WorldWideScience

Sample records for satellite power systems

  1. Laser satellite power systems

    Energy Technology Data Exchange (ETDEWEB)

    Walbridge, E.W.

    1980-01-01

    A laser satellite power system (SPS) converts solar power captured by earth-orbiting satellites into electrical power on the earth's surface, the satellite-to-ground transmission of power being effected by laser beam. The laser SPS may be an alternative to the microwave SPS. Microwaves easily penetrate clouds while laser radiation does not. Although there is this major disadvantage to a laser SPS, that system has four important advantages over the microwave alternative: (1) land requirements are much less, (2) radiation levels are low outside the laser ground stations, (3) laser beam sidelobes are not expected to interfere with electromagnetic systems, and (4) the laser system lends itself to small-scale demonstration. After describing lasers and how they work, the report discusses the five lasers that are candidates for application in a laser SPS: electric discharge lasers, direct and indirect solar pumped lasers, free electron lasers, and closed-cycle chemical lasers. The Lockheed laser SPS is examined in some detail. To determine whether a laser SPS will be worthy of future deployment, its capabilities need to be better understood and its attractiveness relative to other electric power options better assessed. First priority should be given to potential program stoppers, e.g., beam attenuation by clouds. If investigation shows these potential program stoppers to be resolvable, further research should investigate lasers that are particularly promising for SPS application.

  2. Critical areas: Satellite power systems concepts

    Science.gov (United States)

    1975-01-01

    Critical Areas are defined and discussed in the various areas pertinent to satellite power systems. The presentation is grouped into five areas (General, Space Systems, Solar Energy Conversion, Microwave Systems, and Environment/Ecology) with a sixth area (Power Relay) considered separately in an appendix. Areas for Future Consideration as critical areas are discussed in a second appendix.

  3. Laser satellite power systems - Concepts and issues

    Science.gov (United States)

    Walbridge, E. W.

    A laser satellite power system (SPS) converts solar power captured by Earth-orbiting satellites into electrical power on the Earth's surface, the satellite-to-ground transmission of power being effected by a laser beam. The laser SPS is an alternative to the microwave SPS. Lasers and how they work are described, as are the types of lasers - electric discharge, direct and indirect solar pumped, free electron, and closed-cycle chemical - that are candidates for application in a laser SPS. The advantages of a laser SPS over the microwave alternative are pointed out. One such advantage is that, for the same power delivered to the utility busbar, land requirements for a laser system are much smaller (by a factor of 21) than those for a microwave system. The four laser SPS concepts that have been presented in the literature are described and commented on. Finally key issues for further laser SPS research are discussed.

  4. Power Processing Unit For Micro Satellite Electric Propulsion System

    Directory of Open Access Journals (Sweden)

    Savvas Spiridon

    2017-01-01

    Full Text Available The Micro Satellite Electric Propulsion System (MEPS program has been originated by the increasing need to provide a low-cost and low-power Electric Propulsion System (EPS for small satellites ( 92%, small size and weight and high reliability. Its functional modules and preliminary results obtained at breadboard level are also presented.

  5. Solar Power Satellite Development: Advances in Modularity and Mechanical Systems

    Science.gov (United States)

    Belvin, W. Keith; Dorsey, John T.; Watson, Judith J.

    2010-01-01

    Space solar power satellites require innovative concepts in order to achieve economically and technically feasible designs. The mass and volume constraints of current and planned launch vehicles necessitate highly efficient structural systems be developed. In addition, modularity and in-space deployment will be enabling design attributes. This paper reviews the current challenges of launching and building very large space systems. A building block approach is proposed in order to achieve near-term solar power satellite risk reduction while promoting the necessary long-term technology advances. Promising mechanical systems technologies anticipated in the coming decades including modularity, material systems, structural concepts, and in-space operations are described

  6. Space Solar Power Satellite Systems, Modern Small Satellites, and Space Rectenna

    Science.gov (United States)

    Bergsrud, Corey Alexis Marvin

    Space solar power satellite (SSPS) systems is the concept of placing large satellite into geostationary Earth orbit (GEO) to harvest and convert massive amounts of solar energy into microwave energy, and to transmit the microwaves to a rectifying antenna (rectenna) array on Earth. The rectenna array captures and converts the microwave power into usable power that is injected into the terrestrial electric grid for use. This work approached the microwave power beam as an additional source of power (with solar) for lower orbiting satellites. Assuming the concept of retrodirectivity, a GEO-SSPS antenna array system tracks and delivers microwave power to lower orbiting satellites. The lower orbiting satellites are equipped with a stacked photovoltaic (PV)/rectenna array hybrid power generation unit (HPGU) in order to harvest solar and/or microwave energy for on-board use during orbit. The area, and mass of the PV array part of the HPGU was reduced at about 32% beginning-of-life power in order to achieve the spacecraft power requirements. The HPGU proved to offer a mass decrease in the PGU, and an increase in mission life due to longer living component life of the rectenna array. Moreover, greater mission flexibility is achieved through a track and power delivery concept. To validate the potential advantages offered by a HPGU, a mission concept was presented that utilizes modern small satellites as technology demonstrators. During launch, a smaller power receiving "daughter" satellite sits inside a larger power transmitting "mother" satellite. Once separated from the launch vehicle the daughter satellite is ejected away from the mother satellite, and each satellite deploys its respective power transmitting or power receiving hardware's for experimentation. The concept of close proximity mission operations between the satellites is considered. To validate the technology of the space rectenna array part of the HPGU, six milestones were completed in the design. The first

  7. Assessment of a satellite power system and six alternative technologies

    Science.gov (United States)

    Wolsko, T.; Whitfield, R.; Samsa, M.; Habegger, L. S.; Levine, E.; Tanzman, E.

    1981-01-01

    The satellite power system is assessed in comparison to six alternative technologies. The alternatives are: central-station terrestrial photovoltaic systems, conventional coal-fired power plants, coal-gasification/combined-cycle power plants, light water reactor power plants, liquid-metal fast-breeder reactors, and fusion. The comparison is made regarding issues of cost and performance, health and safety, environmental effects, resources, socio-economic factors, and institutional issues. The criteria for selecting the issues and the alternative technologies are given, and the methodology of the comparison is discussed. Brief descriptions of each of the technologies considered are included.

  8. Assessment of a satellite power system and six alternative technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wolsko, T.; Whitfield, R.; Samsa, M.; Habegger, L.S.; Levine, E.; Tanzman, E.

    1981-04-01

    The satellite power system is assessed in comparison to six alternative technologies. The alternatives are: central-station terrestrial photovoltaic systems, conventional coal-fired power plants, coal-gasification/combined-cycle power plants, light water reactor power plants, liquid-metal fast-breeder reactors, and fusion. The comparison is made regarding issues of cost and performance, health and safety, environmental effects, resources, socio-economic factors, and insitutional issues. The criteria for selecting the issues and the alternative technologies are given, and the methodology of the comparison is discussed. Brief descriptions of each of the technologies considered are included. (LEW)

  9. Proposed advanced satellite applications utilizing space nuclear power systems

    Science.gov (United States)

    Bailey, Patrick G.; Isenberg, Lon

    1990-01-01

    A review of the status of space nuclear reactor systems and their possible applications is presented. Such systems have been developed over the past twenty years and are capable of use in various military and civilian applications in the 5-1000-kWe power range. The capabilities and limitations of the currently proposed nuclear reactor systems are summarized. Statements of need are presented from DoD, DOE, and NASA. Safety issues are identified, and if they are properly addressed they should not pose a hindrance. Applications are summarized for the DoD, DOE, NASA, and the civilian community. These applications include both low- and high-altitude satellite surveillance missions, communications satellites, planetary probes, low- and high-power lunar and planetary base power systems, broadband global telecommunications, air traffic control, and high-definition television.

  10. Transmission media appropriate laser-microwave solar power satellite system

    Science.gov (United States)

    Schäfer, C. A.; Gray, D.

    2012-10-01

    As a solution to the most critical problems with Solar power Satellite (SPS) development, a system is proposed which uses laser power transmission in space to a receiver high in the atmosphere that relays the power to Earth by either cable or microwave power transmission. It has been shown in the past that such hybrid systems have the advantages of a reduction in the mass of equipment required in geostationary orbit and avoidance of radio frequency interference with other satellites and terrestrial communications systems. The advantage over a purely laser power beam SPS is that atmospheric absorption is avoided and outages due to clouds and precipitation will not occur, allowing for deployment in the equatorial zone and guaranteeing year round operation. This proposal is supported by brief literature surveys and theoretical calculations to estimate crucial parameters in this paper. In relation to this concept, we build on a recently proposed method to collect solar energy by a tethered balloon at high altitude because it enables a low-cost start for bringing the first Watt of power to Earth giving some quick return on investment, which is desperately missing in the traditional SPS concept. To tackle the significant problem of GW-class SPSs of high launch cost per kg mass brought to space, this paper introduces a concept which aims to achieve a superior power over mass ratio compared to traditional satellite designs by the use of thin-film solar cells combined with optical fibres for power delivery. To minimise the aperture sizes and cost of the transmitting and receiving components of the satellite and high altitude receiver, closed-loop laser beam pointing and target tracking is crucial for pointing a laser beam onto a target area that is of similar size to the beam's diameter. A recently developed technique based on optical phase conjugation is introduced and its applicability for maintaining power transmission between the satellite and high altitude receiver is

  11. Modular High-Energy Systems for Solar Power Satellites

    Science.gov (United States)

    Howell, Joe T.; Carrington, Connie K.; Marzwell, Neville I.; Mankins, John C.

    2006-01-01

    Modular High-Energy Systems are Stepping Stones to provide capabilities for energy-rich infrastructure located in space to support a variety of exploration scenarios as well as provide a supplemental source of energy during peak demands to ground grid systems. Abundant renewable energy at lunar or other locations could support propellant production and storage in refueling scenarios that enable affordable exploration. Renewable energy platforms in geosynchronous Earth orbits can collect and transmit power to satellites, or to Earth-surface locations. Energy-rich space technologies also enable the use of electric-powered propulsion systems that could efficiently deliver cargo and exploration facilities to remote locations. A first step to an energy-rich space infrastructure is a 100-kWe class solar-powered platform in Earth orbit. The platform would utilize advanced technologies in solar power collection and generation, power management and distribution, thermal management, electric propulsion, wireless avionics, autonomous in space rendezvous and docking, servicing, and robotic assembly. It would also provide an energy-rich free-flying platform to demonstrate in space a portfolio of technology flight experiments. This paper summary a preliminary design concept for a 100-kWe solar-powered satellite system to demonstrate in-flight a variety of advanced technologies, each as a separate payload. These technologies include, but are not limited to state-of-the-art solar concentrators, highly efficient multi-junction solar cells, integrated thermal management on the arrays, and innovative deployable structure design and packaging to enable the 100-kW satellite feasible to launch on one existing launch vehicle. Higher voltage arrays and power distribution systems (PDS) reduce or eliminate the need for massive power converters, and could enable direct-drive of high-voltage solar electric thrusters.

  12. Rectenna System Design. [energy conversion solar power satellites

    Science.gov (United States)

    Woodcock, G. R.; Andryczyk, R. W.

    1980-01-01

    The fundamental processes involved in the operation of the rectenna system designed for the solar power satellite system are described. The basic design choices are presented based on the desired microwave rf field concentration prior to rectification and based on the ground clearance requirements for the rectenna structure. A nonconcentrating inclined planar panel with a 2 meter minimum clearance configuration is selected as a representative of the typical rectenna.

  13. Satellite Power Systems (SPS) concept definition study. Volume 5: Special emphasis studies. [rectenna and solar power satellite design studies

    Science.gov (United States)

    Hanley, G. M.

    1980-01-01

    Satellite configurations based on the Satellite Power System baseline requirements were analyzed and a preferred concept selected. A satellite construction base was defined, precursor operations incident to establishment of orbital support facilities identified, and the satellite construction sequence and procedures developed. Rectenna construction requirement were also addressed. Mass flow to orbit requirements were revised and traffic models established based on construction of 60 instead of 120 satellites. Analyses were conducted to determine satellite control, resources, manufacturing, and propellant requirements. The impact of the laser beam used for space-to-Earth power transmission upon the intervening atmosphere was examined as well as the inverse effect. The significant space environments and their effects on spacecraft components were investigated to define the design and operational limits imposed by the environments on an orbit transfer vehicle. The results show that LEO altitude 300 nmi and transfer orbit duration 6 months are preferrable.

  14. A preliminary design for a satellite power system

    Science.gov (United States)

    Enriquez, Clara V.; Kokaly, Ray; Nandi, Saumya; Timmons, Mike; Garrard, Mark; Mercado, Rommel; Rogers, Brian; Ugaz, Victor

    1991-01-01

    Outlined here is a preliminary design for a Solar Power Satellite (SPS) system. The SPS will provide a clean, reliable source of energy for mass consumption. The system will use satellites in geostationary orbits around the Earth to capture the sun's energy. The intercepted sunlight will be converted to laser beam energy which can be transmitted to the Earth's surface. Ground systems on the Earth will convert the transmissions from space into electric power. The preliminary design for the SPS consists of one satellite in orbit around the Earth transmitting to one ground station. The SPs technology uses multi-layer solar cell technology arranged on a 20 sq km planar array to intercept sunlight and convert it to an electric voltage. Power conditioning devices then send the electricity to a laser, which transmits the power to the surface of the Earth. A ground station will convert the beam into electricity. Construction will take place in low Earth orbit and array sections, 20 in total, will be sailed on the solar wind out to the GEO location in 150 days. These individual transportation sections are referred to as solar sailing panels (SSAPs). The primary truss elements used to support the arrays are composed on composite tubular members in a pentahedral arrangement. Smart segments consisting of passive and active damping devices will increase the control of dynamic SPS modes.

  15. Satellite Power System (SPS) financial/management scenarios

    Science.gov (United States)

    Vajk, J. P.

    1978-01-01

    The possible benefits of a Satellite Power System (SPS) program, both domestically and internationally, justify detailed and imaginative investigation of the issues involved in financing and managing such a large-scale program. In this study, ten possible methods of financing a SPS program are identified ranging from pure government agency to private corporations. The following were analyzed and evaluated: (1) capital requirements for SPS; (2) ownership and control; (3) management principles; (4) organizational forms for SPS; (5) criteria for evaluation; (6) detailed description and preliminary evaluation of alternatives; (7) phased approaches; and (8) comparative evaluation. Key issues and observations and recommendations for further study are also presented.

  16. A Comparison Of A Solar Power Satellite Concept To A Concentrating Solar Power System

    Science.gov (United States)

    Smitherman, David V.

    2013-01-01

    A comparison is made of a Solar Power Satellite concept in geostationary Earth orbit to a Concentrating Solar Power system on the ground to analyze overall efficiencies of each infrastructure from solar radiance at 1 AU to conversion and transmission of electrical energy into the power grid on the Earth's surface. Each system is sized for a 1-gigawatt output to the power grid and then further analyzed to determine primary collector infrastructure areas. Findings indicate that even though the Solar Power Satellite concept has a higher end-to-end efficiency, that the combined space and ground collector infrastructure is still about the same size as a comparable Concentrating Solar Power system on the ground.

  17. Preliminary environmental assessment for the satellite power system (SPS)

    Energy Technology Data Exchange (ETDEWEB)

    1978-10-01

    A preliminary assessment of the impact of the Satellite Power System (SPS) on the environment is presented. Information that has appeared in documents referenced herein is integrated and assimilated. The state-of-knowledge as perceived from recently completed DOE-sponsored studies is disclosed, and prospective research and study programs that can advance the state-of-knowledge and provide an expanded data base for use in an assessment planned for 1980 are defined. Alternatives for research that may be implemented in order to achieve this advancement are also discussed in order that a plan can be selected which will be consistent with the fiscal and time constraints on the SPS Environmental Assessment Program. Health and ecological effects of microwave radiation, nonmicrowave effects on health and the environment (terrestrial operations and space operations), effects on the atmosphere, and effects on communications systems are examined in detail. (WHK)

  18. A Comparison of a Solar Power Satellite Concept to a Concentrating Solar Power System

    Science.gov (United States)

    Smitherman, David V.

    2013-01-01

    A comparison is made of a solar power satellite (SPS) concept in geostationary Earth orbit to a concentrating solar power (CSP) system on the ground to analyze overall efficiencies of each infrastructure from solar radiance at 1 AU to conversion and transmission of electrical energy into the power grid on the Earth's surface. Each system is sized for a 1-gigawatt output to the power grid and then further analyzed to determine primary collector infrastructure areas. Findings indicate that even though the SPS concept has a higher end-to-end efficiency, the combined space and ground collector infrastructure is still about the same size as a comparable CSP system on the ground.

  19. Solar power satellite system definition study. Volume 7, phase 1: SPS and rectenna systems analyses

    Science.gov (United States)

    1979-01-01

    A systems definition study of the solar power satellite systems is presented. The design and power distribution of the rectenna system is discussed. The communication subsystem and thermal control characteristics are described and a failure analysis performed on the systems is reported.

  20. Satellite power system. Concept development and evaluation program

    Energy Technology Data Exchange (ETDEWEB)

    1978-10-01

    The Reference System description emphasizes technical and operational information required in support of environmental, socioeconomic, and comparative assessment studies. Supporting information has been developed according to a guideline of implementing two 5 GW SPS systems per year for 30 years beginning with an initial operational data of 2000 and with SPS's being added at the rate of two per year (10 GW/year) until 2030. The Reference System concept, which features gallium--aluminum--arsenide (GaAlAs) and silicon solar cell options, is described in detail. The concept utilizes a planar solar array (about 55 km/sup 2/) built on a graphite fiber reinforced thermoplastic structure. The silicon array uses a concentration ratio of one (no concentration), whereas the GaAlAs array uses a concentration ratio of two. A one-kilometer diameter phased array microwave antenna is mounted on one end. The antenna uses klystrons as power amplifiers with slotted waveguides as radiating elements. The satellite is constructed in geosynchronous orbit in a six-month period. The ground receiving stations (rectenna) are completed during the same time period. The other two major components of an SPS program are (1) the construction bases in space and launch and mission control bases on earth and (2) fleets of various transportation vehicles that support the construction and maintenance operations of the satellites. These transportation vehicles include Heavy Lift Launch Vehicles (HLLV), Personnel Launch Vehicles (PLV), Cargo Orbit Transfer Vehicles (COTV), and Personnel Orbit Transfer Vehicles (POTV). The earth launch site chosen is the Kennedy Space Center, pending further study.

  1. Some questions and answers about the Satellite Power System (SPS)

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    The Office of Energy Research, US DOE is evaluating the concept of obtaining significant amounts of electrical energy from space through the Satellite Power System Project Office (SPS PO) formed for that purpose. The SPS PO prepared and is implementing a Concept Development and Evaluation Program plan. The CDEP runs roughly three years (from July 1977 through July 1980) and consists of four primary elements: (1) Systems Definition, (2) Environmental Assessment, (3) Societal Assessment, and (4) Comparative Assessment. One facet of the Societal Assessment is an investigation of public concerns. To further this investigation, a public outreach experiment was initiated to determine the initial response of three selected interest groups to the SPS, both qualitatively and quantititavely, and to gain some experience for use in future public participation activities. Three groups were contacted and agreed to participate in the experiment. They were: the Citizens Energy Project (CEP), the Forum for the Advancement of Students in Science and Technology (FASST), and the L-5 Society (L-5). They each agreed to condense twenty final SPS reports into approximately four pages each, have them typeset, printed and distributed to 3,000 of their constituents for their review, together with a request that they respond to the parent organization regarding the information presented. All responses were summarized and provided to Planning Research Corporation who then solicited the answers from the SPS PO investigator most directly concerned.The questions and answers are presented and will be distributed by the three groups to the individual respondents. Each of the three groups is also preparing a report to the Project Office detailing their work and results. These, together with other responses and studies will be used to more effectively involve the public in the SPS Participatory Technology Process.

  2. Comparative analysis of net energy balance for satellite power systems (SPS) and other energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Cirillo, R.R.; Cho, B.S.; Monarch, M.R.; Levine, E.P.

    1980-04-01

    The net energy balance of seven electric energy systems is assessed: two coal-based, one nuclear, two terrestrial solar, and two solar power satellites, with principal emphasis on the latter two systems. Solar energy systems require much less operating energy per unit of electrical output. However, on the basis of the analysis used here, coal and nuclear systems are two to five times more efficient at extracting useful energy from the primary resource base than are the solar energy systems. The payback period for all systems is less than 1.5 years, except for the terrestrial photovoltaic (19.8 yr) and the solar power satellite system (6.4 yr), both of which rely on energy-intensive silicon cells.

  3. Satellite power system. Concept Development and Evaluation Program, Volume 6: construction and operations

    Energy Technology Data Exchange (ETDEWEB)

    Benson, H.; Jenkins, L.M.

    1981-04-01

    The construction, operation, and maintenance requirements for a solar power satellite, including the space and ground systems, are reviewed. The basic construction guidelines are explained, and construction location options are discussed. The space construction tasks, equipment, and base configurations are discussed together with the operations required to place a solar power satellite in geosynchronous orbit. A rectenna construction technique is explained, and operation with the grid is defined. Maintenance requirements are summarized for the entire system. Key technology issues required for solar power satellite construction operations are defined.

  4. Estimation method of input power spectrum to satellite transponder in SCPC system

    Science.gov (United States)

    Wakana, H.; Isobe, S.; Sasaoka, H.

    The paper presents a method for estimating the input power of individual signals to a satellite transponder from the output power spectrum. This method can be used to monitor the performance of the satellite transponder in single-channel-per-carrier (SCPC) systems. For this purpose, nonlinearity of a traveling wave tube, commonly used in a satellite transponder, is analyzed with newly proposed transfer functions, and a formula which can easily represent the output power spectrum for arbitrary input power and carrier frequency assignment is derived. Using this estimation method, the monitoring station in SCPC systems can readily decide whether the input power of each signal to the satellite transponder is normal or not.

  5. ASPEC: Solar power satellite

    Science.gov (United States)

    1991-01-01

    The solar power satellite (SPS) will provide a clean, reliable source of energy for large-scale consumption. The system will use satellites in geostationary orbits around the Earth to capture the Sun's energy. The intercepted sunlight will be converted to laser beam energy that can be transmitted to the Earth's surface. Ground systems on the Earth will convert the transmissions from space into electric power. The preliminary design for the SPS consists of one satellite in orbit around the Earth transmitting energy to a single ground station. The SPS design uses multilayer solar cell technology arranged on a 20 km squared planar array to intercept sunlight and convert it to an electric voltage. Power conditioning devices then send the electricity to a laser, which transmits the power to the surface of the Earth. A ground station will convert the beam into electricity. Typically, a single SPS will supply 5 GW of power to the ground station. Due to the large mass of the SPS, about 41 million kg, construction in space is needed in order to keep the structural mass low. The orbit configuration for this design is to operate a single satellite in geosynchronous orbit (GEO). The GEO allows the system to be positioned above a single receiving station and remain in sunlight 99 percent of the time. Construction will take place in low Earth orbit (LEO); array sections, 20 in total, will be sailed on solar wind out to the GEO location in 150 days. These individual transportation sections are referred to as solar sailing array panels (SSAP's). The primary truss elements used to support the array are composed of composite tubular members in a pentahedral arrangement. Smart segments consisting of passive and active damping devices will increase the control of dynamic SPS modes.

  6. Satellite Power Systems (SPS): Concept development and evaluation program: Preliminary assessment

    Science.gov (United States)

    1979-01-01

    A preliminary assessment of a potential Satellite Power System (SPS) is provided. The assessment includes discussion of technical and economic feasibility; the effects of microwave power transmission beams on biological, ecological, and electromagnetic systems; the impact of SPS construction, deployment, and operations on the biosphere and on society; and the merits of SPS compared to other future energy alternatives.

  7. Optimization of Power Allocation for Multiusers in Multi-Spot-Beam Satellite Communication Systems

    Directory of Open Access Journals (Sweden)

    Heng Wang

    2014-01-01

    Full Text Available In recent years, multi-spot-beam satellite communication systems have played a key role in global seamless communication. However, satellite power resources are scarce and expensive, due to the limitations of satellite platform. Therefore, this paper proposes optimizing the power allocation of each user in order to improve the power utilization efficiency. Initially the capacity allocated to each user is calculated according to the satellite link budget equations, which can be achieved in the practical satellite communication systems. The problem of power allocation is then formulated as a convex optimization, taking account of a trade-off between the maximization of the total system capacity and the fairness of power allocation amongst the users. Finally, an iterative algorithm based on the duality theory is proposed to obtain the optimal solution to the optimization. Compared with the traditional uniform resource allocation or proportional resource allocation algorithms, the proposed optimal power allocation algorithm improves the fairness of power allocation amongst the users. Moreover, the computational complexity of the proposed algorithm is linear with both the numbers of the spot beams and users. As a result, the proposed power allocation algorithm is easy to be implemented in practice.

  8. Ionizing radiation risks to satellite power systems (SPS) workers

    Energy Technology Data Exchange (ETDEWEB)

    Lyman, J.T.; Ainsworth, E.J.; Alpen, E.L.; Bond, V.; Curtis, S.B.; Fry, R.J.M.; Jackson, K.L.; Nachtwey, S.; Sondhaus, C.; Tobias, C.A.; Fabrikant, J.I.

    1980-11-01

    The radiation risks to the health of workers who will construct and maintain solar power satellites in the space environment were examined. For ionizing radiation, the major concern will be late or delayed health effects, particularly the increased risk of radiation-induced cancer. The estimated lifetime risk for cancer is 0.8 to 5.0 excess deaths per 10,000 workers per rad of exposure. Thus, for example, in 10,000 workers who completed ten missions with an exposure of 40 rem per mission, 320 to 2000 additional deaths in excess of the 1640 deaths from normally occurring cancer, would be expected. These estimates would indicate a 20 to 120% increase in cancer deaths in the worker-population. The wide range in these estimates stems from the choice of the risk-projection model and the dose-response relationsip. The choice between a linear and a linear-quadratic dose-response model may alter the risk estimate by a factor of about two. The method of analysis (e.g., relative vs absolute risk model) can alter the risk estimate by an additional factor of three. Choosing different age and sex distributions can further change the estimate by another factor of up to three. The potential genetic consequences could be of significance, but at the present time, sufficient information on the age and sex distribution of the worker population is lacking for precise estimation of risk. The potential teratogenic consequences resulting from radiation are considered significant. Radiation exposure of a pregnant worker could result in developmental abnormalities.

  9. The solar power satellite

    Energy Technology Data Exchange (ETDEWEB)

    Combes, P.F.

    1982-01-01

    The construction, launch, components, and operations of satellite solar power systems (SSPS) for direct beaming of solar energy converted to electricity to earth stations are outlined. The reference designs of either Si or concentrator GaAs solar cell assemblies large enough to project 5 GW of power are described. The beam will be furnished by klystrons or amplitrons for reception by rectennas on earth. Conforming to the law of amplitude and the equiphase law will permit high efficiencies, pointing accuracy, and low power deposition/sq cm, thus avoiding environmental problems, although some telecommunications systems may suffer interference. The construction of the dipole rectenna grid is sketched, noting that one receiver would be an ellipse sized at 10 x 13 km. Various forms of pollution which could result from the construction of an SSPS are examined.

  10. Optimization and Feasibility Analysis of Satellite Earth Station Power System Using Homer

    Directory of Open Access Journals (Sweden)

    Hassen T. Dorrah

    2012-06-01

    Full Text Available Satellite earth stations which located in remote areas are one of many applications powered by the renewable energy sources. Ground system consists of ground station and control centers working together to support the spacecraft and the data user. Earth station consists of major subsystems, transmitter, receiver, antenna, tracking equipment, terrestrial interface equipment and power supply. Power subsystem is an important part that required for supplying the earth station with electrical power to continue communicating with its remote sensing satellite. This paper deals with simulation and optimal sizing of earth station power system using HOMER software. A combination of two energy sources (solar, and wind to provide a continuous electric power production is used to determine the optimum system operation. Three system configurations are compared with respect to the total net present cost (NPC and levelized cost of energy (COE. Also, economical study will be analyzed for energy demand and sensitivity analysis will be performed.

  11. Deep Charging Evaluation of Satellite Power and Communication System Components

    Science.gov (United States)

    Schneider, T. A.; Vaughn, J. A.; Chu, B.; Wong, F.; Gardiner, G.; Wright, K. H.; Phillips, B.

    2016-01-01

    A set of deep charging tests has been carried out by NASA's Marshall Space Flight Center on subscale flight-like samples developed by Space Systems/Loral, LLC. The samples, which included solar array wire coupons, a photovoltaic cell coupon, and a coaxial microwave transmission cable, were placed in passive and active (powered) circuit configurations and exposed to electron radiation. The energy of the electron radiation was chosen to deeply penetrate insulating (dielectric) materials on each sample. Each circuit configuration was monitored to determine if potentially damaging electrostatic discharge events (arcs) were developed on the coupon as a result of deep charging. The motivation for the test, along with charging levels, experimental setup, sample details, and results will be discussed.

  12. Solar power satellite concepts and potential related space systems

    Science.gov (United States)

    Redding, T. E.

    1977-01-01

    Recent parametric studies of alternate SPS design concepts have shown that the concept appears technically feasible. The parametric studies were based on the use of advanced technology silicon solar cells for solar energy conversion. Solar array blanket unit masses of 0.31 to 0.46 kg/sq m were investigated. Conversion efficiencies of 15 to 17 percent air mass zero (AMO at 247 K) with a concentration ratio of two were considered. The systems were sized for a ground power output of 10 GW. To the level of detail studied, no design or operational problems were encountered that did not appear amenable to solution; however, the economic viability of the SPS concepts studied is obviously dependent upon a combination of technology advancement and/or the costs of competitive sources.

  13. Optimization and Feasibility Analysis of Satellite Earth Station Power System Using Homer

    OpenAIRE

    Hassen T. Dorrah; Ninet M. A. El-Rahman; Faten H. Fahmy; Hanaa T. El-Madany

    2012-01-01

    Satellite earth stations which located in remote areas are one of many applications powered by the renewable energy sources. Ground system consists of ground station and control centers working together to support the spacecraft and the data user. Earth station consists of major subsystems, transmitter, receiver, antenna, tracking equipment, terrestrial interface equipment and power supply. Power subsystem is an important part that required for supplying the earth station with electrical powe...

  14. Reinventing the Solar Power Satellite

    Science.gov (United States)

    Landis, Geoffrey A.

    2004-01-01

    The selling price of electrical power varies with time. The economic viability of space solar power is maximum if the power can be sold at peak power rates, instead of baseline rate. Price and demand of electricity was examined from spot-market data from four example markets: New England, New York City, suburban New York, and California. The data was averaged to show the average price and demand for power as a function of time of day and time of year. Demand varies roughly by a factor of two between the early-morning minimum demand, and the afternoon maximum; both the amount of peak power, and the location of the peak, depends significantly on the location and the weather. The demand curves were compared to the availability curves for solar energy and for tracking and non-tracking satellite solar power systems in order to compare the market value of terrestrial and solar electrical power. In part 2, new designs for a space solar power (SSP) system were analyzed to provide electrical power to Earth for economically competitive rates. The approach was to look at innovative power architectures to more practical approaches to space solar power. A significant barrier is the initial investment required before the first power is returned. Three new concepts for solar power satellites were invented and analyzed: a solar power satellite in the Earth-Sun L2 point, a geosynchronous no-moving parts solar power satellite, and a nontracking geosynchronous solar power satellite with integral phased array. The integral-array satellite had several advantages, including an initial investment cost approximately eight times lower than the conventional design.

  15. Development of Space Qualified Microlens Arrays for Solar Cells Used on Satellite Power Systems

    Directory of Open Access Journals (Sweden)

    Ömer Faruk Keser

    2017-08-01

    Full Text Available The power system, one of the main systems of satellite, provides energy required for the satellite. Solar cells are also the most used energy source in the power system. The third generation multi-junction solar cells are known as the ones with highest performance. One of the methods to increase the performance of the solar cells is anti-reflective surface coatings with the Micro Lens Array-MLA. It's expected that satellite technologies has high power efficiency and low mass. The space environment has many effects like atomic oxygen, radiation and thermal cycles. Researches for increasing the solar cells performance shows that MLA coated solar cell has increased light absorption performance and less cell heating with very low additional mass. However, it is established that few studies on MLA coatings of solar cells are not applicable on space platforms. In this study, the process of development of MLA which is convenient to space power systems is investigated in a methodological way. In this context, a method which is developed based on MLA coatings of multi-junction solar cells for satellite power systems is presented.

  16. Preliminary environmental assessment for the Satellite Power System (SPS). Revision 1. Volume 2. Detailed assessment

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    The Department of Energy (DOE) is considering several options for generating electrical power to meet future energy needs. The satellite power system (SPS), one of these options, would collect solar energy through a system of satellites in space and transfer this energy to earth. A reference system has been described that would convert the energy to microwaves and transmit the microwave energy via directive antennas to large receiving/rectifying antennas (rectennas) located on the earth. At the rectennas, the microwave energy would be converted into electricity. The potential environmental impacts of constructing and operating the satellite power system are being assessed as a part of the Department of Energy's SPS Concept Development and Evaluation Program. This report is Revision I of the Preliminary Environmental Assessment for the Satellite Power System published in October 1978. It refines and extends the 1978 assessment and provides a basis for a 1980 revision that will guide and support DOE recommendations regarding future SPS development. This is Volume 2 of two volumes. It contains the technical detail suitable for peer review and integrates information appearing in documents referenced herein. The key environmental issues associated with the SPS concern human health and safety, ecosystems, climate, and electromagnetic systems interactions. In order to address these issues in an organized manner, five tasks are reported: (I) microwave-radiation health and ecological effects; (II) nonmicrowave health and ecological effectss; (III) atmospheric effects; (IV) effects on communication systems due to ionospheric disturbance; and (V) electromagnetic compatibility. (WHK)

  17. Electrical propulsion units based on TOPAZ-type thermionic nuclear power systems for information satellite systems

    Science.gov (United States)

    Andreev, Pavel V.; Galkin, Anatoly Ya.; Zhabotinsky, Evgeny E.; Serbin, Victor I.; Zaritzky, Gennady A.

    1995-01-01

    In the report the principles of nuclear power and propulsion complex (NPPC) construction are presented. NPPC considered can ensure the time of spacecraft transfer to geostationary orbit (GSO) within 1 year under electric power level no less than 40 kW at prolonged nominal mode on GSO for spacecraft loads feeding. The main power and mass and dimension performances of such NPPC are summarized. Analysis of relationship between spacedraft mass, its mission payload and transfer time also and a number of main NPPC parameters is performed. The conclusion is made about considerable promises of the NPPC for creating future satellite multi-purpose systems by using PROTON- and TITAN-class launch vehicles.

  18. Applications technology satellites battery and power system design

    Science.gov (United States)

    Ford, F. E.; Bemis, B.

    1977-01-01

    A summary of the ATS battery design which is onboard the Applications Technology Satellite (ATS) is provided. The 15 ampere hour nickel cadmium cells were manufactured by Gulton, 19 series connected cells per battery, and there are two batteries in each spacecraft. The operating design life was two years in a synchronous orbit, and a maximum depth of discharge of 50 percent. The design temperature for the batteries in the spacecraft was 0 to 25 C, and the charge control consisted of 1 volt versus temperature on a constant percentage voltage. Also, C/10 current limit, and a commandable trickle charge rate, using C/20 or C/60. The undervoltage was sent across a 9 cell and a 10 cell group, and it was set at one volt average per group on either group.

  19. Health and safety. Preliminary comparative assessment of the satellite power system (SPS) and other energy alternatives

    Energy Technology Data Exchange (ETDEWEB)

    Habegger, L.J.; Gasper, J.R.; Brown, C.D.

    1980-04-01

    Existing data on the health and safety risks of a satellite power system and four electrical generation systems are analyzed: a combined-cycle coal power system with a low-Btu gasifier and open-cycle gas turbine, a fission power system with fuel reprocessing, a central-station, terrestrial, solar-photovoltaic power system, and a first-generation design for a fusion power system. The systems are compared on the basis of expected deaths and person-days lost per year associated with 1000 MW of average electricity generation and the number of health and safety risks that are identified as potentially significant but unquantifiable. The appendices provide more detailed information on risks, uncertainties, additional research needed, and references for the identified impacts of each system.

  20. Summary of the electromagnetic compatibility evaluation of the proposed satellite power system

    Science.gov (United States)

    Morrison, E. L., Jr.; Grant, W. B.; Davis, K. C.

    1980-01-01

    The effects of the proposed solar power satellite (SPS) operations on electronic equipment and systems by fundamental, harmonic, and intermodulation component emissions from the orbital station; and the fundamental, harmonic, and structural intermodulation emissions from the rectenna site were evaluated. The coupling and affects interactions affecting a wide spectrum of electronic equipment are considered. The primary EMC tasking areas are each discussed separately.

  1. Environmental assessment for the satellite power system concept development and evaluation program: atmospheric effects

    Energy Technology Data Exchange (ETDEWEB)

    Rote, D.M.; Brubaker, K.L.; Lee, J.L.

    1980-11-01

    The US Department of Energy (DOE) has undertaken a preliminary, three-year program to investigate the impacts of the construction and operation of a satellite power system, of unprecedented scale. The Department of Energy's program, titled The Concept Development and Evaluation Program, focused its investigations on a Reference System description that calls for the use of either silicon (Si) or gallium aluminum-arsenide (GaAlAs) photovoltaic cells on 60 satellites to be constructed in GEO over a 30-yr period. Rectennas would be constructed on the ground to receive microwave energy from the satellites. Each satellite-rectenna pair is designed to produce 5 GW of power on an essentially continuous basis for use as a baseload power source for an electric power distribution system. The environmental assessment part of the program was divided into five interdependent task areas. The present document constitutes the final technical report on one of the five task areas, the Assessment of the Atmospheric Effects, and as such presents an in-depth summary of work performed during the assessment program. The issues associated with SPS activities in the troposphere are examined. These include tropospheric weather modification related to rectenna operations and rocket launches, and air quality impacts related to rocketlaunch ground clouds. Then progressing upward through the various levels of the atmosphere, the principal middle and upper atmospheric effects associated with rocket effluents are analyzed. Finally, all of the potential SPS atmospheric effects are summarized.

  2. Satellite Power Systems (SPS) space transportation cost analysis and evaluation

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-11-01

    The objective of this study is to provide a clear picture of SPS space transportation costs at the present time with respect to their accuracy as stated, the reasonableness of the methods used, the assumptions made, and the uncertainty associated with the estimates. The approach used consists of examining space transportation costs from several perspectives - to perform a variety of sensitivity analyses or reviews and examine the findings in terms of internal consistency and external comparison with analogous systems. These approaches are summarized as a theoretical and historical review including a review of stated and unstated assumptions used to derive the costs, and a performance or technical review. These reviews cover the overall transportation program as well as the individual vehicles proposed. The review of overall cost assumptions is the principal means used for estimating the cost uncertainty derived. The cost estimates used as the best current estimate are included.

  3. Health and safety: Preliminary comparative assessment of the Satellite Power System (SPS) and other energy alternatives

    Science.gov (United States)

    Habegger, L. J.; Gasper, J. R.; Brown, C.

    1980-01-01

    Data readily available from the literature were used to make an initial comparison of the health and safety risks of a fission power system with fuel reprocessing; a combined-cycle coal power system with a low-Btu gasifier and open-cycle gas turbine; a central-station, terrestrial, solar photovoltaic power system; the satellite power system; and a first-generation fusion system. The assessment approach consists of the identification of health and safety issues in each phase of the energy cycle from raw material extraction through electrical generation, waste disposal, and system deactivation; quantitative or qualitative evaluation of impact severity; and the rating of each issue with regard to known or potential impact level and level of uncertainty.

  4. Optimization of Joint Power and Bandwidth Allocation in Multi-Spot-Beam Satellite Communication Systems

    Directory of Open Access Journals (Sweden)

    Heng Wang

    2014-01-01

    Full Text Available Multi-spot-beam technique has been widely applied in modern satellite communication systems. However, the satellite power and bandwidth resources in a multi-spot-beam satellite communication system are scarce and expensive; it is urgent to utilize the resources efficiently. To this end, dynamically allocating the power and bandwidth is an available way. This paper initially formulates the problem of resource joint allocation as a convex optimization problem, taking into account a compromise between the maximum total system capacity and the fairness among the spot beams. A joint bandwidth and power allocation iterative algorithm based on duality theory is then proposed to obtain the optimal solution of this optimization problem. Compared with the existing separate bandwidth or power optimal allocation algorithms, it is shown that the joint allocation algorithm improves both the total system capacity and the fairness among spot beams. Moreover, it is easy to be implemented in practice, as the computational complexity of the proposed algorithm is linear with the number of spot beams.

  5. Environmental assessment for the satellite power system concept development and evaluation program-electromagnetic systems compatibility

    Energy Technology Data Exchange (ETDEWEB)

    Davis, K A; Grant, W B; Morrison, E L; Juroshek, J R

    1981-01-01

    The EMC analysis addressed only the direct effects of electromagnetic emissions from the SPS on other technological systems. Emissions were defined quite broadly, including not only those from the microwave system, but also thermal blackbody emission and scattered sunlight from the satellite. The analysis is based on the design for an SPS as described in the Reference System Report and some quantitative conclusions, e.g., ranges from rectenna sites at which effects are expected are specific to that design. The methodology and qualitative conclusions, however, apply to an SPS concept using microwave power transmission. Quantitative conclusions have been obtained parametrically and can be adjusted as SPS designs change. The electromagnetic environment that the Reference System would produce, and in which other systems would have to function, is described. As an early part of the EMC Assessment, the problems expected for a hypothetical rectenna site, in the Mojave Desert of southern California, were analyzed in detail. This effort provided an initial quantitative indication of the scope of potential EMC problems and indicated the importance of EMC considerations in rectenna site selection. The results of this analysis are presented. The effects of SPS microwave emissions on important categories of electronic systems and equipment are summarized, with many examples of test results and demonstrated techniques for mitigation of problems encountered. SPS effects on other satellite systems are presented. Astronomical research frequently involves measurement of extremely low levels of electromagnetic radiation and is thus very susceptible to interference. The concerns of both radio astronomy with microwave emissions from SPS and optical astronomy with sunlight scattered from SPS spacecraft are discussed. Summaries of mitigation techniques, cost estimates, and conclusions are presented. (WHK)

  6. Solar Power Satellites

    CERN Document Server

    Flournoy, Don M

    2012-01-01

    Communication satellites are a $144 billion industry. Is there any space-based industry that could possibly beat that market? 'Solar Power Satellites' shows why and how the space satellite industry will soon begin expanding its market from relaying signals to Earth to generating energy in space and delivering it to the ground as electricity. In all industrialized nations, energy demand is growing exponentially. In the developing world, the need for energy is as basic as food and water. The Sun's energy is available everywhere, and it is non-polluting. As business plans demonstrate its technical feasibility, commercial potential, and environmental acceptability, every country on Earth will look to space for the power it needs.

  7. Cost comparison of the satellite power system and six alternative technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wolsko, T.; Samsa, M.

    1981-04-01

    A framework is described for comparing the Satellite Power System (SPS) with various projected alternative energy sources on the basis of technical possibility, economic viability, and social and environmental acceptability. Each of the following energy sources is briefly described: conventional coal, light water reactor, coal gasification/combined cycle, liquid-metal fast-breeder reactor, central station terrestrial photovoltaic, fusion, and the SPS. The analysis consists of comparison of characterizations, side-by-side analysis, and alternative futures analysis. (LEW)

  8. Micro space power system using MEMS fuel cell for nano-satellites

    Science.gov (United States)

    Lee, Jongkwang; Kim, Taegyu

    2014-08-01

    A micro space power system using micro fuel cell was developed for nano-satellites. The power system was fabricated using microelectromechanical system (MEMS) fabrication technologies. Polymer electrolyte membrane (PEM) fuel cell was selected in consideration of space environment. Sodium borohydride (NaBH4) was selected as a hydrogen source while hydrogen peroxide (H2O2) was selected as an oxygen source. The power system consists of a micro fuel cell, micro-reactor, micro-pump, and fuel cartridges. The micro fuel cell was fabricated on a light-weight and corrosion-resistant glass plates. The micro-reactor was used to generate hydrogen from NaBH4 alkaline solution via a catalytic hydrolysis reaction. All components such as micro-pump, fuel cartridges, and auxiliary battery were integrated for a complete power system. The storability of NaBH4 solution was evaluated at -25 °C and the performance of the micro power system was measured at various operating conditions. The power output of micro power system reasonably followed up the given electric load conditions.

  9. Comparative health and safety assessment of the satellite power system and other electrical generation alternatives

    Energy Technology Data Exchange (ETDEWEB)

    1980-12-01

    The work reported here is an analysis of existing data on the health and safety risks of a satellite power system and six electrical generation systems: a combined-cycle coal power system with a low-Btu gasifier and open-cycle gas turbine; a light water fission power system without fuel reprocessing; a liquid-metal, fast-breeder fission reactor; a centralized and decentralized, terrestrial, solar-photovoltaic power system; and a first-generation design for a fusion power system. The systems are compared on the basis of expected deaths and person-days lost per year associated with 1000 MW of average electricity generation. Risks are estimated and uncertainties indicated for all phases of the energy production cycle, including fuel and raw material extraction and processing, direct and indirect component manufacture, on-site construction, and system operation and maintenance. Also discussed is the potential significance of related major health and safety issues that remain largely unquantifiable. The appendices provide more detailed information on risks, uncertainties, additional research needed, and references for the identified impacts of each system.

  10. Comparative assessment of environmental welfare issues associated with the satellite power system (SPS) and alternative technologies

    Energy Technology Data Exchange (ETDEWEB)

    Levine, E.P.; Senew, M.J.; Cirillo, R.R.

    1980-04-01

    Environmental deterioration can affect an individual's health, safety, and welfare (examples of welfare effects include reduced crop yield, loss of property, and interference with other activities). This study identifies sources of environmental deterioration and associated welfare effects from two mature electric power generation systems (combustion of coal and light water nuclear reactors) and compares these with those expected from a conceptual satellite power system. Each activity within the energy pathway for each power system is examined to determine the potential welfare effects it imposes on a community. The severities of these effects are compared. On the basis of this comparison and the state of knowledge concerning specific environmental impacts and welfare effects, key environmental issues are identified for subsequent, in-depth analyses.

  11. Solar Power Satellite system in formation on a common geostationary orbit

    Science.gov (United States)

    Salazar, F. J. T.; Winter, O. C.

    2017-10-01

    The diurnal day-night cycle severely limits the Terrestrial solar power. To overcome this limitation, a Solar Power Satellite (SPS) system, consisting of a sunlight reflector and a microwave energy generator-transmitter in formation, is presented in this work. The microwave transmitting satellite (MTS) is placed on a common geostationary orbit (GEO) in the Earth’s equatorial plane, and the sunlight reflector uses the solar radiation pressure to achieve quasi-periodic orbits about the MTS, so that the sunlight is always redirected to the MTS, which converts the solar energy in electromagnetic power and transmits it by microwaves to an Earth-receiving antenna. Assuming the sun line direction constant at dierent seasons (i.e. autumn/spring equinoxes and winter and summer solstices), previous studies have shown the existence of a family of displaced ecliptic orbits above or below the equatorial plane of the Earth around a GEO. In this study, the position of the Sun is assumed on the ecliptic plane with a mean obliquity (inclination of Earth’s equator with respect to the ecliptic) of 23.5◦. A linear solution as an initial condition for the full equations of motions about a GEO, which yields bounded orbit for the sunlight reflector about the MTS in the Earth-satellite two-body problem with solar radiation pressure. To redirect the sunlight to the MTS, the law of reflection is satisfied by the space mirror attitude.

  12. Satellite Power System (SPS) mapping of exclusion areas for rectenna sites

    Science.gov (United States)

    Blackburn, J. B., Jr.; Bavinger, B. A.

    1978-01-01

    The areas of the United States that were not available as potential sites for receiving antennas that are an integral part of the Satellite Power System concept are presented. Thirty-six variables with the potential to exclude the rectenna were mapped and coded in a computer. Some of these variables exclude a rectenna from locating within the area of its spatial influence, and other variables potentially exclude the rectenna. These maps of variables were assembled from existing data and were mapped on a grid system.

  13. Social acceptability of Satellite Power Systems (SPS): the near-term outlook

    Energy Technology Data Exchange (ETDEWEB)

    Klineberg, S L

    1980-05-01

    It is important, at this early stage in the concept development and evaluation of Satellite Power Systems, to explore aspects of contemporary social change that may be expected to complicate the process of achieving the necessary support of the American public for this new technological venture. Current public attitudes make it appear unlikely that a consensus will evolve during the 1980s favoring costly efforts to develop vast new supplies of conventional energy. Opinion polls reveal a pervasive worry over inflation, a broadening of aspirations to encompass quality-of-life concerns, a growing distrust of central governments, large corporations, big science and technology, and a continuing commitment to environmental protection - all of which suggests a social environment that is likely to resist the development of a major new high-technology energy system such as the SPS. Opposition to satellite power will focus on the high front-end development costs, on environmental and technical uncertainties, and on a generalized distrust of large bureaucracies and esoteric technologies. The SPS concept is also likely to be viewed with skepticism by those with vested interests in the long-run uses of coal, shale, fission, fusion, or on-site solar technologies. The growing commitment to energy conservation and the spreading deployment of dispersed renewable-energy systems strongly suggest that the unmet US demand for centrally generated electricity is unlikely to grow sufficiently over the next twenty years to convince a reluctant public of the need for so large an investment of scarce resources in the SPS program. Satellite Power Systems will have a problem in the area of public acceptability.

  14. Selection of alternative central-station technologies for the Satellite Power System (SPS) comparative assessment

    Science.gov (United States)

    Samsa, M.

    1980-01-01

    An important effort is the Satellite Power System (SPS) comparative Assessment is the selection and characterization of alternative technologies to be compared with the SPS concept. The ground rules, criteria, and screening procedure applied in the selection of those alternative technologies are summarized. The final set of central station alternatives selected for comparison with the SPS concept includes: (1) light water reactor with improved fuel utilization, (2) conventional coal combustion with improved environmental controls, (3) open cycle gas turbine with integral low Btu gasifier, (4) terrestrial photovoltaic, (5) liquid metal fast breeder reactor, and (6) magnetic confinement fusion.

  15. Ionizing radiation risks to Satellite Power Systems (SPS) workers in space

    Energy Technology Data Exchange (ETDEWEB)

    1980-12-01

    A reference Satellite Power System (SPS) has been designed by NASA and its contractors for the purposes of evaluating the concept and carrying out assessments of the various consequences of development, including those on the health of the space workers. The Department of Energy has responsibility for directing various assessments. Present planning calls for the SPS workers to move from Earth to a low earth orbit (LEO) at an altitude of 500 kilometers; to travel by a transfer ellipse (TE) trajectory to a geosynchronous orbit (GEO) at an altitude of 36,000 kilometers; and to remain in GEO orbit for about 90 percent of the total time aloft. The radiation risks to the health of workers who will construct and maintain solar power satellites in the space environment are studied. The charge to the committee was: (a) to evaluate the radiation environment estimated for the Reference System which could represent a hazard; (b) to assess the possible somatic and genetic radiation hazards; and (c) to estimate the risks to the health of SPS workers due to space radiation exposure, and to make recommendations based on these conclusions. Details are presented. (WHK)

  16. Effects of construction and operation of a satellite power system upon the magnetosphere

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, Y.T.; Luhmann, J.G.; Schulz, M.; Cornwall, J.M.

    1979-12-01

    This is the final report of an initial assessment of magnetospheric effects of the construction and operation of a satellite power system. This assessment effort is based on application of present scientific knowledge rather than on original scientific research. As such, it appears that mass and energy injections of the system are sufficient to modify the magnetosphere substantially, to the extent of possibly requiring mitigation measures for space systems but not to the extent of causing major redirection of efforts and concepts. The scale of the SPS is so unprecedentedly large, however, that these impressions require verification (or rejection) by in-depth assessment based on scientific treatment of the principal issues. Indeed, it is perhaps appropriate to state that present ignorance far exceeds present knowledge in regard to SPS magnetospheric effects, even though we only seek to define the approximate limits of magnetospheric modifications here.

