WorldWideScience

Sample records for satellite orbit theory

  1. Fundamentals of the route theory for satellite constellation design for Earth discontinuous coverage. Part 4: Compound satellite structures on orbits with synchronized nodal regression

    Science.gov (United States)

    Razoumny, Yury N.

    2016-12-01

    Basing on the theory results considered in the previous papers of the series for traditional one-tiered constellation formed on the orbits with the same values of altitudes and inclinations for all the satellites of the constellation, the method for constellation design using compound satellite structures on orbits with different altitudes and inclinations and synchronized nodal regression is developed. Compound, multi-tiered, satellite structures (constellations) are based on orbits with different values of altitude and inclination providing nodal regression synchronization. It is shown that using compound satellite constellations for Earth periodic coverage makes it possible to sufficiently improve the Earth coverage, as compared to the traditional constellations based on the orbits with common altitude and inclination for all the satellites of the constellation, and, as a consequence, to get new opportunities for the satellite constellation design for different types of prospective space systems regarding increasing the quality of observations or minimization of the number of the satellites required.

  2. Satellite theory

    Science.gov (United States)

    Kozai, Y.

    1981-04-01

    The dynamical characteristics of the natural satellite of Mars, Jupiter, Saturn, Uranus and Neptune are analyzed on the basis of the solar tidal perturbation factor and the oblateness factor of the primary planet for each satellite. For the inner satellites, for which the value of the solar tidal factor is much smaller than the planetary oblateness factor, it is shown that the eccentricity and inclination of satellite orbits are generally very small and almost constant; several pairs of inner satellites are also found to exhibit commensurable mean motions, or secular accelerations in mean longitude. In the case of the outer satellites, for which solar perturbations are dominant, secular perturbations and long-period perturbations may be derived by the solution of equations of motion reduced to one degree of freedom. The existence of a few satellites, termed intermediary satellites, for which the solar tidal perturbation is on the order of the planetary oblateness factor, is also observed, and the pole of the orbital plane of the satellite is noted to execute a complex motion around the pole of the planet or the orbital plane of the planet.

  3. An Evaluation of Semianalytical Satellite Theory against Long Arcs of Real Data for Highly Eccentric Orbits.

    Science.gov (United States)

    1987-01-01

    made several valuable sugges- tions that were helpful in interpreting the semimajor axis comparisons. Mr. Leo Early was a saving source of information...orbit types: (1) low Earth orbits, ( LEO ) below 5000 km; (2) geosynchronous orbits (GEO), at 35,700 km altitude; (3) Molniya orbits, about 500 km by 40,000...of the more extensive analytical theory of Lane and Cranford which used the solution of Brouwer for its gravitational model and a power density

  4. Low Earth orbit communications satellite

    Science.gov (United States)

    Moroney, D.; Lashbrook, D.; Mckibben, B.; Gardener, N.; Rivers, T.; Nottingham, G.; Golden, B.; Barfield, B.; Bruening, J.; Wood, D.

    1992-01-01

    A current thrust in satellite communication systems considers a low-Earth orbiting constellations of satellites for continuous global coverage. Conceptual design studies have been done at the time of this design project by LORAL Aerospace Corporation under the program name GLOBALSTAR and by Motorola under their IRIDIUM program. This design project concentrates on the spacecraft design of the GLOBALSTAR low-Earth orbiting communication system. Overview information on the program was gained through the Federal Communications Commission licensing request. The GLOBALSTAR system consists of 48 operational satellites positioned in a Walker Delta pattern providing global coverage and redundancy. The operational orbit is 1389 km (750 nmi) altitude with eight planes of six satellites each. The orbital planes are spaced 45 deg., and the spacecraft are separated by 60 deg. within the plane. A Delta 2 launch vehicle is used to carry six spacecraft for orbit establishment. Once in orbit, the spacecraft will utilize code-division multiple access (spread spectrum modulation) for digital relay, voice, and radio determination satellite services (RDSS) yielding position determination with accuracy up to 200 meters.

  5. Secular motion around synchronously orbiting planetary satellites.

    Science.gov (United States)

    Lara, Martin; San-Juan, Juan F; Ferrer, Sebastián

    2005-12-01

    We investigate the secular motion of a spacecraft around the natural satellite of a planet. The satellite rotates synchronously with its mean motion around the planet. Our model takes into account the gravitational potential of the satellite up to the second order, and the third-body perturbation in Hill's approximation. Close to the satellite, the ratio of rotation rate of the satellite to mean motion of the orbiter is small. When considering this ratio as a small parameter, the Coriolis effect is a first-order perturbation, while the third-body tidal attraction, the ellipticity effect, and the oblateness perturbation remain at higher orders. Then, we apply perturbation theory and find that a third-order approach is enough to show the influence of the satellite's ellipticity in the pericenter dynamics. Finally, we discuss the averaged system in the three-dimensional parametric space, and provide a global description of the flow.

  6. Polar-Orbiting Satellite (POES) Images

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Visible and Infrared satellite imagery taken from camera systems or radiometer instruments on satellites in orbit around the poles. Satellite campaigns include...

  7. Orbit Propagation and Determination of Low Earth Orbit Satellites

    OpenAIRE

    Ho-Nien Shou

    2014-01-01

    This paper represents orbit propagation and determination of low Earth orbit (LEO) satellites. Satellite global positioning system (GPS) configured receiver provides position and velocity measures by navigating filter to get the coordinates of the orbit propagation (OP). The main contradictions in real-time orbit which is determined by the problem are orbit positioning accuracy and the amount of calculating two indicators. This paper is dedicated to solving the problem of tradeoffs. To plan t...

  8. Hill Problem Analytical Theory to the Order Four: Application to the Computation of Frozen Orbits around Planetary Satellites

    Directory of Open Access Journals (Sweden)

    Martin Lara

    2009-01-01

    Full Text Available Frozen orbits of the Hill problem are determined in the double-averaged problem, where short and long-period terms are removed by means of Lie transforms. Due to the perturbation method we use, the initial conditions of corresponding quasi-periodic solutions in the nonaveraged problem are computed straightforwardly. Moreover, the method provides the explicit equations of the transformation that connects the averaged and nonaveraged models. A fourth-order analytical theory is necessary for the accurate computation of quasi-periodic frozen orbits.

  9. Orbits

    CERN Document Server

    Xu, Guochang

    2008-01-01

    This is the first book of the satellite era which describes orbit theory with analytical solutions of the second order with respect to all possible disturbances. Based on such theory, the algorithms of orbits determination are completely revolutionized.

  10. Theory of satellite geodesy applications of satellites to geodesy

    CERN Document Server

    Kaula, William M

    2000-01-01

    The main purpose of this classic text is to demonstrate how Newtonian gravitational theory and Euclidean geometry can be used and developed in the earth's environment. The second is to collect and explain some of the mathematical techniques developed for measuring the earth by satellite.Book chapters include discussions of the earth's gravitational field, with special emphasis on spherical harmonies and the potential of the ellipsoid; matrices and orbital geometry; elliptic motion, linear perturbations, resonance, and other aspects of satellite orbit dynamics; the geometry of satellite obser

  11. High Precision Orbit Determination of CHAMP Satellite

    Institute of Scientific and Technical Information of China (English)

    ZHAO Qile; LIU Jingnan; GE Maorong

    2006-01-01

    The precision orbit determination of challenging minisatellite payload(CHAMP) satellite was done based on position and navigation data analyst(PANDA) software which is developed in Wuhan University, using the onboard GPS data of year 2002 from day 126 to 131. The orbit accuracy was assessed by analyzing the difference from GFZ post-processed science orbits (PSO), the GPS carrier and pseudo-range data residuals and the satellite laser ranging (SLR) residuals.

  12. A possible experiment with two counter-orbiting drag-free satellites to obtain a new test of Einstein's general theory of relativity and improved measurements in geodesy

    Science.gov (United States)

    Van Patten, R. A.; Everitt, C. W. F.

    1976-01-01

    In 1918, Lense and Thirring calculated that a moon in orbit around a massive rotating planet would experience a nodal dragging effect due to general relativity. We describe an experiment to measure this effect by means of two counter-orbiting drag-free satellites in polar orbit about the earth. For a 2-1/2 year experiment, the measurement should approach an accuracy of 1%. An independent measurement of the geodetic precession of the orbit plane due to the motion about the sun may also be possible to about 10% accuracy. In addition to precision tracking data from existing ground stations, satellite-to-satellite Doppler data are taken at points of passing near the poles to yield an accurate measurement of the separation distance between the two satellites. New geophysical information on both earth harmonics and tidal effects is inherent in this polar ranging data.

  13. Critical inclinations in satellite theory

    Science.gov (United States)

    Deprit, A.

    1978-01-01

    The main problem of satellite theory is described in polar coordinates by a Hamiltonian function. It is proposed to find a solution of the Hamiltonian function with the following properties: (1) the reference orbit is Keplerian; (2) no restriction is imposed on the eccentricity; in particular, it is exempt of singularities - real or apparent - for small eccentricities; and (3) no restriction is imposed on the inclination; in particular, it is exempt of singularities - real or apparent - for small inclinations; also it is valid even in the neighborhood of inclinations at which the perigee is stationary.

  14. LARES succesfully launched in orbit: satellite and mission description

    CERN Document Server

    Paolozzi, Antonio

    2013-01-01

    On February 13th 2012, the LARES satellite of the Italian Space Agency (ASI) was launched into orbit with the qualification flight of the new VEGA launcher of the European Space Agency (ESA). The payload was released very accurately in the nominal orbit. The name LARES means LAser RElativity Satellite and summarises the objective of the mission and some characteristics of the satellite. It is, in fact, a mission designed to test Einstein's General Relativity Theory (specifically 'frame dragging' and Lense-Thirring effect). The satellite is passive and covered with optical retroreflectors that send back laser pulses to the emitting ground station. This allows accurate positioning of the satellite, which is important for measuring the very small deviations from Galilei-Newton's laws. In 2008, ASI selected the prime industrial contractor for the LARES system with a heavy involvement of the universities in all phases of the programme, from the design to the construction and testing of the satellite and separation...

  15. Orbit Propagation and Determination of Low Earth Orbit Satellites

    Directory of Open Access Journals (Sweden)

    Ho-Nien Shou

    2014-01-01

    Full Text Available This paper represents orbit propagation and determination of low Earth orbit (LEO satellites. Satellite global positioning system (GPS configured receiver provides position and velocity measures by navigating filter to get the coordinates of the orbit propagation (OP. The main contradictions in real-time orbit which is determined by the problem are orbit positioning accuracy and the amount of calculating two indicators. This paper is dedicated to solving the problem of tradeoffs. To plan to use a nonlinear filtering method for immediate orbit tasks requires more precise satellite orbit state parameters in a short time. Although the traditional extended Kalman filter (EKF method is widely used, its linear approximation of the drawbacks in dealing with nonlinear problems was especially evident, without compromising Kalman filter (unscented Kalman Filter, UKF. As a new nonlinear estimation method, it is measured at the estimated measurements on more and more applications. This paper will be the first study on UKF microsatellites in LEO orbit in real time, trying to explore the real-time precision orbit determination techniques. Through the preliminary simulation results, they show that, based on orbit mission requirements and conditions using UKF, they can satisfy the positioning accuracy and compute two indicators.

  16. Orbit control of a stratospheric satellite with parameter uncertainties

    Science.gov (United States)

    Xu, Ming; Huo, Wei

    2016-12-01

    When a stratospheric satellite travels by prevailing winds in the stratosphere, its cross-track displacement needs to be controlled to keep a constant latitude orbital flight. To design the orbit control system, a 6 degree-of-freedom (DOF) model of the satellite is established based on the second Lagrangian formulation, it is proven that the input/output feedback linearization theory cannot be directly implemented for the orbit control with this model, thus three subsystem models are deduced from the 6-DOF model to develop a sequential nonlinear control strategy. The control strategy includes an adaptive controller for the balloon-tether subsystem with uncertain balloon parameters, a PD controller based on feedback linearization for the tether-sail subsystem, and a sliding mode controller for the sail-rudder subsystem with uncertain sail parameters. Simulation studies demonstrate that the proposed control strategy is robust to uncertainties and satisfies high precision requirements for the orbit flight of the satellite.

  17. From order to chaos in Earth satellite orbits

    CERN Document Server

    Gkolias, Ioannis; Gachet, Fabien; Rosengren, Aaron J

    2016-01-01

    We consider Earth satellite orbits in the range of semi-major axes where the perturbing effects of Earth's oblateness and lunisolar gravity are of comparable order. This range covers the medium-Earth orbits (MEO) of the Global Navigation Satellite Systems and the geosynchronous orbits (GEO) of the communication satellites. We recall a secular and quadrupolar model, based on the Milankovitch vector formulation of perturbation theory, which governs the long-term orbital evolution subject to the predominant gravitational interactions. We study the global dynamics of this two-and-a-half degrees of freedom Hamiltonian system by means of the fast Lyapunov indicator (FLI), used in a statistical sense. Specifically, we characterize the degree of chaoticity of the action space using angles-averaged normalized FLI maps, thereby overcoming the angle dependencies of the conventional stability maps. Emphasis is placed upon the phase-space structures near secular resonances which are of first importance to the space debris...

  18. Diffusive chaos in navigation satellites orbits

    CERN Document Server

    Daquin, J; Tsiganis, K

    2016-01-01

    The navigation satellite constellations in medium-Earth orbit exist in a background of third-body secular resonances stemming from the perturbing gravitational effects of the Moon and the Sun. The resulting chaotic motions, emanating from the overlapping of neighboring resonant harmonics, induce especially strong perturbations on the orbital eccentricity, which can be transported to large values, thereby increasing the collision risk to the constellations and possibly leading to a proliferation of space debris. We show here that this transport is of a diffusive nature and we present representative diffusion maps that are useful in obtaining a global comprehension of the dynamical structure of the navigation satellite orbits.

  19. Orbit Determination Using Satellite-to-Satellite Tracking Data

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Satellite-to-Satellite Tracking (SST) data can be used to determine the orbits of spacecraft in two ways. One is combined orbit determination, which combines SST data with ground-based tracking data and exploits the enhanced tracking geometry. The other is the autonomous orbit determination, which uses only SST. The latter only fits some particular circumstances since it suffers the rank defect problem in other circumstances. The proof of this statement is presented. The na ture of the problem is also investigated in order to find an effective solution. Several methods of solution are discussed. The feasibility of the methods is demonstrated by their apphcation to a simulation.

  20. Sun-synchronous satellite orbit determination

    Science.gov (United States)

    Ma, Der-Ming; Zhai, Shen-You

    2004-02-01

    The linearized dynamic equations used for on-board orbit determination of Sun-synchronous satellite are derived. Sun-synchronous orbits are orbits with the secular rate of the right ascension of the ascending node equal to the right ascension rate of the mean sun. Therefore the orbit is no more a closed circle but a tight helix about the Earth. In the paper, instead of treating the orbit as a closed circle, the actual helix orbit is taken as nominal trajectory. The details of the linearized equations of motion for the satellite in the Sun-synchronous orbit are derived. The linearized equations are obtained by perturbing the Keplerian motion with the J2 correction and the effect of sun's attraction being neglected. Combined with the GPS navigation equations, the Kalman filter formulation is given. The particular application considered is the circular Sun-synchronous orbit with the altitude of 800 km and inclination of 98.6°. The numerical example simulated by MATLAB® shows that only the pseudo-range data used in the algorithm still gives acceptable results. Based on the simulation results, we can use the on-board GPS receivers' signal only as an alternative to determine the orbit of Sun-Synchronous satellite and therefore circumvents the need for extensive ground support.

  1. From Order to Chaos in Earth Satellite Orbits

    Science.gov (United States)

    Gkolias, Ioannis; Daquin, Jérôme; Gachet, Fabien; Rosengren, Aaron J.

    2016-11-01

    We consider Earth satellite orbits in the range of semimajor axes where the perturbing effects of Earth’s oblateness and lunisolar gravity are of comparable order. This range covers the medium-Earth orbits (MEO) of the Global Navigation Satellite Systems and the geosynchronous orbits (GEO) of the communication satellites. We recall a secular and quadrupolar model, based on the Milankovitch vector formulation of perturbation theory, which governs the long-term orbital evolution subject to the predominant gravitational interactions. We study the global dynamics of this two-and-a-half degrees-of-freedom Hamiltonian system by means of the fast Lyapunov indicator (FLI), used in a statistical sense. Specifically, we characterize the degree of chaoticity of the action space using angle-averaged normalized FLI maps, thereby overcoming the angle dependencies of the conventional stability maps. Emphasis is placed upon the phase-space structures near secular resonances, which are of primary importance to the space debris community. We confirm and quantify the transition from order to chaos in MEO, stemming from the critical inclinations and find that highly inclined GEO orbits are particularly unstable. Despite their reputed normality, Earth satellite orbits can possess an extraordinarily rich spectrum of dynamical behaviors and, from a mathematical perspective, have all the complications that make them very interesting candidates for testing the modern tools of chaos theory.

  2. Satellite orbit determination and gravity field recovery from satellite-to-satellite tracking

    Science.gov (United States)

    Wakker, K. F.; Ambrosius, B. A. C.; Leenman, H.

    1989-07-01

    Studies on satellite-to-satellite tracking (SST) with POPSAT (a geodetic satellite concept) and a ERS-class (Earth observation) satellite, a Satellite-to-Satellite Tracking (SST) gravity mission, and precise gravity field determination methods and mission requirements are reported. The first two studies primarily address the application of SST between the high altitude POPSAT and an ERS-class or GRM (Geopotential Research Mission) satellite to the orbit determination of the latter two satellites. Activities focussed on the determination of the tracking coverage of the lower altitude satellite by ground based tracking systems and by POPSAT, orbit determination error analysis and the determination of the surface forces acting on GRM. The third study surveys principles of SST, uncertainties of existing drag models, effects of direct luni-solar attraction and tides on orbit and the gravity gradient observable. Detailed ARISTOTELES (which replaced POPSAT) orbit determination error analyses were performed for various ground based tracking networks.

  3. Dual RF Astrodynamic GPS Orbital Navigator Satellite

    Science.gov (United States)

    Kanipe, David B.; Provence, Robert Steve; Straube, Timothy M.; Reed, Helen; Bishop, Robert; Lightsey, Glenn

    2009-01-01

    Dual RF Astrodynamic GPS Orbital Navigator Satellite (DRAGONSat) will demonstrate autonomous rendezvous and docking (ARD) in low Earth orbit (LEO) and gather flight data with a global positioning system (GPS) receiver strictly designed for space applications. ARD is the capability of two independent spacecraft to rendezvous in orbit and dock without crew intervention. DRAGONSat consists of two picosatellites (one built by the University of Texas and one built by Texas A and M University) and the Space Shuttle Payload Launcher (SSPL); this project will ultimately demonstrate ARD in LEO.

  4. The Orbits of Saturn's Small Satellites

    Science.gov (United States)

    Spitale, J. N.; Jacobson, R. A.; Porco, C. C.; Owen, W. M.; Charnoz, S.

    2005-05-01

    We report on the orbits of the small, inner Saturnian satellites, either recovered or newly-discovered in recent Cassini imaging observations (excluding Helene, Telesto and Calypso, which will be discussed by another group). Using combined Cassini and Voyager observations, the mean motions of Pan and Atlas have been refined by several orders of magnitude. The Atlas orbit is based on a numerical integration perturbed by all of the massive Saturnian satellites including Prometheus, Pandora, Janus, and Epimetheus. We find that the dominant perturber is Prometheus. Cassini, Voyager, HST, and Earth-based data have been used to refine the orbits of Janus, Epimetheus, Prometheus and Pandora. The orbits of the co-orbitals, Janus and Epimetheus, remain stable; their orbital swap does not occur until Februrary, 2006. The orbits of Prometheus and Pandora remain close to recent values (Jacobson and French 2004, Icarus, 172, 382). Six new objects have been discovered to date -- three (S/2004 S3, S4, S6) in close proximity to the F ring, two (S/2004 S1(Methone), S/2004 S2(Pallene)) between the orbits of Mimas and Enceladus, and one (S/2004 S5(Polydeuces)) co-orbital with Dione, trailing by ˜60 deg (Porco et al., Science 307, 25 Feb 2005). One of the F-ring objects -- S/2004 S3 -- was seen over a 118-day interval, but none of those objects, including S/2004 S3, were subsequently recovered in an F-ring movie acquired on 15 November 2004 (29 days after the last sighting of S/2004 S3) with an image scale of 4 km/pixel, in which all were expected to appear. Consequently, we are confident only that Methone, Pallene and Polydeuces are solid satellites; S/2004 S3, S4 and S6 may be transient clumps. Our orbital fits, both precessing ellipse models and orbital integrations, suggest that Pallene is the same object as S/1981 S14, imaged by Voyager 2 on 23 August 1981, contrary to our initial reports (IAU circular 8389). The orbital inclination and eccentricity of Methone are considerably

  5. Theory of geostationary satellites

    CERN Document Server

    Zee, Chong-Hung

    1989-01-01

    Geostationary or equatorial synchronous satellites are a daily reminder of our space efforts during the past two decades. The nightly television satellite weather picture, the intercontinental telecommunications of television transmissions and telephone conversations, and the establishrnent of educational programs in remote regions on Earth are constant reminders of the presence of these satellites. As used here, the term 'geo­ stationary' must be taken loosely because, in the long run, the satellites will not remain 'stationary' with respect to an Earth-fixed reference frame. This results from the fact that these satellites, as is true for all satellites, are incessantly subject to perturbations other than the central-body attraction of the Earth. Among the more predominant pertur­ bations are: the ellipticity of the Earth's equator, the Sun and Moon, and solar radiation pressure. Higher harmonics of the Earth's potential and tidal effects also influence satellite motion, but they are of second­ order whe...

  6. China's FY-3 Polar Orbit Meteorological Satellite And Its Applications

    Institute of Scientific and Technical Information of China (English)

    Zhang Jiashen; Fang Meng; Sun Anlai

    2009-01-01

    @@ FY-3 is China's second generation of polar orbit meteorological satellite. FY-3A,the first of the FY-3 series,was launched on May 27,2008 from Taiyuan Satellite Launeh Center. After 5 months of in-orbit test,the satellite and its ground application system were put into trial operation on November 18,2008,marking the successful technical upgrading of China's polar-orbit meteorological satellite.

  7. A new method for determination of satellite orbits by transfer

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The original idea of a new method for determination of satellite orbits by transfer is from Two-Way Satellite Time and Frequency Transfer (TWSTFT). The original method is called "determination of satellite orbit by transfer". The method is not only for determination of satellite orbit but also for the time transfer with high accuracy and precision. The advantage is that the accuracy and the precision for determination of satellite orbit are very high and the new method is favorable for various applications. The combination of various signals disseminated and received forms various modes of satellite orbit determinations. If receivers at stations receive the own station-disseminated signals via a satellite transponder, it forms an orbit determination mode called "receiving the own station-disseminated signals mode". If receivers at all stations receive the signals disseminated from the master station via satellite transponders, it forms an orbit determination mode called "receiving the master station-disseminated signals mode". If all of receivers at stations receive all stations-disseminated signals via satellite transponders, it forms an orbit determination mode called "receiving all stations-disseminated signals mode". Also there are other combinations of signals for satellite orbit determination. For dif- ferent orbit determination modes with different signal combinations, their rigorous formulae of proc- essing are hereby presented in this paper. The accurate and the precise satellite orbit determination for both of the modes, "receiving the own station-disseminated signals mode" and "receiving the master station-disseminated signals mode" is attempted. It shows that the accuracy and precision for both of modes are nearly the same, the ranging accuracy is better than 1 cm, and the observation residuals of satellite orbit determination are better than 9 cm in the observation duration of 1 day.

  8. A new method for determination of satellite orbits by transfer

    Institute of Scientific and Technical Information of China (English)

    LI ZhiGang; YANG XuHai; AI GuoXiang; SI HuLi; QIAO RongChuan; FENG ChuGang

    2009-01-01

    The original idea of a new method for determination of satellite orbits by transfer is from Two-Way Satellite Time and Frequency Transfer (TWSTFT).The original method is called "determination of satellite orbit by transfer".The method is not only for determination of satellite orbit but also for the time transfer with high accuracy and precision.The advantage is that the accuracy and the precision for determination of satellite orbit are very high and the new method is favorable for various applications.The combination of various signals disseminated and received forms various modes of satellite orbit determinations.If receivers at stations receive the own station-disseminated signals via a satellite transponder,it forms an orbit determination mode called "receiving the own station-disseminated signals mode".If receivers at all stations receive the signals disseminated from the master station via satellite transponders,it forms an orbit determination mode called "receiving the master station-disseminated signals mode".If all of receivers at stations receive all stations-disseminated signals via satellite transponders,it forms an orbit determination mode called "receiving all stations-disseminated signals mode".Also there are other combinations of signals for satellite orbit determination.For different orbit determination modes with different signal combinations,their rigorous formulae of processing are hereby presented in this paper.The accurate and the precise satellite orbit determination for both of the modes,"receiving the own station-disseminated signals mode" and "receiving the master station-disseminated signals mode" is attempted.It shows that the accuracy and precision for both of modes are nearly the same,the ranging accuracy is better than 1 cm,and the observation residuals of satellite orbit determination are better than 9 cm in the observation duration of 1 day.

  9. Applying KAM Theory to Highly Eccentric Orbits

    Science.gov (United States)

    2014-03-27

    Motivation In 2009, the Iridium 33 and Kosmos 2251 satellite collided in outer space. This was the first unintentional collision at high speeds between two...artificial satellites in the earth’s orbit [1]. Iridium 33 was an operational satellite, and Kosmos was out of service for 13 years. Besides completely

  10. LiAISON: Linked, Autonomous Interplanetary Satellite Orbit Navigation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A new navigation technique known as LiAISON (Linked Autonomous Interplanetary Satellite Orbit Navigation) may be used to propel the benefits of GPS to new orbits,...

  11. NOAA Polar-orbiting Operational Environmental Satellites (POES) Radiometer Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Polar-orbiting Operational Environmental Satellite (POES) series offers the advantage of daily global coverage, by making nearly polar orbits 14 times per day...

  12. NUMERICAL INTEGRATION OF A SATELLITE ORBIT WITH KS TRANSFORMATION

    OpenAIRE

    Piñeros, Jhonathan Murcia; Koffi, Maxime; Kuga, Helio Koiti

    2017-01-01

    A satellite orbit is mainly influenced by central body gravitational forces. For a satellite in LEO (Low Earth Orbit), MEO (Medium Earth Orbit) or GEO (Geosynchronous Earth Orbit) the Earth´s gravity distribution and other perturbations determine the position and velocity changes in function of time. If the motion is around a spherical body with homogenous mass distribution and without perturbative forces, the orbit must be cyclic like the Two Body Problem (TBP) or Keplerian Orbit. Different ...

  13. Circumnutations of sunflower hypocotyls in satellite orbit

    Science.gov (United States)

    Brown, A. H.; Chapman, D. K.; Lewis, R. F.; Venditti, A. L.

    1990-01-01

    The principal objective of the research reported here was to determine whether a plant's periodic growth oscillations, called circumnutations, would persist in the absence of a significant gravitational or inertial force. The definitive experiment was made possible by access to the condition of protracted near weightlessness in an earth satellite. The experiment, performed during the first flight of Spacelab on the National Aeronautics and Space Administration shuttle, Columbia, in November and December, 1983, tested a biophysical model, proposed in 1967, that might account for circumnutation as a gravity-dependent growth response. However, circumnutations were observed in microgravity. They continued for many hours without stimulation by a significant g-force. Therefore, neither a gravitational nor an inertial g-force was an absolute requirement for initiation [correction of initation] or continuation of circumnutation. On average, circumnutation was significantly more vigorous in satellite orbit than on earth-based clinostats. Therefore, at least for sunflower (Helianthus annuus L.) circumnutation, clinostatting is not the functional equivalent of weightlessness.

  14. Satellite orbital conjunction reports assessing threatening encounters in space (SOCRATES)

    Science.gov (United States)

    Kelso, T. S.; Alfano, S.

    2006-05-01

    While many satellite operators are aware of the possibility of a collision between their satellite and another object in earth orbit, most seem unaware of the frequency of near misses occurring each day. Until recently, no service existed to advise satellite operators of an impending conjunction of a satellite payload with another satellite, putting the responsibility for determining these occurrences squarely on the satellite operator's shoulders. This problem has been further confounded by the lack of a timely, comprehensive data set of satellite orbital element sets and computationally efficient tools to provide predictions using industry-standard software. As a result, hundreds of conjunctions within 1 km occur each week, with little or no intervention, putting billions of dollars of space hardware at risk, along with their associated missions. As a service to the satellite operator community, the Center for Space Standards & Innovation (CSSI) offers SOCRATES-Satellite Orbital Conjunction Reports Assessing Threatening Encounters in Space. Twice each day, CSSI runs a list of all satellite payloads on orbit against a list of all objects on orbit using the catalog of all unclassified NORAD two-line element sets to look for conjunctions over the next seven days. The runs are made using STK/CAT-Satellite Tool Kit's Conjunction Analysis Tools-together with the NORAD SGP4 propagator in STK. This paper will discuss how SOCRATES works and how it can help satellite operators avoid undesired close approaches through advanced mission planning.

  15. Aerodynamic Stability of Satellites in Elliptic Low Earth Orbits

    CERN Document Server

    Bailey, Matthew; Mancas, Stefan C; Udrea, Bogdan; Umeadi, Uchenna

    2013-01-01

    Topical observations of the thermosphere at altitudes below $200 \\, km$ are of great benefit in advancing the understanding of the global distribution of mass, composition, and dynamical responses to geomagnetic forcing, and momentum transfer via waves. The perceived risks associated with such low altitude and short duration orbits has prohibited the launch of Discovery-class missions. Miniaturization of instruments such as mass spectrometers and advances in the nano-satellite technology, associated with relatively low cost of nano-satellite manufacturing and operation, open an avenue for performing low altitude missions. The time dependent coefficients of a second order non-homogeneous ODE which describes the motion have a double periodic shape. Hence, they will be approximated using Jacobi elliptic functions. Through a change of variables the original ODE will be converted into Hill's ODE for stability analysis using Floquet theory. We are interested in how changes in the coefficients of the ODE affect the ...

  16. Monitoring objects orbiting earth using satellite-based telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Olivier, Scot S.; Pertica, Alexander J.; Riot, Vincent J.; De Vries, Willem H.; Bauman, Brian J.; Nikolaev, Sergei; Henderson, John R.; Phillion, Donald W.

    2015-06-30

    An ephemeris refinement system includes satellites with imaging devices in earth orbit to make observations of space-based objects ("target objects") and a ground-based controller that controls the scheduling of the satellites to make the observations of the target objects and refines orbital models of the target objects. The ground-based controller determines when the target objects of interest will be near enough to a satellite for that satellite to collect an image of the target object based on an initial orbital model for the target objects. The ground-based controller directs the schedules to be uploaded to the satellites, and the satellites make observations as scheduled and download the observations to the ground-based controller. The ground-based controller then refines the initial orbital models of the target objects based on the locations of the target objects that are derived from the observations.

  17. State Geography Using NOAA Polar-Orbiting Satellites.

    Science.gov (United States)

    Stadler, Stephen J.

    1985-01-01

    NOAA polar-orbiting satellites have the capability of providing views of entire states. This article describes the characteristics of data from these satellites, indicates their advantages and disadvantages, and shows how the satellite data can be used in a statewide representation of physical geography for students at the introductory level. (RM)

  18. Methods of rapid orbit forecasting after maneuvers for geostationary satellites

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    A geostationary(GEO) satellite may serve as a navigation satellite,but there is a problem that maneuvers frequently occur and the forces are difficult to model.Based on the technique of determining satellite orbits by transfer,a predicted orbit with high accuracy may be achieved by the method of statis-tical orbit determination in case of no maneuver force.The predicted orbit will soon be invalid after the maneuver starts,and it takes a long time to get a valid orbit after the maneuver ends.In order to improve ephemeris usability,the method of rapid orbit forecasting after maneuvers is studied.First,GEO satellite movement is analyzed in case of maneuvers based on the observation from the orbit meas-urement system by transfer.Then when a GEO satellite is in the free status just after maneuvers,the short arc observation is used to forecast the orbit.It is assumed that the common system bias and biases of each station are constant,which can be obtained from orbit determination with long arc observations.In this way,only 6 orbit elements would be solved by the method of statistical orbit determination,and the ephemeris with high accuracy may be soon obtained.Actual orbit forecasting with short arc observation for SINOSAT-1 satellite shows that,with the tracking network available,the precision of the predicted orbit(RMS of O-C) can reach about 5 m with 15 min arc observation,and about 3 m with 30 min arc observation.

  19. Magnus Effect on a Spinning Satellite in Low Earth Orbit

    Science.gov (United States)

    Ramjatan, Sahadeo; Fitz-Coy, Norman; Yew, Alvin Garwai

    2016-01-01

    A spinning body in a flow field generates an aerodynamic lift or Magnus effect that displaces the body in a direction normal to the freestream flow. Earth orbiting satellites with substantial body rotation in appreciable atmospheric densities may generate a Magnus force to perturb orbital dynamics. We investigate the feasibility of using this effect for spacecraft at a perigee of 80km using the Systems Tool Kit (STK). Results show that for a satellite of reasonable properties, the Magnus effect doubles the amount of time in orbit. Orbital decay was greatly mitigated for satellites spinning at 10000 and 15000RPM. This study demonstrates that the Magnus effect has the potential to sustain a spacecraft's orbit at a low perigee altitude and could also serve as an orbital maneuver capability.

  20. Evaluation of CHAMP Satellite Orbit with SLR Measurements

    Institute of Scientific and Technical Information of China (English)

    QIN Xianping; YANG Yuanxi

    2005-01-01

    The technique of Evaluating CHAMP satellite orbit with SLR measurements is presented. As an independent evaluation of the orbit solution, SLR data observed from January 1 to 16, 2002 are processed to compute the residuals after fixing the GFZ's post science orbits solutions. The SLR residuals are computed as the differences of the SLR measurements minus the corresponding distances between the SLR station and the GPS-derived orbit positions. On the basis of the SLR residuals analysis, it is found that the accuracy of GFZ's post science orbits is better than 10 em and that there is no systematic error in GFZ's post science orbits.

  1. Liouville theory and special coadjoint Virasoro orbits

    OpenAIRE

    Gorsky, A.; Johansen, A.

    1993-01-01

    We describe the Hamiltonian reduction of the coajoint Kac-Moody orbits to the Virasoro coajoint orbits explicitly in terms of the Lagrangian approach for the Wess-Zumino-Novikov-Witten theory. While a relation of the coajoint Virasoro orbit $Diff \\; S^1 /SL(2,R)$ to the Liouville theory has been already studied we analyse the role of special coajoint Virasoro orbits $Diff \\; S^1/\\tilde{T}_{\\pm ,n}$ corresponding to stabilizers generated by the vector fields with double zeros. The orbits with ...

  2. Methods of rapid orbit forecasting after maneuvers for geostationary satellites

    Institute of Scientific and Technical Information of China (English)

    YANG XuHai; LI ZhiGang; FENG ChuGang; GUO Ji; SHI HuLi; AI GuoXiang; WU FengLei; QIAO RongChuan

    2009-01-01

    A geostationary (GEO) satellite may serve as a navigation satellite,but there is a problem that maneuvers frequently occur and the forces are difficult to model.Based on the technique of determining setellite orbits by transfer,a predicted orbit with high accuracy may be achieved by the method of statistical orbit determination in case of no maneuver force.The predicted orbit will soon be invalid after the maneuver starts,and it takes a long time to get a valid orbit after the maneuver ends.In order to improve ephemeris usability,the method of rapid orbit forecasting after maneuvers is studied.First,GEO satellite movement is analyzed in case of maneuvers based on the observation from the orbit measurement system by transfer.Then when a GEO satellite is in the free status just after maneuvers,the short arc observation is used to forecast the orbit.It is assumed that the common system bias and biases of each station are constant,which can be obtained from orbit determination with long arc observations.In this way,only 6 orbit elements would be solved by the method of statistical orbit determination,and the ephemeris with high accuracy may be soon obtained.Actual orbit forecasting with short arc observation for SlNOSAT-1 satellite shows that,with the tracking network available,the precision of the predicted orbit (RMS of O-C) can reach about 5 m with 15 min arc observation,and about 3 m with 30 min arc observation.

  3. Study on relative orbital configuration in satellite formation flying

    Institute of Scientific and Technical Information of China (English)

    Junfeng Li; Xin Meng; Yunfeng Gao; Xiang Li

    2005-01-01

    In this paper, the relative orbital configurations of satellites in formation flying with non-perturbation and J2 perturbation are studied, and an orbital elements method is proposed to obtain the relative orbital configurations of satellites in formation. Firstly, under the condition of nonperturbation, we obtain many shapes of relative orbital configurations when the semi-major axes of satellites are equal.These shapes can be lines, ellipses or distorted closed curves.Secondly, on the basis of the analysis of J2 effect on relative orbital configurations, we find out that J2 effect can induce two kinds of changes of relative orbital configurations. They are distortion and drifting, respectively. In addition, when J2perturbation is concerned, we also find that the semi-major axes of the leading and following satellites should not be the same exactly in order to decrease the J2 effect. The relationship of relative orbital elements and J2 effect is obtained through simulations. Finally, the minimum relation perturbation conditions are established in order to reduce the influence of the J2 effect. The results show that the minimum relation perturbation conditions can reduce the J2 effect significantly when the orbital element differences are small enough, and they can become rules for the design of satellite formation flying.

  4. Synthetically adaptive robust filtering for satellite orbit determination

    Institute of Scientific and Technical Information of China (English)

    YANG; Yuanxi

    2004-01-01

    The quality of the satellite orbit determination is rested on the knowledge of perturbing forces acting on the satellite and stochastic properties of the observations, and the ability of controlling various kinds of errors. After a brief discussion on the dynamic and geometric orbit determinations, Sage adaptive filtering and robust filtering are reviewed. A new synthetically adaptive robust filtering based on a combination of robust filtering and Sage filtering is developed. It is shown, by derivations and calculations, that the synthetically adaptive robust filtering for orbit determination is not only robust but also simple in calculation. It controls the effects of the outliers of tracking observations and the satellite dynamical disturbance on the parameter estimates of the satellite orbit.

  5. Algorithm of orbit determination using one or two GPS satellites

    Institute of Scientific and Technical Information of China (English)

    刘艳芳; 洪炳荣; 郭建宁; 巨涛

    1999-01-01

    The problem of orbit determination using one or two GPS satellites is discussed. Methods of getting initial values based on linear translation is presented; the Secant method and the descend Newton iterative procedure and the continuation algorithm are used synthetically to solve the nonlinear equations. Computer simulation shows that this algorithm can give preliminary state of satellite orbit with a certain precision in short time.

  6. Electric Propulsion for Low Earth Orbit Communication Satellites

    Science.gov (United States)

    Oleson, Steven R.

    1997-01-01

    Electric propulsion was evaluated for orbit insertion, satellite positioning and de-orbit applications on big (hundreds of kilograms) and little (tens of kilograms) low earth orbit communication satellite constellations. A simple, constant circumferential thrusting method was used. This technique eliminates the complex guidance and control required when shading of the solar arrays must be considered. Power for propulsion was assumed to come from the existing payload power. Since the low masses of these satellites enable multiple spacecraft per launch, the ability to add spacecraft to a given launch was used as a figure of merit. When compared to chemical propulsion ammonia resistojets, ion, Hall, and pulsed plasma thrusters allowed an additional spacecraft per launch Typical orbit insertion and de-orbit times were found to range from a few days to a few months.

  7. Selection of the best initial orbital elements of satellite based on fuzzy integration evaluation method

    Institute of Scientific and Technical Information of China (English)

    Yang Yong'an; Zhang Hongwei; Feng Zuren; Luo Yongjin

    2006-01-01

    The fuzzy integration evaluation method (FIEM) is studied in order to select the best orbital elements from the multi-group initial orbits determined by a satellite TT&C (Tracking, Telemetry and Control) center with all kinds of data sources. By employing FIEM together with the experience of TT&C experts, the index system to evaluate the selection of the best initial orbits is established after the data sources and orbit determination theories are studied. Besides, the concrete steps in employing the method are presented. Moreover, by taking the objects to be evaluated as evaluation experts, the problem of how to generate evaluation matrices is solved. Through practical application, the method to select the best initial orbital elements has been proved to be flexible and effective. The originality of the method is to find a new evaluation criterion (comparing the actually tracked orbits) replacing the traditional one (comparing the nominal orbits) for selecting the best orbital elements.

  8. Satellite de-orbiting via controlled solar radiation pressure

    Science.gov (United States)

    Deienno, Rogerio; Sanchez, Diogo Merguizo; de Almeida Prado, Antonio Fernando Bertachini; Smirnov, Georgi

    2016-06-01

    The goal of the present research was to study the use of solar radiation pressure to place a satellite in an orbit that makes it to re-enter the atmosphere of the Earth. This phase of the mission is usual, since the orbital space around the Earth is crowded and all satellites have to be discarded after the end of their lifetimes. The technique proposed here is based on a device that can increase and decrease the area-to-mass ratio of the satellite when it is intended to reduce its altitude until a re-entry point is reached. Equations that predict the evolution of the eccentricity and semi-major axis of the orbit of the satellite are derived and can be used to allow the evaluation of the time required for the decay of the satellite. Numerical simulations are made, and they show the time required for the decay as a function of the area-to-mass ratio and the evolution of the most important orbital elements. The results show maps that indicate regions of fast decays as a function of the area-to-mass ratio and the initial inclination of the orbit of the satellite. They also confirmed the applicability of the equations derived here. The numerical results showed the role played by the evection and the Sun-synchronous resonances in the de-orbiting time.

  9. Orientation and resonance locks for satellites in the elliptic orbit.

    Science.gov (United States)

    Liu, H.-S.

    1972-01-01

    In order to achieve the maximum strength of higher resonance locks for satellites in the elliptic orbit, the condition of satellite orientation during the process of deployment is established. It is shown that for maximum strength locks the axis of the minimum moment of inertia of satellites should point toward the attracting body at plus or minus (5/8) pi and 0 values of the true anomaly f. This condition of deployment is applicable to all cases of resonance rotation regardless of the value of lock number k and orbit eccentricity e.

  10. Lunar Orbit Stability for Small Satellite Mission Design

    Science.gov (United States)

    Dono, Andres

    2015-01-01

    The irregular nature of the lunar gravity field will severely affect the orbit lifetime and behavior of future lunar small satellite missions. These spacecraft need stable orbits that do not require large deltaV budgets for station-keeping maneuvers. The initial classical elements of any lunar orbit are critical to address its stability and to comply with mission requirements. This publication identifies stable regions according to different initial conditions at the time of lunar orbit insertion (LOI). High fidelity numerical simulations with two different gravity models were performed. We focus in low altitude orbits where the dominant force in orbit propagation is the existence of unevenly distributed lunar mass concentrations. These orbits follow a periodic oscillation in some of the classical elements that is particularly useful for mission design. A set of orbital maintenance strategies for various mission concepts is presented.

  11. Handbook of satellite orbits from Kepler to GPS

    CERN Document Server

    Capderou, Michel

    2014-01-01

    Fifty years after Sputnik, artificial satellites have become indispensable monitors in many areas, such as economics, meteorology, telecommunications, navigation and remote sensing. The specific orbits are important for the proper functioning of the satellites. This book discusses the great variety of satellite orbits, both in shape (circular to highly elliptical) and properties (geostationary, Sun-synchronous, etc.). This volume starts with an introduction into geodesy. This is followed by a presentation of the fundamental equations of mechanics to explain and demonstrate the properties for all types of orbits. Numerous examples are included, obtained through IXION software developed by the author. The book also includes an exposition of the historical background that is necessary to help the reader understand the main stages of scientific thought from Kepler to GPS. This book is intended for researchers, teachers and students working in the field of satellite technology. Engineers, geographers and all those...

  12. The Orbits of Jupiter’s Irregular Satellites

    Science.gov (United States)

    Brozović, Marina; Jacobson, Robert A.

    2017-04-01

    We report on the improved ephemerides for the irregular Jovian satellites. We used a combination of numerically integrated equations of motion and a weighted least-squares algorithm to fit the astrometric measurements. The orbital fits for 59 satellites are summarized in terms of state vectors, post-fit residuals, and mean orbital elements. The current data set appears to be sensitive to the mass of Himalia, which is constrained to the range of GM = 0.13–0.28 km3 s‑2. Here, GM is the product of the Newtonian constant of gravitation, G and the body's mass, M. Our analysis of the orbital uncertainties indicates that 11 out of 59 satellites are lost owing to short data arcs. The lost satellites hold provisional International Astronomical Union (IAU) designations and will likely need to be rediscovered.

  13. Autonomous satellite constellation orbit determination using the star sensor and inter-satellite links data

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A method of autonomous orbit determination for a satellite constellation using a star sensor combined with inter satellite links(ISLs) is studied.Two types of simulated observation data,Three-Satellite Constellation ISLs and background stellar observations by a CCD star sensor,are first produced.Based on these data,an observation equation is built for the constellation joint autonomous orbit determination,in which the simulations are run.The accuracy of this method with different orbital determination models are analyzed and compared with regard to the effect of potential measurement errors.The results show that autonomous satellite constellation orbit determination using star sensor measurement and ISLs data is feasible.Finally,this paper arrives at several conclusions which contribute to extending this method to a more general satellite constellation.

  14. Cultures in orbit: Satellite technologies, global media and local practice

    Science.gov (United States)

    Parks, Lisa Ann

    Since the launch of Sputnik in 1957, satellite technologies have had a profound impact upon cultures around the world. "Cultures in Orbit" examines these seemingly disembodied, distant relay machines in relation to situated social and cultural processes on earth. Drawing upon a range of materials including NASA and UNESCO documents, international satellite television broadcasts, satellite 'development' projects, documentary and science fiction films, remote sensing images, broadcast news footage, World Wide Web sites, and popular press articles I delineate and analyze a series of satellite mediascapes. "Cultures in Orbit" analyzes uses of satellites for live television relay, surveillance, archaeology and astronomy. The project examines such satellite media as the first live global satellite television program Our World, Elvis' Aloha from Hawaii concert, Aboriginal Australian satellite programs, and Star TV's Asian music videos. In addition, the project explores reconnaissance images of mass graves in Bosnia, archaeological satellite maps of Cleopatra's underwater palace in Egypt, and Hubble Space Telescope images. These case studies are linked by a theoretical discussion of the satellite's involvement in shifting definitions of time, space, vision, knowledge and history. The satellite fosters an aesthetic of global realism predicated on instantaneous transnational connections. It reorders linear chronologies by revealing traces of the ancient past on the earth's surface and by searching in deep space for the "edge of time." On earth, the satellite is used to modernize and develop "primitive" societies. Satellites have produced new electronic spaces of international exchange, but they also generate strategic maps that advance Western political and cultural hegemony. By technologizing human vision, the satellite also extends the epistemologies of the visible, the historical and the real. It allows us to see artifacts and activities on earth from new vantage points

  15. A Modified Hansen's Theory as Applied to the Motion of Artificial Satellites

    Science.gov (United States)

    Musen, Peter

    1960-01-01

    This report presents a theory of oblateness perturbations of the orbits of artificial satellites based on Hansen's theory, with modification for adaptation to fast machine computation. The theory permits the easy inclusion of any gravitational terms and is suitable for the deduction of geo-physical and geodetic data from orbit observations on artificial satellites. The computations can be carried out to any desired order compatible with the accuracy of the geodetic parameters.

  16. Precise orbit determination for the GOCE satellite using GPS

    Science.gov (United States)

    Bock, H.; Jäggi, A.; Švehla, D.; Beutler, G.; Hugentobler, U.; Visser, P.

    Apart from the gradiometer as the core instrument, the first ESA Earth Explorer Core Mission GOCE (Gravity field and steady-state Ocean Circulation Explorer) will carry a 12-channel GPS receiver dedicated for precise orbit determination (POD) of the satellite. The EGG-C (European GOCE Gravity-Consortium), led by the Technical University in Munich, is building the GOCE HPF (High-level Processing Facility) dedicated to the Level 1b to Level 2 data processing. One of the tasks of this facility is the computation of the Precise Science Orbit (PSO) for GOCE. The PSO includes a reduced-dynamic and a kinematic orbit solution. The baseline for the PSO is a zero-difference procedure using GPS satellite orbits, clocks, and Earth Rotation Parameters (ERPs) from CODE (Center for Orbit Determination in Europe), one of the IGS (International GNSS Service) Analysis Centers. The scheme for reduced-dynamic and kinematic orbit determination is based on experiences gained from CHAMP and GRACE POD and is realized in one processing flow. Particular emphasis is put on maximum consistency in the analysis of day boundary overlapping orbital arcs, as well as on the higher data sampling rate with respect to CHAMP and GRACE and on differences originating from different GPS antenna configurations. We focus on the description of the procedure used for the two different orbit determinations and on the validation of the procedure using real data from the two GRACE satellites as well as simulated GOCE data.

  17. Numerical orbit generators of artificial earth satellites

    Science.gov (United States)

    Kugar, H. K.; Dasilva, W. C. C.

    1984-04-01

    A numerical orbit integrator containing updatings and improvements relative to the previous ones that are being utilized by the Departmento de Mecanica Espacial e Controle (DMC), of INPE, besides incorporating newer modellings resulting from the skill acquired along the time is presented. Flexibility and modularity were taken into account in order to allow future extensions and modifications. Characteristics of numerical accuracy, processing quickness, memory saving as well as utilization aspects were also considered. User's handbook, whole program listing and qualitative analysis of accuracy, processing time and orbit perturbation effects were included as well.

  18. Tether de-orbiting of satellites at end of mission

    Science.gov (United States)

    Sanmartin, Juan R.; Sánchez-Torres, Antonio

    2012-07-01

    The accumulation of space debris around the Earth has become critical for Space security. The BETs project, financed by the European Commission through its FP7-Space program, is focusing on preventing generation of new debris by de-orbiting satellites at end of mission. The de-orbiting system considered, involving an electrodynamic bare tape-tether, uses no propellant and no power supply, while generating power for on-board use during de-orbiting. As an example, preliminary results are here presented on a specific orbit/satellite case: 1300 km altitude and 65 degrees inclination, and 500 kg mass. Design tether dimensions are 8 km length, 1.5 cm width, and 0.05 mm thickness; subsystem masses are limited to twice tether mass. Simple calculations, using orbit-averaging, solar mid-cycle phase, and ionospheric and geomagnetic field models, yield 2.6 months time for de-orbiting down to 200 km, with a probability of about 1 percent of debris cutting the tape. References: Sanmartin, J.R., Lorenzini, E.C., and Martinez-Sanchez, M., Electrodynamic Tether Applications and Constraints, J. Space. Rockets 47, 442-456, 2010. Sanmartin, J.R. et al., A universal system to de-orbit satellites at end of life, Journal of Space Technology and Science, to appear.

  19. A satellite orbital testbed for SATCOM using mobile robots

    Science.gov (United States)

    Shen, Dan; Lu, Wenjie; Wang, Zhonghai; Jia, Bin; Wang, Gang; Wang, Tao; Chen, Genshe; Blasch, Erik; Pham, Khanh

    2016-05-01

    This paper develops and evaluates a satellite orbital testbed (SOT) for satellite communications (SATCOM). SOT can emulate the 3D satellite orbit using the omni-wheeled robots and a robotic arm. The 3D motion of satellite is partitioned into the movements in the equatorial plane and the up-down motions in the vertical plane. The former actions are emulated by omni-wheeled robots while the up-down motions are performed by a stepped-motor-controlled-ball along a rod (robotic arm), which is attached to the robot. The emulated satellite positions will go to the measure model, whose results will be used to perform multiple space object tracking. Then the tracking results will go to the maneuver detection and collision alert. The satellite maneuver commands will be translated to robots commands and robotic arm commands. In SATCOM, the effects of jamming depend on the range and angles of the positions of satellite transponder relative to the jamming satellite. We extend the SOT to include USRP transceivers. In the extended SOT, the relative ranges and angles are implemented using omni-wheeled robots and robotic arms.

  20. Precise Relative Orbit Determination of Twin GRACE Satellites

    Institute of Scientific and Technical Information of China (English)

    ZHAO Qile; HU Zhigang; GUO Jing; LI Min; GE Maorong

    2010-01-01

    When formation flying spacecrafts are used as platform to gain earth oriented observation, precise baselines between these spacecrafts are always essential. Gravity recovery and climate experiment (GRACE) mission is aimed at mapping the global gravity field and its variation. Accurate baseline of GRACE satellites is necessary for the gravity field modeling. The determination of kinematic and reduced dynamic relative orbits of twin satellites has been studied in this paper, and an accuracy of 2 mm for dynamic relative orbits and 5 mm for kinematic ones can be obtained, whereby most of the double difference onboard GPS ambiguities are resolved.

  1. An autonomous orbit determination method for MEO and LEO satellite

    Science.gov (United States)

    Zhang, Hui; Wang, Jin; Yu, Guobin; Zhong, Jie; Lin, Ling

    2014-09-01

    A reliable and secure navigation system and assured autonomous capability of satellite are in high demand in case of emergencies in space. This paper introduces a novel autonomous orbit determination method for Middle-Earth-Orbit and Low-Earth-Orbit (MEO and LEO) satellite by observing space objects whose orbits are known. Generally, the geodetic satellites, such as LAGEOS and ETALONS, can be selected as the space objects here. The precision CCD camera on tracking gimbal can make a series of photos of the objects and surrounding stars when MEO and LEO satellite encounters the space objects. Then the information processor processes images and attains sightings and angular observations of space objects. Several clusters of such angular observations are incorporated into a batch least squares filter to obtain an orbit determination solution. This paper describes basic principle and builds integrated mathematical model. The accuracy of this method is analyzed by means of computer simulation. Then a simulant experiment system is built, and the experimental results demonstrate the feasibility and effectiveness of this method. The experimental results show that this method can attain the accuracy of 150 meters with angular observations of 1 arcsecond system error.

  2. Orbital rotations of a satellite. Case study: GOCE

    Science.gov (United States)

    Baur, O.; Grafarend, E. W.

    Considering a satellite orbit as a space curve in terms of Differential Geometry, we succeeded to merge orbital rotation and curvature/torsion by means of Cartan connection. Here we transform the Frenet frame of reference of the space curve to the Kepler frame of reference ("along track", "cross track", "quasi-radial") of the satellite orbit by means of Meusnier's Lemma. As a case study, we identify the spectrum of orbital rotation frequencies relative to a GOCE satellite configuration. In particular, we identify more than one rotational period. For a moving frame of reference of type Frenet, periods in the range of the time of revolution of the satellite as well as half the time of revolution appear, whereas even periods of a third the revolution time become visible for the Kepler frame of reference. We describe moving frame rotations with respect to the quasi-inertial frame of reference, namely the angular velocities around the base vectors, by means of curvature measures. This allows to calculate frame rotations by geometric orbit information only (GPS track), i.e. apart from gradiometer measurements. Among other things, we identify the angular velocity relative to the second base vector becoming strictly zero in case of the Frenet frame of reference.

  3. Smaller Satellite Operations Near Geostationary Orbit

    Science.gov (United States)

    2007-09-01

    Hubble_Space_Telescope>. 29 Heiner Klinkrad . Space Debris: Models and Risk Analysis. Chichester, UK. Springer, 2006. 32. 31 threshold, the satellites would be...Heiner Klinkrad . Space Debris: Models and Risk Analysis. Chichester, UK. Springer, 2006. 32. 35 Appendix B. 39 throughout such a maneuver36, which...46 Heiner Klinkrad . Space Debris: Models and Risk Analysis. Chichester, UK. Springer, 2006. 32. 47 S. Kilston. Ikonos-2, Block-1

  4. Copernicus POD Service: Orbit Determination of the Sentinel Satellites

    Science.gov (United States)

    Peter, Heike; Fernández, Jaime; Ayuga, Francisco; Féménias, Pierre

    2016-04-01

    The Copernicus POD (Precise Orbit Determination) Service is part of the Copernicus Processing Data Ground Segment (PDGS) of the Sentinel-1, -2 and -3 missions. A GMV-led consortium is operating the Copernicus POD Service being in charge of generating precise orbital products and auxiliary data files for their use as part of the processing chains of the respective Sentinel PDGS. Sentinel-1A was launched in April 2014 while Sentinel-2A was on June 2015 and both are routinely operated since then. Sentinel-3A is expected to be launched in February 2016 and Sentinel-1B is planned for spring 2016. Thus the CPOD Service will be operating three to four satellites simultaneously in spring 2016. The satellites of the Sentinel-1, -2, and -3 missions are all equipped with dual frequency high precision GPS receivers delivering the main observables for POD. Sentinel-3 satellites will additionally be equipped with a laser retro reflector for Satellite Laser Ranging and a receiver for DORIS tracking. All three types of observables (GPS, SLR and DORIS) will be used routinely for POD. The POD core of the CPOD Service is NAPEOS (Navigation Package for Earth Orbiting Satellites) the leading ESA/ESOC software for precise orbit determination. The careful selection of models and inputs is important to achieve the different but very demanding requirements in terms of orbital accuracy and timeliness for the Sentinel -1, -2 & -3 missions. The three missions require orbital products with various latencies from 30 minutes up to 20-30 days. The accuracy requirements are also different and partly very challenging, targeting 5 cm in 3D for Sentinel-1 and 2-3 cm in radial direction for Sentinel-3. Although the characteristics and the requirements are different for the three missions the same core POD setup is used to the largest extent possible. This strategy facilitates maintenance of the complex system of the CPOD Service. Updates in the dynamical modelling of the satellite orbits, e

  5. Earth Observing Satellite Orbit Design Via Particle Swarm Optimization

    Science.gov (United States)

    2014-08-01

    Earth Observing Satellite Orbit Design Via Particle Swarm Optimization Sharon Vtipil ∗ and John G. Warner ∗ US Naval Research Laboratory, Washington...number of passes per day given a satellite’s orbital altitude and inclination. These are used along with particle swarm optimization to determine optimal...well suited to use within a meta-heuristic optimization method such as the Particle Swarm Optimizer (PSO). This method seeks to find the optimal set

  6. Atmospheric Drag Perturbation in an Autonomous Orbit Determination for Satellite

    Institute of Scientific and Technical Information of China (English)

    XUE shen-fang; JIN Sheng-zhen; NING Shu-nian; SUN Cai-hong

    2005-01-01

    In this paper, an autonomous orbit determination method for satellite using a large field of view star sensor is presented. The simulation of orbit under atmospheric drag perturbation are given with expanded Kalman filtering.The large field of view star sensor has the same precision as star sensor and a sufficient filed of view. Therefore ,the refraction stars can be observed more accurately in real time. The geometric relation between the refracted starlight and the earth can be determined by tangent altitude of the refraction starlight. And then the earth enter can be determined in satellite body frame. The simulation shows that the precision of the mean square deviation of satellite's position and velocity is 5m and 0.01m/s respectively. The calculated decrement of the semi-major axis in one day is close to the theoretical result, and the absolute error is in the range of decimeter when the altitude of orbit is 750 km. The simulateion of orbit of different initial semi-major axis shows that the higher the altitude of orbit is, the smaller the decrement of the semi-major axis is, and when the altitude of orbit is 1700 km the decimeter of the semi-major axis is 10-7km.

  7. Semianalytic Satellite Theory (SST): Mathematical Algorithms

    Science.gov (United States)

    1994-01-01

    those of Brouwer , are faster but contain large errors due to inherent approximations in the theories. New orbit generators based on Semianalytic...theories like those of Brouwer , are faster but contain large errors due to inherent approximations in the theories. New orbit generators based on...Austin, TX 78712 Major Dave Vallado PL/VTA 3550 Aberdeen Ave SE Kirtland AFB, NM 87117-6008 Mr. Leo Early 2579A West 2 3 5 Ih St. Torrance, CA 90505 98

  8. Precise Orbit Determination of Earth's Satellites for Climate Change Investigation

    Science.gov (United States)

    Vespe, Francesco

    The tremendous improvement of the gravity field models which we are achieving with the last Earth's satellite missions like, CHAMP, GRACE and GOCE devoted to its recovery could make feasibile the use of precise orbit determination (POD) of Earth satellites as a tool for sensing global changes of some key atmosphere parameters like refractivity and extinction. Such improvements indeed, coupled with the huge number of running Earth's satellites and combinations of their orbital parameters (namely the nodes) in a gravity field free fashion (hereafter GFF) can magnify the solar radiation pressure acting on medium earth orbit satellites :GPS, Etalon and, in near real future GALILEO and its smooth modulation through the Earth's atmosphere (penumbra). We would remind that The GFF technique is able to cancel out with "n" satellite orbital parameters the first n-1 even zonal harmonics of the gravity field. Previously it was demonstrated that the signal we want to detect could in principle emerge from the noise threshold but, more refined models of the atmosphere would be needed to perform a more subtle analysis. So we will re-compute the signal features of penumbra by applying more refined atmospheric models. The analysis will be performed by including in GFF Earth's satellites equipped with DORIS systems (Jason, Spot 2-3-4-5, ENVISAT etc.) other than those ranged with SLR and GPS. The introduction of DORIS tracked satellites indeed will allow to cancel higher and higher order of even zonal harmonics and will make still more favourable the signal to noise budget. The analysis will be performed over a time span of at least few tens of years just to enhance probable climate signatures.

  9. Reconstructing the orbit of the Chelyabinsk meteor using satellite observations

    DEFF Research Database (Denmark)

    Proud, Simon Richard

    2013-01-01

    The large number of objects in a range of orbits around the Sun means that some will inevitably intersect the Earth, becoming a meteor. These objects are commonly comet fragments or asteroids. To determine the type of a particular meteor requires knowledge of its trajectory and orbital path...... that is typically estimated by using ground-based observations such as images or radar measurements. A lack of data can, however, make this difficult and create large uncertainties in the reconstructed orbit. Here I show a new method for estimating a meteor's trajectory, and hence allowing computation of the orbit......, based upon measurements from satellite sensors. The meteor that fell on 15 February 2013 is used as an example and the resulting orbit is in broad agreement with estimates from other observations. This new technique represents an alternative method for trajectory determination that may be particularly...

  10. Orbits of the small inner satellites of Jupiter

    Science.gov (United States)

    Synnott, S. P.

    1984-01-01

    Voyager images led to the discovery of the three small inner satellites of Jupiter, Adrastea, Metis, and Thebe. Attention is presently given to orbital parameter estimates and associated uncertainties that have been determined from Voyager imaging data, the achievable angular accuracy of which is about 0.00005 rad.

  11. Investigating the auroral electrojets with low altitude polar orbiting satellites

    DEFF Research Database (Denmark)

    Moretto, T.; Olsen, Nils; Ritter, P.

    2002-01-01

    Three geomagnetic satellite missions currently provide high precision magnetic field measurements from low altitude polar orbiting spacecraft. We demonstrate how these data can be used to determine the intensity and location of the horizontal currents that flow in the ionosphere, predominantly...

  12. Autonomous robotic operations for on-orbit satellite servicing

    Science.gov (United States)

    Ogilvie, Andrew; Allport, Justin; Hannah, Michael; Lymer, John

    2008-04-01

    The Orbital Express Demonstration System (OEDS) flight test successfully demonstrated technologies required to autonomously service satellites on-orbit. The mission's integrated robotics solution, the Orbital Express Demonstration Manipulator System (OEDMS) developed by MDA, performed critical flight test operations. The OEDMS comprised a six-jointed robotic manipulator arm and its avionics, non-proprietary servicing and ORU (Orbital Replacement Unit) interfaces, a vision and arm control system for autonomous satellite capture, and a suite of Ground Segment and Flight Segment software allowing script generation and execution under supervised or full autonomy. The arm was mounted on ASTRO, the servicer spacecraft developed by Boeing. The NextSat, developed by Ball Aerospace, served as the client satellite. The OEDMS demonstrated two key goals of the OEDS flight test: autonomous free-flyer capture and berthing of a client satellite, and autonomous transfer of ORUs from servicer to client and back. The paper provides a description of the OEDMS and the key operations it performed.

  13. Improving satellite vulnerability assessment to untrackable orbital debris

    Science.gov (United States)

    Welty, Nathan; Schaefer, Frank; Rudolph, Martin; Destefanis, Roberto; Grassi, Lilith

    2012-07-01

    The projected growth in the untrackable orbital debris population will place an increased emphasis on satellite vulnerability assessments during both design and mission operations. This study presents an enhanced method for assessing satellite vulnerability to untrackable orbital debris that expands on traditional practices. By looking beyond structural penetration of the spacecraft, the method predicts the survivability of individual components and the associated degradation of system functionality resulting from untrackable debris impacts. A new risk assessment tool, the Particle Impact Risk and Vulnerability Assessment Tool (PIRAT), has been developed based on this method and is also presented here. It interfaces with both the NASA ORDEM2000 and ESA MASTER-2009 debris models and has been validated against the benchmark test cases from the Inter-Agency Space Debris Coordination Committee (IADC). This study concludes with an example vulnerability assessment using PIRAT for a generic Earth observation satellite in a Sun-synchronous low-Earth orbit. The results illustrate the additional insight provided by this method that can be used to improve the robustness of future satellite designs and mitigate the overall mission risk posed by untrackable orbital debris.

