WorldWideScience

Sample records for satellite on-orbit thermal

  1. On-orbit target tracking and inspection by satellite formation

    Institute of Scientific and Technical Information of China (English)

    Guang Zhai; Jingrui Zhang; Zhicheng Zhou

    2013-01-01

    A new type of estimator is developed for the satel-lite formation to track and inspect on-orbit targets. The fol ower satel ite in the formation works without relative sensors, and its target pointing commands are derived based on relative orbital dynamics. The centralized estimator based on truth measurement is designed, however, this estimator is proved unstable because of the lack of necessary measurement information. After that, an alternative estimator based on pseudo measurement is designed, and its observability and control ability are analyzed to qualitatively evaluate the convergence performance. Final y, an on-orbit target inspection scenario is numerical y simulated to verify the perfor-mance of the estimator based on pseudo measurement.

  2. Autonomous robotic operations for on-orbit satellite servicing

    Science.gov (United States)

    Ogilvie, Andrew; Allport, Justin; Hannah, Michael; Lymer, John

    2008-04-01

    The Orbital Express Demonstration System (OEDS) flight test successfully demonstrated technologies required to autonomously service satellites on-orbit. The mission's integrated robotics solution, the Orbital Express Demonstration Manipulator System (OEDMS) developed by MDA, performed critical flight test operations. The OEDMS comprised a six-jointed robotic manipulator arm and its avionics, non-proprietary servicing and ORU (Orbital Replacement Unit) interfaces, a vision and arm control system for autonomous satellite capture, and a suite of Ground Segment and Flight Segment software allowing script generation and execution under supervised or full autonomy. The arm was mounted on ASTRO, the servicer spacecraft developed by Boeing. The NextSat, developed by Ball Aerospace, served as the client satellite. The OEDMS demonstrated two key goals of the OEDS flight test: autonomous free-flyer capture and berthing of a client satellite, and autonomous transfer of ORUs from servicer to client and back. The paper provides a description of the OEDMS and the key operations it performed.

  3. Advanced Communication Technology Satellite (ACTS) Multibeam Antenna On-Orbit Performance

    Science.gov (United States)

    1995-01-01

    The NASA Lewis Research Center's Advanced Communication Technology Satellite (ACTS) was launched in September 1993. ACTS introduced several new technologies, including a multibeam antenna (MBA) operating at extremely short wavelengths never before used in communications. This antenna, which has both fixed and rapidly reconfigurable high-energy spot beams (150 miles in diameter), serves users equipped with small antenna terminals. Extensive structural and thermal analyses have been performed for simulating the ACTS MBA on-orbit performance. The results show that the reflector surfaces (mainly the front subreflector), antenna support assembly, and metallic surfaces on the spacecraft body will be distorted because of the thermal effects of varying solar heating, which degrade the ACTS MBA performance. Since ACTS was launched, a number of evaluations have been performed to assess MBA performance in the space environment. For example, the on-orbit performance measurements found systematic environmental disturbances to the MBA beam pointing. These disturbances were found to be imposed by the attitude control system, antenna and spacecraft mechanical alignments, and on-orbit thermal effects. As a result, the MBA may not always exactly cover the intended service area. In addition, the on-orbit measurements showed that antenna pointing accuracy is the performance parameter most sensitive to thermal distortions on the front subreflector surface and antenna support assemblies. Several compensation approaches were tested and evaluated to restore on-orbit pointing stability. A combination of autotrack (75 percent of the time) and Earth sensor control (25 percent of the time) was found to be the best way to compensate for antenna pointing error during orbit. This approach greatly minimizes the effects of thermal distortions on antenna beam pointing.

  4. WMAP Observatory Thermal Design and On-Orbit Thermal Performance

    Science.gov (United States)

    Glazer, Stuart D.; Brown, Kimberly D.; Michalek, Theodore J.; Ancarrow, Walter C.

    2003-01-01

    The Wilkinson Microwave Anisotropy Probe (WMAP) observatory, launched June 30, 2001, is designed to measure the cosmic microwave background radiation with unprecedented precision and accuracy while orbiting the second Lagrange point (L2). The instrument cold stage must be cooled passively to <95K, and systematic thermal variations in selected instrument components controlled to less than 0.5 mK (rms) per spin period. This paper describes the thermal design and testing of the WMAP spacecraft and instrument. Flight thermal data for key spacecraft and instrument components are presented from launch through the first year of mission operations. Effects of solar flux variation due to the Earth's elliptical orbit about the sun, surface thermo-optical property degradations, and solar flares on instrument thermal stability are discussed.

  5. On-Orbit Thermal Design and Validation of 1 U Standardized CubeSat of STEP Cube Lab

    Directory of Open Access Journals (Sweden)

    Soo-Jin Kang

    2016-01-01

    Full Text Available The Cube Laboratory for Space Technology Experimental Projects (STEP Cube Lab is a cube satellite (CubeSat classified as a pico-class satellite of 1 U (unit size. Its main mission objective is to exploit core space technologies researched by domestic universities and verify the effectiveness of these technologies through on-orbit tests using the CubeSat. To guarantee a successful mission under extreme space thermal environments, proper thermal design is important. This paper describes the development process undertaken in the thermal design of the STEP Cube Lab, based on a passive approach, and its validation test. The system functionality and thermal design were verified through thermal vacuum and thermal balance tests under space simulated thermal vacuum environment condition. Finally, the orbital temperature of each component was predicted using a highly reliable correlated thermal mathematical model of the CubeSat obtained from the thermal balance test.

  6. On-Orbit Performance of the Far Ultraviolet Spectroscopic Explorer (FUSE) Satellite

    CERN Document Server

    Sahnow, D J; Ake, T; Andersen, J; Andersson, B G; André, M; Artis, D; Berman, A; Blair, W; Brownsberger, K R; Calvani, H; Chayer, P; Conard, S; Feldman, P; Friedman, S; Fullerton, A W; Gaines, G; Gawne, W; Green, J; Gummin, M; Jennings, T; Joyce, J B; Kaiser, M E; Kruk, J W; Lindler, D; Massa, D L; Murphy, E; Oegerle, W R; Ohl, R; Roberts, B; Romelfanger, M; Roth, K C; Sankrit, R; Sembach, K R; Shelton, R; Siegmund, O; Silva, C; Sonneborn, G; Vaclavik, S; Weaver, H; Wilkinson, E

    2000-01-01

    Launch of the Far Ultraviolet Spectroscopic Explorer (FUSE) has been followed by an extensive period of calibration and characterization as part of the preparation for normal satellite operations. Major tasks carried out during this period include initial coalignment, focusing and characterization of the four instrument channels, and a preliminary measurement of the resolution and throughput performance of the instrument. We describe the results from this test program, and present preliminary estimates of the on-orbit performance of the FUSE satellite based on a combination of this data and prelaunch laboratory measurements.

  7. On-Orbit Health Monitoring and Repair Assessment of Thermal Protection Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR project delivers On-orbit health MoNItoring and repair assessment of THERMal protection systems (OMNI_THERM). OMNI_THERM features impedance-based...

  8. Cryogenic On-Orbit Liquid Depot Storage, Acquisition, and Transfer Satellite (COLD-SAT)

    Science.gov (United States)

    Schuster, John R.; Russ, Edwin J.; Wachter, Joseph P.

    1990-01-01

    The Cryogenic On-Orbit Liquid Depot Storage, Acquisition, and Transfer Satellite (COLD-SAT) will perform subcritical liquid hydrogen handling experiments under low gravity conditions to provide engineering data for future space transportation missions. Comprising the four Class 1 enabling experiments are tank press control, tank chilldown, tank no-vent fill, and liquid acquisition device fill/refill. The nine Class 2 enhancing experiments are tanker thermal performance, pressurization, low-gravity setting and outflow, liquid acquisition device performance, transfer line chilldown, outflow subcooling, low-gravity vented fill, fluid dumping, and advanced instrumentation. Consisting of an experiment module mated to a spacecraft bus, COLD-SAT will be placed in an initial 1300 km circular orbit by an Atlas commercial launch vehicle, and will perform experiments in a semi-autonomous mode for a period of up to six months. The three-axis controlled spacecraft bus provides electric power, control and data management, communications, and attitude control along with propulsive acceleration levels ranging from 10(exp -6) to 10(exp -4) g. It is desired to understand the effects that low acceleration levels might have on the heat and mass transfer processes involved in some of the experiments. The experiment module contains the three liquid hydrogen tanks, valves, pressurization and pumping equipment, and instrumentation. Within the highly insulated tanks are specialized fluid management equipment that might be used in future space transportation systems. At launch all the liquid hydrogen for the experiments is contained in the largest tank, which has helium-purged insulation to prevent cryo-pumping of air on the launch pad. The tank is loaded by the hydrogen tanking system used for the Centaur upper stage of the Atlas. After reaching orbit the two smaller tanks become receivers for fluid transfers, and when tanked, become the vessels for performing many of the experiments.

  9. On-orbit real-time magnetometer bias determination for micro-satellites without attitude information

    Institute of Scientific and Technical Information of China (English)

    Zhang Zhen; Xiong Jianping; Jin Jin

    2015-01-01

    Due to the disadvantages such as complex calculation, low accuracy of estimation, and being non real time in present methods, a new real-time algorithm is developed for on-orbit mag-netometer bias determination of micro-satellites without attitude knowledge in this paper. This method uses the differential value approach. It avoids the impact of quartic nature and uses the iter-ative method to satisfy real-time applications. Simulation results indicate that the new real-time algorithm is more accurate compared with other methods, which are also tested by an experiment system using real noise data. With the new real-time algorithm, a magnetometer calibration can be taken on-orbit and will reduce the demand for computing power effectively.

  10. On-orbit real-time magnetometer bias determination for micro-satellites without attitude information

    Directory of Open Access Journals (Sweden)

    Zhang Zhen

    2015-10-01

    Full Text Available Due to the disadvantages such as complex calculation, low accuracy of estimation, and being non real time in present methods, a new real-time algorithm is developed for on-orbit magnetometer bias determination of micro-satellites without attitude knowledge in this paper. This method uses the differential value approach. It avoids the impact of quartic nature and uses the iterative method to satisfy real-time applications. Simulation results indicate that the new real-time algorithm is more accurate compared with other methods, which are also tested by an experiment system using real noise data. With the new real-time algorithm, a magnetometer calibration can be taken on-orbit and will reduce the demand for computing power effectively.

  11. On-orbit Geometric Parameters Refinement of Mapping Satellite-1 Triple Line Array Camera

    Directory of Open Access Journals (Sweden)

    GENG Hongyi

    2016-03-01

    Full Text Available To find the model and method of on-orbit geometric refinement suitable for the triple line array camera of Mapping Satellite-1, this paper first analyzed the impact of the exterior orientation line element error on the geometric parameters refinement, then eliminated the high-frequency noise by the preprocessing of the attitude data, and compensated the low-frequency flutter of satellite platform in the course of flying by sine function and designed the constant angular error model for the lens of the triple line array camera. In addition, an interior orientation model, using directly pixel coordinates as observations, was constructed based on conventional additional parameter model and the combination of the best refinement model parameters and the solution strategy were determined by the unilateral control extrapolative location. The experiments show that the planar accuracy and vertical accuracy are about 1 GSD and 0.8 GSD by the proposed refinement plan and the rational distribution of GCPS.

  12. NIR- and SWIR-based on-orbit vicarious calibrations for satellite ocean color sensors.

    Science.gov (United States)

    Wang, Menghua; Shi, Wei; Jiang, Lide; Voss, Kenneth

    2016-09-05

    The near-infrared (NIR) and shortwave infrared (SWIR)-based atmospheric correction algorithms are used in satellite ocean color data processing, with the SWIR-based algorithm particularly useful for turbid coastal and inland waters. In this study, we describe the NIR- and two SWIR-based on-orbit vicarious calibration approaches for satellite ocean color sensors, and compare results from these three on-orbit vicarious calibrations using satellite measurements from the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting Partnership (SNPP). Vicarious calibration gains for VIIRS spectral bands are derived using the in situ normalized water-leaving radiance nLw(λ) spectra from the Marine Optical Buoy (MOBY) in waters off Hawaii. The SWIR vicarious gains are determined using VIIRS measurements from the South Pacific Gyre region, where waters are the clearest and generally stable. Specifically, vicarious gain sets for VIIRS spectral bands of 410, 443, 486, 551, and 671 nm derived from the NIR method using the NIR 745 and 862 nm bands, the SWIR method using the SWIR 1238 and 1601 nm bands, and the SWIR method using the SWIR 1238 and 2257 nm bands are (0.979954, 0.974892, 0.974685, 0.965832, 0.979042), (0.980344, 0.975344, 0.975357, 0.965531, 0.979518), and (0.980820, 0.975609, 0.975761, 0.965888, 0.978576), respectively. Thus, the NIR-based vicarious calibration gains are consistent with those from the two SWIR-based approaches with discrepancies mostly within ~0.05% from three data processing methods. In addition, the NIR vicarious gains (745 and 862 nm) derived from the two SWIR methods are (0.982065, 1.00001) and (0.981811, 1.00000), respectively, with the difference ~0.03% at the NIR 745 nm band. This is the fundamental basis for the NIR-SWIR combined atmospheric correction algorithm, which has been used to derive improved satellite ocean color products over open oceans and turbid coastal/inland waters. Therefore, a unified

  13. Fundamentals of the route theory for satellite constellation design for Earth discontinuous coverage. Part 4: Compound satellite structures on orbits with synchronized nodal regression

    Science.gov (United States)

    Razoumny, Yury N.

    2016-12-01

    Basing on the theory results considered in the previous papers of the series for traditional one-tiered constellation formed on the orbits with the same values of altitudes and inclinations for all the satellites of the constellation, the method for constellation design using compound satellite structures on orbits with different altitudes and inclinations and synchronized nodal regression is developed. Compound, multi-tiered, satellite structures (constellations) are based on orbits with different values of altitude and inclination providing nodal regression synchronization. It is shown that using compound satellite constellations for Earth periodic coverage makes it possible to sufficiently improve the Earth coverage, as compared to the traditional constellations based on the orbits with common altitude and inclination for all the satellites of the constellation, and, as a consequence, to get new opportunities for the satellite constellation design for different types of prospective space systems regarding increasing the quality of observations or minimization of the number of the satellites required.

  14. Solar Sail Topology Variations Due to On-Orbit Thermal Effects

    Science.gov (United States)

    Banik, Jeremy A.; Lively, Peter S.; Taleghani, Barmac K.; Jenkins, Chrostopher H.

    2006-01-01

    The objective of this research was to predict the influence of non-uniform temperature distribution on solar sail topology and the effect of such topology variations on sail performance (thrust, torque). Specifically considered were the thermal effects due to on orbit attitude control maneuvers. Such maneuvers are expected to advance the sail to a position off-normal to the sun by as much as 35 degrees; a solar sail initially deformed by typical pre-tension and solar pressure loads may suffer significant thermally induced strains due to the non-uniform heating caused by these maneuvers. This on-orbit scenario was investigated through development of an automated analytical shape model that iterates many times between sail shape and sail temperature distribution before converging on a final coupled thermal structural affected sail topology. This model utilizes a validated geometrically non-linear finite element model and a thermal radiation subroutine. It was discovered that temperature gradients were deterministic for the off-normal solar angle cases as were thermally induced strains. Performance effects were found to be moderately significant but not as large as initially suspected. A roll torque was detected, and the sail center of pressure shifted by a distance that may influence on-orbit sail control stability.

  15. On-orbit Demonstration of a Sun Sensor on the Micro-Satellite MAIDO-1

    Directory of Open Access Journals (Sweden)

    Hiroshi Okubo

    2011-12-01

    Full Text Available 0 0 1 219 1249 International Islamic University 10 2 1466 14.0 Normal 0 false false false EN-US JA X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Times New Roman";} A 50-kg-class microsatellite “MAIDO-1 (SOHLA-1” was launched, along with six other piggyback subsatellites, by a Japanese H-2A rocket on January 23, 2009. The fundamental and detailed designs of the satellite were developed by university students under the technical guidance of the Japan Aerospace Exploration Agency (JAXA. A string-type sun sensor (Fudai Sun Sensor; FSS was also developed by the students with the technical assistance of JAXA and Advanced Engineering Services (AES Co. Ltd. The FSS was mounted on the satellite as an experimental component. This paper reports the development of MAIDO-1 and FSS as well as the satellite operation by the students and the results of on-orbit experiments. ABSTRAK: Satu mikrosatelit kelas 50 kg “MAIDO-1 (SOHLA-1” telah dilancarkan, bersama enam lagi subsatelit gendong, dengan menggunakan roket H-2A (Jepun pada 23 Januari, 2009. Reka bentuk satelit yang asas dan terperinci dibangunkan oleh para pelajar universiti di bawah bimbingan teknikal Agensi Explorasi Aeroangkasa Jepun (Japan Aerospace Exploration Agency (JAXA. Sejenis penderia matahari bertali (Fudai Sun Sensor; FSS juga dibangunkan oleh para penuntut dengan bantuan teknikal dari pihak JAXA dan Advanced Engineering Services (AES Sdn. Bhd. FSS telah dilekapkan ke satelit sebagai komponen eksperimental. Kertas ini membentangkan perkembangan MAIDO-1 dan FSS, operasi satelit oleh pelajar-pelajar dan keputusan eksperimen semasa dalam orbit.

  16. Asteroid Origins Satellite (AOSAT) I: An On-orbit Centrifuge Science Laboratory

    Science.gov (United States)

    Lightholder, Jack; Thoesen, Andrew; Adamson, Eric; Jakubowski, Jeremy; Nallapu, Ravi; Smallwood, Sarah; Raura, Laksh; Klesh, Andrew; Asphaug, Erik; Thangavelautham, Jekan

    2017-04-01

    Exploration of asteroids, comets and small moons (small bodies) can answer fundamental questions relating to the formation of the solar system, the availability of resources, and the nature of impact hazards. Near-earth asteroids and the small moons of Mars are potential targets of human exploration. But as illustrated by recent missions, small body surface exploration remains challenging, expensive, and fraught with risk. Despite their small size, they are among the most extreme planetary environments, with low and irregular gravity, loosely bound regolith, extreme temperature variation, and the presence of electrically charged dust. Here we describe the Asteroid Origins Satellite (AOSAT-I), an on-orbit, 3U CubeSat centrifuge using a sandwich-sized bed of crushed meteorite fragments to replicate asteroid surface conditions. Demonstration of this CubeSat will provide a low-cost pathway to physical asteroid model validation, shed light on the origin and geophysics of asteroids, and constrain the design of future landers, rovers, resource extractors, and human missions. AOSAT-I will conduct scientific experiments within its payload chamber while operating in two distinct modes: (1) as a nonrotating microgravity laboratory to investigate primary accretion, and (2) as a rotating centrifuge producing artificial milligravity to simulate surface conditions on asteroids, comets and small moons. AOSAT-I takes advantage of low-cost, off-the-shelf components, modular design, and the rapid assembly and instrumentation of the CubeSat standard, to answer fundamental questions in planetary science and reduce cost and risk of future exploration.

  17. The on-orbit calibration of geometric parameters of the Tian-Hui 1 (TH-1) satellite

    Science.gov (United States)

    Wang, Jianrong; Wang, Renxiang; Hu, Xin; Su, Zhongbo

    2017-02-01

    The on-orbit calibration of geometric parameters is a key step in improving the location accuracy of satellite images without using Ground Control Points (GCPs). Most methods of on-orbit calibration are based on the self-calibration using additional parameters. When using additional parameters, different number of additional parameters may lead to different results. The triangulation bundle adjustment is another way to calibrate the geometric parameters of camera, which can describe the changes in each geometric parameter. When triangulation bundle adjustment method is applied to calibrate geometric parameters, a prerequisite is that the strip model can avoid systematic deformation caused by the rate of attitude changes. Concerning the stereo camera, the influence of the intersection angle should be considered during calibration. The Equivalent Frame Photo (EFP) bundle adjustment based on the Line-Matrix CCD (LMCCD) image can solve the systematic distortion of the strip model, and obtain high accuracy location without using GCPs. In this paper, the triangulation bundle adjustment is used to calibrate the geometric parameters of TH-1 satellite cameras based on LMCCD image. During the bundle adjustment, the three-line array cameras are reconstructed by adopting the principle of inverse triangulation. Finally, the geometric accuracy is validated before and after on-orbit calibration using 5 testing fields. After on-orbit calibration, the 3D geometric accuracy is improved to 11.8 m from 170 m. The results show that the location accuracy of TH-1 without using GCPs is significantly improved using the on-orbit calibration of the geometric parameters.

  18. Performance of MODIS Thermal Emissive Bands On-orbit Calibration Algorithms

    Science.gov (United States)

    Xiong, Xiaoxiong; Chang, T.

    2009-01-01

    Two nearly identical copies of the Moderate Resolution Imaging Spectroradiometer (MODIS) are currently operated on-board the Terra and Aqua spacecrafts, launched in December 1999 and May 2002, respectively. Together, they have produced an unprecedented amount of science data products, which are widely used for the studies of changes in the Earth's system of land, oceans, and atmosphere. MODIS is a cross-track scanning radiometer, which uses a two-sided scan mirror and collects data continuously over a wide scan angle range (+/-55 degree relative to the instrument nadir) each scan of 1.47 seconds. It has 36 spectral bands with wavelengths ranging from visible (VIS) to long-wave infrared (LWIR). MODIS bands 1-19 and 26 are the reflective solar bands (RSB) and bands 20-25 and 27-36 are the thermal emissive bands (TEB). MODIS was developed and designed with improvements made over its heritage sensors (such as AVHRR and Landsat) and, in particular, with more stringent calibration requirements. Because of this, MODIS was built with a set of state-of-art on-board calibrators (OBC), which include a solar diffuser (SD), a solar diffuser stability monitor (SDSM), a blackbody (BB), a spectroradiometric calibration assembly (SRCA), and a space view (SV) port. With the exception of view angle differences, MODIS OBC measurements and the Earth View (EV) observations are made via the same optical path. MODIS TEB have a total of 160 individual TEB detectors (10 per band), which are located on two cold focal plane assemblies (CFPA). For nominal on-orbit operation, the CFPA temperature is controlled at 83K via a passive radiative cooler. For the TEB, the calibration requirements at specified typical scene radiances are less than or equal to 1% with an exception for the fire detection (low gain) band. MODIS TEB on-orbit calibration is performed on a scan-by-scan basis using a quadratic calibration algorithm, and data collected from sensor responses to the onboard BB and SV. The BB

  19. On-orbit Characterization of RVS for MODIS Thermal Emissive Bands

    Science.gov (United States)

    Xiong, X.; Salomonson, V.; Chiang, K.; Wu, A.; Guenther, B.; Barnes, W.

    2004-01-01

    Response versus scan angle (RVS) is a key calibration parameter for remote sensing radiometers that make observations using a scanning optical system, such as a scan mirror in MODIS and GLI or a rotating telescope in SeaWiFS and VIIRS, since the calibration is typically performed at a fixed viewing angle while the Earth scene observations are made over a range of viewing angles. Terra MODIS has been in operation for more than four years since its launch in December 1999. It has 36 spectral bands covering spectral range from visible (VIS) to long-wave infrared (LWIR). It is a cross-track scanning radiometer using a two-sided paddle wheel scan mirror, making observations over a wide field of view (FOV) of +/-55 deg from the instrument nadir. This paper describes on-orbit characterization of MODIS RVS for its thermal emissive bands (TEB), using the Earth view data collected during Terra spacecraft deep space maneuvers (DSM). Comparisons with pre-launch analysis and early on-orbit measurements are also provided.

  20. On-orbit control of the Communications Technology Satellite (CTS)/HERMES

    Science.gov (United States)

    Raine, H. R.

    1980-01-01

    A variety of control functions for the CIS HERMES satellite are reviewed. Its mission, to demonstrate high power SHF (12 GHz) transmission is discussed. The satellite was controlled in geostationary orbit for nearly four years from the satellite control center in Ottawa, Canada. Highlights of these operations are outlined. The interactions between many of the automatic onboard control functions and control from the ground are described. Special emphasis is placed on the characteristics and performance of the three axis attitude control system.

  1. Multiyear On-orbit Calibration and Performance of Terra MODIS Thermal Emissive Bands

    Science.gov (United States)

    Xiong, Xiaoxiong; Chiang, Kwo-Fu; Wu, Aisheng; Barnes, William; Guenther, Bruce; Salomonson, Vincent

    2007-01-01

    Since launch in December 1999, Terra MODIS has been making continuous Earth observations for more than seven years. It has produced a broad range of land, ocean, and atmospheric science data products for improvements in studies of global climate and environmental change. Among its 36 spectral bands, there are 20 reflective solar bands (RSB) and 16 thermal emissive bands (TEB). MODIS thermal emissive bands cover the mid-wave infrared (MWIR) and long-wave infrared (LWIR) spectral regions with wavelengths from 3.7 to 14.4pm. They are calibrated on-orbit using an on-board blackbody (BB) with its temperature measured by a set of thermistors on a scan-by-scan basis. This paper will provide a brief overview of MODIS TEB calibration and characterization methodologies and illustrate on-board BB functions and TEB performance over more than seven years of on-orbit operation and calibration. Discussions will be focused on TEB detector short-term stability and noise characterization, and changes in long-term response (or system gain). Results show that Terra MODIS BB operation has been extremely stable since launch. When operated at its nominal controlled temperature of 290K, the BB temperature variation is typically less than +0.30mK on a scan-by-scan basis and there has been no time-dependent temperature drift. In addition to excellent short-term stability, most TEB detectors continue to meet or exceed their specified noise characterization requirements, thus enabling calibration accuracy and science data product quality to be maintained. Excluding the noisy detectors identified pre-launch and those that occurred post-launch, the changes in TEB responses have been less than 0.7% on an annual basis. The optical leak corrections applied to bands 32-36 have been effective and stable over the entire mission

  2. The Impact of New Trends in Satellite Launches on Orbital Debris Environment

    Science.gov (United States)

    Karacalioglu, Arif Goktug; Stupl, Jan

    2016-01-01

    The main goal of this study is to examine the impact of new trends in satellite launch activities on the orbital debris environment and collision risk. Starting from the launch of the first artificial satellite in 1957, space borne technology has become an indispensable part of our lives. More than 6,000 satellites have been launched into Earth orbit. Though the annual number of satellites launched stayed flat for many decades, the trend has recently changed. The satellite market has been undergoing a major evolution with new space companies replacing the traditional approach of deploying a few large, complex and costly satellites with an approach to use a multitude of smaller, less complex and cheaper satellites. This new approach creates a sharp increase in the number of satellites and so the historic trends are no longer representative. As a foundation for this study, a scenario for satellite deployments based on the publicly announced future satellite missions has been developed. These constellation-deploying companies include, but are not limited to, Blacksky, CICERO, EROS, Landmapper, Leosat, Northstar, O3b, OmniEarth, OneWeb, Orbcomm, OuterNet, PlanetIQ, Planet Labs, Radarsat, RapidEye Next Generation, Sentinel, Skybox, SpaceX, and Spire. Information such as the annual number of launches, the number of orbital planes to be used by the constellation, as well as apogee, perigee, inclination, spacecraft mass and area were included or approximated. Besides the production of satellites, a widespread ongoing effort to enhance orbital injection capabilities will allow delivery of more spacecraft more accurately into Earth orbits. A long list of companies such as Microcosm, Rocket Lab, Firefly Space Systems, Sierra Nevada Corporation and Arca Space Corporation are developing new launch vehicles dedicated for small satellites. There are other projects which intend to develop interstages with propulsive capabilities which will allow the deployment of satellites into

  3. On-orbit calibration of soft X-ray detector on Chang'E-2 satellite

    Science.gov (United States)

    Xiao, Hong; Peng, Wen-Xi; Wang, Huan-Yu; Cui, Xing-Zhu; Guo, Dong-Ya

    2015-10-01

    The X-ray spectrometer is one of the satellite payloads on the Chang'E-2 satellite. The soft X-ray detector is one of the devices on the X-ray spectrometer, designed to detect the major rock-forming elements within the 0.5-10 keV range on the lunar surface. In this paper, energy linearity and energy resolution calibration is done using a weak 55Fe source. Temperature and time effects are found not to give a large error. The total uncertainty of calibration is estimated to be within 5% after correction. Supported by National Science Foundation of Ministry of Education

  4. On-orbit calibration of soft X-ray detector on Chang'E-2 satellite

    CERN Document Server

    Xiao, Hong; Wang, Huanyu; Cui, Xingzhu; Guo, Dongya

    2015-01-01

    X-ray spectrometer is one of the satellite payloads on Chang'E-2 satellite. The soft X-ray detector is one of the device on X-ray spectrometer which is designed to detect the major rock-forming elements within 0.5-10keV range on lunar surface. In this paper, energy linearity and energy resolution calibration is done using a weak Fe55 source, while temperature and time effect is considered not take big error. The total uncertainty is estimated to be within 5% after correction.

  5. On-orbit geometric calibration and geometric quality assessment for the high-resolution geostationary optical satellite GaoFen4

    Science.gov (United States)

    Wang, Mi; Cheng, Yufeng; Chang, Xueli; Jin, Shuying; Zhu, Ying

    2017-03-01

    The Chinese GaoFen4 (GF4) remote sensing satellite, launched at the end of December 2015, is China's first civilian high-resolution geostationary optical satellite and has the world's highest resolution from geostationary orbit. High accuracy geometric calibration is the key factor in the geometrical quality of satellite imagery. This paper proposes an on-orbit geometric calibration approach for the high-resolution geostationary optical satellite GF4 in which a stepwise calibration is performed, external parameters are estimated, and internal parameters are then estimated in a generalized camera frame determined by external parameters. First, the correlation of the imaging error sources and the rigorous imaging model of GF4 are introduced. Second, the geometric calibration model based on the two-dimensional detector directional angle and the parameters estimation method for the planar array camera are presented. LandSat 8 digital orthophoto maps (DOM) and GDEM2 digital elevation models (DEM) are used to validate the efficiency of the proposed method and to make a geometric quality assessment of GF4. The results indicate that changing imaging time and imaging area will dramatically affect the absolute positioning accuracy because of the change of the camera's installation angles caused by thermal environment changes around the satellite in a high orbit. After calibration, the internal distortion is well-compensated, and the positioning accuracy with relatively few ground control points (GCPs) is demonstrated to be better than 1.0 pixels for both the panchromatic and near-infrared sensor and the intermediate infrared sensor.

  6. On-orbit flight results from the reconfigurable cibola flight experiment satellite (CFEsat)

    Energy Technology Data Exchange (ETDEWEB)

    Caffrey, Michael [Los Alamos National Laboratory; Morgan, Keith [Los Alamos National Laboratory; Roussel-dupre, Diane [LANL; Robinson, Scott [Los Alamos National Laboratory; Nelson, Anthony [Los Alamos National Laboratory; Salazar, Anthony [Los Alamos National Laboratory; Wirthlin, Michael [BYU; Howes, William [BYU; Richins, Daniel [BYU

    2009-01-01

    The Cibola Flight Experiment (CFE) is an experimental small satellite developed at the Los Alamos National Laboratory to demonstrate the feasibility of using FPGA-based reconfigurable computing for sensor processing in a space environment. The CFE satellite was launched on March 8, 2007 in low-earth orbit and has operated extremely well since its deployment. The nine Xilinx Virtex FPGAs used in the payload have been used for several high-throughput sensor processing applications and for single-event upset (SEU) monitoring and mitigation. This paper will describe the CFE system and summarize its operational results. In addition, this paper will describe the results from several SEU detection circuits that were performed on the spacecraft.

  7. Vision-based localization for on-orbit servicing of a partially cooperative satellite

    Science.gov (United States)

    Oumer, Nassir W.; Panin, Giorgio; Mülbauer, Quirin; Tseneklidou, Anastasia

    2015-12-01

    This paper proposes ground-in-the-loop, model-based visual localization system based on transmitted images to ground, to aid rendezvous and docking maneuvers between a servicer and a target satellite. In particular, we assume to deal with a partially cooperative target, i.e. passive and without fiducial markers, but supposed at least to keep a controlled attitude, up to small fluctuations, so that the approach mainly involves translational motion. For the purpose of localization, video cameras provide an effective and relatively inexpensive solution, working at a wide range of distances with an increasing accuracy and robustness during the approach. However, illumination conditions in space are especially challenging, due to the direct sunlight exposure and to the glossy surface of a satellite, that creates strong reflections and saturations and therefore a high level of background clutter and missing detections. We employ a monocular camera for mid-range tracking (20 - 5 m) and stereo camera at close-range (5 - 0.5 m), with the respective detection and tracking methods, both using intensity edges and robustly dealing with the above issues. Our tracking system has been extensively verified at the facility of the European Proximity Operations Simulator (EPOS) of DLR, which is a very realistic ground simulation able to reproduce sunlight conditions through a high power floodlight source, satellite surface properties using multilayer insulation foils, as well as orbital motion trajectories with ground-truth data, by means of two 6 DOF industrial robots. Results from this large dataset show the effectiveness and robustness of our method against the above difficulties.

  8. A Critical Examination of Current On-Orbit Satellite Collision Risk Analysis Under Constraints of Public Data

    Science.gov (United States)

    Whitworth, Brandon; Moon, Mark; Pace, William; Baker, Robert

    2010-09-01

    The collision of Cosmos 2251 and Iridium 33 on 10 February 2009, made real the dangers of space operations without accurate situational awareness. A critical examination of the state of the art in collision risk assessment for on-orbit assets quickly reveals that it is inadequate to have provided satellite operators the opportunity to prevent the Cosmos-Iridium collision. Satellite operators need reliable information in a timely manner in order to take appropriate action. The shortfalls of publicly available orbit information place all spacecraft and missions at risk. The accuracy limitations of the General Perturbations(GP) catalog and orbit model(SGP-4) limit the effectiveness of current open source efforts. Beyond the accuracy limits, the relatively low frequency of updates for debris included in the catalog increases the uncertainty in time-space for inactive space objects such as Cosmos 2251. The current state of the art collision risk assessment includes advanced techniques such as expanding the GP model with covariance information which will allow uncertainty in the model to be accounted for in the on-orbit risk calculations. Covariance information can be estimated from consecutively published element sets for the same orbital object. A challenge to covariance estimation is that maneuvers or long periods of time between updates can skew the computed data. Once reliable covariance information is known and an efficient algorithm can be applied to find all of the close approaches between all cataloged objects then it is possible to estimate the collision risk for each close encounter with the tri-variate normal distribution. Unknown covariance will need to be handled in an appropriate way for a complete solution. Covariance information alone cannot solve the problem due to the relatively slow rate of update for all objects by the Space Surveillance Network(SSN) and there is no centralized source for planned and executed orbit changes for powered spacecraft. The

  9. Thermal deformations of a glass spherical satellite

    Science.gov (United States)

    Vasiliev, V. P.; Nenadovich, V. D.; Murashkin, V. V.; Sokolov, A. L.

    2016-09-01

    The effect of the kind of the reflecting coating of a glass spherical satellite on thermal deformations caused by the solar irradiation is considered. Two types of coating deposited on one of the hemispheres are considered: aluminum with a protective layer of bakelite varnish and interference dielectric coating for two orientations of the satellite orbit. Structures of a multilayer dielectric coating and technologies of its deposition are described.

  10. Assessment and Correction of on-Orbit Radiometric Calibration for FY-3 VIRR Thermal Infrared Channels

    Directory of Open Access Journals (Sweden)

    Na Xu

    2014-03-01

    Full Text Available FengYun-3 (FY-3 Visible Infrared Radiometer (VIRR, along with its predecessor, Multispectral Visible Infrared Scanning Radiometer (MVISR, onboard FY-1C&D have had continuous global observation more than 14 years. This data record is valuable for weather prediction, climate monitoring, and environment research. Data quality is vital for satellite data assimilations in Numerical Weather Prediction (NWP and quantitative remote sensing applications. In this paper, the accuracies of radiometric calibration for VIRR onboard FY-3A and FY-3B, in thermal infrared (TIR channels, are evaluated using the Low Earth Orbit (LEO-LEO simultaneous nadir overpass intercalibration method. Hyperspectral and high-quality observations from Infrared Atmosphere Sounding Instrument (IASI onboard METOP-A are used as reference. The biases of VIRR measurements with respect to IASI over one-and-a-half years indicate that the TIR calibration accuracy of FY-3B VIRR is better than that of FY-3A VIRR. The brightness temperature (BT measured by FY-3A/VIRR is cooler than that measured by IASI with monthly mean biases ranging from −2 K to −1 K for channel 4 and −1 K to 0.2 K for channel 5. Measurements from FY-3B/VIRR are more consistent with that from IASI, and the annual mean biases are 0.84 ± 0.16 K and −0.66 ± 0.18 K for channels 4 and 5, respectively. The BT biases of FY-3A/VIRR show scene temperature-dependence and seasonal variation, which are not found from FY-3B/VIRR BT biases. The temperature-dependent biases are shown to be attributed to the nonlinearity of detectors. New nonlinear correction coefficients of FY-3A/VIRR TIR channels are reevaluated using various collocation samples. Verification results indicate that the use of the new nonlinear correction can greatly correct the scene temperature-dependent and systematic biases.

  11. Modeling on thermally induced coupled micro-motions of satellite with complex flexible appendages

    Directory of Open Access Journals (Sweden)

    Zhicheng Zhou

    2015-06-01

    Full Text Available To describe the characteristics of thermally induced coupled micro-motions more exactly, a numerical model is proposed for a satellite system consisting of a rigid body and the complex appendages. The coupled governing equations including the effects of transient temperature differences are formulated within the framework of the Lagrangian Method based on the finite element models of flexible structures. Meanwhile, the problem of coupling between attitude motions of rigid body and vibrations of flexible attachments are addressed with explicit expressions. Thermally induced micro-motions are examined in detail for a simple satellite with a large solar panel under the disturbance of thermal environment from earth shadow to sunlight area in the earth orbit. The results show that the thermal–mechanical performances of an on-orbit satellite can be well predicted by the proposed finite element model.

  12. Load Responsive MLI: Thermal Insulation with High In-Atmosphere and On-Orbit Performance Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Lightweight, high performance thermal insulation is critical to NASA's next generation Exploration spacecraft. Zero or low cryogenic propellant boiloff is required...

  13. Low gravity thermal stratification of liquid helium on SHOOT. [Superfluid Helium On-Orbit Transfer

    Science.gov (United States)

    Shirron, P. J.; Dipirro, M. J.

    1992-01-01

    Estimates of the extent and impact of thermal stratification are presented as well as predictions of the behavior of the HeI/HeII boundary. Although thermal stratification of cryogens can be problematic and lead to their inefficient use in low gravity, for SHOOT the occurrence is beneficial both during ground hold and in orbit and presents no hazards. On the ground the parasitic heat load is both reduced and more efficiently removed. In orbit the pumpdown proceeds at a much more rapid rate, allowing orbital operations to begin earlier. The thermal conductivity of the aluminum tank and the normal liquid plus cooling at the liquid/vapor interface as the vapor bubble grows are sufficient to prevent undesirably high vapor pressures in the tank.

  14. Cryogenic and thermal design for the Superfluid Helium On-Orbit Transfer (SHOOT) experiment

    Science.gov (United States)

    Lee, J. H.; Maa, S.; Brooks, W. F.; Ng, Y. S.

    1988-01-01

    The analysis and trade-offs of the external thermal design of the two 200-liter dewars required in the SHOOT experiment to extend space mission life by superfluid helium replenishment are discussed. Also considered are the support electronics and the optimization and prediction of the performance of the dewar and cryostat assemblies. Particular attention is given to the ground-hold and standby performance of the dewars, along with the temperature of the helium bath during high-flow-rate helium transfers.

  15. TIRCIS: thermal infrared compact imaging spectrometer for small satellite applications

    Science.gov (United States)

    Wright, Robert; Lucey, Paul; Crites, Sarah; Garbeil, Harold; Wood, Mark; Pilger, Eric; Gabrieli, Andrea; Honniball, Casey

    2016-10-01

    Measurements of reflectance or emittance in tens of narrow, contiguous wavebands, allow for the derivation of laboratory quality spectra remotely, from which the chemical composition and physical properties of targets can be determined. Although spaceborne (e.g. EO-1 Hyperion) hyperspectral data in the 0.4-2.5 micron (VSWIR) region are available, the provision of equivalent data in the log-wave infrared has lagged behind, there being no currently operational high spatial resolution LWIR imaging spectrometer on orbit. TIRCIS (Thermal Infra-Red Compact Imaging Spectrometer), uses a Fabry-Perot interferometer, an uncooled microbolometer array, and push-broom scanning to acquire hyperspectral image data. Radiometric calibration is provided by blackbody targets while spectral calibration is achieved using monochromatic light sources. The instrument has a mass of <15 kg and dimensions of 53 cm × 25 cm ♢ 22 cm, and has been designed to be compatible with integration into a micro-satellite platform. (A precursor to this instrument was launched onboard a 55 kg microsatellite in October 2015). The optical design yields a 120 m ground sample size given an orbit of 500 km. Over the wavelength interval of 7.5 to 14 microns up to 50 spectral samples are possible. Measured signal-to-noise ratios range from peak values of 500:1 to 1500:1, for source temperature of 10 to 100°C.

  16. Attitude control system design and on-orbit performance analysis of nano-satellite--‘‘Tian Tuo 1’’

    Institute of Scientific and Technical Information of China (English)

    Ran Dechao; Sheng Tao; Cao Lu; Chen Xiaoqian; Zhao Yong

    2014-01-01

    ‘‘Tian Tuo 1’’ (TT-1) nano-satellite is the first single-board nano-satellite that was suc-cessfully launched in China. The main objective of TT-1 is technology demonstration and scientific measurements. The satellite carries out the significant exploration of single-board architecture fea-sibility validation, and it is tailored to the low-cost philosophy by adopting numerous commercial-off-the-shelf (COTS) components. The satellite is featured with three-axis stabilization control capability. A pitch bias momentum wheel and three magnetic coils are adopted as control actuators. The sun sensors, magnetometers and a three-axis gyro are employed as the measurement sensors. The quaternion estimator (QUEST) and unscented Kalman filter (UKF) method are adopted for the nano-satellite attitude determination. On-orbit data received by ground station is conducted to analysis the performance of attitude determination and control system (ADCS). The results show that the design of ADCS for TT-1 is suitable, robust and feasible.

