSGA-II significantly. Based on the combination of the improved NSGA-II algorithm and regional navigation satellite constellation design, a new idea to design regional navigation satellite constellation is proposed in this paper. The new idea is implemented by Satellite Tool Kits (STK) and Matlab: the improved NSGA-II algorithm is implemented by Matlab and the calculation of the objective function values is implemented by STK. STK/Connect interface is used to integrate STK and Matlab into one simulation. Simulation results show that new idea has some advantages over the traditional methods, being more efficient, more flexible and more comprehensive.

  5. Research on GPS Receiver Autonomous Integrity Monitoring Algorithm In the Occurrence of Two-satellite Faults

    Directory of Open Access Journals (Sweden)

    Wang Er Shen

    2016-01-01

    Full Text Available Reliability is an essential factor for GPS navigation system. Therefore, an integrity monitoring is considered as one of the most important parts for a navigation system. GPS receiver autonomous integrity monitoring (RAIM technique can detect and isolate fault satellite. Based on particle filter, a novel RAIM method was proposed to detect two-satellite faults of the GPS signal by using hierarchical particle filter. It can deal with any system nonlinear and any noise distributions. Because GNSS measurement noise does not follow the Gaussian distribution perfectly, the particle filter can estimate the posterior distribution more accurately. In order to detect fault, the consistency test statistics is established through cumulative log-likelihood ratio (LLR between the main and auxiliary particle filters (PFs.Specifically, an approach combining PF with the hierarchical filter is used in the process of two-satellite faults. Through GPS real measurement, the performance of the proposed GPS two-satellite faults detection algorithm was illustrated. Some simulation results are given to evaluate integrity monitoring performance of the algorithm. Validated by the real measurement data, the results show that the proposed algorithm can successfully detect and isolate the faulty satellite in the case of non-Gaussian measurement noise.

  6. An autonomous navigation algorithm for high orbit satellite using star sensor and ultraviolet earth sensor.

    Science.gov (United States)

    Baohua, Li; Wenjie, Lai; Yun, Chen; Zongming, Liu

    2013-01-01

    An autonomous navigation algorithm using the sensor that integrated the star sensor (FOV1) and ultraviolet earth sensor (FOV2) is presented. The star images are sampled by FOV1, and the ultraviolet earth images are sampled by the FOV2. The star identification algorithm and star tracking algorithm are executed at FOV1. Then, the optical axis direction of FOV1 at J2000.0 coordinate system is calculated. The ultraviolet image of earth is sampled by FOV2. The center vector of earth at FOV2 coordinate system is calculated with the coordinates of ultraviolet earth. The autonomous navigation data of satellite are calculated by integrated sensor with the optical axis direction of FOV1 and the center vector of earth from FOV2. The position accuracy of the autonomous navigation for satellite is improved from 1000 meters to 300 meters. And the velocity accuracy of the autonomous navigation for satellite is improved from 100 m/s to 20 m/s. At the same time, the period sine errors of the autonomous navigation for satellite are eliminated. The autonomous navigation for satellite with a sensor that integrated ultraviolet earth sensor and star sensor is well robust.

  7. Research on handover algorithm to reduce the blocking probability in LEO satellite network

    Institute of Scientific and Technical Information of China (English)

    Chen Bingcai; Zhang Naitong; Nie Boxun; Zhou Tingxian

    2006-01-01

    Based on the characteristics of guaranteed handover (GH) algorithm, the finite capacity in one system makes the blocking probability (PB) of GH algorithm increase rapidly in the case of high traffic load. So, when large amounts of multimedia services are transmitted via a single low earth orbit (LEO) satellite system, the PB of it is much higher. In order to solve the problem, a novel handover scheme defined by multi-tier optiral layer selection is proposed. The scheme sufficienfly takes into ac count the characteristics of double-tier satellite network, which is constituted by LEO satellites combined with medium earth orbit (MEO) satellites, and the multimedia transmitted by such network, so it can augment this systematic capacity and effectively reduces the traffic load in the LEO which performs GH algorithm. The detailed processes are also presented. The simulation and numerical results show that the approach integrated with GH algorithm achieves a significant improvement in the PB and practicability, as compared to the single LEO layer network.

  8. Ozone Profile Retrieval Algorithm (OPERA) for nadir-looking satellite instruments in the UV-VIS

    NARCIS (Netherlands)

    Van Peet, J.C.A.; Van der A, R.J.; Tuinder, O.N.E.; Wolfram, E.; Salvador, J.; Levelt, P.F.; Kelder, H.M.

    2014-01-01

    For the retrieval of the vertical distribution of ozone in the atmosphere the Ozone ProfilE Retrieval Algorithm (OPERA) has been further developed. The new version (1.26) of OPERA is capable of retrieving ozone profiles from UV–VIS observations of most nadir-looking satellite instruments like GOME,

  9. UMR: A utility-maximizing routing algorithm for delay-sensitive service in LEO satellite networks

    Directory of Open Access Journals (Sweden)

    Lu Yong

    2015-04-01

    Full Text Available This paper develops a routing algorithm for delay-sensitive packet transmission in a low earth orbit multi-hop satellite network consists of micro-satellites. The micro-satellite low earth orbit (MS-LEO network endures unstable link connection and frequent link congestion due to the uneven user distribution and the link capacity variations. The proposed routing algorithm, referred to as the utility maximizing routing (UMR algorithm, improve the network utility of the MS-LEO network for carrying flows with strict end-to-end delay bound requirement. In UMR, first, a link state parameter is defined to capture the link reliability on continuing to keep the end-to-end delay into constraint; then, on the basis of this parameter, a routing metric is formulated and a routing scheme is designed for balancing the reliability in delay bound guarantee among paths and building a path maximizing the network utility expectation. While the UMR algorithm has many advantages, it may result in a higher blocking rate of new calls. This phenomenon is discussed and a weight factor is introduced into UMR to provide a flexible performance option for network operator. A set of simulations are conducted to verify the good performance of UMR, in terms of balancing the traffic distribution on inter-satellite links, reducing the flow interruption rate, and improving the network utility.

  10. Satellite constellation design with genetic algorithms based on system performance

    Institute of Scientific and Technical Information of China (English)

    Xueying Wang; Jun Li; Tiebing Wang; Wei An; Weidong Sheng

    2016-01-01

    Satelite constelation design for space optical sys-tems is essentialy a multiple-objective optimization problem. In this work, to tackle this chalenge, we first categorize the performance metrics of the space optical system by taking into account the system tasks (i.e., target detection and tracking). We then propose a new non-dominated sorting genetic algo-rithm (NSGA) to maximize the system surveilance perfor- mance. Pareto optimal sets are employed to deal with the conflicts due to the presence of multiple cost functions. Simulation results verify the validity and the improved per-formance of the proposed technique over benchmark meth-ods.

  11. Real-Time Global Flood Estimation Using Satellite-Based Precipitation and a Coupled Land Surface and Routing Model

    Science.gov (United States)

    Wu, Huan; Adler, Robert F.; Tian, Yudong; Huffman, George J.; Li, Hongyi; Wang, JianJian

    2014-01-01

    A widely used land surface model, the Variable Infiltration Capacity (VIC) model, is coupled with a newly developed hierarchical dominant river tracing-based runoff-routing model to form the Dominant river tracing-Routing Integrated with VIC Environment (DRIVE) model, which serves as the new core of the real-time Global Flood Monitoring System (GFMS). The GFMS uses real-time satellite-based precipitation to derive flood monitoring parameters for the latitude band 50 deg. N - 50 deg. S at relatively high spatial (approximately 12 km) and temporal (3 hourly) resolution. Examples of model results for recent flood events are computed using the real-time GFMS (http://flood.umd.edu). To evaluate the accuracy of the new GFMS, the DRIVE model is run retrospectively for 15 years using both research-quality and real-time satellite precipitation products. Evaluation results are slightly better for the research-quality input and significantly better for longer duration events (3 day events versus 1 day events). Basins with fewer dams tend to provide lower false alarm ratios. For events longer than three days in areas with few dams, the probability of detection is approximately 0.9 and the false alarm ratio is approximately 0.6. In general, these statistical results are better than those of the previous system. Streamflow was evaluated at 1121 river gauges across the quasi-global domain. Validation using real-time precipitation across the tropics (30 deg. S - 30 deg. N) gives positive daily Nash-Sutcliffe Coefficients for 107 out of 375 (28%) stations with a mean of 0.19 and 51% of the same gauges at monthly scale with a mean of 0.33. There were poorer results in higher latitudes, probably due to larger errors in the satellite precipitation input.

  12. Evaluation of TRMM Multi-satellite Precipitation Analysis (TMPA performance in the Central Andes region and its dependency on spatial and temporal resolution

    Directory of Open Access Journals (Sweden)

    M. L. M. Scheel

    2010-10-01

    Full Text Available Climate time series are of major importance for base line studies for climate change impact and adaptation projects. However, in mountain regions and in developing countries there exist significant gaps in ground based climate records in space and time. Specifically, in the Peruvian Andes spatially and temporally coherent precipitation information is a prerequisite for ongoing climate change adaptation projects in the fields of water resources, disasters and food security. The present work aims at evaluating the ability of Tropical Rainfall Measurement Mission (TRMM Multi-satellite Precipitation Analysis (TMPA to estimate precipitation rates at daily 0.25° × 0.25° scale in the Central Andes and the dependency of the estimate performance on changing spatial and temporal resolution. Comparison of the TMPA product with gauge measurements in the regions of Cuzco, Peru and La Paz, Bolivia were carried out and analysed statistically. Large biases are identified in both investigation areas in the estimation of daily precipitation amounts. The occurrence of strong precipitation events was well assessed, but their intensities were underestimated. TMPA estimates for La Paz show high false alarm ratio.

    The dependency of the TMPA estimate quality with changing resolution was analysed by comparisons of 1-, 7-, 15- and 30-day sums for Cuzco, Peru. The correlation of TMPA estimates with ground data increases strongly and almost linearly with temporal aggregation. The spatial aggregation to 0.5°, 0.75° and 1° grid box averaged precipitation and its comparison to gauge data of the same areas revealed no significant change in correlation coefficients and estimate performance.

    In order to profit from the TMPA combination product on a daily basis, a procedure to blend it with daily precipitation gauge measurements is proposed.

    Different sources of errors and uncertainties introduced by the sensors, sensor-specific algorithm aspects

  13. Model predictive control of attitude maneuver of a geostationary flexible satellite based on genetic algorithm

    Science.gov (United States)

    TayyebTaher, M.; Esmaeilzadeh, S. Majid

    2017-07-01

    This article presents an application of Model Predictive Controller (MPC) to the attitude control of a geostationary flexible satellite. SIMO model has been used for the geostationary satellite, using the Lagrange equations. Flexibility is also included in the modelling equations. The state space equations are expressed in order to simplify the controller. Naturally there is no specific tuning rule to find the best parameters of an MPC controller which fits the desired controller. Being an intelligence method for optimizing problem, Genetic Algorithm has been used for optimizing the performance of MPC controller by tuning the controller parameter due to minimum rise time, settling time, overshoot of the target point of the flexible structure and its mode shape amplitudes to make large attitude maneuvers possible. The model included geosynchronous orbit environment and geostationary satellite parameters. The simulation results of the flexible satellite with attitude maneuver shows the efficiency of proposed optimization method in comparison with LQR optimal controller.

  14. Core-based Shared Tree Multicast Routing Algorithms for LEO Satellite IP Networks

    Institute of Scientific and Technical Information of China (English)

    Cheng Lianzhen; Zhang Jun; Liu Kai

    2007-01-01

    A new core-based shared tree algorithm, viz core-cluster combination-based shared tree (CCST) algorithm and the weighted version (i.e. w-CCST algorithm) are proposed in order to resolve the channel resources waste problem in typical source-based multicast routing algorithms in low earth orbit (LEO) satellite IP networks. The CCST algorithm includes the dynamic approximate center (DAC)core selection method and the core-cluster combination multicast route construction scheme. Without complicated onboard computation,the DAC method is uniquely developed for highly dynamic networks of periodical and regular movement. The core-cluster combination method takes core node as the initial core-cluster, and expands it stepwise to construct an entire multicast tree at the lowest tree cost by a shortest path scheme between the newly-generated core-cluster and surplus group members, which results in great bandwidth utilization.Moreover, the w-CCST algorithm is able to strike a balance between performance of tree cost and that of end-to-end propagation delay by adjusting the weighted factor to meet strict end-to-end delay requirements of some real-time multicast services at the expense of a slight increase in tree cost. Finally, performance comparison is conducted between the proposed algorithms and typical algorithms in LEO satellite IP networks. Simulation results show that the CCST algorithm significantly decreases the average tree cost against to the others, and also the average end-to-end propagation delay of w-CCST algorithm is lower than that of the CCST algorithm.

  15. First Attempt of Orbit Determination of SLR Satellites and Space Debris Using Genetic Algorithms

    Science.gov (United States)

    Deleflie, F.; Coulot, D.; Descosta, R.; Fernier, A.; Richard, P.

    2013-08-01

    We present an orbit determination method based on genetic algorithms. Contrary to usual estimation methods mainly based on least-squares methods, these algorithms do not require any a priori knowledge of the initial state vector to be estimated. These algorithms can be applied when a new satellite is launched or for uncatalogued objects that appear in images obtained from robotic telescopes such as the TAROT ones. We show in this paper preliminary results obtained from an SLR satellite, for which tracking data acquired by the ILRS network enable to build accurate orbital arcs at a few centimeter level, which can be used as a reference orbit ; in this case, the basic observations are made up of time series of ranges, obtained from various tracking stations. We show as well the results obtained from the observations acquired by the two TAROT telescopes on the Telecom-2D satellite operated by CNES ; in that case, the observations are made up of time series of azimuths and elevations, seen from the two TAROT telescopes. The method is carried out in several steps: (i) an analytical propagation of the equations of motion, (ii) an estimation kernel based on genetic algorithms, which follows the usual steps of such approaches: initialization and evolution of a selected population, so as to determine the best parameters. Each parameter to be estimated, namely each initial keplerian element, has to be searched among an interval that is preliminary chosen. The algorithm is supposed to converge towards an optimum over a reasonable computational time.

  16. Application of satellite precipitation data to analyse and model arbovirus activity in the tropics

    Directory of Open Access Journals (Sweden)

    Corner Robert J

    2011-01-01

    Full Text Available Abstract Background Murray Valley encephalitis virus (MVEV is a mosquito-borne Flavivirus (Flaviviridae: Flavivirus which is closely related to Japanese encephalitis virus, West Nile virus and St. Louis encephalitis virus. MVEV is enzootic in northern Australia and Papua New Guinea and epizootic in other parts of Australia. Activity of MVEV in Western Australia (WA is monitored by detection of seroconversions in flocks of sentinel chickens at selected sample sites throughout WA. Rainfall is a major environmental factor influencing MVEV activity. Utilising data on rainfall and seroconversions, statistical relationships between MVEV occurrence and rainfall can be determined. These relationships can be used to predict MVEV activity which, in turn, provides the general public with important information about disease transmission risk. Since ground measurements of rainfall are sparse and irregularly distributed, especially in north WA where rainfall is spatially and temporally highly variable, alternative data sources such as remote sensing (RS data represent an attractive alternative to ground measurements. However, a number of competing alternatives are available and careful evaluation is essential to determine the most appropriate product for a given problem. Results The Tropical Rainfall Measurement Mission (TRMM Multi-satellite Precipitation Analysis (TMPA 3B42 product was chosen from a range of RS rainfall products to develop rainfall-based predictor variables and build logistic regression models for the prediction of MVEV activity in the Kimberley and Pilbara regions of WA. Two models employing monthly time-lagged rainfall variables showed the strongest discriminatory ability of 0.74 and 0.80 as measured by the Receiver Operating Characteristics area under the curve (ROC AUC. Conclusions TMPA data provide a state-of-the-art data source for the development of rainfall-based predictive models for Flavivirus activity in tropical WA. Compared to

  17. Technical Report Series on Global Modeling and Data Assimilation. Volume 12; Comparison of Satellite Global Rainfall Algorithms

    Science.gov (United States)

    Suarez, Max J. (Editor); Chang, Alfred T. C.; Chiu, Long S.

    1997-01-01

    Seventeen months of rainfall data (August 1987-December 1988) from nine satellite rainfall algorithms (Adler, Chang, Kummerow, Prabhakara, Huffman, Spencer, Susskind, and Wu) were analyzed to examine the uncertainty of satellite-derived rainfall estimates. The variability among algorithms, measured as the standard deviation computed from the ensemble of algorithms, shows regions of high algorithm variability tend to coincide with regions of high rain rates. Histograms of pattern correlation (PC) between algorithms suggest a bimodal distribution, with separation at a PC-value of about 0.85. Applying this threshold as a criteria for similarity, our analyses show that algorithms using the same sensor or satellite input tend to be similar, suggesting the dominance of sampling errors in these satellite estimates.

  18. Recent trends of the tropical hydrological cycle inferred from Global Precipitation Climatology Project and International Satellite Cloud Climatology Project data

    Science.gov (United States)

    Zhou, Y. P.; Xu, Kuan-Man; Sud, Y. C.; Betts, A. K.

    2011-05-01

    Scores of modeling studies have shown that increasing greenhouse gases in the atmosphere impact the global hydrologic cycle; however, disagreements on regional scales are large, and thus the simulated trends of such impacts, even for regions as large as the tropics, remain uncertain. The present investigation attempts to examine such trends in the observations using satellite data products comprising Global Precipitation Climatology Project precipitation and International Satellite Cloud Climatology Project cloud and radiation. Specifically, evolving trends of the tropical hydrological cycle over the last 20-30 years were identified and analyzed. The results show (1) intensification of tropical precipitation in the rising regions of the Walker and Hadley circulations and weakening over the sinking regions of the associated overturning circulation; (2) poleward shift of the subtropical dry zones (up to 2° decade-1 in June-July-August (JJA) in the Northern Hemisphere and 0.3-0.7° decade-1 in June-July-August and September-October-November in the Southern Hemisphere) consistent with an overall broadening of the Hadley circulation; and (3) significant poleward migration (0.9-1.7° decade-1) of cloud boundaries of Hadley cell and plausible narrowing of the high cloudiness in the Intertropical Convergence Zone region in some seasons. These results support findings of some of the previous studies that showed strengthening of the tropical hydrological cycle and expansion of the Hadley cell that are potentially related to the recent global warming trends.

  19. Parameter estimation using the genetic algorithm and its impact on quantitative precipitation forecast

    Directory of Open Access Journals (Sweden)

    Y. H. Lee

    2006-12-01

    Full Text Available In this study, optimal parameter estimations are performed for both physical and computational parameters in a mesoscale meteorological model, and their impacts on the quantitative precipitation forecasting (QPF are assessed for a heavy rainfall case occurred at the Korean Peninsula in June 2005. Experiments are carried out using the PSU/NCAR MM5 model and the genetic algorithm (GA for two parameters: the reduction rate of the convective available potential energy in the Kain-Fritsch (KF scheme for cumulus parameterization, and the Asselin filter parameter for numerical stability. The fitness function is defined based on a QPF skill score. It turns out that each optimized parameter significantly improves the QPF skill. Such improvement is maximized when the two optimized parameters are used simultaneously. Our results indicate that optimizations of computational parameters as well as physical parameters and their adequate applications are essential in improving model performance.

  20. A Parameter Estimation Scheme for Multiscale Kalman Smoother (MKS) Algorithm Used in Precipitation Data Fusion

    Science.gov (United States)

    Wang, Shugong; Liang, Xu

    2013-01-01

    A new approach is presented in this paper to effectively obtain parameter estimations for the Multiscale Kalman Smoother (MKS) algorithm. This new approach has demonstrated promising potentials in deriving better data products based on data of different spatial scales and precisions. Our new approach employs a multi-objective (MO) parameter estimation scheme (called MO scheme hereafter), rather than using the conventional maximum likelihood scheme (called ML scheme) to estimate the MKS parameters. Unlike the ML scheme, the MO scheme is not simply built on strict statistical assumptions related to prediction errors and observation errors, rather, it directly associates the fused data of multiple scales with multiple objective functions in searching best parameter estimations for MKS through optimization. In the MO scheme, objective functions are defined to facilitate consistency among the fused data at multiscales and the input data at their original scales in terms of spatial patterns and magnitudes. The new approach is evaluated through a Monte Carlo experiment and a series of comparison analyses using synthetic precipitation data. Our results show that the MKS fused precipitation performs better using the MO scheme than that using the ML scheme. Particularly, improvements are significant compared to that using the ML scheme for the fused precipitation associated with fine spatial resolutions. This is mainly due to having more criteria and constraints involved in the MO scheme than those included in the ML scheme. The weakness of the original ML scheme that blindly puts more weights onto the data associated with finer resolutions is overcome in our new approach.

  1. Development of a fire detection algorithm for the COMS (Communication Ocean and Meteorological Satellite)

    Science.gov (United States)

    Kim, Goo; Kim, Dae Sun; Lee, Yang-Won

    2013-10-01

    The forest fires do much damage to our life in ecological and economic aspects. South Korea is probably more liable to suffer from the forest fire because mountain area occupies more than half of land in South Korea. They have recently launched the COMS(Communication Ocean and Meteorological Satellite) which is a geostationary satellite. In this paper, we developed forest fire detection algorithm using COMS data. Generally, forest fire detection algorithm uses characteristics of 4 and 11 micrometer brightness temperature. Our algorithm additionally uses LST(Land Surface Temperature). We confirmed the result of our fire detection algorithm using statistical data of Korea Forest Service and ASTER(Advanced Spaceborne Thermal Emission and Reflection Radiometer) images. We used the data in South Korea On April 1 and 2, 2011 because there are small and big forest fires at that time. The detection rate was 80% in terms of the frequency of the forest fires and was 99% in terms of the damaged area. Considering the number of COMS's channels and its low resolution, this result is a remarkable outcome. To provide users with the result of our algorithm, we developed a smartphone application for users JSP(Java Server Page). This application can work regardless of the smartphone's operating system. This study can be unsuitable for other areas and days because we used just two days data. To improve the accuracy of our algorithm, we need analysis using long-term data as future work.

  2. The HSBQ Algorithm with Triple-play Services for Broadband Hybrid Satellite Constellation Communication System

    Directory of Open Access Journals (Sweden)

    Anupon Boriboon

    2016-07-01

    Full Text Available The HSBQ algorithm is the one of active queue management algorithms, which orders to avoid high packet loss rates and control stable stream queue. That is the problem of calculation of the drop probability for both queue length stability and bandwidth fairness. This paper proposes the HSBQ, which drop the packets before the queues overflow at the gateways, so that the end nodes can respond to the congestion before queue overflow. This algorithm uses the change of the average queue length to adjust the amount by which the mark (or drop probability is changed. Moreover it adjusts the queue weight, which is used to estimate the average queue length, based on the rate. The results show that HSBQ algorithm could maintain control stable stream queue better than group of congestion metric without flow information algorithm as the rate of hybrid satellite network changing dramatically, as well as the presented empiric evidences demonstrate that the use of HSBQ algorithm offers a better quality of service than the traditionally queue control mechanisms used in hybrid satellite network.

  3. Satellite image processing for precision agriculture and agroindustry using convolutional neural network and genetic algorithm

    Science.gov (United States)

    Firdaus; Arkeman, Y.; Buono, A.; Hermadi, I.

    2017-01-01

    Translating satellite imagery to a useful data for decision making during this time are usually done manually by human. In this research, we are going to translate satellite imagery by using artificial intelligence method specifically using convolutional neural network and genetic algorithm to become a useful data for decision making, especially for precision agriculture and agroindustry. In this research, we are focused on how to made a sustainable land use planning with 3 objectives. The first is maximizing economic factor. Second is minimizing CO2 emission and the last is minimizing land degradation. Results show that by using artificial intelligence method, can produced a good pareto optimum solutions in a short time.

  4. Geostationary Satellite Observation of Precipitable Water Vapor Using an Empirical Orthogonal Function (EOF based Reconstruction Technique over Eastern China

    Directory of Open Access Journals (Sweden)

    Man Sing Wong

    2015-05-01

    Full Text Available Water vapor, as one of the most important greenhouse gases, is crucial for both climate and atmospheric studies. Considering the high spatial and temporal variations of water vapor, a timely and accurate retrieval of precipitable water vapor (PWV is urgently needed, but has long been constrained by data availability. Our study derived the vertically integrated precipitable water vapor over eastern China using Multi-functional Transport Satellite (MTSAT data, which is in geostationary orbit with high temporal resolution. The missing pixels caused by cloud contamination were reconstructed using an Empirical Orthogonal Function (EOF decomposition method over both spatial and temporal dimensions. GPS meteorology data were used to validate the retrieval and the reconstructed results. The diurnal variation of PWV over eastern China was analyzed using harmonic analysis, which indicates that the reconstructed PWV data can depict the diurnal cycle of PWV caused by evapotranspiration and local thermal circulation.

  5. Observed and blended gauge-satellite precipitation estimates perspective on meteorological drought intensity over South Sulawesi, Indonesia

    Science.gov (United States)

    Setiawan, A. M.; Koesmaryono, Y.; Faqih, A.; Gunawan, D.

    2017-01-01

    South Sulawesi province as one of the rice production center for national food security are highly influenced by climate phenomenon that lead to drought condition. This paper quantifies meteorological drought based on Standardized Precipitation Index (SPI) recommended by the World Meteorological Organization (WMO) and Consecutive Dry Days (CDD) as one of the extreme indices recommended by the Expert Team on Climate Change Detection and Indices (ETCCDI). The indices were calculated by using (i) quality controlled daily and monthly observational precipitation data from 23 weather stations of various record lengths within 1967-2015 periods, and (ii) 0.05o x 0.05o blended gauge-satellite of daily and monthly precipitation estimates of the Climate Hazards Group InfraRed Precipitation with Stations (CHIRPS) dataset. Meteorological drought intensity represented by Average Duration of Drought Intensity (ADI) from three-monthly SPI (SPI3) show spatial differences characteristic between eastern and western region. Observed and CHIRPS have relatively similar perspective on meteorological drought intensity over South Sulawesi. Relatively high values of ADI and longest CDD observed mainly over south western part of study area.

  6. Temporal disaggregation of satellite-derived monthly precipitation estimates and the resulting propagation of error in partitioning of water at the land surface

    Directory of Open Access Journals (Sweden)

    S.A. Margulis

    2001-01-01

    Full Text Available Global estimates of precipitation can now be made using data from a combination of geosynchronous and low earth-orbit satellites. However, revisit patterns of polar-orbiting satellites and the need to sample mixed-clouds scenes from geosynchronous satellites leads to the coarsening of the temporal resolution to the monthly scale. There are prohibitive limitations to the applicability of monthly-scale aggregated precipitation estimates in many hydrological applications. The nonlinear and threshold dependencies of surface hydrological processes on precipitation may cause the hydrological response of the surface to vary considerably based on the intermittent temporal structure of the forcing. Therefore, to make the monthly satellite data useful for hydrological applications (i.e. water balance studies, rainfall-runoff modelling, etc., it is necessary to disaggregate the monthly precipitation estimates into shorter time intervals so that they may be used in surface hydrology models. In this study, two simple statistical disaggregation schemes are developed for use with monthly precipitation estimates provided by satellites. The two techniques are shown to perform relatively well in introducing a reasonable temporal structure into the disaggregated time series. An ensemble of disaggregated realisations was routed through two land surface models of varying complexity so that the error propagation that takes place over the course of the month could be characterised. Results suggest that one of the proposed disaggregation schemes can be used in hydrological applications without introducing significant error. Keywords: precipitation, temporal disaggregation, hydrological modelling, error propagation

  7. Satellite cloud and precipitation property retrievals for climate monitoring and hydrological applications

    NARCIS (Netherlands)

    Wolters, E.L.A.

    2012-01-01

    This thesis presents the retrieval, evaluation, and application of cloud physical property datasets (cloud phase, cloud particle effective radius, and precipitation occurrence and intensity) obtained from Spinning Enhanced Visible and Infrared Imager (SEVIRI) reflectance measurements using the Cloud

  8. Evaluation of CMIP5 continental precipitation simulations relative to satellite-based gauge-adjusted observations

    Energy Technology Data Exchange (ETDEWEB)

    Mehran, Ali [Univ. of California, Irvine, CA (United States). Dept. of Civil and Environmental Engineering; AghaKouchak, Amir [Univ. of California, Irvine, CA (United States). Dept. of Civil and Environmental Engineering; Phillips, Thomas J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-02-25

    Numerous studies have emphasized that climate simulations are subject to various biases and uncertainties. The objective of this study is to cross-validate 34 Coupled Model Intercomparison Project Phase 5 (CMIP5) historical simulations of precipitation against the Global Precipitation Climatology Project (GPCP) data, quantifying model pattern discrepancies and biases for both entire data distributions and their upper tails. The results of the Volumetric Hit Index (VHI) analysis of the total monthly precipitation amounts show that most CMIP5 simulations are in good agreement with GPCP patterns in many areas, but that their replication of observed precipitation over arid regions and certain sub-continental regions (e.g., northern Eurasia, eastern Russia, central Australia) is problematical. Overall, the VHI of the multi-model ensemble mean and median also are superior to that of the individual CMIP5 models. However, at high quantiles of reference data (e.g., the 75th and 90th percentiles), all climate models display low skill in simulating precipitation, except over North America, the Amazon, and central Africa. Analyses of total bias (B) in CMIP5 simulations reveal that most models overestimate precipitation over regions of complex topography (e.g. western North and South America and southern Africa and Asia), while underestimating it over arid regions. Also, while most climate model simulations show low biases over Europe, inter-model variations in bias over Australia and Amazonia are considerable. The Quantile Bias (QB) analyses indicate that CMIP5 simulations are even more biased at high quantiles of precipitation. Lastly, we found that a simple mean-field bias removal improves the overall B and VHI values, but does not make a significant improvement in these model performance metrics at high quantiles of precipitation.

  9. Evaluation of CMIP5 continental precipitation simulations relative to satellite-based gauge-adjusted observations

    Science.gov (United States)

    Mehran, A.; AghaKouchak, A.; Phillips, T. J.

    2014-02-01

    The objective of this study is to cross-validate 34 Coupled Model Intercomparison Project Phase 5 (CMIP5) historical simulations of precipitation against the Global Precipitation Climatology Project (GPCP) data, quantifying model pattern discrepancies, and biases for both entire distributions and their upper tails. The results of the volumetric hit index (VHI) analysis of the total monthly precipitation amounts show that most CMIP5 simulations are in good agreement with GPCP patterns in many areas but that their replication of observed precipitation over arid regions and certain subcontinental regions (e.g., northern Eurasia, eastern Russia, and central Australia) is problematical. Overall, the VHI of the multimodel ensemble mean and median also are superior to that of the individual CMIP5 models. However, at high quantiles of reference data (75th and 90th percentiles), all climate models display low skill in simulating precipitation, except over North America, the Amazon, and Central Africa. Analyses of total bias (B) in CMIP5 simulations reveal that most models overestimate precipitation over regions of complex topography (e.g., western North and South America and southern Africa and Asia), while underestimating it over arid regions. Also, while most climate model simulations show low biases over Europe, intermodel variations in bias over Australia and Amazonia are considerable. The quantile bias analyses indicate that CMIP5 simulations are even more biased at high quantiles of precipitation. It is found that a simple mean field bias removal improves the overall B and VHI values but does not make a significant improvement at high quantiles of precipitation.

  10. Efficient estimation algorithms for a satellite-aided search and rescue mission

    Science.gov (United States)

    Argentiero, P.; Garza-Robles, R.

    1977-01-01

    It has been suggested to establish a search and rescue orbiting satellite system as a means for locating distress signals from downed aircraft, small boats, and overland expeditions. Emissions from Emergency Locator Transmitters (ELT), now available in most U.S. aircraft are to be utilized in the positioning procedure. A description is presented of a set of Doppler navigation algorithms for extracting ELT position coordinates from Doppler data. The algorithms have been programmed for a small computing machine and the resulting system has successfully processed both real and simulated Doppler data. A software system for solving the Doppler navigation problem must include an orbit propagator, a first guess algorithm, and an algorithm for estimating longitude and latitude from Doppler data. Each of these components is considered.

  11. Optical Algorithms at Satellite Wavelengths for Total Suspended Matter in Tropical Coastal Waters

    Directory of Open Access Journals (Sweden)

    Alain Muñoz-Caravaca

    2008-07-01

    Full Text Available Is it possible to derive accurately Total Suspended Matter concentration or its proxy, turbidity, from remote sensing data in tropical coastal lagoon waters? To investigate this question, hyperspectral remote sensing reflectance, turbidity and chlorophyll pigment concentration were measured in three coral reef lagoons. The three sites enabled us to get data over very diverse environments: oligotrophic and sediment-poor waters in the southwest lagoon of New Caledonia, eutrophic waters in the Cienfuegos Bay (Cuba, and sediment-rich waters in the Laucala Bay (Fiji. In this paper, optical algorithms for turbidity are presented per site based on 113 stations in New Caledonia, 24 stations in Cuba and 56 stations in Fiji. Empirical algorithms are tested at satellite wavebands useful to coastal applications. Global algorithms are also derived for the merged data set (193 stations. The performances of global and local regression algorithms are compared. The best one-band algorithms on all the measurements are obtained at 681 nm using either a polynomial or a power model. The best two-band algorithms are obtained with R412/R620, R443/R670 and R510/R681. Two three-band algorithms based on Rrs620.Rrs681/Rrs412 and Rrs620.Rrs681/Rrs510 also give fair regression statistics. Finally, we propose a global algorithm based on one or three bands: turbidity is first calculated from Rrs681 and then, if < 1 FTU, it is recalculated using an algorithm based on Rrs620.Rrs681/Rrs412. On our data set, this algorithm is suitable for the 0.2-25 FTU turbidity range and for the three sites sampled (mean bias: 3.6 %, rms: 35%, mean quadratic error: 1.4 FTU. This shows that defining global empirical turbidity algorithms in tropical coastal waters is at reach.

  12. Performance Evaluation of Machine Learning Algorithms for Urban Pattern Recognition from Multi-spectral Satellite Images

    OpenAIRE

    Marc Wieland; Massimiliano Pittore

    2014-01-01

    In this study, a classification and performance evaluation framework for the recognition of urban patterns in medium (Landsat ETM, TM and MSS) and very high resolution (WorldView-2, Quickbird, Ikonos) multi-spectral satellite images is presented. The study aims at exploring the potential of machine learning algorithms in the context of an object-based image analysis and to thoroughly test the algorithm’s performance under varying conditions to optimize their usage for urban pattern recognitio...

  13. H-- Filtering Algorithms Case Study GPS-Based Satellite Orbit Determination

    Science.gov (United States)

    Kuang, Jinlu; Tan, Soonhie

    In this paper the new Hfiltering algorithms for the design of navigation systems for autonomous LEO satellite is introduced. The nominal orbit (i.e., position and velocity) is computed by integrating the classical orbital differential equations of the LEO satellite by using the 7th-8th order Runge- Kutta algorithms. The perturbations due to the atmospheric drag force, the lunar-solar attraction and the solar radiation pressure are included together with the Earth gravity model (EGM-96). The spherical harmonic coefficients of the EGM-96 are considered up to 72 for the order and degree. By way of the MATLAB GPSoft software, the simulated pseudo ranges between the user LEO satellite and the visible GPS satellites are generated when given the appropriate angle of mask. The effects of the thermal noises, tropospheric refraction, ionospheric refraction, and multipath of the antenna are also compensated numerically in the simulated pseudo ranges. The dynamic Position-Velocity (PV) model is obtained by modeling the velocity as nearly constant being the white noise process. To further accommodate acceleration in the process model, the Position-Velocity-Acceleration (PVA) model is investigated by assuming the acceleration to be the Gaussian- Markov process. The state vector for the PV model becomes 8-dimensional (3-states for positions, 3-states for velocities, 1-state for range (clock) bias error, 1-state for range (clock) drift error). The state vector for the PV model becomes 11-dimensional with the addition of three more acceleration states. Three filtering approaches are used to smooth the orbit solution based upon the GPS pseudo range observables. The numerical simulation shows that the observed orbit root-mean-square errors of 60 meters by using the least squares adjustment method are improved to be less than 5 meters within 16 hours of tracking time by using the Hfiltering algorithms. The results are compared with the ones obtained by using the Extended Kalman

  14. Swarm satellite mission scheduling & planning using Hybrid Dynamic Mutation Genetic Algorithm

    Science.gov (United States)

    Zheng, Zixuan; Guo, Jian; Gill, Eberhard

    2017-08-01

    Space missions have traditionally been controlled by operators from a mission control center. Given the increasing number of satellites for some space missions, generating a command list for multiple satellites can be time-consuming and inefficient. Developing multi-satellite, onboard mission scheduling & planning techniques is, therefore, a key research field for future space mission operations. In this paper, an improved Genetic Algorithm (GA) using a new mutation strategy is proposed as a mission scheduling algorithm. This new mutation strategy, called Hybrid Dynamic Mutation (HDM), combines the advantages of both dynamic mutation strategy and adaptive mutation strategy, overcoming weaknesses such as early convergence and long computing time, which helps standard GA to be more efficient and accurate in dealing with complex missions. HDM-GA shows excellent performance in solving both unconstrained and constrained test functions. The experiments of using HDM-GA to simulate a multi-satellite, mission scheduling problem demonstrates that both the computation time and success rate mission requirements can be met. The results of a comparative test between HDM-GA and three other mutation strategies also show that HDM has outstanding performance in terms of speed and reliability.

  15. Pre-processing Algorithm for Rectification of Geometric Distortions in Satellite Images

    Directory of Open Access Journals (Sweden)

    Narayan Panigrahi

    2011-02-01

    Full Text Available A number of algorithms have been reported to process and remove geometric distortions in satellite images. Ortho-correction, geometric error correction, radiometric error removal, etc are a few important examples. These algorithm require supplementary meta-information of the satellite images such as ground control points and correspondence, sensor orientation details, elevation profile of the terrain, etc to establish corresponding transformations. In this paper, a pre-processing algorithm has been proposed which removes systematic distortions of a satellite image and thereby removes the blank portion of the image. It is an input-to-output mapping of image pixels, where the transformation computes the coordinate of each output pixel corresponding to the input pixel of an image. The transformation is established by the exact amount of scaling, rotation and translation needed for each pixel in the input image so that the distortion induced during the recording stage is corrected.Defence Science Journal, 2011, 61(2, pp.174-179, DOI:http://dx.doi.org/10.14429/dsj.61.421

  16. Comparison between CNA and energetic electron precipitation: simultaneous observation by Poker Flat Imaging Riometer and NOAA satellite

    Directory of Open Access Journals (Sweden)

    Y.-M. Tanaka

    2005-07-01

    Full Text Available The cosmic noise absorption (CNA is compared with the precipitating electron flux for 19 events observed in the morning sector, using the high-resolution data obtained during the conjugate observations with the imaging riometer at Poker Flat Research Range (PFRR; 65.11° N, 147.42° W, Alaska, and the low-altitude satellite, NOAA 12. We estimate the CNA, using the precipitating electron flux measured by NOAA 12, based on a theoretical model assuming an isotropic pitch angle distribution, and quantitatively compare them with the observed CNA. Focusing on the eight events with a range of variation larger than 0.4dB, three events show high correlation between the observed and estimated CNA (correlation coefficient (r0>0.7 and five events show low correlation (r0<0.5. The estimated CNA is often smaller than the observed CNA (72% of all data for 19 events, which appears to be the main reason for the low-correlation events. We examine the assumption of isotropic pitch angle distribution by using the trapped electron flux measured at 80° zenith angle. It is shown that the CNA estimated from the trapped electron flux, assuming an isotropic pitch angle distribution, is highly correlated with the observed CNA and is often overestimated (87% of all data. The underestimate (overestimate of CNA derived from the precipitating (trapped electron flux can be interpreted in terms of the anisotropic pitch angle distribution similar to the loss cone distribution. These results indicate that the CNA observed with the riometer may be quantitatively explained with a model based on energetic electron precipitation, provided that the pitch angle distribution and the loss cone angle of the electrons are taken into account.