  14. An Earth Orbiting Satellite Service and Repair Facility

    Science.gov (United States)

    Berndt, Andrew; Cardoza, Mike; Chen, John; Daley, Gunter; Frizzell, Andy; Linton, Richard; Rast, Wayne

    1989-01-01

    A conceptual design was produced for the Geosynchronous Satellite Servicing Platform (GSSP), an orbital facility capable of repairing and servicing satellites in geosynchronous orbit. The GSSP is a man-tended platform, which consists of a habitation module, operations module, service bay and truss assembly. This design review includes an analysis of life support systems, thermal and power requirements, robotic and automated systems, control methods and navigation, and communications systems. The GSSP will utilize existing technology available at the time of construction, focusing mainly on modifying and integrating existing systems. The entire facility, along with two satellite retrieval vehicles (SRV), will be placed in geosynchronous orbit by the Advanced Launch System. The SRV will be used to ferry satellites to and from the GSSP. Technicians will be transferred from Earth to the GSSP and back in an Apollo-derived Crew Transfer Capsule (CTC). These missions will use advanced telerobotic equipment to inspect and service satellites. Four of these missions are tentatively scheduled per year. At this rate, the GSSP will service over 650 satelites during the projected 25 year lifespan.

  15. Benefits Derived From Laser Ranging Measurements for Orbit Determination of the GPS Satellite Orbit

    Science.gov (United States)

    Welch, Bryan W.

    2007-01-01

    While navigation systems for the determination of the orbit of the Global Position System (GPS) have proven to be very effective, the current research is examining methods to lower the error in the GPS satellite ephemerides below their current level. Two GPS satellites that are currently in orbit carry retro-reflectors onboard. One notion to reduce the error in the satellite ephemerides is to utilize the retro-reflectors via laser ranging measurements taken from multiple Earth ground stations. Analysis has been performed to determine the level of reduction in the semi-major axis covariance of the GPS satellites, when laser ranging measurements are supplemented to the radiometric station keeping, which the satellites undergo. Six ground tracking systems are studied to estimate the performance of the satellite. The first system is the baseline current system approach which provides pseudo-range and integrated Doppler measurements from six ground stations. The remaining five ground tracking systems utilize all measurements from the current system and laser ranging measurements from the additional ground stations utilized within those systems. Station locations for the additional ground sites were taken from a listing of laser ranging ground stations from the International Laser Ranging Service. Results show reductions in state covariance estimates when utilizing laser ranging measurements to solve for the satellite s position component of the state vector. Results also show dependency on the number of ground stations providing laser ranging measurements, orientation of the satellite to the ground stations, and the initial covariance of the satellite's state vector.

  16. Orbital Perturbations of the Galilean Satellites During Planetary Encounters

    CERN Document Server

    Deienno, R; Vokrouhlicky, D; Yokoyama, T

    2014-01-01

    The Nice model of the dynamical instability and migration of the giant planets can explain many properties of the present Solar System, and can be used to constrain its early architecture. In the jumping-Jupiter version of the Nice model, required from the terrestrial planet constraint and dynamical structure of the asteroid belt, Jupiter has encounters with an ice giant. Here we study the survival of the Galilean satellites in the jumping-Jupiter model. This is an important concern because the ice-giant encounters, if deep enough, could dynamically perturb the orbits of the Galilean satellites, and lead to implausible results. We performed numerical integrations where we tracked the effect of planetary encounters on the Galilean moons. We considered three instability cases from Nesvorny & Morbidelli (2012) that differed in the number and distribution of encounters. We found that in one case, where the number of close encounters was relatively small, the Galilean satellite orbits were not significantly af...

  17. An analysis of the wide area differential method of geostationary orbit satellites

    Institute of Scientific and Technical Information of China (English)

    CAI ChengLin; LI XiaoHui; WU HaiTao

    2009-01-01

    This work aims to obtain a wide area differential method for geostationary orbit (GEO) constellation. A comparison between the dilution of precision (DOP) of four-dimensional (4D) calculation including satellite clock errors and ephemeris errors and that of three-dimensional (3D) calculation only including ephemeris errors with the inverse positioning theory of GPS shows the conclusion that all the 3D PDOPs are greatly reduced. Based on this, a basic idea of correcting satellite clock errors and ephem-eris errors apart is put forward, and moreover, a specific method of separation is proposed. Satellite clock errors are separated in a master station with time synchronization, and all the remaining pseudo-range errors after the satellite clock errors have been deducted are used to work out ephemeris corrections of all GEO satellites. By a comparative analysis of user positioning accuracy before and after differential, the wide area differential method is verified to be quite valid for GEO constellation.

  18. Advances in precision orbit determination of GRACE satellites

    Science.gov (United States)

    Bettadpur, Srinivas; Save, Himanshu; Kang, Zhigui

    The twin Gravity Recovery And Climate Experiment (GRACE) satellites carry a complete suite of instrumentation essential for precision orbit determination (POD). Dense, continuous and global tracking is provided by the Global Positioning System receivers. The satellite orientation is measured using two star cameras. High precision measurements of non-gravitational accel-erations are provided by accelerometers. Satellite laser ranging (SLR) retroreflectors are used for collecting data for POD validation. Additional validation is provided by the highly precise K-Band ranging system measuring distance changes between the twin GRACE satellites. This paper presents the status of POD for GRACE satellites. The POD quality will be vali-dated using the SLR and K-Band ranging data. The POD quality improvement from upgraded modeling of the GPS observations, including the transition to the new IGS05 standards, will be discussed. In addition, the contributions from improvements in the gravity field modeling -partly arising out of GRACE science results -will be discussed. The aspects of these improve-ments that are applicable for the POD of other low-Earth orbiting satellites will be discussed as well.

  19. Packet routing algorithm for polar orbit LEO satellite constellation network

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Broadband satellite networks are capable of providing global coverage and support various services. The networks constructed by Low Earth Orbit (LEO) satellite constellations have attracted great interests because of their short round-trip delays and wide bandwidths. A challenging problem is to develop a simple and efficient packet routing algorithm for the LEO satellite constellation network. This paper presents a SpiderWeb Topological Network (SWTN) and a distributed packet routing algorithm for the LEO satellite constellation network based on the SWTN. The algorithm gives the minimum propagation delay paths with low computational complexity and requires no routing tables, which is practical for on-board processing. The performance of the algorithm is demonstrated through simulations.

  20. Orbit Control of Fly-around Satellite with Highly Eccentric Orbit Using Solar Radiation Pressure

    Science.gov (United States)

    Yong-gang, Hou; Chang-yin, Zhao; Ming-jiang, Zhang; Rong-yu, Sun

    2017-01-01

    The method of controlling highly eccentric accompanying flight orbit using the solar wing is proposed in this paper. The formation is maintained by controlling the orbit of the accompanying satellite (follower). The accompanying satellite rotates around its inertial principal axis with a constant angular velocity. The control on the accompanying satellite is divided into the in-plane control and out-of-plane control. The in-plane control is superior to the out-of-plane control. The out-of-plane control force is applied when the in-plane error is eliminated or the in-plane control force can not be supplied due to some geometrical factors. By the sliding mode control method, the magnitude and direction of the control force required by the in-plane orbit control are calculated. Then accordingly, the expression of the solar wing orientation with respect to the satellite body in the control process is derived, so that by adjusting the orientation of the solar wing, the required control force can be obtained. Finally, the verification on this method is performed by numerical simulations, including the orbit adjustment, error elimination, and the orbit maintenance. It is shown that this method can keep the error less than 5 m, and it is feasible for the space formation flight.

  1. Astrometric positioning and orbit determination of geostationary satellites

    Science.gov (United States)

    Montojo, F. J.; López Moratalla, T.; Abad, C.

    2011-03-01

    In the project titled “Astrometric Positioning of Geostationary Satellite” (PASAGE), carried out by the Real Instituto y Observatorio de la Armada (ROA), optical observation techniques were developed to allow satellites to be located in the geostationary ring with angular accuracies of up to a few tenths of an arcsec. These techniques do not necessarily require the use of large telescopes or especially dark areas, and furthermore, because optical observation is a passive method, they could be directly applicable to the detection and monitoring of passive objects such as space debris in the geostationary ring.By using single-station angular observations, geostationary satellite orbits with positional uncertainties below 350 m (2 sigma) were reconstructed using the Orbit Determination Tool Kit software, by Analytical Graphics, Inc. This software is used in collaboration with the Spanish Instituto Nacional de Técnica Aeroespacial.Orbit determination can be improved by taking into consideration the data from other stations, such as angular observations alone or together with ranging measurements to the satellite. Tests were carried out combining angular observations with the ranging measurements obtained from the Two-Way Satellite Time and Frequency Transfer technique that is used by ROA’s Time Section to carry out time transfer with other laboratories. Results show a reduction of the 2 sigma uncertainty to less than 100 m.

  2. Control of satellite clusters in elliptic orbit with limited communication.

    Science.gov (United States)

    Chichka, David F; Belanger, Gene; Speyer, Jason L

    2004-05-01

    The cooperative control of satellite clusters in elliptical, low-Earth orbit is studied, with the goal of minimizing the necessary information passed among the individual satellites in the cluster. We investigate two possible control paradigms in this paper. The system is described using linearized equations of motion, allowing it to be expressed as a time-varying linear system. The control objective is to attain a required formation at a specified point along the orbit. A decentralized controller is used, in which each satellite maintains a local estimate of the overall state of the cluster. These estimates, along with any control information, are shared after any satellite executes a control action. The second paradigm is an extension of the first, in which state estimates are never shared, and only the control information is passed. In each case, less information being passed results in a higher computational burden on each satellite. Simulation results show cyclic errors, likely induced by higher-order terms in eccentricity and inclinations. The controller that shares state estimates performs much better than the controller that passes only control information.

  3. Geosynchronous Earth Orbit/Low Earth Orbit Space Object Inspection and Debris Disposal: A Preliminary Analysis Using a Carrier Satellite With Deployable Small Satellites

    OpenAIRE

    Crockett, Derick A.

    2013-01-01

    Detailed observations of geosynchronous satellites from earth are very limited. To better inspect these high altitude satellites, the use of small, refuelable satellites is proposed. The small satellites are stationed on a carrier platform in an orbit near the population of geosynchronous satellites. A carrier platform equipped with deployable, refuelable SmallSats is a viable option to inspect geosynchronous satellites. The propellant requirement to transfer to a targeted geosynchronous sate...

  4. Measuring orbital interaction using quantum information theory

    Energy Technology Data Exchange (ETDEWEB)

    Rissler, Joerg [Fachbereich Physik, Philipps-Universitaet Marburg, AG Vielteilchentheorie, Renthof 6, D-35032 Marburg (Germany)], E-mail: rissler@staff.uni-marburg.de; Noack, Reinhard M. [Fachbereich Physik, Philipps-Universitaet Marburg, AG Vielteilchentheorie, Renthof 6, D-35032 Marburg (Germany); White, Steven R. [Department of Physics and Astronomy, University of California, Irvine, CA 92697-4575 (United States)

    2006-04-21

    Quantum information theory gives rise to a straightforward definition of the interaction of electrons I {sub p,q} in two orbitals p,q for a given many-body wave function. A convenient way to calculate the von Neumann entropies needed is presented in this work, and the orbital interaction I {sub p,q} is successfully tested for different types of chemical bonds. As an example of an application of I {sub p,q} beyond the interpretation of wave functions, I {sub p,q} is then used to investigate the ordering problem in the density-matrix renormalization group.

  5. Orbital perturbations of the Galilean satellites during planetary encounters

    Energy Technology Data Exchange (ETDEWEB)

    Deienno, Rogerio; Nesvorný, David [Southwest Research Institute, Boulder, CO (United States); Vokrouhlický, David [Institute of Astronomy, Charles University, Prague (Czech Republic); Yokoyama, Tadashi, E-mail: rogerio.deienno@gmail.com [Universidade Estadual Paulista, Rio Claro, SP (Brazil)

    2014-08-01

    The Nice model of the dynamical instability and migration of the giant planets can explain many properties of the present solar system, and can be used to constrain its early architecture. In the jumping-Jupiter version of the Nice model, required from the terrestrial planet constraint and dynamical structure of the asteroid belt, Jupiter has encounters with an ice giant. Here, we study the survival of the Galilean satellites in the jumping-Jupiter model. This is an important concern because the ice-giant encounters, if deep enough, could dynamically perturb the orbits of the Galilean satellites and lead to implausible results. We performed numerical integrations where we tracked the effect of planetary encounters on the Galilean moons. We considered three instability cases from Nesvorný and Morbidelli that differed in the number and distribution of encounters. We found that in one case, where the number of close encounters was relatively small, the Galilean satellite orbits were not significantly affected. In the other two, the orbital eccentricities of all moons were excited by encounters, Callisto's semimajor axis changed, and, in a large fraction of trials, the Laplace resonance of the inner three moons was disrupted. The subsequent evolution by tides damps eccentricities and can recapture the moons in the Laplace resonance. A more important constraint is represented by the orbital inclinations of the moons, which can be excited during the encounters and not appreciably damped by tides. We find that one instability case taken from Nesvorný and Morbidelli clearly does not meet this constraint. This shows how the regular satellites of Jupiter can be used to set limits on the properties of encounters in the jumping-Jupiter model, and help us to better understand how the early solar system evolved.

  6. Orbital Perturbations of the Galilean Satellites during Planetary Encounters

    Science.gov (United States)

    Deienno, Rogerio; Nesvorný, David; Vokrouhlický, David; Yokoyama, Tadashi

    2014-08-01

    The Nice model of the dynamical instability and migration of the giant planets can explain many properties of the present solar system, and can be used to constrain its early architecture. In the jumping-Jupiter version of the Nice model, required from the terrestrial planet constraint and dynamical structure of the asteroid belt, Jupiter has encounters with an ice giant. Here, we study the survival of the Galilean satellites in the jumping-Jupiter model. This is an important concern because the ice-giant encounters, if deep enough, could dynamically perturb the orbits of the Galilean satellites and lead to implausible results. We performed numerical integrations where we tracked the effect of planetary encounters on the Galilean moons. We considered three instability cases from Nesvorný & Morbidelli that differed in the number and distribution of encounters. We found that in one case, where the number of close encounters was relatively small, the Galilean satellite orbits were not significantly affected. In the other two, the orbital eccentricities of all moons were excited by encounters, Callisto's semimajor axis changed, and, in a large fraction of trials, the Laplace resonance of the inner three moons was disrupted. The subsequent evolution by tides damps eccentricities and can recapture the moons in the Laplace resonance. A more important constraint is represented by the orbital inclinations of the moons, which can be excited during the encounters and not appreciably damped by tides. We find that one instability case taken from Nesvorný & Morbidelli clearly does not meet this constraint. This shows how the regular satellites of Jupiter can be used to set limits on the properties of encounters in the jumping-Jupiter model, and help us to better understand how the early solar system evolved.

  7. Laser beaming demonstrations to high-orbit satellites

    Science.gov (United States)

    Lipinski, Ronald J.; Meister, Dorothy C.; Tucker, Steve D.; Fugate, Robert Q.; Leatherman, Phillip; Maes, Carl F.; Lange, W. Joseph; Cowan, William D.; Meulenberg, Andrew; Cleis, Richard A.; Spinhirne, James M.; Ruane, Raymond E.; Michie, Robert B.; Vonderhaar, Donald F.

    1994-05-01

    A team of Phillips Laboratory, COMSAT Laboratories, and Sandia National Laboratories plans to demonstrate state-of-the-art laser-beaming demonstrations to high-orbit satellites. The demonstrations will utilize the 1.5-m diameter telescope with adaptive optics at the AFPL Starfire Optical Range (SOR) and a ruby laser provided by the Air Force and Sandia (1 - 50 kW and 6 ms at 694.3 nm). The first targets will be corner-cube retro-reflectors left on the moon by the Apollo 11, 14, and 15 landings. We attempt to use adaptive optics for atmospheric compensation to demonstrate accurate and reliable beam projection with a series of shots over a span of time and shot angle. We utilize the return signal from the retro- reflectors to help determine the beam diameter on the moon and the variations in pointing accuracy caused by atmospheric tilt. This is especially challenging because the retro-reflectors need to be in the lunar shadow to allow detection over background light. If the results from this experiment are encouraging, we will at a later date direct the beam at a COMSAT satellite in geosynchronous orbit as it goes into the shadow of the earth. We utilize an onboard monitor to measure the current generated in the solar panels on the satellite while the beam is present. A threshold irradiance of about 4 W/m2 on orbit is needed for this demonstration.

  8. An Orbiting Standards Platform for communication satellite system RF measurements

    Science.gov (United States)

    Wallace, R. G.; Woodruff, J. J.

    1978-01-01

    The Orbiting Standards Platform (OSP) is a proposed satellite dedicated to performing RF measurements on space communications systems. It would consist of a quasi-geostationary spacecraft containing an ensemble of calibrated RF sources and field strength meters operating in several microwave bands, and would be capable of accurately and conveniently measuring critical earth station and satellite RF performance parameters, such as EIRP, gain, figure of merit (G/T), crosspolarization, beamwidth, and sidelobe levels. The feasibility and utility of the OSP concept has been under joint study by NASA, NBS, Comsat and NTIA. A survey of potential OSP users was conducted by NTIA as part of this effort. The response to this survey, along with certain trends in satellite communications system design, indicates a growing need for such a measurement service.

  9. Validation of GOCE Satellite Gravity Gradient Observations by Orbital Analysis

    Science.gov (United States)

    Visser, P.

    The upcoming European Space Agency ESA Gravity Field and Steady-State Ocean Circular Explorer GOCE mission foreseen to be launched in 2007 will carry a highly sensitive gradiometer consisting of 3 orthogonal pairs of ultra-sensitive accelerometers A challenging calibration procedure has been developed to calibrate the gradiometer not only before launch by a series of on-ground tests but also after launch by making use of on-board cold-gas thrusters to provoke a long series of gradiometer shaking events which will provide observations for its calibration This calibration can be checked by a combined analysis of GPS Satellite-to-Satellite Tracking SST and Satellite Gravity Gradient SGG observations An assessment has been made of how well SGG calibration parameters can be estimated in a combined orbit and gravity field estimation from these observations

  10. Tracking target objects orbiting earth using satellite-based telescopes

    Energy Technology Data Exchange (ETDEWEB)

    De Vries, Willem H; Olivier, Scot S; Pertica, Alexander J

    2014-10-14

    A system for tracking objects that are in earth orbit via a constellation or network of satellites having imaging devices is provided. An object tracking system includes a ground controller and, for each satellite in the constellation, an onboard controller. The ground controller receives ephemeris information for a target object and directs that ephemeris information be transmitted to the satellites. Each onboard controller receives ephemeris information for a target object, collects images of the target object based on the expected location of the target object at an expected time, identifies actual locations of the target object from the collected images, and identifies a next expected location at a next expected time based on the identified actual locations of the target object. The onboard controller processes the collected image to identify the actual location of the target object and transmits the actual location information to the ground controller.

  11. 47 CFR 25.146 - Licensing and operating authorization provisions for the non-geostationary satellite orbit fixed...

    Science.gov (United States)

    2010-10-01

    ... provisions for the non-geostationary satellite orbit fixed-satellite service (NGSO FSS) in the bands 10.7 GHz... Licensing and operating authorization provisions for the non-geostationary satellite orbit fixed-satellite... submitted for the proposed non-geostationary satellite orbit fixed-satellite service (NGSO FSS) system...

  12. On-orbit target tracking and inspection by satellite formation

    Institute of Scientific and Technical Information of China (English)

    Guang Zhai; Jingrui Zhang; Zhicheng Zhou

    2013-01-01

    A new type of estimator is developed for the satel-lite formation to track and inspect on-orbit targets. The fol ower satel ite in the formation works without relative sensors, and its target pointing commands are derived based on relative orbital dynamics. The centralized estimator based on truth measurement is designed, however, this estimator is proved unstable because of the lack of necessary measurement information. After that, an alternative estimator based on pseudo measurement is designed, and its observability and control ability are analyzed to qualitatively evaluate the convergence performance. Final y, an on-orbit target inspection scenario is numerical y simulated to verify the perfor-mance of the estimator based on pseudo measurement.

  13. Improvement of orbit determination accuracy for Beidou Navigation Satellite System with Two-way Satellite Time Frequency Transfer

    Science.gov (United States)

    Tang, Chengpan; Hu, Xiaogong; Zhou, Shanshi; Guo, Rui; He, Feng; Liu, Li; Zhu, Lingfeng; Li, Xiaojie; Wu, Shan; Zhao, Gang; Yu, Yang; Cao, Yueling

    2016-10-01

    The Beidou Navigation Satellite System (BDS) manages to estimate simultaneously the orbits and clock offsets of navigation satellites, using code and carrier phase measurements of a regional network within China. The satellite clock offsets are also directly measured with Two-way Satellite Time Frequency Transfer (TWSTFT). Satellite laser ranging (SLR) residuals and comparisons with the precise ephemeris indicate that the radial error of GEO satellites is much larger than that of IGSO and MEO satellites and that the BDS orbit accuracy is worse than GPS. In order to improve the orbit determination accuracy for BDS, a new orbit determination strategy is proposed, in which the satellite clock measurements from TWSTFT are fixed as known values, and only the orbits of the satellites are solved. However, a constant systematic error at the nanosecond level can be found in the clock measurements, which is obtained and then corrected by differencing the clock measurements and the clock estimates from orbit determination. The effectiveness of the new strategy is verified by a GPS regional network orbit determination experiment. With the IGS final clock products fixed, the orbit determination and prediction accuracy for GPS satellites improve by more than 50% and the 12-h prediction User Range Error (URE) is better than 0.12 m. By processing a 25-day of measurement from the BDS regional network, an optimal strategy for the satellite-clock-fixed orbit determination is identified. User Equivalent Ranging Error is reduced by 27.6% for GEO satellites, but no apparent reduction is found for IGSO/MEO satellites. The SLR residuals exhibit reductions by 59% and 32% for IGSO satellites but no reductions for GEO and MEO satellites.

  14. Theory and design methods of special space orbits

    CERN Document Server

    Zhang, Yasheng; Zhou, Haijun

    2017-01-01

    This book focuses on the theory and design of special space orbits. Offering a systematic and detailed introduction to the hovering orbit, spiral cruising orbit, multi-target rendezvous orbit, initiative approaching orbit, responsive orbit and earth pole-sitter orbit, it also discusses the concept, theory, design methods and application of special space orbits, particularly the design and control method based on kinematics and astrodynamics. In addition the book presents the latest research and its application in space missions. It is intended for researchers, engineers and postgraduates, especially those working in the fields of orbit design and control, as well as space-mission planning and research.

  15. Demonstration on the indexes design of gravity satellite orbit parameters in the low-low satellite-to-satellite tracking mode

    Directory of Open Access Journals (Sweden)

    Liu Xiaogang

    2013-02-01

    Full Text Available Combining with the exigent demand of the development of satellite gravimetry system in China, aiming at the determination of technical indexes of gravity satellite orbit parameters, on the basis of the numerical experiments and results analysis, the design indexes of gravity satellite orbit height, inter-satellite range and the orbit inclination are analyzed and calculated, and the issues towards twin gravity satellites such as coherence requirement of the orbit semi-major axes, control requirement of the pitch angle and time interval requirement to keep twin satellites formation in mobility are discussed. Results show that the satellite orbit height is 400 km to 500 km, the inter-satellite range is about 220 km, the satellite orbit inclination is between polar orbit and sun-synchronous orbit, the semi-major axes difference of twin satellites orbit is within ±70. 146 m, the pitch angle of twin satellites is about 0.9 degree, and the time interval to keep twin satellites formation in mobility is 7 days to 15 days.

  16. Satellite broadcasting experiments and in-orbit performance of BSE

    Science.gov (United States)

    Shimoseko, S.; Yamamoto, M.; Kajikawa, M.; Arai, K.

    1981-09-01

    The Japanese medium-scale Broadcasting Satellite for Experimental Purposes (BSE) was launched in April 1978 and placed in a geostationary orbit at 110 deg E longitude. Two transmitters with bandwidths of 50 MHz and 80 MHz were mounted on the BSE transponder to conduct experiments on various television signals; no significant variation in transmission characteristics was observed during the two-year period. Rain attenuation characteristics in the 12 GHz band were studied and a value of 6.6 dB was registered in Owase, one of the most rainy areas in Japan. The strength of the rain scatter wave of the BSE uplink signal was measured to investigate the characteristics between broadcasting satellite uplink and a terrestrial link in the 14 GHz band. Uplink power control, important for the efficient operation of satellite communications systems, was shown to compensate the variations in receiving power due to fluctuations in the beam pointing of the satellite antenna. Routine operations were performed to check the three-axis attitude control, stationkeeping, housekeeping, and the bus equipment. The electrical power, secondary propulsion, thermal control, and communication subsystems were also evaluated. The first operations 1 broadcasting satellite is scheduled to be launched early in 1984.

  17. Synchronization and Antisynchronization of a Planar Oscillation of Satellite in an Elliptic Orbit via Active Control

    Directory of Open Access Journals (Sweden)

    Mohammad Shahzad

    2011-01-01

    Full Text Available We have investigated the synchronization and antisynchronization behaviour of two identical planar oscillation of a satellite in elliptic orbit evolving from different initial conditions using the active control technique based on the Lyapunov stability theory and the Routh-Hurwitz criteria. The designed controller, with our own choice of the coefficient matrix of the error dynamics that satisfy the Lyapunov stability theory and the Routh-Hurwitz criteria, is found to be effective in the stabilization of the error states at the origin, thereby, achieving synchronization and antisynchronization between the states variables of two nonlinear dynamical systems under consideration. The results are validated by numerical simulations using mathematica.

  18. Orbit Determination of the SELENE Satellites Using Multi-Satellite Data Types and Evaluation of SELENE Gravity Field Models

    Science.gov (United States)

    Goossens, S.; Matsumoto, K.; Noda, H.; Araki, H.; Rowlands, D. D.; Lemoine, F. G.

    2011-01-01

    The SELENE mission, consisting of three separate satellites that use different terrestrial-based tracking systems, presents a unique opportunity to evaluate the contribution of these tracking systems to orbit determination precision. The tracking data consist of four-way Doppler between the main orbiter and one of the two sub-satellites while the former is over the far side, and of same-beam differential VLBI tracking between the two sub-satellites. Laser altimeter data are also used for orbit determination. The contribution to orbit precision of these different data types is investigated through orbit overlap analysis. It is shown that using four-way and VLBI data improves orbit consistency for all satellites involved by reducing peak values in orbit overlap differences that exist when only standard two-way Doppler and range data are used. Including laser altimeter data improves the orbit precision of the SELENE main satellite further, resulting in very smooth total orbit errors at an average level of 18m. The multi-satellite data have also resulted in improved lunar gravity field models, which are assessed through orbit overlap analysis using Lunar Prospector tracking data. Improvements over a pre-SELENE model are shown to be mostly in the along-track and cross-track directions. Orbit overlap differences are at a level between 13 and 21 m with the SELENE models, depending on whether l-day data overlaps or I-day predictions are used.

  19. Operational high latitude surface irradiance products from polar orbiting satellites

    Science.gov (United States)

    Godøy, Øystein

    2016-12-01

    It remains a challenge to find an adequate approach for operational estimation of surface incoming short- and longwave irradiance at high latitudes using polar orbiting meteorological satellite data. In this presentation validation results at a number of North Atlantic and Arctic Ocean high latitude stations are presented and discussed. The validation results have revealed that although the method works well and normally fulfil the operational requirements, there is room for improvement. A number of issues that can improve the estimates at high latitudes have been identified. These improvements are partly related to improved cloud classification using satellite data and partly related to improved handling of multiple reflections over bright surfaces (snow and sea ice), especially in broken cloud conditions. Furthermore, the availability of validation sites over open ocean and sea ice is a challenge.

  20. Artificial Crater Formation on Satellite Surfaces Using an Orbiting Railgun

    Science.gov (United States)

    Dissly, R. W.; Miller, K. L.; Carlson, R. J.

    2003-01-01

    The specification of greater than 45kW of disposable power available on the JIMO spacecraft raises the possibility of a new class of instrumentation that has utility at such power levels. In this presentation we discuss the concept of an electromagnetic mass driver that can launch projectiles from orbit around one of the Galilean satellites directed on a trajectory that will impact the satellite surface. The resulting impact will create a crater that will provide information on the mechanical properties of surface and near-surface materials, expose subsurface materials for remote spectral identification, and form a vapor cloud that can be sensed for composition either remotely or in-situ. An analog for such a controlled cratering experiment is Deep Impact, a mission to observe the crater and ensuing ejecta cloud formed by a ballistic projectile into a comet surface in July, 2005.

  1. Artificial Crater Formation on Satellite Surfaces Using an Orbiting Railgun

    Science.gov (United States)

    Dissly, R. W.; Miller, K. L.; Carlson, R. J.

    2003-01-01

    The specification of greater than 45kW of disposable power available on the JIMO spacecraft raises the possibility of a new class of instrumentation that has utility at such power levels. In this presentation we discuss the concept of an electromagnetic mass driver that can launch projectiles from orbit around one of the Galilean satellites directed on a trajectory that will impact the satellite surface. The resulting impact will create a crater that will provide information on the mechanical properties of surface and near-surface materials, expose subsurface materials for remote spectral identification, and form a vapor cloud that can be sensed for composition either remotely or in-situ. An analog for such a controlled cratering experiment is Deep Impact, a mission to observe the crater and ensuing ejecta cloud formed by a ballistic projectile into a comet surface in July, 2005.

  2. Molecular orbital calculations using chemical graph theory

    CERN Document Server

    Dias, Jerry Ray

    1993-01-01

    Professor John D. Roberts published a highly readable book on Molecular Orbital Calculations directed toward chemists in 1962. That timely book is the model for this book. The audience this book is directed toward are senior undergraduate and beginning graduate students as well as practicing bench chemists who have a desire to develop conceptual tools for understanding chemical phenomena. Although, ab initio and more advanced semi-empirical MO methods are regarded as being more reliable than HMO in an absolute sense, there is good evidence that HMO provides reliable relative answers particularly when comparing related molecular species. Thus, HMO can be used to rationalize electronic structure in 1t-systems, aromaticity, and the shape use HMO to gain insight of simple molecular orbitals. Experimentalists still into subtle electronic interactions for interpretation of UV and photoelectron spectra. Herein, it will be shown that one can use graph theory to streamline their HMO computational efforts and to arrive...

  3. Analysis of Errors in a Special Perturbations Satellite Orbit Propagator

    Energy Technology Data Exchange (ETDEWEB)

    Beckerman, M.; Jones, J.P.

    1999-02-01

    We performed an analysis of error densities for the Special Perturbations orbit propagator using data for 29 satellites in orbits of interest to Space Shuttle and International Space Station collision avoidance. We find that the along-track errors predominate. These errors increase monotonically over each 36-hour prediction interval. The predicted positions in the along-track direction progressively either leap ahead of or lag behind the actual positions. Unlike the along-track errors the radial and cross-track errors oscillate about their nearly zero mean values. As the number of observations per fit interval decline the along-track prediction errors, and amplitudes of the radial and cross-track errors, increase.

  4. Application of Unscented Kalman Filter in Satellite Orbit Simulation

    Institute of Scientific and Technical Information of China (English)

    ZHAO Dongming; CAI Zhiwu

    2006-01-01

    A new estimate method is proposed, which takes advantage of the unscented transform method, thus the true mean and covariance are approximated more accurately. The new method can be applied to non-linear systems without the linearization process necessary for the EKF, and it does not demand a Gaussian distribution of noise and what's more, its ease of implementation and more accurate estimation features enables it to demonstrate its good performance in the experiment of satellite orbit simulation. Numerical experiments show that the application of the unscented Kalman filter is more effective than the EKF.

  5. Orbit and Attitude Control of Asymmetric Satellites in Polar Near-Circular Orbit

    Directory of Open Access Journals (Sweden)

    Wei Zhao

    2009-10-01

    Full Text Available In this paper, the general problem about the orbit and attitude dynamic model is discussed. A feedback linearization control method is introduced for this model. Due to the asymmetric structure, the orbital properties of such satellites are the same as traditional symmetric ones, but the attitude properties are greatly different from the symmetric counterparts. With perturbations accumulate with time, the attitude angles increase periodically with time, but the orbital elements change much slower than the attitude angles. In the attitude dynamic model, chaos could appear. Traditional linear controllers can not compensate enough for asymmetric satellite when the mission is complex, especially in maneuver missions. Thus nonlinear control method is required to solve such problem in large scale. A feedback linearization method, one robust nonlinear control method, is introduced and applied to the asymmetric satellite in this paper. Some simulations are also given and the results show that feedback linearization controller not only stabilizes the system, but also exempt the chaos in the system.

  6. Orbital List Ephemerides Design of LEO Navigation Augmentation Satellite

    Directory of Open Access Journals (Sweden)

    FANG Shanchuan

    2016-08-01

    Full Text Available A set of reliable LEO (low earth orbit broadcast ephemerides is required to be designed specifically if LEOs, with current GEOs, are also utilized as navigation augmentation satellites. The classical nine state parameters-based GLONASS-type broadcast ephemerides model can only represent precisely the 30-minute orbital motions of the medium and high earth orbiters. To directly deal with LEOs, a modified 21-parameter broadcast ephemerides model is proposed. First, the short-term variations of the main perturbation forces of LEOs are analyzed. Then a set of simple quadratic polynomials and harmonic functions is adopted to compensate mathematically atmospheric drag perturbation and other effects. A thoroughly simulation for the LEOs of altitude 500~1200 km is given to demonstrate the impact of the numbers of ephemerides parameters, the length of the fitting arcs and the sample rates on the fitting precision. The results of 20-minute fitting arc (approximately 1/5 of orbital period show that the average RMS of the fitting user range error (FURE is less than 0.05 m for LEOs higher than 700 km and within 0.03 m for LEOs of altitude 1000 km.

  7. Formation flying orbit design for the distributed synthetic aperture radar satellite

    Institute of Scientific and Technical Information of China (English)

    CHEN Jie; ZHOU Yinqing; LI Chunsheng

    2004-01-01

    Formation flying orbit design is one of the key technologies for system design and performance analysis of the distributed SAR satellites. The approximately analytic solution of the passive stable formation flying orbit elements is explored based on the expansion form of Kepler's equation. A new method of orbital parameters design for three-dimensional formation flying SAR satellites is presented, and the precision of the orbital elements is analyzed. Formation flying orbit elements are calculated for the L-Band distributed SAR satellites using the formulas deduced in this paper. The accuracy of the orbital elements is validated by the computer simulation results presented in this paper.

  8. Stability of orbits around planetary satellites considering a disturbing body in an elliptical orbit: Applications to Europa and Ganymede

    Science.gov (United States)

    Cardoso dos Santos, Josué; Carvalho, Jean Paulo; Vilhena de Moraes, Rodolpho

    Europa and Ganymede are two of the four Jupiter’s moons which compose the Galilean satellite. These ones are planetary satellites of greater interest at the present moment among the scientific community. There are some missions being planned to visit them and and the Jovian system. One of them is the cooperation between NASA and ESA for the Europa Jupiter System Mission (EJSM). In this mission are planned the insertion of the spacecrafts JEO (Jupiter Europa Orbiter) and JGO (Jupiter Ganymede Orbiter) into Europa and Ganymede’s orbit. Thus, there is a great necessity for having a better comprehension of the dynamics of the orbits around this planetary satellite. This comprehension is essential for the success of this type of mission. In this context, this work aims to perform a search for low-altitude orbits around these planetary satellites. An emphasis is given in polar orbits. These orbits can be useful in the planning of aerospace activities to be conducted around this planetary satellite, with respect to the stability of orbits of artificial satellites. The study considers orbits of an artificial satellite around Europa and Ganymede under the influence of the third-body perturbation (the gravitational attraction of Jupiter) and the polygenic perturbations. These last ones occur due to forces such as the non-uniform distribution of mass (J2 and J3) of the main (central) body. A simplified dynamic model for polygenic perturbations is used. A new model for the third-body disturbance is presented considering it in an elliptical orbit. The Lagrange planetary equations, which compose a system of nonlinear differential equations, are used to describe the orbital motion of the artificial satellite around Ganymede. The equations showed here are developed in closed form to avoid expansions in inclination and eccentricity.

  9. Guidance and adaptive-robust attitude & orbit control of a small information satellite

    Science.gov (United States)

    Somov, Ye.; Butyrin, S.; Somov, S.; Somova, T.; Testoyedov, N.; Rayevsky, V.; Titov, G.; Yakimov, Ye.; Ovchinnikov, A.; Mathylenko, M.

    2017-01-01

    We consider a small information satellite which may be placed on an orbit with altitude from 600 up to 1000 km. The satellite attitude and orbit control system contains a strap-down inertial navigation system, cluster of four reaction wheels, magnetic driver and a correcting engine unit with eight electro-reaction engines. We study problems on design of algorithms for spatial guidance, in-flight identification and adaptive-robust control of the satellite motion on sun-synchronous orbit.

  10. Orbits 2nd order singularity-free solutions

    CERN Document Server

    Xu, Guochang

    2014-01-01

    In its 2nd edition, this book covers the theory of satellite orbits, derives the complete solutions of orbital disturbances, describes the algorithms of orbits determination and the applications of the theory to the phenomenon of physical satellite formation.

  11. On Comparing Precision Orbit Solutions of Geodetic Satellites Given Several Ocean Tide and Geopotential Models

    Science.gov (United States)

    2014-08-01

    definitive orbit solution. However, these results vary for different satellite orbits and time past the initial fit span. I. Introduction The ability to...closely follow the definitive orbit solution. However, these results vary for different satellite orbits and time past the initial fit span. 15. SUBJECT...using data obtained from the GRACE mission. Principal investigators for GRACE at the University of Texas at Austin Center for Space Research ( CSR

  12. Physical and Orbital Properties of Some of Saturn's Small Satellites

    Science.gov (United States)

    Porco, C. C.; Thomas, P.; Spitale, J.; Jacobson, R. A.; Denk, T.; Charnoz, S.; Richardson, D. C.; Dones, L.; Baker, E.; Weiss, J. W.

    2005-08-01

    We present Cassini imaging results on the orbits and physical properties for the small ring-region moons Pan, Atlas, and the Cassini-discovered Keeler gap moon, S/2005 S1 (1), as well as the newly discovered/recovered moons orbiting among the major satellites, Methone (S/2004 S1), Pallene (S/2004 S2), and the Dione co-orbital S/2004 S5 Polydeuces (2,3,4). We find that Atlas is undergoing a 700-km amplitude longitudinal perturbation by Prometheus, Methone is undergoing a 30,000-km amplitude longitudinal perturbation by Mimas, and Pallene is undergoing a long-term 75-km amplitude longitudinal perturbation by Enceladus. Orbital integrations involving Atlas return a mass of GMAtlas = (0.43 ± 0.18) X 10-3 km3/sec2, three times larger than previously reported (4). Reasonably high resolution images have also allowed refinement of physical dimensions and spectral properties of these small moons. Results will be presented. At the time of writing, we find that Atlas has polar and equatorial diameters of 19 km, 38 km and 46 km, respectively. Its volume is (1.5 ± 0.4) X 104 km3, yielding a density of 0.43 ± 0.20 gm/cm3. Pan's polar diameter is 23 km, and differences in its equatorial axes are not well constrained; they both appear to be ˜ 35 km. Pan's volume is (1.4 ± 0.7) X 104 km3. Using the most currently reliable mass, GMPan = (0.33 ± 0.05) × 10-3 km3/sec2 (4), Pan's density is roughly 0.4 ± 0.2 gm/cm3. Both Pan and Atlas appear to be synchronous rotators, but libration cannot be ruled out yet. Given its shape, it is possible that Atlas is in a secondary spin-orbit resonance that could force a libration. Preliminary idealized rubble pile simulations have been performed which show that, at the orbits of Atlas and Pan, a simple self-gravitating ice-particle aggregate, with equal equatorial dimensions, would be stable against tides; a body with sufficiently unequal equatorial dimensions would not. [1] IAUC 8524. [2] IAUC 8389. [Correction: Pallene (S/2004 S2) is the

  13. 基于插值理论的GRACE卫星精密轨道内插的研究%An Interpolating Study of Orbit of Satellite GRACE Based on Interpolation Theory

    Institute of Scientific and Technical Information of China (English)

    施斌; 罗佳

    2011-01-01

    利用GRACE卫星高采样率精密轨道,进行了拉格朗日插值、牛顿插值和线性插值方法的研究,并对插值结果进行了比较和分析,探讨了插值方法的插值精度及其应用于低轨卫星轨道内插的适用性。%Two polynomial interpolation methods—Lagrange interpolation and Newton interpolation,as well as Linear interpolation for high-sampling rate and precise orbit which is provided by The Ohio State University are discussed.Besides,the interpolation results are compared and analyzed.The precision and applicability of orbit interpolation for LEO satellite is discussed.The results indicate that Lagrange interpolation and Newton interpolation can produce the same precision level at 1 cm or better in position.Three methods are all appropriate for interpolation of velocity.

  14. A well-scaling natural orbital theory.

    Science.gov (United States)

    Gebauer, Ralph; Cohen, Morrel H; Car, Roberto

    2016-11-15

    We introduce an energy functional for ground-state electronic structure calculations. Its variables are the natural spin-orbitals of singlet many-body wave functions and their joint occupation probabilities deriving from controlled approximations to the two-particle density matrix that yield algebraic scaling in general, and Hartree-Fock scaling in its seniority-zero version. Results from the latter version for small molecular systems are compared with those of highly accurate quantum-chemical computations. The energies lie above full configuration interaction calculations, close to doubly occupied configuration interaction calculations. Their accuracy is considerably greater than that obtained from current density-functional theory approximations and from current functionals of the one-particle density matrix.

  15. A well-scaling natural orbital theory

    CERN Document Server

    Gebauer, Ralph; Car, Roberto

    2016-01-01

    We introduce an energy functional for ground-state electronic structure calculations. Its variables are the natural spin-orbitals of singlet many-body wave functions and their joint occupation probabilities deriving from controlled approximations to the two-particle density matrix that yield algebraic scaling in general, and Hartree-Fock scaling in its seniority-zero version. Results from the latter version for small molecular systems are compared with those of highly accurate quantum-chemical computations. The energies lie above full configuration interaction calculations, close to doubly occupied configuration interaction calculations. Their accuracy is considerably greater than that obtained from current density-functional theory approximations and from current functionals of the one-particle density matrix.

  16. Spacecraft design project: Low Earth orbit communications satellite

    Science.gov (United States)

    Moroney, Dave; Lashbrook, Dave; Mckibben, Barry; Gardener, Nigel; Rivers, Thane; Nottingham, Greg; Golden, Bill; Barfield, Bill; Bruening, Joe; Wood, Dave

    1991-01-01

    This is the final product of the spacecraft design project completed to fulfill the academic requirements of the Spacecraft Design and Integration 2 course (AE-4871) taught at the U.S. Naval Postgraduate School. The Spacecraft Design and Integration 2 course is intended to provide students detailed design experience in selection and design of both satellite system and subsystem components, and their location and integration into a final spacecraft configuration. The design team pursued a design to support a Low Earth Orbiting (LEO) communications system (GLOBALSTAR) currently under development by the Loral Cellular Systems Corporation. Each of the 14 team members was assigned both primary and secondary duties in program management or system design. Hardware selection, spacecraft component design, analysis, and integration were accomplished within the constraints imposed by the 11 week academic schedule and the available design facilities.

  17. Time-dependent Dyson orbital theory.

    Science.gov (United States)

    Gritsenko, O V; Baerends, E J

    2016-08-21

    Although time-dependent density functional theory (TDDFT) has become the tool of choice for real-time propagation of the electron density ρ(N)(t) of N-electron systems, it also encounters problems in this application. The first problem is the neglect of memory effects stemming from the, in TDDFT virtually unavoidable, adiabatic approximation, the second problem is the reliable evaluation of the probabilities P(n)(t) of multiple photoinduced ionization, while the third problem (which TDDFT shares with other approaches) is the reliable description of continuum states of the electrons ejected in the process of ionization. In this paper time-dependent Dyson orbital theory (TDDOT) is proposed. Exact TDDOT equations of motion (EOMs) for time-dependent Dyson orbitals are derived, which are linear differential equations with just static, feasible potentials of the electron-electron interaction. No adiabatic approximation is used, which formally resolves the first TDDFT problem. TDDOT offers formally exact expressions for the complete evolution in time of the wavefunction of the outgoing electron. This leads to the correlated probability of single ionization P(1)(t) as well as the probabilities of no ionization (P(0)(t)) and multiple ionization of n electrons, P(n)(t), which formally solves the second problem of TDDFT. For two-electron systems a proper description of the required continuum states appears to be rather straightforward, and both P(1)(t) and P(2)(t) can be calculated. Because of the exact formulation, TDDOT is expected to reproduce a notorious memory effect, the "knee structure" of the non-sequential double ionization of the He atom.

  18. SPICE Module for the Satellite Orbit Analysis Program (SOAP)

    Science.gov (United States)

    Coggi, John; Carnright, Robert; Hildebrand, Claude

    2008-01-01

    A SPICE module for the Satellite Orbit Analysis Program (SOAP) precisely represents complex motion and maneuvers in an interactive, 3D animated environment with support for user-defined quantitative outputs. (SPICE stands for Spacecraft, Planet, Instrument, Camera-matrix, and Events). This module enables the SOAP software to exploit NASA mission ephemeris represented in the JPL Ancillary Information Facility (NAIF) SPICE formats. Ephemeris types supported include position, velocity, and orientation for spacecraft and planetary bodies including the Sun, planets, natural satellites, comets, and asteroids. Entire missions can now be imported into SOAP for 3D visualization, playback, and analysis. The SOAP analysis and display features can now leverage detailed mission files to offer the analyst both a numerically correct and aesthetically pleasing combination of results that can be varied to study many hypothetical scenarios. The software provides a modeling and simulation environment that can encompass a broad variety of problems using orbital prediction. For example, ground coverage analysis, communications analysis, power and thermal analysis, and 3D visualization that provide the user with insight into complex geometric relations are included. The SOAP SPICE module allows distributed science and engineering teams to share common mission models of known pedigree, which greatly reduces duplication of effort and the potential for error. The use of the software spans all phases of the space system lifecycle, from the study of future concepts to operations and anomaly analysis. It allows SOAP software to correctly position and orient all of the principal bodies of the Solar System within a single simulation session along with multiple spacecraft trajectories and the orientation of mission payloads. In addition to the 3D visualization, the user can define numeric variables and x-y plots to quantitatively assess metrics of interest.

  19. Expressions Module for the Satellite Orbit Analysis Program

    Science.gov (United States)

    Edmonds, Karina

    2008-01-01

    The Expressions Module is a software module that has been incorporated into the Satellite Orbit Analysis Program (SOAP). The module includes an expressions- parser submodule built on top of an analytical system, enabling the user to define logical and numerical variables and constants. The variables can capture output from SOAP orbital-prediction and geometric-engine computations. The module can combine variables and constants with built-in logical operators (such as Boolean AND, OR, and NOT), relational operators (such as >, functions and operations, including logarithms, trigonometric functions, Bessel functions, minimum/ maximum operations, and floating- point-to-integer conversions. The module supports combinations of time, distance, and angular units and has a dimensional- analysis component that checks for correct usage of units. A parser based on the Flex language and the Bison program looks for and indicates errors in syntax. SOAP expressions can be built using other expressions as arguments, thus enabling the user to build analytical trees. A graphical user interface facilitates use.

  20. GBT Reveals Satellite of Milky Way in Retrograde Orbit

    Science.gov (United States)

    2003-05-01

    New observations with National Science Foundation's Robert C. Byrd Green Bank Telescope (GBT) suggest that what was once believed to be an intergalactic cloud of unknown distance and significance, is actually a previously unrecognized satellite galaxy of the Milky Way orbiting backward around the Galactic center. Path of Complex H Artist's rendition of the path of satellite galaxy Complex H (in red) in relation to the orbit of the Sun (in yellow) about the center of the Milky Way Galaxy. The outer layers of Complex H are being stripped away by its interaction with the Milky Way. The hydrogen atmosphere (in blue) is shown surrounding the visible portion (in white) of the Galaxy. CREDIT: Lockman, Smiley, Saxton; NRAO/AUI Jay Lockman of the National Radio Astronomy Observatory (NRAO) in Green Bank, West Virginia, discovered that this object, known as "Complex H," is crashing through the outermost parts of the Milky Way from an inclined, retrograde orbit. Lockman's findings will be published in the July 1 issue of the Astrophysical Journal, Letters. "Many astronomers assumed that Complex H was probably a distant neighbor of the Milky Way with some unusual velocity that defied explanation," said Lockman. "Since its motion appeared completely unrelated to Galactic rotation, astronomers simply lumped it in with other high velocity clouds that had strange and unpredictable trajectories." High velocity clouds are essentially what their name implies, fast-moving clouds of predominately neutral atomic hydrogen. They are often found at great distances from the disk of the Milky Way, and may be left over material from the formation of our Galaxy and other galaxies in our Local Group. Over time, these objects can become incorporated into larger galaxies, just as small asteroids left over from the formation of the solar system sometimes collide with the Earth. Earlier studies of Complex H were hindered because the cloud currently is passing almost exactly behind the outer disk of

  1. The High-ORbit Ultraviolet-visible Satellite, HORUS

    Science.gov (United States)

    Scowen, Paul A.; Cooke, Brian; Beasley, Matthew; Siegmund, Oswald

    2013-09-01

    The High-ORbit Ultraviolet-visible Satellite (HORUS) is a 2.4-meter class space telescope that will conduct a comprehensive and systematic study of the astrophysical processes and environments relevant for the births and life cycles of stars and their planetary systems, to investigate and understand the range of environments, feedback mechanisms, and other factors that most affect the outcome of the star and planet formation process. HORUS will provide 100× greater imaging efficiency and combines the resolution of STIS with the throughput of COS. The HORUS mission will contribute vital information on how solar systems form and whether habitable planets should be common or rare. It also will investigate the structure, evolution, and destiny of galaxies and the universe. This program relies on focused capabilities unique to space that no other planned NASA mission will provide: near-ultraviolet (UV)/visible (200-1100nm) wide-field (14' square), diffraction-limited imaging; and high-sensitivity, high-resolution FUV (100- 320nm) spectroscopy. From its baseline orbit at L2 HORUS will enjoy a stable environment for thermal and pointing control, and long-duration target visibility. The core HORUS design will provide wide field of view imagery and high efficiency point source far-ultraviolet (FUV) spectroscopy using a combination of spectral selection and field sharing.

  2. Scripting Module for the Satellite Orbit Analysis Program (SOAP)

    Science.gov (United States)

    Carnright, Robert; Paget, Jim; Coggi, John; Stodden, David

    2008-01-01

    This add-on module to the SOAP software can perform changes to simulation objects based on the occurrence of specific conditions. This allows the software to encompass simulation response of scheduled or physical events. Users can manipulate objects in the simulation environment under programmatic control. Inputs to the scripting module are Actions, Conditions, and the Script. Actions are arbitrary modifications to constructs such as Platform Objects (i.e. satellites), Sensor Objects (representing instruments or communication links), or Analysis Objects (user-defined logical or numeric variables). Examples of actions include changes to a satellite orbit ( v), changing a sensor-pointing direction, and the manipulation of a numerical expression. Conditions represent the circumstances under which Actions are performed and can be couched in If-Then-Else logic, like performing v at specific times or adding to the spacecraft power only when it is being illuminated by the Sun. The SOAP script represents the entire set of conditions being considered over a specific time interval. The output of the scripting module is a series of events, which are changes to objects at specific times. As the SOAP simulation clock runs forward, the scheduled events are performed. If the user sets the clock back in time, the events within that interval are automatically undone. This script offers an interface for defining scripts where the user does not have to remember the vocabulary of various keywords. Actions can be captured by employing the same user interface that is used to define the objects themselves. Conditions can be set to invoke Actions by selecting them from pull-down lists. Users define the script by selecting from the pool of defined conditions. Many space systems have to react to arbitrary events that can occur from scheduling or from the environment. For example, an instrument may cease to draw power when the area that it is tasked to observe is not in view. The contingency

  3. The National Polar-orbiting Operational Environmental Satellite System

    Science.gov (United States)

    Bloom, H.

    The tri-agency Integrated Program Office (IPO) is responsible for managing the development of the National Polar-orbiting Operational Environmental Satellite System (NPOESS). NPOESS will replace the current military and civilian operational polar-orbiting ``weather'' satellites. The Northrop Grumman Space Technology - Raytheon team was competitively selected in 2002 as the Acquisition and Operations contractor team to develop, integrate, deploy, and operate NPOESS satellites to meet the tri-agency user requirements for NPOESS over the 10-year (2009-2018) operational life of the program. Beginning in 2009, NPOESS spacecraft will be launched into three orbital planes to provide significantly improved operational capabilities and benefits to satisfy critical civil and national security requirements for space-based, remotely sensed environmental data. With the development of NPOESS, we are evolving operational ``weather'' satellites into integrated environmental observing systems by expanding our capabilities to observe, assess, and predict the total Earth system - atmosphere, ocean, land, and the space environment. In recent years, the operational weather forecasting and climate science communities have levied more rigorous requirements on space-based observations of the Earth's system that have significantly increased demands on performance of the instruments, spacecraft, and ground systems required to deliver NPOESS data, products, and information to end users. The ``end-to-end'' system consists of: the spacecraft; instruments and sensors on the spacecraft; launch support capabilities; the command, control, communications, and data routing infrastructure; and data processing hardware and software. NPOESS will observe significantly more phenomena simultaneously from space than its operational predecessors. NPOESS is expected to deliver large volumes of more accurate measurements at higher spatial (horizontal and vertical) and temporal resolution at much higher data

  4. Orbital theory in terms of KS elements with luni-solar perturbations

    Science.gov (United States)

    Sellamuthu, Harishkumar; Sharma, Ram

    2016-07-01

    Precise orbit computation of Earth orbiting satellites is essential for efficient mission planning of planetary exploration, navigation and satellite geodesy. The third-body perturbations of the Sun and the Moon predominantly affect the satellite motion in the high altitude and elliptical orbits, where the effect of atmospheric drag is negligible. The physics of the luni-solar gravity effect on Earth satellites have been studied extensively over the years. The combined luni-solar gravitational attraction will induce a cumulative effect on the dynamics of satellite orbits, which mainly oscillates the perigee altitude. Though accurate orbital parameters are computed by numerical integration with respect to complex force models, analytical theories are highly valued for the manifold of solutions restricted to relatively simple force models. During close approach, the classical equations of motion in celestial mechanics are almost singular and they are unstable for long-term orbit propagation. A new singularity-free analytical theory in terms of KS (Kustaanheimo and Stiefel) regular elements with respect to luni-solar perturbation is developed. These equations are regular everywhere and eccentric anomaly is the independent variable. Plataforma Solar de Almería (PSA) algorithm and a Fourier series algorithm are used to compute the accurate positions of the Sun and the Moon, respectively. Numerical studies are carried out for wide range of initial parameters and the analytical solutions are found to be satisfactory when compared with numerically integrated values. The symmetrical nature of the equations allows only two of the nine equations to be solved for computing the state vectors and the time. Only a change in the initial conditions is required to solve the other equations. This theory will find multiple applications including on-board software packages and for mission analysis purposes.

  5. Forecast analysis on satellites that need de-orbit technologies: future scenarios for passive de-orbit devices

    Science.gov (United States)

    Palla, Chiara; Kingston, Jennifer

    2016-09-01

    Propulsion-based de-orbit is a space-proven technology; however, this strategy can strongly limit operational lifetime, as fuel mass is dedicated to the de-orbiting. In addition previous reliability studies have identified the propulsion subsystem as one of the major contributors driving satellite failures. This issue brings the need to develop affordable de-orbit technologies with a limited reliance on the system level performance of the host satellite, ideally largely passive methods. Passive disposal strategies which take advantage of aerodynamic drag as the de-orbit force are particularly attractive because they are independent of spacecraft propulsion capabilities. This paper investigates the future market for passive de-orbit devices in LEO to aid in defining top-level requirements for the design of such devices. This is performed by considering the compliances of projected future satellites with the Inter Agency Space Debris Coordination Committee de-orbit time, to quantify the number of spacecraft that are compliant or non-compliant with the guidelines and, in this way, determine their need for the previously discussed devices. The study is performed by using the SpaceTrak™ database which provides future launch schedules, and spacecraft information; the de-orbit analysis is carried out by means of simulations with STELA. A case study of a passive strategy is given by the de-orbit mechanism technological demonstrator, which is currently under development at Cranfield University and designed to deploy a drag sail at the end of the ESEO satellite mission.

  6. Theory of experimental location of ionospheric inhomogeneities at medium latitudes by satellite radioholography

    Energy Technology Data Exchange (ETDEWEB)

    Dubovoi, A.P.; Sinelnikov, V.M.

    1980-08-01

    A theory is developed for a quasiholographic experiment which uses a differential-phase signal derived from radio signals transmitted at two coherent frequencies to obtain information on ionospheric inhomogeneities in a plane connecting the ground station and a part of the satellite orbit. The method makes it possible to determine the size and location of small-scale inhomogeneities with a radius of 100-500 m from ground-based measurements of spaced satellite signals transmitted at sufficiently high coherent frequencies.

  7. Precise Orbit Determination of the two LAGEOS and LARES satellites and the LARASE activities

    Science.gov (United States)

    Massimo Lucchesi, David; Peron, Roberto; Anselmo, Luciano; Bassan, Massimo; Magnafico, Carmelo; Nobili, Anna Maria; Pardini, Carmen; Pucacco, Giuseppe; Stanga, Ruggero; Visco, Massimo

    2016-04-01

    The LAser RAnged Satellites Experiment (LARASE) research program aims to provide an original contribution in testing and verifying Einstein's theory of General Relativity (GR) in its Weak-Field and Slow-Motion (WFSM) limit by means of the powerful Satellite Laser Ranging (SLR) technique. Therefore, in this perspective, a Precise Orbit Determination (POD) of a dedicated set of passive laser-ranged satellites is required. In particular, the joint analysis of the orbit of the two LAGEOS (LAser GEOdynamic Satellite) satellites with that of the more recently launched LARES (LAser RElativity Satellite) satellite will be exploited in order to obtain precise measurements of the gravitational interaction in the field of the Earth. A major point to be reached within the activities of LARASE is to provide the relativistic measurements with an error budget of the various systematic effects (both gravitational and non-gravitational) that be robust and reliable. This requires a careful analysis of the various disturbing effects on the orbit of the considered satellites, especially for the new LARES. This activity has been planned both for the gravitational and the non-gravitational perturbations (NGP). Therefore, we started to re-visit, update and improve previous dynamical models, especially for the NGP, and we also developed new models in such a way to improve the current dynamical models used in space geodesy to account for the main perturbations acting on the orbit of LAGEOS and LARES. We focused especially on the spin dynamics, the drag effects (especially for LARES, because of its much lower height with respect to the two LAGEOS) and, at a preliminary level, the thermal ones that, as it is well known from the literature, are very important for the LAGEOS satellites. These studies are of fundamental importance not only for the objective of a reliable error budget, but also in order to improve the POD. In this context, because of the importance of the LAGEOS satellites in

  8. Scheduler for monitoring objects orbiting earth using satellite-based telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Olivier, Scot S; Pertica, Alexander J; Riot, Vincent J; De Vries, Willem H; Bauman, Brian J; Nikolaev, Sergei; Henderson, John R; Phillion, Donald W

    2015-04-28

    An ephemeris refinement system includes satellites with imaging devices in earth orbit to make observations of space-based objects ("target objects") and a ground-based controller that controls the scheduling of the satellites to make the observations of the target objects and refines orbital models of the target objects. The ground-based controller determines when the target objects of interest will be near enough to a satellite for that satellite to collect an image of the target object based on an initial orbital model for the target objects. The ground-based controller directs the schedules to be uploaded to the satellites, and the satellites make observations as scheduled and download the observations to the ground-based controller. The ground-based controller then refines the initial orbital models of the target objects based on the locations of the target objects that are derived from the observations.

  9. The Coverage Analysis for Low Earth Orbiting Satellites at Low Elevation

    Directory of Open Access Journals (Sweden)

    Shkelzen Cakaj

    2014-07-01

    Full Text Available Low Earth Orbit (LEO satellites are used for public networking and for scientific purposes. Communication via satellite begins when the satellite is positioned in its orbital position. Ground stations can communicate with LEO satellites only when the satellite is in their visibility region. The duration of the visibility and the communication vary for each LEO satellite pass over the station, since LEO satellites move too fast over the Earth. The satellite coverage area is defined as a region of the Earth where the satellite is seen at a minimum predefined elevation angle. The satellite’s coverage area on the Earth depends on orbital parameters. The communication under low elevation angles can be hindered by natural barriers. For safe communication and for savings within a link budget, the coverage under too low elevation is not always provided. LEO satellites organized in constellations act as a convenient network solution for real time global coverage. Global coverage model is in fact the complementary networking process of individual satellite’s coverage. Satellite coverage strongly depends on elevation angle. To conclude about the coverage variation for low orbiting satellites at low elevation up to 10º, the simulation for attitudes from 600km to 1200km is presented through this paper.

  10. Approximate analytic method for high-apogee twelve-hour orbits of artificial Earth's satellites

    Science.gov (United States)

    Vashkovyaka, M. A.; Zaslavskii, G. S.

    2016-09-01

    We propose an approach to the study of the evolution of high-apogee twelve-hour orbits of artificial Earth's satellites. We describe parameters of the motion model used for the artificial Earth's satellite such that the principal gravitational perturbations of the Moon and Sun, nonsphericity of the Earth, and perturbations from the light pressure force are approximately taken into account. To solve the system of averaged equations describing the evolution of the orbit parameters of an artificial satellite, we use both numeric and analytic methods. To select initial parameters of the twelve-hour orbit, we assume that the path of the satellite along the surface of the Earth is stable. Results obtained by the analytic method and by the numerical integration of the evolving system are compared. For intervals of several years, we obtain estimates of oscillation periods and amplitudes for orbital elements. To verify the results and estimate the precision of the method, we use the numerical integration of rigorous (not averaged) equations of motion of the artificial satellite: they take into account forces acting on the satellite substantially more completely and precisely. The described method can be applied not only to the investigation of orbit evolutions of artificial satellites of the Earth; it can be applied to the investigation of the orbit evolution for other planets of the Solar system provided that the corresponding research problem will arise in the future and the considered special class of resonance orbits of satellites will be used for that purpose.

  11. An analysis of the wide area differential method of geostationary orbit satellites

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    This work aims to obtain a wide area differential method for geostationary orbit (GEO) constellation. A comparison between the dilution of precision (DOP) of four-dimensional (4D) calculation including sa- tellite clock errors and ephemeris errors and that of three-dimensional (3D) calculation only including ephemeris errors with the inverse positioning theory of GPS shows the conclusion that all the 3D PDOPs are greatly reduced. Based on this, a basic idea of correcting satellite clock errors and ephem- eris errors apart is put forward, and moreover, a specific method of separation is proposed. Satellite clock errors are separated in a master station with time synchronization, and all the remaining pseu- do-range errors after the satellite clock errors have been deducted are used to work out ephemeris corrections of all GEO satellites. By a comparative analysis of user positioning accuracy before and after differential, the wide area differential method is verified to be quite valid for GEO constellation.

  12. Basic performance of BeiDou-2 navigation satellite system used in LEO satellites precise orbit determination

    Directory of Open Access Journals (Sweden)

    Liu Junhong

    2014-10-01

    Full Text Available The visibility for low earth orbit (LEO satellites provided by the BeiDou-2 system is analyzed and compared with the global positioning system (GPS. In addition, the spaceborne receivers’ observations are simulated by the BeiDou satellites broadcast ephemeris and LEO satellites orbits. The precise orbit determination (POD results show that the along-track component accuracy is much better over the service area than the non-service area, while the accuracy of the other two directions keeps at the same level over different areas. However, the 3-dimensional (3D accuracy over the two areas shows almost no difference. Only taking into consideration the observation noise and navigation satellite ephemeris errors, the 3D accuracy of the POD is about 30 cm. As for the precise relative orbit determination (PROD, the 3D accuracy is much better over the eastern hemisphere than that of the western hemisphere. The baseline length accuracy is 3.4 mm over the service area, and it is still better than 1 cm over the non-service area. This paper demonstrates that the BeiDou regional constellation could provide global service to LEO satellites for the POD and the PROD. Finally, the benefit of geostationary earth orbit (GEO satellites is illustrated for POD.