  17. On-Orbit Radiometric Performance of the Landsat 8 ThermalInfrared Sensor

    Directory of Open Access Journals (Sweden)

    Matthew Montanaro

    2014-11-01

    Full Text Available The Thermal Infrared Sensor (TIRS requirements for noise, stability, and uniformity were designed to ensure the radiometric integrity of the data products. Since the launch of Landsat 8 in February 2013, many of these evaluations have been based on routine measurements of the onboard calibration sources, which include a variable-temperature blackbody and a deep space view port. The noise equivalent change in temperature (NEdT of TIRS data is approximately 0.05 K @ 300 K in both bands, exceeding requirements by about a factor of 8 and Landsat 7 ETM+ performance by a factor of 3. Coherent noise is not readily apparent in TIRS data. No apparent change in the detector linearization has been observed. The radiometric stability of the TIRS instrument over the period between radiometric calibrations (about 40 min is less than one count of dark current and the variation in terms of radiance is less than 0.015 \\(W/m^2/sr/\\mu m\\ (or 0.13 K at 300 K, easily meeting the short term stability requirements. Long term stability analysis has indicated a degradation of about 0.2% or less per year. The operational calibration is only updated using the biases taken every orbit, due to the fundamental stability of the instrument. By combining the data from two active detector rows per band, 100% detector operability is maintained for the instrument. No trends in the noise, operability, or short term radiometric stability are apparent over the mission life. The uniformity performance is more difficult to evaluate as scene-varying banding artifacts have been observed in Earth imagery. Analyses have shown that stray light is affecting the recorded signal from the Earth and inducing the banding depending on the content of the surrounding Earth surface. As the stray light effects are stronger in the longer wavelength TIRS band11 (12.0 \\(\\mu m\\, the uniformity is better in the shorter wavelength band10 (10.9 \\(\\mu m\\. Both bands have exceptional noise and

  18. On-Orbit Asset Management System, September 1995. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-10

    Declining budgets have prompted the need to decrease launch cost, increase satellite lifetime, and accomplish more with each satellite. This study evaluates an OOAMS system for its ability to lengthen lifetime of on-orbit assets, decrease the number of satellites required to perform a mission, increase responsiveness, and provide increased mission capability/tactical advantage. Lifetime analysis suggest that the larger satellite systems (NASA and military communication systems, surveillance satellites and earth observing satellites) would benefit most from a nuclear bimodal OOAMS. Evaluation of satellite constellations indicate that a modest reduction in the number of satellites could be realized using OOAMS if the thermal restart capability was at least ten. An OOAMS could improve the responsiveness (launching of new assets) using on-orbit reconstitution of assets. A top level utility assessment was done to address system cost issues relating to funding profiles, first unit cost, and break-even analysis. From mission capture and orbital lifetime criteria, the recommended minimum orbital altitude is 900 km. The on-orbit thermal restart capability should be increased from five to ten. Analysis of total impulse vs propellant consumed for selected missions suggests that total impulse be increased from 40 million to 48 million Newton-seconds.

  19. Thermal deformation analysis of the composite material satellite antenna

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Controlling the thermal deformation is a crucial index for the design of the satellite antenna. To calculate and measure the satellite antenna's thermal deformation is also an important step for the design of satellite antenna. Based on the foundation of equivalent assumption, the thermal deformation of the parabolic satellite antenna was analyzed by the finite element method for different design project. The best design project that had the minimum of the thermal deformation could be obtained through changing the lay-angle, lay-layers and lay-thickness of each layer. Results show the asymmetry structure has the minimum of thermal deformation. This paper may provide useful information for the further investigation on the coupling of thermal-stress structure.

  20. Computation and Prediction of plasma drag on Orbiting Satellites due to Space Environmental Perturbation by Coronal Mass Ejections (CMEs)

    Science.gov (United States)

    Nwankwo, Victor U. J.; Chakrabarti, Sandip Kumar

    2012-07-01

    Certain earth pointing Coronal Mass Ejections (CMEs) induce geomagnetic storms, which significantly affect human activities. Satellites orbiting earth are particularly vulnerable to blasts of solar energy resulting from this phenomenon. It is known that the huge amount of energetic ultraviolet radiation from this space environmental disturbance can heat up the outer atmosphere, causing it to expand. This can cause a significant drag on Earth-Orbiting satellites and even degrade the precision of Global Positioning Systems (GPS) measurements. However, CMEs are more damaging. They are more frequent during the active (solar maximum) Phase of the sun's approximately 11-year cycle. As we approach another maximum in 2012-2013, it is instructive to make an estimate of average daily production of energetic proton flux based on GOES data on earth-pointing CMEs in the past solar cycle. We also compute the drag on satellites due to atmospheric perturbations by CMEs and make predictions of how the existing satellite orbits could be affected near the peak of next solar cycle maximum.

  1. 皮卫星在轨能量平衡仿真研究%Study on simulation of on-orbit energy balance of pico-satellite

    Institute of Scientific and Technical Information of China (English)

    金小军; 赵翔宇; 辜渝嘉; 金仲和

    2009-01-01

    针对浙江大学皮卫星由于输入能量条件差以及采用非调节母线和体装式结构,使其能量平衡计算相对于传统卫星更加复杂的特点和电源电路的特殊设计,对电源系统进行了建模. 通过实时计算太阳电池、蓄电池和负载的在轨工作参数以及分析实时的电流平衡、电压平衡和能量平衡,最终得到真实的能量平衡仿真模型. 对理想运行条件、实际环境条件和考虑卫星姿态失效的最差条件分别进行了仿真. 结果表明,在理想条件下可以完全保证整星能量平衡;在实际环境下最大平衡功率能忍受实际负载约10%的拉偏;在最差姿态条件下已几乎没有裕量,但能完全保证卫星安全模式下的负载功率能量平衡.%Considering that the computation of energy balance of the Zheda pico-satellite is more complex than that of conventional satellites due to its weak input energy and the use of the non-conditioning bus and the body-mounted structure, the power system was modeled based on the features of the pico-satellite and the specific design of the power circuit.The on-orbit running parameters of the solar array, the battery and the load were calculated in real time, and the real-time current balance, voltage balance and energy balance were analyzed, which lead to the practical simulation model of energy balance.Simulations of the ideal condition, the practical condition and the worst condition with the invalidation of the satellite attitude were made respectively.The results showed that the satellite can fully attain energy balance under the ideal condition and can tolerate 10% of the load power under the practical condition.Under the worst condition, the satellite had little margin of energy, but it can fully attain energy balance under the safe mode of the satellite.

  2. Thermal Mapping Airborne Simulator for Small Satellite Sensor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A high performance, inexpensive, airborne simulator that will serve as the prototype for a small satellite based imaging system capable of mapping thermal anomalies...

  3. Statistical Design Model (SDM) of satellite thermal control subsystem

    Science.gov (United States)

    Mirshams, Mehran; Zabihian, Ehsan; Aarabi Chamalishahi, Mahdi

    2016-07-01

    Satellites thermal control, is a satellite subsystem that its main task is keeping the satellite components at its own survival and activity temperatures. Ability of satellite thermal control plays a key role in satisfying satellite's operational requirements and designing this subsystem is a part of satellite design. In the other hand due to the lack of information provided by companies and designers still doesn't have a specific design process while it is one of the fundamental subsystems. The aim of this paper, is to identify and extract statistical design models of spacecraft thermal control subsystem by using SDM design method. This method analyses statistical data with a particular procedure. To implement SDM method, a complete database is required. Therefore, we first collect spacecraft data and create a database, and then we extract statistical graphs using Microsoft Excel, from which we further extract mathematical models. Inputs parameters of the method are mass, mission, and life time of the satellite. For this purpose at first thermal control subsystem has been introduced and hardware using in the this subsystem and its variants has been investigated. In the next part different statistical models has been mentioned and a brief compare will be between them. Finally, this paper particular statistical model is extracted from collected statistical data. Process of testing the accuracy and verifying the method use a case study. Which by the comparisons between the specifications of thermal control subsystem of a fabricated satellite and the analyses results, the methodology in this paper was proved to be effective. Key Words: Thermal control subsystem design, Statistical design model (SDM), Satellite conceptual design, Thermal hardware

  4. The Near Earth Object Surveillance Satellite: Mission status and CCD evolution after 18 months on-orbit

    Science.gov (United States)

    Wallace, B.; Scott, R.; Sale, M.

    2014-09-01

    The Near Earth Object Surveillance Satellite (NEOSSat) is a small telescope equipped microsatellite designed to perform both Space Situational Awareness (SSA) experiments and asteroid detection. NEOSSat was launched on 25 February 2013, however, due to time pressures, NEOSSat was launched with only the minimal software required to keep the spacecraft safe. The time pressure also resulted in the spacecraft undergoing reduced system and environmental testing on the ground. The full software suite, required to obtain imagery and maintain stable pointing, has since been uploaded to the spacecraft. NEOSSat has obtained imagery since June 2013, with the shutter both open and closed, but as of March 2014 has not achieved the fine pointing required to obtain scientifically useful data. The collected imagery is being used to characterize the on-board CCD camera. While gain and dark current values agree with pre-launch values, unexpected artefacts have appeared in the images. Methods for mitigating the artefacts through image processing have been developed, and spacecraft-level fixes are currently being investigated. In addition, damage from high energy particles impacting the CCD has produced hot pixels in imagery. We have been able to measure the evolution of these hot pixels over several months, both in terms of numbers and characteristics; these results will be presented. In addition, early results from the mission (image quality issues and evolution, early imagery examples), as well as the mission status (including fine pointing), will be discussed.

  5. Thermal Conductivity Measurements on Icy Satellite Analogs

    Science.gov (United States)

    Javeed, Aurya; Barmatz, Martin; Zhong, Fang; Choukroun, Mathieu

    2012-01-01

    With regard to planetary science, NASA aspires to: "Advance scientific knowledge of the origin and history of the solar system, the potential for life elsewhere, and the hazards and resources present as humans explore space". In pursuit of such an end, the Galileo and Cassini missions garnered spectral data of icy satellite surfaces implicative of the satellites' structure and material composition. The potential for geophysical modeling afforded by this information, coupled with the plausibility of life on icy satellites, has pushed Jupiter's Europa along with Saturn's Enceladus and Titan toward the fore of NASA's planetary focus. Understanding the evolution of, and the present processes at work on, the aforementioned satellites falls squarely in-line with NASA's cited goal.

  6. Early On-Orbit Performance of the Visible Infrared Imaging Radiometer Suite Onboard the Suomi National Polar-Orbiting Partnership (S-NPP) Satellite

    Science.gov (United States)

    Cao, Changyong; DeLuccia, Frank J.; Xiong, Xiaoxiong; Wolfe, Robert; Weng, Fuzhong

    2014-01-01

    The Visible Infrared Imaging Radiometer Suite (VIIRS) is one of the key environmental remote-sensing instruments onboard the Suomi National Polar-Orbiting Partnership spacecraft, which was successfully launched on October 28, 2011 from the Vandenberg Air Force Base, California. Following a series of spacecraft and sensor activation operations, the VIIRS nadir door was opened on November 21, 2011. The first VIIRS image acquired signifies a new generation of operational moderate resolution-imaging capabilities following the legacy of the advanced very high-resolution radiometer series on NOAA satellites and Terra and Aqua Moderate-Resolution Imaging Spectroradiometer for NASA's Earth Observing system. VIIRS provides significant enhancements to the operational environmental monitoring and numerical weather forecasting, with 22 imaging and radiometric bands covering wavelengths from 0.41 to 12.5 microns, providing the sensor data records for 23 environmental data records including aerosol, cloud properties, fire, albedo, snow and ice, vegetation, sea surface temperature, ocean color, and nigh-time visible-light-related applications. Preliminary results from the on-orbit verification in the postlaunch check-out and intensive calibration and validation have shown that VIIRS is performing well and producing high-quality images. This paper provides an overview of the onorbit performance of VIIRS, the calibration/validation (cal/val) activities and methodologies used. It presents an assessment of the sensor initial on-orbit calibration and performance based on the efforts from the VIIRS-SDR team. Known anomalies, issues, and future calibration efforts, including the long-term monitoring, and intercalibration are also discussed.

  7. Thermal rocketing and the Laser Geodynamic Satellite (LAGEOS-1)

    Energy Technology Data Exchange (ETDEWEB)

    Miller, W.A.

    1997-08-01

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory. LAGEOS is the most accurately tracked satellite in orbit. It is a totally passive, dense spherical satellite covered with 426 cube corner reflectors. Besides its great utility in measuring the Earth`s length of day and polar wobble, this satellite can be used to measure, for the first time, the general relativistic frame-dragging effect. Of the five dominant error sources in such an experiment, the largest one involves surface interaction of thermal forces (thermal rocketing) and its influence on the orbital nodal precession. The project objective was to enhance an already available theoretical model (computer code) developed at Los Alamos based on new optical-spin data obtained at the University of Maryland. The project objective was met and the enhanced code will serve as the new spin-dynamics model for future LAGEOS satellite missions.

  8. LARES Satellite Thermal Forces and a Test of General Relativity

    CERN Document Server

    Matzner, Richard; Brooks, Jason; Ciufolini, Ignazio; Paolozzi, Antonio; Pavlis, Erricos C; Koenig, Rolf; Ries, John; Gurzadyan, Vahe; Penrose, Roger; Sindoni, Giampiero; Paris, Claudio; Khachatryan, Harutyun; Mirzoyan, Sergey

    2016-01-01

    We summarize a laser-ranged satellite test of General Relativity, the measurement of the Earth's dragging of inertial frames, and then describe the modeling of an important perturbing effect, thermally induced forces, on the satellite. The frame dragging result is obtained by using about 3.5 years of laser-ranged observations of the LARES, LAGEOS, and LAGEOS 2 laser-ranged satellites together with the Earth gravity field model GGM05S produced by the space geodesy mission GRACE. It produces a result in agreement with the prediction of General Relativity: $\\mu = (0.994 \\pm 0.002) \\pm 0.05$, where $\\mu$ is the Earth's dragging of inertial frames normalized to its General Relativity value, 0.002 is the 1-sigma formal error and 0.05 is the estimated systematic error. The thermal force model assumes heat flow from the sun (visual) and from Earth (IR) to the satellite core and to the fused silica reflectors on the satellite, and reradiation into space. For a roughly current epoch (days 1460 - 1580 after launch) we c...

  9. ACTS Multibeam Antenna On-Orbit Performance

    Science.gov (United States)

    Acosta, R.; Wright, D.; Mitchell, Kenneth

    1996-01-01

    The Advanced Communications Technology Satellite (ACTS) launched in September 1993 introduces several new technologies including a multibeam antenna (MBA) operating at Ka-band. The MBA with fixed and rapidly reconfigurable spot beams serves users equipped with small aperture terminals within the coverage area. The antenna produces spot beams with approximately 0.3 degrees beamwidth and gains of approximately 50 dBi. A number of MBA performance evaluations have been performed since the ACTS launch. These evaluations were designed to assess MBA performance (e.g., beam pointing stability, beam shape, gain, etc.) in the space environment. The on-orbit measurements found systematic environmental perturbation to the MBA beam pointing. These perturbations were found to be imposed by satellite attitude control system, antenna and spacecraft mechanical alignments, on-orbit thermal effects, etc. As a result, the footprint coverage of the MBA may not exactly cover the intended service area at all times. This report describes the space environment effects on the ACTS MBA performance as a function of time of the day and time of the year and compensation approaches for these effects.

  10. THERMAL AND VISIBLE SATELLITE IMAGE FUSION USING WAVELET IN REMOTE SENSING AND SATELLITE IMAGE PROCESSING

    Directory of Open Access Journals (Sweden)

    A. H. Ahrari

    2017-09-01

    Full Text Available Multimodal remote sensing approach is based on merging different data in different portions of electromagnetic radiation that improves the accuracy in satellite image processing and interpretations. Remote Sensing Visible and thermal infrared bands independently contain valuable spatial and spectral information. Visible bands make enough information spatially and thermal makes more different radiometric and spectral information than visible. However low spatial resolution is the most important limitation in thermal infrared bands. Using satellite image fusion, it is possible to merge them as a single thermal image that contains high spectral and spatial information at the same time. The aim of this study is a performance assessment of thermal and visible image fusion quantitatively and qualitatively with wavelet transform and different filters. In this research, wavelet algorithm (Haar and different decomposition filters (mean.linear,ma,min and rand for thermal and panchromatic bands of Landast8 Satellite were applied as shortwave and longwave fusion method . Finally, quality assessment has been done with quantitative and qualitative approaches. Quantitative parameters such as Entropy, Standard Deviation, Cross Correlation, Q Factor and Mutual Information were used. For thermal and visible image fusion accuracy assessment, all parameters (quantitative and qualitative must be analysed with respect to each other. Among all relevant statistical factors, correlation has the most meaningful result and similarity to the qualitative assessment. Results showed that mean and linear filters make better fused images against the other filters in Haar algorithm. Linear and mean filters have same performance and there is not any difference between their qualitative and quantitative results.

  11. Thermal migration of water on the Galilean satellites

    Energy Technology Data Exchange (ETDEWEB)

    Purves, N.G.; Pilcher, C.B.

    1980-01-01

    We have modeled the thermal migration of water on the Galilean satellites under the assumption of ballistic molecular trajectories. It is found that water migrating owing to solar radiation on an ice-covered satellite will build up in temperate latitudes, in general not reaching the poles. As much as 50 m of ice may have been lost by this process from the equatorial regions of Europa over the age of the solar system. The disappearance of patches of ice - for instance, the bright rays surrounding some impact craters - from the equatorial regions of Ganymede and Callisto may approach a value (the irreversible evaporation rate) three orders of magnitude larger than the net equatorial loss rate for ice-covered Europa. The presence of water ice pole caps on Ganymede extending to the latitudes at which thermal migration becomes important suggests that some process distributed an extensive, thin covering of water on the satellite, and that the equatorial regions were subsequently cleared by the thermal process.

  12. Thermal Analysis of Iodine Satellite (iSAT)

    Science.gov (United States)

    Mauro, Stephanie

    2015-01-01

    This paper presents the progress of the thermal analysis and design of the Iodine Satellite (iSAT). The purpose of the iSAT spacecraft (SC) is to demonstrate the ability of the iodine Hall Thruster propulsion system throughout a one year mission in an effort to mature the system for use on future satellites. The benefit of this propulsion system is that it uses a propellant, iodine, that is easy to store and provides a high thrust-to-mass ratio. The spacecraft will also act as a bus for an earth observation payload, the Long Wave Infrared (LWIR) Camera. Four phases of the mission, determined to either be critical to achieving requirements or phases of thermal concern, are modeled. The phases are the Right Ascension of the Ascending Node (RAAN) Change, Altitude Reduction, De-Orbit, and Science Phases. Each phase was modeled in a worst case hot environment and the coldest phase, the Science Phase, was also modeled in a worst case cold environment. The thermal environments of the spacecraft are especially important to model because iSAT has a very high power density. The satellite is the size of a 12 unit cubesat, and dissipates slightly more than 75 Watts of power as heat at times. The maximum temperatures for several components are above their maximum operational limit for one or more cases. The analysis done for the first Design and Analysis Cycle (DAC1) showed that many components were above or within 5 degrees Centigrade of their maximum operation limit. The battery is a component of concern because although it is not over its operational temperature limit, efficiency greatly decreases if it operates at the currently predicted temperatures. In the second Design and Analysis Cycle (DAC2), many steps were taken to mitigate the overheating of components, including isolating several high temperature components, removal of components, and rearrangement of systems. These changes have greatly increased the thermal margin available.

  13. Measuring thermal budgets of active volcanoes by satellite remote sensing

    Science.gov (United States)

    Glaze, L.; Francis, P. W.; Rothery, D. A.

    1989-01-01

    Thematic Mapper measurements of the total radiant energy flux Q at Lascar volcano in north Chile for December 1984 are reported. The results are consistent with the earlier suggestion that a lava lake is the source of a reported thermal budget anomaly, and with values for 1985-1986 that are much lower, suggesting that fumarolic activity was then a more likely heat source. The results show that satellite remote sensing may be used to monitor the activity of a volcano quantitatively, in a way not possible by conventional ground studies, and may provide a method for predicting eruptions.

  14. A low cost thermal infrared hyperspectral imager for small satellites

    Science.gov (United States)

    Crites, S. T.; Lucey, P. G.; Wright, R.; Garbeil, H.; Horton, K. A.

    2011-06-01

    The traditional model for space-based earth observations involves long mission times, high cost, and long development time. Because of the significant time and monetary investment required, riskier instrument development missions or those with very specific scientific goals are unlikely to successfully obtain funding. However, a niche for earth observations exploiting new technologies in focused, short lifetime missions is opening with the growth of the small satellite market and launch opportunities for these satellites. These low-cost, short-lived missions provide an experimental platform for testing new sensor technologies that may transition to larger, more long-lived platforms. The low costs and short lifetimes also increase acceptable risk to sensors, enabling large decreases in cost using commercial off the shelf (COTS) parts and allowing early-career scientists and engineers to gain experience with these projects. We are building a low-cost long-wave infrared spectral sensor, funded by the NASA Experimental Project to Stimulate Competitive Research program (EPSCOR), to demonstrate the ways in which a university's scientific and instrument development programs can fit into this niche. The sensor is a low-mass, power efficient thermal hyperspectral imager with electronics contained in a pressure vessel to enable the use of COTS electronics, and will be compatible with small satellite platforms. The sensor, called Thermal Hyperspectral Imager (THI), is based on a Sagnac interferometer and uses an uncooled 320x256 microbolometer array. The sensor will collect calibrated radiance data at long-wave infrared (LWIR, 8-14 microns) wavelengths in 230-meter pixels with 20 wavenumber spectral resolution from a 400-km orbit.

  15. A low cost thermal infrared hyperspectral imager for small satellites

    Science.gov (United States)

    Crites, S. T.; Lucey, P. G.; Wright, R.; Garbeil, H.; Horton, K. A.; Wood, M.

    2012-06-01

    The growth of the small satellite market and launch opportunities for these satellites is creating a new niche for earth observations that contrasts with the long mission durations, high costs, and long development times associated with traditional space-based earth observations. Low-cost, short-lived missions made possible by this new approach provide an experimental platform for testing new sensor technologies that may transition to larger, more long-lived platforms. The low costs and short lifetimes also increase acceptable risk to sensors, enabling large decreases in cost using commercial off-the-shelf (COTS) parts and allowing early-career scientists and engineers to gain experience with these projects. We are building a low-cost long-wave infrared spectral sensor, funded by the NASA Experimental Project to Stimulate Competitive Research program (EPSCoR), to demonstrate ways in which a university's scientific and instrument development programs can fit into this niche. The sensor is a low-mass, power-efficient thermal hyperspectral imager with electronics contained in a pressure vessel to enable use of COTS electronics and will be compatible with small satellite platforms. The sensor, called Thermal Hyperspectral Imager (THI), is based on a Sagnac interferometer and uses an uncooled 320x256 microbolometer array. The sensor will collect calibrated radiance data at long-wave infrared (LWIR, 8-14 microns) wavelengths in 230 meter pixels with 20 wavenumber spectral resolution from a 400 km orbit. We are currently in the laboratory and airborne testing stage in order to demonstrate the spectro-radiometric quality of data that the instrument provides.

  16. Assessment and Accommodation of Thermal Expansion of the Internal Active Thermal Control System Coolant During Launch to On-Orbit Activation of International Space Station Elements

    Science.gov (United States)

    Edwards, Darryl; Ungar, Eugene K.; Holt, James M.

    2002-01-01

    The International Space Station (ISS) employs an Internal Active Thermal Control System (IATCS) comprised of several single-phase water coolant loops. These coolant loops are distributed throughout the ISS pressurized elements. The primary element coolant loops (i.e. U.S. Laboratory module) contain a fluid accumulator to accomodate thermal expansion of the system. Other element coolant loops are parasitic (i.e. Airlock), have no accumulator, and require an alternative approach to insure that the system maximum design pressure (MDP) is not exceeded during the Launch to Activation (LTA) phase. During this time the element loops is a stand alone closed system. The solution approach for accomodating thermal expansion was affected by interactions of system components and their particular limitations. The mathematical solution approach was challenged by the presence of certain unknown or not readily obtainable physical and thermodynamic characteristics of some system components and processes. The purpose of this paper is to provide a brief description of a few of the solutions that evolved over time, a novel mathematical solution to eliminate some of the unknowns or derive the unknowns experimentally, and the testing and methods undertaken.

  17. Upper atomosphere and Thermal control of the Super Low Altitude Test Satellite

    OpenAIRE

    2013-01-01

    The Super Low Altitude Test Satellite (SLATS) is an engineering test satellite currently under development in JAXA in an attempt to open a new frontier of space utilization on extremely low earth orbits. The altitude of SLATS orbit is around200km altitude. In this altitude, rarefied aerodynamics and high-density atomic oxygen effect on the thermal design of SLATS. The thermal control of SLATS was introduced in this paper. And, the equilibrium temperature on the bumper of SLATS was estimated w...

  18. Thermal precursors in satellite images of the 1999 eruption of Shishaldin Volcano

    Science.gov (United States)

    Dehn, Jonathan; Dean, Kenneson; Engle, Kevin; Izbekov, Pavel

    2002-07-01

    Shishaldin Volcano, Unimak Island Alaska, began showing signs of thermal unrest in satellite images on 9 February 1999. A thermal anomaly and small steam plume were detected at the summit of the volcano in short-wave thermal infrared AVHRR (advanced very high resolution radiometer) satellite data. This was followed by over 2 months of changes in the observed thermal character of the volcano. Initially, the thermal anomaly was only visible when the satellite passed nearly directly over the volcano, suggesting a hot source deep in the central crater obscured from more oblique satellite passes. The "zenith angle" needed to see the anomaly increased with time, presumably as the thermal source rose within the conduit. Based on this change, an ascent rate of ca. 14 m per day for the thermal source was estimated, until it reached the summit on around 21 March. It is thought that Strombolian activity began around this time. The precursory activity culminated in a sub-Plinian eruption on 19 April, ejecting ash to over 45,000 ft. (13,700 m). The thermal energy output through the precursory period was calculated based on geometric constraints unique to Shishaldin. These calculations show fluctuations that can be tied to changes in the eruptive character inferred from seismic records and later geologic studies. The remote location of this volcano made satellite images a necessary observation tool for this eruption. To date, this is the longest thermal precursory activity preceding a sub-Plinian eruption recorded by satellite images in the region. This type of thermal monitoring of remote volcanoes is central in the efforts of the Alaska Volcano Observatory to provide timely warnings of volcanic eruption, and mitigate their associated hazards to air-traffic and local residents.

  19. Earth's thermal radiation sensors for attitude determination systems of small satellites

    Science.gov (United States)

    Vertat, I.; Linhart, R.; Masopust, J.; Vobornik, A.; Dudacek, L.

    2017-07-01

    Satellite attitude determination is a complex process with expensive hardware and software and it could consume the most of resources (volume, mass, electric power), especially of small satellites as CubeSats. Thermal radiation infrared detectors could be one of useful sensors for attitude determination systems in such small satellites. Nowadays, these sensors are widely used in contact-less thermometers and thermo-cameras resulting in a low-cost technology. On low Earth orbits the infrared thermal sensors can be utilized for coarse attitude determination against a relative warm and close Earth's globe.

  20. Thermal mapping of Hawaiian volcanoes with ASTER satellite data

    Science.gov (United States)

    Patrick, Matthew R.; Witzke, Coral-Nadine

    2011-01-01

    Thermal mapping of volcanoes is important to determine baseline thermal behavior in order to judge future thermal activity that may precede an eruption. We used cloud-free kinetic temperature images from the ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) sensor obtained between 2000 and 2010 to produce thermal maps for all five subaerial volcanoes in Hawai‘i that have had eruptions in the Holocene (Kīlauea, Mauna Loa, Hualālai, Mauna Kea, and Haleakalā). We stacked the images to provide time-averaged thermal maps, as well as to analyze temperature trends through time. Thermal areas are conspicuous at the summits and rift zones of Kīlauea and Mauna Loa, and the summit calderas of these volcanoes contain obvious arcuate, concentric linear thermal areas that probably result from channeling of rising gas along buried, historical intracaldera scarps. The only significant change in thermal activity noted in the study period is the opening of the Halema‘uma‘u vent at Kīlauea's summit in 2008. Several small thermal anomalies are coincident with pit craters on Hualālai. We suspect that these simply result from the sheltered nature of the depression, but closer inspection is warranted to determine if genuine thermal activity exists in the craters. Thermal areas were not detected on Haleakalā or Mauna Kea. The main limitation of the study is the large pixel size (90 m) of the ASTER images, which reduces our ability to detect subtle changes or to identify small, low-temperature thermal activity. This study, therefore, is meant to characterize the broad, large-scale thermal features on these volcanoes. Future work should study these thermal areas with thermal cameras and thermocouples, which have a greater ability to detect small, low-temperature thermal features.

  1. Landsat 8 on-orbit characterization and calibration system

    Science.gov (United States)

    Micijevic, Esad; Morfitt, Ron; Choate, Michael J.

    2011-01-01

    The Landsat Data Continuity Mission (LDCM) is planning to launch the Landsat 8 satellite in December 2012, which continues an uninterrupted record of consistently calibrated globally acquired multispectral images of the Earth started in 1972. The satellite will carry two imaging sensors: the Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS). The OLI will provide visible, near-infrared and short-wave infrared data in nine spectral bands while the TIRS will acquire thermal infrared data in two bands. Both sensors have a pushbroom design and consequently, each has a large number of detectors to be characterized. Image and calibration data downlinked from the satellite will be processed by the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center using the Landsat 8 Image Assessment System (IAS), a component of the Ground System. In addition to extracting statistics from all Earth images acquired, the IAS will process and trend results from analysis of special calibration acquisitions, such as solar diffuser, lunar, shutter, night, lamp and blackbody data, and preselected calibration sites. The trended data will be systematically processed and analyzed, and calibration and characterization parameters will be updated using both automatic and customized manual tools. This paper describes the analysis tools and the system developed to monitor and characterize on-orbit performance and calibrate the Landsat 8 sensors and image data products.

  2. Post eclipse thermal response of Uranian satellites with SINFONI: a status report .

    NARCIS (Netherlands)

    Maris, M.; Hestroffer, D.; Delbo, M.; Mueller, M.; Grundy, W.; Stansberry, J.; Tozzi, G. P.; Tanga, P.; Thuillot, W.

    2008-01-01

    We report on the status of a project to measure eclipse-induced changes in surface temperature on the major Uranian satellites. Such measurements enable a uniquely direct determination of the thermal inertia, a measure of the resistance to changes in surface temperature. Thermal inertia is a very se

  3. Post eclipse thermal response of Uranian satellites with SINFONI: a status report .

    NARCIS (Netherlands)

    Maris, M.; Hestroffer, D.; Delbo, M.; Mueller, M.; Grundy, W.; Stansberry, J.; Tozzi, G. P.; Tanga, P.; Thuillot, W.

    2008-01-01

    We report on the status of a project to measure eclipse-induced changes in surface temperature on the major Uranian satellites. Such measurements enable a uniquely direct determination of the thermal inertia, a measure of the resistance to changes in surface temperature. Thermal inertia is a very se

  4. Provisional maps of thermal areas in Yellowstone National Park, based on satellite thermal infrared imaging and field observations

    Science.gov (United States)

    Vaughan, R. Greg; Heasler, Henry; Jaworowski, Cheryl; Lowenstern, Jacob B.; Keszthelyi, Laszlo P.

    2014-01-01

    Maps that define the current distribution of geothermally heated ground are useful toward setting a baseline for thermal activity to better detect and understand future anomalous hydrothermal and (or) volcanic activity. Monitoring changes in the dynamic thermal areas also supports decisions regarding the development of Yellowstone National Park infrastructure, preservation and protection of park resources, and ensuring visitor safety. Because of the challenges associated with field-based monitoring of a large, complex geothermal system that is spread out over a large and remote area, satellite-based thermal infrared images from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) were used to map the location and spatial extent of active thermal areas, to generate thermal anomaly maps, and to quantify the radiative component of the total geothermal heat flux. ASTER thermal infrared data acquired during winter nights were used to minimize the contribution of solar heating of the surface. The ASTER thermal infrared mapping results were compared to maps of thermal areas based on field investigations and high-resolution aerial photos. Field validation of the ASTER thermal mapping is an ongoing task. The purpose of this report is to make available ASTER-based maps of Yellowstone’s thermal areas. We include an appendix containing the names and characteristics of Yellowstone’s thermal areas, georeferenced TIFF files containing ASTER thermal imagery, and several spatial data sets in Esri shapefile format.

  5. Key technologies of thermal test for DFH-4 platform satellite%东四平台卫星热试验中的关键技术

    Institute of Scientific and Technical Information of China (English)

    袁伟峰; 郄殿福; 许忠旭

    2014-01-01

    东四平台系列卫星对真空热试验期间的星上转发器在轨工作状态模拟、星表高/低热流模拟、星体吊装与水平支撑和污染控制等提出了较高要求。文章对微波负载能量耗散试验技术、红外灯阵设计、液氮冷板设计、卫星吊装与支撑技术、污染控制及星内真空度监测技术等在该系列卫星热试验中的成功应用与完善进行了分析、总结。%In the thermal test for the DFH-4 platform satellite, high technical requirements have to be met for the on-orbit operating state simulation of the transponder, the high or low heat flux simulation for satellite’s surfaces, the satellite lifting and horizontal bracing, and the pollution control. This paper analyses the technologies for the energy dissipation of the microwave load, the design of the infrared lamp array, the design of the cold plate with liquid nitrogen, the satellite lifting and horizontal bracing, the vacuum degree monitoring inside the satellite and the contamination control, as well as the applications of above-mentioned technologies in test.

  6. Rapid Manufacturing of Reconfigurable Satellite Panels with Embedded Electronics, Embedded Thermal Devices, and Novel Structural Features

    OpenAIRE

    Young, Quinn; Stucker, Brent

    2006-01-01

    The Center for Advanced Satellite Manufacturing (CASM) at Utah State University has been investigating the use of new, advanced manufacturing technologies for the rapid manufacture of highly capable satellite panels. Using Ultrasonic Consolidation it is now possible to additively manufacture (a.k.a. rapid prototype) aluminum structures with embedded electronics, thermal devices, internal structural features, and fibers. CASM has built and tested embedded USB networks, electronic devices, ther...

  7. Photovoltaic and thermal energy conversion for solar powered satellites

    Science.gov (United States)

    Von Tiesenhausen, G. F.

    1976-01-01

    A summary is provided concerning the most important aspects of present investigations related to a use of solar power satellites (SPS) as a future source of terrestrial energy. General SPS characteristics are briefly considered, early work is reviewed, and a description of current investigations is presented. System options presently under study include a photovoltaic array, a thermionic system, and a closed Brayton cycle. Attention is given to system reference options, basic building blocks, questions of system analysis and engineering, photovoltaic conversion, and the utility interface. It is concluded that an SPS may be cost effective compared to terrestrial systems by 1995.

  8. Study on thermal properties of Cd-Ni batteries for satellites

    Science.gov (United States)

    Jingang, Hu

    1995-06-01

    Empirical research was carried out on thermal properties associated with the use of Cd-Ni storage cells in satellite engineering. Introduction is made of measured cell thermal capacities as well as amounts of heat put out by systems. The systems in question possess the advantages of being simple and reliable. Measured results are given, and, in conjunction with that, comparisons are carried out with data from abroad.

  9. A data mining approach for sharpening satellite thermal imagery over land

    Science.gov (United States)

    Thermal infrared (TIR) imagery is normally acquired at coarser pixel resolution than that of shortwave sensors on the same satellite platform and often the TIR resolution is not suitable for monitoring crop conditions of individual fields or the impacts of land cover changes which are at significant...

  10. 小卫星CCD相机MTF在轨测量与图像复原%On-orbit MTF estimation and restoration for CCD cameras of environment and disaster reduction small satellites (HJ 1A/1B)

    Institute of Scientific and Technical Information of China (English)

    杨贵军; 邢著荣; 黄文江; 王纪华

    2011-01-01

    Focusing on the CCD cameras of environment and disaster reduction small satellites (HJ1A/1B),an approach on the on-orbit measurement of modulation transfer function (MTF)to the imaging system was proposed. According to selecting the distinct edges among two homogeneous objects from images, the degraded images were processed with smooth filtering, curve fitting and the forward Fourier transform(FFT) of line spread function(LSF) to obtain the point spread function (PSF). After that, MTF corresponding to PSF can be obtained through FFT. Taking into account the noise of the complex constraint restoration method (CRM) without universality, the deconvolution restoration method in frequency domain was proposed, because it had the advantage that we neet not prove the parameters of sensor and atmosphere. Finally, analyzing and evaluating the restored image were carried out based on three factors: the feature value, definition and texture, respectively. The results show that the quality of HJ1A/1B image has been obviously improved, and achieved good restoration results.%基于调制传递函数的基本理论,针对环境与减灾小卫星光学相机,基于刃边法给出了一种在轨测量成像系统调制传递函数的方法.通过选取图像中均匀地物之间灰度变化明显的边缘,对有限采样点进行平滑滤波、曲线拟合和对线扩展函数(LSF)的傅里叶变换获得点扩展函数(PSF),提取调制传递函数(MTF)曲线,进而选取最优的MTF曲线.考虑到采用有约束复原方法时噪声统计、估计的复杂性和欠普适性,本方法通过频率域的去卷积进行复原处理,其优势在于不需要提供传感器、大气状况等参数.并对复原图像从统计特征、清晰度、纹理特征等3方面进行了定量分析和评价.结果表明:复原后的环境与减灾小卫星图像质量得到明显提高,收到良好的复原效果.

  11. Satellite and Ground Based Thermal Observation of the 2014 Effusive Eruption at Stromboli Volcano

    Directory of Open Access Journals (Sweden)

    Klemen Zakšek

    2015-12-01

    Full Text Available As specifically designed platforms are still unavailable at this point in time, lava flows are usually monitored remotely with the use of meteorological satellites. Generally, meteorological satellites have a low spatial resolution, which leads to uncertain results. This paper presents the first long term satellite monitoring of active lava flows on Stromboli volcano (August–November 2014 at high spatial resolution (160 m and relatively high temporal resolution (~3 days. These data were retrieved by the small satellite Technology Experiment Carrier-1 (TET-1, which was developed and built by the German Aerospace Center (DLR. The satellite instrument is dedicated to high temperature event monitoring. The satellite observations were accompanied by field observations conducted by thermal cameras. These provided short time lava flow dynamics and validation for satellite data. TET-1 retrieved 27 datasets over Stromboli during its effusive activity. Using the radiant density approach, TET-1 data were used to calibrate the MODVOLC data and estimate the time averaged lava discharge rate. With a mean output rate of 0.87 m3/s during the three-month-long eruption, we estimate the total erupted volume to be 7.4 × 106 m3.

  12. Application of remote sensing to thermal pollution analysis. [satellite sea surface temperature measurement assessment

    Science.gov (United States)

    Hiser, H. W.; Lee, S. S.; Veziroglu, T. N.; Sengupta, S.

    1975-01-01

    A comprehensive numerical model development program for near-field thermal plume discharge and far field general circulation in coastal regions is being carried on at the University of Miami Clean Energy Research Institute. The objective of the program is to develop a generalized, three-dimensional, predictive model for thermal pollution studies. Two regions of specific application of the model are the power plants sites at the Biscayne Bay and Hutchinson Island area along the Florida coastline. Remote sensing from aircraft as well as satellites are used in parallel with in situ measurements to provide information needed for the development and verification of the mathematical model. This paper describes the efforts that have been made to identify problems and limitations of the presently available satellite data and to develop methods for enhancing and enlarging thermal infrared displays for mesoscale sea surface temperature measurements.

  13. Space shuttle orbiter trimmed center-of-gravity extension study. Volume 3: Impact of retrofits for center-of-gravity extension on orbiter thermal-protection system

    Science.gov (United States)

    Dunavant, J. C.

    1979-01-01

    Heat transfer studies were conducted at Mach 10.3 on space shuttle orbiter models with the S-2 fillet and C-4 canard retrofit moldlines which were generated in aerodynamic and system design studies to increase the allowable c.g. range of the orbiter. Areas of orbiter most strongly affected were the sides where a shear layer which separated along the wing leading edge impinged. Analytical studies of the heating effect on the thermal-protection system were made which indicated that scar weight on the orbiter sides due to allowances for retrofits of the S-2 fillet and C-4 canard is small (less than about 90 kg (200 lbs) in comparison to the total weight of the retrofit).

  14. Land surface thermal characterization of Asian-pacific region with Japanese geostationary satellite

    Science.gov (United States)

    Oyoshi, K.; Tamura, M.