    Keywords. Energetic particles, precipitating – Energetic particles, trapped – Ionosphere-magnetosphere interactions

  17. A novel gridding algorithm to create regional trace gas maps from satellite observations

    Directory of Open Access Journals (Sweden)

    G. Kuhlmann

    2014-02-01

    Full Text Available The recent increase in spatial resolution for satellite instruments has made it feasible to study distributions of trace gas column densities on a regional scale. For this application a new gridding algorithm was developed to map measurements from the instrument's frame of reference (level 2 onto a longitude–latitude grid (level 3. The algorithm is designed for the Ozone Monitoring Instrument (OMI and can easily be employed for similar instruments – for example, the upcoming TROPOspheric Monitoring Instrument (TROPOMI. Trace gas distributions are reconstructed by a continuous parabolic spline surface. The algorithm explicitly considers the spatially varying sensitivity of the sensor resulting from the instrument function. At the swath edge, the inverse problem of computing the spline coefficients is very sensitive to measurement errors and is regularised by a second-order difference matrix. Since this regularisation corresponds to the penalty term for smoothing splines, it similarly attenuates the effect of measurement noise over the entire swath width. Monte Carlo simulations are conducted to study the performance of the algorithm for different distributions of trace gas column densities. The optimal weight of the penalty term is found to be proportional to the measurement uncertainty and the width of the instrument function. A comparison with an established gridding algorithm shows improved performance for small to moderate measurement errors due to better parametrisation of the distribution. The resulting maps are smoother and extreme values are more accurately reconstructed. The performance improvement is further illustrated with high-resolution distributions obtained from a regional chemistry model. The new algorithm is applied to tropospheric NO2 column densities measured by OMI. Examples of regional NO2 maps are shown for densely populated areas in China, Europe and the United States of America. This work demonstrates that the newly

  18. A novel gridding algorithm to create regional trace gas maps from satellite observations

    Directory of Open Access Journals (Sweden)

    G. Kuhlmann

    2013-08-01

    Full Text Available Recent increase of spatial resolution for satellite instruments has it made feasible to study distributions of trace gas column densities on a regional scale. For this application a new gridding algorithm was developed to map measurements from the instrument's frame of reference (Level 2 onto a longitude-latitude grid (Level 3. The algorithm is designed for the Ozone Monitoring Instrument (OMI and can be employed easily to similar instruments, for example, the upcoming TROPOspheric Monitoring Instrument (TROPOMI. Trace gas distributions are reconstructed by a continuous parabolic spline surface. The algorithm explicitly considers the spatially varying sensitivity of the sensor resulting from the instrument function. At the swath edge, the inverse problem of computing the spline coefficients is very sensitive to measurement errors and is regularised by a second-order difference matrix. Since this regularisation corresponds to the penalty term for smoothing splines, it similarly attenuates the effect of measurement noise over the entire swath width. Monte Carlo simulations are conducted to study the performance of the algorithm for different distributions of trace gas column densities. The optimal weight of the penalty term is found to be proportional to the measurement uncertainty and the width of the instrument function. A comparison with an established gridding algorithm shows improved performance for small to moderate measurement errors due to better parametrization of the distribution. The resulting maps are smoother and extreme values are more accurately reconstructed. The performance improvement is further illustrated with high-resolution distributions obtained from a regional chemistry model. The new algorithm is applied to tropospheric NO2 column densities measured by OMI. Examples of regional NO2 maps are shown for densely populated areas in China, Europe and the United States of America. This work demonstrates that the newly developed

  19. A novel approach to validate satellite soil moisture retrievals using precipitation data

    Science.gov (United States)

    Karthikeyan, L.; Kumar, D. Nagesh

    2016-10-01

    A novel approach is proposed that attempts to validate passive microwave soil moisture retrievals using precipitation data (applied over India). It is based on the concept that the expectation of precipitation conditioned on soil moisture follows a sigmoidal convex-concave-shaped curve, the characteristic of which was recently shown to be represented by mutual information estimated between soil moisture and precipitation. On this basis, with an emphasis over distribution-free nonparametric computations, a new measure called Copula-Kernel Density Estimator based Mutual Information (CKDEMI) is introduced. The validation approach is generic in nature and utilizes CKDEMI in tandem with a couple of proposed bootstrap strategies, to check accuracy of any two soil moisture products (here Advanced Microwave Scanning Radiometer-EOS sensor's Vrije Universiteit Amsterdam-NASA (VUAN) and University of Montana (MONT) products) using precipitation (India Meteorological Department) data. The proposed technique yields a "best choice soil moisture product" map which contains locations where any one of the two/none of the two/both the products have produced accurate retrievals. The results indicated that in general, VUA-NASA product has performed well over University of Montana's product for India. The best choice soil moisture map is then integrated with land use land cover and elevation information using a novel probability density function-based procedure to gain insight on conditions under which each of the products has performed well. Finally, the impact of using a different precipitation (Asian Precipitation-Highly-Resolved Observational Data Integration Towards Evaluation of Water Resources) data set over the best choice soil moisture product map is also analyzed. The proposed methodology assists researchers and practitioners in selecting the appropriate soil moisture product for various assimilation strategies at both basin and continental scales.

  20. SHADOW DETECTION FROM VERY HIGH RESOLUTON SATELLITE IMAGE USING GRABCUT SEGMENTATION AND RATIO-BAND ALGORITHMS

    Directory of Open Access Journals (Sweden)

    N. M. S. M. Kadhim

    2015-03-01

    Full Text Available Very-High-Resolution (VHR satellite imagery is a powerful source of data for detecting and extracting information about urban constructions. Shadow in the VHR satellite imageries provides vital information on urban construction forms, illumination direction, and the spatial distribution of the objects that can help to further understanding of the built environment. However, to extract shadows, the automated detection of shadows from images must be accurate. This paper reviews current automatic approaches that have been used for shadow detection from VHR satellite images and comprises two main parts. In the first part, shadow concepts are presented in terms of shadow appearance in the VHR satellite imageries, current shadow detection methods, and the usefulness of shadow detection in urban environments. In the second part, we adopted two approaches which are considered current state-of-the-art shadow detection, and segmentation algorithms using WorldView-3 and Quickbird images. In the first approach, the ratios between the NIR and visible bands were computed on a pixel-by-pixel basis, which allows for disambiguation between shadows and dark objects. To obtain an accurate shadow candidate map, we further refine the shadow map after applying the ratio algorithm on the Quickbird image. The second selected approach is the GrabCut segmentation approach for examining its performance in detecting the shadow regions of urban objects using the true colour image from WorldView-3. Further refinement was applied to attain a segmented shadow map. Although the detection of shadow regions is a very difficult task when they are derived from a VHR satellite image that comprises a visible spectrum range (RGB true colour, the results demonstrate that the detection of shadow regions in the WorldView-3 image is a reasonable separation from other objects by applying the GrabCut algorithm. In addition, the derived shadow map from the Quickbird image indicates

  1. Geo-correction Algorithm Based on Equivalent RD Model for ScanSAR of HJ-1-C Satellite

    Directory of Open Access Journals (Sweden)

    Liu Jia-yin

    2014-06-01

    Full Text Available HJ-1-C satellite is the first Synthetic Aperture Radar (SAR satellite for civilian use in China, and it has a strip and scan mode. According to the characteristics of the ScanSAR of the HJ-1-C satellite, a geo-correction algorithm based on an equivalent RD model has been outlined in this paper on the basis of an ECS image processing algorithm and a traditional Range-Doppler location method. An azimuth mosaic was presented by a time series relationship, then the different burst was stitched by range, and the equivalent parameters were fitted to locations on the RD model. Finally, the ScanSAR image was geo-corrected. The HJ-1-C satellite data results showed that the location accuracy of ScanSAR for the HJ-1-C satellite was less than 100 m, and the geo-correction algorithm was realized in 10 s in fewer than 24 parallel cores.

  2. Applications of TRMM-based Multi-Satellite Precipitation Estimation for Global Runoff Simulation: Prototyping a Global Flood Monitoring System

    Science.gov (United States)

    Hong, Yang; Adler, Robert F.; Huffman, George J.; Pierce, Harold

    2008-01-01

    Advances in flood monitoring/forecasting have been constrained by the difficulty in estimating rainfall continuously over space (catchment-, national-, continental-, or even global-scale areas) and flood-relevant time scale. With the recent availability of satellite rainfall estimates at fine time and space resolution, this paper describes a prototype research framework for global flood monitoring by combining real-time satellite observations with a database of global terrestrial characteristics through a hydrologically relevant modeling scheme. Four major components included in the framework are (1) real-time precipitation input from NASA TRMM-based Multi-satellite Precipitation Analysis (TMPA); (2) a central geospatial database to preprocess the land surface characteristics: water divides, slopes, soils, land use, flow directions, flow accumulation, drainage network etc.; (3) a modified distributed hydrological model to convert rainfall to runoff and route the flow through the stream network in order to predict the timing and severity of the flood wave, and (4) an open-access web interface to quickly disseminate flood alerts for potential decision-making. Retrospective simulations for 1998-2006 demonstrate that the Global Flood Monitor (GFM) system performs consistently at both station and catchment levels. The GFM website (experimental version) has been running at near real-time in an effort to offer a cost-effective solution to the ultimate challenge of building natural disaster early warning systems for the data-sparse regions of the world. The interactive GFM website shows close-up maps of the flood risks overlaid on topography/population or integrated with the Google-Earth visualization tool. One additional capability, which extends forecast lead-time by assimilating QPF into the GFM, also will be implemented in the future.

  3. Effects of assimilating precipitation zones derived from satellite and lightning data on numerical simulations of tropical-like Mediterranean storms

    Directory of Open Access Journals (Sweden)

    L. Fita

    2009-08-01

    Full Text Available The scarcity of meteorological observations in maritime areas is a well-known problem that can be an important limitation in the study of different phenomena. Tropical-like storms or medicanes developed over the Mediterranean sea are intense storms with some similarities to the tropical ones. Although they do not reach the hurricane intensity, their potential for damage is very high, due to the densely populated Mediterranean coastal regions. In this study, the two notable cases of medicane development which occurred in the western Mediterranean basin in September 1996 and October 2003, are considered. The capability of mesoscale numerical models to simulate general aspects of such a phenomena has been previously shown. With the aim of improving the numerical results, an adjustment of the humidity vertical profiles in MM5 simulations is performed by means of satellite derived precipitation. Convective and stratiform precipitation types obtained from satellite images are used to individually adjust the profiles. Lightning hits are employed to identify convective grid points. The adjustment of the vertical humidity profiles is carried out in the European Centre for Medium-Range Weather Forecasts (ECMWF analyses used as initial conditions for the simulations. Analyses nudging to ECMWF analyses and to the satellite-based humidity-corrected version of these analyses has also been applied using Four Dimensional Data Assimilation (FDDA. An additional adjustment is applied as observation nudging of satellite/lightning information at different time and spatial resolutions. Statistical parameters are proposed and tested as an objective way to intercompare satellite-derived and simulated trajectories. Simulations of medicanes exhibit a strong sensitivity to vertical humidity profiles. Trajectories of the storms are improved or worsened by using FDDA. A case dependence is obtained on the characteristics of the humidity-corrected medicanes. FDDA sensitivity

  4. Effects of assimilating precipitation zones derived from satellite and lightning data on numerical simulations of tropical-like Mediterranean storms

    Energy Technology Data Exchange (ETDEWEB)

    Fita, L.; Romero, R.; Luque, A.; Ramis, C. [Univ. de les Illes Balears, Palma de Mallorca (Spain). Grup de Meteorologia

    2009-07-01

    The scarcity of meteorological observations in maritime areas is a well-known problem that can be an important limitation in the study of different phenomena. Tropical-like storms or medicanes developed over the Mediterranean sea are intense storms with some similarities to the tropical ones. Although they do not reach the hurricane intensity, their potential for damage is very high, due to the densely populated Mediterranean coastal regions. In this study, the two notable cases of medicane development which occurred in the western Mediterranean basin in September 1996 and October 2003, are considered. The capability of mesoscale numerical models to simulate general aspects of such a phenomena has been previously shown. With the aim of improving the numerical results, an adjustment of the humidity vertical profiles in MM5 simulations is performed by means of satellite derived precipitation. Convective and stratiform precipitation types obtained from satellite images are used to individually adjust the profiles. Lightning hits are employed to identify convective grid points. The adjustment of the vertical humidity profiles is carried out in the European Centre for Medium-Range Weather Forecasts (ECMWF) analyses used as initial conditions for the simulations. Analyses nudging to ECMWF analyses and to the satellite-based humidity-corrected version of these analyses has also been applied using Four Dimensional Data Assimilation (FDDA). An additional adjustment is applied as observation nudging of satellite/lightning information at different time and spatial resolutions. Statistical parameters are proposed and tested as an objective way to intercompare satellite-derived and simulated trajectories. Simulations of medicanes exhibit a strong sensitivity to vertical humidity profiles. Trajectories of the storms are improved or worsened by using FDDA. A case dependence is obtained on the characteristics of the humidity-corrected medicanes. FDDA sensitivity on temporal and

  5. Parallel algorithms of relative radiometric correction for images of TH-1 satellite

    Science.gov (United States)

    Wang, Xiang; Zhang, Tingtao; Cheng, Jiasheng; Yang, Tao

    2014-05-01

    The first generation of transitive stereo-metric satellites in China, TH-1 Satellite, is able to gain stereo images of three-line-array with resolution of 5 meters, multispectral images of 10 meters, and panchromatic high resolution images of 2 meters. The procedure between level 0 and level 1A of high resolution images is so called relative radiometric correction (RRC for short). The processing algorithm of high resolution images, with large volumes of data, is complicated and time consuming. In order to bring up the processing speed, people in industry commonly apply parallel processing techniques based on CPU or GPU. This article firstly introduces the whole process and each step of the algorithm - that is in application - of RRC for high resolution images in level 0; secondly, the theory and characteristics of MPI (Message Passing Interface) and OpenMP (Open Multi-Processing) parallel programming techniques is briefly described, as well as the superiority for parallel technique in image processing field; thirdly, aiming at each step of the algorithm in application and based on MPI+OpenMP hybrid paradigm, the parallelizability and the strategies of parallelism for three processing steps: Radiometric Correction, Splicing Pieces of TDICCD (Time Delay Integration Charge-Coupled Device) and Gray Level Adjustment among pieces of TDICCD are deeply discussed, and furthermore, deducts the theoretical acceleration rates of each step and the one of whole procedure, according to the processing styles and independence of calculation; for the step Splicing Pieces of TDICCD, two different strategies of parallelism are proposed, which are to be chosen with consideration of hardware capabilities; finally, series of experiments are carried out to verify the parallel algorithms by applying 2-meter panchromatic high resolution images of TH-1 Satellite, and the experimental results are analyzed. Strictly on the basis of former parallel algorithms, the programs in the experiments

  6. Optical Algorithms at Satellite Wavelengths for Total Suspended Matter in Tropical Coastal Waters

    Science.gov (United States)

    Ouillon, Sylvain; Douillet, Pascal; Petrenko, Anne; Neveux, Jacques; Dupouy, Cécile; Froidefond, Jean-Marie; Andréfouët, Serge; Muñoz-Caravaca, Alain

    2008-01-01

    Is it possible to derive accurately Total Suspended Matter concentration or its proxy, turbidity, from remote sensing data in tropical coastal lagoon waters? To investigate this question, hyperspectral remote sensing reflectance, turbidity and chlorophyll pigment concentration were measured in three coral reef lagoons. The three sites enabled us to get data over very diverse environments: oligotrophic and sediment-poor waters in the southwest lagoon of New Caledonia, eutrophic waters in the Cienfuegos Bay (Cuba), and sediment-rich waters in the Laucala Bay (Fiji). In this paper, optical algorithms for turbidity are presented per site based on 113 stations in New Caledonia, 24 stations in Cuba and 56 stations in Fiji. Empirical algorithms are tested at satellite wavebands useful to coastal applications. Global algorithms are also derived for the merged data set (193 stations). The performances of global and local regression algorithms are compared. The best one-band algorithms on all the measurements are obtained at 681 nm using either a polynomial or a power model. The best two-band algorithms are obtained with R412/R620, R443/R670 and R510/R681. Two three-band algorithms based on Rrs620.Rrs681/Rrs412 and Rrs620.Rrs681/Rrs510 also give fair regression statistics. Finally, we propose a global algorithm based on one or three bands: turbidity is first calculated from Rrs681 and then, if turbidity range and for the three sites sampled (mean bias: 3.6 %, rms: 35%, mean quadratic error: 1.4 FTU). This shows that defining global empirical turbidity algorithms in tropical coastal waters is at reach. PMID:27879929

  7. IPO operational algorithm teams throughout the life cycle of NPOESS environmental satellites

    Science.gov (United States)

    Duda, James L.; Emch, Pamela G.

    2004-09-01

    The tri-agency Integrated Program Office (IPO) created Operational Algorithm Teams (OATs) in 1997 to provide scientific advice for managing the development and operation of the National Polar-orbiting Operational Environmental Satellite System (NPOESS). The scientific advice focuses on (1) assuring sound science in instrument and systems design in addition to (2) assuring development and implementation of sound scientific algorithms. This paper outlines the role of IPO operational algorithm teams from mission conception, through instrument design and development, algorithm science code development and conversion to operational code, data processing system implementation, calibration, validation, and, finally, operational data and products distribution to a range of users for weather, national security, and climate science. The composition of the algorithm science teams changes substantially as the sensors and algorithms are developed, tested, integrated, launched, become operational, and age on-orbit. The concept of leveraging our heritage scientists has proven successful with many tangible benefits to the government, the contractor teams, and, ultimately, the nation's taxpayers.

  8. MPI Parallel Algorithm in Satellite Gravity Field Model Inversion on the Basis of Least Square Method

    Directory of Open Access Journals (Sweden)

    ZHOU Hao

    2015-08-01

    Full Text Available In order to solve the intensive computing tasks and high memory demand problem in satellite gravity field model inversion on the basis of huge amounts of satellite gravity observations, the parallel algorithm for high truncated order and degree satellite gravity field model inversion with least square method on the basis of MPI was introduced. After analyzing the time and space complexity of each step in the solving flow, the parallel I/O, block-organized storage and block-organized computation algorithm on the basis of MPI are introduced to design the parallel algorithm for building design matrix, establishing and solving normal equation, and the simulation results indicate that the parallel efficiency of building design matrix, establishing and solving normal equation can reach to 95%, 68%and 63% respectively. In addition, on the basis of GOCE simulated orbits and radial disturbance gravity gradient data(518 400 epochs in total, two earth gravity models truncated to degree and order 120, 240 are inversed, and the relative computation time and memory demand are only about 40 minutes and 7 hours, 290 MB and 1.57 GB respectively. Eventually, a simulation numerical calculation for earth gravity field model inversion with the simulation data, which has the equivalent noise level with GRACE and GOCE mission, is conducted. The accuracy of inversion model has a good consistent with current released model, and the combined mode can complement the spectral information of each individual mission, which indicates that the parallel algorithm in this paper can be applied to inverse the high truncated degree and order earth gravity model efficiently and stably.

  9. Evaluation of algorithms for fire detection and mapping across North America from satellite

    Science.gov (United States)

    Li, Zhanqing; Fraser, R.; Jin, J.; Abuelgasim, A. A.; Csiszar, I.; Gong, P.; Pu, R.; Hao, W.

    2003-01-01

    This paper presents an evaluation of advanced very high resolution radiometer (AVHRR)-based remote sensing algorithms for detecting active vegetation fires [, 2000a] and mapping burned areas [, 2000] throughout North America. The procedures were originally designed for application in Canada with AVHRR data aboard the NOAA 14 satellite. They were tested here with both NOAA 11 and NOAA 14 covering the period 1989-2000. It was found that the active fire detection algorithm performs well with low commission and omission error rates over forested regions in the absence of cloud cover. Moderate errors were found over semi-arid areas covered by thin clouds, as well as along rivers and around lakes observed from sun-glint angles. A modification to a fire algorithm threshold and the addition of a new test can significantly improve the detection accuracy. Burned areas mapped by satellite were compared against extensive fire polygon data acquired by U.S. forest agencies in five western states. The satellite-based mapping matches nearly 90% of total forested burned area, with the difference being mainly attributable to omission of some nonburned islands and patches within the fire polygons. In addition, it maps a significant area of burning outside the fire polygons that appear to be true fires. The 10% omission error was found to be caused mainly by three factors: lack or insufficient number of active fires, partial burning, and vegetation recovery after early season burning. In addition to total area, the location and shapes of burned scars are consistent with the ground-based maps. Overall, the two algorithms are competent for detecting and mapping forest fires in North America north of Mexico with minor modifications.

  10. Hydrological modeling of the Peruvian–Ecuadorian Amazon Basin using GPM-IMERG satellite-based precipitation dataset

    Directory of Open Access Journals (Sweden)

    R. Zubieta

    2017-07-01

    Full Text Available In the last two decades, rainfall estimates provided by the Tropical Rainfall Measurement Mission (TRMM have proven applicable in hydrological studies. The Global Precipitation Measurement (GPM mission, which provides the new generation of rainfall estimates, is now considered a global successor to TRMM. The usefulness of GPM data in hydrological applications, however, has not yet been evaluated over the Andean and Amazonian regions. This study uses GPM data provided by the Integrated Multi-satellite Retrievals (IMERG (product/final run as input to a distributed hydrological model for the Amazon Basin of Peru and Ecuador for a 16-month period (from March 2014 to June 2015 when all datasets are available. TRMM products (TMPA V7 and TMPA RT datasets and a gridded precipitation dataset processed from observed rainfall are used for comparison. The results indicate that precipitation data derived from GPM-IMERG correspond more closely to TMPA V7 than TMPA RT datasets, but both GPM-IMERG and TMPA V7 precipitation data tend to overestimate, compared to observed rainfall (by 11.1 and 15.7 %, respectively. In general, GPM-IMERG, TMPA V7 and TMPA RT correlate with observed rainfall, with a similar number of rain events correctly detected ( ∼  20 %. Statistical analysis of modeled streamflows indicates that GPM-IMERG is as useful as TMPA V7 or TMPA RT datasets in southern regions (Ucayali Basin. GPM-IMERG, TMPA V7 and TMPA RT do not properly simulate streamflows in northern regions (Marañón and Napo basins, probably because of the lack of adequate rainfall estimates in northern Peru and the Ecuadorian Amazon.

  11. Hydrological modeling of the Peruvian-Ecuadorian Amazon Basin using GPM-IMERG satellite-based precipitation dataset

    Science.gov (United States)

    Zubieta, Ricardo; Getirana, Augusto; Carlo Espinoza, Jhan; Lavado-Casimiro, Waldo; Aragon, Luis

    2017-07-01

    In the last two decades, rainfall estimates provided by the Tropical Rainfall Measurement Mission (TRMM) have proven applicable in hydrological studies. The Global Precipitation Measurement (GPM) mission, which provides the new generation of rainfall estimates, is now considered a global successor to TRMM. The usefulness of GPM data in hydrological applications, however, has not yet been evaluated over the Andean and Amazonian regions. This study uses GPM data provided by the Integrated Multi-satellite Retrievals (IMERG) (product/final run) as input to a distributed hydrological model for the Amazon Basin of Peru and Ecuador for a 16-month period (from March 2014 to June 2015) when all datasets are available. TRMM products (TMPA V7 and TMPA RT datasets) and a gridded precipitation dataset processed from observed rainfall are used for comparison. The results indicate that precipitation data derived from GPM-IMERG correspond more closely to TMPA V7 than TMPA RT datasets, but both GPM-IMERG and TMPA V7 precipitation data tend to overestimate, compared to observed rainfall (by 11.1 and 15.7 %, respectively). In general, GPM-IMERG, TMPA V7 and TMPA RT correlate with observed rainfall, with a similar number of rain events correctly detected ( ˜ 20 %). Statistical analysis of modeled streamflows indicates that GPM-IMERG is as useful as TMPA V7 or TMPA RT datasets in southern regions (Ucayali Basin). GPM-IMERG, TMPA V7 and TMPA RT do not properly simulate streamflows in northern regions (Marañón and Napo basins), probably because of the lack of adequate rainfall estimates in northern Peru and the Ecuadorian Amazon.

  12. Cost Analysis of Algorithm Based Billboard Manger Based Handover Method in LEO satellite Networks

    Directory of Open Access Journals (Sweden)

    Suman Kumar Sikdar

    2012-12-01

    Full Text Available Now-a-days LEO satellites have an important role in global communication system. They have some advantages like low power requirement and low end-to-end delay, more efficient frequency spectrum utilization between satellites and spot beams over GEO and MEO. So in future they can be used as a replacement of modern terrestrial wireless networks. But the handover occurrence is more due to the speed of the LEOs. Different protocol has been proposed for a successful handover among which BMBHO is more efficient. But it had a problem during the selection of the mobile node during handover. In our previous work we have proposed an algorithm so that the connection can be established easily with the appropriate satellite. In this paper we will evaluate the mobility management cost of Algorithm based Billboard Manager Based Handover method (BMBHO. A simulation result shows that the cost is lower than the cost of Mobile IP of SeaHO-LEO and PatHOLEO

  13. The Joint Polar Satellite System (JPSS) Program's Algorithm Change Process (ACP): Past, Present and Future

    Science.gov (United States)

    Griffin, Ashley

    2017-01-01

    The Joint Polar Satellite System (JPSS) Program Office is the supporting organization for the Suomi National Polar Orbiting Partnership (S-NPP) and JPSS-1 satellites. S-NPP carries the following sensors: VIIRS, CrIS, ATMS, OMPS, and CERES with instruments that ultimately produce over 25 data products that cover the Earths weather, oceans, and atmosphere. A team of scientists and engineers from all over the United States document, monitor and fix errors in operational software code or documentation with the algorithm change process (ACP) to ensure the success of the S-NPP and JPSS 1 missions by maintaining quality and accuracy of the data products the scientific community relies on. This poster will outline the programs algorithm change process (ACP), identify the various users and scientific applications of our operational data products and highlight changes that have been made to the ACP to accommodate operating system upgrades to the JPSS programs Interface Data Processing Segment (IDPS), so that the program is ready for the transition to the 2017 JPSS-1 satellite mission and beyond.

  14. Does GPM-based multi-satellite precipitation enhance rainfall estimates over Pakistan and Bolivia arid regions?

    Science.gov (United States)

    Hussain, Y.; Satgé, F.; Bonnet, M. P.; Pillco, R.; Molina, J.; Timouk, F.; Roig, H.; Martinez-Carvajal, H., Sr.; Gulraiz, A.

    2016-12-01

    Arid regions are sensitive to rainfall variations which are expressed in the form of flooding and droughts. Unfortunately, those regions are poorly monitored and high quality rainfall estimates are still needed. The Global Precipitation Measurement (GPM) mission released two new satellite rainfall products named Integrated Multisatellite Retrievals GPM (IMERG) and Global Satellite Mapping of Precipitation version 6 (GSMaP-v6) bringing the possibility of accurate rainfall monitoring over these countries. This study assessed both products at monthly scale over Pakistan considering dry and wet season over the 4 main climatic zones from 2014 to 2016. With similar climatic conditions, the Altiplano region of Bolivia is considered to quantify the influence of big lakes (Titicaca and Poopó) in rainfall estimates. For comparison, the widely used TRMM-Multisatellite Precipitation Analysis 3B43 (TMPA-3B43) version 7 is also involved in the analysis to observe the potential enhancement in rainfall estimate brought by GPM products. Rainfall estimates derived from 110 rain-gauges are used as reference to compare IMERG, GSMaP-v6 and TMPA-3B43 at the 0.1° and 0.25° spatial resolution. Over both regions, IMERG and GSMaP-v6 capture the spatial pattern of precipitation as well as TMPA-3B43. All products tend to over estimates rainfall over very arid regions. This feature is even more marked during dry season. However, during this season, both reference and estimated rainfall remain very low and do not impact seasonal water budget computation. On a general way, IMERG slightly outperforms TMPA-3B43 and GSMaP-v6 which provides the less accurate rainfall estimate. The TMPA-3B43 rainfall underestimation previously found over Lake Titicaca is still observed in IMERG estimates. However, GSMaP-v6 considerably decreases the underestimation providing the most accurate rainfall estimate over the lake. MOD11C3 Land Surface Temperature (LST) and ASTER Global Emissivity Dataset reveal strong

  15. Patterns of Precipitation and Convection Occurrence over the Mediterranean Basin Derived from a Decade of Microwave Satellite Observations

    Directory of Open Access Journals (Sweden)

    Bahjat Alhammoud

    2014-05-01

    Full Text Available The Mediterranean region is characterized by its vulnerability to changes in the water cycle, with the impact of global warming on the water resources being one of the major concerns in social, economical and scientific ambits. Even if precipitation is the best-known term of the Mediterranean water budget, large uncertainties remain due to the lack of suitable offshore observational data. In this study, we use the data provided by the Advanced Microwave Sounding Unit-B (AMSU-B on board NOAA satellites to detect and analyze precipitating and convective events over the last decade at spatial resolution of 0.2° latitude × 0.2° longitude. AMSU-B observation shows that rain occurrence is widespread over the Mediterranean in wintertime while reduced in the eastern part of the basin in summer. Both precipitation and convection occurrences display a weak diurnal cycle over sea. In addition, convection occurrences, which are essentially located over land during summertime, shift to mostly over the sea during autumn with maxima in the Ionian sub-basin and the Adriatic Sea. Precipitation occurrence is also inferred over the sea from two other widely used climatological datasets, HOAPS (Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data and the European Centre for Medium-Range Weather Forecasts (ECMWF reanalysis interim (ERA-Interim. There is generally a rather fair agreement between these climatologies for describing the large-scale patterns such as the strong latitudinal gradient of rain and eastward rain signal propagation. Furthermore, the higher spatial resolution of AMSU-B measurements (16 km at nadir gives access to mesoscale details in the region (e.g., coastal areas. AMSU-B measurements show less rain occurrences than HOAPS during wintertime, thereby suggesting that some of the thresholds used in our method might be too stringent during this season. We also observed that convection occurrences in ERA-Interim are systematically

  16. Geo-correction Algorithm Based on Equivalent RD Model for ScanSAR of HJ-1-C Satellite

    OpenAIRE

    Liu Jia-yin; Wen Shuang-yan; Zhang Hong-yi; Hong Wen

    2014-01-01

    HJ-1-C satellite is the first Synthetic Aperture Radar (SAR) satellite for civilian use in China, and it has a strip and scan mode. According to the characteristics of the ScanSAR of the HJ-1-C satellite, a geo-correction algorithm based on an equivalent RD model has been outlined in this paper on the basis of an ECS image processing algorithm and a traditional Range-Doppler location method. An azimuth mosaic was presented by a time series relationship, then the different burst was stitched b...

  17. a New Algorithm for Void Filling in a Dsm from Stereo Satellite Images in Urban Areas

    Science.gov (United States)

    Gharib Bafghi, Z.; Tian, J.; d'Angelo, P.; Reinartz, P.

    2016-06-01

    Digital Surface Models (DSM) derived from stereo-pair satellite images are the main sources for many Geo-Informatics applications like 3D change detection, object classification and recognition. However since occlusion especially in urban scenes result in some deficiencies in the stereo matching phase, these DSMs contain some voids. In order to fill the voids a range of algorithms have been proposed, mainly including interpolation alone or along with auxiliary DSM. In this paper an algorithm for void filling in DSM from stereo satellite images has been developed. Unlike common previous approaches we didn't use any external DSM to fill the voids. Our proposed algorithm uses only the original images and the unfilled DSM itself. First a neighborhood around every void in the unfilled DSM and its corresponding area in multispectral image is defined. Then it is analysed to extract both spectral and geometric texture and accordingly to assign labels to each cell in the voids. This step contains three phases comprising shadow detection, height thresholding and image segmentation. Thus every cell in void has a label and is filled by the median value of its co-labelled neighbors. The results for datasets from WorldView-2 and IKONOS are shown and discussed.

  18. A NEW ALGORITHM FOR VOID FILLING IN A DSM FROM STEREO SATELLITE IMAGES IN URBAN AREAS

    Directory of Open Access Journals (Sweden)

    Z. Gharib Bafghi

    2016-06-01

    Full Text Available Digital Surface Models (DSM derived from stereo-pair satellite images are the main sources for many Geo-Informatics applications like 3D change detection, object classification and recognition. However since occlusion especially in urban scenes result in some deficiencies in the stereo matching phase, these DSMs contain some voids. In order to fill the voids a range of algorithms have been proposed, mainly including interpolation alone or along with auxiliary DSM. In this paper an algorithm for void filling in DSM from stereo satellite images has been developed. Unlike common previous approaches we didn’t use any external DSM to fill the voids. Our proposed algorithm uses only the original images and the unfilled DSM itself. First a neighborhood around every void in the unfilled DSM and its corresponding area in multispectral image is defined. Then it is analysed to extract both spectral and geometric texture and accordingly to assign labels to each cell in the voids. This step contains three phases comprising shadow detection, height thresholding and image segmentation. Thus every cell in void has a label and is filled by the median value of its co-labelled neighbors. The results for datasets from WorldView-2 and IKONOS are shown and discussed.

  19. Optimizing Satellite-Based Precipitation Estimation for Nowcasting of Rainfall and Flash Flood Events over the South African Domain

    OpenAIRE

    Estelle de Coning

    2013-01-01

    The South African Weather Service is mandated to issue warnings of hazardous weather events, including those related to heavy precipitation, in order to safeguard life and property. Flooding and flash flood events are common in South Africa. Frequent updates and real-time availability of precipitation data are crucial to support hydrometeorological warning services. Satellite rainfall estimation provides a very important data source for flash flood guidance systems as well as nowcasting of pr...

  20. Code Tracking Algorithms for Mitigating Multipath Effects in Fading Channels for Satellite-Based Positioning

    Directory of Open Access Journals (Sweden)

    Markku Renfors

    2007-12-01

    Full Text Available The ever-increasing public interest in location and positioning services has originated a demand for higher performance global navigation satellite systems (GNSSs. In order to achieve this incremental performance, the estimation of line-of-sight (LOS delay with high accuracy is a prerequisite for all GNSSs. The delay lock loops (DLLs and their enhanced variants (i.e., feedback code tracking loops are the structures of choice for the commercial GNSS receivers, but their performance in severe multipath scenarios is still rather limited. In addition, the new satellite positioning system proposals specify the use of a new modulation, the binary offset carrier (BOC modulation, which triggers a new challenge in the code tracking stage. Therefore, in order to meet this emerging challenge and to improve the accuracy of the delay estimation in severe multipath scenarios, this paper analyzes feedback as well as feedforward code tracking algorithms and proposes the peak tracking (PT methods, which are combinations of both feedback and feedforward structures and utilize the inherent advantages of both structures. We propose and analyze here two variants of PT algorithm: PT with second-order differentiation (Diff2, and PT with Teager Kaiser (TK operator, which will be denoted herein as PT(Diff2 and PT(TK, respectively. In addition to the proposal of the PT methods, the authors propose also an improved early-late-slope (IELS multipath elimination technique which is shown to provide very good mean-time-to-lose-lock (MTLL performance. An implementation of a noncoherent multipath estimating delay locked loop (MEDLL structure is also presented. We also incorporate here an extensive review of the existing feedback and feedforward delay estimation algorithms for direct sequence code division multiple access (DS-CDMA signals in satellite fading channels, by taking into account the impact of binary phase shift keying (BPSK as well as the newly proposed BOC modulation

  1. On Some Aspects of Precipitation over Tropical Indian Ocean Using Satellite Data

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.; Sreejith, O.P.

    rainfall. The next most important error, due to fair weather bias, arises due to the lack of precipitation measurements caused by the lows, depressions and cyclones, which most of the ships try to avoid. This problem is especially true in the case... of the Bay of Bengal, which is frequented by lows, depressions and cyclones throughout the year. Major drawbacks to studies of the rainfall over a particular area or region are the coverage of the instruments and their accuracy in measuring the areal...

  2. Orbit computation of the TELECOM-2D satellite with a Genetic Algorithm

    Science.gov (United States)

    Deleflie, Florent; Coulot, David; Vienne, Alain; Decosta, Romain; Richard, Pascal; Lasri, Mohammed Amjad

    2014-07-01

    In order to test a preliminary orbit determination method, we fit an orbit of the geostationary satellite TELECOM-2D, as if we did not know any a priori information on its trajectory. The method is based on a genetic algorithm coupled to an analytical propagator of the trajectory, that is used over a couple of days, and that uses a whole set of altazimutal data that are acquired by the tracking network made up of the two TAROT telescopes. The adjusted orbit is then compared to a numerical reference. The method is described, and the results are analyzed, as a step towards an operational method of preliminary orbit determination for uncatalogued objects.

  3. Numerical arc segmentation algorithm for a radio conference - A software tool for communication satellite systems planning

    Science.gov (United States)

    Whyte, W. A.; Heyward, A. O.; Ponchak, D. S.; Spence, R. L.; Zuzek, J. E.

    1988-01-01

    A detailed description of a Numerical Arc Segmentation Algorithm for a Radio Conference (NASARC) software package for communication satellite systems planning is presented. This software provides a method of generating predetermined arc segments for use in the development of an allotment planning procedure to be carried out at the 1988 World Administrative Radio Conference (WARC - 88) on the use of the GEO and the planning of space services utilizing GEO. The features of the NASARC software package are described, and detailed information is given about the function of each of the four NASARC program modules. The results of a sample world scenario are presented and discussed.

  4. The Impacts of Satellite Remotely Sensed Winds and Total Precipitable Vapour in WRF Tropical Cyclone Track Forecasts

    Directory of Open Access Journals (Sweden)

    Diandong Ren

    2016-01-01

    Full Text Available This study assesses the impact assimilating the scatterometer near-surface wind observations and total precipitable water from the SSMI, into WRF on genesis and track forecasting of four tropical cyclones (TCs. These TCs are selected to be representative of different intensity categories and basins. Impact is via a series of data denial experiments that systematically exclude the remote sensed information. Compared with the control case, in which only the final analysis atmospheric variables are used to initialize and provide the lateral boundary conditions, the data assimilation runs performed consistently better, but with very different skill levels for the different TCs. Eliassen-Palm flux analyses are employed. It is confirmed that if a polar orbital satellite footprint passes over the TC’s critical genesis region, the forecast will profit most from assimilating the remotely sensed information. If the critical genesis region lies within an interorbital gap then, regardless of how strong the TC later becomes (e.g., Katrina 2005, the improvement from assimilating near-surface winds and total precipitable water in the model prediction is severely limited. This underpins the need for a synergy of data from different scatterometers/radiometers. Other approaches are suggested to improve the accuracy in the prediction of TC genesis and tracks.

  5. Disentangling the Relationships between Net Primary Production and Precipitation in Southern Africa Savannas Using Satellite Observations from 1982 to 2010

    Directory of Open Access Journals (Sweden)

    Jane Southworth

    2013-08-01

    Full Text Available To obtain a better understanding of the variability in net primary production (NPP in savannas is important for the study of the global carbon cycle and the management of this particular ecosystem. Using satellite and precipitation data sets, we investigated the variations in NPP in southern African savannas from 1982 to 2010, and disentangled the relationships between NPP and precipitation by land cover classes and mean annual precipitation (MAP gradients. Specifically, we evaluate the utility of the third generation Global Inventory Monitoring and Modeling System (GIMMS3g normalized difference vegetation index (NDVI dataset, in comparison with Moderate-resolution Imaging Spectroradiometer (MODIS derived NPP products, and find strong relationships between the overlapping data periods (2000–2010, such that we can apply our model to derive NPP estimates to the full 29-year NDVI time-series. Generally, the northern portion of the study area is characterized by high NPP and low variability, whereas the southern portion is characteristic of low NPP and high variability. During the period 1982 through 2010, NPP has reduced at a rate of −2.13 g∙C∙m−2∙yr−1 (p < 0.1, corresponding to a decrease of 6.7% over 29 years, and about half of bush and grassland savanna has experienced a decrease in NPP. There is a significant positive relationship between mean annual NPP and MAP in bush and grassland savannas, but no significant relationship is observed in tree savannas. The relationship between mean annual NPP and MAP varies with increases in MAP, characterized as a linear relationship that breaks down when MAP exceeding around 850–900 mm.

  6. Cuckoo search algorithm based satellite image contrast and brightness enhancement using DWT-SVD.

    Science.gov (United States)

    Bhandari, A K; Soni, V; Kumar, A; Singh, G K

    2014-07-01

    This paper presents a new contrast enhancement approach which is based on Cuckoo Search (CS) algorithm and DWT-SVD for quality improvement of the low contrast satellite images. The input image is decomposed into the four frequency subbands through Discrete Wavelet Transform (DWT), and CS algorithm used to optimize each subband of DWT and then obtains the singular value matrix of the low-low thresholded subband image and finally, it reconstructs the enhanced image by applying IDWT. The singular value matrix employed intensity information of the particular image, and any modification in the singular values changes the intensity of the given image. The experimental results show superiority of the proposed method performance in terms of PSNR, MSE, Mean and Standard Deviation over conventional and state-of-the-art techniques. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  7. Target Matching Recognition for Satellite Images Based on the Improved FREAK Algorithm

    Directory of Open Access Journals (Sweden)

    Yantong Chen

    2016-01-01

    Full Text Available Satellite remote sensing image target matching recognition exhibits poor robustness and accuracy because of the unfit feature extractor and large data quantity. To address this problem, we propose a new feature extraction algorithm for fast target matching recognition that comprises an improved feature from accelerated segment test (FAST feature detector and a binary fast retina key point (FREAK feature descriptor. To improve robustness, we extend the FAST feature detector by applying scale space theory and then transform the feature vector acquired by the FREAK descriptor from decimal into binary. We reduce the quantity of data in the computer and improve matching accuracy by using the binary space. Simulation test results show that our algorithm outperforms other relevant methods in terms of robustness and accuracy.