  13. Basic performance of BeiDou-2 navigation satellite system used in LEO satellites precise orbit determination

    Institute of Scientific and Technical Information of China (English)

    Liu Junhong; Gu Defeng; Ju Bing; Yao Jing; Duan Xiaojun; Yi Dongyun

    2014-01-01

    The visibility for low earth orbit (LEO) satellites provided by the BeiDou-2 system is analyzed and compared with the global positioning system (GPS). In addition, the spaceborne receivers’ observations are simulated by the BeiDou satellites broadcast ephemeris and LEO satel-lites orbits. The precise orbit determination (POD) results show that the along-track component accuracy is much better over the service area than the non-service area, while the accuracy of the other two directions keeps at the same level over different areas. However, the 3-dimensional (3D) accuracy over the two areas shows almost no difference. Only taking into consideration the observation noise and navigation satellite ephemeris errors, the 3D accuracy of the POD is about 30 cm. As for the precise relative orbit determination (PROD), the 3D accuracy is much better over the eastern hemisphere than that of the western hemisphere. The baseline length accuracy is 3.4 mm over the service area, and it is still better than 1 cm over the non-service area. This paper demon-strates that the BeiDou regional constellation could provide global service to LEO satellites for the POD and the PROD. Finally, the benefit of geostationary earth orbit (GEO) satellites is illustrated for POD.

  14. Design of a Representative Low Earth Orbit Satellite to Improve Existing Debris Models

    Science.gov (United States)

    Clark, S.; Dietrich, A.; Werremeyer, M.; Fitz-Coy, N.; Liou, J.-C.

    2012-01-01

    This paper summarizes the process and methodologies used in the design of a small-satellite, DebriSat, that represents materials and construction methods used in modern day Low Earth Orbit (LEO) satellites. This satellite will be used in a future hypervelocity impact test with the overall purpose to investigate the physical characteristics of modern LEO satellites after an on-orbit collision. The major ground-based satellite impact experiment used by DoD and NASA in their development of satellite breakup models was conducted in 1992. The target used for that experiment was a Navy Transit satellite (40 cm, 35 kg) fabricated in the 1960 s. Modern satellites are very different in materials and construction techniques from a satellite built 40 years ago. Therefore, there is a need to conduct a similar experiment using a modern target satellite to improve the fidelity of the satellite breakup models. The design of DebriSat will focus on designing and building a next-generation satellite to more accurately portray modern satellites. The design of DebriSat included a comprehensive study of historical LEO satellite designs and missions within the past 15 years for satellites ranging from 10 kg to 5000 kg. This study identified modern trends in hardware, material, and construction practices utilized in recent LEO missions, and helped direct the design of DebriSat.

  15. Nodding feed antenna for communications with satellites in synchronous orbit

    Science.gov (United States)

    Smetana, J.; Zavesky, R.

    1978-01-01

    The design, fabrication, and performance of a parabolic, ground receiving antenna system with a feed that nods in one axis producing a maximum beam deviation 1.1 deg from boresight is described. The antenna design was: (1)to lower the weight (and the subsequent cost) of the supporting structure and the actuator motors for a tracking antenna by moving just the feed; (2) to use a manual tracking system eliminating the need for expensive electronic controls or computers; (3) to provide for several hours of unattended operation; and (4)to permit operation of the antenna by unskilled personnel. Also described are some physical and orbital phenomenon that effect the operation or design of the antenna. One is the motion of a nearly geostationary satellite due to gravitational forces from the sun, the moon, and other stellar bodies. Others are the rotation of the nodding axis and the feed polarization as a function of the location of the station on the earth. A comparison of per unit cost was made for one unit and a quantity of 100.

  16. Orbital performance of communication satellite microwave power amplifiers (MPAs)

    Science.gov (United States)

    Strauss, R.

    1993-01-01

    This paper presents background data on the performance of microwave power amplifiers (MPAs) used as transmitters in currently operating commercial communication satellites. Specifically aspects of two competing MPA types are discussed. These are well known TWTA (travelling wave tube amplifier) and the SSPA (solid state power amplifier). Extensive in-orbit data has been collected from over 2000 MPAs in 1991 and 1993. The study in 1991 invovlved 75 S/C (spacecraft) covering 463 S/C years. The 1993 'second-look' study encompassed a slightly different population of 72 S/C with 497 S/C years of operation. A surprising result of both studies was that SSPAs, although quite reliable, did not achieve the reliability of TWTAs were one-third more reliable in the 1993 study. This was at C-band with comparable power amplifiers, e.g. 6-16W of RF output power and similar gains. Data at K(sub u)-band is for TWTAs only since there are no SSPAs in the current S/C inventory. The other complementary result was that the projected failure rates used as S/C payload design guidelines were, on average, somewhat higher for TWTAs than the actual failure rates uncovered by this study. SSPA rates were as projected.

  17. Analysis of Characteristics of QZSS Satellite Orbit and Clock Products during Yaw Attitude Model Switching

    Directory of Open Access Journals (Sweden)

    ZHOU Peiyuan

    2016-03-01

    Full Text Available Yaw attitude model switching of navigation satellites have great impact on its orbit and clock products derived from precise orbit determination. Firstly, the yaw attitude and solar radiation model of QZSS is given briefly. Then, using QZSS precise orbit and clock products provided by IGS MGEX analysis center, precision of orbit and clock is analyzed by satellite laser ranging residuals and polynomial fit residuals respectively. Finally, spectral analysis and modified Allan variance is carried out on clock products to reveal its periodic variations. Research on QZSS satellite orbit and clock products of 2014 shows that there are two eclipse seasons of 20 days and the beta angle is fluctuating with a period of half-year. And there is significant correlation between the precision of orbit and clock products and beta angle. Moreover, the satellite clock offset has periodic variations similar to orbit periods and its amplitude is changing with the beta angle which indicates problems of current orbit determination strategies. In view of similarities between QZSS and BeiDou IGSO and MEO satellites in yaw attitude model, the conclusion is beneficial to improve BeiDou precise orbit determination.

  18. A method of autonomous orbit determination for satellite using star sensor

    Institute of Scientific and Technical Information of China (English)

    MA; Jianbo; XU; Jin

    2005-01-01

    In this paper a method of autonomous orbit determination using star sensor is studied. By building relatively consummate dynamical models which simulate attitude motion of satellite and observation from satellite to background stars, the simulant computation of this method is executed, and it is shown that the method of autonomous orbit determination is feasible. Academic and calculation analyses have been done for the relation between the direction of star sensor with respect to satellite-body coordinate system and the accuracy of autonomous orbit determination.

  19. 47 CFR 25.261 - Procedures for avoidance of in-line interference events for Non Geostationary Satellite Orbit...

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Procedures for avoidance of in-line interference events for Non Geostationary Satellite Orbit (NGSO) Satellite Network Operations in the Fixed... avoidance of in-line interference events for Non Geostationary Satellite Orbit (NGSO) Satellite...

  20. Multi-technique combination of space geodesy observations: Impact of the Jason-2 satellite on the GPS satellite orbits estimation

    Science.gov (United States)

    Zoulida, Myriam; Pollet, Arnaud; Coulot, David; Perosanz, Félix; Loyer, Sylvain; Biancale, Richard; Rebischung, Paul

    2016-10-01

    In order to improve the Precise Orbit Determination (POD) of the GPS constellation and the Jason-2 Low Earth Orbiter (LEO), we carry out a simultaneous estimation of GPS satellite orbits along with Jason-2 orbits, using GINS software. Along with GPS station observations, we use Jason-2 GPS, SLR and DORIS observations, over a data span of 6 months (28/05/2011-03/12/2011). We use the Geophysical Data Records-D (GDR-D) orbit estimation standards for the Jason-2 satellite. A GPS-only solution is computed as well, where only the GPS station observations are used. It appears that adding the LEO GPS observations results in an increase of about 0.7% of ambiguities fixed, with respect to the GPS-only solution. The resulting GPS orbits from both solutions are of equivalent quality, agreeing with each other at about 7 mm on Root Mean Square (RMS). Comparisons of the resulting GPS orbits to the International GNSS Service (IGS) final orbits show the same level of agreement for both the GPS-only orbits, at 1.38 cm in RMS, and the GPS + Jason2 orbits at 1.33 cm in RMS. We also compare the resulting Jason-2 orbits with the 3-technique Segment Sol multi-missions d'ALTimétrie, d'orbitographie et de localisation précise (SSALTO) POD products. The orbits show good agreement, with 2.02 cm of orbit differences global RMS, and 0.98 cm of orbit differences RMS on the radial component.

  1. Role of Berry phase theory for describing orbital magnetism: From magnetic heterostructures to topological orbital ferromagnets

    Science.gov (United States)

    Hanke, J.-P.; Freimuth, F.; Nandy, A. K.; Zhang, H.; Blügel, S.; Mokrousov, Y.

    2016-09-01

    We address the importance of the modern theory of orbital magnetization for spintronics. Based on an all-electron first-principles approach, we demonstrate that the predictive power of the routinely employed "atom-centered" approximation is limited to materials like elemental bulk ferromagnets, while the application of the modern theory of orbital magnetization is crucial in chemically or structurally inhomogeneous systems such as magnetic thin films, and materials exhibiting nontrivial topology in reciprocal and real space, e.g., Chern insulators or noncollinear systems. We find that the modern theory is particularly crucial for describing magnetism in a class of materials that we suggest here—topological orbital ferromagnets.

  2. Designing nonuniform satellite systems for continuous global coverage using equatorial and polar circular orbits

    Science.gov (United States)

    Ulybyshev, S. Yu.

    2016-07-01

    We present a method for designing nonuniform satellite systems for continuous global coverage using a combination of equatorial and near-polar satellite segments in circular orbits. Equations are derived to determine the basic design parameters of the satellite system itself and the conditions of its closure at the joint of near-polar and equatorial segments. We analyze specific features of near-polar and equatorial satellite systems and their advantages and disadvantages compared with existing classes of near-polar phased and kinematically correct satellite systems. We estimate the minimum required number of spacecrafts in satellite systems for a given fold of coverage and present calculated dependences for classes of near-polar phased and equatorial satellite systems with different types of closure. For the class of kinematically correct satellite systems, we analyze the characteristics of systems with a minimum spacecraft flight height and reveal that the number of satellites in the orbital plane depends on the flight height for different folds of coverage. We bring examples of the best near-polar equatorial satellite systems of global coverage for different folds and a class of satellite systems with a fixed number of spacecrafts and orbital planes in them.

  3. Satellite co-locations as a link between SLR, GPS and Low Earth Orbiting (LEO) satellites

    Science.gov (United States)

    Melachroinos, S. A.; Lemoine, F. G.; Chinn, D. S.; Nicolas, J. B.; Zelensky, N. P.; Wimert, J.; Radway, Y.

    2013-12-01

    The procedure applied for the determination of the International Terrestrial Reference Frame (ITRF) requires the combination of all four major techniques of Space Geodesy. This combination is only possibly realized by the introduction of the local-ties between co-located techniques. A local-tie is the lever arm vector between the marker points on the sites where two or more space geodesy instruments operate. The local ties are used as additional observations with proper variances. They are usually derived from local surveys using either classical geodesy or the global navigation satellite systems (GNSS). The Global Positioning System (GPS) plays a major role in the ITRF combination by linking together all the other three techniques SLR, DORIS and VLBI (Altamimi and Collilieux 2009). However, discrepancies between local ties and space geodesy estimates are well known although the reasons for these discrepancies are often not clear. These discrepancies could be either due to errors in local ties and in coordinate estimates or in both. In this study, we use the tracking to G05-35 and G06-36 and one LEO by SLR sites and their combined orbits, earth rotation parameters (ERPs) and station positions in order to establish space-based co-location ties on the stations. The LEO satellite used in this experiment is Jason-2, which carries both GPS and SLR. Therefore from the data-processing point of view the LEO satellite is used as a fast moving station (Thaller et al. 2011). Jason-2 is also equipped with DORIS, but it will be included into another combined analysis. Subsequently, we compare the consistency of our space-based co-locations to the ones from ITRF08 and SLRF08 - IGb08 solutions.

  4. On the choice of orbits for an altimetric satellite to study ocean circulation and tides

    Science.gov (United States)

    Parke, Michael E.; Stewart, Robert H.; Farless, David L.; Cartwright, David E.

    1987-01-01

    The choice of an orbit for satellite altimetric studies of the ocean's circulation and tides requires an understanding of the orbital characteristics that influence the accuracy of the satellite's measurements of sea level and the temporal and spatial distribution of the measurements. The orbital characteristics that influence accurate calculations of the satellite's position as a function of time are examined, and the pattern of ground tracks laid down on the ocean's surface as a function of the satellite's altitude and inclination is studied. The results are used to examine the aliases in the measurements of surface geostrophic currents and tides. Finally, these considerations are used to specify possible orbits that may be useful for the upcoming Topex/Poseidon mission.

  5. 78 FR 14952 - Earth Stations Aboard Aircraft Communicating with Fixed-Satellite Service Geostationary-Orbit...

    Science.gov (United States)

    2013-03-08

    ... From the Federal Register Online via the Government Publishing Office FEDERAL COMMUNICATIONS COMMISSION 47 CFR Part 2 Earth Stations Aboard Aircraft Communicating with Fixed-Satellite Service Geostationary-Orbit Space Stations AGENCY: Federal Communications Commission. ACTION: Proposed rule....

  6. The one-electron description of excited states: Natural excitation orbitals of density matrix theory and Kohn-Sham orbitals of density functional theory as ideal orbitals

    Science.gov (United States)

    van Meer, R.; Gritsenko, O. V.; Baerends, E. J.

    2015-10-01

    Linear response density matrix functional theory has been shown to solve the main problems of time-dependent density functional theory (deficient in case of double, charge transfer and bond breaking excitations). However, the natural orbitals preclude the description of excitations as (approximately) simple orbital-to-orbital transitions: many weakly occupied 'virtual' natural orbitals are required to describe the excitations. Kohn-Sham orbitals on the other hand afford for many excitations such a simple orbital description. In this communication we show that a transformation of the set of weakly occupied NOs can be defined such that the resulting natural excitation orbitals (NEOs) restore the single orbital transition structure for excitations generated by the linear response DMFT formalism.

  7. Orbital-Free Density Functional Theory for Molecular Structure Calculations

    Institute of Scientific and Technical Information of China (English)

    Huajie Chen; Aihui Zhou

    2008-01-01

    We give here an overview of the orbital-free density functional theory that is used for modeling atoms and molecules. We review typical approximations to the kinetic energy, exchange-correlation corrections to the kinetic and Hartree energies, and constructions of the pseudopotentials. We discuss numerical discretizations for the orbital-free methods and include several numerical results for illustrations.

  8. Assessing the Impact of Earth Radiation Pressure Acceleration on Low-Earth Orbit Satellites

    Science.gov (United States)

    Vielberg, Kristin; Forootan, Ehsan; Lück, Christina; Kusche, Jürgen; Börger, Klaus

    2017-04-01

    The orbits of satellites are influenced by several external forces. The main non-gravitational forces besides thermospheric drag, acting on the surface of satellites, are accelerations due to the Earth and Solar Radiation Pres- sure (SRP and ERP, respectively). The sun radiates visible and infrared light reaching the satellite directly, which causes the SRP. Earth also emits and reflects the sunlight back into space, where it acts on satellites. This is known as ERP acceleration. The influence of ERP increases with decreasing distance to the Earth, and for low-earth orbit (LEO) satellites ERP must be taken into account in orbit and gravity computations. Estimating acceler- ations requires knowledge about energy emitted from the Earth, which can be derived from satellite remote sensing data, and also by considering the shape and surface material of a satellite. In this sensitivity study, we assess ERP accelerations based on different input albedo and emission fields and their modelling for the satellite missions Challenging Mini-Satellite Payload (CHAMP) and Gravity Recovery and Climate Experiment (GRACE). As input fields, monthly 1°x1° products of Clouds and the Earth's Radiant En- ergy System (CERES), L3 are considered. Albedo and emission models are generated as latitude-dependent, as well as in terms of spherical harmonics. The impact of different albedo and emission models as well as the macro model and the altitude of satellites on ERP accelerations will be discussed.

  9. Solution set on the natural satellite formation orbits under first-order earth's non-spherical perturbation

    Institute of Scientific and Technical Information of China (English)

    Humei Wang; Wei Yang; Junfeng Li

    2005-01-01

    Using the reference orbital element approach, the precise governing equations for the relative motion of formation flight are formulated. A number of ideal formations with respect to an elliptic orbit can be designed based on the relative motion analysis from the equations. The features of the oscillating reference orbital elements are studied by using the perturbation theory. The changes in the relative orbit under perturbation are divided into three categories, termed scale enlargement, drift and distortion respectively. By properly choosing the initial mean orbital elements for the leader and follower satellites, the deviations from originally regular formation orbit caused by the perturbation can be suppressed. Thereby the natural formation is set up. It behaves either like non-disturbed or need little control to maintain.The presented reference orbital element approach highlights the kinematics properties of the relative motion and is convenient to incorporate the results of perturbation analysis on orbital elements. This method of formation design has advantages over other methods in seeking natural formation and in initializing formation.

  10. Theory of Secular Chaos and Mercury's Orbit

    CERN Document Server

    Lithwick, Yoram

    2010-01-01

    We study the chaotic orbital evolution of planetary systems, focusing on secular (i.e., orbit-averaged) interactions, because these often dominate on long timescales. We first focus on the evolution of a test particle that is forced by multiple massive planets. To linear order in eccentricity and inclination, its orbit precesses with constant frequencies. But nonlinearities can shift the frequencies into and out of secular resonance with the planets' eigenfrequencies, or with linear combinations of those frequencies. The overlap of these nonlinear secular resonances drive secular chaos in planetary systems. We quantify the resulting dynamics for the first time by calculating the locations and widths of nonlinear secular resonances. When results from both analytical calculations and numerical integrations are displayed together in a newly developed "map of the mean momenta" (MMM), the agreement is excellent. This map is particularly revealing for non-coplanar planetary systems and demonstrates graphically that...

  11. Orbital Maneuvers Using Low Thrust to Place a Satellite in a Constellation

    Directory of Open Access Journals (Sweden)

    Vivian Martins Gomes

    2007-01-01

    Full Text Available This paper considers the problem of low thrust suboptimal maneuvers to insert a satellite in a constellation. It is assumed that a satellite constellation is given with all the Keplerian elements of the satellite members having known values. Then, it is necessary to maneuver a new satellite from a parking orbit to its position in the constellation. The control available to perform this maneuver is the application of a low thrust to the satellite and the objective is to perform this maneuver with minimum fuel consumption.

  12. Orbital parameters of infalling satellite haloes in the hierarchical $\\Lambda$CDM model

    CERN Document Server

    Jiang, Lilian; Sawala, Till; Frenk, Carlos S

    2014-01-01

    We present distributions of orbital parameters of infalling satellites of $\\Lambda$CDM haloes in the mass range $10^{12}-10^{14}$M$_\\odot$, which represent the initial conditions for the subsequent evolution of substructures within the host halo. We use merger trees constructed in a high resolution cosmological N-body simulation to trace satellite haloes, and identify the time of infall. We find signficant trends in the distribution of orbital parameters with both the host halo mass and the ratio of satellite-to-host halo masses. For all host halo masses, satellites whose infall mass is a larger fraction of the host halo mass have more eccentric, radially biased orbits. At fixed satellite-to-host halo mass ratio, high mass haloes are biased towards accreting satellites on slightly more biased orbits. To charactise the orbital distributions fully requires fitting the correlated bivariate distribution of two chosen orbital parameters (e.g. radial and tangential velocity or energy and angular momentu). We provid...

  13. Experimental Study on the Precise Orbit Determination of the BeiDou Navigation Satellite System

    Directory of Open Access Journals (Sweden)

    Jens Wickert

    2013-03-01

    Full Text Available The regional service of the Chinese BeiDou satellite navigation system is now in operation with a constellation including five Geostationary Earth Orbit satellites (GEO, five Inclined Geosynchronous Orbit (IGSO satellites and four Medium Earth Orbit (MEO satellites. Besides the standard positioning service with positioning accuracy of about 10 m, both precise relative positioning and precise point positioning are already demonstrated. As is well known, precise orbit and clock determination is essential in enhancing precise positioning services. To improve the satellite orbits of the BeiDou regional system, we concentrate on the impact of the tracking geometry and the involvement of MEOs, and on the effect of integer ambiguity resolution as well. About seven weeks of data collected at the BeiDou Experimental Test Service (BETS network is employed in this experimental study. Several tracking scenarios are defined, various processing schemata are designed and carried out; and then, the estimates are compared and analyzed in detail. The results show that GEO orbits, especially the along-track component, can be significantly improved by extending the tracking network in China along longitude direction, whereas IGSOs gain more improvement if the tracking network extends in latitude. The involvement of MEOs and ambiguity-fixing also make the orbits better.

  14. Preliminary Analysis of a Novel SAR Based Emergency System for Earth Orbit Satellites using Galileo

    NARCIS (Netherlands)

    Gill, E.K.A.; Helderweirt, A.

    2010-01-01

    This paper presents a preliminary analysis of a novel Search and Rescue (SAR) based emergency system for Low Earth Orbit (LEO) satellites using the Galileo Global Navigation Satellite System (GNSS). It starts with a description of the space user SAR system including a concept description, mission ar

  15. Development of an in-orbit refocusing mechanism for the meteosat second generation weather satellites

    NARCIS (Netherlands)

    Verhoeff, P.; Mierlo, H.A. van; Braam, B.C.; Hopman, J.; Werkhoven, W.P. van; Kluse, M. le

    1998-01-01

    A Refocusing Mechanism (REM) has been designed and built for the SEVIRI instrument, the imager in the Meteosat Second Generation (MSG) satellite. The purpose of the mechanism is in-orbit focal adjustment of a mirror assembly which forms part of SEVIRI. As the MSG satellite observes the earth and its

  16. Orbital Models and Electronic Structure Theory

    DEFF Research Database (Denmark)

    Linderberg, Jan

    2012-01-01

    This tribute to the work by Carl Johan Ballhausen focuses on the emergence of quantitative means for the study of the electronic properties of complexes and molecules. Development, refinement and application of the orbital picture elucidated electric and magnetic features of ranges of molecules...

  17. On-orbit control of the Communications Technology Satellite (CTS)/HERMES

    Science.gov (United States)

    Raine, H. R.

    1980-01-01

    A variety of control functions for the CIS HERMES satellite are reviewed. Its mission, to demonstrate high power SHF (12 GHz) transmission is discussed. The satellite was controlled in geostationary orbit for nearly four years from the satellite control center in Ottawa, Canada. Highlights of these operations are outlined. The interactions between many of the automatic onboard control functions and control from the ground are described. Special emphasis is placed on the characteristics and performance of the three axis attitude control system.

  18. The EMC impact of SPS operations on low Earth orbit satellites

    Science.gov (United States)

    Grant, W. B.; Morrison, E. L., Jr.; Davis, K. C.

    1980-01-01

    The susceptibility of various operational and planned low Earth orbit satellites to solar power satellite (SPS) operations was examined. Functional degradation for the electronic systems on LANDSAT, the global positioning system, and the space telescope is described in relation to the amplitude of the SPS illumination components. Analyses include the modes of coupling to devices and subsystems, and performance effects in relation to satellite mission.

  19. The study of gravity gradient effect on attitude of low earth orbit satellite

    Science.gov (United States)

    Hamzah, Nor Hazadura; Yaacob, Sazali; Muthusamy, Hariharan; Hamzah, Norhizam; Ghazali, Najah

    2013-04-01

    Simulations and mathematical models are increasingly used to assist the process of decision making in engineering design. The objective of this paper is to simulate the linear attitude dynamics of small satellites under gravity gradient torque which is inherent in low earth orbit. The equations were first derived in their nonlinear form, and then manipulated and simulated in their linear form. Simulation results demonstrate the importance of choosing the appropriate values of satellite's moment of inertia in designing phase of a satellite.

  20. Modeling radiation conditions in orbits of projected system of small satellites for radiation monitoring

    Science.gov (United States)

    Panasyuk, M. I.; Podzolko, M. V.; Kovtyukh, A. S.; Osedlo, V. I.; Tulupov, V. I.; Yashin, I. V.

    2016-11-01

    Calculated estimates are presented for the accumulated radiation doses behind the shields of various thicknesses in the orbits of projected at Skobeltsyn Institute of Nuclear Physics, Moscow State University system of small satellites for radiation monitoring. The results are analyzed and compared with the calculation data for other actively exploited near-Earth orbits.

  1. Energy integral method for gravity field determination from satellite orbit coordinates

    NARCIS (Netherlands)

    Visser, P.N.A.M.; Sneeuw, N.; Gerlach, C.

    2003-01-01

    A fast iterative method for gravity field determination from low Earth satellite orbit coordinates has been developed and implemented successfully. The method is based on energy conservation and avoids problems related to orbit dynamics and initial state. In addition, the particular geometry of a re

  2. GPS-based precise orbit determination and accelerometry for low flying satellites

    NARCIS (Netherlands)

    Van den IJssel, J.A.A.

    2014-01-01

    Atmospheric density models are currently the limiting factor in the accuracy of the dynamic orbit determination and prediction of satellites in a low Earth orbit. Any improvement in these models would greatly aid in applications such as re-entry prediction, ground-track maintenance of Earth observat

  3. Quiver Theories for Moduli Spaces of Classical Group Nilpotent Orbits

    CERN Document Server

    Hanany, Amihay

    2016-01-01

    We approach the topic of Classical group nilpotent orbits from the perspective of their moduli spaces, described in terms of Hilbert series and generating functions. We review the established Higgs and Coulomb branch quiver theory constructions for A series nilpotent orbits. We present systematic constructions for BCD series nilpotent orbits on the Higgs branches of quiver theories defined by canonical partitions; this paper collects earlier work into a systematic framework, filling in gaps and providing a complete treatment. We find new Coulomb branch constructions for above minimal nilpotent orbits, including some based upon twisted affine Dynkin diagrams. We also discuss aspects of 3d mirror symmetry between these Higgs and Coulomb branch constructions and explore dualities and other relationships, such as HyperKahler quotients, between quivers. We analyse all Classical group nilpotent orbit moduli spaces up to rank 4 by giving their unrefined Hilbert series and the Highest Weight Generating functions for ...

  4. A decade of ERS satellite orbits and altimetry

    NARCIS (Netherlands)

    Scharroo, R.

    2002-01-01

    The First European Remote Sensing Satellite, ERS-1, was launched in July 1991, fol- lowed by ERS-2 in April 1995. Both satellites carry a radar altimeter to serve oper- ational applications and scientific research in the fields of geodesy, oceanography, glaciology and meteorology. Together, the sate

  5. Orbital relaxation effects on Kohn–Sham frontier orbital energies in density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, DaDi [Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026 (China); Zheng, Xiao, E-mail: xz58@ustc.edu.cn [Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Li, Chen [Department of Chemistry, Duke University, Durham, North Carolina 27708 (United States); Yang, Weitao, E-mail: weitao.yang@duke.edu [Department of Chemistry, Duke University, Durham, North Carolina 27708 (United States); Key Laboratory of Theoretical Chemistry of Environment, School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China)

    2015-04-21

    We explore effects of orbital relaxation on Kohn–Sham frontier orbital energies in density functional theory by using a nonempirical scaling correction approach developed in Zheng et al. [J. Chem. Phys. 138, 174105 (2013)]. Relaxation of Kohn–Sham orbitals upon addition/removal of a fractional number of electrons to/from a finite system is determined by a systematic perturbative treatment. The information of orbital relaxation is then used to improve the accuracy of predicted Kohn–Sham frontier orbital energies by Hartree–Fock, local density approximation, and generalized gradient approximation methods. The results clearly highlight the significance of capturing the orbital relaxation effects. Moreover, the proposed scaling correction approach provides a useful way of computing derivative gaps and Fukui quantities of N-electron finite systems (N is an integer), without the need to perform self-consistent-field calculations for (N ± 1)-electron systems.

  6. Spectrum and orbit conservation as a factor in future mobile satellite system design

    Science.gov (United States)

    Bowen, Robert R.

    1990-01-01

    Access to the radio spectrum and geostationary orbit is essential to current and future mobile satellite systems. This access is difficult to obtain for current systems, and may be even more so for larger future systems. In this environment, satellite systems that minimize the amount of spectrum orbit resource required to meet a specific traffic requirement are essential. Several spectrum conservation techniques are discussed, some of which are complementary to designing the system at minimum cost. All may need to be implemented to the limits of technological feasibility if network growth is not to be constrained because of the lack of available spectrum-orbit resource.

  7. Long-term evolution of navigation satellite orbits: GPS/GLONASS/GALILEO

    Science.gov (United States)

    Chao, C.; Gick, R.

    Earlier studies conducted a The Aerospace Corporation discovered that the GPSt Block II satellites placed in disposal orbits can eventually, perhaps in 20 to 40 years, reenter into the operating constellation. This is because the disposal orbits, while circular initially, evolve int o orbits with significant eccentricity mostly as the result of sun-moon gravitational perturbations. Options of minimizing the eccentricity growth include reducing initial eccentricity of the disposal orbit and inserting into an orbit with a favorable argument of perigee. A recent study was performed to examine whether the same long-term eccentricity evolution exists for the disposal orbits of other navigation satellite systems such as GLONASS and GALILEO. The non-operational GPS Block I satellites are included in the study as well, because the orbits are at 63.4 deg inclination, which is different from that of the GPS Block II satellites. Similar to the earlier studies, long-term perturbations and stability of these orbits were understood through analytical and numerical investigations. Two-hundred-year semi-analytic integration revealed interesting facts about the orbit stability. Initially near circular, these types of orbits may evolve into orbits with large eccentricity (as much as 0.7 over 150 years). Analytical approximations through doubly-averaged equations reveal that the cause is due to the resonance induced by Sun/moon and J2 secular perturbations. A total of 113 non-operational GLONASS satellites and upper stages and 10 GPS/Block I satellites were propagated for 200 years using a high-precision semi-analytical propagator (MEANPROP). Results show that the GLONASS satellites will start to enter the operating GPS constellation after 40 years. The uncovered resonance effect is strongly dependent on o bit inclination and altitude. The effect becomes morer pronounced for GALILEO orbits due to a higher altitude, 3000 km above GPS. Strategies to minimize the significant

  8. Precise orbit determination of the Fengyun-3C satellite using onboard GPS and BDS observations

    Science.gov (United States)

    Li, Min; Li, Wenwen; Shi, Chuang; Jiang, Kecai; Guo, Xiang; Dai, Xiaolei; Meng, Xiangguang; Yang, Zhongdong; Yang, Guanglin; Liao, Mi

    2017-04-01

    The GNSS Occultation Sounder instrument onboard the Chinese meteorological satellite Fengyun-3C (FY-3C) tracks both GPS and BDS signals for orbit determination. One month's worth of the onboard dual-frequency GPS and BDS data during March 2015 from the FY-3C satellite is analyzed in this study. The onboard BDS and GPS measurement quality is evaluated in terms of data quantity as well as code multipath error. Severe multipath errors for BDS code ranges are observed especially for high elevations for BDS medium earth orbit satellites (MEOs). The code multipath errors are estimated as piecewise linear model in 2° × 2° grid and applied in precise orbit determination (POD) calculations. POD of FY-3C is firstly performed with GPS data, which shows orbit consistency of approximate 2.7 cm in 3D RMS (root mean square) by overlap comparisons; the estimated orbits are then used as reference orbits for evaluating the orbit precision of GPS and BDS combined POD as well as BDS-based POD. It is indicated that inclusion of BDS geosynchronous orbit satellites (GEOs) could degrade POD precision seriously. The precisions of orbit estimates by combined POD and BDS-based POD are 3.4 and 30.1 cm in 3D RMS when GEOs are involved, respectively. However, if BDS GEOs are excluded, the combined POD can reach similar precision with respect to GPS POD, showing orbit differences about 0.8 cm, while the orbit precision of BDS-based POD can be improved to 8.4 cm. These results indicate that the POD performance with onboard BDS data alone can reach precision better than 10 cm with only five BDS inclined geosynchronous satellite orbit satellites and three MEOs. As the GNOS receiver can only track six BDS satellites for orbit positioning at its maximum channel, it can be expected that the performance of POD with onboard BDS data can be further improved if more observations are generated without such restrictions.

  9. Optimization of orbital assignment and specification of service areas in satellite communications

    Science.gov (United States)

    Wang, Cou-Way; Levis, Curt A.; Buyukdura, O. Merih

    1987-01-01

    The mathematical nature of the orbital and frequency assignment problem for communications satellites is explored, and it is shown that choosing the correct permutations of the orbit locations and frequency assignments is an important step in arriving at values which satisfy the signal-quality requirements. Two methods are proposed to achieve better spectrum/orbit utilization. The first, called the delta S concept, leads to orbital assignment solutions via either mixed-integer or restricted basis entry linear programming techniques; the method guarantees good single-entry carrier-to-interference ratio results. In the second, a basis for specifying service areas is proposed for the Fixed Satellite Service. It is suggested that service areas should be specified according to the communications-demand density in conjunction with the delta S concept in order to enable the system planner to specify more satellites and provide more communications supply.

  10. Modeling Earth Albedo for Satellites in Earth Orbit

    DEFF Research Database (Denmark)

    Bhanderi, Dan; Bak, Thomas

    2005-01-01

    Many satellite are influences by the Earthøs albedo, though very few model schemes exist.in order to predict this phenomenon. Earth albedo is often treated as noise, or ignored completely. When applying solar cells in the attitude hardware, Earth albedo can cause the attitude estimate to deviate...... with as much as 20 deg. Digital Sun sensors with Earth albedo correction in hardware exist, but are expensive. In addition, albedo estimates are necessary in thermal calculations and power budgets. We present a modeling scheme base4d on Eartht reflectance, measured by NASA's Total Ozone Mapping Spectrometer......, in which the Earth Probe Satellite has recorded reflectivity data daily since mid 1996. The mean of these data can be used to calculate the Earth albedo given the positions of the satellite and the Sun. Our results show that the albedo varies highly with the solar angle to the satellite's field of view...

  11. Effects on satellite orbits in the gravitational field of an axisymmetric central body with a mass monopole and arbitrary spin multipole moments

    CERN Document Server

    Meichsner, J

    2015-01-01

    Perturbations of satellite orbits in the gravitational field of a body with a mass monopole and arbitrary spin multipole moments are considered for an axisymmetric and stationary situation. Periodic and secular effects caused by the central gravitomagnetic field are derived by a first order perturbation theory. For a central spin-dipole field these results reduce to the well known Lense-Thirring effects.

  12. Global mobile satellite communications theory for maritime, land and aeronautical applications

    CERN Document Server

    Ilčev, Stojče Dimov

    2017-01-01

    This book discusses current theory regarding global mobile satellite communications (GMSC) for maritime, land (road and rail), and aeronautical applications. It covers how these can enable connections between moving objects such as ships, road and rail vehicles and aircrafts on one hand, and on the other ground telecommunications subscribers through the medium of communications satellites, ground earth stations, Terrestrial Telecommunication Networks (TTN), Internet Service Providers (ISP) and other wireless and landline telecommunications providers. This new edition covers new developments and initiatives that have resulted in land and aeronautical applications and the introduction of new satellite constellations in non-geostationary orbits and projects of new hybrid satellite constellations. The book presents current GMSC trends, mobile system concepts and network architecture using a simple mode of style with understandable technical information, characteristics, graphics, illustrations and mathematics equ...

  13. Precise Ground-In-the-Loop Orbit Control for Low Earth Observation Satellites

    Science.gov (United States)

    Arbinger, C.; D'Amico, S.; Eineder, M.

    The growing interest in earth observation missions equipped with space-borne optical and synthetic aperture radar (SAR) sensors drives the accuracy requirements with respect to orbit determination and control. Especially SAR interferometry with its capability to resolve the velocity of on-ground objects (e.g. for traffic monitoring, ocean currents and glacier monitoring) and to determine highly precise digital elevation models is of significant interest for scientific applications. These goals may be achieved using along-track and repeat-pass interferometry with a satellite formation, based on the precise orbit control of one satellite with respect to the osculating trajectory of the second satellite. Such a control concept will be realized by the German TerraSAR-X mission, with an expected launch in 2006, using a virtual formation, where a single satellite will be controlled in a tight manner with respect to a predefined osculating reference trajectory. This is very challenging, since common orbit disturbances, like for close twin formations, do not cancel out in this scenario. The predefined trajectory in the TerraSAR-X case could also be the orbit of a second satellite. The paper describes the generation of such a virtual reference orbit, discusses the ground-in-the-loop control concept and presents results from a long-term simulation.

  14. Orbit computation of the TELECOM-2D satellite with a Genetic Algorithm

    Science.gov (United States)

    Deleflie, Florent; Coulot, David; Vienne, Alain; Decosta, Romain; Richard, Pascal; Lasri, Mohammed Amjad

    2014-07-01

    In order to test a preliminary orbit determination method, we fit an orbit of the geostationary satellite TELECOM-2D, as if we did not know any a priori information on its trajectory. The method is based on a genetic algorithm coupled to an analytical propagator of the trajectory, that is used over a couple of days, and that uses a whole set of altazimutal data that are acquired by the tracking network made up of the two TAROT telescopes. The adjusted orbit is then compared to a numerical reference. The method is described, and the results are analyzed, as a step towards an operational method of preliminary orbit determination for uncatalogued objects.

  15. Method and associated apparatus for capturing, servicing, and de-orbiting earth satellites using robotics

    Science.gov (United States)

    Cepollina, Frank J. (Inventor); Burns, Richard D. (Inventor); Holz, Jill M. (Inventor); Corbo, James E. (Inventor); Jedhrich, Nicholas M. (Inventor)

    2009-01-01

    This invention is a method and supporting apparatus for autonomously capturing, servicing and de-orbiting a free-flying spacecraft, such as a satellite, using robotics. The capture of the spacecraft includes the steps of optically seeking and ranging the satellite using LIDAR; and matching tumble rates, rendezvousing and berthing with the satellite. Servicing of the spacecraft may be done using supervised autonomy, which is allowing a robot to execute a sequence of instructions without intervention from a remote human-occupied location. These instructions may be packaged at the remote station in a script and uplinked to the robot for execution upon remote command giving authority to proceed. Alternately, the instructions may be generated by Artificial Intelligence (AI) logic onboard the robot. In either case, the remote operator maintains the ability to abort an instruction or script at any time, as well as the ability to intervene using manual override to teleoperate the robot.In one embodiment, a vehicle used for carrying out the method of this invention comprises an ejection module, which includes the robot, and a de-orbit module. Once servicing is completed by the robot, the ejection module separates from the de-orbit module, leaving the de-orbit module attached to the satellite for de-orbiting the same at a future time. Upon separation, the ejection module can either de-orbit itself or rendezvous with another satellite for servicing. The ability to de-orbit a spacecraft further allows the opportunity to direct the landing of the spent satellite in a safe location away from population centers, such as the ocean.

  16. Improved Orbit Determination and Forecasts with an Assimilative Tool for Satellite Drag Specification

    Science.gov (United States)

    Pilinski, M.; Crowley, G.; Sutton, E.; Codrescu, M.

    2016-09-01

    Much as aircraft are affected by the prevailing winds and weather conditions in which they fly, satellites are affected by the variability in density and motion of the near earth space environment. Drastic changes in the neutral density of the thermosphere, caused by geomagnetic storms or other phenomena, result in perturbations of LEO satellite motions through drag on the satellite surfaces. This can lead to difficulties in locating important satellites, temporarily losing track of satellites, and errors when predicting collisions in space. As the population of satellites in Earth orbit grows, higher space-weather prediction accuracy is required for critical missions, such as accurate catalog maintenance, collision avoidance for manned and unmanned space flight, reentry prediction, satellite lifetime prediction, defining on-board fuel requirements, and satellite attitude dynamics. We describe ongoing work to build a comprehensive nowcast and forecast system for specifying the neutral atmospheric state related to orbital drag conditions. The system outputs include neutral density, winds, temperature, composition, and the satellite drag derived from these parameters. This modeling tool is based on several state-of-the-art coupled models of the thermosphere-ionosphere as well as several empirical models running in real-time and uses assimilative techniques to produce a thermospheric nowcast. This software will also produce 72 hour predictions of the global thermosphere-ionosphere system using the nowcast as the initial condition and using near real-time and predicted space weather data and indices as the inputs. In this paper, we will review the driving requirements for our model, summarize the model design and assimilative architecture, and present preliminary validation results. Validation results will be presented in the context of satellite orbit errors and compared with several leading atmospheric models. As part of the analysis, we compare the drag observed by

  17. Monitoring of the orbital position of a geostationary satellite by the spatially separated reception of signals of digital satellite television

    Science.gov (United States)

    Kaliuzny, M. P.; Bushuev, F. I.; Sibiriakova, Ye. S.; Shulga, O. V.; Shakun, L. S.; Bezrukovs, V.; Kulishenko, V. F.; Moskalenko, S. S.; Malynovsky, Ye. V.; Balagura, O. A.

    2017-02-01

    The results of the determination of the geostationary satellite "Eutelsat-13B" orbital position obtained during 2015-2016 years using European stations' network for reception of DVB-S signals from the satellite are presented. The network consists of five stations located in Ukraine and Latvia. The stations are equipped with a radio engineering complex developed by the RI "MAO". The measured parameter is a time difference of arrival (TDOA) of the DVB-S signals to the stations of the network. The errors of TDOA determination and satellite coordinates, obtained using a numerical model of satellite motion, are equal ±2.6 m and ±35 m respectively. Software implementation of the numerical model is taken from the free space dynamics library OREKIT.

  18. Orbits and Masses of the Satellites of the Dwarf Planet Haumea = 2003 EL61

    CERN Document Server

    Ragozzine, Darin

    2009-01-01

    Using precise relative astrometry from the Hubble Space Telescope and the W. M. Keck Telescope, we have determined the orbits and masses of the two dynamically interacting satellites of the dwarf planet (136108) Haumea, formerly 2003 EL61. The orbital parameters of Hi'iaka, the outer, brighter satellite, match well the previously derived orbit. On timescales longer than a few weeks, no Keplerian orbit is sufficient to describe the motion of the inner, fainter satellite Namaka. Using a fully-interacting three point-mass model, we have recovered the orbital parameters of both orbits and the mass of Haumea and Hi'iaka; Namaka's mass is marginally detected. The data are not sufficient to uniquely determine the gravitational quadrupole of the non-spherical primary (described by $J_2$). The nearly co-planar nature of the satellites, as well as an inferred density similar to water ice, strengthen the hypothesis that Haumea experienced a giant collision billions of years ago. The excited eccentricities and mutual inc...

  19. Precise orbit determination of a maneuvered GEO satellite using CAPS ranging data

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Wheel-off-loadings and orbital maneuvers of the GEO satellite result in additional accelerations to the satellite itself. Complex and difficult to model, these time varying accelerations are an important error source of precise orbit determination (POD). In most POD practices, only non-maneuver orbital arcs are treated. However, for some applications such as satellite navigation RDSS services, uninterrupted orbital ephemeris is demanded, requiring the development of POD strategies to be processed both during and after an orbital maneuver. We in this paper study the POD for a maneuvered GEO satellite, using high precision and high sampling rate ranging data obtained with Chinese Area Positioning System (CAPS). The strategy of long arc POD including maneuver arcs is studied by using telemetry data to model the maneuver thrust process. Combining the thrust and other orbital perturbations, a long arc of 6 days’ CAPS ranging data is analyzed. If the telemetry data are not available or contain significant errors, attempts are made to estimate thrusting parameters using CAPS ranging data in the POD as an alternative to properly account for the maneuver. Two strategies achieve reasonably good data fitting level in the tested arc with the maximal position difference being about 20 m.

  20. Precise orbit determination of a maneuvered GEO satellite using CAPS ransing data

    Institute of Scientific and Technical Information of China (English)

    HUANG Yong; HU XiaoGong; HUANG Cheng; YANG QiangWen; JIAO WenHai

    2009-01-01

    Wheel-off-loadings and orbital maneuvers of the GEO satellite result in additional accelerations to the satellite itself.Complex and difficult to model,these time varying accelerations are an important error source of precise orbit determination (POD).In most POD practices,only non-maneuver orbital arcs are treated.However,for some applications such as satellite navigation RDSS services,uninterrupted orbital ephemeris is demanded,requiring the development of POD strategies to be processed both during and after an orbital maneuver.We in this paper study the POD for a maneuvered GEO satellite,using high precision and high sampling rate ranging data obtained with Chinese Area Positioning System (CAPS).The strategy of long arc POD including maneuver arcs is studied by using telemetry data to model the maneuver thrust process.Combining the thrust and other orbital perturbations,a long arc of 6 days' CAPS ranging data is analyzed.If the telemetry data are not available or contain significant errors,attempts are made to estimate thrusting parameters using CAPS ranging data in the POD as an alternative to properly account for the maneuver.Two strategies achieve reasonably good data fitting level in the tested arc with the maximal position difference being about 20m.

  1. Precise orbit determination of a maneuvered GEO satellite using CAPS ranging data

    Science.gov (United States)

    Huang, Yong; Hu, Xiaogong; Huang, Cheng; Yang, Qiangwen; Jiao, Wenhai

    2009-03-01

    Wheel-off-loadings and orbital maneuvers of the GEO satellite result in additional accelerations to the satellite itself. Complex and difficult to model, these time varying accelerations are an important error source of precise orbit determination (POD). In most POD practices, only non-maneuver orbital arcs are treated. However, for some applications such as satellite navigation RDSS services, uninterrupted orbital ephemeris is demanded, requiring the development of POD strategies to be processed both during and after an orbital maneuver. We in this paper study the POD for a maneuvered GEO satellite, using high precision and high sampling rate ranging data obtained with Chinese Area Positioning System (CAPS). The strategy of long arc POD including maneuver arcs is studied by using telemetry data to model the maneuver thrust process. Combining the thrust and other orbital perturbations, a long arc of 6 days’ CAPS ranging data is analyzed. If the telemetry data are not available or contain significant errors, attempts are made to estimate thrusting parameters using CAPS ranging data in the POD as an alternative to properly account for the maneuver. Two strategies achieve reasonably good data fitting level in the tested arc with the maximal position difference being about 20 m.

  2. The Impact of New Trends in Satellite Launches on Orbital Debris Environment

    Science.gov (United States)

    Karacalioglu, Arif Goktug; Stupl, Jan

    2016-01-01

    The main goal of this study is to examine the impact of new trends in satellite launch activities on the orbital debris environment and collision risk. Starting from the launch of the first artificial satellite in 1957, space borne technology has become an indispensable part of our lives. More than 6,000 satellites have been launched into Earth orbit. Though the annual number of satellites launched stayed flat for many decades, the trend has recently changed. The satellite market has been undergoing a major evolution with new space companies replacing the traditional approach of deploying a few large, complex and costly satellites with an approach to use a multitude of smaller, less complex and cheaper satellites. This new approach creates a sharp increase in the number of satellites and so the historic trends are no longer representative. As a foundation for this study, a scenario for satellite deployments based on the publicly announced future satellite missions has been developed. These constellation-deploying companies include, but are not limited to, Blacksky, CICERO, EROS, Landmapper, Leosat, Northstar, O3b, OmniEarth, OneWeb, Orbcomm, OuterNet, PlanetIQ, Planet Labs, Radarsat, RapidEye Next Generation, Sentinel, Skybox, SpaceX, and Spire. Information such as the annual number of launches, the number of orbital planes to be used by the constellation, as well as apogee, perigee, inclination, spacecraft mass and area were included or approximated. Besides the production of satellites, a widespread ongoing effort to enhance orbital injection capabilities will allow delivery of more spacecraft more accurately into Earth orbits. A long list of companies such as Microcosm, Rocket Lab, Firefly Space Systems, Sierra Nevada Corporation and Arca Space Corporation are developing new launch vehicles dedicated for small satellites. There are other projects which intend to develop interstages with propulsive capabilities which will allow the deployment of satellites into

  3. Failure analysis of satellite subsystems to define suitable de-orbit devices

    Science.gov (United States)

    Palla, Chiara; Peroni, Moreno; Kingston, Jennifer

    2016-11-01

    Space missions in Low Earth Orbit (LEO) are severely affected by the build-up of orbital debris. A key practice, to be compliant with IADC (Inter-Agency Space Debris Coordination Committee) mitigation guidelines, is the removal of space systems that interfere with the LEO region not later than 25 years after the End of Mission. It is important to note that the current guidelines are not generally legally binding, even if different Space Agencies are now looking at the compliance for their missions. If the guidelines will change in law, it will be mandatory to have a postmission disposal strategy for all satellites, including micro and smaller classes. A potential increased number of these satellites is confirmed by different projections, in particular in the commercial sector. Micro and smaller spacecraft are, in general, not provided with propulsion capabilities to achieve a controlled re-entry, so they need different de-orbit disposal methods. When considering the utility of different debris mitigation methods, it is useful to understand which spacecraft subsystems are most likely to fail and how this may affect the operation of a de-orbit system. This also helps the consideration of which components are the most relevant or should be redundant depending on the satellite mass class. This work is based on a sample of LEO and MEO satellites launched between January 2000 and December 2014 with mass lower than 1000 kg. Failure analysis of satellite subsystems is performed by means of the Kaplan-Meier survival analysis; the parametric fits are conducted with Weibull distributions. The study is carried out by using the satellite database SpaceTrak™ which provides anomalies, failures, and trends information for spacecraft subsystems and launch vehicles. The database identifies five states for each satellite subsystem: three degraded states, one fully operational state, and one failed state (complete failure). The results obtained can guide the identification of the

  4. An Autonomous Orbit Determination System for Earth Satellites

    Science.gov (United States)

    1989-12-01

    these points is warranted. For example, low-Earth orbits ( LEO ) can be expected to approach e - 0 with time, so it is particularly useful to examine how...0.77887 e + 0.52875 e x y z 7 Canis Major A A A Cairs) M-0.18485 e + 0.93984 e - 0.28728 e (Sirus) -xyz A A A 8 a Leo -0.86275 e + 0.46061 e...Filters for Orbit Determination and Estimation, PhD Dissertation. University of Illinois, Urbana-Champaign IL, 1986 (AD-A170680). 12. Brouwer , Dirk

  5. Estimated Satellite Cluster Elements in Near Circular Orbit

    Science.gov (United States)

    1988-12-01

    values of the covariance matriz P to see if the filter performs as well as it believes it is performing [4:page 3391. 1.1.. Thuth Model The truth...between satellites will bc affected. Since the measurements contain no informa- L tion on absolute downrange position, it is impossible to estimate

  6. In-Orbit Earth Radiation Budget Satellite (ERBS) Battery Switch

    Science.gov (United States)

    Ahmad, Anisa; Enciso, Marlon; Rao, Gopalakrishna

    2000-01-01

    A viewgraph presentation outlines the Earth Radiation Budget Satellite (ERBS) power system and battery history. ERBS spacecraft and battery cell failures are listed with the reasons for failure. The battery management decision and stabilization of the batteries is discussed. Present battery operations are shown to be successful.

  7. MIT Orbital Transfer Vehicle (MOTV): CASTOR Satellite: Design Document

    Science.gov (United States)

    2010-11-18

    with Chocolate Satellite ................................................... 38 Figure 2.1-1: Ground System Layout...292 Figure 6.2-8: Analog Output Channels ........................................................................... 293 Figure 6.2-9: Turn PID Off...connections. Diagrams of the pin connections are included. The Grounding section identifies the type of grounding connections (i.e. analog , digital

  8. The Orbits of Saturn's Small Satellites Derived from Combined Historic and Cassini Imaging Observations

    Science.gov (United States)

    Spitale, J. N.; Jacobson, R. A.; Porco, C. C.; Owen, W. M., Jr.

    2006-08-01

    We report on the orbits of the small, inner Saturnian satellites, either recovered or newly discovered in recent Cassini imaging observations. The orbits presented here reflect improvements over our previously published values in that the time base of Cassini observations has been extended, and numerical orbital integrations have been performed in those cases in which simple precessing elliptical, inclined orbit solutions were found to be inadequate. Using combined Cassini and Voyager observations, we obtain an eccentricity for Pan 7 times smaller than previously reported because of the predominance of higher quality Cassini data in the fit. The orbit of the small satellite (S/2005 S1 [Daphnis]) discovered by Cassini in the Keeler gap in the outer A ring appears to be circular and coplanar; no external perturbations are apparent. Refined orbits of Atlas, Prometheus, Pandora, Janus, and Epimetheus are based on Cassini , Voyager, Hubble Space Telescope, and Earth-based data and a numerical integration perturbed by all the massive satellites and each other. Atlas is significantly perturbed by Prometheus, and to a lesser extent by Pandora, through high-wavenumber mean-motion resonances. Orbital integrations involving Atlas yield a mass of GMAtlas=(0.44+/-0.04)×10-3 km3 s -2, 3 times larger than reported previously (GM is the product of the Newtonian constant of gravitation G and the satellite mass M). Orbital integrations show that Methone is perturbed by Mimas, Pallene is perturbed by Enceladus, and Polydeuces librates around Dione's L5 point with a period of about 791 days. We report on the nature and orbits of bodies sighted in the F ring, two of which may have persisted for a year or more.

  9. Long-term evolution of the inclined geosynchronous orbit in Beidou Navigation Satellite System

    Science.gov (United States)

    Tang, Jingshi; Hou, Xiyun; Liu, Lin

    2017-02-01

    China's Beidou Navigation Satellite System (BDS), unlike other navigation satellite systems, uses several inclined geosynchronous orbits (IGSO) to enhance the accuracy of regional or global navigation. In order to maintain a safe space environment in the vicinity of its operational orbit, it is necessary that the decommissioned satellites be well disposed of. To understand the underlying dynamics that affect the BDS IGSO, we study this problem from two aspects. In this paper, we first theoretically analyze the problem using the simplified models with 1 and 2 degrees of freedoms (1-/2-dof). Then we extensively investigate the numerically propagated orbits for 200 and 1000 years, applying the results from these simplified models and seeking proper explanations for the underlying dynamics. We especially focus on the eccentricity evolution, which is a major concern regarding the collision hazard. We expect to understand the underlying dynamics governing the long-term evolution of BDS IGSO and gain helpful insight into future disposal strategies.

  10. Thermally induced vibrations of smart solar panel in a low-orbit satellite

    Science.gov (United States)

    Azadi, E.; Fazelzadeh, S. Ahmad; Azadi, M.

    2017-03-01

    In this paper, a smart flexible satellite moving in a circular orbit with two flexible panels are studied. The panels have been modeled as clamped-free-free-free rectangular plates with attached piezoelectric actuators. It is assumed that the satellite has a pitch angle rotation maneuver. Rapid temperature changes at day-night transitions in orbit generate time dependent bending moments. Satellite maneuver and temperature varying induce vibrations in the appendages. So, to simulate the system, heat radiation effects on the appendages have been considered. The nonlinear equations of motion and the heat transfer equations are coupled and solved simultaneously. So, the governing equations of motion are nonlinear and very complicated ones. Finally, the whole system is simulated and the effects of the heat radiation, radius of the orbit, piezoelectric voltages, and piezoelectric locations on the response of the system are studied.

  11. A Geostationary Earth Orbit Satellite Model Using Easy Java Simulation

    Science.gov (United States)

    Wee, Loo Kang; Goh, Giam Hwee

    2013-01-01

    We develop an Easy Java Simulation (EJS) model for students to visualize geostationary orbits near Earth, modelled using a Java 3D implementation of the EJS 3D library. The simplified physics model is described and simulated using a simple constant angular velocity equation. We discuss four computer model design ideas: (1) a simple and realistic…

  12. A Geostationary Earth Orbit Satellite Model Using Easy Java Simulation

    Science.gov (United States)

    Wee, Loo Kang; Goh, Giam Hwee

    2013-01-01

    We develop an Easy Java Simulation (EJS) model for students to visualize geostationary orbits near Earth, modelled using a Java 3D implementation of the EJS 3D library. The simplified physics model is described and simulated using a simple constant angular velocity equation. We discuss four computer model design ideas: (1) a simple and realistic…

  13. GPS-derived orbits for the GOCE satellite

    NARCIS (Netherlands)

    Bock, H.; Jäggi, A.; Meyer, U.; Visser, P.N.A.M.; Van den IJssel, J.A.A.; Van Helleputte, T.; Heinze, M.; Hugentobler, U.

    2011-01-01

    The first ESA (European Space Agency) Earth explorer core mission GOCE (Gravity field and steady-state Ocean Circulation Explorer) was launched on 17 March 2009 into a sun-synchronous dusk–dawn orbit with an exceptionally low initial altitude of about 280 km. The onboard 12-channel dual-frequency GP

  14. The effect of lunarlike satellites on the orbital infrared light curves of Earth-analog planets.

    Science.gov (United States)

    Moskovitz, Nicholas A; Gaidos, Eric; Williams, Darren M

    2009-04-01

    We have investigated the influence of lunarlike satellites on the infrared orbital light curves of Earth-analog extrasolar planets. Such light curves will be obtained by NASA's Terrestrial Planet Finder (TPF) and ESA's Darwin missions as a consequence of repeat observations to confirm the companion status of a putative planet and determine its orbit. We used an energy balance model to calculate disk-averaged infrared (bolometric) fluxes from planet-satellite systems over a full orbital period (one year). The satellites are assumed to lack an atmosphere, have a low thermal inertia like that of the Moon, and span a range of plausible radii. The planets are assumed to have thermal and orbital properties that mimic those of Earth, while their obliquities and orbital longitudes of inferior conjunction remain free parameters. Even if the gross thermal properties of the planet can be independently constrained (e.g., via spectroscopy or visible-wavelength detection of specular glint from a surface ocean), only the largest (approximately Mars-sized) lunarlike satellites can be detected by light curve data from a TPF-like instrument (i.e., one that achieves a photometric signal-to-noise ratio of 10 to 20 at infrared wavelengths). Nondetection of a lunarlike satellite can obfuscate the interpretation of a given system's infrared light curve so that it may resemble a single planet with high obliquity, different orbital longitude of vernal equinox relative to inferior conjunction, and in some cases drastically different thermal characteristics. If the thermal properties of the planet are not independently established, then the presence of a lunarlike satellite cannot be inferred from infrared data, which would thus demonstrate that photometric light curves alone can only be used for preliminary study, and the addition of spectroscopic data will be necessary.

  15. Eclipse intervals for satellites in circular orbit under the effects of Earth’s oblateness and solar radiation pressure

    Directory of Open Access Journals (Sweden)

    M.N. Ismail

    2015-06-01

    Full Text Available In this work, the circumstances of eclipse for a circular satellites’ orbit are studied. The time of passage of the ingress and egress points is calculated. Finally, the eclipse intervals of satellites’ orbit are calculated. An application was done taken into account the effects of solar radiation pressure and Earth’s oblateness on the orbital elements of circular orbit satellite.

  16. Real-Time Orbit Determination for Future Korean Regional Navigation Satellite System

    Science.gov (United States)

    Shin, Kihae; Oh, Hyungjik; Park, Sang-Young; Park, Chandeok

    2016-03-01

    This paper presents an algorithm for Real-Time Orbit Determination (RTOD) of navigation satellites for the Korean Regional Navigation Satellite System (KRNSS), when the navigation satellites generate ephemeris by themselves in abnormal situations. The KRNSS is an independent Regional Navigation Satellite System (RNSS) that is currently within the basic/preliminary research phase, which is intended to provide a satellite navigation service for South Korea and neighboring countries. Its candidate constellation comprises three geostationary and four elliptical inclined geosynchronous orbit satellites. Relative distance ranging between the KRNSS satellites based on Inter-Satellite Ranging (ISR) is adopted as the observation model. The extended Kalman filter is used for real-time estimation, which includes fine-tuning the covariance, measurement noise, and process noise matrices. Simulation results show that ISR precision of 0.3-0.7 m, ranging capability of 65,000 km, and observation intervals of less than 20 min are required to accomplish RTOD accuracy to within 1 m. Furthermore, close correlation is confirmed between the dilution of precision and RTOD accuracy.

  17. Analysis of Orbit Perturbations and Frozen Orbit for Lunar Satellite%月球卫星轨道摄动及冻结轨道研究

    Institute of Scientific and Technical Information of China (English)

    童科伟; 刘伟; 高朝辉; 王俊峰; 王笃俊

    2012-01-01

    利用理论分析、数值仿真与相图分析,论述了月球卫星冻结轨道与地球卫星冻结轨道的区别,分析结果表明,月球重力场存在较大异常,会引起月球卫星轨道发生较大漂移。月球冻结轨道在田谐项影响下,还存在中等周期的漂移。仅简单考虑带谐项系数,无法求得完美的月球冻结系数。月球重力场异常对绕月卫星的影响与地球相比存在很大区别。月球轨道卫星的长期运行与控制策略的设计,不能按照地球轨道卫星的传统方法。目前使用的月球引力模型精度较差,尽管基于这些不可靠的引力模型,可以得出很多有用结论,但对未来高精度的月球探测任务来说,还存在不足,需要在将来的月球探测任务中,探测高精度的月球重力场,以利于未来月球探测航天系统的任务分析与设计。%The differences between lunar satellite frozen orbit and earth satellite frozen orbit are analyzed based on analytic theory,numerical simulation and phase portrait analysis.The results show that the lunar gravity anomaly causes large drift of lunar satellite orbit,the lunar tesseral harmonics causes middle period drift of lunar frozen orbit.Phase portrait analysis and numerical analysis methods can be used to solve perfect lunar frozen coefficients instead of only using zonal harmonics.Lunar gravity anomaly causes significant difference when compared with earth orbit.For long term operation and control of lunar satellite a different strategy must be used.Though some useful results can be obtained based on currently used lower precision lunar gravity field models,they are not adequate for the future high precision lunar exploration mission.It is urgent to detect high precision lunar gravity field model for the mission analysis and design of future lunar exploration space system.

  18. The ITU and managing satellite orbital and spectrum resources in the 21st century

    CERN Document Server

    Allison, Audrey L

    2014-01-01

    Access to satellite orbits and spectrum is managed by the ITU, a United Nations body that strives to extend the benefits of new technologies to the world, while ensuring equitable access to these resources. This book explores how the ITU approaches these dual missions in light of the increasing saturation of the geostationary orbit by a vibrant global satellite industry and the rising interests of developing countries in accessing these limited resources. These issues were the subject of debate at the 2012 World Radiocommunication Conference. This book describes and assesses various regulatory approaches undertaken to manage the increasing requests for access to space and especially access to spectrum and orbital locations in the geosynchronous or “The Clarke” orbit.

  19. CARTEL: A method to calibrate S-band ranges with geostationary satellites. Results of orbit determination

    Science.gov (United States)

    Guitart, A.; Mesnard, B.

    1986-05-01

    A satellite tracking campaign was organized, with 4 S-band stations, for 1 wk. The relative geometry of the network with respect to the satellites was an opportunity to show how the most precise orbit can be computed with the operational software. This precise orbit served as a reference to evaluate what can be achieved with one station with range and angular measurements, a typical configuration used for stationkeeping of geostationary satellites. Orbit computation implied numerical integration with gravitational (Earth, Moon, and Sun) and solar radiation pressure forces acting on the satellite. Arc lengths of 2 days gave initial state vectors which were compared every day. Precision of 10 m is achieved. However, an analysis of the influence of parameters in the orbit computations reveals that the absolute accuracy is of the order of 100 m, since modeling perturbations were neglected in the operational software (e.g., polar motion). In a relative sense, the reference orbit allows estimation of systematic errors for other tracking antennas.

  20. UoGAS - A Get Away Special Satellite with Orbit-Raising Capability

    OpenAIRE

    Lorenz, Ralph

    1988-01-01

    The low cost of satellite deployment from Shuttle GAS canister makes it an attractive launch option. However, the low deployment altitude severely constrains lifetime so the UoGAS (University of Surrey Get Away Special) spacecraft will incorporate a propulsion system. Lifetime extension methods are considered and a start-of-mission orbit-raising manoeuvre is selected. An orbit dynamics simulation method (taking into account the atmospheric drag) is discussed and results presented. Mission pro...

  1. System Design and In-orbit Verification of the HJ-1-C SAR Satellite

    Directory of Open Access Journals (Sweden)

    Zhang Run-ning

    2014-06-01

    Full Text Available HJ-1-C is a SAR satellite owned by the Chinese Environment and Natural Disaster Monitoring constellation, and works together with the optical satellites HJ-1-A/B for monitoring environment and natural disasters. In this paper, the system design and characteristics of the first Chinese civil SAR satellite are described. In addition, the interface relation between SAR payload and platform is studied. Meanwhile, the data transmission capability, attitude, power, and temperature control that support SAR imaging are reviewed. Finally, the corresponding in-orbit verification results are presented.

  2. Cost performance satellite design using queueing theory

    Science.gov (United States)

    Hein, G. F.

    1975-01-01

    The Poisson arrival model was used to determine the effects of limiting the number of channels for a disaster warning satellite. State probabilities and delay probabilities were estimated for several values of the number of channels (C) for arrival and service rates obtained from disaster warnings issued by the National Weather Service. The results predicted by the queueing model were compared with the results of a digital computer simulation.