    2010-12-01

    Land Surface Temperature (LST) is a significant indicator of energy balance at the Earth's surface. It is required for a wide variety of climate, hydrological, ecological, and biogeochemical studies. Although LST is highly variable both temporally and spatially, it is impossible for polar-orbiting satellite to detect hourly changes in LST, because the satellite is able to only collect data of the same area at most twice a day. On the other hand, geostationary satellite is able to collect hourly data and has a possibility to monitor hourly changes in LST, therefore hourly measurements of geostationary satellite enables us to characterize detailed thermal conditions of the Earth's surface and improve our understanding of the surface energy balance. Multi-functional Transport Satellite (MTSAT) is a Japanese geostationary satellite launched in 2005 and covers Asia-Pacific region. MTSAT provides hourly data with 5 bands including two thermal infrared (TIR) bands in the 10.5-12.5 micron region. In this research, we have developed a methodology to retrieve hourly LST from thermal infrared data of MTSAT. We applied Generalized Split-window (GSW) equation to estimate LST from TIR data. First, the brightness temperatures measured at sensor on MTSAT was simulated by radiative transfer code (MODTRAN), and the numerical coefficients of GSW equation were optimized based on the simulation results with non-linear minimization algorithm. The standard deviation of derived GSW equation was less than or equal to 1.09K in the case of viewing zenith angle lower than 40 degree and 1.73K in 60 degree. Then, spatial distributions of LST have been mapped optimized GSW equation with brightness temperatures of MTSAT IR1 and IR2 and emissivity map from MODIS product. Finally, these maps were validated with MODIS LST product (MOD11A1) over four Asian-pacific regions such as Bangkok, Tokyo, UlanBator and Jakarta , It is found that RMSE of these regions were 4.57K, 2.22K, 2.71K and 3.92K

  15. Validation of Reef-Scale Thermal Stress Satellite Products for Coral Bleaching Monitoring

    Directory of Open Access Journals (Sweden)

    Scott F. Heron

    2016-01-01

    Full Text Available Satellite monitoring of thermal stress on coral reefs has become an essential component of reef management practice around the world. A recent development by the U.S. National Oceanic and Atmospheric Administration’s Coral Reef Watch (NOAA CRW program provides daily global monitoring at 5 km resolution—at or near the scale of most coral reefs. In this paper, we introduce two new monitoring products in the CRW Decision Support System for coral reef management: Regional Virtual Stations, a regional synthesis of thermal stress conditions, and Seven-day Sea Surface Temperature (SST Trend, describing recent changes in temperature at each location. We describe how these products provided information in support of management activities prior to, during and after the 2014 thermal stress event in the Commonwealth of the Northern Mariana Islands (CNMI. Using in situ survey data from this event, we undertake the first quantitative comparison between 5 km satellite monitoring products and coral bleaching observations. Analysis of coral community characteristics, historical temperature conditions and thermal stress revealed a strong influence of coral biodiversity in the patterns of observed bleaching. This resulted in a model based on thermal stress and generic richness that explained 97% of the variance in observed bleaching. These findings illustrate the importance of using local benthic characteristics to interpret the level of impact from thermal stress exposure. In an era of continuing climate change, accurate monitoring of thermal stress and prediction of coral bleaching are essential for stakeholders to direct resources to the most effective management actions to conserve coral reefs.

  16. On orbit surfacing of thermal control surfaces

    Science.gov (United States)

    Racette, G. W.

    1984-01-01

    Substrates to be contaminated and contamination source were prepared. Additional information on paint spray method apparatus was obtained. Silver teflon second surface mirror samples and S 13 GLO paint samples were mounted, photographed under the microscope and measured to establish baseline data. Atomic oxygen cleaning and spray painting are being considered. Electrostatic powder and plasma spray coating systems appear to have serious drawbacks.

  17. Thermal Design and Flight Validation for Solid-state Transmitter

    Directory of Open Access Journals (Sweden)

    Wang Lei

    2014-06-01

    Full Text Available Solid-state transmitter with large power and high heat flux is a key equipment of an HJ-1-C satellite; therefore, it has a great influence on satellite thermal design. Thermal design ensures that the solid-state transmitter works well within the allowable temperature limits of the equipment. The solid-state transmitter thermal design and solved key problems are provided in accordance with the HJ-1-C characteristics. Moreover, an analysis of satellites on orbit was performed. Based on the telemetry data, the thermal control design is shown to satisfy the temperature requirements of the solid-state transmitter.

  18. Adaptive bimaterial lattices to mitigate thermal expansion mismatch stresses in satellite structures

    Science.gov (United States)

    Toropova, Marina M.; Steeves, Craig A.

    2015-08-01

    Earth-orbiting satellites regularly pass from sunlight to shade and back; these transitions are typically accompanied by significant temperature changes. When adjoining parts of a satellite that are made of different materials are subjected to large temperature changes, thermal mismatch stresses arise that are a function of the temperature change and the difference in coefficients of thermal expansion (CTEs) between the two materials. These thermal stresses are linked to undesirable deformation and, through long-term cycling, fatigue and failure of the structure. This paper describes a type of anisotropic lattice that can serve as a stress-free adaptor between two materials, eliminating thermal mismatch stresses and their concomitant consequences. The lattices consist of planar nonidentical anisotropic bimaterial cells, each designed based on a virtual triangle. Physically the cells consist of a triangle made of material with higher CTE surrounded by a hexagon made of material with lower CTE. Different skew angles of the hexagon make a particular cell and the whole lattice anisotropic. The cells can be designed and combined in a lattice in such a way that one edge of the lattice has CTE that coincides with the CTE of the first part of the structure (substrate 1), while the other edge of the lattice has CTE equal to the CTE of the second part of the structure (substrate 2). If all joints between the parts of each cell, neighbouring cells, and the lattice and the substrates are pinned, the whole structure will be free of thermal stresses. This paper will discuss the fundamental principles governing such lattices, their refinement for special circumstances, and opportunities for improving the structural performance of the lattices. This will be presented coupled to a rational strategy for lattice design.

  19. Urban thermal environment and its biophysical parameters derived from satellite remote sensing imagery

    Science.gov (United States)

    Zoran, Maria A.; Savastru, Roxana S.; Savastru, Dan M.; Tautan, Marina N.; Baschir, Laurentiu V.

    2013-10-01

    In frame of global warming, the field of urbanization and urban thermal environment are important issues among scientists all over the world. This paper investigated the influences of urbanization on urban thermal environment as well as the relationships of thermal characteristics to other biophysical variables in Bucharest metropolitan area of Romania based on satellite remote sensing imagery Landsat TM/ETM+, time series MODIS Terra/Aqua data and IKONOS acquired during 1990 - 2012 period. Vegetation abundances and percent impervious surfaces were derived by means of linear spectral mixture model, and a method for effectively enhancing impervious surface has been developed to accurately examine the urban growth. The land surface temperature (Ts), a key parameter for urban thermal characteristics analysis, was also retrieved from thermal infrared band of Landsat TM/ETM+, from MODIS Terra/Aqua datasets. Based on these parameters, the urban growth, urban heat island effect (UHI) and the relationships of Ts to other biophysical parameters have been analyzed. Results indicated that the metropolitan area ratio of impervious surface in Bucharest increased significantly during two decades investigated period, the intensity of urban heat island and heat wave events being most significant. The correlation analyses revealed that, at the pixel-scale, Ts possessed a strong positive correlation with percent impervious surfaces and negative correlation with vegetation abundances at the regional scale, respectively. This analysis provided an integrated research scheme and the findings can be very useful for urban ecosystem modeling.

  20. Influence of urbanization on the thermal environment of meteorological station:Satellite-observed evidence

    Institute of Scientific and Technical Information of China (English)

    SHI Tao; HUANG Yong; WANG Hong; SHI Chun-E; YANG Yuan-Jian

    2015-01-01

    In this paper, five national meteorological stations in Anhui province are taken as typical examples to explore the effects of local urbanization on their thermal environment by using Landsat data from 1990 to 2010. Satellite-based land use/land cover (LULC), land surface temperature (LST), normalized difference vegetation index (NDVI) are used to investigate the effects. The study shows that LULC around meteorological stations changed significantly due to urban expansion. Fast urbanization is the main factor that affects the spatial-temporal distribution of thermal environment around meteorological stations. Moreover, the normalized LST and NDVI exhibit strong inverse correlations around meteorological stations, so the variability of LST can be monitored through evaluating the variability of NDVI. In addition, station-relocation plays an important role in improving representativeness of thermal environment. Notably, the environment representativeness was improved, but when using the data from the station to study climate change, the relocation-induced inhomogeneous data should be considered and adjusted. Consequently, controlling the scale and layout of the urban buildings and constructions around meteorological stations is an effective method to ameliorate observational thermal environment and to improve regional representativeness of station observation. The present work provides observational evidences that high resolution Landsat images can be used to evaluate the thermal environment of meteorological stations.

  1. a Diagnostic Approach to Obtaining Planetary Boundary Layer Winds Using Satellite-Derived Thermal Data

    Science.gov (United States)

    Belt, Carol Lynn

    The feasibility of using satellite-derived thermal data to generate realistic synoptic-scale winds within the planetary boundary layer (PBL) is examined. Diagnostic "modified Ekman" wind equations from the Air Force Global Weather Central (AFGWC) Boundary Layer Model are used to compute winds at seven levels within the PBL transition layer (50 m to 1600 m AGL). Satellite-derived winds based on 62 predawn (0921 GMT 19 April 1979) TIROS-N soundings are compared to similarly-derived wind fields based on 39 AVE-SESAME II rawinsonde (RAOB) soundings taken 2 h later. Actual wind fields are also used as a basis for comparison. Qualitative and statistical comparisons show that the Ekman winds from both sources are in very close agreement, with an average vector correlation coefficient of 0.815. Best results are obtained at 300 m AGL. Satellite winds tend to be slightly weaker than their RAOB counterparts and exhibit a greater degree of cross-isobaric flow. The modified Ekman winds show a significant improvement over geostrophic values at levels nearest the surface. Horizontal moisture divergence, moisture advection, velocity divergence and relative vorticity are computed at 300 m AGL using satellite-derived winds and moisture data. Results show excellent agreement with corresponding RAOB-derived values. Areas of horizontal moisture convergence, velocity convergence, and positive vorticity are nearly coincident and align in regions which later develop intense convection. Vertical motion at 1600 m AGL is computed using stepwise integration of the satellite winds through the PBL. Values and patterns are similar to those obtained using the RAOB-derived winds. Regions of maximum upward motion correspond with areas of greatest moisture convergence and the convection that later develops.

  2. Application of satellite infrared data for mapping of thermal plume contamination in coastal ecosystem of Korea.

    Science.gov (United States)

    Ahn, Yu-Hwan; Shanmugam, Palanisamy; Lee, Jae-Hak; Kang, Yong Q

    2006-03-01

    The 5900 MW Younggwang nuclear power station on the west coast of Korea discharges warm water affecting coastal ecology [KORDI report (2003). Wide area observation of the impact of the operation of Younggwang nuclear power plant 5 and 6, No. BSPI 319-00-1426-3, KORDI, Seoul, Korea]. Here the spatial and temporal characteristics of the thermal plume signature of warm water are reported from a time series (1985-2003) of space-borne, thermal infrared data from Landsat and National Oceanic and Atmospheric Administration (NOAA) satellites. Sea surface temperature (SST) were characterized using advanced very high resolution radiometer data from the NOAA satellites. These data demonstrated the general pattern and extension of the thermal plume signature in the Younggwang coastal areas. In contrast, the analysis of SST from thematic mapper data using the Landsat-5 and 7 satellites provided enhanced information about the plume shape, dimension and direction of dispersion in these waters. The thermal plume signature was detected from 70 to 100 km to the south of the discharge during the summer monsoon and 50 to 70 km to the northwest during the winter monsoon. The mean detected plume temperature was 28 degrees C in summer and 12 degrees C in winter. The DeltaT varied from 2 to 4 degrees C in winter and 2 degrees C in summer. These values are lower than the re-circulating water temperature (6-9 degrees C). In addition the temperature difference between tidal flats and offshore (SSTtidal flats - SSToffsore) was found to vary from 5.4 to 8.5 degrees C during the flood tides and 3.5 degrees C during the ebb tide. The data also suggest that water heated by direct solar radiation on the tidal flats during the flood tides might have been transported offshore during the ebb tide. Based on these results we suggest that there is an urgent need to protect the health of Younggwang coastal marine ecosystem from the severe thermal impact by the large quantity of warm water discharged from

  3. On-Orbit Autonomous Assembly from Nanosatellites

    Science.gov (United States)

    Murchison, Luke S.; Martinez, Andres; Petro, Andrew

    2015-01-01

    The On-Orbit Autonomous Assembly from Nanosatellites (OAAN) project will demonstrate autonomous control algorithms for rendezvous and docking maneuvers; low-power reconfigurable magnetic docking technology; and compact, lightweight and inexpensive precision relative navigation using carrier-phase differential (CD) GPS with a three-degree of freedom ground demonstration. CDGPS is a specific relative position determination method that measures the phase of the GPS carrier wave to yield relative position data accurate to.4 inch (1 centimeter). CDGPS is a technology commonly found in the surveying industry. The development and demonstration of these technologies will fill a current gap in the availability of proven autonomous rendezvous and docking systems for small satellites.

  4. Atmospheric correction for sea surface temperature retrieval from single thermal channel radiometer data onboard Kalpana satellite

    Science.gov (United States)

    Shahi, Naveen R.; Agarwal, Neeraj; Mathur, Aloke K.; Sarkar, Abhijit

    2011-06-01

    An atmospheric correction method has been applied on sea surface temperature (SST) retrieval algorithm using Very High Resolution Radiometer (VHRR) single window channel radiance data onboard Kalpana satellite (K-SAT). The technique makes use of concurrent water vapour fields available from Microwave Imager onboard Tropical Rainfall Measuring Mission (TRMM/TMI) satellite. Total water vapour content and satellite zenith angle dependent SST retrieval algorithm has been developed using Radiative Transfer Model [MODTRAN ver3.0] simulations for Kalpana 10.5-12.5 μm thermal window channel. Retrieval of Kalpana SST (K-SST) has been carried out for every half-hourly acquisition of Kalpana data for the year 2008 to cover whole annual cycle of SST over Indian Ocean (IO). Validation of the retrieved corrected SST has been carried out using near-simultaneous observations of ship and buoys datasets covering Arabian Sea, Bay of Bengal and IO regions. A significant improvement in Root Mean Square Deviation (RMSD) of K-SST with respect to buoy (1.50-1.02 K) and to ship datasets (1.41-1.19 K) is seen with the use of near real-time water vapour fields of TMI. Furthermore, comparison of the retrieved SST has also been carried out using near simultaneous observations of TRMM/TMI SST over IO regions. The analysis shows that K-SST has overall cold bias of 1.17 K and an RMSD of 1.09 K after bias correction.

  5. Studying bio-thermal effects at and around MSW dumps using Satellite Remote Sensing and GIS.

    Science.gov (United States)

    Mahmood, Khalid; Batool, Syeda Adila; Chaudhry, Muhammad Nawaz

    2016-09-01

    Estimating negative impacts of MSW dumps on its surrounding environment is the key requirement for any remedial measures. This study has been undertaken to map bio-thermal effects of MSW dumping at and around dumping facilities (non-engineered) using satellite imagery for Faisalabad, Pakistan. Thirty images of Landsat 8 have been selected after validation for the accuracy of their observational details from April 2013 to October 2015. Land Surface Temperature (LST), NDVI, SAVI and MSAVI have been derived from these images through Digital Image Processing (DIP) and have been subjected to spatio-temporal analysis in GIS environment. MSW dump has been found with average temperature elevation of 4.3K and 2.78K from nearby agriculture land and urban settlement respectively. Vegetation health has been used as the bio-indicator of MSW effects and is implemented through NDVI, SAVI, MSAVI. Spatial analyses have been used to mark boundary of bio-thermally affected zone around dumped MSW and measure 700m. Seasonal fluctuations of elevated temperatures and boundary of the bio-thermally affected zones have also been discussed. Based on the direct relation found between vegetation vigor and the level of deterioration within the bio-thermally affected region, use of crops with heavy vigor is recommended to study MSW hazard influence using bio-indicators of vegetation health.

  6. A Data Mining Approach for Sharpening Thermal Satellite Imagery over Land

    Directory of Open Access Journals (Sweden)

    Feng Gao

    2012-10-01

    Full Text Available Thermal infrared (TIR imagery is normally acquired at coarser pixel resolution than that of shortwave sensors on the same satellite platform and often the TIR resolution is not suitable for monitoring crop conditions of individual fields or the impacts of land cover changes that are at significantly finer spatial scales. Consequently, thermal sharpening techniques have been developed to sharpen TIR imagery to shortwave band pixel resolutions, which are often fine enough for field-scale applications. A classic thermal sharpening technique, TsHARP, uses a relationship between land surface temperature (LST and Normalized Difference Vegetation Index (NDVI developed empirically at the TIR pixel resolution and applied at the NDVI pixel resolution. However, recent studies show that unique relationships between temperature and NDVI may only exist for a limited class of landscapes, with mostly green vegetation and homogeneous air and soil conditions. To extend application of thermal sharpening to more complex conditions, a new data mining sharpener (DMS technique is developed. The DMS approach builds regression trees between TIR band brightness temperatures and shortwave spectral reflectances based on intrinsic sample characteristics. A comparison of sharpening techniques applied over a rainfed agricultural area in central Iowa, an irrigated agricultural region in the Texas High Plains, and a heterogeneous naturally vegetated landscape in Alaska indicates that the DMS outperformed TsHARP in all cases. The artificial box-like patterns in LST generated by the TsHARP approach are greatly reduced using the DMS scheme, especially for areas containing irrigated crops, water bodies, thin clouds or terrain. While the DMS technique can provide fine resolution TIR imagery, there are limits to the sharpening ratios that can be reasonably implemented. Consequently, sharpening techniques cannot replace actual thermal band imagery at fine resolutions or missions that

  7. An Autonomous System to Take Angular Thermal-Infrared Measurements for Validating Satellite Products

    Directory of Open Access Journals (Sweden)

    Raquel Niclòs

    2015-11-01

    Full Text Available An autonomous system for field land surface temperature (LST measurements taken at different observation angles was developed to be deployed easily at any conventional meteorological tower station. The system permits ground-truth data to be acquired on a continuous basis, and angularly scans land and sky hemispheres with a single thermal-infrared (TIR radiometer. This paper describes the autonomous angular system and the methodology to assess ground-truth LST and relative-to-nadir emissivity data from system measurements. Ground-truth LSTs were used to validate satellite-retrieved LST products at two experimental sites (rice crop and shrubland areas. The relative-to-nadir emissivity values were used to analyze the anisotropy of surface emissive properties over thermally-homogeneous covers. The EOS-MODIS MOD11_L2/MYD11_L2 LST product was evaluated and shown to work within expected uncertainties (<2.0 K when tested against the system data. A slight underestimation of around −0.15 K was observed, which became greater for the off-nadir observation angles at the shrubland site. The system took angular measurements for the different seasonal homogeneous covers at the rice crop site. These measurements showed emissivity angular anisotropies, which were in good agreement with previously published data. The dual-view ENVISAT-AATSR data reproduced them, and revealed that the system data collected for thermally-homogeneous surfaces could be used to test future satellite TIR sensors with multi-angular or bi-angular capabilities, like the forthcoming SLSTR on board Copernicus Sentinel-3A.

  8. Thermal Design and Flight Validation for Solid-state Transmitter

    OpenAIRE

    Wang Lei; Wen Yao-pu

    2014-01-01

    Solid-state transmitter with large power and high heat flux is a key equipment of an HJ-1-C satellite; therefore, it has a great influence on satellite thermal design. Thermal design ensures that the solid-state transmitter works well within the allowable temperature limits of the equipment. The solid-state transmitter thermal design and solved key problems are provided in accordance with the HJ-1-C characteristics. Moreover, an analysis of satellites on orbit was performed. Based on the tele...

  9. Seeing is believing I: The use of thermal sensing from satellite imagery to predict crop yield

    Science.gov (United States)

    B, Potgieter A.; D, Rodriguez; B, Power; J, Mclean; P, Davis

    2014-02-01

    Volatility in crop production has been part of the Australian environment since cropping began with the arrival of the first European settlers. Climate variability is the main factor affecting crop production at national, state and local scales. At field level spatial patterns on yield production are also determined by spatially changing soil properties in interaction with seasonal climate conditions and weather patterns at critical stages in the crop development. Here we used a combination of field level weather records, canopy characteristics, and satellite information to determine the spatial performance of a large field of wheat. The main objective of this research is to determine the ability of remote sensing technologies to capture yield losses due to water stress at the canopy level. The yield, canopy characteristics (i.e. canopy temperature and ground cover) and seasonal conditions of a field of wheat (~1400ha) (-29.402° South and 149.508°, New South Wales, Australia) were continuously monitored during the winter of 2011. Weather and crop variables were continuously monitored by installing three automatic weather stations in a transect covering different positions and soils in the landscape. Weather variables included rainfall, minimum and maximum temperatures and relative humidity, and crop characteristics included ground cover and canopy temperature. Satellite imagery Landsat TM 5 and 7 was collected at five different stages in the crop cycle. Weather variables and crop characteristics were used to calculate a crop stress index (CSI) at point and field scale (39 fields). Field data was used to validate a spatial satellite image derived index. Spatial yield data was downloaded from the harvester at the different locations in the field. We used the thermal band (land surface temperature, LST) and enhanced vegetation index (EVI) bands from the MODIS (250 m for visible bands and 1km for thermal band) and a derived EVI from Landsat TM 7 (25 m for visible and

  10. Thermal design, analysis and comparison on three concepts of space solar power satellite

    Science.gov (United States)

    Yang, Chen; Hou, Xinbin; Wang, Li

    2017-08-01

    Space solar power satellites (SSPS) have been widely studied as systems for collecting solar energy in space and transmitting it wirelessly to earth. A previously designed planar SSPS concept collects solar power in two huge arrays and then transmits it through one side of the power-conduction joint to the antenna. However, the system's one group of power-conduction joints may induce a single point of failure. As an SSPS concept, the module symmetrical concentrator (MSC) architecture has many advantages. This architecture can help avoid the need for a large, potentially failure-prone conductive rotating joint and limit wiring mass. However, the thermal control system has severely restricted the rapid development of MSC, especially in the sandwich module. Because of the synchronous existence of five suns concentration and solar external heat flux, the sandwich module will have a very high temperature, which will surpass the permissible temperature of the solar cells. Recently, an alternate multi-rotary joints (MR) SSPS concept was designed by the China Academy of Space Technology (CAST). This system has multiple joints to avoid the problem of a single point of failure. Meanwhile, this concept has another advantage for reducing the high power and heat removal in joints. It is well known to us that, because of the huge external flux in SSPS, the thermal management sub-system is an important component that cannot be neglected. Based on the three SSPS concepts, this study investigated the thermal design and analysis of a 1-km, gigawatt-level transmitting antenna in SSPS. This study compares the thermal management sub-systems of power-conduction joints in planar and MR SSPS. Moreover, the study considers three classic thermal control architectures of the MSC's sandwich module: tile, step, and separation. The study also presents an elaborate parameter design, analysis and discussion of step architecture. Finally, the results show the thermal characteristics of each SSPS

  11. Experimental design for the evaluation of high-T(sub c) superconductive thermal bridges in a sensor satellite

    Science.gov (United States)

    Scott, Elaine P.; Lee, Kasey M.

    1994-01-01

    Infrared sensor satellites, which consist of cryogenic infrared sensor detectors, electrical instrumentation, and data acquisition systems, are used to monitor the conditions of the earth's upper atmosphere in order to evaluate its present and future changes. Currently, the electrical connections (instrumentation), which act as thermal bridges between the cryogenic infrared sensor and the significantly warmer data acquisition unit of the sensor satellite system, constitute a significant portion of the heat load on the cryogen. As a part of extending the mission life of the sensor satellite system, the researchers at the National Aeronautics and Space Administration's Langley Research Center (NASA-LaRC) are evaluating the effectiveness of replacing the currently used manganin wires with high-temperature superconductive (HTS) materials as the electrical connections (thermal bridges). In conjunction with the study being conducted at NASA-LaRC, the proposed research is to design a space experiment to determine the thermal savings on a cryogenic subsystem when manganin leads are replaced by HTS leads printed onto a substrate with a low thermal conductivity, and to determine the thermal conductivities of HTS materials. The experiment is designed to compare manganin wires with two different types of superconductors on substrates by determining the heat loss by the thermal bridges and providing temperature measurements for the estimation of thermal conductivity. A conductive mathematical model has been developed and used as a key tool in the design process and subsequent analysis.

  12. Atmospheric correction for sea surface temperature retrieval from single thermal channel radiometer data onboard Kalpana satellite

    Indian Academy of Sciences (India)

    Naveen R Shahi; Neeraj Agarwal; Aloke K Mathur; Abhijit Sarkar

    2011-06-01

    An atmospheric correction method has been applied on sea surface temperature (SST) retrieval algorithm using Very High Resolution Radiometer (VHRR) single window channel radiance data onboard Kalpana satellite (K-SAT). The technique makes use of concurrent water vapour fields available from Microwave Imager onboard Tropical Rainfall Measuring Mission (TRMM/TMI) satellite. Total water vapour content and satellite zenith angle dependent SST retrieval algorithm has been developed using Radiative Transfer Model [MODTRAN ver3.0] simulations for Kalpana 10.5–12.5 m thermal window channel. Retrieval of Kalpana SST (K-SST) has been carried out for every half-hourly acquisition of Kalpana data for the year 2008 to cover whole annual cycle of SST over Indian Ocean (IO). Validation of the retrieved corrected SST has been carried out using near-simultaneous observations of ship and buoys datasets covering Arabian Sea, Bay of Bengal and IO regions. A significant improvement in Root Mean Square Deviation (RMSD) of K-SST with respect to buoy (1.50–1.02 K) and to ship datasets (1.41–1.19 K) is seen with the use of near real-time water vapour fields of TMI. Furthermore, comparison of the retrieved SST has also been carried out using near simultaneous observations of TRMM/TMI SST over IO regions. The analysis shows that K-SST has overall cold bias of 1.17 K and an RMSD of 1.09 K after bias correction.

  13. A Review of Robotics Technologies for On-Orbit Services

    Science.gov (United States)

    2013-01-01

    34Autonomous Robotic Capture of a Satellite Using Constrained Predictive Control," IEEE/ASME Transactions on Mechatronics . Vol. 11, No. 6, 2006, pp. 699...K., "Impedance Control of Free-flying Space Robot for Orbital Servicing," Journal of Robotics and Mechatronics , Vol. 18, No. , 2006, pp. 608-617...1 A Review of Robotics Technologies for On-Orbit Services Angel Flores-Abad and Ou Ma Department of Mechanical and Aerospace Engineering New

  14. Transient modeling of the ground thermal conditions using satellite data in the Lena River delta, Siberia

    Science.gov (United States)

    Westermann, Sebastian; Peter, Maria; Langer, Moritz; Schwamborn, Georg; Schirrmeister, Lutz; Etzelmüller, Bernd; Boike, Julia

    2017-06-01

    Permafrost is a sensitive element of the cryosphere, but operational monitoring of the ground thermal conditions on large spatial scales is still lacking. Here, we demonstrate a remote-sensing-based scheme that is capable of estimating the transient evolution of ground temperatures and active layer thickness by means of the ground thermal model CryoGrid 2. The scheme is applied to an area of approximately 16 000 km2 in the Lena River delta (LRD) in NE Siberia for a period of 14 years. The forcing data sets at 1 km spatial and weekly temporal resolution are synthesized from satellite products and fields of meteorological variables from the ERA-Interim reanalysis. To assign spatially distributed ground thermal properties, a stratigraphic classification based on geomorphological observations and mapping is constructed, which accounts for the large-scale patterns of sediment types, ground ice and surface properties in the Lena River delta. A comparison of the model forcing to in situ measurements on Samoylov Island in the southern part of the study area yields an acceptable agreement for the purpose of ground thermal modeling, for surface temperature, snow depth, and timing of the onset and termination of the winter snow cover. The model results are compared to observations of ground temperatures and thaw depths at nine sites in the Lena River delta, suggesting that thaw depths are in most cases reproduced to within 0.1 m or less and multi-year averages of ground temperatures within 1-2 °C. Comparison of monthly average temperatures at depths of 2-3 m in five boreholes yielded an RMSE of 1.1 °C and a bias of -0.9 °C for the model results. The highest ground temperatures are calculated for grid cells close to the main river channels in the south as well as areas with sandy sediments and low organic and ice contents in the central delta, where also the largest thaw depths occur. On the other hand, the lowest temperatures are modeled for the eastern part, which is an

  15. Application Capacity Evaluation of HJ-1-C towards Ice Disaster during On-orbit Test Period

    Directory of Open Access Journals (Sweden)

    Zhang Wei

    2014-06-01

    Full Text Available On November 19, 2012, HJ-1-C was launched successfully, which is the first civil Synthetic Aperture Radar (SAR satellite in China and is also the only S-band SAR on-orbit satellite in the world. During the on-orbit period, National Disaster Reduction Center of China (NDRCC preliminarily evaluated the application capacity towards the ice disaster, and also evaluated the relative precision by using multispectral images of ZY-3 satellite. The result shows that, the S-band SAR satellite has super response towards ice. Entirely freeze-up area, non entirely freeze-up area and drift ice area can be effectively identified, and the S-band SAR satellite has better disaster reduction application capacity. The S-band SAR satellite data will fill up the band’s blank of SAR satellite in China and even the world, and its disaster reduction potentiality remains to be excavated further more.

  16. Maximizing the Use of Satellite Thermal Infrared Data for Advancing Land Surface Temperature Analysis

    Science.gov (United States)

    Weng, Q.; Fu, P.; Gao, F.

    2014-12-01

    Land surface temperature (LST) is a crucial parameter in investigating environmental, ecological processes and climate change at various scales, and is also valuable in the studies of evapotranspiration, soil moisture conditions, surface energy balance, and urban heat islands. These studies require thermal infrared (TIR) images at both high temporal and spatial resolution to retrieve LST. However, currently, no single satellite sensors can deliver TIR data at both high temporal and spatial resolution. Thus, various algorithms/models have been developed to enhance the spatial or the temporal resolution of TIR data, but rare of those can enhance both spatial and temporal details. This paper presents a new data fusion algorithm for producing Landsat-like LST data by blending daily MODIS and periodic Landsat TM datasets. The original Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) was improved and modified for predicting thermal radiance and LST data by considering annual temperature cycle (ATC) and urban thermal landscape heterogeneity. The technique of linear spectral mixture analysis was employed to relate the Landsat radiance with the MODIS one, so that the temporal changes in radiance can be incorporated in the fusion model. This paper details the theoretical basis and the implementation procedures of the proposed data fusion algorithm, Spatio-temporal Adaptive Data Fusion Algorithm for Temperature mapping (SADFAT). A case study was conducted that predicted LSTs of five dates in 2005 from July to October in Los Angeles County, California. The results indicate that the prediction accuracy for the whole study area ranged from 1.3 K to 2 K. Like existing spatio-temporal data fusion models, the SADFAT method has a limitation in predicting LST changes that were not recorded in the MODIS and/or Landsat pixels due to the model assumption.

  17. Probable satellite thermal infrared anomaly before the Zhangbei MS=6.2 earthquake on January 10, 1998

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This paper used the thermal infrared data of the satellite NOAA-AAVHRR of the north part of North China (113°~119° E, 38°~42° N), and processed the remote sensing data through radiation adjustment, geometric adjustment and so on by the software "The Monitoring and Fast Process System of Earthquake Precursor Thermal Infrared Anomaly", inversed the earth surface temperature. Some disturbances effect had been excluded, and thermal infrared temperature anomaly had been extracted by the picture difference method. The Zhangbei MS=6.2 earthquake is used as the example in the paper, so that in the paper thermal infrared characteristics on time-space before earthquake and the relationship between the anomaly and the earthquake prediction have been summarized.Within more than ten days before the Zhangbei earthquake, the thermal infrared anomaly had emerged widely along Zhangjiakou-Bohai seismic belt, and the anomalous region seemed like a belt and it is also consistent with the tectonic background there; the anomaly expanded from the outside toward the earthquake focus, but the focus lay at the edge of the thermal infrared region. So it is possible to explore a new anomaly observation method for earthquake prediction by observing and studying the satellite thermal infrared anomaly before big earthquakes happen.

  18. Microsats for On-Orbit Support Missions

    Energy Technology Data Exchange (ETDEWEB)

    Ledebuhr, A G

    2001-03-15

    I appreciate the opportunity to address this conference and describe some of our work and plans for future space missions and capabilities. My presentation will consist of a short overview of our program, some potential missions and enabling technologies, as well as, a description of some of our test vehicles and ongoing docking experiments. The Micro-Satellite Technology Program at Lawrence Livermore National Laboratory is developing technologies for a new generation of a very highly capable autonomous microsats. A microsat is defined here as a vehicle that's less than 100 kilograms in mass. We're looking at a number of different microsat design configurations, between 0.5 to 1 meter in length and less than 40 kg in mass. You'll see several ground-test vehicles that we have been building that are modeled after potential future on-orbit systems. In order to have very aggressive missions, these microsats will require new integrated proximity operation sensors, advanced propulsion, avionics and guidance systems. Then to make this dream a reality a new approach to high fidelity ''hardware-in-the-loop'' ground testing, will be discussed that allows repeated tests with the same vehicle multiple times. This will enable you to ''get it right'' before going into space. I'll also show some examples of our preliminary docking work completed as of today.

  19. A Satellite-Based Imaging Instrumentation Concept for Hyperspectral Thermal Remote Sensing

    Directory of Open Access Journals (Sweden)

    Thomas Udelhoven

    2017-07-01

    Full Text Available This paper describes the concept of the hyperspectral Earth-observing thermal infrared (TIR satellite mission HiTeSEM (High-resolution Temperature and Spectral Emissivity Mapping. The scientific goal is to measure specific key variables from the biosphere, hydrosphere, pedosphere, and geosphere related to two global problems of significant societal relevance: food security and human health. The key variables comprise land and sea surface radiation temperature and emissivity, surface moisture, thermal inertia, evapotranspiration, soil minerals and grain size components, soil organic carbon, plant physiological variables, and heat fluxes. The retrieval of this information requires a TIR imaging system with adequate spatial and spectral resolutions and with day-night following observation capability. Another challenge is the monitoring of temporally high dynamic features like energy fluxes, which require adequate revisit time. The suggested solution is a sensor pointing concept to allow high revisit times for selected target regions (1–5 days at off-nadir. At the same time, global observations in the nadir direction are guaranteed with a lower temporal repeat cycle (>1 month. To account for the demand of a high spatial resolution for complex targets, it is suggested to combine in one optic (1 a hyperspectral TIR system with ~75 bands at 7.2–12.5 µm (instrument NEDT 0.05 K–0.1 K and a ground sampling distance (GSD of 60 m, and (2 a panchromatic high-resolution TIR-imager with two channels (8.0–10.25 µm and 10.25–12.5 µm and a GSD of 20 m. The identified science case requires a good correlation of the instrument orbit with Sentinel-2 (maximum delay of 1–3 days to combine data from the visible and near infrared (VNIR, the shortwave infrared (SWIR and TIR spectral regions and to refine parameter retrieval.

  20. A Satellite-Based Imaging Instrumentation Concept for Hyperspectral Thermal Remote Sensing.

    Science.gov (United States)

    Udelhoven, Thomas; Schlerf, Martin; Segl, Karl; Mallick, Kaniska; Bossung, Christian; Retzlaff, Rebecca; Rock, Gilles; Fischer, Peter; Müller, Andreas; Storch, Tobias; Eisele, Andreas; Weise, Dennis; Hupfer, Werner; Knigge, Thiemo

    2017-07-01

    This paper describes the concept of the hyperspectral Earth-observing thermal infrared (TIR) satellite mission HiTeSEM (High-resolution Temperature and Spectral Emissivity Mapping). The scientific goal is to measure specific key variables from the biosphere, hydrosphere, pedosphere, and geosphere related to two global problems of significant societal relevance: food security and human health. The key variables comprise land and sea surface radiation temperature and emissivity, surface moisture, thermal inertia, evapotranspiration, soil minerals and grain size components, soil organic carbon, plant physiological variables, and heat fluxes. The retrieval of this information requires a TIR imaging system with adequate spatial and spectral resolutions and with day-night following observation capability. Another challenge is the monitoring of temporally high dynamic features like energy fluxes, which require adequate revisit time. The suggested solution is a sensor pointing concept to allow high revisit times for selected target regions (1-5 days at off-nadir). At the same time, global observations in the nadir direction are guaranteed with a lower temporal repeat cycle (>1 month). To account for the demand of a high spatial resolution for complex targets, it is suggested to combine in one optic (1) a hyperspectral TIR system with ~75 bands at 7.2-12.5 µm (instrument NEDT 0.05 K-0.1 K) and a ground sampling distance (GSD) of 60 m, and (2) a panchromatic high-resolution TIR-imager with two channels (8.0-10.25 µm and 10.25-12.5 µm) and a GSD of 20 m. The identified science case requires a good correlation of the instrument orbit with Sentinel-2 (maximum delay of 1-3 days) to combine data from the visible and near infrared (VNIR), the shortwave infrared (SWIR) and TIR spectral regions and to refine parameter retrieval.

  1. Ground truth measurements plan for the Multispectral Thermal Imager (MTI) satellite

    Energy Technology Data Exchange (ETDEWEB)

    Garrett, A.J.

    2000-01-03

    Sandia National Laboratories (SNL), Los Alamos National Laboratory (LANL), and the Savannah River Technology Center (SRTC) have developed a diverse group of algorithms for processing and analyzing the data that will be collected by the Multispectral Thermal Imager (MTI) after launch late in 1999. Each of these algorithms must be verified by comparison to independent surface and atmospheric measurements. SRTC has selected 13 sites in the continental U.S. for ground truth data collections. These sites include a high altitude cold water target (Crater Lake), cooling lakes and towers in the warm, humid southeastern US, Department of Energy (DOE) climate research sites, the NASA Stennis satellite Validation and Verification (V and V) target array, waste sites at the Savannah River Site, mining sites in the Four Corners area and dry lake beds in the southwestern US. SRTC has established mutually beneficial relationships with the organizations that manage these sites to make use of their operating and research data and to install additional instrumentation needed for MTI algorithm V and V.

  2. The Critical Need for Future Mid-Resolution Thermal Infrared Satellite Sensors

    Science.gov (United States)

    Vincent, R. K.

    2006-12-01

    Eight future applications of data from mid-resolution thermal infrared satellite sensors are suggested, from least to most significant as follows: 8. Map thin ice unsafe for ice-fishing in the Great Lakes as a warning to winter fishermen; 7. Map ammonia plumes to locate large ammonia stockpiles (Homeland Security) and to monitor concentrated animal feeding operations (CAFOs); 6. Map types of surface algae in ocean, lakes, and rivers, especially those containing surface diatoms; 5. Monitor urban heat islands to determine the cooling affects of painting visibly dark surfaces with bright paints or coatings; 4. Map rock-types and soil-types of non- vegetated regions world-wide, a task which ASTER cannot complete in its current lifetime; 3. Detect surface warming of rocks under increased stress and pressure as an earthquake precursor; 2. Map pollutant gases, especially sulfur dioxide, which is important both for smokestack monitoring and volcanic eruption precursors; 1. Map methane escape into the atmosphere from methane clathrate destabilization as a key warning of imminent and drastic temperature rises in the troposphere. Each of these applications will be briefly discussed and past examples will be given for most of them.

  3. Thermally-Induced Chemistry and the Jovian Icy Satellites: A Laboratory Study of the Formation of Sulfur Oxyanions

    Science.gov (United States)

    Loeffler, Mark J.; Hudson, Reggie L.

    2011-01-01

    Laboratory experiments have demonstrated that magnetospheric radiation in the Jovian system drives reaction chemistry in ices at temperatures relevant to Europa and other icy satellites. Here we present new results on thermally-induced reactions at 50-100 K in solid H2O-SO2 mixtures, reactions that take place without the need for a high-radiation environment. We find that H2O and SO2 react to produce sulfur Oxyanions, such as bisulfite, that as much as 30% of the SO2 can be consumed through this reaction, and that the products remain in the ice when the temperature is lowered, indicating that these reactions are irreversible. Our results suggest that thermally-induced reactions can alter the chemistry at temperatures relevant to the icy satellites in the Jovian system.

  4. Thermal Analysis of Iodine Satellite (iSAT) from Preliminary Design Review (PDR) to Critical Design Review (CDR)

    Science.gov (United States)

    Mauro, Stephanie

    2016-01-01

    The Iodine Satellite (iSAT) is a 12U cubesat with a primary mission to demonstrate the iodine fueled Hall Effect Thruster (HET) propulsion system. The spacecraft (SC) will operate throughout a one year mission in an effort to mature the propulsion system for use in future applications. The benefit of the HET is that it uses a propellant, iodine, which is easy to store and provides a high thrust-to-mass ratio. This paper will describe the thermal analysis and design of the SC between Preliminary Design Review (PDR) and Critical Design Review (CDR). The design of the satellite has undergone many changes due to a variety of challenges, both before PDR and during the time period discussed in this paper. Thermal challenges associated with the system include a high power density, small amounts of available radiative surface area, localized temperature requirements of the propulsion components, and unknown orbital parameters. The thermal control system is implemented to maintain component temperatures within their respective operational limits throughout the mission, while also maintaining propulsion components at the high temperatures needed to allow gaseous iodine propellant to flow. The design includes heaters, insulation, radiators, coatings, and thermal straps. Currently, the maximum temperatures for several components are near to their maximum operation limit, and the battery is close to its minimum operation limit. Mitigation strategies and planned work to solve these challenges will be discussed.

  5. On-orbit Passive Thermography

    Science.gov (United States)

    Howell, Patricia A.; Winfree, William P.; Cramer, K. Elliott

    2008-01-01

    On July 12, 2006, British-born astronaut Piers Sellers became the first person to conduct thermal nondestructive evaluation experiments in space, demonstrating the feasibility of a new tool for detecting damage to the reinforced carbon-carbon (RCC) structures of the Shuttle. This new tool was an EVA (Extravehicular Activity, or spacewalk) compatible infrared camera developed by NASA engineers. Data was collected both on the wing leading edge of the Orbiter and on pre-damaged samples mounted in the Shuttle s cargo bay. A total of 10 infrared movies were collected during the EVA totaling over 250 megabytes of data. Images were downloaded from the orbiting Shuttle to Johnson Space Center for analysis and processing. Results are shown to be comparable to ground-based thermal inspections performed in the laboratory with the same type of camera and simulated solar heating. The EVA camera system detected flat-bottom holes as small as 2.54cm in diameter with 50% material loss from the back (hidden) surface in RCC during this first test of the EVA IR Camera. Data for the time history of the specimen temperature and the capability of the inspection system for imaging impact damage are presented.