  17. Cost optimization of the dimensions of the antennas of a solar power satellite system

    Energy Technology Data Exchange (ETDEWEB)

    Vasilev, A.V.; Klassen, V.I.; Laskin, N.N.; Tobolev, A.K.

    1983-05-01

    The problem of the cost optimization of the dimensions of the antennas of a solar power satellite system is formulated. The optimization problem is twofold: (1) for a given power delivered to the microwave transmitting antenna (TA), to determine the dimensions Lt (the characteristic dimension of the TA) and Lr (the characteristic dimension of the rectenna) which minimize the unit-power cost function for a given amplitude-phase distribution in the aperture of the TA, and (2) for a power delivered to the TA which is proportional to the aperture area, to determine the dimensions Lt and Lr which minimize the unit-power cost function for a given amplitude-phase distribution in the aperture of the TA. Two possible variants of the solution of this problem are considered: (1) the case of a linear antenna (the two-dimensional problem), and (2) the case of square apertures (the three-dimensional problem). A specific example of optimization is considered, where the cost of the TA is $1000/sq m and the cost of the rectenna is $12/sq m. 11 references.

  18. Satellite power system concept development and evaluation program system definition technical assessment report

    Energy Technology Data Exchange (ETDEWEB)

    1980-12-01

    The results of the system definition studies conducted by NASA as a part of the Department of Energy/National Aeronautics and Space Administration SPS Concept Development and Evaluation Program are summarized. The purpose of the system definition efforts was to identify and define candidate SPS concepts and to evaluate the concepts in terms of technical and cost factors. Although the system definition efforts consisted primarily of evaluation and assessment of alternative technical approaches, a reference system was also defined to facilitate economic, environmental, and societal assessments by the Department of Energy. This reference system was designed to deliver 5 GW of electrical power to the utility grid. Topics covered include system definition; energy conversion and power management; power transmission and reception; structures, controls, and materials; construction and operations; and space transportation.

  19. Preliminary assessment of the Satellite Power System (SPS) and six other energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wolsko, T.; Brown, C.; Cirillo, R.

    1980-04-01

    The comparative assessment portion of the Satellite Power System (SPS) Concept Development and Evaluation program established by the Department of Energy and the National Aeronautics and Space Administration to generate information from which a rational decision could be made regarding the viability of the SPS is presented. The objective of the comparative assessment is to develop an initial understanding of the SPS with respect to a limited set of energy alternatives. Six alternative technologies (conventional coal combustion; light water reactor; coal gasification/combined cycle; liquid-metal, fast-breeder reactor; terrestrial photovoltaic; and fusion) were compared to the SPS on the basis of available data on cost and performance, health and safety, environmental welfare, resource requirements, and economics. These comparisons are descriptive and do not culminate in any bottom line regarding the overall viability of the SPS.

  20. Environmental assessment for the satellite power system-concept development and evaluation program-microwave health and ecological effects

    Science.gov (United States)

    1980-01-01

    Potential health and ecological effects of the microwave beam from the microwave power transmission system (MPTS) of the satellite power system (SPS) are discussed. A detailed critical review of selected scientific articles from the published literature on the biological effects of nonionizing electromagnetic radiation is provided followed by an assessment of the possible effects of the SPS, based on exposure values for the reference system.

  1. Environmental assessment for the satellite power system-concept development and evaluation program-microwave health and ecological effects

    Energy Technology Data Exchange (ETDEWEB)

    1980-11-01

    This report is concerned with the potential health and ecological effects of the microwave beam from the microwave power transmission system (MPTS) of the satellite power system (SPS). The report is written in the form of a detailed critical review of selected scientific articles from the published literature on the biological effects of nonionizing electromagnetic radiation, followed by an assessment of the possible effects of the SPS, based on exposure values for the reference system (US DOE and NASA, 1978).

  2. Survey and documentation of emerging technologies for the satellite power system (SPS)

    Energy Technology Data Exchange (ETDEWEB)

    Glaser, P.; Chapman, P.

    1981-04-01

    The purpose of this study is to survey emerging technologies and new concepts which may offer advantages over those selected for the SPS Reference System. A brief historical overview of the genesis of the Solar Power Satellite (SPS) concept is presented leading to a discussion of the assumptions and guidelines which were originally established and which led to development of the SPS Reference System design concept. Some of these guidelines are applicable to almost any SPS design, but others could be changed, leading to new and perhaps preferable systems. Moreover, while some of the guidelines are based on solid data, some are little more than arbitrary assumptions which were adopted only to proceed with a concrete point design which then could be assessed in the DOE/NASA Concept Development and Evaluation Program. In order to stimulate new SPS concepts and to facilitate comparative assessment of emerging SPS technologies, one useful approach is to break the overall system into functional parts. The system functions which must be performed by any SPS concept and the interrelations between them are discussed and a systematic framework is presented for assessment of the wide variety of system concepts and subsystem technologies which have been proposed. About 80 alternative SPS technologies are reviewed.

  3. Environmental assessment for the Satellite Power System: concept development and evaluation program - effects of ionospheric heating on telecommunications

    Energy Technology Data Exchange (ETDEWEB)

    1980-08-01

    The microwave power beam that is associated with the operation of the Satellite Power System (SPS) will provide a continuous source of power density into the earth's ionosphere. As currently conceptualized, the power density at the center of the beam would be 23 mW/cm/sup 2/. This power density may be of sufficient magnitude to give rise to changes in the structure of the ionosphere and to increases in the electron temperature in the ionosphere. The work described in this report was undertaken to assess the degree to which the ionosphere and ionospheric-dependent telecommunication systems would be impacted by the passage of the Satellite Power System microwave power beam. The program of study utilized resources from Government, industry, and universities in order to conduct theoretical and experimental investigations that relate to the operational scenario surrounding the Satellite Power System concept. The results of the numerous investigations that were undertaken are summarized in this document and areas in which further study is required are pointed out.

  4. Magnetospheric effects of ion and atom injections by the satellite power system

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, Y.T.; Luhmann, J.G.; Schulz, M.; Cornwall, J.M.

    1980-07-01

    This is the final report of a two-year assessment of magnetospheric effects of the construction and operation of a satellite power system. This assessment effort is based on application of present scientific knowledge rather than on original scientific research. As such, it appears that mass and energy injections of the system are sufficient to modify the magnetosphere substantially, to the extent of possibly requiring mitigation measures for space systems but not to the extent of causing major redirection of efforts and concepts. The scale of the SPS is so unprecedentedly large, however, that these impressions require verification (or rejection) by in-depth assessment based on original scientific treatment of the principal issues. Indeed, it is perhaps appropriate to state that present ignorance far exceeds present knowledge in regard to SPS magnetospheric effects, even though we only seek to define the approximate limits of magnetospheric modifications here. Modifications of the space radiation environment, of the atmospheric airglow background, of the auroral response to solar activity and of the fluctuations in space plasma density are identified to be the principal impacts.

  5. Workshop on Satellite Power Systems (SPS) effects on optical and radio astronomy

    Energy Technology Data Exchange (ETDEWEB)

    Stokes, G.M.; Ekstrom, P.A. (eds.)

    1980-04-01

    The impacts of the SPS on astronomy were concluded to be: increased sky brightness, reducing the effective aperture of terrestrial telescopes; microwave leakage radiation causing erroneous radioastronomical signals; direct overload of radioastronomical receivers at centimeter wavelengths; and unintentional radio emissions associated with massive amounts of microwave power or with the presence of large, warm structures in orbit causing the satellites to appear as individual stationary radio sources; finally, the fixed location of the geostationary satellite orbits would result in fixed regions of the sky being unusable for observations. (GHT)

  6. Integrated Orbit, Attitude, and Structural Control Systems Design for Space Solar Power Satellites

    Science.gov (United States)

    Wie, Bong; Roithmayr, Carlos M.

    2001-01-01

    The major objective of this study is to develop an integrated orbit, attitude, and structural control systems architecture for very large Space Solar Power Satellites (SSPS) in geosynchronous orbit. This study focuses on the 1.2-GW Abacus SSPS concept characterized by a 3.2 x 3.2 km solar-array platform, a 500-m diameter microwave beam transmitting antenna, and a 500 x 700 m earth-tracking reflector. For this baseline Abacus SSPS configuration, we derive and analyze a complete set of mathematical models, including external disturbances such as solar radiation pressure, microwave radiation, gravity-gradient torque, and other orbit perturbation effects. The proposed control systems architecture utilizes a minimum of 500 1-N electric thrusters to counter, simultaneously, the cyclic pitch gravity-gradient torque, the secular roll torque caused by an offset of the center-of-mass and center-of-pressure, the cyclic roll/yaw microwave radiation torque, and the solar radiation pressure force whose average value is about 60 N.

  7. Integrated Orbit, Attitude, and Structural Control System Design for Space Solar Power Satellites

    Science.gov (United States)

    Woods-Vedeler, Jessica (Technical Monitor); Moore, Chris (Technical Monitor); Wie, Bong; Roithmayr, Carlos

    2001-01-01

    The major objective of this study is to develop an integrated orbit, attitude, and structural control system architecture for very large Space Solar Power Satellites (SSPS) in geosynchronous orbit. This study focuses on the 1.2-GW Abacus SSPS concept characterized by a 3.2 x 3.2 km solar-array platform, a 500-m diameter microwave beam transmitting antenna, and a 500 700 m earth-tracking reflector. For this baseline Abacus SSPS configuration, we derive and analyze a complete set of mathematical models, including external disturbances such as solar radiation pressure, microwave radiation, gravity-gradient torque, and other orbit perturbation effects. The proposed control system architecture utilizes a minimum of 500 1-N electric thrusters to counter, simultaneously, the cyclic pitch gravity-gradient torque, the secular roll torque caused by an o.set of the center-of-mass and center-of-pressure, the cyclic roll/yaw microwave radiation torque, and the solar radiation pressure force whose average value is about 60 N.

  8. Assessment of economic factors affecting the satellite power system. Volume 2: The systems implications of rectenna siting issues

    Science.gov (United States)

    Chapman, P. K.; Bugos, B. J.; Csigi, K. I.; Glaser, P. E.; Schimke, G. R.; Thomas, R. G.

    1979-01-01

    The feasibility was evaluated of finding potential sites for Solar Power Satellite (SPS) receiving antennas (rectennas) in the continental United States, in sufficient numbers to permit the SPS to make a major contribution to U.S. generating facilities, and to give statistical validity to an assessment of the characteristics of such sites and their implications for the design of the SPS system. It is found that the cost-optimum power output of the SPS does not depend on the particular value assigned to the cost per unit area of a rectenna and its site, as long as it is independent of rectenna area. Many characteristics of the sites chosen affect the optimum design of the rectenna itself.

  9. Operations research investigations of satellite power stations

    Science.gov (United States)

    Cole, J. W.; Ballard, J. L.

    1976-01-01

    A systems model reflecting the design concepts of Satellite Power Stations (SPS) was developed. The model is of sufficient scope to include the interrelationships of the following major design parameters: the transportation to and between orbits; assembly of the SPS; and maintenance of the SPS. The systems model is composed of a set of equations that are nonlinear with respect to the system parameters and decision variables. The model determines a figure of merit from which alternative concepts concerning transportation, assembly, and maintenance of satellite power stations are studied. A hybrid optimization model was developed to optimize the system's decision variables. The optimization model consists of a random search procedure and the optimal-steepest descent method. A FORTRAN computer program was developed to enable the user to optimize nonlinear functions using the model. Specifically, the computer program was used to optimize Satellite Power Station system components.

  10. Space satellite power system. [conversion of solar energy by photovoltaic solar cell arrays

    Science.gov (United States)

    Glaser, P. E.

    1974-01-01

    The concept of a satellite solar power station was studied. It is shown that it offers the potential to meet a significant portion of future energy needs, is pollution free, and is sparing of irreplaceable earth resources. Solar energy is converted by photovoltaic solar cell arrays to dc energy which in turn is converted into microwave energy in a large active phased array. The microwave energy is beamed to earth with little attenuation and is converted back to dc energy on the earth. Economic factors are considered.

  11. Program assessment report, statement of findings. Satellite power systems concept development and evaluation program

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-11-01

    What is known, uncertain, and unknown about the Solar Power Satellite (SPS) concept is stated. The important technical, environmental, and cost goal questions that must be answered prior to making a commitment to the SPS concept are discussed. Although significant technological, environmental and economic questions remain to be answered, the preliminary investigations undertaken in the CDEP do provide a basis for a policy decision on further commitment. Also, areas of research and experimentation required to acquire the knowledge by which a series of informed, time-phased decisions may be made concerning the possibility of the SPS concept playing a major role in the United States' energy future are suggested.

  12. Power system design and in orbit performance of Algeria's first micro satellite Alsat-1

    Energy Technology Data Exchange (ETDEWEB)

    Bekhti, Mohammed [Centre National des Techniques Spatiales, BP13, Arzew 31200 (Algeria); Sweeting, M.N. [Centre for Satellite Engineering Research, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom)

    2008-07-15

    On the 28th November 2002, Algeria's first enhanced micro satellite was launched into a 686 km low earth orbit onboard a Cosmos 3M rocket from Plesetsk. The spacecraft was designed, manufactured and launched as a technology transfer programme between the National Centre of Space Techniques (CNTS) Algeria and Surrey Satellite Technology Limited (SSTL) United Kingdom in the timescale of 18 months. This paper will describe the design and in orbit performance of the mission power system, stressing the decisions taken in order to meet the mission requirements within the 18 months, concept to launch programme. Most of the design and construction techniques used in the production of the Alsat-1 power system were based on SSTL heritage over the years. It will be shown how off the shelf components either for the generation or storage of the onboard energy can be applied successfully to such missions. (author)

  13. Satellite Power Systems (SPS) laser studies. Volume 1: Laser environmental impact study

    Science.gov (United States)

    Beverly, R. E., III

    1980-01-01

    The environmental impact of space to Earth power transmission using space borne laser subsystems is emphasized. A laser system is defined, estimates of relevant efficiencies for laser power generation and atmospheric transmission are developed, and a comparison is made to a microwave system. Ancillary issues, such as laser beam spreading, safety and security, mass and volume estimates and technology growth are considered.

  14. Wireless power transmission: The key to solar power satellites

    Energy Technology Data Exchange (ETDEWEB)

    Nansen, R.H. [Solar Space Industries, Ocean Shores, WA (United States)

    1995-12-31

    In the years following the OPEC oil embargo of 1973--74, the US aggressively researched alternative energy options. Among those studied was the concept of Solar Power Satellites -- generating electricity in space from solar energy on giant satellites and sending the energy to the earth with wireless power transmission. Much has happened in the fifteen years since the studies were terminated. Maturing of the enabling technologies has provided much of the infrastructure to support the development of a commercial Solar Power Satellite program. All of this will reduce the cost by one to two orders of magnitude so development can now be undertaken by industry instead of relying on a massive government program. Solar Space Industries was formed to accomplish this goal. The basis of their development plan for Solar Power Satellites is to build a Ground Test Installation that will duplicate, in small scale on the earth, all aspects of the power generating and power transmission systems for the Solar Power Satellite concept except for the space environment and the range and size of the energy beam. Space operations issues will be separated from the power generation function and verified by testing using the NASA Space Station and Space Shuttle. Solar Space Industries` concept is to built a Ground Test Installation that couples an existing 100 kW terrestrial solar cell array, furnished by an interested utility, to a phased-array wireless power transmitter based on the subarray developed by William Brown and The Center for Space Power. Power will be transmitted over a 1 1/4 mile range to a receiving antenna (rectenna) and then fed into a commercial utility power grid. The objective is to demonstrate the complete function of the Solar Power Satellites, with the primary issue being the validation of practical wireless power transmission. The key features to demonstrate are; beam control, stability, steering, efficiency, reliability, cost, and safety.

  15. Environmental assessment for the satellite power system concept development and evaluation program: nonmicrowave health and ecological effects

    Energy Technology Data Exchange (ETDEWEB)

    White, M R

    1980-11-01

    A Concept Development and Evaluation Program is being carried out for a proposed Satellite Power System (SPS). For purposes of this evaluation, a preliminary reference system has been developed. SPS, as described in the reference system, would collect solar energy on satellites in geosychronous orbit in space. The energy would be converted to microwaves and beamed to an earth-receiving antenna (rectenna). One task in the environmental part of the program is the assessment of the nonmicrowave effects on health and the environment. These effects would result from all phases of SPS development and operation. This report covers the current knowledge regarding these effects, and is based on the reference system. The assessment is summarized as to scope, methodology, impacts of terrestrial development, launch and recovery of spacecraft, space activities (including health effects of the space environment, ionizing radiation, electromagnetic exposure, spacecraft charging and environmental interactions, occupational hazards, etc.) and construction and operation of rectenna (ground receiving station).

  16. A comparison of a conventional launch system vs. externally supplied vehicles for installation and maintenance of solar power satellites

    Science.gov (United States)

    Loetzerich, Klaus

    The paper analyzes two principal approaches for the transportation system to support the operational phase of a solar power satellite (SPS) scenario that foresees the continued installation of two 10 GW stations per year equivalent to 150,000 Mg payload per year. One concept consists of conventional single stage to orbit (SSTO) vehicles, the structure of which is left in orbit and used as part of the structure of an SPS. As an alternative concept an externally supplied vehicle is being considered, the required power being supplied by a laser from the ground. A comparison of these two approaches showed, that the conventional launch system is preferable, because it is technically feasible, simpler to development, and no significant inpact to atmosphere is foreseen.

  17. Laser power beaming for satellite applications

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, H.W.

    1993-09-22

    A serious consideration of laser power beaming for satellite applications appears to have grown out of a NASA mission analysis for transmitting power to lunar bases during the two week dark period. System analyses showed that laser power beaming to the moon in conjunction with efficient, large area solar cell collection panels, were an attractive alternative to other schemes such as battery storage and nuclear generators, largely because of the high space transportation costs. The primary difficulty with this scheme is the need for very high average power visible lasers. One system study indicated that lasers in excess of 10 MW at a wavelength of approximately 850 nm were required. Although such lasers systems have received much attention for military applications, their realization is still a long term goal.

  18. Prediction of corridor effect from the launching of the satellite power system. [air pollutant concentration into narrow band of latitude

    Science.gov (United States)

    Borucki, W. J.; Whitten, R. C.; Woodward, H. T.; Capone, L. A.; Riegel, C. A.

    1982-01-01

    A diagnostic model is developed to define the parameters which control the corridor effect of contaminants deposited in a narrow latitudinal band of the earth's atmosphere by numerous launches of the STS and heavy lift launch vehicles for construction of satellite solar power systems. Identified factors included the pollution injection rate, the ambient background levels of the pollutant species, and the transport properties related to the dilution rate of the chemicals. If the chemical life of the pollutant was shorter or the same length of time as the transport time, alterations in the chemical production and loss rates were found to be parameters necessarily added to the model. A comparison with NASA Ames Research Center two-dimensional model results indicate that the corridor effect was possile with operations above 60 km in the case of H2O, H2, and NO production.

  19. Study of power-to-weight ratio of the electrothermal propulsion system of nanosatellite maneuvering satellite platform

    Science.gov (United States)

    Blinov, V. N.; Vavilov, I. S.; Kositsin, V. V.; Lukyanchik, A. I.; Ruban, V. I.; Shalay, V. V.

    2018-01-01

    The direction of the solution of the actual task of maneuvering satellite platforms (MSP) design for nanosatellite weighing up to 10 kg, power-to-weight ratio of PS up to 8 W (electrothermal micro engine (ETME) 5 W, vaporizer 2 W, electrovalve up to 1 W) and with characteristic velocity up to 60 m/s were considered on the basis of studies of the propulsion system(PS) with ETME. The aim of study is the confirmation of technical possibility of nanosatellites design with mass up to 10 kg, power-to-weight ratio up to 8 W and with characteristic velocity up to 60 m/s on the basis of PS prototype experimental studies. In the course of the research tasks were solved to determine the design of PS and ETME of nanosatellit’s MSP, determine the electric parameters of PS depending on power consumption that determining specific impulse of ETME, and estimate the implemented characteristic velocity of the nanosatellite. The PS constructive scheme of nanosatellite mass of 10 kg was design, PS experimental prototype was produced and PS experimental research on ammonia were conducted. The 200°C was reached per 900 s at 5 W ETME power consumption with nitrogen, that equivalent to specific impulse of ammonia ETME 124/136 s when entering the stationary mode. 2 W energy consumption of a two-thread liquid ammonia vaporizer is experimentally substantiated. The using of electrovelve stepped control cyclogram allowed to reduce the average power consumption to 1 W.

  20. A study of some economic factors relating to the development and implementation of a satellite power system

    Science.gov (United States)

    1978-01-01

    Areas are examined relating to the design, development and implementation of a satellite power system (SPS): an analysis of the effect of energy R&D programs in general and SPS in particular on optimal fossil fuel consumption patterns, a study of alternative uses of SPS technologies, and a study of the electric power market penetration potential for SPS. It is shown that a credible program of R&D on long-range energy alternatives leads to lower optimal prices for fossil fuels, resulting in large short-term benefits accruing to the specific program elements. Several alternative uses of SPS technologies were identified; however the markets for these technologies are generally quite diffuse and difficult to assess. The notable exception is solar array technology which has, potentially, a very large non-SPS market. It is shown that the market for SPS units derives from two components of demand: the demand created by growth in the electrical energy demand which leads to an increased demand for baseload generating capacity, and a demand created by the need to replace retiring capacity.

  1. GNSS satellite transmit power and its impact on orbit determination

    Science.gov (United States)

    Steigenberger, Peter; Thoelert, Steffen; Montenbruck, Oliver

    2017-11-01

    Antenna thrust is a small acceleration acting on Global Navigation Satellite System satellites caused by the transmission of radio navigation signals. Knowledge about the transmit power and the mass of the satellites is required for the computation of this effect. The actual transmit power can be obtained from measurements with a high-gain antenna and knowledge about the properties of the transmit and receive antennas as well as losses along the propagation path. Transmit power measurements for different types of GPS, GLONASS, Galileo, and BeiDou-2 satellites were taken with a 30-m dish antenna of the German Aerospace Center (DLR) located at its ground station in Weilheim. For GPS, total L-band transmit power levels of 50-240 W were obtained, 20-135 W for GLONASS, 95-265 W for Galileo, and 130-185 W for BeiDou-2. The transmit power differs usually only slightly for individual spacecraft within one satellite block. An exception are the GLONASS-M satellites where six subgroups with different transmit power levels could be identified. Considering the antenna thrust in precise orbit determination of GNSS satellites decreases the orbital radius by 1-27 mm depending on the transmit power, the satellite mass, and the orbital period.

  2. Compilation and assessment of microwave bioeffects. Final report. A selective review of the literature on biological effects of microwaves in relation to the satellite power system

    Energy Technology Data Exchange (ETDEWEB)

    Justesen, D. R.; Ragan, H. A.; Rogers, L. E.; Guy, A. W.; Hjeresen, D. L.; Hinds, W. T.

    1978-05-01

    Potential biological and ecological problems are the focus of a review of the world's scientific literature on biological effects of microwave radiation. The emphasis is on recently reported data and on the 2450-MHz continuous-wave (CW) radiation that is envisioned for a Satellite Power System (SPS).

  3. Topaz II Nuclear Powered SAR Satellite

    OpenAIRE

    Feuerstein, M.; Agrawal, B.N.

    1994-01-01

    The article of record as published may be found at http://dx.doi.org/10.2514/6.1994-4688 The AA4871 Spacecraft Design course is the capstone class for the M.S. in Astronautics at the Naval Postgraduate School. Thc design team integrated a Topaz If nuclear power system with an EOS Synthetic Aperture Radar to design a low Earth orbit, three axis stabilized satellite flying in a gravity gradient stable orientation. The SAR is a high resolution, electronically stecrable, Earth scie...

  4. Proceedings of the workshop on the modification of the upper atmosphere by Satellite Power System (SPS) propulsion effluents

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, E.

    1980-06-01

    Results of a workshop held in June 1979, to identify research needs for evaluating environmental impacts on the upper atmosphere (here defined as greater than 70 km) due to Satellite Power System (SPS) transport, i.e., propulsion and reentry are presented. The substantial injections of water and hydrogen therefrom may lead to global-scale regions of reduced ionization in the ionospheric F-Region that may have a serious impact on worldwide HF radio communications; and the resulting possibly significant increases in mesospheric humidity and probable cloudiness could afffect climate and remote sensing from satellites. The large injections of argon ions of kilovolt energy between low earth orbit and geostationary orbit may alter substantially the trapped radiation environment of the magnetosphere and thus the hazard for personnel and electronic equipment. During the workshop it became clear that the highest priority for SPS environmental assessment goes to theoretical studies needed before acceptable atmospheric experiments can be designed. Problems to be addressed include: the extent, magnitude, and variability of the predicted depletion in F-region ionization together with descriptions of water and hydrogen injections into the atmosphere characteristic of SPS vehicles and flight profiles; the long-term variations in mesospheric humidity and cloudiness with and without SPS operations; and the description of condensation and evaporation processes of water exhausted from high-altitude rockets in order to predict mesospheric contrail formation and dissipation. Furthermore, in considering argon ion rocket transport to geosynchronous orbit, the stopping and lifetime of the argon ion beams and consequent changes in the radiation belts, especially as they affect spacecraft, should also be addressed.

  5. Bibliography for the Satellite Power System (SPS) Concept Development and Evaluation Program

    Energy Technology Data Exchange (ETDEWEB)

    Abromavage, M.; Calzadilla, R.; Murray, M.

    1981-04-01

    This bibliography encompasses systems definition and engineering aspects; environmental assessment of microwave health and ecology, risks to space workers and atmospheric effects; a societal assessment covering resource requirements (land and materials) international and institutional issues; and a comparative assessment of the SPS Reference System relative to other advanced energy technologies, such as fusion. (MHR)

  6. Preliminary environmental assessment for the satellite power system (SPS). Volume 1. Executive summary

    Energy Technology Data Exchange (ETDEWEB)

    1978-10-01

    A summary of the preliminary assessment of the environmental impacts of a SPS is given. Microwave health and ecological effects, other effects on health and the environment, effects on the atmosphere, and effects on communications systems are summarized. (WHK)

  7. Environmental assessment for the Satellite Power System (SPS) Concept Development and Evaluation Program (CDEP). [Microwave and non-microwave health and ecological assessment

    Energy Technology Data Exchange (ETDEWEB)

    Valentino, A.R.

    1980-08-01

    In the satellite power system (SPS), satellites in geosynchronous earth orbit would collect solar energy in space, convert it to microwaves, and transmit the microwaves to receiving antennas (rectennas) on earth. At the rectennas, the microwave energy would be converted to electricity. This SPS environmental assessment considers the microwave and nonmicrowave effects on the terrestrial environment and human health, atmospheric effects, and effects on electromagnetic systems. No environmental problem has been identified that would preclude the continued study of SPS technology. To increase the certainty of the assessment, some research has been initiated and long-term research is being planned.

  8. Satellite power system (SPS). Rectenna siting: availability and distribution of nominally eligible sites

    Energy Technology Data Exchange (ETDEWEB)

    1980-11-01

    Siting of 60 ground receiving stations (rectennas) for the SPS may pose a problem due to the large area per rectenna (15,000 hectares, 38,000 acres) and numerous siting constraints. This study analyzes areas potentially eligible for rectenna sites by mapping, at a national scale, those conditions which would preclude rectenna construction. These exclusion variables which reflect restricted lands, topography, safety, national policy and electromagnetic (microwave) effects, have been computer encoded and tabulated. Subsequent analysis of the nine electric power planning regions that make up the contiguous states indicate an apparently adequate number of nominally eligible sites in all regions in comparison to projected electrical generation. Eligibility in this context means only that areas were not excluded in this national level analysis; more detailed investigation may reveal purely local constraints or smaller scale exclusions. A second major qualification relates to small isolated eligible areas. Eliminating individual eligible clusters with less than nine times the area of one rectenna eliminates much of the Eastern US; a four-to-one adjacent eligible area test poses no such problem. An independant study of the placement of 60 nominal sites in relation to projected load centers reveals that, even with modest transmission distances, the supply of eligible areas is not a key constraint, except perhaps in the Mid-Atlantic (Electric Reliability) Council Region. Even when several less critical (potential) exclusions are considered, more than 19% of the US is eligible; every region except Mid-Atlantic has at least 50 times an many eligible sites as are required.

  9. Supervisory control and data acquisition (SCADA) system via satellite link technology for remote and isolated photovoltaic - diesel hybrid power system in Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Prastawa, A.; Akhmad, K.; Safari, S.A. [Renewable Energy Technology Assessment Div., Center for Energy Conversion and Conservation Technology, Indonesian Agency for the Assessment and Application of Technology, Jakarta (Indonesia)

    2003-07-01

    Recently, the indonesian Agency for the Assessment and Application of Technology (BPPT), has successfully installed 14 units of photovoltaic - diesel hybrid power plants located in 6 and 8 remote locations in Central Celebes Province, and South Eastern Celebes Province respectively. The hybrid system is designed for an automatic operation, yet a continue data monitoring is required to ensure a proper and successful operation. The data of diesel operation hour, inverter operation status, and energy produced by solar photovoltaic, battery status, and delivered to consumer are to be obtained for further assessment of optimizing the system operation. However due to the remoteness of location, it would not be practicable to obtain such data continuously. Therefore in this concern a remote data communication technique has to be considered to overcome the distance. This paper discusses the utilization of satellite data communication link to achieve the remote data communication objective. This paper also describes the measurement of essential system parameter, as well as the remote data communication configuration and interfacing equipment. The remote communication involves the SCADA (supervisory control and data acquisition) operation via a service of a commercial satellite communication provider, which provides daily data of hybrid system performance. The data is collected at local data logger, and remotely downloaded from Jakarta. As a final remarks, in this paper revealed that the application of remote SCADA for remote photovoltaic - diesel hybrid system provide a major benefit in a continuous monitoring system, responsive system troubleshooting and more importantly cost effective operation and supervisory system. (orig.)

  10. In-Space Transportation for GEO Space Solar Power Satellites

    Science.gov (United States)

    Martin, James A.; Donnahue, Benjamin B.; Henley, Mark W.

    1999-01-01

    This report summarizes results of study tasks to evaluate design options for in-space transportation of geostationary Space Solar Power Satellites. Referring to the end-to-end architecture studies performed in 1988, this current activity focuses on transportation of Sun Tower satellite segments from an initial low Earth orbit altitude to a final position in geostationary orbit (GEO; i.e., 35,786 km altitude, circular, equatorial orbit). This report encompasses study activity for In-Space Transportation of GEO Space Solar Power (SSP) Satellites including: 1) assessment of requirements, 2) design of system concepts, 3) comparison of alternative system options, and 4) assessment of potential derivatives.

  11. Mass and power modeling of communication satellites

    Science.gov (United States)

    Price, Kent M.; Pidgeon, David; Tsao, Alex

    1991-01-01

    Analytic estimating relationships for the mass and power requirements for major satellite subsystems are described. The model for each subsystem is keyed to the performance drivers and system requirements that influence their selection and use. Guidelines are also given for choosing among alternative technologies which accounts for other significant variables such as cost, risk, schedule, operations, heritage, and life requirements. These models are intended for application to first order systems analyses, where resources do not warrant detailed development of a communications system scenario. Given this ground rule, the models are simplified to 'smoothed' representation of reality. Therefore, the user is cautioned that cost, schedule, and risk may be significantly impacted where interpolations are sufficiently different from existing hardware as to warrant development of new devices.

  12. Lightweight Solar Power for Small Satellites

    Science.gov (United States)

    Nabors, Sammy A.

    2015-01-01

    The innovation targets small satellites or CubeSats for which conventional deployable arrays are not feasible due to their size, weight and complexity. This novel solar cell array includes a thin and flexible photovoltaic cell applied to an inflatable structure to create a high surface area array for collecting solar energy in a lightweight, simple and deployable structure. The inflatable array, with its high functional surface area, eliminates the need and the mechanisms required to point the system toward the sun. The power density achievable in these small arrays is similar to that of conventional high-power deployable/pointable arrays used on large satellites or space vehicles. Although inflatable solar arrays have been previously considered by others, the arrays involved the use of traditional rigid solar cells. Researchers are currently working with thin film photovoltaics from various suppliers so that the NASA innovation is not limited to any particular solar cell technology. NASA has built prototypes and tested functionality before and after inflation. As shown in the current-voltage currents below, deployment does not damage the cell performance.

  13. Advanced Power Technology Development Activities for Small Satellite Applications

    Science.gov (United States)

    Piszczor, Michael F.; Landis, Geoffrey A.; Miller, Thomas B.; Taylor, Linda M.; Hernandez-Lugo, Dionne; Raffaelle, Ryne; Landi, Brian; Hubbard, Seth; Schauerman, Christopher; Ganter, Mathew; hide

    2017-01-01

    NASA Glenn Research Center (GRC) has a long history related to the development of advanced power technology for space applications. This expertise covers the breadth of energy generation (photovoltaics, thermal energy conversion, etc.), energy storage (batteries, fuel cell technology, etc.), power management and distribution, and power systems architecture and analysis. Such advanced technology is now being developed for small satellite and cubesat applications and could have a significant impact on the longevity and capabilities of these missions. A presentation during the Pre-Conference Workshop will focus on various advanced power technologies being developed and demonstrated by NASA, and their possible application within the small satellite community.

  14. Expert systems for satellite stationkeeping

    Science.gov (United States)

    Mekaru, M. M.; Wright, M. A.

    The feasibility of implementing artificial intelligence on satellites is evaluated, with the aim of using an onboard expert system to perform effective stationkeeping functions without assistance from the ground. The Defense Satellite Communication System (DSCS III) is used as an example. The cost for implementing a satellite stationkeeping expert system is analyzed. A ground-based expert system could reduce the current number of support personnel for the stationkeeping task. Results of analyzing a possible flight system are quite promising. An expert system for satellite stationkeeping seems feasible, appears cost-effective, and offers increased satellite endurance through autonomous operations.

  15. Solar power satellites - Heat engine or solar cells

    Science.gov (United States)

    Oman, H.; Gregory, D. L.

    1978-01-01

    A solar power satellite is the energy-converting element of a system that can deliver some 10 GW of power to utilities on the earth's surface. We evaluated heat engines and solar cells for converting sunshine to electric power at the satellite. A potassium Rankine cycle was the best of the heat engines, and 50 microns thick single-crystal silicon cells were the best of the photovoltaic converters. Neither solar cells nor heat engines had a clear advantage when all factors were considered. The potassium-turbine power plant, however, was more difficult to assemble and required a more expensive orbital assembly base. We therefore based our cost analyses on solar-cell energy conversion, concluding that satellite-generated power could be delivered to utilities for around 4 to 5 cents a kWh.

  16. Cooperative and cognitive satellite systems

    CERN Document Server

    Chatzinotas, Symeon; De Gaudenzi, Riccardo

    2015-01-01

    Cooperative and Cognitive Satellite Systems provides a solid overview of the current research in the field of cooperative and cognitive satellite systems, helping users understand how to incorporate state-of-the-art communication techniques in innovative satellite network architectures to enable the next generation of satellite systems. The book is edited and written by top researchers and practitioners in the field, providing a comprehensive explanation of current research that allows users to discover future technologies and their applications, integrate satellite and terrestrial systems

  17. Power system

    Science.gov (United States)

    Hickam, Christopher Dale [Glasford, IL

    2008-03-18

    A power system includes a prime mover, a transmission, and a fluid coupler having a selectively engageable lockup clutch. The fluid coupler may be drivingly connected between the prime mover and the transmission. Additionally, the power system may include a motor/generator drivingly connected to at least one of the prime mover and the transmission. The power-system may also include power-system controls configured to execute a control method. The control method may include selecting one of a plurality of modes of operation of the power system. Additionally, the control method may include controlling the operating state of the lockup clutch dependent upon the mode of operation selected. The control method may also include controlling the operating state of the motor/generator dependent upon the mode of operation selected.

  18. Link performance optimization in SCPC system - A study on the number of accesses due to limitation of output power and frequency bandwidth of satellite transponder

    Science.gov (United States)

    Wakana, Hiromitu; Okawa, Mitugu; Yamamoto, Minoru

    1990-03-01

    In order to use satellite transponders most efficiently in FDMA systems such as SCPC, it is necessary to consider nonlinear effects of the satellite transponder while designing the satellite link. In this paper, a method is proposed for finding a margin for intermodulation noise and the most suitable operation point for satellite transponders. A link calculation for pilot-program earth stations using the Japanese CS-2 communication satellite is described to illustrate the method.

  19. Meteorological satellite systems

    CERN Document Server

    Tan, Su-Yin

    2014-01-01

    “Meteorological Satellite Systems” is a primer on weather satellites and their Earth applications. This book reviews historic developments and recent technological advancements in GEO and polar orbiting meteorological satellites. It explores the evolution of these remote sensing technologies and their capabilities to monitor short- and long-term changes in weather patterns in response to climate change. Satellites developed by various countries, such as U.S. meteorological satellites, EUMETSAT, and Russian, Chinese, Japanese and Indian satellite platforms are reviewed. This book also discusses international efforts to coordinate meteorological remote sensing data collection and sharing. This title provides a ready and quick reference for information about meteorological satellites. It serves as a useful tool for a broad audience that includes students, academics, private consultants, engineers, scientists, and teachers.

  20. Compilation and assessment of microwave bioeffects. Final report. A selective review of the literature on biological effects of microwaves in relation to the Satellite Power System (SPS)

    Energy Technology Data Exchange (ETDEWEB)

    Justesen, D.R.; Ragan, H.A.; Rogers, L.E.; Guy, A.W.; Hjeresen, D.L.; Hinds, W.T.; Phillips, R.D.

    1978-05-01

    One of many alternate sources of electrical energy that are being considered by the Department of Energy is a microwave-mediated Satellite Power System (SPS). Once inserted into geosynchronous orbit at an altitude of more than 40,000 kilometers, a satellite would collect then convert the sun's energy to 2450-MHz microwaves, which would be beamed to the Earth's surface, where a rectifying antenna (rectenna) would convert the microwaves to electrical current suitable for industrial and domestic use. The expanse of each rectenna (about 10 by 13 kilometers), the power density of the continuous-wave microwave beam (approx. 23 mW/cm/sup 2/ at center, with fall off to 1 mW/cm/sup 2/ or less at the periphery of the rectenna), and the possibility that 20 or more satellite systems will eventually be operating, creates two sets of interrelated problems for biological/ecological assessment. These are 1) the effects of microwave fields of higher intensity on airborne biota (including human beings in aircraft) that may traffic the area above the rectenna and 2) the effects of virtually perpetual fields of much lower intensity on all forms of life at and beyond the rectennae's zone of exclusion. In this review, the scientific literature is examined, not only for biological effects that are pertinent to assessment of SPS, but for hiatuses of knowledge that will have to be filled before SPS can be vouched for operational safety.

  1. Solar power satellite life-cycle energy recovery consideration

    Energy Technology Data Exchange (ETDEWEB)

    Weingartner, S.; Blumenberg, J. [Deutsche Aerospace AG, Munich (Germany)]|[Technical Univ. of Munich, Munich (Germany)

    1994-12-31

    The construction, in-orbit installation and maintenance of a solar power satellite (SPS) will demand large amounts of energy. As a minimum requirement for an energy effective power satellite it is asked that this amount of energy be recovered. The energy effectiveness in this sense resulting in a positive net energy balance is a prerequisite for cost-effective power satellite. This paper concentrates on life-cycle energy recovery instead on monetary aspects. The trade-offs between various power generation systems (different types of solar cells, solar dynamic), various construction and installation strategies (using terrestrial or extra-terrestrial resources) and the expected/required lifetime of the SPS are reviewed. The presented work is based on a 2-year study performed at the Technical University of Munich. The study showed that the main energy which is needed to make a solar power satellite a reality is required for the production of the solar power components (up to 65%), especially for the solar cell production. Whereas transport into orbit accounts in the order of 20% and the receiving station on earth (rectenna) requires about 15% of the total energy investment. The energetic amortization time, i.e. the time the SPS has to be operational to give back the amount of energy which was needed for its production installation and operation, is about two years.

  2. FDMA implementation for domestic mobile satellite systems

    Science.gov (United States)

    Wachira, Muya; Bossler, Dan; Skerry, Brian

    MSAT (the domestic mobile satellite system for North America, planned for the 1990s) is briefly described. The considerations that led to the choice of FDMA/SCPC (frequency division multiple access/single carrier per channel) as the primary access scheme for MSAT are discussed. Service requirements and practical constraints are examined. It is shown that, in a shadowed environment, FDMA leads to an efficient use of satellite power while providing good link availability. Also, because of the inherent flexibility of narrowband carrier assignments within the shared MSS (mobile satellite service) bands, FDMA can provide ample coordinated spectrum for all MSS operators.

  3. Integrated Satellite-HAP Systems

    DEFF Research Database (Denmark)

    Cianca, Ernestina; De Sanctis, Mauro; De Luise, Aldo

    2005-01-01

    Thus far, high-altitude platform (HAP)-based systems have been mainly conceived as an alternative to satellites for complementing the terrestrial network. This article aims to show that HAP should no longer be seen as a competitor technology by investors of satellites, but as a key element for an...

  4. Interference in Cellular Satellite Systems

    OpenAIRE

    Kilic, Ozlem; Zaghloul, Amir I.

    2010-01-01

    Co-channel beam interference in multi-beam satellite communications systems was investigated particularly for the downlink. Concept of frequency reuse was explained and the role of satellite antenna size and pattern was examined. Conventional spot beam coverage and its impact on determining the antenna size on board was discussed.

  5. The power of inexpensive satellite constellations

    Science.gov (United States)

    Dyrud, Lars P.; La Tour, Rose; Swartz, William H.; Nag, Sreeja; Lorentz, Steven R.; Hilker, Thomas; Wiscombe, Warren J.; Papadakis, Stergios J.

    2014-06-01

    Two thematic drivers are motivating the science community towards constellations of small satellites, the revelation that many next generation system science questions are uniquely addressed with sufficient numbers of simultaneous space based measurements, and the realization that space is historically expensive, and in an environment of constrained costs, we must innovate to ―do more with less‖. We present analysis that answers many of the key questions surrounding constellations of scientific satellites, including research that resulted from the GEOScan community based effort originally intended as hosted payloads on Iridium NEXT. We present analysis that answers the question how many satellites does global system science require? Perhaps serendipitously, the analyses show that many of the key science questions independently converge towards similar results, i.e. that approximately 60+ satellites are needed for transformative, as opposed to incremental capability in system science. The current challenge is how to effectively transition products from design to mass production for space based instruments and vehicles. Ideally, the lesson learned from past designs and builds of various space products should pave the way toward a better manufacturing plan that utilizes just a fraction of the prototype`s cost. Using the commercial products industry implementations of mass customization as an example, we will discuss about the benefits of standardization in design requirements for space instruments and vehicles. For example, the instruments (payloads) are designed to have standardized elements, components, or modules that interchangeably work together within a linkage system. We conclude with a discussion on implementation plans and the new paradigms for community and international cooperation enabled by small satellite constellations.

  6. Small optical inter-satellite communication system for small and micro satellites

    Science.gov (United States)

    Iwamoto, Kyohei; Nakao, Takashi; Ito, Taiji; Sano, Takeshi; Ishii, Tamotsu; Shibata, Keiichi; Ueno, Mitsuhiro; Ohta, Shinji; Komatsu, Hiromitsu; Araki, Tomohiro; Kobayashi, Yuta; Sawada, Hirotaka

    2017-02-01

    Small optical inter-satellite communication system to be installed into small and micro satellites flying on LEO are designed and experimentally verified of its fundamental functions. Small, light weighted, power efficient as well as usable data transmission rate optical inter-satellite communication system is one of promising approach to provide realtime data handling and operation capabilities for micro and small satellite constellations which have limited conditions of payload. Proposed system is designed to connect satellites with 4500 (km) long maximum to be able to talk with ground station continuously by relaying LEO satellites even when they are in their own maneuvers. Connecting satellites with 4500 (km) long with keeping steady data rate, accurate pointing and tracking method will be one of a crucial issue. In this paper, we propose a precious pointing and tracking method and system with a miniature optics and experimentally verified almost 10 (μrad) of pointing accuracy with more than 500 (mrad) of angular coverage.

  7. Satellite nuclear power station: An engineering analysis

    Science.gov (United States)

    Williams, J. R.; Clement, J. D.; Rosa, R. J.; Kirby, K. D.; Yang, Y. Y.

    1973-01-01

    A nuclear-MHD power plant system which uses a compact non-breeder reactor to produce power in the multimegawatt range is analyzed. It is shown that, operated in synchronous orbit, the plant would transmit power safely to the ground by a microwave beam. Fuel reprocessing would take place in space, and no radioactive material would be returned to earth. Even the effect of a disastrous accident would have negligible effect on earth. A hydrogen moderated gas core reactor, or a colloid-core, or NERVA type reactor could also be used. The system is shown to approach closely the ideal of economical power without pollution.

  8. The Canadian mobile satellite system

    Science.gov (United States)

    Bertenyi, Elemer

    1992-07-01

    Plans to upgrade Canadian mobile data services by introducing a full, two way mobile voice and data service, using a large geostationary satellite which is scheduled to be launched in 1994, are reported. This Mobile Satellite (MSAT) will offer customers the ability to communicate, using mobile or transportable terminals, from the most remote parts of the continent, to any other point within North America, and indeed the whole world. Currently planned MSAT services are reviewed, the main features of the overall system are outlined, and the configuration and key performance parameters of the MSAT satellite are presented. The communications subsystem is detailed, and a summary of the spacecraft service module is given.

  9. A new concept of space solar power satellite

    Science.gov (United States)

    Li, Xun; Duan, Baoyan; Song, Liwei; Yang, Yang; Zhang, Yiqun; Wang, Dongxu

    2017-07-01

    Space solar power satellite (SSPS) is a tremendous energy system that collects and converts solar power to electric power in space, and then transmits the electric power to earth wirelessly. In this paper, a novel SSPS concept based on ε-near-zero (ENZ) metamaterial is proposed. A spherical condenser made of ENZ metamaterial is developed, by using the refractive property of the ENZ metamaterial sunlight can be captured and redirected to its center. To make the geometric concentration ratio of the PV array reasonable, a hemispherical one located at the center is used to collect and convert the normal-incidence sunlight to DC power, then through a phased array transmitting antenna the DC power is beamed down to the rectenna on the ground. Detailed design of the proposed concept is presented.

  10. A multipurpose satellite ejection system

    Science.gov (United States)

    Moore, Michael B.

    1987-01-01

    A design is presented for a pneumatic ejection system capable of ejecting a spin stabilized satellite from the cargo bay of space vehicles. This system was orginally designed for use on the Spacelab 6 shuttle mission, but is now being considered for use with expendable rockets for launching satellites. The ejection system was designed to launch a 150 lb satellite at an initial ejection velocity of 32 ft/sec with a spin rate of 30 rev/min. The ejection system consists of a pneumatic cylinder, satellite retaining mechanism, and bearing assembly to allow the satellite to rotate during the spin up phase. As the cylinder is pressurized rapidly causing movement of the actuation piston, the mechanism automatically releases the spinning satellite by retracting a pneumatic locking pin and three spring loaded holddown pins. When the piston reaches the end of its stroke, it encounters a crushable aluminum honeycomb shock absorber which decelerates the piston and retaining mechanism. The assembly is designed for multiple uses except for the crushable shock absorber and pyrotechnic valves. The advantage of the design is discussed and patent no. and date given.

  11. Photovoltaic and thermal energy conversion for solar powered satellites

    Science.gov (United States)

    Von Tiesenhausen, G. F.

    1976-01-01

    A summary is provided concerning the most important aspects of present investigations related to a use of solar power satellites (SPS) as a future source of terrestrial energy. General SPS characteristics are briefly considered, early work is reviewed, and a description of current investigations is presented. System options presently under study include a photovoltaic array, a thermionic system, and a closed Brayton cycle. Attention is given to system reference options, basic building blocks, questions of system analysis and engineering, photovoltaic conversion, and the utility interface. It is concluded that an SPS may be cost effective compared to terrestrial systems by 1995.

  12. Odyssey, an optimized personal communications satellite system

    Science.gov (United States)

    Rusch, Roger J.

    Personal communications places severe demands on service providers and transmission facilities. Customers are not satisfied with the current levels of service and want improvements. Among the characteristics that users seek are: lower service rates, hand held convenience, acceptable time delays, ubiquitous service, high availability, reliability, and high quality. The space industry is developing commercial space systems for providing mobile communications to personal telephones. Provision of land mobile satellite service is fundamentally different from the fixed satellite service provided by geostationary satellites. In fixed service, the earth based antennas can depend on a clear path from user to satellite. Mobile users in a terrestrial environment commonly encounter blockage due to vegetation, terrain or buildings. Consequently, high elevation angles are of premium value. TRW studied the issues and concluded that a Medium Earth Orbit constellation is the best solution for Personal Communications Satellite Service. TRW has developed Odyssey, which uses twelve satellites in medium altitude orbit to provide personal communications satellite service. The Odyssey communications system projects a multibeam antenna pattern to the Earth. The attitude control system orients the satellites to ensure constant coverage of land mass and coastal areas. Pointing can be reprogrammed by ground control to ensure optimized coverage of the desired service areas. The payload architecture features non-processing, "bent pipe" transponders and matrix amplifiers to ensure dynamic power delivery to high demand areas. Circuit capacity is 3000 circuits per satellite. Each satellite weighs 1917 kg (4226 pounds) at launch and the solar arrays provide 3126 Watts of power. Satellites are launched in pairs on Ariane, Atlas, or other vehicles. Each satellite is placed in a circular orbit at an altitude of 10,354 km. There are three orbit planes inclined at 55° to the equatorial plane

  13. Solar power satellites - Technical, social and political implications

    Science.gov (United States)

    Knelman, F. H.

    Solar power satellite systems (SPS) are examined, together with their environmental and social impacts and the energy policies necessary for their construction. The energy source, the sun, is acceptable to advocates of decentralized technologies, while the conversion system is fitted to large institutions. However, large-scale power plants are subject to persistent malfunctions, and the approximately 50 sq km SPS solar array is projected to suffer from at least recurring cell contact failures. The power could also be generated by heat engines for transmission by either laser or microwaves. Numerous feasibility and cost-benefit studies are still required, including defining the transmission beam's effects on the atmosphere, ionosphere, and human health. Furthermore, the resource allocations, capital costs, insurance, and institutional problems still need clarification, as do the design, logistics, and development of an entire new, much larger launch system based on Shuttle technology. Finally, the military defensibility of the SPS power station is questioned.

  14. A 0.18 {mu}m CMOS dual-band low power low noise amplifier for a global navigation satellite system

    Energy Technology Data Exchange (ETDEWEB)

    Li Bing; Zhuang Yiqi; Li Zhenrong; Jin Gang, E-mail: waxmax@126.com [Key Laboratory of the Ministry of Education for Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi' an 710071 (China)

    2010-12-15

    This paper presents a dual-band low noise amplifier for the receiver of a global navigation satellite system. The differences between single band and multi-band design methods are discussed. The relevant parameter analysis and the details of circuit design are presented. The test chip was implemented in a TSMC 0.18 {mu}m 1P4M RF CMOS process. The LNA achieves a gain of 16.8 dB/18.9 dB on 1.27 GHz/1.575 GHz. The measured noise figure is around 1.5-1.7 dB on both bands. The LNA consumes less than 4.3 mA of current from a 1.8 V power supply. The measurement results show consistency with the design. And the LNA can fully satisfy the demands of the GNSS receiver. (semiconductor integrated circuits)

  15. SEMICONDUCTOR INTEGRATED CIRCUITS A 0.18 μm CMOS dual-band low power low noise amplifier for a global navigation satellite system

    Science.gov (United States)

    Bing, Li; Yiqi, Zhuang; Zhenrong, Li; Gang, Jin

    2010-12-01

    This paper presents a dual-band low noise amplifier for the receiver of a global navigation satellite system. The differences between single band and multi-band design methods are discussed. The relevant parameter analysis and the details of circuit design are presented. The test chip was implemented in a TSMC 0.18 μm 1P4M RF CMOS process. The LNA achieves a gain of 16.8 dB/18.9 dB on 1.27 GHz/1.575 GHz. The measured noise figure is around 1.5-1.7 dB on both bands. The LNA consumes less than 4.3 mA of current from a 1.8 V power supply. The measurement results show consistency with the design. And the LNA can fully satisfy the demands of the GNSS receiver.