  3. Closed-orbit theory for molecules in fields

    Science.gov (United States)

    Matzkin, A.; Dando, P. A.; Monteiro, T. S.

    2002-07-01

    Closed-orbit theory was initially developed as a qualitative and quantitative tool to interpret the dynamics of excited hydrogen in static external fields: the modulations in the photoabsorption spectrum were explained in terms of classical orbits closed at the nucleus. We consider the closed-orbit theory formalism appropriate for molecules in fields. The theoretical extensions are described, and semiclassical calculations based on this formalism are undertaken and compared to quantum R-matrix calculations for model molecules in a static magnetic field. We find that the spectral modulations can be analyzed simply in terms of the scattering of the excited electron on the molecular core. In addition to elastic scattering, modulations produced by inelastic scattering are essential to account for the photoabsorption spectrum. Through this process, an electron along a closed orbit in the classically chaotic regime exchanges energy with the core and comes out along an orbit in the near integrable regime. The relative importance of elastic and inelastic scattering depends on the molecular quantum defects.

  4. Quiver theories for moduli spaces of classical group nilpotent orbits

    Science.gov (United States)

    Hanany, Amihay; Kalveks, Rudolph

    2016-06-01

    We approach the topic of Classical group nilpotent orbits from the perspective of the moduli spaces of quivers, described in terms of Hilbert series and generating functions. We review the established Higgs and Coulomb branch quiver theory constructions for A series nilpotent orbits. We present systematic constructions for BCD series nilpotent orbits on the Higgs branches of quiver theories defined by canonical partitions; this paper collects earlier work into a systematic framework, filling in gaps and providing a complete treatment. We find new Coulomb branch constructions for above minimal nilpotent orbits, including some based upon twisted affine Dynkin diagrams. We also discuss aspects of 3 d mirror symmetry between these Higgs and Coulomb branch constructions and explore dualities and other relationships, such as HyperKähler quotients, between quivers. We analyse all Classical group nilpotent orbit moduli spaces up to rank 4 by giving their unrefined Hilbert series and the Highest Weight Generating functions for their decompositions into characters of irreducible representations and/or Hall Littlewood polynomials.

  5. Quiver theories for moduli spaces of classical group nilpotent orbits

    Energy Technology Data Exchange (ETDEWEB)

    Hanany, Amihay; Kalveks, Rudolph [Theoretical Physics Group, The Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2AZ (United Kingdom)

    2016-06-21

    We approach the topic of Classical group nilpotent orbits from the perspective of the moduli spaces of quivers, described in terms of Hilbert series and generating functions. We review the established Higgs and Coulomb branch quiver theory constructions for A series nilpotent orbits. We present systematic constructions for BCD series nilpotent orbits on the Higgs branches of quiver theories defined by canonical partitions; this paper collects earlier work into a systematic framework, filling in gaps and providing a complete treatment. We find new Coulomb branch constructions for above minimal nilpotent orbits, including some based upon twisted affine Dynkin diagrams. We also discuss aspects of 3d mirror symmetry between these Higgs and Coulomb branch constructions and explore dualities and other relationships, such as HyperKähler quotients, between quivers. We analyse all Classical group nilpotent orbit moduli spaces up to rank 4 by giving their unrefined Hilbert series and the Highest Weight Generating functions for their decompositions into characters of irreducible representations and/or Hall Littlewood polynomials.

  6. A novel emergency system for low earth orbit satellites using Galileo GNSS

    NARCIS (Netherlands)

    Gill, E.K.A.; Helderweirt, A.

    2010-01-01

    Low Earth Orbit (LEO) satellites have a limited direct contact time with the stations of their ground segment. This fundamentally constraints a timeliness reaction of the mission control center in case of emergency situations onboard the LEO spacecraft. To enable such a rapid reaction to emergency s

  7. Long-term evolution of the inclined geosynchronous orbit in Beidou Navigation Satellite System

    Science.gov (United States)

    Tang, Jingshi; Hou, Xiyun; Liu, Lin

    2016-07-01

    China's Beidou Navigation Satellite System (BDS), unlike other navigation satellite systems, uses several inclined geosynchronous orbits (IGSO) to enhance the accuracy of regional or global navigation. In order to maintain a safe space environment in the vicinity of its operational orbit, it is necessary that the decommissioned satellites be well disposed of. Following up the study on the specific BDS IGSO satellites in the previous COSPAR Scientific Assembly, we now extend the study to understand the underlying dynamics and discuss the long-term evolution of such orbits from a more general perspective. In this paper, we first theoretically analyze the problem using simplified models of 1 and 2 degrees of freedoms (1-/2-dof). Then we extensively investigate the numerically propagated orbits for 200 and 1000 years, applying the results from these simplified models and seeking proper explanations for the underlying dynamics. We especially focus on the eccentricity evolution, which is a major concern regarding the collision hazard. We expect to understand the underlying dynamics governing the long-term evolution of BDS IGSO and gain helpful insight into future disposal strategies.

  8. Study on networking issues of medium earth orbit satellite communications systems

    Science.gov (United States)

    Araki, Noriyuki; Shinonaga, Hideyuki; Ito, Yasuhiko

    1993-01-01

    Two networking issues of communications systems with medium earth orbit (MEO) satellites, namely network architectures and location determination and registration methods for hand-held terminals, are investigated in this paper. For network architecture, five candidate architectures are considered and evaluated in terms of signaling traffic. For location determination and registration, two methods are discussed and evaluated.

  9. 78 FR 19172 - Earth Stations Aboard Aircraft Communicating with Fixed-Satellite Service Geostationary-Orbit...

    Science.gov (United States)

    2013-03-29

    ... From the Federal Register Online via the Government Publishing Office FEDERAL COMMUNICATIONS COMMISSION 47 CFR Parts 2 and 25 Earth Stations Aboard Aircraft Communicating with Fixed-Satellite Service Geostationary-Orbit Space Stations AGENCY: Federal Communications Commission. ACTION: Proposed rule;...

  10. Coarse Initial Orbit Determination for a Geostationary Satellite Using Single-Epoch GPS Measurements

    Directory of Open Access Journals (Sweden)

    Ghangho Kim

    2015-04-01

    Full Text Available A practical algorithm is proposed for determining the orbit of a geostationary orbit (GEO satellite using single-epoch measurements from a Global Positioning System (GPS receiver under the sparse visibility of the GPS satellites. The algorithm uses three components of a state vector to determine the satellite’s state, even when it is impossible to apply the classical single-point solutions (SPS. Through consideration of the characteristics of the GEO orbital elements and GPS measurements, the components of the state vector are reduced to three. However, the algorithm remains sufficiently accurate for a GEO satellite. The developed algorithm was tested on simulated measurements from two or three GPS satellites, and the calculated maximum position error was found to be less than approximately 40 km or even several kilometers within the geometric range, even when the classical SPS solution was unattainable. In addition, extended Kalman filter (EKF tests of a GEO satellite with the estimated initial state were performed to validate the algorithm. In the EKF, a reliable dynamic model was adapted to reduce the probability of divergence that can be caused by large errors in the initial state.

  11. Two satellite study of substorm expansion near geosynchronous orbit

    Directory of Open Access Journals (Sweden)

    Ø. Holter

    2004-12-01

    Full Text Available During several time intervals in 1979–1980 the satellites GEOS-2 and SCATHA were situated relatively close on the nightside of the Earth at geosynchronous distances. Several substorm events were identified during these periods. The event considered in this paper was recorded on 22 May 1979, when the satellites were separated by less than 30min in local time around 21:00 LT. The observed 45 to 60 s delay of magnetic signatures observed at the two s/c indicates a westward expansion of ~7.7°/min. At the two s/c, the magnetic signatures are, in particular for the azimuthal magnetic field components, quite different. At GEOS-2, being close to the magnetic equator, the dominant feature is a dipolarization with a weak field-aligned current signature corresponding to a symmetric current which cancels at the equator. On SCATHA, however, being close to the current sheet boundary, the azimuthal magnetic field indicates a strong field-aligned Birkeland current structure. On both s/c the first indication of an approaching substorm was an increase in the high energy ion flux followed by a reduction in the flux intensity of energetic electrons and a further tailward stretching of the magnetic field, starting ~2min before the onset of the magnetic field dipolarization. The tailward stretching, the observed variations of the magnetic field components, and the subsequent dipolarization are interpreted in terms of an azimuthally tilted field-aligned current system passing the s/c on the tailward side from east to west. The westward expansion and dipolarization observed at the two s/c are consistent with the propagation of a Rayleigh-Taylor type instability. The increased radial ion flux corresponds to the ExB-drift due to the substorm associated electric field.

    Key words. Magnetospheric physics (storms and substorms; plasma waves and instabilities; current systems

  12. Tests of daily time variable Earth gravity field solutions for precise orbit determination of altimetry satellites

    Science.gov (United States)

    Rudenko, Sergei; Gruber, Christian

    2016-04-01

    This study makes use of current GFZ monthly and daily gravity field products from 2002 to 2014 based on radial basis functions (RBF) instead of time variable gravity field modeling for precise orbit determination of altimetry satellites. Since some monthly solutions are missing in the GFZ GRACE RL05a solution and in order to reach a better quality for the precise orbit determination, daily generated RBF solutions obtained from Kalman filtered GRACE data processing and interpolated in case of gaps have been used. Moreover, since the geopotential coefficients of low degrees are better determined using SLR observations to geodetic satellites like Lageos, Stella, Starlette and Ajisai than from GRACE observations, these terms are co-estimated in the RBF solutions by using apriori SLR-derived values up to degree and order 4. Precise orbits for altimetry satellites Envisat (2002-2012), Jason-1 (2002-2013) and Jason-2 (2008-2014) are then computed over the given time intervals using this approach and compared with the orbits obtained when using other models such as EIGEN-6S4. An analysis of the root-mean-square values of the observation fits of SLR and DORIS observations and the orbit arcs overlaps will allow us to draw a conclusion on the quality of the RBF solution and to use these new trajectories for sea level trend estimates and geophysical application.

  13. Dynamical friction and scratches of orbiting satellite galaxies on host systems

    CERN Document Server

    Ogiya, Go

    2015-01-01

    We study the dynamical response of extended systems, hosts, to smaller systems, satellites, orbiting around the hosts using extremely high-resolution N-body simulations with up to one billion particles. This situation corresponds to minor mergers which are ubiquitous in the scenario of hierarchical structure formation in the universe. According to Chandrasekhar (1943), satellites create density wakes along the orbit and the wakes cause a deceleration force on satellites, i.e. dynamical friction. This study proposes an analytical model to predict the dynamical response of hosts in the density distribution and finds not only traditional wakes but also mirror images of over- and underdensities centered on the host. Controlled N-body simulations with high resolutions verify the predictions of the analytical model directly. We apply our analytical model to the expected dynamical response of nearby interacting galaxy pairs, the Milky Way - Large Magellanic Cloud system and the M31 - M33 system.

  14. Dynamical friction and scratches of orbiting satellite galaxies on host systems

    Science.gov (United States)

    Ogiya, Go; Burkert, Andreas

    2016-04-01

    We study the dynamical response of extended systems, hosts, to smaller systems, satellites, orbiting around the hosts using extremely high-resolution N-body simulations with up to one billion particles. This situation corresponds to minor mergers which are ubiquitous in the scenario of hierarchical structure formation in the universe. According to Chandrasekhar, satellites create density wakes along the orbit and the wakes cause a deceleration force on satellites, i.e. dynamical friction. This study proposes an analytical model to predict the dynamical response of hosts as reflected in their density distribution and finds not only traditional wakes but also mirror images of over- and underdensities centred on the host. Our controlled N-body simulations with high resolutions verify the predictions of the analytical model. We apply our analytical model to the expected dynamical response of nearby interacting galaxy pairs, the Milky Way-Large Magellanic Cloud system and the M31-M33 system.

  15. Simulation of the Impacts of Single LEO Satellite Orbit Parameters on the Distribution and Number of Occultation Events

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Focusing on carrying out GPS occultation observations with a receiver set on LEO satellite, this paper develops the LEO orbit simulation system based on which the occultation events can be simulated taking into account the geometric relationship of the satellites and the field of view of the receiver antenna. In this paper, the impacts of 4 types of LEO orbit parameters including argument of latitude (AOL), right ascension of ascending node (RAAN), orbit height and orbit inclination on the distribution and number of occultation events observed with a single LEO satellite are discussed through simulation and some conclusions are drawn.

  16. The impact of the orbital decay of the LAGEOS satellites on the frame-dragging tests

    CERN Document Server

    Iorio, Lorenzo

    2016-01-01

    The laser-tracked geodetic satellites LAGEOS, LAGEOS II and LARES are currently employed, among other things, to measure the general relativistic Lense-Thirring effect in the gravitomagnetic field of the spinning Earth with the hope of providing a more accurate test of such a prediction of the Einstein's theory of gravitation than the existing ones. The secular decay $\\dot a$ of the semimajor axes $a$ of such spacecrafts, recently measured in an independent way to a $\\sigma_{\\dot a}\\approx 0.1-0.01$ m yr$^{-1}$ accuracy level, may indirectly impact the proposed relativistic experiment through its connection with the classical orbital precessions induced by the Earth's oblateness $J_2$. \\textcolor{black}{Indeed,} the systematic bias due to the current measurement errors $\\sigma_{\\dot a}$ is of the same order of magnitude of, or even larger than, the expected relativistic signal itself; moreover, it grows linearly with the time span $T$ of the analysis. \\textcolor{black}{Therefore, the parameter-fitting algorit...

  17. Low Earth orbit satellite-to-ground optical scintillation: comparison of experimental observations and theoretical predictions.

    Science.gov (United States)

    Yura, Harold T; Kozlowski, David A

    2011-07-01

    Scintillation measurements of a 1064 nm laser at a 5 kHz sampling rate were made by an optical ground station at the European Space Agency observatory in Tenerife, Spain while tracking a low Earth orbit satellite during the spring and summer of 2010. The scintillation index (SI), the variance of irradiance normalized to the square of the mean, and power spectra measurements were compared to theoretical predictions based on the Kolmogorov spectrum, the Maui3 nighttime turbulence profile, weak scintillation finite-beam wave theory, included receiver, and source aperture averaging with no free-fitting parameters. Good agreement was obtained, not only for the magnitude of the observed fluctuations, but also for the corresponding elevation angle dependence and shape of the power spectra. Little variation was seen for the SI between daytime and nighttime links. For all elevation angles, ascending and descending, the observed scintillation over extensive regions of the atmosphere is consistent with log-normal statistics. Additionally, it appears from the results presented here that the nighttime turbulence profile for the atmosphere above the observatory in Tenerife is similar to that above Haleakala in Maui, Hawaii.

  18. Semiclassical Theory of Short Periodic Orbits in Quantum Chaos

    CERN Document Server

    Vergini, E G

    2000-01-01

    We have developed a semiclassical theory of short periodic orbits to obtain all quantum information of a bounded chaotic Hamiltonian system. If T_1 is the period of the shortest periodic orbit, T_2 the period of the next one and so on, the number N_p.o. of periodic orbits required in the calculation is such that T_1+...+T_N_{p.o} is approximately T_H, with T_H the Heisenberg time. As a result N_p.o \\simeq h T_{H}/\\ln (h T_{H}), where h is the topological entropy. For methods related to the trace formula N_{p.o} \\simeq \\exp(h T_{H})/ (h T_{H}).

  19. POGO satellite orbit corrections: an opportunity to improve the quality of the geomagnetic field measurements?

    Science.gov (United States)

    Stockmann, Reto; Christiansen, Freddy; Olsen, Nils; Jackson, Andrew

    2015-06-01

    We present an attempt to improve the quality of the geomagnetic field measurements from the Polar Orbiting Geophysical Observatory (POGO) satellite missions in the late 1960s. Inaccurate satellite positions are believed to be a major source of errors for using the magnetic observations for field modelling. To improve the data, we use an iterative approach consisting of two main parts: one is a main field modelling process to obtain the radial field gradient to perturb the orbits and the other is the state-of-the-art GPS orbit modelling software BERNESE to calculate new physical orbits. We report results based on a single-day approach showing a clear increase of the data quality. That single-day approach leads, however, to undesirable orbital jumps at midnight. Furthermore, we report results obtained for a much larger data set comprising almost all of the data from the three missions. With this approach, we eliminate the orbit discontinuities at midnight but only tiny quality improvements could be achieved for geomagnetically quiet data. We believe that improvements to the data are probably still possible, but it would require the original tracking observations to be found.

  20. Preliminary Results of the Ground/Orbiter Lasercomm Demonstration Experiment between Table Mountain and teh ETS-V1 Satellite

    Science.gov (United States)

    Wilson, K. E.; Lesh, J. R.; Araki, K.; Arimoto, Y.

    1996-01-01

    The Ground/Orbiter Lasercomm Demonstration (GOLD) is an optical communications demonstration between the Japanese Engineering Test Satellite (ETS-V1) and an optical ground transmitting and receiving station at the Table Mountain FAcility in Wrightwood California. Laser transmissions to the satellite are performed approximately four hours every third night when the satellite is at apogee above Table Mountain.

  1. Preliminary Results of the Ground/Orbiter Lasercomm Demonstration Experiment between Table Mountain and teh ETS-V1 Satellite

    Science.gov (United States)

    Wilson, K. E.; Lesh, J. R.; Araki, K.; Arimoto, Y.

    1996-01-01

    The Ground/Orbiter Lasercomm Demonstration (GOLD) is an optical communications demonstration between the Japanese Engineering Test Satellite (ETS-V1) and an optical ground transmitting and receiving station at the Table Mountain FAcility in Wrightwood California. Laser transmissions to the satellite are performed approximately four hours every third night when the satellite is at apogee above Table Mountain.

  2. Geoid Recovery using Geophysical Inverse Theory Applied to Satellite to Satellite Tracking Data

    Science.gov (United States)

    Gaposchkin, E. M.; Frey, H. (Technical Monitor)

    2000-01-01

    This report describes a new method for determination of the geopotential. The analysis is aimed at the GRACE mission. This Satellite-to-Satellite Tracking (SST) mission is viewed as a mapping mission The result will be maps of the geoid. The elements of potential theory, celestial mechanics, and Geophysical Inverse Theory are integrated into a computation architecture, and the results of several simulations presented Centimeter accuracy geoids with 50 to 100 km resolution can be recovered with a 30 to 60 day mission.

  3. Orbit Determination with Angle-only Data from the First Korean Optical Satellite Tracking System, OWL-Net

    Science.gov (United States)

    Choi, J.; Jo, J.

    2016-09-01

    The optical satellite tracking data obtained by the first Korean optical satellite tracking system, Optical Wide-field patrol - Network (OWL-Net), had been examined for precision orbit determination. During the test observation at Israel site, we have successfully observed a satellite with Laser Retro Reflector (LRR) to calibrate the angle-only metric data. The OWL observation system is using a chopper equipment to get dense observation data in one-shot over 100 points for the low Earth orbit objects. After several corrections, orbit determination process was done with validated metric data. The TLE with the same epoch of the end of the first arc was used for the initial orbital parameter. Orbit Determination Tool Kit (ODTK) was used for an analysis of a performance of orbit estimation using the angle-only measurements. We have been developing batch style orbit estimator.

  4. The Impact of New Trends in Satellite Launches on the Orbital Debris Environment

    Science.gov (United States)

    Karacalioglu, Arif Goektug; Stupl, Jan

    2016-01-01

    The main goal of this study is to examine the impact of new trends in satellite launch activities on the orbital debris environment and collision risk. As a foundation for the study, we developed a deployment scenario for satellites and associated rocket bodies based on publicly announced future missions. The upcoming orbital injection technologies, such as the new launch vehicles dedicated for small spacecraft and propulsive interstages, are also considered in this scenario. We then used a simulation tool developed in-house to propagate the objects within this scenario using variable-sized time-steps as small as one second to detect conjunctions between objects. The simulation makes it possible to follow the short- and long-term effects of a particular satellite or constellation in the space environment. Likewise, the effects of changes in the debris environment on a particular satellite or constellation can be evaluated. It is our hope that the results of this paper and further utilization of the developed simulation tool will assist in the investigation of more accurate deorbiting metrics to replace the generic 25-year disposal guidelines, as well as to guide future launches toward more sustainable and safe orbits.

  5. The Orbit and Future Motion of Earth Quasi-Satellite 2016 HO3

    Science.gov (United States)

    Chodas, Paul

    2016-10-01

    The newly discovered small asteroid 2016 HO3 is not only co-orbital with the Earth, it is currently trapped as a quasi-satellite, and it will remain a constant companion of our planet for centuries to come. Although it orbits the Sun, not the Earth, in a frame rotating with the Earth the asteroid appears to make yearly loops around our planet, and also bobs up and down through the ecliptic due to its 8-degree orbital inclination. What makes this asteroid a quasi-satellite is the fact that the Earth's gravity influences its motion so that it never wanders farther away than about 100 lunar distances. In the rotating frame, the asteroid's yearly cycles librate back and forth along the Earth's orbit, with a period of about 45 years. One other asteroid, 2003 YN107, followed a similar librational pattern from 1997 to 2006, but has since departed our vicinity. 2016 HO3, on the other hand, will continue to librate about our planet for centuries to come, making it the best and most stable example of a quasi-satellite to date.

  6. Precise Orbit Determination of BeiDou Satellites with Contributions from Chinese National Continuous Operating Reference Stations

    Directory of Open Access Journals (Sweden)

    Ming Chen

    2017-08-01

    Full Text Available The precise orbit determination (POD for BeiDou satellites is usually limited by the insufficient quantity and poor distribution of ground tracking stations. To cope with this problem, this study used the GPS and BeiDou joint POD method based on Chinese national continuous operating reference stations (CNCORS and IGS/MGEX stations. The results show that the 3D RMS of the differences of overlapping arcs is better than 22 cm for geostationary orbit (GEO satellites and better than 10 cm for inclined geosynchronous orbit (IGSO and medium earth orbit (MEO satellites. The radial RMS is better than 2 cm for all three types of BeiDou satellites. The results of satellite laser ranging (SLR residuals show that the RMS of the IGSO and MEO satellites is better than 5 cm, whereas the GEO satellite has a systematic bias. This study investigates the contributions of CNCORS to the POD of BeiDou satellites. The results show that after the incorporation of CNCORS, the precision of overlapping arcs of the GEO, IGSO, and MEO satellites is improved by 15.5%, 57.5%, and 5.3%, respectively. In accordance with the improvement in the precision of overlapping arcs, the accuracy of the IGSO and MEO satellites assessed by the SLR is improved by 30.1% and 4.8%, respectively. The computation results and analysis demonstrate that the inclusion of CNCORS yields the biggest contribution in the improvement of orbit accuracy for IGSO satellites, when compared to GEO satellites, while the orbit improvement for MEO satellites is the lowest due to their global coverage.

  7. Chinese Surveying and Control Network for Earth-Orbit Satellites and Deep Space Detection

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The relationship between the surveying and control network(CSN) for earth-orbit satellite and spatial geodesy, and the relationship between the CSN for deep space celestial bodies and detectors, and deep space detection are briefly summarized, and so are the basic technical needs of the deep space surveying and control network(DSN). Then, the techniques, the constituents and the distributing of Chinese satellite CSN (CSCSN) and other radio observing establishments in China are introduced. Lastly, with the primary CSCSN and other observing establishments, some projects for China to rebuild a more perfect CSCSN, and to establish a DSN are analyzed and stated.

  8. On-Orbit Performance of the Far Ultraviolet Spectroscopic Explorer (FUSE) Satellite

    CERN Document Server

    Sahnow, D J; Ake, T; Andersen, J; Andersson, B G; André, M; Artis, D; Berman, A; Blair, W; Brownsberger, K R; Calvani, H; Chayer, P; Conard, S; Feldman, P; Friedman, S; Fullerton, A W; Gaines, G; Gawne, W; Green, J; Gummin, M; Jennings, T; Joyce, J B; Kaiser, M E; Kruk, J W; Lindler, D; Massa, D L; Murphy, E; Oegerle, W R; Ohl, R; Roberts, B; Romelfanger, M; Roth, K C; Sankrit, R; Sembach, K R; Shelton, R; Siegmund, O; Silva, C; Sonneborn, G; Vaclavik, S; Weaver, H; Wilkinson, E

    2000-01-01

    Launch of the Far Ultraviolet Spectroscopic Explorer (FUSE) has been followed by an extensive period of calibration and characterization as part of the preparation for normal satellite operations. Major tasks carried out during this period include initial coalignment, focusing and characterization of the four instrument channels, and a preliminary measurement of the resolution and throughput performance of the instrument. We describe the results from this test program, and present preliminary estimates of the on-orbit performance of the FUSE satellite based on a combination of this data and prelaunch laboratory measurements.

  9. Precise orbit determination for quad-constellation satellites at Wuhan University: strategy, result validation, and comparison

    Science.gov (United States)

    Guo, Jing; Xu, Xiaolong; Zhao, Qile; Liu, Jingnan

    2016-02-01

    This contribution summarizes the strategy used by Wuhan University (WHU) to determine precise orbit and clock products for Multi-GNSS Experiment (MGEX) of the International GNSS Service (IGS). In particular, the satellite attitude, phase center corrections, solar radiation pressure model developed and used for BDS satellites are addressed. In addition, this contribution analyzes the orbit and clock quality of the quad-constellation products from MGEX Analysis Centers (ACs) for a common time period of 1 year (2014). With IGS final GPS and GLONASS products as the reference, Multi-GNSS products of WHU (indicated by WUM) show the best agreement among these products from all MGEX ACs in both accuracy and stability. 3D Day Boundary Discontinuities (DBDs) range from 8 to 27 cm for Galileo-IOV satellites among all ACs' products, whereas WUM ones are the largest (about 26.2 cm). Among three types of BDS satellites, MEOs show the smallest DBDs from 10 to 27 cm, whereas the DBDs for all ACs products are at decimeter to meter level for GEOs and one to three decimeter for IGSOs, respectively. As to the satellite laser ranging (SLR) validation for Galileo-IOV satellites, the accuracy evaluated by SLR residuals is at the one decimeter level with the well-known systematic bias of about -5 cm for all ACs. For BDS satellites, the accuracy could reach decimeter level, one decimeter level, and centimeter level for GEOs, IGSOs, and MEOs, respectively. However, there is a noticeable bias in GEO SLR residuals. In addition, systematic errors dependent on orbit angle related to mismodeled solar radiation pressure (SRP) are present for BDS GEOs and IGSOs. The results of Multi-GNSS combined kinematic PPP demonstrate that the best accuracy of position and fastest convergence speed have been achieved using WUM products, particularly in the Up direction. Furthermore, the accuracy of static BDS only PPP degrades when the BDS IGSO and MEO satellites switches to orbit-normal orientation

  10. Space Network IP Services (SNIS): An Architecture for Supporting Low Earth Orbiting IP Satellite Missions

    Science.gov (United States)

    Israel, David J.

    2005-01-01

    The NASA Space Network (SN) supports a variety of missions using the Tracking and Data Relay Satellite System (TDRSS), which includes ground stations in White Sands, New Mexico and Guam. A Space Network IP Services (SNIS) architecture is being developed to support future users with requirements for end-to-end Internet Protocol (IP) communications. This architecture will support all IP protocols, including Mobile IP, over TDRSS Single Access, Multiple Access, and Demand Access Radio Frequency (RF) links. This paper will describe this architecture and how it can enable Low Earth Orbiting IP satellite missions.

  11. Transition matrices and orbitals from reduced density matrix theory

    Energy Technology Data Exchange (ETDEWEB)

    Etienne, Thibaud [Université de Lorraine – Nancy, Théorie-Modélisation-Simulation, SRSMC, Boulevard des Aiguillettes 54506, Vandoeuvre-lès-Nancy (France); CNRS, Théorie-Modélisation-Simulation, SRSMC, Boulevard des Aiguillettes 54506, Vandoeuvre-lès-Nancy (France); Unité de Chimie Physique Théorique et Structurale, Université de Namur, Rue de Bruxelles 61, 5000 Namur (Belgium)

    2015-06-28

    In this contribution, we report two different methodologies for characterizing the electronic structure reorganization occurring when a chromophore undergoes an electronic transition. For the first method, we start by setting the theoretical background necessary to the reinterpretation through simple tensor analysis of (i) the transition density matrix and (ii) the natural transition orbitals in the scope of reduced density matrix theory. This novel interpretation is made more clear thanks to a short compendium of the one-particle reduced density matrix theory in a Fock space. The formalism is further applied to two different classes of excited states calculation methods, both requiring a single-determinant reference, that express an excited state as a hole-particle mono-excited configurations expansion, to which particle-hole correlation is coupled (time-dependent Hartree-Fock/time-dependent density functional theory) or not (configuration interaction single/Tamm-Dancoff approximation). For the second methodology presented in this paper, we introduce a novel and complementary concept related to electronic transitions with the canonical transition density matrix and the canonical transition orbitals. Their expression actually reflects the electronic cloud polarisation in the orbital space with a decomposition based on the actual contribution of one-particle excitations from occupied canonical orbitals to virtual ones. This approach validates our novel interpretation of the transition density matrix elements in terms of the Euclidean norm of elementary transition vectors in a linear tensor space. A proper use of these new concepts leads to the conclusion that despite the different principles underlying their construction, they provide two equivalent excited states topological analyses. This connexion is evidenced through simple illustrations of (in)organic dyes electronic transitions analysis.

  12. Transition matrices and orbitals from reduced density matrix theory

    Science.gov (United States)

    Etienne, Thibaud

    2015-06-01

    In this contribution, we report two different methodologies for characterizing the electronic structure reorganization occurring when a chromophore undergoes an electronic transition. For the first method, we start by setting the theoretical background necessary to the reinterpretation through simple tensor analysis of (i) the transition density matrix and (ii) the natural transition orbitals in the scope of reduced density matrix theory. This novel interpretation is made more clear thanks to a short compendium of the one-particle reduced density matrix theory in a Fock space. The formalism is further applied to two different classes of excited states calculation methods, both requiring a single-determinant reference, that express an excited state as a hole-particle mono-excited configurations expansion, to which particle-hole correlation is coupled (time-dependent Hartree-Fock/time-dependent density functional theory) or not (configuration interaction single/Tamm-Dancoff approximation). For the second methodology presented in this paper, we introduce a novel and complementary concept related to electronic transitions with the canonical transition density matrix and the canonical transition orbitals. Their expression actually reflects the electronic cloud polarisation in the orbital space with a decomposition based on the actual contribution of one-particle excitations from occupied canonical orbitals to virtual ones. This approach validates our novel interpretation of the transition density matrix elements in terms of the Euclidean norm of elementary transition vectors in a linear tensor space. A proper use of these new concepts leads to the conclusion that despite the different principles underlying their construction, they provide two equivalent excited states topological analyses. This connexion is evidenced through simple illustrations of (in)organic dyes electronic transitions analysis.

  13. Transition matrices and orbitals from reduced density matrix theory.

    Science.gov (United States)

    Etienne, Thibaud

    2015-06-28

    In this contribution, we report two different methodologies for characterizing the electronic structure reorganization occurring when a chromophore undergoes an electronic transition. For the first method, we start by setting the theoretical background necessary to the reinterpretation through simple tensor analysis of (i) the transition density matrix and (ii) the natural transition orbitals in the scope of reduced density matrix theory. This novel interpretation is made more clear thanks to a short compendium of the one-particle reduced density matrix theory in a Fock space. The formalism is further applied to two different classes of excited states calculation methods, both requiring a single-determinant reference, that express an excited state as a hole-particle mono-excited configurations expansion, to which particle-hole correlation is coupled (time-dependent Hartree-Fock/time-dependent density functional theory) or not (configuration interaction single/Tamm-Dancoff approximation). For the second methodology presented in this paper, we introduce a novel and complementary concept related to electronic transitions with the canonical transition density matrix and the canonical transition orbitals. Their expression actually reflects the electronic cloud polarisation in the orbital space with a decomposition based on the actual contribution of one-particle excitations from occupied canonical orbitals to virtual ones. This approach validates our novel interpretation of the transition density matrix elements in terms of the Euclidean norm of elementary transition vectors in a linear tensor space. A proper use of these new concepts leads to the conclusion that despite the different principles underlying their construction, they provide two equivalent excited states topological analyses. This connexion is evidenced through simple illustrations of (in)organic dyes electronic transitions analysis.

  14. Joint Polar Satellite System (JPSS) Micrometeoroid and Orbital Debris (MMOD) Assessment

    Science.gov (United States)

    Squire, Michael D.; Cooke, William J.; Williamsen, Joel; Kessler, Donald; Vesely, William E.; Hull, Scott H.; Schonberg, William; Peterson, Glenn E.; Jenkin, Alan B.; Cornford, Steven L.

    2015-01-01

    The Joint Polar Satellite System (JPSS) Project requested the NASA Engineering and Safety Center (NESC) conduct an independent evaluation of the Micrometeoroid and Orbital Debris (MMOD) models used in the latest JPSS MMOD risk assessment. The principal focus of the assessment was to compare Orbital Debris Engineering Model version 3 (ORDEM 3.0) with the Meteoroid and Space Debris Terrestrial Environment Reference version 2009 (MASTER-2009) and Aerospace Debris Environment Projection Tool (ADEPT) and provide recommendations to the JPSS Project regarding MMOD protection. The outcome of the NESC assessment is contained in this report.

  15. Phase Error Modeling and Its Impact on Precise Orbit Determination of GRACE Satellites

    Directory of Open Access Journals (Sweden)

    Jia Tu

    2012-01-01

    Full Text Available Limiting factors for the precise orbit determination (POD of low-earth orbit (LEO satellite using dual-frequency GPS are nowadays mainly encountered with the in-flight phase error modeling. The phase error is modeled as a systematic and a random component each depending on the direction of GPS signal reception. The systematic part and standard deviation of random part in phase error model are, respectively, estimated by bin-wise mean and standard deviation values of phase postfit residuals computed by orbit determination. By removing the systematic component and adjusting the weight of phase observation data according to standard deviation of random component, the orbit can be further improved by POD approach. The GRACE data of 1–31 January 2006 are processed, and three types of orbit solutions, POD without phase error model correction, POD with mean value correction of phase error model, and POD with phase error model correction, are obtained. The three-dimensional (3D orbit improvements derived from phase error model correction are 0.0153 m for GRACE A and 0.0131 m for GRACE B, and the 3D influences arisen from random part of phase error model are 0.0068 m and 0.0075 m for GRACE A and GRACE B, respectively. Thus the random part of phase error model cannot be neglected for POD. It is also demonstrated by phase postfit residual analysis, orbit comparison with JPL precise science orbit, and orbit validation with KBR data that the results derived from POD with phase error model correction are better than another two types of orbit solutions generated in this paper.

  16. Improved Orbit Determination and Forecasts with an Assimilative Tool for Atmospheric Density and Satellite Drag Specification

    Science.gov (United States)

    Crowley, G.; Pilinski, M.; Sutton, E. K.; Codrescu, M.; Fuller-Rowell, T. J.; Matsuo, T.; Fedrizzi, M.; Solomon, S. C.; Qian, L.; Thayer, J. P.

    2016-12-01

    Much as aircraft are affected by the prevailing winds and weather conditions in which they fly, satellites are affected by the variability in density and motion of the near earth space environment. Drastic changes in the neutral density of the thermosphere, caused by geomagnetic storms or other phenomena, result in perturbations of LEO satellite motions through drag on the satellite surfaces. This can lead to difficulties in locating important satellites, temporarily losing track of satellites, and errors when predicting collisions in space. We describe ongoing work to build a comprehensive nowcast and forecast system for specifying the neutral atmospheric state related to orbital drag conditions. The system outputs include neutral density, winds, temperature, composition, and the satellite drag derived from these parameters. This modeling tool is based on several state-of-the-art coupled models of the thermosphere-ionosphere as well as several empirical models running in real-time and uses assimilative techniques to produce a thermospheric nowcast. This software will also produce 72 hour predictions of the global thermosphere-ionosphere system using the nowcast as the initial condition and using near real-time and predicted space weather data and indices as the inputs. Features of this technique include: • Satellite drag specifications with errors lower than current models • Altitude coverage up to 1000km • Background state representation using both first principles and empirical models • Assimilation of satellite drag and other datatypes • Real time capability • Ability to produce 72-hour forecasts of the atmospheric state In this paper, we will summarize the model design and assimilative architecture, and present preliminary validation results. Validation results will be presented in the context of satellite orbit errors and compared with several leading atmospheric models including the High Accuracy Satellite Drag Model, which is currently used

  17. Theory of short periodic orbits for partially open quantum maps.

    Science.gov (United States)

    Carlo, Gabriel G; Benito, R M; Borondo, F

    2016-07-01

    We extend the semiclassical theory of short periodic orbits [M. Novaes et al., Phys. Rev. E 80, 035202(R) (2009)PLEEE81539-375510.1103/PhysRevE.80.035202] to partially open quantum maps, which correspond to classical maps where the trajectories are partially bounced back due to a finite reflectivity R. These maps are representative of a class that has many experimental applications. The open scar functions are conveniently redefined, providing a suitable tool for the investigation of this kind of system. Our theory is applied to the paradigmatic partially open tribaker map. We find that the set of periodic orbits that belongs to the classical repeller of the open map (R=0) is able to support the set of long-lived resonances of the partially open quantum map in a perturbative regime. By including the most relevant trajectories outside of this set, the validity of the approximation is extended to a broad range of R values. Finally, we identify the details of the transition from qualitatively open to qualitatively closed behavior, providing an explanation in terms of short periodic orbits.

  18. Orbital motion in strongly perturbed environments applications to asteroid, comet and planetary satellite orbiters

    CERN Document Server

    Scheeres, Daniel J

    2012-01-01

    The proposed book will provide a detailed, technical introduction to the analysis of orbital motion in strongly perturbed environments, focusing on motion about small Solar System bodies, such as comets and asteroids. The author shows why such small bodies are of interest and why they can be used as a motivation for the general analysis of orbital mechanics. He shows how it is possible to model the small body environment, including specialised cases such as those of binary asteroids, comets and ‘rubble piles’, and how the fundamental equations of motion are derived. The properties of the various solutions to the equations of motion are described and the methods of analysis and their application are discussed. Both ballistic motion and powered motion on and about small bodies are considered and case studies for different small body missions are presented. The author concludes his comprehensive treatment with a discussion of the mechanics of multi-body small body systems and a review of advanced topics and ...

  19. Modeling of tethered satellite formations using graph theory

    DEFF Research Database (Denmark)

    Larsen, Martin Birkelund; Smith, Roy S; Blanke, Mogens

    2011-01-01

    satellite formation and proposes a method to deduce the equations of motion for the attitude dynamics of the formation in a compact form. The use of graph theory and Lagrange mechanics together allows a broad class of formations to be described using the same framework. A method is stated for finding...... could form stable formations in space are cumbersome when done at a case to case basis, and a common framework providing a basic model of the dynamics of tethered satellite formations can therefore be advantageous. This paper suggests the use of graph theoretical quantities to describe a tethered...

  20. H-- Filtering Algorithms Case Study GPS-Based Satellite Orbit Determination

    Science.gov (United States)

    Kuang, Jinlu; Tan, Soonhie

    In this paper the new Hfiltering algorithms for the design of navigation systems for autonomous LEO satellite is introduced. The nominal orbit (i.e., position and velocity) is computed by integrating the classical orbital differential equations of the LEO satellite by using the 7th-8th order Runge- Kutta algorithms. The perturbations due to the atmospheric drag force, the lunar-solar attraction and the solar radiation pressure are included together with the Earth gravity model (EGM-96). The spherical harmonic coefficients of the EGM-96 are considered up to 72 for the order and degree. By way of the MATLAB GPSoft software, the simulated pseudo ranges between the user LEO satellite and the visible GPS satellites are generated when given the appropriate angle of mask. The effects of the thermal noises, tropospheric refraction, ionospheric refraction, and multipath of the antenna are also compensated numerically in the simulated pseudo ranges. The dynamic Position-Velocity (PV) model is obtained by modeling the velocity as nearly constant being the white noise process. To further accommodate acceleration in the process model, the Position-Velocity-Acceleration (PVA) model is investigated by assuming the acceleration to be the Gaussian- Markov process. The state vector for the PV model becomes 8-dimensional (3-states for positions, 3-states for velocities, 1-state for range (clock) bias error, 1-state for range (clock) drift error). The state vector for the PV model becomes 11-dimensional with the addition of three more acceleration states. Three filtering approaches are used to smooth the orbit solution based upon the GPS pseudo range observables. The numerical simulation shows that the observed orbit root-mean-square errors of 60 meters by using the least squares adjustment method are improved to be less than 5 meters within 16 hours of tracking time by using the Hfiltering algorithms. The results are compared with the ones obtained by using the Extended Kalman

  1. The zero gravity curve and surface and radii for geostationary and geosynchronous satellite orbits

    Directory of Open Access Journals (Sweden)

    Sjöberg L.E.

    2017-02-01

    Full Text Available A geosynchronous satellite orbits the Earth along a constant longitude. A special case is the geostationary satellite that is located at a constant position above the equator. The ideal position of a geostationary satellite is at the level of zero gravity, i.e. at the geocentric radius where the gravitational force of the Earth equals the centrifugal force. These forces must be compensated for several perturbing forces, in particular for the lunisolar tides. Considering that the gravity field of the Earth varies not only radially but also laterally, this study focuses on the variations of zero gravity not only on the equator (for geostationary satellites but also for various latitudes. It is found that the radius of a geostationary satellite deviates from its mean value of 42164.2 km only within ±2 m, mainly due to the spherical harmonic coefficient J22, which is related with the equatorial flattening of the Earth. Away from the equator the zero gravity surface deviates from the ideal radius of a geosynchronous satellite, and more so for higher latitudes. While the radius of the former surface increases towards infinity towards the poles, the latter decreases about 520 m from the equator to the pole. Tidal effects vary these radii within ±2.3 km.

  2. First Attempt of Orbit Determination of SLR Satellites and Space Debris Using Genetic Algorithms

    Science.gov (United States)

    Deleflie, F.; Coulot, D.; Descosta, R.; Fernier, A.; Richard, P.

    2013-08-01

    We present an orbit determination method based on genetic algorithms. Contrary to usual estimation methods mainly based on least-squares methods, these algorithms do not require any a priori knowledge of the initial state vector to be estimated. These algorithms can be applied when a new satellite is launched or for uncatalogued objects that appear in images obtained from robotic telescopes such as the TAROT ones. We show in this paper preliminary results obtained from an SLR satellite, for which tracking data acquired by the ILRS network enable to build accurate orbital arcs at a few centimeter level, which can be used as a reference orbit ; in this case, the basic observations are made up of time series of ranges, obtained from various tracking stations. We show as well the results obtained from the observations acquired by the two TAROT telescopes on the Telecom-2D satellite operated by CNES ; in that case, the observations are made up of time series of azimuths and elevations, seen from the two TAROT telescopes. The method is carried out in several steps: (i) an analytical propagation of the equations of motion, (ii) an estimation kernel based on genetic algorithms, which follows the usual steps of such approaches: initialization and evolution of a selected population, so as to determine the best parameters. Each parameter to be estimated, namely each initial keplerian element, has to be searched among an interval that is preliminary chosen. The algorithm is supposed to converge towards an optimum over a reasonable computational time.

  3. Verification of KAM Theory on Earth Orbiting Satellites

    Science.gov (United States)

    2010-03-01

    application of Lagrangian and Hamiltonian mechanics discussed in Chapter II. A simple pendulum is fixed to an upper, non-moving surface. The pendulum is...36 Appendix A. Hamiltonian Mechanics Example . . . . . . . . . . . . . . . . . . . . . . . . . 38...two papers on general methods in dynamics in which he applied his principle to the Lagrangian [9]. This was manipulated into the Hamiltonian and

  4. Quantum Cryptography for Secure Communications to Low-Earth Orbit Satellites

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, R.J.; Buttler, W.T.; Kwiat, P.G.; Lamoreaux, S.K.; Morgan, G.L.; Peterson, C.G.; Twyeffort, E.; Simmons, C.M.; Nordholt, J.E.

    1999-06-03

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). Quantum cryptography is an emerging technology in which two parties may simultaneously generate shared, secret cryptographic key material using the transmission of quantum states of light. The security of these transmissions is based on the inviolability of the laws of quantum mechanics. An adversary can neither successfully tap the quantum transmissions, nor evade detection. Key material is built up using the transmission of a single-photon per bit. We have developed an experimental quantum cryptography system based on the transmission of non-orthogonal single-photon polarization states to generate shared key material over line-of-sight optical links. Our results provide strong evidence that cryptographic key material could be generated on demand between a ground station and a satellite (or between two satellites), allowing a satellite to be securely re-keyed on in orbit.

  5. Handover aspects for a Low Earth Orbit (LEO) CDMA Land Mobile Satellite (LMS) system

    Science.gov (United States)

    Carter, P.; Beach, M. A.

    1993-01-01

    This paper addresses the problem of handoff in a land mobile satellite (LMS) system between adjacent satellites in a low earth orbit (LEO) constellation. In particular, emphasis is placed on the application of soft handoff in a direct sequence code division multiple access (DS-CDMA) LMS system. Soft handoff is explained in terms of terrestrial macroscopic diversity, in which signals transmitted via several independent fading paths are combined to enhance the link quality. This concept is then reconsidered in the context of a LEO LMS system. A two-state Markov channel model is used to simulate the effects of shadowing on the communications path from the mobile to each satellite during handoff. The results of the channel simulation form a platform for discussion regarding soft handoff, highlighting the potential merits of the scheme when applied in a LEO LMS environment.

  6. Shift control method for the local time at descending node based on sun-synchronous orbit satellite

    Institute of Scientific and Technical Information of China (English)

    Yang Yong'an; Feng Zuren; Sun Linyan; Tan Wei

    2009-01-01

    This article analyzes the shift factors of the descending node local time for sun-synchronous satellites and proposes a shift control method to keep the local time shift within an allowance range. It is found that the satellite orbit design and the orbit injection deviation are the causes for the initial shift velocity, whereas the atmospheric drag and the sun gravitational perturbation produce the shift acceleration. To deal with these shift factors, a shift control method is put forward, through such methods as orbit variation design, orbit altitude, and inclination keeping control. The simulation experiment and practical application have proved the effectiveness of this control method.

  7. Land Surface Temperature- Comparing Data from Polar Orbiting and Geostationary Satellites

    Science.gov (United States)

    Comyn-Platt, E.; Remedios, J. J.; Good, E. J.; Ghent, D.; Saunders, R.

    2012-04-01

    Land Surface Temperature (LST) is a vital parameter in Earth climate science, driving long-wave radiation exchanges that control the surface energy budget and carbon fluxes, which are important factors in Numerical Weather Prediction (NWP) and the monitoring of climate change. Satellites offer a convenient way to observe LST consistently and regularly over large areas. A comparison between LST retrieved from a Geostationary Instrument, the Spinning Enhanced Visible and InfraRed Imager (SEVIRI), and a Polar Orbiting Instrument, the Advanced Along Track Scanning Radiometer (AATSR) is presented. Both sensors offer differing benefits. AATSR offers superior precision and spatial resolution with global coverage but given its sun-synchronous platform only observes at two local times, ~10am and ~10pm. SEVIRI provides the high-temporal resolution (every 15 minutes) required for observing diurnal variability of surface temperatures but given its geostationary platform has a poorer resolution, 3km at nadir, which declines at higher latitudes. A number of retrieval methods are applied to the raw satellite data: First order coefficient based algorithms provided on an operational basis by the LandSAF (for SEVIRI) and the University of Leicester (for AATSR); Second order coefficient based algorithms put forward by the University of Valencia; and an optimal estimation method using the 1DVar software provided by the NWP SAF. Optimal estimation is an iterative technique based upon inverse theory, thus is very useful for expanding into data assimilation systems. The retrievals are assessed and compared on both a fine scale using in-situ data from recognised validation sites and on a broad scale using two 100x100 regions such that biases can be better understood. Overall, the importance of LST lies in monitoring daily temperature extremes, e.g. for estimating permafrost thawing depth or risk of crop damage due to frost, hence the ideal dataset would use a combination of observations

  8. Theory of satellite structures on spectral-line profiles.

    Science.gov (United States)

    Atakan, A. K.; Jacobson, H. C.

    1973-01-01

    A systematic comparison with experiment of various explanations for the problem of satellite-band formation on spectral-line profiles was initiated. The experiments were performed under a variety of conditions in an effort to construct a consistent model of entire line shapes. A composite theory is detailed which is the result of the insights of many individuals. The calculations indicate that the main features of the problem, the line, the high-intensity red satellites, and the blue satellite can be described simultaneously. The results also indicate that widely different potentials can lead to very similar line profiles. Ancillary conclusions are presented concerning the role of Lennard-Jones potentials in line-shape calculations.

  9. Minimum Number of Observation Points for LEO Satellite Orbit Estimation by OWL Network

    Science.gov (United States)

    Park, Maru; Jo, Jung Hyun; Cho, Sungki; Choi, Jin; Kim, Chun-Hwey; Park, Jang-Hyun; Yim, Hong-Suh; Choi, Young-Jun; Moon, Hong-Kyu; Bae, Young-Ho; Park, Sun-Youp; Kim, Ji-Hye; Roh, Dong-Goo; Jang, Hyun-Jung; Park, Young-Sik; Jeong, Min-Ji

    2015-12-01

    By using the Optical Wide-field Patrol (OWL) network developed by the Korea Astronomy and Space Science Institute (KASI) we generated the right ascension and declination angle data from optical observation of Low Earth Orbit (LEO) satellites. We performed an analysis to verify the optimum number of observations needed per arc for successful estimation of orbit. The currently functioning OWL observatories are located in Daejeon (South Korea), Songino (Mongolia), and Oukaïmeden (Morocco). The Daejeon Observatory is functioning as a test bed. In this study, the observed targets were Gravity Probe B, COSMOS 1455, COSMOS 1726, COSMOS 2428, SEASAT 1, ATV-5, and CryoSat-2 (all in LEO). These satellites were observed from the test bed and the Songino Observatory of the OWL network during 21 nights in 2014 and 2015. After we estimated the orbit from systematically selected sets of observation points (20, 50, 100, and 150) for each pass, we compared the difference between the orbit estimates for each case, and the Two Line Element set (TLE) from the Joint Space Operation Center (JSpOC). Then, we determined the average of the difference and selected the optimal observation points by comparing the average values.

  10. Mitigating Aviation Communication and Satellite Orbit Operations Surprises from Adverse Space Weather

    Science.gov (United States)

    Tobiska, W. Kent

    2008-01-01

    Adverse space weather affects operational activities in aviation and satellite systems. For example, large solar flares create highly variable enhanced neutral atmosphere and ionosphere electron density regions. These regions impact aviation communication frequencies as well as precision orbit determination. The natural space environment, with its dynamic space weather variability, is additionally changed by human activity. The increase in orbital debris in low Earth orbit (LEO), combined with lower atmosphere CO2 that rises into the lower thermosphere and causes increased cooling that results in increased debris lifetime, adds to the environmental hazards of navigating in near-Earth space. This is at a time when commercial space endeavors are posed to begin more missions to LEO during the rise of the solar activity cycle toward the next maximum (2012). For satellite and aviation operators, adverse space weather results in greater expenses for orbit management, more communication outages or aviation and ground-based high frequency radio used, and an inability to effectively plan missions or service customers with space-based communication, imagery, and data transferal during time-critical activities. Examples of some revenue-impacting conditions and solutions for mitigating adverse space weather are offered.

  11. Low-Thrust Transfer Design of Low-Observable Geostationary Earth Orbit Satellite

    Directory of Open Access Journals (Sweden)

    Bing Hua

    2015-01-01

    Full Text Available With radar and surface-to-air missiles posing an increasing threat to on-orbit spacecraft, low-observable satellites play an important role in low-thrust transfers. This paper presents the design for a low-thrust geostationary earth orbit (GEO transfer control strategy which takes into consideration the low-observable constraint and discusses Earth shadow and perturbation. A control parameter optimization addresses the orbit transfer problem, and five thrust modes are used. Simulation results show that the method outlined in this paper is simple and feasible and results in reduced transfer time with a small amount of calculation. The method therefore offers a useful reference for low-thrust GEO transfer design.

  12. Chaos in navigation satellite orbits caused by the perturbed motion of the Moon

    CERN Document Server

    Rosengren, Aaron J; Rossi, Alessandro; Valsecchi, Giovanni B

    2015-01-01

    Numerical simulations carried out over the past decade suggest that the orbits of the Global Navigation Satellite Systems are unstable, resulting in an apparent chaotic growth of the eccentricity. Here we show that the irregular and haphazard character of these orbits reflects a similar irregularity in the orbits of many celestial bodies in our Solar System. We find that secular resonances, involving linear combinations of the frequencies of nodal and apsidal precession and the rate of regression of lunar nodes, occur in profusion so that the phase space is threaded by a devious stochastic web. As in all cases in the Solar System, chaos ensues where resonances overlap. These results may be significant for the analysis of disposal strategies for the four constellations in this precarious region of space.

  13. The BMW analytic aerodynamic drag method for the Vinti satellite theory

    Science.gov (United States)

    Watson, J. S.; Mistretta, G. D.; Bonavito, N. L.

    1972-01-01

    In order to retain separability in the Vinti theory of earth satellite motion when a non conservative force such as air drag is considered, a set of variational equations for the orbital elements are introduced, and expressed as functions of the transverse, radial, and normal components of the nonconservative forces acting on the system. In particular, the atmospheric density profile is written as a fitted exponential function of the eccentric anomaly, which reproduces tabular values of static model atmospheric densities at all altitudes to within ninety-eight percent and simultaneously reduces the variational equations to indefinite integrals with closed form evaluations, whose limits are in terms of the eccentric anomaly. The values of the limits for any arbitrary time interval are obtained from the Vinti program. Results of the BMW (Bonavito, Mistretta, Watson) theory for the case of the intense air drag satellites San Marco-2 and Air Force Cannonball are given. These results indicate that the satellite ephemerides produced by the BMW theory in conjunction with the Vinti program are of very high accuracy. In addition, since the program is entirely analytic, several months of ephemerides can be obtained within a few seconds of computer time.

  14. Using Islands to Systematically Compare Satellite Observations to Models and Theory

    Science.gov (United States)

    Sherwood, S. C.; Robinson, F.; Gerstle, D.; Liu, C.; Kirshbaum, D. J.; Hernandez-Deckers, D.; Li, Y.

    2012-12-01

    Satellite observations are our most voluminous, and perhaps most important source of information on atmospheric convective behavior. However testing models is quite difficult, especially with satellites in low Earth orbits, due to several problems including infrequent sampling, the chaotic nature of convection (which means actual storms will always differ from modeled ones even with perfect models), model initialization, and uncertain boundary conditions. This talk presents work using forcing by islands of different sizes as a strategy for overcoming these problems. We examine the systematic dependence of different characteristics of convection with island size, as a target for simple theories of convection and the sea breeze, and for CRMs (cloud resolving models). We find some nonintuitive trends of behavior with size -- some of which we can reproduce with the WRF CRM, and some which we cannot.

  15. SATURNʼS INNER SATELLITES: ORBITS, MASSES, AND THE CHAOTIC MOTION OF ATLAS FROM NEW CASSINI IMAGING OBSERVATIONS

    National Research Council Canada - National Science Library

    Cooper, Nicholas J; Renner, Stéfan; Murray, Carl D; Evans, Michael W

    2015-01-01

    We present numerically derived orbits and mass estimates for the inner Saturnian satellites, Atlas, Prometheus, Pandora, Janus, and Epimetheus from a fit to 2580 new Cassini Imaging Science Subsystem...

  16. A mission-oriented orbit design method of remote sensing satellite for region monitoring mission based on evolutionary algorithm

    Science.gov (United States)

    Shen, Xin; Zhang, Jing; Yao, Huang

    2015-12-01

    Remote sensing satellites play an increasingly prominent role in environmental monitoring and disaster rescue. Taking advantage of almost the same sunshine condition to same place and global coverage, most of these satellites are operated on the sun-synchronous orbit. However, it brings some problems inevitably, the most significant one is that the temporal resolution of sun-synchronous orbit satellite can't satisfy the demand of specific region monitoring mission. To overcome the disadvantages, two methods are exploited: the first one is to build satellite constellation which contains multiple sunsynchronous satellites, just like the CHARTER mechanism has done; the second is to design non-predetermined orbit based on the concrete mission demand. An effective method for remote sensing satellite orbit design based on multiobjective evolution algorithm is presented in this paper. Orbit design problem is converted into a multi-objective optimization problem, and a fast and elitist multi-objective genetic algorithm is utilized to solve this problem. Firstly, the demand of the mission is transformed into multiple objective functions, and the six orbit elements of the satellite are taken as genes in design space, then a simulate evolution process is performed. An optimal resolution can be obtained after specified generation via evolution operation (selection, crossover, and mutation). To examine validity of the proposed method, a case study is introduced: Orbit design of an optical satellite for regional disaster monitoring, the mission demand include both minimizing the average revisit time internal of two objectives. The simulation result shows that the solution for this mission obtained by our method meet the demand the users' demand. We can draw a conclusion that the method presented in this paper is efficient for remote sensing orbit design.

  17. On the co-orbital motion in the planar restricted three-body problem: the quasi-satellite motion revisited

    Science.gov (United States)

    Pousse, Alexandre; Robutel, Philippe; Vienne, Alain

    2017-08-01

    In the framework of the planar and circular restricted three-body problem, we consider an asteroid that orbits the Sun in quasi-satellite motion with a planet. A quasi-satellite trajectory is a heliocentric orbit in co-orbital resonance with the planet, characterized by a nonzero eccentricity and a resonant angle that librates around zero. Likewise, in the rotating frame with the planet, it describes the same trajectory as the one of a retrograde satellite even though the planet acts as a perturbator. In the last few years, the discoveries of asteroids in this type of motion made the term "quasi-satellite" more and more present in the literature. However, some authors rather use the term "retrograde satellite" when referring to this kind of motion in the studies of the restricted problem in the rotating frame. In this paper, we intend to clarify the terminology to use, in order to bridge the gap between the perturbative co-orbital point of view and the more general approach in the rotating frame. Through a numerical exploration of the co-orbital phase space, we describe the quasi-satellite domain and highlight that it is not reachable by low eccentricities by averaging process. We will show that the quasi-satellite domain is effectively included in the domain of the retrograde satellites and neatly defined in terms of frequencies. Eventually, we highlight a remarkable high eccentric quasi-satellite orbit corresponding to a frozen ellipse in the heliocentric frame. We extend this result to the eccentric case (planet on an eccentric motion) and show that two families of frozen ellipses originate from this remarkable orbit.

  18. A note on Hansen's coefficients in satellite theory

    Science.gov (United States)

    Giacaglia, G. E. O.

    1976-01-01

    General formulas for Hansen's coefficients in satellite theory are derived along with expressions for the eccentricity functions G and H. Recurrence relations for the eccentricity functions and their derivatives are obtained which are valid for all values of the parameter p. It is noted that the recurrence relations obtained by Challe and Laclaverie (1969) as well as by Balmino (1973) do not satisfy certain parity conditions and therefore involve coefficients outside the range of usage.

  19. Paving the Way for Small Satellite Access to Orbit: Cyclops' Deployment of SpinSat, the Largest Satellite Ever Deployed from the International Space Station

    Science.gov (United States)

    Hershey, Matthew P.; Newswander, Daniel R.; Smith, James P.; Lamb, Craig R.; Ballard, Perry G.

    2015-01-01

    The Space Station Integrated Kinetic Launcher for Orbital Payload Systems (SSIKLOPS), known as "Cyclops" to the International Space Station (ISS) community, successfully deployed the largest satellite ever (SpinSat) from the ISS on November 28, 2014. Cyclops, a collaboration between the NASA ISS Program, NASA Johnson Space Center Engineering, and Department of Defense Space Test Program (DoD STP) communities, is a dedicated 10-100 kg class ISS small satellite deployment system. This paper will showcase the successful deployment of SpinSat from the ISS. It will also outline the concept of operations, interfaces, requirements, and processes for satellites to utilize the Cyclops satellite deployment system.

  20. Indonesia coverage simulation of SAR satellite at near-equatorial orbit

    Science.gov (United States)

    Septanto, Harry; Utama, Satriya; Heru Triharjanto, Robertus; Suhermanto

    2017-01-01

    Properties of SAR (Synthetic Aperture Radar) that able to penetrate the cloud and does not depend on the sunlight are a number of advantages when utilized for monitoring tropical region like the IMC (Indonesian Maritime Continent). Moreover, since having areas along equatorial belt, the IMC is at a shortcoming from perspective of highly inclined LEO (Low Earth Orbit) satellite. It would result shorter and infrequent pass times when compared with a near-equatorial LEO satellite whose low inclination. This paper reports on the investigation of a near-equatorial LEO SAR satellite coverage property through simulations. The simulations is run in nine scenarios of orbit parameter that consist of combinations of attitude {500 km, 600 km, 700 km} and inclination {80, 90, 100}. The target area is defined as 50 km x 50 km around Jakarta. Meanwhile, the SAR sensor simulation is run with swath width of 40 km, incidence angle around 250-290 and Stripmap mode. Minimum, Maximum and Mean Access Revisit of the target for each scenarios are resulted.

  1. The Measurement of Landfill Gas Emissions with the Orbiting Carbon Observatory and CarbonSAT Satellites

    Science.gov (United States)

    Vigil, S. A.; Bovensmann, H.

    2010-12-01

    Landfill gas is a significant contributor to anthropogenic emissions of CH4 and CO2. The U.S. Environmental Protection Agency has estimated the total U.S. 2007 emissions of the CH4 component of landfill gas at 132.9 Tg CO2 Equivalent. This compares to total CH4 emission from all US sources in 2007 at 585.3 Tg CO2 Equivalent. Worldwide CH4 emissions from landfill gas have been estimated at 668 Tg CO2 Equivalent. Satellite remote sensing can also be used to characterize landfill gas emissions. The NASA Orbiting Carbon Observatory (OCO-2) and the proposed CarbonSAT (University of Bremen) satellites are particularly suited for this purpose. The Orbiting Carbon Observatory (OCO) was designed to provided high spatial resolution ( developed countries. In general, landfills in the developed countries have landfill gas control system ground based landfill gas monitoring systems. These ground-based measurements can be used to calibrate OCO-2 and CarbonSAT landfill gas measurements. OCO-2 and CarbonSAT can be used to measure landfill emissions from the large landfills and open dumps of the emerging megacities in the developing world where accurate ground measurements are not available. For example Mexico City generates 26,000 MT of municipal solid waste that is disposed of in two uncontrolled landfills. Similar conditions exist in Asia, Latin America, and Africa. Satellite based measurements of these landfill gas emissions could help prioritize greenhouse gas remediation projects for these countries.

  2. ARMA Prediction of SBAS Ephemeris and Clock Corrections for Low Earth Orbiting Satellites

    Directory of Open Access Journals (Sweden)

    Jeongrae Kim

    2015-01-01

    Full Text Available For low earth orbit (LEO satellite GPS receivers, space-based augmentation system (SBAS ephemeris/clock corrections can be applied to improve positioning accuracy in real time. The SBAS correction is only available within its service area, and the prediction of the SBAS corrections during the outage period can extend the coverage area. Two time series forecasting models, autoregressive moving average (ARMA and autoregressive (AR, are proposed to predict the corrections outside the service area. A simulated GPS satellite visibility condition is applied to the WAAS correction data, and the prediction accuracy degradation, along with the time, is investigated. Prediction results using the SBAS rate of change information are compared, and the ARMA method yields a better accuracy than the rate method. The error reductions of the ephemeris and clock by the ARMA method over the rate method are 37.8% and 38.5%, respectively. The AR method shows a slightly better orbit accuracy than the rate method, but its clock accuracy is even worse than the rate method. If the SBAS correction is sufficiently accurate comparing with the required ephemeris accuracy of a real-time navigation filter, then the predicted SBAS correction may improve orbit determination accuracy.

  3. A preliminary estimate of geoid-induced variations in repeat orbit satellite altimeter observations

    Science.gov (United States)

    Brenner, Anita C.; Beckley, B. D.; Koblinsky, C. J.

    1990-01-01

    Altimeter satellites are often maintained in a repeating orbit to facilitate the separation of sea-height variations from the geoid. However, atmospheric drag and solar radiation pressure cause a satellite orbit to drift. For Geosat this drift causes the ground track to vary by + or - 1 km about the nominal repeat path. This misalignment leads to an error in the estimates of sea surface height variations because of the local slope in the geoid. This error has been estimated globally for the Geosat Exact Repeat Mission using a mean sea surface constructed from Geos 3 and Seasat altimeter data. Over most of the ocean the geoid gradient is small, and the repeat-track misalignment leads to errors of only 1 to 2 cm. However, in the vicinity of trenches, continental shelves, islands, and seamounts, errors can exceed 20 cm. The estimated error is compared with direct estimates from Geosat altimetry, and a strong correlation is found in the vicinity of the Tonga and Aleutian trenches. This correlation increases as the orbit error is reduced because of the increased signal-to-noise ratio.