  8. MSWEP: 3-hourly 0.25° global gridded precipitation (1979-2015) by merging gauge, satellite, and reanalysis data

    Science.gov (United States)

    Beck, Hylke E.; van Dijk, Albert I. J. M.; Levizzani, Vincenzo; Schellekens, Jaap; Miralles, Diego G.; Martens, Brecht; de Roo, Ad

    2017-01-01

    Current global precipitation (P) datasets do not take full advantage of the complementary nature of satellite and reanalysis data. Here, we present Multi-Source Weighted-Ensemble Precipitation (MSWEP) version 1.1, a global P dataset for the period 1979-2015 with a 3-hourly temporal and 0.25° spatial resolution, specifically designed for hydrological modeling. The design philosophy of MSWEP was to optimally merge the highest quality P data sources available as a function of timescale and location. The long-term mean of MSWEP was based on the CHPclim dataset but replaced with more accurate regional datasets where available. A correction for gauge under-catch and orographic effects was introduced by inferring catchment-average P from streamflow (Q) observations at 13 762 stations across the globe. The temporal variability of MSWEP was determined by weighted averaging of P anomalies from seven datasets; two based solely on interpolation of gauge observations (CPC Unified and GPCC), three on satellite remote sensing (CMORPH, GSMaP-MVK, and TMPA 3B42RT), and two on atmospheric model reanalysis (ERA-Interim and JRA-55). For each grid cell, the weight assigned to the gauge-based estimates was calculated from the gauge network density, while the weights assigned to the satellite- and reanalysis-based estimates were calculated from their comparative performance at the surrounding gauges. The quality of MSWEP was compared against four state-of-the-art gauge-adjusted P datasets (WFDEI-CRU, GPCP-1DD, TMPA 3B42, and CPC Unified) using independent P data from 125 FLUXNET tower stations around the globe. MSWEP obtained the highest daily correlation coefficient (R) among the five P datasets for 60.0 % of the stations and a median R of 0.67 vs. 0.44-0.59 for the other datasets. We further evaluated the performance of MSWEP using hydrological modeling for 9011 catchments (http://www.gloh2o.org.

  9. Power Allocation Algorithm for IDMA-based Multi-Beam Satellite Communication Systems

    Directory of Open Access Journals (Sweden)

    Gongliang Liu

    2012-08-01

    Full Text Available Rain attenuation is one of the most dominant impairment factors that degrade the performance of satellite communications at Ka band and above. In order to solve the technical bottlenecks in the existing Ka-band satellite communication schemes, the authors has introduced the emerging Interleave Division Multiple Access (IDMA technology into multi-beam satellite communication systems, and consequently, a novel power allocation algorithm is proposed for the emerging and promising system in this paper. The main goal of the proposed scheme is to provide sufficient transmission quality to as many mobiles as possible, even for the users suffering heavy rain attenuation. Analysis and simulation results show that compared to the traditional power allocation schemes, the proposed scheme can guarantee high power efficiency even in heavy rain attenuation conditions, illustrating the high efficiency of the Chip-by-Chip (CBC Multi-user Detection (MUD technique in IDMA. Furthermore, in virtue of the Signal to Interference plus Noise Ratio (SINR evolution technique, the proposed scheme can make accurate estimation of available resource on considering the effect of MUD, leading to low outage probability.

  10. Fuzzy Classification of Ocean Color Satellite Data for Bio-optical Algorithm Constituent Retrievals

    Science.gov (United States)

    Campbell, Janet W.

    1998-01-01

    The ocean has been traditionally viewed as a 2 class system. Morel and Prieur (1977) classified ocean water according to the dominant absorbent particle suspended in the water column. Case 1 is described as having a high concentration of phytoplankton (and detritus) relative to other particles. Conversely, case 2 is described as having inorganic particles such as suspended sediments in high concentrations. Little work has gone into the problem of mixing bio-optical models for these different water types. An approach is put forth here to blend bio-optical algorithms based on a fuzzy classification scheme. This scheme involves two procedures. First, a clustering procedure identifies classes and builds class statistics from in-situ optical measurements. Next, a classification procedure assigns satellite pixels partial memberships to these classes based on their ocean color reflectance signature. These membership assignments can be used as the basis for a weighting retrievals from class-specific bio-optical algorithms. This technique is demonstrated with in-situ optical measurements and an image from the SeaWiFS ocean color satellite.

  11. Clustering of tethered satellite system simulation data by an adaptive neuro-fuzzy algorithm

    Science.gov (United States)

    Mitra, Sunanda; Pemmaraju, Surya

    1992-01-01

    Recent developments in neuro-fuzzy systems indicate that the concepts of adaptive pattern recognition, when used to identify appropriate control actions corresponding to clusters of patterns representing system states in dynamic nonlinear control systems, may result in innovative designs. A modular, unsupervised neural network architecture, in which fuzzy learning rules have been embedded is used for on-line identification of similar states. The architecture and control rules involved in Adaptive Fuzzy Leader Clustering (AFLC) allow this system to be incorporated in control systems for identification of system states corresponding to specific control actions. We have used this algorithm to cluster the simulation data of Tethered Satellite System (TSS) to estimate the range of delta voltages necessary to maintain the desired length rate of the tether. The AFLC algorithm is capable of on-line estimation of the appropriate control voltages from the corresponding length error and length rate error without a priori knowledge of their membership functions and familarity with the behavior of the Tethered Satellite System.

  12. Optimization design of satellite separation systems based on Multi-Island Genetic Algorithm

    Science.gov (United States)

    Hu, Xingzhi; Chen, Xiaoqian; Zhao, Yong; Yao, Wen

    2014-03-01

    The separation systems are crucial for the launch of satellites. With respect to the existing design issues of satellite separation systems, an optimization design approach based on Multi-Island Genetic Algorithm is proposed, and a hierarchical optimization of system mass and separation angular velocity is designed. Multi-Island Genetic Algorithm is studied for the problem and the optimization parameters are discussed. Dynamic analysis of ADAMS used to validate the designs is integrated with iSIGHT. Then the optimization method is employed for a typical problem using the helical compression spring mechanism, and the corresponding objective functions are derived. It turns out that the mass of compression spring catapult is decreased by 30.7% after optimization and the angular velocity can be minimized considering spring stiffness errors. Moreover, ground tests and on-orbit flight indicate that the error of separation speed is controlled within 1% and the angular velocity is reduced by nearly 90%, which proves the design result and the optimization approach.

  13. Coral Reef environment reconstruction using small drones, new generation photogrammetry algorithms and satellite imagery

    Science.gov (United States)

    Elisa, Casella; Rovere, Alessio; Harris, Daniel; Parravicini, Valeriano

    2016-04-01

    Surveys based on Remotely Piloted Aircraft Systems (RPAS), together with new-generation Structure from Motion (SfM) and Multi-View Stereo (MVS) reconstruction algorithms have been employed to reconstruct the shallow bathymetry of the inner lagoon of a coral reef in Moorea, French Polinesia. This technique has already been used with a high rate of success on coastal environments (e.g. sandy beaches and rocky shorelines) reaching accuracy of the final Digital Elevation Model in the order of few centimeters. The application of such techniques to reconstruct shallow underwater environments is, though, still little reported. We then used the bathymetric dataset obtained from aerial pictures as ground-truth for relative bathymetry obtained from satellite imagery (WorldView-2) of a larger area within the same study site. The first results of our work suggest that RPAS coupled with SfM and MVS algorithms can be used to reconstruct shallow water environments with favorable weather conditions, and can be employed to ground-truth to satellite imagery.

  14. Adaptive Predistortions Based on Neural Networks Associated with Levenberg-Marquardt Algorithm for Satellite Down Links

    Directory of Open Access Journals (Sweden)

    Roviras Daniel

    2008-01-01

    Full Text Available Abstract This paper presents adaptive predistortion techniques based on a feed-forward neural network (NN to linearize power amplifiers such as those used in satellite communications. Indeed, it presents the suitable NN structures which give the best performances for three satellite down links. The first link is a stationary memoryless travelling wave tube amplifier (TWTA, the second one is a nonstationary memoryless TWT amplifier while the third is an amplifier with memory modeled by a memoryless amplifier followed by a linear filter. Equally important, it puts forward the studies concerning the application of different NN training algorithms in order to determine the most prefermant for adaptive predistortions. This comparison examined through computer simulation for 64 carriers and 16-QAM OFDM system, with a Saleh's TWT amplifier, is based on some quality measure (mean square error, the required training time to reach a particular quality level, and computation complexity. The chosen adaptive predistortions (NN structures associated with an adaptive algorithm have a low complexity, fast convergence, and best performance.

  15. TRMM Satellite Algorithm Estimates to Represent the Spatial Distribution of Rainstorms

    Directory of Open Access Journals (Sweden)

    Patrick Marina

    2017-01-01

    Full Text Available On-site measurements from rain gauge provide important information for the design, construction, and operation of water resources engineering projects, groundwater potentials, and the water supply and irrigation systems. A dense gauging network is needed to accurately characterize the variation of rainfall over a region, unfitting for conditions with limited networks, such as in Sarawak, Malaysia. Hence, satellite-based algorithm estimates are introduced as an innovative solution to these challenges. With accessibility to dataset retrievals from public domain websites, it has become a useful source to measure rainfall for a wider coverage area at finer temporal resolution. This paper aims to investigate the rainfall estimates prepared by Tropical Rainfall Measuring Mission (TRMM to explain whether it is suitable to represent the distribution of extreme rainfall in Sungai Sarawak Basin. Based on the findings, more uniform correlations for the investigated storms can be observed for low to medium altitude (>40 MASL. It is found for the investigated events of Jan 05-11, 2009: the normalized root mean square error (NRMSE = 36.7 %; and good correlation (CC = 0.9. These findings suggest that satellite algorithm estimations from TRMM are suitable to represent the spatial distribution of extreme rainfall.

  16. A statistical subgrid-scale algorithm for precipitation formation in stratiform clouds in the ECHAM5 single column model

    Directory of Open Access Journals (Sweden)

    S. Jess

    2011-03-01

    Full Text Available Cloud properties are usually assumed to be homogeneous within the cloudy part of the grid-box, i.e. subgrid-scale inhomogeneities in cloud cover and/or microphysical properties are often neglected. However, precipitation formation is initiated by large particles. Thus mean values are not representative and could lead to a delayed onset of precipitation.

    For a more physical description of the subgrid-scale structure of clouds we introduce a new statistical sub-column algorithm to study the impact of cloud inhomogeneities on stratiform precipitation. Each model column is divided into N independent sub-columns with sub-boxes in each layer, which are completely clear or cloudy. The cloud cover is distributed over the sub-columns depending on the diagnosed cloud fraction. Mass and number concentrations of cloud droplets and ice crystals are distributed randomly over the cloudy sub-columns according to prescribed probability distributions. Shapes and standard deviations of the distributions are obtained from aircraft observations.

    We have implemented this sub-column algorithm into the ECHAM5 global climate model to take subgrid variability of cloud cover and microphysical properties into account. Simulations with the Single Column Model version of ECHAM5 were carried out for one period of the Mixed-Phase Polar Arctic Cloud Experiment (MPACE campaign as well as for the Eastern Pacific Investigation of climate Processes (EPIC campaign. Results with the new algorithm show an earlier onset of precipitation for the EPIC campaign and a higher conversion of liquid to ice for the MPACE campaign, which reduces the liquid water path in better agreement with the observations than the original version of the ECHAM5 model.

  17. Performance Evaluation of Machine Learning Algorithms for Urban Pattern Recognition from Multi-spectral Satellite Images

    Directory of Open Access Journals (Sweden)

    Marc Wieland

    2014-03-01

    Full Text Available In this study, a classification and performance evaluation framework for the recognition of urban patterns in medium (Landsat ETM, TM and MSS and very high resolution (WorldView-2, Quickbird, Ikonos multi-spectral satellite images is presented. The study aims at exploring the potential of machine learning algorithms in the context of an object-based image analysis and to thoroughly test the algorithm’s performance under varying conditions to optimize their usage for urban pattern recognition tasks. Four classification algorithms, Normal Bayes, K Nearest Neighbors, Random Trees and Support Vector Machines, which represent different concepts in machine learning (probabilistic, nearest neighbor, tree-based, function-based, have been selected and implemented on a free and open-source basis. Particular focus is given to assess the generalization ability of machine learning algorithms and the transferability of trained learning machines between different image types and image scenes. Moreover, the influence of the number and choice of training data, the influence of the size and composition of the feature vector and the effect of image segmentation on the classification accuracy is evaluated.

  18. Algorithm for Automated Mapping of Land Surface Temperature Using LANDSAT 8 Satellite Data

    Directory of Open Access Journals (Sweden)

    Ugur Avdan

    2016-01-01

    Full Text Available Land surface temperature is an important factor in many areas, such as global climate change, hydrological, geo-/biophysical, and urban land use/land cover. As the latest launched satellite from the LANDSAT family, LANDSAT 8 has opened new possibilities for understanding the events on the Earth with remote sensing. This study presents an algorithm for the automatic mapping of land surface temperature from LANDSAT 8 data. The tool was developed using the LANDSAT 8 thermal infrared sensor Band 10 data. Different methods and formulas were used in the algorithm that successfully retrieves the land surface temperature to help us study the thermal environment of the ground surface. To verify the algorithm, the land surface temperature and the near-air temperature were compared. The results showed that, for the first case, the standard deviation was 2.4°C, and for the second case, it was 2.7°C. For future studies, the tool should be refined with in situ measurements of land surface temperature.

  19. Vegetation Height Estimation Near Power transmission poles Via satellite Stereo Images using 3D Depth Estimation Algorithms

    Science.gov (United States)

    Qayyum, A.; Malik, A. S.; Saad, M. N. M.; Iqbal, M.; Abdullah, F.; Rahseed, W.; Abdullah, T. A. R. B. T.; Ramli, A. Q.

    2015-04-01

    Monitoring vegetation encroachment under overhead high voltage power line is a challenging problem for electricity distribution companies. Absence of proper monitoring could result in damage to the power lines and consequently cause blackout. This will affect electric power supply to industries, businesses, and daily life. Therefore, to avoid the blackouts, it is mandatory to monitor the vegetation/trees near power transmission lines. Unfortunately, the existing approaches are more time consuming and expensive. In this paper, we have proposed a novel approach to monitor the vegetation/trees near or under the power transmission poles using satellite stereo images, which were acquired using Pleiades satellites. The 3D depth of vegetation has been measured near power transmission lines using stereo algorithms. The area of interest scanned by Pleiades satellite sensors is 100 square kilometer. Our dataset covers power transmission poles in a state called Sabah in East Malaysia, encompassing a total of 52 poles in the area of 100 km. We have compared the results of Pleiades satellite stereo images using dynamic programming and Graph-Cut algorithms, consequently comparing satellites' imaging sensors and Depth-estimation Algorithms. Our results show that Graph-Cut Algorithm performs better than dynamic programming (DP) in terms of accuracy and speed.

  20. Geostationary Communications Satellites as Sensors for the Space Weather Environment: Telemetry Event Identification Algorithms

    Science.gov (United States)

    Carlton, A.; Cahoy, K.

    2015-12-01

    Reliability of geostationary communication satellites (GEO ComSats) is critical to many industries worldwide. The space radiation environment poses a significant threat and manufacturers and operators expend considerable effort to maintain reliability for users. Knowledge of the space radiation environment at the orbital location of a satellite is of critical importance for diagnosing and resolving issues resulting from space weather, for optimizing cost and reliability, and for space situational awareness. For decades, operators and manufacturers have collected large amounts of telemetry from geostationary (GEO) communications satellites to monitor system health and performance, yet this data is rarely mined for scientific purposes. The goal of this work is to acquire and analyze archived data from commercial operators using new algorithms that can detect when a space weather (or non-space weather) event of interest has occurred or is in progress. We have developed algorithms, collectively called SEER (System Event Evaluation Routine), to statistically analyze power amplifier current and temperature telemetry by identifying deviations from nominal operations or other events and trends of interest. This paper focuses on our work in progress, which currently includes methods for detection of jumps ("spikes", outliers) and step changes (changes in the local mean) in the telemetry. We then examine available space weather data from the NOAA GOES and the NOAA-computed Kp index and sunspot numbers to see what role, if any, it might have played. By combining the results of the algorithm for many components, the spacecraft can be used as a "sensor" for the space radiation environment. Similar events occurring at one time across many component telemetry streams may be indicative of a space radiation event or system-wide health and safety concern. Using SEER on representative datasets of telemetry from Inmarsat and Intelsat, we find events that occur across all or many of

  1. Design of a Four-Element, Hollow-Cube Corner Retroreflector for Satellites by use of a Genetic Algorithm.

    Science.gov (United States)

    Minato, A; Sugimoto, N

    1998-01-20

    A four-element retroreflector was designed for satellite laser ranging and Earth-satellite-Earth laser long-path absorption measurement of the atmosphere. The retroreflector consists of four symmetrically located corner retroreflectors. Each retroreflector element has curved mirrors and tuned dihedral angles to correct velocity aberrations. A genetic algorithm was employed to optimize dihedral angles of each element and the directions of the four elements. The optimized four-element retroreflector has high reflectance with a reasonably broad angular coverage. It is also shown that the genetic algorithm is effective for optimizing optics with many parameters.

  2. Advancements of in-flight mass moment of inertia and structural deflection algorithms for satellite attitude simulators

    Science.gov (United States)

    Wright, Jonathan W.

    Experimental satellite attitude simulators have long been used to test and analyze control algorithms in order to drive down risk before implementation on an operational satellite. Ideally, the dynamic response of a terrestrial-based experimental satellite attitude simulator would be similar to that of an on-orbit satellite. Unfortunately, gravitational disturbance torques and poorly characterized moments of inertia introduce uncertainty into the system dynamics leading to questionable attitude control algorithm experimental results. This research consists of three distinct, but related contributions to the field of developing robust satellite attitude simulators. In the first part of this research, existing approaches to estimate mass moments and products of inertia are evaluated followed by a proposition and evaluation of a new approach that increases both the accuracy and precision of these estimates using typical on-board satellite sensors. Next, in order to better simulate the micro-torque environment of space, a new approach to mass balancing satellite attitude simulator is presented, experimentally evaluated, and verified. Finally, in the third area of research, we capitalize on the platform improvements to analyze a control moment gyroscope (CMG) singularity avoidance steering law. Several successful experiments were conducted with the CMG array at near-singular configurations. An evaluation process was implemented to verify that the platform remained near the desired test momentum, showing that the first two components of this research were effective in allowing us to conduct singularity avoidance experiments in a representative space-like test environment.

  3. Development of a Reduction Algorithm of GEO Satellite Optical Observation Data for Optical Wide Field Patrol (OWL)

    Science.gov (United States)

    Park, Sun-youp; Choi, Jin; Jo, Jung Hyun; Son, Ju Young; Park, Yung-Sik; Yim, Hong-Suh; Moon, Hong-Kyu; Bae, Young-Ho; Choi, Young-Jun; Park, Jang-Hyun

    2015-09-01

    An algorithm to automatically extract coordinate and time information from optical observation data of geostationary orbit satellites (GEO satellites) or geosynchronous orbit satellites (GOS satellites) is developed. The optical wide-field patrol system is capable of automatic observation using a pre-arranged schedule. Therefore, if this type of automatic analysis algorithm is available, daily unmanned monitoring of GEO satellites can be possible. For data acquisition for development, the COMS1 satellite was observed with 1-s exposure time and 1-m interval. The images were grouped and processed in terms of ¡°action¡±, and each action was composed of six or nine successive images. First, a reference image with the best quality in one action was selected. Next, the rest of the images in the action were geometrically transformed to fit in the horizontal coordinate system (expressed in azimuthal angle and elevation) of the reference image. Then, these images were median-combined to retain only the possible non-moving GEO candidates. By reverting the coordinate transformation of the positions of these GEO satellite candidates, the final coordinates could be calculated.

  4. The STRatospheric Estimation Algorithm from Mainz (STREAM): estimating stratospheric NO2 from nadir-viewing satellites by weighted convolution

    Science.gov (United States)

    Beirle, Steffen; Hörmann, Christoph; Jöckel, Patrick; Liu, Song; Penning de Vries, Marloes; Pozzer, Andrea; Sihler, Holger; Valks, Pieter; Wagner, Thomas

    2016-07-01

    The STRatospheric Estimation Algorithm from Mainz (STREAM) determines stratospheric columns of NO2 which are needed for the retrieval of tropospheric columns from satellite observations. It is based on the total column measurements over clean, remote regions as well as over clouded scenes where the tropospheric column is effectively shielded. The contribution of individual satellite measurements to the stratospheric estimate is controlled by various weighting factors. STREAM is a flexible and robust algorithm and does not require input from chemical transport models. It was developed as a verification algorithm for the upcoming satellite instrument TROPOMI, as a complement to the operational stratospheric correction based on data assimilation. STREAM was successfully applied to the UV/vis satellite instruments GOME 1/2, SCIAMACHY, and OMI. It overcomes some of the artifacts of previous algorithms, as it is capable of reproducing gradients of stratospheric NO2, e.g., related to the polar vortex, and reduces interpolation errors over continents. Based on synthetic input data, the uncertainty of STREAM was quantified as about 0.1-0.2 × 1015 molecules cm-2, in accordance with the typical deviations between stratospheric estimates from different algorithms compared in this study.

  5. Overview of the relativistic electron precipitations (REP) observed on LEO satellites and ISS by Bulgarian build instruments

    Science.gov (United States)

    Dachev, Tsvetan

    Relativistic electron precipitation (REP) are observed by the R3D B2/B3 and RD3-B3 instruments during the flights of the Foton M2/M3 and “BION-M” № 1 satellite in 2005, 2007 and 2013, and by the R3DE/R instruments at the EXPOSE-E facility of the European Columbus module and at the EXPOSE-R facility of the Russian Zvezda module of the International Space Station (ISS) in the period from February 2008 till August 2010. The obtained dose rates strongly depend by the external and internal shielding of the detectors in the instruments. The highest dose rate reaching more than 20 mGy h (-1) was observed outside the ISS Zvezda module during the REP in April 2010 being the second largest in GOES history with a >2 MeV electron fluence event. REP doses behind relatively thick shielding are too small but may play considerable role during extra vehicular activity (EVA) when the cosmonauts/astronauts body is shielded only by the space suit.

  6. EPSAT-SG: a satellite method for precipitation estimation; its concepts and implementation for the AMMA experiment

    Directory of Open Access Journals (Sweden)

    J. C. Bergès

    2010-01-01

    Full Text Available This paper presents a new rainfall estimation method, EPSAT-SG which is a frame for method design. The first implementation has been carried out to meet the requirement of the AMMA database on a West African domain. The rainfall estimation relies on two intermediate products: a rainfall probability and a rainfall potential intensity. The first one is computed from MSG/SEVIRI by a feed forward neural network. First evaluation results show better properties than direct precipitation intensity assessment by geostationary satellite infra-red sensors. The second product can be interpreted as a conditional rainfall intensity and, in the described implementation, it is extracted from GPCP-1dd. Various implementation options are discussed and comparison of this embedded product with 3B42 estimates demonstrates the importance of properly managing the temporal discontinuity. The resulting accumulated rainfall field can be presented as a GPCP downscaling. A validation based on ground data supplied by AGRHYMET (Niamey indicates that the estimation error has been reduced in this process. The described method could be easily adapted to other geographical area and operational environment.

  7. Estimate Landslide Volume with Genetic Algorithms and Image Similarity Method from Single Satellite Image

    Science.gov (United States)

    Yu, Ting-To

    2013-04-01

    It is important to acquire the volume of landslide in short period of time. For hazard mitigation and also emergency response purpose, the traditional method takes much longer time than expected. Due to the weather limit, traffic accessibility and many regulations of law, it take months to handle these process before the actual carry out of filed work. Remote sensing imagery can get the data as long as the visibility allowed, which happened only few day after the event. While traditional photometry requires a stereo pairs images to produce the post event DEM for calculating the change of volume. Usually have to wait weeks or even months for gathering such data, LiDAR or ground GPS measurement might take even longer period of time with much higher cost. In this study we use one post event satellite image and pre-event DTM to compare the similarity between these by alter the DTM with genetic algorithms. The outcome of smartest guess from GAs shall remove or add exact values of height at each location, which been converted into shadow relief viewgraph to compare with satellite image. Once the similarity threshold been make then the guessing work stop. It takes only few hours to finish the entire task, the computed accuracy is around 70% by comparing to the high resolution LiDAR survey at a landslide, southern Taiwan. With extra GCPs, the estimate accuracy can improve to 85% and also within few hours after the receiving of satellite image. Data of this demonstration case is a 5 m DTM at 2005, 2M resolution FormoSat optical image at 2009 and 5M LiDAR at 2010. The GAs and image similarity code is developed on Matlab at windows PC.

  8. Numerical arc segmentation algorithm for a radio conference: A software tool for communication satellite systems planning

    Science.gov (United States)

    Whyte, W. A.; Heyward, A. O.; Ponchak, D. S.; Spence, R. L.; Zuzek, J. E.

    1988-01-01

    The Numerical Arc Segmentation Algorithm for a Radio Conference (NASARC) provides a method of generating predetermined arc segments for use in the development of an allotment planning procedure to be carried out at the 1988 World Administrative Radio Conference (WARC) on the Use of the Geostationary Satellite Orbit and the Planning of Space Services Utilizing It. Through careful selection of the predetermined arc (PDA) for each administration, flexibility can be increased in terms of choice of system technical characteristics and specific orbit location while reducing the need for coordination among administrations. The NASARC software determines pairwise compatibility between all possible service areas at discrete arc locations. NASARC then exhaustively enumerates groups of administrations whose satellites can be closely located in orbit, and finds the arc segment over which each such compatible group exists. From the set of all possible compatible groupings, groups and their associated arc segments are selected using a heuristic procedure such that a PDA is identified for each administration. Various aspects of the NASARC concept and how the software accomplishes specific features of allotment planning are discussed.

  9. Evaluation of three satellite-based latent heat flux algorithms over forest ecosystems using eddy covariance data.

    Science.gov (United States)

    Yao, Yunjun; Zhang, Yuhu; Zhao, Shaohua; Li, Xianglan; Jia, Kun

    2015-06-01

    We have evaluated the performance of three satellite-based latent heat flux (LE) algorithms over forest ecosystems using observed data from 40 flux towers distributed across the world on all continents. These are the revised remote sensing-based Penman-Monteith LE (RRS-PM) algorithm, the modified satellite-based Priestley-Taylor LE (MS-PT) algorithm, and the semi-empirical Penman LE (UMD-SEMI) algorithm. Sensitivity analysis illustrates that both energy and vegetation terms has the highest sensitivity compared with other input variables. The validation results show that three algorithms demonstrate substantial differences in algorithm performance for estimating daily LE variations among five forest ecosystem biomes. Based on the average Nash-Sutcliffe efficiency and root-mean-squared error (RMSE), the MS-PT algorithm has high performance over both deciduous broadleaf forest (DBF) (0.81, 25.4 W/m(2)) and mixed forest (MF) (0.62, 25.3 W/m(2)) sites, the RRS-PM algorithm has high performance over evergreen broadleaf forest (EBF) (0.4, 28.1 W/m(2)) sites, and the UMD-SEMI algorithm has high performance over both deciduous needleleaf forest (DNF) (0.78, 17.1 W/m(2)) and evergreen needleleaf forest (ENF) (0.51, 28.1 W/m(2)) sites. Perhaps the lower uncertainties in the required forcing data for the MS-PT algorithm, the complicated algorithm structure for the RRS-PM algorithm, and the calibrated coefficients of the UMD-SEMI algorithm based on ground-measured data may explain these differences.

  10. Robust Fault-Tolerant Control for Satellite Attitude Stabilization Based on Active Disturbance Rejection Approach with Artificial Bee Colony Algorithm

    OpenAIRE

    Fei Song; Shiyin Qin

    2014-01-01

    This paper proposed a robust fault-tolerant control algorithm for satellite stabilization based on active disturbance rejection approach with artificial bee colony algorithm. The actuating mechanism of attitude control system consists of three working reaction flywheels and one spare reaction flywheel. The speed measurement of reaction flywheel is adopted for fault detection. If any reaction flywheel fault is detected, the corresponding fault flywheel is isolated and the spare reaction flywhe...

  11. A Nano-satellite Mission to Study Charged Particle Precipitation from the Van Allen Radiation Belts caused due to Seismo-Electromagnetic Emissions

    CERN Document Server

    Sivadas, Nithin; Kannapan, Deepti; Yalamarthy, Ananth Saran; Dhiman, Ankit; Bhagoji, Arjun; Shankar, Athreya; Prasad, Nitin; Ramachandran, Harishankar; Koilpillai, R David

    2014-01-01

    In the past decade, several attempts have been made to study the effects of seismo-electromagnetic emissions - an earthquake precursor, on the ionosphere and the radiation belts. The IIT Madras nano-satellite (IITMSAT) mission is designed to make sensitive measurements of charged particle fluxes in a Low Earth Orbit to study the nature of charged particle precipitation from the Van Allen radiation belts caused due to such emissions. With the Space-based Proton Electron Energy Detector on-board a single nano-satellite, the mission will attempt to gather statistically significant data to verify possible correlations with seismo-electromagnetic emissions before major earthquakes.

  12. Advanced Oil Spill Detection Algorithms For Satellite Based Maritime Environment Monitoring

    Science.gov (United States)

    Radius, Andrea; Azevedo, Rui; Sapage, Tania; Carmo, Paulo

    2013-12-01

    During the last years, the increasing pollution occurrence and the alarming deterioration of the environmental health conditions of the sea, lead to the need of global monitoring capabilities, namely for marine environment management in terms of oil spill detection and indication of the suspected polluter. The sensitivity of Synthetic Aperture Radar (SAR) to the different phenomena on the sea, especially for oil spill and vessel detection, makes it a key instrument for global pollution monitoring. The SAR performances in maritime pollution monitoring are being operationally explored by a set of service providers on behalf of the European Maritime Safety Agency (EMSA), which has launched in 2007 the CleanSeaNet (CSN) project - a pan-European satellite based oil monitoring service. EDISOFT, which is from the beginning a service provider for CSN, is continuously investing in R&D activities that will ultimately lead to better algorithms and better performance on oil spill detection from SAR imagery. This strategy is being pursued through EDISOFT participation in the FP7 EC Sea-U project and in the Automatic Oil Spill Detection (AOSD) ESA project. The Sea-U project has the aim to improve the current state of oil spill detection algorithms, through the informative content maximization obtained with data fusion, the exploitation of different type of data/ sensors and the development of advanced image processing, segmentation and classification techniques. The AOSD project is closely related to the operational segment, because it is focused on the automation of the oil spill detection processing chain, integrating auxiliary data, like wind information, together with image and geometry analysis techniques. The synergy between these different objectives (R&D versus operational) allowed EDISOFT to develop oil spill detection software, that combines the operational automatic aspect, obtained through dedicated integration of the processing chain in the existing open source NEST

  13. Multi-satellite sensor study on precipitation-induced emission pulses of NOx from soils in semi-arid ecosystems

    Science.gov (United States)

    Zörner, Jan; Penning de Vries, Marloes; Beirle, Steffen; Sihler, Holger; Veres, Patrick R.; Williams, Jonathan; Wagner, Thomas

    2016-07-01

    We present a top-down approach to infer and quantify rain-induced emission pulses of NOx ( ≡ NO + NO2), stemming from biotic emissions of NO from soils, from satellite-borne measurements of NO2. This is achieved by synchronizing time series at single grid pixels according to the first day of rain after a dry spell of prescribed duration. The full track of the temporal evolution several weeks before and after a rain pulse is retained with daily resolution. These are needed for a sophisticated background correction, which accounts for seasonal variations in the time series and allows for improved quantification of rain-induced soil emissions. The method is applied globally and provides constraints on pulsed soil emissions of NOx in regions where the NOx budget is seasonally dominated by soil emissions. We find strong peaks of enhanced NO2 vertical column densities (VCDs) induced by the first intense precipitation after prolonged droughts in many semi-arid regions of the world, in particular in the Sahel. Detailed investigations show that the rain-induced NO2 pulse detected by the OMI (Ozone Monitoring Instrument), GOME-2 and SCIAMACHY satellite instruments could not be explained by other sources, such as biomass burning or lightning, or by retrieval artefacts (e.g. due to clouds). For the Sahel region, absolute enhancements of the NO2 VCDs on the first day of rain based on OMI measurements 2007-2010 are on average 4 × 1014  molec cm-2 and exceed 1 × 1015  molec cm-2 for individual grid cells. Assuming a NOx lifetime of 4 h, this corresponds to soil NOx emissions in the range of 6 up to 65 ng N m-2 s-1, which is in good agreement with literature values. Apart from the clear first-day peak, NO2 VCDs are moderately enhanced (2 × 1014  molec cm-2) compared to the background over the following 2 weeks, suggesting potential further emissions during that period of about 3.3 ng N m-2 s-1. The pulsed emissions contribute about 21-44 % to total

  14. A new multimodel ensemble method using nonlinear genetic algorithm: An application to boreal winter surface air temperature and precipitation prediction

    Science.gov (United States)

    Ahn, Joong-Bae; Lee, Joonlee

    2016-08-01

    A new multimodel ensemble (MME) method that uses a genetic algorithm (GA) is developed and applied to the prediction of winter surface air temperature (SAT) and precipitation. The GA based on the biological process of natural evolution is a nonlinear method which solves nonlinear optimization problems. Hindcast data of winter SAT and precipitation from the six coupled general circulation models participating in the seasonal MME prediction system of the Asia-Pacific Economic Conference Climate Center are used. Three MME methods using GA (MME/GAs) are examined in comparison with a simple composite MME strategy (MS0): MS1 which applies GA to single-model ensembles (SMEs), MS2 which applies GA to each ensemble member and then performs a simple composite method for MME, and MS3 which applies GA to both MME and SME. MS3 shows the highest predictability compared to MS0, MS1, and MS2 for both winter SAT and precipitation. These results indicate that biases of ensemble members of each model and model ensemble are more reduced with MS3 than with other MME/GAs and MS0. The predictability of the MME/GAs shows a greater improvement than that of MS0, particularly in higher-latitude land areas. The reason for the more improved increase of predictability over the land area, particularly in MS3, seems to be the fact that GA is more efficient in finding an optimum solution in a complex region where nonlinear physical properties are evident.

  15. A probabilistic approach for assessing landslide-triggering event rainfall in Papua New Guinea, using TRMM satellite precipitation estimates

    Science.gov (United States)

    Robbins, J. C.

    2016-10-01

    Large and numerous landslides can result in widespread impacts which are felt particularly strongly in the largely subsistence-orientated communities residing in the most landslide-prone areas of Papua New Guinea (PNG). Understanding the characteristics of rainfall preceding these landslide events is essential for the development of appropriate early warning systems and forecasting models. Relationships between rainfall and landslides are frequently complex and uncertainties tend to be amplified by inconsistent and incomplete landslide catalogues and sparse rainfall data availability. To address some of these uncertainties a modified Bayesian technique has been used, in conjunction with the multiple time frames method, to produce thresholds of landslide probability associated with rainfall events of specific magnitude and duration. Satellite-derived precipitation estimates have been used to derive representative rainfall accumulations and intensities over a range of different rainfall durations (5, 10, 15, 30, 45, 60, 75 and 90 days) for rainfall events which resulted in landslides and those which did not result in landslides. Of the two parameter combinations (accumulation-duration and intensity-duration) analysed, rainfall accumulation and duration provide the best scope for identifying probabilistic thresholds for use in landslide warning and forecasting in PNG. Analysis of historical events and rainfall characteristics indicates that high accumulation (>250 mm), shorter duration (75 days), high accumulation (>1200 mm) rainfall events are more likely to lead to moderate- to high-impact landslides. This analysis has produced the first proxy probability thresholds for landslides in PNG and their application within an early warning framework has been discussed.

  16. A mission-oriented orbit design method of remote sensing satellite for region monitoring mission based on evolutionary algorithm

    Science.gov (United States)

    Shen, Xin; Zhang, Jing; Yao, Huang

    2015-12-01

    Remote sensing satellites play an increasingly prominent role in environmental monitoring and disaster rescue. Taking advantage of almost the same sunshine condition to same place and global coverage, most of these satellites are operated on the sun-synchronous orbit. However, it brings some problems inevitably, the most significant one is that the temporal resolution of sun-synchronous orbit satellite can't satisfy the demand of specific region monitoring mission. To overcome the disadvantages, two methods are exploited: the first one is to build satellite constellation which contains multiple sunsynchronous satellites, just like the CHARTER mechanism has done; the second is to design non-predetermined orbit based on the concrete mission demand. An effective method for remote sensing satellite orbit design based on multiobjective evolution algorithm is presented in this paper. Orbit design problem is converted into a multi-objective optimization problem, and a fast and elitist multi-objective genetic algorithm is utilized to solve this problem. Firstly, the demand of the mission is transformed into multiple objective functions, and the six orbit elements of the satellite are taken as genes in design space, then a simulate evolution process is performed. An optimal resolution can be obtained after specified generation via evolution operation (selection, crossover, and mutation). To examine validity of the proposed method, a case study is introduced: Orbit design of an optical satellite for regional disaster monitoring, the mission demand include both minimizing the average revisit time internal of two objectives. The simulation result shows that the solution for this mission obtained by our method meet the demand the users' demand. We can draw a conclusion that the method presented in this paper is efficient for remote sensing orbit design.

  17. Low-cost Citizen Science Balloon Platform for Measuring Air Pollutants to Improve Satellite Retrieval Algorithms

    Science.gov (United States)

    Potosnak, M. J.; Beck-Winchatz, B.; Ritter, P.

    2016-12-01

    High-altitude balloons (HABs) are an engaging platform for citizen science and formal and informal STEM education. However, the logistics of launching, chasing and recovering a payload on a 1200 g or 1500 g balloon can be daunting for many novice school groups and citizen scientists, and the cost can be prohibitive. In addition, there are many interesting scientific applications that do not require reaching the stratosphere, including measuring atmospheric pollutants in the planetary boundary layer. With a large number of citizen scientist flights, these data can be used to constrain satellite retrieval algorithms. In this poster presentation, we discuss a novel approach based on small (30 g) balloons that are cheap and easy to handle, and low-cost tracking devices (SPOT trackers for hikers) that do not require a radio license. Our scientific goal is to measure air quality in the lower troposphere. For example, particulate matter (PM) is an air pollutant that varies on small spatial scales and has sources in rural areas like biomass burning and farming practices such as tilling. Our HAB platform test flight incorporates an optical PM sensor, an integrated single board computer that records the PM sensor signal in addition to flight parameters (pressure, location and altitude), and a low-cost tracking system. Our goal is for the entire platform to cost less than $500. While the datasets generated by these flights are typically small, integrating a network of flight data from citizen scientists into a form usable for comparison to satellite data will require big data techniques.