  16. Advanced satellite communication system

    Science.gov (United States)

    Staples, Edward J.; Lie, Sen

    1992-05-01

    The objective of this research program was to develop an innovative advanced satellite receiver/demodulator utilizing surface acoustic wave (SAW) chirp transform processor and coherent BPSK demodulation. The algorithm of this SAW chirp Fourier transformer is of the Convolve - Multiply - Convolve (CMC) type, utilizing off-the-shelf reflective array compressor (RAC) chirp filters. This satellite receiver, if fully developed, was intended to be used as an on-board multichannel communications repeater. The Advanced Communications Receiver consists of four units: (1) CMC processor, (2) single sideband modulator, (3) demodulator, and (4) chirp waveform generator and individual channel processors. The input signal is composed of multiple user transmission frequencies operating independently from remotely located ground terminals. This signal is Fourier transformed by the CMC Processor into a unique time slot for each user frequency. The CMC processor is driven by a waveform generator through a single sideband (SSB) modulator. The output of the coherent demodulator is composed of positive and negative pulses, which are the envelopes of the chirp transform processor output. These pulses correspond to the data symbols. Following the demodulator, a logic circuit reconstructs the pulses into data, which are subsequently differentially decoded to form the transmitted data. The coherent demodulation and detection of BPSK signals derived from a CMC chirp transform processor were experimentally demonstrated and bit error rate (BER) testing was performed. To assess the feasibility of such advanced receiver, the results were compared with the theoretical analysis and plotted for an average BER as a function of signal-to-noise ratio. Another goal of this SBIR program was the development of a commercial product. The commercial product developed was an arbitrary waveform generator. The successful sales have begun with the delivery of the first arbitrary waveform generator.

  17. The Design and Analysis Program for the Development of LEO Satellite Electrical Power Subsystem

    Directory of Open Access Journals (Sweden)

    Sang-Kon Lee

    2007-06-01

    Full Text Available The design and analysis of satellite power subsystem is an important driver for the mass, size, and capability of the satellite. Every other satellite subsystem is affected by the power subsystem, and in particular, important issues such as launch vehicle selection, thermal design, and structural design are largely influenced by the capabilities and limitations of the power system. This paper introduces a new electrical power subsystem design program for the rapid development of LEO satellite and shows an example of design results using other LEO satellite design data. The results shows that the proposed design program can be used the optimum sizing and the analytical prediction of the on-orbit performance of satellite electrical power subsystem.

  18. The solar power satellite: Looking back to look ahead

    Science.gov (United States)

    Williamson, Ray A.

    1995-01-01

    In 1981 the Office of Technology Assessment (OTA) published an assessment of the solar power satellite (SPS) concept. SPS proponents claimed that the development and deployment of SPS systems could revolutionize electrical production and sharply reduce global dependence on fossil and atomic fuels. Opponents argued that SPS would be too expensive and environmentally damaging. The OTA assessment examined a broad variety of satellite technologies that might be employed in SPS and compared projected electrical production with terrestrial solar power, advanced coal technologies, breeder reactors, and nuclear fusion. It also explored public attitudes toward the SPS concept and compared its potential environmental impacts with those of other future electrical power sources. Technology, world politics, the U.S. economy, and the state of the U.S. space program have changed dramatically since the OTA report was published. This paper examines several of the economic, environmental, and international factors that must be taken into account when assessing the advisability of investing in future solar power satellite concepts.

  19. Stockholm Power Tech. Power systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The proceedings from this symposium is presented in six volumes: Invited speakers` sessions; Power systems; Power electronics; High-voltage technology; Electrical machines and drives; and Information and control systems. This report covers the power systems volume. Separate abstracts have been prepared for 141 of the 145 papers in this volume

  20. Technique applied in electrical power distribution for Satellite Launch Vehicle

    Directory of Open Access Journals (Sweden)

    João Maurício Rosário

    2010-09-01

    Full Text Available The Satellite Launch Vehicle electrical network, which is currently being developed in Brazil, is sub-divided for analysis in the following parts: Service Electrical Network, Controlling Electrical Network, Safety Electrical Network and Telemetry Electrical Network. During the pre-launching and launching phases, these electrical networks are associated electrically and mechanically to the structure of the vehicle. In order to succeed in the integration of these electrical networks it is necessary to employ techniques of electrical power distribution, which are proper to Launch Vehicle systems. This work presents the most important techniques to be considered in the characterization of the electrical power supply applied to Launch Vehicle systems. Such techniques are primarily designed to allow the electrical networks, when submitted to the single-phase fault to ground, to be able of keeping the power supply to the loads.

  1. A combined data and power management infrastructure for small satellites

    CERN Document Server

    2013-01-01

    In 2009 the need for a suitable onboard computer design arose for the small satellite project at the Institute of Space Systems, University of Stuttgart, Germany. It had to meet the constraints imposed by the small satellite (a 130 kg CubeSat) with its full featured ACS, diverse payloads and full CCSDS telecommand and telemetry standard compliance. The design of the Onboard Computer system lead to a functional merging between onboard computer components and the satellite's Power Control and Distribution Unit, resulting in a very innovative solution – the so-called Combined Data and Power Management Infrastructure. The technical implementation of such a design was achieved with the support of an international industry partner consortium consisting of Astrium GmbH, Aeroflex Colorado Springs Inc., 4Links Ltd., Aeroflex Gaisler AB, Vectronic Aerospace GmbH and HEMA Kabeltechnik GmbH & Co. KG. At end of the flight unit's development the consortium decided to provide a single consistent documentation of the d...

  2. Environmental assessment for the Satellite Power System concept development and evaluation program: Nonmicrowave health and ecological effects

    Science.gov (United States)

    White, M. R.

    1980-11-01

    A preliminary reference system was developed. The assessment is summarized as to scope, methodology, impacts of terrestrial development, launch and recovery of spacecraft, space activities (including health effects of the space environment, ionizing radiation, electromagnetic exposure, spacecraft charging and environmental interactions, occupational hazards, etc.) and construction and operation of rectenna (ground receiving station).

  3. Determination of GNSS satellite transmit power and impact on orbit determination

    Science.gov (United States)

    Steigenberger, Peter; Thölert, Steffen; Montenbruck, Oliver

    2017-04-01

    Precise orbit determination of GNSS satellites requires a best possible modeling of forces acting on the satellite. Antenna thrust is a small acceleration caused by the transmission of navigation signals of a GNSS satellite. It depends on the mass of the satellite and the total power of the transmitted signals and results in a mainly radial force changing the orbital radius by up to 2 cm. Within the International GNSS Service (IGS), antenna thrust is currently only considered for GPS and GLONASS. Transmit power levels for the different types of GPS satellites are based on the minimum received power near the Earth's surface as specified in the GPS interface control document. Empirical scaling factors take into account deviations from observed power levels resulting in IGS model values between 76 and 249 W. For GLONASS, a transmit power of 100 W is assumed. However, antenna thrust is currently ignored within the IGS for the emerging navigation systems Galileo, BeiDou, and QZSS due to unknown transmit power levels. The effective isotropically radiated power (EIRP) of a GNSS satellite can be measured with a high gain antenna. Based on the gain pattern of the satellite antenna, the transmit power can be obtained. EIRP measurements were gathered with a 30 m high gain antenna operated by Deutsches Zentrum für Luft- und Raumfahrt (German Aerospace Center, DLR) at its ground station in Weilheim (Germany). In this presentation, we discuss the measurement setup and present the transmit power estimates for GPS, GLONASS, Galileo, and BeiDou satellites in the L1, L2, L5/E5 and E6 frequency bands. Differences of the various satellite types as well as the scatter of the individual satellites within one type are analyzed. The GPS results are compared to the values of the current IGS model. Finally, the impact of taking into account antenna thrust based on the estimated transmit power on precise orbit determination is assessed.

  4. Satellite Attitude Control System Simulator

    Directory of Open Access Journals (Sweden)

    G.T. Conti

    2008-01-01

    Full Text Available Future space missions will involve satellites with great autonomy and stringent pointing precision, requiring of the Attitude Control Systems (ACS with better performance than before, which is function of the control algorithms implemented on board computers. The difficulties for developing experimental ACS test is to obtain zero gravity and torque free conditions similar to the SCA operate in space. However, prototypes for control algorithms experimental verification are fundamental for space mission success. This paper presents the parameters estimation such as inertia matrix and position of mass centre of a Satellite Attitude Control System Simulator (SACSS, using algorithms based on least square regression and least square recursive methods. Simulations have shown that both methods have estimated the system parameters with small error. However, the least square recursive methods have performance more adequate for the SACSS objectives. The SACSS platform model will be used to do experimental verification of fundamental aspects of the satellite attitude dynamics and design of different attitude control algorithm.

  5. Global Navigation Satellite System and Augmentation

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 22; Issue 12 ... Keywords. Global Navigation Satellite System, GPS, Indian Regional Navigation Satellite System, GLONASS, Galileo, Compass, GAGAN. ... The article also covers the Indian RegionalNavigation Satellite System (IRNSS) and its potentials.

  6. Satellite Power Systems (SPS) concept definition study. Volume 5: Transportation and operations analysis. [heavy lift launch and orbit transfer vehicles for orbital assembly

    Science.gov (United States)

    Hanley, G.

    1978-01-01

    The development of transportation systems to support the operations required for the orbital assembly of a 5-gigawatt satellite is discussed as well as the construction of a ground receiving antenna (rectenna). Topics covered include heavy lift launch vehicle configurations for Earth-to LEO transport; the use of chemical, nuclear, and electric orbit transfer vehicles for LEO to GEO operations; personnel transport systems; ground operations; end-to-end analysis of the construction, operation, and maintenance of the satellite and rectenna; propellant production and storage; and payload packaging.

  7. Solar power satellite system definition study. Part 2, volume 8: SPS launch vehicle ascent and entry sonic overpressure and noise effects

    Science.gov (United States)

    1977-01-01

    Recoverable launch vehicle concepts for the Solar Power Satellite program were identified. These large launch vehicles are powered by proposed engines in the F-1 thrust level class. A description of the candidate launch vehicles and their operating mode was provided. Predictions of the sonic over pressures during ascent and entry for both types of vehicles, and prediction of launch noise levels in the vicinity of the launch site were included. An overall assessment and criteria for sonic overpressure and noise levels was examined.

  8. Energy-Efficient Optimal Power Allocation in Integrated Wireless Sensor and Cognitive Satellite Terrestrial Networks.

    Science.gov (United States)

    Shi, Shengchao; Li, Guangxia; An, Kang; Gao, Bin; Zheng, Gan

    2017-09-04

    This paper proposes novel satellite-based wireless sensor networks (WSNs), which integrate the WSN with the cognitive satellite terrestrial network. Having the ability to provide seamless network access and alleviate the spectrum scarcity, cognitive satellite terrestrial networks are considered as a promising candidate for future wireless networks with emerging requirements of ubiquitous broadband applications and increasing demand for spectral resources. With the emerging environmental and energy cost concerns in communication systems, explicit concerns on energy efficient resource allocation in satellite networks have also recently received considerable attention. In this regard, this paper proposes energy-efficient optimal power allocation schemes in the cognitive satellite terrestrial networks for non-real-time and real-time applications, respectively, which maximize the energy efficiency (EE) of the cognitive satellite user while guaranteeing the interference at the primary terrestrial user below an acceptable level. Specifically, average interference power (AIP) constraint is employed to protect the communication quality of the primary terrestrial user while average transmit power (ATP) or peak transmit power (PTP) constraint is adopted to regulate the transmit power of the satellite user. Since the energy-efficient power allocation optimization problem belongs to the nonlinear concave fractional programming problem, we solve it by combining Dinkelbach's method with Lagrange duality method. Simulation results demonstrate that the fading severity of the terrestrial interference link is favorable to the satellite user who can achieve EE gain under the ATP constraint comparing to the PTP constraint.

  9. The solar power satellite - Past, present and future

    Science.gov (United States)

    Glaser, P. E.

    1980-06-01

    The potential and the problems of solar energy are discussed, covering all aspects of the necessary technology and its economic and political consequences. The concept of the solar power satellite (SPS) is introduced, noting its feasibility through the space technology of the 1990's. Proposed objectives, including consideration of finite resources, environmentally benign operations and global benefits are covered, as are technical details on power transmission (microwave beams of the 2.50 GHz frequency or the laser beams at 10 MW), and on assembly in orbit through the space transportation system. From the point of view of economic possibilities, costs are estimated at between $1500 to $4000 per kW and finally, ecological and international topics are touched upon.

  10. Satellite-aided mobile radio concepts study: Concept definition of a satellite-aided mobile and personal radio communication system

    Science.gov (United States)

    Anderson, R. E.

    1979-01-01

    The satellite system requires the use of a large satellite antenna and spacecraft array power of about 12 kW or more depending on the operating frequency. Technology developments needed include large offset reflector multibeam antennas, satellite electrical power sybsystems providing greater than 12 kW of power, signal switching hardware, and linearized efficient solid state amplifiers for the satellite-aided mobile band. Presently there is no frequency assignment for this service, and it is recommended that an allocation be pursued. The satellite system appears to be within reasonable extrapolation of the state of the art. It is further recommended that the satellite-aided system spacecraft definition studies and supporting technology development be initiated.

  11. Use of CDMA access technology in mobile satellite systems

    Science.gov (United States)

    Ramasastry, Jay; Wiedeman, Bob

    1995-01-01

    Use of Code Division Multiple Access (CDMA) technology in terrestrial wireless systems is fairly well understood. Similarly, design and operation of Power Control in a CDMA-based system in a terrestrial environment is also well established. Terrestrial multipath characteristics, and optimum design of the CDMA receiver to deal with multipath and fading conditions are reliably established. But the satellite environment is different. When the CDMA technology is adopted to the satellite environment, other design features need to be incorporated (for example; interleaving, open-loop and closed-loop power control design, diversity characteristics) to achieve comparable level of system performance. In fact, the GLOBALSTAR LEO/MSS system has incorporated all these features. Contrary to some published reports, CDMA retains the advantages in the satellite environment that are similar to those achieved in the terrestrial environment. This document gives a description of the CDMA waveform and other design features adopted for mobile satellite applications.

  12. TOPEX electrical power system

    Science.gov (United States)

    Chetty, P. R. K.; Roufberg, Lew; Costogue, Ernest

    1991-01-01

    The TOPEX mission requirements which impact the power requirements and analyses are presented. A description of the electrical power system (EPS), including energy management and battery charging methods that were conceived and developed to meet the identified satellite requirements, is included. Analysis of the TOPEX EPS confirms that all of its electrical performance and reliability requirements have been met. The TOPEX EPS employs the flight-proven modular power system (MPS) which is part of the Multimission Modular Spacecraft and provides high reliability, abbreviated development effort and schedule, and low cost. An energy balance equation, unique to TOPEX, has been derived to confirm that the batteries will be completely recharged following each eclipse, under worst-case conditions. TOPEX uses three NASA Standard 50AH Ni-Cd batteries, each with 22 cells in series. The MPS contains battery charge control and protection based on measurements of battery currents, voltages, temperatures, and computed depth-of-discharge. In case of impending battery depletion, the MPS automatically implements load shedding.

  13. Guidance, Navigation, and Control System for Maneuverable Pico-Satellites Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A compact, low-power GN&C system is essential to the success of pico-satellite Automated Rendezvous and Docking (AR&D). Austin Satellite Design (ASD)...

  14. The Solar Power Satellite concept - Towards the future

    Science.gov (United States)

    Kraft, C. C., Jr.

    1979-01-01

    An evolutionary program phasing with respect to the development of a Solar Power Satellite (SPS) is considered, taking into account concept identification, concept evaluation, exploratory research, space technology projects, system development, and commercial operations. At the present time the concept evaluation phase of the program is underway. This phase is scheduled for completion in 1980. It will result in a recommendation as to whether the concept should be explored further and if so, in what manner. The recommendation will be based on technical feasibility, economic and environmental considerations, and comparisons with other potential systems of the future. It is premature to speculate on the conclusions and recommendations from the evaluation program as to whether the program should proceed to the next phase.

  15. A high-capacity aeronautical mobile satellite system

    Science.gov (United States)

    Sue, M. K.

    1987-01-01

    This paper describes a conceptual system design for a satellite-based aeronautical safety communications system capable of serving both general aviation aircraft and commercial aviation aircraft in the contiguous U.S. in the mid-1990s. The space segment is described, including satellite locations and coverage, spacecraft configuration, eclipse capability and stationkeeping, transponder design, and mass and power. The spacecraft mass and power budgets are given. The air mobile terminals, ground segment, and frequency plan and channelization are discussed, and the data rate, modulation/demodulation/coding, and channel spacing are considered. The message format, frequency control, system capacity, and system sensitivity are discussed.

  16. Study of chaos in chaotic satellite systems

    Science.gov (United States)

    Khan, Ayub; Kumar, Sanjay

    2018-01-01

    In this paper, we study the qualitative behaviour of satellite systems using bifurcation diagrams, Poincaré section, Lyapunov exponents, dissipation, equilibrium points, Kaplan-Yorke dimension etc. Bifurcation diagrams with respect to the known parameters of satellite systems are analysed. Poincaré sections with different sowing axes of the satellite are drawn. Eigenvalues of Jacobian matrices for the satellite system at different equilibrium points are calculated to justify the unstable regions. Lyapunov exponents are estimated. From these studies, chaos in satellite system has been established. Solution of equations of motion of the satellite system are drawn in the form of three-dimensional, two-dimensional and time series phase portraits. Phase portraits and time series display the chaotic nature of the considered system.

  17. Global navigation satellite systems and their applications

    CERN Document Server

    Madry, Scott

    2015-01-01

    Dr. Madry, one of the world's leading experts in the field, provides in a condensed form a quick yet comprehensive overview of satellite navigation. This book concisely addresses the latest technology, the applications, the regulatory issues, and the strategic implications of satellite navigation systems. This assesses the strengths and weaknesses of satellite navigation networks and review of all the various national systems now being deployed and the motivation behind the proliferation of these systems.

  18. Global telemedicine using INMARSAT satellite system

    Science.gov (United States)

    Mukhedkar, Dinkar; Laxminarayan, Swamy; Lambert Torres, Germano

    1990-06-01

    Departement of Electrical Engineering Escola Federal de Engenharia de Itajuba Itajuba Minas Gerais Brazil This paper describes a " medical satellite network" for long distance diagnosis. The network proposed will be composed by mobile medical laboratories two transmission stations and a satellite system. This network will allow to link two hospitals for emergency expert medical consultations. INMARSAT satellite system is investigated and a tradeoff is made between a land based I ink and a satellitecommunication link. 1.

  19. Satellite system considerations for computer data transfer

    Science.gov (United States)

    Cook, W. L.; Kaul, A. K.

    1975-01-01

    Communications satellites will play a key role in the transmission of computer generated data through nationwide networks. This paper examines critical aspects of satellite system design as they relate to the computer data transfer task. In addition, it discusses the factors influencing the choice of error control technique, modulation scheme, multiple-access mode, and satellite beam configuration based on an evaluation of system requirements for a broad range of application areas including telemetry, terminal dialog, and bulk data transmission.

  20. European sail tower SPS [Solar Power Satellite] concept

    Energy Technology Data Exchange (ETDEWEB)

    Seboldt, W.; Leipold, M.; Hanowski, N. [Institute of Space Sensor Technology and Planetary Exploration, Cologne (Germany). German Aerospace Center; Klimke, M. [HOPE Worldwide Deutschland, Berlin (Germany)

    2001-06-01

    Based on a DLR-study in 1998/99 on behalf of ESA/ESTEC called ''System Concepts, Architectures and Technologies for Space Exploration and Utilization (SE and U)'' a new design for an Earth-orbiting Solar Power Satellite (SPS) has been developed. The design is called ''European Sail Tower SPS'' and consists mainly of deplorable sail-like structures derived from the ongoing DLR/ESA solar sail technology development activity. Such an SPS satellite features an extremely light-weight and large tower-like orbital system and could supply Europe with significant amounts of electrical power generated by photovoltaic cells and subsequently transmitted to earth via microwaves. In order to build up the sail tower, 60 units - each consisting of a pair of square-shaped sails - are moved from LEO to GEO with electric propulsion and successively assembled in GEO robotically on a central strut. Each single sail has dimensions of 150 m x 150 m and is automatically deployed, using four diagonal lightweight carbon fiber (CFRP) booms which are initially rolled up on a central hub. The electric thrusters for the transport to GEO could also be used for orbit and attitude control of the assembled tower which has a total length of about 15 km and would be mainly gravity gradient stabilized. Employing thin film solar cell technology, each sail is used as a solar array and produces an electric power in orbit of about 3.7 MW{sub e}. A microwave antenna with a diameter of 1 km transmits the power to a 10 km rectenna on the ground. The total mass of this 450 MW SPS is about 2100 tons. First estimates indicate that the costs for one kWh delivered in this way could compete with present day energy costs, if launch costs would decrease by two orders of magnitude. Furthermore, mass production and large numbers of installed SPS systems must be assumed in order to lower significantly the production costs and to reduce the influence of the expensive technology

  1. ECS - The European Communication Satellite system

    Science.gov (United States)

    Wooster, C. B.

    1981-09-01

    The evolution of the European Communication Satellite system (ECS) is traced from feasibility studies in 1970 to the development and launch in 1978 of the Orbital Test Satellite (OTS) by the European Space Agency to prove the new satellite and radio transmission technology being used on ECS. This was followed by the establishment of 'Interim EUTELSAT' in 1979 as the organization to operate ECS. The satellite, which operates at 11/14 GHz, covers all the capitals in Europe via three spot beam antennas, supplemented by a 'Eurobeam' regional coverage antenna which extends the range to cover all of Europe and the Mediterranean basin. Telephony channels are transmitted digitally using time division multiple access (TDMA) with digital speech interpolation (DSI) to optimize satellite capacity. Television transmission is by analog FM over the Eurobeam antenna to North African as well as European capitals. System implications of TDMA operation are discussed, and the EUTELSAT policy for Special Services or satellite business systems is discussed.

  2. Study of chaos in chaotic satellite systems

    Indian Academy of Sciences (India)

    In this paper,we study the qualitative behaviour of satellite systems using bifurcation diagrams, Poincaré section, Lyapunov exponents, dissipation, equilibrium points, Kaplan–Yorke dimension etc. Bifurcation diagrams with respect to the known parameters of satellite systems are analysed. Poincaré sections with different ...

  3. High-Capacity Aeronautical Satellite Communication System

    Science.gov (United States)

    Sue, M. K.; Davarian, F.; Chan, H. W.

    1988-01-01

    System primarily designed to serve aircraft en route. Provides 5,093 forward communication channels and 7,093 reverse channels. This allocation of forward and reverse channels reflects anticipated communication traffic patterns. East and west satellites relay messages from ground to airplanes and from airplanes to ground. Use of two satellites instead of one increases availability of services and reliability of system.

  4. Global Navigation Satellite System and Augmentation

    Indian Academy of Sciences (India)

    Global Navigation Satellite System and Augmentation. K C T Swamy. Dr. K C T Swamy is an. Associate Professor in ECE at. G Pullaih College of. Engineering and Technology,. Kurnool, Andhra Pradesh. His research interests are global navigation satellite system and antennas. He has been carrying out research in.

  5. Satellite multiple access systems for mobile communication

    Science.gov (United States)

    Lewis, J. L.

    1979-01-01

    This paper considers multiple access techniques for a mobile radio system which incorporates a geosynchronous orbiting satellite repeater through which mobile terminals communicate. The communication capacities of FDMA, TDMA and CDMA systems are examined for a 4 MHz bandwidth system to serve up to 10,000 users. An FDMA system with multibeam coverage is analyzed in detail. The system includes an order-wire network for demand-access control and reassignment of satellite channels. Satellite and terminal configurations are developed to a block diagram level and system costs and implementation requirements are discussed.

  6. Solar Power Satellite Thermal Control Approach

    Science.gov (United States)

    Sacchi, E.; Cassisa, G.; Gottero, M.

    2004-12-01

    The concept of generating solar power in space and transmitting it to earth or any other desired destination such as a planet, moon, or to charge a space vehicle via microwaves, stems from a wide variety of human needs and necessities. It is now a well-known fact that world population increases at a very rapid rate, nearly 80 millions or more per year, and the world-wide energy demand seems to double in the course of the present century. If technology has to advance at the present rate, in phase with high living standards, energy growth must not lag behind. These estimates are based on the population growth rate in the developing countries and the simultaneous increase in per capita energy consumption in these countries, coupled with economical boost. In most of the underdeveloped countries energy needs are of small scales, faraway from the power distribution line and can be very easily satisfied by harnessing solar energy. Furthermore, the Earth temperature has increased by 0.5° to 1° F during the past century. This rise in temperature is believed to have been caused by the use of oil, coal, and natural gas (fossil fuels) for transportation and energy production. Actually, fossil fuel combustion-based power plants are the dominant sources for energy demands. Therefore, increased power production will accelerate the production of greenhouse gases (predominantly CO2). To cope with their energy needs, countries could be engaged in the use of nuclear energy, which could accelerate the diffusion of nuclear arms as a bye- product.

  7. Analysis of multiple access techniques in multi-satellite and multi-spot mobile satellite systems

    Science.gov (United States)

    Corazza, Giovanni E.; Ferrarelli, Carlo; Vatalaro, Francesco

    1995-01-01

    In this paper the analysis of mobile satellite systems adopting constellations of multi-spot satellites over non-geostationary orbits is addressed. A link design procedure is outlined, taking into account system spectrum efficiency, probability of bit error and outage probability. A semi-analytic approach to the evaluation of outage probability in the presence of fading and imperfect power control is described, and applied to single channel per carrier (SCPC) and code division multiple access (CDMA) techniques. Some results are shown for the Globalstar, Iridium and Odyssey orbital configurations.

  8. Solar power satellite rectenna design study: Directional receiving elements and parallel-series combining analysis

    Science.gov (United States)

    Gutmann, R. J.; Borrego, J. M.

    1978-01-01

    Rectenna conversion efficiencies (RF to dc) approximating 85 percent were demonstrated on a small scale, clearly indicating the feasibility and potential of efficiency of microwave power to dc. The overall cost estimates of the solar power satellite indicate that the baseline rectenna subsystem will be between 25 to 40 percent of the system cost. The directional receiving elements and element extensions were studied, along with power combining evaluation and evaluation extensions.

  9. Satellite Sanitary Systems in Kampala, Uganda

    NARCIS (Netherlands)

    Letema, S.; Van Vliet, B.; Van Lier, J.B.

    2011-01-01

    Satellite sewage collection and treatment systems have been independently developed and managed in East African cities outside the centrally planned and sewered areas. A satellite approach is a promising provisioning option parallel to public sewerage for middle- and high-income residential areas,

  10. Electric power systems

    CERN Document Server

    Weedy, B M; Jenkins, N; Ekanayake, J B; Strbac, G

    2012-01-01

    The definitive textbook for Power Systems students, providing a grounding in essential power system theory while also focusing on practical power engineering applications. Electric Power Systems has been an essential book in power systems engineering for over thirty years. Bringing the content firmly up-to-date whilst still retaining the flavour of Weedy's extremely popular original, this Fifth Edition has been revised by experts Nick Jenkins, Janaka Ekanayake and Goran Strbac. This wide-ranging text still covers all of the fundamental power systems subjects but is now e

  11. Using a single chip FEC for satellite systems

    Science.gov (United States)

    Onotera, L.; Nicholson, R.

    Information transmission over digital satellite communication channels is primarily power-limited, where forward error correction (FEC) codes can significantly improve performance. The use of FEC can reduce the required signal to noise ratio to sustain a given bit error rate. The use of forward error correction has become a standard part of present day digital satellite communication systems. Means of applying a new very large scale integration (VLSI) integrated circuit FEC chip into various kinds of systems is discussed. Specifically, some of the considerations and tradeoffs in continuous single channel per carrier (SCPC), multiple channels per carrier (MCPC), and burst systems are related to the new design. This new chip will provide an effective space and cost advantage by inserting a powerful forward error correction capability into most types of satellite digital communication links.

  12. Concept and implementation of the Globalstar mobile satellite system

    Science.gov (United States)

    Schindall, Joel

    1995-01-01

    Globalstar is a satellite-based mobile communications system which provides quality wireless communications (voice and/or data) anywhere in the world except the polar regions. The Globalstar system concept is based upon technological advancements in Low Earth Orbit (LEO) satellite technology and in cellular telephone technology, including the commercial application of Code Division Multiple Access (CDMA) technologies. The Globalstar system uses elements of CDMA and Frequency Division Multiple Access (FDMA), combined with satellite Multiple Beam Antenna (MBA) technology and advanced variable-rate vocoder technology to arrive at one of the most efficient modulation and multiple access systems ever proposed for a satellite communications system. The technology used in Globalstar includes the following techniques in obtaining high spectral efficiency and affordable cost per channel: (1) CDMA modulation with efficient power control; (2) high efficiency vocoder with voice activity factor; (3) spot beam antenna for increased gain and frequency reuse; (4) weighted satellite antenna gain for broad geographic coverage; (5) multisatellite user links (diversity) to enhance communications reliability; and (6) soft hand-off between beams and satellites. Initial launch is scheduled in 1997 and the system is scheduled to be operational in 1998. The Globalstar system utilizes frequencies in L-, S- and C-bands which have the potential to offer worldwide availability with authorization by the appropriate regulatory agencies.

  13. Telematics and satellites. Part 1: Information systems

    Science.gov (United States)

    Burke, W. R.

    1980-06-01

    Telematic systems are identified and described. The applications are examined emphasizing the role played by satellite links. The discussion includes file transfer, examples of distributed processor systems, terminal communication, information retrieval systems, office information systems, electronic preparation and publishing of information, electronic systems for transfer of funds, electronic mail systems, record file transfer characteristics, intra-enterprise networks, and inter-enterprise networks.

  14. Power Plant Systems Analysis

    Science.gov (United States)

    Williams, J. R.; Yang, Y. Y.

    1973-01-01

    Three basic thermodynamic cycles of advanced nuclear MHD power plant systems are studied. The effect of reactor exit temperature and space radiator temperature on the overall thermal efficiency of a regenerative turbine compressor power plant system is shown. The effect of MHD pressure ratio on plant efficiency is also described, along with the dependence of MHD power output, compressor power requirement, turbine power output, mass flow rate of H2, and overall plant efficiency on the reactor exit temperature for a specific configuration.

  15. Power system relaying

    CERN Document Server

    Horowitz, Stanley H; Niemira, James K

    2013-01-01

    The previous three editions of Power System Relaying offer comprehensive and accessible coverage of the theory and fundamentals of relaying and have been widely adopted on university and industry courses worldwide. With the third edition, the authors have added new and detailed descriptions of power system phenomena such as stability, system-wide protection concepts and discussion of historic outages. Power System Relaying, 4th Edition continues its role as an outstanding textbook on power system protection for senior and graduate students in the field of electric power engineering and a refer

  16. Solar power satellite offshore rectenna study

    Science.gov (United States)

    1980-01-01

    It was found that an offshore rectenna is feasible and cost competitive with land rectennas but that the type of rectenna which is suitable for offshore use is quite different from that specified in the present reference system. The result is a nonground plane design which minimizes the weight and greatly reduces the number of costly support towers. This preferred design is an antenna array consisting of individually encapsulated dipoles with reflectors supported on feed wires. Such a 5 GW rectenna could be built at a 50 m water depth site to withstand hurricane and icing conditions for a one time cost of 5.7 billion dollars. Subsequent units would be about 1/3 less expensive. The east coast site chosen for this study represents an extreme case of severe environmental conditions. More benign and more shallow water sites would result in lower costs. Secondary uses such as mariculture appear practical with only minor impact on the rectenna design. The potential advantages of an offshore rectenna, such as no land requirements, removal of microwave radiation from populated areas and minimal impact on the local geopolitics argue strongly that further investigation of the offshore rectenna should be vigorously pursued.

  17. Shipboard electrical power systems

    CERN Document Server

    Patel, Mukund R

    2011-01-01

    Shipboard Electrical Power Systems addresses new developments in this growing field. Focused on the trend toward electrification to power commercial shipping, naval, and passenger vessels, this book helps new or experienced engineers master cutting-edge methods for power system design, control, protection, and economic use of power. Provides Basic Transferable Skills for Managing Electrical Power on Ships or on LandThis groundbreaking book is the first volume of its kind to illustrate optimization of all aspects of shipboard electrical power systems. Applying author Mukund Patel's rare combina

  18. Power system health analysis

    Energy Technology Data Exchange (ETDEWEB)

    Billinton, Roy; Fotuhi-Firuzabad, Mahmud; Aboreshaid, Saleh

    1997-01-01

    This paper presents a technique which combines both probabilistic indices and deterministic criteria to reflect the well-being of a power system. This technique permits power system planners, engineers and operators to maximize the probability of healthy operation as well as minimizing the probability of risky operation. The concept of system well-being is illustrated in this paper by application to the areas of operating reserve assessment and composite power system security evaluation.

  19. Satellite Application for Disaster Management Information Systems

    Science.gov (United States)

    Okpanachi, George

    Abstract Satellites are becoming increasingly vital to modern day disaster management activities. Earth observation (EO) satellites provide images at various wavelengths that assist rapid-mapping in all phases of the disaster management cycle: mitigation of potential risks in a given area, preparedness for eventual disasters, immediate response to a disaster event, and the recovery/reconstruction efforts follo wing it. Global navigation satellite systems (GNSS) such as the Global Positioning System (GPS) assist all the phases by providing precise location and navigation data, helping manage land and infrastructures, and aiding rescue crews coordinate their search efforts. Effective disaster management is a complex problem, because it involves many parameters, which are usually not easy to measure and even identify: Analysis of current situation, planning, optimum resource management, coordination, controlling and monitoring current activities and making quick and correct decisions are only some of these parameters, whose complete list is very long. Disaster management information systems (DMIS) assist disaster management to analyse the situation better, make decisions and suggest further actions following the emergency plans. This requires not only fast and thorough processing and optimization abilities, but also real-time data provided to the DMIS. The need of DMIS for disaster’s real-time data can be satisfied by small satellites data utilization. Small satellites can provide up-to-data, plus a better media to transfer data. This paper suggests a rationale and a framework for utilization of small Satellite data by DMIS. DMIS should be used ‘’before’’, ‘’during’’ and ‘’after’’ the disasters. Data provided by the Small Satellites are almost crucial in any period of the disasters, because early warning can save lives, and satellite data may help to identify disasters before they occur. The paper also presents’ ‘when’’,

  20. A Lunar Mission to Create a Constellation of Space Solar Power Satellites as a Precursor to Industrial Establishment, Resource Extraction, and Colonization

    Science.gov (United States)

    Bergsrud, C. M.; Straub, J.

    2014-06-01

    This paper provides an overview of a system of space solar power satellites (SSPSs) to service lunar science, mining and manufacturing operations. The SSPS system will provide power to enable a new paradigm of lunar and Moon-based exploration.

  1. Economical space power systems

    Science.gov (United States)

    Burkholder, J. H.

    1980-01-01

    A commercial approach to design and fabrication of an economical space power system is investigated. Cost projections are based on a 2 kW space power system conceptual design taking into consideration the capability for serviceability, constraints of operation in space, and commercial production engineering approaches. A breakdown of the system design, documentation, fabrication, and reliability and quality assurance estimated costs are detailed.

  2. Optimization in power systems

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Geraldo R.M. da [Sao Paulo Univ., Sao Carlos, SP (Brazil). Escola de Engenharia

    1994-12-31

    This paper discusses, partially, the advantages and the disadvantages of the optimal power flow. It shows some of the difficulties of implementation and proposes solutions. An analysis is made comparing the power flow, BIGPOWER/CESP, and the optimal power flow, FPO/SEL, developed by the author, when applied to the CEPEL-ELETRONORTE and CESP systems. (author) 8 refs., 5 tabs.

  3. Space Nuclear Power Systems

    Science.gov (United States)

    Houts, Michael G.

    2012-01-01

    Fission power and propulsion systems can enable exciting space exploration missions. These include bases on the moon and Mars; and the exploration, development, and utilization of the solar system. In the near-term, fission surface power systems could provide abundant, constant, cost-effective power anywhere on the surface of the Moon or Mars, independent of available sunlight. Affordable access to Mars, the asteroid belt, or other destinations could be provided by nuclear thermal rockets. In the further term, high performance fission power supplies could enable both extremely high power levels on planetary surfaces and fission electric propulsion vehicles for rapid, efficient cargo and crew transfer. Advanced fission propulsion systems could eventually allow routine access to the entire solar system. Fission systems could also enable the utilization of resources within the solar system.

  4. Electrostatic protection of the Solar Power Satellite and rectenna

    Science.gov (United States)

    Freeman, J. W.; Few, A. A., Jr.; Reiff, P. H.; Cooke, D.; Bohannon, J.; Haymes, B.

    1979-01-01

    Several features of the interactions of the solar power satellite (SPS) with its space environment were examined theoretically. The voltages produced at various surfaces due to space plasmas and the plasma leakage currents through the kapton and sapphire solar cell blankets were calculated. At geosynchronous orbit, this parasitic power loss is only 0.7%, and is easily compensated by oversizing. At low-Earth orbit, the power loss is potentially much larger (3%), and anomalous arcing is expected for the EOTV high voltage negative surfaces. Preliminary results of a three dimensional self-consistent plasma and electric field computer program are presented, confirming the validity of the predictions made from the one dimensional models. Magnetic shielding of the satellite, to reduce the power drain and to protect the solar cells from energetic electron and plasma ion bombardment is considered. It is concluded that minor modifications can allow the SPS to operate safely and efficiently in its space environment. The SPS design employed in this study is the 1978 MSFC baseline design utilizing GaAs solar cells at CR-2 and an aluminum structure.

  5. Optimization technique for improved microwave transmission from multi-solar power satellites

    Energy Technology Data Exchange (ETDEWEB)

    Arndt, G.D.; Kerwin, E.M.

    1982-08-01

    An optimization technique for generating antenna illumination tapers allows improved microwave transmission efficiencies from proposed solar power satellite (SPS) systems and minimizes sidelobe levels to meet preset environmental standards. The cumulative microwave power density levels from 50 optimized SPS systems are calculated at the centroids of each of the 3073 counties in the continental United States. These cumulative levels are compared with Environmental Protection Agency (EPA) measured levels of electromagnetic radiation in seven eastern cities. Effects of rectenna relocations upon the power levels/population exposure rates are also studied.

  6. Power system state estimation

    CERN Document Server

    Ahmad, Mukhtar

    2012-01-01

    State estimation is one of the most important functions in power system operation and control. This area is concerned with the overall monitoring, control, and contingency evaluation of power systems. It is mainly aimed at providing a reliable estimate of system voltages. State estimator information flows to control centers, where critical decisions are made concerning power system design and operations. This valuable resource provides thorough coverage of this area, helping professionals overcome challenges involving system quality, reliability, security, stability, and economy.Engineers are

  7. Remote Synchronization Experiments for Quasi-Senith Satellite System Using Current Geostationary Satellites

    Directory of Open Access Journals (Sweden)

    Toshiaki Iwata

    2010-01-01

    Full Text Available The remote synchronization system for the onboard crystal oscillator (RESSOX realizes accurate synchronization between an atomic clock at a ground station and the QZSS onboard crystal oscillator, reduces overall cost and satellite power consumption, as well as onboard weight and volume, and is expected to have a longer lifetime than a system with onboard atomic clocks. Since a QZSS does not yet exist, we have been conducting synchronization experiments using geostationary earth orbit satellites (JCSAT-1B or Intelsat-4 to confirm that RESSOX is an excellent system for timing synchronization. JCSAT-1B, the elevation angle of which is 46.5 degrees at our institute, is little affected by tropospheric delay, whereas Intelsat-4, the elevation angle of which is 7.9 degrees, is significantly affected. The experimental setup and the results of uplink experiments and feedback experiments using mainly Intelsat-4 are presented. The results show that synchronization within 10 ns is realized.

  8. Energy Balance and Power Performance Analysis for Satellite in Low Earth Orbit

    Directory of Open Access Journals (Sweden)

    Sung-Soo Jang

    2010-09-01

    Full Text Available The electrical power system (EPS of Korean satellites in low-earth-orbit is designed to achieve energy balance based on a one-orbit mission scenario. This means that the battery has to be fully charged at the end of a one-orbit mission. To provide the maximum solar array (SA power generation, the peak power tracking (PPT method has been developed for a spacecraft power system. The PPT is operated by a software algorithm, which tracks the peak power of the SA and ensures the battery is fully charged in one orbit. The EPS should be designed to avoid the stress of electronics in order to handle the main bus power from the SA power. This paper summarizes the results of energy balance to achieve optimal power sizing and the actual trend analysis of EPS performance in orbit. It describes the results of required power for the satellite operation in the worst power conditions at the end-of-life, the methods and input data used in the energy balance, and the case study of energy balance analyses for the normal operation in orbit. Both 10:35 AM and 10:50 AM crossing times are considered, so the power performance in each case is analyzed with the satellite roll maneuver according to the payload operation concept. In addition, the data transmission to the Korea Ground Station during eclipse is investigated at the local-time-ascending-node of 11:00 AM to assess the greatest battery depth-of-discharge in normal operation.

  9. Frequency assignment for satellite multilevel SCPC systems

    Science.gov (United States)

    Lau, Yuk-Hong; Skellern, D. J.

    1991-01-01

    A method for searching the frequency assignment for satellite multilevel SCPC systems is proposed based on the method for the case of equal carrier systems. The quality of assignment improves significantly on published results. The method requires only very short computations times.

  10. Electrostatic protection of the solar power satellite and rectenna. Part 1: Protection of the solar power satellite

    Science.gov (United States)

    1980-01-01

    Several features of the interactions of the Solar Power Satellite (SPS) with its space environment are examined theoretically. The voltages produced at various surfaces due to space plasmas and the plasma leakage currents through the kapton and sapphire solar cell blankets are calculated. At geosynchronous orbit, this parasitic power loss is only 0.7%, and is easily compensated by oversizing. At low Earth orbit, the power loss is potentially much larger (3%), and anomalous arcing is expected for the EOTV high voltage negative surfaces. Preliminary results of a three dimensional self consistent plasma and electric field computer program are presented, confirming the validity of the predictions made from the one dimensional models. Lastly, magnetic shielding of the satellite is considered to reduce the power drain and to protect the solar cells from energetic electron and plasma ion bombardment. It is concluded that minor modifications can allow the SPS to operate safely and efficiently in its space environment. Subsequent design changes will substantially alter the basic conclusions.

  11. An Australian thin route satellite communications system

    Science.gov (United States)

    Zacher, G. H.

    The design of a ground terminal for thin-route SCPC satellite digital telephony (at 32 kb/s) and data transmission (at up to 9.6 kb/s, encoded for error protection) is presented. The operation of the terminal is described, and a block diagram and a table of specifications are provided. The components of the indoor unit (voice and data module, data module, channel-control module, terminal controller, modulator/synthesizer, demodulator/synthesizer, pilot receiver, power supply, and digital switch) and the outdoor unit (up/down-converter, SHF local oscillator, solid-state power amplifier, forward power detector, combiner, transmit reject filter, low-noise amplifier, TVRO converter, and power supply and interface module are listed and briefly characterized.

  12. Advantages of Hybrid Global Navigation Satellite Systems

    Directory of Open Access Journals (Sweden)

    Asim Bilajbegović

    2007-05-01

    Full Text Available In a decision-making situation, what kind of GPS equipment to purchase, one always has a dilemma, tobuy hybrid (GPS+GLONASS or only GPS receivers? In the case of completeness of the GLONASS satellite system, this dilemma probably would not have existed. The answer to this dilemma is given in the present paper, but for the constellation of the GLONASS satellites in summer 2006 (14 satellites operational. Due to the short operational period of these satellites (for example GLONASS-M, 5 years, and not launching new ones, at this moment (February 25, 2007, only 10 satellites are operational. For the sake of research and giving answers to these questions, about 252 RTK measurements have been done using (GPS and GNSS receivers, on points with different obstructions of horizon. Besides that, initialisation time has been investigated for both systems from about 480 measurements, using rover's antenna with metal cover, during a time interval of 0.5, 2 and 5 seconds. Moreover, accuracy, firmware declared accuracy and redundancy of GPS and GNSS RTK measurements have been investigating.  

  13. Recent Developments of Regenerative Fuel Cell Systems for Satellites

    Science.gov (United States)

    Farnes, Jarle; Vik, Arild; Bokach, Dmitry; Svendsen, Tjalve; Schautz, Max; Geneste, Xavier

    2014-08-01

    Next generation telecommunication satellites will demand increasingly more power. Power levels of 30 kW or more are foreseen for the next 10 years. Battery technology that can sustain 30 kW for eclipse lengths of up to 72 minutes will represent a major impact on the total mass of the satellite, even with new Li-ion battery technologies. Regenerative fuel cell systems (RFCS) were identified years ago as a possible alternative to rechargeable batteries. CMR Prototech has investigated this technology in a series of projects initiated by ESA focusing on both the essential fuel cell technology, demonstration of cycle performance of a RFCS, corresponding to 15 years in orbit, as well as the very important reactants storage systems. This paper includes the main results from this work from the past 5 years.

  14. A New Generation of Electrical Power Supply for Telecom Satellites

    Science.gov (United States)

    Bouhours, Gilles; Asplanato, Remi; Rebuffel, Christophe; Pasquet, Jean-Marie; Bardin, Bertrand; Deplus, Nicolas; Lempereur, Vincent

    2014-08-01

    This paper presents the main features of the new power subsystem generation for the Thales Alenia Space (TAS) Spacebus platforms.All its components (Solar Array, Solar Array Drive Mechanism, Power Conditioning Unit and Lithium-Ion batteries) have been upgraded, taking advantage of the latest available technologies. The modularity has been improved to perfectly match the sizing of each unit to the satellite power level requirement. These two improvements lead to optimal mass and cost over the whole power range.In addition, the customer benefits from a fully automatic operation of the subsystem, including redundancy, making the ground station workload negligible, even during eclipse periods. Finally, the capability to support any type of payload has been further improved, in terms of overall power level and operating modes. Payload pulsed operation capability has been especially increased to support all anticipated mission requirements. In parallel to the PCU hardware, a detailed electrical model has also been developed and correlated to analyse the regulation performance in any nominal or degraded mode. An extensive set of tests provides a verification of performances and interfaces, hardware as well as software.This paper will first describe the main requirements considered in this development. Then, the architecture will be detailed, showing how the requirements have been fulfilled. The design of each unit will be shortly presented, and finally the correlation between the regulation analysis model and the EQM measurements will be illustrated.

  15. Flexible power and bandwidth allocation in mobile satellites

    Science.gov (United States)

    Keyes, L. A.

    The introduction of L-band mobile communication services by spot beam satellites creates a payload design challenge due to uncertainty in the location and size of the new market to be served. A combination of payload technologies that allow a flexible allocation of power and bandwidth to any portion of the coverage area is described. Power flexibility is achieved by a novel combination of a low-level beam-forming network and a matrix power module which ensures equal sharing of power among individual amplifiers. This eliminates the loss of efficiency and increased mass when an amplifier associated with a beam must be over-designed to meet uncertainties in power distribution between beams. Flexibility in allocation of bandwidth to beams is achieved by intermediate frequency subdivision of the L-band service categories defined by ITU. These spectral subdivisions are assigned to beams by an IF interconnect matrix having beam ports and filter ports as inputs and outputs, respectively. Two such filter switch matrices are required, one for the inbound L-band to feeder link transponder, and one for the outbound feeder link to L-band transponder.

  16. Study of chaos in chaotic satellite systems

    Indian Academy of Sciences (India)

    Ayub Khan

    2017-12-27

    Dec 27, 2017 ... External disturbances may include aerodynamics moment, sunlight pressure torques, grav- ity gradient torque and magnetic moment, while inter- nal disturbance includes parameters' uncertainties [1]. When disturbances occur in the drive satellite system, then controlling the relative error is directly associ-.

  17. Environmental assessment for the Satellite Power System (SPS): studies of honey bees exposed to 2. 45 GHz continuous-wave electromagnetic energy

    Energy Technology Data Exchange (ETDEWEB)

    Gary, N E; Westerdahl, B B

    1980-12-01

    A system for small animal exposure was developed for treating honey bees, Apis mellifera L., in brood and adult stages, with 2.45 GHz continuous wave microwaves at selected power densities and exposure times. Post-treatment brood development was normal and teratological effects were not detected at exposures of 3 to 50 mw/cm/sup 2/ for 30 minutes. Post-treatment survival, longevity, orientation, navigation, and memory of adult bees were also normal after exposures of 3 to 50 mw/cm/sup 2/ for 30 minutes. Post-treatment longevity of confined bees in the laboratory was normal after exposures of 3 to 50 mw/cm/sup 2/ for 24 hours. Thermoregulation of brood nest, foraging activity, brood rearing, and social interaction were not affected by chronic exposure to 1 mw/cm/sup 2/ during 28 days. In dynamic behavioral bioassays the frequency of entry and duration of activity of unrestrained, foraging adult bees was identical in microwave-exposed (5 to 40 mw/cm/sup 2/) areas versus control areas.

  18. High Speed Inter-Satellite Communication System by Incorporating Hybrid Polarization-Wavelength Division Multiplexing Scheme

    Science.gov (United States)

    Chaudhary, Sushank; Chaudhary, Neha; Sharma, Saurabh; Choudhary, BC

    2017-12-01

    Inter-Satellite communication is one of remarkable technologies that can be used to communicate between satellites. This work is focused to carry out the investigations of polarization scheme by incorporating dense wavelength division multiplexing (DWDM) scheme in inter-satellite communication system. A 20×6 Gbps data are transported over inter-satellite optical link having span of 5,000 km to realize the total data transmission of 120 Gbps. Moreover, results are also reported with the effect of RZ and NRZ modulation schemes. The performance of proposed inter-satellite communication link is measured in terms of signal-to-noise ratio, received power and eye diagrams.

  19. Satellite Power System (SPS) laser studies. Volume 2: Meteorological effects on laser beam propagation and direct solar pumped lasers for the SPS

    Science.gov (United States)

    Beverly, R. E., III

    1980-01-01

    The primary emphasis of this research activity was to investigate the effect of the environment on laser power transmission/reception from space to ground. Potential mitigation techniques to minimize the environment effect by a judicious choice of laser operating parameters was investigated. Using these techniques, the availability of power at selected sites was determined using statistical meteorological data for each site.

  20. Lunar solar-power system: Commerical power

    Science.gov (United States)

    Criswell, David R.

    1995-01-01

    The proposed Lunar Solar-Power (LSP) System collects solar power on the moon. The power is converted to beams of microwaves and transmitted to fields of microwave receivers (rectennas) on Earth that provide electric power to local and regional power grids. LSP can provide abundant and low cost energy to Earth to sustain several centuries of economic development on Earth and in space. The LSP power is independent of the biosphere (global warming, weather, and climate changes), independent of reserves of terrestrial non-renewable and renewable power, and is low in total costs compared to other large scale power systems. Efficient utilization of the moon as a platform for solar collectors/power transmitters and as a source of building materials is key to the development and emplacement of the LSP System. LSP development costs can be significantly reduced by the establishment of a manned lunar base.

  1. Solar Powered Refrigeration System

    Science.gov (United States)

    Ewert, Michael K. (Inventor); Bergeron, David J., III (Inventor)

    2002-01-01

    A solar powered vapor compression refrigeration system is made practicable with thermal storage and novel control techniques. In one embodiment, the refrigeration system includes a photovoltaic panel, a variable speed compressor, an insulated enclosure, and a thermal reservoir. The photovoltaic (PV) panel converts sunlight into DC (direct current) electrical power. The DC electrical power drives a compressor that circulates refrigerant through a vapor compression refrigeration loop to extract heat from the insulated enclosure. The thermal reservoir is situated inside the insulated enclosure and includes a phase change material. As heat is extracted from the insulated enclosure, the phase change material is frozen, and thereafter is able to act as a heat sink to maintain the temperature of the insulated enclosure in the absence of sunlight. The conversion of solar power into stored thermal energy is optimized by a compressor control method that effectively maximizes the compressor's usage of available energy. A capacitor is provided to smooth the power voltage and to provide additional current during compressor start-up. A controller monitors the rate of change of the smoothed power voltage to determine if the compressor is operating below or above the available power maximum, and adjusts the compressor speed accordingly. In this manner, the compressor operation is adjusted to convert substantially all available solar power into stored thermal energy.