  4. Satellite quenching time-scales in clusters from projected phase space measurements matched to simulated orbits

    Science.gov (United States)

    Oman, Kyle A.; Hudson, Michael J.

    2016-12-01

    We measure the star formation quenching efficiency and time-scale in cluster environments. Our method uses N-body simulations to estimate the probability distribution of possible orbits for a sample of observed Sloan Digital Sky Survey galaxies in and around clusters based on their position and velocity offsets from their host cluster. We study the relationship between their star formation rates and their likely orbital histories via a simple model in which star formation is quenched once a delay time after infall has elapsed. Our orbit library method is designed to isolate the environmental effect on the star formation rate due to a galaxy's present-day host cluster from `pre-processing' in previous group hosts. We find that quenching of satellite galaxies of all stellar masses in our sample (109-10^{11.5}M_{⊙}) by massive (> 10^{13} M_{⊙}) clusters is essentially 100 per cent efficient. Our fits show that all galaxies quench on their first infall, approximately at or within a Gyr of their first pericentric passage. There is little variation in the onset of quenching from galaxy-to-galaxy: the spread in this time is at most ˜2 Gyr at fixed M*. Higher mass satellites quench earlier, with very little dependence on host cluster mass in the range probed by our sample.

  5. Tracking and Data Relay Satellite (TDRS) Orbit Estimation Using an Extended Kalman Filter

    Science.gov (United States)

    Ward, Douglas T.; Dang, Ket D.; Slojkowski, Steve; Blizzard, Mike; Jenkins, Greg

    2007-01-01

    Alternatives to the Tracking and Data Relay Satellite (TDRS) orbit estimation procedure were studied to develop a technique that both produces more reliable results and is more amenable to automation than the prior procedure. The Earth Observing System (EOS) Terra mission has TDRS ephemeris prediction 3(sigma) requirements of 75 meters in position and 5.5 millimeters per second in velocity over a 1.5-day prediction span. Meeting these requirements sometimes required reruns of the prior orbit determination (OD) process, with manual editing of tracking data to get an acceptable solution. After a study of the available alternatives, the Flight Dynamics Facility (FDF) began using the Real-Time Orbit Determination (RTOD(Registered TradeMark)) Kalman filter program for operational support of TDRSs in February 2007. This extended Kalman filter (EKF) is used for daily support, including within hours after most thrusting, to estimate the spacecraft position, velocity, and solar radiation coefficient of reflectivity (C(sub R)). The tracking data used are from the Bilateration Ranging Transponder System (BRTS), selected TDRS System (TDRSS) User satellite tracking data, and Telemetry, Tracking, and Command (TT&C) data. Degraded filter results right after maneuvers and some momentum unloads provided incentive for a hybrid OD technique. The results of combining EKF strengths with the Goddard Trajectory Determination System (GTDS) Differential Correction (DC) program batch-least-squares solutions, as recommended in a 2005 paper on the chain-bias technique, are also presented.

  6. A preliminary estimate of geoid-induced variations in repeat orbit satellite altimeter observations

    Science.gov (United States)

    Brenner, Anita C.; Beckley, B. D.; Koblinsky, C. J.

    1990-01-01

    Altimeter satellites are often maintained in a repeating orbit to facilitate the separation of sea-height variations from the geoid. However, atmospheric drag and solar radiation pressure cause a satellite orbit to drift. For Geosat this drift causes the ground track to vary by + or - 1 km about the nominal repeat path. This misalignment leads to an error in the estimates of sea surface height variations because of the local slope in the geoid. This error has been estimated globally for the Geosat Exact Repeat Mission using a mean sea surface constructed from Geos 3 and Seasat altimeter data. Over most of the ocean the geoid gradient is small, and the repeat-track misalignment leads to errors of only 1 to 2 cm. However, in the vicinity of trenches, continental shelves, islands, and seamounts, errors can exceed 20 cm. The estimated error is compared with direct estimates from Geosat altimetry, and a strong correlation is found in the vicinity of the Tonga and Aleutian trenches. This correlation increases as the orbit error is reduced because of the increased signal-to-noise ratio.

  7. Towards an analytical theory of the third-body problem for highly elliptical orbits

    CERN Document Server

    Lion, Guillaume; Deleflie, Florent

    2016-01-01

    When dealing with satellites orbiting a central body on a highly elliptical orbit, it is necessary to consider the effect of gravitational perturbations due to external bodies. Indeed, these perturbations can become very important as soon as the altitude of the satellite becomes high, which is the case around the apocentre of this type of orbit. For several reasons, the traditional tools of celestial mechanics are not well adapted to the particular dynamic of highly elliptical orbits. On the one hand, analytical solutions are quite generally expanded into power series of the eccentricity and therefore limited to quasi-circular orbits [17, 25]. On the other hand, the time-dependency due to the motion of the third-body is often neglected. We propose several tools to overcome these limitations. Firstly, we have expanded the disturbing function into a finite polynomial using Fourier expansions of elliptic motion functions in multiple of the satellite's eccentric anomaly (instead of the mean anomaly) and involving...

  8. An Assessment of the Space Radiation Environment in a Near Equatorial Low Earth Orbit Based on Razaksat-1 Satellite

    CERN Document Server

    Suparta, Wayan

    2015-01-01

    The Malaysian satellite RazakSAT-1 was designed to operate in a near-equatorial orbit (NEqO) and low earth orbit (LEO). However, after one year of operation in 2010, communication to the satellite was lost. This study attempted to identify whether space radiation sources could have caused the communication loss by comparing RazakSAT-1 with two functional satellites. Data on galactic cosmic rays (GCR), trapped protons, trapped electrons, and solar energetic particles (SEPs) obtained from Space Environment Information System (SPENVIS) was analyzed.

  9. Satellite Orbital Precessions Caused by the Octupolar Mass Moment of a Non-Spherical Body Arbitrarily Oriented in Space

    Indian Academy of Sciences (India)

    G. Renzetti

    2013-12-01

    I consider a satellite moving around a non-spherical body of mass and equatorial radius , and calculate its orbital precessions caused by the body’s octupolar mass moment 4. I consider only the effects averaged over one orbital period of the satellite. I give exact formulas, not restricted to any special values of either the eccentricity or the inclination of the satellite’s orbit. I do not assume any preferential orientation for the body’s spin axis $\\hat{\\mathbf{k}}$ because in many cases of potential interest (exoplanets, neutron stars, black holes) it is poorly known or unknown at all.

  10. Gravitomagnetism in Metric Theories Analysis of Earth Satellites Results, and its Coupling with Spin

    CERN Document Server

    Camacho, A

    2002-01-01

    Employing the PPN formalism the gravitomagnetic field in different metric theories is considered in the analysis of the LAGEOS results. It will be shown that there are several models that predict exactly the same effect that general relativity comprises. In other words, these Earth satellites results can be taken as experimental evidence that the orbital angular momentum of a body does indeed generate space--time geometry, notwithstanding they do not endow general relativity with an outstanding status among metric theories. Additionally the coupling spin--gravitomagnetic field is analyzed with the introduction of the Rabi transitions that this field produces on a quantum system with spin 1/2. Afterwards, a continuous measurement of the energy of this system is introduced, and the consequences upon the corresponding probabilities of the involved gravitomagnetic field will be obtained. Finally, it will be proved that these proposals allows us, not only to confront against future experiments the usual assumption...

  11. On-orbit Geometric Parameters Refinement of Mapping Satellite-1 Triple Line Array Camera

    Directory of Open Access Journals (Sweden)

    GENG Hongyi

    2016-03-01

    Full Text Available To find the model and method of on-orbit geometric refinement suitable for the triple line array camera of Mapping Satellite-1, this paper first analyzed the impact of the exterior orientation line element error on the geometric parameters refinement, then eliminated the high-frequency noise by the preprocessing of the attitude data, and compensated the low-frequency flutter of satellite platform in the course of flying by sine function and designed the constant angular error model for the lens of the triple line array camera. In addition, an interior orientation model, using directly pixel coordinates as observations, was constructed based on conventional additional parameter model and the combination of the best refinement model parameters and the solution strategy were determined by the unilateral control extrapolative location. The experiments show that the planar accuracy and vertical accuracy are about 1 GSD and 0.8 GSD by the proposed refinement plan and the rational distribution of GCPS.

  12. Alkaline regenerative fuel cell energy storage system for manned orbital satellites

    Science.gov (United States)

    Martin, R. E.; Gitlow, B.; Sheibley, D. W.

    1982-01-01

    It is pointed out that the alkaline regenerative fuel cell system represents a highly efficient, lightweight, reliable approach for providing energy storage in an orbiting satellite. In addition to its energy storage function, the system can supply hydrogen and oxygen for attitude control of the satellite and for life support. A summary is presented of the results to date obtained in connection with the NASA-sponsored fuel cell technology advancement program, giving particular attention to the requirements of the alkaline regenerative fuel cell and the low-earth mission. Attention is given to system design guidelines, weight considerations, gold-platinum cathode cell performance, matrix development, the electrolyte reservoir plate, and the cyclical load profile tests.

  13. On-orbit flight results from the reconfigurable cibola flight experiment satellite (CFEsat)

    Energy Technology Data Exchange (ETDEWEB)

    Caffrey, Michael [Los Alamos National Laboratory; Morgan, Keith [Los Alamos National Laboratory; Roussel-dupre, Diane [LANL; Robinson, Scott [Los Alamos National Laboratory; Nelson, Anthony [Los Alamos National Laboratory; Salazar, Anthony [Los Alamos National Laboratory; Wirthlin, Michael [BYU; Howes, William [BYU; Richins, Daniel [BYU

    2009-01-01

    The Cibola Flight Experiment (CFE) is an experimental small satellite developed at the Los Alamos National Laboratory to demonstrate the feasibility of using FPGA-based reconfigurable computing for sensor processing in a space environment. The CFE satellite was launched on March 8, 2007 in low-earth orbit and has operated extremely well since its deployment. The nine Xilinx Virtex FPGAs used in the payload have been used for several high-throughput sensor processing applications and for single-event upset (SEU) monitoring and mitigation. This paper will describe the CFE system and summarize its operational results. In addition, this paper will describe the results from several SEU detection circuits that were performed on the spacecraft.

  14. Parallel satellite orbital situational problems solver for space missions design and control

    Science.gov (United States)

    Atanassov, Atanas Marinov

    2016-11-01

    Solving different scientific problems for space applications demands implementation of observations, measurements or realization of active experiments during time intervals in which specific geometric and physical conditions are fulfilled. The solving of situational problems for determination of these time intervals when the satellite instruments work optimally is a very important part of all activities on every stage of preparation and realization of space missions. The elaboration of universal, flexible and robust approach for situation analysis, which is easily portable toward new satellite missions, is significant for reduction of missions' preparation times and costs. Every situation problem could be based on one or more situation conditions. Simultaneously solving different kinds of situation problems based on different number and types of situational conditions, each one of them satisfied on different segments of satellite orbit requires irregular calculations. Three formal approaches are presented. First one is related to situation problems description that allows achieving flexibility in situation problem assembling and presentation in computer memory. The second formal approach is connected with developing of situation problem solver organized as processor that executes specific code for every particular situational condition. The third formal approach is related to solver parallelization utilizing threads and dynamic scheduling based on "pool of threads" abstraction and ensures a good load balance. The developed situation problems solver is intended for incorporation in the frames of multi-physics multi-satellite space mission's design and simulation tools.

  15. Near-Earth asteroid satellite spins under spin-orbit coupling

    Energy Technology Data Exchange (ETDEWEB)

    Naidu, Shantanu P.; Margot, Jean-Luc [Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, CA 90095 (United States)

    2015-02-01

    We develop a fourth-order numerical integrator to simulate the coupled spin and orbital motions of two rigid bodies having arbitrary mass distributions under the influence of their mutual gravitational potential. We simulate the dynamics of components in well-characterized binary and triple near-Earth asteroid systems and use surface of section plots to map the possible spin configurations of the satellites. For asynchronous satellites, the analysis reveals large regions of phase space where the spin state of the satellite is chaotic. For synchronous satellites, we show that libration amplitudes can reach detectable values even for moderately elongated shapes. The presence of chaotic regions in the phase space has important consequences for the evolution of binary asteroids. It may substantially increase spin synchronization timescales, explain the observed fraction of asychronous binaries, delay BYORP-type evolution, and extend the lifetime of binaries. The variations in spin rate due to large librations also affect the analysis and interpretation of light curve and radar observations.

  16. Bulk density of asteroid 243 Ida from the orbit of its satellite Dactyl

    Science.gov (United States)

    Belton, M.J.S.; Chapmant, C.R.; Thomas, P.C.; Davies, M.E.; Greenberg, R.; Klaasen, K.; Byrnes, D.; D'Amario, L.; Synnott, S.; Johnson, T.V.; McEwen, A.; Merline, W.J.; Davis, D.R.; Petit, J.-M.; Storrs, A.; Veverka, J.; Zellner, B.

    1995-01-01

    DURING its reconnaissance of the asteroid 243 Ida, the Galileo spacecraft returned images of a second object, 1993(243)1 Dactyl1 - the first confirmed satellite of an asteroid. Sufficient data were obtained on the motion of Dactyl to determine its orbit as a function of Ida's mass. Here we apply statistical and dynamical arguments to constrain the range of possible orbits, and hence the mass of Ida. Combined with the volume of Ida2, this yields a bulk density of 2.6??0.5 g cm-3. Allowing for the uncertainty in the porosity of Ida, this density range is consistent with a bulk chondritic composition, and argues against some (but not all) classes of meteoritic igneous rock types that have been suggested as compositionally representative of S-type asteroids like Ida.

  17. On-orbit real-time magnetometer bias determination for micro-satellites without attitude information

    Institute of Scientific and Technical Information of China (English)

    Zhang Zhen; Xiong Jianping; Jin Jin

    2015-01-01

    Due to the disadvantages such as complex calculation, low accuracy of estimation, and being non real time in present methods, a new real-time algorithm is developed for on-orbit mag-netometer bias determination of micro-satellites without attitude knowledge in this paper. This method uses the differential value approach. It avoids the impact of quartic nature and uses the iter-ative method to satisfy real-time applications. Simulation results indicate that the new real-time algorithm is more accurate compared with other methods, which are also tested by an experiment system using real noise data. With the new real-time algorithm, a magnetometer calibration can be taken on-orbit and will reduce the demand for computing power effectively.

  18. Prediction Model for the Life of Nickel-cadmium Batteries in Geosynchronous Orbit Satellites

    Science.gov (United States)

    Engleman, J. H.; Zirkes-Falco, M. B.; Bogner, R. S.; Pickett, D. F., Jr.

    1984-01-01

    A mathematical model is described which predicts the service life of nickel-cadmium batteries designed for geosynchronous orbit satellites. Regression analysis technique is used to analyze orbital data on second generation trickle charged batteries. The model gives average cell voltage as a function of design parameters, operating parameters and time. The voltage model has the properties of providing a good fit to the data, good predictive capability, and agreement with known battery performance characteristics. Average cell voltage can be predicted to within 0.02 volts for up to 8 years. This modeling shows that these batteries will operate reliably for 10 years. Third-generation batteries are expected to operate even longer.

  19. On-orbit real-time magnetometer bias determination for micro-satellites without attitude information

    Directory of Open Access Journals (Sweden)

    Zhang Zhen

    2015-10-01

    Full Text Available Due to the disadvantages such as complex calculation, low accuracy of estimation, and being non real time in present methods, a new real-time algorithm is developed for on-orbit magnetometer bias determination of micro-satellites without attitude knowledge in this paper. This method uses the differential value approach. It avoids the impact of quartic nature and uses the iterative method to satisfy real-time applications. Simulation results indicate that the new real-time algorithm is more accurate compared with other methods, which are also tested by an experiment system using real noise data. With the new real-time algorithm, a magnetometer calibration can be taken on-orbit and will reduce the demand for computing power effectively.

  20. In-Orbit Trend Analysis of Galileo Satellites for Power Sources Degradation Estimation

    Directory of Open Access Journals (Sweden)

    Bard Frederic

    2017-01-01

    The results are in all cases better than the predictions, which is expected due to the usage of conservatives assumptions in the design to cover (for both IOV and FOC worst case scenario for the entire constellation. It should be noted that the FOC GSAT201 and GSAT202 batteries are degrading slightly faster than the 6 others FOC batteries identified GSAT203, GSAT204, GSAT205, GSAT206, GSAT208 and GSAT209, but still below predictions due to their peculiar unexpected orbit reached after launch (higher DoD up to 42% measured due to longer eclipses. These 2 satellites will require specific degradation monitoring.

  1. Effect of NOAA satellite orbital drift on AVHRR-derived phenological metrics

    Science.gov (United States)

    Ji, Lei; Brown, Jesslyn F.

    2017-10-01

    The U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center routinely produces and distributes a remote sensing phenology (RSP) dataset derived from the Advanced Very High Resolution Radiometer (AVHRR) 1-km data compiled from a series of National Oceanic and Atmospheric Administration (NOAA) satellites (NOAA-11, -14, -16, -17, -18, and -19). Each NOAA satellite experienced orbital drift during its duty period, which influenced the AVHRR reflectance measurements. To understand the effect of the orbital drift on the AVHRR-derived RSP dataset, we analyzed the impact of solar zenith angle (SZA) on the RSP metrics in the conterminous United States (CONUS). The AVHRR weekly composites were used to calculate the growing-season median SZA at the pixel level for each year from 1989 to 2014. The results showed that the SZA increased towards the end of each NOAA satellite mission with the highest increasing rate occurring during NOAA-11 (1989-1994) and NOAA-14 (1995-2000) missions. The growing-season median SZA values (44°-60°) in 1992, 1993, 1994, 1999, and 2000 were substantially higher than those in other years (28°-40°). The high SZA in those years caused negative trends in the SZA time series, that were statistically significant (at α = 0.05 level) in 76.9% of the CONUS area. A pixel-based temporal correlation analysis showed that the phenological metrics and SZA were significantly correlated (at α = 0.05 level) in 4.1-20.4% of the CONUS area. After excluding the 5 years with high SZA (>40°) from the analysis, the temporal SZA trend was largely reduced, significantly affecting less than 2% of the study area. Additionally, significant correlation between the phenological metrics and SZA was observed in less than 7% of the study area. Our study concluded that the NOAA satellite orbital drift increased SZA, and in turn, influenced the phenological metrics. Elimination of the years with high median SZA reduced the influence of orbital drift

  2. Space debris proximity analysis in powered and orbital phases during satellite launch

    Science.gov (United States)

    Bandyopadhyay, Priyankar; Sharma, R. K.; Adimurthy, V.

    2004-01-01

    This paper describes the methodology of the space debris proximity analysis in powered and orbital phase at the time of a satellite launch. The details of the SPADEPRO analysis package, developed for this purpose, are presented. It consists of modules which provide the functions related to ephemeris generation and reconstruction of primary object (launch vehicle or its payload upon insertion), determination of close approaches with resident space objects, computation of the state vector variance of the primary and the secondary objects to represent the knowledge uncertainty, and computation of the collision risk given the variance. This has been successfully applied during the recent launches of the Indian Space Research Organization.

  3. Effect of NOAA satellite orbital drift on AVHRR-derived phenological metrics

    Science.gov (United States)

    Ji, Lei; Brown, Jesslyn

    2017-01-01

    The U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center routinely produces and distributes a remote sensing phenology (RSP) dataset derived from the Advanced Very High Resolution Radiometer (AVHRR) 1-km data compiled from a series of National Oceanic and Atmospheric Administration (NOAA) satellites (NOAA-11, −14, −16, −17, −18, and −19). Each NOAA satellite experienced orbital drift during its duty period, which influenced the AVHRR reflectance measurements. To understand the effect of the orbital drift on the AVHRR-derived RSP dataset, we analyzed the impact of solar zenith angle (SZA) on the RSP metrics in the conterminous United States (CONUS). The AVHRR weekly composites were used to calculate the growing-season median SZA at the pixel level for each year from 1989 to 2014. The results showed that the SZA increased towards the end of each NOAA satellite mission with the highest increasing rate occurring during NOAA-11 (1989–1994) and NOAA-14 (1995–2000) missions. The growing-season median SZA values (44°–60°) in 1992, 1993, 1994, 1999, and 2000 were substantially higher than those in other years (28°–40°). The high SZA in those years caused negative trends in the SZA time series, that were statistically significant (at α = 0.05 level) in 76.9% of the CONUS area. A pixel-based temporal correlation analysis showed that the phenological metrics and SZA were significantly correlated (at α = 0.05 level) in 4.1–20.4% of the CONUS area. After excluding the 5 years with high SZA (>40°) from the analysis, the temporal SZA trend was largely reduced, significantly affecting less than 2% of the study area. Additionally, significant correlation between the phenological metrics and SZA was observed in less than 7% of the study area. Our study concluded that the NOAA satellite orbital drift increased SZA, and in turn, influenced the phenological metrics. Elimination of the years with high median SZA reduced the

  4. A Mobile Communications Space Link Between the Space Shuttle Orbiter and the Advanced Communications Technology Satellite

    Science.gov (United States)

    Fink, Patrick; Arndt, G. D.; Bondyopadhyay, P.; Shaw, Roland

    1994-01-01

    A communications experiment is described as a link between the Space Shuttle Orbiter (SSO) and the Advanced Communications Technology Satellite (ACTS). Breadboarding for this experiment has led to two items with potential for commercial application: a 1-Watt Ka-band amplifier and a Ka-band, circularly polarized microstrip antenna. Results of the hybrid Ka-band amplifier show gain at 30 dB and a saturated output power of 28.5 dBm. A second version comprised of MMIC amplifiers is discussed. Test results of the microstrip antenna subarray show a gain of approximately 13 dB and excellent circular polarization.

  5. Advanced Communication Technology Satellite (ACTS) Multibeam Antenna On-Orbit Performance

    Science.gov (United States)

    1995-01-01

    The NASA Lewis Research Center's Advanced Communication Technology Satellite (ACTS) was launched in September 1993. ACTS introduced several new technologies, including a multibeam antenna (MBA) operating at extremely short wavelengths never before used in communications. This antenna, which has both fixed and rapidly reconfigurable high-energy spot beams (150 miles in diameter), serves users equipped with small antenna terminals. Extensive structural and thermal analyses have been performed for simulating the ACTS MBA on-orbit performance. The results show that the reflector surfaces (mainly the front subreflector), antenna support assembly, and metallic surfaces on the spacecraft body will be distorted because of the thermal effects of varying solar heating, which degrade the ACTS MBA performance. Since ACTS was launched, a number of evaluations have been performed to assess MBA performance in the space environment. For example, the on-orbit performance measurements found systematic environmental disturbances to the MBA beam pointing. These disturbances were found to be imposed by the attitude control system, antenna and spacecraft mechanical alignments, and on-orbit thermal effects. As a result, the MBA may not always exactly cover the intended service area. In addition, the on-orbit measurements showed that antenna pointing accuracy is the performance parameter most sensitive to thermal distortions on the front subreflector surface and antenna support assemblies. Several compensation approaches were tested and evaluated to restore on-orbit pointing stability. A combination of autotrack (75 percent of the time) and Earth sensor control (25 percent of the time) was found to be the best way to compensate for antenna pointing error during orbit. This approach greatly minimizes the effects of thermal distortions on antenna beam pointing.

  6. Molecular orbital theory of ballistic electron transport through molecules

    Science.gov (United States)

    Ernzerhof, Matthias; Rocheleau, Philippe; Goyer, Francois

    2009-03-01

    Electron transport through molecules occurs, for instance, in STM imaging and in conductance measurements on molecular electronic devices (MEDs). To model these phenomena, we use a non-Hermitian model Hamiltonian [1] for the description of open systems that exchange current density with their environment. We derive qualitative, molecular-orbital-based rules relating molecular structure and conductance. We show how side groups attached to molecular conductors [2] can completely suppress the conductance. We discuss interference effects in aromatic molecules [3] that can also inhibit electron transport. Rules are developed [1] for the prediction of Fano resonances. All these phenomena are explained with a molecular orbital theory [1,4] for molecules attached to macroscopic reservoirs. [1] F. Goyer, M. Ernzerhof, and M. Zhuang, JCP 126, 144104 (2007); M. Ernzerhof, JCP 127, 204709 (2007). [2] M. Ernzerhof, M. Zhuang, and P. Rocheleau, JCP 123, 134704 (2005); G. C. Solomon, D Q. Andrews, R P. Van Duyne, and M A. Ratner, JACS 130, 7788 (2008). [3] M. Ernzerhof, H. Bahmann, F. Goyer, M. Zhuang, and P. Rocheleau, JCTC 2, 1291 (2006); G. C. Solomon, D. Q. Andrews, R. P. Van Duyne, and M. A. Ratner, JCP 129, 054701 (2008). [4] B.T. Pickup, P.W. Fowler, CPL 459, 198 (2008); P. Rocheleau and M. Ernzerhof, JCP, submitted.

  7. Orbit limited theory in the solar wind - κ distributions

    Directory of Open Access Journals (Sweden)

    Martinović M.M.

    2016-01-01

    Full Text Available When a solid object is immersed into ionized gas it gets brought to a certain value of electrostatic potential and surrounded by a space charge region called ‘plasma sheath’. Through this region, particles are attracted or repelled from the surface of the charge collecting object. For collisionless plasma, this process is described by the so-called orbit limited theory, which explains how the collection of particles is determined by the collector geometry and plasma velocity distribution function (VDF. In this article, we provide explicit expressions for orbit-limited currents for generalized Lorentzian (κ distributions. This work is useful to describe the charging processes of objects in non-collisional plasmas like the solar wind, where the electrons VDF is often observed to exhibit quasi power-law populations of suprathermal particles. It is found that these ‘suprathermals’ considerably increase the charge collection. Since the surface charging process that determines the value of electrostatic potential is also affected by the plasma VDF, calculation of the collector potential in the solar wind is described along with some quantitative predictions. [Projekat Ministarstva nauke Republike Srbije, br. 176002

  8. Orbital motion theory and operational regimes for cylindrical emissive probes

    Science.gov (United States)

    Chen, Xin; Sanchez-Arriaga, G.

    2017-02-01

    A full-kinetic model based on the orbital-motion theory for cylindrical emissive probes (EPs) is presented. The conservation of the distribution function, the energy, and the angular momentum for cylindrical probes immersed in collisionless and stationary plasmas is used to write the Vlasov-Poisson system as a single integro-differential equation. It describes self-consistently the electrostatic potential profile and, consequently, the current-voltage (I-V) probe characteristics. Its numerical solutions are used to identify different EP operational regimes, including orbital-motion-limited (OML)/non-OML current collection and monotonic/non-monotonic potential, in the parametric domain of probe bias and emission level. The most important features of the potential and density profiles are presented and compared with common approximations in the literature. Conventional methods to measure plasma potential with EPs are briefly revisited. A direct application of the model is to estimate plasma parameters by fitting I-V measurements to the theoretical results.

  9. Sulfur at nickel-alumina interfaces - Molecular orbital theory

    Science.gov (United States)

    Hong, S. Y.; Anderson, Alfred B.; Smialek, James L.

    1990-01-01

    Previous studies on Al-Ni alloys containing sulfur as an impurity suggest that, when S is in the interface between a metal and an oxide scale, it weakens the chemical bonding between them. This paper investigates factors responsible for this effect, using a molecular orbital theory to predict sulfur structures and electronic properties on the Ni-Al2O3 interface. It is shown that, in absence of S, the basal plane of Al2O3 will bind strongly through the Al(3+) cation surface to Ni (111). When segregated S impurity is present on the Ni surface, there are too few interfacial AlS bonds to effect good adhesion, leading to an inhibition of the oxide scale adhesion in NiCrAl alloys.

  10. Flight Mechanics/Estimation Theory Symposium. [with application to autonomous navigation and attitude/orbit determination

    Science.gov (United States)

    Fuchs, A. J. (Editor)

    1979-01-01

    Onboard and real time image processing to enhance geometric correction of the data is discussed with application to autonomous navigation and attitude and orbit determination. Specific topics covered include: (1) LANDSAT landmark data; (2) star sensing and pattern recognition; (3) filtering algorithms for Global Positioning System; and (4) determining orbital elements for geostationary satellites.

  11. Satellite's Trajectory Propagation At NearCircular Orbits Using TLE Files In The Simplified SGP Model

    Directory of Open Access Journals (Sweden)

    V. A. Chagina

    2016-01-01

    Full Text Available The article describes the satellite's trajectory calculation algorithm for near-circular orbits using TLE (two-line element files in the simplified SGP model. The aim of the algorithm is to obtain the array of satellite's azimuth and elevation required to control the antennas of ground station. The initial conditions of motion in TLE format are very widespread nowadays, they are being used by many calculation software, nevertheless there is a deficit of information concerned with this format in Russian literature. The report presented at NASA web-sites by Dr. T.S. Kelso contains the descriptions of satellite's trajectory calculation algorithms in case of various models (SGP, SGP4, SDP4 etc. The realization of these algorithms demands for the executer's experience because speaking about Russian and the American scientific schools there are differences both in measure units and in approaches to satellite's trajectory calculation.Moreover, in opposite to series of related publications all the calculation sequence to obtain the values of antenna pointing is given in this article, the described algorithm is pretty simple and clear. It is not enough to have the satellite's coordinates and velocity in Earth inertial equatorial system to calculate azimuth and elevation. One has to bind the ground station situated at the surface of the Earth, which is involved in complicated motion, to a point in inertial space using Local Sidereal Time. Several issues propose the utilization of Astronomical Almanac. But the exploitation of the Almanac is not convenient when it is required to get the arrays of values of antenna control angles as functions of time. The article contains the methodology given in foreign issues which allow the calculation of Local Sidereal Time. This methodology is an adjacent part of the trajectory calculation problem with respect to ground station.The calculation results obtained using the described algorithm were compared with the data

  12. Real-time precise orbit determination of LEO satellites using a single-frequency GPS receiver: Preliminary results of Chinese SJ-9A satellite

    Science.gov (United States)

    Sun, Xiucong; Han, Chao; Chen, Pei

    2017-10-01

    Spaceborne Global Positioning System (GPS) receivers are widely used for orbit determination of low-Earth-orbiting (LEO) satellites. With the improvement of measurement accuracy, single-frequency receivers are recently considered for low-cost small satellite missions. In this paper, a Schmidt-Kalman filter which processes single-frequency GPS measurements and broadcast ephemerides is proposed for real-time precise orbit determination of LEO satellites. The C/A code and L1 phase are linearly combined to eliminate the first-order ionospheric effects. Systematic errors due to ionospheric delay residual, group delay variation, phase center variation, and broadcast ephemeris errors, are lumped together into a noise term, which is modeled as a first-order Gauss-Markov process. In order to reduce computational complexity, the colored noise is considered rather than estimated in the orbit determination process. This ensures that the covariance matrix accurately represents the distribution of estimation errors without increasing the dimension of the state vector. The orbit determination algorithm is tested with actual flight data from the single-frequency GPS receiver onboard China's small satellite Shi Jian-9A (SJ-9A). Preliminary results using a 7-h data arc on October 25, 2012 show that the Schmidt-Kalman filter performs better than the standard Kalman filter in terms of accuracy.

  13. Curvature and Frontier Orbital Energies in Density Functional Theory.

    Science.gov (United States)

    Stein, Tamar; Autschbach, Jochen; Govind, Niranjan; Kronik, Leeor; Baer, Roi

    2012-12-20

    Perdew et al. discovered two different properties of exact Kohn-Sham density functional theory (DFT): (i) The exact total energy versus particle number is a series of linear segments between integer electron points. (ii) Across an integer number of electrons, the exchange-correlation potential "jumps" by a constant, known as the derivative discontinuity (DD). Here we show analytically that in both the original and the generalized Kohn-Sham formulation of DFT the two properties are two sides of the same coin. The absence of a DD dictates deviation from piecewise linearity, but the latter, appearing as curvature, can be used to correct for the former, thereby restoring the physical meaning of orbital energies. A simple correction scheme for any semilocal and hybrid functional, even Hartree-Fock theory, is shown to be effective on a set of small molecules, suggesting a practical correction for the infamous DFT gap problem. We show that optimally tuned range-separated hybrid functionals can inherently minimize both DD and curvature, thus requiring no correction, and that this can be used as a sound theoretical basis for novel tuning strategies.

  14. Launch in orbit of the NINA-2 apparatus aboard the satellite MITA

    Science.gov (United States)

    Casolino, M.; NINA-2 Collaboration

    2001-08-01

    The satellite MITA was launched on July the 15th , 2000 from the cosmodrome of Plesetsk (Russia) with a Cosmos-3M rocket. MITA carries the payload NINA-2 for the study of solar and galactic cosmic rays. The detector used in this mission is identical to the one already flying on the Russian satellite Resurs-O1 n.4 in a 840 km sunsynchronous orbit, but makes use of the extensive computer and telemetry capabilities of MITA bus to improve the active data acquisition time. The scientific objectives of NINA are the study of cosmic nuclei from hydrogen to iron in the energy range between 10 MeV/n and 1 GeV/n during solar maximum period. The device is capable of charge identification up to iron with isotope sensitivity up to oxigen. The 87.3 degrees, 460 km altitude polar orbit allows investigations of cosmic rays of solar and galactic origin as well as the trapped component. In this work we present preliminary results concerning particle identification capabilities and nuclear differential spectra for helium, carbon and oxygen in the energy range between 10 and 50 MeV/n.

  15. Investigating the Effects of Non-Gravitational Force Modelling on GPS Satellite Orbits

    Science.gov (United States)

    Petrie, E. J.; King, R. W.; Herring, T.; Ziebart, M. K.

    2011-12-01

    Non-gravitational forces such as solar radiation pressure, earth radiation pressure, antenna thrust and thermal re-radiation are relatively small contributors to the overall GPS satellite orbital force budget. However, if neglected, these small non-gravitationally induced accelerations produce significant errors in satellite positions and velocities when integrated over time. For applications where centimetre level orbital accuracy is required (i.e. ppb accuracy ground positioning), these forces must be accounted for either through realistic a priori physical models and/or appropriate parameter estimation. Current GPS processing approaches typically use an approximate solar radiation pressure force, together with estimated parameters that are meant to account for non-modeled forces. These parameters often fall into the categories of scaling and sinusoidal once-per-revolution parameters. Here we investigate the effects of using more detailed physically based models of radiation forces and interaction between these models and the parameterisation of the non-modeled forces. Ideally, with a complete physical model, additional parameters are not required. Reduction of the number of empirical parameters estimated can result in large effects on the stability of the terrestrial reference frame determined with GPS. These analyses are done using an adapted version of the GAMIT processing software which includes a Fourier series model for radiation forces developed at University College London.

  16. Detecting extrasolar moons akin to Solar System satellites with an Orbital Sampling Effect

    CERN Document Server

    Heller, René

    2014-01-01

    Despite years of high accuracy observations, none of the available theoretical techniques has yet allowed the confirmation of a moon beyond the Solar System. Methods are currently limited to masses about an order of magnitude higher than the mass of any moon in the Solar System. I here present a new method sensitive to exomoons similar to the known moons. Due to the projection of transiting exomoon orbits onto the celestial plane, satellites appear more often at larger separations from their planet. After about a dozen randomly sampled observations, a photometric orbital sampling effect (OSE) starts to appear in the phase-folded transit light curve, indicative of the moons' radii and planetary distances. Two additional outcomes of the OSE emerge in the planet's transit timing variations (TTV-OSE) and transit duration variations (TDV-OSE), both of which permit measurements of a moon's mass. The OSE is the first effect that permits characterization of multi-satellite systems. I derive and apply analytical OSE d...

  17. Introduction on background medium theory about celestial body motion orbit and foundation of fractional-dimension calculus about self-similar fractal measure calculation

    Science.gov (United States)

    Yan, Kun

    2007-04-01

    In this paper, by discussing the basic hypotheses about the continuous orbit and discrete orbit in two research directions of the background medium theory for celestial body motion, the concrete equation forms and their summary of the theoretic frame of celestial body motion are introduced. Future more, by discussing the general form of Binet's equation of celestial body motion orbit and it's solution of the advance of the perihelion of planets, the relations and differences between the continuous orbit theory and Newton's gravitation theory and Einstein's general relativity are given. And by discussing the fractional-dimension expanded equation for the celestial body motion orbits, the concrete equations and the prophesy data of discrete orbit or stable orbits of celestial bodies which included the planets in the Solar system, satellites in the Uranian system, satellites in the Earth system and satellites obtaining the Moon obtaining from discrete orbit theory are given too. Especially, as the preliminary exploration and inference to the gravitation curve of celestial bodies in broadly range, the concept for the ideal black hole with trend to infinite in mass density difficult to be formed by gravitation only is explored. By discussing the position hypothesis of fractional-dimension derivative about general function and the formula form the hypothesis of fractional-dimension derivative about power function, the concrete equation formulas of fractional-dimension derivative, differential and integral are described distinctly further, and the difference between the fractional-dimension derivative and the fractional-order derivative are given too. Subsequently, the concrete forms of measure calculation equations of self-similar fractal obtaining by based on the definition of form in fractional-dimension calculus about general fractal measure are discussed again, and the differences with Hausdorff measure method or the covering method at present are given. By applying

  18. NIR- and SWIR-based on-orbit vicarious calibrations for satellite ocean color sensors.

    Science.gov (United States)

    Wang, Menghua; Shi, Wei; Jiang, Lide; Voss, Kenneth

    2016-09-05

    The near-infrared (NIR) and shortwave infrared (SWIR)-based atmospheric correction algorithms are used in satellite ocean color data processing, with the SWIR-based algorithm particularly useful for turbid coastal and inland waters. In this study, we describe the NIR- and two SWIR-based on-orbit vicarious calibration approaches for satellite ocean color sensors, and compare results from these three on-orbit vicarious calibrations using satellite measurements from the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting Partnership (SNPP). Vicarious calibration gains for VIIRS spectral bands are derived using the in situ normalized water-leaving radiance nLw(λ) spectra from the Marine Optical Buoy (MOBY) in waters off Hawaii. The SWIR vicarious gains are determined using VIIRS measurements from the South Pacific Gyre region, where waters are the clearest and generally stable. Specifically, vicarious gain sets for VIIRS spectral bands of 410, 443, 486, 551, and 671 nm derived from the NIR method using the NIR 745 and 862 nm bands, the SWIR method using the SWIR 1238 and 1601 nm bands, and the SWIR method using the SWIR 1238 and 2257 nm bands are (0.979954, 0.974892, 0.974685, 0.965832, 0.979042), (0.980344, 0.975344, 0.975357, 0.965531, 0.979518), and (0.980820, 0.975609, 0.975761, 0.965888, 0.978576), respectively. Thus, the NIR-based vicarious calibration gains are consistent with those from the two SWIR-based approaches with discrepancies mostly within ~0.05% from three data processing methods. In addition, the NIR vicarious gains (745 and 862 nm) derived from the two SWIR methods are (0.982065, 1.00001) and (0.981811, 1.00000), respectively, with the difference ~0.03% at the NIR 745 nm band. This is the fundamental basis for the NIR-SWIR combined atmospheric correction algorithm, which has been used to derive improved satellite ocean color products over open oceans and turbid coastal/inland waters. Therefore, a unified

  19. Dwarf spheroidal satellites of the Milky Way from dark matter free tidal dwarf galaxy progenitors: maps of orbits

    CERN Document Server

    Casas, R A; Ramírez, K Pena; Kroupa, P

    2012-01-01

    The long term time evolution of tidal dwarf satellite galaxies with two different initial densities orbiting a host galaxy that resembles the Milky Way has been studied using a large set of Newtonian N-Body simulations. From the simulations two maps of the orbital conditions that lead to quasi-equilibrium objects were constructed. It has been found that several orbits of the satellites allow for the existence, for about 1 Gyr or more, of out-of-equilibrium bodies with high apparent mass-to-light ratios. Within this framework the satellites in the quasi-stable phase reproduce the observed satellite properties for about 16% of the orbit for high density progenitors, and for about 66% for progenitors with lower densities An additional simulation for a single satellite with initial mass of 10^7 Msun and Plummer radius of 0.15 kpc leads to remnants in the quasi- equilibrium phase that simultaneously reproduce remarkably well the observational quantities of the UFDGs of the Milky Way. This satellite in the quasi-st...

  20. Choice of high-apogee AES orbits on the basis of the qualitative methods of the theory of perturbations and situational analysis. Part I. Situational studies based on orbital tori

    Science.gov (United States)

    Prokhorenko, V. I.

    2016-03-01

    The paper discusses the problems of the choice of high-apogee orbits of artificial Earth satellites (AES), proceeding from the tasks of space experiments aimed at studying near-earth space and taking into account the features of the orbital evolution and ballistic lifetime. The suggested methods of the choice of orbits consist of two components. The first is based on the use of mathematical models of studied regions of near-earth space and various techniques of situation analysis, among which the annual and daily orbital tori developed by the author about 35 years ago are key. The second component is based on qualitative methods of the theory of perturbations of high-apogee AES orbits developed by M.L. Lidov more than 50 years ago.

  1. Use of negotiated rulemaking in developing technical rules for low-Earth orbit mobile satellite systems

    Science.gov (United States)

    Taylor, Leslie A.

    Technical innovations have converged with the exploding market demand for mobile telecommunications to create the impetus for low-earth orbit (LEO) communications satellite systems. The so-called 'Little LEO's' propose use of VHF and UHF spectrum to provide position - location and data messaging services. The so-called 'Big LEO's' propose to utilize the RDSS bands to provide voice and data services. In the United States, several applications were filed with the U.S. Federal Communications Commission (FCC) to construct and operate these mobile satellite systems. To enable the prompt introduction of such new technology services, the FCC is using innovative approaches to process the applications. Traditionally, when the FCC is faced with 'mutually exclusive' applications, e.g. a grant of one would preclude a grant of the others, it uses selection mechanisms such as comparative hearings or lotteries. In the case of the LEO systems, the FCC has sought to avoid these time-consuming approaches by using negotiated rulemakings. The FCC's objective is to enable the multiple applicants and other interested parties to agree on technical and service rules which will enable the grant of all qualified applications. With regard to the VHF/UHF systems, the Advisory Committee submitted a consensus report to the FCC. The process for the systems operating in the bands above 1 GHz involved more parties and more issues but still provided the FCC useful technical information to guide the adoption of rules for the new mobile satellite service.

  2. Analysis of stability boundaries of satellite's equilibrium attitude in a circular orbit

    Science.gov (United States)

    Novikov, M. A.

    2016-03-01

    An asymmetric satellite equipped with control momentum gyroscopes (CMGs) with the center of mass of the system moving uniformly in a circular orbit was considered. The stability of a relative equilibrium attitude of the satellite was analyzed using Lyapunov's direct method. The Lyapunov function V is a positive definite integral of the total energy of the perturbed motion of the system. The asymptotic stability analysis of the stationary motion of the conservative system was based on the Barbashin-Krasovskii theorem on the nonexistence of integer trajectories of the set dot V, which was obtained using the differential equations of motion of the satellite with CMGs. By analyzing the sign definiteness of the quadratic part of V, it was found earlier by V.V. Sazonov that the stability region is described by four strict inequalities. The asymptotic stability at the stability boundary was analyzed by sequentially turning these inequalities into equalities with terms of orders higher than the second taken into account in V. The sign definiteness analysis of the inhomogeneous function V at the stability boundary involved a huge amount of computations related to the multiplication, expansion, substitution, and factorization of symbolic expressions. The computations were performed by applying a computer algebra system on a personal computer.

  3. 低轨卫星精密定轨中重力场模型误差的补偿%Reducing Influence of Gravity Model Error in Precise Orbit Determination of Low Earth Orbit Satellites

    Institute of Scientific and Technical Information of China (English)

    郭金来; 胡敏; 赵齐乐; 郭道玉

    2007-01-01

    Based on the orbit integration and orbit fitting method, the influence of the characters of the gravity model, with different precisions, on the movement of low Earth orbit satellites was studied. The way and the effect of absorbing the influence of gravity model error on CHAMP and GRACE satellite orbits, using linear and periodical empirical acceleration models and the so-called "pseudo-stochastic pulses" model, were also analyzed.

  4. Index iteration theory for symplectic paths and multiple periodic solution orbits

    Institute of Scientific and Technical Information of China (English)

    LONG Yi-ming

    2006-01-01

    In this paper,a survey on the index iteration theory for symplectic paths is given.Three,applications of this theory are presented including closed characteristics on convex hypersurfaces and brake orbits on bounded domains.

  5. Orbits of massive satellite galaxies - I. A close look at the Large Magellanic Cloud and a new orbital history for M33

    Science.gov (United States)

    Patel, Ekta; Besla, Gurtina; Sohn, Sangmo Tony

    2017-02-01

    The Milky Way (MW) and M31 both harbour massive satellite galaxies, the Large Magellanic Cloud (LMC) and M33, which may comprise up to 10 per cent of their host's total mass. Massive satellites can change the orbital barycentre of the host-satellite system by tens of kiloparsec and are cosmologically expected to harbour dwarf satellite galaxies of their own. Assessing the impact of these effects crucially depends on the orbital histories of the LMC and M33. Here, we revisit the dynamics of the MW-LMC system and present the first detailed analysis of the M31-M33 system utilizing high-precision proper motions and statistics from the dark-matter-only Illustris cosmological simulation. With the latest Hubble Space Telescope proper motion measurements of M31, we reliably constrain M33's interaction history with its host. In particular, like the LMC, M33 is either on its first passage (tinf picture and provide further insight about their host masses. We conclude that, cosmologically, massive satellites such as the LMC and M33 are likely completing their first orbits about their hosts. We also find that the orbital energies of such analogues prefer an MW halo mass ˜1.5 × 1012 M⊙ and an M31 halo mass ≥1.5 × 1012 M⊙. Despite conventional wisdom, we conclude it is highly improbable that M33 made a close (<100 kpc) approach to M31 recently (tperi < 3 Gyr ago). Such orbits are rare (<1 per cent) within the 4σ error space allowed by observations. This conclusion cannot be explained by perturbative effects through four-body encounters amongst the MW, M31, M33, and the LMC. This surprising result implies that we must search for a new explanation for M33's strongly warped gas and stellar discs.

  6. Satellite quenching timescales in clusters from projected phase space measurements matched to simulated orbits

    CERN Document Server

    Oman, Kyle A

    2016-01-01

    We measure the star formation quenching efficiency and timescale in cluster environments. Our method uses N-body simulations to estimate the probability distribution of possible orbits for a sample of observed SDSS galaxies in and around clusters based on their position and velocity offsets from their host cluster. We study the relationship between their star formation rates and their likely orbital histories via a simple model in which star formation is quenched once a delay time after infall has elapsed. Our orbit library method is designed to isolate the environmental effect on the star formation rate due to a galaxy's present-day host cluster from `pre-processing' in previous group hosts. We find that quenching of satellite galaxies of all stellar masses in our sample ($10^{9}-10^{11.5}\\,{\\rm M}_\\odot$) by massive ($> 10^{13}\\,{\\rm M}_\\odot$) clusters is essentially $100$ per cent efficient. Our fits show that all galaxies quench on their first infall, approximately at or within a Gyr of their first peric...

  7. Integrated Orbit, Attitude, and Structural Control Systems Design for Space Solar Power Satellites

    Science.gov (United States)

    Wie, Bong; Roithmayr, Carlos M.

    2001-01-01

    The major objective of this study is to develop an integrated orbit, attitude, and structural control systems architecture for very large Space Solar Power Satellites (SSPS) in geosynchronous orbit. This study focuses on the 1.2-GW Abacus SSPS concept characterized by a 3.2 x 3.2 km solar-array platform, a 500-m diameter microwave beam transmitting antenna, and a 500 x 700 m earth-tracking reflector. For this baseline Abacus SSPS configuration, we derive and analyze a complete set of mathematical models, including external disturbances such as solar radiation pressure, microwave radiation, gravity-gradient torque, and other orbit perturbation effects. The proposed control systems architecture utilizes a minimum of 500 1-N electric thrusters to counter, simultaneously, the cyclic pitch gravity-gradient torque, the secular roll torque caused by an offset of the center-of-mass and center-of-pressure, the cyclic roll/yaw microwave radiation torque, and the solar radiation pressure force whose average value is about 60 N.

  8. Precise orbit determination for Jason-1 satellite using on-board GPS data with cm-level accuracy

    Institute of Scientific and Technical Information of China (English)

    PENG DongJu; WU Bin

    2009-01-01

    The joint US/French Jason-1 satellite altimeter mission, launched from the Vandenberg Air Force Base on December 7, 2001, continues the time series of centimeter-level ocean topography observations as the follow-on to the highly successful T/P radar altimeter satellite. Orbit error especially the radial orbit error is a major component in the overall budget of all altimeter satellite missions, in order to continue the T/P standard of observations. Jason-1 has a radial orbit error budget requirement of 2.5 cm. in this work, two cycles (December 19, 2002 to January 7, 2003) of the Jason-1 on-board GPS data were processed using the zero-difference (ZD) dynamic precise orbit determination (POD) technique. The resulting Jason-1 orbit accuracy was assessed by comparison with the precise orbit ephemeris (POE)produced by JPL, orbit overlaps and SLR residuals. These evaluations indicate that the RMS radial accuracy is in the range of 1-2 cm.

  9. Electronic absorption spectra and geometry of organic molecules an application of molecular orbital theory

    CERN Document Server

    Suzuki, Hiroshi

    1967-01-01

    Electronic Absorption Spectra and Geometry of Organic Molecules: An Application of Molecular Orbital Theory focuses on electronic absorption spectra of organic compounds and molecules. The book begins with the discussions on molecular spectra, electronic absorption spectra of organic compounds, and practical measures of absorption intensity. The text also focuses on molecular orbital theory and group theory. Molecular state functions; fundamental postulates of quantum theory; representation of symmetry groups; and symmetry operations and symmetry groups are described. The book also dis

  10. INSIGHT (interaction of low-orbiting satellites with the surrounding ionosphere and thermosphere)

    Science.gov (United States)

    Schlicht, Anja; Reussner, Elisabeth; Lühr, Hermann; Stolle, Claudia; Xiong, Chao; Schmidt, Michael; Blossfeld, Mathis; Erdogan, Eren; Pancetta, Francesca; Flury, Jakob

    2016-04-01

    In the framework of the DFG special program "Dynamic Earth" the project INSIGHT, started in September 2015, is studying the interactions between the ionosphere and thermosphere as well as the role of the satellites and their instruments in observing the space environment. Accelerometers on low-Earth orbiters (LEOs) are flown to separate non-gravitational forces acting on the satellite from influences of gravitational effects. Amongst others these instruments provide valuable information for improving our understanding of thermospheric properties like densities and winds. An unexpected result, for example, is the clear evidence of geomagnetic field control on the neutral upper atmosphere. The charged particles of the ionosphere act as mediators between the magnetic field and the thermosphere. In the framework of INSIGHT the climatology of the thermosphere will be established and the coupling between the ionosphere and thermosphere is studied. There are indications that the accelerometers are influenced by systematic errors not identified up to now. For GRACE it is one of the discussed reasons, why this mission so far did not reach the baseline accuracy. Beutler et al. 2010 discussed the limited use of the GRACE accelerometer measurements in comparison to stochastic pulses in gravity field recovery. Analysis of the accelerometer measurements show many structures in the high frequency region which can be traced back to switching processes of electric circuits in the spacecraft, like heater and magnetic torquer switching, or so called twangs, which can be associated with discharging of non-conducting surfaces of the satellite. As all observed signals have the same time dependency a common origin is very likely, namely the coupling of time variable electric currents into the accelerometer signal. In GOCE gravity field gradients non-gravitational signatures around the magnetic poles are found indicating that even at lower frequencies problems occur. INSIGHT will identify

  11. Analytical theory for highly elliptical orbits including time-dependent perturbations

    CERN Document Server

    Lion, Guillaume

    2016-01-01

    Traditional analytical theories of celestial mechanics are not well-adapted when dealing with highly elliptical orbits. On the one hand, analytical solutions are quite generally expanded into power series of the eccentricity and so limited to quasi-circular orbits. On the other hand, the time-dependency due to the motion of the third body (e.g. Moon and Sun) is almost always neglected. We propose several tools to overcome these limitations. Firstly, we have expanded the third-body disturbing function into a finite polynomial using Fourier series in multiple of the satellite's eccentric anomaly (instead of the mean anomaly) and involving Hansen-like coefficients. Next, by combining the classical Brouwer-von Zeipel procedure and the time-dependent Lie-Deprit transforms, we have performed a normalization of the expanded Hamiltonian in order to eliminate all the periodic terms. One of the benefits is that the original Brouwer solution for J2 is not modified. The main difficulty lies in the fact that the generatin...

  12. Dawn Mission’s Search for satellites at Ceres: Upper limits on size of orbital objects

    Science.gov (United States)

    McFadden, Lucy-Ann A.; Skillman, David R.; Memarsadeghi, Nargess; Carsenty, Uri; Schroeder, Stefan E.; Li, Jian-Yang Y.; Rayman, Marc D.

    2015-11-01

    Hundreds of asteroids have small secondary satellites or are double, or even multiple body systems; yet dwarf planet Ceres doesn’t and isn’t. Ground-based and space-based telescopic searches have placed upper limits on the size of any secondary bodies gravitationally bound to Ceres of 1-2 km (Gehrels et al 1987, Bieryla et al. 2011). The Dawn project’s satellite working group designed and conducted a search during approach to Ceres and during high orbit concentrating its search close to Ceres’ limb where previous searches could not reach. Over 2000 images for both science and optical navigation were searched. In addition, a dedicated satellite search was conducted during two commanded off-nadir pointings. The acquired images extend 5.5° x 5.5° on either side of Ceres, at a range of ~ 145,000 km and solar phase angle at Ceres of 18°. No moving objects associated with Ceres were detected. The search extended down to Ceres’ limb (previous searches went to 500 km above the limb) and extended the upper limit for the non-detection to 30 +/- 6 and 45 +/-9 meter radius for effective exposure times of 114s and 19s respectively. An additional small search was conducted using the spacecraft's star tracker from which no objects were found. The Dawn mission’s search reduced the previous detection limit from Hubble Space Telescope images by two orders of magnitude. Why some asteroids have satellites and others don’t is a matter for dynamical speculation.

  13. A Simple Time Domain Collocation Method to Precisely Search for the Periodic Orbits of Satellite Relative Motion

    Directory of Open Access Journals (Sweden)

    Xiaokui Yue

    2014-01-01

    Full Text Available A numerical approach for obtaining periodic orbits of satellite relative motion is proposed, based on using the time domain collocation (TDC method to search for the periodic solutions of an exact J2 nonlinear relative model. The initial conditions for periodic relative orbits of the Clohessy-Wiltshire (C-W equations or Tschauner-Hempel (T-H equations can be refined with this approach to generate nearly bounded orbits. With these orbits, a method based on the least-squares principle is then proposed to generate projected closed orbit (PCO, which is a reference for the relative motion control. Numerical simulations reveal that the presented TDC searching scheme is effective and simple, and the projected closed orbit is very fuel saving.

  14. Quantum defect theory for the orbital Feshbach resonance

    Science.gov (United States)

    Cheng, Yanting; Zhang, Ren; Zhang, Peng

    2017-01-01

    In the ultracold gases of alkali-earth-metal-like atoms, a new type of Feshbach resonance, i.e., the orbital Feshbach resonance (OFR), has been proposed and experimentally observed in ultracold 173Yb atoms [R. Zhang et al., Phys. Rev. Lett. 115, 135301 (2015), 10.1103/PhysRevLett.115.135301]. When the OFR of the 173Yb atoms occurs, the energy gap between the open and closed channels is smaller by two orders of magnitude than the van der Waals energy. As a result, quantitative accurate results for the low-energy two-body problems can be obtained via multichannel quantum defect theory (MQDT), which is based on the exact solution of the Schrödinger equation with the van der Waals potential. In this paper we use MQDT to calculate the two-atom scattering length, effective range, and binding energy of two-body bound states for the systems with OFR. With these results we further study the clock-transition spectrum for the two-body bound states, which can be used to experimentally measure the binding energy. Our results are helpful for the quantitative theoretical and experimental research for the ultracold gases of alkali-earth-metal-like atoms with OFR.

  15. A compact and low cost TT&C S-Band Ground Station for low orbit satellites

    Science.gov (United States)

    Pacola, Luiz C.; Ferrari, Carlos A.

    Instituto Nacional de Pesquisas Espaciais (INPE's) S-Band Ground Station for satellite control and monitoring is revised consdiering the current software and hardware technology. A Ground Station concept for low orbit satellites is presented. The front-end uses a small antenna and low cost associated equipment without loss of performance. The baseband equipment is highly standardized and developed on a personal computer IBM compatible using extensively Digital Signal Processing (DSP). A link budget for ranging, telecommand and telemetry is also presented.

  16. Energetic electron enhancements below the radiation belt and X-ray contamination at low-orbiting satellites

    CERN Document Server

    Suvorova, Alla V; Huang, Chien-Ming

    2014-01-01

    The work concerns a problem of electron-induced contaminant at relatively low latitudes to high-energy astrophysical measurements on board the low-orbiting satellites. We show the results of a statistical analysis of the energetic electron enhancements in energy range 30-300 keV observed by a fleet of NOAA/POES low-orbiting satellites over the time period from 1999 to 2012. We demonstrate geographical distributions of great and moderate long-lasting enhancements caused by different type of the solar wind drivers.

  17. A vector method for synthesis of orbits and the structure of satellite constellations for multiswath periodic coverage of the Earth

    Science.gov (United States)

    Saulskiy, V. K.

    2016-07-01

    Single satellites and multisatellite constellations for the periodic coverage of the Earth are considered. The main feature is the use of several cameras with different swath widths. A vector method is proposed which makes it possible to find orbits minimizing the periodicities of coverage of a given area of Earth uniformly for all swaths. Their number is not limited, but the relative dimensions should satisfy the Fibonacci series or some new numerical sequences. The results apply to constellations of any number of satellites. Formulas were derived for calculating their structure, i.e., relative position in the constellation. Examples of orbits and the structure of constellations for the Earth's multiswath coverage are presented.

  18. Stimulated Radiative Molecular Association in the Early Solar System: Orbital Radii of Satellites of Uranus, Jupiter, Neptune, and Saturn

    CERN Document Server

    Lombardi, James C

    2015-01-01

    The present investigation relates the orbital radii of regular satellites of Uranus, Jupiter, Neptune, and Saturn to photon energies in the spectra of atomic and molecular hydrogen. To explain these observations a model is developed involving stimulated radiative molecular association (SRMA) reactions among the photons and atoms in the protosatellite disks of the planets. In this model thermal energy is extracted from each disk due to a resonance at radii where there is a match between the temperature in the disk and a photon energy. Matter accumulates at these radii, and satellites and rings are ultimately formed. Orbital radii of satellites of Uranus, Jupiter, and Neptune are related to photon energies ($E_{PM}$ values) in the spectrum of molecular hydrogen. Orbital radii of satellites of Saturn are related to photon energies ($E_{PA}$ values) in the spectrum of atomic hydrogen. The first hint that such relationships exist is found in the linearity of the graphs of orbital radii of uranian satellites vs. or...

  19. On the co-orbital motion in the Planar Restricted Three-Body Problem: the Quasi-satellite motion revisited

    CERN Document Server

    Pousse, Alexandre; Vienne, Alain

    2016-01-01

    In the framework of the planar and circular Restricted Three-Body Problem, we consider an asteroid that orbits the Sun in quasi-satellite motion with a planet. A quasi-satellite trajectory is a heliocentric orbit in co-orbital resonance with the planet, characterized by a non zero eccentricity and a resonant angle that librates around zero. Likewise, in the rotating frame with the planet it describes the same trajectory as the one of a retrograde satellite even though the planet acts as a perturbator. In the last few years, the discoveries of asteroids in this type of motion made the term "quasi-satellite" more and more present in the literature. However, some authors rather use the term "retrograde satellite" when referring to this kind of motion in the studies of the restricted problem in the rotating frame. In this paper we intend to clarify the terminology to use, in order to bridge the gap between the perturbative co-orbital point of view and the more general approach in the rotating frame. Through a num...

  20. Research on long-term autonomous orbit determination for navigation constellation using inter-satellite orientation observation information

    Science.gov (United States)

    Li, Bo; Xu, Bo; Wang, Hai-Hong

    2009-12-01

    Long-term autonomous orbit determination is one of the key techniques of autonomous navigation for navigation constellation. Based only on cross-link range observation, which is not able to overcome the defect of entire constellation rotation and translation relative to inertial reference frame, the accuracy of autonomous orbit determination is reduced with time. In order to solve this problem, the approach of using inter-satellite orientation observation is put forward to estimate the constellation rotation and translation with the benefit of absolute position information provided by stars. In view of the fact that most navigation satellites moving in near circular orbits, and also in order to reduce the calculation burden of onboard computer, nonsingular orbital elements are chosen as state variables and analytical method is used to calculate the transition matrix in this paper. In addition, the extended Kalman filter is designed to fuse information of satellite dynamic model, cross-link range observation and inter-satellite orientation observation to determine the orbit. The simulation results based on the IGS Final Products of GPS constellation indicate that, at the certain error condition of range and orientation measurement, the URE of constellation is better than 2 meters within 120 days.

  1. 78 FR 14920 - Earth Stations Aboard Aircraft Communicating With Fixed-Satellite Service Geostationary-Orbit...

    Science.gov (United States)

    2013-03-08

    ... forwarding and receiving communications signals via a system of satellites or reselling satellite... specialized telecommunications services, such as satellite tracking, communications telemetry, and radar... of Subjects in 47 CFR Parts 2 and 25 Frequency allocations, Satellites. Federal Communications...

  2. LEO卫星星下点轨迹保持策略优化研究%Optimal research on satellite track keeping strategy for low earth orbit satellite

    Institute of Scientific and Technical Information of China (English)

    崔鹏; 傅忠谦

    2013-01-01

    The most LEO(low earth orbit) satellites run in the sun-synchronous orbit.In order to keep their orbit character and achieve the work condition of satellite equipment,satellite track must be kept by orbit control.This paper analyses the local time of descending node is kept by inclination biased and effect for satellite track of inclination biased and decrease of major semi-axis and chronic change of inclination.It gives the keeping method and compute model of adding major semi-axis biased.The simulation results show that the method achieves the demand of track keeping,and the frequency of orbit control is decreased.There is important meaning in practice application.%在轨运行的LEO(low earth orbit)卫星绝大多数是太阳同步回归轨道,为了保持其轨道特性并满足星上载荷工作条件,必须进行星下点轨迹保持.分析了倾角偏置实现降交点地方时保持的同时对星下点轨迹漂移的影响,以及半长轴衰减和倾角长期变化引起的星下点轨迹漂移,给出了增大半长轴偏置量的星下点轨迹保持方法和计算模型.仿真结果显示,此方法不但满足轨迹保持要求,而且减小了轨道维持频度,在工程应用中有重要的意义.

  3. Orbits of Massive Satellite Galaxies: I. A Close Look at the Large Magellanic Cloud and a New Orbital History for M33

    CERN Document Server

    Patel, Ekta; Sohn, Tony

    2016-01-01

    The Milky Way (MW) and M31 both harbor massive satellite galaxies, the Large Magellanic Cloud (LMC) and M33, which may comprise up to 10 per cent of their host's total mass. Massive satellites can change the orbital barycentre of the host-satellite system by tens of kiloparsecs and are cosmologically expected to harbor dwarf satellite galaxies of their own. Assessing the impact of these effects depends crucially on the orbital histories of the LMC and M33. Here, we revisit the dynamics of the MW-LMC system and present the first detailed analysis of the M31-M33 system utilizing high precision proper motions and statistics from the dark matter-only Illustris cosmological simulation. With the latest Hubble Space Telescope proper motion measurements of M31, we reliably constrain M33's interaction history with its host. In particular, like the LMC, M33 is either on its first passage (t_{inf} =2x10^12 Msun), it is on a long period orbit of about 6 Gyr. Cosmological analogs of the LMC and M33 identified in Illustris...

  4. Earth Oblateness and Relative Sun Motion Considerations in the Determination of an Ideal Orbit for the Nimbus Meteorological Satellite

    Science.gov (United States)

    Bandeen, William R.

    1961-01-01

    It is desired that the Nimbus meteorological satellite always cross the equator around local noon and, half-an-orbit later, cross the equator in the other direction around local midnight. The application of the phenomenon of nodal regression toward this end is discussed, and an analysis of the parameters angles of inclination, periods, and heights of such "ideal" circular orbits is presented. Also, the relative motion of the apparent versus the fictitious mean sun is briefly discussed.