  6. Effect of nanofluid on thermal performance of heat pipe with two evaporators; application to satellite equipment cooling

    Science.gov (United States)

    Mashaei, P. R.; Shahryari, M.

    2015-06-01

    A study on the behavior of nanofluid in a cylindrical heat pipe with two heat sources is performed to analyze the nanofluid application in heat-dissipating satellite equipment cooling. Pure water, Al2O3-water and TiO2-water nanofluids are used as working fluids. An analytical modeling is presented to predict the wall temperature profile for the heat pipe assuming saturated vapor and conduction heat transfer for porous media and wall, respectively. The effects of particle concentration levels (φ=0 (distilled water), 2, 4, and 8%), particle diameters (dp=10, 20, and 40 nm) on the local wall temperature, heat transfer coefficient, thermal resistance, and the size of the heat pipe are investigated. It is observed that the better wall temperature uniformity can be achieved using nanofluid which results in lower temperature difference between evaporators and condenser sections. Results reveal that applying nanoparticle with smaller size and higher concentration level increases heat transfer coefficient remarkably by reducing thermal resistance of saturated porous media. It is also found that the presence of nanoparticles in water can lead to a reduction in weight of heat pipe, and thus satellite, under nearly identical condition. The findings of this paper prove the potential of nanofluid in satellite equipment cooling application.

  7. FY-3A/MERSI热红外通道在轨辐射定标精度评估%On-Orbit Radiometric Calibration Accuracy of FY-3A MERSI Thermal Inf rared Channel

    Institute of Scientific and Technical Information of China (English)

    徐娜; 胡秀清; 陈林; 张勇; 胡菊旸; 孙凌

    2014-01-01

    卫星资料辐射定标精度是其定量应用的关键因素。以METOP-A/IASI的高光谱探测资料为传递基准,利用同时星下点观测的交叉定标方法,对 FY-3A/M ERSI热红外通道的在轨辐射定标精度进行了客观评估,并给出了亮温系统偏差的订正因子。从观测时间差异、卫星观测天顶角和方位角差异、以及目标均匀性四个方面,分析了交叉定标中所用主要匹配近似因子的不确定性。分析结果表明,目标均匀性是匹配误差的主要来源,偏差不确定性小于2%(当亮温偏差约为1 K时,不确定性<0.02 K),其他因素的影响可以忽略。一年多的样本统计及偏差分析结果显示,MERSI的观测亮温明显高于IASI ,年平均亮温偏差约(3.18±0.34) K ,月平均亮温偏差呈现季节波动特征,波动幅度约0.8 K。与相近时期敦煌场和青海湖地同步观测评价结果有非常好的一致性。初步原因分析推断,造成M ERSI亮温偏高的原因主要有两个,一是星上黑体发射率被高估,二是光谱响应函数向大气窗区漂移,后者可能为主导因素。%Accurate satellite radiance measurements are significant for data assimilations and quantitative retrieval applications . In the present paper ,radiometric calibration accuracy of FungYun-3A (FY-3A) Medium Resolution Spectral Imager (MERSI) thermal infrared (TIR) channel was evaluated based on simultaneous nadir observation (SNO) intercalibration method .Hyper-spectral and high-quality measurements of METOP-A/IASI were used as reference .Assessment uncertainty from intercalibration method was also investigated by examining the relation between BT bias against four main collocation factors ,i .e .observation time difference ,view geometric difference related to zenith angles and azimuth angles ,and scene spatial homogeneity .It was indicated that the BT bias is evenly distributed across the collocation variables with

  8. Satellite Characterization of Bio-Optical and Thermal Variability in the Japan/East Sea

    Science.gov (United States)

    2001-09-30

    remote sensing. We have created a climatology of the inherent optical properties (IOP s) using SeaWiFS satellite imagery to define how the bio -optical cycle is driven by the physical processes and circulation.

  9. A Comparison of Catastrophic On-Orbit Collisions

    Science.gov (United States)

    Stansbery, G.; Matney, M.; Liou, J.; Whitlock, D.

    Orbital debris environment models, such as NASA's LEGEND model, show that accidental collisions between satellites will begin to be the dominant cause for future debris population growth within the foreseeable future. The collisional breakup models employed are obviously a critical component of the environment models. The Chinese Anti-Satellite (ASAT) test which destroyed the Fengyun-1C weather satellite provided a rare, but not unique, chance to compare the breakup models against an actual on-orbit collision. Measurements from the U.S. Space Surveillance Network (SSN), for debris larger than 10-cm, and from Haystack, for debris larger than 1-cm, show that the number of fragments created from Fengyun significantly exceeds model predictions using the NASA Standard Collision Breakup Model. However, it may not be appropriate to alter the model to match this one, individual case. At least three other on-orbit collisions have occurred which have produced significant numbers of debris fragments. In September 1985, the U.S. conducted an ASAT test against the Solwind P-78 spacecraft at an altitude of approximately 525 km. A year later, in September 1986, the Delta 180 payload was struck by its Delta II rocket body in a planned collision at 220 km altitude. And, in February 2008, the USA-193 satellite was destroyed by a ship launched missile in order to eliminate risk to humans on the ground from an on-board tank of frozen hydrazine. Although no Haystack data was available in 1985-6 and very few debris pieces were cataloged from Delta 180 due to its low altitude, measurements were collected sensors in the days after each test. This paper will examine the available data from each test and compare and contrast the results with model predictions and with the results from the more recent Fengyun ASAT test.

  10. Geoscience Laser Altimeter System (GLAS) Loop Heat Pipes: An Eventual First Year On-Orbit

    Science.gov (United States)

    Grob, E.; Baker, C.; McCarthy, T.

    2004-01-01

    Goddard Space Flight Center's Geoscience Laser Altimeter System (GLAS) is the sole scientific instrument on the Ice, Cloud and land Elevation Satellite (ICESat) that was launched on January 12, 2003 from Vandenberg AFB. A thermal control architecture based on propylene Loop Heat Pipe technology was developed to provide selectable/stable temperature control for the lasers and other electronics over the widely varying mission environment. Following a nominal LHP and instrument start-up, the mission was interrupted with the failure of the first laser after only 36 days of operation. During the 5-month failure investigation, the two GLAS LHPs and the electronics operated nominally, using heaters as a substitute for the laser heat load. Just prior to resuming the mission, following a seasonal spacecraft yaw maneuver, one of the LHPs deprimed and created a thermal runaway condition that resulted in an emergency shutdown of the GLAS instrument. This paper presents details of the LHP anomaly, the resulting investigation and recovery, along with on-orbit flight data during these critical events.

  11. Satellite thermal monitoring of the 2010 - 2013 eruption of Kizimen volcano (Kamchatka) using MIROVA hot-spot detection system

    Science.gov (United States)

    Massimetti, Francesco; Coppola, Diego; Laiolo, Marco; Cigolini, Corrado

    2017-04-01

    After 81 years of rest, the Holocenic stratovolcano of Kizimen (Kamchatka, Russia) began a new eruptive phase on December 2010. The eruption was preceded by a year-long seismic unrest and fumarole activity, and persisted for 3 years showing a transition from explosive to effusive style. The initial explosive phase caused the partial disruption of the volcano summit and was followed by the effusion of andesitic lava flow along the eastern side of the edifice. Here we used an automatic hot-spot detection system named MIROVA (Middle InfraRed Observation of Volcanic Activity), in order to track the thermal evolution of the eruption and to understand the eruptive dynamic. MIROVA is based on the analysis IR images acquired by the MODIS sensor (Moderate Resolution Imaging Spectroradiometer) and is able to provide thermal maps (1 km resolution) and Volcanic Radiative Power (VRP, in Watt) time series in near real time (1-4 hours from satellite overpass). Each image with a thermal alert has been classified, distinguishing different quality level of the data based on cloud cover, viewing geometry and coherence with the VRP trend. The analysis of VRP variation show different thermal phases that have been correlated with independent observations of KVERT (Kamchatka Volcanic Eruption Response Team). Finally, we show that the relation between total thermal energy radiated (VRE, in Joule) and erupted lava volume is consistent with the typical radiant density of an intermediate-silicic lava flow (Coppola et al., 2013).

  12. Satellite Thermal Infrared Earthquake Precursor to the Wenchuan Ms 8.0 Earthquake in Sichuan, China, and its Analysis on Geo-dynamics

    Institute of Scientific and Technical Information of China (English)

    WEI Lejun; GUO Jianfeng; LIU Jianhua; LU Zhenquan; LI Haibing; CAI Hui

    2009-01-01

    Based on an interpretation and study of the satellite remote-sensing images of FY-2C thermal infrared 1st wave band (10.3-11.3 μm) designed in China, the authors found that there existed obvious and isolated satellite thermal infrared anomalies before the 5.12 Wenchuan Ms 8.0 Earthquake. These anomalies had the following characteristics: (1) The precursor appeared rather early: on March 18, 2008, I.e., 55 days before the earthquake, thermal infrared anomalies began to occur; (2) The anomalies experienced quite many and complex evolutionary stages: the satellite thermal infrared anomalies might be divided into five stages, whose manifestations were somewhat different from each other. The existence of so many anomaly stages was probably observed for the first time in numerous cases of satellite thermal infrared research on earthquakes; (3) Each stage lasted quite a long time, with the longest one spanning 13 days; (4) An evident geothermal anomaly gradient was distributed along the Longmen seismic fracture zone, and such a phenomenon might also be discovered for the first time in satellite thermal infrared earthquake research. This discovery is therefore of great guiding and instructive significance in the study of the earthquake occurrence itself and the trend of the post-earthquake phenomena.

  13. Thermally induced vibrations of smart solar panel in a low-orbit satellite

    Science.gov (United States)

    Azadi, E.; Fazelzadeh, S. Ahmad; Azadi, M.

    2017-03-01

    In this paper, a smart flexible satellite moving in a circular orbit with two flexible panels are studied. The panels have been modeled as clamped-free-free-free rectangular plates with attached piezoelectric actuators. It is assumed that the satellite has a pitch angle rotation maneuver. Rapid temperature changes at day-night transitions in orbit generate time dependent bending moments. Satellite maneuver and temperature varying induce vibrations in the appendages. So, to simulate the system, heat radiation effects on the appendages have been considered. The nonlinear equations of motion and the heat transfer equations are coupled and solved simultaneously. So, the governing equations of motion are nonlinear and very complicated ones. Finally, the whole system is simulated and the effects of the heat radiation, radius of the orbit, piezoelectric voltages, and piezoelectric locations on the response of the system are studied.

  14. TIRCIS: Hyperspectral Thermal Infrared Imaging Using a Small-Satellite Compliant Fourier-Transform Imaging Spectrometer, for Natural Hazard Applications

    Science.gov (United States)

    Wright, R.; Lucey, P. G.; Crites, S.; Garbeil, H.; Wood, M.

    2015-12-01

    Many natural hazards, including wildfires, volcanic eruptions, and, from the perspective of climate-related hazards, urban heat islands, could be better quantified via the routine availability of hyperspectral thermal infrared remote sensing data from orbit. However, no sensors are currently in operation that provide such data at high-to-moderate spatial resolution (e.g. Landsat-class resolution). In this presentation we will describe a prototype instrument, developed using funding provided by NASA's Instrument Incubator Program, that can make these important measurements. Significantly, the instrument has been designed such that its size, mass, power, and cost are consistent with its integration into small satellite platforms, or deployment as part of small satellite constellations. The instrument, TIRCIS (Thermal Infra-Red Compact Imaging Spectrometer), uses a Fabry-Perot interferometer, an uncooled microbolometer array, and push-broom scanning to acquire hyperspectral image data cubes. Radiometric calibration is provided by blackbody targets while spectral calibration is achieved using monochromatic light sources. Neither the focal plane nor the optics need to be cooled, and the instrument has a mass of <10 kg and dimensions of 53 cm × 25 cm × 22 cm. Although the prototype has four moving parts, this can easily be reduced to one. The current optical design yields a 120 m ground sample size given an orbit of 500 km. Over the wavelength interval of 7.5 to 14 microns up to 90 spectral samples are possible, by varying the physical design of the interferometer. Our performance model indicates signal-to-noise ratios of the order of about 200 to 300:1. In this presentation we will provide an overview of the instrument design, fabrication, results from our initial laboratory characterization, and some of the application areas in which small-satellite-ready instruments such as TIRCIS could make a valuable contribution to the study of natural hazards.

  15. Enabling High Spectral Resolution Thermal Imaging from CubeSat and MicroSatellite Platforms Using Uncooled Microbolometers and a Fabry-Perot interferometer

    Science.gov (United States)

    Wright, R.; Lucey, P. G.; Crites, S.; Garbeil, H.; Wood, M.; Pilger, E. J.; Honniball, C.; Gabrieli, A.

    2016-12-01

    Measurements of reflectance or emittance in tens of narrow, contiguous wavebands, allow for the derivation of laboratory quality spectra remotely, from which the chemical composition and physical properties of targets can be determined. Although spaceborne (e.g. EO-1 Hyperion) hyperspectral data in the 0.4-2.5 micron (VSWIR) region are available, the provision of equivalent data in the log-wave infrared has lagged behind, there being no currently operational high spatial resolution LWIR imaging spectrometer on orbit. This is attributable to two factors. Firstly, earth emits less light than it reflects, reducing the signal available to measure in the TIR, and secondly, instruments designed to measure (and spectrally decompose) this signal are more complex, massive, and expensive than their VSWIR counterparts, largely due to the need to cryogenically cool the detector and optics. However, this measurement gap needs to be filled, as LWIR data provide fundamentally different information than VSWIR measurements. The TIRCIS instrument (Thermal Infra-Red Compact Imaging Spectrometer), developed at the Hawaii Institute of Geophysics and Planetology, uses a Fabry-Perot interferometer, an uncooled microbolometer array, and push-broom scanning to acquire hyperspectral image data in the 8-14 micron spectral range. Radiometric calibration is provided by blackbody targets while spectral calibration is achieved using monochromatic light sources. The instrument has a mass of <15 kg and dimensions of 53 cm × 25 cm × 22 cm, and has been designed to be compatible with integration into a micro-satellite platform. (A precursor to this instrument was launched onboard a 55 kg microsatellite as part of the ORS-4 mission in October 2015). The optical design yields a 120 m ground sample size given an orbit of 500 km. Over the wavelength interval of 7.5 to 14 microns up to 50 spectral samples are possible (the accompanying image shows a quartz spectrum composed of 17 spectral samples). Our

  16. Towards improved knowledge of geology and global thermal regime from Swarm satellites magnetic gradient observations

    DEFF Research Database (Denmark)

    Ravat, Dhananjay; Olsen, Nils; Sabaka, Terence

    Gradients of magnetic field have higher spatial resolution than the fields themselves and are helpful in improving the resolution of downward continued satellite magnetic anomaly maps (Kotsiaros et al., 2015, Geophys. J. Int.; Sabaka et al., 2015, Geophys. J. Int.). Higher spatial resolution and ...

  17. Towards improved knowledge of geology and global thermal regime from Swarm satellites magnetic gradient observations

    DEFF Research Database (Denmark)

    Ravat, Dhananjay; Olsen, Nils; Sabaka, Terence

    Gradients of magnetic field have higher spatial resolution than the fields themselves and are helpful in improving the resolution of downward continued satellite magnetic anomaly maps (Kotsiaros et al., 2015, Geophys. J. Int.; Sabaka et al., 2015, Geophys. J. Int.). Higher spatial resolution and ...

  18. 15 Years of Terra MODIS Instrument on-Orbit Performance

    Science.gov (United States)

    Xiong, X.; Salomonson, V.

    2014-12-01

    The first MODIS instrument, launched on-board the NASA EOS Terra spacecraft in December 1999, has successfully operated for nearly 15 years. MODIS observations have significantly contributed to the studies of many geophysical parameters of the earth's system and its changes over time. Dedicated effort made by the MODIS Characterization Support Team (MCST) to constantly monitor instrument operation, to calibrate changes in sensor response, to derive and update sensor calibration parameters, and to maintain and improve calibration algorithms has played an extremely important role to assure the quality of MODIS data products. MODIS was developed with overall improvements over its heritage sensors. Its observations are made in 36 spectral bands, covering wavelengths from visible to long-wave infrared. The reflective solar bands (1-19 and 26) are calibrated on-orbit by a solar diffuser (SD) panel and regularly scheduled lunar observations. The thermal emissive bands (20-25 and 27-36) calibration is referenced to an on-board blackbody (BB) source. On-orbit changes in the sensor spectral and spatial characteristics are tracked by a spectroradiometric calibration assembly (SRCA). This paper provides an overview of Terra MODIS on-orbit operation and calibration activities implemented from launch to present and the status of instrument health and functions. It demonstrates sensor on-orbit performance derived from its telemetry, on-board calibrators (OBC), and lunar observations. Also discussed in this paper are changes in sensor characteristics, corrections applied to maintain level 1B data quality, various challenging issues, and future improvements.

  19. Geologic applications of thermal-inertia mapping from satellite. [Powder River Basin, Wyoming

    Science.gov (United States)

    Offield, T. W. (Principal Investigator); Miller, S. H.; Watson, K.

    1979-01-01

    The author has identified the following significant results. After digitization, a noise rejection filter was applied to data obtained by USGS aircraft. An albedo image was formed by combining three bands of visible data. Along with the day and nighttime thermal data, the albedo image was used to construct a relative thermal-inertia image. This image, registered to a topographic base, shows there are thermal property differences in the vicinity of the contact between the Fort Union and Wasatch formations in the Powder River Basin, Wyoming.

  20. Geologic application of thermal-inertia mapping from satellite. [Powder River Basin, Wyoming

    Science.gov (United States)

    Offield, T. W. (Principal Investigator); Miller, S. H.; Watson, K.

    1980-01-01

    The author has identified the following significant results. Two night-time thermal images of the Powder River Basin, Wyoming distinctly show a major thermal feature. This feature is substantially coincident with a drainage divide and the southward facing slope appears cooler, suggesting a lower thermal inertia. An initial examination of regional geologic maps provides no clear evidence to suggest what type of geologic feature or structure may be present, although it can be noted that its northeastern end passes directly through Lead, South Dakota where the Homestake Gold Mine is located.

  1. Demonstration of a Plug and Play Approach to Satellite Thermal Control System Development Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Mainstream is proposing a methodology to reduce the development time and cost, and improve the reliability of future thermal control systems for the next decade of...

  2. Comparison between Satellite Water Vapour Observations and Atmospheric Models’ Predictions of the Upper Tropospheric Thermal Radiation

    OpenAIRE

    Dim, J. R.; T. Y. Nakajima; T. Takamura; Kikuchi, N

    2011-01-01

    Atmospheric profiles (temperature, pressure, and humidity) are commonly used parameters for aerosols and cloud properties retrievals. In preparation of the launch of the Global Change Observation Mission-Climate/Second-Generation GLobal Imager (GCOM-C/SGLI) satellite, an evaluation study on the sensitivity of atmospheric models to variations of atmospheric conditions is conducted. In this evaluation, clear sky and above low clouds water vapour radiances of the upper troposphere obtained from ...

  3. The First Historic Eruption of Nabro, Eritrea: Insights from Thermal and UV Satellite Data

    Science.gov (United States)

    Sealing, C. R.; Carn, S. A.; Harris, A. J. L.

    2015-12-01

    In June 2011, the first recorded eruption of Nabro volcano, took place at the border of Eritrea and Ethiopia. This eruption was the largest in what could be considered an ongoing sequence of eruptions in the Afar-Red Sea region since 2005. It halted air travel in northern Africa, contaminated food and water sources, and displaced thousands from their homes. Geographic isolation, previous quiescence, and regional civil unrest meant that this volcano was effectively unmonitored at the time of eruption, and opportunities for field study were limited. The purpose of this study is to explore the quantity of erupted products and the timing and mechanisms of their emplacement using predominantly free, publicly available satellite data. We use MODIS and OMI data to examine rates of lava effusion and SO2 emission, and quantify the amount of erupted products. We also examine published images from other satellites, such as ALI and SEVIRI in order to understand the temporal evolution of the eruption. Synthesizing these data, we then attempt to infer the mechanisms through which the eruption progressed. Examination of satellite data reveals a bimodal eruption, beginning with explosive activity marked by high SO2 emission totalling 1824 - 2299 KT, and extensive ash fall of 270 - 440 km2. This was followed by a period of rapid effusion, producing a ~17 km long lava flow, and a volume of ~22.1 x 106 m3. Mass balance between the SO2 and lava flows reveals no sulfur 'excess', suggesting that nearly all of the degassed magma was extruded. This eruption of Nabro continued for nearly 6 weeks, and may be considered the second largest historic eruption in Africa. This type of work highlights the effectiveness and importance of accessible satellite remote sensing data for the study of active volcanoes, particularly those in remote regions that may be otherwise inaccessible.

  4. Visir-Sat - a Prospective Micro-Satellite Based Multi-Spectral Thermal Mission for Land Applications

    Science.gov (United States)

    Ruecker, G.; Menz, G.; Heinemann, S.; Hartmann, M.; Oertel, D.

    2015-04-01

    Current space-borne thermal infrared satellite systems aimed at land surface remote sensing retain some significant deficiencies, in particular in terms of spatial resolution, spectral coverage, number of imaging bands and temperature-emissivity separation. The proposed VISible-to-thermal IR micro-SATellite (VISIR-SAT) mission addresses many of these limitations, providing multi-spectral imaging data with medium-to-high spatial resolution (80m GSD from 800 km altitude) in the thermal infrared (up to 6 TIR bands, between 8 and 11μm) and in the mid infrared (1 or 2 MIR bands, at 4μm). These MIR/TIR bands will be co-registered with simultaneously acquired high spatial resolution (less than 30 m GSP) visible and near infrared multi-spectral imaging data. To enhance the spatial resolution of the MIR/TIR multi-spectral imagery during daytime, data fusion methods will be applied, such as the Multi-sensor Multi-resolution Technique (MMT), already successfully tested over agricultural terrain. This image processing technique will make generation of Land Surface Temperature (LST) EO products with a spatial resolution of 30 x 30 m2 possible. For high temperature phenomena such as vegetation- and peat-fires, the Fire Disturbance Essential Climate Variables (ECV) "Active fire location" and "Fire Radiative Power" will be retrieved with less than 100 m spatial resolution. Together with the effective fire temperature and the spatial extent even for small fire events the innovative system characteristics of VISIR-SAT go beyond existing and planned IR missions. The comprehensive and physically high-accuracy products from VISIR-SAT (e.g. for fire monitoring) may synergistically complement the high temperature observations of Sentinel-3 SLSTR in a unique way. Additionally, VISIR-SAT offers a very agile sensor system, which will be able to conduct intelligent and flexible pointing of the sensor's line-of-sight with the aim to provide global coverage of cloud free imagery every 5

  5. On-Orbit Propulsion OMS/RCS

    Science.gov (United States)

    Hurlbert, Eric A.

    2001-01-01

    This slide presentation reviews the Space Shuttle's On-Orbit Propulsion systems: the Orbital Maneuvering System (OMS) and the Reaction Control System (RCS). The functions of each of the systems is described, and the diagrams of the systems are presented. The OMS/RCS thruster is detailed and a trade study comparison of non-toxic propellants is presented.

  6. USING OF THE MULTITEMPORAL THERMAL INFRARED SATELLITE IMAGERY FOR NATURAL AREAS MAPPING (CASE OF MENDELEEV VOLCANO

    Directory of Open Access Journals (Sweden)

    M. Y. Grishchenko

    2014-01-01

    Full Text Available In the paper authors examine the mountain group of Mendeleev volcano situated on the Kunashir island, Kuril archipelago, Russia. Ground observations were led to examine the vegetation cover of the area as well as its typical landscapes. The other type of used data is Landsat imagery. Images were combined into multitemporal thermal infrared and multispectral pictures, which were classified to reveal the heterogeneity of the study area. Ground observations and comparison of the classification results with landscape map derive that the multitemporal thermal infrared image classification result describes better the vegetation cover structure of the area and particularity of its typical landscapes distribution. It leads to the proposition that miltitemporal thermal infrared imagery can be used to refine landscape and vegetation cover contours. 

  7. NPP VIIRS Early On-Orbit Geometric Performance

    Science.gov (United States)

    Wolfe, Robert E.; Lin, Guoqing; Nishihama, Masahiro; Tewari, Krishna; Montano, Enrique

    2012-01-01

    The NASA/NOAA Visible Infrared Imager Radiometer Suite (VIIRS) instrument on-board the Suomi National Polar-orbiting Partnership (NPP) satellite was launched in October, 2011. The instrument geometric performance includes sensor spatial response, band-to-band co-registration (BBR), and geolocation accuracy and precision. The geometric performance is an important aspect of sensor data record (SDR) calibration and validation. In this paper we will discuss geometric performance parameter characterization using the first seven-month of VIIRS' earth and lunar data, and compare with the at-launch performance using ground testing data and analysis of numerical modeling results as the first step in on-orbit geometric calibration and validation.

  8. ACTS on-orbit multibeam antenna pattern measurements

    Science.gov (United States)

    Acosta, R.; Wright, D.; Regier, F.

    1995-01-01

    The Advanced Communication Technology (ACTS) is a key to NASA's goal of developing high-risk, advanced communications technology using multiple frequency bands to support the nation's future communication needs. Using the multiple, dynamic hopping spot beams and advanced on board switching and processing systems, ACTS will open a new era in communications satellite technology. One of the key technologies to be validated as part of the ACTS program is the multibeam antenna (MBA) with rapidly reconfigurable hopping and fixed spot beams to serve users equipped with small-aperture terminals within the coverage areas. The MBA test program is designed to evaluate the on-orbit ACTS antenna performance. The main parameters measured are beam shape, beam center location and gain.

  9. Hubble Space Telescope On-orbit Transfer Function Test

    Science.gov (United States)

    Vadlamudi, N.; Blair, M. A.; Clapp, B. R.

    1992-01-01

    The paper describes the On-orbit Transfer Function Test (TFT) designed for on-orbit vibration testing of the Hubble Space Telescope (HST). The TFT provides means for extracting accurate on-orbit characteristics of HST flexible body dynamics, making it possible to check periodically the state of the vehicle on-orbit and to assess changes in modal parameters.

  10. What is Eating Ozone? Thermal Reactions between SO2 and O3 and Implications for the Icy Satellites

    Science.gov (United States)

    Loeffler, Mark; Hudson, Reggie L.; Gerakines, Perry A.

    2016-10-01

    Here we present first results on a non-radiolytic, thermally-driven reaction sequence in solid H2O + SO2 + O3 mixtures at 50 – 130 K, which produces bisulfate (HSO4-). The results show that at the temperatures of the Jovian satellites, SO2 and O3 will efficiently react making co-detection of these species unlikely. Our results also give a viable explanation for why O3 has not been detected on Callisto and why the concentration of SO2 appears to be highest in its leading hemisphere. Furthermore our results also predict that the SO2 concentration on Ganymede will be lowest in the trailing hemisphere, where the concentration of O3 is the highest. This work is supported by NASA's Outer Planets Research program.

  11. Lava discharge rate estimates from thermal infrared satellite data for Pacaya Volcano during 2004-2010

    Science.gov (United States)

    Morgan, Hilary A.; Harris, Andrew J. L.; Gurioli, Lucia

    2013-08-01

    Pacaya is one of the most active volcanoes in Central America and has produced lava flows frequently since 1961. All effusive activity between 1961 and 2009 was confined by an arcuate collapse scarp surrounding the northern and eastern flanks. However, the recent breaching of this topographic barrier, and the eruption of a large lava flow outside of the main center of activity, have allowed lava to extend into nearby populated areas, indicating the need for assessment and monitoring of lava flow hazards. We investigated whether a commonly used satellite-based model could produce accurate lava discharge rates for the purpose of near-real-time assessment of hazards during future eruptions and to assess the dynamics of this persistently degassing system. The model assumes a linear relationship between active lava flow area and time-averaged discharge rate (TADR) via a simple conversion factor. We calculated the conversion factor via two methods: (1) best-fitting of satellite-derived flow areas to ground-based estimates of lava flow volume, and (2) theoretically via a parameterized model that takes into account the physical properties of the lava. To apply the latter method, we sampled four lava flows and measured density, vesicularity, crystal content, and major element composition. We found the best agreement of conversion factors in the eruption with the most complete satellite coverage, and used data for these flows to define the linear relationship between area and discharge rate. The physical properties of the sampled flows were essentially identical, so that any discrepancy between the two methods of calculating conversion factors must be due to modeling errors or environmental factors unaccounted for by the parameterized model. However, our best-fitting method provides a new means to set the conversion appropriately, and to obtain self-consistent TADRs. We identified two distinct types of effusive activity at Pacaya: Type 1 activity characterized by initially

  12. Comparison between Satellite Water Vapour Observations and Atmospheric Models’ Predictions of the Upper Tropospheric Thermal Radiation

    Directory of Open Access Journals (Sweden)

    J. R. Dim

    2011-01-01

    Full Text Available Atmospheric profiles (temperature, pressure, and humidity are commonly used parameters for aerosols and cloud properties retrievals. In preparation of the launch of the Global Change Observation Mission-Climate/Second-Generation GLobal Imager (GCOM-C/SGLI satellite, an evaluation study on the sensitivity of atmospheric models to variations of atmospheric conditions is conducted. In this evaluation, clear sky and above low clouds water vapour radiances of the upper troposphere obtained from satellite observations and those simulated by atmospheric models are compared. The models studied are the Nonhydrostatic ICosahedral Atmospheric Model (NICAM and the National Center for Environmental Protection/Department Of Energy (NCEP/DOE. The satellite observations are from the Terra/Moderate Resolution Imaging Spectroradiometer (Terra/MODIS satellite. The simulations performed are obtained through a forward radiative transfer calculation procedure. The resulting radiances are transformed into the upper tropospheric brightness temperature (UTBT and relative humidity (UTRH. The discrepancies between the simulated data and the observations are analyzed. These analyses show that both the NICAM and the NCEP/DOE simulated UTBT and UTRH have comparable distribution patterns. However the simulations’ differences with the observations are generally lower with the NCEP/DOE than with the NICAM. The NCEP/DOE model outputs very often overestimate the UTBT and therefore present a drier upper troposphere. The impact of the lower troposphere instability (dry convection on the upper tropospheric moisture and the consequences on the models’ results are evaluated through a thunderstorm and moisture predictor (the K-stability index. The results obtained show a positive relation between the instability and the root mean square error (RMSE: observation versus models. The study of the impact of convective clouds shows that the area covered by these clouds increases with the

  13. Influence of topography on lava flow quantification from satellite thermal data

    Science.gov (United States)

    Zakšek, Klemen; Pick, Leonie; Coppola, Diego; Hort, Matthias

    2017-04-01

    Satellite images are an accessible data source for monitoring the heat emission from lava flows during effusive eruptions. Their evaluation regarding the size of a flow and volcanic radiant power (VRP) assists the hazard assessment. VRP is a most important parameter for estimation of lava discharge rate. Thus it is important to correct its value for all possible systematic influences. As several volcanoes have steep slopes, we propose a simple topographic correction of VRP observations. It is based on the corrected size of a pixel area. The proposed correction was first tested in a laboratory experiment, where we simulated a volcanic feature by an electrical heating alloy of 0.5 mm diameter installed on a plywood panel. Two thermographic cameras record images of the artificial heat source in wavebands comparable to those available from satellite data. The influence of the slope was in the laboratory setup reduced by a factor of five. The correction algorithm has been applied also to MODIS data of Etna's 2008-2009 eruption. The time series of corrected results contain significantly less noise than the original data.

  14. An Autonomous System to Take Angular Thermal-Infrared Measurements for Validating Satellite Products

    OpenAIRE

    Raquel Niclòs; José A. Valiente; Maria J. Barberà; César Coll

    2015-01-01

    An autonomous system for field land surface temperature (LST) measurements taken at different observation angles was developed to be deployed easily at any conventional meteorological tower station. The system permits ground-truth data to be acquired on a continuous basis, and angularly scans land and sky hemispheres with a single thermal-infrared (TIR) radiometer. This paper describes the autonomous angular system and the methodology to assess ground-truth LST and relative-to-nadir emissivit...

  15. On-orbit parametric identification methodology

    Science.gov (United States)

    Hadaegh, Fred Y.; Bayard, David S.

    1988-01-01

    On-orbit system identification (ID) of large space systems is essential for various reasons. For example, the complex composite structure of such systems cannot be ground-tested; their structural dynamic characteristics must be known accurately in order to accomplish active control. Furthermore, such capability can be used to characterize/identify various disturbances. The identification process is consisted of four principal elements: (1) modeling, (2) the estimation algorithm, (3) input system, and (4) measurement system. These elements are highly correlated and all togerher determine the success of the identification problem. Accurate modeling of large space systems is the most important element of the identification process. Large flexible structures are non-linear and infinite dimensional systems with highly coupled parameters and low frequency packed modes. In addition, these systems are subject to stochastic and time-varying disturbances, they have structural parameters which can vary due to on-orbit assembly deployment, and operations. These systems are generally; however, represented by constant coefficient, finite order differential equations. The non-linearities, coupling and noise effects are also often neglected. Moreover, identification experiment designs which lead to highly complex optimization problems usually require the simultaneous choice of ID algorithm, sensor, and actuator type and placement. On-orbit bandwidth and power restrictions on excitation, limited data window, and restrictions on sensor/actuator type, placement and number, has led to practical questions of implementations.

  16. [Monitoring the thermal plume from coastal nuclear power plant using satellite remote sensing data: modeling, and validation].

    Science.gov (United States)

    Zhu, Li; Zhao, Li-Min; Wang, Qiao; Zhang, Ai-Ling; Wu, Chuan-Qing; Li, Jia-Guo; Shi, Ji-Xiang

    2014-11-01

    Thermal plume from coastal nuclear power plant is a small-scale human activity, mornitoring of which requires high-frequency and high-spatial remote sensing data. The infrared scanner (IRS), on board of HJ-1B, has an infrared channel IRS4 with 300 m and 4-days as its spatial and temporal resolution. Remote sensing data aquired using IRS4 is an available source for mornitoring thermal plume. Retrieval pattern for coastal sea surface temperature (SST) was built to monitor the thermal plume from nuclear power plant. The research area is located near Guangdong Daya Bay Nuclear Power Station (GNPS), where synchronized validations were also implemented. The National Centers for Environmental Prediction (NCEP) data was interpolated spatially and temporally. The interpolated data as well as surface weather conditions were subsequently employed into radiative transfer model for the atmospheric correction of IRS4 thermal image. A look-up-table (LUT) was built for the inversion between IRS4 channel radiance and radiometric temperature, and a fitted function was also built from the LUT data for the same purpose. The SST was finally retrieved based on those preprocessing procedures mentioned above. The bulk temperature (BT) of 84 samples distributed near GNPS was shipboard collected synchronically using salinity-temperature-deepness (CTD) instruments. The discrete sample data was surface interpolated and compared with the satellite retrieved SST. Results show that the average BT over the study area is 0.47 degrees C higher than the retrieved skin temperature (ST). For areas far away from outfall, the ST is higher than BT, with differences less than 1.0 degrees C. The main driving force for temperature variations in these regions is solar radiation. For areas near outfall, on the contrary, the retrieved ST is lower than BT, and greater differences between the two (meaning > 1.0 degrees C) happen when it gets closer to the outfall. Unlike the former case, the convective heat

  17. TET-1- A German Microsatellite for Technology On -Orbit Verification

    Science.gov (United States)

    Föckersperger, S.; Lattner, K.; Kaiser, C.; Eckert, S.; Bärwald, W.; Ritzmann, S.; Mühlbauer, P.; Turk, M.; Willemsen, P.

    2008-08-01

    Due to the high safety standards in the space industry every new product must go through a verification process before qualifying for operation in a space system. Within the verification process the payload undergoes a series of tests which prove that it is in accordance with mission requirements in terms of function, reliability and safety. Important verification components are the qualification for use on the ground as well as the On-Orbit Verification (OOV), i.e. proof that the product is suitable for use under virtual space conditions (on-orbit). Here it is demonstrated that the product functions under conditions which cannot or can only be partially simulated on the ground. The OOV-Program of the DLR serves to bridge the gap between the product tested and qualified on the ground and the utilization of the product in space. Due to regular and short-term availability of flight opportunities industry and research facilities can verify their latest products under space conditions and demonstrate their reliability and marketability. The Technologie-Erprobungs-Tr&äger TET (Technology Experiments Carrier) comprises the core elements of the OOV Program. A programmatic requirement of the OOV Program is that a satellite bus already verified in orbit be used in the first segment of the program. An analysis of suitable satellite buses showed that a realization of the TET satellite bus based on the BIRD satellite bus fulfilled the programmatic requirements best. Kayser-Threde was selected by DLR as Prime Contractor to perform the project together with its major subcontractors Astro- und Feinwerktechnik, Berlin for the platform development and DLR-GSOC for the ground segment development. TET is now designed to be a modular and flexible micro-satellite for any orbit between 450 and 850 km altitude and inclination between 53° and SSO. With an overall mass of 120 kg TET is able to accommodate experiments of up to 50 kg. A multipurpose payload supply systemThere is

  18. On-Orbit Performance of MODIS On-Board Calibrators

    Science.gov (United States)

    Xiong, X.; Che, N.; Chiang, K.; Esposito, J.; Barnes, William; Guenther, B.; Zukor, Dorothy J. (Technical Monitor)

    2001-01-01

    The Terra MODIS (Moderate Resolution Imaging Spectroradiometer) was launched on December 18, 1999 and acquired the first scene data on February 24, 2000. It has 36 spectral bands covering spectral range from 0.41 to 14.2 microns and provides spatial resolutions of 250 (2 bands), 500 (5 bands), and 1000 m at Nadir. The instrument on-orbit calibration and characterization are determined and monitored through the use of a number of on-board calibrators (OBC). Radiometric calibration for the reflective solar bands (B1-B19, B26), from VIS (visible) to SWIR (short wavelength infrared) (0.41 to 2.1 microns), uses a Spectralon (tm) solar diffuser (SD) and a solar diffuser stability monitor (SDSM). For the thermal emissive bands (B20-B25, B27-B36), from MWIR (medium wavelength infrared) to LWIR (long wavelength infrared) (3.75 to 14.2 micron), a V-grooved flat panel blackbody is used. The instrument spectral for the VIS to SWIR bands and spatial co-registration characterizations for all bands are monitored on-orbit by the spectral radiometric calibration assembly (SRCA). In this report, we discuss the application and performance of the key MODIS on-board calibrators and their impacts on the instrument system calibration and characterization.

  19. Prospecting for geothermal energy through satellite based thermal data: Review and the way forward

    Directory of Open Access Journals (Sweden)

    F. Howari

    2015-09-01

    Full Text Available Geothermal investors need to be confident with the methods and results of exploration programs. Also cutting the upfront cost of geothermal exploration will further encourage investors to consider investment in this emerging clean energy field. Hence, it is of paramount importance to improve prospecting techniques in order to explore where economic concentrations of geothermal energy are to be expected.  The current study evaluates different approaches for downscaling thermal data from remote sensing images together with factors in surface and subsurface environment. The paper discusses case studies, the challenge and the way forward for geothermal prospecting as well as practical solutions to discrepancy that faces the mapping and documentation of spatial geothermal anomalies.  It also discusses main criteria that should be considered while prospecting for geothermal energy.

  20. Estimation of soil moisture-thermal infrared emissivity relation in arid and semi-arid environments using satellite observations

    Science.gov (United States)

    Grazia Blasi, Maria; Masiello, Guido; Serio, Carmine; Venafra, Sara; Liuzzi, Giuliano; Dini, Luigi

    2016-04-01

    The retrieval of surface parameters is very important for various aspects concerning the climatological and meteorological context. At this purpose surface emissivity represents one of the most important parameters useful for different applications such as the estimation of climate changes and land cover features. It is known that thermal infrared (TIR) emissivity is affected by soil moisture, but there are very few works in literature on this issue. This study is aimed to analyze and find a relation between satellite soil moisture data and TIR emissivity focusing on arid and semi-arid environments. These two parameters, together with the land surface temperature, are fundamental for a better understanding of the physical phenomena implied in the soil-atmosphere interactions and the surface energy balance. They are also important in several fields of study, such as climatology, meteorology, hydrology and agriculture. In particular, there are several studies stating a correlation between soil moisture and the emissivity at 8-9 μm in desertic soils, which corresponds to the quartz Reststrahlen, a feature which is typical of sandy soils. We investigated several areas characterized by arid or semi-arid environments, focusing our attention on the Dahra desert (Senegal), and on the Negev desert (Israel). For the Dahra desert we considered both in situ, provided by the International Soil Moisture Network, and satellite soil moisture data, from ASCAT and AMSR-E sensors, for the whole year 2011. In the case of the Negev desert soil moisture data are derived from ASCAT observations and we computed a soil moisture index from a temporal series of SAR data acquired by the Cosmo-SkyMed constellation covering a period of six months, from June 2015 to November 2015. For both cases soil moisture data were related to the retrieved TIR emissivity from the geostationary satellite SEVIRI in three different spectral channels, at 8.7 μm, 10.8 μm and 12 μm. A Kalman filter physical

  1. On-Orbit Degradation of Solar Instruments

    Science.gov (United States)

    BenMoussa, A.; Gissot, S.; Schühle, U.; Del Zanna, G.; Auchère, F.; Mekaoui, S.; Jones, A. R.; Walton, D.; Eyles, C. J.; Thuillier, G.; Seaton, D.; Dammasch, I. E.; Cessateur, G.; Meftah, M.; Andretta, V.; Berghmans, D.; Bewsher, D.; Bolsée, D.; Bradley, L.; Brown, D. S.; Chamberlin, P. C.; Dewitte, S.; Didkovsky, L. V.; Dominique, M.; Eparvier, F. G.; Foujols, T.; Gillotay, D.; Giordanengo, B.; Halain, J. P.; Hock, R. A.; Irbah, A.; Jeppesen, C.; Judge, D. L.; Kretzschmar, M.; McMullin, D. R.; Nicula, B.; Schmutz, W.; Ucker, G.; Wieman, S.; Woodraska, D.; Woods, T. N.