  2. Electrical failure on satellite's power harnesses due to small debris impacts

    OpenAIRE

    Hirai, Takayuki; Higashide, Masumi; Kurosaki, Hirohisa; Kawakita, Shirou; Mando, Yuki; Yamaguchi, Shota; Tanaka, Koji; 平井, 隆之; 東出, 真澄; 黒崎, 裕久; 川北, 史朗; 万戸, 雄輝; 山口, 翔太; 田中, 孝治

    2017-01-01

    Loss of satellite functions due to space debris collisions includes not only mechanical failures like breakup of satellite main bodies but also electric failures such as decrease in power supply from solar arrays and power harnesses. In particular, the past hypervelocity impact experiments suggest that sustained arcs and resulting ground faults on the power harnesses could be triggered by impacts of tiny space debris particles smaller than 1 mm which constantly impact on satellite surfaces. T...

  3. Wind power in modern power systems

    DEFF Research Database (Denmark)

    Chen, Zhe

    2013-01-01

    In recent years, wind power is experiencing a rapid growth, and large-scale wind turbines/wind farms have been developed and connected to power systems. However, the traditional power system generation units are centralized located synchronous generators with different characteristics compared...... with wind turbines. This paper presents an overview of the issues about integrating large-scale wind power plants into modern power systems. Firstly, grid codes are introduced. Then, the main technical problems and challenges are presented. Finally, some possible technical solutions are discussed....

  4. Power Systems Development Facility

    Energy Technology Data Exchange (ETDEWEB)

    Southern Company Services

    2009-01-31

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, has routinely demonstrated gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This final report summarizes the results of the technology development work conducted at the PSDF through January 31, 2009. Twenty-one major gasification test campaigns were completed, for a total of more than 11,000 hours of gasification operation. This operational experience has led to significant advancements in gasification technologies.

  5. Power system reliability

    Energy Technology Data Exchange (ETDEWEB)

    Allan, R.; Billinton, Roy (Manchester Univ. (United Kingdom). Inst. of Science and Technology Saskatchewan Univ., Saskatoon, SK (Canada))

    1994-01-01

    The function of an electric power system is to satisfy the system load as economically as possible and with a reasonable assurance of continuity or reliability. The application of quantitative reliability techniques in planning and operation has increased considerably in the past few years. Reliability evaluation is now becoming an integral part of the economic comparison of alternatives (6 figures, 17 references) (Author)

  6. Initial assessment: electromagnetic compatibility aspects of proposed SPS Microwave Power Transmission System (MPTS) operations

    Energy Technology Data Exchange (ETDEWEB)

    1978-02-01

    An analysis of major concerns with regard to the effects on radio and electronic systems by the proposed Microwave Power Transmission System for transmitting power from a satellite solar power station to earth is presented. (LCL)

  7. Environmental impacts of nonfusion power systems. [Data on environmental effects of all power sources that may be competitive with fusion reactor power plants

    Energy Technology Data Exchange (ETDEWEB)

    Brouns, R.J.

    1976-09-01

    Data were collected on the environmental effects of power sources that may be competitive with future fusion reactor power plants. Data are included on nuclear power plants using HTGR, LMBR, GCFR, LMFBR, and molten salt reactors; fossil-fuel electric power plants; geothermal power plants; solar energy power plants, including satellite-based solar systems; wind energy power plants; ocean thermal gradient power plants; tidal energy power plants; and power plants using hydrogen and other synthetic fuels as energy sources.

  8. Single-satellite global positioning system

    Science.gov (United States)

    Bagrov, Alexander V.; Leonov, Vladislav A.; Mitkin, Alexander S.; Nasyrov, Alexander F.; Ponomarenko, Andreu D.; Pichkhadze, Konstantin M.; Sysoev, Valentin K.

    2015-12-01

    A new concept of a global positioning support system, based on only one satellite, was offered. Unlike all other GPS and GLONASS satellite systems that are in use, within the offered modification, all metrological support is provided by on-board measurements, which means, that it does not need any ground support of coordinate measurements or orbital characteristics of the satellite system. The cosmic-based angle-measuring instrument measures the arcs lengths between the measured ground-points, that are marked with light beacons, and navigation stars. Each measurement takes approximately 0.04 s, with the precision of 1 mm in recalculation to ground-relations. Long series of arc measurements between different objects on the ground and in the sky enable the solution of both determination of geodesic coordinates of the measured points and position of the spacecraft during the measuring process by using geodesic equation methods. In addition, it enables the qualification of the geopotential guaranties. The offered scheme will be used for the determination of the frame of selenocentric coordinates during the "Luna-Globe" and "Luna-Resource" missions for precise navigation of landing modules and maybe will be used for precise gridding of the Martian surface.

  9. Satellite Telemetry and Command using Big LEO Mobile Telecommunications Systems

    Science.gov (United States)

    Huegel, Fred

    1998-01-01

    Various issues associated with satellite telemetry and command using Big LEO mobile telecommunications systems are presented in viewgraph form. Specific topics include: 1) Commercial Satellite system overviews: Globalstar, ICO, and Iridium; 2) System capabilities and cost reduction; 3) Satellite constellations and contact limitations; 4) Capabilities of Globalstar, ICO and Iridium with emphasis on Globalstar; and 5) Flight transceiver issues and security.

  10. Study for HDR cross-link for formation flight satellite systems

    Science.gov (United States)

    Nishinaga, Nozomu; Takayama, Yoshihisa; Takahashi, Takashi; Ogawa, Yasuo; Kubooka, Toshihiro; Umehara, Hiroaki

    2003-07-01

    In this paper we studied about optical and millimeter radio wave cross-link for formation flight communication satellite system in a geostationary orbit. In formation flight system, since the distance among the satellites becomes short compared with the conventional inter satellite comunication link, the size and the weight of the communication system can be reduced. If the high data rate cross-link among the satellites which is equal to the whole transponder bandwidth can be established, the functionally distributed communications satellite system can be constructed. Then, by exchanging a part of the satellite system without the physical contact, in other words, by exchange some old satellites and new ones, the fully reconfigurable and long lifetime (from the point of the function) satellite communication system which can follow the paradigm shift in the terrestrial communications technology can be realize. On the other hand, however, since the maximum of relative angle error among two satellites is enlarged, the tracking becomes difficult. In this study, it turns the electric power which is gotten from the shortening the distance to making beam width large. Here, we examine communication among two satellites (10Km distance) where the data rate is 1Gbps.

  11. The NOAA Satellite Observing System Architecture Study

    Science.gov (United States)

    Volz, Stephen; Maier, Mark; Di Pietro, David

    2016-01-01

    NOAA is beginning a study, the NOAA Satellite Observing System Architecture (NSOSA) study, to plan for the future operational environmental satellite system that will follow GOES and JPSS, beginning about 2030. This is an opportunity to design a modern architecture with no pre-conceived notions regarding instruments, platforms, orbits, etc. The NSOSA study will develop and evaluate architecture alternatives to include partner and commercial alternatives that are likely to become available. The objectives will include both functional needs and strategic characteristics (e.g., flexibility, responsiveness, sustainability). Part of this study is the Space Platform Requirements Working Group (SPRWG), which is being commissioned by NESDIS. The SPRWG is charged to assess new or existing user needs and to provide relative priorities for observational needs in the context of the future architecture. SPRWG results will serve as input to the process for new foundational (Level 0 and Level 1) requirements for the next generation of NOAA satellites that follow the GOES-R, JPSS, DSCOVR, Jason-3, and COSMIC-2 missions.

  12. SPS-ALPHA: The First Practical Solar Power Satellite via Arbitrarily Large PHased Array Project

    Data.gov (United States)

    National Aeronautics and Space Administration — SPS-ALPHA (Solar Power Satellite via Arbitrarily Large Phased Array) is a novel, bio-mimetic approach to the challenge of space solar power. If successful, this...

  13. Chaotic motions of a tethered satellite system in circular orbit

    Science.gov (United States)

    Jin, D. P.; PANG, Z. J.; Wen, H.; Yu, B. S.

    2016-09-01

    This paper studies the chaotic motions of a tethered satellite system by utilizing a ground-based experimental system. Based on dynamics similarity principle, a dynamical equivalent model between the on-orbit tethered satellite and its ground physical model is obtained. As a result, the space dynamics environment of the tethered satellite can be simulated via the thrust forces and the torque of a momentum wheel on the satellite simulator. The numerical results of the on-orbit tethered satellite show the chaotic motions of the attitude motion of mother satellite. The experiment shows that the torque of momentum wheel as a negative damping is able to suppress the chaotic motion.

  14. Heatpipe power system development

    Energy Technology Data Exchange (ETDEWEB)

    Houts, M.G.; Poston, D.I.

    1998-12-31

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of the project was to develop a design approach that could enable the development of near-term, low-cost, space fission-power systems. Sixteen desired attributes were identified for such systems and detailed analyses were performed to verify that they are feasible. Preliminary design work was performed on one concept, the Heatpipe Power system (HPS). As a direct result of this project, funding was obtained from the National Aeronautics and Space Administration to build and test an HPS module. The module tests went well, and they now have funding to build a bimodal module.

  15. Wireless power transfer system

    Science.gov (United States)

    Wu, Hunter; Sealy, Kylee; Gilchrist, Aaron

    2016-02-23

    A system includes a first stage of an inductive power transfer system with an LCL load resonant converter with a switching section, an LCL tuning circuit, and a primary receiver pad. The IPT system includes a second stage with a secondary receiver pad, a secondary resonant circuit, a secondary rectification circuit, and a secondary decoupling converter. The secondary receiver pad connects to the secondary resonant circuit. The secondary resonant circuit connects to the secondary rectification circuit. The secondary rectification circuit connects to the secondary decoupling converter. The second stage connects to a load. The load includes an energy storage element. The second stage and load are located on a vehicle and the first stage is located at a fixed location. The primary receiver pad wirelessly transfers power to the secondary receiver pad across a gap when the vehicle positions the secondary receiver pad with respect to the primary receiver pad.

  16. The electric power engineering handbook power systems

    CERN Document Server

    2012-01-01

    Power Systems, Third Edition (part of the five-volume set, The Electric Power Engineering Handbook) covers all aspects of power system protection, dynamics, stability, operation, and control. Under the editorial guidance of L.L. Grigsby, a respected and accomplished authority in power engineering, and section editors Andrew Hanson, Pritindra Chowdhuri, Gerry Sheble, and Mark Nelms, this carefully crafted reference includes substantial new and revised contributions from worldwide leaders in the field. This content provides convenient access to overviews and detailed information on a diverse arr

  17. Preliminary estimation of mutual interference between fixed satellite service systems

    Science.gov (United States)

    Borodich, S. V.

    1985-03-01

    The method of preliminary interference estimation according to the International Radio Consultative Committee regulations for geostationary satellite networks sharing the same frequency band is applicable to any system regardless of signal form and modulation type, as well as regardless of the exact carrier frequency. A preliminary estimation involves determining the relative increment of equivalent noise temperature which is produced in one satellite channel by interference signals from another, assuming that an interference signal is equivalent to thermal noise of uniform spectral power density equal to the maximum disclosed in the application for license. Such preliminary estimates are based on fundamental relations for the useful signal in the presence of thermal noise with the intermodulation component of noise taken into account. These relations are derived here for satellite telephone channels in a system with frequency modulation of analog signals and with frequency division multiplex, in a system with phase keying of digital signals and time division multiplex, in a one channel per carrier system with pulse code modulation and phase keying.

  18. Alternative multiple-access techniques for mobile satellite systems

    Science.gov (United States)

    Smith, Patrick O.; Geraniotis, Evaggelos

    1989-01-01

    The use of Code Division Multiple Access (CDMA) to satisfy the diverse requirements of a generic (land, maritime, aeronautical) mobile satellite system (MSS) network design is discussed. Comparisons between CDMA and Frequency Division Multiple Access (FDMA) show that a CDMA network design can support significantly more voice channel allocations than FDMA when relatively simple CDMA correlation receivers are employed, provided that there is sufficient space segment equivalent isotropically radiated power (EIRP). The use of more advanced CDMA receivers can improve the spectral and power efficiency. Although the use of CDMA may not gain immediate and widespread support in the international MSS community, provision for the use of CDMA for a domestic system in the U.S., and possibly for a regional system throughout North America, is likely.

  19. Autonomously managed electrical power systems

    Science.gov (United States)

    Callis, Charles P.

    1986-01-01

    The electric power systems for future spacecraft such as the Space Station will necessarily be more sophisticated and will exhibit more nearly autonomous operation than earlier spacecraft. These new power systems will be more reliable and flexible than their predecessors offering greater utility to the users. Automation approaches implemented on various power system breadboards are investigated. These breadboards include the Hubble Space Telescope power system test bed, the Common Module Power Management and Distribution system breadboard, the Autonomusly Managed Power System (AMPS) breadboard, and the 20 kilohertz power system breadboard. Particular attention is given to the AMPS breadboard. Future plans for these breadboards including the employment of artificial intelligence techniques are addressed.

  20. Wind power plant system services

    DEFF Research Database (Denmark)

    Basit, Abdul; Altin, Müfit

    Traditionally, conventional power plants have the task to support the power system, by supplying power balancing services. These services are required by the power system operators in order to secure a safe and reliable operation of the power system. However, as in the future the wind power...... is going more and more to replace conventional power plants, the sources of conventional reserve available to the system will be reduced and fewer conventional plants will be available on-line to share the regulation burden. The reliable operation of highly wind power integrated power system might...... then beat risk unless the wind power plants (WPPs) are able to support and participate in power balancing services. The objective of this PhD project is to develop and analyse control strategies which can increase the WPPs capability to provide system services, such as active power balancing control...

  1. Reactive Power Management in Electric Power Systems

    African Journals Online (AJOL)

    The quality of electric power at a supply point can be quantified in terms of how stab)e are the voltage and frequency and how close is the power factor to unity. The continuity of supply and in three-phase systems the degree to which the phase currents and voltages are balanced constitute additional quality parameters.

  2. Balancing modern Power System with large scale of wind power

    OpenAIRE

    Basit, Abdul; Altin, Müfit; Hansen, Anca Daniela; Sørensen, Poul Ejnar

    2014-01-01

    Power system operators must ensure robust, secure and reliable power system operation even with a large scale integration of wind power. Electricity generated from the intermittent wind in large propor-tion may impact on the control of power system balance and thus deviations in the power system frequency in small or islanded power systems or tie line power flows in interconnected power systems. Therefore, the large scale integration of wind power into the power system strongly concerns the s...

  3. Power System for Intelligent House

    Directory of Open Access Journals (Sweden)

    Michal Jahelka

    2010-01-01

    Full Text Available Power supply of intelligent houses or house phones is possible to do with standard transformer with voltage stabilizer or with intelligent power supply. Standard solution can has as a result of failure fuse blown or fire occurrence. Intelligent power supply switch off power and tests with little current whether short circuit is removed. After it resume system power supply. At the same time it cares of system backup with accumulator, informs control system about short circuit or failure net power supply, or can switch off all system power after command from control system.

  4. Information content in reflected global navigation satellite system signals

    DEFF Research Database (Denmark)

    Høeg, Per; Carlstrom, Anders

    2011-01-01

    The direct signals from satellites in global satellite navigation satellites systems (GNSS) as, GPS, GLONASS and GALILEO, constitute the primary source for positioning, navigation and timing from space. But also the reflected GNSS signals contain an important information content of signal travel...

  5. Feasibility of microminiature satellites

    Science.gov (United States)

    Imai, Ryouichi

    1991-07-01

    A conceptual study is conducted on technical problems and system design techniques to accomplish higher performance microminiature satellites by smaller systems. Applications of microminiature satellite technology to practical satellite mission are mentioned. Concepts of microminiature satellites, measures to miniaturize satellites, and micro-miniaturization technologies for communication and data processing, electric solar power paddle, attitude and orbit control, structure, thermal control, propulsion, and instrumentation systems are outlined. Examples of miniaturizing satellite missions such as planet exploration, low-altitude communication networks, space positioning system, low-altitude earth observation mission, clustered satellites, tethered satellites, and timely observation are described. Satellite miniaturizing technology can also be used to launch systems by lasers, and superconductive linear catapults (space escalator). It is pointed out that keys to promote satellite miniaturization are electronics, precision machining, raw material, electric power source technologies, and system design technology to integrate those technologies.

  6. Project 'VOLCANO': Electronics of tethered satellite system

    Science.gov (United States)

    Savich, N. A.

    The main goal of the 'VOLCANO' project developed jointly by the Institute of Radio Engineering and Electronics and space concern 'ENERGIA' is experimental investigation of the current-voltage characteristics of the 'Collector-Boom-Emitter' system simulating the long Tethered Satellite System (TSS) in the real space flight conditions on the transport ship 'PROGRESS'. These measurements will allow scientists to determine the attainable current values for different combinations of collectors and emitters (passive metallic sphere, thermocathode, hollow cathodes and show up some prospects of active TSS. The report is concerned with the concept, purpose and tasks of the project, the planned set up of the measurement equipment on the 'PROGRESS' ship and in the container extended on the deployable 100 m long boom end.

  7. The 'INMARSAT' international maritime satellite communication system

    Science.gov (United States)

    Atserov, Iu. S.

    1982-12-01

    The history, design, operating characteristics, achievements, and prospects of INMARSAT are discussed. More than 1300 ships are presently equipped to operate within the system, and this number is expected to rise to about 5000 by 1986. The principle of operation involves single coordinating earth stations allocating telephone channels in their zones between other earth stations. The messages reach a common signalling channel with which all ship stations keep in touch. The ship stations are connected to the international telex network. The INMARSAT system enables ships in the automated mode of operation to establish telephone and telegraph comunication with any subscriber on the shore of any country. The quality of the communication is practically independent of the distance between ship and shore at any time of year and under any meteorological conditions. Estimates indicate that the use of satellite communication with ships reduces losses from accidents by 10 percent per year.

  8. Power Systems Development Facility

    Energy Technology Data Exchange (ETDEWEB)

    None

    2003-07-01

    This report discusses Test Campaign TC12 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Westinghouse Power Corporation (SW) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or a gasifier using a particulate control device (PCD). While operating as a gasifier, either air or oxygen can be used as the oxidant. Test run TC12 began on May 16, 2003, with the startup of the main air compressor and the lighting of the gasifier start-up burner. The Transport Gasifier operated until May 24, 2003, when a scheduled outage occurred to allow maintenance crews to install the fuel cell test unit and modify the gas clean-up system. On June 18, 2003, the test run resumed when operations relit the start-up burner, and testing continued until the scheduled end of the run on July 14, 2003. TC12 had a total of 733 hours using Powder River Basin (PRB) subbituminous coal. Over the course of the entire test run, gasifier temperatures varied between 1,675 and 1,850 F at pressures from 130 to 210 psig.

  9. Global Ocean Surveillance With Electronic Intelligence Based Satellite System

    Science.gov (United States)

    Venkatramanan, Haritha

    2016-07-01

    The objective of this proposal is to design our own ELINT based satellite system to detect and locate the target by using satellite Trilateration Principle. The target position can be found by measuring the radio signals arrived at three satellites using Time Difference of Arrival(TDOA) technique. To locate a target it is necessary to determine the satellite position. The satellite motion and its position is obtained by using Simplified General Perturbation Model(SGP4) in MATLAB. This SGP4 accepts satellite Two Line Element(TLE) data and returns the position in the form of state vectors. These state vectors are then converted into observable parameters and then propagated in space. This calculations can be done for satellite constellation and non - visibility periods can be calculated. Satellite Trilateration consists of three satellites flying in formation with each other. The satellite constellation design consists of three satellites with an inclination of 61.3° maintained at equal distances between each other. The design is performed using MATLAB and simulated to obtain the necessary results. The target's position can be obtained using the three satellites ECEF Coordinate system and its position and velocity can be calculated in terms of Latitude and Longitude. The target's motion is simulated to obtain the Speed and Direction of Travel.

  10. Power flow for spacecraft power systems

    Science.gov (United States)

    Halpin, S. M.; Grigsby, L. L.; Sheble, G. B.; Nelms, R. M.

    1989-01-01

    A method for constructing the generalized system-level admittance matrix for use with a Newton-Raphson power flow is presented. The network modeling technique presented does not use the standard pi-equivalent models, which assume a lossless return path, for the transmission line and transformer. If the return path cannot be assumed lossless, then the standard algorithms for constructing the system admittance matrix cannot be used. The method presented here uses concepts from linear graph theory to combine network modules to form the system-level admittance matrix. The modeling technique is presented, and the resulting matrix is used with a standard Newton-Raphson power flow to calculate all system voltages and current (power) flows.

  11. Power generation device of artificial satellite. Jinko eisei no hatsuden sochi

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, Takashi.

    1989-11-01

    As the conventional artificial satellite lacks a power generation controlling ability, a separate power controller is required which reduces the weight efficiency. It is not easy to freely control the photovoltaic ability of a solar cell projected on a satellite without causing an external turbulent moment on the main satellite body. For solving this problem, in this invention, in case a power is generated by a solar cell panel installed on the satellite in a pair, a shielding film and its driving device are equipped wherein the shielding film is made freely windable along the light receiving surface of a pair of the soalr cell panels and mutually movable in the opposite directions. By this, the device requires no shunt circuit, thus improving the economy, and reducing the total weight of the satellite. 2 figs.

  12. Electrostatic protection of the solar power satellite and rectenna. Part 2: Lightning protection of the rectenna

    Science.gov (United States)

    1980-01-01

    Computer simulations and laboratory tests were used to evaluate the hazard posed by lightning flashes to ground on the Solar Power Satellite rectenna and to make recommendations on a lightning protection system for the rectenna. The distribution of lightning over the lower 48 of the continental United States was determined, as were the interactions of lightning with the rectenna and the modes in which those interactions could damage the rectenna. Lightning protection was both required and feasible. Several systems of lightning protection were considered and evaluated. These included two systems that employed lightning rods of different lengths and placed on top of the rectenna's billboards and a third, distribution companies; it consists of short lightning rods all along the length of each billboard that are connected by a horizontal wire above the billboard. The distributed lightning protection system afforded greater protection than the other systems considered and was easier to integrate into the rectenna's structural design.

  13. Choice of FDMA/SCPC access technique for aeronautical satellite voice system

    Science.gov (United States)

    Smith, G. K.

    1989-03-01

    A worldwide aeronautical mobile satellite system is about to become operational. The system architecture and access methods have been debated extensively, resulting in the selection of Time Division Multiplexing/Time Division Multiple Access (TDM/TDMA) access for packet data, and Single Channel Per Carrier (SCPC) for voice. These have become standards for airline use, and also satisfy the known requirements of ICAO for safety related communications. Voice communications are expected to absorb a high proportion of satellite bandwidth and power in the future. Here, it is explained why INMARSAT selected Frequency Division Multiple Access/SCPC satellite access for this application.

  14. POWER SYSTEMS DEVELOPMENT FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2002-11-01

    This report discusses test campaign GCT4 of the Kellogg Brown & Root, Inc. (KBR) transport reactor train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The transport reactor is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or a gasifier using one of two possible particulate control devices (PCDs). The transport reactor was operated as a pressurized gasifier during GCT4. GCT4 was planned as a 250-hour test run to continue characterization of the transport reactor using a blend of several Powder River Basin (PRB) coals and Bucyrus limestone from Ohio. The primary test objectives were: Operational Stability--Characterize reactor loop and PCD operations with short-term tests by varying coal-feed rate, air/coal ratio, riser velocity, solids-circulation rate, system pressure, and air distribution. Secondary objectives included the following: Reactor Operations--Study the devolatilization and tar cracking effects from transient conditions during transition from start-up burner to coal. Evaluate the effect of process operations on heat release, heat transfer, and accelerated fuel particle heat-up rates. Study the effect of changes in reactor conditions on transient temperature profiles, pressure balance, and product gas composition. Effects of Reactor Conditions on Synthesis Gas Composition--Evaluate the effect of air distribution, steam/coal ratio, solids-circulation rate, and reactor temperature on CO/CO{sub 2} ratio, synthesis gas Lower Heating Value (LHV), carbon conversion, and cold and hot gas efficiencies. Research Triangle Institute (RTI) Direct Sulfur Recovery Process (DSRP) Testing--Provide syngas in support of the DSRP commissioning. Loop Seal Operations--Optimize loop seal operations and investigate increases to previously achieved maximum solids-circulation rate.

  15. Solar thermal power system

    Science.gov (United States)

    Bennett, Charles L.

    2010-06-15

    A solar thermal power generator includes an inclined elongated boiler tube positioned in the focus of a solar concentrator for generating steam from water. The boiler tube is connected at one end to receive water from a pressure vessel as well as connected at an opposite end to return steam back to the vessel in a fluidic circuit arrangement that stores energy in the form of heated water in the pressure vessel. An expander, condenser, and reservoir are also connected in series to respectively produce work using the steam passed either directly (above a water line in the vessel) or indirectly (below a water line in the vessel) through the pressure vessel, condense the expanded steam, and collect the condensed water. The reservoir also supplies the collected water back to the pressure vessel at the end of a diurnal cycle when the vessel is sufficiently depressurized, so that the system is reset to repeat the cycle the following day. The circuital arrangement of the boiler tube and the pressure vessel operates to dampen flow instabilities in the boiler tube, damp out the effects of solar transients, and provide thermal energy storage which enables time shifting of power generation to better align with the higher demand for energy during peak energy usage periods.

  16. The History of the Development of the Rectenna. [solar power satellites

    Science.gov (United States)

    Brown, W. C.

    1980-01-01

    The history of the development of the rectenna is reviewed through its early conceptual developmental phases. Some selective aspects of the current solar power satellite rectenna development are examined.

  17. Global navigation satellite system; Jisedai kokoho senjo system

    Energy Technology Data Exchange (ETDEWEB)

    Kawano, S.; Suga, S. [Toshiba Corp., Tokyo (Japan)

    2000-05-01

    The safety of civil aviation relies on ground navigation aids. In areas where there are no ground aids and on oceanic air routes, aircraft must depend on their own navigation system. The predicted increase in civil aviation traffic in the near future will make it difficult for current navigation aids to support navigation in all phases of flights. To avoid this problem, the International Civil Aviation Organization (ICAO) is directing the establishment of standards for the global navigation satellite system (GNSS). GNSS employs navigation satellites, such as those of the global positioning system (GPS), to provide navigation capability throughout the world. In Japan, the Electronic Navigation Research Institute, the Ministry of Transport, and the Japan civil Aviation Promotion Foundation are carrying out research on this navigation system. Toshiba has been providing experimental equipment for this research. (author)

  18. GNSS global navigation satellite systems : GPS, GLONASS, Galileo, and more

    CERN Document Server

    Hofmann-Wellenhof, Bernhard; Wasle, Elmar

    2008-01-01

    This book is an extension to the acclaimed scientific bestseller "GPS - Theory and Practice". It covers Global Navigation Satellite Systems (GNSS) and includes the Russian GLONASS, the European system Galileo, and additional systems.

  19. An advanced system design for future global mobile satellite communications

    Science.gov (United States)

    Okinaka, Hideo; Hirata, Yasuo

    This paper presents a system concept applicable to the future global mobile satellite communications system. The main features of the proposed system are a demand-assigned beam-hopping TDMA operation in the satellite-to-mobile direction and a demand-assigned SCPC operation in the mobile-to-satellite direction. A beam-hopping repeater configuration which does not require a dynamic switch between transmitters and a multiple spot beam antenna is another feature of the proposed design. The paper first discusses requirements for the future mobile satellite communications system as well as a possible system evolutional scenario. The advanced system design is then presented, including the design of transmission channels, the satellite repeater block diagram, and the link budgets.

  20. Balancing modern Power System with large scale of wind power

    DEFF Research Database (Denmark)

    Basit, Abdul; Altin, Müfit; Hansen, Anca Daniela

    2014-01-01

    Power system operators must ensure robust, secure and reliable power system operation even with a large scale integration of wind power. Electricity generated from the intermittent wind in large propor-tion may impact on the control of power system balance and thus deviations in the power system...... frequency in small or islanded power systems or tie line power flows in interconnected power systems. Therefore, the large scale integration of wind power into the power system strongly concerns the secure and stable grid operation. To ensure the stable power system operation, the evolving power system has...... to be analysed with improved analytical tools and techniques. This paper proposes techniques for the active power balance control in future power systems with the large scale wind power integration, where power balancing model provides the hour-ahead dispatch plan with reduced planning horizon and the real time...

  1. NASA ACTS Multibeam Antenna (MBA) System. [Advanced Communications Technology Satellite

    Science.gov (United States)

    Choung, Youn H.; Stiles, W. Herschel; Wu, Joseph; Wong, William C.; Chen, C. Harry

    1986-01-01

    The design of the Advanced Communications Technology Satellite MBA system, which provides both spot beam and scanning beam coverage to both high and low burst rates data-users is examined. The MBA consists of receive and transmit antennas installed on a common precision mounting platform that is integrated to the bus through three flexures; a lightweight system with low thermal distortion is obtained by using composite materials for the MBA structures. The RF design, which is a Cassegrain reflector with a large equivalent focal length/aperture size, is described. Consideration is given to the position of the feed in order to minimize scan loss and sidelobe levels, the size of the subreflector in order to minimize feed spillover, and antenna performance degradation caused by reflector surface distortion. Breadbroad model test result reveal that the maximum sidelobe level outside the 2.5 HPBW region is -30 dB or lower relative to the power.

  2. Evaluation of CDMA system capacity for mobile satellite system applications

    Science.gov (United States)

    Smith, Partrick O.; Geraniotis, Evaggelos A.

    1988-01-01

    A specific Direct-Sequence/Pseudo-Noise (DS/PN) Code-Division Multiple-Access (CDMA) mobile satellite system (MSAT) architecture is discussed. The performance of this system is evaluated in terms of the maximum number of active MSAT subscribers that can be supported at a given uncoded bit-error probability. The evaluation decouples the analysis of the multiple-access capability (i.e., the number of instantaneous user signals) from the analysis of the multiple-access mutliplier effect allowed by the use of CDMA with burst-modem operation. We combine the results of these two analyses and present numerical results for scenarios of interest to the mobile satellite system community.

  3. A System Design and Analysis for Satellite Communication Link

    Directory of Open Access Journals (Sweden)

    Tae Jin Chung

    2000-12-01

    Full Text Available A satellite RF communication link is analyzed based on a simple fundamental equations by systematic approach in this paper. The number of variables related to a design and analysis of satellite RF link is often a dozen or more, thus it is a tedious and time-consuming task. With the given input data, the important parameters are calculated step by step and three communication characteristics such as communication channel capacity, carrier-to-noise ratio (CNR at the satellite and ground station are analyzed. It gives very useful information to the system engineers for designing and analyzing the overall satellite communication system in the conceptual design phase.

  4. Solar Power Satellites: Creating the Market for Beamed Energy Propulsion

    Science.gov (United States)

    Coopersmith, Jonathan

    2010-05-01

    Beamed energy advocates must investigate the potential of major markets like space based solar satellites and space-based nuclear waste disposal. For BEP to succeed, its proponents must work with these possible users to generate interest and resources needed to develop BEP.

  5. System refinement for content based satellite image retrieval

    Directory of Open Access Journals (Sweden)

    NourElDin Laban

    2012-06-01

    Full Text Available We are witnessing a large increase in satellite generated data especially in the form of images. Hence intelligent processing of the huge amount of data received by dozens of earth observing satellites, with specific satellite image oriented approaches, presents itself as a pressing need. Content based satellite image retrieval (CBSIR approaches have mainly been driven so far by approaches dealing with traditional images. In this paper we introduce a novel approach that refines image retrieval process using the unique properties to satellite images. Our approach uses a Query by polygon (QBP paradigm for the content of interest instead of using the more conventional rectangular query by image approach. First, we extract features from the satellite images using multiple tiling sizes. Accordingly the system uses these multilevel features within a multilevel retrieval system that refines the retrieval process. Our multilevel refinement approach has been experimentally validated against the conventional one yielding enhanced precision and recall rates.

  6. System Design and In-orbit Verification of the HJ-1-C SAR Satellite

    Directory of Open Access Journals (Sweden)

    Zhang Run-ning

    2014-06-01

    Full Text Available HJ-1-C is a SAR satellite owned by the Chinese Environment and Natural Disaster Monitoring constellation, and works together with the optical satellites HJ-1-A/B for monitoring environment and natural disasters. In this paper, the system design and characteristics of the first Chinese civil SAR satellite are described. In addition, the interface relation between SAR payload and platform is studied. Meanwhile, the data transmission capability, attitude, power, and temperature control that support SAR imaging are reviewed. Finally, the corresponding in-orbit verification results are presented.

  7. Earth's thermal radiation sensors for attitude determination systems of small satellites

    Science.gov (United States)

    Vertat, I.; Linhart, R.; Masopust, J.; Vobornik, A.; Dudacek, L.

    2017-07-01

    Satellite attitude determination is a complex process with expensive hardware and software and it could consume the most of resources (volume, mass, electric power), especially of small satellites as CubeSats. Thermal radiation infrared detectors could be one of useful sensors for attitude determination systems in such small satellites. Nowadays, these sensors are widely used in contact-less thermometers and thermo-cameras resulting in a low-cost technology. On low Earth orbits the infrared thermal sensors can be utilized for coarse attitude determination against a relative warm and close Earth's globe.

  8. Estimates of Power Plant NOx Emissions and Lifetimes from OMI NO2 Satellite Retrievals

    Science.gov (United States)

    de Foy, Benjamin; Lu, Zifeng; Streets, David G.; Lamsal, Lok N.; Duncan, Bryan N.

    2015-01-01

    Isolated power plants with well characterized emissions serve as an ideal test case of methods to estimate emissions using satellite data. In this study we evaluate the Exponentially-Modified Gaussian (EMG) method and the box model method based on mass balance for estimating known NOx emissions from satellite retrievals made by the Ozone Monitoring Instrument (OMI). We consider 29 power plants in the USA which have large NOx plumes that do not overlap with other sources and which have emissions data from the Continuous Emission Monitoring System (CEMS). This enables us to identify constraints required by the methods, such as which wind data to use and how to calculate background values. We found that the lifetimes estimated by the methods are too short to be representative of the chemical lifetime. Instead, we introduce a separate lifetime parameter to account for the discrepancy between estimates using real data and those that theory would predict. In terms of emissions, the EMG method required averages from multiple years to give accurate results, whereas the box model method gave accurate results for individual ozone seasons.

  9. Optimization of microwave power transmission from solar power satellites. Ph.D. Thesis

    Energy Technology Data Exchange (ETDEWEB)

    Potter, S.D.

    1993-01-01

    Solar energy can be used to avoid environmental problems associated with the use of fossil fuels. Because of limitations on the availability of solar energy at the Earth`s surface, it is recommended that energy from the sun be harnessed by solar collectors in geostationary orbit, known as solar power satellites (SPS). The energy collected is transmitted to the Earth by means of microwaves. The physics of power beaming is investigated through the use of mathematical analysis and numerical computer techniques. The most widely considered microwave frequency, 2.45 GHz, constrains the design of the SPS, due to the diffraction of the beam. Therefore, transmission through other atmospheric `windows` has been considered, notably 35 and 94 GHz. Although increasing the frequency decreases the size of the main beam lobe, and thus the rectifying antenna (rectenna) needed to capture the energy, the size of the exclusion zone needed to protect populations from microwave exposure is independent of frequency for a square transmitting antenna. Rain attenuation is significant above 15 GHz. In clear air, microwave absorption may lead to atmospheric heating effects, especially at 94 GHz. It is therefore recommended that future power beaming research concentrate on minimizing beam sidelobes, and increasing the frequency from 2.45 GHz to no more than 15 GHz. Circular transmitting antennas allow for smaller exclusion zones than square antennas. Furthermore, if the amplitude of the beam is varied, or tapered, across the face of the transmitting antenna, then the exclusion zones can be made even smaller. If the frequency is increased to 9.8 GHz, a moderate beam taper is used, and the peak beam intensity is kept to a few tens of milliwatts per square centimeter, then a larger number of somewhat smaller SPS`s will be needed to supply a given amount of power. This results in a net decrease in the land area needed for rectennas and exclusion zones.

  10. Spectrum management considerations of adaptive power control in satellite networks

    Science.gov (United States)

    Sawitz, P.; Sullivan, T.

    1983-01-01

    Adaptive power control concepts for the compensation of rain attenuation are considered for uplinks and downlinks. The performance of example power-controlled and fixed-EIRP uplinks is compared in terms of C/Ns and C/Is. Provisional conclusions are drawn with regard to the efficacy of uplink and downlink power control orbit/spectrum utilization efficiency.

  11. Experimental mobile satellite system (EMSS) using ETS-V

    Science.gov (United States)

    Hase, Yoshihiro; Ohmori, Shingo; Kosaka, Katsuhiko

    Radio Research Laboratory has been developing a mobile satellite communication system. The satellite to be used in this system is called Engineering Test Satellite-five (ETS-V) and is scheduled to be launched in the summer of 1987. The main purpose of the system is to perform experiments on maritime and aeronautical satellite communications. Experiments on land mobile communications are also to be carried out. L-band frequencies for links between the satellite and mobile earth stations and C-band frequencies for the feeder link between the satellite and a coastal/aeronautical earth station are used in the system. The service area extends to the North Pacific Ocean including Japan and the West Pacific Ocean. In the system, various digital communication experiments are to be carried out through SCPC, TDM/TDMA, and SS channels.This paper describes items of experiments and facilities of the system. This system is an integrated mobile satellite communication system for maritime, aeronautical, and land mobile services, and may be the first of this kind in the world except military systems, though it is not an operational system.

  12. Sohbrit: Autonomous COTS System for Satellite Characterization

    Science.gov (United States)

    Blazier, N.; Tarin, S.; Wells, M.; Brown, N.; Nandy, P.; Woodbury, D.

    As technology continues to improve, driving down the cost of commercial astronomical products while increasing their capabilities, manpower to run observations has become the limiting factor in acquiring continuous and repeatable space situational awareness data. Sandia National Laboratories set out to automate a testbed comprised entirely of commercial off-the-shelf (COTS) hardware for space object characterization (SOC) focusing on satellites in geosynchronous orbit. Using an entirely autonomous system allows collection parameters such as target illumination and nightly overlap to be accounted for habitually; this enables repeatable development of target light curves to establish patterns of life in a variety of spectral bands. The system, known as Sohbrit, is responsible for autonomously creating an optimized schedule, checking the weather, opening the observatory dome, aligning and focusing the telescope, executing the schedule by slewing to each target and imaging it in a number of spectral bands (e.g., B, V, R, I, wide-open) via a filter wheel, closing the dome at the end of observations, processing the data, and storing/disseminating the data for exploitation via the web. Sohbrit must handle various situations such as weather outages and focus changes due to temperature shifts and optical seeing variations without human interaction. Sohbrit can collect large volumes of data nightly due to its high level of automation. To store and disseminate these large quantities of data, we utilize a cloud-based big data architecture called Firebird, which exposes the data out to the community for use by developers and analysts. Sohbrit is the first COTS system we are aware of to automate the full process of multispectral geosynchronous characterization from scheduling all the way to processed, disseminated data. In this paper we will discuss design decisions, issues encountered and overcome during implementation, and show results produced by Sohbrit.

  13. POWER SYSTEMS DEVELOPMENT FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2002-05-01

    This report discusses test campaign GCT3 of the Halliburton KBR transport reactor train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The transport reactor is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or a gasifier using one of two possible particulate control devices (PCDs). The transport reactor was operated as a pressurized gasifier during GCT3. GCT3 was planned as a 250-hour test run to commission the loop seal and continue the characterization of the limits of operational parameter variations using a blend of several Powder River Basin coals and Bucyrus limestone from Ohio. The primary test objectives were: (1) Loop Seal Commissioning--Evaluate the operational stability of the loop seal with sand and limestone as a bed material at different solids circulation rates and establish a maximum solids circulation rate through the loop seal with the inert bed. (2) Loop Seal Operations--Evaluate the loop seal operational stability during coal feed operations and establish maximum solids circulation rate. Secondary objectives included the continuation of reactor characterization, including: (1) Operational Stability--Characterize the reactor loop and PCD operations with short-term tests by varying coal feed, air/coal ratio, riser velocity, solids circulation rate, system pressure, and air distribution. (2) Reactor Operations--Study the devolatilization and tar cracking effects from transient conditions during transition from start-up burner to coal. Evaluate the effect of process operations on heat release, heat transfer, and accelerated fuel particle heat-up rates. Study the effect of changes in reactor conditions on transient temperature profiles, pressure balance, and product gas composition. (3) Effects of Reactor Conditions on Syngas Composition--Evaluate the effect of air distribution, steam

  14. The satellite based augmentation system – EGNOS for non-precision approach global navigation satellite system

    Directory of Open Access Journals (Sweden)

    Andrzej FELLNER

    2012-01-01

    Full Text Available First in the Poland tests of the EGNOS SIS (Signal in Space were conducted on 5th October 2007 on the flight inspection with SPAN (The Synchronized Position Attitude Navigation technology at the Mielec airfield. This was an introduction to a test campaign of the EGNOS-based satellite navigation system for air traffic. The advanced studies will be performed within the framework of the EGNOS-APV project in 2011. The implementation of the EGNOS system to APV-I precision approach operations, is conducted according to ICAO requirements in Annex 10. Definition of usefulness and certification of EGNOS as SBAS (Satellite Based Augmentation System in aviation requires thorough analyses of accuracy, integrity, continuity and availability of SIS. Also, the project will try to exploit the excellent accuracy performance of EGNOS to analyze the implementation of GLS (GNSS Landing System approaches (Cat I-like approached using SBAS, with a decision height of 200 ft. Location of the EGNOS monitoring station Rzeszów, located near Polish-Ukrainian border, being also at the east border of planned EGNOS coverage for ECAC states is very useful for SIS tests in this area. According to current EGNOS programmed schedule, the project activities will be carried out with EGNOS system v2.2, which is the version released for civil aviation certification. Therefore, the project will allow demonstrating the feasibility of the EGNOS certifiable version for civil applications.

  15. SATELLITE RADIO IN A REMOTE AIR TRAFFIC CONTROL SYSTEM

    Directory of Open Access Journals (Sweden)

    E. E. Nechaev

    2014-01-01

    Full Text Available Remote system of air traffic control with the use of channels of satellite communication systems while providing the desired protection level of information exchange is considered.

  16. Technique applied in electrical power distribution for Satellite Launch Vehicle

    OpenAIRE

    João Maurício Rosário; Fábio Duarte Spina; José Walter Parquet Bizarria; Francisco Carlos P. Bizarria

    2010-01-01

    Abstract: The Satellite Launch Vehicle electrical network, which is currently being developed in Brazil, is sub-divided for analysis in the following parts: Service Electrical Network, Controlling Electrical Network, Safety Electrical Network and Telemetry Electrical Network. During the pre-launching and launching phases, these electrical networks are associated electrically and mechanically to the structure of the vehicle. In order to succeed in the integration of these electrical networks i...

  17. Power System Stability Using Modelica

    OpenAIRE

    Øyvang, Thomas; Winkler, Dietmar; Lie, Bernt; Hegglid, Gunne John

    2014-01-01

    This paper is concerned with power system modeling using the Modelica language in comparison to a traditional simulation tool. Though most common power system simulation tools are computationally efficient and reasonably user-friendly, they have a closed architecture. Thus, there is motivation to use an open-source modeling language to describe electric networks, such as Modelica. A well-established benchmark for power system studies was analyzed. Regarding the voltage as a function of time, ...

  18. Power system protection 3 application

    CERN Document Server

    1995-01-01

    The worldwide growth in demand for electricity has forced the pace of developments in electrical power system design to meet consumer needs for reliable, secure and cheap supplies. Power system protection, as a technology essential to high quality supply, is widely recognised as a specialism of growing and often critical importance, in which power system needs and technological progress have combined to result in rapid developments in policy and practice in recent years. In the United Kingdom, the need for appropriate training in power system protection was recognised in the early 1960s with t

  19. Technological inductive power transfer systems

    National Research Council Canada - National Science Library

    Nikolay D. Madzharov; Valentin S. Nemkov

    2017-01-01

    Inductive power transfer is a very fast expanding technology with multiple design principles and practical implementations ranging from charging phones and computers to bionic systems, car chargers...

  20. Broadband and scalable mobile satellite communication system for future access networks

    Science.gov (United States)

    Ohata, Kohei; Kobayashi, Kiyoshi; Nakahira, Katsuya; Ueba, Masazumi

    2005-07-01

    Due to the recent market trends, NTT has begun research into next generation satellite communication systems, such as broadband and scalable mobile communication systems. One service application objective is to provide broadband Internet access for transportation systems, temporal broadband access networks and telemetries to remote areas. While these are niche markets the total amount of capacity should be significant. We set a 1-Gb/s total transmission capacity as our goal. Our key concern is the system cost, which means that the system should be unified system with diversified services and not tailored for each application. As satellites account for a large portion of the total system cost, we set the target satellite size as a small, one-ton class dry mass with a 2-kW class payload power. In addition to the payload power and weight, the mobile satellite's frequency band is extremely limited. Therefore, we need to develop innovative technologies that will reduce the weight and maximize spectrum and power efficiency. Another challenge is the need for the system to handle up to 50 dB and a wide data rate range of other applications. This paper describes the key communication system technologies; the frequency reuse strategy, multiplexing scheme, resource allocation scheme, and QoS management algorithm to ensure excellent spectrum efficiency and support a variety of services and quality requirements in the mobile environment.

  1. Morphology of Dwarf Galaxies in Isolated Satellite Systems

    Science.gov (United States)

    Ann, Hong Bae

    2017-08-01

    The environmental dependence of the morphology of dwarf galaxies in isolated satellite systems is analyzed to understand the origin of the dwarf galaxy morphology using the visually classified morphological types of 5836 local galaxies with z ≲ 0.01. We consider six sub-types of dwarf galaxies, dS0, dE, dE_{bc}, dSph, dE_{blue}, and dI, of which the first four sub-types are considered as early-type and the last two as late-type. The environmental parameters we consider are the projected distance from the host galaxy (r_{p}), local and global background densities, and the host morphology. The spatial distributions of dwarf satellites of early-type galaxies are much different from those of dwarf satellites of late-type galaxies, suggesting the host morphology combined with r_{p} plays a decisive role on the morphology of the dwarf satellite galaxies. The local and global background densities play no significant role on the morphology of dwarfs in the satellite systems hosted by early-type galaxies. However, in the satellite system hosted by late-type galaxies, the global background densities of dE and dSph satellites are significantly different from those of dE_{bc}, dE_{blue}, and dI satellites. The blue-cored dwarf satellites (dE_{bc}) of early-type galaxies are likely to be located at r_{p} > 0.3 Mpc to keep their cold gas from the ram pressure stripping by the hot corona of early-type galaxies. The spatial distribution of dE_{bc} satellites of early-type galaxies and their global background densities suggest that their cold gas is intergalactic material accreted before they fall into the satellite systems.

  2. The Creation of Differential Correction Systems and the Systems of Global Navigation Satellite System Monitoring

    National Research Council Canada - National Science Library

    Polishchuk, G. M; Kozlov, V. I; Urlichich, Y. M; Dvorkin, V. V; Gvozdev, V. V

    2002-01-01

    ... for the Russian Federation and a system of global navigation satellite system monitoring. These projects are some of the basic ones in the Federal program "Global Navigation System," aimed at maintenance and development of the GLONASS system...

  3. Joint Polar Satellite System Common Ground System Overview

    Science.gov (United States)

    Jamilkowski, M. L.; Smith, D. C.

    2011-12-01

    Jointly acquired by NOAA & NASA, the next-generation civilian environmental satellite system, Joint Polar Satellite System (JPSS), will supply the afternoon orbit & ground system of the restructured NPOESS program. JPSS will replace NOAA's current POES satellites and the ground processing part of both POES & DoD's Defense Weather Satellite System (DWSS)(DMSP replacement). JPSS sensors will collect meteorological, oceanographic, climatological and solar-geophysical data. The ground system, or JPSS Common Ground System (CGS), has 6 integrated product teams/segments: Command, Control & Communications (C3S); Interface Data Processing (IDPS); Field Terminal (FTS); Systems Engineering, Integration & Test (SEIT); Operations & Support (O&S); and Sustainment developed by Raytheon Intelligence & Information Systems. The IDPS will process JPSS data to provide Environmental Data Records (EDRs) to NOAA & DoD processing centers beginning with the NPOESS Preparatory Project (NPP) and through JPSS & DWSS eras. C3S will: manage overall JPSS & DWSS missions from control/status of space/ground assets to ensure timely delivery of high-quality data to IDPS; provide globally-distributed ground assets to collect/transport mission, telemetry and command data between satellites & processing locations; provide all commanding & state-of-health monitoring functions of NPP, JPSS and DWSS satellites, and delivery of mission data to each Central IDP and monitor/report system-wide health/status and data communications with external systems and between CGS segments. SEIT leads the overall effort, including: manage/coordinate/execute JPSS CGS activities with NASA participation/oversight; plan/conduct all activities related to systems engineering, develop & ensure completeness of JPSS CGS functional & technical baselines and perform integration, deployment, testing and verification; sponsor/support modeling & simulation, performance analysis and trade studies; provide engineering for the product

  4. Intelligent power substation package system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Modern industrial development had started with electric energy and to have a large capacity and multi-function of electric facility has been a trend with a rapid increase of electricity demand. Furthermore, electric power consumers want to have a high quality electric service and for the aspect of electricity facility maintenance, it pursuits convenience, stability, and making it compact. In addition, the application of electric power remote management system and saving electric energy loss for reasonable use of energy has been expanded. If electric power demand is managed by introducing intelligent transformer and power controller, remote control of personal use transformer facility and power monitoring system(a remote recovery system), it is possible to create value added by achieving the following: save electricity cost, prevent increasing contract power, improve business competitive power, check electricity status through web, and etc. 1 fig., 8 tabs.

  5. The changing world of global navigation satellite systems

    Science.gov (United States)

    Dow, John M.; Neilan, Ruth E.; Higgins, Matt; Arias, Felicitas

    The world of global navigation satellite systems (GNSS) has been changing very rapidly during the last years. New constellations are being developed in Europe (Galileo), India (IRNSS), Japan (QZNSS) and China (Compass), while both the US GPS and the Russian GLONASS programmes are engaged in very significant mediumto long-term improvements, which will make them even more valuable in the coming years to an ever wider range of civilian users. In addition, powerful regional augmentation systems are becoming (or have already become) operational, providing users with important real time information concerning the integrity of the signals being broadcast by those two systems: these include the US WAAS, the European EGNOS, the Japanese MSAS, the Indian GAGAN and others. Following a number of United Nations sponsored regional workshops, a report by an ad hoc UN "GNSS Action Team" and several preparatory meetings, the International Committee on GNSS (ICG) was established in December 2005 in Vienna, Austria. The ICG is an informal body with the main objective of promoting cooperation on matters of mutual interest related to civil satellite-based positioning, navigation, timing, and value-added services, as well as compatibility and interoperability among the GNSS systems. A further important objective is to encourage the use of GNSS to support sustainable development, particularly in the developing countries. The United Nations Office for Outer Space Affairs (UNOOSA) plays a key role in facilitating the work of the ICG. The members of the Committee are GNSS system providers, while international organisations representing users of GNSS can qualify for participation in the work of the Committee as associate members or observers. The interests of the space geodetic, mapping and timing communities are represented in particular through ICG associate membership of the IGS, IAG, FIG, IERS, while BIPM is an ICG observer. This paper will highlight the background of these developments

  6. Power quality load management for large spacecraft electrical power systems

    Science.gov (United States)

    Lollar, Louis F.

    1988-01-01

    In December, 1986, a Center Director's Discretionary Fund (CDDF) proposal was granted to study power system control techniques in large space electrical power systems. Presented are the accomplishments in the area of power system control by power quality load management. In addition, information concerning the distortion problems in a 20 kHz ac power system is presented.