  5. TCP/IP Interface for the Satellite Orbit Analysis Program (SOAP)

    Science.gov (United States)

    Carnright, Robert; Stodden, David; Coggi, John

    2009-01-01

    The Transmission Control Protocol/ Internet protocol (TCP/IP) interface for the Satellite Orbit Analysis Program (SOAP) provides the means for the software to establish real-time interfaces with other software. Such interfaces can operate between two programs, either on the same computer or on different computers joined by a network. The SOAP TCP/IP module employs a client/server interface where SOAP is the server and other applications can be clients. Real-time interfaces between software offer a number of advantages over embedding all of the common functionality within a single program. One advantage is that they allow each program to divide the computation labor between processors or computers running the separate applications. Secondly, each program can be allowed to provide its own expertise domain with other programs able to use this expertise.

  6. Centimeter-level precise orbit determination for the HY-2A satellite using DORIS and SLR tracking data

    Science.gov (United States)

    Kong, Qiaoli; Guo, Jinyun; Sun, Yu; Zhao, Chunmei; Chen, Chuanfa

    2017-01-01

    The HY-2A satellite is the first ocean dynamic environment monitoring satellite of China. Centimeter-level radial accuracy is a fundamental requirement for its scientific research and applications. To achieve this goal, we designed the strategies of precise orbit determination (POD) in detail. To achieve the relative optimal orbit for HY-2A, we carried out POD using DORIS-only, SLR-only, and DORIS + SLR tracking data, respectively. POD tests demonstrated that the consistency level of DORIS-only and SLR-only orbits with respect to the CNES orbits were about 1.81 cm and 3.34 cm in radial direction in the dynamic sense, respectively. We designed 6 cases of different weight combinations for DORIS and SLR data, and found that the optimal relative weight group was 0.2 mm/s for DORIS and 15.0 cm for SLR, and RMS of orbit differences with respect to the CNES orbits in radial direction and three-dimensional (3D) were 1.37 cm and 5.87 cm, respectively. These tests indicated that the relative radial and 3D accuracies computed using DORIS + SLR data with the optimal relative weight set were obviously higher than those computed using DORIS-only and SLR-only data, and satisfied the requirement of designed precision. The POD for HY-2A will provide the invaluable experience for the following HY-2B, HY-2C, and HY-2D satellites.

  7. APPLICATION OF VISION METROLOGY TO IN-ORBIT MEASUREMENT OF LARGE REFLECTOR ONBOARD COMMUNICATION SATELLITE FOR NEXT GENERATION MOBILE SATELLITE COMMUNICATION

    Directory of Open Access Journals (Sweden)

    M. Akioka

    2016-06-01

    Full Text Available Satellite for next generation mobile satellite communication service with small personal terminal requires onboard antenna with very large aperture reflector larger than twenty meters diameter because small personal terminal with lower power consumption in ground base requires the large onboard reflector with high antenna gain. But, large deployable antenna will deform in orbit because the antenna is not a solid dish but the flexible structure with fine cable and mesh supported by truss. Deformation of reflector shape deteriorate the antenna performance and quality and stability of communication service. However, in case of digital beam forming antenna with phased array can modify the antenna beam performance due to adjustment of excitation amplitude and excitation phase. If we can measure the reflector shape precisely in orbit, beam pattern and antenna performance can be compensated with the updated excitation amplitude and excitation phase parameters optimized for the reflector shape measured every moment. Softbank Corporation and National Institute of Information and Communications Technology has started the project "R&D on dynamic beam control technique for next generation mobile communication satellite" as a contracted research project sponsored by Ministry of Internal Affairs and Communication of Japan. In this topic, one of the problem in vision metrology application is a strong constraints on geometry for camera arrangement on satellite bus with very limited space. On satellite in orbit, we cannot take many images from many different directions as ordinary vision metrology measurement and the available area for camera positioning is quite limited. Feasibility of vision metrology application and general methodology to apply to future mobile satellite communication satellite is to be found. Our approach is as follows: 1 Development of prototyping simulator to evaluate the expected precision for network design in zero order and first order

  8. Application of Vision Metrology to In-Orbit Measurement of Large Reflector Onboard Communication Satellite for Next Generation Mobile Satellite Communication

    Science.gov (United States)

    Akioka, M.; Orikasa, T.; Satoh, M.; Miura, A.; Tsuji, H.; Toyoshima, M.; Fujino, Y.

    2016-06-01

    Satellite for next generation mobile satellite communication service with small personal terminal requires onboard antenna with very large aperture reflector larger than twenty meters diameter because small personal terminal with lower power consumption in ground base requires the large onboard reflector with high antenna gain. But, large deployable antenna will deform in orbit because the antenna is not a solid dish but the flexible structure with fine cable and mesh supported by truss. Deformation of reflector shape deteriorate the antenna performance and quality and stability of communication service. However, in case of digital beam forming antenna with phased array can modify the antenna beam performance due to adjustment of excitation amplitude and excitation phase. If we can measure the reflector shape precisely in orbit, beam pattern and antenna performance can be compensated with the updated excitation amplitude and excitation phase parameters optimized for the reflector shape measured every moment. Softbank Corporation and National Institute of Information and Communications Technology has started the project "R&D on dynamic beam control technique for next generation mobile communication satellite" as a contracted research project sponsored by Ministry of Internal Affairs and Communication of Japan. In this topic, one of the problem in vision metrology application is a strong constraints on geometry for camera arrangement on satellite bus with very limited space. On satellite in orbit, we cannot take many images from many different directions as ordinary vision metrology measurement and the available area for camera positioning is quite limited. Feasibility of vision metrology application and general methodology to apply to future mobile satellite communication satellite is to be found. Our approach is as follows: 1) Development of prototyping simulator to evaluate the expected precision for network design in zero order and first order 2) Trial

  9. Tracking Low Earth Orbit Small Debris with GPS Satellites as Bistatic Radar

    Science.gov (United States)

    Mahmud, M.; Qaisar, S.; Benson, C.

    2016-09-01

    Space debris is a growing problem and collisions are potentially lethal to satellites. Trajectories for small objects are predicted based on infrequent measurements, and the scale and therefore cost of maneuver required to avoid collisions is a function of trajectory accuracy. Frequent and precise observations will improve trajectory accuracy. In this paper, we extend on aspects of the feasibility of tracking space debris in Low Earth Orbit using emissions from GNSS satellites as bistatic radar illuminators. The wavelengths of GNSS signals are of order 20 cm and our primary focus is to track debris smaller than this, thereby maintaining phase stability of the scattered signals, enabling very long coherent processing intervals. However, the signals scattered by debris will be very weak at a terrestrial receiver, requiring the computationally expensive integration of a large number of signals, over an extended duration and with a large phased array. Detection of such weak signals in the presence of relatively strong direct-arrival signals requires extremely high cross-correlation protection. We show that sufficient cross-correlation protection can be obtained due to the large and varying Doppler shift, and also illustrate a novel processing approach utilizing downshifting of the collected signal to audio frequency. This technique dramatically reduces the cost and complexity of updating debris trajectories. The processing cost of preserving an uncertainty volume of many hundreds of meters around the predicted debris track is very modest, and searching within that uncertainty volume is undertaken at audio sampling rates. Moreover, we explore techniques that further lower the already modest cost of the non-linear search within the preserved uncertainty volume. We conclude with an outline of a system using these techniques that could provide centimetre level tracking of large quantities of small orbital objects at a modest cost.

  10. Detecting extrasolar moons akin to solar system satellites with an orbital sampling effect

    Energy Technology Data Exchange (ETDEWEB)

    Heller, René, E-mail: rheller@physics.mcmaster.ca [Department of Physics and Astronomy, McMaster University (Canada)

    2014-05-20

    Despite years of high accuracy observations, none of the available theoretical techniques has yet allowed the confirmation of a moon beyond the solar system. Methods are currently limited to masses about an order of magnitude higher than the mass of any moon in the solar system. I here present a new method sensitive to exomoons similar to the known moons. Due to the projection of transiting exomoon orbits onto the celestial plane, satellites appear more often at larger separations from their planet. After about a dozen randomly sampled observations, a photometric orbital sampling effect (OSE) starts to appear in the phase-folded transit light curve, indicative of the moons' radii and planetary distances. Two additional outcomes of the OSE emerge in the planet's transit timing variations (TTV-OSE) and transit duration variations (TDV-OSE), both of which permit measurements of a moon's mass. The OSE is the first effect that permits characterization of multi-satellite systems. I derive and apply analytical OSE descriptions to simulated transit observations of the Kepler space telescope assuming white noise only. Moons as small as Ganymede may be detectable in the available data, with M stars being their most promising hosts. Exomoons with the ten-fold mass of Ganymede and a similar composition (about 0.86 Earth radii in radius) can most likely be found in the available Kepler data of K stars, including moons in the stellar habitable zone. A future survey with Kepler-class photometry, such as Plato 2.0, and a permanent monitoring of a single field of view over five years or more will very likely discover extrasolar moons via their OSEs.

  11. Periodic Orbit Theory for Rydberg Atoms in External Fields

    Science.gov (United States)

    Dando, P. A.; Monteiro, T. S.; Owen, S. M.

    1998-03-01

    Although hydrogen in external fields is a paradigm for the application of periodic orbits and the Gutzwiller trace formula to a real system, the trace formula has never been applied successfully to other Rydberg atoms. We show that spectral fluctuations of general Rydberg atoms are given with remarkable precision by the addition of diffractive terms. Previously unknown features in atomic spectra are exposed: there are new modulations that are neither periodic orbits nor combinations of periodic orbits; ``core shadowing'' generally decreases primitive periodic orbit amplitudes but can also lead to increases.

  12. Periodic Orbit Theory for Rydberg Atoms in External Fields

    CERN Document Server

    Dando, P A; Owen, S M

    1998-01-01

    Although hydrogen in external fields is a paradigm for the application of periodic orbits and the Gutzwiller trace formula to a real system, the trace formula has never been applied successfully to other Rydberg atoms. We show that spectral fluctuations of general Rydberg atoms are given with remarkable precision by the addition of diffractive terms. Previously unknown features in atomic spectra are exposed: there are new modulations that are neither periodic orbits nor combinations of periodic orbits; `core-shadowing' generally decreases primitive periodic orbit amplitudes but can also lead to increases.

  13. Simultaneous Laser Ranging and Communication from an Earth-Based Satellite Laser Ranging Station to the Lunar Reconnaissance Orbiter in Lunar Orbit

    Science.gov (United States)

    Sun, Xiaoli; Skillman, David R.; Hoffman, Evan D.; Mao, Dandan; McGarry, Jan F.; Neumann, Gregory A.; McIntire, Leva; Zellar, Ronald S.; Davidson, Frederic M.; Fong, Wai H.; Krainak, Michael A.; Zuber, Maria T.; Smith, David E.

    2013-01-01

    We report a free space laser communication experiment from the satellite laser ranging (SLR) station at NASA Goddard Space Flight Center (GSFC) to the Lunar Reconnaissance Orbiter (LRO) in lunar orbit through the on board one-way Laser Ranging (LR) receiver. Pseudo random data and sample image files were transmitted to LRO using a 4096-ary pulse position modulation (PPM) signal format. Reed-Solomon forward error correction codes were used to achieve error free data transmission at a moderate coding overhead rate. The signal fading due to the atmosphere effect was measured and the coding gain could be estimated.

  14. Vision-based localization for on-orbit servicing of a partially cooperative satellite

    Science.gov (United States)

    Oumer, Nassir W.; Panin, Giorgio; Mülbauer, Quirin; Tseneklidou, Anastasia

    2015-12-01

    This paper proposes ground-in-the-loop, model-based visual localization system based on transmitted images to ground, to aid rendezvous and docking maneuvers between a servicer and a target satellite. In particular, we assume to deal with a partially cooperative target, i.e. passive and without fiducial markers, but supposed at least to keep a controlled attitude, up to small fluctuations, so that the approach mainly involves translational motion. For the purpose of localization, video cameras provide an effective and relatively inexpensive solution, working at a wide range of distances with an increasing accuracy and robustness during the approach. However, illumination conditions in space are especially challenging, due to the direct sunlight exposure and to the glossy surface of a satellite, that creates strong reflections and saturations and therefore a high level of background clutter and missing detections. We employ a monocular camera for mid-range tracking (20 - 5 m) and stereo camera at close-range (5 - 0.5 m), with the respective detection and tracking methods, both using intensity edges and robustly dealing with the above issues. Our tracking system has been extensively verified at the facility of the European Proximity Operations Simulator (EPOS) of DLR, which is a very realistic ground simulation able to reproduce sunlight conditions through a high power floodlight source, satellite surface properties using multilayer insulation foils, as well as orbital motion trajectories with ground-truth data, by means of two 6 DOF industrial robots. Results from this large dataset show the effectiveness and robustness of our method against the above difficulties.

  15. Representativeness of total column water vapour retrievals from instruments on polar orbiting satellites

    Science.gov (United States)

    Diedrich, Hannes; Wittchen, Falco; Preusker, René; Fischer, Jürgen

    2016-07-01

    The remote sensing of total column water vapour (TCWV) from polar orbiting, sun-synchronous satellite spectrometers such as the Medium Resolution Imaging Spectrometer (MERIS) on board of ENVISAT and the Moderate Imaging Spectroradiometer (MODIS) on board of Aqua and Terra enables observations on a high spatial resolution and a high accuracy over land surfaces. The observations serve studies about small-scale variations of water vapour as well as the detection of local and global trends. However, depending on the swath width of the sensor, the temporal sampling is low and the observations of TCWV are limited to cloud-free land scenes. This study quantifies the representativeness of a single TCWV observation at the time of the satellite overpass under cloud-free conditions by investigating the diurnal cycle of TCWV using 9 years of a 2-hourly TCWV data set from global GNSS (Global Navigation Satellite Systems) stations. It turns out that the TCWV observed at 10:30 local time (LT) is generally lower than the daily mean TCWV by 0.65 mm (4 %) on average for cloud-free cases. Averaging over all GNSS stations, the monthly mean TCWV at 10:30 LT, constrained to cases that are cloud-free, is 5 mm (25 %) lower than the monthly mean TCWV at 10:30 LT of all cases. Additionally, the diurnal variability of TCWV is assessed. For the majority of GNSS stations, the amplitude of the averaged diurnal cycle ranges between 1 and 5 % of the daily mean with a minimum between 06:00 and 10:00 LT and maximum between 16:00 and 20:00 LT. However, a high variability of TCWV on an individual day is detected. On average, the TCWV standard deviation is about 15 % regarding the daily mean.

  16. Charge efficiency of Ni/H2 cells during transfer orbit of Telstar 4 satellites

    Science.gov (United States)

    Fang, W. C.; Maurer, Dean W.; Vyas, B.; Thomas, M. N.

    1994-02-01

    The TELSTAR 4 communication satellites being manufactured by Martin Marietta Astro Space (Astro Space) for AT&T are three axis stabilized spacecraft scheduled to be launched on expendable vehicles such as the Atlas or Ariane rockets. Typically, these spacecraft consist of a box that holds the electronics and supports the antenna reflectors and the solar array wings. The wings and reflectors are folded against the sides of the box during launch and the spacecraft is spun for attitude control in that phase; they are then deployed after achieving the final orbit. The launch phase and transfer orbits required to achieve the final geosynchronous orbit typically take 4 to 5 days during which time the power required for command, telemetry, attitude control, heaters, etc., is provided by two 50 AH nickel hydrogen batteries augmented by the exposed outboard solar panels. In the past, this situation has presented no problem since there was a considerable excess of power available from the array. In the case of large high powered spacecraft such as TELSTAR 4, however, the design power levels in transfer orbit approach the time-averaged power available from the exposed surface area of the solar arrays, resulting in a very tight power margin. To compound the difficulty, the array output of the spinning spacecraft in transfer orbit is shaped like a full wave rectified sine function and provides very low charging rates to the batteries during portions of the rotation. In view of the typically low charging efficiency of alkaline nickel batteries at low rates, it was decided to measure the efficiency during a simulation of the TELSTAR 4 conditions at the expected power levels and temperatures on three nickel hydrogen cells of similar design. The unique feature of nickel hydrogen cells that makes the continuous measurement of efficiency possible is that hydrogen is one of the active materials and thus, cell pressure is a direct measure of the state of charge or available capacity

  17. Cryogenic On-Orbit Liquid Depot Storage, Acquisition, and Transfer Satellite (COLD-SAT)

    Science.gov (United States)

    Schuster, John R.; Russ, Edwin J.; Wachter, Joseph P.

    1990-01-01

    The Cryogenic On-Orbit Liquid Depot Storage, Acquisition, and Transfer Satellite (COLD-SAT) will perform subcritical liquid hydrogen handling experiments under low gravity conditions to provide engineering data for future space transportation missions. Comprising the four Class 1 enabling experiments are tank press control, tank chilldown, tank no-vent fill, and liquid acquisition device fill/refill. The nine Class 2 enhancing experiments are tanker thermal performance, pressurization, low-gravity setting and outflow, liquid acquisition device performance, transfer line chilldown, outflow subcooling, low-gravity vented fill, fluid dumping, and advanced instrumentation. Consisting of an experiment module mated to a spacecraft bus, COLD-SAT will be placed in an initial 1300 km circular orbit by an Atlas commercial launch vehicle, and will perform experiments in a semi-autonomous mode for a period of up to six months. The three-axis controlled spacecraft bus provides electric power, control and data management, communications, and attitude control along with propulsive acceleration levels ranging from 10(exp -6) to 10(exp -4) g. It is desired to understand the effects that low acceleration levels might have on the heat and mass transfer processes involved in some of the experiments. The experiment module contains the three liquid hydrogen tanks, valves, pressurization and pumping equipment, and instrumentation. Within the highly insulated tanks are specialized fluid management equipment that might be used in future space transportation systems. At launch all the liquid hydrogen for the experiments is contained in the largest tank, which has helium-purged insulation to prevent cryo-pumping of air on the launch pad. The tank is loaded by the hydrogen tanking system used for the Centaur upper stage of the Atlas. After reaching orbit the two smaller tanks become receivers for fluid transfers, and when tanked, become the vessels for performing many of the experiments.

  18. On-orbit Demonstration of a Sun Sensor on the Micro-Satellite MAIDO-1

    Directory of Open Access Journals (Sweden)

    Hiroshi Okubo

    2011-12-01

    Full Text Available 0 0 1 219 1249 International Islamic University 10 2 1466 14.0 Normal 0 false false false EN-US JA X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Times New Roman";} A 50-kg-class microsatellite “MAIDO-1 (SOHLA-1” was launched, along with six other piggyback subsatellites, by a Japanese H-2A rocket on January 23, 2009. The fundamental and detailed designs of the satellite were developed by university students under the technical guidance of the Japan Aerospace Exploration Agency (JAXA. A string-type sun sensor (Fudai Sun Sensor; FSS was also developed by the students with the technical assistance of JAXA and Advanced Engineering Services (AES Co. Ltd. The FSS was mounted on the satellite as an experimental component. This paper reports the development of MAIDO-1 and FSS as well as the satellite operation by the students and the results of on-orbit experiments. ABSTRAK: Satu mikrosatelit kelas 50 kg “MAIDO-1 (SOHLA-1” telah dilancarkan, bersama enam lagi subsatelit gendong, dengan menggunakan roket H-2A (Jepun pada 23 Januari, 2009. Reka bentuk satelit yang asas dan terperinci dibangunkan oleh para pelajar universiti di bawah bimbingan teknikal Agensi Explorasi Aeroangkasa Jepun (Japan Aerospace Exploration Agency (JAXA. Sejenis penderia matahari bertali (Fudai Sun Sensor; FSS juga dibangunkan oleh para penuntut dengan bantuan teknikal dari pihak JAXA dan Advanced Engineering Services (AES Sdn. Bhd. FSS telah dilekapkan ke satelit sebagai komponen eksperimental. Kertas ini membentangkan perkembangan MAIDO-1 dan FSS, operasi satelit oleh pelajar-pelajar dan keputusan eksperimen semasa dalam orbit.

  19. Application of Uncertainty Reasoning Theory to satellite Fault Detection and Diagnosis

    Institute of Scientific and Technical Information of China (English)

    YangTianshe; LiHuaizu; SunYanbong

    2004-01-01

    Reasoning theories are divided into certainty reasoning theories and uncertainty reasoning theories.Now,only certainty reason-ing theories use to deitcs are used to detect and diagnose satellite faults.However,in practice,it is difficult to detect and diagnose some faults of the satellite autiomatically only by use of ccrtainty.Fortunately.uncerlainty Reasoning theories are applied to detect and diagnose satellite faults.Uncertainty reasoning theories include several kinds of theories,such as inclusion degree theory,rough set theory,evidence reasoning theory,probabilisticresoning theory,fuzzy,fuzzy reasoningteory,and so on.Inclusion degree theory.rough set theory and evidence reasoning theory are three advanced ones,Based on these three theories respectively.the audhor introduces three new methods to detect and diagnose satellite faults in this paper.It is shown that the methods,suitable for detecting and diagnosing satellite faults,especially uncertainty faults,can remedy the defects of the current methods.

  20. An analytic algorithm for global coverage of the revisiting orbit and its application to the CFOSAT satellite

    Science.gov (United States)

    Xu, Ming; Huang, Li

    2014-08-01

    This paper addresses a new analytic algorithm for global coverage of the revisiting orbit and its application to the mission revisiting the Earth within long periods of time, such as Chinese-French Oceanic Satellite (abbr., CFOSAT). In the first, it is presented that the traditional design methodology of the revisiting orbit for some imaging satellites only on the single (ascending or descending) pass, and the repeating orbit is employed to perform the global coverage within short periods of time. However, the selection of the repeating orbit is essentially to yield the suboptimum from the rare measure of rational numbers of passes per day, which will lose lots of available revisiting orbits. Thus, an innovative design scheme is proposed to check both rational and irrational passes per day to acquire the relationship between the coverage percentage and the altitude. To improve the traditional imaging only on the single pass, the proposed algorithm is mapping every pass into its ascending and descending nodes on the specified latitude circle, and then is accumulating the projected width on the circle by the field of view of the satellite. The ergodic geometry of coverage percentage produced from the algorithm is affecting the final scheme, such as the optimal one owning the largest percentage, and the balance one possessing the less gradient in its vicinity, and is guiding to heuristic design for the station-keeping control strategies. The application of CFOSAT validates the feasibility of the algorithm.

  1. 高轨卫星天基定轨原理演示系统的设计与实现%The Design and Implementation of Space-based Orbit Determination for HEO Satellites Principle Demo System

    Institute of Scientific and Technical Information of China (English)

    逄淑涛; 杨洋; 董绪荣; 柳丽; 柳迪

    2011-01-01

    A space-based orbit determination for HEO satellites principle demo system is designed which is running in the environment of MATLAB simulation software and taking space-based orbit determination for HEO satellites principle for theory basic. The system has implemented HEO and LEO user satellites orbit simulation, GNSS constellation satellites simulation, the visibility simulation of HEO satellites and user satellites in ground for GNSS and space-based orbit determination for HEO satellites simulation. The results of simulation indicates the system has some advantages, high efficiency and clear etc, also has better theory and practical significance.%以高轨卫星天基定轨原理作为理论基础,设计了一种在MATLAB仿真软件环境下运行的高轨卫星天基定轨原理演示系统。该系统实现了高轨及低轨用户星轨道仿真、全球导航卫星系统(GPS、GLONASS、Galileo和Compass)星座卫星仿真、高轨卫星及地面用户星对全球导航卫星系统的可见性仿真和高轨卫星天基定轨仿真。仿真结果表明:该系统具有效能高、清晰直观等优点,也具有较强的理论和现实意义。

  2. Flight Mechanics/Estimation Theory Symposium

    Science.gov (United States)

    Fuchs, A. J. (Editor)

    1980-01-01

    Methods of determining satellite orbit and attitude parameters are considered. The Goddard Trajectory Determination System, the Global Positioning System, and the Tracking and Data Relay Satellites are among the satellite navigation systems discussed. Satellite perturbation theory, orbit/attitude determination using landmark data, and star measurements are also covered.

  3. Beat relationships between orbital periodicities in insolation theory

    Science.gov (United States)

    Stothers, Richard B.

    1987-01-01

    Variations in insolation are examined in terms of beat relationships. The relations between eccentricity periods, precessional parameters, and obliquity periods are analyzed. Beat periods are calculated and compared with orbital periodicities from Berger's (1978) series expansions. It is noted that the data, which correlate eccentricity, obliquity, and precessional-parameter periods, are applicable to the study of orbital periodicities in time-series analyses of long-term climatic records.

  4. Pair 2-electron reduced density matrix theory using localized orbitals

    Science.gov (United States)

    Head-Marsden, Kade; Mazziotti, David A.

    2017-08-01

    Full configuration interaction (FCI) restricted to a pairing space yields size-extensive correlation energies but its cost scales exponentially with molecular size. Restricting the variational two-electron reduced-density-matrix (2-RDM) method to represent the same pairing space yields an accurate lower bound to the pair FCI energy at a mean-field-like computational scaling of O (r3) where r is the number of orbitals. In this paper, we show that localized molecular orbitals can be employed to generate an efficient, approximately size-extensive pair 2-RDM method. The use of localized orbitals eliminates the substantial cost of optimizing iteratively the orbitals defining the pairing space without compromising accuracy. In contrast to the localized orbitals, the use of canonical Hartree-Fock molecular orbitals is shown to be both inaccurate and non-size-extensive. The pair 2-RDM has the flexibility to describe the spectra of one-electron RDM occupation numbers from all quantum states that are invariant to time-reversal symmetry. Applications are made to hydrogen chains and their dissociation, n-acene from naphthalene through octacene, and cadmium telluride 2-, 3-, and 4-unit polymers. For the hydrogen chains, the pair 2-RDM method recovers the majority of the energy obtained from similar calculations that iteratively optimize the orbitals. The localized-orbital pair 2-RDM method with its mean-field-like computational scaling and its ability to describe multi-reference correlation has important applications to a range of strongly correlated phenomena in chemistry and physics.

  5. The Innovative DE orbiting Aerobrake System "IDEAS " for Small Satellites: The Use of Gossamer Technolgy for a Cleaner Space

    Science.gov (United States)

    Santerre, B.; Bonnefond, T.; Dupuy, C.

    2008-08-01

    From the birth of space adventure until now, a huge number of objects have been put in orbit. Today, space environment is more and more crowded. The assessed number of objects sizing more than 1 cm is 300000. About 9600 objects are referenced, with only 500 useful. 22% of satellites are non operating satellites. For these reasons, space debris is becoming a real concern. The Inter Agency Space Debris Cordination (IDAC), composed of 11 space agencies, has defined a code of conduct to limit the space debris. In 2004, CNES decided to apply this code of conduct. As a consequence, the in-orbit life time (after operative life) of every satellite must be limited to 25 years. In the frame of this code of conduct, Astrium Space Transportation is developing in collaboration with CNES, a solution for slow deorbiting of small satellites using passive aerobraking. The Gossamer technology has been identified as the best solution to fulfil this functional requirement and to limit cost and performance impacts for the satellite. The interest of using gossamer technologies for small satellite aerobraking system was demonstrated by a feasibility study performed by Astrium Space Transportation during 2005. The main advantages of the retained solution are the easy accommodation on satellite, the simple electrical interface with the satellite, the ability to be operated even on an underperforming spacecraft (as long as telemetry can be received) and the absence of need of any specific satellite control. The trade-off between several inflatable technologies led to the selection of kapton/aluminium/kapton laminates, mainly because of the specific requirements of the mission (low available electrical power, long passive-life duration before deployment, no attitude control during deployment = non defined thermal conditions). This technology is currently developed and will be qualified for an application on a CNES satellite, called Microscope, that is asked to reduce its natural deorbiting

  6. Small-Body Extensions for the Satellite Orbit Analysis Program (SOAP)

    Science.gov (United States)

    Carnright, Robert; Stodden, David; Coggi, John

    2008-01-01

    An extension to the SOAP software allows users to work with tri-axial ellipsoid-based representations of planetary bodies, primarily for working with small, natural satellites, asteroids, and comets. SOAP is a widely used tool for the visualization and analysis of space missions. The small body extension provides the same visualization and analysis constructs for use with small bodies. These constructs allow the user to characterize satellite path and instrument cover information for small bodies in both 3D display and numerical output formats. Tri-axial ellipsoids are geometric shapes the diameters of which are different in each of three principal x, y, and z dimensions. This construct provides a better approximation than using spheres or oblate spheroids (ellipsoids comprising two common equatorial diameters as a distinct polar diameter). However, the tri-axial ellipsoid is considerably more difficult to work with from a modeling perspective. In addition, the SOAP small-body extensions allow the user to actually employ a plate model for highly irregular surfaces. Both tri-axial ellipsoids and plate models can be assigned to coordinate frames, thus allowing for the modeling of arbitrary changes to body orientation. A variety of features have been extended to support tri-axial ellipsoids, including the computation and display of the spacecraft sub-orbital point, ground trace, instrument footprints, and swathes. Displays of 3D instrument volumes can be shown interacting with the ellipsoids. Longitude/latitude grids, contour plots, and texture maps can be displayed on the ellipsoids using a variety of projections. The distance along an arbitrary line of sight can be computed between the spacecraft and the ellipsoid, and the coordinates of that intersection can be plotted as a function of time. The small-body extension supports the same visual and analytical constructs that are supported for spheres and oblate spheroids in SOAP making the implementation of the more

  7. A study of L-dependent Pc3 pulsations observed by low Earth orbiting CHAMP satellite

    Directory of Open Access Journals (Sweden)

    D. C. Ndiitwani

    2010-02-01

    Full Text Available Field line resonances (FLR driven by compressional waves are an important mechanism for the generation of ULF geomagnetic pulsations observed at all latitudes during local daytime. References to observations of toroidal standing Alfvén mode oscillations with clearly L-dependent frequencies from spacecraft in the outer magnetosphere for L>3 are limited in the literature. Such observations in the inner magnetosphere for L<3 have not yet been reported in the literature. This study offers two interesting case studies of observations of ULF waves by the low Earth orbiting CHAMP satellite. The magnetic field measurements from CHAMP, which are of unprecedented accuracy and resolution, are compared to Hermanus magnetometer data for times when CHAMP crosses the ground station L-shell, namely for 13 February 2002 and 18 February 2003. The data were analysed for Pc3 pulsation activity using the Maximum Entropy Spectral Analysis (MESA method to visualise FLRs in the vector magnetometer data. For the first time observations of Pc3 toroidal oscillations with clearly L-dependent frequencies for lower L-shell values (L<3 observed by an LEO satellite are reported. These observations show FLR frequencies increasing as a function of decreasing latitude down to L=1.6 and then decreasing as a result of the larger plasma density of the upper ionosphere. The L-dependent frequency oscillations were observed in the presence of a broadband compressional wave spectrum. Our observations thus confirm the well-known magnetohydrodynamic (MHD wave theoretical prediction of a compressional wave being the driver of the field line resonance.

  8. Kinematic Orbit Determination Method Optimization and Test Analysis for BDS Satellites with Short-arc Tracking Data

    Directory of Open Access Journals (Sweden)

    GUO Rui

    2017-04-01

    Full Text Available Rapid orbit recovery is a puzzle for the BDS satellites after orbit maneuvers. Two kinematic orbit determination methods are studied, with two orbit determination models being established. The receiver system error and serious multipath error exist in the BDS system. The co-location method is proposed to estimate and calibrate the receiver system errors. A CNMC (code noise and multipath correction method is introduced to weaken the multipath error. Therefore the data quality is controlled efficiently for the receivers in the short tracking arc. The GEO/IGSO/MEO real data is emploied to carry out tests and validation. Using 10 min short tracking arc, the kinematic precise orbit determination accuracy is about 3.27 m for the GEOs, and 8.19 m for the IGSOs, and 5.9 m for the MEOs. Rapid orbit determination is achieved, which satisfying the orbit requirements from the BDS RDSS services. The kinematic precise orbit determination method also supports the RDSS service walking up to the global world.

  9. Computation and Prediction of plasma drag on Orbiting Satellites due to Space Environmental Perturbation by Coronal Mass Ejections (CMEs)

    Science.gov (United States)

    Nwankwo, Victor U. J.; Chakrabarti, Sandip Kumar

    2012-07-01

    Certain earth pointing Coronal Mass Ejections (CMEs) induce geomagnetic storms, which significantly affect human activities. Satellites orbiting earth are particularly vulnerable to blasts of solar energy resulting from this phenomenon. It is known that the huge amount of energetic ultraviolet radiation from this space environmental disturbance can heat up the outer atmosphere, causing it to expand. This can cause a significant drag on Earth-Orbiting satellites and even degrade the precision of Global Positioning Systems (GPS) measurements. However, CMEs are more damaging. They are more frequent during the active (solar maximum) Phase of the sun's approximately 11-year cycle. As we approach another maximum in 2012-2013, it is instructive to make an estimate of average daily production of energetic proton flux based on GOES data on earth-pointing CMEs in the past solar cycle. We also compute the drag on satellites due to atmospheric perturbations by CMEs and make predictions of how the existing satellite orbits could be affected near the peak of next solar cycle maximum.

  10. Satellite formation design in orbits of high eccentricity for missions with performance criteria specified over a region of interest

    Science.gov (United States)

    Roscoe, Christopher William Thomas

    Several methods are presented for the design of satellite formations for science missions in high-eccentricity reference orbits with quantifiable performance criteria specified throughout only a portion the orbit, called the Region of Interest (RoI). A modified form of the traditional average along-track drift minimization condition is introduced to account for the fact that performance criteria are only specified within the RoI, and a robust formation design algorithm (FDA) is defined to improve performance in the presence of formation initialization errors. Initial differential mean orbital elements are taken as the design variables and the Gim-Alfriend state transition matrix (G-A STM) is used for relative motion propagation. Using mean elements and the G-A STM allows for explicit inclusion of J2 perturbation effects in the design process. The methods are applied to the complete formation design problem of the NASA Magnetospheric Multiscale (MMS) mission and results are verified using the NASA General Mission Analysis Tool (GMAT). Since satellite formations in high-eccentricity orbits will spend long times at high altitude, third-body perturbations are an important design consideration as well. A detailed analytical analysis of third-body perturbation effects on satellite formations is also performed and averaged dynamics are derived for the particular case of the lunar perturbation. Numerical results of the lunar perturbation analysis are obtained for the example application of the MMS mission and verified in GMAT.

  11. Theory of chaotic orbital variations confirmed by Cretaceous geological evidence.

    Science.gov (United States)

    Ma, Chao; Meyers, Stephen R; Sageman, Bradley B

    2017-02-22

    Variations in the Earth's orbit and spin vector are a primary control on insolation and climate; their recognition in the geological record has revolutionized our understanding of palaeoclimate dynamics, and has catalysed improvements in the accuracy and precision of the geological timescale. Yet the secular evolution of the planetary orbits beyond 50 million years ago remains highly uncertain, and the chaotic dynamical nature of the Solar System predicted by theoretical models has yet to be rigorously confirmed by well constrained (radioisotopically calibrated and anchored) geological data. Here we present geological evidence for a chaotic resonance transition associated with interactions between the orbits of Mars and the Earth, using an integrated radioisotopic and astronomical timescale from the Cretaceous Western Interior Basin of what is now North America. This analysis confirms the predicted chaotic dynamical behaviour of the Solar System, and provides a constraint for refining numerical solutions for insolation, which will enable a more precise and accurate geological timescale to be produced.

  12. Theory of chaotic orbital variations confirmed by Cretaceous geological evidence

    Science.gov (United States)

    Ma, Chao; Meyers, Stephen R.; Sageman, Bradley B.

    2017-02-01

    Variations in the Earth’s orbit and spin vector are a primary control on insolation and climate; their recognition in the geological record has revolutionized our understanding of palaeoclimate dynamics, and has catalysed improvements in the accuracy and precision of the geological timescale. Yet the secular evolution of the planetary orbits beyond 50 million years ago remains highly uncertain, and the chaotic dynamical nature of the Solar System predicted by theoretical models has yet to be rigorously confirmed by well constrained (radioisotopically calibrated and anchored) geological data. Here we present geological evidence for a chaotic resonance transition associated with interactions between the orbits of Mars and the Earth, using an integrated radioisotopic and astronomical timescale from the Cretaceous Western Interior Basin of what is now North America. This analysis confirms the predicted chaotic dynamical behaviour of the Solar System, and provides a constraint for refining numerical solutions for insolation, which will enable a more precise and accurate geological timescale to be produced.

  13. Celestial n-Body Coupling in the Lunar Orbit Theory

    Science.gov (United States)

    Tsui, K. H.

    2000-09-01

    Making use of the fact that, in the solar system, the angular momentum is carried predominantly by the planets while the mass is beared almost entirely by the Sun, an iterative scheme is devised to solve approximately the n-body contributions of the lunar orbit problem. The scheme envisages the Moon-Earth-Sun three-body subsystem as being nested in the grand Earth-Jupiter-Sun system. In the planetocentric representation, the orbital motion of the Sun about the solar system center of mass is transmitted to the third body via the second primary body in both the grand and nested three-body systems.

  14. A Virtual Environment for Satellite Modeling and Orbital Analysis in a Distributed Interactive Simulation

    Science.gov (United States)

    1993-12-01

    center of mass to the center of the earth. Interactive modification of the heading or pitch components of satellite orientation is not factored in to... satellite orientation and orientation by simulating thruster-firing activities. Both systems accept actual satellite telemetry for propagating models in the...model by applying rigid body dynamics. Model satellite sensor capabilities to determine FOV. Process actual satellite orientation data. _ __ Incorporate

  15. Saturn's inner satellites : orbits, masses and the chaotic motion of Atlas from new Cassini imaging observations

    CERN Document Server

    Cooper, N J; Murray, C D; Evans, M W

    2014-01-01

    We present numerically-derived orbits and mass estimates for the inner Saturnian satellites, Atlas, Prometheus, Pandora, Janus and Epimetheus from a fit to 2580 new Cassini ISS astrometric observations spanning February 2004 to August 2013. The observations are provided in a supplementary table. We estimate GM_ Atlas=0.384+/-0.001 x 10^(-3)km^3s^(-2), a value 13% smaller than the previously published estimate but with an order of magnitude reduction in the uncertainty. We also find GM_ Prometheus=10.677+/-0.006x10(-3)km^3s^(-2), GM_Pandora=9.133+/-0.009x10^(-3)km^3s^(-2), GM_Janus=126.51+/-0.03x10^(-3)km^3s^(-2) and GM_Epimetheus=35.110+/-0.009x10^(-3)km^3s^(-2), consistent with previously published values, but also with significant reductions in uncertainties. We show that Atlas is currently librating in both the 54:53 co-rotation-eccentricity resonance (CER) and the 54:53 inner Lindblad (ILR) resonance with Prometheus, making it the latest example of a coupled CER-ILR system, in common with the Saturnian sa...

  16. Dynamical evolution of interplanetary dust particles trapped in Earth's horseshoe and quasi-satellite co-orbital resonance regions

    Science.gov (United States)

    Kortenkamp, Stephen J.

    2016-10-01

    We use numerical integrations to model the orbital evolution of IDPs decaying from the asteroid belt into the inner solar system under the influence of radiation pressure, Poynting-Roberston light drag, and solar wind drag. In our models the ratio of radiation pressure to solar gravity ranges from 0.0025 up to 0.02, corresponding to IDP diameters ranging from about 200 microns down to about 25 microns, respectively. In this size range nearly 100% of IDPs become temporarily trapped in mean-motion resonances just outside Earth's orbit. While trapped in these outer resonances the orbital eccentricities of IDPs significantly increases. This causes most IDPs to eventually escape the resonances, allowing their orbits to continue decaying inwards past 1 AU. We've shown previously (Kortenkamp, Icarus 226, 1550-1558, 2013) that significant fractions of IDPs in this size range can subsequently become trapped in Earth's co-orbital horseshoe and quasi-satellite resonance regions, with semi-major axes just inside of 1 AU. Here, we present new results on the long-term effects of Earth's varying orbital eccentricity and inclination on the trapping and evolution of these co-orbital IDPs.

  17. Closed-orbit theory for photodetachment in a time-dependent electric field

    CERN Document Server

    Yang, B C

    2016-01-01

    The standard closed-orbit theory is extended for the photodetachment of negative ions in a time-dependent electric field. The time-dependent photodetachment rate is specifically studied in the presence of a single-cycle terahertz pulse, based on exact quantum simulations and semiclassical analysis. We find that the photodetachment rate is unaffected by a weak terahertz field, but oscillates complicatedly when the terahertz pulse gets strong enough. Three types of closed classical orbits are identified for the photoelectron motion in a strong single-cycle terahertz pulse, and their connections with the oscillatory photodetachment rate are established quantitatively by generalizing the standard closed-orbit theory to a time-dependent form. By comparing the negative hydrogen and fluorine ions, both the in-phase and antiphase oscillations can be observed, depending on a simple geometry of the contributed closed classical orbits. On account of its generality, the presented theory provides an intuitive understandin...

  18. Comparison of the Defense Meteorological Satellite Program (DMSP) and the NOAA Polar-Orbiting Operational Environmental Satellite (POES) Program,

    Science.gov (United States)

    1985-10-01

    Space Segment..... ..... o. . . . .... . . .. . .. VI-53 VII. ANALYSES OF ORBITAL REQUIREMENTS ........ .o.... VII-l A. Timeliness and Geographic ...in situ platforms, and deter- mination of geographic location of those platforms, such as oceanic buoys, ships automatic stations, aircraft, and...Readout Stations (CRSs). The maximum access period is approximately 15 minutes of each orbit. During this contact time, the C segement must: " Command the

  19. Power system design and in orbit performance of Algeria's first micro satellite Alsat-1

    Energy Technology Data Exchange (ETDEWEB)

    Bekhti, Mohammed [Centre National des Techniques Spatiales, BP13, Arzew 31200 (Algeria); Sweeting, M.N. [Centre for Satellite Engineering Research, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom)

    2008-07-15

    On the 28th November 2002, Algeria's first enhanced micro satellite was launched into a 686 km low earth orbit onboard a Cosmos 3M rocket from Plesetsk. The spacecraft was designed, manufactured and launched as a technology transfer programme between the National Centre of Space Techniques (CNTS) Algeria and Surrey Satellite Technology Limited (SSTL) United Kingdom in the timescale of 18 months. This paper will describe the design and in orbit performance of the mission power system, stressing the decisions taken in order to meet the mission requirements within the 18 months, concept to launch programme. Most of the design and construction techniques used in the production of the Alsat-1 power system were based on SSTL heritage over the years. It will be shown how off the shelf components either for the generation or storage of the onboard energy can be applied successfully to such missions. (author)

  20. Zero initial partial derivatives of satellite orbits with respect to force parameters violate the physics of motion of celestial bodies

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Satellite orbits have been routinely used to produce models of the Earth’s gravity field. In connection with such productions, the partial derivatives of a satellite orbit with respect to the force parameters to be determined, namely, the unknown harmonic coefficients of the gravitational model, have been first computed by setting the initial values of partial derivatives to zero. In this note, we first design some simple mathematical examples to show that setting the initial values of partial derivatives to zero is generally erroneous mathematically. We then prove that it is prohibited physically. In other words, set-ting the initial values of partial derivatives to zero violates the physics of motion of celestial bodies.

  1. Zero initial partial derivatives of satellite orbits with respect to force parameters violate the physics of motion of celestial bodies

    Institute of Scientific and Technical Information of China (English)

    XU PeiLiang

    2009-01-01

    Satellite orbits have been routinely used to produce models of the Earth's gravity field. In connection with such productions, the partial derivatives of a satellite orbit with respect to the force parameters to be determined, namely, the unknown harmonic coefficients of the gravitational model, have been first computed by setting the initial values of partial derivatives to zero. In this note, we first design some simple mathematical examples to show that setting the initial values of partial derivatives to zero is generally erroneous mathematically. We then prove that it is prohibited physically. In other words, set-ting the initial values of partial derivatives to zero violates the physics of motion of celestial bodies.

  2. Mapping the Space Radiation Environment in LEO Orbit by the SATRAM Timepix Payload On Board the Proba-V Satellite

    Science.gov (United States)

    Granja, Carlos; Polansky, Stepan; Sospisil, Stanislav; Owens, Alan; Mellab, Karim

    2016-08-01

    The compact spacecraft payload SATRAM is operating in LEO orbit since 2013 on board the Proba-V satellite from ESA and provides high-resolution wide-range radiation monitoring of the satellite environment. Equipped with the pixel detector Timepix, the technology demonstration payload determines the composition (particle types) and spectral characterization (stopping power) of the mixed radiation field with quantum imaging sensitivity, charged particle tracking, energy loss and directionality capability. With a polar orbit (sun synchronous, 98° inclination) and altitude of 820 km the space radiation field is continuously sampled over the entire planet every few days. Results are given in the form of spatial- and time- correlated maps of dose rate and particle flux. Comparison is made between quiescent and geomagnetic storm activity periods.

  3. Methods of satellite oceanography

    Science.gov (United States)

    Stewart, R. H.

    1985-01-01

    The theoretical basis for remote sensing measurements of climate and ocean dynamics is examined. Consideration is given to: the absorption of electromagnetic radiation in the atmosphere; scattering in the atmosphere; and satellite observations using visible light. Consideration is also given to: the theory of radio scatter from the sea; scatter of centimeter waves from the sea; and the theory of operation of synthetic aperture radars. Additional topics include: the coordinate systems of satellite orbits for oceanographic remote sensing applications; the operating features of the major U.S. satellite systems for viewing the ocean; and satellite altimetry.

  4. The role of high-resolution geomagnetic field models for investigating ionospheric currents at low Earth orbit satellites

    Science.gov (United States)

    Stolle, Claudia; Michaelis, Ingo; Rauberg, Jan

    2016-07-01

    Low Earth orbiting geomagnetic satellite missions, such as the Swarm satellite mission, are the only means to monitor and investigate ionospheric currents on a global scale and to make in situ measurements of F region currents. High-precision geomagnetic satellite missions are also able to detect ionospheric currents during quiet-time geomagnetic conditions that only have few nanotesla amplitudes in the magnetic field. An efficient method to isolate the ionospheric signals from satellite magnetic field measurements has been the use of residuals between the observations and predictions from empirical geomagnetic models for other geomagnetic sources, such as the core and lithospheric field or signals from the quiet-time magnetospheric currents. This study aims at highlighting the importance of high-resolution magnetic field models that are able to predict the lithospheric field and that consider the quiet-time magnetosphere for reliably isolating signatures from ionospheric currents during geomagnetically quiet times. The effects on the detection of ionospheric currents arising from neglecting the lithospheric and magnetospheric sources are discussed on the example of four Swarm orbits during very quiet times. The respective orbits show a broad range of typical scenarios, such as strong and weak ionospheric signal (during day- and nighttime, respectively) superimposed over strong and weak lithospheric signals. If predictions from the lithosphere or magnetosphere are not properly considered, the amplitude of the ionospheric currents, such as the midlatitude Sq currents or the equatorial electrojet (EEJ), is modulated by 10-15 % in the examples shown. An analysis from several orbits above the African sector, where the lithospheric field is significant, showed that the peak value of the signatures of the EEJ is in error by 5 % in average when lithospheric contributions are not considered, which is in the range of uncertainties of present empirical models of the EEJ.

  5. SATURNʼS INNER SATELLITES: ORBITS, MASSES, AND THE CHAOTIC MOTION OF ATLAS FROM NEW CASSINI IMAGING OBSERVATIONS

    OpenAIRE

    Cooper, Nicholas J.; Renner, Stéfan; Murray, Carl D.; Evans, Michael W.

    2015-01-01

    International audience; We present numerically derived orbits and mass estimates for the inner Saturnian satellites, Atlas, Prometheus, Pandora, Janus, and Epimetheus from a fit to 2580 new Cassini Imaging Science Subsystem astrometric observations spanning 2004 February to 2013 August. The observations are provided as machine-readable and Virtual Observatory tables. We estimate GM Atlas = (0.384 ± 0.001) × 10 −3 km 3 s −2 , a value 13% smaller than the previously published estimate but with ...

  6. Use of density functional theory orbitals in the GVVPT2 variant of second-order multistate multireference perturbation theory.

    Science.gov (United States)

    Hoffmann, Mark R; Helgaker, Trygve

    2015-03-01

    A new variation of the second-order generalized van Vleck perturbation theory (GVVPT2) for molecular electronic structure is suggested. In contrast to the established procedure, in which CASSCF or MCSCF orbitals are first obtained and subsequently used to define a many-electron model (or reference) space, the use of an orbital space obtained from the local density approximation (LDA) variant of density functional theory is considered. Through a final, noniterative diagonalization of an average Fock matrix within orbital subspaces, quasicanonical orbitals that are otherwise indistinguishable from quasicanonical orbitals obtained from a CASSCF or MCSCF calculation are obtained. Consequently, all advantages of the GVVPT2 method are retained, including use of macroconfigurations to define incomplete active spaces and rigorous avoidance of intruder states. The suggested variant is vetted on three well-known model problems: the symmetric stretching of the O-H bonds in water, the dissociation of N2, and the stretching of ground and excited states C2 to more than twice the equilibrium bond length of the ground state. It is observed that the LDA-based GVVPT2 calculations yield good results, of comparable quality to conventional CASSCF-based calculations. This is true even for the C2 model problem, in which the orbital space for each state was defined by the LDA orbitals. These results suggest that GVVPT2 can be applied to much larger problems than previously accessible.

  7. The use of satellites in gravity field determination and model adjustment

    Science.gov (United States)

    Visser, Petrus Nicolaas Anna Maria

    1992-06-01

    Methods to improve gravity field models of the Earth with available data from satellite observations are proposed and discussed. In principle, all types of satellite observations mentioned give information of the satellite orbit perturbations and in conjunction the Earth's gravity field, because the satellite orbits are affected most by the Earth's gravity field. Therefore, two subjects are addressed: representation forms of the gravity field of the Earth and the theory of satellite orbit perturbations. An analytical orbit perturbation theory is presented and shown to be sufficiently accurate for describing satellite orbit perturbations if certain conditions are fulfilled. Gravity field adjustment experiments using the analytical orbit perturbation theory are discussed using real satellite observations. These observations consisted of Seasat laser range measurements and crossover differences, and of Geosat altimeter measurements and crossover differences. A look into the future, particularly relating to the ARISTOTELES (Applications and Research Involving Space Techniques for the Observation of the Earth's field from Low Earth Orbit Spacecraft) mission, is given.

  8. OLFAR a radio telescope based on nano satellites in moon orbit

    NARCIS (Netherlands)

    Engelen, S.; Verhoeven, C.J.M.; Bentum, M.J.

    2010-01-01

    It seems very likely that missions with nano-satellites in professional scientific or commercial applications will not be single-satellite missions. Well structured formations or less structured swarms of nano-satellites will be able to perform tasks that cannot be done in the “traditional” way. The

  9. Opportunities for Coordinated Observations of CO2 with the Orbiting Carbon Observatory (OCO) and Greenhouse Gases Observing Satellite (GOSAT)

    Science.gov (United States)

    Crisp, David

    2008-01-01

    The Orbiting Carbon Observatory (OCO) and the Greenhouse Gases Observing Satellite (GOSAT) are the first two satellites designed to make global measurements of atmospheric carbon dioxide (CO2) with the precision and sampling needed identify and monitor surface sources and sinks of this important greenhouse gas. Because the operational phases of the OCO and GOSAT missions overlap in time, there are numerous opportunities for comparing and combining the data from these two satellites to improve our understanding of the natural processes and human activities that control the atmospheric CO2 and it variability over time. Opportunities for cross-calibration, cross-validation, and coordinated observations that are currently under consideration are summarized here.

  10. The small satellite NINA-MITA to study galactic and solar cosmic rays in low-altitude polar orbit

    Science.gov (United States)

    Furano, G.; Bidoli, V.; Casolino, M.; de Pascale, M. P.; Iannucci, A.; Morselli, A.; Picozza, P.; Reali, E.; Sparvoli, R.; Bakaldin, A.; Galper, A.; Koldashov, M.; Korotkov, M.; Leonov, A.; Mikhailov, V.; Murashov, A.; Voronov, S.; Mazzenga, G.; Ricci, M.; Castellini, G.; Barbiellini, M.; Boezio, M.; Bonvicini, V.; Cirami, R.; Vacchi, A.; Zampa, N.; Ambriola, M.; Bellotti, R.; Cafagna, F.; Ciacio, F.; Circella, M.; de Marzo, C.; Adriani, O.; Papini, P.; Piccardi, S.; Spillantini, P.

    The satellite MITA, carrying on board the scientific payload NINA-2, was launched on July the 15th, 2000 from the cosmodrome of Plesetsk (Russia) with a Cosmos-3M rocket. The satellite and the payload are currently operating within nominal parameters. NINA-2 is the first scientific payload for the technological flight of the Italian small satellite MITA. The detector used in this mission is identical to the one already flying on the Russian satellite Resurs-O1 n.4 in a 840-km sun-synchronous orbit, but makes use of the extensive computer and telemetry capabilities of MITA bus to improve the active data acquisition time. NINA physics objectives are to study cosmic nuclei from hydrogen to iron in the energy range between 10 MeV/n and 1 GeV/n during the years 2000-2003, that is the solar maximum period. The device is capable of charge identification up to iron with isotope sensitivity up to oxigen. The 87.3 degrees, 460 km altitude polar orbit allows investigations of cosmic rays of solar and galactic origin, so to study long and short term solar transient phenomena, and the study of the trapped radiation at higher geomagnetic cutoff.

  11. Analytical satellite theories based on a new set of canonical elements

    Science.gov (United States)

    Scheifele, G.; Graf, O.

    1974-01-01

    A new analytical satellite theory is presented. Instead of the 6 classical elements of Delaunay, a set of 8 canonical elements is used. Whereas the time is the independent variable in classical theory, the true anomaly is the independent variable in the new theory. The new approach has four features: (1) The amount of formulas in the solution is reduced considerably. (2) The first order results are almost as accurate as second order results in classical theory. (3) The theory is easier to understand from a didactical point of view. (4) The problems connected with the inaccuracy of the mean motion that are typical for classical satellite theory are no longer present. The new elements are applied to analytical solutions of the zonal oblateness problem and to the problem of the 24 hour satellite.

  12. On the scale estimation using truncated swath measurements from low Earth orbiting satellites

    Science.gov (United States)

    Liu, Qi

    2013-05-01

    Truncation effect caused by limited swath width of low Earth orbiting (LEO) satellites results in inevitable underestimation of object scale when using pixel-counting methods. A new approach is proposed to obtain more accurate object scale through truncated measurements. The approach is based upon the mean object area fraction (MOAF), which depicts the relative population of object points in a varying-size domain and proves to be less sensitive to truncation effect. The MOAF-equivalent radius (MER) is deduced by comparing the actual MOAF with the standard one inferred from a circle object. Numerical simulations are implemented to demonstrate the MER characteristics. In contrast to area-equivalent radius (AER) that is merely determined by the absolute amount of object points, MER relies on the overall spatial structure of the object. For objects with irregular shapes, the MER value is generally smaller than AER in the absence of truncation. Nevertheless, taking the actual AER as true scale, MER has significantly reduced biases compared to AER once the object is truncated. This advantage can be reinforced when focusing on size statistics of analogous objects, because negative and positive biases associated with various truncation situations coexist in MER, against the uniform negative biases of AER. When applied to MODIS cloud mask data that are restricted in individual granules, MER has consistently larger values than AER for most truncated clouds. Compared with the explicitly problematic estimation from AER due to truncation, MER offers a notable elevation on the estimated cloud size and gets closer to the truth.

  13. Asteroid Origins Satellite (AOSAT) I: An On-orbit Centrifuge Science Laboratory

    Science.gov (United States)

    Lightholder, Jack; Thoesen, Andrew; Adamson, Eric; Jakubowski, Jeremy; Nallapu, Ravi; Smallwood, Sarah; Raura, Laksh; Klesh, Andrew; Asphaug, Erik; Thangavelautham, Jekan

    2017-04-01

    Exploration of asteroids, comets and small moons (small bodies) can answer fundamental questions relating to the formation of the solar system, the availability of resources, and the nature of impact hazards. Near-earth asteroids and the small moons of Mars are potential targets of human exploration. But as illustrated by recent missions, small body surface exploration remains challenging, expensive, and fraught with risk. Despite their small size, they are among the most extreme planetary environments, with low and irregular gravity, loosely bound regolith, extreme temperature variation, and the presence of electrically charged dust. Here we describe the Asteroid Origins Satellite (AOSAT-I), an on-orbit, 3U CubeSat centrifuge using a sandwich-sized bed of crushed meteorite fragments to replicate asteroid surface conditions. Demonstration of this CubeSat will provide a low-cost pathway to physical asteroid model validation, shed light on the origin and geophysics of asteroids, and constrain the design of future landers, rovers, resource extractors, and human missions. AOSAT-I will conduct scientific experiments within its payload chamber while operating in two distinct modes: (1) as a nonrotating microgravity laboratory to investigate primary accretion, and (2) as a rotating centrifuge producing artificial milligravity to simulate surface conditions on asteroids, comets and small moons. AOSAT-I takes advantage of low-cost, off-the-shelf components, modular design, and the rapid assembly and instrumentation of the CubeSat standard, to answer fundamental questions in planetary science and reduce cost and risk of future exploration.

  14. Evaluation and modeling of autonomous attitude thrust control for the Geostation Operational Environmental Satellite (GOES)-8 orbit determination

    Science.gov (United States)

    Forcey, W.; Minnie, C. R.; Defazio, R. L.

    1995-01-01

    The Geostationary Operational Environmental Satellite (GOES)-8 experienced a series of orbital perturbations from autonomous attitude control thrusting before perigee raising maneuvers. These perturbations influenced differential correction orbital state solutions determined by the Goddard Space Flight Center (GSFC) Goddard Trajectory Determination System (GTDS). The maneuvers induced significant variations in the converged state vector for solutions using increasingly longer tracking data spans. These solutions were used for planning perigee maneuvers as well as initial estimates for orbit solutions used to evaluate the effectiveness of the perigee raising maneuvers. This paper discusses models for the incorporation of attitude thrust effects into the orbit determination process. Results from definitive attitude solutions are modeled as impulsive thrusts in orbit determination solutions created for GOES-8 mission support. Due to the attitude orientation of GOES-8, analysis results are presented that attempt to absorb the effects of attitude thrusting by including a solution for the coefficient of reflectivity, C(R). Models to represent the attitude maneuvers are tested against orbit determination solutions generated during real-time support of the GOES-8 mission. The modeling techniques discussed in this investigation offer benefits to the remaining missions in the GOES NEXT series. Similar missions with large autonomous attitude control thrusting, such as the Solar and Heliospheric Observatory (SOHO) spacecraft and the INTELSAT series, may also benefit from these results.

  15. A Novel Double Cluster and Principal Component Analysis-Based Optimization Method for the Orbit Design of Earth Observation Satellites

    Directory of Open Access Journals (Sweden)

    Yunfeng Dong

    2017-01-01

    Full Text Available The weighted sum and genetic algorithm-based hybrid method (WSGA-based HM, which has been applied to multiobjective orbit optimizations, is negatively influenced by human factors through the artificial choice of the weight coefficients in weighted sum method and the slow convergence of GA. To address these two problems, a cluster and principal component analysis-based optimization method (CPC-based OM is proposed, in which many candidate orbits are gradually randomly generated until the optimal orbit is obtained using a data mining method, that is, cluster analysis based on principal components. Then, the second cluster analysis of the orbital elements is introduced into CPC-based OM to improve the convergence, developing a novel double cluster and principal component analysis-based optimization method (DCPC-based OM. In DCPC-based OM, the cluster analysis based on principal components has the advantage of reducing the human influences, and the cluster analysis based on six orbital elements can reduce the search space to effectively accelerate convergence. The test results from a multiobjective numerical benchmark function and the orbit design results of an Earth observation satellite show that DCPC-based OM converges more efficiently than WSGA-based HM. And DCPC-based OM, to some degree, reduces the influence of human factors presented in WSGA-based HM.

  16. Using Equinoctial Orbital Elements and Quasi-average Element Method to Construct Analytical Solutions for Geostationary Satellite

    Science.gov (United States)

    Liu, Bin; Tang, Jingshi; Hou, Xiyun; Liu, Lin

    2016-07-01

    The eccentricity and the inclination of the satellite in geosynchronous orbit are both small, under this condition, perturbations from the Earth's non-spherical gravitational field result in orbit resonances due to incommensurable small denominators, that is, the problem of small eccentricity, small inclination and commensurability small incommensurable denominator exist simultaneously. Usually we adopt the classic Kepler orbital elements to describe an orbit, However, in the case of small eccentricities and small inclinations, the geometric meaning of the perigee and ascending node of an GEO is no longer clear, and the equations of motion have small denominators which results in the failure of the usual mean orbit element perturbation solution. This phenomenon of singularity is caused by the inappropriate choice of independent variables and has nothing to do with the dynamics. Such singularities can be avoided by choosing the appropriate independent variables (called non-singularity orbital elements). Incommensurable singularity appears in the process of solving the perturbation equations by the mean element methodology. The quasi-average element methodology retains the main advantages of the mean element method and reasonably revises its definition. Quasi-average orbits, without short periodic terms, while including the long-term items are taken as the reference orbit. The reference orbit in this transformation has long-term variations which are similar to the long periodic terms within a short-time duration. So we can avoid the failure of the perturbation solution caused by the periodic terms when using the classical perturbation method or the mean element method. From the perspective of mechanics, it can eliminate the incommensurable singularity, and the perturbation solution will remain valid. This paper aims at introducing the calculation method to eliminate the singularity problem of e=0,i=0 and commensurability singularity by using the quasi-average element

  17. Design Concepts for a Small Space-Based GEO Relay Satellite for Missions Between Low Earth and near Earth Orbits

    Science.gov (United States)

    Bhasin, Kul B.; Warner, Joseph D.; Oleson, Steven; Schier, James

    2014-01-01

    The main purpose of the Small Space-Based Geosynchronous Earth orbiting (GEO) satellite is to provide a space link to the user mission spacecraft for relaying data through ground networks to user Mission Control Centers. The Small Space Based Satellite (SSBS) will provide services comparable to those of a NASA Tracking Data Relay Satellite (TDRS) for the same type of links. The SSBS services will keep the user burden the same or lower than for TDRS and will support the same or higher data rates than those currently supported by TDRS. At present, TDRSS provides links and coverage below GEO; however, SSBS links and coverage capability to above GEO missions are being considered for the future, especially for Human Space Flight Missions (HSF). There is also a rising need for the capability to support high data rate links (exceeding 1 Gbps) for imaging applications. The communication payload on the SSBS will provide S/Ka-band single access links to the mission and a Ku-band link to the ground, with an optical communication payload as an option. To design the communication payload, various link budgets were analyzed and many possible operational scenarios examined. To reduce user burden, using a larger-sized antenna than is currently in use by TDRS was considered. Because of the SSBS design size, it was found that a SpaceX Falcon 9 rocket could deliver three SSBSs to GEO. This will greatly reduce the launch costs per satellite. Using electric propulsion was also evaluated versus using chemical propulsion; the power system size and time to orbit for various power systems were also considered. This paper will describe how the SSBS will meet future service requirements, concept of operations, and the design to meet NASA users' needs for below and above GEO missions. These users' needs not only address the observational mission requirements but also possible HSF missions to the year 2030. We will provide the trade-off analysis of the communication payload design in terms of

  18. POGO satellite orbit corrections: an opportunity to improve the quality of the geomagnetic field measurements?

    DEFF Research Database (Denmark)

    Stockmann, Reto; Christiansen, Freddy; Olsen, Nils

    2015-01-01

    modelling. To improve the data, we use aniterative approach consisting of two main parts: one is a main field modelling process to obtain the radial fieldgradient to perturb the orbits and the other is the state-of-the-art GPS orbit modelling software BERNESE to calculatenew physical orbits. We report...

  19. A Study on the Relationship between the Orbital Lifetime and Inclination of Low Lunar Satellites

    Institute of Scientific and Technical Information of China (English)

    Hai-Hong Wang; Lin Liu

    2005-01-01

    A detailed theoretical analysis on the orbital lifetime and orbital inorbital lifetime are given. Numerical simulations under the real force model were carried out, which not only validate the theoretical analysis and also give some valuable results for the orbit design of the LMOs.

  20. Application of periodic orbit theory in chaos-based security analysis

    Institute of Scientific and Technical Information of China (English)

    Long Min; Qiu Shui-Sheng

    2007-01-01

    Chaos-based encryption schemes have been studied extensively, while the security analysis methods for them are still problems to be resolved. Based on the periodic orbit theory, this paper proposes a novel security analysis method. The periodic orbits theory indicates that the fundamental frequency of the spiraling orbits is the natural frequency of associated linearized system, which is decided by the parameters of the chaotic system. Thus, it is possible to recover the plaintext of secure communication systems based on chaotic shift keying by getting the average time on the spiraling orbits. Analysis and simulation results show that the security analysis method can break chaos shift keying secure communication systems, which use the parameters as keys.