  18. Applying the Ramer-Douglas-Peucker algorithm to compress and characterize time-series and spatial fields of precipitation

    Science.gov (United States)

    Ehret, Uwe; Neuper, Malte

    2014-05-01

    Well known in image processing and computer graphics, the Ramer-Douglas-Peucker(RDP) algorithm (Ramer, 1972; Douglas and Peucker, 1973) is a procedure to approximate a polygon (lines or areas) by a subset of its nodes. Typically it is used to represent a polygonal feature on a larger scale, e.g. when zooming out of an image. The algorithm is simple but effective: Starting from the simplest possible approximation of the original polygon (for a line it is the start and end point), the simplified polygon is built by successively adding always the node of the original polygon farthest from the simplified polygon. This is repeated until a chosen agreement between the original and the simplified polygon is reached. Compared to other smoothing and compression algorithms like moving-average filters or block aggregation, the RDP algorithm has the advantages that i) the simplified polygon is built from the original points, i.e. extreme values are preserved and ii) that the variability of the original polygon is preserved in a scale-independent manner, i.e. the simplified polygon is high-resolution where necessary and low-resolution where possible. Applying the RDP algorithm to time series of precipitation or 2d spatial fields of radar rainfall often reveals a large degree of compressibility while losing almost no information. In general, this is the case for any auto-correlated polygon such as discharge time series etc. While the RDP algorithm is thus interesting as a very efficient tool for compression, it can also be used to characterize time series or spatial fields with respect to their temporal or spatial structure by relating, over successive steps of simplification, the compression achieved and information lost. We will present and discuss the characteristics of the RDP-based compression and characterization at various examples, both observed (rainfall and discharge time series, 2-d radar rainfall fields) and artificial (random noise fields, random fields with known

  19. Dynamic Routing Algorithm for Satellite Network Based on Ant Colony Algorithm%基于蚁群算法的卫星网动态路由算法

    Institute of Scientific and Technical Information of China (English)

    马海滨; 王汝传; 饶元

    2011-01-01

    卫星网络路由应当具有使用较小的通信开销和处理能力计算出最优路径,并能够适应卫星网络拓扑结构动态变化等特点,这与蚁群算法的特征相匹配,能很好地解决这一问题.以此为背景,提出了一种新型的基于蚁群算法的卫星网动态路由算法(DRAS-ACA),并在NS2网络仿真平台上实现了该路由算法,使用gnuplot分析了仿真结果.%Satellite network routing should have the use of smaller capacity and communication overhead to calculate the optimal path, and be able to adapt to the satellite network topology changes, and other characteristics. The Ant Colony Algorithm should be a good appraach to solve this problem. In this paper, a dynamic routing algorithm for satellite network based on ant colony algorithm (DRAS-ACA) was presented and simulated on NS2 platform,and we also analyzed the simulation results with gnuplot.

  20. Development of Cloud and Precipitation Property Retrieval Algorithms and Measurement Simulators from ASR Data

    Energy Technology Data Exchange (ETDEWEB)

    Mace, Gerald G. [Univ. of Utah, Salt Lake City, UT (United States). Dept. of Atmospheric Sciences

    2016-02-10

    What has made the ASR program unique is the amount of information that is available. The suite of recently deployed instruments significantly expands the scope of the program (Mather and Voyles, 2013). The breadth of this information allows us to pose sophisticated process-level questions. Our ASR project, now entering its third year, has been about developing algorithms that use this information in ways that fully exploit the new capacity of the ARM data streams. Using optimal estimation (OE) and Markov Chain Monte Carlo (MCMC) inversion techniques, we have developed methodologies that allow us to use multiple radar frequency Doppler spectra along with lidar and passive constraints where data streams can be added or subtracted efficiently and algorithms can be reformulated for various combinations of hydrometeors by exchanging sets of empirical coefficients. These methodologies have been applied to boundary layer clouds, mixed phase snow cloud systems, and cirrus.

  1. An analytic algorithm for global coverage of the revisiting orbit and its application to the CFOSAT satellite

    Science.gov (United States)

    Xu, Ming; Huang, Li

    2014-08-01

    This paper addresses a new analytic algorithm for global coverage of the revisiting orbit and its application to the mission revisiting the Earth within long periods of time, such as Chinese-French Oceanic Satellite (abbr., CFOSAT). In the first, it is presented that the traditional design methodology of the revisiting orbit for some imaging satellites only on the single (ascending or descending) pass, and the repeating orbit is employed to perform the global coverage within short periods of time. However, the selection of the repeating orbit is essentially to yield the suboptimum from the rare measure of rational numbers of passes per day, which will lose lots of available revisiting orbits. Thus, an innovative design scheme is proposed to check both rational and irrational passes per day to acquire the relationship between the coverage percentage and the altitude. To improve the traditional imaging only on the single pass, the proposed algorithm is mapping every pass into its ascending and descending nodes on the specified latitude circle, and then is accumulating the projected width on the circle by the field of view of the satellite. The ergodic geometry of coverage percentage produced from the algorithm is affecting the final scheme, such as the optimal one owning the largest percentage, and the balance one possessing the less gradient in its vicinity, and is guiding to heuristic design for the station-keeping control strategies. The application of CFOSAT validates the feasibility of the algorithm.

  2. Development of Ray Tracing Algorithms for Scanning Plane and Transverse Plane Analysis for Satellite Multibeam Application

    Directory of Open Access Journals (Sweden)

    N. H. Abd Rahman

    2014-01-01

    Full Text Available Reflector antennas have been widely used in many areas. In the implementation of parabolic reflector antenna for broadcasting satellite applications, it is essential for the spacecraft antenna to provide precise contoured beam to effectively serve the required region. For this purpose, combinations of more than one beam are required. Therefore, a tool utilizing ray tracing method is developed to calculate precise off-axis beams for multibeam antenna system. In the multibeam system, each beam will be fed from different feed positions to allow the main beam to be radiated at the exact direction on the coverage area. Thus, detailed study on caustics of a parabolic reflector antenna is performed and presented in this paper, which is to investigate the behaviour of the rays and its relation to various antenna parameters. In order to produce accurate data for the analysis, the caustic behaviours are investigated in two distinctive modes: scanning plane and transverse plane. This paper presents the detailed discussions on the derivation of the ray tracing algorithms, the establishment of the equations of caustic loci, and the verification of the method through calculation of radiation pattern.

  3. Evaluation and intercomparison of clouds, precipitation, and radiation budgets in recent reanalyses using satellite-surface observations

    Science.gov (United States)

    Dolinar, Erica K.; Dong, Xiquan; Xi, Baike

    2016-04-01

    Atmospheric reanalysis datasets offer a resource for investigating climate processes and extreme events; however, their uncertainties must first be addressed. In this study, we evaluate the five reanalyzed (20CR, CFSR, Era-Interim, JRA-25, and MERRA) cloud fraction (CF), precipitation rates (PR), and top-of-atmosphere (TOA) and surface radiation budgets using satellite observations during the period 03/2000-02/2012. Compared to the annual averaged CF of 56.7 % from CERES MODIS (CM) four of the five reanalyses underpredict CFs by 1.7-4.6 %, while 20CR overpredicts this result by 7.4 %. PR from the Tropical Rainfall Measurement Mission (TRMM) is 3.0 mm/day and the reanalyzed PRs agree with TRMM within 0.1-0.6 mm/day. The shortwave (SW) and longwave (LW) TOA cloud radiative effects (CREtoa) calculated by CERES EBAF (CE) are -48.1 and 27.3 W/m2, respectively, indicating a net cooling effect of -20.8 W/m2. Of the available reanalysis results, the CFSR and MERRA calculated net CREtoa values agree with CE within 1 W/m2, while the JRA-25 result is ~10 W/m2 more negative than the CE result, predominantly due to the underpredicted magnitude of the LW warming in the JRA-25 reanalysis. A regime metric is developed using the vertical motion field at 500 hPa over the oceans. Aptly named the "ascent" and "descent" regimes, these areas are distinguishable in their characteristic synoptic patterns and the predominant cloud-types; convective-type clouds and marine boundary layer (MBL) stratocumulus clouds. In general, clouds are overpredicted (underpredicted) in the ascent (descent) regime and the biases are often larger in the ascent regime than in the descent regime. PRs are overpredicted in both regimes; however the observed and reanalyzed PRs over the ascent regime are an order of magnitude larger than those over the descent regime, indicating different types of clouds exist in these two regimes. Based upon the Atmospheric Radiation Measurement Program ground-based and CM

  4. Seeking an optimal algorithm for a new satellite-based Sea Ice Drift Climate Data Record : Motivations, plans and initial results from the ESA CCI Sea Ice project

    DEFF Research Database (Denmark)

    Lavergne, T.; Dybkjær, Gorm; Girard-Ardhuin, Fanny

    relevant satellite and “ground-truth” data, building the Round-Robin Data Package for testing the algorithms, and finally selection of the most promising algorithm(s) for processing of a new sea ice drift climate dataset. Specific efforts are dedicated to the definition of per-grid-cell uncertainties...

  5. Seeking an optimal algorithm for a new satellite-based Sea Ice Drift Climate Data Record : Motivations, plans and initial results from the ESA CCI Sea Ice project

    DEFF Research Database (Denmark)

    Lavergne, T.; Dybkjær, Gorm; Girard-Ardhuin, Fanny

    relevant satellite and “ground-truth” data, building the Round-Robin Data Package for testing the algorithms, and finally selection of the most promising algorithm(s) for processing of a new sea ice drift climate dataset. Specific efforts are dedicated to the definition of per-grid-cell uncertainties...

  6. Assessing the potential of satellite-based precipitation estimates for flood frequency analysis in ungauged or poorly gauged tributaries of China's Yangtze River basin

    Science.gov (United States)

    Gao, Zhen; Long, Di; Tang, Guoqiang; Zeng, Chao; Huang, Jiesheng; Hong, Yang

    2017-07-01

    Flood frequency analysis (FFA) is critical for water resources engineering projects, particularly the design of hydraulic structures such as dams and reservoirs. However, it is often difficult to implement FFA in ungauged or poorly gauged basins because of the lack of consistent and long-term records of streamflow observations. The objective of this study was to evaluate the utility of satellite-based precipitation estimates for performing FFA in two presumably ungauged tributaries, the Jialing and Tuojiang Rivers, of the upper Yangtze River. Annual peak flow series were simulated using the Coupled Routing and Excess STorage (CREST) hydrologic model. Flood frequency was estimated by fitting the Pearson type III distribution of both observed and modeled streamflow with historic floods. Comparison of satellite-based precipitation products with a ground-based daily precipitation dataset for the period 2002-2014 reveals that 3B42V7 outperformed 3B42RT. The 3B42V7 product also shows consistent reliability in streamflow simulation and FFA (e.g., relative errors -20%-5% in the Jialing River). The results also indicate that complex terrain, drainage area, and reservoir construction are important factors that impact hydrologic model performance. The larger basin (156,736 km2) is more likely to produce satisfactory results than the small basin (19,613 km2) under similar circumstances (e.g., Jialing/Tuojiang calibrated by 3B42V7 for the calibration period: NSCE = 0.71/0.56). Using the same calibrated parameter sets from the entire Jialing River basin, the 3B42V7/3B42RT-driven hydrologic model performs better for two tributaries of the Jialing River (e.g., for the calibration period, NSCE = 0.71/0.60 in the Qujiang River basin and 0.54/0.38 in the Fujiang River basin) than for the upper mainstem of the Jialing River (NSCE = 0.34/0.32), which has more cascaded reservoirs with all these tributaries treated as ungauged basins for model validation. Overall, this study underscores

  7. Testing and Adapting a Daytime Four Band Satellite Ash Detection Algorithm for Eruptions in Alaska and the Kamchatka Peninsula, Russia

    Science.gov (United States)

    Andrup-Henriksen, G.; Skoog, R. A.

    2007-12-01

    Volcanic ash is detectable from satellite remote sensing due to the differences in spectral signatures compared to meteorological clouds. Recently a new global daytime ash detection algorithm was developed at University of Madison, Wisconsin. The algorithm is based on four spectral bands with the central wavelengths 0.65, 3.75, 11 and 12 micrometers that are common on weather satellite sensors including MODIS, AVHRR, GOES and MTSAT. The initial development of the algorithm was primarily based on MODIS data with global coverage. We have tested it using three years of AVHRR data in Alaska and the Kamchatka Peninsula, Russia. All the AVHRR data have been manually analyzed and recorded into an observational database during the daily monitoring performed by the remote sensing group at the Alaska Volcano Observatory (AVO). By taking the manual observations as accurate we were able to examine the accuracy of the four-channel algorithm for daytime data. The results were also compared to the current automated ash alarm used by AVO, based on the reverse absorption technique, also known as the split window method, with a threshold of -1.7K. This comparison indicates that the four- banded technique has a higher sensitivity to volcanic ash, but a greater number of false alarms. The algorithm was modified to achieve a false alarm rate comparable to current ash alarm while still maintaining increased sensitivity.

  8. Evaluation of two "integrated" polarimetric Quantitative Precipitation Estimation (QPE) algorithms at C-band

    Science.gov (United States)

    Tabary, Pierre; Boumahmoud, Abdel-Amin; Andrieu, Hervé; Thompson, Robert J.; Illingworth, Anthony J.; Le Bouar, Erwan; Testud, Jacques

    2011-08-01

    SummaryTwo so-called "integrated" polarimetric rate estimation techniques, ZPHI ( Testud et al., 2000) and ZZDR ( Illingworth and Thompson, 2005), are evaluated using 12 episodes of the year 2005 observed by the French C-band operational Trappes radar, located near Paris. The term "integrated" means that the concentration parameter of the drop size distribution is assumed to be constant over some area and the algorithms retrieve it using the polarimetric variables in that area. The evaluation is carried out in ideal conditions (no partial beam blocking, no ground-clutter contamination, no bright band contamination, a posteriori calibration of the radar variables ZH and ZDR) using hourly rain gauges located at distances less than 60 km from the radar. Also included in the comparison, for the sake of benchmarking, is a conventional Z = 282 R1.66 estimator, with and without attenuation correction and with and without adjustment by rain gauges as currently done operationally at Météo France. Under those ideal conditions, the two polarimetric algorithms, which rely solely on radar data, appear to perform as well if not better, pending on the measurements conditions (attenuation, rain rates, …), than the conventional algorithms, even when the latter take into account rain gauges through the adjustment scheme. ZZDR with attenuation correction is the best estimator for hourly rain gauge accumulations lower than 5 mm h -1 and ZPHI is the best one above that threshold. A perturbation analysis has been conducted to assess the sensitivity of the various estimators with respect to biases on ZH and ZDR, taking into account the typical accuracy and stability that can be reasonably achieved with modern operational radars these days (1 dB on ZH and 0.2 dB on ZDR). A +1 dB positive bias on ZH (radar too hot) results in a +14% overestimation of the rain rate with the conventional estimator used in this study (Z = 282R1.66), a -19% underestimation with ZPHI and a +23

  9. A global aerosol classification algorithm incorporating multiple satellite data sets of aerosol and trace gas abundances

    Directory of Open Access Journals (Sweden)

    M. J. M. Penning de Vries

    2015-09-01

    Full Text Available Detecting the optical properties of aerosols using passive satellite-borne measurements alone is a difficult task due to the broadband effect of aerosols on the measured spectra and the influences of surface and cloud reflection. We present another approach to determine aerosol type, namely by studying the relationship of aerosol optical depth (AOD with trace gas abundance, aerosol absorption, and mean aerosol size. Our new Global Aerosol Classification Algorithm, GACA, examines relationships between aerosol properties (AOD and extinction Ångström exponent from the Moderate Resolution Imaging Spectroradiometer (MODIS, UV Aerosol Index from the second Global Ozone Monitoring Experiment, GOME-2 and trace gas column densities (NO2, HCHO, SO2 from GOME-2, and CO from MOPITT, the Measurements of Pollution in the Troposphere instrument on a monthly mean basis. First, aerosol types are separated based on size (Ångström exponent and absorption (UV Aerosol Index, then the dominating sources are identified based on mean trace gas columns and their correlation with AOD. In this way, global maps of dominant aerosol type and main source type are constructed for each season and compared with maps of aerosol composition from the global MACC (Monitoring Atmospheric Composition and Climate model. Although GACA cannot correctly characterize transported or mixed aerosols, GACA and MACC show good agreement regarding the global seasonal cycle, particularly for urban/industrial aerosols. The seasonal cycles of both aerosol type and source are also studied in more detail for selected 5° × 5° regions. Again, good agreement between GACA and MACC is found for all regions, but some systematic differences become apparent: the variability of aerosol composition (yearly and/or seasonal is often not well captured by MACC, the amount of mineral dust outside of the dust belt appears to be overestimated, and the abundance of secondary organic aerosols is underestimated in

  10. A global aerosol classification algorithm incorporating multiple satellite data sets of aerosol and trace gas abundances

    Directory of Open Access Journals (Sweden)

    M. J. M. Penning de Vries

    2015-05-01

    Full Text Available Detecting the optical properties of aerosols using passive satellite-borne measurements alone is a difficult task due to the broad-band effect of aerosols on the measured spectra and the influences of surface and cloud reflection. We present another approach to determine aerosol type, namely by studying the relationship of aerosol optical depth (AOD with trace gas abundance, aerosol absorption, and mean aerosol size. Our new Global Aerosol Classification Algorithm, GACA, examines relationships between aerosol properties (AOD and extinction Ångström exponent from the Moderate Resolution Imaging Spectroradiometer (MODIS, UV Aerosol Index from the second Global Ozone Monitoring Experiment, GOME-2 and trace gas column densities (NO2, HCHO, SO2 from GOME-2, and CO from MOPITT, the Measurements of Pollution in the Troposphere instrument on a monthly mean basis. First, aerosol types are separated based on size (Ångström exponent and absorption (UV Aerosol Index, then the dominating sources are identified based on mean trace gas columns and their correlation with AOD. In this way, global maps of dominant aerosol type and main source type are constructed for each season and compared with maps of aerosol composition from the global MACC (Monitoring Atmospheric Composition and Climate model. Although GACA cannot correctly characterize transported or mixed aerosols, GACA and MACC show good agreement regarding the global seasonal cycle, particularly for urban/industrial aerosols. The seasonal cycles of both aerosol type and source are also studied in more detail for selected 5° × 5° regions. Again, good agreement between GACA and MACC is found for all regions, but some systematic differences become apparent: the variability of aerosol composition (yearly and/or seasonal is often not well captured by MACC, the amount of mineral dust outside of the dust belt appears to be overestimated, and the abundance of secondary organic aerosols is underestimated

  11. Missing North Atlantic cyclonic precipitation in ECMWF numerical weather prediction and ERA-40 data detected through the satellite climatology HOAPS II

    Energy Technology Data Exchange (ETDEWEB)

    Klepp, C.P.; Bakan, S.; Grassl, H. [Max-Planck Inst. fuer Meteorologie and Meteorologisches Inst., Univ. Hamburg (Germany)

    2005-12-01

    Intense precipitation associated with wintertime North Atlantic cyclones occurs not only in connection with frontal zones but also, and often mainly, embedded in strong cold air outbreaks to the west of mature cold fronts. Coherent structures of cloud clusters organized in mesoscale postfrontal low-pressure systems are frequently found in satellite data. Such postfrontal lows (PFL) can develop into severe weather events within few hours and can even reach Europe causing intense convective rainfall and gale force winds. Despite predicting the major storm systems numerical weather prediction (NWP) additionally needs to account for PFLs due to their frequent occurrence connected with high impact weather. But while the major cyclone systems are mostly well predicted, the forecast of PFLs remains poor. Using North Atlantic weather observations from the 1997 fronts and Atlantic storm track experiment (FASTEX) along with the standard voluntary observing ship (VOS) data led to a high quality validation data set for this usually data sparse region. For individual case studies of FASTEX cyclones with mesoscale PFLs investigations were carried out using the well calibrated precipitation estimates from HOAPS (Hamburg Ocean Atmosphere Parameters and fluxes from satellite data) compared to the NWP model output of the ECMWF (European Centre for medium-range weather forecasts). Preceding studies showed that the HOAPS precipitation structure and intensities are in good agreement with the VOS observations for all observed precipitation types within the cyclones, including PFLs. To assure that the results found in the 1997 data are still valid in the more recent ECMWF model system, a PFL rainfall comparison is carried out using HOAPS and ERA-40 (ECMWF Re-Analysis) data for the winter of 2001 and 2002. The results indicate that the ECMWF model is mostly well reproducing precipitation structures and intensities associated with frontal systems as observed in the VOS and HOAPS data

  12. Development of hybrid fog detection algorithm (FDA) using satellite and ground observation data for nighttime

    Science.gov (United States)

    Kim, So-Hyeong; Han, Ji-Hae; Suh, Myoung-Seok

    2017-04-01

    In this study, we developed a hybrid fog detection algorithm (FDA) using AHI/Himawari-8 satellite and ground observation data for nighttime. In order to detect fog at nighttime, Dual Channel Difference (DCD) method based on the emissivity difference between SWIR and IR1 is most widely used. DCD is good at discriminating fog from other things (middle/high clouds, clear sea and land). However, it is difficult to distinguish fog from low clouds. In order to separate the low clouds from the pixels that satisfy the thresholds of fog in the DCD test, we conducted supplementary tests such as normalized local standard derivation (NLSD) of BT11 and the difference of fog top temperature (BT11) and air temperature (Ta) from NWP data (SST from OSTIA data). These tests are based on the larger homogeneity of fog top than low cloud tops and the similarity of fog top temperature and Ta (SST). Threshold values for the three tests were optimized through ROC analysis for the selected fog cases. In addition, considering the spatial continuity of fog, post-processing was performed to detect the missed pixels, in particular, at edge of fog or sub-pixel size fog. The final fog detection results are presented by fog probability (0 100 %). Validation was conducted by comparing fog detection probability with the ground observed visibility data from KMA. The validation results showed that POD and FAR are ranged from 0.70 0.94 and 0.45 0.72, respectively. The quantitative validation and visual inspection indicate that current FDA has a tendency to over-detect the fog. So, more works which reducing the FAR is needed. In the future, we will also validate sea fog using CALIPSO data.

  13. Satellite range scheduling with the priority constraint: An improved genetic algorithm using a station ID encoding method

    Directory of Open Access Journals (Sweden)

    Li Yuqing

    2015-06-01

    Full Text Available Satellite range scheduling with the priority constraint is one of the most important problems in the field of satellite operation. This paper proposes a station coding based genetic algorithm to solve this problem, which adopts a new chromosome encoding method that arranges tasks according to the ground station ID. The new encoding method contributes to reducing the complexity in conflict checking and resolving, and helps to improve the ability to find optimal resolutions. Three different selection operators are designed to match the new encoding strategy, namely random selection, greedy selection, and roulette selection. To demonstrate the benefits of the improved genetic algorithm, a basic genetic algorithm is designed in which two cross operators are presented, a single-point crossover and a multi-point crossover. For the purpose of algorithm test and analysis, a problem-generating program is designed, which can simulate problems by modeling features encountered in real-world problems. Based on the problem generator, computational results and analysis are made and illustrated for the scheduling of multiple ground stations.

  14. Robust Fault-Tolerant Control for Satellite Attitude Stabilization Based on Active Disturbance Rejection Approach with Artificial Bee Colony Algorithm

    Directory of Open Access Journals (Sweden)

    Fei Song

    2014-01-01

    Full Text Available This paper proposed a robust fault-tolerant control algorithm for satellite stabilization based on active disturbance rejection approach with artificial bee colony algorithm. The actuating mechanism of attitude control system consists of three working reaction flywheels and one spare reaction flywheel. The speed measurement of reaction flywheel is adopted for fault detection. If any reaction flywheel fault is detected, the corresponding fault flywheel is isolated and the spare reaction flywheel is activated to counteract the fault effect and ensure that the satellite is working safely and reliably. The active disturbance rejection approach is employed to design the controller, which handles input information with tracking differentiator, estimates system uncertainties with extended state observer, and generates control variables by state feedback and compensation. The designed active disturbance rejection controller is robust to both internal dynamics and external disturbances. The bandwidth parameter of extended state observer is optimized by the artificial bee colony algorithm so as to improve the performance of attitude control system. A series of simulation experiment results demonstrate the performance superiorities of the proposed robust fault-tolerant control algorithm.

  15. Satellite remote sensing of harmful algal blooms: A new multi-algorithm method for detecting the Florida Red Tide (Karenia brevis)

    OpenAIRE

    Gustavo A. Carvalho; Minnett, Peter J.; Fleming, Lora E; Banzon, Viva F.; Baringer, Warner

    2010-01-01

    In a continuing effort to develop suitable methods for the surveillance of Harmful Algal Blooms (HABs) of Karenia brevis using satellite radiometers, a new multi-algorithm method was developed to explore whether improvements in the remote sensing detection of the Florida Red Tide was possible. A Hybrid Scheme was introduced that sequentially applies the optimized versions of two pre-existing satellite-based algorithms: an Empirical Approach (using water-leaving radiance as a function of chlor...

  16. Statistically optimized inversion algorithm for enhanced retrieval of aerosol properties from spectral multi-angle polarimetric satellite observations

    Science.gov (United States)

    Dubovik, O.; Herman, M.; Holdak, A.; Lapyonok, T.; Tanré, D.; Deuzé, J. L.; Ducos, F.; Sinyuk, A.; Lopatin, A.

    2011-05-01

    The proposed development is an attempt to enhance aerosol retrieval by emphasizing statistical optimization in inversion of advanced satellite observations. This optimization concept improves retrieval accuracy relying on the knowledge of measurement error distribution. Efficient application of such optimization requires pronounced data redundancy (excess of the measurements number over number of unknowns) that is not common in satellite observations. The POLDER imager on board the PARASOL micro-satellite registers spectral polarimetric characteristics of the reflected atmospheric radiation at up to 16 viewing directions over each observed pixel. The completeness of such observations is notably higher than for most currently operating passive satellite aerosol sensors. This provides an opportunity for profound utilization of statistical optimization principles in satellite data inversion. The proposed retrieval scheme is designed as statistically optimized multi-variable fitting of all available angular observations obtained by the POLDER sensor in the window spectral channels where absorption by gas is minimal. The total number of such observations by PARASOL always exceeds a hundred over each pixel and the statistical optimization concept promises to be efficient even if the algorithm retrieves several tens of aerosol parameters. Based on this idea, the proposed algorithm uses a large number of unknowns and is aimed at retrieval of extended set of parameters affecting measured radiation. The algorithm is designed to retrieve complete aerosol properties globally. Over land, the algorithm retrieves the parameters of underlying surface simultaneously with aerosol. In all situations, the approach is anticipated to achieve a robust retrieval of complete aerosol properties including information about aerosol particle sizes, shape, absorption and composition (refractive index). In order to achieve reliable retrieval from PARASOL observations even over very reflective

  17. Statistically optimized inversion algorithm for enhanced retrieval of aerosol properties from spectral multi-angle polarimetric satellite observations

    Directory of Open Access Journals (Sweden)

    O. Dubovik

    2011-05-01

    Full Text Available The proposed development is an attempt to enhance aerosol retrieval by emphasizing statistical optimization in inversion of advanced satellite observations. This optimization concept improves retrieval accuracy relying on the knowledge of measurement error distribution. Efficient application of such optimization requires pronounced data redundancy (excess of the measurements number over number of unknowns that is not common in satellite observations. The POLDER imager on board the PARASOL micro-satellite registers spectral polarimetric characteristics of the reflected atmospheric radiation at up to 16 viewing directions over each observed pixel. The completeness of such observations is notably higher than for most currently operating passive satellite aerosol sensors. This provides an opportunity for profound utilization of statistical optimization principles in satellite data inversion. The proposed retrieval scheme is designed as statistically optimized multi-variable fitting of all available angular observations obtained by the POLDER sensor in the window spectral channels where absorption by gas is minimal. The total number of such observations by PARASOL always exceeds a hundred over each pixel and the statistical optimization concept promises to be efficient even if the algorithm retrieves several tens of aerosol parameters. Based on this idea, the proposed algorithm uses a large number of unknowns and is aimed at retrieval of extended set of parameters affecting measured radiation.

    The algorithm is designed to retrieve complete aerosol properties globally. Over land, the algorithm retrieves the parameters of underlying surface simultaneously with aerosol. In all situations, the approach is anticipated to achieve a robust retrieval of complete aerosol properties including information about aerosol particle sizes, shape, absorption and composition (refractive index. In order to achieve reliable retrieval from PARASOL observations

  18. Statistically optimized inversion algorithm for enhanced retrieval of aerosol properties from spectral multi-angle polarimetric satellite observations

    Directory of Open Access Journals (Sweden)

    O. Dubovik

    2010-11-01

    Full Text Available The proposed development is an attempt to enhance aerosol retrieval by emphasizing statistical optimization in inversion of advanced satellite observations. This optimization concept improves retrieval accuracy relying on the knowledge of measurement error distribution. Efficient application of such optimization requires pronounced data redundancy (excess of the measurements number over number of unknowns that is not common in satellite observations. The POLDER imager on board of the PARASOL micro-satellite registers spectral polarimetric characteristics of the reflected atmospheric radiation at up to 16 viewing directions over each observed pixel. The completeness of such observations is notably higher than for most currently operating passive satellite aerosol sensors. This provides an opportunity for profound utilization of statistical optimization principles in satellite data inversion. The proposed retrieval scheme is designed as statistically optimized multi-variable fitting of the all available angular observations of total and polarized radiances obtained by POLDER sensor in the window spectral channels where absorption by gaseous is minimal. The total number of such observations by PARASOL always exceeds a hundred over each pixel and the statistical optimization concept promises to be efficient even if the algorithm retrieves several tens of aerosol parameters. Based on this idea, the proposed algorithm uses a large number of unknowns and is aimed on retrieval of extended set of parameters affecting measured radiation.

    The algorithm is designed to retrieve complete aerosol properties globally. Over land, the algorithm retrieves the parameters of underlying surface simultaneously with aerosol. In all situations, the approach is anticipated to achieve a robust retrieval of complete aerosol properties including information about aerosol particle sizes, shape, absorption and composition (refractive index. In order to achieve

  19. Design of Satellite Attitude Control Algorithm Based on the SDRE Method Using Gas Jets and Reaction Wheels

    Directory of Open Access Journals (Sweden)

    Luiz C. G. de Souza

    2013-01-01

    Full Text Available An experimental attitude control algorithm design using prototypes can minimize space mission costs by reducing the number of errors transmitted to the next phase of the project. The Space Mechanics and Control Division (DMC of INPE is constructing a 3D simulator to supply the conditions for implementing and testing satellite control hardware and software. Satellite large angle maneuver makes the plant highly nonlinear and if the parameters of the system are not well determined, the plant can also present some level of uncertainty. As a result, controller designed by a linear control technique can have its performance and robustness degraded. In this paper the standard LQR linear controller and the SDRE controller associated with an SDRE filter are applied to design a controller for a nonlinear plant. The plant is similar to the DMC 3D satellite simulator where the unstructured uncertainties of the system are represented by process and measurements noise. In the sequel the State-Dependent Riccati Equation (SDRE method is used to design and test an attitude control algorithm based on gas jets and reaction wheel torques to perform large angle maneuver in three axes. The SDRE controller design takes into account the effects of the plant nonlinearities and system noise which represents uncertainty. The SDRE controller performance and robustness are tested during the transition phase from angular velocity reductions to normal mode of operation with stringent pointing accuracy using a switching control algorithm based on minimum system energy. This work serves to validate the numerical simulator model and to verify the functionality of the control algorithm designed by the SDRE method.

  20. Current Status of Japanese Global Precipitation Measurement (GPM) Research Project

    Science.gov (United States)

    Kachi, Misako; Oki, Riko; Kubota, Takuji; Masaki, Takeshi; Kida, Satoshi; Iguchi, Toshio; Nakamura, Kenji; Takayabu, Yukari N.

    2013-04-01

    The Global Precipitation Measurement (GPM) mission is a mission led by the Japan Aerospace Exploration Agency (JAXA) and the National Aeronautics and Space Administration (NASA) under collaboration with many international partners, who will provide constellation of satellites carrying microwave radiometer instruments. The GPM Core Observatory, which carries the Dual-frequency Precipitation Radar (DPR) developed by JAXA and the National Institute of Information and Communications Technology (NICT), and the GPM Microwave Imager (GMI) developed by NASA. The GPM Core Observatory is scheduled to be launched in early 2014. JAXA also provides the Global Change Observation Mission (GCOM) 1st - Water (GCOM-W1) named "SHIZUKU," as one of constellation satellites. The SHIZUKU satellite was launched in 18 May, 2012 from JAXA's Tanegashima Space Center, and public data release of the Advanced Microwave Scanning Radiometer 2 (AMSR2) on board the SHIZUKU satellite was planned that Level 1 products in January 2013, and Level 2 products including precipitation in May 2013. The Japanese GPM research project conducts scientific activities on algorithm development, ground validation, application research including production of research products. In addition, we promote collaboration studies in Japan and Asian countries, and public relations activities to extend potential users of satellite precipitation products. In pre-launch phase, most of our activities are focused on the algorithm development and the ground validation related to the algorithm development. As the GPM standard products, JAXA develops the DPR Level 1 algorithm, and the NASA-JAXA Joint Algorithm Team develops the DPR Level 2 and the DPR-GMI combined Level2 algorithms. JAXA also develops the Global Rainfall Map product as national product to distribute hourly and 0.1-degree horizontal resolution rainfall map. All standard algorithms including Japan-US joint algorithm will be reviewed by the Japan-US Joint

  1. A Distributed Cooperative Dynamic Task Planning Algorithm for Multiple Satellites Based on Multi-agent Hybrid Learning

    Institute of Scientific and Technical Information of China (English)

    WANG Chong; LI Jun; JING Ning; WANG Jun; CHEN Hao

    2011-01-01

    Traditionally,heuristic re-planning algorithms are used to tackle the problem of dynamic task planning for multiple satellites.However,the traditional heuristic strategies depend on the concrete tasks,which often affect the result's optimality.Noticing that the historical information of cooperative task planning will impact the latter planning results,we propose a hybrid learning algorithrn for dynamic multi-satellite task planning,which is based on the multi-agent reinforcement learning of policy iteration and the transfer learning.The reinforcement learning strategy of each satellite is described with neural networks.The policy neural network individuals with the best topological structure and weights are found by applying co-evolutionary search iteratively.To avoid the failure of the historical learning caused by the randomly occurring observation requests,a novel approach is proposed to balance the quality and efficiency of the task planning,which converts the historical leaming strategy to the current initial learning strategy by applying the transfer learning algorithm.The simulations and analysis show the feasibility and adaptability of the proposed approach especially for the situation with randomly occurring observation requests.

  2. Satellite cell heterogeneity revealed by G-Tool, an open algorithm to quantify myogenesis through colony-forming assays

    Directory of Open Access Journals (Sweden)

    Ippolito Joseph

    2012-06-01

    Full Text Available Abstract Background Muscle growth and repair is accomplished by the satellite cell pool, a self-renewing population of myogenic progenitors. Functional heterogeneity within the satellite cell compartment and changes in potential with experimental intervention can be revealed by in vitro colony-forming cell (CFC assays, however large numbers of colonies need to be assayed to give meaningful data, and manually quantifying nuclei and scoring markers of differentiation is experimentally limiting. Methods We present G-Tool, a multiplatform (Java open-source algorithm that analyzes an ensemble of fluorescent micrographs of satellite cell-derived colonies to provide quantitative and statistically meaningful metrics of myogenic potential, including proliferation capacity and propensity to differentiate. Results We demonstrate the utility of G-Tool in two applications: first, we quantify the response of satellite cells to oxygen concentration. Compared to 3% oxygen which approximates tissue levels, we find that 21% oxygen, the ambient level, markedly limits the proliferative potential of transit amplifying progeny but at the same time inhibits the rate of terminal myogenic differentiation. We also test whether satellite cells from different muscles have intrinsic differences that can be read out in vitro. Compared to masseter, dorsi, forelimb and hindlimb muscles, we find that the diaphragm satellite cells have significantly increased proliferative potential and a reduced propensity to spontaneously differentiate. These features may be related to the unique always-active status of the diaphragm. Conclusions G-Tool facilitates consistent and reproducible CFC analysis between experiments and individuals. It is released under an open-source license that enables further development by interested members of the community.

  3. River flow forecasting with Artificial Neural Networks using satellite observed precipitation pre-processed with flow length and travel time information: case study of the Ganges river basin

    Directory of Open Access Journals (Sweden)

    M. K. Akhtar

    2009-04-01

    Full Text Available This paper explores the use of flow length and travel time as a pre-processing step for incorporating spatial precipitation information into Artificial Neural Network (ANN models used for river flow forecasting. Spatially distributed precipitation is commonly required when modelling large basins, and it is usually incorporated in distributed physically-based hydrological modelling approaches. However, these modelling approaches are recognised to be quite complex and expensive, especially due to the data collection of multiple inputs and parameters, which vary in space and time. On the other hand, ANN models for flow forecasting are frequently developed only with precipitation and discharge as inputs, usually without taking into consideration the spatial variability of precipitation. Full inclusion of spatially distributed inputs into ANN models still leads to a complex computational process that may not give acceptable results. Therefore, here we present an analysis of the flow length and travel time as a basis for pre-processing remotely sensed (satellite rainfall data. This pre-processed rainfall is used together with local stream flow measurements of previous days as input to ANN models. The case study for this modelling approach is the Ganges river basin. A comparative analysis of multiple ANN models with different hydrological pre-processing is presented. The ANN showed its ability to forecast discharges 3-days ahead with an acceptable accuracy. Within this forecast horizon, the influence of the pre-processed rainfall is marginal, because of dominant influence of strongly auto-correlated discharge inputs. For forecast horizons of 7 to 10 days, the influence of the pre-processed rainfall is noticeable, although the overall model performance deteriorates. The incorporation of remote sensing data of spatially distributed precipitation information as pre-processing step showed to be a promising alternative for the setting-up of ANN models for

  4. Global Precipitation Measurement Poster

    Science.gov (United States)

    Azarbarzin, Art

    2010-01-01

    This poster presents an overview of the Global Precipitation Measurement (GPM) constellation of satellites which are designed to measure the Earth's precipitation. It includes the schedule of launches for the various satellites in the constellation, and the coverage of the constellation, It also reviews the mission capabilities, and the mission science objectives.

  5. A robust TEC depletion detector algorithm for satellite based navigation in Indian zone and depletion analysis for GAGAN

    Science.gov (United States)

    Dashora, Nirvikar

    2012-07-01

    require an immediate solution to attack this problem. Hence, an alternative approach is chosen in which TEC-depletions are ignored for GIVE estimation. This approach requires further attention to accommodate it in the processing software for a near real time solution for the concerned user in Indian zone. But, nonetheless, as a prime concern, to precluding a particular satellite-link affected by TEC depletion, a reference receiver or user requires an algorithm that can compute the TEC and detect the depletion in TEC in near real time. To answer it, a novel TEC depletion detector algorithm and software has been developed which can be used for any SBAS in India. The algorithm is initially tested for recorded data from ground based dual frequency GPS receivers of GAGAN project. Data from 18-20 stations with 30 second sampling interval was obtained for year 2004 and 2005. The algorithm has been tuned to Indian ionosphere and show a great success in detecting TEC depletions with minimum false alarm. This is because of a specific property of this algorithm that it rejects the smooth fall in TEC in post sunset ionosphere. The depletions in TEC are characterized by a sudden fall and immediate recovery in level of TEC for a given line of sight. Since our algorithm extracts only such signatures and hence minimize the false alarms it may reduce burden on operational systems. We present this algorithm in detail. Another important facet of this algorithm is about its scientific use in automatic analysis of large amount of continuous GPS data. We have analyzed the aforementioned data by a MATLAB based script and obtained significant statistical results. The temporal duration and depth of TEC depletions is obtained for all over Indian region which provide a new insight over the phenomenon called EPBs and TEC depletions.

  6. Using Lagrangian-based process studies to test satellite algorithms of vertical carbon flux in the eastern North Pacific Ocean

    Science.gov (United States)

    Stukel, M. R.; Kahru, M.; Benitez-Nelson, C. R.; Décima, M.; Goericke, R.; Landry, M. R.; Ohman, M. D.

    2015-11-01

    The biological carbon pump is responsible for the transport of ˜5-20 Pg C yr-1 from the surface into the deep ocean but its variability is poorly understood due to an incomplete mechanistic understanding of the complex underlying planktonic processes. In fact, algorithms designed to estimate carbon export from satellite products incorporate fundamentally different assumptions about the relationships between plankton biomass, productivity, and export efficiency. To test the alternate formulations of export efficiency in remote-sensing algorithms formulated by Dunne et al. (2005), Laws et al. (2011), Henson et al. (2011), and Siegel et al. (2014), we have compiled in situ measurements (temperature, chlorophyll, primary production, phytoplankton biomass and size structure, grazing rates, net chlorophyll change, and carbon export) made during Lagrangian process studies on seven cruises in the California Current Ecosystem and Costa Rica Dome. A food-web based approach formulated by Siegel et al. (2014) performs as well or better than other empirical formulations, while simultaneously providing reasonable estimates of protozoan and mesozooplankton grazing rates. By tuning the Siegel et al. (2014) algorithm to match in situ grazing rates more accurately, we also obtain better in situ carbon export measurements. Adequate representations of food-web relationships and grazing dynamics are therefore crucial to improving the accuracy of export predictions made from satellite-derived products. Nevertheless, considerable unexplained variance in export remains and must be explored before we can reliably use remote sensing products to assess the impact of climate change on biologically mediated carbon sequestration.