  7. Space Station Electrical Power System

    Science.gov (United States)

    Labus, Thomas L.; Cochran, Thomas H.

    1987-01-01

    The purpose of this paper is to describe the design of the Space Station Electrical Power System. This includes the Photovoltaic and Solar Dynamic Power Modules as well as the Power Management and Distribution System (PMAD). In addition, two programmatic options for developing the Electrical Power System will be presented. One approach is defined as the Enhanced Configuration and represents the results of the Phase B studies conducted by the NASA Lewis Research Center over the last two years. Another option, the Phased Program, represents a more measured approach to reaching about the same capability as the Enhanced Configuration.

  8. Lightning Protection System to the Indian Satellite Launch Pad

    OpenAIRE

    Nagabushana, GR; Thomas, Joy; Kumar, Udaya; Rao, Venkateshwara D; Rao, Panduranga PV

    1999-01-01

    Any satellite launch mission forms a complex and expensive process. Intensive care and precautions are to be taken for a safe and successful launch. Also, the satellite launch system forms a tall structure standing on a plane terrain. As a result, a lightning strike rate to it becomes more probable. Therefore, extensive care needs to be taken in shielding the launch system against natural lightning. Lightning protection systems built with differing principles have been in use at different lau...

  9. Rural applications of Advanced Traveler Information Systems : evaluation of satellite communications systems for mayday applications

    Science.gov (United States)

    This report documents the results of an evaluation of satellite communication systems for mayday applications conducted as part of the Rural Applications of Advanced Traveler Information Systems (ATIS) study. It focuses on satellite communications sy...

  10. Handbook of power systems I

    CERN Document Server

    Pardalos, P M; Pereira, Mario V; Iliadis, Niko A

    2010-01-01

    Energy is one of the world's most challenging problems, and power systems are an important aspect of energy-related issues. The Handbook of Power Systems contains state-of-the-art contributions on power systems modeling. In particular, it covers topics like operation planning, expansion planning, transmission and distribution modelling, computing technologies in energy systems, energy auctions, risk management, market regulation, stochastic programming in energy, and forecasting in energy. The book is separated into nine sections, which cover the most important areas of energy systems. The con

  11. Power systems engineering and mathematics

    CERN Document Server

    Knight, U G

    1972-01-01

    Power Systems Engineering and Mathematics investigates the application of mathematical aids, particularly the techniques of resource planning, to some of the technical-economic problems of power systems engineering. Topics covered include the process of engineering design and the use of computers in system design and operation; power system planning and operation; time scales and computation in system operation; and load prediction and generation capacity. This volume is comprised of 13 chapters and begins by outlining the stages in the synthesis of designs (or operating states) for engineerin

  12. Impact of advanced wind power ancillary services on power system

    DEFF Research Database (Denmark)

    Hansen, Anca Daniela; Altin, Müfit

    The objective of this report is to illustrate and analyse, by means of simulation test cases, the impact of wind power advanced ancillary services, like inertial response (IR), power oscillation damping (POD) and synchronising power (SP) on the power system. Generic models for wind turbine, wind...... power plant and power system are used in the investigation....

  13. Solar Power Satellites: Reconsideration as Renewable Energy Source Based on Novel Approaches

    Science.gov (United States)

    Ellery, Alex

    2017-04-01

    Solar power satellites (SPS) are a solar energy generation mechanism that captures solar energy in space and converts this energy into microwave for transmission to Earth-based rectenna arrays. They offer a constant, high integrated energy density of 200 W/m2 compared to <10 W/m2 for other renewable energy sources. Despite this promise as a clean energy source, SPS have been relegated out of consideration due to their enormous cost and technological challenge. It has been suggested that for solar power satellites to become economically feasible, launch costs must decrease from their current 20,000/kg to <200/kg. Even with the advent of single-stage-to-orbit launchers which propose launch costs dropping to 2,000/kg, this will not be realized. Yet, the advantages of solar power satellites are many including the provision of stable baseload power. Here, I present a novel approach to reduce the specific cost of solar power satellites to 1/kg by leveraging two enabling technologies - in-situ resource utilization of lunar material and 3D printing of this material. Specifically, we demonstrate that electric motors may be constructed from lunar material through 3D printing representing a major step towards the development of self-replicating machines. Such machines have the capacity to build solar power satellites on the Moon, thereby bypassing the launch cost problem. The productive capacity of self-replicating machines favours the adoption of large constellations of small solar power satellites. This opens up additional clean energy options for combating climate change by meeting the demands for future global energy.

  14. Thermal design, analysis and comparison on three concepts of space solar power satellite

    Science.gov (United States)

    Yang, Chen; Hou, Xinbin; Wang, Li

    2017-08-01

    Space solar power satellites (SSPS) have been widely studied as systems for collecting solar energy in space and transmitting it wirelessly to earth. A previously designed planar SSPS concept collects solar power in two huge arrays and then transmits it through one side of the power-conduction joint to the antenna. However, the system's one group of power-conduction joints may induce a single point of failure. As an SSPS concept, the module symmetrical concentrator (MSC) architecture has many advantages. This architecture can help avoid the need for a large, potentially failure-prone conductive rotating joint and limit wiring mass. However, the thermal control system has severely restricted the rapid development of MSC, especially in the sandwich module. Because of the synchronous existence of five suns concentration and solar external heat flux, the sandwich module will have a very high temperature, which will surpass the permissible temperature of the solar cells. Recently, an alternate multi-rotary joints (MR) SSPS concept was designed by the China Academy of Space Technology (CAST). This system has multiple joints to avoid the problem of a single point of failure. Meanwhile, this concept has another advantage for reducing the high power and heat removal in joints. It is well known to us that, because of the huge external flux in SSPS, the thermal management sub-system is an important component that cannot be neglected. Based on the three SSPS concepts, this study investigated the thermal design and analysis of a 1-km, gigawatt-level transmitting antenna in SSPS. This study compares the thermal management sub-systems of power-conduction joints in planar and MR SSPS. Moreover, the study considers three classic thermal control architectures of the MSC's sandwich module: tile, step, and separation. The study also presents an elaborate parameter design, analysis and discussion of step architecture. Finally, the results show the thermal characteristics of each SSPS

  15. Implications for the UK of solar-power satellites /s.p.s/ as an energy source

    Science.gov (United States)

    Shelton, R. M.

    1980-01-01

    The solar power satellite concept which would make the sun's radiation available on earth as a source of energy, is discussed. Attention is given to the concept currently under evaluation in the USA, and also in Europe, though to a lesser extent. The advantages and problems associated with its adoption by the UK as a major source of electrical energy are discussed. The discussion covers topics such as sizing, reference system, and construction, costs, and problem areas.

  16. Adaptive beamforming in a CDMA mobile satellite communications system

    Science.gov (United States)

    Munoz-Garcia, Samuel G.

    1993-01-01

    Code-Division Multiple-Access (CDMA) stands out as a strong contender for the choice of multiple access scheme in these future mobile communication systems. This is due to a variety of reasons such as the excellent performance in multipath environments, high scope for frequency reuse and graceful degradation near saturation. However, the capacity of CDMA is limited by the self-interference between the transmissions of the different users in the network. Moreover, the disparity between the received power levels gives rise to the near-far problem, this is, weak signals are severely degraded by the transmissions from other users. In this paper, the use of time-reference adaptive digital beamforming on board the satellite is proposed as a means to overcome the problems associated with CDMA. This technique enables a high number of independently steered beams to be generated from a single phased array antenna, which automatically track the desired user signal and null the unwanted interference sources. Since CDMA is interference limited, the interference protection provided by the antenna converts directly and linearly into an increase in capacity. Furthermore, the proposed concept allows the near-far effect to be mitigated without requiring a tight coordination of the users in terms of power control. A payload architecture will be presented that illustrates the practical implementation of this concept. This digital payload architecture shows that with the advent of high performance CMOS digital processing, the on-board implementation of complex DSP techniques -in particular digital beamforming- has become possible, being most attractive for Mobile Satellite Communications.

  17. A low bit rate FSK technique for SCPC satellite communication systems

    Science.gov (United States)

    Shpilka, Vladimir

    This paper concerns itself with the description and analysis of an application of FSK (frequency shift keying) communication system method, with which it is possible to eliminate the degrading effects of ground station as well as satellite contributed phase noise on very low bit rate communication systems. Typical transmitter and receiver block diagrams are provided. In situations where speed of information transmission is not of the greatest importance, but availability of DC power for the radio frequency transmitter is at premium, the above mentioned FSK technique would yield very low power communication systems, that could be used with the proposed MSAT satellite. Potential applications could include the development of handheld pocket sized messaging communicators and solar powered environmental data collection platforms. This class of earth terminals would operate at L-Band and would fall into the category of mobile earth terminals within the context of the MSAT system.

  18. Soldier System Power Sources

    Science.gov (United States)

    2006-12-31

    Powered Battery Chargers 17 Exergy minimization 19 Use of secondary cells as temporary energy repositories 19 Design an automatic energy optimization...mission based on likely equipment use scenarios. The fourth was exergy minimization analysis that can be used to identify specific schemes for energy...34 Exergy minimization " An intelligent scheduling of the use of specific batteries in specific equipment was designed. "o Energy reclamation from

  19. Power system protection 2 systems and methods

    CERN Document Server

    1995-01-01

    The worldwide growth in demand for electricity has forced the pace of developments in electrical power system design to meet consumer needs for reliable, secure and cheap supplies. Power system protection, as a technology essential to high quality supply, is widely recognised as a specialism of growing and often critical importance, in which power system needs and technological progress have combined to result in rapid developments in policy and practice in recent years. In the United Kingdom, the need for appropriate training in power system protection was recognised in the early 1960s with t

  20. Advanced multiple access concepts in mobile satellite systems

    Science.gov (United States)

    Ananasso, Fulvio

    1990-01-01

    Some multiple access strategies for Mobile Satellite Systems (MSS) are discussed. These strategies were investigated in the context of three separate studies conducted for the International Maritime Satellite Organization (INMARSAT) and the European Space Agency (ESA). Satellite-Switched Frequency Division Multiple Access (SS-FDMA), Code Division Multiple Access (CDMA), and Frequency-Addressable Beam architectures are addressed, discussing both system and technology aspects and outlining advantages and drawbacks of either solution with associated relevant hardware issues. An attempt is made to compare the considered option from the standpoint of user terminal/space segment complexity, synchronization requirements, spectral efficiency, and interference rejection.

  1. (SRTM) satellite data and geographic information system: the case ...

    African Journals Online (AJOL)

    Determination of horizontal and vertical distribution of tree species in Turkey via Shuttle Radar Topography Mission (SRTM) satellite data and geographic information system: the case of Crimean pine ( Pinus nigra )

  2. Technology for satellite power conversion. Semiannual technical report

    Energy Technology Data Exchange (ETDEWEB)

    Gouker, M.A.; Campbell, D.P.; Gallagher, J.J.

    1987-02-01

    The work is this reporting period was concentrated on electronically calibrating the bolometer detectors. The calibration is necessary for two reasons: first, the power delivered to the rectifying circuit must be known in order to choose a diode with the appropriate barrier height, and second, the power captured by the antenna must be measured if the efficiency of the rectenna is to be divided into antenna efficiency and rectification efficiency. The millimeter wave region operation of the bolometers was simulated with a VHF (10 to 90 MHz) test signal. These detectors are accurate to within roughly 10%. The typical responsivity of the bolometers is 10 volts/watt and the NEP at 20 Hz is 5 times 10 to the minus 9th power W(Hz)-1/2.

  3. a Permanent Magnet Hall Thruster for Satellite Orbit Maneuvering with Low Power

    Science.gov (United States)

    Ferreira, Jose Leonardo

    Plasma thrusters are known to have some advantages like high specific impulse. Electric propulsion is already recognized as a successful technology for long duration space missions. It has been used as primary propulsion system on earth-moon orbit trnsfer missions, comets and asteroids exploration and on commercially geosyncronous satellite attitude control systems. Closed Drift Plasma Thrusters, also called Hall Thrusters or SPT (Stationary Plasma Thruster) was conceived inthe USSR and, since then, they have been developed in several countries such as France, USA, Japan and Brazil. In this work, introductory remarks are made with focus on the most significant contributions of the electric propulsion to the progress of space missions and its future role on the brazillian space program. The main features of an inedit Permanent Magnet Hall Thruster (PMHT) developed at the Plasma Laboratory of the University of Brasilia is presented. The idea of using an array of permanent magnets, instead of an eletromagnet, to produce a radial magnetic field inside the cylindrical plasma drift channel of the thruster is a very important improvement, because it allows the possibility of developing a Hall Thruster with electric power consumption low enough to be used in small and medium size satellites. The new Halĺplasma source characterization is presented with plasma density, temperature and potential space profiles. Ion temperature mesurements based on Doppler broadening of spectral lines and ion energy measurements of the ejected plasma plume are also shown. Based on the mesured parameters of the accelerated plasma we constructed a merit figure for the PMHT. We also perform numerical simulations of satellite orbit raising from an altitude of 700 km to 36000 km using a PMHT operating in the 100 mN to 500 mN thrust range. In order to perform these caculations, integration techniques of spacecraft trajectory were used. The main simulation parameters were: orbit raising time

  4. Electrical power system WP-04

    Science.gov (United States)

    Nored, Donald L.

    1990-01-01

    Viewgraphs on Space Station Freedom Electrical Power System (EPS) WP-40 are presented. Topics covered include: key EPS technical requirements; photovoltaic power module systems; solar array assembly; blanket containment box and box positioning subassemblies; solar cell; bypass diode assembly; Kapton with atomic oxygen resistant coating; sequential shunt unit; gimbal assembly; energy storage subsystem; thermal control subsystem; direct current switching unit; integrated equipment assembly; PV cargo element; PMAD system; and PMC and AC architecture.

  5. Satellite Attitude Control System Design considering the Fuel Slosh Dynamics

    Directory of Open Access Journals (Sweden)

    Luiz Carlos Gadelha de Souza

    2014-01-01

    Full Text Available The design of the satellite attitude control system (ACS becomes more complex when the satellite structure has different type of components like, flexible solar panels, antennas, mechanical manipulators, and tanks with fuel. A crucial interaction can occur between the fuel slosh motion and the satellite rigid motion during translational and/or rotational manoeuvre since these interactions can change the satellite centre of mass position damaging the ACS pointing accuracy. Although, a well-designed controller can suppress such disturbances quickly, the controller error pointing may be limited by the minimum time necessary to suppress such disturbances thus affecting the satellite attitude acquisition. As a result, the design of the satellite controller needs to explore the limits between the conflicting requirements of performance and robustness. This paper investigates the effects of the interaction between the liquid motion (slosh and the satellite dynamics in order to predict what the damage to the controller performance and robustness is. The fuel slosh dynamics is modelled by a pendulum which parameters are identified using the Kalman filter technique. This information is used to design the satellite controller by the linear quadratic regulator (LQR and linear quadratic Gaussian (LQG methods to perform a planar manoeuvre assuming thrusters are actuators.

  6. Acceptance Testing of a Satellite SCADA Photovoltaic-Diesel Hybrid System

    Science.gov (United States)

    Kalu, Alex; Acosta, R.; Durand, S.; Emrich, Carol; Ventre, G.; Wilson, W.

    1999-01-01

    Savannah State University (SSU) and the Florida Solar Energy Center (FSEC) have been participating in the NASA Advanced Communications Technology Satellite (ACTS) program for the last five years. This program was designed by NASA to help maintain U.S. leadership in commercial space communications by funding high-risk research, and to flight-test next-generation digital satellite components. Launched in 1993, ACTS is an U.S. government funded technology test-bed that incorporates high power Ka-band transponders, small spot beams, and on-board digital storage and switching technology. Associated with the spacecraft, is a prototype satellite control center that supports various application experiments. The SSU/FSEC application experiment is to developing a Photovoltaic-Diesel Hybrid Power system complete with satellite Supervisory Control and Data Acquisition (SCADA). The hybrid system was design to demonstrate the feasibility of using SCADA to maintain and operate remote village power systems. This configuration would enable experts at a central location to provide technical assistance to local technicians while they acquire a measure of proficiency with the hybrid system operation and maintenance. Upon full mastery of the technology, similar SCADA arrangement are planned to remotely monitor and control constellation of hybrid systems scattered overlarge rural areas. Two Orion Energy APEX-1000 hybrid systems were delivered in 1998, one was installed at SSU in eastern Georgia and the other was installed at FSEC in Central Florida. The project was designed to: (1) evaluate the performance of ACTS in a SCADA arrangement, (2) monitor the health and performance of all major hybrid subsystems, (3) investigate load control and battery charging strategies to maximize battery capacity and lifetime, and (4) develop satellite communication protocol. Preliminary results indicate that the hybrid design is suitable for satellite Supervisory Control and Data Acquisition. A

  7. Progress toward a full scale mobile satellite system for Canada

    Science.gov (United States)

    Roscoe, Orest S.

    The MSAT satellite, planned for launch in early 1994, will provide full scale, satellite based, mobile voice and data communication services to Canada. The MSAT system will provide mobile telephone, mobile radio and mobile data services to customers on the move in any part of North America. The Telesat Mobile Inc. (TMI) satellite will be backed up by a similar satellite to be operated by the American Mobile Satellite Corporation (AMSC) in the United States. An early entry mobile data service was inaugurated in the second quarter of 1990 using channels leased from INMARSAT on Marisat or Marecs-B. The baseline TMI system is described, beginning with the MSAT satellite under contract. The network architecture and the control system that are under development to support the mobile services are discussed. Since it is clearly desirable to have a North American system, such that customers may buy a mobile earth terminal (MET) from a number of qualified suppliers and be able to use it either in Canada or the U.S., TMI and AMSC are cooperating closely in the development of the space and ground segments of the system. The time scale for the procurement of all the elements of the systems is discussed.

  8. Talcott Parsons: Power and system

    OpenAIRE

    Pavlović Vukašin

    2008-01-01

    The author critically presents Talcott Parsons' theory of power. According to Parsons, power is a generalized capacity to secure the performance of binding obligations by units in a system of collective organization when the obligations are legitimized with reference to their bearing on collective goals and where in case of recalcitrance there is a presumption of enforcement by negative situational sanctions - whatever the actual agency of that enforcement. This definition of power does not o...

  9. Engineering satellite-based navigation and timing global navigation satellite systems, signals, and receivers

    CERN Document Server

    Betz, J

    2016-01-01

    This book describes the design and performance analysis of satnav systems, signals, and receivers. It also provides succinct descriptions and comparisons of all the world’s satnav systems. Its comprehensive and logical structure addresses all satnav signals and systems in operation and being developed. Engineering Satellite-Based Navigation and Timing: Global Navigation Satellite Systems, Signals, and Receivers provides the technical foundation for designing and analyzing satnav signals, systems, and receivers. Its contents and structure address all satnav systems and signals: legacy, modernized, and new. It combines qualitative information with detailed techniques and analyses, providing a comprehensive set of insights and engineering tools for this complex multidisciplinary field. Part I describes system and signal engineering including orbital mechanics and constellation design, signal design principles and underlying considerations, link budgets, qua tifying receiver performance in interference, and e...

  10. Communication Satellite Systems Conference, 11th, San Diego, CA, March 17-20, 1986, Technical Papers

    Science.gov (United States)

    1986-03-01

    User-oriented satellite systems for the 1990's are considered along with a satellite system for aeronautical data communications, the colocation of geostationary communication satellites, an application of intersatellite links to domestic satellite systems, global interconnectivity in the next two decades, an analysis of the Geostar position determination system, and possible architectures for a European data relay satellite system. Attention is given to optimum antenna beam pointing for communication satellites, communications satellites versus fiber optics, spread spectrum-based synchronization of digital satellite transmissions, the Geostationary Satellite Orbit Analysis Program (GSOAP), technology achievements and projections for communication satellites of the future, and trends and development of low noise amplifiers using new FET device. Other topics explored are related to the Omninet mobile satellite system, the Space Transportation System, Japan's launch vehicles, the French military satellite system, and geostationary communications platform payload concepts.

  11. Protection of industrial power systems

    CERN Document Server

    DAVIES, T

    2006-01-01

    The protection which is installed on an industrial power system is likely to be subjected to more difficult conditions than the protection on any other kind of power system. Starting with the many simple devices which are employed and covering the whole area of industrial power system protection, this book aims to help achieve a thorough understanding of the protection necessary.Vital aspects such as the modern cartridge fuse, types of relays, and the role of the current transformer are covered and the widely used inverse definite-minimum time overcurrent relay, the theory of the M

  12. Optimization of power system operation

    CERN Document Server

    Zhu, Jizhong

    2015-01-01

    This book applies the latest applications of new technologies topower system operation and analysis, including new and importantareas that are not covered in the previous edition. Optimization of Power System Operation covers both traditional andmodern technologies, including power flow analysis, steady-statesecurity region analysis, security constrained economic dispatch,multi-area system economic dispatch, unit commitment, optimal powerflow, smart grid operation, optimal load shed, optimalreconfiguration of distribution network, power system uncertaintyanalysis, power system sensitivity analysis, analytic hierarchicalprocess, neural network, fuzzy theory, genetic algorithm,evolutionary programming, and particle swarm optimization, amongothers. New topics such as the wheeling model, multi-areawheeling, the total transfer capability computation in multipleareas, are also addressed. The new edition of this book continues to provide engineers andac demics with a complete picture of the optimization of techn...

  13. Solar radiation pumped solid state of lasers for Solar Power Satellites

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Ruiyi [New Jersey (United States)

    2000-07-01

    The Laser Solar Power Satellites (L-SPS) is the most promising way to overcome global energy and environmental and economical problems. The purpose was to use the favorable combination of solar radiation, modern lasers and the extremely promising phenomenon Optical Phase Conjugation (OPC). Direct conversion of solar energy to energy of a high-power laser beam has the advantage of high efficiency and precise energy transportation. In this paper, direct solar radiation pumping of the laser is compared with the pumping using the intermediate stage of the conversion of the solar radiation in electrical energy. Possible solid-state lasers that can be used in L-SPS are also discussed (including optical system and cooling system). [Spanish] Los Satelites de Energia Solar Laser (L-SPS) son la forma mas prometedora para contrarrestar los problemas globales de energia, ambientales y problemas economicos. El proposito fue el de usar la combinacion favorable de radiacion solar, laseres modernos y el fenomeno extremadamente prometedor de conjugacion de fase optica (OPC). La conversion directa de energia solar a energia de un rayo laser de alta potencia tiene la ventaja de la alta eficiencia y precision de la transportacion de la energia. En este documento la radiacion solar directa impulsada por el laser se compara con la impulsion usando el estado intermedio de conversion de la radiacion solar en energia electrica. Tambien se analizan los posibles laseres de estado solido que pueden usarse en L-SPS (incluyendo el sistema optico y el sistema de enfriamiento).

  14. Water Powered Bioassay System

    National Research Council Canada - National Science Library

    Lin, Liwei

    2004-01-01

    This project addresses critical technologies, including the acquisition, metering, buffering, delivery and assay for the processing of bio-fluids that enable the complete integration of microfluidic chips into systems...

  15. Water Powered Bioassay System

    Science.gov (United States)

    2004-06-01

    capillary micropump 27 Figure 30: Slow dripping/separation of a droplet from a capillary 4.1.5 Micro Osmotic Pumping Nano Droplet...stored and delivered fluidic pressure and, with a combination of pumps and valves, formed the basic micro fluidic processing unit. The addition of...System, Microvalve, Micro -Accumulator, Micro Dialysis Needle, Bioassay System, Water Activated, Micro Osmotic Pump 16. PRICE CODE 17. SECURITY

  16. Hybrid Atom Electrostatic System for Satellite Geodesy

    Science.gov (United States)

    Zahzam, Nassim; Bidel, Yannick; Bresson, Alexandre; Huynh, Phuong-Anh; Liorzou, Françoise; Lebat, Vincent; Foulon, Bernard; Christophe, Bruno

    2017-04-01

    The subject of this poster comes within the framework of new concepts identification and development for future satellite gravity missions, in continuation of previously launched space missions CHAMP, GRACE, GOCE and ongoing and prospective studies like NGGM, GRACE 2 or E-GRASP. We were here more focused on the inertial sensors that complete the payload of such satellites. The clearly identified instruments for space accelerometry are based on the electrostatic technology developed for many years by ONERA and that offer a high level of performance and a high degree of maturity for space applications. On the other hand, a new generation of sensors based on cold atom interferometry (AI) is emerging and seems very promising in this context. These atomic instruments have already demonstrated on ground impressive results, especially with the development of state-of-the-art gravimeters, and should reach their full potential only in space, where the microgravity environment allows long interaction times. Each of these two types of instruments presents their own advantages which are, for the electrostatic sensors (ES), their demonstrated short term sensitivity and their high TRL, and for AI, amongst others, the absolute nature of the measurement and therefore no need for calibration processes. These two technologies seem in some aspects very complementary and a hybrid sensor bringing together all their assets could be the opportunity to take a big step in this context of gravity space missions. We present here the first experimental association on ground of an electrostatic accelerometer and an atomic accelerometer and underline the interest of calibrating the ES instrument with the AI. Some technical methods using the ES proof-mass as the Raman Mirror seem very promising to remove rotation effects of the satellite on the AI signal. We propose a roadmap to explore further in details and more rigorously this attractive hybridization scheme in order to assess its potential

  17. High power lasers & systems

    OpenAIRE

    Chatwin, Chris; Young, Rupert; Birch, Philip

    2015-01-01

    Some laser history;\\ud Airborne Laser Testbed & Chemical Oxygen Iodine Laser (COIL);\\ud Laser modes and beam propagation;\\ud Fibre lasers and applications;\\ud US Navy Laser system – NRL 33kW fibre laser;\\ud Lockheed Martin 30kW fibre laser;\\ud Conclusions

  18. Effects of plasma sheath on solar power satellite array

    Science.gov (United States)

    Parker, L. W.

    1979-01-01

    The structure of the plasma sheath and equilibrium voltage distribution of a high-power solar array governs various kinds of plasma-interaction phenomena and array losses. Sheath effects of a linearly-connected array are investigated for GEO. Although the array may be large, the thin-sheath-limit analysis may be invalid, necessitating numerical methods. Three-dimensional computer calculations show that potential barriers and over-lapping sheaths can occur, i.e., structures not predictable under the thin-sheath-limit analysis, but nevertheless controlling the distribution of plasma currents impacting on the array.

  19. Proton irradiation effects of amorphous silicon solar cell for solar power satellite

    Energy Technology Data Exchange (ETDEWEB)

    Morita, Yousuke; Oshima, Takeshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Sasaki, Susumu; Kuroda, Hideo; Ushirokawa, Akio

    1997-03-01

    Flexible amorphous silicon(fa-Si) solar cell module, a thin film type, is regarded as a realistic power generator for solar power satellite. The radiation resistance of fa-Si cells was investigated by the irradiations of 3,4 and 10 MeV protons. The hydrogen gas treatment of the irradiated fa-Si cells was also studied. The fa-Si cell shows high radiation resistance for proton irradiations, compared with a crystalline silicon solar cell. (author)

  20. Wind farm - A power source in future power systems

    DEFF Research Database (Denmark)

    Chen, Zhe; Blaabjerg, Frede

    2009-01-01

    The paper describes modern wind power systems, introduces the issues of large penetration of wind power into power systems, and discusses the possible methods of making wind turbines/farms act as a power source, like conventional power plants in power systems. Firstly, the paper describes modern...... wind turbines and wind farms, and then introduces the wind power development and wind farms. An optimization platform for designing electrical systems of offshore wind farms is briefed. The major issues related to the grid connection requirements and the operation of wind turbines/farms in power...

  1. Power Aware Distributed Systems

    Science.gov (United States)

    2004-01-01

    R. Meyer, M. Takai, Y.A. Chan, X. Zeng, J. Marting , H.Y. Song, “Parsec: a parallel simulation environment for complex systems,” Computer, Vol.31...Bearing360 180 Num. Mikes Num. Samples 7 6 2 4 5 M 8 12 18 90 1024 512 32 64 128 256 Search Angles S EW N LOB Confidence 3 B 2° 3° 4° 5° PA/ DTA /D

  2. Solar-Powered Refrigeration System

    Science.gov (United States)

    Ewert, Michael K. (Inventor); Bergeron, David J., III (Inventor)

    2001-01-01

    A solar powered vapor compression refrigeration system is made practicable with thermal storage and novel control techniques. In one embodiment, the refrigeration system includes a photovoltaic panel, a variable speed compressor, an insulated enclosure. and a thermal reservoir. The photovoltaic (PV) panel converts sunlight into DC (direct current) electrical power. The DC electrical power drives a compressor that circulates refrigerant through a vapor compression refrigeration loop to extract heat from the insulated enclosure. The thermal reservoir is situated inside the insulated enclosure and includes a phase change material. As heat is extracted from the insulated enclosure, the phase change material is frozen, and thereafter is able to act as a heat sink to maintain the temperature of the insulated enclosure in the absence of sunlight. The conversion of solar power into stored thermal energy is optimized by a compressor control method that effectively maximizes the compressor's usage of available energy. A capacitor is provided to smooth the power voltage and to provide additional current during compressor start-up. A controller monitors the rate of change of the smoothed power voltage to determine if the compressor is operating below or above the available power maximum, and adjusts the compressor speed accordingly. In this manner, the compressor operation is adjusted to convert substantially all available solar power into stored thermal energy.

  3. Solar-Powered Refrigeration System

    Science.gov (United States)

    Ewert, Michael K. (Inventor); Bergeron, David J., III (Inventor)

    2002-01-01

    A solar powered vapor compression refrigeration system is made practicable with thermal storage and novel control techniques. In one embodiment, the refrigeration system includes a photovoltaic panel, a variable speed compressor, an insulated enclosure, and a thermal reservoir. The photovoltaic (PV) panel converts sunlight into DC (direct current) electrical power. The DC electrical power drives a compressor that circulates refrigerant through a vapor compression refrigeration loop to extract heat from the insulated enclosure. The thermal reservoir is situated inside the insulated enclosure and includes a phase change material. As heat is extracted from the insulated enclosure, the phase change material is frozen, and thereafter is able to act as a heat sink to maintain the temperature of the insulated enclosure in the absence of sunlight. The conversion of solar power into stored thermal energy is optimized by a compressor control method that effectively maximizes the compressor's usage of available energy. A capacitor is provided to smooth the power voltage and to provide additional current during compressor start-up. A controller monitors the rate of change of the smoothed power voltage to determine if the compressor is operating below or above the available power maximum, and adjusts the compressor speed accordingly. In this manner, the compressor operation is adjusted to convert substantially all available solar power into stored thermal energy.

  4. Power Quality in DC Power Distribution Systems and Microgrids

    Directory of Open Access Journals (Sweden)

    Stephen Whaite

    2015-05-01

    Full Text Available This review paper discusses power quality considerations for direct current (DC electric power distribution systems, particularly DC microgrids. First, four selected sample DC architectures are discussed to provide motivation for the consideration of power quality in DC systems. Second, a brief overview of power quality challenges in conventional alternating current (AC distribution systems is given to establish the field of power quality. Finally, a survey of literature addressing power quality issues in DC systems is presented, and necessary power quality considerations in DC distribution system design and operation are discussed.

  5. Electric power system applications of optimization

    CERN Document Server

    Momoh, James A

    2008-01-01

    Introduction Structure of a Generic Electric Power System  Power System Models  Power System Control Power System Security Assessment  Power System Optimization as a Function of Time  Review of Optimization Techniques Applicable to Power Systems Electric Power System Models  Complex Power Concepts Three-Phase Systems Per Unit Representation  Synchronous Machine Modeling Reactive Capability Limits Prime Movers and Governing Systems  Automatic Gain Control Transmission Subsystems  Y-Bus Incorporating the Transformer Effect  Load Models  Available Transfer Capability  Illustrative Examples  Power

  6. Feature Detection Systems Enhance Satellite Imagery

    Science.gov (United States)

    2009-01-01

    In 1963, during the ninth orbit of the Faith 7 capsule, astronaut Gordon Cooper skipped his nap and took some photos of the Earth below using a Hasselblad camera. The sole flier on the Mercury-Atlas 9 mission, Cooper took 24 photos - never-before-seen images including the Tibetan plateau, the crinkled heights of the Himalayas, and the jagged coast of Burma. From his lofty perch over 100 miles above the Earth, Cooper noted villages, roads, rivers, and even, on occasion, individual houses. In 1965, encouraged by the effectiveness of NASA s orbital photography experiments during the Mercury and subsequent Gemini manned space flight missions, U.S. Geological Survey (USGS) director William Pecora put forward a plan for a remote sensing satellite program that would collect information about the planet never before attainable. By 1972, NASA had built and launched Landsat 1, the first in a series of Landsat sensors that have combined to provide the longest continuous collection of space-based Earth imagery. The archived Landsat data - 37 years worth and counting - has provided a vast library of information allowing not only the extensive mapping of Earth s surface but also the study of its environmental changes, from receding glaciers and tropical deforestation to urban growth and crop harvests. Developed and launched by NASA with data collection operated at various times by the Agency, the National Oceanic and Atmospheric Administration (NOAA), Earth Observation Satellite Company (EOSAT, a private sector partnership that became Space Imaging Corporation in 1996), and USGS, Landsat sensors have recorded flooding from Hurricane Katrina, the building boom in Dubai, and the extinction of the Aral Sea, offering scientists invaluable insights into the natural and manmade changes that shape the world. Of the seven Landsat sensors launched since 1972, Landsat 5 and Landsat 7 are still operational. Though both are in use well beyond their intended lifespans, the mid

  7. Organic Rankine Kilowatt Isotope Power System. Final phase I report

    Energy Technology Data Exchange (ETDEWEB)

    1978-07-15

    On 1 August 1975 under Department of Energy Contract EN-77-C-02-4299, Sundstrand Energy Systems commenced development of a Kilowatt Isotope Power System (KIPS) directed toward satisfying the higher power requirements of satellites of the 1980s and beyond. The KIPS is a /sup 238/PuO/sub 2/ fueled organic Rankine cycle turbine power system which will provide design output power in the range of 500 to 2000 W/sub (e)/ with a minimum of system changes. The principal objectives of the Phase 1 development effort were to: conceptually design a flight system; design a Ground Demonstration System (GDS) that is prototypic of the flight system in order to prove the feasibility of the flight system design; fabricate and assemble the GDS; and performance and endurance test the GDS using electric heaters in lieu of the isotope heat source. Results of the work performed under the Phase 1 contract to 1 July 1978 are presented.

  8. Design on an enhanced interactive satellite communications system analysis program

    Science.gov (United States)

    Andersen, Kevin Robert

    1991-09-01

    This thesis describes the design of a user-friendly interactive satellite communications analysis program for use on a personal computer. The user inputs the various parameters of a satellite orbit, ground station location and communications equipment. The output generated allows a user to view the satellite ground trace and footprint, calculate satellite rise and set times, and analyze the performance of the communications link. The link analysis allows the user to input various signal losses and jamming interference. Care was taken to ensure that the program is simple to operate and that it provides on-line help for each segment. A principle goal of this thesis effort is to provide an educational tool that familiarizes the user with the communications segment of a space system. The initial success of the program based upon student response validates the use of object-oriented like software tools that enhance user understanding of complex subjects.

  9. Optical neural network system for pose determination of spinning satellites

    Science.gov (United States)

    Lee, Andrew; Casasent, David

    1990-01-01

    An optical neural network architecture and algorithm based on a Hopfield optimization network are presented for multitarget tracking. This tracker utilizes a neuron for every possible target track, and a quadratic energy function of neural activities which is minimized using gradient descent neural evolution. The neural net tracker is demonstrated as part of a system for determining position and orientation (pose) of spinning satellites with respect to a robotic spacecraft. The input to the system is time sequence video from a single camera. Novelty detection and filtering are utilized to locate and segment novel regions from the input images. The neural net multitarget tracker determines the correspondences (or tracks) of the novel regions as a function of time, and hence the paths of object (satellite) parts. The path traced out by a given part or region is approximately elliptical in image space, and the position, shape and orientation of the ellipse are functions of the satellite geometry and its pose. Having a geometric model of the satellite, and the elliptical path of a part in image space, the three-dimensional pose of the satellite is determined. Digital simulation results using this algorithm are presented for various satellite poses and lighting conditions.

  10. 76 FR 48159 - Integrated System Power Rates

    Science.gov (United States)

    2011-08-08

    ... Southwestern Power Administration Integrated System Power Rates AGENCY: Southwestern Power Administration, DOE... component of the Integrated System rates for power and energy, the Purchased Power Adder (PPA), produces... finalized Integrated System Rate Proposal, Power Repayment Studies, and Rate Design Study in support of the...

  11. Computer-aided communication satellite system analysis and optimization

    Science.gov (United States)

    Stagl, T. W.; Morgan, N. H.; Morley, R. E.; Singh, J. P.

    1973-01-01

    The capabilities and limitations of the various published computer programs for fixed/broadcast communication satellite system synthesis and optimization are discussed. A satellite Telecommunication analysis and Modeling Program (STAMP) for costing and sensitivity analysis work in application of communication satellites to educational development is given. The modifications made to STAMP include: extension of the six beam capability to eight; addition of generation of multiple beams from a single reflector system with an array of feeds; an improved system costing to reflect the time value of money, growth in earth terminal population with time, and to account for various measures of system reliability; inclusion of a model for scintillation at microwave frequencies in the communication link loss model; and, an updated technological environment.

  12. Concentrators Enhance Solar Power Systems

    Science.gov (United States)

    2013-01-01

    "Right now, solar electric propulsion is being looked at very seriously," says Michael Piszczor, chief of the photovoltaic and power technologies branch at Glen Research Center. The reason, he explains, originates with a unique NASA mission from the late 1990s. In 1998, the Deep Space 1 spacecraft launched from Kennedy Space Center to test a dozen different space technologies, including SCARLET, or the Solar Concentrator Array with Refractive Linear Element Technology. As a solar array that focused sunlight on a smaller solar cell to generate electric power, SCARLET not only powered Deep Space 1 s instruments but also powered its ion engine, which propelled the spacecraft throughout its journey. Deep Space 1 was the first spacecraft powered by a refractive concentrator design like SCARLET, and also utilized multi-junction solar cells, or cells made of multiple layers of different materials. For the duration of its 38-month mission, SCARLET performed flawlessly, even as Deep Space 1 flew by Comet Borrelly and Asteroid Braille. "Everyone remembers the ion engine on Deep Space 1, but they tend to forget that the SCARLET array powered it," says Piszczor. "Not only did both technologies work as designed, but the synergy between the two, solar power and propulsion together, is really the important aspect of this technology demonstration mission. It was the first successful use of solar electric propulsion for primary propulsion." More than a decade later, NASA is keenly interested in using solar electric propulsion (SEP) for future space missions. A key issue is cost, and SEP has the potential to substantially reduce cost compared to conventional chemical propulsion technology. "SEP allows you to use spacecraft that are smaller, lighter, and less costly," says Piszczor. "Even though it might take longer to get somewhere using SEP, if you are willing to trade time for cost and smaller vehicles, it s a good trade." Potentially, SEP could be used on future science missions

  13. Functional Study of A Distributed MPPT Power Management System

    Directory of Open Access Journals (Sweden)

    Bifaretti S.

    2017-01-01

    Full Text Available This paper presents the concept of a control strategy for Solar Array (SA power regulation using an independent Maximum Power Point Tracking system for each Solar Array section in order to maximize the power extracted from every SA sections. Moreover, it allows to distribute the battery charge current between the power sources in order to evenly divide the switching losses on the power semiconductors of the converters and, thus, extending their life time and to reduce the dissipation power. The proposed strategy can be applied to the Power Control Unit designed for satellites with unregulated power bus architecture. Significant simulation results, obtained using a Matlab/Simulink model, demonstrates the validity of the proposed approach.

  14. Reliability evaluation of power systems

    CERN Document Server

    Billinton, Roy

    1996-01-01

    The Second Edition of this well-received textbook presents over a decade of new research in power system reliability-while maintaining the general concept, structure, and style of the original volume. This edition features new chapters on the growing areas of Monte Carlo simulation and reliability economics. In addition, chapters cover the latest developments in techniques and their application to real problems. The text also explores the progress occurring in the structure, planning, and operation of real power systems due to changing ownership, regulation, and access. This work serves as a companion volume to Reliability Evaluation of Engineering Systems: Second Edition (1992).

  15. Solar-powered cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, Joseph C

    2013-12-24

    A solar-powered adsorption-desorption refrigeration and air conditioning system uses nanostructural materials made of high specific surface area adsorption aerogel as the adsorptive media. Refrigerant molecules are adsorbed on the high surface area of the nanostructural material. A circulation system circulates refrigerant from the nanostructural material to a cooling unit.

  16. Technological inductive power transfer systems

    Science.gov (United States)

    Madzharov, Nikolay D.; Nemkov, Valentin S.

    2017-05-01

    Inductive power transfer is a very fast expanding technology with multiple design principles and practical implementations ranging from charging phones and computers to bionic systems, car chargers and continuous power transfer in technological lines. Only a group of devices working in near magnetic field is considered. This article is devoted to overview of different inductive power transfer (IPT) devices. The review of literature in this area showed that industrial IPT are not much discussed and examined. The authors have experience in design and implementation of several types of IPTs belonging to wireless automotive chargers and to industrial application group. Main attention in the article is paid to principles and design of technological IPTs

  17. Optimization of photovoltaic power systems

    CERN Document Server

    Rekioua, Djamila

    2012-01-01

    Photovoltaic generation is one of the cleanest forms of energy conversion available. One of the advantages offered by solar energy is its potential to provide sustainable electricity in areas not served by the conventional power grid. Optimisation of Photovoltaic Power Systems details explicit modelling, control and optimisation of the most popular stand-alone applications such as pumping, power supply, and desalination. Each section is concluded by an example using the MATLAB(R) and Simulink(R) packages to help the reader understand and evaluate the performance of different photovoltaic syste

  18. Power systems for space exploration

    Science.gov (United States)

    Shipbaugh, Calvin; Solomon, Kenneth A.

    The Outreach Program was designed to solicit creative ideas from academia, research institutions, private enterprises, and the general public and is intended to be helpful in defining promising technical areas and program paths for more detailed study. To the Outreach Program, a number of power system concepts were proposed. In conclusion, there are a number of advanced concepts for space power and propulsion sources that deserve study if we want to expand our ability to not only explore space, but to utilize it. Advanced nuclear concepts and power beaming concepts are two areas worthy of detailed assessments.

  19. Dynamic modeling of power systems

    Energy Technology Data Exchange (ETDEWEB)

    Reed, M.; White, J.

    1995-12-01

    Morgantown Energy Technology Center`s (METC) Process and Project Engineering (P&PE) personnel continue to refine and modify dynamic modeling or simulations for advanced power systems. P&PE, supported by Gilbert/Commonwealth, Inc. (G/C), has adapted PC/TRAX commercial dynamic software to include equipment found in advanced power systems. PC/TRAX`s software contains the equations that describe the operation of standard power plant equipment such as gas turbines, feedwater pumps, and steam turbines. The METC team has incorporated customized dynamic models using Advanced Continuous Simulation Language (ACSL) code for pressurized circulating fluidized-bed combustors, carbonizers, and other components that are found in Advanced Pressurized Fluidized-Bed Combustion (APFBC) systems. A dynamic model of a commercial-size APFBC power plant was constructed in order to determine representative operating characteristics of the plant and to gain some insight into the best type of control system design. The dynamic model contains both process and control model components. This presentation covers development of a model used to describe the commercial APFBC power plant. Results of exercising the model to simulate plant performance are described and illustrated. Information gained during the APFBC study was applied to a dynamic model of a 1-1/2 generation PFBC system. Some initial results from this study are also presented.

  20. Solar Power Satellites - A Review of the Space Transportation Options.

    Science.gov (United States)

    1980-03-01

    devastating huge areas of a country. (ii) The waste heat from the reactor causes unwanted thermal pollution. (iii) Disposing of radioactive products...energy density, high thrust to weight ratio nuclear rocket, capable of retaining all radioactive material. (vi) An integrated propulsion system...predicted to result from nuclear wars or from nearby supernovae events As has already been mentioned, there was in the recent past a great deal of

  1. Tailoring Systems Engineering Projects for Small Satellite Missions

    Science.gov (United States)

    Horan, Stephen; Belvin, Keith

    2013-01-01

    NASA maintains excellence in its spaceflight systems by utilizing rigorous engineering processes based on over 50 years of experience. The NASA systems engineering process for flight projects described in NPR 7120.5E was initially developed for major flight projects. The design and development of low-cost small satellite systems does not entail the financial and risk consequences traditionally associated with spaceflight projects. Consequently, an approach is offered to tailoring of the processes such that the small satellite missions will benefit from the engineering rigor without overly burdensome overhead. In this paper we will outline the approaches to tailoring the standard processes for these small missions and describe how it will be applied in a proposed small satellite mission.

  2. Proposed systems configurations for a satellite based ISDN

    Science.gov (United States)

    Capece, M.; Pavesi, B.; Tozzi, P.; Galligan, K. P.

    This paper summarizes concepts developed during a study for the ESA in which the evolution of ISDN capability and the impact in the satellite land mobile area are examined. Following the progressive steps of the expected ISDN implementation and the potential market penetration, a space based system capable of satisfying particular user services classes has been investigated. The approach used is to establish a comparison between the requirements of potential mobile users and the services already envisaged by ISDN, identifying the service subclasses that might be adopted in a mobile environment through a satellite system. Two system alternatives, with different ISDN compatibility, have been identified. The first option allows a partial compatibility, by providing the central stations of the earth segment with suitable interface units. The second option permits a full integration, operating on the satellite on-board capabilities.

  3. Infrared technology for satellite power conversion. [antenna arrays and bolometers

    Science.gov (United States)

    Campbell, D. P.; Gouker, M. A.; Gallagher, J. J.

    1984-01-01

    Successful fabrication of bismuth bolometers led to the observation of antenna action rom array elements. Fabrication of the best antennas arrays was made more facile with finding that increased argon flow during the dc sputtering produced more uniform bismuth films and bonding to antennas must be done with the substrate temperaure below 100 C. Higher temperatures damaged the bolometers. During the testing of the antennas, it was found that the use of a quasi-optical system provided a uniform radiation field. Groups of antennas were bonded in series and in parallel with the parallel configuration showing the greater response.

  4. Evaluation of solar cells for potential space satellite power applications

    Science.gov (United States)

    1977-01-01

    The evaluation focused on the following subjects: (1) the relative merits of alternative solar cell materials, based on performance and availability, (2) the best manufacturing methods for various solar cell options and the effects of extremely large production volumes on their ultimate costs and operational characteristics, (3) the areas of uncertainty in achieving large solar cell production volumes, (4) the effects of concentration ratios on solar array mass and system performance, (5) the factors influencing solar cell life in the radiation environment during transport to and in geosynchronous orbit, and (6) the merits of conducting solar cell manufacturing operations in space.

  5. PowerFactory applications for power system analysis

    CERN Document Server

    Gonzalez-Longatt, Francisco

    2014-01-01

    This book presents a comprehensive set of guidelines and applications of DIgSILENT PowerFactory, an advanced power system simulation software package, for different types of power systems studies. Written by specialists in the field, it combines expertise and years of experience in the use of DIgSILENT PowerFactory with a deep understanding of power systems analysis. These complementary approaches therefore provide a fresh perspective on how to model, simulate and analyse power systems. It presents methodological approaches for modelling of system components, including both classical and non-

  6. ADVANCED POWER SYSTEMS ASH BEHAVIOR IN POWER SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    ZYGARLICKE, CHRISTOPHER J; MCCOLLOR, DONALD P; KAY, JOHN P; SWANSON, MICHAEL L

    1998-09-01

    The overall goal of this initiative is to develop fundamental knowledge of ash behavior in power systems for the purpose of increasing power production efficiency, reducing operation and maintenance costs, and reducing greenhouse gas emissions into the atmosphere. The specific objectives of this initiative focus primarily on ash behavior related to advanced power systems and include the following: Determine the current status of the fundamental ash interactions and deposition formation mechanisms as already reported through previous or ongoing projects at the EERC or in the literature. Determine sintering mechanisms for temperatures and particle compositions that are less well known and remain for the most part undetermined. Identify the relationship between the temperature of critical viscosity (Tcv ) as measured in a viscometer and the crystallization occurring in the melt. Perform a literature search on the use of heated-stage microscopy (HSM) for examining in situ ash-sintering phenomena and then validate the use of HSM in the determination of viscosity in spherical ash particles. Ascertain the formation and stability of specific mineral or amorphous phases in deposits typical of advanced power systems. Evaluate corrosion for alloys being used in supercritical combustion systems.

  7. Satellite systems for personal applications concepts and technology

    CERN Document Server

    Richharia, Madhavendra

    2010-01-01

    Presents the concepts, technology, and role of satellite systems in support of personal applications, such as mobile and broadband communications, navigation, television, radio and multimedia broadcasting, safety of life services, etc. This book presents a novel perspective on satellite systems, reflecting the modern personal technology context, and hence a focus on the individual as end-user. The book begins by outlining key generic concepts before discussing techniques adopted in particular application areas; next, it exemplifies these techniques through discussion of state-of-art c

  8. Power system studies of new ancillary services

    DEFF Research Database (Denmark)

    Hansen, Anca Daniela; Altin, Müfit

    The objective of this report is to illustrate and analyse, by means of simulation test cases, the impact of wind power advanced ancillary services, like inertial response (IR), power oscillation damping (POD) and synchronising power (SP) on the power system. Generic models for wind turbine, wind...... power plant and power system are used in the investigation....

  9. A high capacity mobile communications satellite system for the first generation MSS

    Science.gov (United States)

    Wiedeman, R. A.

    A low-cost high-capacity dual-band mobile communications satellite system using existing equipment is proposed for the first generation MSS. Cost effectiveness and the requirements of beam optimization and passive intermodulation avoidance dictated the choice of two single band satellites for separate UHF and L-band coverage of North America. Similar designs for the two satellites, based on the Intelsat V and Insat/Arabsat configurations, will achieve over 6000 5-kHz SCPC, communications channels for the system. The 12 beam UHF and 17 beam L-band satellites achieve up to a three-fold frequency reuse of the FCC allocated MSS frequency spectrum. Spacecraft design features include separate 9.1 m antennas for sending and receiving, SAW filters for channel noise attenuation, an integrated bipropellant propulsion system, and a 3.8 kW 10-year electrical power subsystem with a solar array. The satellites are compatible with the STS, Ariane, and other expendable boosters.

  10. The C3PO project: a laser communication system concept for small satellites

    Science.gov (United States)

    d'Humières, Benoît; Esmiller, Bruno; Gouy, Yann; Steck, Emilie; Quintana, Crisanto; Faulkner, Graham; O'Brien, Dominic; Sproll, Fabian; Wagner, Paul; Hampf, Daniel; Riede, Wolfgang; Salter, Michael; Wang, Qin; Platt, Duncan; Jakonis, Darius; Piao, Xiaoyu; Karlsson, Mikael; Oberg, Olof; Petermann, Ingemar; Michalkiewicz, Aneta; Krezel, Jerzy; Debowska, Anna; Thueux, Yoann

    2017-02-01

    The satellite market is shifting towards smaller (micro and nanosatellites), lowered mass and increased performance platforms. Nanosatellites and picosatellites have been used for a number of new, innovative and unique payloads and missions. This trend requires new concepts for a reduced size, a better performance/weight ratio and a reduction of onboard power consumption. In this context, disruptive technologies, such as laser-optical communication systems, are opening new possibilities. This paper presents the C3PO1 system, "advanced Concept for laser uplink/ downlink CommuniCation with sPace Objects", and the first results of the development of its key technologies. This project targets the design of a communications system that uses a ground-based laser to illuminate a satellite, and a Modulating Retro-Reflector (MRR) to return a beam of light modulated by data to the ground. This enables a downlink, without a laser source on the satellite. This architecture suits well to small satellite applications so as high data rates are potentially provided with very low board mass. C3PO project aims to achieve data rates of 1Gbit/s between LEO satellites and Earth with a communication payload mass of less than 1kilogram. In this paper, results of the initial experiments and demonstration of the key technologies will be shown.