  1. Testing scalar-tensor theories and PPN parameters in Earth orbit

    CERN Document Server

    Schärer, Andreas; Bondarescu, Ruxandra; Jetzer, Philippe; Lundgren, Andrew

    2014-01-01

    We compute the PPN parameters $\\gamma$ and $\\beta$ for general scalar-tensor theories in the Einstein frame, which we compare to the existing PPN formulation in the Jordan frame for alternative theories of gravity. This computation is important for scalar-tensor theories that are expressed in the Einstein frame, such as chameleon and symmetron theories, which can incorporate hiding mechanisms that predict environment-dependent PPN parameters. We introduce a general formalism for scalar-tensor theories and constrain it using the limit on $\\gamma$ given by the Cassini experiment. In particular we discuss massive Brans-Dicke scalar fields for extended sources. Next, using a recently proposed Earth satellite experiment, in which atomic clocks are used for spacecraft tracking, we compute the observable perturbations in the redshift induced by PPN parameters deviating from their general relativistic values. Our estimates suggest that $|\\gamma - 1| \\sim |\\beta -1| \\sim 10^{-6}$ may be detectable by a satellite that ...

  2. Benchmarking Fermi orbital self-interaction corrected density functional theory on molecules

    CERN Document Server

    Hahn, Torsten; Kortus, Jens; Pederson, Mark R

    2015-01-01

    The correction of the self-interaction error (SIE) that is inherent to all standard density functional theory (DFT) calculations is an object of increasing interest. In this article we apply the very recently developed Fermi-orbital based approach for the self-interaction correction (FOSIC) to a set of different molecular systems. Our study covers systems ranging from simple diatomic to large organic molecules. We focus our analysis on the direct estimation of the ionization potential from orbital eigenvalues.

  3. Molecular electric moments calculated by using natural orbital functional theory

    CERN Document Server

    Mitxelena, Ion

    2016-01-01

    The molecular electric dipole, quadrupole and octupole moments of a selected set of 21 spin-compensated molecules are determined employing the extended version of the Piris natural orbital functional 6 (PNOF6), using the triple-$\\zeta$ Gaussian basis set with polarization functions developed by Sadlej, at the experimental geometries. The performance of the PNOF6 is established by carrying out a statistical analysis of the mean absolute errors with respect to the experiment. The calculated PNOF6 electric moments agree satisfactorily with the corresponding experimental data, and are in good agreement with the values obtained by accurate ab initio methods, namely, the coupled-cluster single and doubles (CCSD) and multi-reference single and double excitation configuration interaction (MRSD-CI) methods.

  4. Quantum Spectra of Hydrogen Atoms in Various Magnetic Fields with the Closed Orbit Theory

    Institute of Scientific and Technical Information of China (English)

    彭良友; 张现周; 饶建国

    2002-01-01

    The quantum spectra of hydrogen atoms in various magnetic fields have been calculated with the closed orbit theory. The magnitude of the magnetic field decreases from 5.96 T to 0.56 T with a step of 0. 6 T. We demonstrate schematically that the closed orbits disappear with the decrease of the magnitude of the magnetic field when the corresponding finite resolution of experiment is fixed. This may give us a good way to control the shape and the number of the closed orbits in the system, and thus to control where a peak should exist in the Fourier transformation of the quantum spectra.

  5. General Purpose Satellites: a concept for affordable low earth orbit vehicles

    OpenAIRE

    Boyd, Austin W.; Fuhs, Allen E.

    1997-01-01

    A general purpose satellite has been designed which will be launched from the Space Shuttle using a NASA Get-Away-Special (GAS) canister. The design is based upon the use of a new extended GAS canister and a low profile launch mechanism. The satellite is cylindrical. measuring 19 inches in diameter and 35 inches long. The maximum vehicle weight is 250 pounds, of which 50 pounds is dedicated to user payloads. The remaining 200 pounds encompasses the satellite structure and support ...

  6. System Design and In-orbit Verification of the HJ-1-C SAR Satellite

    OpenAIRE

    Zhang Run-ning; Jiang Xiu-peng

    2014-01-01

    HJ-1-C is a SAR satellite owned by the Chinese Environment and Natural Disaster Monitoring constellation, and works together with the optical satellites HJ-1-A/B for monitoring environment and natural disasters. In this paper, the system design and characteristics of the first Chinese civil SAR satellite are described. In addition, the interface relation between SAR payload and platform is studied. Meanwhile, the data transmission capability, attitude, power, and temperature control that supp...

  7. The on-orbit calibration of geometric parameters of the Tian-Hui 1 (TH-1) satellite

    Science.gov (United States)

    Wang, Jianrong; Wang, Renxiang; Hu, Xin; Su, Zhongbo

    2017-02-01

    The on-orbit calibration of geometric parameters is a key step in improving the location accuracy of satellite images without using Ground Control Points (GCPs). Most methods of on-orbit calibration are based on the self-calibration using additional parameters. When using additional parameters, different number of additional parameters may lead to different results. The triangulation bundle adjustment is another way to calibrate the geometric parameters of camera, which can describe the changes in each geometric parameter. When triangulation bundle adjustment method is applied to calibrate geometric parameters, a prerequisite is that the strip model can avoid systematic deformation caused by the rate of attitude changes. Concerning the stereo camera, the influence of the intersection angle should be considered during calibration. The Equivalent Frame Photo (EFP) bundle adjustment based on the Line-Matrix CCD (LMCCD) image can solve the systematic distortion of the strip model, and obtain high accuracy location without using GCPs. In this paper, the triangulation bundle adjustment is used to calibrate the geometric parameters of TH-1 satellite cameras based on LMCCD image. During the bundle adjustment, the three-line array cameras are reconstructed by adopting the principle of inverse triangulation. Finally, the geometric accuracy is validated before and after on-orbit calibration using 5 testing fields. After on-orbit calibration, the 3D geometric accuracy is improved to 11.8 m from 170 m. The results show that the location accuracy of TH-1 without using GCPs is significantly improved using the on-orbit calibration of the geometric parameters.

  8. Atmospheric influences on infrared-laser signals used for occultation measurements between Low Earth Orbit satellites

    Directory of Open Access Journals (Sweden)

    S. Schweitzer

    2011-10-01

    Full Text Available LEO-LEO infrared-laser occultation (LIO is a new occultation technique between Low Earth Orbit (LEO satellites, which applies signals in the short wave infrared spectral range (SWIR within 2 μm to 2.5 μm. It is part of the LEO-LEO microwave and infrared-laser occultation (LMIO method that enables to retrieve thermodynamic profiles (pressure, temperature, humidity and altitude levels from microwave signals and profiles of greenhouse gases and further variables such as line-of-sight wind speed from simultaneously measured LIO signals. Due to the novelty of the LMIO method, detailed knowledge of atmospheric influences on LIO signals and of their suitability for accurate trace species retrieval did not yet exist. Here we discuss these influences, assessing effects from refraction, trace species absorption, aerosol extinction and Rayleigh scattering in detail, and addressing clouds, turbulence, wind, scattered solar radiation and terrestrial thermal radiation as well. We show that the influence of refractive defocusing, foreign species absorption, aerosols and turbulence is observable, but can be rendered small to negligible by use of the differential transmission principle with a close frequency spacing of LIO absorption and reference signals within 0.5%. The influences of Rayleigh scattering and terrestrial thermal radiation are found negligible. Cloud-scattered solar radiation can be observable under bright-day conditions, but this influence can be made negligible by a close time spacing (within 5 ms of interleaved laser-pulse and background signals. Cloud extinction loss generally blocks SWIR signals, except very thin or sub-visible cirrus clouds, which can be addressed by retrieving a cloud layering profile and exploiting it in the trace species retrieval. Wind can have a small influence on the trace species absorption, which can be made negligible by using a simultaneously retrieved or a moderately accurate background wind speed profile. We

  9. Non-Periodic Finite-Element Formulation of Orbital-Free Density Functional Theory

    Energy Technology Data Exchange (ETDEWEB)

    Gavini, V; Knap, J; Bhattacharya, K; Ortiz, M

    2006-10-06

    We propose an approach to perform orbital-free density functional theory calculations in a non-periodic setting using the finite-element method. We consider this a step towards constructing a seamless multi-scale approach for studying defects like vacancies, dislocations and cracks that require quantum mechanical resolution at the core and are sensitive to long range continuum stresses. In this paper, we describe a local real space variational formulation for orbital-free density functional theory, including the electrostatic terms and prove existence results. We prove the convergence of the finite-element approximation including numerical quadratures for our variational formulation. Finally, we demonstrate our method using examples.

  10. Periodic-orbit theory of universal level correlations in quantum chaos

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Sebastian [Department of Mathematics, University of Bristol, Bristol BS8 1TW (United Kingdom); Heusler, Stefan [Institut fuer Didaktik der Physik, Universitaet Muenster, Wilhelm-Klemm Str. 10, 48149 Muenster (Germany); Altland, Alexander [Institut fuer Theoretische Physik, Universitaet zu Koeln, Zuelpicher Str. 77, 50937 Koeln (Germany); Braun, Petr; Haake, Fritz [Fachbereich Physik, Universitaet Duisburg-Essen, 47048 Duisburg (Germany)], E-mail: Petr.Braun@uni-due.de

    2009-10-15

    Using Gutzwiller's semiclassical periodic-orbit theory, we demonstrate universal behavior of the two-point correlator of the density of levels for quantum systems whose classical limit is fully chaotic. We go beyond previous work in establishing the full correlator such that its Fourier transform, the spectral form factor, is determined for all times, below and above the Heisenberg time. We cover dynamics with and without time-reversal invariance (from the orthogonal and unitary symmetry classes). A key step in our reasoning is to sum the periodic-orbit expansion in terms of a matrix integral, like the one known from the sigma model of random matrix theory.

  11. Time-dependent renormalized-natural-orbital theory applied to laser-driven H$_2^+$

    CERN Document Server

    Hanusch, A; Brics, M; Bauer, D

    2016-01-01

    Recently introduced time-dependent renormalized-natural orbital theory (TDRNOT) is extended towards a multi-component approach in order to describe H$_2^+$ beyond the Born-Oppenheimer approximation. Two kinds of natural orbitals, describing the electronic and the nuclear degrees of freedom are introduced, and the exact equations of motion for them are derived. The theory is benchmarked by comparing numerically exact results of the time-dependent Schr\\"odinger equation for a H$_2^+$ model system with the corresponding TDRNOT predictions. Ground state properties, linear response spectra, fragmentation, and high-order harmonic generation are investigated.

  12. Analysis of the Lunar Gravity Field by Using GL0660B Model and Its Effect on Lunar Satellite Orbit

    Directory of Open Access Journals (Sweden)

    HUANG Kunxue

    2016-07-01

    Full Text Available The lunar gravity field provides a way to research moon's evolution and probes the interior structure of the moon. It is an important factor influencing the lunar satellite precise orbit determination as well. The new lunar gravity model GL0660B from GRAIL mission dramatically improves the gravity spectrum and spectral ranges. Using the model GL0660B, it can be computed that the corresponding degree-wise RMS and correlation of topography, with which the quality of model GL0660B can be analyzed. Then different characters of the lunar gravity field comparing with other lunar gravity fields are analyzed. Besides, gravity anomaly distribution figures at different height of the models are given, and the character and difference of the lunar gravity models at different height are compared. In addition, lunar satellite orbit revolutionary at different height are modeled by GEODYN. The result shows that the trend of lunar satellite eccentricity changes is a complex and long cycle of change trend. It is different affected by the perturbation of the mascons of different height, which causes different changes of apolune, perilune and eccentricity.

  13. Coherence and phase structure of compressional ULF waves at low-Earth-orbit observed by the Swarm satellites

    Science.gov (United States)

    Heilig, Balázs; Sutcliffe, Peter R.

    2016-04-01

    Different types of ultra low frequency (ULF waves), such as dayside compressional Pc3-Pc4 waves, Pc2 and Pc1 waves, Pc3-Pc4 field line resonances, night side and day side Pi2s, etc. have been successfully identified in the topside ionosphere. ULF observations in this region can help us to understand the wave structure in the magnetosphere, wave propagation, and also the effects of the ionosphere (transmission, reflection, mode conversion). Because of the fast orbiting of the LEO satellites Fourier analysis is not applicable, special techniques (wavelet analysis, maximum entropy method) are needed to resolve ULF signals, as well as to discriminate between spatial and wave structures. In this paper we present results of a study of Pc3 compressional waves observed at low-Earth-orbit (LEO) by the Swarm satellites. The particular emphasis has been to investigate the distribution of wave coherence and phase difference as functions of magnetic latitude and local time. This is the first time that a study of this nature has been carried out using magnetic field data from multiple LEO satellites. We believe that our study provides the first observational evidence to support the prediction by the inductive thin ionosphere model that incident Alfvén mode waves are partially converted into compressional mode waves by the ionosphere.

  14. An Assessment of Relativistic Effects for Low Earth Orbiters: The GRACE Satellites

    Science.gov (United States)

    2007-01-01

    IOP PUBLISHING METROLOGIA Metrologia 44 (2007) 484–490 doi:10.1088/0026-1394/44/6/007 An assessment of relativistic effects for low Earth orbiters...for the larger-eccentricity orbit is shown in figure 2(b). Metrologia , 44 (2007) 484–490 485 K M Larson et al Figure 1. Amplitude of the once/rev...486 Metrologia , 44 (2007) 484–490 Assessment of relativistic effects for low Earth orbiters combination was launched on TOPEX in 1992. Unfortunately

  15. Solution Method and Precision Analysis of Double-difference Dynamic Precise Orbit Determination of BeiDou Navigation Satellite System

    Directory of Open Access Journals (Sweden)

    LIU Weiping

    2016-02-01

    Full Text Available To resolve the high relativity between the transverse element of GEO orbit and double-difference ambiguity, the classical double-difference dynamic method is improved and the method, which is to determine precise BeiDou satellite orbit using carrier phase and pseudo-range smoothed by phase, is proposed. The feasibility of the method is discussed and the influence of the method about ambiguity fixing is analyzed. Considering the characteristic of BeiDou, the method, which is to fix double-difference ambiguity of BeiDou satellites by QIF, is derived. The real data analysis shows that the new method, which can reduce the relativity and assure the precision, is better than the classical double-difference dynamic method. The result of ambiguity fixing is well by QIF, but the ambiguity fixing success rate is not high on the whole. So the precision of BeiDou orbit can't be improved clearly after ambiguity fixing.

  16. Stability of 2-body orbits in retarded gravitation theory (RGT)

    CERN Document Server

    Raju, C K

    2015-01-01

    The recently formulated retarded gravitation theory (RGT) explains the non-Newtonian velocities of stars in spiral galaxies, *without any new hypothesis*, and may hence be tested even in the laboratory. However, doubts have been expressed that those higher rotation velocities in RGT may be due to instabilities. We resolve these doubts by solving the full functional differential equations of RGT for a model 2-body planetary system. The solution is stable and closely agrees with the Newtonian solution for this planetary case. Thus, the big difference between RGT and Newtonian gravity for a spiral galaxy is not due to any instability in RGT.

  17. The application of the instantaneous states reduction to the orbital monitoring of pivotal arcs of the Chang’E-1 satellite

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    In the Chinese lunar exploration project,the Chang’E-1 (CE-1) satellite was jointly monitored by the United S-band range and Doppler and the VLBI technique. A real-time reduction of the tracking data is realized to deduce the time series of the instantaneous state vectors (ISV) (position and velocity vec-tors) of the CE-1 satellite,and is applied to the orbital monitoring of pivotal arcs. This paper introduces this real-time data reduction method and its application to the orbital monitoring of pivotal arcs of the CE-1 satellite in order to serve as a source of criticism and reference.

  18. Fast and accurate prediction for aerodynamic forces and moments acting on satellites flying in Low-Earth Orbit

    Science.gov (United States)

    Jin, Xuhon; Huang, Fei; Hu, Pengju; Cheng, Xiaoli

    2016-11-01

    A fundamental prerequisite for satellites operating in a Low Earth Orbit (LEO) is the availability of fast and accurate prediction of non-gravitational aerodynamic forces, which is characterised by the free molecular flow regime. However, conventional computational methods like the analytical integral method and direct simulation Monte Carlo (DSMC) technique are found failing to deal with flow shadowing and multiple reflections or computationally expensive. This work develops a general computer program for the accurate calculation of aerodynamic forces in the free molecular flow regime using the test particle Monte Carlo (TPMC) method, and non-gravitational aerodynamic forces actiong on the Gravity field and steady-state Ocean Circulation Explorer (GOCE) satellite is calculated for different freestream conditions and gas-surface interaction models by the computer program.

  19. A Critical Examination of Current On-Orbit Satellite Collision Risk Analysis Under Constraints of Public Data

    Science.gov (United States)

    Whitworth, Brandon; Moon, Mark; Pace, William; Baker, Robert

    2010-09-01

    The collision of Cosmos 2251 and Iridium 33 on 10 February 2009, made real the dangers of space operations without accurate situational awareness. A critical examination of the state of the art in collision risk assessment for on-orbit assets quickly reveals that it is inadequate to have provided satellite operators the opportunity to prevent the Cosmos-Iridium collision. Satellite operators need reliable information in a timely manner in order to take appropriate action. The shortfalls of publicly available orbit information place all spacecraft and missions at risk. The accuracy limitations of the General Perturbations(GP) catalog and orbit model(SGP-4) limit the effectiveness of current open source efforts. Beyond the accuracy limits, the relatively low frequency of updates for debris included in the catalog increases the uncertainty in time-space for inactive space objects such as Cosmos 2251. The current state of the art collision risk assessment includes advanced techniques such as expanding the GP model with covariance information which will allow uncertainty in the model to be accounted for in the on-orbit risk calculations. Covariance information can be estimated from consecutively published element sets for the same orbital object. A challenge to covariance estimation is that maneuvers or long periods of time between updates can skew the computed data. Once reliable covariance information is known and an efficient algorithm can be applied to find all of the close approaches between all cataloged objects then it is possible to estimate the collision risk for each close encounter with the tri-variate normal distribution. Unknown covariance will need to be handled in an appropriate way for a complete solution. Covariance information alone cannot solve the problem due to the relatively slow rate of update for all objects by the Space Surveillance Network(SSN) and there is no centralized source for planned and executed orbit changes for powered spacecraft. The

  20. Secular resonances between bodies on close orbits: a case study of the Himalia prograde group of jovian irregular satellites

    CERN Document Server

    Li, Daohai

    2016-01-01

    The gravitational interaction between two objects on similar orbits can effect noticeable changes in the orbital evolution even if the ratio of their masses to that of the central body is vanishingly small. Christou (2005) observed an occasional resonant lock in the differential node $\\Delta \\Omega$ between two members in the Himalia irregular satellite group of Jupiter in the $N$-body simulations (corresponding mass ratio $\\sim 10^{-9}$). Using a semianalytical approach, we have reproduced this phenomenon. We also demonstrate the existence of two additional types of resonance, involving angle differences $\\Delta\\omega$ and $\\Delta (\\Omega+\\varpi)$ between two group members. These resonances cause secular oscillations in eccentricity and/or inclination on timescales $\\sim$ 1 Myr. We locate these resonances in $(a,e,i)$ space and analyse their topological structure. In subsequent $N$-body simulations, we confirm these three resonances and find a fourth one involving $\\Delta \\varpi$. In addition, we study the o...

  1. Test of the gravitational redshift with stable clocks in eccentric orbits: application to Galileo satellites 5 and 6

    CERN Document Server

    Delva, P; Bertone, S; Richard, E; Wolf, P

    2015-01-01

    In this paper we propose to use satellites Galileo~5 and~6 to perform a test of the gravitational redshift. The best test to date was performed with the Gravity Probe A experiment (1976) with an accuracy of $1.4\\times 10^{-4}$. Here we show that considering realistic noise and systematic effects, and thanks to a highly eccentric orbit, it is possible to improve the GP-A limit to an accuracy around $(3-4)\\times 10^{-5}$ after one year of integration of Galileo~5 and~6 data.

  2. Pyrite oxidation and reduction - Molecular orbital theory considerations. [for geochemical redox processes

    Science.gov (United States)

    Luther, George W., III

    1987-01-01

    In this paper, molecular orbital theory is used to explain a heterogeneous reaction mechanism for both pyrite oxidation and reduction. The mechanism demonstrates that the oxidation of FeS2 by Fe(3+) may occur as a result of three important criteria: (1) the presence of a suitable oxidant having a vacant orbital (in case of liquid phase) or site (solid phase) to bind to the FeS2 via sulfur; (2) the initial formation of a persulfido (disulfide) bridge between FeS2 and the oxidant, and (3) an electron transfer from a pi(asterisk) orbital in S2(2-) to a pi or pi(asterisk) orbital of the oxidant.

  3. Binary evolution using the theory of osculating orbits: conservative Algol evolution

    CERN Document Server

    Davis, P J; Deschamps, R

    2014-01-01

    Our aim is to calculate the evolution of Algol binaries within the framework of the osculating orbital theory, which considers the perturbing forces acting on the orbit of each star arising from mass exchange via Roche lobe overflow (RLOF). The scheme is compared to results calculated from a `classical' prescription. Using our stellar binary evolution code BINSTAR, we calculate the orbital evolution of Algol binaries undergoing case A and case B mass transfer, by applying the osculating scheme. The velocities of the ejected and accreted material are evaluated by solving the restricted three-body equations of motion, within the ballistic approximation. This allows us to determine the change of linear momentum of each star, and the gravitational force applied by the mass transfer stream. Torques applied on the stellar spins by tides and mass transfer are also considered. Using the osculating formalism gives shorter post-mass transfer orbital periods typically by a factor of 4 compared to the classical scheme, o...

  4. The orbits of the uranian satellites and rings, the gravity field of the uranian system, and the orientation of the pole of Uranus

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, R. A., E-mail: robert.jacobson@jpl.nasa.gov [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109-8099 (United States)

    2014-11-01

    French et al. determined the orbits of the Uranian rings, the orientation of the pole of Uranus, and the gravity harmonics of Uranus from Earth-based and Voyager ring occultations. Jacobson et al. determined the orbits of the Uranian satellites and the masses of Uranus and its satellites from Earth-based astrometry and observations acquired with the Voyager 2 spacecraft; they used the gravity harmonics and pole from French et al. Jacobson and Rush reconstructed the Voyager 2 trajectory and redetermined the Uranian system gravity parameters, satellite orbits, and ring orbits in a combined analysis of the data used previously augmented with additional Earth-based astrometry. Here we report on an extension of that work that incorporates additional astrometry and ring occultations together with improved data processing techniques.

  5. Brillouin-Wigner theory for Floquet topological phase transitions in spin-orbit-coupled materials

    Science.gov (United States)

    Mohan, Priyanka; Saxena, Ruchi; Kundu, Arijit; Rao, Sumathi

    2016-12-01

    We develop the high-frequency expansion based on the Brillouin-Wigner (B-W) perturbation theory for driven systems with spin-orbit coupling which is applicable to the cases of silicene, germanene, and stanene. We compute the effective Hamiltonian in the zero-photon subspace not only to order O (ω-1) but by keeping all the important terms to order O (ω-2) and obtain the photoassisted correction terms to both the hopping and the spin-orbit terms, as well as longer-ranged hopping terms. We then use the effective static Hamiltonian to compute the phase diagram in the high-frequency limit and compare it with the results of direct numerical computation of the Chern numbers of the Floquet bands and show that at sufficiently large frequencies, the B-W theory high-frequency expansion works well even in the presence of spin-orbit-coupling terms.

  6. Phase Residual Estimations for PCVs of Spaceborne GPS Receiver Antenna and Their Impacts on Precise Orbit Determination of GRACE Satellites

    Institute of Scientific and Technical Information of China (English)

    TU Jia; GU Defeng; WU Yi; YI Dongyun

    2012-01-01

    In-flight phase center systematic errors of global positioning system (GPS) receiver antenna are the main restriction for improving the precision of precise orbit determination using dual-frequency GPS.Residual approach is one of the valid methods for in-flight calibration of GPS receiver antenna phase center variations (PCVs) from ground calibration.In this paper,followed by the correction model of spaceborne GPS receiver antenna phase center,ionosphere-free PCVs can be directly estimated by ionosphere-free carrier phase post-fit residuals of reduced dynamic orbit determination.By the data processing of gravity recovery and climate experiment (GRACE) satellites,the following conclusions are drawn.Firstly,the distributions of ionosphere-free carrier phase post-fit residuals from different periods have the similar systematic characteristics.Secondly,simulations show that the influence of phase residual estimations for ionosphere-free PCVs on orbit determination can reach the centimeter level.Finally,it is shown by in-flight data processing that phase residual estimations of current period could not only be used for the calibration for GPS receiver antenna phase center of foretime and current period,but also be used for the forecast of ionosphere-free PCVs in future period,and the accuracy of orbit determination can be well improved.

  7. Electronic and Redox Properties of Stacked-Ring Silicon Phthalocyanines from Molecular Orbital Theory.

    Science.gov (United States)

    1984-10-19

    a molecular orbital approximation to the electron delocalization energy.1 8 The ASED theory is derived from the Hellmann- Feynman formula for...34 . . 4.•" " ., .7% . r .- - - . , .-. - . . _ .-.- :.- .- . v ._ . _ . " - . ’ " _ _ 12. Wheeler , B. L.; Nagasubramanian, G.; Bard, A. J

  8. Global-scale Observations of the Limb and Disk (GOLD) Mission: Science from Geostationary Orbit on-board a Commercial Communications Satellite

    Science.gov (United States)

    Eastes, R.; Deaver, T.; Krywonos, A.; Lankton, M. R.; McClintock, W. E.; Pang, R.

    2011-12-01

    Geostationary orbits are ideal for many science investigations of the Earth system on global scales. These orbits allow continuous observations of the same geographic region, enabling spatial and temporal changes to be distinguished and eliminating the ambiguity inherent to observations from low Earth orbit (LEO). Just as observations from geostationary orbit have revolutionized our understanding of changes in the troposphere, they will dramatically improve our understanding of the space environment at higher altitudes. However, geostationary orbits are infrequently used for science missions because of high costs. Geostationary satellites are large, typically weighing tons. Consequently, devoting an entire satellite to a science mission requires a large financial commitment, both for the spacecraft itself and for sufficient science instrumentation to justify a dedicated spacecraft. Furthermore, the small number of geostationary satellites produced for scientific missions increases the costs of each satellite. For these reasons, it is attractive to consider flying scientific instruments on satellites operated by commercial companies, some of whom have fleets of ~40 satellites. However, scientists' lack of understanding of the capabilities of commercial spacecraft as well as commercial companies' concerns about risks to their primary mission have impeded the cooperation necessary for the shared use of a spacecraft. Working with a commercial partner, the GOLD mission has successfully overcome these issues. Our experience indicates that there are numerous benefits to flying on commercial communications satellites (e.g., it is possible to downlink large amounts of data) and the costs are low if the experimental requirements adequately match the capabilities and available resources of the host spacecraft. Consequently, affordable access to geostationary orbit aboard a communications satellite now appears possible for science payloads.

  9. Atmospheric influences on infrared-laser signals used for occultation measurements between Low Earth Orbit satellites

    Directory of Open Access Journals (Sweden)

    S. Schweitzer

    2011-05-01

    Full Text Available LEO-LEO infrared-laser occultation (LIO is a new occultation technique between Low Earth Orbit (LEO satellites, which applies signals in the short wave infrared spectral range (SWIR within 2 μm to 2.5 μm. It is part of the LEO-LEO microwave and infrared-laser occultation (LMIO method, recently introduced by Kirchengast and Schweitzer (2011, that enables to retrieve thermodynamic profiles (pressure, temperature, humidity and accurate altitude levels from microwave signals and profiles of greenhouse gases and further variables such as line-of-sight wind speed from simultaneously measured LIO signals. For enabling trace species retrieval based on differential transmission, the LIO signals are spectrally located as pairs, one in the centre of a suitable absorption line of a target species (absorption signal and one close by but outside of any absorption lines (reference signal. Due to the novelty of the LMIO method, detailed knowledge of atmospheric influences on LIO signals and of their suitability for accurate trace species retrieval did not yet exist. Here we discuss the atmospheric influences on the transmission and differential transmission of LIO signals. Refraction effects, trace species absorption (by target species, and cross-sensitivity to foreign species, aerosol extinction and Rayleigh scattering are studied in detail. The influences of clouds, turbulence, wind, scattered solar radiation and terrestrial thermal radiation are discussed as well. We show that the influence of defocusing, foreign species absorption, aerosols and turbulence is observable, but can be rendered small to negligible by use of the differential transmission principle and by a design with close frequency spacing of absorption and reference signals within 0.5 %. The influences of Rayleigh scattering and thermal radiation on the received signal intensities are found negligible. Cloud-scattered solar radiation can be observable under bright-day conditions but this

  10. Early On-Orbit Performance of the Visible Infrared Imaging Radiometer Suite Onboard the Suomi National Polar-Orbiting Partnership (S-NPP) Satellite

    Science.gov (United States)

    Cao, Changyong; DeLuccia, Frank J.; Xiong, Xiaoxiong; Wolfe, Robert; Weng, Fuzhong

    2014-01-01

    The Visible Infrared Imaging Radiometer Suite (VIIRS) is one of the key environmental remote-sensing instruments onboard the Suomi National Polar-Orbiting Partnership spacecraft, which was successfully launched on October 28, 2011 from the Vandenberg Air Force Base, California. Following a series of spacecraft and sensor activation operations, the VIIRS nadir door was opened on November 21, 2011. The first VIIRS image acquired signifies a new generation of operational moderate resolution-imaging capabilities following the legacy of the advanced very high-resolution radiometer series on NOAA satellites and Terra and Aqua Moderate-Resolution Imaging Spectroradiometer for NASA's Earth Observing system. VIIRS provides significant enhancements to the operational environmental monitoring and numerical weather forecasting, with 22 imaging and radiometric bands covering wavelengths from 0.41 to 12.5 microns, providing the sensor data records for 23 environmental data records including aerosol, cloud properties, fire, albedo, snow and ice, vegetation, sea surface temperature, ocean color, and nigh-time visible-light-related applications. Preliminary results from the on-orbit verification in the postlaunch check-out and intensive calibration and validation have shown that VIIRS is performing well and producing high-quality images. This paper provides an overview of the onorbit performance of VIIRS, the calibration/validation (cal/val) activities and methodologies used. It presents an assessment of the sensor initial on-orbit calibration and performance based on the efforts from the VIIRS-SDR team. Known anomalies, issues, and future calibration efforts, including the long-term monitoring, and intercalibration are also discussed.

  11. The trouble with orbits: the Stark effect in the old and the new quantum theory

    CERN Document Server

    Duncan, Anthony

    2014-01-01

    The old quantum theory and Schr\\"odinger's wave mechanics (and other forms of quantum mechanics) give the same results for the line splittings in the first-order Stark effect in hydrogen, the leading terms in the splitting of the spectral lines emitted by a hydrogen atom in an external electric field. We examine the account of the effect in the old quantum theory, which was hailed as a major success of that theory, from the point of view of wave mechanics. First, we show how the new quantum mechanics solves a fundamental problem one runs into in the old quantum theory with the Stark effect. It turns out that, even without an external field, it depends on the coordinates in which the quantum conditions are imposed which electron orbits are allowed in a hydrogen atom. The allowed energy levels and hence the line splittings are independent of the coordinates used but the size and eccentricity of the orbits are not. In the new quantum theory, this worrisome non-uniqueness of orbits turns into the perfectly innocu...

  12. Effects of Plasma Drag on Low Earth Orbiting Satellites due to Heating of Earth's Atmosphere by Coronal Mass Ejections

    CERN Document Server

    Nwankwo, Victor U J

    2013-01-01

    Solar events, such as coronal mass ejections (CMEs) and solar flares, heat up the upper atmosphere and near-Earth space environment. Due to this heating and expansion of the outer atmosphere by the energetic ultraviolet, X-ray and particles expelled from the sun, the low Earth-Orbiting satellites (LEOS) become vulnerable to an enhanced drag force by the ions and molecules of the expanded atmosphere. Out of various types of perturbations, Earth directed CMEs play the most significant role. They are more frequent and intense during the active (solar maximum) phase of the sun's approximately 11-year cycle. As we are approaching another solar maximum later in 2013, it may be instructive to analyse the effects of the past solar cycles on the orbiting satellites using the archival data of space environment parameters as indicators. In this paper, we compute the plasma drag on a model LEOS due to the atmospheric heating by CMEs and other solar events as a function of the solar parameters. Using the current forecast ...

  13. Lunar gravitational field estimation and the effects of mismodeling upon lunar satellite orbit prediction. M.S. Thesis

    Science.gov (United States)

    Davis, John H.

    1993-01-01

    Lunar spherical harmonic gravity coefficients are estimated from simulated observations of a near-circular low altitude polar orbiter disturbed by lunar mascons. Lunar gravity sensing missions using earth-based nearside observations with and without satellite-based far-side observations are simulated and least squares maximum likelihood estimates are developed for spherical harmonic expansion fit models. Simulations and parameter estimations are performed by a modified version of the Smithsonian Astrophysical Observatory's Planetary Ephemeris Program. Two different lunar spacecraft mission phases are simulated to evaluate the estimated fit models. Results for predicting state covariances one orbit ahead are presented along with the state errors resulting from the mismodeled gravity field. The position errors from planning a lunar landing maneuver with a mismodeled gravity field are also presented. These simulations clearly demonstrate the need to include observations of satellite motion over the far side in estimating the lunar gravity field. The simulations also illustrate that the eighth degree and order expansions used in the simulated fits were unable to adequately model lunar mascons.

  14. An autonomous navigation algorithm for high orbit satellite using star sensor and ultraviolet earth sensor.

    Science.gov (United States)

    Baohua, Li; Wenjie, Lai; Yun, Chen; Zongming, Liu

    2013-01-01

    An autonomous navigation algorithm using the sensor that integrated the star sensor (FOV1) and ultraviolet earth sensor (FOV2) is presented. The star images are sampled by FOV1, and the ultraviolet earth images are sampled by the FOV2. The star identification algorithm and star tracking algorithm are executed at FOV1. Then, the optical axis direction of FOV1 at J2000.0 coordinate system is calculated. The ultraviolet image of earth is sampled by FOV2. The center vector of earth at FOV2 coordinate system is calculated with the coordinates of ultraviolet earth. The autonomous navigation data of satellite are calculated by integrated sensor with the optical axis direction of FOV1 and the center vector of earth from FOV2. The position accuracy of the autonomous navigation for satellite is improved from 1000 meters to 300 meters. And the velocity accuracy of the autonomous navigation for satellite is improved from 100 m/s to 20 m/s. At the same time, the period sine errors of the autonomous navigation for satellite are eliminated. The autonomous navigation for satellite with a sensor that integrated ultraviolet earth sensor and star sensor is well robust.

  15. Ionospheric refraction effects on TOPEX orbit determination accuracy using the Tracking and Data Relay Satellite System (TDRSS)

    Science.gov (United States)

    Radomski, M. S.; Doll, C. E.

    1991-01-01

    This investigation concerns the effects on Ocean Topography Experiment (TOPEX) spacecraft operational orbit determination of ionospheric refraction error affecting tracking measurements from the Tracking and Data Relay Satellite System (TDRSS). Although tracking error from this source is mitigated by the high frequencies (K-band) used for the space-to-ground links and by the high altitudes for the space-to-space links, these effects are of concern for the relatively high-altitude (1334 kilometers) TOPEX mission. This concern is due to the accuracy required for operational orbit-determination by the Goddard Space Flight Center (GSFC) and to the expectation that solar activity will still be relatively high at TOPEX launch in mid-1992. The ionospheric refraction error on S-band space-to-space links was calculated by a prototype observation-correction algorithm using the Bent model of ionosphere electron densities implemented in the context of the Goddard Trajectory Determination System (GTDS). Orbit determination error was evaluated by comparing parallel TOPEX orbit solutions, applying and omitting the correction, using the same simulated TDRSS tracking observations. The tracking scenarios simulated those planned for the observation phase of the TOPEX mission, with a preponderance of one-way return-link Doppler measurements. The results of the analysis showed most TOPEX operational accuracy requirements to be little affected by space-to-space ionospheric error. The determination of along-track velocity changes after ground-track adjustment maneuvers, however, is significantly affected when compared with the stringent 0.1-millimeter-per-second accuracy requirements, assuming uncoupled premaneuver and postmaneuver orbit determination. Space-to-space ionospheric refraction on the 24-hour postmaneuver arc alone causes 0.2 millimeter-per-second errors in along-track delta-v determination using uncoupled solutions. Coupling the premaneuver and postmaneuver solutions

  16. MONTE CARLO SIMULATION FOR MODELING THE EFFECT OF GROUND SEGMENT LOCATION ON IN-ORBIT RESPONSIVENESS OF LEO SUNSYNCHRONOUS SATELLITE S

    Institute of Scientific and Technical Information of China (English)

    M. Navabi; Hossein Bonyan Khamseh

    2011-01-01

    Responsiveness is a challenge for space systems to sustain competitive advantage over alternate non-spaceborne technologies.For a satellite in its operational orbit,in-orbit responsiveness is defined as the capability of the satellite to respond to a given demand in a timely manner.In this paper,it is shown that Average Wait Time (AWT) to pick up user demand from ground segment is the appropriate metric to evaluate the effect of ground segment location on in-orbit responsiveness of Low Earth Orbit (LEO) sunsynchronous satellites.This metric depends on pattern of ground segment access to satellite and distribution of user demands in time domain.A mathematical model is presented to determine pattern of ground segment access to satellite and concept of cumulative distribution function is used to simulate distribution of user demands for markets with different total demand scenarios.Monte Carlo simulations are employed to take account of uncertainty in distribution and total volume of user demands.Sampling error and standard deviation are used to ensure validity of AWT metric obtained from Monte Carlo simulations.Incorporation of the proposed metric in the ground segment site location process results in more responsive satellite systems which,in turn,lead to greater customer satisfaction levels and attractiveness of spaceborne systems for different applications.Finally,simulation results for a case study are presented.

  17. Incorporation of star measurements for the determination of orbit and attitude parameters of a geosynchronous satellite: An iterative application of linear regression

    Science.gov (United States)

    Phillips, D.

    1980-01-01

    Currently on NOAA/NESS's VIRGS system at the World Weather Building star images are being ingested on a daily basis. The image coordinates of the star locations are measured and stored. Subsequently, the information is used to determine the attitude, the misalignment angles between the spin axis and the principal axis of the satellite, and the precession rate and direction. This is done for both the 'East' and 'West' operational geosynchronous satellites. This orientation information is then combined with image measurements of earth based landmarks to determine the orbit of each satellite. The method for determining the orbit is simple. For each landmark measurement one determines a nominal position vector for the satellite by extending a ray from the landmark's position towards the satellite and intersecting the ray with a sphere with center coinciding with the Earth's center and with radius equal to the nominal height for a geosynchronous satellite. The apparent motion of the satellite around the Earth's center is then approximated with a Keplerian model. In turn the variations of the satellite's height, as a function of time found by using this model, are used to redetermine the successive satellite positions by again using the Earth based landmark measurements and intersecting rays from these landmarks with the newly determined spheres. This process is performed iteratively until convergence is achieved. Only three iterations are required.

  18. Low-latitude Pi2 oscillations observed by polar Low Earth Orbiting satellite

    Science.gov (United States)

    Thomas, Neethal; Vichare, Geeta; Sinha, A. K.; Rawat, Rahul

    2015-09-01

    Low-latitude Pi2 pulsations in the topside ionosphere are investigated using vector magnetic field measurements from LEO satellite, CHAMP, and underneath ground station. Substorm-associated Pi2s are initially identified using high-resolution data from Indian station Shillong, during 2007-2009, and are further classified into three subgroups of Pi2 band (6-25 mHz), based on its frequency. During nighttime, coherent in-phase oscillations are observed in the compressional component at satellite and horizontal component at underneath ground station for all the Pi2 events, irrespective of the Pi2 frequency. We observe that the identification of daytime Pi2s at CHAMP (compressional component) depends on the frequency of Pi2 oscillation; i.e., 40%, 45%, and 100% of Pi2 events observed in dayside ground station with frequency between 6-10 mHz, 10-15 mHz, and 15-25 mHz were identified at satellite, respectively. At CHAMP during daytime, the presence of a dominant power in the lower frequencies of Pi2 band, which is unique to satellite, is consistently observed and can modify the Pi2 oscillations. Pi2s having frequency >15 mHz are less affected by these background frequencies, and a clear signature of daytime Pi2s at CHAMP is possible to observe, provided that contribution from non-Pi2 frequencies at satellite from the lower end of Pi2 band is eliminated. Daytime Pi2s identified in the topside ionosphere showed coherent but mostly opposite phase oscillations with underneath ground station, and satellite-to-ground amplitude ratio is, in general, found to be less than 1. Present results indicate that a combination of fast cavity-mode oscillations and an instantaneous transmission of Pi2 electric field from high- to low-latitude ionosphere is responsible for the observation of daytime Pi2s.

  19. On-orbit calibration of soft X-ray detector on Chang'E-2 satellite

    Science.gov (United States)

    Xiao, Hong; Peng, Wen-Xi; Wang, Huan-Yu; Cui, Xing-Zhu; Guo, Dong-Ya

    2015-10-01

    The X-ray spectrometer is one of the satellite payloads on the Chang'E-2 satellite. The soft X-ray detector is one of the devices on the X-ray spectrometer, designed to detect the major rock-forming elements within the 0.5-10 keV range on the lunar surface. In this paper, energy linearity and energy resolution calibration is done using a weak 55Fe source. Temperature and time effects are found not to give a large error. The total uncertainty of calibration is estimated to be within 5% after correction. Supported by National Science Foundation of Ministry of Education

  20. On-orbit calibration of soft X-ray detector on Chang'E-2 satellite

    CERN Document Server

    Xiao, Hong; Wang, Huanyu; Cui, Xingzhu; Guo, Dongya

    2015-01-01

    X-ray spectrometer is one of the satellite payloads on Chang'E-2 satellite. The soft X-ray detector is one of the device on X-ray spectrometer which is designed to detect the major rock-forming elements within 0.5-10keV range on lunar surface. In this paper, energy linearity and energy resolution calibration is done using a weak Fe55 source, while temperature and time effect is considered not take big error. The total uncertainty is estimated to be within 5% after correction.

  1. Earth rotation, station coordinates and orbit determination from satellite laser ranging

    Science.gov (United States)

    Murata, Masaaki

    The Project MERIT, a special program of international colaboration to Monitor Earth Rotation and Intercompare the Techniques of observation and analysis, has come to an end with great success. Its major objective was to evaluate the ultimate potential of space techniques such as VLBI and satellite laser ranging, in contrast with the other conventional techniques, in the determination of rotational dynamics of the earth. The National Aerospace Laboratory (NAL) has officially participated in the project as an associate analysis center for satellite laser technique for the period of the MERIT Main Campaign (September 1983-October 1984). In this paper, the NAL analysis center results are presented.

  2. Applications of Fuzzy Set Theory to Satellite Soundings

    Science.gov (United States)

    Munteanu, M. J.

    1985-01-01

    The introduction of an appropriate fuzzy setting for satellite soundings and its application to clustering methods via unimodal fuzzy sets in the future is proposed. Methods of hard clustering analysis and fuzzy partitioned clustering were applied on simulated data with very encouraging results. The proposed clustering technique is discussed. The notion of a unimodal fuzzy set was chosen to represent the partition of a data set for two reasons: (1) it detects all the locations in the vector space where highly concentrated clusters of points exist; and (2) the notion is general enough to represent clusters that exhibit quite general distributions of points. The technique detects all of the existing unimodal fuzzy sets and realizes the maximum separation among them. It is economical in memory space and computational time requirements and also detects groups that are fairly generally distributed in the feature space.

  3. Commentary to "LARES successfully launched in orbit: Satellite and mission description" by A. Paolozzi and I. Ciufolini

    CERN Document Server

    Iorio, Lorenzo

    2014-01-01

    We comment on some statements in a recent paper by Paolozzi and Ciufolini concerning certain remarks raised by us on the realistic accuracy obtainable in testing the general relativistic Lense-Thirring effect in the gravitational field of the Earth with the newly launched LARES satellite together with the LAGEOS and LAGEOS II spacecraft in orbit for a long time. The orbital configuration of LARES is different from that of the originally proposed LAGEOS-3. Indeed, while the latter one should have been launched to the same altitude of LAGEOS (i.e. about $h_{\\rm L}=5890$ km) in an orbital plane displaced by $180$ deg with respect to that of LAGEOS ($I_{\\rm L}=110$ deg, $I_{\\rm L3}=70$ deg), LARES currently moves at a much smaller altitude (about $h_{\\rm LR}=1440$ km) and at a slightly different inclination ($I_{\\rm LR} = 69.5$ deg). As independently pointed out in the literature by different authors, the overall accuracy of a LARES-LAGEOS-LAGEOS II Lense-Thirring test may be unfavorably \\textcolor{black}{impacte...

  4. Orbiting Retrievable Far and Extreme Ultraviolet Spectrometer - Shuttle Pallet Satellite (ORFEUS-SPAS)

    Science.gov (United States)

    1993-01-01

    The objective of the ORFEUS mission is to launch a deployable/retrievable astronomical platform and obtain ultraviolet spectra for both astrophysically interesting sources and the intervening interstellar medium. Also, the IMAX cameras will obtain footage of both the Shuttle and the ORFEUS-SPAS satellite during the deployment/retrieval operations phase of the ORFEUS-SPAS mission.

  5. Theory of Anomalous X-Ray Scattering in Orbital-Ordered Manganites

    Science.gov (United States)

    Ishihara, Sumio; Maekawa, Sadamichi

    1998-04-01

    We study the theory of the anomalous x-ray scattering in relation to its role as a detector of the orbital orderings and excitations in perovskite manganites. The scattering matrix is given by virtual electron excitations in Mn from the 1s level to the unoccupied 4p level. We find that the orbital dependence of the Coulomb interaction between 3d and 4p electrons is essential to the anisotropy of the scattering factor near the K edge. The calculated results in MnO6 clusters explain the forbidden reflections observed in La0.5Sr1.5MnO4 and LaMnO3. The possibility of observing orbital waves with x-ray scattering is discussed as well.

  6. Incompatibility of FRC `Self--Colliding Beams' with Classical Large Orbit Theory and Experiment

    Science.gov (United States)

    Maglich, Bogdan

    2012-03-01

    Rosenbluth^1: ``One key physics issue is the behavior of very large gyro radius systems, for which the usual thermal physics is inadequate.''- Rostoker^2 posited (1) 0.42 KeV d^+ FRC can achieve confinement^ τ =30 s observed^3 in self-colliding orbits (SCO) of 725 KeV d^+,^ stabilized by magnet focusing^4 and electrons^5 ; (2) FRC result ^6τ=2 x10-3 s is ``record long lived plasma state for advanced, aneutronic fuels ''; (3) non-intersecting collision-less orbits produce nuclear reactions. (i) Bz(r) of FRC is defocusing, field index n>0. From single particle orbit theory^7,8 destructive instability must occur with τ^ AIP CP 311, 292 (93); 9. J.App.Phys.46, 2915 (75); 10. NIM A346 322 (93); 11.NIM 144, 65 (77)

  7. Orbit propagation using semi-analytical theory and its applications in space debris field

    Science.gov (United States)

    Dutt, Pooja; Anilkumar, A. K.

    2017-02-01

    Lifetime estimation of space objects is very important for space debris related studies including mitigation studies and manoeuvre designs. It is essential to have a fast and accurate lifetime prediction tool for studies related to long term evolution of space debris environment. This paper presents the details of the Orbit Prediction using Semi-Analytic Theory (OPSAT) used for lifetime estimation of space objects. It uses BFGS Quasi-Newton algorithm to minimize least square error on apogee and perigee altitudes of a given TLE set to estimate ballistic coefficient (BC). This BC is used for future orbit prediction. OPSAT is evaluated for long term and short term orbit prediction using TLE data. It has been used for identification of potential candidate for active debris removal (ADR) and future projection of space debris environment with ADR.

  8. Assessing Sahelian vegetation and stress from seasonal time series of polar orbiting and geostationary satellite imagery

    DEFF Research Database (Denmark)

    Olsen, Jørgen Lundegaard

    on short timescales, which are challenging from polar orbiting instruments. Geostationary NDVI and the NIR and SWIR based Shortwave Infrared Water Stress Index (SIWSI) indices are compared with extensive field data from the Dahra site, supplemented by data from the Agoufou and Demokeya sites. The indices...

  9. On Comparing Precision Orbit Solutions of Geodetic Satellites Given Several Atmospheric Density Models

    Science.gov (United States)

    2014-08-01

    mechanics 1998, 1998, pp. 1275–1293. [3] P. W. Binning, M. T. Soyka, and J. W. Middour, “Orbit determination using space to ground Differential GPS in...upper atmosphere models,” Planetary and Space Science, Vol. 47, No. 12, 1999, pp. 1465–1473. [12] S. Krzysztof, “Impact of the Atmospheric Drag on

  10. Interpretations of de-orbit, deactivation, and shutdown guidelines applicable to GEO satellites

    Science.gov (United States)

    Honda, L.; Perkins, J.; Sun, Sheng

    As the population of space debris in orbit around the Earth grows, the probability for catastrophic collisions increases. Many agencies such as the IADC, FCC, and UN have proposed space debris mitigation guidelines or recommendations. For example, a minimum increase in perigee altitude of 235km + (1000 Cr A / m) where Cr is the solar radiation pressure coefficient, A/m is the aspect area to dry mass ratio, and 235 km is the sum of the upper altitude of the geostationary orbit (GEO) protected region (200 km) and the maximum descent of a re-orbited spacecraft due to lunar-solar & geopotential perturbations (35 km) with an eccentricity less than or equal to 0.003. While this particular recommendation is reasonably straightforward, the assumptions an operator chooses may change the result by 25 km. Other recommendations are more ambiguous. For example, once the space vehicle has been de-orbited to the required altitude, all on-board stored energy sources must be discharged by venting propellants and pressurants, discharging batteries and disabling the ability to charge them, and performing other appropriate measures. “ Vented” is not usually defined. In addition, the broadcasting capability of the spacecraft must be disabled. Boeing and its customers are working together to devise de-orbit and deactivation sequences that meet the spirit of the recommendations. This paper derives and proposes a generic minimum deorbit altitude, appropriate depletion and venting pressures based on tank design, propellant and pressurant type, and an acceptable shutdown procedure and final configuration that avoid interference with those still in the GEO belt well into the future. The goal of this paper is to open a dialogue with the global community to establish reasonable guidelines that are straightforward, safe, and achievable before an absolute requirement is set.

  11. Density functional perturbational orbital theory of spin polarization in electronic systems. II. Transition metal dimer complexes.

    Science.gov (United States)

    Seo, Dong-Kyun

    2007-11-14

    We present a theoretical scheme for a semiquantitative analysis of electronic structures of magnetic transition metal dimer complexes within spin density functional theory (DFT). Based on the spin polarization perturbational orbital theory [D.-K. Seo, J. Chem. Phys. 125, 154105 (2006)], explicit spin-dependent expressions of the spin orbital energies and coefficients are derived, which allows to understand how spin orbitals form and change their energies and shapes when two magnetic sites are coupled either ferromagnetically or antiferromagnetically. Upon employment of the concept of magnetic orbitals in the active-electron approximation, a general mathematical formula is obtained for the magnetic coupling constant J from the analytical expression for the electronic energy difference between low-spin broken-symmetry and high-spin states. The origin of the potential exchange and kinetic exchange terms based on the one-electron picture is also elucidated. In addition, we provide a general account of the DFT analysis of the magnetic exchange interactions in compounds for which the active-electron approximation is not appropriate.

  12. Random matrix theory for closed quantum dots with weak spin-orbit coupling.

    Science.gov (United States)

    Held, K; Eisenberg, E; Altshuler, B L

    2003-03-14

    To lowest order in the coupling strength, the spin-orbit coupling in quantum dots results in a spin-dependent Aharonov-Bohm flux. This flux decouples the spin-up and spin-down random matrix theory ensembles of the quantum dot. We employ this ensemble and find significant changes in the distribution of the Coulomb blockade peak height, in particular, a decrease of the width of the distribution. The puzzling disagreement between standard random matrix theory and the experimental distributions by Patel et al. [Phys. Rev. Lett. 81, 5900 (1998)

  13. Saturn's inner satellites: Orbits, masses, and the chaotic motion of atlas from new Cassini imaging observations

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, N. J.; Murray, C. D. [Astronomy Unit, School of Physics and Astronomy, Queen Mary University of London, Mile End Road, London, E1 4NS (United Kingdom); Renner, S. [Université Lille 1, Laboratoire d' Astronomie de Lille (LAL), 1 impasse de l' Observatoire, F-59000 Lille (France); Evans, M. W. [Department of Astronomy, Cornell University, Ithaca, NY 14853 (United States)

    2015-01-01

    We present numerically derived orbits and mass estimates for the inner Saturnian satellites, Atlas, Prometheus, Pandora, Janus, and Epimetheus from a fit to 2580 new Cassini Imaging Science Subsystem astrometric observations spanning 2004 February to 2013 August. The observations are provided as machine-readable and Virtual Observatory tables. We estimate GM{sub Atlas} = (0.384 ± 0.001) × 10{sup −3} km{sup 3} s{sup −2}, a value 13% smaller than the previously published estimate but with an order of magnitude reduction in the uncertainty. We also find GM{sub Prometheus} = (10.677 ± 0.006) × 10{sup −3} km{sup 3} s{sup −2}, GM{sub Pandora} = (9.133 ± 0.009) × 10{sup −3} km{sup 3} s{sup −2}, GM{sub Janus} = (126.51 ± 0.03) × 10{sup −3} km{sup 3} s{sup −2}, and GM{sub Epimetheus} = (35.110 ± 0.009) × 10{sup −3} km{sup 3} s{sup −2}, consistent with previously published values, but also with significant reductions in uncertainties. We show that Atlas is currently librating in both the 54:53 co-rotation-eccentricity resonance (CER) and the 54:53 inner Lindblad (ILR) resonance with Prometheus, making it the latest example of a coupled CER-ILR system, in common with the Saturnian satellites Anthe, Aegaeon, and Methone, and possibly Neptune's ring arcs. We further demonstrate that Atlas's orbit is chaotic, with a Lyapunov time of ∼10 years, and show that its chaotic behavior is a direct consequence of the coupled resonant interaction with Prometheus, rather than being an indirect effect of the known chaotic interaction between Prometheus and Pandora. We provide an updated analysis of the second-order resonant perturbations involving Prometheus, Pandora, and Epimetheus based on the new observations, showing that these resonant arguments are librating only when Epimetheus is the innermost of the co-orbital pair, Janus and Epimetheus. We also find evidence that the known chaotic changes in the orbits of Prometheus and Pandora are not

  14. Saturnʼs Inner Satellites: Orbits, Masses, and the Chaotic Motion of Atlas from New Cassini Imaging Observations

    Science.gov (United States)

    Cooper, N. J.; Renner, S.; Murray, C. D.; Evans, M. W.

    2015-01-01

    We present numerically derived orbits and mass estimates for the inner Saturnian satellites, Atlas, Prometheus, Pandora, Janus, and Epimetheus from a fit to 2580 new Cassini Imaging Science Subsystem astrometric observations spanning 2004 February to 2013 August. The observations are provided as machine-readable and Virtual Observatory tables. We estimate G{{M}Atlas} = (0.384 ± 0.001) × 10-3 km3 s-2, a value 13% smaller than the previously published estimate but with an order of magnitude reduction in the uncertainty. We also find G{{M}Prometheus} = (10.677 ± 0.006) × 10-3 km3 s-2, G{{M}Pandora} = (9.133 ± 0.009) × 10-3 km3 s-2, G{{M}Janus} = (126.51 ± 0.03) × 10-3 km3 s-2, and G{{M}Epimetheus} = (35.110 ± 0.009) × 10-3 km3 s-2, consistent with previously published values, but also with significant reductions in uncertainties. We show that Atlas is currently librating in both the 54:53 co-rotation-eccentricity resonance (CER) and the 54:53 inner Lindblad (ILR) resonance with Prometheus, making it the latest example of a coupled CER-ILR system, in common with the Saturnian satellites Anthe, Aegaeon, and Methone, and possibly Neptune's ring arcs. We further demonstrate that Atlas's orbit is chaotic, with a Lyapunov time of ˜10 years, and show that its chaotic behavior is a direct consequence of the coupled resonant interaction with Prometheus, rather than being an indirect effect of the known chaotic interaction between Prometheus and Pandora. We provide an updated analysis of the second-order resonant perturbations involving Prometheus, Pandora, and Epimetheus based on the new observations, showing that these resonant arguments are librating only when Epimetheus is the innermost of the co-orbital pair, Janus and Epimetheus. We also find evidence that the known chaotic changes in the orbits of Prometheus and Pandora are not confined to times of apse anti-alignment.

  15. An Approach for Optimizing the On-Orbit Servicing Architecture for a Given Client Satellite Constellation

    Science.gov (United States)

    2005-03-01

    In February of 1980, NASA launched the Solar Maximum Mission spacecraft to collect observations of solar flares, sunspots, magnetic fields, and the...spacecraft autonomously delivered supplies to and returned waste from the Mir space station, the second generation of Russian manned orbiting facilities...Vehicle Routing Problems The classic vehicle routing problem ( VRP ) is a combinatorial optimization problem that minimizes the cost of routing a

  16. The impact of orbital sampling, monthly averaging and vertical resolution on climate chemistry model evaluation with satellite observations

    Directory of Open Access Journals (Sweden)

    A. M. Aghedo

    2011-07-01

    Full Text Available Ensemble climate model simulations used for the Intergovernmental Panel on Climate Change (IPCC assessments have become important tools for exploring the response of the Earth System to changes in anthropogenic and natural forcings. The systematic evaluation of these models through global satellite observations is a critical step in assessing the uncertainty of climate change projections. This paper presents the technical steps required for using nadir sun-synchronous infrared satellite observations for multi-model evaluation and the uncertainties associated with each step. This is motivated by need to use satellite observations to evaluate climate models. We quantified the implications of the effect of satellite orbit and spatial coverage, the effect of variations in vertical sensitivity as quantified by the observation operator and the impact of averaging the operators for use with monthly-mean model output. We calculated these biases in ozone, carbon monoxide, atmospheric temperature and water vapour by using the output from two global chemistry climate models (ECHAM5-MOZ and GISS-PUCCINI and the observations from the Tropospheric Emission Spectrometer (TES instrument on board the NASA-Aura satellite from January 2005 to December 2008.

    The results show that sampling and monthly averaging of the observation operators produce zonal-mean biases of less than ±3 % for ozone and carbon monoxide throughout the entire troposphere in both models. Water vapour sampling zonal-mean biases were also within the insignificant range of ±3 % (that is ±0.14 g kg−1 in both models. Sampling led to a temperature zonal-mean bias of ±0.3 K over the tropical and mid-latitudes in both models, and up to −1.4 K over the boundary layer in the higher latitudes. Using the monthly average of temperature and water vapour operators lead to large biases over the boundary layer in the southern-hemispheric higher latitudes and in the upper

  17. The impact of orbital sampling, monthly averaging and vertical resolution on climate chemistry model evaluation with satellite observations

    Directory of Open Access Journals (Sweden)

    A. M. Aghedo

    2011-03-01

    Full Text Available Ensemble climate model simulations used for the Intergovernmental Panel on Climate Change (IPCC assessments have become important tools for exploring the response of the Earth System to changes in anthropogenic and natural forcings. The systematic evaluation of these models through global satellite observations is a critical step in assessing the uncertainty of climate change projections. This paper presents the technical steps required for using nadir sun-synchronous infrared satellite observations for multi-model evaluation and the uncertainties associated with each step. This is motivated by need to use satellite observations to evaluate climate models. We quantified the implications of the effect of satellite orbit and spatial coverage, the effect of variations in vertical sensitivity as quantified by the observation operator and the impact of averaging the operators for use with monthly-mean model output. We calculated these biases in ozone, carbon monoxide, atmospheric temperature and water vapour by using the output from two global chemistry climate models (ECHAM5-MOZ and GISS-PUCCINI and the observations from the Tropospheric Emission Spectrometer (TES satellite from January 2005 to December 2008.

    The results show that sampling and monthly averaging of the observation operators produce biases of less than ±3% for ozone and carbon monoxide throughout the entire troposphere in both models. Water vapour sampling biases were also within the insignificant range of ±3% (that is ±0.14 g kg−1 in both models. Sampling led to a temperature bias of ±0.3 K over the tropical and mid-latitudes in both models, and up to −1.4 K over the boundary layer in the higher latitudes. Using the monthly average of temperature and water vapour operators lead to large biases over the boundary layer in the southern-hemispheric higher latitudes and in the upper troposphere, respectively. Up to 8% bias was calculated in the upper

  18. Characterizing the Effects of Low Order Perturbations on Geodetic Satellite Precision Orbit Determination

    Science.gov (United States)

    2015-08-07

    relativistic corrections comprise of Schwarzschild terms, Lense- Thirring precession (frame-dragging), and de Sitter ( geodesic ) precession. The Schwarzschild...Lense-Thirring, and de Sitter terms can be seen on lines 1, 2, and 3 respectively in Equation 1.13 ∆ −→̈ r = GME c2r3 {[ 2(β + γ) GME r − γ−→̇r · −→̇r...satellite. Figure 3. RSS Position Differences for Various Lunar Gravity Field Model Solutions It can be seen that all four lines representing each RSS

  19. Dynamic kinetic energy potential for orbital-free density functional theory.

    Science.gov (United States)

    Neuhauser, Daniel; Pistinner, Shlomo; Coomar, Arunima; Zhang, Xu; Lu, Gang

    2011-04-14

    A dynamic kinetic energy potential (DKEP) is developed for time-dependent orbital-free (TDOF) density function theory applications. This potential is constructed to affect only the dynamical (ω ≠ 0) response of an orbital-free electronic system. It aims at making the orbital-free simulation respond in the same way as that of a noninteracting homogenous electron gas (HEG), as required by a correct kinetic energy, therefore enabling extension of the success of orbital-free density functional theory in the static case (e.g., for embedding and description of processes in bulk materials) to dynamic processes. The potential is constructed by expansions of terms, each of which necessitates only simple time evolution (concurrent with the TDOF evolution) and a spatial convolution at each time-step. With 14 such terms a good fit is obtained to the response of the HEG at a large range of frequencies, wavevectors, and densities. The method is demonstrated for simple jellium spheres, approximating Na(9)(+) and Na(65)(+) clusters. It is applicable both to small and large (even ultralarge) excitations and the results converge (i.e., do not blow up) as a function of time. An extension to iterative frequency-resolved extraction is briefly outlined, as well as possibly numerically simpler expansions. The approach could also be extended to fit, instead of the HEG susceptibility, either an experimental susceptibility or a theoretically derived one for a non-HEG system. The DKEP potential should be a powerful tool for embedding a dynamical system described by a more accurate method (such as time-dependent density functional theory, TDDFT) in a large background described by TDOF with a DKEP potential. The type of expansions used and envisioned should be useful for other approaches, such as memory functionals in TDDFT. Finally, an appendix details the formal connection between TDOF and TDDFT.

  20. Secular resonances between bodies on close orbits: a case study of the Himalia prograde group of jovian irregular satellites

    Science.gov (United States)

    Li, Daohai; Christou, Apostolos A.

    2016-06-01

    The gravitational interaction between two objects on similar orbits can effect noticeable changes in the orbital evolution even if the ratio of their masses to that of the central body is vanishingly small. Christou (Icarus 174:215-229, 2005) observed an occasional resonant lock in the differential node Δ Ω between two members in the Himalia irregular satellite group of Jupiter in the N-body simulations (corresponding mass ratio ˜ 10^{-9}). Using a semianalytical approach, we have reproduced this phenomenon. We also demonstrate the existence of two additional types of resonance, involving angle differences Δ ω and Δ (Ω +π) between two group members. These resonances cause secular oscillations in eccentricity and/or inclination on timescales ˜ 1 Myr. We locate these resonances in ( a, e, i) space and analyse their topological structure. In subsequent N-body simulations, we confirm these three resonances and find a fourth one involving Δ π. In addition, we study the occurrence rates and the stability of the four resonances from a statistical perspective by integrating 1000 test particles for 100 Myr. We find ˜ 10 to 30 librators for each of the resonances. Particularly, the nodal resonance found by Christou is the most stable: 2 particles are observed to stay in libration for the entire integration.

  1. Research on the Orbit Keeping of Satellite%卫星运行轨道保持研究

    Institute of Scientific and Technical Information of China (English)

    冯艳; 张忠峰

    2011-01-01

    With the known control law, the initial value range of state variables are determined by genetic algorithm.Then fixed point can be accurately obtained by Newton-Raphson's iteration.Finally attraction region of fixed point of orbit keeping is obtained by cell-to-cell mapping method.The results indicate that the orbit of satellite can keep if the state variables and control law satisfy given conditions.%在控制量已知的条件下,首先用遗传算法确定了卫星轨道保持所需初始状态量的范围,再用Newton-Raphson迭代法精确求得不动点,最后用胞映射法计算得到轨道保持不动点的吸引域.结果表明:只要控制量和状态量满足特定条件,卫星的运行轨道就能保持.