    2013-11-01

    We present the lessons learned about the degradation observed in several space solar missions, based on contributions at the Workshop about On-Orbit Degradation of Solar and Space Weather Instruments that took place at the Solar Terrestrial Centre of Excellence (Royal Observatory of Belgium) in Brussels on 3 May 2012. The aim of this workshop was to open discussions related to the degradation observed in Sun-observing instruments exposed to the effects of the space environment. This article summarizes the various lessons learned and offers recommendations to reduce or correct expected degradation with the goal of increasing the useful lifespan of future and ongoing space missions.

  2. On-Orbit Degradation of Solar Instruments

    CERN Document Server

    BenMoussa, A; Schühle, U; Del Zanna, G; Auchère, F; Mekaoui, S; Jones, A R; Walton, D; Eyles, C J; Thuillier, G; Seaton, D; Dammasch, I E; Cessateur, G; Meftah, M; Andretta, V; Berghmans, D; Bewsher, D; Bolsée, D; Bradley, L; Brown, D S; Chamberlin, P C; Dewitte, S; Didkovsky, L V; Dominique, M; Eparvier, F G; Foujols, T; Gillotay, D; Giordanengo, B; Halain, J -P; Hock, R A; Irbah, A; Jeppesen, C; Judge, D L; Kretzschmar, M; McMullin, D R; Nicula, B; Schmutz, W; Ucker, G; Wieman, S; Woodraska, D; Woods, T N; 10.1007/s11207-013-0290-z

    2013-01-01

    We present the lessons learned about the degradation observed in several space solar missions, based on contributions at the Workshop about On-Orbit Degradation of Solar and Space Weather Instruments that took place at the Solar Terrestrial Centre of Excellence (Royal Observatory of Belgium) in Brussels on 3 May 2012. The aim of this workshop was to open discussions related to the degradation observed in Sun-observing instruments exposed to the effects of the space environment. This article summarizes the various lessons learned and offers recommendations to reduce or correct expected degradation with the goal of increasing the useful lifespan of future and ongoing space missions.

  3. On-Orbit MTF Measurement and Product Quality Monitoring for Commercial Remote Sensing Systems

    Science.gov (United States)

    Person, Steven

    2007-01-01

    Initialization and opportunistic targets are chosen that represent the MTF on the spatial domain. Ideal targets have simple mathematical relationships. Determine the MTF of an on-orbit satellite using in-scene targets: Slant-Edge, Line Source, point Source, and Radial Target. Attempt to facilitate the MTF calculation by automatically locating targets of opportunity. Incorporate MTF results into a product quality monitoring architecture.

  4. A Satellite Time Slots Climatology of the Urban Heat Island of Guadalajara Megacity in Mexico from NOAA ¡/AVHRR THERMAL Infrared Monitoring (TIR)

    Science.gov (United States)

    Galindo, I.

    2009-04-01

    The urban heat island (UHI) of the metropolitan area of the second megacity of Mexico, named Guadalajara in Mexico is studied using thermal infrared data (TIR) (10 £ l £ 12 mm) obtained from the Advanced Very High Resolution Radiometer (AVHRR) on board the NOAA polar orbitters whose signals are received on real time at our ground station for the period 1996-2006. The TIR data are selected by means of a software, since they depend on natural causes (e.g., atmospheric transparency, surface temperature, spectral emissivity and topography) and observational (time and incidence angle of the satellite pass, season of the year, etc.). The above conditions have a variable contribution to the measurements which it can be so high that they simulate the temporal-space fluctuations considered as thermal anomalies. Using a Geographic Information System and spatial analysis techniques temperatures are obtained for diofferent times of the day (satellite slots) and dropped into a grid with a 2.5 km distance between points (latitude, longitude). The temperatures obtained for each satellite pass slot (four per day) are monthly averaged and the temperature anomalies are represented in thermal isolines for the study area. The temperature difference usually is larger at night than during the day, reaching a thermal gradient of 9 °C.

  5. ACTS Battery and Solar Array Assembly On-Orbit Measured Performance

    Science.gov (United States)

    Hilderman, Don R.

    2005-01-01

    The Advanced Communications Technology Satellite (ACTS) is a NASA experimental communications satellite system designed to demonstrate on-orbit Ka-band communications and switching technologies that will be used by NASA and the commercial sector in the 21st century. The ACTS was launched on September 12, 1993, and has performed over 10 years of successful experimental operations. The purpose of this report is to describe the ACTS power subsystem and the ACTS solar array and battery assemblies located within the power subsystem and then to document on-orbit measured performance from launch to mission end on April 28, 2004. Solar array and battery performance data is presented, and respective conclusions are drawn. The total solar array power available to the spacecraft was measured each year at the same time, and battery voltage performance was measured twice per year at the same times during peak solar eclipse. At the highest spacecraft power demand, the ACTS uses approximately 1113 W of electrical power during the low-burstrate experiment to operate all six satellite subsystems. After 10 years of on-orbit operation, solar array available output power normal to the Sun measured 1508 W, which represents 395 W of excess margin. The ACTS batteries have successfully supported the ACTS experiment program for over 10 years and operated in excess of 900 charge and discharge cycles through 21 eclipse seasons.

  6. Comparison of methods for the calculation of thermal contact resistance of the first Brazilian satellite. M.S. Thesis - Instituto de Pesquisas Espaciais, 6 Dec. 1985

    Science.gov (United States)

    Mantelli, Marcia B. H.

    1988-01-01

    A comparative study of the methods developed for the calculation of thermal contact resistance between two surfaces submitted to a perpendicular heat flux is presented. Several factors affecting this resistance are analyzed and a brief historical review of the works in this field is made, spotting the methods of interest for space applications. These are compared to experimental data so as to establish the most proper method for the couplings of the first Brazilian satellite.

  7. Satellite observation of lowermost tropospheric ozone by multispectral synergism of IASI thermal infrared and GOME-2 ultraviolet measurements over Europe

    Science.gov (United States)

    Cuesta, J.; Eremenko, M.; Liu, X.; Dufour, G.; Cai, Z.; Hoepfner, M.; von Clarmann, T.; Sellitto, P.; Foret, G.; Gaubert, B.; Beekmann, M.; Orphal, J. J.; Chance, K.; Spurr, R. J.; Flaud, J.

    2013-12-01

    Lowermost tropospheric ozone is a major factor determining air quality, which directly affects human health in megacities and causes damages to ecosystems. Monitoring tropospheric ozone is a key societal issue which can be addressed at the regional scale by spaceborne observation. However, current satellite retrievals of tropospheric ozone using uncoupled either ultraviolet (UV) or thermal infrared (TIR) observations show limited sensitivity to ozone at the lowermost troposphere (LMT, up to 3 km asl of altitude above sea level), which is the major concern for air quality. In this framework, we have developed a new multispectral approach for observing lowermost tropospheric ozone from space by synergism of atmospheric TIR radiances observed by IASI and earth UV reflectances measured by GOME-2. Both instruments are onboard the series of MetOp satellites (in orbit since 2006 and expected until 2022) and their scanning capabilities offer global coverage every day, with a relatively fine ground pixel resolution (12-km-diameter pixels spaced by 25 km for IASI at nadir). Our technique uses altitude-dependent Tikhonov-Phillips-type constraints, which optimize sensitivity to lower tropospheric ozone. It integrates the VLIDORT and KOPRA radiative transfer codes for simulating UV reflectance and TIR radiance, respectively. We have used our method to analyze real observations over Europe during an ozone pollution episode in the summer of 2009. The results show that the multispectral synergism of IASI (TIR) and GOME-2 (UV) enables the observation of the spatial distribution of ozone plumes in the LMT, in good agreement with the CHIMERE regional chemistry-transport model. In this case study, when high ozone concentrations extend vertically above 3 km asl, they are similarly observed over land by both the multispectral and IASI retrievals. On the other hand, ozone plumes located below 3 km asl are only clearly depicted by the multispectral retrieval (both over land and over ocean

  8. The International Space Station on-orbit tester

    Science.gov (United States)

    Pierotti, Elizabeth; Atodaria, Jitu

    2001-02-01

    The International Space Station (ISS) program has identified specific Orbital Replaceable Units (ORUs) as candidates for on-orbit intermediate level maintenance. Performing intermediate level maintenance on-orbit will allow sparing at the Shop Replaceable Unit (SRU) level rather than the ORU level. This will minimize cost and volume to transport replaceable units to and from orbit, minimize stowage on-orbit, and maximize on-orbit spare availability that will in turn minimize system downtime. To accomplish on-orbit intermediate level maintenance, additional requirements for fault isolation and confidence testing must be implemented. Test equipment used on-ground to perform fault isolation and acceptance testing is large and heavy. Consideration for weight and volume is an important factor for any test equipment that is to be transported, used and stowed on-orbit. This paper summarizes a phased approach to testing electronic hardware on-orbit with minimal additional weight and volume for the test equipment. .

  9. Analysis and Optimization of SSO Satellite Thermal Control Subsystem%太阳同步轨道卫星热控分系统分析及优化

    Institute of Scientific and Technical Information of China (English)

    吴文瑞; 黄海

    2012-01-01

    定义地心日照轨道坐标系,并在此坐标系下简化卫星与地球相对位置的复杂计算,以及卫星轨道外热流分析过程中相关角度的计算,使轨道外热流的分析仿真更加快速、简洁。以正六棱柱形卫星为例,建立热网络模型,对其表面在一圈轨道内所受的轨道外热流进行仿真,并结合仿真结果计算进出地影区时卫星内部的温度。在此基础上,建立以热控分系统多层隔热材料质量最小化为目标的优化问题;在满足高低温工况卫星内部温度在-10~+35℃范围内的约束下,对多层隔热材料厚度和散热窗大小进行了优化。%An Earth-original sunshine orbital coordinate system is defined.In this coordinate system,the complex computation of the relative position between satellite and the Earth can be bypassed,so the calculations of related angles in satellite orbital heat flux analysis become simple,and the satellite thermal analysis can be quickly accomplished.A thermal network model of a six-prism shaped satellite is built.The orbital heat flux on the surfaces of the satellite is simulated and applied in the model to obtain the satellite internal temperature at the start and end of eclipse period.Based on the model,an optimization of thermal control system to minimize multi-layer insulations mass in limitation of the satellite internal temperatures between-10℃ and +35℃ in both cold and hot cases is established.Multi-layer insulations thickness and radiator window area are optimized.

  10. Satellite orbit determination and gravity field recovery from satellite-to-satellite tracking

    Science.gov (United States)

    Wakker, K. F.; Ambrosius, B. A. C.; Leenman, H.

    1989-07-01

    Studies on satellite-to-satellite tracking (SST) with POPSAT (a geodetic satellite concept) and a ERS-class (Earth observation) satellite, a Satellite-to-Satellite Tracking (SST) gravity mission, and precise gravity field determination methods and mission requirements are reported. The first two studies primarily address the application of SST between the high altitude POPSAT and an ERS-class or GRM (Geopotential Research Mission) satellite to the orbit determination of the latter two satellites. Activities focussed on the determination of the tracking coverage of the lower altitude satellite by ground based tracking systems and by POPSAT, orbit determination error analysis and the determination of the surface forces acting on GRM. The third study surveys principles of SST, uncertainties of existing drag models, effects of direct luni-solar attraction and tides on orbit and the gravity gradient observable. Detailed ARISTOTELES (which replaced POPSAT) orbit determination error analyses were performed for various ground based tracking networks.

  11. Long-Term Record of Arctic and Antarctic Sea and Ice Surface Temperatures from Thermal Infrared Satellite Sensors

    Science.gov (United States)

    Luis, Cristina; Dybkjær, Gorm; Eastwood, Steinar; Tonboe, Rasmus; Høyer, Jacob

    2015-04-01

    Surface temperature is among the most important variables in the surface energy balance equation and it significantly affects the atmospheric boundary layer structure, the turbulent heat exchange and, over ice, the ice growth rate. Here we measure the surface temperature using thermal infrared sensors from 10-12 µm wavelength, a method whose primary limitation over sea ice is the detection of clouds. However, in the Arctic and around Antarctica there are very few conventional observations of surface temperature from buoys, and it is sometimes difficult to determine if the temperature is measured at the surface or within the snowpack, the latter of which often results in a warm bias. To reduce this bias, much interest is being paid to alternative remote sensing methods for monitoring high latitude surface temperature. We used Advanced Very High Resolution Radiometer (AVHRR) global area coverage (GAC) data to produce a high latitude sea surface temperature (SST), ice surface temperature (IST) and ice cap skin temperature dataset spanning 27 years (1982-2009). This long-term climate record is the first of its kind for IST. In this project we used brightness temperatures from the infrared channels of AVHRR sensors aboard NOAA and Metop polar-orbiting satellites. Surface temperatures were calculated using separate split window algorithms for day SST, night SST, and IST. The snow surface emissivity across all angles of the swath were simulated specifically for all sensors using an emission model. Additionally, all algorithms were tuned to the Arctic using simulated brightness temperatures from a radiative transfer model with atmospheric profiles and skin temperatures from European Centre for Medium-Range Forecasts (ECMWF) re-analysis data (ERA-Interim). Here we present the results of product quality as compared to in situ measurements from buoys and infrared radiometers, as well as a preliminary analysis of climate trends revealed by the record.

  12. Realizing On-Orbit SI Traceability: Experimental Considerations and Science Objectives in the Infrared

    Science.gov (United States)

    Dykema, J. A.; Gero, P. J.; Leroy, S. S.; Anderson, J. G.; Revercomb, H. E.; Best, F. A.

    2008-12-01

    The concept of on-orbit SI traceability for Earth observations provides a new paradigm for proving that, over the lifetime of a satellite mission, a claimed level of measurement accuracy was in fact achieved. This proof rests on a combination of independent physical tests of sensor performance on-orbit combined with exhaustive evaluation of the sensor calibration against standards that have demonstrable links to the international definition of measurement units and are maintained and verified by independent institutions, the world's National Measurement Institutes (NMIs). The successful precedent for this measurement strategy in climate research is reviewed and contrasted with other strategies that have been considered to verify the accuracy of measured climate trends. The detailed application of the paradigm of on-orbit SI traceability to the infrared portion of the CLimate Absolute Radiance and Refractivity Earth Observatory (CLARREO) is discussed. This discussion identifies the physical basis for spectral infrared calibration which can be reproduced at any time, anywhere in the world. Demonstrating that the physical model which underpins calibration standards that can be linked to internationally-recognized measurement standards is applicable over the lifetime of a satellite mission requires new technological developments. The scientific objectives of the CLARREO mission include obtaining strong observational constraints on radiative processes that are largely responsible for the uncertainty in decadal climate forecasting. The role these technological developments, along with other sensor characteristics, play in the achievement of CLARREO scientific objectives are summarized.

  13. CALET On-orbit Calibration and Performance

    Science.gov (United States)

    Akaike, Yosui; Calet Collaboration

    2017-01-01

    The CALorimetric Electron Telescope (CALET) was installed on the International Space Station (ISS) in August 2015, and has been accumulating high-statistics data to perform high-precision measurements of cosmic ray electrons, nuclei and gamma-rays. CALET has an imaging and a fully active calorimeter, with a total thickness of 30 radiation lengths and 1.3 proton interaction lengths, that allow measurements well into the TeV energy region with excellent energy resolution, 2% for electrons above 100 GeV, and powerful particle identification. CALET's performance has been confirmed by Monte Carlo simulations and beam tests. In order to maximize the detector performance and keep the high resolution for long observation on the ISS, it is required to perform the precise calibration of each detector component. We have therefore evaluated the detector response and monitored it by using penetrating cosmic ray events such as protons and helium nuclei. In this paper, we will present the on-orbit calibration and detector performance of CALET on the ISS. This research was supported by JSPS postdoctral fellowships for research abroad.

  14. Landsat-7 ETM+ On-Orbit Radiometric Calibration

    Science.gov (United States)

    Markham, Brian L.; Kaita, Ed; Miller, Jeff; Barsi, Julia; Smith, David E. (Technical Monitor)

    2000-01-01

    As of July, 2000 the Enhanced Thematic Mapper Plus (ETM+) sensor on Landsat-7 has been operating on-orbit for about 15 months. The ETM+ images the Earth in has eight spectral bands in the visible, near-infrared (IR), short wavelength infrared (SWIR), and thermal portions of the spectrum. Three on-board calibration systems are available for the reflective bands: (1) the Internal Calibrator (IC), (2) the Partial Aperture Solar Calibrator (PASC), and (3) the Full Aperture Solar Calibrator (FASC). The Internal Calibrator also provides the thermal band calibration. Several investigators on the Landsat science team are also regularly performing vicarious calibrations. The internal calibrator, which during much of the pre-launch testing and early on-orbit check out period, showed up to 15% variability with time, has since stabilized as the instrument has assumed a regular schedule of operations and is now typically showing only a few percent variation with time, mostly associated with warm-up. The PASC has been the most variable of the sources: the response to the PASC has increased by as much as 50% is some bands and is oscillating with time, perhaps due to contamination. The FASC has been the most stable of the sources: mid scan response to the FASC diffuser have varied from -4%/yr for band 4 (0.83 microns) to -2%/yr for band 1 (0.49 microns) to +1%/yr for band 7 (2.2 microns). These decreases in response in bands 1-4 would have been about half as large if measured on the right (west) side of the panel and about twice as large if measured on the left side of the panel. The current interpretation is that the FASC diffuser panel is changing non-uniformly in its reflectance characteristics. Vicarious ground measurements have generally been consistent with the pre-launch measurements of the instrument responsivity and have not shown evidence of a change in responsivity with time. The FASC, IC, and vicarious results suggest the instrument has not changed by more than two

  15. Characterization of the 3D distribution of ozone and coarse aerosols in the Troposphere using IASI thermal infrared satellite observations

    Science.gov (United States)

    Cuesta, J.; Eremenko, M.; Dufour, G.; Hoepfner, M.; Orphal, J.

    2012-04-01

    Both tropospheric ozone and aerosols significantly affect air quality in megacities during pollution events. Moreover, living conditions may be seriously aggravated when such agglomerations are affected by wildfires (e.g. Russian fires over Moscow in 2010), which produce smoke and pollutant precursors, or even during dense desert dust outbreaks (e.g. recurrently over Beijing or Cairo). Moreover, since aerosols diffuse and absorb solar radiation, they have a direct impact on the photochemical production of tropospheric ozone. These interactions during extreme events of high aerosol loads are nowadays poorly known, even though they may significantly affect the tropospheric photochemical equilibrium. In order to address these issues, we have developed a new retrieval technique to jointly characterize the 3D distribution of both tropospheric ozone and coarse aerosols, using spaceborne observations of the infrared spectrometer IASI onboard MetOp-A satellite. Our methodology is based on the inversion of Earth radiance spectra in the atmospheric window from 8 to 12 μm measured by IASI and a «Tikhonov-Philipps»-type regularisation with constraints varying in altitude (as in [Eremenko et al., 2008, GRL; Dufour et al., 2010 ACP]) to simultaneously retrieve ozone profiles, aerosol optical depths at 10 μm and aerosol layer effective heights. Such joint retrieval prevents biases in the ozone profile retrieval during high aerosol load conditions. Aerosol retrievals using thermal infrared radiances mainly account for desert dust and the coarse fraction of biomass burning aerosols. We use radiances from 15 micro-windows within the 8-12 μm atmospheric window, which were carefully chosen (following [Worden et al., 2006 JGR]) for extracting the maximum information on aerosols and ozone and minimizing contamination by other species. We use the radiative transfer code KOPRA, including line-by-line calculations of gas absorption and single scattering for aerosols [Hoepfner et al

  16. Retrieval of SO2 from thermal infrared satellite measurements: correction procedures for the effects of volcanic ash

    Directory of Open Access Journals (Sweden)

    S. Corradini

    2009-05-01

    Full Text Available The simultaneous presence of SO2 and ash in a volcanic plume can lead to a significant error in the SO2 column abundance retrieval when multispectral Thermal InfraRed (TIR data are used. The ash particles within the plume with effective radii from 1 to 10 μm reduce the Top Of Atmosphere (TOA radiance in the entire TIR spectral range, including the channels used for SO2 retrieval. The net effect is a significant SO2 overestimation. In this work the interference of ash is discussed and two correction procedures for satellite SO2 volcanic plume retrieval in the TIR spectral range are developed to achieve an higher computational speed and a better accuracy. The ash correction can be applied when the sensor spectral range includes the 7.3 and/or 8.7 μm SO2 absorption bands, and the split window bands centered around 11 and 12 μm required for ash retrieval. This allows the possibility of simultaneous estimation of both volcanic SO2 and ash in the same data set. The proposed ash correction procedures have been applied to the Moderate Resolution Imaging Spectroradiometer (MODIS and the Spin Enhanced Visible and Infrared Imager (SEVIRI measurements. Data collected during the 24 November 2006 Mt. Etna eruption have been used to illustrate the technique. The SO2 and ash estimation is carried out by using a best weighted least squares fit method and the Brightness Temperature Difference (BTD procedures, respectively. The simulated TOA radiance Look-Up Table (LUT needed for the SO2 column abundance and the ash retrievals have been computed using the MODTRAN 4 Radiative Transfer Model. The results show the importance of the ash correction on SO2 retrievals at 8.7 μm, where the corrected SO2 column abundance values are less than 50% of the uncorrected values. The ash correction on SO2 retrieval at 7.3 μm is much less important and only significant for low SO2 column abundances. Results also show that the simplified and faster correction procedure

  17. Retrieval of SO2 from thermal infrared satellite measurements: correction procedures for the effects of volcanic ash

    Directory of Open Access Journals (Sweden)

    A. J. Prata

    2009-02-01

    Full Text Available The simultaneous presence of SO2 and ash in a volcanic plume can lead to a significant error in the SO2 columnar abundance retrieval when multispectral Thermal InfraRed (TIR data are used. The ash particles within the plume with effective radii (from 1 to 10 μm reduce the Top Of Atmosphere (TOA radiance in the entire TIR spectral range, including the channels used for SO2 retrieval. The net effect is a significant SO2 overestimation. In this work the interference of ash is discussed and two correction procedures for satellite SO2 volcanic plume retrieval in the TIR spectral range are developed to achieve an higher computation speed and a better accuracy. The ash correction can be applied when the sensor spectral range includes the 7.3 and/or 8.7 μm SO2 absorption bands, and the split window bands centered around 11 and 12 μm required for ash retrieval. This allows the possibility of a simultaneous estimation of both volcanic SO2 and ash in the same data set. The proposed ash correction procedures have been applied to the Moderate Resolution Imaging Spectroradiometer (MODIS and the Spin Enhanced Visible and Infrared Imager (SEVIRI measurements. Data collected during the 24 November 2006 Mt. Etna eruption have been used to illustrate the technique. The SO2 and ash estimations are carried out by using a least squares fit method and the Brightness Temperature Difference (BTD procedures, respectively. The simulated TOA radiance Look-Up Table (LUT needed for the SO2 columnar abundance and the ash retrievals have been computed using the MODTRAN 4 Radiative Transfer Model. The results show the importance of the ash correction on SO2 retrieval at 8.7 μm – the SO2 columnar abundance corrected by the ash influence is less than one half of the values retrieved without the correction. The ash correction on SO2 retrieval at 7.3 μm is much less important and only significant for low SO2 columnar abundances. Results also show that the simplified and

  18. Contribution of ground surface altitude difference to thermal anomaly detection using satellite images: Application to volcanic/geothermal complexes in the Andes of Central Chile

    Science.gov (United States)

    Gutiérrez, Francisco J.; Lemus, Martín; Parada, Miguel A.; Benavente, Oscar M.; Aguilera, Felipe A.

    2012-09-01

    Detection of thermal anomalies in volcanic-geothermal areas using remote sensing methodologies requires the subtraction of temperatures, not provided by geothermal manifestations (e.g. hot springs, fumaroles, active craters), from satellite image kinetic temperature, which is assumed to correspond to the ground surface temperature. Temperatures that have been subtracted in current models include those derived from the atmospheric transmittance, reflectance of the Earth's surface (albedo), topography effect, thermal inertia and geographic position effect. We propose a model that includes a new parameter (K) that accounts for the variation of temperature with ground surface altitude difference in areas where steep relief exists. The proposed model was developed and applied, using ASTER satellite images, in two Andean volcanic/geothermal complexes (Descabezado Grande-Cerro Azul Volcanic Complex and Planchón-Peteroa-Azufre Volcanic Complex) where field data of atmosphere and ground surface temperature as well as radiation for albedo calibration were obtained in 10 selected sites. The study area was divided into three zones (Northern, Central and Southern zones) where the thermal anomalies were obtained independently. K value calculated for night images of the three zones are better constrained and resulted to be very similar to the Environmental Lapse Rate (ELR) determined for a stable atmosphere (ELR > 7 °C/km). Using the proposed model, numerous thermal anomalies in areas of ≥ 90 m × 90 m were identified that were successfully cross-checked in the field. Night images provide more reliable information for thermal anomaly detection than day images because they record higher temperature contrast between geothermal areas and its surroundings and correspond to more stable atmospheric condition at the time of image acquisition.

  19. Assessment of the commercial viability of selected options for on-orbit servicing (OOS)

    Science.gov (United States)

    Graham, Andrew Robert; Kingston, Jennifer

    2015-12-01

    The aim of this paper is to determine the commercial viability of on-orbit servicing of communications satellites in geostationary orbit. Previous studies have shown the technical feasibility of servicing as well as the financial viability of some missions, in particular refuelling, therefore this paper analyses these repair missions and life extension missions. A simple parametric model for simulating communications satellite revenue streams is developed and the results are used to determine the maximum possible revenue for a servicing satellite operator. From this, the maximum cost of the servicing satellite as a proportion of the cost of the communications satellite is determined under three profit scenarios representing zero profit, acceptable profit to an operator in a mature industry and acceptable profit to an operator in an emerging industry. The results show that while servicing is financially viable (zero profit scenario), those missions which result in an increase in Comsat life which is a multiple of the mission duration are more likely to be commercially viable. Refuelling is therefore viable in all cases but life extension in most cases is only marginally viable. Repair missions to satellites which are partially operable are also unlikely to deliver sufficient value to justify carrying out servicing. Also the timing of a servicing mission in relation to the expected remaining life expectancy is a major factor in determining the mission's viability.

  20. On-Orbit Engineering and Vehicle Integration Poster Presentation

    Science.gov (United States)

    Heimerdinger, Madison

    2014-01-01

    One of the duties of the MER Managers is getting the consoles to review and sign Electronic Flight Notes (EFN) and Mission Action Requests (Chit) before they are due. Chits and EFNs and are accessible through the Mission Control Center - Houston (MCC-H) Gateway. Chits are the official means of documenting questions and answers, technical direction, real-time changes to Flight Rules (FR) and procedures, request for analysis, etc. between various consoles concerning on-orbit operations. EFNs are documents used by the Flight Control Team (FCT) to communicate precise details between console positions and manage real time changes to FR and Systems Operation Data File (SODF) procedures. On GMT 2013/345 the External Active Thermal Control System (EATCS) on the Columbus (COL) Moderate Temperature Loop (MTL) Interface Heat Exchanger (IFHX) shut down due to low temperatures. Over the next couple of days, the core temperature of COL MT IFHX dropped due to the failure of the Flow Control Valve (FCV). After the temperature drop was discovered, heaters were turned on to bring the temperatures back to nominal. After the incident occurred, a possible freeze threat was discovered that could have ruptured the heat exchanger. The COL MT IFHX rupturing would be considered a catastrophic failure and potentially result in a loss of the vehicle and/or the lives of the International Space Station (ISS) crew members

  1. Landsat 8: status and on-orbit performance

    Science.gov (United States)

    Markham, Brian L.; Barsi, Julia A.; Morfitt, Ron; Choate, Mike; Montanaro, Matthew; Arvidson, Terry; Irons, James R.

    2015-10-01

    Landsat 8 and its two Earth imaging sensors, the Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) have been operating on-orbit for 2 ½ years. Landsat 8 has been acquiring substantially more images than initially planned, typically around 700 scenes per day versus a 400 scenes per day requirement, acquiring nearly all land scenes. Both the TIRS and OLI instruments are exceeding their SNR requirements by at least a factor of 2 and are very stable, degrading by at most 1% in responsivity over the mission to date. Both instruments have 100% operable detectors covering their cross track field of view using the redundant detectors as necessary. The geometric performance is excellent, meeting or exceeding all performance requirements. One anomaly occurred with the TIRS Scene Select Mirror (SSM) encoder that affected its operation, though by switching to the side B electronics, this was fully recovered. The one challenge is with the TIRS stray light, which affects the flat fielding and absolute calibration of the TIRS data. The error introduced is smaller in TIRS band 10. Band 11 should not currently be used in science applications.

  2. Landsat-8: Status and on-orbit performance

    Science.gov (United States)

    Markham, Brian L; Barsi, Julia A.; Morfitt, Ron; Choate, Michael J.; Montanaro, Matthew; Arvidson, Terry; Irons, James R.

    2015-01-01

    Landsat 8 and its two Earth imaging sensors, the Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) have been operating on-orbit for 2 ½ years. Landsat 8 has been acquiring substantially more images than initially planned, typically around 700 scenes per day versus a 400 scenes per day requirement, acquiring nearly all land scenes. Both the TIRS and OLI instruments are exceeding their SNR requirements by at least a factor of 2 and are very stable, degrading by at most 1% in responsivity over the mission to date. Both instruments have 100% operable detectors covering their cross track field of view using the redundant detectors as necessary. The geometric performance is excellent, meeting or exceeding all performance requirements. One anomaly occurred with the TIRS Scene Select Mirror (SSM) encoder that affected its operation, though by switching to the side B electronics, this was fully recovered. The one challenge is with the TIRS stray light, which affects the flat fielding and absolute calibration of the TIRS data. The error introduced is smaller in TIRS band 10. Band 11 should not currently be used in science applications.

  3. CLARREO Approach for Reference Intercalibration of Reflected Solar Sensors: On-Orbit Data Matching and Sampling

    Science.gov (United States)

    Roithmayr, Carlos; Lukashin, Constantine; Speth, Paul W.; Kopp, Gregg; Thome, Kurt; Wielicki, Bruce A.; Young, David F.

    2014-01-01

    The implementation of the Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission was recommended by the National Research Council in 2007 to provide an on-orbit intercalibration standard with accuracy of 0.3% (k = 2) for relevant Earth observing sensors. The goal of reference intercalibration, as established in the Decadal Survey, is to enable rigorous high-accuracy observations of critical climate change parameters, including reflected broadband radiation [Clouds and Earth's Radiant Energy System (CERES)], cloud properties [Visible Infrared Imaging Radiometer Suite (VIIRS)], and changes in surface albedo, including snow and ice albedo feedback. In this paper, we describe the CLARREO approach for performing intercalibration on orbit in the reflected solar (RS) wavelength domain. It is based on providing highly accurate spectral reflectance and reflected radiance measurements from the CLARREO Reflected Solar Spectrometer (RSS) to establish an on-orbit reference for existing sensors, namely, CERES and VIIRS on Joint Polar Satellite System satellites, Advanced Very High Resolution Radiometer and follow-on imagers on MetOp, Landsat imagers, and imagers on geostationary platforms. One of two fundamental CLARREO mission goals is to provide sufficient sampling of high-accuracy observations that are matched in time, space, and viewing angles with measurements made by existing instruments, to a degree that overcomes the random error sources from imperfect data matching and instrument noise. The data matching is achieved through CLARREO RSS pointing operations on orbit that align its line of sight with the intercalibrated sensor. These operations must be planned in advance; therefore, intercalibration events must be predicted by orbital modeling. If two competing opportunities are identified, one target sensor must be given priority over the other. The intercalibration method is to monitor changes in targeted sensor response function parameters: effective

  4. On-Orbit Teflon FEP Degradation

    Science.gov (United States)

    Townsend, Jacqueline A.; Hansen, Patricia A.; Dever, Joyce A.

    1998-01-01

    During the Hubble Space Telescope (HST) Second Servicing Mission (SM2), degradation of unsupported Teflon' FEP (fluorinated ethylene propylene), used as the outer layer of the multi-layer insulation (MLI) blankets, was evident as large cracks on the telescope light shield. A sample of the degraded outer layer was retrieved during the mission and returned to Earth for ground testing and evaluation. The results of the Teflon FEP sample evaluation and additional testing of pristine Teflon FEP led the investigative team to theorize that the HST damage was caused by thermal cycling with deep-layer damage from electron and proton radiation which allowed the propagation of cracks along stress concentrations, and that the damage increased with the combined total dose of electrons, protons, LTV and x-rays along with thermal cycling. This paper discusses the testing and evaluation of the Teflon FEP.

  5. Autonomous intelligent robotic manipulator for on-orbit servicing

    Science.gov (United States)

    Larouche, Benoit P.

    The doctoral research is to develop an autonomous intelligent robotic manipulator technology for on-orbit servicing (OOS). More specifically, the research is focused on one of the most critical tasks in OOS- the capture of a non-cooperative object whilst minimizing impact forces and accelerations. The objective of the research is: the development of a vision-based control theory, and the implementation and testing of the developed theory by designing and constructing a custom non-redundant holonomic robotic manipulator. The research validated the newly developed control theory and its ability to (i) capture a moving target autonomously and (ii) minimize unfavourable contact dynamics during the most critical parts of the capture operations between the capture satellite and a non-cooperative/tumbling object. A custom robotic manipulator functional prototype has been designed, assembled, constructed, and programmed from concept to completion in order to provide full customizability and controllability in both the hardware and the software. Based on the test platform, a thorough experimental investigation has been conducted to validate the newly developed control methodologies to govern the behaviour of the robotic manipulators (RM) in an autonomous capture. The capture itself is effected on non-cooperative targets in zero-gravity simulated environment. The RM employs a vision system, force sensors, and encoders in order to sense its environment. The control is effected through position and pseudo-torque inputs to three stepper motors and three servo motors. The controller is a modified hybrid force/neural network impedance controller based on N. Hogan's original work. The experimental results demonstrate the set objectives of this thesis have been successfully achieved.

  6. Landsat-7 EMT+ On-Orbit Radiometric Calibration

    Science.gov (United States)

    Markham, Brian L.; Barker, J. L.; Kaita, E.; Seiferth, J.; Morfitt, Ron

    1999-01-01

    Landsat-7 was launched on April 15, 1999 and completed its on orbit initialization and verification period on June 28, 1999. The ETM+ payload is similar to the TM sensors on previous Landsat satellites and incorporates two new devices to improve its absolute radiometric calibration. The Full Aperture Solar Calibrator (FASC) is a deployable diffuser panel. This device has been deployed 9 times to date, with a normal deployment schedule of once per month. The initial analysis of the FASC data has given absolute calibration results within 5% of the prelaunch integrating sphere calibrations and a range of variation of 2% between dates. The Partial Aperture Solar Calibrator (PASC), is a set of auxiliary optics that allows the ETM+ to view the sun through a reduced aperture. Data have normally been acquired on a daily basis with the PASC. Initial results with the PASC were encouraging, despite some unexpected saturation in the shortest wavelength band. The response of the ETM+ short wavelength (silicon) bands to the PASC increased initially and has begun to decrease in some of these bands. The longer wavelength (InSb) bands have shown up to 30% oscillations that vary between detectors within the band. Studies are ongoing to better characterize the response to the PASC. The ETM+ also incorporates an internal calibrator (IC), a shutter that oscillates in front of the focal plane that directs light from the internal calibrator lamps to the focal plane. The responses to this device are also varying, though differently than the PASC results. Both the IC and PASC results are attributable to the calibration devices as opposed to the ETM+ itself.

  7. Glenn Goddard TDRSS Waveform 1.1.3 On-Orbit Performance Report

    Science.gov (United States)

    Chelmins, David T.

    2014-01-01

    The objective of the Space Communications and Navigation (SCaN) Testbed is to study the development, testing, and operation of software defined radios (SDRs) and their associated appliations in the operational space environment to reduce cost and risk for future space missions. This report covers the results of on-orbit performance testing completed using the Glenn Goddard Tracking and Data Relay Satellite System (TDRSS) waveform version 1.1.3 in the ground and space environments. The Glenn Goddard TDRSS (GGT) waveform, operating on the SCaN Testbed Jet Propulsion Laboratory (JPL) SDR, is capable of a variety of data rates and frequencies, operating using Binary Phase Shift Keying (BPSK).

  8. A preliminary study on dead geostationary satellite removal

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The collision between satellites IRIDIUM 33 and COSMOS 2251 indicated that the clash of two on-orbit satellites was becoming an inevitable reality. Our calculation with the two-line orbit element by NORAD showed that some two geostationary satellites had approached very close in July 2009. Therefore, more attention should be given to avoid such collisions. This paper analyzes the orbital long-term variation of a dead satellite drifting in the geostationary orbit. Also, the negative effects posed by dead satellites upon the on-orbit operational geostationary satellites are studied. Then the paper proposes a novel idea to launch a satellite sweeper whose purpose is to collect the on-orbit dead satellites and help them de-orbit to a "graveyard". The satellite sweeper consists of a parent satellite and a child satellite. The child satellite collects a dead satellite and transfers it to a higher orbit. The parent satellite stationed in the geostationary orbit is in charge of refueling the child satellite. The strategy of maneuver and rendezvous is presented and a series of formulas are derived. The analysis results show that our method to clean the geostationary orbital zone is practical and fuel-saving. With the help of just a few satellite sweepers, we can gain a clean environment of geostationary orbit environment again.

  9. Design and Fabrication of DebriSat - A Representative LEO Satellite for Improvements to Standard Satellite Breakup Models

    Science.gov (United States)

    Clark, S.; Dietrich, A.; Fitz-Coy, N.; Weremeyer, M.; Liou, J.-C.

    2012-01-01

    This paper discusses the design and fabrication of DebriSat, a 50 kg satellite developed to be representative of a modern low Earth orbit satellite in terms of its components, materials used, and fabrication procedures. DebriSat will be the target of a future hypervelocity impact experiment to determine the physical characteristics of debris generated after an on-orbit collision of a modern LEO satellite. The major ground-based satellite impact experiment used by DoD and NASA in their development of satellite breakup models was SOCIT, conducted in 1992. The target used for that experiment was a Navy transit satellite (40 cm, 35 kg) fabricated in the 1960's. Modern satellites are very different in materials and construction techniques than those built 40 years ago. Therefore, there is a need to conduct a similar experiment using a modern target satellite to improve the fidelity of the satellite breakup models. To ensure that DebriSat is truly representative of typical LEO missions, a comprehensive study of historical LEO satellite designs and missions within the past 15 years for satellites ranging from 1 kg to 5000 kg was conducted. This study identified modern trends in hardware, material, and construction practices utilized in recent LEO missions. Although DebriSat is an engineering model, specific attention is placed on the quality, type, and quantity of the materials used in its fabrication to ensure the integrity of the outcome. With the exception of software, all other aspects of the satellite s design, fabrication, and assembly integration and testing will be as rigorous as that of an actual flight vehicle. For example, to simulate survivability of launch loads, DebriSat will be subjected to a vibration test. As well, the satellite will undergo thermal vacuum tests to verify that the components and overall systems meet typical environmental standards. Proper assembly and integration techniques will involve comprehensive joint analysis, including the precise

  10. Reconstruction of gap-free time series satellite observations of land surface temperature to model spectral soil thermal admittance

    NARCIS (Netherlands)

    Ghafarian Malamiri, H.R.

    2015-01-01

    The soil thermal properties (soil thermal conductivity, soil heat capacity and soil diffusivity) are the main parameters in the applications that need quantitative information on soil heat transfer. Conventionally, these properties are either measured in situ or estimated by semi-empirical models us

  11. On-Orbit Spatial Characterization of MODIS with ASTER Aboard the Terra Spacecraft

    Science.gov (United States)

    Xie, Yong; Xiong, Xiaoxiong

    2011-01-01

    This letter presents a novel approach for on-orbit characterization of MODerate resolution Imaging Spectroradiometer (MODIS) band-to-band registration (BBR) using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) aboard the Terra spacecraft. The spatial resolution of ASTER spectral bands is much higher than that of MODIS, making it feasible to characterize MODIS on-orbit BBR using their simultaneous observations. The ground target selected for on-orbit MODIS BBR characterization in this letter is a water body, which is a uniform scene with high signal contrast relative to its neighbor areas. A key step of this approach is to accurately localize the measurements of each MODIS band in an ASTER measurement plane coordinate (AMPC). The ASTER measurements are first interpolated and aggregated to simulate the measurements of each MODIS band. The best measurement match between ASTER and each MODIS band is obtained when the measurement difference reaches its weighted minimum. The position of each MODIS band in the AMPC is then used to calculate the BBR. The results are compared with those derived from MODIS onboard Spectro-Radiometric Calibration Assembly. They are in good agreement, generally less than 0.1 MODIS pixel. This approach is useful for other sensors without onboard spatial characterization capability. Index Terms Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), band-to-band registration (BBR), MODerate resolution Imaging Spectroradiometer (MODIS), spatial characterization.

  12. S-NPP ATMS Instrument Prelaunch and On-Orbit Performance Evaluation

    Science.gov (United States)

    Kim, Edward; Lyu, Cheng-Hsuan; Anderson, Kent; Leslie, Vincent R.; Blackwell, William J.