  11. Satellites for U.S. education - Needs, opportunities and systems.

    Science.gov (United States)

    Morgan, R. P.; Singh, J. P.; Anderson, B. D.; Greenberg, E.

    1972-01-01

    This paper presents results of a continuing interdisciplinary study of the potential applications of Fixed- and Broadcast-Satellites for educational information transfer in the United States for the period 1975-1985. The status of U.S. education is examined and needs, trends and issues are discussed. The existing educational telecommunications infrastructure is examined and opportunities for satellite services are defined. Potential uses include networking of educational institutions and service centers for delivery of public and instructional television, computer-aided instruction, computing and information resources to regions and groups not now adequately served. Systems alternatives and some of the organizational and economic issues inherent in the deployment of an educational satellite system are discussed.-

  12. Estimation of power system variability due to wind power

    NARCIS (Netherlands)

    Papaefthymiou, G.; Verboomen, J.; Van der Sluis, L.

    2007-01-01

    The incorporation of wind power generation to the power system leads to an increase in the variability of the system power flows. The assessment of this variability is necessary for the planning of the necessary system reinforcements. For the assessment of this variability, the uncertainty in the

  13. The electric power engineering handbook power system stability and control

    CERN Document Server

    Grisby, Leonard L

    2012-01-01

    With contributions from worldwide leaders in the field, Power System Stability and Control, Third Edition (part of the five-volume set, The Electric Power Engineering Handbook) updates coverage of recent developments and rapid technological growth in essential aspects of power systems. Edited by L.L. Grigsby, a respected and accomplished authority in power engineering, and section editors Miroslav Begovic, Prabha Kundur, and Bruce Wollenberg, this reference presents substantially new and revised content. Topics covered include: * Power System Protection * Power System Dynamics and Stability *

  14. Recent Advances That May Revitalize Mobile Satellite Systems

    Science.gov (United States)

    Karabinis, Peter D.; Dutta, Santanu

    2003-07-01

    The struggling Mobile Satellite Services industry recently received a much needed stimulus. Following a lengthy technical debate, the Federal Communications Commission (FCC) authorized the use of Ancillary Terrestrial Components (ATCs) by Mobile Satellite System (MSS) operators in order to expand and improve the reliability of MSS services in populous areas. This paper discusses an innovative architecture that will enable Mobile Satellite Ventures (MSV) to launch its hybrid network, comprising satellite and ancillary terrestrial connectivity, enabling its users to communicate from everywhere using one device. MSV's network will be based on mainstream mass-market technologies (GSM and/or CDMA) and will thus derive the benefits of high production volume on its end-user devices. As such, MSV's terminal equipment will be aesthetically indistinguishable from cellular/PCS-only products, and very cost competitive. The aggregate level of co-channel and adjacent channel interference that may be generated by the ATC, as it terrestrially reuses the available satellite-link frequencies, has been shown to be insignificant by both MSV and the FCC. The hybrid system architecture that is contemplated by MSV including its frequency reuse by space and terrestrial elements is discussed.

  15. Power electronic systems Walsh analysis with Matlab

    CERN Document Server

    Deb, Anish

    2014-01-01

    A Totally Different Outlook on Power Electronic System AnalysisPower Electronic Systems: Walsh Analysis with MATLAB® builds a case for Walsh analysis as a powerful tool in the study of power electronic systems. It considers the application of Walsh functions in analyzing power electronic systems, and the advantages offered by Walsh domain analysis of power electronic systems. Solves Power Electronic Systems in an Unconventional WayThis book successfully integrates power electronics as well as systems and control. Incorporating a complete orthonormal function set very much unlike the sine-cosin

  16. 77 FR 2521 - Integrated System Power Rates

    Science.gov (United States)

    2012-01-18

    ... Southwestern Power Administration Integrated System Power Rates AGENCY: Southwestern Power Administration, DOE... on the 2011 Integrated System Current Power Repayment Study, that existing rates will not satisfy... Control Act of 1944. The finalized 2011 Integrated System Power Repayment Studies (PRSs) indicate that an...

  17. 78 FR 62616 - Integrated System Power Rates

    Science.gov (United States)

    2013-10-22

    ... Southwestern Power Administration Integrated System Power Rates AGENCY: Southwestern Power Administration, DOE... into effect on an interim basis, increases the power rates for the Integrated System pursuant to the following Integrated System Rate Schedules: Rate Schedule P-13, Wholesale Rates for Hydro Peaking Power...

  18. 75 FR 1363 - Integrated System Power Rates

    Science.gov (United States)

    2010-01-11

    ... Southwestern Power Administration Integrated System Power Rates AGENCY: Southwestern Power Administration, DOE...) Administrator has determined based on the 2009 Integrated System Current Power Repayment Study, that existing... Section 5 of the Flood Control Act of 1944. The finalized 2009 Integrated System Power Repayment Studies...

  19. NASA's Radioisotope Power Systems - Plans

    Science.gov (United States)

    Hamley, John A.; Mccallum, Peter W.; Sandifer, Carl E., II; Sutliff, Thomas J.; Zakrajsek, June F.

    2015-01-01

    NASA's Radioisotope Power Systems (RPS) Program continues to plan and implement content to enable planetary exploration where such systems could be needed, and to prepare more advanced RPS technology for possible infusion into future power systems. The 2014-2015 period saw significant changes, and strong progress. Achievements of near-term objectives have enabled definition of a clear path forward in which payoffs from research investments and other sustaining efforts can be applied. The future implementation path is expected to yield a higher-performing thermoelectric generator design, a more isotope-fuel efficient system concept design, and a robust RPS infrastructure maintained effectively within both NASA and the Department of Energy. This paper describes recent work with an eye towards the future plans that result from these achievements.

  20. Dynamic influences of wind power on the power system

    Energy Technology Data Exchange (ETDEWEB)

    Rosas, Pedro

    2003-03-01

    The thesis first presents the basics influences of wind power on the power system stability and quality by pointing out the main power quality issues of wind power in a small-scale case and following, the expected large-scale problems are introduced. Secondly, a dynamic wind turbine model that supports power quality assessment of wind turbines is presented. Thirdly, an aggregate wind farm model that support power quality and stability analysis from large wind farms is presented. The aggregate wind farm model includes the smoothing of the relative power fluctuation from a wind farm compared to a single wind turbine. Finally, applications of the aggregate wind farm model to the power systems are presented. The power quality and stability characteristics influenced by large-scale wind power are illustrated with three cases. In this thesis, special emphasis has been given to appropriate models to represent the wind acting on wind farms. The wind speed model to a single wind turbine includes turbulence and tower shadow effects from the wind and the rotational sampling turbulence due to the rotation of the blades. In a park scale, the wind speed model to the wind farm includes the spatial coherence between different wind turbines. Here the wind speed model is applied to a constant rotational speed wind turbine/farm, but the model is suitable to variable speed wind turbine/farm as well. The cases presented here illustrate the influences of the wind power on the power system quality and stability. The flicker and frequency deviations are the main power quality parameters presented. The power system stability concentrates on the voltage stability and on the power system oscillations. From the cases studied, voltage and the frequency variations were smaller than expected from the large-scale wind power integration due to the low spatial correlation of the wind speed. The voltage quality analysed in a Brazilian power system and in the Nordel power system from connecting large

  1. Combined Global Navigation Satellite Systems in the Space Service Volume

    Science.gov (United States)

    Force, Dale A.; Miller, James J.

    2013-01-01

    Besides providing position, velocity, and timing (PVT) for terrestrial users, the Global Positioning System (GPS) is also being used to provide PVT information for earth orbiting satellites. In 2006, F. H. Bauer, et. al., defined the Space Service Volume in the paper GPS in the Space Service Volume , presented at ION s 19th international Technical Meeting of the Satellite Division, and looked at GPS coverage for orbiting satellites. With GLONASS already operational, and the first satellites of the Galileo and Beidou/COMPASS constellations already in orbit, it is time to look at the use of the new Global Navigation Satellite Systems (GNSS) coming into service to provide PVT information for earth orbiting satellites. This presentation extends GPS in the Space Service Volume by examining the coverage capability of combinations of the new constellations with GPS GPS was first explored as a system for refining the position, velocity, and timing of other spacecraft equipped with GPS receivers in the early eighties. Because of this, a new GPS utility developed beyond the original purpose of providing position, velocity, and timing services for land, maritime, and aerial applications. GPS signals are now received and processed by spacecraft both above and below the GPS constellation, including signals that spill over the limb of the earth. Support of GPS space applications is now part of the system plan for GPS, and support of the Space Service Volume by other GNSS providers has been proposed to the UN International Committee on GNSS (ICG). GPS has been demonstrated to provide decimeter level position accuracy in real-time for satellites in low Earth orbit (centimeter level in non-real-time applications). GPS has been proven useful for satellites in geosynchronous orbit, and also for satellites in highly elliptical orbits. Depending on how many satellites are in view, one can keep time locked to the GNSS standard, and through that to Universal Time as long as at least one

  2. Power System Operation with Large Scale Wind Power Integration

    DEFF Research Database (Denmark)

    Suwannarat, A.; Bak-Jensen, B.; Chen, Z.

    2007-01-01

    The Danish power system starts to face problems of integrating thousands megawatts of wind power, which produce in a stochastic behavior due to natural wind fluctuations. With wind power capacities increasing, the Danish Transmission System Operator (TSO) is faced with new challenges related...... to the uncertain nature of wind power. In this paper, proposed models of generations and control system are presented which analyze the deviation of power exchange at the western Danish-German border, taking into account the fluctuating nature of wind power. The performance of the secondary control of the thermal...... power plants and the spinning reserves control from the Combined Heat and Power (CHP) units to achieve active power balance with the increased wind power penetration is presented....

  3. Multi-agent robotic systems and applications for satellite missions

    Science.gov (United States)

    Nunes, Miguel A.

    A revolution in the space sector is happening. It is expected that in the next decade there will be more satellites launched than in the previous sixty years of space exploration. Major challenges are associated with this growth of space assets such as the autonomy and management of large groups of satellites, in particular with small satellites. There are two main objectives for this work. First, a flexible and distributed software architecture is presented to expand the possibilities of spacecraft autonomy and in particular autonomous motion in attitude and position. The approach taken is based on the concept of distributed software agents, also referred to as multi-agent robotic system. Agents are defined as software programs that are social, reactive and proactive to autonomously maximize the chances of achieving the set goals. Part of the work is to demonstrate that a multi-agent robotic system is a feasible approach for different problems of autonomy such as satellite attitude determination and control and autonomous rendezvous and docking. The second main objective is to develop a method to optimize multi-satellite configurations in space, also known as satellite constellations. This automated method generates new optimal mega-constellations designs for Earth observations and fast revisit times on large ground areas. The optimal satellite constellation can be used by researchers as the baseline for new missions. The first contribution of this work is the development of a new multi-agent robotic system for distributing the attitude determination and control subsystem for HiakaSat. The multi-agent robotic system is implemented and tested on the satellite hardware-in-the-loop testbed that simulates a representative space environment. The results show that the newly proposed system for this particular case achieves an equivalent control performance when compared to the monolithic implementation. In terms on computational efficiency it is found that the multi

  4. Gravitational force and torque on a solar power satellite considering the structural flexibility

    Science.gov (United States)

    Zhao, Yi; Zhang, Jingrui; Zhang, Yao; Zhang, Jun; Hu, Quan

    2017-11-01

    The solar power satellites (SPS) are designed to collect the constant solar energy and beam it to Earth. They are traditionally large in scale and flexible in structure. In order to obtain an accurate model of such system, the analytical expressions of the gravitational force, gravity gradient torque and modal force are investigated. They are expanded to the fourth order in a Taylor series with the elastic displacements considered. It is assumed that the deformation of the structure is relatively small compared with its characteristic length, so that the assumed mode method is applicable. The high-order moments of inertia and flexibility coefficients are presented. The comprehensive dynamics of a large flexible SPS and its orbital, attitude and vibration evolutions with different order gravitational forces, gravity gradient torques and modal forces in geosynchronous Earth orbit are performed. Numerical simulations show that an accurate representation of the SPS‧ dynamic characteristics requires the retention of the higher moments of inertia and flexibility. Perturbations of orbit, attitude and vibration can be retained to the 1-2nd order gravitational forces, the 1-2nd order gravity gradient torques and the 1-2nd order modal forces for a large flexible SPS in geosynchronous Earth orbit.

  5. Handbook of power systems engineering with power electronics applications

    CERN Document Server

    Hase, Yoshihide

    2012-01-01

    Formerly known as Handbook of Power System Engineering, this second edition provides rigorous revisions to the original treatment of systems analysis together with a substantial new four-chapter section on power electronics applications. Encompassing a whole range of equipment, phenomena, and analytical approaches, this handbook offers a complete overview of power systems and their power electronics applications, and presents a thorough examination of the fundamental principles, combining theories and technologies that are usually treated in separate specialised fields, in a single u

  6. Cote d'Ivoire satellite transmission system

    Science.gov (United States)

    Geiling, J. I.; Rasmussen, K. E.

    The Cote d'Ivoire (Ivory Coast) initiated a rural telecommunications study to analyze its national telecommunications network and to make recommendations for future growth and expansion. The study analyzed voice and data communications capabilities and requirements together with distribution and radio programming through the Cote d'Ivoire. Transmission alternatives were then investigated, and the optimum system configuration was defined. Concurrent with the study, a pilot system was installed using SCPC and DAMA transmission techniques; the system consisted of 60 voice channels for use with the public network and 12 executive channels for use with PABX and FX lines. This paper presents the results of the study, the verification of the study recommendations with the pilot system, and the future plans for the expansion of the network through the Cote d'Ivoire.

  7. Satellite Observation Systems for Polar Climate Change Studies

    Science.gov (United States)

    Comiso, Josefino C.

    2012-01-01

    The key observational tools for detecting large scale changes of various parameters in the polar regions have been satellite sensors. The sensors include passive and active satellite systems in the visible, infrared and microwave frequencies. The monitoring started with Tiros and Nimbus research satellites series in the 1970s but during the period, not much data was stored digitally because of limitations and cost of the needed storage systems. Continuous global data came about starting with the launch of ocean color, passive microwave, and thermal infrared sensors on board Nimbus-7 and Synthetic Aperture Radar, Radar Altimeter and Scatterometer on board SeaSat satellite both launched in 1978. The Nimbus-7 lasted longer than expected and provided about 9 years of useful data while SeaSat quit working after 3 months but provided very useful data that became the baseline for follow-up systems with similar capabilities. Over the years, many new sensors were launched, some from Japan Aeronautics and Space Agency (JAXA), some from the European Space Agency (ESA) and more recently, from RuSSia, China, Korea, Canada and India. For polar studies, among the most useful sensors has been the passive microwave sensor which provides day/night and almost all weather observation of the surface. The sensor provide sea surface temperature, precipitation, wind, water vapor and sea ice concentration data that have been very useful in monitoring the climate of the region. More than 30 years of such data are now available, starting with the Scanning Multichannel Microwave Radiometer (SMMR) on board the Nimbus-7, the Special Scanning Microwave/Imager (SSM/I) on board a Defense Meteorological Satellite Program (DMSP) and the Advanced Microwave Scanning Radiometer on board the EOS/ Aqua satellite. The techniques that have been developed to derive geophysical parameters from data provided by these and other sensors and associated instrumental and algorithm errors and validation techniques

  8. Beamlet pulsed-power system

    Energy Technology Data Exchange (ETDEWEB)

    Larson, D.

    1996-06-01

    The 13-MJ Beamlet pulsed-power system provides power to the 512 flash lamps in the cavity and booster amplifiers. Since the flash lamps pump all of the apertures in the 2 x 2 amplifier array, the capacitor bank provides roughly four times the energy required to pump the single active beam line. During the 40 s prior to the shot, the capacitors are charged by constant-current power supplies. Ignitron switches transfer the capacitor energy to the flash lamps via coaxial cables. A preionization system triggers the flash lamps and delivers roughly 1 % of the capacitor energy 200 {mu}s prior to the main discharge. This is the first time flash-lamp preionization has been used in a large facility. Preionization improves the amplifier efficiency by roughly 5% and increases the lifetime of the flash lamps. LabVIEW control panels provide an operator interface with the modular controls and diagnostics. To improve the reliability of the system, high-energy-density, self-healing, metallized dielectric capacitors are used. High-frequency, voltage-regulated switching power supplies are integrated into each module on Beamlet, allowing greater independence among the modules and improved charge voltage accuracy, flexibility, and repeatability.

  9. Power system dynamics and control

    CERN Document Server

    Kwatny, Harry G

    2016-01-01

    This monograph explores a consistent modeling and analytic framework that provides the tools for an improved understanding of the behavior and the building of efficient models of power systems. It covers the essential concepts for the study of static and dynamic network stability, reviews the structure and design of basic voltage and load-frequency regulators, and offers an introduction to power system optimal control with reliability constraints. A set of Mathematica tutorial notebooks providing detailed solutions of the examples worked-out in the text, as well as a package that will enable readers to work out their own examples and problems, supplements the text. A key premise of the book is that the design of successful control systems requires a deep understanding of the processes to be controlled; as such, the technical discussion begins with a concise review of the physical foundations of electricity and magnetism. This is followed by an overview of nonlinear circuits that include resistors, inductors, ...

  10. The tethered satellite system for low density aerothermodynamics studies

    Science.gov (United States)

    Carlomagno, Giovanni M.; De Luca, Luigi; Siemers, P. M., III; Wood, George M., Jr.

    1986-01-01

    The feasibility of the operation of the Tethered Satellite System (TSS) as a continuous open wind tunnel for low-density aerothermodynamic studies (applicable to the design of hypersonic space vehicles including STARFAC, AOTV, and ERV) is considered. The Shuttle Continuous Open Wind Tunnel (SCOWT) program, for the study of the energy and momentum transfer between the tethered satellite and its environmental medium during the TSS/2 mission, is described. Instrumentation and TSS design requirements to meet SCOWT objectives are also considered. SCOWT will provide information on the gasdynamic processes occurring downstream of the bow wave standing in front of the TS, the chemistry and physics of the upper atmosphere related to satellite aerothermodynamics, and TSS's overall experimental envelope of operation.

  11. Deployable Propulsion and Power Systems for Solar System Exploration

    Science.gov (United States)

    Johnson, Les; Carr, John

    2017-01-01

    NASA is developing thin-film based, deployable propulsion, power and communication systems for small spacecraft that could provide a revolutionary new capability allowing small spacecraft exploration of the solar system. The Near Earth Asteroid (NEA) Scout reconnaissance mission will demonstrate solar sail propulsion on a 6U CubeSat interplanetary spacecraft and lay the groundwork for their future use in deep space science and exploration missions. Solar sails use sunlight to propel vehicles through space by reflecting solar photons from a large, mirror-like sail made of a lightweight, highly reflective material. This continuous photon pressure provides propellantless thrust, allowing for very high delta V maneuvers on long-duration, deep space exploration. Since reflected light produces thrust, solar sails require no onboard propellant. The Lightweight Integrated Solar Array and Transceiver (LISA-T) is a launch stowed, orbit deployed array on which thin-film photovoltaic and antenna elements are embedded. Inherently, small satellites are limited in surface area, volume, and mass allocation; driving competition between power, communications, and GN&C (guidance navigation and control) subsystems. This restricts payload capability and limits the value of these low-cost satellites. LISA-T is addressing this issue, deploying large-area arrays from a reduced volume and mass envelope - greatly enhancing power generation and communications capabilities of small spacecraft. The NEA Scout mission, funded by NASA's Advanced Exploration Systems Program and managed by NASA MSFC, will use the solar sail as its primary propulsion system, allowing it to survey and image one or more NEA's of interest for possible future human exploration. NEA Scout uses a 6U cubesat (to be provided by NASA's Jet Propulsion Laboratory), an 86 sq m solar sail and will weigh less than 12 kilograms. NEA Scout will be launched on the first flight of the Space Launch System in 2018. Similar in concept

  12. Power Management for Energy Systems

    DEFF Research Database (Denmark)

    Hovgaard, Tobias Gybel

    for introducing more energy ecient as well as cost reducing control techniques. At the same time, the power grid is evolving from a centralized system with rather controllable production in the conventional power plants to a much more decentralized network of many independent power generators and a large...... with forecasts of future disturbances. At each time step the values of the control inputs are computed by solving an open-loop nite time optimal control problem over a dened prediction horizon. Only the rst step in this optimal open-loop sequence is implemented as a control command. Feedback is obtained...... by solving the open-loop problem repeatedly, in a receding horizon fashion, as new predictions become available. Our investigations are primarily concerned with: 1) modeling of the applications to suit the chosen control framework; 2) formulating the MPC controller laws to overcome challenges introduced...

  13. Exploring the Feasibility of Providing Electrical Power to Remote Bases Via Space-Based Solar Power Satellites

    Science.gov (United States)

    2013-06-01

    attributes vary by design alternative, to include transmitter size, rectenna size, power transmitted, mass of components, and number of launches...system attributes vary by design alternative, to include transmitter size, rectenna size, power transmitted, mass of components, and number of launches...32 e. Ground Power Receiver ( Rectenna

  14. A method and system for power management

    NARCIS (Netherlands)

    Burchard, Arthur Tadeusz; Goossens, Koos Gerard Willen; Milutinovic, A.; Molnos, Anca Mariana; Steffens, Elisabeth Francisca Maria

    2009-01-01

    A method and system for power management is provided. To control power supplied to a second electronic device (106), an electronic system (100) comprises a power management subsystem (110), a first electronic device (102); The power management subsystem (110) monitors the power consumed by the first

  15. Acceptance Testing of a Satellite SCADA Photovoltaic-Diesel Hybrid System

    Science.gov (United States)

    Kalu, A.; Emrich, C.; Ventre, G.; Wilson, W.; Acosta, Roberto (Technical Monitor)

    2000-01-01

    Satellite Supervisory Control and Data Acquisition (SCADA) of a Photovoltaic (PV)/diesel hybrid system was tested using NASA's Advanced Communication Technology Satellite (ACTS) and Ultra Small Aperture Terminal (USAT) ground stations. The setup consisted of a custom-designed PV/diesel hybrid system, located at the Florida Solar Energy Center (FSEC), which was controlled and monitored at a "remote" hub via Ka-band satellite link connecting two 1/4 Watt USATs in a SCADA arrangement. The robustness of the communications link was tested for remote monitoring of the health and performance of a PV/diesel hybrid system, and for investigating load control and battery charging strategies to maximize battery capacity and lifetime, and minimize loss of critical load probability. Baseline hardware performance test results demonstrated that continuous two-second data transfers can be accomplished under clear sky conditions with an error rate of less than 1%. The delay introduced by the satellite (1/4 sec) was transparent to synchronization of satellite modem as well as to the PV/diesel-hybrid computer. End-to-end communications link recovery times were less than 36 seconds for loss of power and less than one second for loss of link. The system recovered by resuming operation without any manual intervention, which is important since the 4 dB margin is not sufficient to prevent loss of the satellite link during moderate to heavy rain. Hybrid operations during loss of communications link continued seamlessly but real-time monitoring was interrupted. For this sub-tropical region, the estimated amount of time that the signal fade will exceed the 4 dB margin is about 10%. These results suggest that data rates of 4800 bps and a link margin of 4 dB with a 1/4 Watt transmitter are sufficient for end-to-end operation in this SCADA application.

  16. Cyber security with radio frequency interferences mitigation study for satellite systems

    Science.gov (United States)

    Wang, Gang; Wei, Sixiao; Chen, Genshe; Tian, Xin; Shen, Dan; Pham, Khanh; Nguyen, Tien M.; Blasch, Erik

    2016-05-01

    Satellite systems including the Global Navigation Satellite System (GNSS) and the satellite communications (SATCOM) system provide great convenience and utility to human life including emergency response, wide area efficient communications, and effective transportation. Elements of satellite systems incorporate technologies such as navigation with the global positioning system (GPS), satellite digital video broadcasting, and information transmission with a very small aperture terminal (VSAT), etc. The satellite systems importance is growing in prominence with end users' requirement for globally high data rate transmissions; the cost reduction of launching satellites; development of smaller sized satellites including cubesat, nanosat, picosat, and femtosat; and integrating internet services with satellite networks. However, with the promising benefits, challenges remain to fully develop secure and robust satellite systems with pervasive computing and communications. In this paper, we investigate both cyber security and radio frequency (RF) interferences mitigation for satellite systems, and demonstrate that they are not isolated. The action space for both cyber security and RF interferences are firstly summarized for satellite systems, based on which the mitigation schemes for both cyber security and RF interferences are given. A multi-layered satellite systems structure is provided with cross-layer design considering multi-path routing and channel coding, to provide great security and diversity gains for secure and robust satellite systems.

  17. Satellite broadcasting

    Science.gov (United States)

    Gregory, D.; Rainger, P.; Harvey, R. V.; Jennings, A.

    Questions related to direct broadcasting satellites are addressed with attention given to celestial mechanics, synchronous orbits, propagation, international plans, domestic installation, related laws and system costs. The role of the World Administrative Planning Conference (WARC) organization is discussed and contrasted with that of the regional administrative radio conference. Topics related to the field of law include coverage and overspill, regulation and control, copyrights and international organizations. Alternative ways of estimating direct broadcasting system costs are presented with consideration given to satellite costs as a function of mass, launch costs and system costs as a function of power.

  18. Radioisotope Power System Pool Concept

    Science.gov (United States)

    Rusick, Jeffrey J.; Bolotin, Gary S.

    2015-01-01

    Advanced Radioisotope Power Systems (RPS) for NASA deep space science missions have historically used static thermoelectric-based designs because they are highly reliable, and their radioisotope heat sources can be passively cooled throughout the mission life cycle. Recently, a significant effort to develop a dynamic RPS, the Advanced Stirling Radioisotope Generator (ASRG), was conducted by NASA and the Department of Energy, because Stirling based designs offer energy conversion efficiencies four times higher than heritage thermoelectric designs; and the efficiency would proportionately reduce the amount of radioisotope fuel needed for the same power output. However, the long term reliability of a Stirling based design is a concern compared to thermoelectric designs, because for certain Stirling system architectures the radioisotope heat sources must be actively cooled via the dynamic operation of Stirling converters throughout the mission life cycle. To address this reliability concern, a new dynamic Stirling cycle RPS architecture is proposed called the RPS Pool Concept.

  19. Selectivity of power system protections at power swings in power system

    Directory of Open Access Journals (Sweden)

    Jan Machowski

    2012-12-01

    Full Text Available The paper discusses out-of-step protection systems such as: generator pole slip protections, out of step tripping protections, distance protections of step-up transformer, distance protections of transmission lines and transformers, power swing blocking, and special out-of-step protection. It is shown that all these protections make up a protection system, to which a setting concept uniform for the entire power system has to be applied. If a power system is inappropriately equipped with these protections, or their settings are inappropriate, they may operate unselectively, thus contributing to the development of power system blackouts. In the paper the concepts for a real power system are given for the two stages: target stage fully compliant with selectivity criteria, and transitional stage between the current and target stages.

  20. An Imaging System for Satellite Hypervelocity Impact Debris Characterization

    Science.gov (United States)

    2015-10-18

    Debris Program Office and the Air Force Space and Missile Systems Center. 8. REFERENCES 1. Osiander, R., and Ostdiek, P., “Introduction to Space ... Debris ,” Handbook of Space Engineering, Archaeology, and Heritage, CRC Press, Boca Raton, FL, 2009, pp. 363-379. 2. Englert, C., et al., “Optical...An Imaging System for Satellite Hypervelocity Impact Debris Characterization Matthew Moraguez, Dr. Kunal Patankar University of Florida Dr

  1. Utilizing expert systems for satellite monitoring and control

    Science.gov (United States)

    Hughes, Peter M.

    1991-01-01

    Spacecraft analysts in the spacecraft control center for the Cosmic Background Explorer (COBE) satellite are currently utilizing a fault-isolation expert system developed to assist in the isolation and correction of faults in the communications link. This system, the communication link expert assistance resource (CLEAR), monitors real time spacecraft and ground systems performance parameters in search of configuration discrepancies and communications link problems. If such a discrepancy or problem is isolated, CLEAR alerts the analyst and provides advice on how to resolve the problem swiftly and effectively. The CLEAR system is the first real time expert system to be used in the operational environment of a satellite control center at the NASA Goddard Space Flight Center. Clear has not only demonstrated the utility and potential of an expert system in the demanding environment of a satellite control center, but also has revealed many of the pitfalls and deficiencies of development of expert systems. One of the lessons learned from this and other initial expert system projects is that prototypes can often be developed quite rapidly, but operational expert systems require considerable effort. Development is generally a slow, tedious process that typically requires the special skills of trained programmers. Due to the success of CLEAR and several other systems in the control center domain, a large number of expert systems will certainly be developed to support control center operations during the early 1990's. To facilitate the development of these systems, a project was initiated to develop an integrated, domain-specific tool, the generic spacecraft analyst assistent (GenSAA), that alows the spacecraft analysts to rapidly create simple expert systems themselves. By providing a highly graphical point-and-select method of system development, GenSAA allows the analyst to utilize and/or modify previously developed rule bases and system components; thus, facilitating

  2. Robust power system frequency control

    CERN Document Server

    Bevrani, Hassan

    2014-01-01

    This updated edition of the industry standard reference on power system frequency control provides practical, systematic and flexible algorithms for regulating load frequency, offering new solutions to the technical challenges introduced by the escalating role of distributed generation and renewable energy sources in smart electric grids. The author emphasizes the physical constraints and practical engineering issues related to frequency in a deregulated environment, while fostering a conceptual understanding of frequency regulation and robust control techniques. The resulting control strategi

  3. The MUSES Satellite Team and Multidisciplinary System Engineering

    Science.gov (United States)

    Chen, John C.; Paiz, Alfred R.; Young, Donald L.

    1997-01-01

    In a unique partnership between three minority-serving institutions and NASA's Jet Propulsion Laboratory, a new course sequence, including a multidisciplinary capstone design experience, is to be developed and implemented at each of the schools with the ambitious goal of designing, constructing and launching a low-orbit Earth-resources satellite. The three universities involved are North Carolina A&T State University (NCA&T), University of Texas, El Paso (UTEP), and California State University, Los Angeles (CSULA). The schools form a consortium collectively known as MUSES - Minority Universities System Engineering and Satellite. Four aspects of this project make it unique: (1) Including all engineering disciplines in the capstone design course, (2) designing, building and launching an Earth-resources satellite, (3) sustaining the partnership between the three schools to achieve this goal, and (4) implementing systems engineering pedagogy at each of the three schools. This paper will describe the partnership and its goals, the first design of the satellite, the courses developed at NCA&T, and the implementation plan for the course sequence.

  4. Reliability of Power Electronic Converter Systems

    DEFF Research Database (Denmark)

    for advancing the reliability, availability, system robustness, and maintainability of PECS at different levels of complexity. Drawing on the experience of an international team of experts, this book explores the reliability of PECS covering topics including an introduction to reliability engineering in power......-tolerant adjustable speed drive systems; mission profile oriented reliability design in wind turbine and photovoltaic systems; reliability of power conversion systems in photovoltaic applications; power supplies for computers; and high-power converters. Reliability of Power Electronic Converter Systems is essential...... reading for researchers, professionals and students working with power electronics and their applications, particularly those specializing in the development and application of power electronic converters and systems....

  5. Automatic charge control system for satellites

    Science.gov (United States)

    Shuman, B. M.; Cohen, H. A.

    1985-01-01

    The SCATHA and the ATS-5 and 6 spacecraft provided insights to the problem of spacecraft charging at geosychronous altitudes. Reduction of the levels of both absolute and differential charging was indicated, by the emission of low energy neutral plasma. It is appropriate to complete the transition from experimental results to the development of a system that will sense the state-of-charge of a spacecraft, and, when a predetermined threshold is reached, will respond automatically to reduce it. A development program was initiated utilizing sensors comparable to the proton electrostatic analyzer, the surface potential monitor, and the transient pulse monitor that flew in SCATHA, and combine these outputs through a microprocessor controller to operate a rapid-start, low energy plasma source.

  6. Thermoelectric harvesting for an autonomous self-powered temperature sensor in small satellites

    NARCIS (Netherlands)

    Machin Llanos (student Delft), Jorge; Bouwmeester, J.

    2017-01-01

    There are several benefits of using autonomous sensors in spacecraft. Avoidance of wired connections reduces cost, mass, and increases the flexibility and reliability of the system. The impact of wire reduction can be significant, especially for small satellites with many sensors, like temperature

  7. A Reusable Software Architecture for Small Satellite AOCS Systems

    DEFF Research Database (Denmark)

    Alminde, Lars; Bendtsen, Jan Dimon; Laursen, Karl Kaas

    2006-01-01

    with both hardware and on-board software. Some of the key issues addressed by the framework are automatic translation of mathematical specifications of hybrid systems into executable software entities, management of execution of coupled models in a parallel distributed environment, as well as interaction...... with external components, hardware and/or software, through generic interfaces. Sophy is primarily intended as a tool for development of model based reusable software for the control and autonomous functions of satellites and/or satellite clusters.......This paper concerns the software architecture called Sophy, which is an abbreviation for Simulation, Observation, and Planning in HYbrid systems. We present a framework that allows execution of hybrid dynamical systems in an on-line distributed computing environment, which includes interaction...

  8. 78 FR 39280 - Integrated System Power Rates

    Science.gov (United States)

    2013-07-01

    ... Doc No: 2013-15685] DEPARTMENT OF ENERGY Southwestern Power Administration Integrated System Power... hydroelectric generating facilities for the Corps and Southwestern's transmission system. The Revised Power... and non-Federal power and associated energy from the transmission system of Southwestern. \\2...

  9. Instrumentation for Power System Disturbance Monitoring, Data ...

    African Journals Online (AJOL)

    In this paper, the level of instrumentation for power system disturbance monitoring, data acquisition and control in Nigerian Electric Power System; National Electric Power Authority (NEPA) is presented. The need for accurate power system disturbance monitoring is highlighted. A feature of an adequate monitoring, data ...

  10. Space Weathering on Icy Satellites in the Outer Solar System

    Science.gov (United States)

    Clark, R. N.; Perlman, Z.; Pearson, N.; Cruikshank, D. P.

    2014-01-01

    Space weathering produces well-known optical effects in silicate minerals in the inner Solar System, for example, on the Moon. Space weathering from solar wind and UV (ultraviolet radiation) is expected to be significantly weaker in the outer Solar System simply because intensities are low. However, cosmic rays and micrometeoroid bombardment would be similar to first order. That, combined with the much higher volatility of icy surfaces means there is the potential for space weathering on icy outer Solar System surfaces to show optical effects. The Cassini spacecraft orbiting Saturn is providing evidence for space weathering on icy bodies. The Cassini Visible and Infrared Mapping Spectrometer (VIMS) instrument has spatially mapped satellite surfaces and the rings from 0.35-5 microns and the Ultraviolet Imaging Spectrograph (UVIS) instrument from 0.1 to 0.2 microns. These data have sampled a complex mixing space between H2O ice and non-ice components and they show some common spectral properties. Similarly, spectra of the icy Galilean satellites and satellites in the Uranian system have some commonality in spectral properties with those in the Saturn system. The UV absorber is spectrally similar on many surfaces. VIMS has identified CO2, H2 and trace organics in varying abundances on Saturn's satellites. We postulate that through the spatial relationships of some of these compounds that they are created and destroyed through space weathering effects. For example, the trapped H2 and CO2 observed by VIMS in regions with high concentrations of dark material may in part be space weathering products from the destruction of H2O and organic molecules. The dark material, particularly on Iapetus which has the highest concentration in the Saturn system, is well matched by space-weathered silicates in the .4 to 2.6 micron range, and the spectral shapes closely match those of the most mature lunar soils, another indicator of space weathered material.

  11. Review of Power System Stability with High Wind Power Penetration

    DEFF Research Database (Denmark)

    Hu, Rui; Hu, Weihao; Chen, Zhe

    2015-01-01

    This paper presents an overview of researches on power system stability with high wind power penetration including analyzing methods and improvement approaches. Power system stability issues can be classified diversely according to different considerations. Each classified issue has special...... analyzing methods and stability improvement approaches. With increasing wind power penetration, system balancing and the reduced inertia may cause a big threaten for stable operation of power systems. To mitigate or eliminate the wind impacts for high wind penetration systems, although the practical...... and reliable choices currently are the strong outside connections or sufficient reserve capacity constructions, many novel theories and approaches are invented to investigate the stability issues, looking forward to an extra-high penetration or totally renewable resource based power systems. These analyzing...

  12. Spacecraft vehicle design considerations and trades utilizing solar and nuclear reactor electric power systems

    Science.gov (United States)

    Bailey, Patrick G.

    1993-02-01

    The status of the reviews and the work performed to evaluate the capabilities and limitations of various nuclear power systems for space mission applications in the 5-20 kWe range. The study found that, out of nine nuclear power systems studied, three could be used to replace a 10 kWe solar array power system on a representative surveillance satellite. Each of these systems could be incorporated using a boom without major specific modifications to a baseline spacecraft design.

  13. State modelling of the land mobile propagation channel for dual-satellite systems

    OpenAIRE

    Arndt, D.; Ihlow, A.; Heyn, T.; Heuberger, A.; Prieto-Cerdeira, R.; Eberlein, E.

    2012-01-01

    The quality of service of mobile satellite reception can be improved by using multi-satellite diversity (angle diversity). The recently finalised MiLADY project targeted therefore on the evaluation and modelling of the multi-satellite propagation channel for land mobile users with focus on broadcasting applications. The narrowband model combines the parameters from two measurement campaigns: In the U.S. the power levels of the Satellite Digital Audio Radio Services were recorded with a high s...

  14. Wetland monitoring with Global Navigation Satellite System reflectometry

    Science.gov (United States)

    Zuffada, Cinzia; Shah, Rashmi; Chew, Clara; Lowe, Stephen T.; Mannucci, Anthony J.; Cardellach, Estel; Brakenridge, G. Robert; Geller, Gary; Rosenqvist, Ake

    2017-01-01

    Abstract Information about wetland dynamics remains a major missing gap in characterizing, understanding, and projecting changes in atmospheric methane and terrestrial water storage. A review of current satellite methods to delineate and monitor wetland change shows some recent advances, but much improved sensing technologies are still needed for wetland mapping, not only to provide more accurate global inventories but also to examine changes spanning multiple decades. Global Navigation Satellite Systems Reflectometry (GNSS‐R) signatures from aircraft over the Ebro River Delta in Spain and satellite measurements over the Mississippi River and adjacent watersheds demonstrate that inundated wetlands can be identified under different vegetation conditions including a dense rice canopy and a thick forest with tall trees, where optical sensors and monostatic radars provide limited capabilities. Advantages as well as constraints of GNSS‐R are presented, and the synergy with various satellite observations are considered to achieve a breakthrough capability for multidecadal wetland dynamics monitoring with frequent global coverage at multiple spatial and temporal scales. PMID:28331894

  15. Wetland monitoring with Global Navigation Satellite System reflectometry.

    Science.gov (United States)

    Nghiem, Son V; Zuffada, Cinzia; Shah, Rashmi; Chew, Clara; Lowe, Stephen T; Mannucci, Anthony J; Cardellach, Estel; Brakenridge, G Robert; Geller, Gary; Rosenqvist, Ake

    2017-01-01

    Information about wetland dynamics remains a major missing gap in characterizing, understanding, and projecting changes in atmospheric methane and terrestrial water storage. A review of current satellite methods to delineate and monitor wetland change shows some recent advances, but much improved sensing technologies are still needed for wetland mapping, not only to provide more accurate global inventories but also to examine changes spanning multiple decades. Global Navigation Satellite Systems Reflectometry (GNSS-R) signatures from aircraft over the Ebro River Delta in Spain and satellite measurements over the Mississippi River and adjacent watersheds demonstrate that inundated wetlands can be identified under different vegetation conditions including a dense rice canopy and a thick forest with tall trees, where optical sensors and monostatic radars provide limited capabilities. Advantages as well as constraints of GNSS-R are presented, and the synergy with various satellite observations are considered to achieve a breakthrough capability for multidecadal wetland dynamics monitoring with frequent global coverage at multiple spatial and temporal scales.

  16. Autonomous Attitude Determination and Control System for the Ørsted Satellite

    DEFF Research Database (Denmark)

    Bak, Thomas; Wisniewski, Rafal; Blanke, M.

    1996-01-01

    The Ørsted Satellite mission imposes comparatively high requirements on autonomy of the attitude control system.......The Ørsted Satellite mission imposes comparatively high requirements on autonomy of the attitude control system....

  17. European Mobile Satellite Services (EMSS): A regional system for Europe

    Science.gov (United States)

    Loisy, C.; Edin, P.; Benedicto, F. J.

    1995-01-01

    The European Space Agency is presently procuring two L-band payloads in order to promote a regional system for the provision of European Mobile Satellite Services (EMSS). These are the EMS payload on the Italsat I-F2 satellite and the LLM payload on the ARTEMIS satellite. Telecommunication system studies have been concentrating on mobile applications where full European geographical coverage is required. Potential applications include high priority Private Mobile Radio networks requiring national or European coverage, such as civil security, fire brigades, police and health services, as well as a dedicated system for provision of Air Traffic Services to the civil aviation community. A typical application is an intelligent road traffic management system combining a geographically selective traffic data collection service based on probe vehicles with a geographically selective traffic information broadcast service. Network architectures and bearer services have been developed both for data only and voice/data services. Vehicle mounted mobile transceivers using CDMA access techniques have been developed. The EMSS operational phase will start with the EMS payload in orbit in 1996 and continue with the LLM payload in 1997.

  18. Reactive power management in electric power systems - A case ...

    African Journals Online (AJOL)

    The reactive power consumption by industrial plants and generation patterns in the Ethiopian Electric Light and Power Authority's (EELPA) system is critically evaluated. The flaws in the incentive mechanism for reactive power compensation are identified and recommendations made. Further, the voltage profile at the ...

  19. Electric Vehicles in Power Systems with 50% Wind Power Penetration

    DEFF Research Database (Denmark)

    Østergaard, Jacob; Foosnæs, Anders; Xu, Zhao

    2009-01-01

    Electric vehicles (EVs) provide a unique opportunity to reduce the CO2-emissions from the transport sector. At the same time, EVs have the potential to play an important role in an economic and reliable operation of an electricity system with high penetration of renewable energy. EVs...... will be an important balancing measure to enable the Danish government’s energy strategy, which implies 50% wind power penetration in the electric power system. An EV will be a storage device for smoothing power fluctuations from renewable resources especially wind power and provide valuable system services...... for a reliable power system operation. Cost-benefit analysis shows that intelligent bidirectional charging – vehicle to grid (V2G) – provides a socio-economic profit of 150 million Euro/year in the Danish electric power system in 2025 assuming that 15% of the Danish road transport need is supplied by electricity...

  20. System and method for advanced power management

    Science.gov (United States)

    Atcitty, Stanley [Albuquerque, NM; Symons, Philip C [Surprise, AZ; Butler, Paul C [Albuquerque, NM; Corey, Garth P [Albuquerque, NM

    2009-07-28

    A power management system is provided that includes a power supply means comprising a plurality of power supply strings, a testing means operably connected to said plurality of power supply strings for evaluating performance characteristics of said plurality of power supply strings, and a control means for monitoring power requirements and comprising a switching means for controlling switching of said plurality of power supply strings to said testing means.

  1. ROI image compression algorithm for reconnaissance satellite systems

    Science.gov (United States)

    Tian, Xin; Wang, Chun-Ming; Tan, Yi-Hua; Tian, Jin-Wen

    2009-10-01

    The visual effect is an important fact in the coding algorithm. So the saliency of visual attention(SVA) can be used to determine the region of interest(ROI) in the ROI image coding. A novel SVA based ROI(SVA-ROI) image coding scheme is presented for the reconnaissance satellite systems. As the SVA of the original image and reconstructed image are usually the same, the same ROI can be automatically determined in the encoder and decoder with the SVA. Then the ROI side information is no need to be transmitted and the compression efficiency can be improved. Experimental results have demonstrated that SVA-ROI has better visual effect than the similar algorithms, which will be suitable for the reconnaissance satellite systems.

  2. Power quality in power systems and electrical machines

    CERN Document Server

    Fuchs, Ewald

    2015-01-01

    The second edition of this must-have reference covers power quality issues in four parts, including new discussions related to renewable energy systems. The first part of the book provides background on causes, effects, standards, and measurements of power quality and harmonics. Once the basics are established the authors move on to harmonic modeling of power systems, including components and apparatus (electric machines). The final part of the book is devoted to power quality mitigation approaches and devices, and the fourth part extends the analysis to power quality solutions for renewable

  3. Uninterruptible power supply (UPS) systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    Use of this purchase specification is not mandatory. User should review the document and determine if it meets the user`s purpose. This document contains a fill-in-the-blanks guide specification for the procurement of uninterruptible power supply (UPS) systems greater than 10 kVA, organized as follows: Parts 1 through 7--technical requirements; Appendix A--technical requirements to be included in the proposal; Appendix B--UPS system data sheets to be completed by each bidder (Seller) and submitted with the proposal; Appendix C--general guidelines giving the specifier parameters for selecting a UPS system; it should be read before preparing an actual specification, and is not attached to the specification; Attachment 1--sketches prepared by the purchaser (Owner); Attachment 2--sample title page.

  4. Modeling Power Systems as Complex Adaptive Systems

    Energy Technology Data Exchange (ETDEWEB)

    Chassin, David P.; Malard, Joel M.; Posse, Christian; Gangopadhyaya, Asim; Lu, Ning; Katipamula, Srinivas; Mallow, J V.

    2004-12-30

    Physical analogs have shown considerable promise for understanding the behavior of complex adaptive systems, including macroeconomics, biological systems, social networks, and electric power markets. Many of today's most challenging technical and policy questions can be reduced to a distributed economic control problem. Indeed, economically based control of large-scale systems is founded on the conjecture that the price-based regulation (e.g., auctions, markets) results in an optimal allocation of resources and emergent optimal system control. This report explores the state-of-the-art physical analogs for understanding the behavior of some econophysical systems and deriving stable and robust control strategies for using them. We review and discuss applications of some analytic methods based on a thermodynamic metaphor, according to which the interplay between system entropy and conservation laws gives rise to intuitive and governing global properties of complex systems that cannot be otherwise understood. We apply these methods to the question of how power markets can be expected to behave under a variety of conditions.

  5. Concept of an Effective Sentinel-1 Satellite SAR Interferometry System

    OpenAIRE

    Lazecky, Milan; Comut, Fatma Canaslan; Bakon, Matus; Qin, Yuxiao; Perissin, Daniele; Hatton, Emma; Spaans, Karsten; Mendez, Pablo J. Gonzalez; Guimaraes, Pedro; de Sousa, Joaquim J.M.; Kocich, David; Ustun, Aydin

    2016-01-01

    This brief study introduces a partially working concept being developed at IT4Innovations supercomputer (HPC) facility. This concept consists of several modules that form a whole body of an efficient system for observation of terrain or objects displacements using satellite SAR interferometry (InSAR). A metadata database helps to locate data stored in various storages and to perform basic analyzes. A special database has been designed to describe Sentinel-1 data, on its burst level. Custom Se...

  6. Management approach recommendations. Earth Observatory Satellite system definition study (EOS)

    Science.gov (United States)

    1974-01-01

    Management analyses and tradeoffs were performed to determine the most cost effective management approach for the Earth Observatory Satellite (EOS) Phase C/D. The basic objectives of the management approach are identified. Some of the subjects considered are as follows: (1) contract startup phase, (2) project management control system, (3) configuration management, (4) quality control and reliability engineering requirements, and (5) the parts procurement program.

  7. KIPS kilowatt isotope power system

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    This Control System topical report covers basic control requirements, selection of control system and a recent review of an electromechanical approach to the flow control valve. Section I covers the basic control requirements for Organic Rankine cycle systems, particular requirements for an isotope fueled space power system, and special requirements imposed by launch, Shuttle deployment and spacecraft requirements. Various control devices which can be used to meet system requirements are discussed. In Section II, various combinations of control functions and devices are presented with comments as to the suitability of each for the intended application. This is essentially a review of the selection process used to pick the present KIPS control system. The formal trade-off matrix, component description, and system selection, as prepared for Design Reviews 2 and 3, is included as Appendix A to the report. Section 3 covers the recently completed design of an electronic-electromechanical flow control valve and compares this approach to the thermal bulb-hydro-mechanical flow control valve baseline. The results of this comparative study indicate that the present configuration is preferable to an electrical valve.

  8. Design for Reliability of Power Electronic Systems

    DEFF Research Database (Denmark)

    Yang, Yongheng; Wang, Huai; Sangwongwanich, Ariya

    2018-01-01

    Power density, efficiency, cost, and reliability are the major challenges when designing a power electronic system. Latest advancements in power semiconductor devices (e.g., silicon carbide devices) and topological innovations have vital contributions to power density and efficiency. Nevertheless......, dedicated heat sink systems for thermal management are required to dissipate the power losses in power electronic systems; otherwise, the power devices will be heated up and eventually fail to operate. In addition, in many mission critical applications (e.g., marine systems), the operating condition (i.......e., mission profiles) is usually harsh, where the input power can change quickly and randomly, resulting in considerable temperature swings in the power electronics. This may induce failures to the power electronic systems. If remain untreated (i.e., ill-designed system without considering reliability...

  9. Application of a satellite communication and location system for bomb damage assessment

    Energy Technology Data Exchange (ETDEWEB)

    Kern, J.P.

    1994-09-01

    The Global Verification and Location System (GVLS) is a satellite based communication package proposed for the Global Positioning System (GPS) Block IIR satellites. This system provides the capability to relay bursts of information from small, low power mobile transmitters to command and control facilities. Communication paths through multiple GPS satellites within the field of view allow location of the transmitter using time difference of arrival (TDOA) techniques. Alternately, the transmitter can transmit its own location if known by various other means. Intended applications include determination of the status and location of high-valued assets such as shipments of proliferation-sensitive nuclear materials and treaty-limited items or downed air crews and special operations forces in need of extraction from hostile territory. GVLS provides an enabling technology which can be applied to weapon impact location. The remote transmitter is small and light enough to be integrated into a weapon delivery vehicle, such as a cruise missile, and requires power only during the last second of flight. The antenna is a conformal patch design, therefore minimizing aerodynamic considerations. Precise impact locations are determined by the GVLS system and can be communicated to responsible commands in near real time allowing rapid bomb damage assessment and retargeting without the typical delays of overhead reconnaissance. Since burst data communication is used, weapon status immediately prior to impact can be transmitted providing knowledge of proper arming sequence and other pertinent information. If desired, periodic bursts can be transmitted while in flight, enabling in-course tracking of the weapon. If fully deployed, the GVLS system would consist of communication relays on 24 GPS satellites, five ground stations deployed worldwide, and portable base stations for authorized users to receive and display locations and contents of their transmissions.

  10. Observing System Simulations for Small Satellite Formations Estimating Bidirectional Reflectance

    Science.gov (United States)

    Nag, Sreeja; Gatebe, Charles K.; de Weck, Olivier

    2015-01-01

    The bidirectional reflectance distribution function (BRDF) gives the reflectance of a target as a function of illumination geometry and viewing geometry, hence carries information about the anisotropy of the surface. BRDF is needed in remote sensing for the correction of view and illumination angle effects (for example in image standardization and mosaicing), for deriving albedo, for land cover classification, for cloud detection, for atmospheric correction, and other applications. However, current spaceborne instruments provide sparse angular sampling of BRDF and airborne instruments are limited in the spatial and temporal coverage. To fill the gaps in angular coverage within spatial, spectral and temporal requirements, we propose a new measurement technique: Use of small satellites in formation flight, each satellite with a VNIR (visible and near infrared) imaging spectrometer, to make multi-spectral, near-simultaneous measurements of every ground spot in the swath at multiple angles. This paper describes an observing system simulation experiment (OSSE) to evaluate the proposed concept and select the optimal formation architecture that minimizes BRDF uncertainties. The variables of the OSSE are identified; number of satellites, measurement spread in the view zenith and relative azimuth with respect to solar plane, solar zenith angle, BRDF models and wavelength of reflection. Analyzing the sensitivity of BRDF estimation errors to the variables allow simplification of the OSSE, to enable its use to rapidly evaluate formation architectures. A 6-satellite formation is shown to produce lower BRDF estimation errors, purely in terms of angular sampling as evaluated by the OSSE, than a single spacecraft with 9 forward-aft sensors. We demonstrate the ability to use OSSEs to design small satellite formations as complements to flagship mission data. The formations can fill angular sampling gaps and enable better BRDF products than currently possible.