  2. Astrometric studies of the results of a new reduction of old photographic observations of the Saturnian System based on the comparison with the modern theories of satellite motion

    Science.gov (United States)

    Kiseleva, T. P.; Vasil'eva, T. A.; Roshchina, E. A.; Izmailov, I. S.

    2016-11-01

    The paper shows the possibility of increasing the accuracy of the results of photographic observations of Saturn and its moons made in the 1970s and reduced using the old reference star catalogues and semiautomatic measurements. New celestial coordinates of the moons (from the third to the eighth), "satellite minus satellite" relative moon coordinates, and Saturn coordinates by positions of satellites are obtained without measuring its images. The results are stored in the Pulkovo Observatory database on the Solar System bodies and are available online at www.puldb.ru. The efficiency of the reduction method based on digitizing of astronegatives using 21 Mpx Canon digital camera and IZMCCD software is shown. The comparison of new results of old observations with the latest theories of moon motion has revealed a significant increase in satellite positioning accuracy. The investigation of the differences (O-C) of celestial coordinates from satellite positions in their apparent Saturn-centric orbits has revealed a noticeable motion of the differences (O-C) in right ascension depending on their distances from Saturn for all moons.

  3. Onboard and Real-Time Artificial Satellite Orbit Determination Using GPS

    Directory of Open Access Journals (Sweden)

    Ana Paula Marins Chiaradia

    2013-01-01

    Full Text Available An algorithm for real-time and onboard orbit determination applying the Extended Kalman Filter (EKF method is developed. Aiming at a very simple and still fairly accurate orbit determination, an analysis is performed to ascertain an adequacy of modeling complexity versus accuracy. The minimum set of to-be-estimated states to reach the level of accuracy of tens of meters is found to have at least the position, velocity, and user clock offset components. The dynamical model is assessed through several tests, covering force model, numerical integration scheme and step size, and simplified variational equations. The measurement model includes only relevant effects to the order of meters. The EKF method is chosen to be the simplest real-time estimation algorithm with adequate tuning of its parameters. In the developed procedure, the obtained position and velocity errors along a day vary from 15 to 20 m and from 0.014 to 0.018 m/s, respectively, with standard deviation from 6 to 10 m and from 0.006 to 0.008 m/s, respectively, with the SA either on or off. The results, as well as analysis of the final adopted models used, are presented in this work.

  4. Visualization tools for extremely high resolution DEM from the LRO and other orbiter satellites

    Science.gov (United States)

    Montgomery, J.; McDonald, John

    2012-10-01

    Recent space missions have included laser altimetry instrumentation that provides precise high-resolution global topographic data products. These products are critical in analyzing geomorphological surface processes of planets and moons. Although highly valued, the high-resolution data is often overlooked by researchers due to the high level of IT sophistication necessary to use the high-resolution data products, which can be as large as several hundred gigabytes. Researchers have developed software tools to assist in viewing and manipulating data products derived from altimetry data, however current software tools require substantial off-line processing, provide rudimentary visualization or are not suited for viewing the new high-resolution data. We have adapted mVTK, a novel software visualization tool, to work with NASA's recently acquired Lunar Reconnaissance Orbiter data. mVTK is a software visualization package that dynamically creates cylindrical cartographic map projections from gridded high-resolution altimetry data in real-time. The projections are interactive 2D shade relief, false color maps that allow the user to make simple slope and distance measurements on the actual underlying high-resolution data. We have tested mVTK on several laser altimetry data sets including binned gridded record data from NASA's Mars Global Surveyor and Lunar Reconnaissance Orbiter space missions.

  5. Adsorptive interaction of certain beta-lactam antibiotics in aqueous solution. Interpretation by frontier orbital theory

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Monali; Dutta, Narendra N. [Regional Research Laboratory, Assam (Indonesia). Chemical Engineering Division; Bhattacharyya, K.G. [Guwahati University, Gauhati (Indonesia). Chemistry Department

    2000-04-01

    The adsorption of certain beta-lactam antibiotics such as 7-aminocephalosporanic acid, 7-aminodeacetoxy cephalosporanic acid, cephalexin, cefadroxyl, cephalosporin-C, and 6-aminopenicillanic acid in aqueous solution is studied using two different types of polymeric resins and activated carbon as the adsorbents. Adsorption affinity expresses as the slope of the linear region of the isotherm for a solute is found to be different for different adsorbents, and this difference can be interpreted from sorbent surface chemistry and morphological structure. The adsorptive interaction on the polymeric resins and activated carbon was computed based on the Frontier Orbital Theory. Electronic states of the adsorbent and adsorbate were calculated using the semiempirical molecular orbital (MO) method from which the characteristic energy of adsorption in aqueous solution was estimated. Adsorption affinity was correlated by the ratio of characteristic energy to that of the reference adsorbate. It was found that charge transfer interaction plays an important role in the adsorption of beta-lactams in aqueous solution. The experimentally measured enthalpy of adsorption was also correlated by the ratio of the characteristic energy to that of the reference adsorbate. The enthalpy of adsorption seems to correlate well with the adsorptive interaction energy computed from molecular orbital theory. (author)

  6. Four-component relativistic theory for nuclear magnetic shielding: magnetically balanced gauge-including atomic orbitals.

    Science.gov (United States)

    Cheng, Lan; Xiao, Yunlong; Liu, Wenjian

    2009-12-28

    It is recognized only recently that the incorporation of the magnetic balance condition is absolutely essential for four-component relativistic theories of magnetic properties. Another important issue to be handled is the so-called gauge problem in calculations of, e.g., molecular magnetic shielding tensors with finite bases. It is shown here that the magnetic balance can be adapted to distributed gauge origins, leading to, e.g., magnetically balanced gauge-including atomic orbitals (MB-GIAOs) in which each magnetically balanced atomic orbital has its own local gauge origin placed on its center. Such a MB-GIAO scheme can be combined with any level of theory for electron correlation. The first implementation is done here at the coupled-perturbed Dirac-Kohn-Sham level. The calculated molecular magnetic shielding tensors are not only independent of the choice of gauge origin but also converge rapidly to the basis set limit. Close inspections reveal that (zeroth order) negative energy states are only important for the expansion of first order electronic core orbitals. Their contributions to the paramagnetism are therefore transferable from atoms to molecule and are essentially canceled out for chemical shifts. This allows for simplifications of the coupled-perturbed equations.

  7. Time and frequency requirement for the earth and ocean physics applications program. [characteristics and orbital mechanics of artificial satellites for data acquisition

    Science.gov (United States)

    Vonbun, F. O.

    1972-01-01

    The application of time and frequency standards to the Earth and Ocean Physics Applications Program (EOPAP) is discussed. The goals and experiments of the EOPAP are described. Methods for obtaining frequency stability and time synchronization are analyzed. The orbits, trajectories, and characteristics of the satellites used in the program are reported.

  8. The Effects of Using Solar Radiation Pressure to Alleviate Fuel Requirements for Orbit Changing and Maintenance of the DSCS II F-13 Satellite

    Science.gov (United States)

    2006-03-01

    of Aeronautics and Astronautics Graduate School of Engineering and Management Air Force Institute of Technology Air University Air Education and...Space Operations Center ( SPOC ) and other space partners of all conjunctions associated with disposal operations. 5. Post Mission Disposal. Satellites... Education Series, American Institute of Aeronautics and Astronautics, 1987. 3. Betts J. T. “Optimal Interplanetary Orbit Transfers by Direct

  9. ASC Champ Orbit Model

    DEFF Research Database (Denmark)

    Riis, Troels; Jørgensen, John Leif

    1999-01-01

    This documents describes a test of the implementation of the ASC orbit model for the Champ satellite.......This documents describes a test of the implementation of the ASC orbit model for the Champ satellite....

  10. Fast converging with high accuracy estimates of satellite attitude and orbit based on magnetometer augmented with gyro, star sensor and GPS via extended Kalman filter

    Directory of Open Access Journals (Sweden)

    Tamer Mekky Ahmed Habib

    2011-12-01

    Full Text Available The primary goal of this work is to extend the work done in, Tamer (2009, to provide high accuracy satellite attitude and orbit estimates needed for imaging purposes and also before execution of spacecraft orbital maneuvers for the next Egyptian scientific satellite. The problem of coarse satellite attitude and orbit estimation based on magnetometer measurements has been treated in the literature. The current research expands the field of application from coarse and slow converging estimates to accurate and fast converging attitude and orbit estimates within 0.1°, and 10 m for attitude angles and spacecraft location respectively (1-σ. The magnetometer is used for both spacecraft attitude and orbit estimation, aided with gyro to provide angular velocity measurements, star sensor to provide attitude quaternion, and GPS receiver to provide spacecraft location. The spacecraft under consideration is subject to solar radiation pressure forces and moments, aerodynamics forces and moments, earth’s oblateness till the fourth order (i.e. J4, gravity gradient moments, and residual magnetic dipole moments. The estimation algorithm developed is powerful enough to converge quickly (actually within 10 s despite very large initial estimation errors with sufficiently high accuracy estimates.

  11. The rotational motion of an earth orbiting gyroscope according to the Einstein theory of general relativity

    Science.gov (United States)

    Hoots, F. R.; Fitzpatrick, P. M.

    1979-01-01

    The classical Poisson equations of rotational motion are used to study the attitude motions of an earth orbiting, rapidly spinning gyroscope perturbed by the effects of general relativity (Einstein theory). The center of mass of the gyroscope is assumed to move about a rotating oblate earth in an evolving elliptic orbit which includes all first-order oblateness effects produced by the earth. A method of averaging is used to obtain a transformation of variables, for the nonresonance case, which significantly simplifies the Poisson differential equations of motion of the gyroscope. Long-term solutions are obtained by an exact analytical integration of the simplified transformed equations. These solutions may be used to predict both the orientation of the gyroscope and the motion of its rotational angular momentum vector as viewed from its center of mass. The results are valid for all eccentricities and all inclinations not near the critical inclination.

  12. Non-sequential double ionization with time-dependent renormalized natural orbital theory

    CERN Document Server

    Brics, M; Bauer, D

    2014-01-01

    Recently introduced time-dependent renormalized natural orbital theory (TDRNOT) is tested on non-sequential double ionization (NSDI) of a numerically exactly solvable one-dimensional model He atom subject to few-cycle, 800-nm laser pulses. NSDI of atoms in strong laser fields is a prime example of non-perturbative, highly correlated electron dynamics. As such, NSDI is an important "worst-case" benchmark for any time-dependent few and many-body technique beyond linear response. It is found that TDRNOT reproduces the celebrated NSDI "knee," i.e., a many-order-of-magnitude enhancement of the double ionization yield (as compared to purely sequential ionization) with only the ten most significant natural orbitals (NOs) per spin. Correlated photoelectron spectra - as "more differential" observables - require more NOs.

  13. Time-dependent density functional theory using atomic orbitals and the self-consistent Sternheimer equation

    Science.gov (United States)

    Hübener, Hannes; Giustino, Feliciano

    2014-02-01

    We present the implementation of linear-response time-dependent density functional theory based on the self-consistent Sternheimer equation and employing a basis set of numerical pseudo-atomic orbitals. We demonstrate this method by presenting test calculations on systems of increasing size ranging from benzene to chlorophyll a, and by comparing our results with those obtained within Casida's formalism and with previous calculations. We provide a detailed assessment of the accuracy of this method, both in relation to the use of local orbitals for describing electronic excitations and to the handling of the frequency response using Padé approximants. We establish a simple criterion for estimating a priori the accuracy of the basis set in the calculation of optical spectra. We show that the computational cost of this method scales quadratically with the system size.

  14. Stimulated Radiative Molecular Association in the Early Solar System. II. Orbital Radii of the Planets and Other Satellites of the Sun

    CERN Document Server

    Lombardi, James C

    2015-01-01

    In a previous investigation, the orbital radii of regular satellites of Uranus, Jupiter, Neptune, and Saturn are shown to be directly related to photon energies in the spectra of atomic and molecular hydrogen. To explain these observations a model was developed involving stimulated radiative molecular association (SRMA) reactions among photons and atoms in the protosatellite disks of the planets. In the present investigation, the previously developed model is applied to the planets and important satellites of the Sun. A key component of the model involves resonance associated with SRMA. Through this resonance, thermal energy is extracted from the protosun's protoplanetary disk at specific distances from the protosun wherever there is a match between the local thermal energy of the disk and the energy of photons impinging on the disk. Orbital radii of the planets and satellites are related to photon energies ($E_P$ values) in the spectrum of atomic hydrogen. An expression determined previously is used to relat...

  15. Origin of Lα{sup x} satellite in the light rare earths on the basis of plasmon theory

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Manjula, E-mail: rainbow-mjain@yahoo.co.in [Physics Department, Madhav Science College, Ujjain – 456010 (India); Shrivastava, B. D., E-mail: rashmibasant@gmail.com [School of Studies in Physics, Vikram University, Ujjain – 456010 (India)

    2015-07-31

    The origin of most of the X-ray satellites can be explained on the basis of multiple ionization theory. However, there are several satellites which can be explained on the basis of plasmon theory. When a plasmon is excited during the X-ray emission process, one can get a low energy satellite because energy is used up in exciting the plasmon oscillations in the electron gas. A plasmon on decay can also transfer its energy to the transiting electron which subsequently fills the core vacancy giving rise to a high energy satellite. In our laboratory, a new high energy satellite Lα{sup x} has been observed in the Lα - emission spectra of the oxides of some light rare earths on the high energy side of the diagram line Lα{sub 1}. In the present paper, the origin of this high energy satellite has been explained using the theory of plasma oscillations in solids. The energy separation of the satellite from the emission line Lα{sub 1} has been calculated and then compared with the theoretical separation based on the plasmon theory. The agreement between the theoretical and experimental values is found to be good. Hence, the observed satellite can be designated as plasmon satellite.

  16. Contribution Analysis of BDS/GPS Combined Orbit Determination

    Science.gov (United States)

    Zhang, Qin

    2016-07-01

    BeiDou Navigation Satellite System (BDS) does not have the ability of global navigation and positioning currently. The whole tracking observation of satellite orbit and the geometry of reference station are not perfect. These situations influence the accuracy of satellite orbit determination. Based on the theory and method of dynamic orbit determination, the analytical contribution of multi-GNSS combined orbit determination to the solution precision of parameters was derived. And using the measured data, the statistical contribution of BDS/GPS combined orbit determination to the solution precision of orbit and clock error was analyzed. The results show that the contribution of combined orbit determination to the solution precision of the common parameters between different systems was significant. The solution precisions of the orbit and clock error were significantly improved except GEO satellites. The statistical contribution of BDS/GPS combined orbit determination to the precision of BDS satellite orbit, the RMS of BDS satellite clock error and the RMS of receiver clock error were 36.21%, 26.88% and 20.88% respectively. Especially, the contribution to the clock error of receivers which were in the area with few visible satellites was particularly significant. And the statistical contribution was 45.95%.

  17. Study of the photoelectron and electron momentum spectra of cyclopentene using benchmark Dyson orbital theories.

    Science.gov (United States)

    Huang, Yan R; Ning, Chuan G; Deng, Jing K; Deleuze, Michael S

    2008-05-07

    A complete study of the valence electronic structure and related electronic excitation properties of cyclopentene in its C(s) ground state geometry is presented. Ionization spectra obtained from this compound by means of photoelectron spectroscopy (He I and He II) and electron momentum spectroscopy have been analyzed in details up to electron binding energies of 30 eV using one-particle Green's function (1p-GF) theory along with the outer-valence (OVGF) and the third-order algebraic diagrammatic construction [ADC(3)] schemes. The employed geometries derive from DFT/B3LYP calculations in conjunction with the aug-cc-pVTZ basis set, and closely approach the structures inferred from experiments employing microwave spectroscopy or electron diffraction in the gas phase. The 1p-GF/ADC(3) calculations indicate that the orbital picture of ionization breaks down at electron binding energies larger than approximately 17 eV in the inner-valence region, and that the outer-valence 7a' orbital is also subject to a significant dispersion of the ionization intensity over shake-up states. This study confirms further the rule that OVGF pole strengths smaller than 0.85 foretell a breakdown of the orbital picture of ionization at the ADC(3) level. Spherically averaged (e, 2e) electron momentum distributions at an electron impact energy of 1200 eV that were experimentally inferred from an angular analysis of EMS intensities have been interpreted by comparison with accurate simulations employing ADC(3) Dyson orbitals. Very significant discrepancies were observed with momentum distributions obtained from several outer-valence ionization bands using standard Kohn-Sham orbitals.

  18. New orbits of irregular satellites designed for the predictions of stellar occultations up to 2020, based on thousands of new observations

    Science.gov (United States)

    Gomes-Júnior, A. R.; Assafin, M.; Beauvalet, L.; Desmars, J.; Vieira-Martins, R.; Camargo, J. I. B.; Morgado, B. E.; Braga-Ribas, F.

    2016-10-01

    Gomes-Júnior et al. published 3613 positions for the eight largest irregular satellites of Jupiter and 1787 positions for the largest irregular satellite of Saturn, Phoebe. These observations were made between 1995 and 2014 and have an estimated error of about 60-80 mas. Based on this set of positions, we derived new orbits for the eight largest irregular satellites of Jupiter: Himalia, Elara, Pasiphae, Carme, Lysithea, Sinope, Ananke and Leda. For Phoebe we updated the ephemeris from Desmars et al. using 75 per cent more positions than the previous one. Because of their orbital characteristics, it is common belief that the irregular satellites were captured by the giant planets in the early Solar system, but there is no consensus for a single model explaining where they were formed. Size, shape, albedo and composition would help to trace back their true origin, but these physical parameters are yet poorly known for irregular satellites. The observation of stellar occultations would allow for the determination of such parameters. Indeed Jupiter will cross the galactic plane in 2019-2020 and Saturn in 2018, improving a lot the chances of observing such events in the near future. Using the derived ephemerides and the UCAC4 catalogue we managed to identify 5442 candidate stellar occultations between 2016 January and 2020 December for the nine satellites studied here. We discussed how the successful observation of a stellar occultation by these objects is possible and present some potential occultations.

  19. Attitude Control and Orbital Dynamics Challenges of Removing the First 3-Axis Stabilized Tracking and Data Relay Satellite from the Geosynchronous ARC

    Science.gov (United States)

    Benet, Charles A.; Hofman, Henry; Williams, Thomas E.; Olney, Dave; Zaleski, Ronald

    2011-01-01

    Launched on April 4, 1983 onboard STS 6 (Space Shuttle Challenger), the First Tracking and Data Relay Satellite (TDRS 1) was retired above the Geosynchronous Orbit (GEO) on June 27, 2010 after having provided real-time communications with a variety of low-orbiting spacecraft over a 26-year period. To meet NASA requirements limiting orbital debris 1, a team of experts was assembled to conduct an End-Of-Mission (EOM) procedure to raise the satellite 350 km above the GEO orbit. Following the orbit raising via conventional station change maneuvers, the team was confronted with having to deplete the remaining propellant and passivate all energy storage or generation sources. To accomplish these tasks within the time window, communications (telemetry and control links), electrical power, propulsion, and thermal constraints, a spacecraft originally designed as a three-axis stabilized satellite was turned into a spinner. This paper (a companion paper to Innovative Approach Enabled the Retirement of TDRS 1, paper # 1699, IEEE 2011 Aerospace Conference, March 5-12, 2011 sup 2) focuses on the challenges of maintaining an acceptable spinning dynamics, while repetitively firing thrusters. Also addressed are the effects of thruster firings on the orbit characteristics and how they were mitigated by a careful scheduling of the fuel depletion operations. Periodic thruster firings for spin rate adjustment, nutation damping, and precession of the momentum vector were also required in order to maintain effective communications with the satellite. All operations were thoroughly rehearsed and supported by simulations thus lending a high level of confidence in meeting the NASA EOM goals.

  20. Modelling and prediction of crop losses from NOAA polar-orbiting operational satellites

    Directory of Open Access Journals (Sweden)

    Felix Kogan

    2016-05-01

    Full Text Available Weather-related crop losses have always been a concern for farmers, governments, traders, and policy-makers for the purpose of balanced food supply/demands, trade, and distribution of aid to the nations in need. Among weather disasters, drought plays a major role in large-scale crop losses. This paper discusses utility of operational satellite-based vegetation health (VH indices for modelling cereal yield and for early warning of drought-related crop losses. The indices were tested in Saratov oblast (SO, one of the principal grain growing regions of Russia. Correlation and regression analysis were applied to model cereal yield from VH indices during 1982–2001. A strong correlation between mean SO's cereal yield and VH indices were found during the critical period of cereals, which starts two–three weeks before and ends two–three weeks after the heading stage. Several models were constructed where VH indices served as independent variables (predictors. The models were validated independently based on SO cereal yield during 1982–2012. Drought-related cereal yield losses can be predicted three months in advance of harvest and six–eight months in advance of official grain production statistic is released. The error of production losses prediction is 7%–10%. The error of prediction drops to 3%–5% in the years of intensive droughts.

  1. Highly accurate local pseudopotentials of Li, Na, and Mg for orbital free density functional theory

    Science.gov (United States)

    Legrain, Fleur; Manzhos, Sergei

    2015-02-01

    We present a method to make highly accurate pseudopotentials for use with orbital-free density functional theory (OF-DFT) with given exchange-correlation and kinetic energy functionals, which avoids the compounding of errors of Kohn-Sham DFT and OF-DFT. The pseudopotentials are fitted to reference (experimental or highly accurate quantum chemistry) values of interaction energies, geometries, and mechanical properties, using a genetic algorithm. This can enable routine large-scale ab initio simulations of many practically relevant materials. Pseudopotentials for Li, Na, and Mg resulting in accurate geometries and energies of different phases as well as of vacancy formation and bulk moduli are presented as examples.

  2. Orbital localization, charge transfer, and band gaps in semilocal density-functional theory.

    Science.gov (United States)

    Armiento, R; Kümmel, S

    2013-07-19

    We derive an exchange energy functional of generalized gradient form with a corresponding potential that changes discontinuously at integer particle numbers. The functional is semilocal, yet incorporates key features that are connected to the derivative discontinuity of Kohn-Sham density-functional theory. We validate our construction for several paradigm systems and explain how it addresses central well-known deficiencies of antecedent semilocal methods, i.e., the description of charge transfer, properly localized orbitals, and band gaps. We find, e.g., an improved shell structure for atoms, eigenvalues that more closely correspond to ionization energies, and an improved description of band structure where localized states are lowered in energy.

  3. Path Integral Molecular Dynamics for Hydrogen with Orbital-Free Density Functional Theory

    Science.gov (United States)

    Runge, Keith; Karasiev, Valentin; Deymier, Pierre

    2014-03-01

    The computational bottleneck for performing path-integral molecular dynamics (PIMD) for nuclei on a first principles electronic potential energy surface has been the speed with which forces from the electrons can be generated. Recent advances in orbital-free density functional theory (OF-DFT) not only allow for faster generation of first principles forces but also include the effects of temperature on the electron density. We will present results of calculations on hydrogen in warm dense matter conditions where the protons are described by PIMD and the electrons by OF-DFT. Work supported by U.S. Dept. of Energy, grant DE-SC0002139.

  4. Escape from intermittent repellers: periodic orbit theory for crossover from exponential to algebraic decay.

    Science.gov (United States)

    Dahlqvist, P

    1999-12-01

    We apply periodic orbit theory to study the asymptotic distribution of escape times from an intermittent map. The dynamical zeta function exhibits a branch point which is associated with an asymptotic power law escape. By an analytic continuation technique we compute a pair of complex conjugate zeroes beyond the branch point, associated with a preasymptotic exponential decay. The crossover time from an exponential to a power law is also predicted. The theoretical predictions are confirmed by numerical simulation. Applications to conductance fluctuations in quantum dots are discussed.

  5. Beyond Orbital-Motion-Limited theory effects for dust transport in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Delzanno, Gian Luca [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tang, Xianzhu [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-05-29

    Dust transport in tokamaks is very important for ITER. Can many kilograms of dust really accumulate in the device? Can the dust survive? The conventional dust transport model is based on Orbital-Motion-Limited theory (OML). But OML can break in the limit where the dust grain becomes positively charged due to electron emission processes because it overestimates the dust collected power. An OML+ approximation of the emitted electrons trapped/passing boundary is shown to be in good agreement with PIC simulations.

  6. Orbital functionals in density-matrix- and current-density-functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Helbig, N.

    2006-05-15

    Density-Functional Theory (DFT), although widely used and very successful in the calculation of several observables, fails to correctly describe strongly correlated materials. In the first part of this work we, therefore, introduce reduced-densitymatrix- functional theory (RDMFT) which is one possible way to treat electron correlation beyond DFT. Within this theory the one-body reduced density matrix (1- RDM) is used as the basic variable. Our main interest is the calculation of the fundamental gap which proves very problematic within DFT. In order to calculate the fundamental gap we generalize RDMFT to fractional particle numbers M by describing the system as an ensemble of an N and an N+1 particle system (with N{<=}M{<=}N+1). For each fixed particle number, M, the total energy is minimized with respect to the natural orbitals and their occupation numbers. This leads to the total energy as a function of M. The derivative of this function with respect to the particle number has a discontinuity at integer particle number which is identical to the gap. In addition, we investigate the necessary and sufficient conditions for the 1- RDM of a system with fractional particle number to be N-representable. Numerical results are presented for alkali atoms, small molecules, and periodic systems. Another problem within DFT is the description of non-relativistic many-electron systems in the presence of magnetic fields. It requires the paramagnetic current density and the spin magnetization to be used as basic variables besides the electron density. However, electron-gas-based functionals of current-spin-density-functional Theory (CSDFT) exhibit derivative discontinuities as a function of the magnetic field whenever a new Landau level is occupied, which makes them difficult to use in practice. Since the appearance of Landau levels is, intrinsically, an orbital effect it is appealing to use orbital-dependent functionals. We have developed a CSDFT version of the optimized

  7. Orbital-motion-limited theory of dust charging and plasma response

    CERN Document Server

    Tang, Xian-Zhu

    2015-01-01

    The foundational theory for dusty plasmas is the dust charging theory that provides the dust potential and charge arising from the dust interaction with a plasma. The most widely used dust charging theory for negatively charged dust particles is the so-called orbital motion limited (OML) theory, which predicts the dust potential and heat collection accurately for a variety of applications, but was previously found to be incapable of evaluating the dust charge and plasma response in any situation. Here we report a revised OML formulation that is able to predict the plasma response and hence the dust charge. Numerical solutions of the new OML model show that the widely-used Whipple approximation of dust charge-potential relationship agrees with OML theory in the limit of small dust radius compared with plasma Debye length, but incurs large (order-unity) deviation from the OML prediction when the dust size becomes comparable with or larger than plasma Debye length. This latter case is expected for the important ...

  8. Centimeter Precise Orbit Determination for SWARM Satellite via Reduced-dynamic Method%SWARM卫星简化动力学厘米级精密定轨

    Institute of Scientific and Technical Information of China (English)

    张兵兵; 聂琳娟; 吴汤婷; 冯建迪; 邱耀东

    2016-01-01

    联合星载GPS双频观测值与简化的动力学模型,在卫星运动方程中引入适当的伪随机脉冲参数,对SWARM卫星进行精密定轨.采用星载GPS相位观测值残差、重叠轨道以及与外部轨道对比等3种方法对SWARM卫星简化动力学定轨结果进行检核.结果表明:SWARM星载GPS相位观测值残差RMS为7~10mm;径向、切向以及法向6h重叠轨道差值RMS均在1cm左右,3个方向均无明显的系统误差.通过与欧空局(ESA)发布的精密轨道进行对比分析,径向轨道差值RMS为2~5cm,切向轨道差值RMS为2~5cm,法向轨道差值RMS为2~4cm,3D轨道差值RMS为4~7cm;SWARM-B定轨精度优于SWARM-A与SWARM-C.因此,采用简化动力学法与本文提供的定轨策略进行SWARM卫星精密定轨是切实可行的,定轨结果良好且稳定,定轨精度达到厘米级.%Combining dual-frequency satellite-borne GPS observations with reduced dynamic models,and introducing proper pseudo-stochastic pulse parameters into the satellite’s motion equation,SWARM satellite precise orbit determination is implemented.The orbit accuracy is assessed using three methods, which include analysis satellite-borne GPS phase observation residuals,orbit overlaps and external orbit comparisons.The results indicate that the SWARM satellite-borne GPS phase observation residual RMS is in the range of 7 to 10 mm,radial,along-track and cross-track orbit overlap difference RMS of 6 hours are about 1 cm,three directions have no significant systematic errors,comparisons with orbits computed by European Space Agency (ESA),Radial orbit difference RMS is in the range of 2 to 5 cm,along-track orbit difference RMS is in the range of 2 to 5 cm,cross-track orbit difference RMS is in the range of 2 to 4 cm,3D orbit difference RMS is in the range of 4 to 7 cm,SWARM-B orbit accuracy is better than SWARM-A and SWARM-C.This evaluations indicate that SWARM satellite precise orbit determination is practicable by using reduced

  9. Satellite Observations of Coastal Processes from a Geostationary Orbit: Application to estuarine, coastal, and ocean resource management

    Science.gov (United States)

    Tzortziou, M.; Mannino, A.; Schaeffer, B. A.

    2016-12-01

    Coastal areas are among the most vulnerable yet economically valuable ecosystems on Earth. Estuaries and coastal oceans are critically important as essential habitat for marine life, as highly productive ecosystems and a rich source of food for human consumption, as a strong economic driver for coastal communities, and as a highly dynamic interface between land and ocean carbon and nutrient cycles. Still, our present capabilities to remotely observe coastal ocean processes from space are limited in their temporal, spatial, and spectral resolution. These limitations, in turn, constrain our ability to observe and understand biogeochemical processes in highly dynamic coastal ecosystems, or predict their response and resilience to current and future pressures including sea level rise, coastal urbanization, and anthropogenic pollution.On a geostationary orbit, and with high spatial resolution and hyper-spectral capabilities, NASA's Decadal Survey mission GEO-CAPE (GEO-stationary for Coastal and Air Pollution Events) will provide, for the first time, a satellite view of the short-term changes and evolution of processes along the economically invaluable but, simultaneously, particularly vulnerable near-shore waters of the United States. GEO-CAPE will observe U.S. lakes, estuaries, and coastal regions at sufficient temporal and spatial scales to resolve near-shore processes, tides, coastal fronts, and eddies, track sediments and pollutants, capture diurnal biogeochemical processes and rates of transformation, monitor harmful algal blooms and large oil spills, observe episodic events and coastal hazards. Here we discuss the GEO-CAPE applications program and the new capabilities afforded by this future satellite mission, to identify potential user communities, incorporate end-user needs into future mission planning, and allow integration of science and management at the coastal interface.

  10. Relativistic theory of the Jahn-Teller effect: p-orbitals in tetrahedral and trigonal systems

    Science.gov (United States)

    Domcke, Wolfgang; Opalka, Daniel; Poluyanov, Leonid V.

    2016-03-01

    A relativistic generalization of Jahn-Teller theory is presented which includes spin-orbit coupling effects beyond low-order Taylor expansions in vibrational coordinates. For the example of a p-electron in tetrahedral and trigonal environments, the matrix elements of the Breit-Pauli spin-orbit-coupling operator are expressed in terms of the matrix elements of the electrostatic electronic potential. Employing expansions of the latter in invariant polynomials in symmetry-adapted nuclear coordinates, the spin-orbit induced Jahn-Teller coupling terms are derived for the T2 × (t2 + e) and (E + A) × (e + a) Jahn-Teller problems up to arbitrarily high orders. The linear G3/2 × (t2 + e) Jahn-Teller Hamiltonian of Moffitt and Thorson [Phys. Rev. 108, 1251 (1957)] for tetrahedral systems is generalized to higher orders in vibrational displacements. The Jahn-Teller Hamiltonians derived in the present work are useful for the interpolation and extrapolation of Jahn-Teller distorted potential-energy surfaces of molecules and complexes with heavy elements as well as for the calculation of vibronic spectra of such systems.

  11. Applying Dynamical Systems Theory to Optimize Libration Point Orbit Stationkeeping Maneuvers for WIND

    Science.gov (United States)

    Brown, Jonathan M.; Petersen, Jeremy D.

    2014-01-01

    NASA's WIND mission has been operating in a large amplitude Lissajous orbit in the vicinity of the interior libration point of the Sun-Earth/Moon system since 2004. Regular stationkeeping maneuvers are required to maintain the orbit due to the instability around the collinear libration points. Historically these stationkeeping maneuvers have been performed by applying an incremental change in velocity, or (delta)v along the spacecraft-Sun vector as projected into the ecliptic plane. Previous studies have shown that the magnitude of libration point stationkeeping maneuvers can be minimized by applying the (delta)v in the direction of the local stable manifold found using dynamical systems theory. This paper presents the analysis of this new maneuver strategy which shows that the magnitude of stationkeeping maneuvers can be decreased by 5 to 25 percent, depending on the location in the orbit where the maneuver is performed. The implementation of the optimized maneuver method into operations is discussed and results are presented for the first two optimized stationkeeping maneuvers executed by WIND.

  12. Embedded-cluster calculations in a numeric atomic orbital density-functional theory framework.

    Science.gov (United States)

    Berger, Daniel; Logsdail, Andrew J; Oberhofer, Harald; Farrow, Matthew R; Catlow, C Richard A; Sherwood, Paul; Sokol, Alexey A; Blum, Volker; Reuter, Karsten

    2014-07-14

    We integrate the all-electron electronic structure code FHI-aims into the general ChemShell package for solid-state embedding quantum and molecular mechanical (QM/MM) calculations. A major undertaking in this integration is the implementation of pseudopotential functionality into FHI-aims to describe cations at the QM/MM boundary through effective core potentials and therewith prevent spurious overpolarization of the electronic density. Based on numeric atomic orbital basis sets, FHI-aims offers particularly efficient access to exact exchange and second order perturbation theory, rendering the established QM/MM setup an ideal tool for hybrid and double-hybrid level density functional theory calculations of solid systems. We illustrate this capability by calculating the reduction potential of Fe in the Fe-substituted ZSM-5 zeolitic framework and the reaction energy profile for (photo-)catalytic water oxidation at TiO2(110).

  13. Embedded-cluster calculations in a numeric atomic orbital density-functional theory framework

    Science.gov (United States)

    Berger, Daniel; Logsdail, Andrew J.; Oberhofer, Harald; Farrow, Matthew R.; Catlow, C. Richard A.; Sherwood, Paul; Sokol, Alexey A.; Blum, Volker; Reuter, Karsten

    2014-07-01

    We integrate the all-electron electronic structure code FHI-aims into the general ChemShell package for solid-state embedding quantum and molecular mechanical (QM/MM) calculations. A major undertaking in this integration is the implementation of pseudopotential functionality into FHI-aims to describe cations at the QM/MM boundary through effective core potentials and therewith prevent spurious overpolarization of the electronic density. Based on numeric atomic orbital basis sets, FHI-aims offers particularly efficient access to exact exchange and second order perturbation theory, rendering the established QM/MM setup an ideal tool for hybrid and double-hybrid level density functional theory calculations of solid systems. We illustrate this capability by calculating the reduction potential of Fe in the Fe-substituted ZSM-5 zeolitic framework and the reaction energy profile for (photo-)catalytic water oxidation at TiO2(110).

  14. Recent progress in orbital-free density functional theory (recent advances in computational chemistry)

    CERN Document Server

    Wesolowski, Tomasz A

    2013-01-01

    This is a comprehensive overview of state-of-the-art computational methods based on orbital-free formulation of density functional theory completed by the most recent developments concerning the exact properties, approximations, and interpretations of the relevant quantities in density functional theory. The book is a compilation of contributions stemming from a series of workshops which had been taking place since 2002. It not only chronicles many of the latest developments but also summarises some of the more significant ones. The chapters are mainly reviews of sub-domains but also include original research. Readership: Graduate students, academics and researchers in computational chemistry. Atomic & molecular physicists, theoretical physicists, theoretical chemists, physical chemists and chemical physicists.

  15. Measurement-based perturbation theory and differential equation parameter estimation for high-precision high-resolution reconstruction of the Earth's gravitational field from satellite tracking measurements

    CERN Document Server

    Xu, Peiliang

    2016-01-01

    The numerical integration method has been routinely used to produce global standard gravitational models from satellite tracking measurements of CHAMP/GRACE types. It is implemented by solving the differential equations of the partial derivatives of a satellite orbit with respect to the unknown harmonic coefficients under the conditions of zero initial values. From the mathematical point of view, satellite gravimetry from satellite tracking is the problem of estimating unknown parameters in the Newton's nonlinear differential equations from satellite tracking measurements. We prove that zero initial values for the partial derivatives are incorrect mathematically and not permitted physically. The numerical integration method, as currently implemented and used in satellite gravimetry and statistics, is groundless. We use three different methods to derive new local solutions to the Newton's nonlinear governing differential equations of motion with a nominal reference orbit. Bearing in mind that satellite orbits ...

  16. Single-event and total-dose effects in geo-stationary transfer orbit during solar-activity maximum period measured by the Tsubasa satellite

    Science.gov (United States)

    Koshiishi, H.; Kimoto, Y.; Matsumoto, H.; Goka, T.

    The Tsubasa satellite developed by the Japan Aerospace Exploration Agency was launched in Feb 2002 into Geo-stationary Transfer Orbit GTO Perigee 500km Apogee 36000km and had been operated well until Sep 2003 The objective of this satellite was to verify the function of commercial parts and new technologies of bus-system components in space Thus the on-board experiments were conducted in the more severe radiation environment of GTO rather than in Geo-stationary Earth Orbit GEO or Low Earth Orbit LEO The Space Environment Data Acquisition equipment SEDA on board the Tsubasa satellite had the Single-event Upset Monitor SUM and the DOSimeter DOS to evaluate influences on electronic devices caused by radiation environment that was also measured by the particle detectors of the SEDA the Standard DOse Monitor SDOM for measurements of light particles and the Heavy Ion Telescope HIT for measurements of heavy ions The SUM monitored single-event upsets and single-event latch-ups occurred in the test sample of two 64-Mbit DRAMs The DOS measured accumulated radiation dose at fifty-six locations in the body of the Tsubasa satellite Using the data obtained by these instruments single-event and total-dose effects in GTO during solar-activity maximum period especially their rapid changes due to solar flares and CMEs in the region from L 1 1 through L 11 is discussed in this paper

  17. Comparison of Orbit-Based and Time-Offset-Based Geometric Correction Models for SAR Satellite Imagery Based on Error Simulation.

    Science.gov (United States)

    Hong, Seunghwan; Choi, Yoonjo; Park, Ilsuk; Sohn, Hong-Gyoo

    2017-01-17

    Geometric correction of SAR satellite imagery is the process to adjust the model parameters that define the relationship between ground and image coordinates. To achieve sub-pixel geolocation accuracy, the adoption of the appropriate geometric correction model and parameters is important. Until now, various geometric correction models have been developed and applied. However, it is still difficult for general users to adopt a suitable geometric correction models having sufficient precision. In this regard, this paper evaluated the orbit-based and time-offset-based models with an error simulation. To evaluate the geometric correction models, Radarsat-1 images that have large errors in satellite orbit information and TerraSAR-X images that have a reportedly high accuracy in satellite orbit and sensor information were utilized. For Radarsat-1 imagery, the geometric correction model based on the satellite position parameters has a better performance than the model based on time-offset parameters. In the case of the TerraSAR-X imagery, two geometric correction models had similar performance and could ensure sub-pixel geolocation accuracy.

  18. Comparison of Orbit-Based and Time-Offset-Based Geometric Correction Models for SAR Satellite Imagery Based on Error Simulation

    Science.gov (United States)

    Hong, Seunghwan; Choi, Yoonjo; Park, Ilsuk; Sohn, Hong-Gyoo

    2017-01-01

    Geometric correction of SAR satellite imagery is the process to adjust the model parameters that define the relationship between ground and image coordinates. To achieve sub-pixel geolocation accuracy, the adoption of the appropriate geometric correction model and parameters is important. Until now, various geometric correction models have been developed and applied. However, it is still difficult for general users to adopt a suitable geometric correction models having sufficient precision. In this regard, this paper evaluated the orbit-based and time-offset-based models with an error simulation. To evaluate the geometric correction models, Radarsat-1 images that have large errors in satellite orbit information and TerraSAR-X images that have a reportedly high accuracy in satellite orbit and sensor information were utilized. For Radarsat-1 imagery, the geometric correction model based on the satellite position parameters has a better performance than the model based on time-offset parameters. In the case of the TerraSAR-X imagery, two geometric correction models had similar performance and could ensure sub-pixel geolocation accuracy. PMID:28106729

  19. Comparison of Orbit-Based and Time-Offset-Based Geometric Correction Models for SAR Satellite Imagery Based on Error Simulation

    Directory of Open Access Journals (Sweden)

    Seunghwan Hong

    2017-01-01

    Full Text Available Geometric correction of SAR satellite imagery is the process to adjust the model parameters that define the relationship between ground and image coordinates. To achieve sub-pixel geolocation accuracy, the adoption of the appropriate geometric correction model and parameters is important. Until now, various geometric correction models have been developed and applied. However, it is still difficult for general users to adopt a suitable geometric correction models having sufficient precision. In this regard, this paper evaluated the orbit-based and time-offset-based models with an error simulation. To evaluate the geometric correction models, Radarsat-1 images that have large errors in satellite orbit information and TerraSAR-X images that have a reportedly high accuracy in satellite orbit and sensor information were utilized. For Radarsat-1 imagery, the geometric correction model based on the satellite position parameters has a better performance than the model based on time-offset parameters. In the case of the TerraSAR-X imagery, two geometric correction models had similar performance and could ensure sub-pixel geolocation accuracy.

  20. From horseshoe to quasi-satellite and back again: the curious dynamics of Earth co-orbital asteroid 2015 SO2

    CERN Document Server

    Marcos, C de la Fuente

    2015-01-01

    Earth co-orbitals of the horseshoe type are interesting objects to study for practical reasons. They are relatively easy to access from our planet and that makes them attractive targets for sample return missions. Here, we show that near-Earth asteroid (NEA) 2015 SO2 is a transient co-orbital to the Earth that experiences a rather peculiar orbital evolution characterised by recurrent, alternating horseshoe and quasi-satellite episodes. It is currently following a horseshoe trajectory, the ninth asteroid known to do so. Besides moving inside the 1:1 mean motion resonance with the Earth, it is subjected to a Kozai resonance with the value of the argument of perihelion librating around 270 degrees. Contrary to other NEAs, asteroid 2015 SO2 may have remained in the vicinity of Earth's co-orbital region for a few hundreds of thousands of years.

  1. Protocoles d'accès multiple orientés qualité de service en constellation de satellite à orbite basse

    OpenAIRE

    Ibrahim, Abbas

    2002-01-01

    Pendant les dernières années, le réseau cellulaire est devenu accessible presque partout. Pour compléter ce réseau cellulaire terrestre, plusieurs systèmes basés sur des satellites à basse orbite (LEO Low Earth Orbit) et moyenne orbite (MEO Medium Earth Orbit) ont été développés pour offrir une couverture globale. Les services multimédias sont largement demandés sur une échelle globale.Notre but est de développer une couche d'accès MAC au canal satellitaire tout en respectant les contraintes ...

  2. Explicitly correlated atomic orbital basis second order Møller-Plesset theory.

    Science.gov (United States)

    Hollman, David S; Wilke, Jeremiah J; Schaefer, Henry F

    2013-02-14

    The scope of problems treatable by ab initio wavefunction methods has expanded greatly through the application of local approximations. In particular, atomic orbital (AO) based wavefunction methods have emerged as powerful techniques for exploiting sparsity and have been applied to biomolecules as large as 1707 atoms [S. A. Maurer, D. S. Lambrecht, D. Flaig, and C. Ochsenfeld, J. Chem. Phys. 136, 144107 (2012)]. Correlated wavefunction methods, however, converge notoriously slowly to the basis set limit and, excepting the use of large basis sets, will suffer from a severe basis set incompleteness error (BSIE). The use of larger basis sets is prohibitively expensive for AO basis methods since, for example, second-order Møller-Plesset perturbation theory (MP2) scales linearly with the number of atoms, but still scales as O(N(5)) in the number of functions per atom. Explicitly correlated F12 methods have been shown to drastically reduce BSIE for even modestly sized basis sets. In this work, we therefore explore an atomic orbital based formulation of explicitly correlated MP2-F12 theory. We present working equations for the new method, which produce results identical to the widely used molecular orbital (MO) version of MP2-F12 without resorting to a delocalized MO basis. We conclude with a discussion of several possible approaches to a priori screening of contraction terms in our method and the prospects for a linear scaling implementation of AO-MP2-F12. The discussion includes concrete examples involving noble gas dimers and linear alkane chains.

  3. New orbits of irregular satellites designed for the predictions of stellar occultations up to 2020, based on thousands of new observations

    CERN Document Server

    Gomes-Júnior, A R; Beauvalet, L; Desmars, J; Vieira-Martins, R; Camargo, J I B; Morgado, B E; Braga-Ribas, F

    2016-01-01

    Gomes-J\\'unior et al. (2015) published 3613 positions for the 8 largest irregular satellites of Jupiter and 1787 positions for the largest irregular satellite of Saturn, Phoebe. These observations were made between 1995 and 2014 and have an estimated error of about 60 to 80 mas. Based on this set of positions, we derived new orbits for the eight largest irregular satellites of Jupiter: Himalia, Elara, Pasiphae, Carme, Lysithea, Sinope, Ananke and Leda. For Phoebe we updated the ephemeris from Desmars et al. (2013) using 75% more positions than the previous one. Due to their orbital characteristics, it is common belief that the irregular satellites were captured by the giant planets in the early Solar System, but there is no consensus for a single model explaining where they were formed. Size, shape, albedo and composition would help to trace back their true origin, but these physical parameters are yet poorly known for irregular satellites. The observation of stellar occultations would allow for the determina...

  4. The Elliott-Yafet theory of spin relaxation generalized for large spin-orbit coupling

    Science.gov (United States)

    Kiss, Annamária; Szolnoki, Lénard; Simon, Ferenc

    2016-03-01

    We generalize the Elliott-Yafet (EY) theory of spin relaxation in metals with inversion symmetry for the case of large spin-orbit coupling (SOC). The EY theory treats the SOC to the lowest order but this approach breaks down for metals of heavy elements (such as e.g. caesium or gold), where the SOC energy is comparable to the relevant band-band separation energies. The generalized theory is presented for a four-band model system without band dispersion, where analytic formulae are attainable for arbitrary SOC for the relation between the momentum- and spin-relaxation rates. As an extended description, we also consider an empirical pseudopotential approximation where SOC is deduced from the band potential (apart from an empirical scaling constant) and the spin-relaxation rate can be obtained numerically. Both approaches recover the usual EY theory for weak SOC and give that the spin-relaxation rate approaches the momentum-relaxation rate in the limit of strong SOC. We argue that this limit is realized in gold by analyzing spin relaxation data. A calculation of the g-factor shows that the empirical Elliott-relation, which links the g-factor and spin-relaxation rate, is retained even for strong SOC.

  5. LOOPUS Mob-D: System concept for a public mobile satellite system providing integrated digital services for the Northern Hemisphere from an elliptical orbit

    Science.gov (United States)

    Kuhlen, H.; Horn, P.

    1990-08-01

    A new concept for a satellite based public mobile communications system LOOPUS Mob-D is introduced where most of the 'classical' problems in mobile satellite systems are approached in a different way. The LOOPUS system will offer a total capacity of 6000 high rate channel in three service areas (Europe, Asia, and North America) covering the entire Northern Hemisphere with a set of group special mobile (GSM) compatible mobile services eventually providing the 'office in the car'. Special characteristics of the LOOPUS orbit and the communications network architecture are highlighted.

  6. Design of a Low-Cost Single-Board Computer System for Use In Low-Earth Orbit Small Satellite Missions

    OpenAIRE

    Milani, Dino

    1996-01-01

    A single-board computer system created specifically to meet the demands of a new generation of small satellite missions is being designed, built and tested by students at the University of New Hampshire. The Satellite Single-Board Computer (SSBC) is an Intel 80C186 based system that is qualified for explicit use in low-earth orbit missions. The SSBC serves as a low-cost, high-quality alternative to commercially available systems which are usually very costly and designed for much harsher spac...

  7. Accounting of fundamental components of the rotation parameters of the Earth in the formation of a high-accuracy orbit of navigation satellites

    Science.gov (United States)

    Markov, Yu. G.; Mikhailov, M. V.; Pochukaev, V. N.

    2012-07-01

    An analysis of perturbing factors influencing the motion of a navigation satellite (NS) is carried out, and the degree of influence of each factor on the GLONASS orbit is estimated. It is found that fundamental components of the Earth's rotation parameters (ERP) are one substantial factor commensurable with maximum perturbations. Algorithms for the calculation of orbital perturbations caused by these parameters are given; these algorithms can be implemented in a consumer's equipment. The daily prediction of NS coordinates is performed on the basis of real GLONASS satellite ephemerides transmitted to a consumer, using the developed prediction algorithms taking the ERP into account. The obtained accuracy of the daily prediction of GLONASS ephemerides exceeds by tens of times the accuracy of the daily prediction performed using algorithms recommended in interface control documents.

  8. Theoretical study on β-aminoacroleine; Density functional theory, atoms in molecules theory and natural bond orbitals studies

    Indian Academy of Sciences (India)

    Heidar Raissi; Mehdi Yoosefian; Effat Moshfeghi; Farzaneh Farzad

    2012-05-01

    The characteristics of the intramolecular hydrogen bonding for a series of 19 different derivatives of -aminoacroleine have been systematically analysed at the B3LYP/6-31G∗∗ level of theory. The topological properties of the electron density distributions for N-H$\\cdots$O intramolecular bridges have been analysed by the Bader theory of atoms in molecules. The electron density () and Laplacian (∇2 ρ) properties at critical points of the relevant bonds, estimated by AIM calculations, showed that N-H$\\cdots$O have low and positive character (∇2 ρ > 0), consistent with electrostatic character of the hydrogen bond. The vibrational study of the hydrogen bonded systems showed negative (red) shifts for the (N−H) stretching mode. The -electron delocalization parameter () as a geometrical indicator of a local aromaticity and the geometry-based HOMA have also been calculated. Furthermore, the analysis of hydrogen bond in this molecule and its derivatives by natural bond orbital (NBO) methods support the DFT results. The results of AIM and NBO analysis as well as (N−H) were further used for estimation of the hydrogen bonding interactions and the forces driving their formation. The various correlations were found between geometrical, energetic and topological parameters. The substituent effect was also analysed and it was found that the strongest hydrogen bonds exist for N+(CH3)3 and Cl substituents while the weakest ones for COOCH3.

  9. Real-space multiple-scattering theory of XMCD including spin-orbit interaction in scattering process

    Science.gov (United States)

    Koide, Akihiro; Niki, Kaori; Sakai, Seiji; Fujikawa, Takashi

    2016-05-01

    The effects of the spin-orbit interaction on surrounding atoms for XMCD spectra are studied by a real-space multiple-scattering theory. The present numerical calculation for Fe K-edge XMCD spectra from BCC iron demonstrates the importance of the spin-orbit interaction on scattering atoms, which has been disregarded in previous works. These effects will be inevitable for K-edge XMCD analyses of light elements surrounded by heavy magnetic atoms.

  10. Comparison of dust charging between Orbital-Motion-Limited theory and Particle-In-Cell simulations

    CERN Document Server

    Delzanno, Gian Luca

    2016-01-01

    The Orbital-Motion-Limited (OML) theory has been modified to predict the dust charge and the results were contrasted with the Whipple approximation [Tang and Delzanno, Phys. Plasmas 21, 123708 (2014)]. To further establish its regime of applicability, in this paper the OML predictions (for a non-electron-emitting, spherical dust grain at rest in a collisionless, unmagnetized plasma) are compared with Particle-In-Cell simulations that retain the absorption radius effect. It is found that for large dust grain radius $r_d$ relative to the plasma Debye length $\\lambda_D$, the revised OML theory remains a very good approximation as, for the parameters considered ($r_d/\\lambda_D\\le10$, equal electron and ion temperatures), it yields the dust charge to within $20\\%$ accuracy. This is a substantial improvement over the Whipple approximation. The dust collected currents and energy fluxes, which remain the same in the revised and standard OML theories, are accurate to within $15-30\\%$.

  11. Density functional resonance theory: complex density functions, convergence, orbital energies, and functionals.

    Science.gov (United States)

    Whitenack, Daniel L; Wasserman, Adam

    2012-04-28

    Aspects of density functional resonance theory (DFRT) [D. L. Whitenack and A. Wasserman, Phys. Rev. Lett. 107, 163002 (2011)], a recently developed complex-scaled version of ground-state density functional theory (DFT), are studied in detail. The asymptotic behavior of the complex density function is related to the complex resonance energy and system's threshold energy, and the function's local oscillatory behavior is connected with preferential directions of electron decay. Practical considerations for implementation of the theory are addressed including sensitivity to the complex-scaling parameter, θ. In Kohn-Sham DFRT, it is shown that almost all θ-dependence in the calculated energies and lifetimes can be extinguished via use of a proper basis set or fine grid. The highest occupied Kohn-Sham orbital energy and lifetime are related to physical affinity and width, and the threshold energy of the Kohn-Sham system is shown to be equal to the threshold energy of the interacting system shifted by a well-defined functional. Finally, various complex-scaling conditions are derived which relate the functionals of ground-state DFT to those of DFRT via proper scaling factors and a non-Hermitian coupling-constant system.

  12. New fire diurnal cycle characterizations to improve fire radiative energy assessments made from low-Earth orbit satellites sampling

    Science.gov (United States)

    Andela, N.; Kaiser, J. W.; van der Werf, G. R.; Wooster, M. J.

    2015-03-01

    Accurate near real time fire emissions estimates are required for air quality forecasts. To date, most approaches are based on satellite-derived estimates of fire radiative power (FRP), which can be converted to fire radiative energy (FRE) which is directly related to fire emissions. Uncertainties in these FRE estimations are often substantial. This is for a large part because the most often used low-Earth orbit satellite-based instruments like the MODerate-resolution Imaging Spectroradiometer (MODIS) have a relatively poor sampling of the usually pronounced fire diurnal cycle. In this paper we explore the spatial variation of this fire diurnal cycle and its drivers. Specifically, we assess how representing the fire diurnal cycle affects FRP and FRE estimations when using data collected at MODIS overpasses. Using data assimilation we explored three different methods to estimate hourly FRE, based on an incremental sophistication of parameterizing the fire diurnal cycle. We sampled data from the geostationary Meteosat Spinning Enhanced Visible and Infrared Imager (SEVIRI) at MODIS detection opportunities to drive the three approaches. The full SEVIRI time-series, providing full coverage of the diurnal cycle, were used to evaluate the results. Our study period comprised three years (2010-2012), and we focussed on Africa and the Mediterranean basin to avoid the use of potentially lower quality SEVIRI data obtained at very far off-nadir view angles. We found that the fire diurnal cycle varies substantially over the study region, and depends on both fuel and weather conditions. For example, more "intense" fires characterized by a fire diurnal cycle with high peak fire activity, long duration over the day, and with nighttime fire activity are most common in areas of large fire size (i.e., large burned area per fire event). These areas are most prevalent in relatively arid regions. Ignoring the fire diurnal cycle as done currently in some approaches caused structural

  13. On-orbit geometric calibration and geometric quality assessment for the high-resolution geostationary optical satellite GaoFen4

    Science.gov (United States)

    Wang, Mi; Cheng, Yufeng; Chang, Xueli; Jin, Shuying; Zhu, Ying

    2017-03-01

    The Chinese GaoFen4 (GF4) remote sensing satellite, launched at the end of December 2015, is China's first civilian high-resolution geostationary optical satellite and has the world's highest resolution from geostationary orbit. High accuracy geometric calibration is the key factor in the geometrical quality of satellite imagery. This paper proposes an on-orbit geometric calibration approach for the high-resolution geostationary optical satellite GF4 in which a stepwise calibration is performed, external parameters are estimated, and internal parameters are then estimated in a generalized camera frame determined by external parameters. First, the correlation of the imaging error sources and the rigorous imaging model of GF4 are introduced. Second, the geometric calibration model based on the two-dimensional detector directional angle and the parameters estimation method for the planar array camera are presented. LandSat 8 digital orthophoto maps (DOM) and GDEM2 digital elevation models (DEM) are used to validate the efficiency of the proposed method and to make a geometric quality assessment of GF4. The results indicate that changing imaging time and imaging area will dramatically affect the absolute positioning accuracy because of the change of the camera's installation angles caused by thermal environment changes around the satellite in a high orbit. After calibration, the internal distortion is well-compensated, and the positioning accuracy with relatively few ground control points (GCPs) is demonstrated to be better than 1.0 pixels for both the panchromatic and near-infrared sensor and the intermediate infrared sensor.

  14. Self-consistent field theory of collisions: Orbital equations with asymptotic sources and self-averaged potentials

    Science.gov (United States)

    Hahn, Y. K.

    2014-12-01

    The self-consistent field theory of collisions is formulated, incorporating the unique dynamics generated by the self-averaged potentials. The bound state Hartree-Fock approach is extended for the first time to scattering states, by properly resolving the principal difficulties of non-integrable continuum orbitals and imposing complex asymptotic conditions. The recently developed asymptotic source theory provides the natural theoretical basis, as the asymptotic conditions are completely transferred to the source terms and the new scattering function is made fullyintegrable. The scattering solutions can then be directly expressed in terms of bound state HF configurations, establishing the relationship between the bound and scattering state solutions. Alternatively, the integrable spin orbitals are generated by constructing the individual orbital equations that contain asymptotic sources and self-averaged potentials. However, the orbital energies are not determined by the equations, and a special channel energy fixing procedure is developed to secure the solutions. It is also shown that the variational construction of the orbital equations has intrinsic ambiguities that are generally associated with the self-consistent approach. On the other hand, when a small subset of open channels is included in the source term, the solutions are only partiallyintegrable, but the individual open channels can then be treated more simply by properly selecting the orbital energies. The configuration mixing and channel coupling are then necessary to complete the solution. The new theory improves the earlier continuum HF model.

  15. Orbital-free density functional theory implementation with the projector augmented-wave method

    Energy Technology Data Exchange (ETDEWEB)

    Lehtomäki, Jouko; Makkonen, Ilja; Harju, Ari; Lopez-Acevedo, Olga, E-mail: olga.lopez.acevedo@aalto.fi [COMP Centre of Excellence, Department of Applied Physics, Aalto University, P.O. Box 11100, 00076 Aalto (Finland); Caro, Miguel A. [COMP Centre of Excellence, Department of Applied Physics, Aalto University, P.O. Box 11100, 00076 Aalto (Finland); Department of Electrical Engineering and Automation, Aalto University, Espoo (Finland)

    2014-12-21

    We present a computational scheme for orbital-free density functional theory (OFDFT) that simultaneously provides access to all-electron values and preserves the OFDFT linear scaling as a function of the system size. Using the projector augmented-wave method (PAW) in combination with real-space methods, we overcome some obstacles faced by other available implementation schemes. Specifically, the advantages of using the PAW method are twofold. First, PAW reproduces all-electron values offering freedom in adjusting the convergence parameters and the atomic setups allow tuning the numerical accuracy per element. Second, PAW can provide a solution to some of the convergence problems exhibited in other OFDFT implementations based on Kohn-Sham (KS) codes. Using PAW and real-space methods, our orbital-free results agree with the reference all-electron values with a mean absolute error of 10 meV and the number of iterations required by the self-consistent cycle is comparable to the KS method. The comparison of all-electron and pseudopotential bulk modulus and lattice constant reveal an enormous difference, demonstrating that in order to assess the performance of OFDFT functionals it is necessary to use implementations that obtain all-electron values. The proposed combination of methods is the most promising route currently available. We finally show that a parametrized kinetic energy functional can give lattice constants and bulk moduli comparable in accuracy to those obtained by the KS PBE method, exemplified with the case of diamond.

  16. Orbital-Free Density Functional Theory Implementation with the Projector Augmented-Wave Method

    CERN Document Server

    Lehtomäki, J; Caro, M A; Lopez-Acevedo, O

    2014-01-01

    We present a novel orbital-free density functional theory (OFDFT) implementation using the projector augmented-wave method (PAW) that simultaneously preserves the linear scaling characteristic of OFDFT and provides access to all-electron values. The advantages of using the PAW method are two fold. First, PAW offers freedom in adjusting the convergence parameters and the atomic setups allow tuning the numerical accuracy per element. Second, PAW can provide a solution to some of the convergence problems exhibited in other OFDFT implementations based on Kohn-Sham (KS) codes. Using PAW and grid methods, our orbital-free results agree with the reference all-electron values with a mean absolute error of 10~meV and the number of iterations required by the self-consistent cycle is comparable to the KS method. Because computed bulk modulus and lattice constant are extremely different from reported pseudopotential values, we conclude that in order to assess the performance of OFDFT functionals it is necessary to use al...

  17. Oxygen evolution on a SrFeO3 anode - Mechanistic considerations from molecular orbital theory

    Science.gov (United States)

    Mehandru, S. P.; Anderson, Alfred B.

    1989-01-01

    Various pathways proposed in the literature for the evolution of O2 in electrochemical oxidations are explored using the atom superposition and electron delocalization molecular orbital (ASED-MO) theory and the cluster models of the SrFeO3 surface as a prototype material. Calculations indicate that oxygen atoms can be easily formed on the (100) surface as well as on the edge cation sites of a SrFeO3 anode by the discharge of OH(-), followed by its deprotonation and electron transfer to the electrode. The O atoms can form O2 on the edge and corner sites, where the Fe(4+) is coordinated to four and three bulk oxygen anions, respectively. The calculations strongly disfavor mechanisms involving coupling of oxygen atoms adsorbed on different cations as well as a mechanism featuring an ozone intermediate.

  18. A unified scheme for ab initio molecular orbital theory and path integral molecular dynamics

    Science.gov (United States)

    Shiga, Motoyuki; Tachikawa, Masanori; Miura, Shinichi

    2001-11-01

    We present a general approach for accurate calculation of chemical substances which treats both nuclei and electrons quantum mechanically, adopting ab initio molecular orbital theory for the electronic structure and path integral molecular dynamics for the nuclei. The present approach enables the evaluation of physical quantities dependent on the nuclear configuration as well as the electronic structure, within the framework of Born-Oppenheimer adiabatic approximation. As an application, we give the path integral formulation of electric response properties—dipole moment and polarizability, which characterize the changes both in electronic structure and nuclear configuration at a given temperature when uniform electrostatic field is present. We also demonstrate the calculation of a water molecule using the present approach and the result of temperature and isotope effects is discussed.

  19. Coadjoint Orbits and Wilson Loops in Five Dimensional Topological Gauge Theories

    CERN Document Server

    Noma, Yui

    2009-01-01

    We give path integral expressions of Wilson loops. This work is an extension of the relation between characters of Lie groups and quantum mechanics whose phase spaces are coadjoint orbits. The path-ordering operators in Wilson loops are considered as the time-ordering operators of the quantum mechanics. Then, by using this expression the formal discussion are simplified. As an application of this expression, we considered one-point functions of BPS Wilson loops in a five dimensional topological gauge theory defined on M_4\\times S^1. We found that the Wilson loop gives interaction terms between charged particles and certain gauge fields on the instanton moduli space, and makes the non-charged particle charged under the gauge fields.

  20. Tidal friction in close-in satellites and exoplanets: The Darwin theory re-visited

    Science.gov (United States)

    Ferraz-Mello, Sylvio; Rodríguez, Adrián; Hussmann, Hauke

    2008-05-01

    This report is a review of Darwin’s classical theory of bodily tides in which we present the analytical expressions for the orbital and rotational evolution of the bodies and for the energy dissipation rates due to their tidal interaction. General formulas are given which do not depend on any assumption linking the tidal lags to the frequencies of the corresponding tidal waves (except that equal frequency harmonics are assumed to span equal lags). Emphasis is given to the cases of companions having reached one of the two possible final states: (1) the super-synchronous stationary rotation resulting from the vanishing of the average tidal torque; (2) capture into the 1:1 spin-orbit resonance (true synchronization). In these cases, the energy dissipation is controlled by the tidal harmonic with period equal to the orbital period (instead of the semi-diurnal tide) and the singularity due to the vanishing of the geometric phase lag does not exist. It is also shown that the true synchronization with non-zero eccentricity is only possible if an extra torque exists opposite to the tidal torque. The theory is developed assuming that this additional torque is produced by an equatorial permanent asymmetry in the companion. The results are model-dependent and the theory is developed only to the second degree in eccentricity and inclination (obliquity). It can easily be extended to higher orders, but formal accuracy will not be a real improvement as long as the physics of the processes leading to tidal lags is not better known.