    2014-01-01

    The first of a new generation of microwave sounders was launched aboard the Suomi-National Polar-Orbiting Partnership satellite in October 2011. The Advanced Technology Microwave Sounder (ATMS) combines the capabilities and channel sets of three predecessor sounders into a single package to provide information on the atmospheric vertical temperature and moisture profiles that are the most critical observations needed for numerical weather forecast models. Enhancements include size/mass/power approximately one third of the previous total, three new sounding channels, the first space-based, Nyquist-sampled cross-track microwave temperature soundings for improved fusion with infrared soundings, plus improved temperature control and reliability. This paper describes the ATMS characteristics versus its predecessor, the advanced microwave sounding unit (AMSU), and presents the first comprehensive evaluation of key prelaunch and on-orbit performance parameters. Two-year on-orbit performance shows that the ATMS has maintained very stable radiometric sensitivity, in agreement with prelaunch data, meeting requirements for all channels (with margins of 40% for channels 1-15), and improvements over AMSU-A when processed for equivalent spatial resolution. The radiometric accuracy, determined by analysis from ground test measurements, and using on-orbit instrument temperatures, also shows large margins relative to requirements (specified as ATMS is especially important for this first proto-flight model unit of what will eventually be a series of ATMS sensors providing operational sounding capability for the U.S. and its international partners well into the next decade.

  13. Evaluation of HCMM satellite data for estuarine tidal circulation patterns and thermal inertia soil moisture measurements. [Delaware Bay, Cooper River, and the Potomac River estuaries; Luverne, Minnesota, soil moisture, and water temperature of Lake Anna, Virginia

    Science.gov (United States)

    Wiesnet, D. R.; Mcginnis, D. F., Jr. (Principal Investigator); Matson, M.; Pritchard, J. A.

    1981-01-01

    Digital thermal maps of the Cooper River (SC) and the Potomac River estuaries were prepared from heat capacity mapping radiometer (HCMR) tapes. Tidal phases were correctly interpreted and verified. Synoptic surface circulation patterns were charted by location thermal fronts and water mass boundaries within the estuaries. Thermal anomalies were detected adjacent of a conventional power plant on the Potomac. Under optimum conditions, estuaries as small as the Cooper River can be monitored for generalized thermal/tidal circulation patterns by the HCMM-type IR sensors. The HCMM thermal inertia approach to estimating soil moisture at the Luverne (MN) test site was found to be unsatisfactory as a NESS operational satellite technique because of cloud cover interference. Thermal-IR data show similar structure of the Baltimore and Washington heat islands when compared to NOAA AVHRR thermal-IR data. Thermal anomalies from the warm water discharge water of a nuclear power plant were mapped in Lake Anna, Virginia.

  14. The influence of topographic structures on night-time surface temperatures: Evaluation of a satellite thermal image of the upper Rhine plain and the surrounding highlands. [Germany and Switzerland

    Science.gov (United States)

    Gossmann, H. (Principal Investigator)

    1980-01-01

    The author has identified the following significant results. Satellite data supplied the same information as aerial IR registrations with corresponding averaging for all studies requiring a survey of the thermal pattern within an area measuring 10 km x 10 km ore more, provided that sufficiently precise control points could be established for the purpose of geometric rectification in the surroundings of the area observed. Satellite thermal data are more comprehensive than aircraft data for studies on a regional, rather than a local scale, since airborne images often obscure the basic correlation in thermal patterns because of a variety of irrelevant topographical detail. The satellite data demonstrate the dependence of surface temperature on relief more clearly than comparable airborne imagery.

  15. Data use investigations for applications Explorer Mission A (Heat Capacity Mapping Mission): HCMM's role in studies of the urban heat island, Great Lakes thermal phenomena and radiometric calibration of satellite data. [Buffalo, Syracuse, and Rochester New York and Lake Ontario

    Science.gov (United States)

    Schott, J. R. (Principal Investigator); Schimminger, E. W.

    1981-01-01

    The utility of data from NASA'a heat capacity mapping mission satellite for studies of the urban heat island, thermal phenomena in large lakes and radiometric calibration of satellite sensors was assessed. The data were found to be of significant value in all cases. Using HCMM data, the existence and microstructure of the heat island can be observed and associated with land cover within the urban complex. The formation and development of the thermal bar in the Great Lakes can be observed and quantitatively mapped using HCMM data. In addition, the thermal patterns observed can be associated with water quality variations observed both from other remote sensing platforms and in situ. The imaging radiometer on-board the HCMM satellite is shown to be calibratible to within about 1.1 C of actual surface temperatures. These findings, as well as the analytical procedures used in studying the HCMM data, are included.

  16. GPS Receiver On-Orbit Performance for the GOES-R Spacecraft

    Science.gov (United States)

    Winkler, Stephen; Ramsey, Graeme; Frey, Charles; Chapel, Jim; Chu, Donald; Freesland, Douglas; Krimchansky, Alexander; Concha, Marco

    2017-01-01

    This paper evaluates the on-orbit performance of the first civilian operational use of a Global Positioning System Receiver (GPSR) at a geostationary orbit (GEO). The GPSR is on-board the newly launched Geostationary Operational Environmental Satellite (GOES-R). GOES-R is the first of four next generation GEO weather satellites for NOAA, now in orbit GOES-R is formally identified as GOES-16. Among the pioneering technologies required to support its improved spatial, spectral and temporal resolution is a GPSR. The GOES-16 GPSR system is a new design that was mission critical and therefore received appropriate scrutiny. As ground testing of a GPSR for GEO can only be done by simulations with numerous assumptions and approximations regarding the current GPS constellation, this paper reveals what performance can be achieved in using on orbit data. Extremely accurate orbital position is achieved using GPS navigation at GEO. Performance results are shown demonstrating compliance with the1007575 meter and 6 cms radial/in-track/cross-track orbital position and velocity accuracy requirements of GOES-16. The aforementioned compliance includes station-keeping and momentum management maneuvers, contributing to no observational outages. This performance is achieved by a completely new system design consisting of a unique L1 GEOantenna, low-noise amplifier (LNA) assembly and a 12 channel GPSR capable of tracking the edge of the main beam and the side lobes of the GPS L1 signals. This paper presents the definitive answer that the GOES-16 GPSR solution exceeds all performance requirements tracking up to 12 satellites and achieving excellent carrier-to-noise density (C/N0). Additionally, these performance results show the practicality of this approach. This paper makes it clear that all future GEO Satellites should consider the addition of a GPSR in their spacecraft design, otherwise they may be sacrificing spacecraft capabilities and accuracy along with incurring increased and

  17. On-Orbit Quantitative Real-Time Gene Expression Analysis Using the Wetlab-2 System

    Science.gov (United States)

    Parra, Macarena; Jung, Jimmy; Almeida, Eduardo; Boone, Travis; Tran, Luan; Schonfeld, Julie

    2015-01-01

    NASA Ames Research Center's WetLab-2 Project enables on-orbit quantitative Reverse Transcriptase PCR (qRT-PCR) analysis without the need for sample return. The WetLab-2 system is capable of processing sample types ranging from microbial cultures to animal tissues dissected on-orbit. The project developed a RNA preparation module that can lyse cells and extract RNA of sufficient quality and quantity for use as templates in qRT-PCR reactions. Our protocol has the advantage of using non-toxic chemicals and does not require alcohols or other organics. The resulting RNA is dispensed into reaction tubes that contain all lyophilized reagents needed to perform qRT-PCR reactions. System operations require simple and limited crew actions including syringe pushes, valve turns and pipette dispenses. The project selected the Cepheid SmartCycler (TradeMark), a Commercial-Off-The-Shelf (COTS) qRT-PCR unit, because of its advantages including rugged modular design, low power consumption, rapid thermal ramp times and four-color multiplex detection. Single tube multiplex assays can be used to normalize for RNA concentration and integrity, and to study multiple genes of interest in each module. The WetLab-2 system can downlink data from the ISS to the ground after a completed run and uplink new thermal cycling programs. The ability to conduct qRT-PCR and generate results on-orbit is an important step towards utilizing the ISS as a National Laboratory facility. Specifically, the ability to get on-orbit data will provide investigators with the opportunity to adjust experimental parameters in real time without the need for sample return and re-flight. On orbit gene expression analysis can also eliminate the confounding effects on gene expression of reentry stresses and shock acting on live cells and organisms or the concern of RNA degradation of fixed samples and provide on-orbit gene expression benchmarking prior to sample return. Finally, the system can also be used for analysis of

  18. Expandable Cryogenic Tankage for On Orbit Depot Storage Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed expandable depot storage tanks would make it possible to have an on-orbit tank larger in volume than any existing or planned launch vehicles. The size...

  19. On-Orbit DNA, RNA, and Protein Extraction Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Genova Engineering proposes to develop and demonstrate a toolset of discrete devices and extraction kits which will leverage existing on-orbit facilities and will...

  20. Determination of Space Station on-orbit nondestructive evaluation requirements

    Science.gov (United States)

    Salkowski, Charles

    1995-07-01

    NASA has recently initiated a reassessment of requirements for the performance of in-space nondestructive evaluation (NDE) of the International Space Station Alpha (ISSA) while on- orbit. given the on-orbit operating environment, there is a powerful motivation for avoiding inspection requirements. For example the ISSA maintenance philosophy includes the use of orbital replacement units (ORUs); hardware that is designed to fail without impact on mission assurance or safety. Identification of on-orbit inspection requirements involves review of a complex set of disciplines and considerations such as fracture control, contamination, safety, mission assurance, electrical power, and cost. This paper presents background discussion concerning on-orbit NDE and a technical approach for separating baseline requirements from opportunities.

  1. Evidences of volcanic unrest on high-temperature fumaroles by satellite thermal monitoring: The case of Santa Ana volcano, El Salvador

    Science.gov (United States)

    Laiolo, M.; Coppola, D.; Barahona, F.; Benítez, J. E.; Cigolini, C.; Escobar, D.; Funes, R.; Gutierrez, E.; Henriquez, B.; Hernandez, A.; Montalvo, F.; Olmos, R.; Ripepe, M.; Finizola, A.

    2017-06-01

    On October 1st, 2005, Santa Ana volcano (El Salvador) underwent a VEI 3 phreatomagmatic eruption after approximately one century of rest. Casualties and damages to some of the local infrastructures and surrounding plantations were followed by the evacuation of the nearby communities. The analysis of MODIS (Moderate Resolution Imaging Spectroradiometer) infrared data reveals that the main explosion was preceded by a one-year-long thermal unrest, associated to the development of a fumaroles field, located at the western rim of the summit crater lake. By combining space-based thermal flux and ground-based measurements (seismicity, sulfur emissions and lake temperatures), we suggest that the activity observed at Santa Ana between 2004 and 2005 was driven by the gradual intrusion of an undegassed magma body at a very shallow depth. Magma injection induced thermal anomalies associated with sustained degassing from the fumaroles field and promoted the interaction between the magmatic-hydrothermal system and the overlying water table. This process culminated into the VEI 3 phreatomagmatic eruption of October 2005 that strongly modified the shallow structure of the crater area. The subsequent three-years-long activity resulted from self-sealing of the fracture system and by the opening of a new fracture network directly connecting the deeper hydrothermal system with the crater lake. Our results show that satellite-based thermal data allow us to detect the expansion of the high-temperature fumarolic field. This may precede an explosive eruption and/or a lava dome extrusion. In particular, we show that thermal records can be analyzed with other geochemical (i.e. SO2 emissions) and geophysical (seismicity) data to track a shallow magmatic intrusion interacting with the surrounding hydrothermal system. This provides a remarkable support for volcano monitoring and eruption forecasting, particularly in remote areas where permanent ground data acquisition is hazardous, expensive

  2. Using Satellite Data to Characterize the Temporal Thermal Behavior of an Active Volcano: Mount St. Helens, WA

    Science.gov (United States)

    Vaughan, R. Greg; Hook, Simon J.

    2006-01-01

    ASTER thermal infrared data over Mt. St Helens were used to characterize its thermal behavior from Jun 2000 to Feb 2006. Prior to the Oct 2004 eruption, the average crater temperature varied seasonally between -12 and 6 C. After the eruption, maximum single-pixel temperature increased from 10 C (Oct 2004) to 96 C (Aug 2005), then showed a decrease to Feb 2006. The initial increase in temperature was correlated with dome morphology and growth rate and the subsequent decrease was interpreted to relate to both seasonal trends and a decreased growth rate/increased cooling rate, possibly suggesting a significant change in the volcanic system. A single-pixel ASTER thermal anomaly first appeared on Oct 1, 2004, eleven hours after the first eruption - 10 days before new lava was exposed at the surface. By contrast, an automated algorithm for detecting thermal anomalies in MODIS data did not trigger an alert until Dec 18. However, a single-pixel thermal anomaly first appeared in MODIS channel 23 (4 um) on Oct 13, 12 days after the first eruption - 2 days after lava was exposed. The earlier thermal anomaly detected with ASTER data is attributed to the higher spatial resolution (90 m) compared with MODIS (1 m) and the earlier visual observation of anomalous pixels compared to the automated detection method suggests that local spatial statistics and background radiance data could improve automated detection methods.

  3. Geologic applications of thermal-inertia mapping from satellite. [Powder River, Wyoming; Cubeza Prieta, Arizona, and Yellowstone National Park

    Science.gov (United States)

    Offield, T. W. (Principal Investigator); Watson, K.; Hummer-Miller, S.

    1981-01-01

    In the Powder River Basin, Wyo., narrow geologic units having thermal inertias which contrast with their surroundings can be discriminated in optimal images. A few subtle thermal inertia anomalies coincide with areas of helium leakage believed to be associated with deep oil and gas concentrations. The most important results involved delineation of tectonic framework elements some of which were not previously recognized. Thermal and thermal inertia images also permit mapping of geomorphic textural domains. A thermal lineament appears to reveal a basement discontinuity which involves the Homestake Mine in the Black Hill, a zone of Tertiary igneous activity and facies control in oil producing horizons. Applications of these data to the Cabeza Prieta, Ariz., area illustrate their potential for igneous rock type discrimination. Extension to Yellowstone National Park resulted in the detection of additional structural information but surface hydrothermal features could not be distinguished with any confidence. A thermal inertia mapping algorithm, a fast and accurate image registration technique, and an efficient topographic slope and elevation correction method were developed.

  4. Suomi NPP VIIRS Prelaunch and On-orbit Geometric Calibration and Characterization

    Science.gov (United States)

    Wolfe, Robert E.; Lin, Guoqing; Nishihama, Masahiro; Tewari, Krishna P.; Tilton, James C.; Isaacman, Alice R.

    2013-01-01

    The Visible Infrared Imager Radiometer Suite (VIIRS) sensor was launched 28 October 2011 on the Suomi National Polarorbiting Partnership (SNPP) satellite. VIIRS has 22 spectral bands covering the spectrum between 0.412 m and 12.01 m, including 16 moderate resolution bands (M-bands) with a spatial resolution of 750 m at nadir, 5 imaging resolution bands (I-bands) with a spatial resolution of 375 m at nadir, and 1 day-night band (DNB) with a near-constant 750 m spatial resolution throughout the scan. These bands are located in a visible and near infrared (VisNIR) focal plane assembly (FPA), a short- and mid-wave infrared (SWMWIR) FPA and a long-wave infrared (LWIR) FPA. All bands, except the DNB, are co-registered for proper environmental data records (EDRs) retrievals. Observations from VIIRS instrument provide long-term measurements of biogeophysical variables for climate research and polar satellite data stream for the operational communitys use in weather forecasting and disaster relief and other applications. Well Earth-located (geolocated) instrument data is important to retrieving accurate biogeophysical variables. This paper describes prelaunch pointing and alignment measurements, and the two sets of on-orbit correction of geolocation errors, the first of which corrected error from 1,300 m to within 75 m (20 I-band pixel size), and the second of which fine tuned scan angle dependent errors, bringing VIIRS geolocation products to high maturity in one and a half years of the SNPP VIIRS on-orbit operations. Prelaunch calibration and the on-orbit characterization of sensor spatial impulse responses and band-to-band co-registration (BBR) are also described.

  5. A compact thermal infrared imaging radiometer with high spatial resolution and wide swath for a small satellite using a large format uncooled infrared focal plane array

    Science.gov (United States)

    Tatsumi, Kenji; Sakuma, Fumihiro; Kikuchi, Masakuni; Tanii, Jun; Kawanishi, Toneo; Ueno, Shinichi; Kuga, Hideki

    2014-10-01

    In this paper, we present a feasibility study for the potential of a high spatial resolution and wide swath thermal infrared (TIR) imaging radiometer for a small satellite using a large format uncooled infrared focal plane array (IR-FPA). The preliminary TIR imaging radiometer designs were performed. One is a panchromatic (mono-band) imaging radiometer (8-12μm) with a large format 2000 x 1000 pixels uncooled IR-FPA with a pixel pitch of 15 μm. The other is a multiband imaging radiometer (8.8μm, 10.8μm, 11.4μm). This radiometer is employed separate optics and detectors for each wave band. It is based on the use of a 640 x 480 pixels uncooled IR-FPA with a pixel pitch of 25 μm. The thermal time constant of an uncooled IR-FPA is approximately 10-16ms, and introduces a constraint to the satellite operation to achieve better signal-to-noise ratio, MTF and linearity performances. The study addressed both on-ground time-delayintegration binning and staring imaging solutions, although a staring imaging was preferred after trade-off. The staring imaging requires that the line of sight of the TIR imaging radiometer gazes at a target area during the acquisition time of the image, which can be obtained by rotating the satellite or a steering mirror around the pitch axis. The single band radiometer has been designed to yield a 30m ground sample distance over a 30km swath width from a satellite altitude of 500km. The radiometric performance, enhanced with staring imaging, is expected to yield a NETD less than 0.5K for a 300K ground scene. The multi-band radiometer has three spectral bands with spatial resolution of 50m and swath width of 24km. The radiometric performance is expected to yield a NETD less than 0.85K. We also showed some preliminary simulation results on volcano, desert/urban scenes, and wildfire.

  6. Towards a standardized grasping and refuelling on-orbit servicing for geo spacecraft

    Science.gov (United States)

    Medina, Alberto; Tomassini, Angelo; Suatoni, Matteo; Avilés, Marcos; Solway, Nick; Coxhill, Ian; Paraskevas, Iosif S.; Rekleitis, Georgios; Papadopoulos, Evangelos; Krenn, Rainer; Brito, André; Sabbatinelli, Beatrice; Wollenhaupt, Birk; Vidal, Christian; Aziz, Sarmad; Visentin, Gianfranco

    2017-05-01

    Exploitation of space must benefit from the latest advances in robotics. On-orbit servicing is a clear candidate for the application of autonomous rendezvous and docking mechanisms. However, during the last three decades most of the trials took place combining extravehicular activities (EVAs) with telemanipulated robotic arms. The European Space Agency (ESA) considers that grasping and refuelling are promising near-mid-term capabilities that could be performed by servicing spacecraft. Minimal add-ons on spacecraft to enhance their serviceability may protect them for a changing future in which satellite servicing may become mainstream. ESA aims to conceive and promote standard refuelling provisions that can be installed in present and future European commercial geostationary orbit (GEO) satellite platforms and scientific spacecraft. For this purpose ESA has started the ASSIST activity addressing the analysis, design and validation of internal provisions (such as modifications to fuel, gas, electrical and data architecture to allow servicing) and external provisions (such as integrated berthing fixtures with peripheral electrical, gas, liquid connectors, leak check systems and corresponding optical and radio markers for cooperative rendezvous and docking). This refuelling approach is being agreed with European industry (OHB, Thales Alenia Space) and expected to be consolidated with European commercial operators as a first step to become an international standard; this approach is also being considered for on-orbit servicing spacecraft, such as the SpaceTug, by Airbus DS. This paper describes in detail the operational means, structure, geometry and accommodation of the system. Internal and external provisions will be designed with the minimum possible impact on the current architecture of GEO satellites without introducing additional risks in the development and commissioning of the satellite. End-effector and berthing fixtures are being designed in the range of few

  7. Method for correction of errors in observation angles for limb thermal emission measurements. [for satellite sounding of atmosphere

    Science.gov (United States)

    Abbas, M. M.; Shapiro, G. L.; Conrath, B. J.; Kunde, V. G.; Maguire, W. C.

    1984-01-01

    Thermal emission measurements of the earth's stratospheric limb from space platforms require an accurate knowledge of the observation angles for retrieval of temperature and constituent distributions. Without the use of expensive stabilizing systems, however, most observational instruments do not meet the required pointing accuracies, thus leading to large errors in the retrieval of atmospheric data. This paper describes a self-constituent method of correcting errors in pointing angles by using information contained in the observed spectrum. Numerical results based on temperature inversions of synthetic thermal emission spectra with assumed random errors in pointing angles are presented.

  8. Analysis of the sensitivity of thermal infrared nadir satellite observations to the chemical and micro-physical properties of upper tropospheric-lower stratospheric sulphate aerosols

    Science.gov (United States)

    Sellitto, Pasquale; Sèze, Geneviève; Legras, Bernard

    2015-04-01

    Secondary sulphate aerosols are the predominant typology of aerosols in the upper troposphere/lower stratosphere (UTLS), and can have an important impact on radiative transfer and climate, cirrus formation and chemistry in the UTLS. Despite their importance, the satellite observation at the regional scale of sulphate aerosols in the UTLS is limited. In this work, we address the sensitivity of the thermal infrared satellite observations to secondary sulphate aerosols in the UTLS. The absorption properties of sulphuric acid/water droplets, for different sulphuric acid mixing ratios and temperatures, are systematically analysed. The absorption coefficients are derived by means of a Mie code, using refractive indexes taken from the GEISA (Gestion et Etude des Informations Spectroscopiques Atmosphériques : Management and Study of Spectroscopic Information) spectroscopic database and log-normal size distributions with different effective radii and number concentrations. IASI (Infrared Atmospheric Sounding Interferometer) and SEVIRI (Spinning Enhanced Visible and Infrared Imager) pseudo-observations are generated using forward radiative transfer calculations performed with the 4A (Automatized Atmospheric Absorption Atlas) radiative transfer model, to estimate the impact of the absorption of idealized aerosol layers, at typical UTLS conditions, on the radiance spectra observed by these simulated satellite instruments. We found a marked spectral signature of these aerosol layers between 700 and 1200 cm-1, due to the absorption bands of the sulphate and bi-sulphate ions and the undissociated sulphuric acid, with absorption peaks at 1170 and 905 cm-1. Micro-windows with a sensitivity to chemical and micro-physical properties of the sulphate aerosol layer are identified, and the role of interfering species, and temperature and water vapour profile is discussed.

  9. Optimal mission planning of GEO on-orbit refueling in mixed strategy

    Science.gov (United States)

    Chen, Xiao-qian; Yu, Jing

    2017-04-01

    The mission planning of GEO on-orbit refueling (OOR) in Mixed strategy is studied in this paper. Specifically, one SSc will be launched to an orbital slot near the depot when multiple GEO satellites are reaching their end of lives. The SSc replenishes fuel from the depot and then extends the lifespan of the target satellites via refueling. In the mixed scenario, only some of the target satellites could be served by the SSc, and the remaining ones will be fueled by Pseudo SScs (the target satellite which has already been refueled by the SSc and now has sufficient fuel for its operation as well as the fuel to refuel other target satellites is called Pseudo SSc here). The mission sequences and fuel mass of the SSc and Pseudo SScs, the dry mass of the SSc are used as design variables, whereas the economic benefit of the whole mission is used as design objective. The economic cost and benefit models are stated first, and then a mathematical optimization model is proposed. A comprehensive solution method involving enumeration, particle swarm optimization and modification is developed. Numerical examples are carried out to demonstrate the effectiveness of the model and solution method. Economic efficiencies of different OOR strategies are compared and discussed. The mixed strategy would perform better than the other strategies only when the target satellites satisfy some conditions. This paper presents an available mixed strategy scheme for users and analyzes its advantages and disadvantages by comparing with some other OOR strategies, providing helpful references to decision makers. The best strategy in practical applications depends on the specific demands and user preference.

  10. Vacuum compatible large uniform-radiance source for ground calibration of satellite cameras inside a thermal vacuum environment

    Science.gov (United States)

    Arecchi, Angelo V.; Pal, Samir; Jablonski, Joseph W.; Gervais, Marc; Gugliotta, Mark; Seth, Harish; Bhardwaj, Arun; Sahoo, Hari Sankar

    2008-08-01

    A vacuum compatible integrating sphere was built to operate inside a thermal vacuum chamber. This paper presents the design and test results for a 1.65 meter diameter vacuum compatible integrating sphere with a 1.0 meter diameter exit port and approximately 10kW of internal tungsten lamps. Liquid nitrogen is used as cooling medium to remove the heat generated by these lamps. There are no moving parts inside the vacuum chamber. The radiance is monitored with two filter-wheel detectors, one TE-cooled silicon and one TE-cooled germanium, as well as a TE-cooled silicon array spectrometer. All three detectors are located outside the thermal vacuum chamber and view the sphere radiance through fiber optic cables. The system was tested inside a thermal vacuum chamber at NASA Goddard Space Flight Center before commissioning in the 5.5 meter thermal vacuum chamber at Space Applications Centre in Ahmedabad, India. Results of tests of radiance uniformity, radiance levels, and radiance stability are presented. Comparisons of the filter radiometers with the array spectrometer are also presented.

  11. Overview of Aqua MODIS 10-year on-orbit calibration and performance

    Science.gov (United States)

    Xiong, X.; Wenny, B.; Sun, J.; Angal, A.; Wu, A.; Chen, H.; Choi, T.; Madhavan, S.; Geng, X.; Link, D.; Wang, Z.; Toller, G.; Barnes, W.; Salomonson, V.

    2012-09-01

    Since launch in May 2002, Aqua MODIS has successfully operated for over 10 years, continuously collecting global datasets for scientific studies of key parameters of the earth's land, ocean, and atmospheric properties and their changes over time. The quality of these geophysical parameters relies on the input quality of sensor calibrated radiances. MODIS observations are made in 36 spectral bands with wavelengths ranging from visible (VIS) to long-wave infrared (LWIR). Its reflective solar bands (RSB) are calibrated using data collected from its on-board solar diffuser and regularly scheduled lunar views. The thermal emissive bands (TEB) are calibrated using an on-board blackbody (BB). The changes in the sensor's spectral and spatial characteristics are monitored by an on-board spectroradiometric calibration assembly (SRCA). This paper presents an overview of Aqua MODIS 10-year on-orbit operation and calibration activities, from launch to present, and summarizes its on-orbit radiometric, spectral, and spatial calibration and characterization performance. In addition, on-orbit changes in sensor characteristics and corrections applied to continuously maintain level 1B (L1B) data quality are discussed, as well as lessons learned that could benefit future calibration efforts.

  12. On-Orbit Noise Characterization of MODIS Reflective Solar Bands

    Science.gov (United States)

    Angal, Amit; Xiong, Xiaoxiong; Sun, Junqiang; Geng, Xu

    2015-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS), launched on the Terra and Aqua spacecrafts, was designed to collect complementary and comprehensive measurements of the Earth's properties on a global scale. The 20 reflective solar bands (RSBs), covering a wavelength range from 0.41 to 2.1 micrometers, are calibrated on-orbit using regularly scheduled solar diffuser (SD) observations. Although primarily used for on-orbit gain derivation, the SD observations also facilitate the characterization of the detector signal-to-noise ratio (SNR). In addition to the calibration requirement of 2% for the reflectance factors and 5% for the radiances, the required SNRs are also specified for all RSB at their typical scene radiances. A methodology to characterize the on-orbit SNR for the MODIS RSB is presented. Overall performance shows that a majority of the RSB continue to meet the specification, therefore performing well. A temporal decrease in the SNR, observed in the short-wavelength bands, is attributed primarily to the decrease in their detector responses. With the exception of the inoperable and noisy detectors in band 6 identified prelaunch, the detectors of AquaMODIS RSB perform better than TerraMODIS. The approach formulated for on-orbit SNR characterization can also be used by other sensors that use on-board SDs for their on-orbit calibration (e.g., Suomi National Polar-Orbiting Partnership [SNPP]-Visible Infrared Imaging Radiometer Suite).

  13. On the Relationship Between Satellite-Estimated Bio-Optical and Thermal Properties in the Gulf of Mexico

    Science.gov (United States)

    2008-03-15

    U.S. Navy’s Modular Ocean Data Assimilation System (MODAS) in order to examine the interdependencies between bio -optical fields and their relationship...Mexico may be broadly defined by two seasonally occurring bio -thermal periods. A winter mixing period, characterized by net heat losses to the...and annual minima in surface bio -optical fields. Variability in the interdependencies of ocean color products was used to diagnose an attendant shift

  14. Tracking on-orbit stability of the response versus scan angle for the S-NPP VIIRS reflective solar bands

    Science.gov (United States)

    Wu, Aisheng; Xiong, Xiaoxiong (Jack); Cao, Changyong

    2016-09-01

    Built on strong heritage of the MODIS (Moderate Resolution Imaging Spectroradiometer) sensor, the Visible Infrared Imaging Radiometer Suite (VIIRS) carried on Suomi NPP (National Polar-orbiting Partnership) satellite (http://npp.gsfc.nasa.gov/viirs.html) has been in operation for nearly five fives. The on-board calibration of the VIIRS reflective solar bands (RSB) relies on a solar diffuser (SD) located at a fixed scan angle and a solar diffuser stability monitor (SDSM). The VIIRS response versus scan angle (RVS) was characterized prelaunch in lab ambient conditions and is currently used to determine the on orbit response for all scan angles relative to the SD scan angle. Since the RVS is vitally important to the quality of calibrated level 1B products, it is important to monitor its on-orbit stability. In this study, the RVS stability is examined based on reflectance trends collected from 16-day repeatable orbits over preselected pseudo-invariant desert sites in Northern Africa. These trends cover nearly entire Earth view scan range so that any systematic drifts in the scan angle direction would indicate a change in RVS. This study also compares VIIRS RVS on-orbit stability results with those from Aqua and Terra MODIS over the first four years of mission for a few selected bands, which provides further information on potential VIIRS RVS on-orbit changes.

  15. NPP VIIRS On-Orbit Calibration and Characterization Using the Moon

    Science.gov (United States)

    Sun, J.; Xiong, X.; Butler, J.

    2012-01-01

    The Visible Infrared Imager Radiometer Suite (VIIRS) is one of five instruments on-board the Suomi National Polar orbiting Partnership (NPP) satellite that launched from Vandenberg Air Force Base, Calif., on Oct. 28, 2011. VIIRS has been scheduled to view the Moon approximately monthly with a spacecraft roll maneuver after its NADIR door open on November 21, 2011. To reduce the uncertainty of the radiometric calibration due to the view geometry, the lunar phase angles of the scheduled lunar observations were confined in the range from -56 deg to -55 deg in the first three scheduled lunar observations and then changed to the range from -51.5 deg to -50.5 deg, where the negative sign for the phase angles indicates that the VIIRS views a waxing moon. Unlike the MODIS lunar observations, most scheduled VIIRS lunar views occur on the day side of the Earth. For the safety of the instrument, the roll angles of the scheduled VIIRS lunar observations are required to be within [-14 deg, 0 deg] and the aforementioned change of the phase angle range was aimed to further minimize the roll angle required for each lunar observation while keeping the number of months in which the moon can be viewed by the VIIRS instrument each year unchanged. The lunar observations can be used to identify if there is crosstalk in VIIRS bands and to track on-orbit changes in VIIRS Reflective Solar Bands (RSB) detector gains. In this paper, we report our results using the lunar observations to examine the on-orbit crosstalk effects among NPP VIIRS bands, to track the VIIRS RSB gain changes in first few months on-orbit, and to compare the gain changes derived from lunar and SD/SDSM calibration.

  16. Biofilms On Orbit and On Earth: Current Methods, Future Needs

    Science.gov (United States)

    Vega, Leticia

    2013-01-01

    Biofilms have played a significant role on the effectiveness of life support hardware on the Space Shuttle and International Space Station (ISS). This presentation will discuss how biofilms impact flight hardware, how on orbit biofilms are analyzed from an engineering and research perspective, and future needs to analyze and utilize biofilms for long duration, deep space missions.

  17. Reproduction on orbit by plants in the Brassicaceae family

    Science.gov (United States)

    Musgrave, Mary E.; Kuang, Anxiu; Xiao, Ying; Matthews, Sharon W.

    1999-01-01

    Previous studies on growth and development during spaceflight had indicated that the transition from vegetative to reproductive growth was particularly difficult for plants. Our objective has been to study how the spaceflight environment impacts the different steps in plant reproduction. This goal has been pursued in two general ways: by using plants that had been pre-grown to the flowering stage on earth, and by using plants that developed completely on orbit. Our objectives have been met by a combination of experiments that required essentially no crew time on orbit, and those that required an extensive commitment of crew time. The plants chosen for the studies were closely related members of the family Brassicaceae: Arabidopsis thaliana and Brassica rapa. In a series of short-duration experiments with Arabidopsis on the space shuttle we found that depletion of carbon dioxide in closed chambers resulted in aborted development of both the male and female reproductive apparatus in microgravity. Normal development was restored by addition of carbon dioxide or by providing air flow. A subsequent shuttle experiment with Brassica utilizing hardware that provides a vigorous air flow confirmed embryo development following pollination on orbit. Brassica plants grown from seed on the Mir space station produced seed that germinated and grew when replanted on orbit. Future experiments will determine effects of multiple generations in space.

  18. Pseudo-thermal bar in poorly salted autumnal waters of the Gulf of Finland from satellite-airborne SAR/ASAR/ALSAR survey

    Science.gov (United States)

    Melentyev, Vladimir; Bobylev, Leonid; Tsepelev, Valery; Melentyev, Konstantin; Bednov, Petr

    2010-05-01

    The thermal bar (TB) was disclosed at the end of XIX century by F.A. Forel - world-famed founder of limnology, who studied different processes in Lake Leman from point of view ecology and hydrobiology. Forel supposed that TB arises in temperate large lakes for short period in spring in presence windless calm weather. Well-directed investigations of TB were recommenced in the beginning 1950-s at the Institute of Lake Research Russian Academy of Sciences by Dr A.I. Tikhomirov who had described also specific features of this phenomenon in fall. At the end of 1960-s we began examination thermal and ice regime of fresh and saltish inland water bodies with using remote sensing including multi-spectral airborne-satellite SLR/SAR/ASAR/ALSAR survey. And as result the possibility revealing TB parameters in fall season by low-frequency radar (ALSAR) installed onboard research aircraft was fixed documentally in the Lake Ladoga [Melentyev et. al., 2002]. According to [Tikhomirov, 1959] TB represents convergence zone around temperature of maximum density of fresh water + 4 °C (3, 98 °C, really). This narrow vertical "curtain" appears in littoral in spring owing to heating coastal waters, in fall - due to its cooling. TB divides large lakes and artificial reservoirs on two unequal thermic zones - heat-active (HAZ) and heat-inert (HIZ) that has different stratification of water temperature. Possible existence of TB in poorly salted sea waters was predicted by outstanding Russian oceanographer professor N. Zubov. Obviously firstly it was disclosed but without explanation the physics by [Bychkova, 1987]. Our own sub-satellite studies onboard nuclear icebreaker "Jamal" in western Arctic in fall 1996 allows reveal the TB on saltish waters in north-eastern "corner" of the Yenisei Gulf in mixing zone of marine and river waters. Long-lived converged zone that we call as pseudo-thermal bar (PTB) was marked by stationary banding narrow continuous rough strip that could be destroyed by

  19. CLARREO: Reference Inter-Calibration on Orbit With Reflected Solar Spectrometer

    Science.gov (United States)

    Lukashin, C.; Roithmayr, C.; Currey, C.; Wielicki, B.; Goldin, D.; Sun, W.

    2016-01-01

    The CLARREO approach for reference intercalibration is based on obtaining coincident highly accurate spectral reflectance and reflected radiance measurements, and establish an on-orbit reference for existing Earth viewing reflected solar radiation sensors: CERES and VIIRS on JPSS satellites, AVHRR and follow-on imagers on MetOp, and imagers on GEO platforms. The mission goal is to be able to provide CLARREO RS reference observations that are matched in space, time, and viewing angles with measurements from the aforementioned instruments, with sampling sufficient to overcome the random error sources from imperfect data matching and instrument noise. The intercalibration method is to monitor over time changes in targeted sensor response function parameters: effective offset, gain, nonlinearity, spectral degradation, and sensitivity to polarization of optics.

  20. Comparing On-Orbit and Ground Performance for an S-Band Software-Defined Radio

    Science.gov (United States)

    Chelmins, David T.; Welch, Bryan W.

    2014-01-01

    NASA's Space Communications and Navigation Testbed was installed on an external truss of the International Space Station in 2012. The testbed contains several software-defined radios (SDRs), including the Jet Propulsion Laboratory (JPL) SDR, which underwent performance testing throughout 2013 with NASAs Tracking and Data Relay Satellite System (TDRSS). On-orbit testing of the JPL SDR was conducted at S-band with the Glenn Goddard TDRSS waveform and compared against an extensive dataset collected on the ground prior to launch. This paper will focus on the development of a waveform power estimator on the ground post-launch and discuss the performance challenges associated with operating the power estimator in space.

  1. Gaia Data Release 1. On-orbit performance of the Gaia CCDs at L2

    Science.gov (United States)

    Crowley, C.; Kohley, R.; Hambly, N. C.; Davidson, M.; Abreu, A.; van Leeuwen, F.; Fabricius, C.; Seabroke, G.; de Bruijne, J. H. J.; Short, A.; Lindegren, L.; Brown, A. G. A.; Sarri, G.; Gare, P.; Prusti, T.; Prod'homme, T.; Mora, A.; Martín-Fleitas, J.; Raison, F.; Lammers, U.; O'Mullane, W.; Jansen, F.

    2016-11-01

    The European Space Agency's Gaia satellite was launched into orbit around L2 in December 2013 with a payload containing 106 large-format scientific CCDs. The primary goal of the mission is to repeatedly obtain high-precision astrometric and photometric measurements of one thousand million stars over the course of five years. The scientific value of the down-linked data, and the operation of the onboard autonomous detection chain, relies on the high performance of the detectors. As Gaia slowly rotates and scans the sky, the CCDs are continuously operated in a mode where the line clock rate and the satellite rotation spin-rate are in synchronisation. Nominal mission operations began in July 2014 and the first data release is being prepared for release at the end of Summer 2016. In this paper we present an overview of the focal plane, the detector system, and strategies for on-orbit performance monitoring of the system. This is followed by a presentation of the performance results based on analysis of data acquired during a two-year window beginning at payload switch-on. Results for parameters such as readout noise and electronic offset behaviour are presented and we pay particular attention to the effects of the L2 radiation environment on the devices. The radiation-induced degradation in the charge transfer efficiency (CTE) in the (parallel) scan direction is clearly diagnosed; however, an extrapolation shows that charge transfer inefficiency (CTI) effects at end of mission will be approximately an order of magnitude less than predicted pre-flight. It is shown that the CTI in the serial register (horizontal direction) is still dominated by the traps inherent to the manufacturing process and that the radiation-induced degradation so far is only a few per cent. We also present results on the tracking of ionising radiation damage and hot pixel evolution. Finally, we summarise some of the detector effects discovered on-orbit which are still being investigated.

  2. Health scorecard of spacecraft platforms: Track record of on-orbit anomalies and failures and preliminary comparative analysis

    Science.gov (United States)

    Wise, Marcie A.; Saleh, Joseph H.; Haga, Rachel A.