  11. Artificial Intelligence and Spacecraft Power Systems

    Science.gov (United States)

    Dugel-Whitehead, Norma R.

    1997-01-01

    This talk will present the work which has been done at NASA Marshall Space Flight Center involving the use of Artificial Intelligence to control the power system in a spacecraft. The presentation will include a brief history of power system automation, and some basic definitions of the types of artificial intelligence which have been investigated at MSFC for power system automation. A video tape of one of our autonomous power systems using co-operating expert systems, and advanced hardware will be presented.

  12. Aircraft Fuel Cell Power Systems

    Science.gov (United States)

    Needham, Robert

    2004-01-01

    In recent years, fuel cells have been explored for use in aircraft. While the weight and size of fuel cells allows only the smallest of aircraft to use fuel cells for their primary engines, fuel cells have showed promise for use as auxiliary power units (APUs), which power aircraft accessories and serve as an electrical backup in case of an engine failure. Fuel cell MUS are both more efficient and emit fewer pollutants. However, sea-level fuel cells need modifications to be properly used in aircraft applications. At high altitudes, the ambient air has a much lower pressure than at sea level, which makes it much more difficult to get air into the fuel cell to react and produce electricity. Compressors can be used to pressurize the air, but this leads to added weight, volume, and power usage, all of which are undesirable things. Another problem is that fuel cells require hydrogen to create electricity, and ever since the Hindenburg burst into flames, aircraft carrying large quantities of hydrogen have not been in high demand. However, jet fuel is a hydrocarbon, so it is possible to reform it into hydrogen. Since jet fuel is already used to power conventional APUs, it is very convenient to use this to generate the hydrogen for fuel-cell-based APUs. Fuel cells also tend to get large and heavy when used for applications that require a large amount of power. Reducing the size and weight becomes especially beneficial when it comes to fuel cells for aircraft. My goal this summer is to work on several aspects of Aircraft Fuel Cell Power System project. My first goal is to perform checks on a newly built injector rig designed to test different catalysts to determine the best setup for reforming Jet-A fuel into hydrogen. These checks include testing various thermocouples, transmitters, and transducers, as well making sure that the rig was actually built to the design specifications. These checks will help to ensure that the rig will operate properly and give correct results

  13. Global navigation satellite systems, inertial navigation, and integration

    CERN Document Server

    Grewal, Mohinder S; Bartone, Chris G

    2013-01-01

    An updated guide to GNSS, and INS, and solutions to real-world GNSS/INS problems with Kalman filtering Written by recognized authorities in the field, this third edition of a landmark work provides engineers, computer scientists, and others with a working familiarity of the theory and contemporary applications of Global Navigation Satellite Systems (GNSS), Inertial Navigational Systems, and Kalman filters. Throughout, the focus is on solving real-world problems, with an emphasis on the effective use of state-of-the-art integration techniques for those systems, especially the application of Kal

  14. 78 FR 31576 - Enforcement Proceeding; Certain Two-Way Global Satellite Communication Devices, System and...

    Science.gov (United States)

    2013-05-24

    ... Proceeding; Certain Two-Way Global Satellite Communication Devices, System and Components Thereof; Notice of... United States after importation of certain two-way global satellite communication devices, system and... States after importation any two-way global satellite communication devices, system, and components...

  15. Modelling of electrical power systems for power flow analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cogo, Joao Roberto [Escola Federal de Engenharia de Itajuba, MG (Brazil)

    1994-12-31

    The industry systems in Brazil are responsible for a consumption of over 50% (fifty per cent) of the total electrical power generated: therefore, they are import loads in power flow studies, and their modeling should be as much the best. Usually, in power flow studies, the industry systems are modeled by taking the influence of the power (active and reactive) and of the current on the voltage into account. Since the inducting motors, within the industry systems, represent at least 50% (fifty per cent) of the power consumption, and a large part of them is oversize, it is proposed to represent the industry systems as a function of the characteristic of power on shaft versus voltage into account. Since the induction motors, within the industry systems, represent at least 50% (fifty per cent) of the power consumption, and a large part of them is oversized, it is proposed to represent the industry systems as a function of the characteristics of power on shaft versus voltage for the analysis of power systems, aiming a load flow study. Thereafter, a model of an equivalent motor which has a basis the typical performance curve of an induction motor is present. This model is obtained from empirical parameters, surveyed from a population of over 1000 motors. (author) 3 refs., 1 fig., 4 tabs.

  16. Compensating active power imbalances in power system with large-scale wind power penetration

    DEFF Research Database (Denmark)

    Basit, Abdul; Hansen, Anca Daniela; Altin, Müfit

    2016-01-01

    Large-scale wind power penetration can affectthe supply continuity in the power system. This is a matterof high priority to investigate, as more regulating reservesand specified control strategies for generation control arerequired in the future power system with even more highwind power...... penetration. This paper evaluates the impact oflarge-scale wind power integration on future power systems.An active power balance control methodology is usedfor compensating the power imbalances between thedemand and the generation in real time, caused by windpower forecast errors. The methodology...... for the balancepower control of future power systems with large-scalewind power integration is described and exemplified consideringthe generation and power exchange capacities in2020 for Danish power system....

  17. Economic Operation of Power Systems with Significant Wind Power Penetration

    DEFF Research Database (Denmark)

    Farashbashi-Astaneh, Seyed-Mostafa

    This dissertation addresses economic operation of power systems with high penetration of wind power. Several studies are presented to address the economic operation of power systems with high penetration of variable wind power. The main concern in such power systems is high variability...... level should be economic and can be a provided by different tools such as developing new reserve scheduling techniques, demand response, using storage units, facilitating the capacity of cross-border interconnections and so on. These subjects are addressed in this PhD dissertation. In the first study...... (and thus power system security is enhanced). The optimal charging scheme of Eclectic Vehicles (EVs) in a distribution feeder is then studied considering the proposed pricing scheme. A formulation is then proposed for optimal reserve scheduling considering the role of reserve provision scenarios from...

  18. Mitigation of Power System Oscillation Caused by Wind Power Fluctuation

    DEFF Research Database (Denmark)

    Su, Chi; Hu, Weihao; Chen, Zhe

    2013-01-01

    Wind power is increasingly integrated in modern power grids, which brings new challenges to the power system operation. Wind power is fluctuating because of the uncertain nature of wind, whereas wind shear and tower shadow effects also cause periodic fluctuations. These may lead to serious forced...... oscillation when the frequencies of the periodic fluctuations are close to the natural oscillation frequencies of the connected power system. By using modal analysis and time-domain simulations, this study studies the forced oscillation caused by the wind shear and tower shadow effects. Three forced...... oscillation mitigation controllers are proposed and compared. A model of direct-drive-full-convertor-based wind farm connected to the IEEE 10-machine 39-bus system is adopted as the test system. The calculations and simulations are conducted in DIgSILENT PowerFactory 14.0. Results are presented to show...

  19. Power system compensation using a power electronics integrated transformer

    OpenAIRE

    Atef Abbas Elsaharty, Mohamed; Candela García, José Ignacio; Rodríguez Cortés, Pedro

    2017-01-01

    This paper presents a new transformer, i.e., the Custom Power Active Transformer (CPAT) - which integrates shunt and series equivalent circuits within the transformer's magnetic structure. Thus, it provides power system services using a single transformer. The CPAT equipped with a power converter can be utilized in distribution systems to control grid-current and load-voltage waveforms while operating as a step-up or step-down transformer between the grid and load. Moreover, it can provide ot...

  20. High Power laser power conditioning system new discharge circuit research

    CERN Document Server

    Li Yi; Peng Han Sheng; Zhou Pei Zhang; Zheng Wan Guo; Guo Lang Fu; Chen Li Hua; Chen De Hui; Lai Gui You; Luan Yong Ping

    2002-01-01

    The new discharge circuit of power conditioning system for high power laser is studied. The theoretical model of the main discharge circuit is established. The pre-ionization circuit is studied in experiment. In addition, the explosion energy of the new large xenon lamp is successfully measured. The conclusion has been applied to 4 x 2 amplifier system

  1. Solar-powered cooling system

    Science.gov (United States)

    Farmer, Joseph C.

    2015-07-28

    A solar-powered adsorption-desorption refrigeration and air conditioning system that uses nanostructural materials such as aerogels, zeolites, and sol gels as the adsorptive media. Refrigerant molecules are adsorbed on the high surface area of the nanostructural material while the material is at a relatively low temperature, perhaps at night. During daylight hours, when the nanostructural materials is heated by the sun, the refrigerant are thermally desorbed from the surface of the aerogel, thereby creating a pressurized gas phase in the vessel that contains the aerogel. This solar-driven pressurization forces the heated gaseous refrigerant through a condenser, followed by an expansion valve. In the condenser, heat is removed from the refrigerant, first by circulating air or water. Eventually, the cooled gaseous refrigerant expands isenthalpically through a throttle valve into an evaporator, in a fashion similar to that in more conventional vapor recompression systems.

  2. Harmonics in transmission power systems

    DEFF Research Database (Denmark)

    Wiechowski, Wojciech Tomasz

    Some time ago, Energinet.dk, the Transmission System Operator of the 150 kV and 400 kV transmission network in Denmark, had experienced operational malfunctions of some of the measuring and protection equipment. Also an overloading of a harmonic filter has been reported, and therefore, a need...... to perform more detailed harmonic studies emerged. Since the transmission network has a complex structure and its impedance varies with frequency in a nonlinear fashion, such harmonic study would require a detailed computer model of the network. Consequently, a PhD project proposal titled "Harmonics......, provided that background harmonic distortion, and the network configuration, are not changing during the measurement. It is shown that switching of a shunt linear power system component can result in variation of the harmonic levels that can be measured and used to verify the harmonic model of the network...

  3. ELECTRICAL POWER SYSTEM DESCRIPTION DOCUMENT

    Energy Technology Data Exchange (ETDEWEB)

    M. Maniyar

    2004-06-22

    The purpose of this revision of the System Description Document (SDD) is to establish requirements that drive the design of the electrical power system and their bases to allow the design effort to proceed to License Application. This SDD is a living document that will be revised at strategic points as the design matures over time. This SDD identifies the requirements and describes the system design as they exist at this time, with emphasis on those attributes of the design provided to meet the requirements. This SDD has been developed to be an engineering tool for design control. Accordingly, the primary audience are design engineers. This type of SDD leads and follows the design process. It leads the design process with regard to the flow down of upper tier requirements onto the system. Knowledge of these requirements is essential to performing the design process. This SDD follows the design with regard to the description of the system. The description provided in the SDD is a reflection of the results of the design process to date. Functional and operational requirements applicable to this system are obtained from ''Project Functional and Operational Requirements'' (F&OR) (Siddoway, 2003). Other requirements to support the design process have been taken from higher level requirements documents such as ''Project Design Criteria Document'' (PDC) (Doraswamy 2004), the fire hazards analyses, and the preclosure safety analysis. The above mentioned low-level documents address ''Project Requirements Document'' (PRD) (Canori and Leitner 2003) requirements. This SDD includes several appendices with supporting information. Appendix B lists key system charts, diagrams, drawings, and lists; and Appendix C is a list of system procedures.

  4. Power Electronics in Wind Turbine Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Chen, Zhe; Teodorescu, Remus

    2006-01-01

    the conventional, fossil (and short term) based energy sources to renewable energy resources. The other is to use high efficient power electronics in power systems, power production and end-user application. This paper discuss the most emerging renewable energy source, wind energy, which by means of power...... electronics is changing from being a minor energy source to be acting as an important power source in the energy system. By that wind power is also getting an added value in the power system operation....

  5. Reliability of Power Electronic Converter Systems

    DEFF Research Database (Denmark)

    for advancing the reliability, availability, system robustness, and maintainability of PECS at different levels of complexity. Drawing on the experience of an international team of experts, this book explores the reliability of PECS covering topics including an introduction to reliability engineering in power...... electronic converter systems; anomaly detection and remaining-life prediction for power electronics; reliability of DC-link capacitors in power electronic converters; reliability of power electronics packaging; modeling for life-time prediction of power semiconductor modules; minimization of DC......-link capacitance in power electronic converter systems; wind turbine systems; smart control strategies for improved reliability of power electronics system; lifetime modelling; power module lifetime test and state monitoring; tools for performance and reliability analysis of power electronics systems; fault...

  6. Vehicle-to-Grid Power in Danish Electric Power Systems

    DEFF Research Database (Denmark)

    Pillai, Jayakrishnan Radhakrishna; Bak-Jensen, Birgitte

    2009-01-01

    The integration of renewable energy systems is often constrained by the variable nature of their output. This demands for the services of storing the electricity generated from most of the renewable energy sources. Vehicle-to-grid (V2G) power could use the inherent energy storage of electric...... vehicles and its quick response time to balance and stabilize a power system with fluctuating power. This paper outlines the use of battery electric vehicles in supporting large-scale integration of renewable energy in the Danish electric power systems. The reserve power requirements for a high renewable...... energy penetration could be met by an amount of V2G based electric vehicles less than 10% of the total vehicle need in Denmark. The participation of electric vehicle in ancillary services would earn significant revenues to the vehicle owner. The power balancing services of electric vehicles...

  7. Real Time Fire Reconnaissance Satellite Monitoring System Failure Model

    Science.gov (United States)

    Nino Prieto, Omar Ariosto; Colmenares Guillen, Luis Enrique

    2013-09-01

    In this paper the Real Time Fire Reconnaissance Satellite Monitoring System is presented. This architecture is a legacy of the Detection System for Real-Time Physical Variables which is undergoing a patent process in Mexico. The methodologies for this design are the Structured Analysis for Real Time (SA- RT) [8], and the software is carried out by LACATRE (Langage d'aide à la Conception d'Application multitâche Temps Réel) [9,10] Real Time formal language. The system failures model is analyzed and the proposal is based on the formal language for the design of critical systems and Risk Assessment; AltaRica. This formal architecture uses satellites as input sensors and it was adapted from the original model which is a design pattern for physical variation detection in Real Time. The original design, whose task is to monitor events such as natural disasters and health related applications, or actual sickness monitoring and prevention, as the Real Time Diabetes Monitoring System, among others. Some related work has been presented on the Mexican Space Agency (AEM) Creation and Consultation Forums (2010-2011), and throughout the International Mexican Aerospace Science and Technology Society (SOMECYTA) international congress held in San Luis Potosí, México (2012). This Architecture will allow a Real Time Fire Satellite Monitoring, which will reduce the damage and danger caused by fires which consumes the forests and tropical forests of Mexico. This new proposal, permits having a new system that impacts on disaster prevention, by combining national and international technologies and cooperation for the benefit of humankind.

  8. Energy Flexibility in the Power System

    DEFF Research Database (Denmark)

    Ma, Zheng; Billanes, Joy Dalmacio; Jørgensen, Bo Nørregaard

    2017-01-01

    Energy flexibility can address the challenges of large scale integration of renewable energy resources and thereby increasing imbalance in the power system. Flexible power system can provide reliable supply, low electricity cost and sustainability. Various situations and factors influence...... to provide an overview of the current condition of the Philippines’ power system and discuss the energy flexibility in the Philippines’ power system. A further discussion and recommendation is conducted in the end of the paper....

  9. Modeling and simulation of spacecraft power systems

    Science.gov (United States)

    Lee, J. R.; Cho, B. H.; Kim, S. J.; Lee, F. C.

    1987-01-01

    EASY5 modeling of a complete spacecraft power processing system is presented. Component models are developed, and several system models including a solar array switching system, a partially-shunted solar array system and COBE system are simulated. The power system's modes of operation, such as shunt mode, battery-charge mode, and battery-discharge mode, are simulated for a complete orbit cycle.

  10. Ground-Based Global Navigation Satellite System (GNSS) GLONASS Broadcast Ephemeris Data (hourly files) from NASA CDDIS

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset consists of ground-based Global Navigation Satellite System (GNSS) GLObal NAvigation Satellite System (GLONASS) Broadcast Ephemeris Data (hourly files)...

  11. Ground-Based Global Navigation Satellite System (GNSS) GLONASS Broadcast Ephemeris Data (daily files) from NASA CDDIS

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset consists of ground-based Global Navigation Satellite System (GNSS) GLObal NAvigation Satellite System (GLONASS) Broadcast Ephemeris Data (daily files)...

  12. Block division carrier slot setting for satellite SCPC systems

    Science.gov (United States)

    Yashima, Hiroyuki; Sasase, Iwao; Mori, Shinsaku

    1991-01-01

    A carrier slot setting plan is proposed to reduce intermodulation (IM) effects for satellite single-channel-per-carrier (SCPC) systems. Carrier slots are divided into blocks and slight frequency gaps are set among blocks. This setting introduces frequency offset between the center frequencies of carrier slots and the center frequencies of the IM components. A method of deriving optimum division in order to derive the upper bound of improvement of the C/IM ratio in the worst channel is developed. The results show that the setting plan achieves significant improvement of IM effects at a cost of only slight bandwidth expansion, even in fully loaded SCPC systems.

  13. Direct conversion of light to radio frequency energy. [using photoklystrons for solar power satellites

    Science.gov (United States)

    Freeman, J. W.; Simons, S.

    1981-01-01

    A description is presented of the test results obtained with the latest models of the phototron. The phototron was conceived as a replacement for the high voltage solar cell-high power klystron combination for the solar power satellite concept. Physically, the phototron is a cylindrical evacuated glass tube with a photocathode, two grids, and a reflector electrode in a planar configuration. The phototron can be operated either in a biased mode where a low voltage is used to accelerate the electron beam produced by the photocathode or in an unbiased mode referred to as self-oscillation. The device is easily modulated by light input or voltage to broadcast in AM or FM. The range of operation of the present test model phototrons is from 2 to 200 MHz.

  14. Models for multimegawatt space power systems

    Energy Technology Data Exchange (ETDEWEB)

    Edenburn, M.W.

    1990-06-01

    This report describes models for multimegawatt, space power systems which Sandia's Advanced Power Systems Division has constructed to help evaluate space power systems for SDI's Space Power Office. Five system models and models for associated components are presented for both open (power system waste products are exhausted into space) and closed (no waste products) systems: open, burst mode, hydrogen cooled nuclear reactor -- turboalternator system; open, hydrogen-oxygen combustion turboalternator system; closed, nuclear reactor powered Brayton cycle system; closed, liquid metal Rankine cycle system; and closed, in-core, reactor therminonic system. The models estimate performance and mass for the components in each of these systems. 17 refs., 8 figs., 15 tabs.

  15. Satellite based Global Flood Detection System - strengths and limitations

    Science.gov (United States)

    Revilla-Romero, Beatriz; Salamon, Peter; Thielen, Jutta; De Groeve, Tom; Zajac, Zuzanna

    2014-05-01

    One of the main problems for global hydrological models is that for many regions only very limited or no observational data for a model assessment is available. This problem could be overcome with filling the gaps using information derived from satellite observations. Thus, an evaluation of the remote sensing signal of the Global Flood Detection System (GFDS) against observed discharge data was performed in order to test the use of this data in sparsely gauged river basins. The study was carried out at 398 locations near the main rivers and in Africa, Asia, Europe, North America and South America. After evaluating different methodologies for extracting the satellite signal, a temporal (4 days) and spatial (4 GFDS pixels) average was chosen to proceed with the analysis. For the 340 stations with a concurrent time series longer than seven years for both, the signal and the in situ observed discharge (obtained mainly from the Global Runoff Data Centre), a calibration based on monthly linear models was carried out. The validation was executed and several skill scores were calculated such as the R2, Nash-Sutcliffe (NSE), and Root Mean Square Error (RMSE). It is important to highlight that, for this study, 230 stations globally had Nash-Sutcliffe efficient score higher than zero, indicating that for specific conditions the satellite signal as used in GFDS can fill the gaps where observations are not available. For example, several locations in African catchments have good performance as in the Niger, Volta and Zambezi for which Nash-Sutcliffe is greater than 0.75. It is known that a number of factors affect total upwelling microwave brightness from a mixed water and land surface measured by a single image pixel. Aiming to better understand how some features of the sites could affect the satellite signal and the correlation with in situ observations, apart from the dependency on the river geometry, a multivariate analysis was carried out between the skill scores (NSE and

  16. Planning for a data base system to support satellite conceptual design

    Science.gov (United States)

    Claydon, C. R.

    1976-01-01

    The conceptual design of an automated satellite design data base system is presented. The satellite catalog in the system includes data for all earth orbital satellites funded to the hardware stage for launch between 1970 and 1980, and provides a concise compilation of satellite capabilities and design parameters. The cost of satellite subsystems and components will be added to the base. Data elements are listed and discussed. Sensor and science and applications opportunities catalogs will be included in the data system. Capabilities of the BASIS storage, retrieval, and analysis system are used in the system design.

  17. EMERY BIOMASS GASIFICATION POWER SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Benjamin Phillips; Scott Hassett; Harry Gatley

    2002-11-27

    Emery Recycling Corporation (now Emery Energy Company, LLC) evaluated the technical and economical feasibility of the Emery Biomass Gasification Power System (EBGPS). The gasifier technology is owned and being developed by Emery. The Emery Gasifier for this project was an oxygen-blown, pressurized, non-slagging gasification process that novelly integrates both fixed-bed and entrained-flow gasification processes into a single vessel. This unique internal geometry of the gasifier vessel will allow for tar and oil destruction within the gasifier. Additionally, the use of novel syngas cleaning processes using sorbents is proposed with the potential to displace traditional amine-based and other syngas cleaning processes. The work scope within this project included: one-dimensional gasifier modeling, overall plant process modeling (ASPEN), feedstock assessment, additional analyses on the proposed syngas cleaning process, plant cost estimating, and, market analysis to determine overall feasibility and applicability of the technology for further development and commercial deployment opportunities. Additionally, the project included the development of a detailed technology development roadmap necessary to commercialize the Emery Gasification technology. Process modeling was used to evaluate both combined cycle and solid oxide fuel cell power configurations. Ten (10) cases were evaluated in an ASPEN model wherein nine (9) cases were IGCC configurations with fuel-to-electricity efficiencies ranging from 38-42% and one (1) case was an IGFC solid oxide case where 53.5% overall plant efficiency was projected. The cost of electricity was determined to be very competitive at scales from 35-71 MWe. Market analysis of feedstock availability showed numerous market opportunities for commercial deployment of the technology with modular capabilities for various plant sizes based on feedstock availability and power demand.

  18. Power Quality Improvements in Wind Diesel Power Generation System

    Directory of Open Access Journals (Sweden)

    Omar Feddaoui

    2015-08-01

    Full Text Available Generation of electricity using diesel is costly for small remote isolated communities. At remote location electricity generation from renewable energy such as wind can help reduce the overall operating costs by reducing the fuel costs. However, the penetration of wind power into small diesel-based grids is limited because of its effect on power quality and reliability. This paper focuses on the combination of Wind Turbine and Diesel Generator systems for sustained power generation, to improve the power quality of wind generation system. The performances of the optimal control structure are assessed and discussed by means of a set of simulations.

  19. Converters for Distributed Power Generation Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Yang, Yongheng

    2015-01-01

    Power electronics technology has become the enabling technology for the integration of distributed power generation systems (DPGS) such as offshore wind turbine power systems and commercial photovoltaic power plants. Depending on the applications, a vast array of DPGS-based power converter...... presents an overview of the power converters for the DPGS, mainly based on wind turbine systems and photovoltaic systems, covering a wide range of applications. Moreover, the modulation schemes and interfacing power filters for the power converters are also exemplified. Finally, the general control...... topologies has been developed and more are coming into the market in order to achieve an efficient and reliable power conversion from the renewables. In addition, stringent demands from both the distribution system operators and the consumers have been imposed on the renewable-based DPGS. This article...

  20. POWER GRID DYNAMICS: ENHANCING POWER SYSTEM OPERATION THROUGH PRONY ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    Ray, C.; Huang, Z.

    2007-01-01

    Prony Analysis is a technique used to decompose a signal into a series consisting of weighted complex exponentials and promises to be an effi cient way of recognizing sensitive lines during faults in power systems such as the U.S. Power grid. Positive Sequence Load Flow (PSLF) was used to simulate the performance of a simple two-area-four-generator system and the reaction of the system during a line fault. The Dynamic System Identifi cation (DSI) Toolbox was used to perform Prony analysis and use modal information to identify key transmission lines for power fl ow adjustment to improve system damping. The success of the application of Prony analysis methods to the data obtained from PSLF is reported, and the key transmission line for adjustment is identifi ed. Future work will focus on larger systems and improving the current algorithms to deal with networks such as large portions of the Western Electricity Coordinating Council (WECC) power grid.

  1. Guidance, Navigation, and Control System for Maneuverable Pico-Satellites Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Pico-satellites are an emerging new class of spacecraft. Maneuverable pico-satellites require active guidance, navigation, and control (GN&C) systems to perform...

  2. An analysis of the satellite kinematics model in the Naval Warfare Gaming System

    Science.gov (United States)

    Shudde, R. H.

    1983-09-01

    The satellite kinematics models in the Naval Wargaming System (NWGS) is described and critiqued. Suggestions are made for simplifying the existing computer code and for increasing the accuracy of the satellite simulation.

  3. Dynamic Influences of Wind Power on The Power System

    DEFF Research Database (Denmark)

    Rosas, Pedro Andrè Carvalho

    2004-01-01

    to represent the wind acting on wind farms. The wind speed model to a single wind turbineincludes tur-bulence and tower shadow effects from the wind and the rotational sampling turbulence due to the rotation of the blades. In a park scale, the wind speed model to the wind farm includes the spatial coherence......The thesis first presents the basic influences of wind power on the power system stability and quality by pointing out the main power quality issues of wind power in a small-scale case and following, the expected large-scale problems are introduced.Secondly, a dynamic wind turbine model...... that supports power quality assessment of wind turbines is presented. Thirdly, an aggregate wind farm model that support power quality and stability analysis from large wind farms is presented. The aggregate windfarm model includes the smoothing of the relative power fluctuation from a wind farm compared...

  4. Increase of electric power quality in autonomous electric power systems

    Directory of Open Access Journals (Sweden)

    И. А. Паньков

    2017-10-01

    Full Text Available With the constant development of electronics for control and monitoring of the work for significant and important elements of electric power systems, the requirements to the quality of electric power also increase. The issues of increasing the quality of electricity are solved in the field of power supply systems, which are the backbone of any electric network, because of their wider distribution and usage, unlike the autonomous electric power systems. In turn, with the development of the marine and river fleet, as well as appearance of such a promising direction for mining operations, like the Arctic zone, the autonomous electric power plants become especially important. One of the main problems of such systems is an insufficient research of the problem of the quality of electric power. The article presents a model of an autonomous electric power system. To simulate such systems, the MathLab package with the Simulink application is being widely used. The developed model provides an assessment of the quality of electricity in it, a comparison of the assessment obtained in existing systems, and a modern solution is proposed to improve the quality of electricity.

  5. Space nuclear power system studies in France

    Science.gov (United States)

    Carre, F.; Delaplace, J.; Proust, E.; Tilliette, Z.

    A program is described to investigate the feasibility, development, cost, and lead time of 20-200-kWe space nuclear power system adapted to powering different space missions as space-based radar for earth observation, LEO-GEO orbit-transfer vehicle and space transportation systems using electrical propulsion (200-400 kWe). Several concepts of nuclear power systems are studied including: a 200 kWe power system operating at very high temperatures and needing a long development program; and a 20 kWe power system using available technologies developed for terrestrial nuclear reactors achievable in 10-12 years.

  6. Computer-aided power systems analysis

    CERN Document Server

    Kusic, George

    2008-01-01

    Computer applications yield more insight into system behavior than is possible by using hand calculations on system elements. Computer-Aided Power Systems Analysis: Second Edition is a state-of-the-art presentation of basic principles and software for power systems in steady-state operation. Originally published in 1985, this revised edition explores power systems from the point of view of the central control facility. It covers the elements of transmission networks, bus reference frame, network fault and contingency calculations, power flow on transmission networks, generator base power setti

  7. Power Systems Design for Long Duration Ballooning

    Science.gov (United States)

    Stilwell, Bryan; Chuzel, Alain

    2016-01-01

    The Columbia Scientific Balloon Facility has been designing and building high-altitude balloon power systems for over 26 years. With that experience, we have found certain types of PV panels, batteries, and charge controllers that are reliable in stratospheric environments. The ultimate goal is to ensure that power systems will provide power reliably throughout the duration of an LDB flight. The purpose of this presentation is to provide some general guidelines and best practices for power system design.

  8. Maximizing wind power integration in distribution system

    Energy Technology Data Exchange (ETDEWEB)

    Nursebo Salih, S.; Chen, Peiyuan; Carlson, Ola [Chalmers Univ. of Technology (Sweden)

    2011-07-01

    Due to the location of favorable wind sites and lower connection costs associated with installing wind power in a distribution system, there is a need to know the hosting capacity of a distribution system so that it can be used effectively for injecting wind power into the power system. Therefore this paper presents a methodology to investigate the wind power hosting capacity of a distribution system. Stochastic nature of wind power and customer loads is taken into account using copulas. Hence it is possible to investigate various levels of correlation among customer loads. A simple algorithm is proposed for selecting the connection points of wind power in the network. The effectiveness of active management strategies such as wind power curtailment and reactive power compensation are thoroughly investigated. The analysis shows that allowing a curtailment level of as low as 0.2% with power factor (PF) control of wind turbines could boost the hosting capacity by 118%. (orig.)

  9. High-speed and Long-reach Hybrid AMI-WDM-PI Inter-satellite Communication System

    Science.gov (United States)

    Shatnawi, Abdallah Ahmad; Bin Mohd Warip, Mohd Nazri

    2017-12-01

    In the current context of high-altitude platform communication system, inter-satellite communication is remarkable and highly effective. The present work aims to develop an integrated data transmission system incorporating alternate mark inversion, wavelength-division multiplexing, and polarization interleaving scheme for transmitting data of eight channels, each carrying 20 Gbps data over inter-satellite link of 5,000 km. The performance of the integrated data transmission of 160 Gbps data up to 5,000 km will be evaluated by means of signal-to-noise ratio, total received power, and eye diagram.

  10. Growth in NOx emissions from power plants in China: bottom-up estimates and satellite observations

    Directory of Open Access Journals (Sweden)

    Y. Lei

    2012-05-01

    Full Text Available Using OMI (Ozone Monitoring Instrument tropospheric NO2 columns and a nested-grid 3-D global chemical transport model (GEOS-Chem, we investigated the growth in NOx emissions from coal-fired power plants and their contributions to the growth in NO2 columns in 2005–2007 in China. We first developed a unit-based power plant NOx emission inventory for 2005–2007 to support this investigation. The total capacities of coal-fired power generation have increased by 48.8% in 2005–2007, with 92.2% of the total capacity additions coming from generator units with size ≥300 MW. The annual NOx emissions from coal-fired power plants were estimated to be 8.11 Tg NO2 for 2005 and 9.58 Tg NO2 for 2007, respectively. The modeled summer average tropospheric NO2 columns were highly correlated (R2 = 0.79–0.82 with OMI measurements over grids dominated by power plant emissions, with only 7–14% low bias, lending support to the high accuracy of the unit-based power plant NOx emission inventory. The ratios of OMI-derived annual and summer average tropospheric NO2 columns between 2007 and 2005 indicated that most of the grids with significant NO2 increases were related to power plant construction activities. OMI had the capability to trace the changes of NOx emissions from individual large power plants in cases where there is less interference from other NOx sources. Scenario runs from GEOS-Chem model suggested that the new power plants contributed 18.5% and 10% to the annual average NO2 columns in 2007 in Inner Mongolia and North China, respectively. The massive new power plant NOx emissions significantly changed the local NO2 profiles, especially in less polluted areas. A sensitivity study found that changes of NO2 shape factors due to including new power plant emissions increased the summer average OMI tropospheric NO2 columns by 3.8–17.2% for six selected locations, indicating that the updated emission information could help to improve the satellite

  11. Growth in NOx emissions from power plants in China: bottom-up estimates and satellite observations

    Science.gov (United States)

    Wang, S. W.; Zhang, Q.; Streets, D. G.; He, K. B.; Martin, R. V.; Lamsal, L. N.; Chen, D.; Lei, Y.; Lu, Z.

    2012-05-01

    Using OMI (Ozone Monitoring Instrument) tropospheric NO2 columns and a nested-grid 3-D global chemical transport model (GEOS-Chem), we investigated the growth in NOx emissions from coal-fired power plants and their contributions to the growth in NO2 columns in 2005-2007 in China. We first developed a unit-based power plant NOx emission inventory for 2005-2007 to support this investigation. The total capacities of coal-fired power generation have increased by 48.8% in 2005-2007, with 92.2% of the total capacity additions coming from generator units with size ≥300 MW. The annual NOx emissions from coal-fired power plants were estimated to be 8.11 Tg NO2 for 2005 and 9.58 Tg NO2 for 2007, respectively. The modeled summer average tropospheric NO2 columns were highly correlated (R2 = 0.79-0.82) with OMI measurements over grids dominated by power plant emissions, with only 7-14% low bias, lending support to the high accuracy of the unit-based power plant NOx emission inventory. The ratios of OMI-derived annual and summer average tropospheric NO2 columns between 2007 and 2005 indicated that most of the grids with significant NO2 increases were related to power plant construction activities. OMI had the capability to trace the changes of NOx emissions from individual large power plants in cases where there is less interference from other NOx sources. Scenario runs from GEOS-Chem model suggested that the new power plants contributed 18.5% and 10% to the annual average NO2 columns in 2007 in Inner Mongolia and North China, respectively. The massive new power plant NOx emissions significantly changed the local NO2 profiles, especially in less polluted areas. A sensitivity study found that changes of NO2 shape factors due to including new power plant emissions increased the summer average OMI tropospheric NO2 columns by 3.8-17.2% for six selected locations, indicating that the updated emission information could help to improve the satellite retrievals.

  12. Maximum Safety Regenerative Power Tracking for DC Traction Power Systems

    Directory of Open Access Journals (Sweden)

    Guifu Du

    2017-02-01

    Full Text Available Direct current (DC traction power systems are widely used in metro transport systems, with running rails usually being used as return conductors. When traction current flows through the running rails, a potential voltage known as “rail potential” is generated between the rails and ground. Currently, abnormal rises of rail potential exist in many railway lines during the operation of railway systems. Excessively high rail potentials pose a threat to human life and to devices connected to the rails. In this paper, the effect of regenerative power distribution on rail potential is analyzed. Maximum safety regenerative power tracking is proposed for the control of maximum absolute rail potential and energy consumption during the operation of DC traction power systems. The dwell time of multiple trains at each station and the trigger voltage of the regenerative energy absorbing device (READ are optimized based on an improved particle swarm optimization (PSO algorithm to manage the distribution of regenerative power. In this way, the maximum absolute rail potential and energy consumption of DC traction power systems can be reduced. The operation data of Guangzhou Metro Line 2 are used in the simulations, and the results show that the scheme can reduce the maximum absolute rail potential and energy consumption effectively and guarantee the safety in energy saving of DC traction power systems.

  13. Grid-Tied Photovoltaic Power System

    Science.gov (United States)

    Eichenberg, Dennis J.

    2011-01-01

    A grid-tied photovoltaic (PV) power system is connected directly to the utility distribution grid. Facility power can be obtained from the utility system as normal. The PV system is synchronized with the utility system to provide power for the facility, and excess power is provided to the utility. Operating costs of a PV power system are low compared to conventional power technologies. This method can displace the highest-cost electricity during times of peak demand in most climatic regions, and thus reduce grid loading. Net metering is often used, in which independent power producers such as PV power systems are connected to the utility grid via the customers main service panels and meters. When the PV power system is generating more power than required at that location, the excess power is provided to the utility grid. The customer pays the net of the power purchased when the on-site power demand is greater than the onsite power production, and the excess power is returned to the utility grid. Power generated by the PV system reduces utility demand, and the surplus power aids the community. Modern PV panels are readily available, reliable, efficient, and economical, with a life expectancy of at least 25 years. Modern electronics have been the enabling technology behind grid-tied power systems, making them safe, reliable, efficient, and economical with a life expectancy equal to the modern PV panels. The grid-tied PV power system was successfully designed and developed, and this served to validate the basic principles developed, and the theoretical work that was performed. Grid-tied PV power systems are reliable, maintenance- free, long-life power systems, and are of significant value to NASA and the community. Of particular value are the analytical tools and capabilities that have been successfully developed. Performance predictions can be made confidently for grid-tied PV systems of various scales. The work was done under the NASA Hybrid Power Management (HPM

  14. The physics of power systems operation

    Science.gov (United States)

    Ohler, C.

    2015-08-01

    The article explains the operation of power systems from the point of view of physics. Physicists imagine things, rather than in terms of impedances and circuits, in terms of fields and energy conversions. The account is concrete and simple. The use of alternating current entails the issue of reactive power. Reactive power consists of energy that oscillates between electrical and magnetic fields, it flows on top of the active power which carries the useful energy. The control of active and reactive power is essential for the power system's reliable operation. The frequency of a power system is the same everywhere. The stability of the frequency indicates that generation and demand of active power are equal, a decline in frequency indicates a lack of generation relative to the demand. Adapting the electrical power injected into the system is the way of frequency control. Because of the parasitic inductances and capacitances of overhead lines, cables, and transformers, the voltage at different locations of the power system depends on the load. The voltage is regulated by the combined action of generator excitation, transformer tap changers and series compensation in order to provide consumers with a stable voltage supply. The integration of solar cells and wind turbines into the power system poses some challenges. But the power system is able to accommodate large amounts of fluctuating renewable power generation if the right complementary measures are taken.

  15. Cirlularly Polarized Proximity- Fed Microstrip Array Antenna for LAPAN TUBSAT Micro Satellite System

    Directory of Open Access Journals (Sweden)

    Endra Wijaya

    2013-11-01

    Full Text Available The design microstrip of array antenna circular polarization characteristic developed for support LAPAN TUBSAT micro satellite system. The antenna on the micro satellite systems transmit data to ground stations operating at S band frequencies.The antenna is designed for impedance matching at frequencies of 2:25 GHz.The four elements of the square patch antenna array composed using linear methods, where the design of the transmission lines used by federal corporate structure model network consisting of three elements of the quarter wave transformer of a power divider. The feeding techniques for antenna designed using proximity coupling method, which for the type of substrate material used is similar. Circularly polarized antenna characteristics are influenced by the truncated corner pieces on the patch. To design the overall antenna used simulated method of moments in microwave office software applications. The results of measurements and simulations obtained antenna parameters, such as: bandwidth of return loss under 10 dB is 200 MHz (shifted 35%, bandwidth of axial ratio under 3dB is 1.7% and maximum gain directivity is 9 dB. Overall results obtained antenna parameters to meet the specifications of LAPAN TUBSAT micro satellite system.

  16. Satellite and Ground System Solutions at Your Fingertips

    Science.gov (United States)

    2005-01-01

    In the summer of 1998, the blockbuster action movie Armageddon captivated audiences with a thrilling doomsday plot about a meteor the size of Texas that was racing towards the Earth. Though the premise of the movie was purely fictional, the unfortunate reality is that near-Earth asteroids such as the one portrayed in the film do exist. On December 23, 2004, NASA announced that an asteroid it anticipated to pass near the Earth on April 13, 2029, had been assigned the highest score to date on the universally used Torino Impact Hazard Scale. At first, the flyby distance for the asteroid, dubbed MN4, was uncertain and an Earth impact could not be ruled out. The odds of impact were initially believed to be 1 in 300, high enough to merit special monitoring by astronomers around the world, but were then escalated to 1 in 37 on December 27. NASA officials noted, however, that these odds should not be of public concern, since they were likely to change on a day-to-day basis as new data were received. The officials were correct in their assertion, as any chances of an impact with Earth in 2029 were completely ruled out later that same day. Integral Systems, Inc., a leading provider of satellite ground systems and the first company to offer an integrated suite of commercial-off-the-shelf software products for satellite command and control, is helping NASA keep a careful watch for any close-encountering asteroids with its tracking technology. The company supported the first NASA Discovery mission, the Near Earth Asteroid Rendezvous (NEAR) program, back in 1996, and has expanded its business by building more ground systems for a greater variety of satellites than any other company in the world. (NASA has since launched seven more Discovery missions, with the eighth lifting off earlier this year.) The experience gained from the company s participation in developing satellite command and control ground systems for the NEAR program has bolstered its flagship product line, the

  17. Production process for advanced space satellite system cables/interconnects.

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza, Luis A.

    2007-12-01

    This production process was generated for the satellite system program cables/interconnects group, which in essences had no well defined production process. The driver for the development of a formalized process was based on the set backs, problem areas, challenges, and need improvements faced from within the program at Sandia National Laboratories. In addition, the formal production process was developed from the Master's program of Engineering Management for New Mexico Institute of Mining and Technology in Socorro New Mexico and submitted as a thesis to meet the institute's graduating requirements.

  18. Handoff algorithm for mobile satellite systems with ancillary terrestrial component

    KAUST Repository

    Sadek, Mirette

    2012-06-01

    This paper presents a locally optimal handoff algorithm for integrated satellite/ground communication systems. We derive the handoff decision function and present the results in the form of tradeoff curves between the number of handoffs and the number of link degradation events in a given distance covered by the mobile user. This is a practical receiver-controlled handoff algorithm that optimizes the handoff process from a user perspective based on the received signal strength rather than from a network perspective. © 2012 IEEE.

  19. Energy storage in future power systems

    DEFF Research Database (Denmark)

    Rasmussen, Claus Nygaard; Østergaard, Jacob; Divya, K. C.

    2011-01-01

    Most sources of renewable power are characterised by uncontrollable and chaotic variations in power output. We here look at how energy storage may benefit renewable power generation by making it available in periods with little or no intermittent generation and thereby prevent additional...... conventional generation form being used. In addition to this, one of the strongest concerns in relation to renewable power is the instability in the electric power system that it may introduce as a result of large and relatively fast power fluctuations. An additional benefit of energy storage is therefore its...... of renewable energy. Meanwhile, the insurance of power system stability through reduction of power gradients is of major importance even at lower penetration levels and some form of energy storage therefore seems unavoidable. A variety of technologies are available for storage of energy in the power system...

  20. Power system damping - Structural aspects of controlling active power

    Energy Technology Data Exchange (ETDEWEB)

    Samuelsson, O.

    1997-04-01

    Environmental and economical aspects make it difficult to build new power lines and to reinforce existing ones. The continued growth in demand for electric power must therefore to a great extent be met by increased loading of available lines. A consequence is that power system damping is reduced, leading to a risk of poorly damped power oscillations between the generators. This thesis proposes the use of controlled active loads to increase damping of such electro-mechanical oscillations. The focus is on structural aspects of controller interaction and of sensor and actuator placement. On-off control based on machine frequency in a single machine infinite bus system is analysed using energy function analysis and phase plane plots. An on-off controller with estimated machine frequency as input has been implemented. At a field test it damped oscillations of a 0.9 MW hydro power generator by controlling a 20kW load. The linear analysis uses two power system models with three and twenty-three machines respectively. Each damper has active power as output and local bus frequency or machine frequency as input. The power system simulator EUROSTAG is used both for generation of the linearized models and for time simulations. Measures of active power mode controllability and phase angle mode observability are obtained from the eigenvectors of the differential-algebraic models. The geographical variation in the network of these quantities is illustrated using the resemblance to bending modes of flexible mechanical structures. Eigenvalue sensitivities are used to determine suitable damper locations. A spring-mass equivalent to an inter-area mode provides analytical expressions, that together with the concept of impedance matching explain the structural behaviour of the power systems. For large gains this is investigated using root locus plots. 64 refs, 99 figs, 20 tabs

  1. The physics of power systems operation

    Directory of Open Access Journals (Sweden)

    Ohler C.

    2015-01-01

    Full Text Available The article explains the operation of power systems from the point of view of physics. Physicists imagine things, rather than in terms of impedances and circuits, in terms of fields and energy conversions. The account is concrete and simple. The use of alternating current entails the issue of reactive power. Reactive power consists of energy that oscillates between electrical and magnetic fields, it flows on top of the active power which carries the useful energy. The control of active and reactive power is essential for the power system’s reliable operation. The frequency of a power system is the same everywhere. The stability of the frequency indicates that generation and demand of active power are equal, a decline in frequency indicates a lack of generation relative to the demand. Adapting the electrical power injected into the system is the way of frequency control. Because of the parasitic inductances and capacitances of overhead lines, cables, and transformers, the voltage at different locations of the power system depends on the load. The voltage is regulated by the combined action of generator excitation, transformer tap changers and series compensation in order to provide consumers with a stable voltage supply. The integration of solar cells and wind turbines into the power system poses some challenges. But the power system is able to accommodate large amounts of fluctuating renewable power generation if the right complementary measures are taken.

  2. Synergistic Use of Nighttime Satellite Data, Electric Utility Infrastructure, and Ambient Population to Improve Power Outage Detections in Urban Areas

    Directory of Open Access Journals (Sweden)

    Tony A. Cole

    2017-03-01

    Full Text Available Natural and anthropogenic hazards are frequently responsible for disaster events, leading to damaged physical infrastructure, which can result in loss of electrical power for affected locations. Remotely-sensed, nighttime satellite imagery from the Suomi National Polar-orbiting Partnership (Suomi-NPP Visible Infrared Imaging Radiometer Suite (VIIRS Day/Night Band (DNB can monitor power outages in disaster-affected areas through the identification of missing city lights. When combined with locally-relevant geospatial information, these observations can be used to estimate power outages, defined as geographic locations requiring manual intervention to restore power. In this study, we produced a power outage product based on Suomi-NPP VIIRS DNB observations to estimate power outages following Hurricane Sandy in 2012. This product, combined with known power outage data and ambient population estimates, was then used to predict power outages in a layered, feedforward neural network model. We believe this is the first attempt to synergistically combine such data sources to quantitatively estimate power outages. The VIIRS DNB power outage product was able to identify initial loss of light following Hurricane Sandy, as well as the gradual restoration of electrical power. The neural network model predicted power outages with reasonable spatial accuracy, achieving Pearson coefficients (r between 0.48 and 0.58 across all folds. Our results show promise for producing a continental United States (CONUS- or global-scale power outage monitoring network using satellite imagery and locally-relevant geospatial data.

  3. Solar power satellites and the ionosphere - The effect of high power microwave beams on the ionosphere and the chemical effects due to Heavy-Lift Launch Vehicles

    Science.gov (United States)

    The effects of solar power satellites on the ionosphere are discussed, separated into two categories: (1) passive interactions, in which the ionospheric plasma influences the propagation of the power satellite beam in some way, and in some instances possibly gives rise to co-channel interference through scattering off the beam, and (2) an active inteference, in which ionospheric plasma itself is modified. Strong electron heating from the power satellite beam may produce irregularities in the ionization capable of scattering radio waves of lower frequencies, thereby increasing the potential for broad-band interference. Ionospheric modification may also result from the emission of exhaust effluents from heavy lift launch vehicles, and associated changes in ionospheric chemistry can lead to depletions in ionization at F-region heights. Interference with radio services is briefly discussed.

  4. Reliability of Power Electronic Converter Systems

    DEFF Research Database (Denmark)

    -link capacitance in power electronic converter systems; wind turbine systems; smart control strategies for improved reliability of power electronics system; lifetime modelling; power module lifetime test and state monitoring; tools for performance and reliability analysis of power electronics systems; fault......The main aims of power electronic converter systems (PECS) are to control, convert, and condition electrical power flow from one form to another through the use of solid-state electronics. This book outlines current research into the scientific modeling, experimentation, and remedial measures...... for advancing the reliability, availability, system robustness, and maintainability of PECS at different levels of complexity. Drawing on the experience of an international team of experts, this book explores the reliability of PECS covering topics including an introduction to reliability engineering in power...

  5. Reliability of Power Electronic Converter Systems

    DEFF Research Database (Denmark)

    The main aims of power electronic converter systems (PECS) are to control, convert, and condition electrical power flow from one form to another through the use of solid-state electronics. This book outlines current research into the scientific modeling, experimentation, and remedial measures...... for advancing the reliability, availability, system robustness, and maintainability of PECS at different levels of complexity. Drawing on the experience of an international team of experts, this book explores the reliability of PECS covering topics including an introduction to reliability engineering in power......-link capacitance in power electronic converter systems; wind turbine systems; smart control strategies for improved reliability of power electronics system; lifetime modelling; power module lifetime test and state monitoring; tools for performance and reliability analysis of power electronics systems; fault...

  6. Kysat-2 electrical power system design and analysis

    Science.gov (United States)

    Molton, Brandon L.

    In 2012, Kentucky Space, LLC was offered the opportunity to design KYSat-2, a CubeSat mission which utilizes an experimental stellar-tracking camera system to test its effectiveness of determining the spacecraft's attitude while on orbit. Kentucky Space contracted Morehead State University to design the electrical power system (EPS) which will handle all power generation and power management and distribution to each of the KYSat-2 subsystems, including the flight computer, communications systems, and the experimental payload itself. This decision came as a result of the success of Morehead State's previous CubeSat mission, CXBN, which utilized a custom built power system and successfully launched in 2011. For the KYSat-2 EPS to be successful, it was important to design a system which was efficient enough to handle the power limitations of the space environment and robust enough to handle the challenges of powering a spacecraft on orbit. The system must be developed with a positive power budget, generating and storing more power than will be stored by KYSat-2 over mission lifetime. To accomplish this goal, the use of deployable solar panels has been utilized to double the usable surface area of the satellite for power generation, effectively doubling the usable power of the satellite system on orbit. The KYSat-2 EPS includes of set of gold plated deployable solar panels utilizing solar cells with a 26% efficiency. Power generated by this system is fed into a shunt regulator circuit which regulates the voltage generated to be stored in a 3-cell series battery pack. Stored powered is maintained using a balancing circuit which increases the efficiency and lifetime of the cells on-orbit. Power distribution includes raw battery voltage, four high-power outputs (two 5V and two 3.3 V) and a low-noise, low power 3.3V output for use with noise sensitive devices, such as microcontrollers. The solar panel deployment system utilizes the nichrome wire which draws current

  7. Keys to success for wind power in isolated power systems

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, J.C.; Lundsager, P.; Bindner, H.; Hansen, L.; Frandsen, S. [Risoe National Lab., Wind Energy and Atmospheric Physics Dept., Roskilde (Denmark)

    1999-03-01

    It is generally expected that wind power could contribute significantly to the electricity supply in power systems of small and medium sized isolated communities. The market for such applications of wind power has not yet materialized. Wind power in isolated power systems have the main market potentials in developing countries. The money available world-wide for this technological development is limited and the necessary R and D and pilot programmes have difficult conditions. Consequently, technology developed exclusively for developing countries rarely becomes attractive for consumers, investors and funding agencies. A Danish research project is aimed at studying development of methods and guidelines rather than `universal solutions` for the use of wind energy in isolated communities. This paper report on the findings of the project regarding barriers removal and engineering methods development, with a focus on analysis and specification of user demand and priorities, numerical modeling requirements as well as wind power impact on power quality and power system operation. Input will be provided on these subjects for establishing of common guidelines on relevant technical issues, and thereby enabling the making of trustworthy project preparation studies. (au) EFP-97. 12 refs.

  8. Nuclear Systems (NS): Kilopower Small Fission Power Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Nuclear power systems enable human and robotic exploration missions to solar system locations where other power system alternatives are infeasible,...

  9. Power system with an integrated lubrication circuit

    Science.gov (United States)

    Hoff, Brian D [East Peoria, IL; Akasam, Sivaprasad [Peoria, IL; Algrain, Marcelo C [Peoria, IL; Johnson, Kris W [Washington, IL; Lane, William H [Chillicothe, IL

    2009-11-10

    A power system includes an engine having a first lubrication circuit and at least one auxiliary power unit having a second lubrication circuit. The first lubrication circuit is in fluid communication with the second lubrication circuit.

  10. Probabilistic Fault Diagnosis in Electrical Power Systems

    Data.gov (United States)

    National Aeronautics and Space Administration — Electrical power systems play a critical role in spacecraft and aircraft. This paper discusses our development of a diagnostic capability for an electrical power...