  7. Algorithm for Recovery of Integrated Water Vapor Content in the Atmosphere over Land Surfaces Based on Satellite Spectroradiometer Data

    Science.gov (United States)

    Lisenko, S. A.

    2017-05-01

    An algorithm is proposed for making charts of the distribution of water vapor in the atmosphere based on multispectral images of the earth by the Ocean and Land Color Instrument (OLCI) on board of the European research satellite Sentinel-3. The algorithm is based on multiple regression fits of the spectral brightness coefficients at the upper boundary of the atmosphere, the geometric parameters of the satellite location (solar and viewing angles), and the total water vapor content in the atmosphere. A regression equation is derived from experimental data on the variation in the optical characteristics of the atmosphere and underlying surface, together with Monte-Carlo calculations of the radiative transfer characteristics. The equation includes the brightness coefficients in the near IR channels of the OLCI for the absorption bands of water vapor and oxygen, as well as for the transparency windows of the atmosphere. Together these make it possible to eliminate the effect of the reflection spectrum of the underlying surface and air pressure on the accuracy of the measurements. The algorithm is tested using data from a prototype OLCI, the medium resolution imaging spectrometer (MERIS). A sample chart of the distribution of water vapor in the atmosphere over Eastern Europe is constructed without using subsatellite data and digital models of the surface relief. The water vapor contents in the atmosphere determined using MERIS images and data provided by earthbound measurements with the aerosol robotic network (AERONET) are compared with a mean square deviation of 1.24 kg/m2.

  8. Characterizing Seasonal Drought, Water Supply Pattern and Their Impact on Vegetation Growth Using Satellite Soil Moisture Data, GRACE Water Storage and Precipitation Observations

    Science.gov (United States)

    A, G.; Velicogna, I.; Kimball, J. S.; Du, J.; Kim, Y.; Njoku, E. G.; Colliander, A.

    2016-12-01

    We combine soil moisture (SM) data from AMSR-E, AMSR-2 and SMAP, terrestrial water storage (TWS) changes from GRACE and precipitation measurements from GPCP to delineate and characterize drought and water supply pattern and its impact on vegetation growth. GRACE TWS provides spatially continuous observations of total terrestrial water storage changes and regional drought extent, persistence and severity, while satellite derived soil moisture estimates provide enhanced delineation of plant-available soil moisture. Together these data provide complementary metrics quantifying available plant water supply and have important implications for water resource management. We use these data to investigate the supply changes from different water components in relation to satellite based vegetation productivity metrics from MODIS, before, during and following the major drought events observed in the continental US during the past 13 years. We observe consistent trends and significant correlations between monthly time series of TWS, SM, and vegetation productivity. In Texas and surrounding semi-arid areas, we find that the spatial pattern of the vegetation-moisture relation follows the gradient in mean annual precipitation. In Texas, GRACE TWS and surface SM show strong coupling and similar characteristic time scale in relatively normal years, while during the 2011 onward hydrological drought, GRACE TWS manifests a longer time scale than that of surface SM, implying stronger drought persistence in deeper water storage. In the Missouri watershed, we find a spatially varying vegetation-moisture relationship where in the drier northwestern portion of the basin, the inter-annual variability in summer vegetation productivity is closely associated with changes in carry-on GRACE TWS from spring, whereas in the moist southeastern portion of the basin, summer precipitation is the dominant controlling factor on vegetation growth.

  9. An Image Matching Algorithm Integrating Global SRTM and Image Segmentation for Multi-Source Satellite Imagery

    Directory of Open Access Journals (Sweden)

    Xiao Ling

    2016-08-01

    Full Text Available This paper presents a novel image matching method for multi-source satellite images, which integrates global Shuttle Radar Topography Mission (SRTM data and image segmentation to achieve robust and numerous correspondences. This method first generates the epipolar lines as a geometric constraint assisted by global SRTM data, after which the seed points are selected and matched. To produce more reliable matching results, a region segmentation-based matching propagation is proposed in this paper, whereby the region segmentations are extracted by image segmentation and are considered to be a spatial constraint. Moreover, a similarity measure integrating Distance, Angle and Normalized Cross-Correlation (DANCC, which considers geometric similarity and radiometric similarity, is introduced to find the optimal correspondences. Experiments using typical satellite images acquired from Resources Satellite-3 (ZY-3, Mapping Satellite-1, SPOT-5 and Google Earth demonstrated that the proposed method is able to produce reliable and accurate matching results.

  10. Developing the Integrated Multi-Satellite Retrievals for GPM (IMERG)

    Science.gov (United States)

    Huffman, G. J.; Bolvin, D. T.; Braithwaite, D.; Hsu, K.; Joyce, R.; Kidd, C.; Sorooshian, S.; Xie, P.; Yoo, S.-H.

    2012-04-01

    The Integrated Multi-satellitE Retrievals for GPM (IMERG) will provide the Day-1 algorithm for computing combined precipitation estimates as part of GPM. The focus is assembling the best time series of (nearly) global precipitation from the international constellation of precipitation-relevant satellites and global surface precipitation gauge analyses. It is planned that the time series will encompass both the TRMM and GPM eras, and that the coverage will be extended to fully global as algorithms are developed that provide skill in the difficult high-latitude environment. IMERG is being developed as a unified U.S. algorithm that takes advantage of strengths in the three groups that are contributing expertise: 1) the TRMM Multi-satellite Precipitation Analysis (TMPA), which addresses inter-satellite calibration of precipitation estimates and monthly scale combination of satellite and gauge analyses; 2) the CPC Morphing algorithm with Kalman Filtering (K-CMORPH), which provides quality-weighted time interpolation of precipitation patterns following storm motion; and 3) the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks using a Cloud Classification System (PERSIANN-CCS), which provides a neural-network-based scheme for generating microwave-calibrated precipitation estimates from geosynchronous infrared brightness temperatures. In this talk we summarize the code-level integration on which IMERG is based, including the important issues that drive the design and implementation, plans for testing and starting to run the system, and current status. One concept being pioneered by the IMERG team is that combination datasets should be computed multiple times at different latencies to serve the needs of different groups of users. Although reprocessing all of the latency "runs" complicates the reprocessing scenario, experience demonstrates that it is essential for the users. Fortunately, the IMERG team has worked with the

  11. Evaluation of microphysics and precipitation-type frequencies in long-term three-dimensional cloud-resolving model simulations using passive and active microwave sensors from the TRMM satellite

    Science.gov (United States)

    Matsui, T.; Zeng, X.; Tao, W.; Lang, S.; Zhang, M.; Masunaga, H.

    2007-12-01

    With significant improvements in computational power over the last decades, cloud-resolving model (CRM) simulations can now be conducted on larger scales for longer time periods to better understand cloud- precipitation systems. However, even after the decadal development of CRMs, there are many uncertainties in cloud microphysics processes and cloud-precipitation structures due to the lack of routine observations. Therefore, we need to establish a practical CRM evaluation framework using frequent observations from satellites. This evaluation framework consists of i) multi-satellite simulators and ii) the construction of statistical composites that can be used to effectively evaluate cloud-precipitation systems. First, simulated cloud- precipitation structures and microphysics processes are converted to satellite-consistent radar reflectivity and microwave brightness temperature using microwave and radar simulators in the Satellite Data Simulator Unit (SDSU). Second, the CRM-computed and satellite-observed radar reflectivities and microwave brightness temperatures are used to construct two statistical composites. One combines TRMM (Tropical Rainfall Measuring Mission) PR (precipitation radar) 13.8-GHz radar echo-top heights and TRMM VIRS (visible/infrared scanner) 10.8-micron brightness temperatures. This composite categorizes precipitating clouds into shallow warm, cumulus congestus, deep stratiform, and deep convective clouds. The other composite combines multi- frequency TMI (TRMM microwave imager) brightness temperatures. The combination of low- and high-frequency channels reveals the performance of the model cloud microphysics in terms of liquid and ice precipitation amounts. In this study, long-term CRM simulations are performed using the Goddard Cumulus Ensemble (GCE) model for three cases: ARM TWP-ICE (Tropical Warm Pool International Cloud Experiment), SCSMEX (South China Sea Monsoon Experiment), and KWAJEX (Kwajalein Experiment). Results from the proposed

  12. Effective Assimilation of Global Precipitation

    Science.gov (United States)

    Lien, G.; Kalnay, E.; Miyoshi, T.; Huffman, G. J.

    2012-12-01

    global model and with high-resolution TRMM Multi-satellite Precipitation Analysis (TMPA) data is ongoing work. The climatological probability distribution of these precipitation data is calculated in preparation for the use of the proposed transformation algorithm. The impact of using an efficient precipitation assimilation in real global analyses and forecasts will be investigated.

  13. The GNSS polarimetric radio-occultation technique to sense precipitation events: a new concept to be tested aboard PAZ Low Earth Satellite

    Science.gov (United States)

    Tomás, Sergio; Oliveras, Santi; Cardellach, Estel; Rius, Antonio

    2013-04-01

    The Radio Occultation and Heavy Precipitation (ROHP) experiment, to be conducted aboard the Spanish PAZ satellite, consists of a radio occultation (RO) mission provided with dual-polarization capabilities. The research with polarimetric RO data has the goal of assessing the capabilities and limitations of this technique to infer profiles of heavy precipitation. The technique aims to provide vertical profiles of precipitation simultaneously to the vertical profiles of thermodynamic parameters (standard RO products) perfectly collocated both in space and time. If successful, the polarimetric RO will represent the first technique able to provide these complementary information on precipitation. This is a relevant input for studies on heavy and violent rainfall events, which being poorly represented by the current-generation of Numerical Weather Prediction and General Circulation Models appear to be difficult to forecast on all time-scales. The Low Earth Orbiter hosting this experiment, to be launched in 2013, will orbit at 500 km altitude in a near-Polar orbit. The Radio Occulation payload includes a RO GNSS receiver and a dual polarization (H/V) limb oriented antenna to capture the signals of setting GNSS transmitters. NOAA and UCAR participate in the ground-segment of the radiometric experiment to enable near-real time dissemination of the level-1 standard RO products. The space-based GNSS RO technique scans the atmosphere vertically at fine resolution (close to 300 meter in the troposphere) by precisely measure the delay between a GNSS transmitter and a GNSS receiver aboard a Low Earth Orbiter, when the former is setting below or rising above the Earth limb. The standard, thermodynamical, products are extracted from the excess delay induced by the atmosphere at different layers. This presentation will not focus on this well-established application, but a novel concept using polarimetry to also retrieve rain information. The precipitation-measurement principle is

  14. Global Precipitation Measurement (GPM) Mission: Precipitation Processing System (PPS) GPM Mission Gridded Text Products Provide Surface Precipitation Retrievals

    Science.gov (United States)

    Stocker, Erich Franz; Kelley, O.; Kummerow, C.; Huffman, G.; Olson, W.; Kwiatkowski, J.

    2015-01-01

    In February 2015, the Global Precipitation Measurement (GPM) mission core satellite will complete its first year in space. The core satellite carries a conically scanning microwave imager called the GPM Microwave Imager (GMI), which also has 166 GHz and 183 GHz frequency channels. The GPM core satellite also carries a dual frequency radar (DPR) which operates at Ku frequency, similar to the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar, and a new Ka frequency. The precipitation processing system (PPS) is producing swath-based instantaneous precipitation retrievals from GMI, both radars including a dual-frequency product, and a combined GMIDPR precipitation retrieval. These level 2 products are written in the HDF5 format and have many additional parameters beyond surface precipitation that are organized into appropriate groups. While these retrieval algorithms were developed prior to launch and are not optimal, these algorithms are producing very creditable retrievals. It is appropriate for a wide group of users to have access to the GPM retrievals. However, for researchers requiring only surface precipitation, these L2 swath products can appear to be very intimidating and they certainly do contain many more variables than the average researcher needs. Some researchers desire only surface retrievals stored in a simple easily accessible format. In response, PPS has begun to produce gridded text based products that contain just the most widely used variables for each instrument (surface rainfall rate, fraction liquid, fraction convective) in a single line for each grid box that contains one or more observations.This paper will describe the gridded data products that are being produced and provide an overview of their content. Currently two types of gridded products are being produced: (1) surface precipitation retrievals from the core satellite instruments GMI, DPR, and combined GMIDPR (2) surface precipitation retrievals for the partner constellation

  15. A satellite digital controller or 'play that PID tune again, Sam'. [Position, Integral, Derivative feedback control algorithm for design strategy

    Science.gov (United States)

    Seltzer, S. M.

    1976-01-01

    The problem discussed is to design a digital controller for a typical satellite. The controlled plant is considered to be a rigid body acting in a plane. The controller is assumed to be a digital computer which, when combined with the proposed control algorithm, can be represented as a sampled-data system. The objective is to present a design strategy and technique for selecting numerical values for the control gains (assuming position, integral, and derivative feedback) and the sample rate. The technique is based on the parameter plane method and requires that the system be amenable to z-transform analysis.

  16. Recent trends of the tropical hydrological cycle inferred from Global Precipitation Climatology Project and International Satellite Cloud Climatology Project datasets

    Science.gov (United States)

    Sud, Y. C.; Zhou, Y.; Xu, K.; Betts, A. K.

    2012-12-01

    Among the greenhouse gases induced climate change projections, tropical hydrological cycle changes can be expected to cause significant deficit or excess of precipitation in many regions, and that in turn would impact all life on earth. We have examined decadal trends of the tropical hydrological cycle in the GPCP precipitation and ISCCP cloud and radiation datasets to determine if such trends can provide an observation-based benchmark for model predictions of the ongoing climate change. The observations data show (1) intensifications of tropical precipitation in the rising regions of the Walker and Hadley circulations and weakening over the sinking regions - showcasing the "wet-getting-wetter, dry-getting-dryer" phenomena; (2) a discernible poleward shift of the subtropical dry zones (up to 2° decade-1 in June-July-August (JJA) in the Northern Hemisphere and 0.3-0.7° decade-1 in JJA and September-October-November (SON) in the Southern Hemisphere consistent with an overall broadening of the Hadley circulation; and (3) some poleward migration of cloud boundaries within Hadley cell and plausible narrowing of the high cloudiness in the Intertropical Convergence Zone (ITCZ) region in some seasons. These trends indicate a strengthening of the tropical hydrological cycle with intensification of dry and wet extremes.

  17. A Precipitation Satellite Downscaling & Re-Calibration Routine for TRMM 3B42 and GPM Data Applied to the Tropical Andes

    Science.gov (United States)

    Manz, B.; Buytaert, W.; Tobón, C.; Villacis, M.; García, F.

    2014-12-01

    With the imminent release of GPM it is essential for the hydrological user community to improve the spatial resolution of satellite precipitation products (SPPs), also retrospectively of historical time-series. Despite the growing number of applications, to date SPPs have two major weaknesses. Firstly, geosynchronous infrared (IR) SPPs, relying exclusively on cloud elevation/ IR temperature, fail to replicate ground rainfall rates especially for convective rainfall. Secondly, composite SPPs like TRMM include microwave and active radar to overcome this, but the coarse spatial resolution (0.25°) from infrequent orbital sampling often fails to: a) characterize precipitation patterns (especially extremes) in complex topography regions, and b) allow for gauge comparisons with adequate spatial support. This is problematic for satellite-gauge merging and subsequent hydrological modelling applications. We therefore present a new re-calibration and downscaling routine that is applicable to 0.25°/ 3-hrly TRMM 3B42 and Level 3 GPM time-series to generate 1 km estimates. 16 years of instantaneous TRMM radar (TPR) images were evaluated against a unique dataset of over 100 10-min rain gauges from the tropical Andes (Colombia & Ecuador) to develop a spatially distributed error surface. Long-term statistics on occurrence frequency, convective/ stratiform fraction and extreme precipitation probability (Gamma & Generalized Pareto distributions) were computed from TPR at the 1 km scale as well as from TPR and 3B42 at the 0.25° scale. To downscale from 0.25° to 1 km a stochastic generator was used to restrict precipitation occurrence to a fraction of the 1 km pixels within the 0.25° gridcell at every time-step. Regression modelling established a relationship between probability distributions at the 0.25° scale and rainfall amounts were assigned to the retained 1 km pixels by quantile-matching to the gridcell. The approach inherently provides mass conservation of the downscaled

  18. An Empirical Orthogonal Function-Based Algorithm for Estimating Terrestrial Latent Heat Flux from Eddy Covariance, Meteorological and Satellite Observations.

    Science.gov (United States)

    Feng, Fei; Li, Xianglan; Yao, Yunjun; Liang, Shunlin; Chen, Jiquan; Zhao, Xiang; Jia, Kun; Pintér, Krisztina; McCaughey, J Harry

    2016-01-01

    Accurate estimation of latent heat flux (LE) based on remote sensing data is critical in characterizing terrestrial ecosystems and modeling land surface processes. Many LE products were released during the past few decades, but their quality might not meet the requirements in terms of data consistency and estimation accuracy. Merging multiple algorithms could be an effective way to improve the quality of existing LE products. In this paper, we present a data integration method based on modified empirical orthogonal function (EOF) analysis to integrate the Moderate Resolution Imaging Spectroradiometer (MODIS) LE product (MOD16) and the Priestley-Taylor LE algorithm of Jet Propulsion Laboratory (PT-JPL) estimate. Twenty-two eddy covariance (EC) sites with LE observation were chosen to evaluate our algorithm, showing that the proposed EOF fusion method was capable of integrating the two satellite data sets with improved consistency and reduced uncertainties. Further efforts were needed to evaluate and improve the proposed algorithm at larger spatial scales and time periods, and over different land cover types.

  19. Developing the science product algorithm testbed for Chinese next-generation geostationary meteorological satellites: Fengyun-4 series

    Science.gov (United States)

    Min, Min; Wu, Chunqiang; Li, Chuan; Liu, Hui; Xu, Na; Wu, Xiao; Chen, Lin; Wang, Fu; Sun, Fenglin; Qin, Danyu; Wang, Xi; Li, Bo; Zheng, Zhaojun; Cao, Guangzhen; Dong, Lixin

    2017-08-01

    Fengyun-4A (FY-4A), the first of the Chinese next-generation geostationary meteorological satellites, launched in 2016, offers several advances over the FY-2: more spectral bands, faster imaging, and infrared hyperspectral measurements. To support the major objective of developing the prototypes of FY-4 science algorithms, two science product algorithm testbeds for imagers and sounders have been developed by the scientists in the FY-4 Algorithm Working Group (AWG). Both testbeds, written in FORTRAN and C programming languages for Linux or UNIX systems, have been tested successfully by using Intel/g compilers. Some important FY-4 science products, including cloud mask, cloud properties, and temperature profiles, have been retrieved successfully through using a proxy imager, Himawari-8/Advanced Himawari Imager (AHI), and sounder data, obtained from the Atmospheric InfraRed Sounder, thus demonstrating their robustness. In addition, in early 2016, the FY-4 AWG was developed based on the imager testbed—a near real-time processing system for Himawari-8/AHI data for use by Chinese weather forecasters. Consequently, robust and flexible science product algorithm testbeds have provided essential and productive tools for popularizing FY-4 data and developing substantial improvements in FY-4 products.

  20. Comparison of three different methods of perturbing the potential vorticity field in mesoscale forecasts of Mediterranean heavy precipitation events: PV-gradient, PV-adjoint and PV-satellite

    Science.gov (United States)

    Vich, M.; Romero, R.; Richard, E.; Arbogast, P.; Maynard, K.

    2010-09-01

    Heavy precipitation events occur regularly in the western Mediterranean region. These events often have a high impact on the society due to economic and personal losses. The improvement of the mesoscale numerical forecasts of these events can be used to prevent or minimize their impact on the society. In previous studies, two ensemble prediction systems (EPSs) based on perturbing the model initial and boundary conditions were developed and tested for a collection of high-impact MEDEX cyclonic episodes. These EPSs perturb the initial and boundary potential vorticity (PV) field through a PV inversion algorithm. This technique ensures modifications of all the meteorological fields without compromising the mass-wind balance. One EPS introduces the perturbations along the zones of the three-dimensional PV structure presenting the local most intense values and gradients of the field (a semi-objective choice, PV-gradient), while the other perturbs the PV field over the MM5 adjoint model calculated sensitivity zones (an objective method, PV-adjoint). The PV perturbations are set from a PV error climatology (PVEC) that characterizes typical PV errors in the ECMWF forecasts, both in intensity and displacement. This intensity and displacement perturbation of the PV field is chosen randomly, while its location is given by the perturbation zones defined in each ensemble generation method. Encouraged by the good results obtained by these two EPSs that perturb the PV field, a new approach based on a manual perturbation of the PV field has been tested and compared with the previous results. This technique uses the satellite water vapor (WV) observations to guide the correction of initial PV structures. The correction of the PV field intents to improve the match between the PV distribution and the WV image, taking advantage of the relation between dark and bright features of WV images and PV anomalies, under some assumptions. Afterwards, the PV inversion algorithm is applied to run

  1. Chlorophyll-a Estimation Around the Antarctica Peninsula Using Satellite Algorithms: Hints from Field Water Leaving Reflectance

    Directory of Open Access Journals (Sweden)

    Chen Zeng

    2016-12-01

    Full Text Available Ocean color remote sensing significantly contributes to our understanding of phytoplankton distribution and abundance and primary productivity in the Southern Ocean (SO. However, the current SO in situ optical database is still insufficient and unevenly distributed. This limits the ability to produce robust and accurate measurements of satellite-based chlorophyll. Based on data collected on cruises around the Antarctica Peninsula (AP on January 2014 and 2016, this research intends to enhance our knowledge of SO water and atmospheric optical characteristics and address satellite algorithm deficiency of ocean color products. We collected high resolution in situ water leaving reflectance (±1 nm band resolution, simultaneous in situ chlorophyll-a concentrations and satellite (MODIS and VIIRS water leaving reflectance. Field samples show that clouds have a great impact on the visible green bands and are difficult to detect because NASA protocols apply the NIR band as a cloud contamination threshold. When compared to global case I water, water around the AP has lower water leaving reflectance and a narrower blue-green band ratio, which explains chlorophyll-a underestimation in high chlorophyll-a regions and overestimation in low chlorophyll-a regions. VIIRS shows higher spatial coverage and detection accuracy than MODIS. After coefficient improvement, VIIRS is able to predict chlorophyll a with 53% accuracy.

  2. An Enhanced Satellite-Based Algorithm for Detecting and Tracking Dust Outbreaks by Means of SEVIRI Data

    Directory of Open Access Journals (Sweden)

    Francesco Marchese

    2017-05-01

    Full Text Available Dust outbreaks are meteorological phenomena of great interest for scientists and authorities (because of their impact on the climate, environment, and human activities, which may be detected, monitored, and characterized from space using different methods and procedures. Among the recent dust detection algorithms, the RSTDUST multi-temporal technique has provided good results in different geographic areas (e.g., Mediterranean basin; Arabian Peninsula, exhibiting a better performance than traditional split window methods, in spite of some limitations. In this study, we present an optimized configuration of this technique, which better exploits data provided by Spinning Enhanced Visible and Infrared Imager (SEVIRI aboard Meteosat Second Generation (MSG satellites to address those issues (e.g., sensitivity reduction over arid and semi-arid regions; dependence on some meteorological clouds. Three massive dust events affecting Europe and the Mediterranean basin in May 2008/2010 are analysed in this work, using information provided by some independent and well-established aerosol products to assess the achieved results. The study shows that the proposed algorithm, christened eRSTDUST (i.e., enhanced RSTDUST, which provides qualitative information about dust outbreaks, is capable of increasing the trade-off between reliability and sensitivity. The results encourage further experimentations of this method in other periods of the year, also exploiting data provided by different satellite sensors, for better evaluating the advantages arising from the use of this dust detection technique in operational scenarios.

  3. Extracting impervious surfaces from multi-source satellite imagery based on unified conceptual model by decision tree algorithm

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Extraction of impervious surfaces is one of the necessary processes in urban change detection.This paper derived a unified conceptual model (UCM) from the vegetation-impervious surface-soil (VIS) model to make the extraction more effective and accurate.UCM uses the decision tree algorithm with indices of spectrum and texture,etc.In this model,we found both dependent and independent indices for multi-source satellite imagery according to their similarity and dissimilarity.The purpose of the indices is to remove the other land-use and land-cover types (e.g.,vegetation and soil) from the imagery,and delineate the impervious surfaces as the result.UCM has the same steps conducted by decision tree algorithm.The Landsat-5 TM image (30 m) and the Satellite Probatoire d’Observation de la Terre (SPOT-4) image (20 m) from Chaoyang District (Beijing) in 2007 were used in this paper.The results show that the overall accuracy in Landsat-5 TM image is 88%,while 86.75% in SPOT-4 image.It is an appropriate method to meet the demand of urban change detection.

  4. Multi-objective entropy evolutionary algorithm for marine oil spill detection using cosmo-skymed satellite data

    Directory of Open Access Journals (Sweden)

    M. Marghany

    2015-06-01

    Full Text Available Oil spill pollution has a substantial role in damaging the marine ecosystem. Oil spill that floats on top of water, as well as decreasing the fauna populations, affects the food chain in the ecosystem. In fact, oil spill is reducing the sunlight penetrates the water, limiting the photosynthesis of marine plants and phytoplankton. Moreover, marine mammals for instance, disclosed to oil spills their insulating capacities are reduced, and so making them more vulnerable to temperature variations and much less buoyant in the seawater. This study has demonstrated a design tool for oil spill detection in SAR satellite data using optimization of Entropy based Multi-Objective Evolutionary Algorithm (E-MMGA which based on Pareto optimal solutions. The study also shows that optimization entropy based Multi-Objective Evolutionary Algorithm provides an accurate pattern of oil slick in SAR data. This shown by 85 % for oil spill, 10 % look-alike and 5 % for sea roughness using the receiver-operational characteristics (ROC curve. The E-MMGA also shows excellent performance in SAR data. In conclusion, E-MMGA can be used as optimization for entropy to perform an automatic detection of oil spill in SAR satellite data.

  5. Experimental Demonstration of an Algorithm to Detect the Presence of a Parasitic Satellite

    Science.gov (United States)

    2003-03-01

    1-9 ACTEX · · · Advanced Controls Technology Experiment . . . . . . . . 2-2 ETS-VI · · · Engineering Test Satellite-VI...Technology Experiment ( ACTEX ), Stetson’s on-orbit ID work on NOAA-2 [33], and Wertz and Lee’s operational MOI estimation of the Cassini spacecraft. 2.1.2

  6. A feasibility study for the retrieval of the total column precipitable water vapor from satellite observations in the blue spectral range

    Directory of Open Access Journals (Sweden)

    T. Wagner

    2013-04-01

    Full Text Available We present a new algorithm for satellite retrievals of the atmospheric water vapor column in the blue spectral range. The water vapor absorption cross section in the blue spectral range is much weaker than in the red spectral range. Thus the detection limit and the uncertainty of individual observations is systematically larger than for retrievals at longer wavelengths. Nevertheless, water vapor retrievals in the blue spectral range have also several advantages: since the surface albedo in the blue spectral range is similar over land and ocean, water vapor retrievals are more consistent than for longer wavelengths. Compared to retrievals at longer wavelengths, over ocean the sensitivity for atmospheric layers close to the surface is higher due to the (typically 2 to 3 times higher ocean albedo in the blue. Water vapor retrievals in the blue spectral range are also possible for satellite sensors, which do not measure at longer wavelengths of the visible spectral range like the Ozone Monitoring instrument (OMI. We investigated details of the water vapor retrieval in the blue spectral range based on radiative transfer simulations and observations from the Global Ozone Monitoring Experiment 2 (GOME-2 and OMI. It is demonstrated that it is possible to retrieve the atmospheric water vapor column density in the blue spectral range over most parts of the globe. The findings of our study are of importance also for future satellite missions like e.g. Sentinel 4 and 5.

  7. A feasibility study for the retrieval of the total column precipitable water vapour from satellite observations in the blue spectral range

    Directory of Open Access Journals (Sweden)

    T. Wagner

    2013-10-01

    Full Text Available We present a new algorithm for satellite retrievals of the atmospheric water vapour column in the blue spectral range. The water vapour absorption cross section in the blue spectral range is much weaker than in the red spectral range. Thus the detection limit and the uncertainty of individual observations are systematically larger than for retrievals at longer wavelengths. Nevertheless, water vapour retrievals in the blue spectral range have also several advantages: since the surface albedo in the blue spectral range is similar over land and ocean, water vapour retrievals are more consistent than for longer wavelengths. Compared to retrievals at longer wavelengths, the sensitivity for atmospheric layers close to the surface is higher due to the (typically 2 to 3 times higher ocean albedo in the blue. Water vapour retrievals in the blue spectral range are also possible for satellite sensors, which do not measure at longer wavelengths of the visible spectral range like the Ozone Monitoring Instrument (OMI. We investigated details of the water vapour retrieval in the blue spectral range based on radiative transfer simulations and observations from the Global Ozone Monitoring Experiment 2 (GOME-2 and OMI. It is demonstrated that it is possible to retrieve the atmospheric water vapour column density in the blue spectral range over most parts of the globe. The findings of our study are of importance also for future satellite missions (e.g. Sentinel 4 and 5.

  8. On the potential of sub-mm passive MW observations from geostationary satellites to retrieve heavy precipitation over the Mediterranean Area

    Directory of Open Access Journals (Sweden)

    S. Pinori

    2006-01-01

    Full Text Available The general interest in the potential use of the mm and sub-mm frequencies up to 425 GHz resolution from geostationary orbit is increasing due to the fact that the frequent time sampling and the comparable spatial resolution relative to the "classical" (≤89 GHz microwave frequencies would allow the monitoring of precipitating intense events for the assimilation of rain in now-casting weather prediction models. In this paper, we use the simulation of a heavy precipitating event in front of the coast of Crete island (Greece performed by the University of Wisconsin - Non-hydrostatic Modeling System (UW-NMS cloud resolving model in conjunction with a 3D-adjusted plane parallel radiative transfer model to simulate the upwelling brightness temperatures (TB's at mm and sub-mm frequencies. To study the potential use of high frequencies, we first analyze the relationships of the simulated TB's with the microphysical properties of the UW-NMS simulated precipitating clouds, and then explore the capability of a Bayesian algorithm for the retrieval of surface rain rate, rain and ice water paths at such frequencies.

  9. Improved infrared precipitation estimation approaches based on k-means clustering: Application to north Algeria using MSG-SEVIRI satellite data

    Science.gov (United States)

    Mokdad, Fatiha; Haddad, Boualem

    2017-06-01

    In this paper, two new infrared precipitation estimation approaches based on the concept of k-means clustering are first proposed, named the NAW-Kmeans and the GPI-Kmeans methods. Then, they are adapted to the southern Mediterranean basin, where the subtropical climate prevails. The infrared data (10.8 μm channel) acquired by MSG-SEVIRI sensor in winter and spring 2012 are used. Tests are carried out in eight areas distributed over northern Algeria: Sebra, El Bordj, Chlef, Blida, Bordj Menael, Sidi Aich, Beni Ourthilane, and Beni Aziz. The validation is performed by a comparison of the estimated rainfalls to rain gauges observations collected by the National Office of Meteorology in Dar El Beida (Algeria). Despite the complexity of the subtropical climate, the obtained results indicate that the NAW-Kmeans and the GPI-Kmeans approaches gave satisfactory results for the considered rain rates. Also, the proposed schemes lead to improvement in precipitation estimation performance when compared to the original algorithms NAW (Nagri, Adler, and Wetzel) and GPI (GOES Precipitation Index).

  10. Cloud classification from satellite data using a fuzzy sets algorithm: A polar example

    Science.gov (United States)

    Key, J. R.; Maslanik, J. A.; Barry, R. G.

    1988-01-01

    Where spatial boundaries between phenomena are diffuse, classification methods which construct mutually exclusive clusters seem inappropriate. The Fuzzy c-means (FCM) algorithm assigns each observation to all clusters, with membership values as a function of distance to the cluster center. The FCM algorithm is applied to AVHRR data for the purpose of classifying polar clouds and surfaces. Careful analysis of the fuzzy sets can provide information on which spectral channels are best suited to the classification of particular features, and can help determine likely areas of misclassification. General agreement in the resulting classes and cloud fraction was found between the FCM algorithm, a manual classification, and an unsupervised maximum likelihood classifier.

  11. Cloud classification from satellite data using a fuzzy sets algorithm - A polar example

    Science.gov (United States)

    Key, J. R.; Maslanik, J. A.; Barry, R. G.

    1989-01-01

    Where spatial boundaries between phenomena are diffuse, classification methods which construct mutually exclusive clusters seem inappropriate. The Fuzzy c-means (FCM) algorithm assigns each observation to all clusters, with membership values as a function of distance to the cluster center. The FCM algorithm is applied to AVHRR data for the purpose of classifying polar clouds and surfaces. Careful analysis of the fuzzy sets can provide information on which spectral channels are best suited to the classification of particular features, and can help determine like areas of misclassification. General agreement in the resulting classes and cloud fraction was found between the FCM algorithm, a manual classification, and an unsupervised maximum likelihood classifier.

  12. Cloud classification from satellite data using a fuzzy sets algorithm - A polar example

    Science.gov (United States)

    Key, J. R.; Maslanik, J. A.; Barry, R. G.

    1989-01-01

    Where spatial boundaries between phenomena are diffuse, classification methods which construct mutually exclusive clusters seem inappropriate. The Fuzzy c-means (FCM) algorithm assigns each observation to all clusters, with membership values as a function of distance to the cluster center. The FCM algorithm is applied to AVHRR data for the purpose of classifying polar clouds and surfaces. Careful analysis of the fuzzy sets can provide information on which spectral channels are best suited to the classification of particular features, and can help determine like areas of misclassification. General agreement in the resulting classes and cloud fraction was found between the FCM algorithm, a manual classification, and an unsupervised maximum likelihood classifier.

  13. Global Precipitation Measurement Cold Season Precipitation Experiment (GCPEx): For Measurement Sake Let it Snow

    Science.gov (United States)

    Skofronick-Jackson, Gail; Hudak, David; Petersen, Walter; Nesbitt, Stephen W.; Chandrasekar, V.; Durden, Stephen; Gleicher, Kirstin J.; Huang, Gwo-Jong; Joe, Paul; Kollias, Pavlos; Reed, Kimberly A.; Schwaller, Mathew R.; Stewart, Ronald; Tanelli, Simone; Tokay, Ali; Wang, James R.; Wolde, Mengistu

    2014-01-01

    As a component of the Earth's hydrologic cycle, and especially at higher latitudes,falling snow creates snow pack accumulation that in turn provides a large proportion of the fresh water resources required by many communities throughout the world. To assess the relationships between remotely sensed snow measurements with in situ measurements, a winter field project, termed the Global Precipitation Measurement (GPM) mission Cold Season Precipitation Experiment (GCPEx), was carried out in the winter of 2011-2012 in Ontario, Canada. Its goal was to provide information on the precipitation microphysics and processes associated with cold season precipitation to support GPM snowfall retrieval algorithms that make use of a dual-frequency precipitation radar and a passive microwave imager on board the GPM core satellite,and radiometers on constellation member satellites. Multi-parameter methods are required to be able to relate changes in the microphysical character of the snow to measureable parameters from which precipitation detection and estimation can be based. The data collection strategy was coordinated, stacked, high-altitude and in-situ cloud aircraft missions with three research aircraft sampling within a broader surface network of five ground sites taking in-situ and volumetric observations. During the field campaign 25 events were identified and classified according to their varied precipitation type, synoptic context, and precipitation amount. Herein, the GCPEx fieldcampaign is described and three illustrative cases detailed.

  14. A New Algorithm for the Satellite-Based Retrieval of Solar Surface Irradiance in Spectral Bands

    Directory of Open Access Journals (Sweden)

    Annette Hammer

    2012-03-01

    Full Text Available Accurate solar surface irradiance data is a prerequisite for an efficient planning and operation of solar energy systems. Further, it is essential for climate monitoring and analysis. Recently, the demand on information about spectrally resolved solar surface irradiance has grown. As surface measurements are rare, satellite derived information with high accuracy might fill this gap. This paper describes a new approach for the retrieval of spectrally resolved solar surface irradiance from satellite data. The method combines a eigenvector-hybrid look-up table approach for the clear sky case with satellite derived cloud transmission (Heliosat method. The eigenvector LUT approach is already used to retrieve the broadband solar surface irradiance of data sets provided by the Climate Monitoring Satellite Application Facility (CM-SAF. This paper describes the extension of this approach to wavelength bands and the combination with spectrally resolved cloud transmission values derived with radiative transfer corrections of the broadband cloud transmission. Thus, the new approach is based on radiative transfer modeling and enables the use of extended information about the atmospheric state, among others, to resolve the effect of water vapor and ozone absorption bands. The method is validated with spectrally resolved measurements from two sites in Europe and by comparison with radiative transfer calculations. The validation results demonstrate the ability of the method to retrieve accurate spectrally resolved irradiance from satellites. The accuracy is in the range of the uncertainty of surface measurements, with exception of the UV and NIR ( ≥ 1200 nm part of the spectrum, where higher deviations occur.

  15. Mapping the world's tropical cyclone rainfall contribution over land using TRMM satellite data: precipitation budget and extreme rainfall

    Science.gov (United States)

    Prat, O. P.; Nelson, B. R.

    2012-12-01

    A study was performed to characterize over-land precipitation associated with tropical cyclones (TCs) for basins around the world gathered in the International Best Track Archive for Climate Stewardship (IBTrACS). From 1998 to 2010, rainfall data from TRMM 3B42, showed that TCs accounted for 8-, 11-, 7-, 10-, and 12-% of the annual over-land precipitation for North America, East Asia, Northern Indian Ocean, Australia, and South-West Indian Ocean respectively, and that TC-contribution decreased importantly within the first 150-km from the coast. At the local scale, TCs contributed on average to more than 40% and up to 77% of the annual precipitation budget over very different climatic areas with arid or tropical characteristics. The East Asia domain presented the higher and most constant TC-rain (170±23%-mm/yr) normalized over the area impacted, while the Southwest Indian domain presented the highest variability (130±48%-mm/yr), and the North American domain displayed the lowest average TC-rain (77±27%-mm/yr) despite a higher TC-activity. The maximum monthly TC-contribution (11-15%) was found later in the TC-season and was a conjunction between the peak of TC-activity, TC-rainfall, and the domain annual antagonism between dry and wet regimes if any. Furthermore, TC-days that accounted globally for 2±0.5% of all precipitation events for all basins, represented between 11-30% of rainfall extremes (>101.6mm/day). Locally, TC-rainfall was linked with the majority (>70%) or the quasi-totality (≈100%) of extreme rainfall. Finally, because of their importance in terms of rainfall amount, the contribution of tropical cyclones is provided for a selection of fifty urban areas experiencing cyclonic activity. Cases studies conducted at the regional scale will focus on the link between TC-activity, water resources, and hydrohazards such as floods and droughts.

  16. Validation of Cloud Parameters Derived from Geostationary Satellites, AVHRR, MODIS, and VIIRS Using SatCORPS Algorithms

    Science.gov (United States)

    Minnis, P.; Sun-Mack, S.; Bedka, K. M.; Yost, C. R.; Trepte, Q. Z.; Smith, W. L., Jr.; Painemal, D.; Chen, Y.; Palikonda, R.; Dong, X.; Xi, B.

    2016-01-01

    Validation is a key component of remote sensing that can take many different forms. The NASA LaRC Satellite ClOud and Radiative Property retrieval System (SatCORPS) is applied to many different imager datasets including those from the geostationary satellites, Meteosat, Himiwari-8, INSAT-3D, GOES, and MTSAT, as well as from the low-Earth orbiting satellite imagers, MODIS, AVHRR, and VIIRS. While each of these imagers have similar sets of channels with wavelengths near 0.65, 3.7, 11, and 12 micrometers, many differences among them can lead to discrepancies in the retrievals. These differences include spatial resolution, spectral response functions, viewing conditions, and calibrations, among others. Even when analyzed with nearly identical algorithms, it is necessary, because of those discrepancies, to validate the results from each imager separately in order to assess the uncertainties in the individual parameters. This paper presents comparisons of various SatCORPS-retrieved cloud parameters with independent measurements and retrievals from a variety of instruments. These include surface and space-based lidar and radar data from CALIPSO and CloudSat, respectively, to assess the cloud fraction, height, base, optical depth, and ice water path; satellite and surface microwave radiometers to evaluate cloud liquid water path; surface-based radiometers to evaluate optical depth and effective particle size; and airborne in-situ data to evaluate ice water content, effective particle size, and other parameters. The results of comparisons are compared and contrasted and the factors influencing the differences are discussed.