    2011-01-01

    Choosing the "right" satellite platform for a given market and mission requirements is a major investment decision for a satellite operator. With a variety of platforms available on the market from different manufacturers, and multiple offerings from the same manufacturer, the down-selection process can be quite involved. In addition, because data for on-obit failures and anomalies per platform is unavailable, incomplete, or fragmented, it is difficult to compare options and make an informed choice with respect to the critical attribute of field reliability of different platforms. In this work, we first survey a large number of geosynchronous satellite platforms by the major satellite manufacturers, and we provide a brief overview of their technical characteristics, timeline of introduction, and number of units launched. We then analyze an extensive database of satellite failures and anomalies, and develop for each platform a "health scorecard" that includes all the minor and major anomalies, and complete failures—that is failure events of different severities—observed on-orbit for each platform. We identify the subsystems that drive these failure events and how much each subsystem contributes to these events for each platform. In addition, we provide the percentage of units in each platform which have experienced failure events, and, after calculating the total number of years logged on-orbit by each platform, we compute its corresponding average failure and anomaly rate. We conclude this work with a preliminary comparative analysis of the health scorecards of different platforms. The concept of a "health scorecard" here introduced provides a useful snapshot of the failure and anomaly track record of a spacecraft platform on orbit. As such, it constitutes a useful and transparent benchmark that can be used by satellite operators to inform their acquisition choices ("inform" not "base" as other considerations are factored in when comparing different spacecraft

  3. South China Sea crustal thickness and lithosphere thinning from satellite gravity inversion incorporating a lithospheric thermal gravity anomaly correction

    Science.gov (United States)

    Kusznir, Nick; Gozzard, Simon; Alvey, Andy

    2016-04-01

    The distribution of ocean crust and lithosphere within the South China Sea (SCS) are controversial. Sea-floor spreading re-orientation and ridge jumps during the Oligocene-Miocene formation of the South China Sea led to the present complex distribution of oceanic crust, thinned continental crust, micro-continents and volcanic ridges. We determine Moho depth, crustal thickness and continental lithosphere thinning (1- 1/beta) for the South China Sea using a gravity inversion method which incorporates a lithosphere thermal gravity anomaly correction (Chappell & Kusznir, 2008). The gravity inversion method provides a prediction of ocean-continent transition structure and continent-ocean boundary location which is independent of ocean isochron information. A correction is required for the lithosphere thermal gravity anomaly in order to determine Moho depth accurately from gravity inversion; the elevated lithosphere geotherm of the young oceanic and rifted continental margin lithosphere of the South China Sea produces a large lithosphere thermal gravity anomaly which in places exceeds -150 mGal. The gravity anomaly inversion is carried out in the 3D spectral domain (using Parker 1972) to determine 3D Moho geometry and invokes Smith's uniqueness theorem. The gravity anomaly contribution from sediments assumes a compaction controlled sediment density increase with depth. The gravity inversion includes a parameterization of the decompression melting model of White & McKenzie (1999) to predict volcanic addition generated during continental breakup lithosphere thinning and seafloor spreading. Public domain free air gravity anomaly, bathymetry and sediment thickness data are used in this gravity inversion. Using crustal thickness and continental lithosphere thinning factor maps with superimposed shaded-relief free-air gravity anomaly, we improve the determination of pre-breakup rifted margin conjugacy, rift orientation and sea-floor spreading trajectory. SCS conjugate margins

  4. Long-term energy balance and vegetation water stress monitoring of Mediterranean oak savanna using satellite thermal data

    Science.gov (United States)

    González-Dugo, Maria P.; Chen, Xuelong; Andreu, Ana; Carpintero, Elisabet; Gómez-Giraldez, Pedro; Su, Z.(Bob)

    2017-04-01

    Drought is one of the major hazards faced by natural and cropped vegetation in the Mediterranean Sea Basin. Water scarcity is likely to be worsened under the predicted conditions of climate change, which is expected to make this region both warmer and drier. A Holm oak savanna, known as dehesa in Spain and montado in Portugal, is an agro-silvo-pastoral system occupying more than 3 million hectares the Iberian Peninsula and Greece. It consists of widely-spaced oak trees (mostly Quercus ilex L.), combined with crops, pasture and Mediterranean shrubs. This ecosystem is considered an example of sustainable land use, supporting a large number of species and diversity of habitats and for its importance in rural economy. A similar ecosystem is worldwide distributed in areas with Mediterranean climate (as California or South Africa) and shares structural and functional properties with tropical savannas in Africa, Australia and South America. Remote sensing time series can assist the monitoring of the energy balance components, with special attention to the evapotranspiration and vegetation water stress over these areas. Long-term data analysis may improve our understanding of the functioning of the system, helping to assess drought impacts and leading to reduce the economic and environmental vulnerability of this ecosystem. This work analyzes the evolution the surface energy balance components, mapping the evapotranspiration and moisture stress of holm oak woodlands of Spain and Portugal during the last 15 years (2001-2015). The surface energy balance model (SEBS) has been applied over the Iberian Peninsula on a monthly time scale and 0.05° spatial resolution, using multi-satellite and meteorological forcing data. Modelled energy and water fluxes have been validated using ground measurements of two eddy covariance towers located in oak savanna sites during 3 years, resulting in moderate deviations from observations (10-25 W/m2). The departure of actual ET from the

  5. Automatic Cloud and Shadow Detection in Optical Satellite Imagery Without Using Thermal Bands—Application to Suomi NPP VIIRS Images over Fennoscandia

    Directory of Open Access Journals (Sweden)

    Eija Parmes

    2017-08-01

    Full Text Available In land monitoring applications, clouds and shadows are considered noise that should be removed as automatically and quickly as possible, before further analysis. This paper presents a method to detect clouds and shadows in Suomi NPP satellite’s VIIRS (Visible Infrared Imaging Radiometer Suite satellite images. The proposed cloud and shadow detection method has two distinct features when compared to many other methods. First, the method does not use the thermal bands and can thus be applied to other sensors which do not contain thermal channels, such as Sentinel-2 data. Secondly, the method uses the ratio between blue and green reflectance to detect shadows. Seven hundred and forty-seven VIIRS images over Fennoscandia from August 2014 to April 2016 were processed to train and develop the method. Twenty four points from every tenth of the images were used in accuracy assessment. These 1752 points were interpreted visually to cloud, cloud shadow and clear classes, then compared to the output of the cloud and shadow detection. The comparison on VIIRS images showed 94.2% correct detection rates and 11.1% false alarms for clouds, and respectively 36.1% and 82.7% for shadows. The results on cloud detection were similar to state-of-the-art methods. Shadows showed correctly on the northern edge of the clouds, but many shadows were wrongly assigned to other classes in some cases (e.g., to water class on lake and forest boundary, or with shadows over cloud. This may be due to the low spatial resolution of VIIRS images, where shadows are only a few pixels wide and contain lots of mixed pixels.

  6. Satellite Communication.

    Science.gov (United States)

    Technology Teacher, 1985

    1985-01-01

    Presents a discussion of communication satellites: explains the principles of satellite communication, describes examples of how governments and industries are currently applying communication satellites, analyzes issues confronting satellite communication, links mathematics and science to the study of satellite communication, and applies…

  7. On-Orbit Performance of the RHESSI Cryocooler

    Science.gov (United States)

    Boyle, Robert F.

    2004-01-01

    The Ramaty High Energy Solar Spectroscopic Imager (RHESSI) spacecraft was launched on February 5,2002. With more than a year of operation on-orbit, its Sunpower M77 cryocooler continues to maintain the array of nine germanium detectors at 7% Trends have begun to emerge in cryocooler power and vibration, suggesting that the cooler's operating point is slowly changing. Possible causes are identified and discussed.

  8. MODIS On-Orbit Performance and Lessons Learned

    Science.gov (United States)

    Xiong, Xiaoxiong; Salomonson, Vince

    2011-01-01

    MODIS is a key instrument for the NASA's Earth Observing System (EOS) and has successfully operated for more than 11 and 9 years, respectively, on-board the Terra and Aqua spacecraft. MODIS collects data in 36 spectral bands, covering wavelengths from visible (VIS) to long-wave infrared (LWIR). To date, both Terra and Aqua MODIS have produced an unprecedented amount of data products and significantly contributed to the earth remote sensing studies and applications. MODIS was developed with stringent calibration requirements and was, consequently, designed and built with a set of on-board calibrators (OBC), which include a solar diffuser (SD), a solar diffuser stability monitor (SDSM), a blackbody (BB), and a spectroradiometric calibration assembly (SRCA). This presentation briefly reviews MODIS instrument operation and various calibration and characterization activities, It demonstrates both the instrument and the OBC on-orbit performance and discusses lessons learned, particularly focusing on on-orbit changes in sensor responses, optics degradation, and major challenging issues. As expected, Terra and Aqua MODIS on-orbit performance and lessons learned will continue to benefit the operation and calibration of future sensors, such as NPP/JPSS VIIRS and GOES-R ABI.

  9. An Approach for Optimizing the On-Orbit Servicing Architecture for a Given Client Satellite Constellation

    Science.gov (United States)

    2005-03-01

    In February of 1980, NASA launched the Solar Maximum Mission spacecraft to collect observations of solar flares, sunspots, magnetic fields, and the...spacecraft autonomously delivered supplies to and returned waste from the Mir space station, the second generation of Russian manned orbiting facilities...Vehicle Routing Problems The classic vehicle routing problem ( VRP ) is a combinatorial optimization problem that minimizes the cost of routing a

  10. Vision-Based 3D Motion Estimation for On-Orbit Proximity Satellite Tracking and Navigation

    Science.gov (United States)

    2015-06-01

    Network .....................................................................................58 3. Telemetry Computer...screenshot of the telemetry software and the SSH terminals. ...........61 Figure 25. View of the VICON cameras above the granite flat floor of the FSS...point-wise kinematic models. The pose of the 3D structure is then estimated using a dual quaternion method [19]. The robustness and validity of this

  11. On-Orbit Noise Characterization for MODIS Reflective Solar Bands

    Science.gov (United States)

    Xiong, X.; Xie, X.; Angal, A.

    2008-01-01

    Since launch, the Moderate Resolution Imaging Spectroradiometer (MODIS) has operated successfully on-board the NASA Earth Observing System (EOS) Terra and EOS Aqua spacecraft. MODIS is a passive cross-track scanning radiometer that makes observations in 36 spectral bands with spectral wavelengths from visible (VIS) to long-wave infrared. MODIS bands 1-19 and 26 are the reflective solar bands (RSB) with wavelengths from 0.41 to 2.2 micrometers. They are calibrated on-orbit using an on-board solar diffuser (SD) and a SD stability monitor (SDSM) system. For MODIS RSB, the level 1B calibration algorithm produces top of the atmosphere reflectance factors and radiances for every pixel of the Earth view. The sensor radiometric calibration accuracy, specified at each spectral band's typical scene radiance, is 2% for the RSB reflectance factors and 5% for the RSB radiances. Also specified at the typical scene radiance is the detector signal-to-noise ratio (SNR), a key sensor performance parameter that directly impacts its radiometric calibration accuracy and stability, as well as the image quality. This paper describes an on-orbit SNR characterization approach developed to evaluate and track MODIS RSB detector performance. In order to perform on-orbit SNR characterization, MODIS RSB detector responses to the solar illumination reflected from the SD panel must be corrected for factors due to variations of the solar angles and the SD bi-directional reflectance factor. This approach enables RSB SNR characterization to be performed at different response levels for each detector. On-orbit results show that both Terra and Aqua MODIS RSB detectors have performed well since launch. Except for a few noisy or inoperable detectors which were identified pre-launch, most RSB detectors continue to meet the SNR design requirements and are able to maintain satisfactory short-term stability. A comparison of on-orbit noise characterization results with results derived from pre

  12. On-orbit performance of the Gaia CCDs at L2

    CERN Document Server

    Crowley, C; Hambly, N C; Davidson, M; Abreu, A; van Leeuwen, F; Fabricius, C; Seabroke, G; de Bruijne, J H J; Short, A; Lindegren, L; Brown, A G A; Sarri, G; Gare, P; Prusti, T; Prod'homme, T; Mora, A; Martin-Fleitas, J; Raison, F; Lammers, U; O'Mullane, W; Jansen, F

    2016-01-01

    The European Space Agency's Gaia satellite was launched into orbit around L2 in December 2013 with a payload containing 106 large-format scientific CCDs. The primary goal of the mission is to repeatedly obtain high-precision astrometric and photometric measurements of one thousand million stars over the course of five years. The scientific value of the down-linked data, and the operation of the onboard autonomous detection chain, relies on the high performance of the detectors. As Gaia slowly rotates and scans the sky, the CCDs are continuously operated in a mode where the line clock rate and the satellite rotation spin-rate are in synchronisation. Nominal mission operations began in July 2014 and the first data release is being prepared for release at the end of Summer 2016. In this paper we present an overview of the focal plane, the detector system, and strategies for on-orbit performance monitoring of the system. This is followed by a presentation of the performance results based on analysis of data acqui...

  13. When will on-orbit servicing be part of the space enterprise?

    Science.gov (United States)

    Hastings, Daniel E.; Putbrese, Benjamin L.; La Tour, Paul A.

    2016-10-01

    The space industry is currently at a significant inflection point. Over the past decades, many spacecraft at geosynchronous orbit have continued a trend towards increasingly massive and longer-lasting satellites, and while they do represent some of the most exquisite, highest-performing satellites ever launched, some experts now feel that such trends are unsustainable and are beginning to place increasing strain on the underlying industry. To support current and future spacecraft, on-orbit servicing (OOS) infrastructures have been proposed, which would provide services such as repair, rescue, refueling, and upgrading of customer spacecraft in order to alleviate the identified space industry trends. In this paper, system dynamics modeling is used to assess various scenarios for OOS incorporation into the overall space industry, by evaluating its long-term effects on the design, cost, and underlying experience of a reference geosynchronous constellation. This system dynamics model is based heavily in behavioral economics' Prospect Theory, with such concepts as anchoring and loss aversion factoring heavily into the overall simulation of the space industry. The primary conclusion of this analysis was that relatively low costs and substantial incorporation of servicing capabilities into customer architectures are likely to be necessary to ensure long-term sustainability of such a project. Finally, several policy implications for an OOS infrastructure are outlined.

  14. An overview of Aqua MODIS after five-year on-orbit operation and calibration

    Science.gov (United States)

    Barnes, W.; Xiong, X.; Wenny, B.; Xie, X.; Wu, A.; Che, N.; Sun, J.; Salomonson, V.

    2007-10-01

    Launched in May 2002, the Aqua MODIS has successfully operated on-orbit for more than five years and continuously produced many high quality data products that have significantly contributed to studies of the Earth's climate and environmental changes. The MODIS collects data in 36 spectral bands ranging from the visible (VIS) to the long-wave infrared (LWIR) spectral region and at three (nadir) spatial resolutions: 250m (2 bands), 500m (5 bands), and 1km (29 bands). Bands 1-19 and 26 are the reflective solar bands (RSB) with wavelengths from 0.41 to 2.2μm and bands 20-25 and 27-36 are the thermal emissive bands (TEB) with wavelengths from 3.7 to 14.4μm. The MODIS on-board calibrators, noticeably improved over those of its heritage sensors, include a solar diffuser (SD), a solar diffuser stability monitor (SDSM), a blackbody (BB), a spectro-radiometric calibration assembly (SRCA), and a space view (SV) port. This paper provides an overview of Aqua MODIS on-orbit operation and calibration activities with emphasis on the performance of its on-board calibrators. Results discussed in this paper include TEB and RSB detector noise characterization, short-term stability and long-term response change. The sensor's overall spectral (RSB) and spatial (RSB and TEB) parameters are also presented in this paper.

  15. ASTER Urgent Response to the 2006 Eruption of Augustine Volcano, Alaska: Science and Decision Support Gained From Frequent High-resolution, Satellite Thermal Infrared Imaging of Volcanic Events

    Science.gov (United States)

    Wessels, R. L.; Ramsey, M. S.; Schneider, D. S.; Coombs, M.; Dehn, J.; Realmuto, V. J.

    2006-12-01

    Augustine Volcano, Alaska explosively erupted on January 11, 2006 after nearly eight months of increasing seismicity, deformation, gas emission, and small phreatic explosions. The volcano produced a total of 13 explosive eruptions during the last three weeks of January 2006. A new summit lava dome and two short, blocky lava flows grew during February and March 2006. A series of 7 daytime and 15 nighttime Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) scenes were acquired in response to this new activity. This response was facilitated by a new ASTER Urgent Request Protocol system. The ASTER data provided several significant observations as a part of a much larger suite of real-time or near-real-time data from other satellite (AVHRR, MODIS), airborne (FLIR, visual, gas), and ground-based (seismometers, radiometers) sensors used at the Alaska Volcano Observatory (AVO). ASTER is well-suited to volcanic observations because of its 15-m to 90-m spatial resolution, its ability to be scheduled and point off-nadir, and its ability to collect visible-near infrared (VNIR) to thermal infrared (TIR) data during both the day and night. Aided by the volcano's high latitude (59.4°N) ASTER was able to provide frequent repeat imaging as short as one day between scenes with an average 6-day repeat during the height of activity. These data provided a time series of high-resolution VNIR, shortwave infrared (SWIR - detects temperatures from about 200°C to > 600°C averaged over a 30-m pixel), and TIR (detects temperatures up to about 100°C averaged over a 90-m pixel) data of the volcano and its eruptive products. Frequent satellite imaging of volcanoes is necessary to record rapid changes in activity and to avoid recurring cloud cover. Of the 22 ASTER scenes acquired between October 30, 2005 and May 30, 2006, the volcano was clear to partly cloudy in 13 scenes. The most useful pre-eruption ASTER Urgent Request image was acquired on December 20. These data

  16. Adaptive signal processing of on-orbit radio frequency lightning recordings using overcomplete chirplet dictionaries

    Science.gov (United States)

    Moody, D. I.; Smith, D. A.; Light, T. E.; Suszcynsky, D. M.; Heavner, M.

    2013-12-01

    Ongoing research at Los Alamos National Laboratory studies the Earth's radio frequency (RF) transient background utilizing satellite-based RF observations of terrestrial lightning. Such impulsive signals are dispersed as they travel through the ionosphere and appear as nonlinear chirps at a receiver on-orbit. Signals of interest are typically observed in the presence of additive noise and structured clutter, including gated and continuous-wave (CW) sources. Detection and classification of such non-stationary signals against a complex, non-stationary background can present challenges for standard physics-based approaches. The FORTE satellite provided a rich satellite lightning database that has been previously used for some event classification. We now develop and implement new event classification capability on the FORTE database using state-of-the-art adaptive signal processing combined with compressive sensing and machine learning techniques. The focus of our work is improved feature extraction using representations in overcomplete analytical dictionaries. We choose a dictionary based on Gabor chirplets, which is designed to represent both pulses (chirping or non-chirping) and CW signals in very few representative elements from the dictionary. One feature extraction approach is based on obtaining sparse representations of our data using a matching pursuit search of the dictionary. A second approach is based on using a frame operator on the dictionary to obtain a dense representation of our data. We explore robustness of extracted features to changes in background clutter and noise levels. Both feature extraction algorithms will be used in conjunction with statistical classifiers to explore classification performance of major lightning types. Performance will be evaluated both qualitatively, as well as quantitatively using a small validated test set. We present preliminary results of our work and discuss future areas of development.

  17. Superfluid Helium On-Orbit Transfer (SHOOT) operations

    Science.gov (United States)

    Kittel, P.; Dipirro, M. J.

    1989-01-01

    The in-flight tests and the operational sequences of the Superfluid Helium On-Orbit Transfer (SHOOT) experiment are outlined. These tests include the transfer of superfluid helium at a variety of rates, the transfer into cold and warm receivers, the operation of an extravehicular activity coupling, and tests of a liquid acquisition device. A variety of different types of instrumentation will be required for these tests. These include pressure sensors and liquid flow meters that must operate in liquid helium, accurate thermometry, two types of quantity gauges, and liquid-vapor sensors.

  18. General Dynamic (GD) Launch Waveform On-Orbit Performance Report

    Science.gov (United States)

    Briones, Janette C.; Shalkhauser, Mary Jo

    2014-01-01

    The purpose of this report is to present the results from the GD SDR on-orbit performance testing using the launch waveform over TDRSS. The tests include the evaluation of well-tested waveform modes, the operation of RF links that are expected to have high margins, the verification of forward return link operation (including full duplex), the verification of non-coherent operational models, and the verification of radio at-launch operational frequencies. This report also outlines the launch waveform tests conducted and comparisons to the results obtained from ground testing.

  19. Computational requirements for on-orbit identification of space systems

    Science.gov (United States)

    Hadaegh, Fred Y.

    1988-01-01

    For the future space systems, on-orbit identification (ID) capability will be required to complement on-orbit control, due to the fact that the dynamics of large space structures, spacecrafts, and antennas will not be known sufficiently from ground modeling and testing. The computational requirements for ID of flexible structures such as the space station (SS) or the large deployable reflectors (LDR) are however, extensive due to the large number of modes, sensors, and actuators. For these systems the ID algorithm operations need not be computed in real-time, only in near real-time, or an appropriate mission time. Consequently the space systems will need advanced processors and efficient parallel processing algorithm design and architectures to implement the identification algorithms in near real-time. The MAX computer currently being developed may handle such computational requirements. The purpose is to specify the on-board computational requirements for dynamic and static identification for large space structures. The computational requirements for six ID algorithms are presented in the context of three examples: the JPL/AFAL ground antenna facility, the space station (SS), and the large deployable reflector (LDR).

  20. Satellite orbital conjunction reports assessing threatening encounters in space (SOCRATES)

    Science.gov (United States)

    Kelso, T. S.; Alfano, S.

    2006-05-01

    While many satellite operators are aware of the possibility of a collision between their satellite and another object in earth orbit, most seem unaware of the frequency of near misses occurring each day. Until recently, no service existed to advise satellite operators of an impending conjunction of a satellite payload with another satellite, putting the responsibility for determining these occurrences squarely on the satellite operator's shoulders. This problem has been further confounded by the lack of a timely, comprehensive data set of satellite orbital element sets and computationally efficient tools to provide predictions using industry-standard software. As a result, hundreds of conjunctions within 1 km occur each week, with little or no intervention, putting billions of dollars of space hardware at risk, along with their associated missions. As a service to the satellite operator community, the Center for Space Standards & Innovation (CSSI) offers SOCRATES-Satellite Orbital Conjunction Reports Assessing Threatening Encounters in Space. Twice each day, CSSI runs a list of all satellite payloads on orbit against a list of all objects on orbit using the catalog of all unclassified NORAD two-line element sets to look for conjunctions over the next seven days. The runs are made using STK/CAT-Satellite Tool Kit's Conjunction Analysis Tools-together with the NORAD SGP4 propagator in STK. This paper will discuss how SOCRATES works and how it can help satellite operators avoid undesired close approaches through advanced mission planning.

  1. Handbook of satellite applications

    CERN Document Server

    Madry, Scott; Camacho-Lara, Sergio

    2013-01-01

    Top space experts from around the world have collaborated to produce this comprehensive, authoritative, and clearly illustrated reference guide to the fast growing, multi-billion dollar field of satellite applications and space communications. This handbook, done under the auspices of the International Space University based in France, addresses not only system technologies but also examines market dynamics, technical standards and regulatory constraints. The handbook is a completely multi-disciplinary reference book that covers, in an in-depth fashion, the fields of satellite telecommunications, Earth observation, remote sensing, satellite navigation, geographical information systems, and geosynchronous meteorological systems. It covers current practices and designs as well as advanced concepts and future systems. It provides a comparative analysis of the common technologies and design elements for satellite application bus structures, thermal controls, power systems, stabilization techniques, telemetry, com...

  2. Tactical Satellite 3

    Science.gov (United States)

    Davis, T. M.; Straight, S. D.; Lockwook, R. B.

    2008-08-01

    Tactical Satellite 3 is an Air Force Research Laboratory Science and Technology (S&T) initiative that explores the capability and technological maturity of small, low-cost satellites. It features a low cost "plug and play" modular bus and low cost militarily significant payloads - a Raytheon developed Hyperspectral imager and secondary payload data exfiltration provided by the Office of Naval Research. In addition to providing for ongoing innovation and demonstration in this important technology area, these S&T efforts also help mitigate technology risk and establish a potential concept of operations for future acquisitions. The key objectives are rapid launch and on-orbit checkout, theater commanding, and near-real time theater data integration. It will also feature a rapid development of the space vehicle and integrated payload and spacecraft bus by using components and processes developed by the satellite modular bus initiative. Planned for a late summer 2008 launch, the TacSat-3 spacecraft will collect and process images and then downlink processed data using a Common Data Link. An in-theater tactical ground station will have the capability to uplink tasking to spacecraft and will receive full data image. An international program, the United Kingdom Defence Science and Technology Laboratory (DSTL) and Australian Defence Science and Technology Organisation (DSTO) plan to participate in TacSat-3 experiments.

  3. The SPEAR Instrument and On-Orbit Performance

    Science.gov (United States)

    Edelstein, J.; Korpela, E. J.; Adolfo, J.; Bowen, M.; Feuerstein, M.; Hull, J.; Jelinsky, S.; Nishikida, K.; McKee, K.; Berg, P.; Chung, R.; Fischer, J.; Min, K.-W.; Oh, S.-H.; Rhee, J.-G.; Ryu, K.; Shinn, J.-H.; Han, W.; Jin, H.; Lee, D.-H.; Nam, U.-W.; Park, J.-H.; Seon, K.-I.; Yuk, I.-S.

    2006-06-01

    The SPEAR (or ``FIMS'') instrumentation has been used to conduct the first large-scale spectral mapping of diffuse cosmic far-ultraviolet (FUV; 900-1750 Å) emission, including important diagnostics of interstellar hot (104-106 K) and photoionized plasmas, H2, and dust-scattered starlight. The instrumentation's performance has allowed for the unprecedented detection of astrophysical diffuse FUV emission lines. A spectral resolution of λ/Δλ~550 and an imaging resolution of 5' is achieved on-orbit in the Short (900-1150 Å) and Long (1350-1750 Å) bandpass channels within their respective 4.0d×4.6 arcmin and 7.4d×4.3 arcmin fields of view. We describe the SPEAR imaging spectrographs, their performance, and the nature and handling of their data.

  4. Cosmic Origins Spectrograph: On-Orbit Performance of Target Acquisitions

    Science.gov (United States)

    Penton, Steven V.

    2010-07-01

    COS is a slit-less spectrograph with a very small aperture (R=1.2500). To achieve the desired wavelength accuracies, HST+COS must center the target to within 0.100 of the center of the aperture for the FUV channel, and 0.0400 for NUV. During SMOV and early Cycle 17 we fine-tuned the COS target acquisition (TA) procedures to exceed this accuracy for all three COS TA modes; NUV imaging, NUV spectroscopic, and FUV spectroscopic. In Cycle 17, we also adjusted the COSto- FGS offsets in the SIAF file. This allows us to recommend skipping the time consuming ACQ/SEARCH in cases where the target coordinates are well known. Here we will compare the on-orbit performance of all COS TA modes in terms of centering accuracy, efficiency, and required signal-to-noise (S/N).

  5. Technology for increased human productivity and safety on orbit

    Science.gov (United States)

    Ambrus, Judith; Gartrell, Charles F.

    1991-01-01

    Technologies are addressed that can facilitate the efficient performance of station operations on the Space Station Freedom (SSF) and thereby optimize the utilization of SSF for scientific research. The dedication of SSF capabilities to scientific study and to the payload-user community is a key goal of the program. Robotics applications are discussed in terms of automating the processing of experiment materials on-orbit by transferring ampules to a furnace system or by handling plant-tissue cultures. Noncontact temperature measurement and medical support technology are considered important technologies for maximizing time for scientific purposes. Detailed examinations are conducted of other technologies including advanced data systems and furnace designs. The addition of the listed technologies can provide an environment in which scientific research is more efficient and accurate.

  6. Effect of Gravitational Frame Dragging on Orbiting Qubits

    CERN Document Server

    Lanzagorta, Marco

    2012-01-01

    In this paper we discuss the effect of gravitational frame dragging on orbiting qubits. In particular, we consider the Kerr spacetime geometry and spin-1/2 qubits moving in an equatorial radial fall with zero angular momentum and equatorial circular orbits. We ignore the ${\\cal O}(\\hbar)$ order effects due to spin-curvature coupling, which allows us to consider the motion of the spin-1/2 particles as Kerr geometry geodesics. We derive analytical expressions for the infinitesimal Wigner rotation and numerical results for their integration across the length of the particle's trajectory. To this end, we consider the bounds on the finite Wigner rotation imposed by Penrose's cosmic censorship hypothesis.

  7. Methane variations on orbital timescales: a transient modeling experiment

    Directory of Open Access Journals (Sweden)

    T. Y. M. Konijnendijk

    2011-06-01

    Full Text Available Methane (CH4 variations on orbital timescales are often associated with variations in wetland coverage, most notably in the summer monsoon areas of the Northern Hemisphere. Here we test this assumption by simulating orbitally forced variations in global wetland emissions, using a simple wetland distribution and CH4 emissions model that has been run on the output of a climate model (CLIMBER-2 containing atmosphere, ocean and vegetation components. The transient climate modeling simulation extends over the last 650 000 yr and includes variations in land-ice distribution and greenhouse gases. Tropical temperature and global vegetation are found to be the dominant controls for global CH4 emissions and therefore atmospheric concentrations. The relative importance of wetland coverage, vegetation coverage, and emission temperatures depends on the specific climatic zone (boreal, tropics and Indian/Asian monsoon area and timescale (precession, obliquity and glacial-interglacial timescales. Despite the low spatial resolution of the climate model and crude parameterizations for methane production and release, simulated variations in CH4 emissions agree well with those in measured concentrations, both in their time series and spectra. The simulated lags between emissions and orbital forcing also show close agreement with those found in measured data, both on the precession and obliquity timescale. We find causal links between atmospheric CH4 concentrations and tropical temperatures and global vegetation, but only covariance between monsoon precipitation and CH4 concentrations. The primary importance of the first two factors explains the lags found in the CH4 record from ice cores. Simulation of the dynamical vegetation response to climate variation on orbital timescales would be needed to reduce the uncertainty in these preliminary attributions.

  8. On-orbit performance of the MODIS SWIR bands

    Science.gov (United States)

    Angal, Amit; Wu, Aisheng; Xiong, Xiaoxiong; Geng, Xu; Link, Daniel O.; Chen, Hongda

    2014-11-01

    The 36 MODIS spectral bands, with wavelengths ranging from 0.41 μm to 14.2 μm, are distributed on four focal plane assemblies: visible (VIS), near-infrared (NIR), short- and mid-wave infrared (SMIR), and long-wave infrared (LWIR). The MODIS reflective solar bands (RSB) are calibrated onorbit using a solar diffuser (SD), with its reflectance degradation monitored using a solar diffuser stability monitor (SDSM). The Terra MODIS SD degradation at 0.936 μm, as measured by the SDSM, is 2.4% after 14 years on-orbit. The Aqua MODIS SD degradation at 0.936 μm is 0.6% after 12 years on-orbit. The SWIR bands with spectral wavelengths centered at 1.24 μm (band 5), 1.37 μm (band 26), 1.64 μm (band 6), and 2.13 μm (band 7), are beyond the SDSM wavelength coverage (0.412 μm to 0.936 μm). Consequently, the gain of the SWIR bands is computed without factoring in the possible degradation of the SD. A technique to monitor the long-term stability of the MODIS SWIR bands is developed using pseudo-invariant desert targets. Results indicate a long-term drift of up to 1.5% of band 5 of Terra MODIS. The long-term stability of other Terra MODIS SWIR bands is seen to be within 0.5%. Similar results for Aqua MODIS indicate no observable drift, with changes within 0.5%. An implementation strategy to account for this correction in the MODIS Level 1 B (L1B) is also discussed.

  9. A Novel Error Model of Optical Systems and an On-Orbit Calibration Method for Star Sensors

    Directory of Open Access Journals (Sweden)

    Shuang Wang

    2015-12-01

    Full Text Available In order to improve the on-orbit measurement accuracy of star sensors, the effects of image-plane rotary error, image-plane tilt error and distortions of optical systems resulting from the on-orbit thermal environment were studied in this paper. Since these issues will affect the precision of star image point positions, in this paper, a novel measurement error model based on the traditional error model is explored. Due to the orthonormal characteristics of image-plane rotary-tilt errors and the strong nonlinearity among these error parameters, it is difficult to calibrate all the parameters simultaneously. To solve this difficulty, for the new error model, a modified two-step calibration method based on the Extended Kalman Filter (EKF and Least Square Methods (LSM is presented. The former one is used to calibrate the main point drift, focal length error and distortions of optical systems while the latter estimates the image-plane rotary-tilt errors. With this calibration method, the precision of star image point position influenced by the above errors is greatly improved from 15.42% to 1.389%. Finally, the simulation results demonstrate that the presented measurement error model for star sensors has higher precision. Moreover, the proposed two-step method can effectively calibrate model error parameters, and the calibration precision of on-orbit star sensors is also improved obviously.

  10. On-Orbit Ephemeris Determination with Radio Doppler Validation

    Energy Technology Data Exchange (ETDEWEB)

    Dallmann, Nicholas [Los Alamos National Laboratory; Proicou, Michael Chris [Los Alamos National Laboratory; Seitz, Daniel Nathan [Los Alamos National Laboratory; Warniment, Adam [Los Alamos National Laboratory

    2016-02-09

    Multiple CubeSats are often released from the same host spacecraft into virtually the same orbit at nearly the same time. A satellite team needs the ability to identify and track its own satellites as soon as possible. However, this can be a difficult and confusing task with a large number of satellites. Los Alamos National Laboratory encountered this issue during a launch of LANL-designed CubeSats that were released with more than 20 other objects. A simple radio Doppler method used shortly after launch by the Los Alamos team to select its satellites of interest from the list of available tracked ephemerides is described. This method can also be used for automated real time ephemeris validation. For future efforts, each LANL-designed CubeSat will automatically perform orbit determination from the position, velocity, and covariance estimates provided by an added on-board GPS receiver. This self-determined ephemeris will be automatically downlinked by ground stations for mission planning, antenna tracking, Doppler-pre-correction, etc. A simple algorithm based on established theory and well suited for embedded on-board processing is presented. The trades examined in selecting the algorithm components and data formats are briefly discussed, as is the expected performance.

  11. Infrared On-Orbit Inspection of Shuttle Orbiter Reinforced Carbon-Carbon Using Solar Heating

    Science.gov (United States)

    Howell, P. A.; Winfree, W. P.; Cramer, K. Elliott

    2005-01-01

    Thermographic nondestructive inspection techniques have been shown to provide quantitative, large area damage detection capabilities for the ground inspection of the reinforced carbon-carbon (RCC) used for the wing leading edge of the Shuttle orbiter. The method is non-contacting and able to inspect large areas in a relatively short inspection time. Thermal nondestructive evaluation (NDE) inspections have been shown to be applicable for several applications to the Shuttle in preparation for return to flight, including for inspection of RCC panels during impact testing, and for between-flight orbiter inspections. The focus of this work is to expand the capabilities of the thermal NDE methodology to enable inspection by an astronaut during orbital conditions. The significant limitations of available resources, such as weight and power, and the impact of these limitations on the inspection technique are discussed, as well as the resultant impact on data analysis and processing algorithms. Of particular interest is the impact to the inspection technique resulting from the use of solar energy as a heat source, the effect on the measurements due to working in the vacuum of space, and the effect of changes in boundary conditions, such as radiation losses seen by the material, on the response of the RCC. The resultant effects on detectability limits are discussed. Keywords: Nondestructive Evaluation, Shuttle, on-orbit inspection, thermography, infrared

  12. On-orbit performance of the 12 GHz, 200 watt transmitter experiment package for CTS

    Science.gov (United States)

    Alexovich, R. E.

    1977-01-01

    Performance characteristics from on-orbit tests of the Transmitter Experiment Package (TEP) for the Communications Technology Satellite (CTS) are presented. The TEP consists of a Power Processing System (PPS), an Output Stage Tube (OST), and a Variable Conductance Heat Pipe System (VCHPS), all of which are described. The OST is a coupled-cavity traveling-wave tube with a multistage depressed collector and a stepped velocity-tapered slow-wave structure for efficiency enhancement. It has an RF output power of 240 W and an overall efficiency of 51.5% at a center band frequency of 12.080 GHz. The PPS provides the required operating voltages, regulation, control, and protection for the OST. It has a measured dc-dc conversion efficiency of 86.5% to 88.5%. The VCHPS consists of a fin radiator and three dual-artery stainless steel heat pipes using methanol and a mixture of inert gases. Test results presented include efficiencies, RF output power, frequency response, and performance with single and multiple (two) carriers frequency-modulated by video signals.

  13. A novel method for on-orbit measurement of space materials degradation

    Energy Technology Data Exchange (ETDEWEB)

    Verker, Ronen; Grossman, Eitan; Gouzman, Irina [Space Environment Department, Soreq NRC, Yavne 81800 (Israel)

    2011-02-15

    The low Earth orbit (LEO) environment is considered hazardous to spacecraft, resulting in materials degradation. Currently, in order to evaluate the degradation of materials in LEO, a retrieval of space exposed samples is required. In this study, a novel approach is proposed to evaluate degradation of materials in LEO without the need of retrieval. The method is utilizing photovoltaic cells (PVCs), an existing component onboard of any satellite. The PVCs are coated by various materials which are sensitive to different LEO constituents, such as atomic oxygen (AO) or ultra-violet (UV) radiation. The method's acronym is ORMADD (on-ORbit MAterials Degradation Detector). The ORMADD's principle of operation is based on measuring the PVC output power which depends on the cell coating material's optical transmission. Erosion of the coating by AO or coloring due to UV radiation affects its optical transmission and, accordingly, the PVC output. The ORMADD performance was tested using different coatings, such as polyimide and amorphous carbon (sensitive to AO), and siloxane based coating which is sensitive to UV radiation. The proposed ORMADD reveals sensitivity to different LEO components and can be used either as material degradation detector or as an AO monitor.

  14. On-orbit performance of the Compact Infrared Camera (CIRC) onboard ALOS-2

    Science.gov (United States)

    Sakai, Michito; Katayama, Haruyoshi; Kato, Eri; Nakajima, Yasuhiro; Kimura, Toshiyoshi; Nakau, Koji

    2015-10-01

    Compact Infrared Camera (CIRC) is a technology demonstration instrument equipped with an uncooled infrared array detector (microbolometer) for space application. Microbolometers have an advantage of not requiring cooling system such as a mechanical cooler and are suitable for resource-limited sensor systems. Another characteristic of the CIRC is its use of an athermal optical system and a shutterless system. The CIRC is small in size (approximately 200 mm), is light weight (approximately 3 kg), and has low electrical power consumption (Satellite-2 (ALOS- 2). Since the initial functional verification phase (July 4-14, 2014), the CIRC has demonstrated functions according to its intended design. We also confirmed that the noise equivalent differential temperature of the CIRC observation data is less than 0.2 K, the temperature accuracy is within ±4 K, and the spatial resolution is less than 210 m in the calibration validation phase after the initial functional verification phase. The CIRC also detects wildfires in various areas and observes volcano activities and urban heat islands in the operational phase. The other CIRC will be launched in 2015 onboard the CALorimetric Electron Telescope (CALET) of the Japanese Experiment Module (JEM) of the International Space Station. Installation of the CIRCs on the ALOS-2 and on the JEM/CALET is expected to increase the observation frequency. In this study, we present the on-orbit performance including observational results of the CIRC onboard the ALOS-2 and the current status of the CIRC onboard the JEM/CALET.

  15. The moon as a radiometric reference source for on-orbit sensor stability calibration

    Science.gov (United States)

    Stone, T.C.

    2009-01-01

    The wealth of data generated by the world's Earth-observing satellites, now spanning decades, allows the construction of long-term climate records. A key consideration for detecting climate trends is precise quantification of temporal changes in sensor calibration on-orbit. For radiometer instruments in the solar reflectance wavelength range (near-UV to shortwave-IR), the Moon can be viewed as a solar diffuser with exceptional stability properties. A model for the lunar spectral irradiance that predicts the geometric variations in the Moon's brightness with ???1% precision has been developed at the U.S. Geological Survey in Flagstaff, AZ. Lunar model results corresponding to a series of Moon observations taken by an instrument can be used to stabilize sensor calibration with sub-percent per year precision, as demonstrated by the Sea-viewing Wide Field-of-view Sensor (SeaWiFS). The inherent stability of the Moon and the operational model to utilize the lunar irradiance quantity provide the Moon as a reference source for monitoring radiometric calibration in orbit. This represents an important capability for detecting terrestrial climate change from space-based radiometric measurements.

  16. Simulation of at-sensor radiance over land for proposed thermal channels of Imager payload onboard INSAT-3D satellite using MODTRAN model

    Indian Academy of Sciences (India)

    M R Pandya; D B Shah; H J Trivedi; S Panigrahy

    2011-02-01

    INSAT-3D is the new generation Indian satellite designed for improved Earth observations through two payloads – Imager and Sounder. Study was conducted with an aim of simulating satellite level signal over land in the infrared channels of the Imager payload using a radiative transfer model MODTRAN. Satellite level at-sensor radiance corresponding to all four infrared channels of INSAT-3D Imager payload is obtained using MODTRAN and sensitivity of at-sensor radiance was inferred as a function of input parameters namely, surface temperature, emissivity, view angle and atmospheric water vapour, which is helpful in understanding the signal simulation scheme needed for retrieving a very critical parameter namely, land surface temperature.

  17. Experimental Validation of Fly-Wheel Passive Launch and On-Orbit Vibration Isolation System by Using a Superelastic SMA Mesh Washer Isolator

    Directory of Open Access Journals (Sweden)

    Seong-Cheol Kwon

    2017-01-01

    Full Text Available On-board appendages with mechanical moving parts for satellites produce undesirable micro-jitters during their on-orbit operation. These micro-jitters may seriously affect the image quality from high-resolution observation satellites. A new application form of a passive vibration isolation system was proposed and investigated using a pseudoelastic SMA mesh washer. This system guarantees vibration isolation performance in a launch environment while effectively isolating the micro-disturbances from the on-orbit operation of jitter source. The main feature of the isolator proposed in this study is the use of a ring-type mesh washer as the main axis to support the micro-jitter source. This feature contrasts with conventional applications of the mesh washers where vibration damping is effective only in the thickness direction of the mesh washer. In this study, the basic characteristics of the SMA mesh washer isolator in each axis were measured in static tests. The effectiveness of the design for the new application form of the SMA mesh washer proposed in this study was demonstrated through both launch environment vibration test at qualification level and micro-jitter measurement test which corresponds to on-orbit condition.

  18. Satellite RNAs and Satellite Viruses.

    Science.gov (United States)

    Palukaitis, Peter

    2016-03-01

    Satellite RNAs and satellite viruses are extraviral components that can affect either the pathogenicity, the accumulation, or both of their associated viruses while themselves being dependent on the associated viruses as helper viruses for their infection. Most of these satellite RNAs are noncoding RNAs, and in many cases, have been shown to alter the interaction of their helper viruses with their hosts. In only a few cases have the functions of these satellite RNAs in such interactions been studied in detail. In particular, work on the satellite RNAs of Cucumber mosaic virus and Turnip crinkle virus have provided novel insights into RNAs functioning as noncoding RNAs. These effects are described and potential roles for satellite RNAs in the processes involved in symptom intensification or attenuation are discussed. In most cases, models describing these roles involve some aspect of RNA silencing or its suppression, either directly or indirectly involving the particular satellite RNA.