  11. On energy efficient power allocation for power-constrained systems

    KAUST Repository

    Sboui, Lokman

    2014-09-01

    Recently, the energy efficiency (EE) has become an important factor when designing new wireless communication systems. Due to economic and environmental challenges, new trends and efforts are oriented toward “green” communication especially for energy-constrained applications such as wireless sensors network and cognitive radio. To this end, we analyze the power allocation scheme that maximizes the EE defined as rate over the total power including circuit power. We derive an explicit expression of the optimal power with instantaneous channel gain based on EE criterion. We show that the relation between the EE and the spectral efficiency (SE) when the optimal power is adopted is strictly increasing in contrast with the SE-EE trade-off discussed in the literature. We also solve a non-convex problem and compute explicitly the optimal power for ergodic EE under either a peak or an average power constraint. When the instantaneous channel is not available, we provide the optimal power equation and compute simple sub-optimal power. In the numerical results, we show that the sup-optimal solution is very close to the optimal solution. In addition, we show that the absence of the channel state information (CSI) only affects the EE and the SE performances at high power regime compared to the full CSI case.

  12. Faults and Diagnosis Systems in Power Converters

    DEFF Research Database (Denmark)

    Lee, Kyo-Beum; Choi, Uimin

    2014-01-01

    frequently. Therefore, it is important to monitor the power device and capacitor fault to increase the reliability of power electronics. In this chapter, the diagnosis methods for power device fault will be discussed by dividing into open- and short-circuit faults. Then, the condition monitoring methods...... efforts have been put into making these systems better in terms of reliability in order to achieve high power source availability, reduce the cost of energy and also increase the reliability of overall systems. Among the components used in power converters, a power device and a capacitor fault occurs most...

  13. Nuclear Power Plant environment`s surveillance by satellite remote sensing and in-situ monitoring data

    Science.gov (United States)

    Zoran, Maria

    The main environmental issues affecting the broad acceptability of nuclear power plant are the emission of radioactive materials, the generation of radioactive waste, and the potential for nuclear accidents. All nuclear fission reactors, regardless of design, location, operator or regulator, have the potential to undergo catastrophic accidents involving loss of control of the reactor core, failure of safety systems and subsequent widespread fallout of hazardous fission products. Risk is the mathematical product of probability and consequences, so lowprobability and high-consequence accidents, by definition, have a high risk. NPP environment surveillance is a very important task in frame of risk assessment. Satellite remote sensing data had been applied for dosimeter levels first time for Chernobyl NPP accident in 1986. Just for a normal functioning of a nuclear power plant, multitemporal and multispectral satellite data in complementarily with field data are very useful tools for NPP environment surveillance and risk assessment. Satellite remote sensing is used as an important technology to help environmental research to support research analysis of spatio-temporal dynamics of environmental features nearby nuclear facilities. Digital processing techniques applied to several LANDSAT, MODIS and QuickBird data in synergy with in-situ data are used to assess the extent and magnitude of radiation and non-radiation effects on the water, near field soil, vegetation and air. As a test case the methodology was applied for for Nuclear Power Plant (NPP) Cernavoda, Romania. Thermal discharge from nuclear reactors cooling is dissipated as waste heat in Danube-Black -Sea Canal and Danube River. Water temperatures captured in thermal IR imagery are correlated with meteorological parameters. If during the winter thermal plume is localized to an area of a few km of NPP, the temperature difference between the plume and non-plume areas being about 1.5 oC, during summer and fall , is

  14. Carrier - Interference ratios for frequency sharing between satellite systems transmitting frequency modulated and digital television signals

    Science.gov (United States)

    Barnes, S. P.

    1979-01-01

    As the data rates required for digitally encoded television are reduced, satellite systems employing the transmission of digitally encoded television will become attractive. It is likely that television transmitted in this format will be adjacent to or in the same frequency band as television transmissions in other modulation formats, so a knowledge of carrier to interference power ratios as a function of assessed picture quality will be required for frequency sharing between these different modulation formats. This paper presents the results of subjective and quantitative tests describing the results of interference to a particular digital television system from a frequency modulated (FM) television system, and for interference to an FM television system from a digital television system.

  15. A system architecture for an advanced Canadian wideband mobile satellite system

    Science.gov (United States)

    Takats, P.; Keelty, M.; Moody, H.

    1993-01-01

    In this paper, the system architecture for an advanced Canadian ka-band geostationary mobile satellite system is described, utilizing hopping spot beams to support a 256 kbps wideband service for both N-ISDN and packet-switched interconnectivity to small briefcase-size portable and mobile terminals. An assessment is given of the technical feasibility of the satellite payload and terminal design in the post year 2000 timeframe. The satellite payload includes regeneration and on-board switching to permit single hop interconnectivity between mobile terminals. The mobile terminal requires antenna tracking and platform stabilization to ensure acquisition of the satellite signal. The potential user applications targeted for this wideband service includes: home-office, multimedia, desk-top (PC) videoconferencing, digital audio broadcasting, single and multi-user personal communications.

  16. Use of satellite images for the monitoring of water systems

    Science.gov (United States)

    Hillebrand, Gudrun; Winterscheid, Axel; Baschek, Björn; Wolf, Thomas

    2015-04-01

    Satellite images are a proven source of information for monitoring ecological indicators in coastal waters and inland river systems. This potential of remote sensing products was demonstrated by recent research projects (e.g. EU-funded project Freshmon - www.freshmon.eu) and other activities by national institutions. Among indicators for water quality, a particular focus was set on the temporal and spatial dynamics of suspended particulate matter (SPM) and Chlorophyll-a (Chl-a). The German Federal Institute of Hydrology (BfG) was using the Weser and Elbe estuaries as test cases to compare in-situ measurements with results obtained from a temporal series of automatically generated maps of SPM distributions based on remote sensing data. Maps of SPM and Chl-a distributions in European inland rivers and alpine lakes were generated by the Freshmon Project. Earth observation based products are a valuable source for additional data that can well supplement in-situ monitoring. For 2015, the BfG and the Institute for Lake Research of the State Institute for the Environment, Measurements and Nature Conservation of Baden-Wuerttemberg, Germany (LUBW) are in the process to start implementing an operational service for monitoring SPM and Chl-a based on satellite images (Landsat 7 & 8, Sentinel 2, and if required other systems with higher spatial resolution, e.g. Rapid Eye). In this 2-years project, which is part of the European Copernicus Programme, the operational service will be set up for - the inland rivers of Rhine and Elbe - the North Sea estuaries of Elbe, Weser and Ems. Furthermore - Lake Constance and other lakes located within the Federal State of Baden-Wuerttemberg. In future, the service can be implemented for other rivers and lakes as well. Key feature of the project is a data base that holds the stock of geo-referenced maps of SPM and Chl-a distributions. Via web-based portals (e.g. GGInA - geo-portal of the BfG; UIS - environmental information system of the

  17. Direct current power delivery system and method

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Di; Garces, Luis Jose; Dai, Jian; Lai, Rixin

    2016-09-06

    A power transmission system includes a first unit for carrying out the steps of receiving high voltage direct current (HVDC) power from an HVDC power line, generating an alternating current (AC) component indicative of a status of the first unit, and adding the AC component to the HVDC power line. Further, the power transmission system includes a second unit for carrying out the steps of generating a direct current (DC) voltage to transfer the HVDC power on the HVDC power line, wherein the HVDC power line is coupled between the first unit and the second unit, detecting a presence or an absence of the added AC component in the HVDC power line, and determining the status of the first unit based on the added AC component.

  18. Wind Power in Electrical Distribution Systems

    DEFF Research Database (Denmark)

    Chen, Zhe

    2013-01-01

    Recent years, wind power is experiencing a rapid growth, large number of wind turbines/wind farms have been installed and connected to power systems. In addition to the large centralised wind farms connected to transmission grids, many distributed wind turbines and wind farms are operated...... as distributed generators in distribution systems. This paper discusses the issues of wind turbines in distribution systems. Wind power conversion systems briefly introduced, the basic features and technical characteristics of distributed wind power system are described, and the main technical demands...

  19. Power systems signal processing for smart grids

    CERN Document Server

    Ribeiro, Paulo Fernando; Ribeiro, Paulo Márcio; Cerqueira, Augusto Santiago

    2013-01-01

    With special relation to smart grids, this book provides clear and comprehensive explanation of how Digital Signal Processing (DSP) and Computational Intelligence (CI) techniques can be applied to solve problems in the power system. Its unique coverage bridges the gap between DSP, electrical power and energy engineering systems, showing many different techniques applied to typical and expected system conditions with practical power system examples. Surveying all recent advances on DSP for power systems, this book enables engineers and researchers to understand the current state of the art a

  20. DC power supplies power management and surge protection for power electronic systems

    CERN Document Server

    Kularatna, Nihal

    2011-01-01

    Modern electronic systems, particularly portable consumer electronic systems and processor based systems, are power hungry, compact, and feature packed. This book presents the most essential summaries of the theory behind DC-DC converter topologies of both linear and switching types. The text discusses power supply characteristics and design specifications based on new developments in power management techniques and modern semiconductors entering into the portable electronics market. The author also addresses off-the-line power supplies, digital control of power supply, power supply protection

  1. Global Navigation Satellite System (GNSS) Final Clock Product (5 minute resolution, daily files, generated weekly) from NASA CDDIS

    Data.gov (United States)

    National Aeronautics and Space Administration — This derived product set consists of Global Navigation Satellite System Final Satellite and Receiver Clock Product (5-minute granularity, daily files, generated...

  2. Global Navigation Satellite System (GNSS) Final Clock Product (30 second resolution, daily files, generated weekly) from NASA CDDIS

    Data.gov (United States)

    National Aeronautics and Space Administration — This derived product set consists of Global Navigation Satellite System Final Satellite and Receiver Clock Product (30-second granularity, daily files, generated...

  3. Global Navigation Satellite System (GNSS) Rapid Clock Product (30 second resolution, daily files, generated daily) from NASA CDDIS

    Data.gov (United States)

    National Aeronautics and Space Administration — This derived product set consists of Global Navigation Satellite System Rapid Satellite and Receiver Clock Product (30-second granularity, daily files, generated...

  4. Underground power line fault locating system

    Energy Technology Data Exchange (ETDEWEB)

    Fox, L.D.; Flath, R.K.

    1993-08-24

    A method is described of locating a fault in a polyphase power distribution system power distributing power from a bulk power source to power consumers, the power distribution system having a substation feeding a fused switch gear unit, a first vault, and at least one subsequent vault receiving power from the first vault, the first vault distributing power from the fused switch gear unit among plural outgoing underground power lines, each underground outgoing power line supplying power to at least one power consumer, the method comprising the steps of: checking fusing within the fused switch gear unit to determine in which phase the fault has occurred; checking the continuity of a power line interconnecting the fused switch gear unit and the first vault; identifying the fused switch gear unit and the first vault which normally supply power to a line having the fault; installing a fault indicator on each underground outgoing power line of the faulted phase in the first vault and in each subsequent vault; inserting a current limiting fuse in series with and between the fused switch gear unit and the first vault; reenergizing the first vault plural outgoing underground power lines through the current limiting fuse and causing the current limiting fuse to blow; and reading each fault indicator after the reenergizing step to determine the location of the fault. A method according to claim 7 for an underground power distribution system wherein at least one underground outgoing power line delivers power to at least one distribution transformer, wherein the step of installing the fault indicators further comprises installing a fault indicator on each distribution transformer.

  5. Energy Flexibility in the Power System

    DEFF Research Database (Denmark)

    Ma, Zheng; Billanes, Joy Dalmacio; Jørgensen, Bo Nørregaard

    2017-01-01

    Energy flexibility can address the challenges of large scale integration of renewable energy resources and thereby increasing imbalance in the power system. Flexible power system can provide reliable supply, low electricity cost and sustainability. Various situations and factors influence the ado...... to provide an overview of the current condition of the Philippines’ power system and discuss the energy flexibility in the Philippines’ power system. A further discussion and recommendation is conducted in the end of the paper.......Energy flexibility can address the challenges of large scale integration of renewable energy resources and thereby increasing imbalance in the power system. Flexible power system can provide reliable supply, low electricity cost and sustainability. Various situations and factors influence...

  6. Satellite-instrument system engineering best practices and lessons

    Science.gov (United States)

    Schueler, Carl F.

    2009-08-01

    This paper focuses on system engineering development issues driving satellite remote sensing instrumentation cost and schedule. A key best practice is early assessment of mission and instrumentation requirements priorities driving performance trades among major instrumentation measurements: Radiometry, spatial field of view and image quality, and spectral performance. Key lessons include attention to technology availability and applicability to prioritized requirements, care in applying heritage, approaching fixed-price and cost-plus contracts with appropriate attention to risk, and assessing design options with attention to customer preference as well as design performance, and development cost and schedule. A key element of success either in contract competition or execution is team experience. Perhaps the most crucial aspect of success, however, is thorough requirements analysis and flowdown to specifications driving design performance with sufficient parameter margin to allow for mistakes or oversights - the province of system engineering from design inception to development, test and delivery.

  7. A European mobile satellite system concept exploiting CDMA and OBP

    Science.gov (United States)

    Vernucci, A.; Craig, A. D.

    1993-01-01

    This paper describes a novel Land Mobile Satellite System (LMSS) concept applicable to networks allowing access to a large number of gateway stations ('Hubs'), utilizing low-cost Very Small Aperture Terminals (VSAT's). Efficient operation of the Forward-Link (FL) repeater can be achieved by adopting a synchronous Code Division Multiple Access (CDMA) technique, whereby inter-code interference (self-noise) is virtually eliminated by synchronizing orthogonal codes. However, with a transparent FL repeater, the requirements imposed by the highly decentralized ground segment can lead to significant efficiency losses. The adoption of a FL On-Board Processing (OBP) repeater is proposed as a means of largely recovering this efficiency impairment. The paper describes the network architecture, the system design and performance, the OBP functions and impact on implementation. The proposed concept, applicable to a future generation of the European LMSS, was developed in the context of a European Space Agency (ESA) study contract.

  8. Polarimetry of small bodies and satellites of our Solar System

    Science.gov (United States)

    Bagnulo, S.; Belskaya, I.; Cellino, A.; Kolokolova, L.

    2017-09-01

    The large majority of astronomical observations are based on intensity measurements as a function of either wavelength or time, or both. Polarimetry, a technique which measures the way in which the electromagnetic field associated to the radiation oscillates, does provide further information about the objects that have emitted or scattered the observed radiation. For instance, polarimetric measurements can provide important constraints to the characterisation of cosmic dust (be it of interstellar or cometary origin), of the surfaces of the atmosphereless bodies and of planetary atmospheres. This property has been exploited in solar system science to study asteroids, comets, rocky and giant gaseous planets, and their satellites. In this paper we present a review of the polarimetric studies of the small bodies of the Solar System.

  9. Flexibility in 21st Century Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, J.; Miller, M.; Zinaman, O.; Milligan, M.; Arent, D.; Palmintier, B.; O' Malley, M.; Mueller, S.; Lannoye, E.; Tuohy, A.; Kujala, B.; Sommer, M.; Holttinen, H.; Kiviluoma, J.; Soonee, S. K.

    2014-05-01

    Flexibility of operation--the ability of a power system to respond to change in demand and supply--is a characteristic of all power systems. Flexibility is especially prized in twenty-first century power systems, with higher levels of grid-connected variable renewable energy (primarily, wind and solar). This paper summarizes the analytic frameworks that have emerged to measure this characteristic and distills key principles of flexibility for policy makers.

  10. Handbook of co₂ in power systems

    CERN Document Server

    Rebennack, Steffen; Pardalos, Panos; Pereira, Mario; Iliadis, Niko

    2012-01-01

    The Handbook of CO₂in Power Systems' objective is to include the state-of-the-art developments that occurred in power systems taking CO₂emission into account. The book includes power systems operation modeling with CO₂emissions considerations, CO₂market mechanism modeling, CO₂regulation policy modeling, carbon price forecasting, and carbon capture modeling. For each of the subjects, at least one article authored by a world specialist on the specific domain is included.

  11. Evaluation of voice codecs for the Australian mobile satellite system

    Science.gov (United States)

    Bundrock, Tony; Wilkinson, Mal

    The evaluation procedure to choose a low bit rate voice coding algorithm is described for the Australian land mobile satellite system. The procedure is designed to assess both the inherent quality of the codec under 'normal' conditions and its robustness under 'severe' conditions. For the assessment, normal conditions were chosen to be random bit error rate with added background acoustic noise and the severe condition is designed to represent burst error conditions when mobile satellite channel suffers from signal fading due to roadside vegetation. The assessment is divided into two phases. First, a reduced set of conditions is used to determine a short list of candidate codecs for more extensive testing in the second phase. The first phase conditions include quality and robustness and codecs are ranked with a 60:40 weighting on the two. Second, the short listed codecs are assessed over a range of input voice levels, BERs, background noise conditions, and burst error distributions. Assessment is by subjective rating on a five level opinion scale and all results are then used to derive a weighted Mean Opinion Score using appropriate weights for each of the test conditions.

  12. Onboard Supervisor for the Ørsted Satellite Attitude Control System

    DEFF Research Database (Denmark)

    Bøgh, S.A.; Izadi-Zamanabadi, Roozbeh; Blanke, M.

    1995-01-01

    The increasing operational requirements for onboard autonomy in satellite control systems necessitates structural methods that support the design of a complete and reliable supervisory system.......The increasing operational requirements for onboard autonomy in satellite control systems necessitates structural methods that support the design of a complete and reliable supervisory system....

  13. Power system protection 1 principles and components

    CERN Document Server

    Association, Electricity Training

    1995-01-01

    The worldwide growth in demand for electricity has forced the pace of developments in electrical power system design to meet consumer needs for reliable, secure and cheap supplies. Power system protection, as a technology essential to high quality supply, is widely recognised as a specialism of growing and often critical importance, in which power system needs and technological progress have combined to result in rapid developments in policy and practice in recent years. In the United Kingdom, the need for appropriate training in power system protection was recognised in the early 1960s with t

  14. Artificial intelligence in power system optimization

    CERN Document Server

    Ongsakul, Weerakorn

    2013-01-01

    With the considerable increase of AI applications, AI is being increasingly used to solve optimization problems in engineering. In the past two decades, the applications of artificial intelligence in power systems have attracted much research. This book covers the current level of applications of artificial intelligence to the optimization problems in power systems. This book serves as a textbook for graduate students in electric power system management and is also be useful for those who are interested in using artificial intelligence in power system optimization.

  15. Integration of stochastic generation in power systems

    NARCIS (Netherlands)

    Papaefthymiou, G.

    2007-01-01

    Stochastic Generation is the electrical power production by the use of an uncontrollable prime energy mover, corresponding mainly to renewable energy sources. For the large-scale integration of stochastic generation in power systems, methods are necessary for the modeling of power generation

  16. AES Modular Power Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The goals of this project are to 1) develop modular power design concepts for human exploration flight vehicles (longer-term) and assess, develop, and/or...

  17. HVDC transmission power conversion applications in power systems

    CERN Document Server

    Kim, Chan-Ki; Jang, Gil-Soo; Lim, Seong-Joo; Lee, Seok-Jin

    2009-01-01

    HVDC is a critical solution to several major problems encountered when trying to maintain systemic links and quality in large-scale renewable energy environments. HDVC can resolve a number of issues, including voltage stability of AC power networks, reducing fault current, and optimal management of electric power, ensuring the technology will play an increasingly important role in the electric power industry. To address the pressing need for an up-to-date and comprehensive treatment of the subject, Kim, Sood, Jang, Lim and Lee have collaborated to produce this key text and reference.  Combin

  18. Power Management System Design for Solar-Powered UAS

    Science.gov (United States)

    2015-12-01

    PWM) or an MPPT device will have a significant impact on the efficiency of the power production system. PWM chargers are typically larger, and have...3015 DC power supply, and the MPPT’s open- circuit output voltage was then read by a Fluke model 115 digital multi -meter (DMM). The use of a benchtop...Once again, the module was then connected to the DC power supply and 11.2 VDC was provided to the input. The 23 Fluke digital multi -meter then

  19. High power RF solid state power amplifier system

    Science.gov (United States)

    Sims, III, William Herbert (Inventor); Chavers, Donald Gregory (Inventor); Richeson, James J. (Inventor)

    2011-01-01

    A high power, high frequency, solid state power amplifier system includes a plurality of input multiple port splitters for receiving a high-frequency input and for dividing the input into a plurality of outputs and a plurality of solid state amplifier units. Each amplifier unit includes a plurality of amplifiers, and each amplifier is individually connected to one of the outputs of multiport splitters and produces a corresponding amplified output. A plurality of multiport combiners combine the amplified outputs of the amplifiers of each of the amplifier units to a combined output. Automatic level control protection circuitry protects the amplifiers and maintains a substantial constant amplifier power output.

  20. PS2013 Satellite Workshop on Photosynthetic Light-Harvesting Systems

    Energy Technology Data Exchange (ETDEWEB)

    Niederman, Robert A. [Rutgers Univ., New Brunswick, NJ (United States); Blankenship, Robert E. [Washington Univ., St. Louis, MO (United States); Frank, Harry A. [Univ. of Connecticut, Storrs, CT (United States)

    2015-02-07

    These funds were used for partial support of the PS2013 Satellite Workshop on Photosynthetic Light-Harvesting Systems, that was held on 8-11 August, 2013, at Washington University, St. Louis, MO. This conference, held in conjunction with the 16th International Congress on Photosynthesis/St. Louis, continued a long tradition of light-harvesting satellite conferences that have been held prior to the previous six international photosynthesis congresses. In this Workshop, the basis was explored for the current interest in replacing fossil fuels with energy sources derived form direct solar radiation, coupled with light-driven electron transport in natural photosynthetic systems and how they offer a valuable blueprint for conversion of sunlight to useful energy forms. This was accomplished through sessions on the initial light-harvesting events in the biological conversion of solar energy to chemically stored energy forms, and how these natural photosynthetic processes serve as a guide to the development of robust bio-hybrid and artificial systems for solar energy conversion into both electricity or chemical fuels. Organized similar to a Gordon Research Conference, a lively, informal and collegial setting was established, highlighting the exchange of exciting new data and unpublished results from ongoing studies. A significant amount of time was set aside for open discussion and interactive poster sessions, with a special session devoted to oral presentations by talented students and postdoctoral fellows judged to have the best posters. This area of research has seen exceptionally rapid progress in recent years, with the availability of a number of antenna protein structures at atomic resolution, elucidation of the molecular surface architecture of native photosynthetic membranes by atomic force microscopy and the maturing of ultrafast spectroscopic and molecular biological techniques for the investigation and manipulation of photosynthetic systems. The conferees

  1. An Adjunct Galilean Satellite Orbiter Using a Small Radioisotope Power Source

    Science.gov (United States)

    Abelson, Robert Dean; Randolph, J.; Alkalai, L.; Collins, D.; Moore, W.

    2005-01-01

    This is a conceptual mission study intended to demonstrate the range of possible missions and applications that could be enabled were a new generation of Small Radioisotope Power Systems to be developed by NASA and DOE. While such systems are currently being considered by NASA and DOE, they do not currently exist. This study is one of several small RPS-enabled mission concepts that were studied and presented in the NASA/JPL document "Enabling Exploration with Small Radioisotope Power Systems" available at: http://solarsystem.nasa.gov/multimedia/download-detail.cfm?DL_ID=82

  2. Water reactive hydrogen fuel cell power system

    Science.gov (United States)

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-11-25

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into the fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  3. A new bipolar Qtrim power supply system

    Energy Technology Data Exchange (ETDEWEB)

    Mi, C. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Bruno, D. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Drozd, J. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Nolan, T. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Orsatti, F. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Heppener, G. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Di Lieto, A. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Schultheiss, C. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Samms, T. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Zapasek, R. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Sandberg, J. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.

    2015-05-03

    This year marks the 15th run of RHIC (Relativistic Heavy Ion Collider) operations. The reliability of superconducting magnet power supplies is one of the essential factors in the entire accelerator complex. Besides maintaining existing power supplies and their associated equipment, newly designed systems are also required based on the physicist’s latest requirements. A bipolar power supply was required for this year’s main quadruple trim power supply. This paper will explain the design, prototype, testing, installation and operation of this recently installed power supply system.

  4. Water reactive hydrogen fuel cell power system

    Science.gov (United States)

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-01-21

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into a fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  5. Satellite Data Assimilation within KIAPS-LETKF system

    Science.gov (United States)

    Jo, Y.; Lee, S., Sr.; Cho, K.

    2016-12-01

    Korea Institute of Atmospheric Prediction Systems (KIAPS) has been developing an ensemble data assimilation system using four-dimensional local ensemble transform kalman filter (LETKF; Hunt et al., 2007) within KIAPS Integrated Model (KIM), referred to as "KIAPS-LETKF". KIAPS-LETKF system was successfully evaluated with various Observing System Simulation Experiments (OSSEs) with NCAR Community Atmospheric Model - Spectral Element (Kang et al., 2013), which has fully unstructured quadrilateral meshes based on the cubed-sphere grid as the same grid system of KIM. Recently, assimilation of real observations has been conducted within the KIAPS-LETKF system with four-dimensional covariance functions over the 6-hr assimilation window. Then, conventional (e.g., sonde, aircraft, and surface) and satellite (e.g., AMSU-A, IASI, GPS-RO, and AMV) observations have been provided by the KIAPS Package for Observation Processing (KPOP). Wind speed prediction was found most beneficial due to ingestion of AMV and for the temperature prediction the improvement in assimilation is mostly due to ingestion of AMSU-A and IASI. However, some degradation in the simulation of the GPS-RO is presented in the upper stratosphere, even though GPS-RO leads positive impacts on the analysis and forecasts. We plan to test the bias correction method and several vertical localization strategies for radiance observations to improve analysis and forecast impacts.

  6. Global Navigation Satellite Systems (GNSS: The Utmost Interdisciplinary Integrator

    Directory of Open Access Journals (Sweden)

    Bernd Eissfeller

    2015-08-01

    Full Text Available Currently four global satellite navigation systems are under modernization and development: The US American GPS III, the Russian GLONASS, the European Galileo and Chinese BeiDou systems. In the paper the interdisciplinary contributions of different scientific areas to GNSS are assessed. It is outlined that GNSS is not only a technical system but also a basic element of mobile computing high-tech market. At the same time a GNSS has the role of a force enabler in security related applications. Technology, market and security policies are interdependent and are sometimes in a relationship of tension. The goal of the paper is to describe the overall systemics of GNSS from a holistic point of view. The paper also addresses the human factor side of GNSS. The requirements on human resources in GNSS are at least two-fold: On the one hand very specialized engineers are needed; on the other hand the generalists are necessary who are able to understand the system aspects. Decision makers in institutions and industry need special knowledge in technologies, economics and political strategies. Is the current university system able to educate and prepare such generalists? Are specialized master courses for GNSS needed? Are external training courses necessary?

  7. RELIABILITY ANALYSIS OF POWER DISTRIBUTION SYSTEMS

    Directory of Open Access Journals (Sweden)

    Popescu V.S.

    2012-04-01

    Full Text Available Power distribution systems are basic parts of power systems and reliability of these systems at present is a key issue for power engineering development and requires special attention. Operation of distribution systems is accompanied by a number of factors that produce random data a large number of unplanned interruptions. Research has shown that the predominant factors that have a significant influence on the reliability of distribution systems are: weather conditions (39.7%, defects in equipment(25% and unknown random factors (20.1%. In the article is studied the influence of random behavior and are presented estimations of reliability of predominantly rural electrical distribution systems.

  8. Power system SCADA and smart grids

    CERN Document Server

    Thomas, Mini S

    2015-01-01

    Power System SCADA and Smart Grids brings together in one concise volume the fundamentals and possible application functions of power system supervisory control and data acquisition (SCADA). The text begins by providing an overview of SCADA systems, evolution, and use in power systems and the data acquisition process. It then describes the components of SCADA systems, from the legacy remote terminal units (RTUs) to the latest intelligent electronic devices (IEDs), data concentrators, and master stations, as well as:Examines the building and practical implementation of different SCADA systemsOf

  9. Global Navigation Satellite Systems – Perspectives on Development and Threats to System Operation

    Directory of Open Access Journals (Sweden)

    Krzysztof Czaplewski

    2016-07-01

    Full Text Available The rapid development of satellite navigation and timing technologies and the broad availability of user equipment and applications has dramatically changed the world over the last 20 years. It took 38 years from the launch of the world’s first artificial satellite, Sputnik 1, (October 4, 1957 to the day NAVSTAR GPS became fully operational (July 17, 1995. In the next 20 years user equipment became widely available at the consumer level, and 10 global and regional satellite systems were partially or fully deployed. These highly precise signals provided free to the user have been incorporated by clever engineers into virtually every technology. At the same time interference with these signals (spoofing and jamming have become a significant day to day problem in many societies and pose a significant threat to critical infrastructure. This paper provides information on the current status and development of navigation satellite systems based on data provided by the systems' administrators. It also provides information on Loran/eLoran, a system which many nations have selected as a complement and backup for satellite navigation systems.

  10. An Adaptable Power System with Software Control Algorithm

    Science.gov (United States)

    Castell, Karen; Bay, Mike; Hernandez-Pellerano, Amri; Ha, Kong

    1998-01-01

    A low cost, flexible and modular spacecraft power system design was developed in response to a call for an architecture that could accommodate multiple missions in the small to medium load range. Three upcoming satellites will use this design, with one launch date in 1999 and two in the year 2000. The design consists of modular hardware that can be scaled up or down, without additional cost, to suit missions in the 200 to 600 Watt orbital average load range. The design will be applied to satellite orbits that are circular, polar elliptical and a libration point orbit. Mission unique adaptations are accomplished in software and firmware. In designing this advanced, adaptable power system, the major goals were reduction in weight volume and cost. This power system design represents reductions in weight of 78 percent, volume of 86 percent and cost of 65 percent from previous comparable systems. The efforts to miniaturize the electronics without sacrificing performance has created streamlined power electronics with control functions residing in the system microprocessor. The power system design can handle any battery size up to 50 Amp-hour and any battery technology. The three current implementations will use both nickel cadmium and nickel hydrogen batteries ranging in size from 21 to 50 Amp-hours. Multiple batteries can be used by adding another battery module. Any solar cell technology can be used and various array layouts can be incorporated with no change in Power System Electronics (PSE) hardware. Other features of the design are the standardized interfaces between cards and subsystems and immunity to radiation effects up to 30 krad Total Ionizing Dose (TID) and 35 Mev/cm(exp 2)-kg for Single Event Effects (SEE). The control algorithm for the power system resides in a radiation-hardened microprocessor. A table driven software design allows for flexibility in mission specific requirements. By storing critical power system constants in memory, modifying the system

  11. Preface: BeiDou Navigation Satellite System (BDS)/GNSS+: New developments and emerging applications

    Science.gov (United States)

    Jin, Shuanggen

    2017-12-01

    The China's BeiDou Navigation Satellite System (BDS) has been developed and operated well with over 25 launched satellites in 2017, including fifteen Medium Earth orbit (MEO) satellites, five geostationary Earth orbit (GEO) satellites and five inclined geosynchronous orbit (IGSO) satellites. Together with the United States' GPS, European Union's Galileo and Russia's GLONASS as well as other regional augmentation systems, e.g., Indian Regional Navigation Satellite System (IRNSS) and Japan Quasi-Zenith Satellite System (QZSS), more emerging applications of multi-Global Navigation Satellite Systems (GNSS) will be exploited and realized in the coming years. The papers in this issue of Advances in Space Research present new advances in the system, techniques and emerging applications of BDS/GNSS+. These papers were from an open call and a special call for participants at the 8th China Satellite Navigation Conference (CSNC 2017) held on May 23-25, 2017, Shanghai, China. This conference series provides a good platform for academic and technique exchanges as well as collaboration in satellite navigation. CSNC 2017 was well attend with more than 3000 participants and over 800 papers in 12 sessions.

  12. Development of a Hydrogen and Heat Storage System for Satellite Applications

    Science.gov (United States)

    Reissner, Alexander; Pawelke, Roland; Hummel, Stefan; Gerger, Joachim; Lutz, Matthias; Farnes, Jarle; Vik, Arild; Wernhus, Ivar; Svendsen, Tjalve; Schautz, Max; Geneste, Xavier

    2014-08-01

    Next generation telecommunication satellites will demand increasingly more power in the range of 30 kW or more within the next 10 years. Battery technology that can sustain 30 kW for an eclipse length of up to 72 minutes will represent a major impact on the total mass of the satellite, even with new Li-ion battery technologies. Regenerative fuel cell systems (RFCS) were identified years ago as a possible alternative to rechargeable batteries. They consist of a dedicated fuel cell unit for electricity generation and a dedicated electrolyser which regenerates the fuel cell reactants hydrogen and oxygen from the fuel cell reaction product water. All units are integrated in a closed loop system. Nevertheless, one major drawback has been identified by several independent system studies [4,5], namely the need to dissipate large amounts of heat from the fuel cell during Eclipse. This in turn requires massive thermal hardware (mainly large radiators) that can contribute up to 50% of the system mass. FOTEC has suggested the use of metal hydrides as combined hydrogen and heat storage system to overcome this issue and is currently manufacturing a technology demonstrator within an ongoing ESA project. The status of these developments is outlined in this paper.

  13. Development of a New, High-Power Solar Array for Telecommunication Satellites

    Directory of Open Access Journals (Sweden)

    Zimmermann C.G.

    2017-01-01

    Full Text Available Airbus is currently developing the Next Generation Solar Array (NGSA for telecommunication satellites. It is based on a hybrid array concept which combines a conventional rigid panel array with lightweight, semi-rigid lateral panels. The main figures of merit power/mass and power/volume can be doubled through this concept. Mechanically, the semi-rigid panels are the key new element. Through acoustic testing as well as sine vibration testing in air and in vacuum it was verified that these panels are suitable as cell support in stowed configuration. With the help of finite element modelling it is demonstrated that the semi-rigid panels are compatible with a free deployment. Electrically, the new array is to be equipped with a new generation of 4 junction solar cells with efficiencies above 30%. The increased radiation dose due to electric orbit raising has to be taken into account to arrive at the optimum shielding while still minimizing the array mass. By adjusting the ratio of rigid to semi-rigid panels and through the choice of solar cell type and mass, the NGSA can be tailored in a wide range to needs of a given platform. This is illustrated for the solar array to be flown on the new Airbus platform Eurostar Neo.

  14. The mobile satellite system of Telesat Mobile Inc

    Science.gov (United States)

    Bertenyi, E.; Rahman, F.

    1992-08-01

    Telesat Mobile Inc. (TMI), the Canadian mobile satellite operator, is planning to introduce full two-way mobile voice and data communications services in 1994, using its large geostationary MSAT spacecraft which is currently under construction. MSAT will provide TMI with the capability to enable its customers, even in the most remote parts of the continent, to communicate from their mobile or transportable terminals with any other point within North America, and indeed with the whole world. This paper outlines TMI's currently planned MSAT services and the main features of the overall system. A brief summary of the space and ground segments is presented, and the key performance parameters and configuration of the MSAT spacecraft are reviewed.

  15. Artifical intelligence techniques in power systems

    Energy Technology Data Exchange (ETDEWEB)

    Warwick, K.; Ekwue, A.; Aggarwal, R. [eds.

    1997-12-31

    Research in artificial intelligence has developed many techniques and methodologies that can be either adapted or used directly to solve complex power system problems. A variety of such problems are covered in this book including reactive power control, alarm analysis, fault diagnosis, protection systems and load forecasting. Methods such as knowledge-based (expert) systems, fuzzy logic, neural networks and genetic algorithms are all first introduced and then investigated in terms of their applicability in the power systems field. The book, therefore, serves as both an introduction to the use of artificial intelligence techniques for those from a power systems background and as an overview of the power systems implementation area for those from an artificial intelligence computing or control background. It is structured so that it is suitable for various levels of reader, covering basic principles as well as applications and case studies. The most popular methods and the most fruitful application fields are considered in more detail. (UK)

  16. Power Flow Modelling of Dynamic Systems

    OpenAIRE

    Geitner, Gert-Helge; Komurgoz, Guven

    2015-01-01

    As tools for dynamic system modelling both conventional methods such as transfer function or state space representation and modern power flow based methods are available. The latter methods do not depend on energy domain, are able to preserve physical system structures, visualize power conversion or coupling or split, identify power losses or storage, run on conventional software and emphasize the relevance of energy as basic principle of known physical domains. Nevertheless common control st...

  17. Five Indisputable Facts on Modern Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Bloom, Aaron P [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Brinkman, Gregory L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Lopez, Anthony J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Holttinen, Hannele [VTT Technical Research Centre of Finland; Helman, Udi [Helman Analytics; Summers, Kate [Pacific Hydro; Bakke, Jordan [Midcontinent Independent System Operator

    2017-08-01

    This presentation overviews five indisputable facts about modern power systems: Fact one: The grid can handle more renewable generation than previously thought. Fact two: Geographic and resource diversity provide additional reliability to the system. Fact three: Wind and solar forecasting provide significant value. Fact four: Our electric power markets were not originally designed for variable renewables -- but they could be adapted. Fact five: Modern power electronics are creating new sources of essential reliability services.

  18. Global Top-Down Smoke-Aerosol Emissions Estimation Using Satellite Fire Radiative Power Measurements

    Science.gov (United States)

    Ichoku, C.; Ellison, L.

    2014-01-01

    Fire emissions estimates have long been based on bottom-up approaches that are not only complex, but also fraught with compounding uncertainties. We present the development of a global gridded (1 deg ×1 deg) emission coefficients (Ce) product for smoke total particulate matter (TPM) based on a top-down approach using coincident measurements of fire radiative power (FRP) and aerosol optical thickness (AOT) from the Moderate-resolution Imaging Spectroradiometer (MODIS) sensors aboard the Terra and Aqua satellites. This new Fire Energetics and Emissions Research version 1.0 (FEER.v1) Ce product has now been released to the community and can be obtained from http://feer.gsfc. nasa.gov/, along with the corresponding 1-to-1 mapping of their quality assurance (QA) flags that will enable the Ce values to be filtered by quality for use in various applications. The regional averages of Ce values for different ecosystem types were found to be in the ranges of 16-21/gMJ-1 for savanna and grasslands, 15-32/gMJ-1 for tropical forest, 9-12/gMJ-1 for North American boreal forest, and 18- 26/MJ-1 for Russian boreal forest, croplands and natural vegetation. The FEER.v1 Ce product was multiplied by time-integrated FRP data to calculate regional smoke TPM emissions, which were compared with equivalent emissions products from three existing inventories. FEER.v1 showed higher and more reasonable smoke TPM estimates than two other emissions inventories that are based on bottom-up approaches and already reported in the literature to be too low, but portrayed an overall reasonable agreement with another top-down approach. This suggests that top-down approaches may hold better promise and need to be further developed to accelerate the reduction of uncertainty associated with fire emissions estimation in air-quality and climate research and applications. Results of the analysis of FEER.v1 data for 2004-2011 show that 65-85 Tg yr-1 of TPM is emitted globally from open biomass burning, with a

  19. Artificial intelligence techniques in power systems

    Energy Technology Data Exchange (ETDEWEB)

    Laughton, M.A.

    1997-12-31

    Since the early to mid 1980s much of the effort in power systems analysis has turned away from the methodology of formal mathematical modelling which came from the fields of operations research, control theory and numerical analysis to the less rigorous techniques of artificial intelligence (AI). Today the main AI techniques found in power systems applications are those utilising the logic and knowledge representations of expert systems, fuzzy systems, artificial neural networks (ANN) and, more recently, evolutionary computing. These techniques will be outlined in this chapter and the power system applications indicated. (Author)

  20. Lunar Surface Solar Electric Power System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a concentrated photovoltaic electric power system for lunar operations called C-Lite Lunar. The novel technology produces a near-term solar array system...

  1. Reliability of power electronic converter systems

    CERN Document Server

    Chung, Henry Shu-hung; Blaabjerg, Frede; Pecht, Michael

    2016-01-01

    This book outlines current research into the scientific modeling, experimentation, and remedial measures for advancing the reliability, availability, system robustness, and maintainability of Power Electronic Converter Systems (PECS) at different levels of complexity.

  2. Modular Stirling Power System (MSPS) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Infinia Technology Corporation's (ITC) proposed Modular Stirling Power System (MSPS) is a free-piston Stirling system that addresses NASA needs in 12-kW increments....

  3. simulation of electromagnetic transients in power systems

    African Journals Online (AJOL)

    Dr Obe

    1996-09-01

    Sep 1, 1996 ... ABSTRACT. Transients in power systems are initiated by abrupt changes to otherwise steady operating conditions. These changes would be as a result of any of the following: opening or closing of circuit breakers, switching conditions, lightning or any other fault condition. For purposes of power system.

  4. Solar-powered hot-water system

    Science.gov (United States)

    Collins, E. R.

    1979-01-01

    Hot-water system requires no external power except solar energy. System is completely self-controlling. It includes solar-powered pump, solar-thermally and hydrothermally operated valves, and storage tank filled with open-celled foam, to maintain thermal stratification in stored water.

  5. Improved Power System of the Future

    OpenAIRE

    Rabinowitz, Mario

    2003-01-01

    This paper is intended to provide an insight into physics and engineering that can modernize electric power systems. Topics covered are Flexible ac transmission systems (FACTS), Custom Power, Greatly improved Capacitors, Electrical Insulation, Distribution Cables, Improved Polymeric Insulation, Underground Vault Explosions, Fault Location, Smart Cables, Neutral and Ground, Corrosion and Protection, Conventional Transformers, Compact Transformers, Ferroresonance, and Solid State Transformers.

  6. High power laser perforating tools and systems

    Science.gov (United States)

    Zediker, Mark S; Rinzler, Charles C; Faircloth, Brian O; Koblick, Yeshaya; Moxley, Joel F

    2014-04-22

    ystems devices and methods for the transmission of 1 kW or more of laser energy deep into the earth and for the suppression of associated nonlinear phenomena. Systems, devices and methods for the laser perforation of a borehole in the earth. These systems can deliver high power laser energy down a deep borehole, while maintaining the high power to perforate such boreholes.

  7. instrumentation for power system disturbance monitoring, data ...

    African Journals Online (AJOL)

    Dr Obe

    1996-09-01

    Sep 1, 1996 ... acquisition and control in Nigerian Electric Power System; National Electric Power Authority. (NEPA) is presented. The need for ... feature of an adequate monitoring, data acquisition and control system is discussed. The state of the ... resulting data used to switch on adequate V. AR support. In this paper ...

  8. Automated System Tests High-Power MOSFET's

    Science.gov (United States)

    Huston, Steven W.; Wendt, Isabel O.

    1994-01-01

    Computer-controlled system tests metal-oxide/semiconductor field-effect transistors (MOSFET's) at high voltages and currents. Measures seven parameters characterizing performance of MOSFET, with view toward obtaining early indication MOSFET defective. Use of test system prior to installation of power MOSFET in high-power circuit saves time and money.

  9. The National Polar-orbiting Operational Environmental Satellite System

    Science.gov (United States)

    Bloom, H.

    The tri-agency Integrated Program Office (IPO) is responsible for managing the development of the National Polar-orbiting Operational Environmental Satellite System (NPOESS). NPOESS will replace the current military and civilian operational polar-orbiting ``weather'' satellites. The Northrop Grumman Space Technology - Raytheon team was competitively selected in 2002 as the Acquisition and Operations contractor team to develop, integrate, deploy, and operate NPOESS satellites to meet the tri-agency user requirements for NPOESS over the 10-year (2009-2018) operational life of the program. Beginning in 2009, NPOESS spacecraft will be launched into three orbital planes to provide significantly improved operational capabilities and benefits to satisfy critical civil and national security requirements for space-based, remotely sensed environmental data. With the development of NPOESS, we are evolving operational ``weather'' satellites into integrated environmental observing systems by expanding our capabilities to observe, assess, and predict the total Earth system - atmosphere, ocean, land, and the space environment. In recent years, the operational weather forecasting and climate science communities have levied more rigorous requirements on space-based observations of the Earth's system that have significantly increased demands on performance of the instruments, spacecraft, and ground systems required to deliver NPOESS data, products, and information to end users. The ``end-to-end'' system consists of: the spacecraft; instruments and sensors on the spacecraft; launch support capabilities; the command, control, communications, and data routing infrastructure; and data processing hardware and software. NPOESS will observe significantly more phenomena simultaneously from space than its operational predecessors. NPOESS is expected to deliver large volumes of more accurate measurements at higher spatial (horizontal and vertical) and temporal resolution at much higher data

  10. Optimal control applications in electric power systems

    CERN Document Server

    Christensen, G S; Soliman, S A

    1987-01-01

    Significant advances in the field of optimal control have been made over the past few decades. These advances have been well documented in numerous fine publications, and have motivated a number of innovations in electric power system engineering, but they have not yet been collected in book form. Our purpose in writing this book is to provide a description of some of the applications of optimal control techniques to practical power system problems. The book is designed for advanced undergraduate courses in electric power systems, as well as graduate courses in electrical engineering, applied mathematics, and industrial engineering. It is also intended as a self-study aid for practicing personnel involved in the planning and operation of electric power systems for utilities, manufacturers, and consulting and government regulatory agencies. The book consists of seven chapters. It begins with an introductory chapter that briefly reviews the history of optimal control and its power system applications and also p...

  11. Control Architecture for Future Power Systems

    DEFF Research Database (Denmark)

    Heussen, Kai

    for assessment of control architecture of electric power systems with a means-ends perspective. Given this purpose-oriented understanding of a power system, the increasingly stochastic nature of this problem shall be addressed and approaches for robust, distributed control will be proposed and analyzed......This project looks at control of future electric power grids with a high proportion of wind power and a large number of decentralized power generation, consumption and storage units participating to form a reliable supply of electrical energy. The first objective is developing a method....... The introduction of close-to-real-time markets is envisioned to enable fast distributed resource allocation while guaranteeing system stability. Electric vehicles will be studied as a means of distributed reversible energy storage and a flexible power electronic interface, with application to the case...

  12. Ground-Based Global Navigation Satellite System GLONASS (GLObal NAvigation Satellite System) Summary Data (30-second sampling, daily files) from NASA CDDIS

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset consists of ground-based Global Navigation Satellite System (GNSS) GLONASS Observation Summary Data (30-second sampling, daily files of all distinct...

  13. Ground-Based Global Navigation Satellite System GLONASS (GLObal NAvigation Satellite System) Compact Observation Data (30-second sampling, daily files) from NASA CDDIS

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset consists of ground-based Global Navigation Satellite System GLONASS Compact Observation Data (30-second sampling, daily files) from the NASA Crustal...

  14. Ground-Based Global Navigation Satellite System GLONASS (GLObal NAvigation Satellite System) Observation Data (30-second sampling, daily files) from NASA CDDIS

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset consists of ground-based Global Navigation Satellite System GLONASS Observation Data (30-second sampling, daily files) from the NASA Crustal Dynamics...

  15. Ground-Based Global Navigation Satellite System GLONASS (GLObal NAvigation Satellite System) Combined Broadcast Ephemeris Data (daily files) from NASA CDDIS

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset consists of ground-based Global Navigation Satellite System (GNSS) GLONASS Combined Broadcast Ephemeris Data (daily files of all distinct navigation...

  16. Capacity and System Design Issues for Aeronautical Broadband Communications via Satellite

    Science.gov (United States)

    Werner, Markus; Gomez, Daniel Ratto; Battaglia, Lorenzo

    2003-07-01

    The paper discusses various system aspects of future aeronautical services via satellite. Both, commercial aeronautical broadband satellite communications (AirCom) for passengers and air traffic management (ATM) are considered. An integrated global system design approach is presented, and key R&D issues along this path are discussed. Some focus is laid on geographic satellite coverage and constellation alternatives. A capacity dimensioning method for global aeronautical communications is developed, using a global flight database, and numerical results from computer simulations are presented.

  17. Intermodulation interference-minimum frequency assignment for satellite SCPC systems

    Science.gov (United States)

    Okinaka, H.; Yasuda, Y.; Hirata, Y.

    1984-04-01

    This paper addresses frequency assignment for single-level and multilevel SCPC systems. In order to obtain the optimum channel allocation, where the influence of intermodulation noise on carriers is minimized, a practical and effective method is proposed. The quasi-optimum solutions obtained with the proposed method are presented for single-level SCPC systems, showing their advantage in intermodulation noise reduction. Concerning frequency assignment for multilevel SCPC systems, two strategies to realize the quasi-optimum channel allocation are compared with regard to the improvement in carrier-to-intermodulation noise power ratio. The performance of the obtained channel allocation indicates the effectiveness of the proposed optimization method.

  18. Solar Powered Automatic Shrimp Feeding System

    Directory of Open Access Journals (Sweden)

    Dindo T. Ani

    2015-12-01

    Full Text Available - Automatic system has brought many revolutions in the existing technologies. One among the technologies, which has greater developments, is the solar powered automatic shrimp feeding system. For instance, the solar power which is a renewable energy can be an alternative solution to energy crisis and basically reducing man power by using it in an automatic manner. The researchers believe an automatic shrimp feeding system may help solve problems on manual feeding operations. The project study aimed to design and develop a solar powered automatic shrimp feeding system. It specifically sought to prepare the design specifications of the project, to determine the methods of fabrication and assembly, and to test the response time of the automatic shrimp feeding system. The researchers designed and developed an automatic system which utilizes a 10 hour timer to be set in intervals preferred by the user and will undergo a continuous process. The magnetic contactor acts as a switch connected to the 10 hour timer which controls the activation or termination of electrical loads and powered by means of a solar panel outputting electrical power, and a rechargeable battery in electrical communication with the solar panel for storing the power. By undergoing through series of testing, the components of the modified system were proven functional and were operating within the desired output. It was recommended that the timer to be used should be tested to avoid malfunction and achieve the fully automatic system and that the system may be improved to handle changes in scope of the project.

  19. Managed and Supported Missions in the Joint Polar Satellite System (JPSS) Common Ground System (CGS)

    Science.gov (United States)

    Jamilkowski, M. L.; Grant, K. D.; Miller, S. W.; Cochran, S.

    2015-12-01

    NOAA & NASA are acquiring the next-generation civilian operational weather satellite: Joint Polar Satellite System (JPSS). Replacing the p.m. orbit & ground system (GS) of POES satellites, JPSS sensors will collect weather, ocean & climate data. JPSS's Common Ground System (CGS), made up of C3 & IDP parts and developed by Raytheon, now flies the Suomi National Polar-orbiting Partnership (S-NPP) satellite, transfers data between ground facilities, processes them into Environmental Data Records for NOAA's weather centers and evolves to support JPSS-1 in 2017. CGS processed S-NPP data creates many TBs/day across >2 dozen environmental data products (EDPs), doubling after JPSS launch. But CGS goes beyond this by providing data routing to other missions: GCOM-W1, Coriolis/Windsat, EOS, NSF's McMurdo Station, Defense Meteorological Satellite Program, and POES & MetOp satellites. Each system orbits 14 times/day, downlinking data 1-2 times/orbit at up to 100s of MBs/sec, to support the creation of 10s of TBs of data/day across 100s of EDPs. CGS's flexible, multimission capabilities offer major chances for cost reduction & improved information integration across the missions. CGS gives a vital flexible-expandable-virtualized modern GS architecture. Using 5 global ground stations to receive S-NPP & JPSS-1 data, CGS links with high-bandwidth commercial fiber to rapidly move data to the IDP for EDP creation & delivery and leverages these networks to provide added support to more missions. CGS data latency will be < 80 minutes. JPSS CGS is a mature, tested solution for support to operational weather forecasting for civil, military and international partners and climate research. It features a flexible design handling order-of-magnitude increases in data over legacy systems and meets tough science accuracy needs. The Raytheon-built CGS gives the full GS capability, from design & development through operations & sustainment, facilitating future evolution to support more missions.

  20. 14 CFR 27.695 - Power boost and power-operated control system.

    Science.gov (United States)

    2010-01-01

    ... Systems § 27.695 Power boost and power-operated control system. (a) If a power boost or power-operated... failure of all engines. (b) Each alternate system may be a duplicate power portion or a manually operated... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Power boost and power-operated control...