  17. A DHIP Algorithm for SAR Satellite Imaging Planning%SAR卫星成像任务规划的DHIP方法

    Institute of Scientific and Technical Information of China (English)

    朱小满; 王钧; 李军; 景宁

    2011-01-01

    The emergence of earth observing satellite with Synthetic Aperture Radar (SAR) onboard provides a significant instrument to obtain geo-space information. This paper studies rightly on the SAR satellite imaging planning problem. Firstly, the general imaging process of SAR satellite is described to illustrate that the methods pertinent to optical satellite imaging planning are no longer suitable for the problem of a SAR satellite imaging planning. Secondly, the main influential constraints of SAR satellite are induced. Based on that, an approach called DHIP (Double Hierarchy Insert Planning) is proposed and described detailedly. The main idea of this method is to form an optimized scheme by tentatively inserting every candidate imaging request through two hierarchies, which are the hierarchy of SAR opening and closing, and that of photographing, by a checking while constructing method. The final experimental results show that the DHIP algorithm works fast and is able to get a satisfying scheme under general circumstances.%合成孔径雷达(SAR)卫星的出现为获取地球空间信息提供了重要手段,本文研究的即是SAR卫星成像任务规划问题.首先描述了SAR成像卫星的一般工作流程,说明针对可见光卫星进行成像任务规划的方法不再适用于SAR成像卫星任务规划;然后归纳了影响SAR卫星成像的主要约束.在此基础上,提出了双层插入规划(DHIP)方法,该方法将待规划任务在星载SAR开关机信息元组级和成像信息元组级两个层级上逐次进行试探性插入,采用边构造边检测的方法获得该问题的优化解.实验结果表明,该方法计算速度快,可以有效解决SAR卫星成像任务规划问题.

  18. Combining Satellite-Based Precipitation and Vegetation Indices to Achieve a Mid-Summer Agricultural Forecast in Jamaica

    Science.gov (United States)

    Curtis, S.; Allen, T. L.; Gamble, D.

    2009-12-01

    In this study global Earth observations of precipitation and Normalized Difference Vegetation Indices (NDVI) are used to assess the mid-summer dry spell’s (MSD) strength and subsequent impact on agriculture in the St. Elizabeth parish of Jamaica. St. Elizabeth is known as the ‘bread basket’ of Jamaica and has been the top or second highest producer of domestic food crops in the last twenty years. Yet, St. Elizabeth sits in the Jamaican rain shadow and is highly affected by drought. In addition, the summer rainy season is regularly interrupted by an MSD, which often occurs in July, has strong interannual variability, and greatly affects cropping strategies and yields. The steps undertaken to achieve a mid-summer agricultural forecast are: 1) use relationships between Global Precipitation Climatology Project v2.1 data over western Jamaica and predictive climate modes from 1979 to present to develop a forecast of July rainfall 2) downscale the rainfall variability in time to sub-monthly and space to the St. Elizabeth parish using the Tropical Rainfall Measuring Mission 3) link rainfall variability to vegetation vigor with the MODIS NDVI data 4) communicate with St. Elizabeth farmers via the University of West Indies, Mona. An important finding from this study is a decrease in vegetative vigor follows the MSD by two to four weeks in St. Elizabeth and the vegetation in the southern portion of the parish appears to be more sensitive to the MSD than vegetation elsewhere in the country.

  19. Preparing Precipitation Data Access, Value-added Services and Scientific Exploration Tools for the Integrated Multi-satellitE Retrievals for GPM (IMERG)

    Science.gov (United States)

    Ostrenga, D.; Liu, Z.; Kempler, S. J.; Vollmer, B.; Teng, W. L.

    2013-12-01

    The Precipitation Data and Information Services Center (PDISC) (http://disc.gsfc.nasa.gov/precipitation or google: NASA PDISC), located at the NASA Goddard Space Flight Center (GSFC) Earth Sciences (GES) Data and Information Services Center (DISC), is home of the Tropical Rainfall Measuring Mission (TRMM) data archive. For over 15 years, the GES DISC has served not only TRMM, but also other space-based, airborne-based, field campaign and ground-based precipitation data products to the precipitation community and other disciplinary communities as well. The TRMM Multi-Satellite Precipitation Analysis (TMPA) products are the most popular products in the TRMM product family in terms of data download and access through Mirador, the GES-DISC Interactive Online Visualization ANd aNalysis Infrastructure (Giovanni) and other services. The next generation of TMPA, the Integrated Multi-satellitE Retrievals for GPM (IMERG) to be released in 2014 after the launch of GPM, will be significantly improved in terms of spatial and temporal resolutions. To better serve the user community, we are preparing data services and samples are listed below. To enable scientific exploration of Earth science data products without going through complicated and often time consuming processes, such as data downloading, data processing, etc., the GES DISC has developed Giovanni in consultation with members of the user community, requesting quick search, subset, analysis and display capabilities for their specific data of interest. For example, the TRMM Online Visualization and Analysis System (TOVAS, http://disc2.nascom.nasa.gov/Giovanni/tovas/) has proven extremely popular, especially as additional datasets have been added upon request. Giovanni will continue to evolve to accommodate GPM data and the multi-sensor data inter-comparisons that will be sure to follow. Additional PDISC tool and service capabilities being adapted for GPM data include: An on-line PDISC Portal (includes user guide, etc

  20. Discrepant estimates of primary and export production from satellite algorithms, a biogeochemical model, and geochemical tracer measurements in the North Pacific Ocean

    Science.gov (United States)

    Palevsky, Hilary I.; Quay, Paul D.; Nicholson, David P.

    2016-08-01

    Estimates of primary and export production (PP and EP) based on satellite remote sensing algorithms and global biogeochemical models are widely used to provide year-round global coverage not available from direct observations. However, observational data to validate these approaches are limited. We find that no single satellite algorithm or model can reproduce seasonal and annual geochemically determined PP, export efficiency (EP/PP), and EP rates throughout the North Pacific basin, based on comparisons throughout the full annual cycle at time series stations in the subarctic and subtropical gyres and basin-wide regions sampled by container ship transects. The high-latitude regions show large PP discrepancies in winter and spring and strong effects of deep winter mixed layers on annual EP that cannot be accounted for in current satellite-based approaches. These results underscore the need to evaluate satellite- and model-based estimates using multiple productivity parameters measured over broad ocean regions throughout the annual cycle.

  1. Nonparametric temporal downscaling with event-based population generating algorithm for RCM daily precipitation to hourly: Model development and performance evaluation

    Science.gov (United States)

    Lee, Taesam; Park, Taewoong

    2017-04-01

    It is critical to downscale temporally coarse GCM or RCM outputs (e.g., monthly or daily) to fine time scales, such as sub-daily or hourly. Recently, a temporal downscaling model employing a nonparametric framework (NTD) with k-nearest resampling and a genetic algorithm has been developed to preserve key statistics as well as the diurnal cycle. However, this model's usage can be limited in estimating precipitation for design storms or floods because the key statistics of annual maximum precipitation (AMP), especially for longer hourly durations, present a systematic bias that cannot be preserved due to the discontinuity of multiday consecutive precipitation events in the downscaling procedure. In the current study, we develop an approach to downscale a consecutive daily precipitation at once focusing on the reproduction of AMP totals for different durations instead of day-by-day downscaling. The proposed model has been verified with the precipitation datasets for the 60 stations across South Korea over the period 1979-2005. Additionally, two validation studies were performed with the recent datasets of 2006-2014 and nearest neighbor stations. The verification and the two validation tests conclude that the population-based NTD (PNTD) model proposed in the current study is superior to the existing NTD model in preserving the key statistics of the observed AMP series and suitable for downscaling future climate scenarios.

  2. Novel Algorithms for Retrieval of Hydrology and Ice Regimes of Middle-sized Inland Water Bodies from Satellite Altimetry

    Science.gov (United States)

    Troitskaya, Y. I.; Rybushkina, G. V.; Kuznetsova, A. M.; Baidakov, G. A.; Soustova, I.

    2014-12-01

    A novel method of regional adaptive re-tracking based on constructing a theoretical model describing the formation of telemetric waveforms by reflection from the piecewise constant model surface corresponding to the geography of the region is considered. The algorithm includes four consecutive steps: a) constructing a local piecewise model of a reflecting surface in the neighbourhood of the reservoir; b) solving a direct problem by calculating the reflected waveforms within the framework of the model; c) imposing restrictions and validity criteria for the algorithm based on waveform modelling; d) solving the inverse problem by retrieving a tracking point by the improved threshold algorithm. The results obtained on the basis of standard algorithm and method for adaptive re-tracking at Rybinsk , Gorky, Kuibyshev, Saratov and Volgograd reservoirs and middle-sized lakes of Russia: Chany, Segozero, Hanko, Onego, Beloye are compared to each other and to the field data of hydrological stations in reservoirs and lakes. The possibility of determination of significant wave height (SWH) in the lakes through a two-step adaptive retracking is investigated. Comparing results of retracting of SGDR data and ground measurements shows, that retrieving wave parameters in medium sized water bodies still meets difficulties. The direction of improvement of the existing algorithm is associated with comprehensive use of altimetry data, field studies and numerical modeling of high resolution. A simple method for timing of water freezing and ice break-up in lakes based on analysis of along-track dependencies of brightness temperatures at 18.7 and 34 GHz registered by microwave radiometer of altimetry satellite Jason-2. Comparison with in situ data of Russian Register of hydraulic structures on the example of reservoirs of the Volga River and the Don River confirms ability of the proposed method to determine quantitatively the freezing and break-up times for middle-sized inland water bodies.

  3. Validation of Two MODIS Aerosols Algorithms with SKYNET and Prospects for Future Climate Satellites Such as the GCOM-C/SGLI

    Directory of Open Access Journals (Sweden)

    Jules R. Dim

    2013-01-01

    Full Text Available Potential improvements of aerosols algorithms for future climate-oriented satellites such as the coming Global Change Observation Mission Climate/Second generation Global Imager (GCOM-C/SGLI are discussed based on a validation study of three years’ (2008–2010 daily aerosols properties, that is, the aerosol optical thickness (AOT and the Ångström exponent (AE retrieved from two MODIS algorithms. The ground-truth data used for this validation study are aerosols measurements from 3 SKYNET ground sites. The results obtained show a good agreement between the ground-truth data AOT and that of one of the satellites’ algorithms, then a systematic overestimation (around 0.2 by the other satellites’ algorithm. The examination of the AE shows a clear underestimation (by around 0.2–0.3 by both satellites’ algorithms. The uncertainties explaining these ground-satellites’ algorithms discrepancies are examined: the cloud contamination affects differently the aerosols properties (AOT and AE of both satellites’ algorithms due to the retrieval scale differences between these algorithms. The deviation of the real part of the refractive index values assumed by the satellites’ algorithms from that of the ground tends to decrease the accuracy of the AOT of both satellites’ algorithms. The asymmetry factor (AF of the ground tends to increase the AE ground-satellites discrepancies as well.

  4. A Leo Satellite Navigation Algorithm Based on GPS and Magnetometer Data

    Science.gov (United States)

    Deutschmann, Julie; Harman, Rick; Bar-Itzhack, Itzhack

    2001-01-01

    The Global Positioning System (GPS) has become a standard method for low cost onboard satellite orbit determination. The use of a GPS receiver as an attitude and rate sensor has also been developed in the recent past. Additionally, focus has been given to attitude and orbit estimation using the magnetometer, a low cost, reliable sensor. Combining measurements from both GPS and a magnetometer can provide a robust navigation system that takes advantage of the estimation qualities of both measurements. Ultimately, a low cost, accurate navigation system can result, potentially eliminating the need for more costly sensors, including gyroscopes. This work presents the development of a technique to eliminate numerical differentiation of the GPS phase measurements and also compares the use of one versus two GPS satellites.

  5. Using High Resolution Satellite Precipitation fields to Assess the Impacts of Climate Change on the Santa Cruz and San Pedro River Basins

    Science.gov (United States)

    Robles-Morua, A.; Vivoni, E.; Rivera-Fernandez, E. R.; Dominguez, F.; Meixner, T.

    2013-05-01

    Hydrologic modeling using high spatiotemporal resolution satellite precipitation products in the southwestern United States and northwest Mexico is important given the sparse nature of available rain gauges. In addition, the bimodal distribution of annual precipitation also presents a challenge as differential climate impacts during the winter and summer seasons are not currently well understood. In this work, we focus on hydrological comparisons using rainfall forcing from a satellite-based product, downscaled GCM precipitation estimates and available ground observations. The simulations are being conducted in the Santa Cruz and San Pedro river basins along the Arizona-Sonora border at high spatiotemporal resolutions (~100 m and ~1 hour). We use a distributed hydrologic model, known as the TIN-based Real-time Integrated Basin Simulator (tRIBS), to generate simulated hydrological fields under historical (1991-2000) and climate change (2031-2040) scenarios obtained from an application of the Weather Research and Forecast (WRF) model. Using the distributed model, we transform the meteorological scenarios at 10-km, hourly resolution into predictions of the annual water budget, seasonal land surface fluxes and individual hydrographs of flood and recharge events. We compare the model outputs and rainfall fields of the WRF products against the forcing from the North American Land Data Assimilation System (NLDAS) and available ground observations from the National Climatic Data Center (NCDC) and Arizona Meteorological Network (AZMET). For this contribution, we selected two full years in the historical period and in the future scenario that represent wet and dry conditions for each decade. Given the size of the two basins, we rely on a high performance computing platform and a parallel domain discretization with higher resolutions maintained at experimental catchments in each river basin. Model simulations utilize best-available data across the Arizona-Sonora border on

  6. Ozone ProfilE Retrieval Algorithm for nadir-looking satellite instruments in the UV-VIS

    Directory of Open Access Journals (Sweden)

    J. C. A. van Peet

    2013-10-01

    Full Text Available For the retrieval of the vertical distribution of ozone in the atmosphere the Ozone ProfilE Retrieval Algorithm (OPERA has been further developed. The new version (1.26 of OPERA is capable of retrieving ozone profiles from UV-VIS observations of most nadir looking satellite instruments like GOME, SCIAMACHY, OMI and GOME-2. The set-up of OPERA is described and results are presented for GOME and GOME-2 observations. The retrieved ozone profiles are globally compared to ozone sondes for the year 1997 and 2008. Relative differences between GOME/GOME-2 and ozone sondes are within the limits as specified by the user requirements from the Climate Change Initiative (CCI program of ESA. To demonstrate the performance of the algorithm under extreme circumstances the 2009 Antarctic ozone hole season was investigated in more detail using GOME-2 ozone profiles and lidar data, which showed an unusual persistence of the vortex over the Río Gallegos observing station (51° S, 69.3° W. By applying OPERA to multiple instruments a timeseries of ozone profiles from 1996 to 2013 from a single robust algorithm can be created.

  7. SeaWiFS Technical Report Series. Volume 42; Satellite Primary Productivity Data and Algorithm Development: A Science Plan for Mission to Planet Earth

    Science.gov (United States)

    Falkowski, Paul G.; Behrenfeld, Michael J.; Esaias, Wayne E.; Balch, William; Campbell, Janet W.; Iverson, Richard L.; Kiefer, Dale A.; Morel, Andre; Yoder, James A.; Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor)

    1998-01-01

    Two issues regarding primary productivity, as it pertains to the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Program and the National Aeronautics and Space Administration (NASA) Mission to Planet Earth (MTPE) are presented in this volume. Chapter 1 describes the development of a science plan for deriving primary production for the world ocean using satellite measurements, by the Ocean Primary Productivity Working Group (OPPWG). Chapter 2 presents discussions by the same group, of algorithm classification, algorithm parameterization and data availability, algorithm testing and validation, and the benefits of a consensus primary productivity algorithm.

  8. A geostationary longitude acquisition planning algorithm. [for maneuver planning of geosynchronous satellites

    Science.gov (United States)

    Petruzzo, C. J.; Bryant, W. C., Jr.; Nickerson, K. G.

    1977-01-01

    The paper is concerned with the phase of the geosynchronous mission termed station acquisition, which involves the maneuvering of a spacecraft to its geostationary longitude by means of the spacecraft propulsion system. An algorithm which assists in maneuver planning is described, and examples of its use are presented. The algorithm can be applied when sequences of more than three maneuvers are to be expected. While, in general, three maneuvers are sufficient to achieve the desired end conditions when orbital mechanics are the only consideration, operational considerations may add constraints resulting in an increased number of maneuvers required.

  9. Generalized Split-Window Algorithm for Estimate of Land Surface Temperature from Chinese Geostationary FengYun Meteorological Satellite (FY-2C Data

    Directory of Open Access Journals (Sweden)

    Jun Xia

    2008-02-01

    Full Text Available On the basis of the radiative transfer theory, this paper addressed the estimate ofLand Surface Temperature (LST from the Chinese first operational geostationarymeteorological satellite-FengYun-2C (FY-2C data in two thermal infrared channels (IR1,10.3-11.3 μ m and IR2, 11.5-12.5 μ m , using the Generalized Split-Window (GSWalgorithm proposed by Wan and Dozier (1996. The coefficients in the GSW algorithmcorresponding to a series of overlapping ranging of the mean emissivity, the atmosphericWater Vapor Content (WVC, and the LST were derived using a statistical regressionmethod from the numerical values simulated with an accurate atmospheric radiativetransfer model MODTRAN 4 over a wide range of atmospheric and surface conditions.The simulation analysis showed that the LST could be estimated by the GSW algorithmwith the Root Mean Square Error (RMSE less than 1 K for the sub-ranges with theViewing Zenith Angle (VZA less than 30° or for the sub-rangs with VZA less than 60°and the atmospheric WVC less than 3.5 g/cm2 provided that the Land Surface Emissivities(LSEs are known. In order to determine the range for the optimum coefficients of theGSW algorithm, the LSEs could be derived from the data in MODIS channels 31 and 32 provided by MODIS/Terra LST product MOD11B1, or be estimated either according tothe land surface classification or using the method proposed by Jiang et al. (2006; and theWVC could be obtained from MODIS total precipitable water product MOD05, or beretrieved using Li et al.’ method (2003. The sensitivity and error analyses in term of theuncertainty of the LSE and WVC as well as the instrumental noise were performed. Inaddition, in order to compare the different formulations of the split-window algorithms,several recently proposed split-window algorithms were used to estimate the LST with thesame simulated FY-2C data. The result of the intercomparsion showed that most of thealgorithms give

  10. A feed-forward Hopfield neural network algorithm (FHNNA) with a colour satellite image for water quality mapping

    Science.gov (United States)

    Asal Kzar, Ahmed; Mat Jafri, M. Z.; Hwee San, Lim; Al-Zuky, Ali A.; Mutter, Kussay N.; Hassan Al-Saleh, Anwar

    2016-06-01

    There are many techniques that have been given for water quality problem, but the remote sensing techniques have proven their success, especially when the artificial neural networks are used as mathematical models with these techniques. Hopfield neural network is one type of artificial neural networks which is common, fast, simple, and efficient, but it when it deals with images that have more than two colours such as remote sensing images. This work has attempted to solve this problem via modifying the network that deals with colour remote sensing images for water quality mapping. A Feed-forward Hopfield Neural Network Algorithm (FHNNA) was modified and used with a satellite colour image from type of Thailand earth observation system (THEOS) for TSS mapping in the Penang strait, Malaysia, through the classification of TSS concentrations. The new algorithm is based essentially on three modifications: using HNN as feed-forward network, considering the weights of bitplanes, and non-self-architecture or zero diagonal of weight matrix, in addition, it depends on a validation data. The achieved map was colour-coded for visual interpretation. The efficiency of the new algorithm has found out by the higher correlation coefficient (R=0.979) and the lower root mean square error (RMSE=4.301) between the validation data that were divided into two groups. One used for the algorithm and the other used for validating the results. The comparison was with the minimum distance classifier. Therefore, TSS mapping of polluted water in Penang strait, Malaysia, can be performed using FHNNA with remote sensing technique (THEOS). It is a new and useful application of HNN, so it is a new model with remote sensing techniques for water quality mapping which is considered important environmental problem.

  11. LEO星座网络动态源路由算法%Dynamic Source Routing Algorithm for LEO Satellite Networks

    Institute of Scientific and Technical Information of China (English)

    万鹏; 曹志刚; 王京林

    2007-01-01

    近年来,在低轨(LEO)卫星星座通信网络中采用网际协议(IP)路由算法的研究已经取得了一系列进展,文章论述了LEO星座通信网络的特点、拓扑结构和虚拟节点策略.在此基础上提出了基于泛洪路由的LEO星座动态源路由算法DSR-LSN(Dynamic Source Routing algorithm in LEO Satellite Networks),星座网络仿真表明,DSR-LSN算法具有网络路由状态稳定性好、时延小的优点.

  12. Estimation of net surface shortwave radiation over the tropical Indian Ocean using geostationary satellite observations: Algorithm and validation

    Science.gov (United States)

    Shahi, Naveen R.; Thapliyal, Pradeep K.; Sharma, Rashmi; Pal, Pradip K.; Sarkar, Abhijit

    2011-09-01

    This paper presents the development of a methodology to estimate the net surface shortwave radiation (SWR) over tropical oceans using half-hourly geostationary satellite estimates of outgoing longwave radiation (OLR). The collocated data set of SWR measured at 13 buoy locations over the Indian Ocean and a Meteosat-derived OLR for the period of 2002-2009 have been used to derive an empirical relationship. The information from the solar zenith angle that determines the amount of solar radiation received at a particular location is used to normalize the SWR to nadir observation in order to make the empirical relationship location independent. As the relationship between SWR and OLR is valid mostly over the warm-pool regions, the present study restricts SWR estimation in the tropical Indian Ocean domain (30°E-110°E, 30°S-30°N). The SWR estimates are validated with an independent collocated data set and subsequently compared with the SWR estimates from the Global Energy and Water Cycle Experiment-Surface Radiation Budget V3.0 (GEWEX-SRB), International Satellite Cloud Climatology Project-Flux Data (ISCCP-FD), and National Centers for Environmental Prediction (NCEP) reanalysis for the year 2007. The present algorithm provides significantly better accuracy of SWR estimates, with a root-mean-square error of 27.3 W m-2 as compared with the values of 32.7, 37.5, and 59.6 W m-2 obtained from GEWEX-SRB, ISCCP-FD, and NCEP, respectively. The present algorithm also provides consistently better SWR compared with other available products under different sky conditions and seasons over Indian Ocean warm-pool regions.

  13. Automatic Mexico Gulf Oil Spill Detection from Radarsat-2 SAR Satellite Data Using Genetic Algorithm

    Science.gov (United States)

    Marghany, Maged

    2016-10-01

    In this work, a genetic algorithm is exploited for automatic detection of oil spills of small and large size. The route is achieved using arrays of RADARSAT-2 SAR ScanSAR Narrow single beam data obtained in the Gulf of Mexico. The study shows that genetic algorithm has automatically segmented the dark spot patches related to small and large oil spill pixels. This conclusion is confirmed by the receiveroperating characteristic (ROC) curve and ground data which have been documented. The ROC curve indicates that the existence of oil slick footprints can be identified with the area under the curve between the ROC curve and the no-discrimination line of 90%, which is greater than that of other surrounding environmental features. The small oil spill sizes represented 30% of the discriminated oil spill pixels in ROC curve. In conclusion, the genetic algorithm can be used as a tool for the automatic detection of oil spills of either small or large size and the ScanSAR Narrow single beam mode serves as an excellent sensor for oil spill patterns detection and surveying in the Gulf of Mexico.

  14. Automatic Mexico Gulf Oil Spill Detection from Radarsat-2 SAR Satellite Data Using Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Marghany Maged

    2016-10-01

    Full Text Available In this work, a genetic algorithm is exploited for automatic detection of oil spills of small and large size. The route is achieved using arrays of RADARSAT-2 SAR ScanSAR Narrow single beam data obtained in the Gulf of Mexico. The study shows that genetic algorithm has automatically segmented the dark spot patches related to small and large oil spill pixels. This conclusion is confirmed by the receiver-operating characteristic (ROC curve and ground data which have been documented. The ROC curve indicates that the existence of oil slick footprints can be identified with the area under the curve between the ROC curve and the no-discrimination line of 90%, which is greater than that of other surrounding environmental features. The small oil spill sizes represented 30% of the discriminated oil spill pixels in ROC curve. In conclusion, the genetic algorithm can be used as a tool for the automatic detection of oil spills of either small or large size and the ScanSAR Narrow single beam mode serves as an excellent sensor for oil spill patterns detection and surveying in the Gulf of Mexico.

  15. Nordic Seas Precipitation Ground Validation Project

    Science.gov (United States)

    Klepp, Christian; Bumke, Karl; Bakan, Stephan; Andersson, Axel

    2010-05-01

    A thorough knowledge of global ocean precipitation is an indispensable prerequisite for the understanding of the water cycle in the global climate system. However, reliable detection of precipitation over the global oceans, especially of solid precipitation, remains a challenging task. This is true for both, passive microwave remote sensing and reanalysis based model estimates. The satellite based HOAPS (Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data) climatology contains fields of precipitation, evaporation and the resulting freshwater flux along with 12 additional atmospheric parameters over the global ice-free ocean between 1987 and 2005. Except for the NOAA Pathfinder SST, all basic state variables are calculated from SSM/I passive microwave radiometer measurements. HOAPS contains three main data subsets that originate from one common pixel-level data source. Gridded 0.5 degree monthly, pentad and twice daily data products are freely available from www.hoaps.org. The optical disdrometer ODM 470 is a ground validation instrument capable of measuring rain and snowfall on ships even under high wind speeds. It was used for the first time over the Nordic Seas during the LOFZY 2005 campaign. A dichotomous verification for these snowfall events resulted in a perfect score between the disdrometer, a precipitation detector and a shipboard observer's log. The disdrometer data is further point-to-area collocated against precipitation from three satellite derived climatologies, HOAPS-3, the Global Precipitation Climatology Project (GPCP) one degree daily (1DD) data set, and the Goddard Profiling algorithm, version 2004 (GPROF 2004). Only the HOAPS precipitation turns out to be overall consistent with the disdrometer data resulting in an accuracy of 0.96. The collocated data comprises light precipitation events below 1 mm/h. Therefore two LOFZY case studies with high precipitation rates are presented that still indicate plausible results. Overall, this

  16. Comparison of satellite reflectance algorithms for estimating chlorophyll-a in a temperate reservoir using coincident hyperspectral aircraft imagery and dense coincident surface observations

    Science.gov (United States)

    We analyzed 10 established and 4 new satellite reflectance algorithms for estimating chlorophyll-a (Chl-a) in a temperate reservoir in southwest Ohio using coincident hyperspectral aircraft imagery and dense water truth collected within one hour of image acquisition to develop si...

  17. Comparison of satellite reflectance algorithms for estimating chlorophyll-a in a temperate reservoir using coincident hyperspectral aircraft imagery and dense coincident surface observations

    Science.gov (United States)

    We analyzed 10 established and 4 new satellite reflectance algorithms for estimating chlorophyll-a (Chl-a) in a temperate reservoir in southwest Ohio using coincident hyperspectral aircraft imagery and dense water truth collected within one hour of image acquisition to develop si...

  18. A practical algorithm for the retrieval of floe size distribution of Arctic sea ice from high-resolution satellite Synthetic Aperture Radar imagery

    Directory of Open Access Journals (Sweden)

    Byongjun Hwang

    2017-07-01

    Full Text Available In this study, we present an algorithm for summer sea ice conditions that semi-automatically produces the floe size distribution of Arctic sea ice from high-resolution satellite Synthetic Aperture Radar data. Currently, floe size distribution data from satellite images are very rare in the literature, mainly due to the lack of a reliable algorithm to produce such data. Here, we developed the algorithm by combining various image analysis methods, including Kernel Graph Cuts, distance transformation and watershed transformation, and a rule-based boundary revalidation. The developed algorithm has been validated against the ground truth that was extracted manually with the aid of 1-m resolution visible satellite data. Comprehensive validation analysis has shown both perspectives and limitations. The algorithm tends to fail to detect small floes (mostly less than 100 m in mean caliper diameter compared to ground truth, which is mainly due to limitations in water-ice segmentation. Some variability in the power law exponent of floe size distribution is observed due to the effects of control parameters in the process of de-noising, Kernel Graph Cuts segmentation, thresholds for boundary revalidation and image resolution. Nonetheless, the algorithm, for floes larger than 100 m, has shown a reasonable agreement with ground truth under various selections of these control parameters. Considering that the coverage and spatial resolution of satellite Synthetic Aperture Radar data have increased significantly in recent years, the developed algorithm opens a new possibility to produce large volumes of floe size distribution data, which is essential for improving our understanding and prediction of the Arctic sea ice cover

  19. Precipitation Nowcast using Deep Recurrent Neural Network

    Science.gov (United States)

    Akbari Asanjan, A.; Yang, T.; Gao, X.; Hsu, K. L.; Sorooshian, S.

    2016-12-01

    An accurate precipitation nowcast (0-6 hours) with a fine temporal and spatial resolution has always been an important prerequisite for flood warning, streamflow prediction and risk management. Most of the popular approaches used for forecasting precipitation can be categorized into two groups. One type of precipitation forecast relies on numerical modeling of the physical dynamics of atmosphere and another is based on empirical and statistical regression models derived by local hydrologists or meteorologists. Given the recent advances in artificial intelligence, in this study a powerful Deep Recurrent Neural Network, termed as Long Short-Term Memory (LSTM) model, is creatively used to extract the patterns and forecast the spatial and temporal variability of Cloud Top Brightness Temperature (CTBT) observed from GOES satellite. Then, a 0-6 hours precipitation nowcast is produced using a Precipitation Estimation from Remote Sensing Information using Artificial Neural Network (PERSIANN) algorithm, in which the CTBT nowcast is used as the PERSIANN algorithm's raw inputs. Two case studies over the continental U.S. have been conducted that demonstrate the improvement of proposed approach as compared to a classical Feed Forward Neural Network and a couple simple regression models. The advantages and disadvantages of the proposed method are summarized with regard to its capability of pattern recognition through time, handling of vanishing gradient during model learning, and working with sparse data. The studies show that the LSTM model performs better than other methods, and it is able to learn the temporal evolution of the precipitation events through over 1000 time lags. The uniqueness of PERSIANN's algorithm enables an alternative precipitation nowcast approach as demonstrated in this study, in which the CTBT prediction is produced and used as the inputs for generating precipitation nowcast.

  20. User-oriented data acquisition chain task planning algorithm for operationally responsive space satellite

    Institute of Scientific and Technical Information of China (English)

    Hao Chen; Jun Li; Ning Jing

    2016-01-01

    With the development of operational y responsive space (ORS) and on-board processing techniques, the end users can receive the observation data from the ORS satel ite directly. To satisfy the demand for reducing the requirements-tasking-effects cycle from one day to hours, the various resources of the whole data acquisition chain (including satel ites, ground stations, data processing centers, users, etc.) should be taken into an overal consideration, and the traditional batch task planning mode should be transformed into the user-oriented task planning mode. Con-sidering there are many approaches for data acquisition due to the new techniques of ORS satel ite, the data acquisition chain task planning problem for ORS satel ite can be seen as the multi-modal route planning problem. Thereby, a framework is presented using label-constrained shortest path technique with the conflict resolution. To apply this framework to solve the ORS satel ite task planning problem, the preprocessing and the conflict resolution strategies are discussed in detail. Based on the above work, the user-oriented data acquisition chain task planning algorithm for ORS satel ite is proposed. The exact solution can be obtained in polynomial time using the proposed algorithm. The simulation experiments validate the feasibility and the adaptability of the pro-posed approach.

  1. Improving a DWT-based compression algorithm for high image-quality requirement of satellite images

    Science.gov (United States)

    Thiebaut, Carole; Latry, Christophe; Camarero, Roberto; Cazanave, Grégory

    2011-10-01

    Past and current optical Earth observation systems designed by CNES are using a fixed-rate data compression processing performed at a high-rate in a pushbroom mode (also called scan-based mode). This process generates fixed-length data to the mass memory and data downlink is performed at a fixed rate too. Because of on-board memory limitations and high data rate processing needs, the rate allocation procedure is performed over a small image area called a "segment". For both PLEIADES compression algorithm and CCSDS Image Data Compression recommendation, this rate allocation is realised by truncating to the desired rate a hierarchical bitstream of coded and quantized wavelet coefficients for each segment. Because the quantisation induced by truncation of the bit planes description is the same for the whole segment, some parts of the segment have a poor image quality. These artefacts generally occur in low energy areas within a segment of higher level of energy. In order to locally correct these areas, CNES has studied "exceptional processing" targeted for DWT-based compression algorithms. According to a criteria computed for each part of the segment (called block), the wavelet coefficients can be amplified before bit-plane encoding. As usual Region of Interest handling, these multiplied coefficients will be processed earlier by the encoder than in the nominal case (without exceptional processing). The image quality improvement brought by the exceptional processing has been confirmed by visual image analysis and fidelity criteria. The complexity of the proposed improvement for on-board application has also been analysed.

  2. A New Temperature-Vegetation Triangle Algorithm with Variable Edges (TAVE for Satellite-Based Actual Evapotranspiration Estimation

    Directory of Open Access Journals (Sweden)

    Hua Zhang

    2016-09-01

    Full Text Available The estimation of spatially-variable actual evapotranspiration (AET is a critical challenge to regional water resources management. We propose a new remote sensing method, the Triangle Algorithm with Variable Edges (TAVE, to generate daily AET estimates based on satellite-derived land surface temperature and the vegetation index NDVI. The TAVE captures heterogeneity in AET across elevation zones and permits variability in determining local values of wet and dry end-member classes (known as edges. Compared to traditional triangle methods, TAVE introduces three unique features: (i the discretization of the domain as overlapping elevation zones; (ii a variable wet edge that is a function of elevation zone; and (iii variable values of a combined-effect parameter (that accounts for aerodynamic and surface resistance, vapor pressure gradient, and soil moisture availability along both wet and dry edges. With these features, TAVE effectively addresses the combined influence of terrain and water stress on semi-arid environment AET estimates. We demonstrate the effectiveness of this method in one of the driest countries in the world—Jordan, and compare it to a traditional triangle method (TA and a global AET product (MOD16 over different land use types. In irrigated agricultural lands, TAVE matched the results of the single crop coefficient model (−3%, in contrast to substantial overestimation by TA (+234% and underestimation by MOD16 (−50%. In forested (non-irrigated, water consuming regions, TA and MOD16 produced AET average deviations 15.5 times and −3.5 times of those based on TAVE. As TAVE has a simple structure and low data requirements, it provides an efficient means to satisfy the increasing need for evapotranspiration estimation in data-scarce semi-arid regions. This study constitutes a much needed step towards the satellite-based quantification of agricultural water consumption in Jordan.

  3. An operational procedure for precipitable and cloud liquid water estimate in non-raining conditions over sea Study on the assessment of the nonlinear physical inversion algorithm

    CERN Document Server

    Nativi, S; Mazzetti, P

    2004-01-01

    In a previous work, an operative procedure to estimate precipitable and liquid water in non-raining conditions over sea was developed and assessed. The procedure is based on a fast non-linear physical inversion scheme and a forward model; it is valid for most of satellite microwave radiometers and it also estimates water effective profiles. This paper presents two improvements of the procedure: first, a refinement to provide modularity of the software components and portability across different computation system architectures; second, the adoption of the CERN MINUIT minimisation package, which addresses the problem of global minimisation but is computationally more demanding. Together with the increased computational performance that allowed to impose stricter requirements on the quality of fit, these refinements improved fitting precision and reliability, and allowed to relax the requirements on the initial guesses for the model parameters. The re-analysis of the same data-set considered in the previous pap...

  4. Tropical convective systems life cycle characteristics from geostationary satellite and precipitating estimates derived from TRMM and ground weather radar observations for the West African and South American regions

    Science.gov (United States)

    Fiolleau, T.; Roca, R.; Angelis, F. C.; Viltard, N.

    2012-12-01

    In the tropics most of the rainfall comes in the form of individual storm events embedded in the synoptic circulations (e.g., monsoons). Understanding the rainfall and its variability hence requires to document these highly contributing tropical convective systems (MCS). Our knowledge of the MCS life cycle, from a physical point of view mainly arises from individual observational campaigns heavily based on ground radar observations. While this large part of observations enabled the creation of conceptual models of MCS life cycle, it nevertheless does not reach any statistically significant integrated perspective yet. To overcome this limitation, a composite technique, that will serve as a Day-1 algorithm for the Megha-Tropiques mission, is considered in this study. this method is based on a collocation in space and time of the level-2 rainfall estimates (BRAIN) derived from the TMI radiometer onboard TRMM with the cloud systems identified by a new MCS tracking algorithm called TOOCAN and based on a 3-dimensional segmentation (image + time) of the geostationary IR imagery. To complete this study, a similar method is also developed collocating the cloud systems with the precipitating features derived from the ground weather radar which has been deployed during the CHUVA campaign over several Brazilian regions from 2010 up to now. A comparison of the MCSs life cycle is then performed for the 2010-2012 summer seasons over the West African, and South American regions. On the whole region of study, the results show that the temporal evolution of the cold cloud shield associated to MCSs describes a symmetry between the growth and the decay phases. It is also shown that the parameters of the conceptual model of MCSs are strongly correlated, reducing thereby the problem to a single degree of freedom. At the system scale, over both land and oceanic regions, rainfall is described by an increase at the beginning (the first third) of the life cycle and then smoothly decreases

  5. Retrieval algorithm for densities of mesospheric and lower thermospheric metal and ion species from satellite borne limb emission signals

    Science.gov (United States)

    Langowski, M.; Sinnhuber, M.; Aikin, A. C.; von Savigny, C.; Burrows, J. P.

    2013-05-01

    Meteoroids bombard the earth's atmosphere during its orbit around the sun, depositing a highly varying and significant amount of matter into the thermosphere and mesosphere. The strength of the material source needs to be characterized and its impact on atmospheric chemistry assessed. In this study an algorithm for the retrieval of metal and metal ion number densities for a two-dimensional (latitude, altitude) grid is described and explained. Dayglow emission spectra of the mesosphere and lower thermosphere are used, which are obtained by passive satellite remote sensing with the SCIAMACHY instrument on Envisat. The limb scans cover the tangent altitude range from 50 to 150 km. Metals and metal ions are strong emitters in this region and form sharply peaked layers with a FWHM of several 10 km in the mesosphere and lower thermosphere with peak altitudes between 90 to 110 km. The emission signal is first separated from the background signal, arising from Rayleigh and Raman scattering of solar radiation by air molecules. A forward radiative transfer model calculating the slant column density (SCD) from a given vertical distribution was developed. This non-linear model is inverted in an iterative procedure to yield the vertical profiles for the emitting species. Several constraints are applied to the solution, for numerical stability reasons and to get physically reasonable solutions. The algorithm is applied to SCIAMACHY limb-emission observations for the retrieval of Mg and Mg+ using emission signatures at 285.2 and 279.6/280.4 nm, respectively. Results are presented for these three lines as well as error estimations and sensitivity tests on different constraint strength and different separation approaches for the background signal.

  6. TRMM卫星降雨数据在湖南省的精度和可靠性评定%Evaluation of accuracy and reliability of TRMM satellite precipitation data in Hunan Province

    Institute of Scientific and Technical Information of China (English)

    杨雨蒙; 杜鹃; 程琳琳

    2016-01-01

    卫星降雨数据的高时空分辨率使其在洪涝灾害监测、流域水文模型模拟等方面得以广泛应用,而对卫星降雨数据的精度评定和可靠性分析仍然是当前重要的研究课题.采用中低纬度旱涝灾害频发的湖南省23个国家基准气象站的降雨数据作为地面验证数据,对最新一代TRMM卫星降雨产品(3B42V7)的精度和误差特征进行了全面评估.从日、月、年和季节的不同时间尺度以及空间分布和高程等不同的空间要素方面对比分析了1999-2012年该卫星降雨产品在湖南地区的适应情况.研究表明:TRMM卫星反演降雨数据在日尺度上与地面气象站数据的匹配情况较差,相关系数仅为0.31;而在月尺度上有显著提高,相关系数为0.88.在干旱季节(11、12、1、2月)的表现要优于湿润季节(5、6、7、8月).3B42卫星反演降雨数据存在比较明显的空间变异性,空间要素如高程、位置分布等对卫星降雨数据可靠性的影响强于降雨量的影响.%The high spatial-temporal resolution of satellite precipitation data can be widely used in flood disaster monitoring and hydrological modeling.The accuracy assessment and reliability analysis of the satellite precipitation data are still the important research issues.The paper overall evaluated the performance of TRMM satellite precipitation product 3B42V7 in Hunan Province by using the gauged precipitation data from 23 meteorological stations as the benchmark data.From the different time scales of daily,monthly,seasonal and annual,and different space elements such as spatial distribution and elevation,the paper compared and analyzed adaptation situation of satellite rainfall products from 1999 to 2012 in Hunan Province.The results show that the performance of satellite precipitation data on daily scale is not satisfactory,the correlation coefficient is only 0.31.But it goes to be much better on monthly scale with the correlation coefficient of 0

  7. Day 1 and Beyond for Multi-satellite Retrievals in GPM (Invited)

    Science.gov (United States)

    Huffman, G. J.; Bolvin, D.; Braithwaite, D.; Hsu, K.; Joyce, R.; Kidd, C.; Sorooshian, S.; Xie, P.

    2013-12-01

    Merged multi-satellite estimates of precipitation constitute one of the key goals of the Global Precipitation Measurement (GPM) mission. These allow users access to quasi-global precipitation estimates at relatively fine time/space scales without detailed knowledge of satellites, sensors, or algorithms. The Integrated Multi-satellitE Retrievals for GPM (IMERG) algorithm will provide the at-launch combined-satellite precipitation dataset being produced by the U.S. GPM Science Team. This talk will review IMERG's development as a unified U.S. algorithm that takes advantage of strengths in three current U.S. algorithms, namely the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA), CPC Morphing algorithm with Kalman Filtering (KF-CMORPH), and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks using a Cloud Classification System (PERSIANN-CCS). The goal is to provide a long-term, fine-scale record of global precipitation from the entire constellation of precipitation-relevant satellite sensors, with input from surface precipitation gauges as feasible. The record will begin January 1998 corresponding with the start of the TRMM and extend as GPM records additional data. Although homogeneity is considered desirable, the use of diverse and evolving data sources works against the strict long-term homogeneity that characterizes a Climate Data Record (CDR). We plan to compute multiple runs at different latencies (most likely around 4 hours, 12 hours, and 2 months after observation time) to address the needs of different groups of users. We will describe the current focus of bringing up the Day-1 IMERG in the Precipitation Processing System using TRMM-based calibration until the GPM sensor algorithms finish check-out in 2014, and then transition to GPM-based calibration after that. However, at the same time we are looking ahead to the next challenges for Day 2 and beyond. This talk will briefly

  8. Assessment of small-scale variability of rainfall and multi-satellite precipitation estimates using measurements from a dense rain gauge network in Southeast India

    Science.gov (United States)

    Sunilkumar, K.; Narayana Rao, T.; Satheeshkumar, S.

    2016-05-01

    This paper describes the establishment of a dense rain gauge network and small-scale variability in rain events (both in space and time) over a complex hilly terrain in Southeast India. Three years of high-resolution gauge measurements are used to validate 3-hourly rainfall and sub-daily variations of four widely used multi-satellite precipitation estimates (MPEs). The network, established as part of the Megha-Tropiques validation program, consists of 36 rain gauges arranged in a near-square grid area of 50 km × 50 km with an intergauge distance of 6-12 km. Morphological features of rainfall in two principal rainy seasons (southwest monsoon, SWM, and northeast monsoon, NEM) show marked differences. The NEM rainfall exhibits significant spatial variability and most of the rainfall is associated with large-scale/long-lived systems (during wet spells), whereas the contribution from small-scale/short-lived systems is considerable during the SWM. Rain events with longer duration and copious rainfall are seen mostly in the western quadrants (a quadrant is 1/4 of the study region) in the SWM and northern quadrants in the NEM, indicating complex spatial variability within the study region. The diurnal cycle also exhibits large spatial and seasonal variability with larger diurnal amplitudes at all the gauge locations (except for 1) during the SWM and smaller and insignificant diurnal amplitudes at many gauge locations during the NEM. On average, the diurnal amplitudes are a factor of 2 larger in the SWM than in the NEM. The 24 h harmonic explains about 70 % of total variance in the SWM and only ˜ 30 % in the NEM. During the SWM, the rainfall peak is observed between 20:00 and 02:00 IST (Indian Standard Time) and is attributed to the propagating systems from the west coast during active monsoon spells. Correlograms with different temporal integrations of rainfall data (1, 3, 12, 24 h) show an increase in the spatial correlation with temporal integration, but the

  9. Using precipitation, vertical root distribution, and satellite-retrieved vegetation information to parameterize water stress in a Penman-Monteith approach to evapotranspiration modeling under Mediterranean climate

    Science.gov (United States)

    Bai, Yun; Zhang, Jiahua; Zhang, Sha; Koju, Upama Ashish; Yao, Fengmei; Igbawua, Tertsea

    2017-03-01

    Recent studies have shown that global Penman-Monteith equation based (PM-based) models poorly simulate water stress when estimating evapotranspiration (ET) in areas having a Mediterranean climate (AMC). In this study, we propose a novel approach using precipitation, vertical root distribution (VRD), and satellite-retrieved vegetation information to simulate water stress in a PM-based model (RS-WBPM) to address this issue. A multilayer water balance module is employed to simulate the soil water stress factor (SWSF) of multiple soil layers at different depths. The water stress factor (WSF) for surface evapotranspiration is determined by VRD information and SWSF in each layer. Additionally, four older PM-based models (PMOV) are evaluated at 27 flux sites in AMC. Results show that PMOV fails to estimate the magnitude or capture the variation of ET in summer at most sites, whereas RS-WBPM is successful. The daily ET resulting from RS-WBPM incorporating recommended VI (NDVI for shrub and EVI for other biomes) agrees well with observations, with R2=0.60 (RMSE = 18.72 W m-2) for all 27 sites and R2=0.62 (RMSE = 18.21 W m-2) for 25 nonagricultural sites. However, combined results from the optimum older PM-based models at specific sites show R2 values of only 0.50 (RMSE = 20.74 W m-2) for all 27 sites. RS-WBPM is also found to outperform other ET models that also incorporate a soil water balance module. As all inputs of RS-WBPM are globally available, the results from RS-WBPM are encouraging and imply the potential of its implementation on a regional and global scale.

  10. Satellite remote sensing of harmful algal blooms: A new multi-algorithm method for detecting the Florida Red Tide (Karenia brevis)

    Science.gov (United States)

    Carvalho, Gustavo A.; Minnett, Peter J.; Fleming, Lora E.; Banzon, Viva F.; Baringer, Warner

    2010-01-01

    In a continuing effort to develop suitable methods for the surveillance of Harmful Algal Blooms (HABs) of Karenia brevis using satellite radiometers, a new multi-algorithm method was developed to explore whether improvements in the remote sensing detection of the Florida Red Tide was possible. A Hybrid Scheme was introduced that sequentially applies the optimized versions of two pre-existing satellite-based algorithms: an Empirical Approach (using water-leaving radiance as a function of chlorophyll concentration) and a Bio-optical Technique (using particulate backscatter along with chlorophyll concentration). The long-term evaluation of the new multi-algorithm method was performed using a multi-year MODIS dataset (2002 to 2006; during the boreal Summer-Fall periods – July to December) along the Central West Florida Shelf between 25.75°N and 28.25°N. Algorithm validation was done with in situ measurements of the abundances of K. brevis; cell counts ≥1.5×104 cells l−1 defined a detectable HAB. Encouraging statistical results were derived when either or both algorithms correctly flagged known samples. The majority of the valid match-ups were correctly identified (~80% of both HABs and non-blooming conditions) and few false negatives or false positives were produced (~20% of each). Additionally, most of the HAB-positive identifications in the satellite data were indeed HAB samples (positive predictive value: ~70%) and those classified as HAB-negative were almost all non-bloom cases (negative predictive value: ~86%). These results demonstrate an excellent detection capability, on average ~10% more accurate than the individual algorithms used separately. Thus, the new Hybrid Scheme could become a powerful tool for environmental monitoring of K. brevis blooms, with valuable consequences including leading to the more rapid and efficient use of ships to make in situ measurements of HABs. PMID:21037979

  11. Satellite remote sensing of harmful algal blooms: A new multi-algorithm method for detecting the Florida Red Tide (Karenia brevis).

    Science.gov (United States)

    Carvalho, Gustavo A; Minnett, Peter J; Fleming, Lora E; Banzon, Viva F; Baringer, Warner

    2010-06-01

    In a continuing effort to develop suitable methods for the surveillance of Harmful Algal Blooms (HABs) of Karenia brevis using satellite radiometers, a new multi-algorithm method was developed to explore whether improvements in the remote sensing detection of the Florida Red Tide was possible. A Hybrid Scheme was introduced that sequentially applies the optimized versions of two pre-existing satellite-based algorithms: an Empirical Approach (using water-leaving radiance as a function of chlorophyll concentration) and a Bio-optical Technique (using particulate backscatter along with chlorophyll concentration). The long-term evaluation of the new multi-algorithm method was performed using a multi-year MODIS dataset (2002 to 2006; during the boreal Summer-Fall periods - July to December) along the Central West Florida Shelf between 25.75°N and 28.25°N. Algorithm validation was done with in situ measurements of the abundances of K. brevis; cell counts ≥1.5×10(4) cells l(-1) defined a detectable HAB. Encouraging statistical results were derived when either or both algorithms correctly flagged known samples. The majority of the valid match-ups were correctly identified (~80% of both HABs and non-blooming conditions) and few false negatives or false positives were produced (~20% of each). Additionally, most of the HAB-positive identifications in the satellite data were indeed HAB samples (positive predictive value: ~70%) and those classified as HAB-negative were almost all non-bloom cases (negative predictive value: ~86%). These results demonstrate an excellent detection capability, on average ~10% more accurate than the individual algorithms used separately. Thus, the new Hybrid Scheme could become a powerful tool for environmental monitoring of K. brevis blooms, with valuable consequences including leading to the more rapid and efficient use of ships to make in situ measurements of HABs.

  12. Estimating 13.8-GHz Path-Integrated Attenuation from 10.7-GHz Brightness Temperatures for the TRMM Combined PR-TMI Precipitation Algorithm.

    Science.gov (United States)

    Smith, Eric A.; Turk, F. Joseph; Farrar, Michael R.; Mugnai, Alberto; Xiang, Xuwu

    1997-04-01

    This study presents research in support of the design and implementation of a combined radar-radiometer algorithm to be used for precipitation retrieval during the Tropical Rainfall Measuring Mission (TRMM). The combined algorithm approach is expected to overcome various difficulties that arise with a radar-only approach, particularly related to estimates of path-integrated attenuation (PIA) along the TRMM radar beam. A technique is described for estimating PIA at the 13.8-GHz frequency of the TRMM precipitation radar (PR) from 10.7-GHz brightness temperature TB measurements obtained from the TRMM microwave imager. Because the PR measures at an attenuating frequency, an independent estimate of PIA is used to constrain the solution to the radar equation, which incorporates effects of attenuation propagation along a radar beam. Through the use of variational or probabilistic techniques, the independent PIA calculations provide a means to adjust for errors that accumulate in estimates of range-dependent rain rates at progressively increasing range positions from radar reflectivity vectors. The accepted radar approach for obtaining PIA from ocean-viewing radar reflectivity measurements is called the surface reference technique, a scheme based on the difference in ocean surface cross sections between cloud-free and raining radar pixels. This technique has encountered problems, which are discussed and analyzed with the aid of coordinated aircraft radar (Airborne Rain Mapping Radar) and radiometer (Advanced Microwave Precipitation Radiometer) measurements obtained during the west Pacific Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response Experiment in 1993. The derived relationship expressing 13.8-GHz PIAs as a function of 10.7-GHz TB's is based on statistical fitting of many thousands of radiative transfer (RTE) calculations in which the relevant physical and radiative parameters affecting transmission, absorption, and scattering in a raining column and

  13. A Beam Tracking Algorithm Based on Satellite Beacon Signals for Phased Array in Mobile Satellite Communications%一种基于信标的移动卫通相控阵波束跟踪算法

    Institute of Scientific and Technical Information of China (English)

    陈鹏; 张慧

    2012-01-01

    In this paper a beam tracking algorithm based on satellite beacon signals is proposed and realized. The method is suitable for all kinds of phased array type mobile satellite communication antennas. It overcomes the difficulty of detecting the extremely weak satellite beacon signals and then the tracking performance is greatly improved. The highlight of the algorithm is the beam tracking process can be run without the help of gyroscopes and thus improves the survivability in the extreme environments. The algorithm was implemented and verified in a Ku band phased array mobile satellite antenna.%提出并实现了一种利用卫星信标信号来实施基于相控阵天线的波束跟踪算法。该方法适用于采用相控阵天线技术的各种卫星“动中通”天线,克服了卫星信标信号强度弱,检测困难的弱点,提高了跟踪信噪比,同时采用了软件无线电方式解调可以提供最大的灵活性。跟踪算法的最大优点是没有任何陀螺仪的辅助,极大地提高了天线在各种极端运动环境下的适应能力。算法最终在自行研制的Ku波段相控阵移动卫星天线系统上获得验证。

  14. Lessons Learned from the Deployment and Integration of a Microwave Sounder Based Tropical Cyclone Intensity and Surface Wind Estimation Algorithm into NOAA/NESDIS Satellite Product Operations

    Science.gov (United States)

    Longmore, S. P.; Knaff, J. A.; Schumacher, A.; Dostalek, J.; DeMaria, R.; Chirokova, G.; Demaria, M.; Powell, D. C.; Sigmund, A.; Yu, W.

    2014-12-01

    The Colorado State University (CSU) Cooperative Institute for Research in the Atmosphere (CIRA) has recently deployed a tropical cyclone (TC) intensity and surface wind radii estimation algorithm that utilizes Suomi National Polar-orbiting Partnership (S-NPP) satellite Advanced Technology Microwave Sounder (ATMS) and Advanced Microwave Sounding Unit (AMSU) from the NOAA18, NOAA19 and METOPA polar orbiting satellites for testing, integration and operations for the Product System Development and Implementation (PSDI) projects at NOAA's National Environmental Satellite, Data, and Information Service (NESDIS). This presentation discusses the evolution of the CIRA NPP/AMSU TC algorithms internally at CIRA and its migration and integration into the NOAA Data Exploitation (NDE) development and testing frameworks. The discussion will focus on 1) the development cycle of internal NPP/AMSU TC algorithms components by scientists and software engineers, 2) the exchange of these components into the NPP/AMSU TC software systems using the subversion version control system and other exchange methods, 3) testing, debugging and integration of the NPP/AMSU TC systems both at CIRA/NESDIS and 4) the update cycle of new releases through continuous integration. Lastly, a discussion of the methods that were effective and those that need revision will be detailed for the next iteration of the NPP/AMSU TC system.

  15. Automatic and global optimization of the Analogue Method for statistical downscaling of precipitation - Which parameters can be determined by Genetic Algorithms?

    Science.gov (United States)

    Horton, Pascal; Weingartner, Rolf; Obled, Charles; Jaboyedoff, Michel

    2016-04-01

    The Analogue Method (AM) aims at forecasting a local meteorological variable of interest (the predictand), often the daily precipitation total, on the basis of a statistical relationship with synoptic predictor variables. A certain number of similar situations are sampled in order to establish the empirical conditional distribution which is considered as the prediction for a given date. The method is used in operational medium-range forecasting in several hydropower companies or flood forecasting services, as well as in climate impact studies. The statistical relationship is usually established by means of a semi-automatic sequential procedure that has strong limitations: it is made of successive steps and thus cannot handle parameters dependencies, and it cannot automatically optimize certain parameters, such as the selection of the pressure levels and the temporal windows on which the predictors are compared. A global optimization technique based on Genetic Algorithms was introduced in order to surpass these limitations and to provide a fully automatic and objective determination of the AM parameters. The parameters that were previously assessed manually, such as the selection of the pressure levels and the temporal windows, on which the predictors are compared, are now automatically determined. The next question is: Are Genetic Algorithms able to select the meteorological variable, in a reanalysis dataset, that is the best predictor for the considered predictand, along with the analogy criteria itself? Even though we may not find better predictors for precipitation prediction that the ones often used in Europe, due to numerous other studies which consisted in systematic assessments, the ability of an automatic selection offers new perspectives in order to adapt the AM for new predictands or new regions under different meteorological influences.

  16. Long-term analysis of aerosol optical depth over Northeast Asia using a satellite-based measurement: MI Yonsei Aerosol Retrieval Algorithm (YAER)

    Science.gov (United States)

    Kim, Mijin; Kim, Jhoon; Yoon, Jongmin; Chung, Chu-Yong; Chung, Sung-Rae

    2017-04-01

    In 2010, the Korean geostationary earth orbit (GEO) satellite, the Communication, Ocean, and Meteorological Satellite (COMS), was launched including the Meteorological Imager (MI). The MI measures atmospheric condition over Northeast Asia (NEA) using a single visible channel centered at 0.675 μm and four IR channels at 3.75, 6.75, 10.8, 12.0 μm. The visible measurement can also be utilized for the retrieval of aerosol optical properties (AOPs). Since the GEO satellite measurement has an advantage for continuous monitoring of AOPs, we can analyze the spatiotemporal variation of the aerosol using the MI observations over NEA. Therefore, we developed an algorithm to retrieve aerosol optical depth (AOD) using the visible observation of MI, and named as MI Yonsei Aerosol Retrieval Algorithm (YAER). In this study, we investigated the accuracy of MI YAER AOD by comparing the values with the long-term products of AERONET sun-photometer. The result showed that the MI AODs were significantly overestimated than the AERONET values over bright surface in low AOD case. Because the MI visible channel centered at red color range, contribution of aerosol signal to the measured reflectance is relatively lower than the surface contribution. Therefore, the AOD error in low AOD case over bright surface can be a fundamental limitation of the algorithm. Meanwhile, an assumption of background aerosol optical depth (BAOD) could result in the retrieval uncertainty, also. To estimate the surface reflectance by considering polluted air condition over the NEA, we estimated the BAOD from the MODIS dark target (DT) aerosol products by pixel. The satellite-based AOD retrieval, however, largely depends on the accuracy of the surface reflectance estimation especially in low AOD case, and thus, the BAOD could include the uncertainty in surface reflectance estimation of the satellite-based retrieval. Therefore, we re-estimated the BAOD using the ground-based sun-photometer measurement, and

  17. Development of a daily gridded precipitation data set for the Middle East

    Directory of Open Access Journals (Sweden)

    A. Yatagai

    2008-03-01

    Full Text Available We show an algorithm to construct a rain-gauge-based analysis of daily precipitation for the Middle East. One of the key points of our algorithm is to construct an accurate distribution of climatology. One possible advantage of this product is to validate high-resolution climate models and/or to diagnose the impact of climate changes on local hydrological resources. Many users are familiar with a monthly precipitation dataset (New et al., 1999 and a satellite-based daily precipitation dataset (Huffman et al., 2001, yet our data set, unlike theirs, clearly shows the effect of orography on daily precipitation and other extreme events, especially over the Fertile Crescent region. Currently the Middle-East precipitation analysis product is consisting of a 25-year data set for 1979–2003 based on more than 1300 stations.

  18. The Global Precipitation Climatology Project (GPCP) Combined Precipitation Dataset

    Science.gov (United States)

    Huffman, George J.; Adler, Robert F.; Arkin, Philip; Chang, Alfred; Ferraro, Ralph; Gruber, Arnold; Janowiak, John; McNab, Alan; Rudolf, Bruno; Schneider, Udo

    1997-01-01

    The Global Precipitation Climatology Project (GPCP) has released the GPCP Version 1 Combined Precipitation Data Set, a global, monthly precipitation dataset covering the period July 1987 through December 1995. The primary product in the dataset is a merged analysis incorporating precipitation estimates from low-orbit-satellite microwave data, geosynchronous-orbit -satellite infrared data, and rain gauge observations. The dataset also contains the individual input fields, a combination of the microwave and infrared satellite estimates, and error estimates for each field. The data are provided on 2.5 deg x 2.5 deg latitude-longitude global grids. Preliminary analyses show general agreement with prior studies of global precipitation and extends prior studies of El Nino-Southern Oscillation precipitation patterns. At the regional scale there are systematic differences with standard climatologies.

  19. Early Examples from the Integrated Multi-Satellite Retrievals for GPM (IMERG)

    Science.gov (United States)

    Huffman, George; Bolvin, David; Braithwaite, Daniel; Hsu, Kuolin; Joyce, Robert; Kidd, Christopher; Sorooshian, Soroosh; Xie, Pingping

    2014-05-01

    The U.S. GPM Science Team's Day-1 algorithm for computing combined precipitation estimates as part of GPM is the Integrated Multi-satellitE Retrievals for GPM (IMERG). The goal is to compute the best time series of (nearly) global precipitation from "all" precipitation-relevant satellites and global surface precipitation gauge analyses. IMERG is being developed as a unified U.S. algorithm drawing on strengths in the three contributing groups, whose previous work includes: 1) the TRMM Multi-satellite Precipitation Analysis (TMPA); 2) the CPC Morphing algorithm with Kalman Filtering (K-CMORPH); and 3) the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks using a Cloud Classification System (PERSIANN-CCS). We review the IMERG design and development, plans for testing, and current status. Some of the lessons learned in running and reprocessing the previous data sets include the importance of quality-controlling input data sets, strategies for coping with transitions in the various input data sets, and practical approaches to retrospective analysis of multiple output products (namely the real- and post-real-time data streams). IMERG output will be illustrated using early test data, including the variety of supporting fields, such as the merged-microwave and infrared estimates, and the precipitation type. We end by considering recent changes in input data specifications, the transition from TRMM-based calibration to GPM-based, and further "Day 2" development.

  20. 基于OPNET的卫星路由查找算法仿真分析%Simulation Analysis of Satellite Routing Lookup Algorithm Based on OPNET

    Institute of Scientific and Technical Information of China (English)

    邓全才; 张连连; 孙志田

    2015-01-01

    为了更加直观的比较线性表算法、Trie tree算法以及 Hash算法在卫星路由查找的性能,通过 OPNET平台进行建模仿真。实验结果表明,三种算法路由查询次数相同。如果以访问次数为标准,选择Trie tree算法为宜。如果以查询深度为标准,选择 Trie tree算法为宜。如果以响应时间为标准,由于 Hash算法不稳定,选择线性表算法和 Trie tree算法为宜。因此实验结论为,Trie tree算法总体性能最佳,但算法实现比较复杂,Hash算法不稳定,但对规则的增减比较容易,线性表算法易于实现,但访问次数较高。%For a more intuitive comparison of the Linear list algorithm,Trie tree algorithm and Hash al-gorithm performance in the satellite route lookup,OPNET platform is used for modeling and sim-ulation.The experimental results show that Experimental results show that the three algorithms the number of route query is the same.If the number of visits as a standard,select the Trie tree al-gorithm is appropriate.If the query depth as a standard,select the Trie tree algorithm is appropri-ate.If the response time as a standard.If the response time for the standard,the Hash algorithm is not stable,the selection of linear table algorithm and Trie tree algorithm is appropriate.There-fore,the experimental conclusions is that Trie tree algorithm is the best overall performance,but the algorithm is more complex,Hash algorithm is not stable,but the rules change easier,Linear list is easy to achieve,but the algorithm has a high number of visits.

  1. Adaptive re-tracking algorithm for retrieval of water level variations and wave heights from satellite altimetry data for middle-sized inland water bodies

    Science.gov (United States)

    Troitskaya, Yuliya; Lebedev, Sergey; Soustova, Irina; Rybushkina, Galina; Papko, Vladislav; Baidakov, Georgy; Panyutin, Andrey

    One of the recent applications of satellite altimetry originally designed for measurements of the sea level [1] is associated with remote investigation of the water level of inland waters: lakes, rivers, reservoirs [2-7]. The altimetry data re-tracking algorithms developed for open ocean conditions (e.g. Ocean-1,2) [1] often cannot be used in these cases, since the radar return is significantly contaminated by reflection from the land. The problem of minimization of errors in the water level retrieval for inland waters from altimetry measurements can be resolved by re-tracking satellite altimetry data. Recently, special re-tracking algorithms have been actively developed for re-processing altimetry data in the coastal zone when reflection from land strongly affects echo shapes: threshold re-tracking, The other methods of re-tracking (threshold re-tracking, beta-re-tracking, improved threshold re-tracking) were developed in [9-11]. The latest development in this field is PISTACH product [12], in which retracking bases on the classification of typical forms of telemetric waveforms in the coastal zones and inland water bodies. In this paper a novel method of regional adaptive re-tracking based on constructing a theoretical model describing the formation of telemetric waveforms by reflection from the piecewise constant model surface corresponding to the geography of the region is considered. It was proposed in [13, 14], where the algorithm for assessing water level in inland water bodies and in the coastal zone of the ocean with an error of about 10-15 cm was constructed. The algorithm includes four consecutive steps: - constructing a local piecewise model of a reflecting surface in the neighbourhood of the reservoir; - solving a direct problem by calculating the reflected waveforms within the framework of the model; - imposing restrictions and validity criteria for the algorithm based on waveform modelling; - solving the inverse problem by retrieving a tracking point

  2. Principal Modes of Precipitation Variability from Preliminary Series of IMERG Data

    Science.gov (United States)

    Savtchenko, A.; Huffman, G.; Vollmer, B.

    2017-01-01

    The Integrated Multi-satellitE Retrievals for the Global Precipitation Measurement (GPM) mission, IMERG, is the unified U.S. algorithm that provides merged Microwave Infrared (IR) satellite precipitation product for the U.S. GPM team. Even though IMERG record is still very short, 2014-2016, it is tempting to test if it captures ENSO and NAO signals as compared to the popular, still on-going, TRMM Multi-satellite Precipitation Analysis, TMPA. El Nino Southern Oscillation (ENSO) is the most significant mode of interannual variability of tropical ocean atmosphere. North Atlantic Oscillation (NAO) impact is on monthly scales and is mostly an atmospheric mode in the North Atlantic. There exist well-defined, multivariate, indexes that represent ENSO and NAO conditions and phase.

  3. Classification of textures in satellite image with Gabor filters and a multi layer perceptron with back propagation algorithm obtaining high accuracy

    Directory of Open Access Journals (Sweden)

    Adriano Beluco, Paulo M. Engel, Alexandre Beluco

    2015-01-01

    Full Text Available The classification of images, in many cases, is applied to identify an alphanumeric string, a facial expression or any other characteristic. In the case of satellite images is necessary to classify all the pixels of the image. This article describes a supervised classification method for remote sensing images that integrates the importance of attributes in selecting features with the efficiency of artificial neural networks in the classification process, resulting in high accuracy for real images. The method consists of a texture segmentation based on Gabor filtering followed by an image classification itself with an application of a multi layer artificial neural network with a back propagation algorithm. The method was first applied to a synthetic image, like training, and then applied to a satellite image. Some results of experiments are presented in detail and discussed. The application of the method to the synthetic image resulted in the identification of 89.05% of the pixels of the image, while applying to the satellite image resulted in the identification of 85.15% of the pixels. The result for the satellite image can be considered a result of high accuracy.

  4. Comparison of ground-based FTIR and Brewer O3 total column with data from two different IASI algorithms and from OMI and GOME-2 satellite instruments

    Directory of Open Access Journals (Sweden)

    T. Blumenstock

    2011-03-01

    Full Text Available An intercomparison of ozone total column measurements derived from various platforms is presented in this work. Satellite data from Infrared Atmospheric Sounding Interferometer (IASI, Ozone Monitoring Instrument (OMI and Global Ozone Monitoring Experiment (GOME-2 are compared with data from two ground-based spectrometers (Fourier Transform Infrared spectrometer FTIR and Brewer, located at the Network for Detection of Atmospheric Composition Change (NDACC super-site of Izaña (Tenerife, measured during a campaign from March to June 2009. These ground-based observing systems have already been demonstrated to perform consistent, precise and accurate ozone total column measurements. An excellent agreement between ground-based and OMI/GOME-2 data is observed. Results from two different algorithms for deriving IASI ozone total column are also compared: the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT/ESA operational algorithm and the LISA (Laboratoire Inter-universitaire des Systèmes Atmosphériques algorithm. A better agreement was found with LISA's analytical approach based on an altitude-dependent Tikhonov-Philips regularization: correlations are 0.94 and 0.89 compared to FTIR and Brewer, respectively; while the operational IASI ozone columns (based on neural network analysis show correlations of 0.90 and 0.85, respectively, compared to the O3 columns obtained from FTIR and Brewer.

  5. A new iterative algorithm for geolocating a known altitude target using TDOA and FDOA measurements in the presence of satellite location uncertainty

    Institute of Scientific and Technical Information of China (English)

    Cao Yalu; Peng Li; Li Jinzhou; Yang Le; Guo Fucheng

    2015-01-01

    This paper considers the problem of geolocating a target on the Earth surface whose altitude is known previously using the target signal time difference of arrival (TDOA) and frequency difference of arrival (FDOA) measurements obtained at satellites. The number of satellites available for the geolocation task is more than sufficient and their locations are subject to random errors. This paper derives the constrained Crame´ r-Rao lower bound (CCRLB) of the target position, and on the basis of the CCRLB analysis, an approximately efficient constrained maximum likelihood estimator (CMLE) for geolocating the target is established. A new iterative algorithm for solving the CMLE is then proposed, where the updated target position estimate is shown to be the globally optimal solu-tion to a generalized trust region sub-problem (GTRS) which can be found via a simple bisection search. First-order mean square error (MSE) analysis is conducted to quantify the performance degradation when the known target altitude is assumed to be precise but indeed has an unknown but deterministic error. Computer simulations are used to compare the performance of the proposed iterative geolocation technique with those of two benchmark algorithms. They verify the approximate efficiency of the proposed algorithm and the validity of the MSE analysis.

  6. A new iterative algorithm for geolocating a known altitude target using TDOA and FDOA measurements in the presence of satellite location uncertainty

    Directory of Open Access Journals (Sweden)

    Cao Yalu

    2015-10-01

    Full Text Available This paper considers the problem of geolocating a target on the Earth surface whose altitude is known previously using the target signal time difference of arrival (TDOA and frequency difference of arrival (FDOA measurements obtained at satellites. The number of satellites available for the geolocation task is more than sufficient and their locations are subject to random errors. This paper derives the constrained Cramér-Rao lower bound (CCRLB of the target position, and on the basis of the CCRLB analysis, an approximately efficient constrained maximum likelihood estimator (CMLE for geolocating the target is established. A new iterative algorithm for solving the CMLE is then proposed, where the updated target position estimate is shown to be the globally optimal solution to a generalized trust region sub-problem (GTRS which can be found via a simple bisection search. First-order mean square error (MSE analysis is conducted to quantify the performance degradation when the known target altitude is assumed to be precise but indeed has an unknown but deterministic error. Computer simulations are used to compare the performance of the proposed iterative geolocation technique with those of two benchmark algorithms. They verify the approximate efficiency of the proposed algorithm and the validity of the MSE analysis.

  7. Detailed Analysis of Indian Summer Monsoon Rainfall Processes with Modern/High-Quality Satellite Observations

    Science.gov (United States)

    Smith, Eric A.; Kuo, Kwo-Sen; Mehta, Amita V.; Yang, Song

    2007-01-01

    We examine, in detail, Indian Summer Monsoon rainfall processes using modernhigh quality satellite precipitation measurements. The focus here is on measurements derived from three NASA cloud and precipitation satellite missionslinstruments (TRMM/PR&TMI, AQUNAMSRE, and CLOUDSATICPR), and a fourth TRMM Project-generated multi-satellite precipitation measurement dataset (viz., TRMM standard algorithm 3b42) -- all from a period beginning in 1998 up to the present. It is emphasized that the 3b42 algorithm blends passive microwave (PMW) radiometer-based precipitation estimates from LEO satellites with infi-ared (IR) precipitation estimates from a world network of CEO satellites (representing -15% of the complete space-time coverage) All of these observations are first cross-calibrated to precipitation estimates taken from standard TRMM combined PR-TMI algorithm 2b31, and second adjusted at the large scale based on monthly-averaged rain-gage measurements. The blended approach takes advantage of direct estimates of precipitation from the PMW radiometerequipped LEO satellites -- but which suffer fi-om sampling limitations -- in combination with less accurate IR estimates from the optical-infrared imaging cameras on GEO satellites -- but which provide continuous diurnal sampling. The advantages of the current technologies are evident in the continuity and coverage properties inherent to the resultant precipitation datasets that have been an outgrowth of these stable measuring and retrieval technologies. There is a wealth of information contained in the current satellite measurements of precipitation regarding the salient precipitation properties of the Indian Summer Monsoon. Using different datasets obtained from the measuring systems noted above, we have analyzed the observations cast in the form of: (1) spatially distributed means and variances over the hierarchy of relevant time scales (hourly I diurnally, daily, monthly, seasonally I intra-seasonally, and inter

  8. The Global Precipitation Measurement Mission

    Science.gov (United States)

    Jackson, Gail

    2014-05-01

    The Global Precipitation Measurement (GPM) mission's Core satellite, scheduled for launch at the end of February 2014, is well designed estimate precipitation from 0.2 to 110 mm/hr and to detect falling snow. Knowing where and how much rain and snow falls globally is vital to understanding how weather and climate impact both our environment and Earth's water and energy cycles, including effects on agriculture, fresh water availability, and responses to natural disasters. The design of the GPM Core Observatory is an advancement of the Tropical Rainfall Measuring Mission (TRMM)'s highly successful rain-sensing package [3]. The cornerstone of the GPM mission is the deployment of a Core Observatory in a unique 65o non-Sun-synchronous orbit to serve as a physics observatory and a calibration reference to improve precipitation measurements by a constellation of 8 or more dedicated and operational, U.S. and international passive microwave sensors. The Core Observatory will carry a Ku/Ka-band Dual-frequency Precipitation Radar (DPR) and a multi-channel (10-183 GHz) GPM Microwave Radiometer (GMI). The DPR will provide measurements of 3-D precipitation structures and microphysical properties, which are key to achieving a better understanding of precipitation processes and improving retrieval algorithms for passive microwave radiometers. The combined use of DPR and GMI measurements will place greater constraints on possible solutions to radiometer retrievals to improve the accuracy and consistency of precipitation retrievals from all constellation radiometers. Furthermore, since light rain and falling snow account for a significant fraction of precipitation occurrence in middle and high latitudes, the GPM instruments extend the capabilities of the TRMM sensors to detect falling snow, measure light rain, and provide, for the first time, quantitative estimates of microphysical properties of precipitation particles. The GPM Core Observatory was developed and tested at NASA

  9. The Global Precipitation Measurement (GPM) Mission: U.S. Program and Science Status

    Science.gov (United States)

    Hou, Arthur; Azarbarzin, Ardeshir; Kakar, Ramesh; Neeck, Steven

    2010-05-01

    The Global Precipitation Measurement (GPM) Mission is an international satellite mission designed to unify and advance precipitation measurements from a constellation of research and operational microwave sensors. NASA and JAXA will deploy the GPM Core Observatory carrying an advanced radar-radiometer system to serve as a physics observatory and a transfer standard for inter-calibration of constellation radiometers. The GPM Core Observatory is scheduled for launch in July 2013. In addition, NASA will provide a second radiometer to be flown on a partner-provided GPM Low-Inclination Observatory to enhance the near real-time monitoring of hurricanes and mid-latitude storms. JAXA will also contribute data from the Global Change Observation Mission-Water (GCOM-W) satellite. Additional partnerships are under development to include conical-scanning microwave imagers on the French-Indian Megha-Tropiques satellite and U.S. Defense Meteorological Satellite Program (DMSP) satellites, as well as cross-track scanning humidity sounders on operational satellites such as the National Polar-orbiting Operational Environmental Satellite System (NPOESS) Preparatory Project (NPP), POES, NPOESS, and European MetOp satellites, which are used to improve the precipitation sampling over land. Currently, Brazil has in its national space plan for a GPM low-inclination radiometer, and data from Chinese and Russian microwave radiometers could potentially become available through international collaboration under the auspices of the Committee on Earth Observation Satellites (CEOS) and Group on Earth Observations (GEO). The current generation of global rainfall products combines observations from a network of uncoordinated satellite missions using a variety of merging techniques. GPM will provide "next-generation" precipitation data products characterized by: (1) more accurate instantaneous precipitation measurement (especially for light rain and cold-season solid precipitation), (2) more

  10. Global clear-sky surface skin temperature from multiple satellites using a single-channel algorithm with angular anisotropy corrections

    Science.gov (United States)

    Scarino, Benjamin R.; Minnis, Patrick; Chee, Thad; Bedka, Kristopher M.; Yost, Christopher R.; Palikonda, Rabindra

    2017-01-01

    Surface skin temperature (Ts) is an important parameter for characterizing the energy exchange at the ground/water-atmosphere interface. The Satellite ClOud and Radiation Property retrieval System (SatCORPS) employs a single-channel thermal-infrared (TIR) method to retrieve Ts over clear-sky land and ocean surfaces from data taken by geostationary Earth orbit (GEO) and low Earth orbit (LEO) satellite imagers. GEO satellites can provide somewhat continuous estimates of Ts over the diurnal cycle in non-polar regions, while polar Ts retrievals from LEO imagers, such as the Advanced Very High Resolution Radiometer (AVHRR), can complement the GEO measurements. The combined global coverage of remotely sensed Ts, along with accompanying cloud and surface radiation parameters, produced in near-realtime and from historical satellite data, should be beneficial for both weather and climate applications. For example, near-realtime hourly Ts observations can be assimilated in high-temporal-resolution numerical weather prediction models and historical observations can be used for validation or assimilation of climate models. Key drawbacks to the utility of TIR-derived Ts data include the limitation to clear-sky conditions, the reliance on a particular set of analyses/reanalyses necessary for atmospheric corrections, and the dependence on viewing and illumination angles. Therefore, Ts validation with established references is essential, as is proper evaluation of Ts sensitivity to atmospheric correction source.This article presents improvements on the NASA Langley GEO satellite and AVHRR TIR-based Ts product that is derived using a single-channel technique. The resulting clear-sky skin temperature values are validated with surface references and independent satellite products. Furthermore, an empirically adjusted theoretical model of satellite land surface temperature (LST) angular anisotropy is tested to improve satellite LST retrievals. Application of the anisotropic correction

  11. Global Clear-Sky Surface Skin Temperature from Multiple Satellites Using a Single-Channel Algorithm with Angular Anisotropy Corrections

    Science.gov (United States)

    Scarino, Benjamin R.; Minnis, Patrick; Chee, Thad; Bedka, Kristopher M.; Yost, Christopher R.; Palikonda, Rabindra

    2017-01-01

    Surface skin temperature (T(sub s)) is an important parameter for characterizing the energy exchange at the ground/water-atmosphere interface. The Satellite ClOud and Radiation Property retrieval System (SatCORPS) employs a single-channel thermal-infrared (TIR) method to retrieve T(sub s) over clear-sky land and ocean surfaces from data taken by geostationary Earth orbit (GEO) and low Earth orbit (LEO) satellite imagers. GEO satellites can provide somewhat continuous estimates of T(sub s) over the diurnal cycle in non-polar regions, while polar T(sub s) retrievals from LEO imagers, such as the Advanced Very High Resolution Radiometer (AVHRR), can complement the GEO measurements. The combined global coverage of remotely sensed T(sub s), along with accompanying cloud and surface radiation parameters, produced in near-realtime and from historical satellite data, should be beneficial for both weather and climate applications. For example, near-realtime hourly T(sub s) observations can be assimilated in high-temporal-resolution numerical weather prediction models and historical observations can be used for validation or assimilation of climate models. Key drawbacks to the utility of TIR-derived T(sub s) data include the limitation to clear-sky conditions, the reliance on a particular set of analyses/reanalyses necessary for atmospheric corrections, and the dependence on viewing and illumination angles. Therefore, T(sub s) validation with established references is essential, as is proper evaluation of T(sub s) sensitivity to atmospheric correction source. This article presents improvements on the NASA Langley GEO satellite and AVHRR TIR-based T(sub s) product that is derived using a single-channel technique. The resulting clear-sky skin temperature values are validated with surface references and independent satellite products. Furthermore, an empirically adjusted theoretical model of satellite land surface temperature (LST) angular anisotropy is tested to improve

  12. Improving High-resolution Spatial Estimates of Precipitation in the Equatorial Americas

    Science.gov (United States)

    Verdin, A.; Rajagopalan, B.; Funk, C. C.

    2013-12-01

    Drought and flood management practices require accurate estimates of precipitation in space and time. However, data is sparse in regions with complicated terrain (such as the Equatorial Americas), often in valleys (where people farm), and of poor quality. Consequently, extreme precipitation events are poorly represented. Satellite-derived rainfall data is an attractive alternative in such regions and is being widely used, though it too suffers from problems such as underestimation of extreme events (due to its dependency on retrieval algorithms) and the indirect relationship between satellite radiation observations and precipitation intensities. Thus, it seems appropriate to blend satellite-derived rainfall data of extensive spatial coverage with rain gauge data in order to provide a more robust estimate of precipitation. To this end, in this research we offer three techniques to blend rain gauge data and the Climate Hazards group InfraRed Precipitation (CHIRP) satellite-derived precipitation estimate for Central America and Colombia. In the first two methods, the gauge data is assigned to the closest CHIRP grid point, where the error is defined as r = Yobs - Ysat. The spatial structure of r is then modeled using physiographic information (Easting, Northing, and Elevation) by two methods (i) a traditional Cokriging approach whose variogram is calculated in Euclidean space and (ii) a nonparametric method based on local polynomial functional estimation. The models are used to estimate r at all grid points, which is then added to the CHIRP, thus creating an improved satellite estimate. We demonstrate these methods by applying them to pentadal and monthly total precipitation fields during 2009. The models' predictive abilities and their ability to capture extremes are investigated. These blending methods significantly improve upon the satellite-derived estimates and are also competitive in their ability to capture extreme precipitation. The above methods assume

  13. The NASA CloudSat/GPM Light Precipitation Validation Experiment (LPVEx)

    Science.gov (United States)

    Petersen, Walter A.; L'Ecuyer, Tristan; Moisseev, Dmitri

    2011-01-01

    Ground-based measurements of cool-season precipitation at mid and high latitudes (e.g., above 45 deg N/S) suggest that a significant fraction of the total precipitation volume falls in the form of light rain, i.e., at rates less than or equal to a few mm/h. These cool-season light rainfall events often originate in situations of a low-altitude (e.g., lower than 2 km) melting level and pose a significant challenge to the fidelity of all satellite-based precipitation measurements, especially those relying on the use of multifrequency passive microwave (PMW) radiometers. As a result, significant disagreements exist between satellite estimates of rainfall accumulation poleward of 45 deg. Ongoing efforts to develop, improve, and ultimately evaluate physically-based algorithms designed to detect and accurately quantify high latitude rainfall, however, suffer from a general lack of detailed, observationally-based ground validation datasets. These datasets serve as a physically consistent framework from which to test and refine algorithm assumptions, and as a means to build the library of algorithm retrieval databases in higher latitude cold-season light precipitation regimes. These databases are especially relevant to NASA's CloudSat and Global Precipitation Measurement (GPM) ground validation programs that are collecting high-latitude precipitation measurements in meteorological systems associated with frequent coolseason light precipitation events. In an effort to improve the inventory of cool-season high-latitude light precipitation databases and advance the physical process assumptions made in satellite-based precipitation retrieval algorithm development, the CloudSat and GPM mission ground validation programs collaborated with the Finnish Meteorological Institute (FMI), the University of Helsinki (UH), and Environment Canada (EC) to conduct the Light Precipitation Validation Experiment (LPVEx). The LPVEx field campaign was designed to make detailed measurements of

  14. Long-term evaluation of three satellite ocean color algorithms for identifying harmful algal blooms (Karenia brevis) along the west coast of Florida: A matchup assessment.

    Science.gov (United States)

    Carvalho, Gustavo A; Minnett, Peter J; Banzon, Viva F; Baringer, Warner; Heil, Cynthia A

    2011-01-17

    We present a simple algorithm to identify Karenia brevis blooms in the Gulf of Mexico along the west coast of Florida in satellite imagery. It is based on an empirical analysis of collocated matchups of satellite and in situ measurements. The results of this Empirical Approach is compared to those of a Bio-optical Technique - taken from the published literature - and the Operational Method currently implemented by the NOAA Harmful Algal Bloom Forecasting System for K. brevis blooms. These three algorithms are evaluated using a multi-year MODIS data set (from July, 2002 to October, 2006) and a long-term in situ database. Matchup pairs, consisting of remotely-sensed ocean color parameters and near-coincident field measurements of K. brevis concentration, are used to assess the accuracy of the algorithms. Fair evaluation of the algorithms was only possible in the central west Florida shelf (i.e. between 25.75°N and 28.25°N) during the boreal Summer and Fall months (i.e. July to December) due to the availability of valid cloud-free matchups. Even though the predictive values of the three algorithms are similar, the statistical measure of success in red tide identification (defined as cell counts in excess of 1.5 × 10(4) cells L(-1)) varied considerably (sensitivity-Empirical: 86%; Bio-optical: 77%; Operational: 26%), as did their effectiveness in identifying non-bloom cases (specificity-Empirical: 53%; Bio-optical: 65%; Operational: 84%). As the Operational Method had an elevated frequency of false-negative cases (i.e. presented low accuracy in detecting known red tides), and because of the considerable overlap between the optical characteristics of the red tide and non-bloom population, only the other two algorithms underwent a procedure for further inspecting possible detection improvements. Both optimized versions of the Empirical and Bio-optical algorithms performed similarly, being equally specific and sensitive (~70% for both) and showing low levels of

  15. About Non-Line-Of-Sight Satellite Detection and Exclusion in a 3D Map-Aided Localization Algorithm

    Directory of Open Access Journals (Sweden)

    François Peyret

    2013-01-01

    Full Text Available Reliable GPS positioning in city environment is a key issue: actually, signals are prone to multipath, with poor satellite geometry in many streets. Using a 3D urban model to forecast satellite visibility in urban contexts in order to improve GPS localization is the main topic of the present article. A virtual image processing that detects and eliminates possible faulty measurements is the core of this method. This image is generated using the position estimated a priori by the navigation process itself, under road constraints. This position is then updated by measurements to line-of-sight satellites only. This closed-loop real-time processing has shown very first promising full-scale test results.

  16. An Integrated Method of Multiradar Quantitative Precipitation Estimation Based on Cloud Classification and Dynamic Error Analysis

    Directory of Open Access Journals (Sweden)

    Yong Huang

    2017-01-01

    Full Text Available Relationships between radar reflectivity factor and rainfall are different in various precipitation cloud systems. In this study, the cloud systems are firstly classified into five categories with radar and satellite data to improve radar quantitative precipitation estimation (QPE algorithm. Secondly, the errors of multiradar QPE algorithms are assumed to be different in convective and stratiform clouds. The QPE data are then derived with methods of Z-R, Kalman filter (KF, optimum interpolation (OI, Kalman filter plus optimum interpolation (KFOI, and average calibration (AC based on error analysis on the Huaihe River Basin. In the case of flood on the early of July 2007, the KFOI is applied to obtain the QPE product. Applications show that the KFOI can improve precision of estimating precipitation for multiple precipitation types.

  17. Investigation of Lake Water Salinity by Using Four-Band Salinity Algorithm on WorldView-2 Satellite Image for a Saline Industrial Lake

    Science.gov (United States)

    Budakoǧlu, Murat; Karaman, Muhittin; Damla Uça Avcı, Z.; Kumral, Mustafa; Geredeli (Yılmaz), Serpil

    2014-05-01

    Salinity of a lake is an important characteristic since, these are potentially industrial lakes and the degree of salinity can significantly be used for determination of mineral resources and for the production management. In the literature, there are many studies of using satellite data for salinity related lake studies such as determination of salinity distribution and detection of potential freshwater sources in less salt concentrated regions. As the study area Lake Acigol, located in Denizli (Turkey) was selected. With it's saline environment, it's the major sodium sulphate production resource of Turkey. In this study, remote sensing data and data from a field study was used and correlated. Remote sensing is an efficient tool to monitor and analyze lake properties by using it complementary to field data. Worldview-2 satellite data was used in this study which consists of 8 bands. At the same time with the satellite data acquisition, a field study was conducted to collect the salinity values in 17 points of the laker with using YSI 556 Multiparametre for measurements. The values were measured as salinity amount in grams per kilogram solution and obtained as ppt unit. It was observed that the values vary from 34 ppt - 40.1 ppt and the average is 38.056 ppt. In Thalassic serie, the lake was in mixoeuhaline state in the time of issue. As a first step, ATCOR correction was performed on satellite image for atmospheric correction. There were some clouds on the lake field, hence it was decided to continue the study by using the 12 sampling points which were clear on the image. Then, for each sampling point, a spectral value was obtained by calculating the average at a 11*11 neighborhood. The relation between the spectral reflectance values and the salinity was investigated. The 4-band algorithm, which was used for determination of chlorophyll-a distribution in highly turbid coastal environment by Wei (2012) was applied. Salinity α (Λi-1 / Λj-1) * (Λk-1 / Λm-1) (i

  18. Algorithm developing of gross primary production from its capacity and a canopy conductance index using flux and global observing satellite data

    Science.gov (United States)

    Muramatsu, Kanako; Furumi, Shinobu; Daigo, Motomasa

    2015-10-01

    We plan to estimate gross primary production (GPP) using the SGLI sensor on-board the GCOM-C1 satellite after it is launched in 2017 by the Japan Aerospace Exploration Agency, as we have developed a GPP estimation algorithm that uses SGLI sensor data. The characteristics of this GPP estimation method correspond to photosynthesis. The rate of plant photosynthesis depends on the plant's photosynthesis capacity and the degree to which photosynthesis is suppressed. The photosynthesis capacity depends on the chlorophyll content of leaves, which is a plant physiological parameter, and the degree of suppression of photosynthesis depends on weather conditions. The framework of the estimation method to determine the light-response curve parameters was developed using ux and satellite data in a previous study[1]. We estimated one of the light-response curve parameters based on the linear relationship between GPP capacity at 2000 (μmolm-2s-1) of photosynthetically active radiation and a chlorophyll index (CIgreen [2;3] ). The relationship was determined for seven plant functional types. Decreases in the photosynthetic rate are controlled by stomatal opening and closing. Leaf stomatal conductance is maximal during the morning and decreases in the afternoon. We focused on daily changes in leaf stomatal conductance. We used open shrub flux data and MODIS reflectance data to develop an algorithm for a canopy. We first evaluated the daily changes in GPP capacity estimated from CIgreen and photosynthesis active radiation using light response curves, and GPP observed during a flux experiment. Next, we estimated the canopy conductance using flux data and a big-leaf model using the Penman-Monteith equation[4]. We estimated GPP by multiplying GPP capacity by the normalized canopy conductance at 10:30, the time of satellite observations. The results showed that the estimated daily change in GPP was almost the same as the observed GPP. From this result, we defined a normalized canopy

  19. Integrated Precipitation and Hydrology Experiment (IPHEx)/Orographic Precipitation Processes Study Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Barros, A. P. [Duke Univ., Durham, NC (United States); Petersen, W. [National Aeronautics and Space Administration (NASA), Washington, DC (United States); Wilson, A. M. [Duke Univ., Durham, NC (United States)

    2016-04-01

    Three Microwave Radiometers (two 3-channel and one 2-channel) were deployed in the Southern Appalachian Mountains in western North Carolina as part of the Integrated Precipitation and Hydrology Experiment (IPHEx), which was the first National Aeronautics and Space Administration (NASA) Global Precipitation Mission (GPM) Ground Validation (GV) field campaign after the launch of the GPM Core Satellite (Barros et al. 2014). The radiometers were used along with other instrumentation to estimate the liquid water content of low-level clouds and fog. Specifically, data from the radiometers were collected to help, with other instrumentation, to characterize fog formation, evolution, and dissipation in the region (by monitoring the liquid water path in the column) and observe the effect of that fog on the precipitation regime. Data were collected at three locations in the Southern Appalachians, specifically western North Carolina: a valley in the inner mountain region, a valley in the open mountain pass region, and a ridge in the inner region. This project contributes to the U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility mission by providing in situ observations designed to improve the understanding of clouds and precipitation processes in complex terrain. The end goal is to use this improved understanding of physical processes to improve remote-sensing algorithms and representations of orographic precipitation microphysics in climate and earth system models.

  20. A real-time algorithm for integrating differential satellite and inertial navigation information during helicopter approach. M.S. Thesis

    Science.gov (United States)

    Hoang, TY

    1994-01-01

    A real-time, high-rate precision navigation Kalman filter algorithm is developed and analyzed. This Navigation algorithm blends various navigation data collected during terminal area approach of an instrumented helicopter. Navigation data collected include helicopter position and velocity from a global position system in differential mode (DGPS) as well as helicopter velocity and attitude from an inertial navigation system (INS). The goal of the Navigation algorithm is to increase the DGPS accuracy while producing navigational data at the 64 Hertz INS update rate. It is important to note that while the data was post flight processed, the Navigation algorithm was designed for real-time analysis. The design of the Navigation algorithm resulted in a nine-state Kalman filter. The Kalman filter's state matrix contains position, velocity, and velocity bias components. The filter updates positional readings with DGPS position, INS velocity, and velocity bias information. In addition, the filter incorporates a sporadic data rejection scheme. This relatively simple model met and exceeded the ten meter absolute positional requirement. The Navigation algorithm results were compared with truth data derived from a laser tracker. The helicopter flight profile included terminal glideslope angles of 3, 6, and 9 degrees. Two flight segments extracted during each terminal approach were used to evaluate the Navigation algorithm. The first segment recorded small dynamic maneuver in the lateral plane while motion in the vertical plane was recorded by the second segment. The longitudinal, lateral, and vertical averaged positional accuracies for all three glideslope approaches are as follows (mean plus or minus two standard deviations in meters): longitudinal (-0.03 plus or minus 1.41), lateral (-1.29 plus or minus 2.36), and vertical (-0.76 plus or minus 2.05).

  1. Shoreline to Height (S2H): an algorithm to monitor reservoirs' water height from satellite images. A flood risk management application

    Science.gov (United States)

    Cenci, Luca; Boni, Giorgio; Pulvirenti, Luca; Gabellani, Simone; Gardella, Fabio; Squicciarino, Giuseppe; Pierdicca, Nazzareno; Benedetto, Catia

    2016-04-01

    In a reservoir, water level monitoring is important for emergency management purposes. This information can be used to estimate the degree of filling of the water body, thus helping decision makers in flood control operations. Furthermore, if assimilated in hydrological models and coupled with rainfall forecasts, this information can be used for flood forecast and early warning. In many cases, water level is not known (e.g. data-scarce environments), or not shared by operators. Remote sensing may allow overcoming these limitations, enabling its estimation. The objective of this work is to present the Shoreline to Height (S2H) algorithm, developed to retrieve the height of the water stored in reservoirs from satellite images. To this aim, some auxiliary data are needed: a DEM and the maximum/minimum height that can be reached by the water. In data-scarce environments, these information can be easily obtained on the Internet (e.g. free, worldwide DEM and design data for artificial reservoirs). S2H was tested with different satellite data, both optical and SAR (Landsat and Cosmo SkyMed®-CSK®) in order to assess the impact of different sensors on the final estimates. The study area was the Place-Moulin Lake (Valle d'Aosta-VdA, Italy), where it is present a monitoring network that can provide reliable ground-truths for validating the algorithm and assessing its accuracy. When the algorithm was developed, it was assumed to be in absence of any "official"-auxiliary data. Therefore, two DEMs (SRTM 1 arc-second and ASTER GDEM) were used to evaluate their performances. The maximum/minimum water height values were found on the website of VdA Region. The S2H is based on three steps: i) satellite data preprocessing (Landsat: atmospheric correction; CSK®: geocoding and speckle filtering); ii) water mask generation (using a thresholding and region growing algorithm) and shoreline extraction; iii) retrieval of the shoreline height according to the reference DEMs (adopting a

  2. Impact of the initial specification of moisture and vertical motion on precipitation forecasts with a mesoscale model Implications for a satellite mesoscale data base

    Science.gov (United States)

    Mlynczak, Pamela E.; Houghton, David D.; Diak, George R.

    1986-01-01

    Using a numerical mesoscale model, four simulations were performed to determine the effects of suppressing the initial mesoscale information in the moisture and wind fields on the precipitation forecasts. The simulations included a control forecast 12-h simulation that began at 1200 GMT March 1982 and three experiment simulations with modifications to the moisture and vertical motion fields incorporated at 1800 GMT. The forecasts from 1800 GMT were compared to the second half of the control forecast. It was found that, compared to the control forecast, suppression of the moisture and/or wind initial field(s) produces a drier forecast. However, the characteristics of the precipitation forecasts of the experiments were not different enough to conclude that either mesoscale moisture or mesoscale vertical velocity at the initial time are more important for producing a forecast closer to that of the control.

  3. NASA's Global Precipitation Measurement (GPM) Mission for Science and Society

    Science.gov (United States)

    Jackson, Gail

    2016-04-01

    Water is fundamental to life on Earth. Knowing where and how much rain and snow falls globally is vital to understanding how weather and climate impact both our environment and Earth's water and energy cycles, including effects on agriculture, fresh water availability, and responses to natural disasters. The Global Precipitation Measurement (GPM) Mission, launched February 27, 2014, is an international satellite mission to unify and advance precipitation measurements from a constellation of research and operational sensors to provide "next-generation" precipitation products. The joint NASA-JAXA GPM Core Observatory serves as the cornerstone and anchor to unite the constellation radiometers. The GPM Core Observatory carries a Ku/Ka-band Dual-frequency Precipitation Radar (DPR) and a multi-channel (10-183 GHz) GPM Microwave Radiometer (GMI). Furthermore, since light rain and falling snow account for a significant fraction of precipitation occurrence in middle and high latitudes, the GPM instruments extend the capabilities of the TRMM sensors to detect falling snow, measure light rain, and provide, for the first time, quantitative estimates of microphysical properties of precipitation particles. As a science mission with integrated application goals, GPM is designed to (1) advance precipitation measurement capability from space through combined use of active and passive microwave sensors, (2) advance the knowledge of the global water/energy cycle and freshwater availability through better description of the space-time variability of global precipitation, and (3) improve weather, climate, and hydrological prediction capabilities through more accurate and frequent measurements of instantaneous precipitation rates and time-integrated rainfall accumulation. Since launch, the instruments have been collecting outstanding precipitation data. New scientific insights resulting from GPM data, an overview of the GPM mission concept and science activities in the United States

  4. Research and Application of GEO Satellite Spot-beam Covering Algorithm%GEO卫星点波束覆盖算法的研究与应用

    Institute of Scientific and Technical Information of China (English)

    董彦磊; 汪春霆; 孙巍

    2016-01-01

    GEO卫星点波束覆盖范围准确计算在实际工程应用中需求日益迫切,针对GEO卫星点波束覆盖特点,提出点波束平面覆盖和点波束球面覆盖计算方法。点波束平面覆盖计算是将地球看成一个平面利用平面几何公式计算点波束覆盖范围,点波束球面覆盖计算是将地球看成一个球体利用球面立体几何公式计算点波束覆盖范围。通过仿真、分析与比较,当点波束半功率角θ3dB较小时平面覆盖计算和球面覆盖计算精度都较高,当半功率角θ3dB较大时平面覆盖计算偏差明显增大,球面覆盖计算精度一直保持在较高水平。%Accurately calculating GEO satellite spot-beam coverage is demanded increasingly in the actual engineering applications.In view ofthe features of spot-beam coverage,this paper presents the algorithm of spot-beam plane coverage and spot-beam spherical coverage.The algorithm of spot-beam plane coverage takes the Earth as a flat to calculate spot-beam coverage with plane geometry formulas,and the algorithm of spot-beam sphere coverage takes the Earth as a sphere to calculate spot-beam coverage with three-dimensional geometry formulas.Through simulation,analysis and comparison,when the half-power angle of spot-beam is smaller,both plane coverage algorithm and spot-beam spherical coverage algorithm have high accuracy of calculation. When the half-power angle of spot-beam is bigger,the calculated deviation of spot-beam plane coverage algorithm increases significantly,however the calculation accuracy of spot-beam spherical coverage algorithm maintains at a high level.

  5. Applicability of data mining algorithms in the identification of beach features/patterns on high-resolution satellite data

    Science.gov (United States)

    Teodoro, Ana C.

    2015-01-01

    The available beach classification algorithms and sediment budget models are mainly based on in situ parameters, usually unavailable for several coastal areas. A morphological analysis using remotely sensed data is a valid alternative. This study focuses on the application of data mining techniques, particularly decision trees (DTs) and artificial neural networks (ANNs) to an IKONOS-2 image in order to identify beach features/patterns in a stretch of the northwest coast of Portugal. Based on knowledge of the coastal features, five classes were defined. In the identification of beach features/patterns, the ANN algorithm presented an overall accuracy of 98.6% and a kappa coefficient of 0.97. The best DTs algorithm (with pruning) presents an overall accuracy of 98.2% and a kappa coefficient of 0.97. The results obtained through the ANN and DTs were in agreement. However, the ANN presented a classification more sensitive to rip currents. The use of ANNs and DTs for beach classification from remotely sensed data resulted in an increased classification accuracy when compared with traditional classification methods. The association of remotely sensed high-spatial resolution data and data mining algorithms is an effective methodology with which to identify beach features/patterns.

  6. Advancements of In-Flight Mass Moment of Inertia and Structural Deflection Algorithms for Satellite Attitude Simulators

    Science.gov (United States)

    2015-03-26

    on the air-bearing satellite attitude simulator at Shenyang University of Technology. Additionally, Chesi et al., [3] advanced the EKF developed by Kim...in a disturbance torque. The data for hrw about the test axis is then used to calculate the coefficients Arw and Brw that best fit the equation hrw...oscillation; and m, b, D, and E are coefficients that best fit the 51 0 10 20 30 40 50 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 time (s) A ng ul ar M om en

  7. A Preliminary Analysis of Precipitation Properties and Processes during NASA GPM IFloodS

    Science.gov (United States)

    Carey, Lawrence; Gatlin, Patrick; Petersen, Walt; Wingo, Matt; Lang, Timothy; Wolff, Dave

    2014-01-01

    The Iowa Flood Studies (IFloodS) is a NASA Global Precipitation Measurement (GPM) ground measurement campaign, which took place in eastern Iowa from May 1 to June 15, 2013. The goals of the field campaign were to collect detailed measurements of surface precipitation using ground instruments and advanced weather radars while simultaneously collecting data from satellites passing overhead. Data collected by the radars and other ground instruments, such as disdrometers and rain gauges, will be used to characterize precipitation properties throughout the vertical column, including the precipitation type (e.g., rain, graupel, hail, aggregates, ice crystals), precipitation amounts (e.g., rain rate), and the size and shape of raindrops. The impact of physical processes, such as aggregation, melting, breakup and coalescence on the measured liquid and ice precipitation properties will be investigated. These ground observations will ultimately be used to improve rainfall estimates from satellites and in particular the algorithms that interpret raw data for the upcoming GPM mission's Core Observatory satellite, which launches in 2014. The various precipitation data collected will eventually be used as input to flood forecasting models in an effort to improve capabilities and test the utility and limitations of satellite precipitation data for flood forecasting. In this preliminary study, the focus will be on analysis of NASA NPOL (S-band, polarimetric) radar (e.g., radar reflectivity, differential reflectivity, differential phase, correlation coefficient) and NASA 2D Video Disdrometers (2DVDs) measurements. Quality control and processing of the radar and disdrometer data sets will be outlined. In analyzing preliminary cases, particular emphasis will be placed on 1) documenting the evolution of the rain drop size distribution (DSD) as a function of column melting processes and 2) assessing the impact of range on ground-based polarimetric radar estimates of DSD properties.

  8. Potential Utility of the Real-Time TMPA-RT Precipitation Estimates in Streamflow Prediction

    Science.gov (United States)

    Su, Fengge; Gao, Huilin; Huffman, George J.; Lettenmaier, Dennis P.

    2010-01-01

    We investigate the potential utility of the real-time Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA-RT) data for streamflow prediction, both through direct comparisons of TMPA-RT estimates with a gridded gauge product, and through evaluation of streamflow simulations over four tributaries of La Plata Basin (LPB) in South America using the two precipitation products. Our assessments indicate that the relative accuracy and the hydrologic performance of TMPA-RT-based streamflow simulations generally improved after February 2005. The improvements in TMPA-RT since 2005 are closely related to upgrades in the TMPA-RT algorithm in early February, 2005 which include use of additional microwave sensors (AMSR-E and AMSU-B) and implementation of different calibration schemes. Our work suggests considerable potential for hydrologic prediction using purely satellite-derived precipitation estimates (no adjustments by in situ gauges) in parts of the globe where in situ observations are sparse.

  9. A New Traffic Flow Prediction Algorithm for Satellite Communication Network%一种新的卫星通信网流量预测算法*

    Institute of Scientific and Technical Information of China (English)

    秦红祥; 杨飞

    2013-01-01

      在通信网络的设计中,使用基于流量预测的网络规划已成为LTE发展的必然趋势。与地面网络不同,卫星网络由于受资源受限和拓扑时变的不利影响,其流量预测算法必须能兼顾精度和效率,这令传统的地面网络预测方法已不再适用。为了解决以上问题,提出了一种新的基于小波回声状态网络的流量预测算法,该算法通过小波多尺度分解的信号处理方法屏蔽了网络流量的噪声,而后结合了无反馈的回声状态网络联合进行预测。仿真证明,新算法相比传统算法能大幅提升网络流量的预测精度和运行效率,为卫星网络的流量规划提供了强有力的决策支持。%In the design of a communication network,it has become an inevitable trend with LET development to use traffic flow prediction method for network planning. Due to suffer from the constrained resource and change-able topology,the traffic flow prediction algorithm of the satellite networks which is different from terrestrial net-works,should fully take into account the accuracy and efficiency,so the traditional prediction methods for ter-restrial networks are no longer fit for application. In order to resolve this problem,a new traffic flow prediction algorithm based on wavelet and echo state networks is proposed in this paper. The new algorithm uses the signal processing method based on multi-scale decomposition of wavelet to shield the noise of the network traffic,and it combines with the non-feedback echo state network to predict. The simulation results show that the new algorithm can greatly improve the prediction accuracy and running efficiency of network traffic compared with traditional al-gorithms,so it provides a more scientific decision support for satellite communication network traffic planning.

  10. Development of Fast Error Compensation Algorithm for Integrated Inertial-Satellite Navigation System of Small-size Unmanned Aerial Vehicles in Complex Environment

    Directory of Open Access Journals (Sweden)

    A. V. Fomichev

    2015-01-01

    Full Text Available In accordance with the structural features of small-size unmanned aerial vehicle (UAV, and considering the feasibility of this project, the article studies an integrated inertial-satellite navigation system (INS. The INS algorithm development is based on the method of indirect filtration and principle of loosely coupled combination of output data on UAV positions and velocity. Data on position and velocity are provided from the strapdown inertial navigation system (SINS and satellite navigation system (GPS. A difference between the output flows of measuring data on position and velocity provided from the SINS and GPS is used to evaluate SINS errors by means of the basic algorithm of Kalman filtering. Then the outputs of SINS are revised. The INS possesses the following advantages: a simpler mathematical model of Kalman filtering, high reliability, two independently operating navigation systems, and high redundancy of available navigation information.But in case of loosely coupled scheme, INS can meet the challenge of high precision and reliability of navigation only when the SINS and GPS operating conditions are normal all the time. The proposed INS is used with UAV moving in complex environment due to obstacles available, severe natural climatic conditions, etc. This case expects that it is impossible for UAV to receive successful GPS-signals frequently. In order to solve this problem, was developed an algorithm for rapid compensation for errors of INS information, which could effectively solve the problem of failure of the navigation system in case there are no GPS-signals .Since it is almost impossible to obtain the data of the real trajectory in practice, in the course of simulation in accordance with the kinematic model of the UAV and the complex environment of the terrain, the flight path generator is used to produce the flight path. The errors of positions and velocities are considered as an indicator of the INS effectiveness. The results

  11. Priority-based active queue management algorithm for satellite networks%一种基于优先级的卫星网络AQM算法

    Institute of Scientific and Technical Information of China (English)

    孙力娟; 谢慧婷; 肖甫; 叶晓国; 王汝传

    2011-01-01

    针对卫星网络大带宽、长时延、高误码等特点,结合控制理论,提出了一种基于优先级的卫星网络主动队列管理(active queue management,AQM)算法.首先,借鉴控制理论中比例-积分-微分(propertional-integral-derivative,PID)控制器设计方法计算总的报文丢弃概率;然后,针对IN和OUT两种不同优先级报文定义不同的丢弃概率,以实现不同优先级业务流量的区分服务.仿真实验表明,相对于低优先级流量,高优先级业务在保持高吞吐量的同时具有较低的报文丢失率,且整体队列长度抖动小,从而实现高优先级流量报文的有效保护.%Aimming at the characteristics of high bandwidth, long delay and high bit error ratio in satellite networks, a satellite network active queue management (AQM) algorithm based on prioity, which is integrated with control theory, is proposed. Firistly, based on the designing of the propertional-integral-derivative (PID) controller in control theory, a total probability of dropped messages is defined. Then, to differentiate between IN and OUT flows with different priorities, different probabilities of dropped messages are designed as well. Simulation results show that, compared with the case of flow with low priority, the proposed algorithm can effectively protect high priority flow by means of achieving a higher throughput with smaller jitter and low probability of dropped messages.

  12. 自适应遗传算法的数据中继卫星光网络资源调度算法%Scheduling algorithm for data relay satellite optical network based on self-adaptive genetic algorithm

    Institute of Scientific and Technical Information of China (English)

    赵卫虎; 赵静; 赵尚弘; 李勇军; 董毅; 李轩

    2015-01-01

    According to the resources, missions and restraints of the data relay satellite optical network, a scheduling algorithm based on improved self-adaptive genetic algorithm was put forwarded. Considering the multi-relay satellite, multi-window, multi-optical-antenna and multi-mission PRI, the model was established. The missions were scheduled by the scheduling operates: the ascertainment of current mission scheduling time and the refreshment of latter mission time-window. The whole weight of the scheduled missions was set as the cost value and the scheduling schemes were optimized by the self-adaptive genetic algorithm. The simulation scene including 3 relay satellites, 12 user satellites, 6 antennas and 60 missions, the result reveals that the algorithm obtains satisfactory results in both time and optimization which is suitable in multi-user, multi-mission and multi-optical-antenna recourse scheduling.%以数据中继卫星光网络系统资源、任务和约束条件为参量,以任务对资源的选择为优化对象,提出了一种基于自适应遗传算法的数据中继卫星光网络资源调度算法。综合考虑多中继星、多时间窗口、多光学天线以及任务优先级要求,建立调度模型;采用“当前任务调度时间的确定”和“后续任务可见时间窗口的更新”的调度操作,对不同资源的任务集合进行调度安排并实现了可见时间窗口的动态更新,获得调度任务的总权值并将其作为参量计算适应度值,最后通过改进的自适应遗传算法对不同调度方案进行寻优。以3颗中继星、12颗用户星,6个光天线,60个任务为条件设置了仿真场景,仿真结果表明该算法在收敛速度、调度效率方面具有优势,适应于多任务、多天线的数据中继卫星光网络系统资源调度。

  13. Utilization of a genetic algorithm for the automatic detection of oil spill from RADARSAT-2 SAR satellite data.

    Science.gov (United States)

    Marghany, Maged

    2014-12-15

    In this work, a genetic algorithm is applied for the automatic detection of oil spills. The procedure is implemented using sequences from RADARSAT-2 SAR ScanSAR Narrow single-beam data acquired in the Gulf of Mexico. The study demonstrates that the implementation of crossover allows for the generation of an accurate oil spill pattern. This conclusion is confirmed by the receiver-operating characteristic (ROC) curve. The ROC curve indicates that the existence of oil slick footprints can be identified using the area between the ROC curve and the no-discrimination line of 90%, which is greater than that of other surrounding environmental features. In conclusion, the genetic algorithm can be used as a tool for the automatic detection of oil spills, and the ScanSAR Narrow single-beam mode serves as an excellent sensor for oil spill detection and survey.

  14. The inter-comparison of major satellite aerosol retrieval algorithms using simulated intensity and polarization characteristics of reflected light

    Directory of Open Access Journals (Sweden)

    A. A. Kokhanovsky

    2010-07-01

    Full Text Available Remote sensing of aerosol from space is a challenging and typically underdetermined retrieval task, requiring many assumptions to be made with respect to the aerosol and surface models. Therefore, the quality of a priori information plays a central role in any retrieval process (apart from the cloud screening procedure and the forward radiative transfer model, which to be most accurate should include the treatment of light polarization and molecular-aerosol coupling. In this paper the performance of various algorithms with respect to the of spectral aerosol optical thickness determination from optical spaceborne measurements is studied. The algorithms are based on various types of measurements (spectral, angular, polarization, or some combination of these. It is confirmed that multiangular spectropolarimetric measurements provide more powerful constraints compared to spectral intensity measurements alone, particularly those acquired at a single view angle and which rely on a priori assumptions regarding the particle phase function in the retrieval process.

  15. Performance of operational satellite bio-optical algorithms in different water types in the southeastern Arabian Sea

    Directory of Open Access Journals (Sweden)

    P. Minu

    2016-10-01

    Full Text Available The in situ remote sensing reflectance (Rrs and optically active substances (OAS measured using hyperspectral radiometer, were used for optical classification of coastal waters in the southeastern Arabian Sea. The spectral Rrs showed three distinct water types, that were associated with the variability in OAS such as chlorophyll-a (chl-a, chromophoric dissolved organic matter (CDOM and volume scattering function at 650 nm (β650. The water types were classified as Type-I, Type-II and Type-III respectively for the three Rrs spectra. The Type-I waters showed the peak Rrs in the blue band (470 nm, whereas in the case of Type-II and III waters the peak Rrs was at 560 and 570 nm respectively. The shifting of the peak Rrs at the longer wavelength was due to an increase in concentration of OAS. Further, we evaluated six bio-optical algorithms (OC3C, OC4O, OC4, OC4E, OC3M and OC4O2 used operationally to retrieve chl-a from Coastal Zone Colour Scanner (CZCS, Ocean Colour Temperature Scanner (OCTS, Sea-viewing Wide Field-of-view Sensor (SeaWiFS, MEdium Resolution Imaging Spectrometer (MERIS, Moderate Resolution Imaging Spectroradiometer (MODIS and Ocean Colour Monitor (OCM2. For chl-a concentration greater than 1.0 mg m−3, algorithms based on the reference band ratios 488/510/520 nm to 547/550/555/560/565 nm have to be considered. The assessment of algorithms showed better performance of OC3M and OC4. All the algorithms exhibited better performance in Type-I waters. However, the performance was poor in Type-II and Type-III waters which could be attributed to the significant co-variance of chl-a with CDOM.

  16. Estimation of stratospheric NO2 from nadir-viewing satellites: The MPI-C TROPOMI verification algorithm

    Science.gov (United States)

    Beirle, Steffen; Wagner, Thomas

    2015-04-01

    The retrieval of tropospheric column densities of NO2 requires the subtraction of the stratospheric fraction from the total columns derived by DOAS. Here we present a modified reference sector method, which estimates the stratosphere over "clean" regions, as well as over clouded scenarios in which the tropospheric column is shielded. The selection of "clean" pixels is realized gradually by assingning weighting factors to the individual ground pixels, instead of applying binary flags. Global stratospheric fields are then compiled by "weighted convolution". In a second iteration, unphysical negative tropospheric residues are suppressed by adjusting the weights respectively. This algorithm is foreseen as "verification algorithm" for the upcoming TROPOMI on S5p. We show the resulting stratospheric estimates and tropospheric residues for a test data set based on OMI observations. The dependencies on the a-priori settings (definition of weighting factors and convolution kernels) are discussed, and the results are compared to other products, in particular to DOMINO v.2 (based on assimilation, similar to the TROPOMI prototype algorithm) and the NASA standard product (based on a similar reference-region-type approach).

  17. Satellite Based Assessment of the NSRDB Site Irradiances and Time Series from NASA and SUNY/Albany Algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Stackhouse, P. W., Jr.; Zhang, T.; Chandler, W. S.; Whitlock, C. H.; Hoell, J. M.; Westberg, D. J.; Perez, R.; Wilcox, S.

    2008-01-01

    In April, 2007, the National Solar Radiation Database (NSRDB) of the National Renewable Energy Laboratory was updated for the period from 1991 to 2005. NSRDB includes monthly averaged summary statistics from 221 Class I sites spanning the entire time period with least uncertainty. In 2008, the NASA GEWEX Surface Radiation Budget (SRB) project updated its satellite-derived solar surface irradiance to Release 3.0. This dataset spans July 1983 to June 2006 at a 1ox1o resolution. In this paper, we compare the NSRDB data monthly average summary statistics to NASA SRB data that has been validated favorably against the BSRN, SURFRAD, WRDC and GEBA datasets. The SRB-NSRDB comparison reveals reasonably good agreement of the two datasets.

  18. Current status of the dual-frequency precipitation radar on the global precipitation measurement core spacecraft and the new version of GPM standard products

    Science.gov (United States)

    Furukawa, K.; Nio, T.; Konishi, T.; Masaki, T.; Kubota, T.; Oki, R.; Iguchi, T.

    2016-10-01

    The Dual-frequency Precipitation Radar (DPR) on the Global Precipitation Measurement (GPM) core satellite was developed by Japan Aerospace Exploration Agency (JAXA) and National Institute of Information and Communications Technology (NICT). The objective of the GPM mission is to observe global precipitation more frequently and accurately. The GPM core satellite is a joint product of National Aeronautics and Space Administration (NASA), JAXA and NICT. NASA developed the satellite bus and the GPM Microwave Imager (GMI), and JAXA and NICT developed the DPR. The inclination of the GPM core satellite is 65 degrees, and the nominal flight altitude is 407 km. The non-sunsynchronous circular orbit is necessary for measuring the diurnal change of rainfall. The DPR consists of two radars, which are Ku-band precipitation radar (KuPR) and Ka-band precipitation radar (KaPR). GPM core observatory was successfully launched by H2A launch vehicle on Feb. 28, 2014. DPR keeps its performances on orbit after launch. DPR products were released to the public on Sep. 2, 2014. JAXA is continuing DPR trend monitoring, calibration and validation operations to confirm that DPR keeps its function and performance on orbit. JAXA have started to provide new version (Version 4) of GPM standard products on March 3, 2016. Various improvements of the DPR algorithm were implemented in the Version 4 product. Moreover, the latent heat product based on the Spectral Latent Heating (SLH) algorithm is available since Version 4 product. Current orbital operation status of the GPM/DPR and highlights of the Version 4 product are reported.

  19. A Fast and Sensitive New Satellite SO2 Retrieval Algorithm based on Principal Component Analysis: Application to the Ozone Monitoring Instrument

    Science.gov (United States)

    Li, Can; Joiner, Joanna; Krotkov, A.; Bhartia, Pawan K.

    2013-01-01

    We describe a new algorithm to retrieve SO2 from satellite-measured hyperspectral radiances. We employ the principal component analysis technique in regions with no significant SO2 to capture radiance variability caused by both physical processes (e.g., Rayleigh and Raman scattering and ozone absorption) and measurement artifacts. We use the resulting principal components and SO2 Jacobians calculated with a radiative transfer model to directly estimate SO2 vertical column density in one step. Application to the Ozone Monitoring Instrument (OMI) radiance spectra in 310.5-340 nm demonstrates that this approach can greatly reduce biases in the operational OMI product and decrease the noise by a factor of 2, providing greater sensitivity to anthropogenic emissions. The new algorithm is fast, eliminates the need for instrument-specific radiance correction schemes, and can be easily adapted to other sensors. These attributes make it a promising technique for producing longterm, consistent SO2 records for air quality and climate research.

  20. Retrieval algorithm for CO2 and CH4 column abundances from short-wavelength infrared spectral observations by the Greenhouse Gases Observing Satellite

    Directory of Open Access Journals (Sweden)

    I. Morino

    2010-11-01

    Full Text Available The Greenhouse gases Observing SATellite (GOSAT was launched on 23 January 2009 to monitor the global distributions of carbon dioxide and methane from space. It has operated continuously since then. Here we describe a retrieval algorithm for column abundances of these gases from the short-wavelength infrared spectra obtained by the Thermal And Near infrared Sensor for carbon Observation-Fourier Transform Spectrometer (TANSO-FTS. The algorithm consists of three steps. First, cloud-free observational scenes are selected by several cloud-detection methods. Then, column abundances of carbon dioxide and methane are retrieved based on the optimal estimation method. Finally, the retrieval quality is examined to exclude low-quality and/or aerosol-contaminated results. Most of the retrieval random errors come from the instrumental noise. The interferences by auxiliary parameters retrieved simultaneously with gas abundances are small. The evaluated precisions of the retrieved column abundances for single observations are less than 1% in most cases. The interhemispherical differences and the temporal variation patterns of the retrieved column abundances agree well with the current state of knowledge.