  19. Climate variations of Central Asia on orbital to millennial timescales.

    Science.gov (United States)

    Cheng, Hai; Spötl, Christoph; Breitenbach, Sebastian F M; Sinha, Ashish; Wassenburg, Jasper A; Jochum, Klaus Peter; Scholz, Denis; Li, Xianglei; Yi, Liang; Peng, Youbing; Lv, Yanbin; Zhang, Pingzhong; Votintseva, Antonina; Loginov, Vadim; Ning, Youfeng; Kathayat, Gayatri; Edwards, R Lawrence

    2016-11-11

    The extent to which climate variability in Central Asia is causally linked to large-scale changes in the Asian monsoon on varying timescales remains a longstanding question. Here we present precisely dated high-resolution speleothem oxygen-carbon isotope and trace element records of Central Asia's hydroclimate variability from Tonnel'naya cave, Uzbekistan, and Kesang cave, western China. On orbital timescales, the supra-regional climate variance, inferred from our oxygen isotope records, exhibits a precessional rhythm, punctuated by millennial-scale abrupt climate events, suggesting a close coupling with the Asian monsoon. However, the local hydroclimatic variability at both cave sites, inferred from carbon isotope and trace element records, shows climate variations that are distinctly different from their supra-regional modes. Particularly, hydroclimatic changes in both Tonnel'naya and Kesang areas during the Holocene lag behind the supra-regional climate variability by several thousand years. These observations may reconcile the apparent out-of-phase hydroclimatic variability, inferred from the Holocene lake proxy records, between Westerly Central Asia and Monsoon Asia.

  20. Assessment of MODIS Scan Mirror Reflectance Changes On-Orbit

    Science.gov (United States)

    Xiong, Xiaoxiong; Wu, A.; Angal, A.

    2008-01-01

    Since launch, the NASA EOS Terra and Aqua MODIS have operated successfully for more than 8 and 6 years, respectively. MODIS collects data using a two-sided scan mirror over a large scan angular range. The scan mirror is made of a polished, nickel-plated beryllium base coated with high purity silver, which is then over-coated with the Denton proprietary silicon monoxide and silicon dioxide mixture. The scan mirror's reflectance was characterized pre-launch using its witness samples, and the response versus scan angle was measured at the sensor system level. In this study, we present an assessment of MODIS scan mirror on-orbit degradation by examining changes of spectral band response over each sensor's mission lifetime. Results show that the scan mirror's optical properties for both Terra and Aqua MODIS have experienced significant degradation since launch in the VIS spectral region, which is mirror side dependent as well as scan angle dependent. In general, the mirror degradation is more severe for Terra MODIS than Aqua MODIS, especially during recent years. For Terra MODIS, the degradation rate is noticeably different between the mirror sides. On the other hand, there has been little mirror side dependent difference for Aqua MODIS.

  1. Climate variations of Central Asia on orbital to millennial timescales

    Science.gov (United States)

    Cheng, Hai; Spötl, Christoph; Breitenbach, Sebastian F. M.; Sinha, Ashish; Wassenburg, Jasper A.; Jochum, Klaus Peter; Scholz, Denis; Li, Xianglei; Yi, Liang; Peng, Youbing; Lv, Yanbin; Zhang, Pingzhong; Votintseva, Antonina; Loginov, Vadim; Ning, Youfeng; Kathayat, Gayatri; Edwards, R. Lawrence

    2016-11-01

    The extent to which climate variability in Central Asia is causally linked to large-scale changes in the Asian monsoon on varying timescales remains a longstanding question. Here we present precisely dated high-resolution speleothem oxygen-carbon isotope and trace element records of Central Asia’s hydroclimate variability from Tonnel’naya cave, Uzbekistan, and Kesang cave, western China. On orbital timescales, the supra-regional climate variance, inferred from our oxygen isotope records, exhibits a precessional rhythm, punctuated by millennial-scale abrupt climate events, suggesting a close coupling with the Asian monsoon. However, the local hydroclimatic variability at both cave sites, inferred from carbon isotope and trace element records, shows climate variations that are distinctly different from their supra-regional modes. Particularly, hydroclimatic changes in both Tonnel’naya and Kesang areas during the Holocene lag behind the supra-regional climate variability by several thousand years. These observations may reconcile the apparent out-of-phase hydroclimatic variability, inferred from the Holocene lake proxy records, between Westerly Central Asia and Monsoon Asia.

  2. International Space Station Major Constituent Analyzer On-Orbit Performance

    Science.gov (United States)

    Gardner, Ben D.; Erwin, Philip M.; Thoresen, Souzan; Granahan, John; Matty, Chris

    2011-01-01

    The Major Constituent Analyzer (MCA) is an integral part of the International Space Station (ISS) Environmental Control and Life Support System (ECLSS). The MCA is a mass spectrometer-based instrument designed to provide critical monitoring of six major atmospheric constituents; nitrogen, oxygen, hydrogen, carbon dioxide, methane, and water vapor. These gases are sampled continuously and automatically in all United States On-Orbit Segment (USOS) modules via the Sample Distribution System (SDS). The MCA is the primary tool for management of atmosphere constituents and is therefore critical for ensuring a habitable ISS environment during both nominal ISS operations and campout EVA preparation in the Airlock. The MCA has been in operation in the US Destiny Laboratory Module for over 10 years, and a second MCA has been delivered to the ISS for Node 3 operation. This paper discusses the performance of the MCA over the two past year, with particular attention to lessons learned regarding the operational life of critical components. Recent data have helped drive design upgrades for a new set of orbit-replaceable units (ORUs) currently in production. Several ORU upgrades are expected to increase expected lifetimes and reliability.

  3. Design and Stability of an On-Orbit Attitude Control System Using Reaction Control Thrusters

    Science.gov (United States)

    Hall, Robert A.; Hough, Steven; Orphee, Carolina; Clements, Keith

    2016-01-01

    NASA is providing preliminary design and requirements for the Space Launch System Exploration Upper Stage (EUS). The EUS will provide upper stage capability for vehicle ascent as well as on-orbit control capability. Requirements include performance of on-orbit burn to provide Orion vehicle with escape velocity. On-orbit attitude control is accommodated by a on-off Reaction Control System (RCS). Paper provides overview of approaches for design and stability of an attitude control system using a RCS.

  4. The International Space Station Alpha (ISSA) End-to-End On-Orbit Maintenance Process Flow

    Science.gov (United States)

    Zingrebe, Kenneth W., II

    1995-01-01

    As a tool for construction and refinement of the on-orbit maintenance system to sustain the International Space Station Alpha (ISSA), the Mission Operations Directorate (MOD) developed an end to-end on-orbit maintenance process flow. This paper discusses and demonstrates that process flow. This tool is being used by MOD to identify areas which require further work in preparation for MOD's role in the conduct of on-orbit maintenance operations.

  5. Centriolar satellites

    DEFF Research Database (Denmark)

    Tollenaere, Maxim A X; Mailand, Niels; Bekker-Jensen, Simon

    2015-01-01

    Centriolar satellites are small, microscopically visible granules that cluster around centrosomes. These structures, which contain numerous proteins directly involved in centrosome maintenance, ciliogenesis, and neurogenesis, have traditionally been viewed as vehicles for protein trafficking...... highlight newly discovered regulatory mechanisms targeting centriolar satellites and their functional status, and we discuss how defects in centriolar satellite components are intimately linked to a wide spectrum of human diseases....

  6. Satellite theory

    Science.gov (United States)

    Kozai, Y.

    1981-04-01

    The dynamical characteristics of the natural satellite of Mars, Jupiter, Saturn, Uranus and Neptune are analyzed on the basis of the solar tidal perturbation factor and the oblateness factor of the primary planet for each satellite. For the inner satellites, for which the value of the solar tidal factor is much smaller than the planetary oblateness factor, it is shown that the eccentricity and inclination of satellite orbits are generally very small and almost constant; several pairs of inner satellites are also found to exhibit commensurable mean motions, or secular accelerations in mean longitude. In the case of the outer satellites, for which solar perturbations are dominant, secular perturbations and long-period perturbations may be derived by the solution of equations of motion reduced to one degree of freedom. The existence of a few satellites, termed intermediary satellites, for which the solar tidal perturbation is on the order of the planetary oblateness factor, is also observed, and the pole of the orbital plane of the satellite is noted to execute a complex motion around the pole of the planet or the orbital plane of the planet.

  7. On-orbit prospective echocardiography on International Space Station crew.

    Science.gov (United States)

    Hamilton, Douglas R; Sargsyan, Ashot E; Martin, David S; Garcia, Kathleen M; Melton, Shannon L; Feiveson, Alan; Dulchavsky, Scott A

    2011-05-01

    A prospective trial of echocardiography was conducted on six crew members onboard the International Space Station. The main objective was to determine the efficacy of remotely guided tele-echocardiography, including just-in-time e-training methods and determine what is "space normal" echocardiographic data. Each crew member operator (n = 6) had 2-hour preflight training. Baseline echocardiographic data were collected 55-167 days preflight. Similar equipment was used in each 60-minute in-flight session (mean microgravity exposure--114 days [34--190]). On-orbit ultrasound (US) operators used an e-learning system within 24 hours of these sessions. Expert assistance was provided using US video downlink and two-way voice. Testing was repeated 5-16 days after landing. Separate ANOVA was used on each echocardiographic variable (n = 33). Within each ANOVA, three tests were made: (a) effect of mission phase (preflight, in-flight, postflight); (b) effect of echo technician (two technicians independently analyzed the data); (c) interaction between mission phase and technician. Eleven rejections of the null hypothesis (mission phase or technician or both had no effect) were found that could be considered for possible follow up. Of these, eight rejections were for significant technician effects, not space flight. Three rejections of the null hypothesis (aortic valve time velocity integral, mitral E-wave velocity, and heart rate) were attributable to space flight but determine to not be clinically significant. No rejections were due to the interaction between technician and space flight. Thus, we found no consistent clinically significant effects of long-duration space flight on echocardiographic variables of the given group of subjects. © 2011, Wiley Periodicals, Inc.

  8. Tensor fields on orbits of quantum states and applications

    Energy Technology Data Exchange (ETDEWEB)

    Volkert, Georg Friedrich

    2010-07-19

    On classical Lie groups, which act by means of a unitary representation on finite dimensional Hilbert spaces H, we identify two classes of tensor field constructions. First, as pull-back tensor fields of order two from modified Hermitian tensor fields, constructed on Hilbert spaces by means of the property of having the vertical distributions of the C{sub 0}-principal bundle H{sub 0} {yields} P(H) over the projective Hilbert space P(H) in the kernel. And second, directly constructed on the Lie group, as left-invariant representation-dependent operator-valued tensor fields (LIROVTs) of arbitrary order being evaluated on a quantum state. Within the NP-hard problem of deciding whether a given state in a n-level bi-partite quantum system is entangled or separable (Gurvits, 2003), we show that both tensor field constructions admit a geometric approach to this problem, which evades the traditional ambiguity on defining metrical structures on the convex set of mixed states. In particular by considering manifolds associated to orbits passing through a selected state when acted upon by the local unitary group U(n) x U(n) of Schmidt coefficient decomposition inducing transformations, we find the following results: In the case of pure states we show that Schmidt-equivalence classes which are Lagrangian submanifolds define maximal entangled states. This implies a stronger statement as the one proposed by Bengtsson (2007). Moreover, Riemannian pull-back tensor fields split on orbits of separable states and provide a quantitative characterization of entanglement which recover the entanglement measure proposed by Schlienz and Mahler (1995). In the case of mixed states we highlight a relation between LIROVTs of order two and a class of computable separability criteria based on the Bloch-representation (de Vicente, 2007). (orig.)

  9. Load Responsive MLI: Thermal Insulation with High In-Atmosphere and On-Orbit Performance Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Long term storage of cryopropellants with minimal loss is required for new Exploration spacecraft. Multi-Layer Insulation (MLI) is used to insulate cryotanks, but is...

  10. Comparison of Phenomenology for Satellite Characterization

    Science.gov (United States)

    Richmond, D.; Spoto, G.

    2016-09-01

    Techniques for improved characterization of Satellites have been an area of research for several years. Many of these approaches show great promise and have been validated using models and simulations. In this paper, multiple phenomenologies that support satellite characterization will be discussed to include: optical, radar, signals, and Infra-Red. The paper will identify satellite characteristics that could be gleaned from the various data types. Algorithms that support extracting the information will be referenced. Unique collection conditions that enable a phenomenology to yield desired data will be discussed. This paper will discuss the impact of changes to satellite characterization data types over the life of an on-orbit asset. The benefits of such information will be discussed, to include re-acquiring objects after a maneuver.

  11. Improved Solar-Radiation-Pressure Models for GPS Satellites

    Science.gov (United States)

    Bar-Sever, Yoaz; Kuang, Da

    2006-01-01

    A report describes a series of computational models conceived as an improvement over prior models for determining effects of solar-radiation pressure on orbits of Global Positioning System (GPS) satellites. These models are based on fitting coefficients of Fourier functions of Sun-spacecraft- Earth angles to observed spacecraft orbital motions.

  12. 热控涂层红外发射率对GEO卫星蓄电池温度波动的影响%Effect of Thermal Control Battery Temperature Coatings Infrared Emittance on Variation in GEO Satellite

    Institute of Scientific and Technical Information of China (English)

    刘百麟; 周佐新

    2012-01-01

    Based on DFH-3 satellite platform, the simplified south satellite battery cabin is presen- ted as the thermal analysis model. According to the mechanism of battery temperature variation, five combination schemes, in which the thermal control coatings of white paint,aluminized kapton and graphite-epoxy facesheet are used for inner panel of service module board, are proposed and used to analyze the effect of thermal control coatings infrared emittance on battery temperature. The analysis results show that the range of battery temperature variation can be reduced effectively by decreasing the thermal control coatings infrared emittance of inner panel in battery cabin, especially decreasing the thermal control coatings infrared emittance of fixing panel in battery cabin. The range of battery temperature variation in optimization scheme is decreased by 50% than that in original design scheme.%在东方红一3卫星平台的基础上,将合理简化后的南蓄电池舱作为热分析模型。根据影响蓄电池温度波动的机理,提出服务舱舱板内表面常用热控涂层(白漆、镀铝膜、碳蒙皮)的5种组合方案,并量化分析了热控涂层红外发射率对蓄电池温度波动的影响。分析结果表明:降低蓄电池舱舱板内表面热控涂层红外发射率,尤其是降低蓄电池安装舱板表面的热控涂层红外发射率,可有效减小蓄电池温度波动幅度。与基准方案相比,最优组合方案能使蓄电池温度波动幅度降低50%。

  13. On-Orbit Teflon(R) FEP Degradation

    Science.gov (United States)

    Townsend, Jacqueline A.; Hansen, Patricia A.; Dever, Joyce A.

    1998-01-01

    During the Hubble Space Telescope (HST) Second Servicing Mission (SM2), degradation of unsupported Teflon(R) FEP (fluorinated ethylene propylene), used as the outer layer of the multi-layer insulation (MLI) blankets, was evident as large cracks on the telescope light shield. A sample of the degraded outer layer was retrieved during the mission and returned to Earth for ground testing and evaluation. The results of the Teflon(R) FEP sample evaluation and additional testing of pristine Teflon(R) FEP led the investigative team to theorize that the HST damage was caused by thermal cycling with deep-layer damage from electron and proton radiation which allowed the propagation of cracks along stress concentrations, and that the damage increased with the combined total dose of electrons, protons, UV and x-rays along with thermal cycling. This paper discusses the testing and evaluation of the Teflon(R) FEP.

  14. On-Orbit Teflon(trademark) FEP Degradation

    Science.gov (United States)

    Townsend, Jacqueline; Hansen, Patricia A.; Dever, Joyce A.

    1999-01-01

    During the Hubble Space Telescope (HST) Second Servicing Mission (SM2), degradation of unsupported Teflon(trademark) FEP (fluorinated ethylene propylene), used as the outer layer of the multi-layer insulation (MLI) blankets, was evident as large cracks on the telescope light shield. A sample of the degraded outer layer was retrieved during the mission and returned to Earth for ground testing and evaluation. The results of the Teflon(trademark) FEP sample evaluation and additional testing of pristine Teflon FEP led the investigative team to theorize that the HST damage was caused by thermal cycling with deep-layer damage from electron and proton radiation which allowed the propagation of cracks along stress concentrations, and that the damage increased with the combined total dose of electrons, protons, UV and x-rays along with thermal cycling. This paper discusses the testing and evaluation of the Teflon(trademark) FEP.

  15. MODIS and SeaWIFS on-orbit lunar calibration

    Science.gov (United States)

    Sun, Jielun; Eplee, R.E.; Xiong, X.; Stone, T.; Meister, G.; McClain, C.R.

    2008-01-01

    corrections to the SeaWiFS data, after more than ten years on orbit, are 19% at 865 nm, 8% at 765 nm, and 1-3% in the other bands. In this report, the lunar calibration algorithms are reviewed and the RSB gain changes observed by the lunar observations are shown for all three sensors. The lunar observations for the three instruments are compared using the USGS photometric model. The USGS lunar model facilitates the cross calibration of instruments with different spectra bandpasses whose measurements of the Moon differ in time and observing geometry.

  16. Thermodynamic Vent System for an On-Orbit Cryogenic Reaction Control Engine

    Science.gov (United States)

    Hurlbert, Eric A.; Romig, Kris A.; Jimenez, Rafael; Flores, Sam

    2012-01-01

    A report discusses a cryogenic reaction control system (RCS) that integrates a Joule-Thompson (JT) device (expansion valve) and thermodynamic vent system (TVS) with a cryogenic distribution system to allow fine control of the propellant quality (subcooled liquid) during operation of the device. It enables zero-venting when coupled with an RCS engine. The proper attachment locations and sizing of the orifice are required with the propellant distribution line to facilitate line conditioning. During operations, system instrumentation was strategically installed along the distribution/TVS line assembly, and temperature control bands were identified. A sub-scale run tank, full-scale distribution line, open-loop TVS, and a combination of procured and custom-fabricated cryogenic components were used in the cryogenic RCS build-up. Simulated on-orbit activation and thruster firing profiles were performed to quantify system heat gain and evaluate the TVS s capability to maintain the required propellant conditions at the inlet to the engine valves. Test data determined that a small control valve, such as a piezoelectric, is optimal to provide continuously the required thermal control. The data obtained from testing has also assisted with the development of fluid and thermal models of an RCS to refine integrated cryogenic propulsion system designs. This system allows a liquid oxygenbased main propulsion and reaction control system for a spacecraft, which improves performance, safety, and cost over conventional hypergolic systems due to higher performance, use of nontoxic propellants, potential for integration with life support and power subsystems, and compatibility with in-situ produced propellants.

  17. The Arctic Regional Communications Small SATellite (ARCSAT)

    Science.gov (United States)

    Casas, Joseph; Kress, Martin; Sims, William; Spehn, Stephen; Jaeger, Talbot; Sanders, Devon

    2013-01-01

    Traditional satellite missions are extremely complex and expensive to design, build, test, launch and operate. Consequently many complementary operational, exploration and research satellite missions are being formulated as a growing part of the future space community capabilities using formations of small, distributed, simple to launch and inexpensive highly capable small scale satellites. The Arctic Regional Communications small SATellite (ARCSAT) initiative would launch a Mini-Satellite "Mothership" into Polar or Sun Sync low-earth-orbit (LEO). Once on orbit, the Mothership would perform orbital insertion of four internally stored independently maneuverable nanosatellites, each containing electronically steerable antennas and reconfigurable software-defined radios. Unlike the traditional geostationary larger complex satellite communication systems, this LEO communications system will be comprised of initially a five small satellite formation that can be later incrementally increased in the total number of satellites for additional data coverage. ARCSAT will provide significant enabling capabilities in the Arctic for autonomous voice and data communications relay, Maritime Domain Awareness (MDA), data-extraction from unattended sensors, and terrestrial Search & Rescue (SAR) beacon detection missions throughout the "data starved desert" of the Arctic Region.

  18. Vibration control of a flexible space manipulator during on orbit operations

    Science.gov (United States)

    Sabatini, Marco; Gasbarri, Paolo; Monti, Riccardo; Palmerini, Giovanni Battista

    2012-04-01

    Space manipulators are complex systems, composed by robotic arms accommodated on an orbiting platform. They can be used to perform a variety of tasks: launch of satellites, retrieval of spacecraft for inspection, maintenance and repair, movement of cargo and so on. All these missions require extreme precision. However, in order to respect the mass at launch requirements, manipulators arms are usually very light and flexible, and their motion involves significant structural vibrations, especially after a grasping maneuver. In order to fulfill the maneuvers of space robotic systems it is hence necessary to properly model the forces acting on the space robot, from the main terms, such as the orbital motion, to the second order perturbations, like the gravity gradient and the orbital perturbations; also flexible excitation of the links and of the joints can be of great importance in the manipulators dynamics. The case is furthermore complicated by the fact that the manipulator, together with its supporting spacecraft, is an unconstrained body. Therefore the motion of any of its parts affects the entire system configuration. The governing equations of the dynamics of such robotic systems are highly nonlinear and fully coupled. The present paper aims at designing and studying active damping strategies and relevant devices that could be used to reduce the structural vibrations of a space manipulator with flexible links during its on orbit operations. In particular an optimized adaptive vibration control via piezoelectric devices is proposed. The number of piezoelectric devices, their placement and operational mode should be correctly chosen in order to obtain maximum performance in terms of elastic oscillations reduction and power consumption. Even though an optimal placement cannot have a universal validity, since it depends on the type of maneuver and on the overall inertial and geometrical characteristics, an approach to solve the problem is proposed.

  19. SEL2 servicing: increased science return via on-orbit propellant replenishment

    Science.gov (United States)

    Reed, Benjamin B.; DeWeese, Keith; Kienlen, Michael; Aranyos, Thomas; Pellegrino, Joseph; Bacon, Charles; Qureshi, Atif

    2016-07-01

    Spacecraft designers are driving observatories to the distant Sun-Earth Lagrange Point 2 (SEL2) to meet ever-increasing science requirements. The mass fraction dedicated to propellant for these observatories to reach and operate at SEL2 will be allocated with the upmost care, as it comes at the expense of optics and instrument masses. As such, these observatories could benefit from on-orbit refueling, allowing greater dry-to-wet mass ratio at launch and/or longer mission life. NASA is developing technologies, capabilities and integrated mission designs for multiple servicing applications in low Earth orbit (LEO), geosynchronous Earth orbit (GEO) and cisluner locations. Restore-L, a mission officially in formulation, will launch a free-flying robotic servicer to refuel a government-owned satellite in LEO by mid 2020. This paper will detail the results of a point design mission study to extend Restore-L servicing technologies from LEO to SEL2. This SEL2 mission would launch an autonomous, robotic servicer spacecraft equipped to extend the life of two space assets through refueling. Two space platforms were chosen to 1) drive the requirements for achieving SEL2 orbit and rendezvous with a spacecraft, and 2) to drive the requirements to translate within SEL2 to conduct a follow-on servicing mission. Two fuels, xenon and hydrazine, were selected to assess a multiple delivery system. This paper will address key mission drivers, such as servicer autonomy (necessitated due to communications latency at L2). Also discussed will be the value of adding cooperative servicing elements to the client observatories to reduce mission risk.

  20. On-orbit lunar calibration compared with vicarious calibration for GOSAT

    Science.gov (United States)

    Shiomi, K.; Kawakami, S.; kuze, A.; Suto, H.; Hashiguchi, T.; Kataoka, F.; Higuchi, R.; Bruegge, C.; Schwandner, F. M.

    2013-12-01

    JAXA's Greenhouse Gases Observing Satellite (GOSAT) is since 2009 in polar orbit to monitor greenhouse gases such as CO2 and CH4 from space. GOSAT consists of a Fourier Transform Spectrometer (TANSO-FTS) and a Cloud and Aerosol Imager (TANSO-CAI). The FTS has 3 polarized SWIR narrow bands and a TIR wide band. The FTS observes globally with gridded points of 10 km FOV using discrete pointing. The CAI carries 4 radiometers in the UV to SWIR with high spatial resolution of 0.5-1.5 km and a wide swath of 1000 km. In this study, we compare the lunar calibration results with the results of our annual vicarious calibration campaigns. For lunar calibrations, GOSAT observes a nearly full moon for the on-orbit radiometric calibration of the FTS SWIR bands and the CAI. Lunar calibrations are operated in April for investigation of continuous annual sensitivity trends and in July, corresponding to the annual Railroad Valley Cal/Val campaign. Since the 3rd year, lunar calibration has been planned to observe in a phase angle around 7 degrees to avoid the reflectance opposition surge in order to target the nearly-unchanged and brightest reflectance as a function of phase angle. The Railroad Valley vicarious calibration campaign is conducted by measuring the surface reflectance and atmospheric parameters coincident with a dedicated GOSAT target observation, to derive top-of-the-atmosphere radiance. The nadir surface reflectance is collected in 500x500 m areas corresponding to the CAI resolution. The off-nadir reflectance is obtained simultaneously with BRDF values, for correction. We will discuss the sensitivity study by comparison between the GOSAT lunar observation and the vicarious calibration.

  1. Verification of MEMS fabrication process for the application of MEMS solid propellant thruster arrays in space through launch and on-orbit environment tests

    Science.gov (United States)

    Oh, Hyun-Ung; Kim, Tae-Gyu; Han, Sung-Hyeon; Lee, Jongkwang

    2017-02-01

    One of the most significant barriers encountered to the space application of MEMS technology is its lack of reliability and flight heritage in space environments. In this study a MEMS solid propellant thruster array was selected for the verification test of MEMS technology in space. The function and performance of MEMS solid thruster have been previously verified by laboratory-level research in universities. To ensure the successful operation of the MEMS thruster module before flight demonstration on-orbit, launch and on-orbit environment tests were performed at the qualification level. In the launch test, sine burst, and random vibration loads were applied to the MEMS thruster module. The thermal vacuum tests were carried out for the on-orbit environment test. As a result of the launch vibration test and on-orbit environment test, the variations of the characteristics were less than 0.7%, and all the functional requirements were successfully verified after the vibration tests. The tests successfully verified the manufacturing process because the thruster module showed stable normal function before the ignition. The test result outputs will be helpful in establishing MEMS fabrication guidelines for space applications.

  2. Satellite Communications

    CERN Document Server

    Pelton, Joseph N

    2012-01-01

    The field of satellite communications represents the world's largest space industry. Those who are interested in space need to understand the fundamentals of satellite communications, its technology, operation, business, economic, and regulatory aspects. This book explains all this along with key insights into the field's future growth trends and current strategic challenges. Fundamentals of Satellite Communications is a concise book that gives all of the key facts and figures as well as a strategic view of where this dynamic industry is going. Author Joseph N. Pelton, PhD, former Dean of the International Space University and former Director of Strategic Policy at Intelstat, presents a r

  3. Thermal Performance of the XRS Helium Insert

    Science.gov (United States)

    Breon, Susan R.; DiPirro, Michael J.; Tuttle, James G.; Shirron, Peter J.; Warner, Brent A.; Boyle, Robert F.; Canavan, Edgar R.

    1999-01-01

    The X-Ray Spectrometer (XRS) is an instrument on the Japanese Astro-E satellite, scheduled for launch early in the year 2000. The XRS Helium Insert comprises a superfluid helium cryostat, an Adiabatic Demagnetization Refrigerator (ADR), and the XRS calorimeters with their cold electronics. The calorimeters are capable of detecting X-rays over the energy range 0.1 to 10 keV with a resolution of 12 eV. The Helium Insert completed its performance and verification testing at Goddard in January 1999. It was shipped to Japan, where it has been integrated with the neon dewar built by Sumitomo Heavy Industries. The Helium Insert was given a challenging lifetime requirement of 2.0 years with a goal of 2.5 years. Based on the results of the thermal performance tests, the predicted on-orbit lifetime is 2.6 years with a margin of 30%. This is the result of both higher efficiency in the ADR cycle and the low temperature top-off, more than compensating for an increase in the parasitic heat load. This paper presents a summary of the key design features and the results of the thermal testing of the XRS Helium Insert.

  4. AXAF-I ghost ray study: On orbit case

    Science.gov (United States)

    Gaetz, T. J.

    1993-01-01

    The problem of baffles for control of singly reflected (and nonreflected) ghost rays is considered. The theory of baffle design for Wolter Type I grazing incidence optics is reviewed, and a set of sample baffle parameters is obtained subject to the assumptions of nominal mirror figures and perfect manufacture and alignment of baffles. It is found that baffles forward of the optics (in the thermal precollimator) and between the mirror elements (at the CAP) are sufficient to allow the simultaneous ghost image and vignetting requirements to be satisfied for HRMA shells P1H1, P3H3, and P4H4. However, these baffles are not sufficient for the innermost shell P6H6; at best the requirements are slightly violated and there is no margin for tolerances. The addition of a baffle interior to the P6 space at an axial station about one third of the way forward from the aft end of the paraboloid will allow the ghost ray and vignetting requirements to be met. The minimum ghost ray angles and the vignetting angles are sensitive functions of the baffle positions and radii; tolerances of considerably better than 1 mm will be required. The sensitivities are coupled and correlated; further investigations should be undertaken in order to obtain baffle parameters which, combined with likely achievable tolerances, will minimize the risk of the vignetting/ghost ray requirements not being met. The lightweight carbon-epoxy composite used for thermal baffles has insufficient X-ray opacity to be a suitable material for construction of the controlling X-ray baffles; further study is needed to determine an appropriate material and to investigate its thermal and mechanical implications.

  5. Satellite Geomagnetism

    DEFF Research Database (Denmark)

    Olsen, Nils; Stolle, Claudia

    2012-01-01

    Observations of Earth’s magnetic field from space began more than 50 years ago. A continuous monitoring of the field using low Earth orbit (LEO) satellites, however, started only in 1999, and three satellites have taken highprecision measurements of the geomagnetic field during the past decade...... ability to characterize and understand the many sources that contribute to Earth’s magnetic field. In this review, we summarize investigations of Earth’s interior and environment that have been possible through the analysis of high-precision magnetic field observations taken by LEO satellites........ The unprecedented time-space coverage of their data opened revolutionary new possibilities for monitoring, understanding, and exploring Earth’s magnetic field. In the near future, the three-satellite constellation Swarm will ensure continuity of such measurement and provide enhanced possibilities to improve our...

  6. CALET Data Processing and On-Orbit Detector Calibration

    Science.gov (United States)

    Asaoka, Yoichi

    2016-07-01

    The CALET (CALorimetric Electron Telescope), launched to the International Space Station (ISS) in August 2015 and accumulating scientific data since October 2015, aims at long duration observations of high-energy cosmic rays onboard the ISS. The CALET detector features the very thick calorimeter of 30 radiation-length which consists of imaging and total absorption calorimeters (IMC and TASC respectively). It will directly measure the cosmic-ray electron spectrum in the energy range of 1 GeV-20 TeV with 2% energy resolution. In addition, the instrument has capabilities to measure the spectra of gamma-rays, protons and nuclei well into the TeV range. Precise pointing direction is determined with an attached Advanced Stellar Camera (ASC). To operate the CALET onboard ISS, the CALET Ground Support Equipment (CALET-GSE) and Waseda CALET Operations Center (WCOC) have been established at JAXA and Waseda Univ., respectively. Scientific operations of CALET are planned in the WCOC taking into account the orbital variations of geomagnetic rigidity cutoff. Scheduled command sequence is utilized to control CALET observation mode on orbit. A calibration data trigger mode, such as recording pedestal and penetrating particle events, a low-energy electron trigger mode operating at high geomagnetic latitude, and other dedicated trigger modes are scheduled around the ISS orbit while maintaining the maximum exposure to high-energy electrons. Scientific raw data called CALET Level 0 data are generated from raw telemetry packets in the CALET-GSE on an hourly basis by correcting time-order and by completing the data set using stored data taken during loss of real-time telemetry downlink. Level 0 data are processed to CALET Level 1 data in the WCOC by interpreting all the raw packets and building cosmic-ray event data as well as house keeping data. Level 1 data are then distributed to the collaboration for scientific data analysis. Level 1 data analysis is focused on the detector

  7. Satellite (Natural)

    Science.gov (United States)

    Murdin, P.

    2000-11-01

    In its most general sense, any celestial object in orbit around a similar larger object. Thus, for example, the Magellanic Clouds are satellite galaxies of our own Milky Way galaxy. Without qualification, the term is used to mean a body in orbit around a planet; an alternative term is moon. The term natural satellite distinguishes these bodies from artificial satellites—spacecraft placed in orbi...

  8. Mixed fleet assessment for on-orbit consumables resupply

    Science.gov (United States)

    Eberhardt, Ralph N.; Dominick, Sam M.

    1988-01-01

    Significant increases in the cost effectiveness and operational flexibility of in-space systems can be realized when the capability to replenish consumable fluids and propellants is incorporated into the designs of spacecraft, satellites, and orbiting platforms and laboratories. Reusable tankers are currently being designed for transporting fluids to space. A number of options exist for transporting the fluids and propellants to the space-based user systems. The fluids can be transported to space either in the Shuttle cargo bay or using Expendable Launch Vehicles (ELVs). Resupply can thus be accomplished either from the Shuttle bay, or the tanker can be removed from an ELV and attached to a carrier such as the Orbital Maneuvering Vehicle (OMV) or Orbital Transfer Vehicle (OTV) for transport to the user to be serviced. A third option involves locating the tanker at the Space Station or an unmanned platform as a quasi-permanent servicing facility which returns to the ground for recycling once its tanks have been depleted. This paper documents the impacts of a mixed fleet approach to consumables logistics to orbit. Both storable fluids and propellants, and superfluid helium, are considered. Current modular tanker designs for monopropellants, bipropellants and water for Space Station propulsion are discussed. Trade-offs in superfluid helium tanker sizes, shapes to fit the range of ELVs currently available, and boil-off losses associated with longer-term (greater than 6 months) space-basing, are addressed.

  9. WPI Nanosat-3 Final Report: PANSAT - Powder Metallurgy and Navigation Satellite

    Science.gov (United States)

    2006-02-06

    stabilization method to determine optimum magnet location for desired on-orbit satellite orientation and antenna pointing characteristics • purchased and...navigation system that can provide orientation and geolocation information. GPS is becoming common on satellites, but the use of GPS for satellite ... orientation , particularly with a short baseline system is unusual. In the course of addressing these two objects, we proposed to address the

  10. 卫星虚拟热试验平台建模工具模块研究%Tool module for modelling satellite virtual thermal test platform

    Institute of Scientific and Technical Information of China (English)

    曹志松; 刘绍然; 裴一飞

    2012-01-01

    为预示卫星热试验结果,给热试验设计提供参考,北京卫星环境工程研究所自主研发了卫星虚拟热试验平台.文章介绍了虚拟热试验平台中建模工具模块的建模思想、对象组合策略和数据存储方法;其中数据存储方法采用预排序遍历树算法,相比于传统的邻接列表模式,具有更高的查询效率;最后还介绍了基于本建模工具模块的红外加热笼建模方法.%The virtual thermal test platform is developed to predict the results of a real thermal test, and therefore it can be used to design the real thermal test. The modeling method, the object combination strategy, and the data storage scheme of the modeling tool module for the virtual thermal test platform are analyzed. The model data are stored in the datasheet and queried by using a modified preordered tree traversal algorithm. This algorithm is more efficient, as compared to the adjacency list model. Finally, a method of modeling the infrared cage based on the modeling tool module is presented.

  11. The Moon Mineralogy Mapper (M3) imaging spectrometer for lunar science: Instrument description, calibration, on-orbit measurements, science data calibration and on-orbit validation

    Science.gov (United States)

    Green, R.O.; Pieters, C.; Mouroulis, P.; Eastwood, M.; Boardman, J.; Glavich, T.; Isaacson, P.; Annadurai, M.; Besse, S.; Barr, D.; Buratti, B.; Cate, D.; Chatterjee, A.; Clark, R.; Cheek, L.; Combe, J.; Dhingra, D.; Essandoh, V.; Geier, S.; Goswami, J.N.; Green, R.; Haemmerle, V.; Head, J.; Hovland, L.; Hyman, S.; Klima, R.; Koch, T.; Kramer, G.; Kumar, A.S.K.; Lee, Kenneth; Lundeen, S.; Malaret, E.; McCord, T.; McLaughlin, S.; Mustard, J.; Nettles, J.; Petro, N.; Plourde, K.; Racho, C.; Rodriquez, J.; Runyon, C.; Sellar, G.; Smith, C.; Sobel, H.; Staid, M.; Sunshine, J.; Taylor, L.; Thaisen, K.; Tompkins, S.; Tseng, H.; Vane, G.; Varanasi, P.; White, M.; Wilson, D.

    2011-01-01

    , spatial, and uniformity validation effort has been pursued with selected data sets including an Earth-view data set. With this effort an initial validation of the on-orbit performance of the imaging spectrometer has been achieved, including validation of the cross-track spectral uniformity and spectral instantaneous field of view uniformity. The Moon Mineralogy Mapper is the first imaging spectrometer to measure a data set of this kind at the Moon. These calibrated science measurements are being used to address the full set of science goals and objectives for this mission. Copyright 2011 by the American Geophysical Union.

  12. Magma extrusion during the Ubinas 2013–2014 eruptive crisis based on satellite thermal imaging (MIROVA) and ground-based monitoring

    Science.gov (United States)

    Coppola, Diego; Macedo, Orlando; Ramos, Domingo; Finizola, Anthony; Delle Donne, Dario; del Carpio, Jose; White, Randall A.; McCausland, Wendy; Centeno, Riky; Rivera, Marco; Apaza, Fredy; Ccallata, Beto; Chilo, Wilmer; Cigolini, Corrado; Laiolo, Marco; Lazarte, Ivonne; Machaca, Roger; Masias, Pablo; Ortega, Mayra; Puma, Nino; Taipe, Edú

    2015-01-01

    After 3 years of mild gases emissions, the Ubinas volcano entered in a new eruptive phase on September 2nd, 2013. The MIROVA system (a space-based volcanic hot-spot detection system), allowed us to detect in near real time the thermal emissions associated with the eruption and provided early evidence of magma extrusion within the deep summit crater. By combining IR data with plume height, sulfur emissions, hot spring temperatures and seismic activity, we interpret the thermal output detected over Ubinas in terms of extrusion rates associated to the eruption. We suggest that the 2013–2014 eruptive crisis can be subdivided into three main phases: (i) shallow magma intrusion inside the edifice, (ii) extrusion and growing of a lava plug at the bottom of the summit crater coupled with increasing explosive activity and finally, (iii) disruption of the lava plug and gradual decline of the explosive activity. The occurrence of the 8.2 Mw Iquique (Chile) earthquake (365 km away from Ubinas) on April 1st, 2014, may have perturbed most of the analyzed parameters, suggesting a prompt interaction with the ongoing volcanic activity. In particular, the analysis of thermal and seismic datasets shows that the earthquake may have promoted the most intense thermal and explosive phase that culminated in a major explosion on April 19th, 2014.These results reveal the efficiency of space-based thermal observations in detecting the extrusion of hot magma within deep volcanic craters and in tracking its evolution. We emphasize that, in combination with other geophysical and geochemical datasets, MIROVA is an essential tool for monitoring remote volcanoes with rather difficult accessibility, like those of the Andes that reach remarkably high altitudes.

  13. AMOS Galaxy 15 Satellite Observations and Analysis

    Science.gov (United States)

    Hall, D.

    2011-09-01

    In early April 2010, the Galaxy 15 geosynchronous satellite experienced an on-orbit anomaly. Even though the satellite's transmitters and articulating solar panel were still functioning, ground controllers lost the ability to command and maneuver the satellite. With its orbital position no longer maintained, Galaxy 15 began to drift eastward. This forced several other satellites to make collision avoidance maneuvers during the following months. Soon after the initial anomaly, Galaxy 15's operators predicted that the satellite’s reaction wheels would eventually become saturated, causing a loss of both spacecraft attitude and proper sunward orientation of the solar panels. This "off-pointing" event finally occurred in late December, ultimately leading to a depletion of Galaxy 15's batteries. This near-death experience had a fortunate side effect, however, in that it forced the satellite’s command unit to reboot and once again be able to both receive and execute ground commands. The satellite operators have since recovered control of the satellite. AMOS conducted non-resolved photometric observations of Galaxy 15 before, during and after these events. Similar observations were conducted of Galaxy 12, the nearly-identical replacement satellite. This presentation presents and discusses these temporal brightness signatures in detail, comparing the changing patterns in the observations to the known sequence of events.

  14. Superfluid helium orbital resupply - The status of the SHOOT flight experiment and preliminary user requirements. [Superfluid Helium On-Orbit Transfer

    Science.gov (United States)

    Dipirro, Michael J.; Kittel, Peter

    1989-01-01

    The Superfluid Helium On-Orbit Transfer (SHOOT) flight experiment is designed to demonstrate the components and techniques necessary to resupply superfluid helium to satellites or Space Station based facilities. A top level description as well as the development status of the critical components to be used in SHOOT are discussed. Some of these components include the thermomechanical pump, the fluid acquisition system, the normal helium and superfluid helium phase separators, Venturi flow meter, cryogenic valves, burst disks, and astronaut-compatible EVA coupler and transfer line. The requirements for the control electronics and software are given. A preliminary description of the requirements that must be met by a satellite requiring superfluid helium servicing is given. In particular, minimum and optimum plumbing arrangements are shown, transfer line flow impedance and heat input impacts are assessed, instrumentation is described, and performance parameters are considered.

  15. Ceramic Adhesive and Methods for On-Orbit Repair of Re-Entry Vehicles

    Science.gov (United States)

    Riedell, James A.; Easler, Timothy E.

    2013-01-01

    This adhesive is capable of repairing damaged leading edge components of reentry vehicles while in space, and is novel with regard to its ability to be applied in the vacuum of space, and in a microgravity environment. Once applied, the adhesive provides thermal and oxidation protection to the substrate (in this case, reinforced carbon/carbon composites, RCCs) during re-entry of a space vehicle. Although there may be many formulations for repair adhesives, at the time of this reporting, this is the first known adhesive capable of an on-orbit repair. The adhesive is an engineered ceramic material composed of a pre-ceramic polymer and refractory powders in the form of a paste or putty that can be applied to a scratched, cracked, or fractured composite surface, covering and protecting the damaged area. The adhesive is then "cured" with a heat cycle, thereby cross-linking the polymer into a hardened material and bonding it to the substrate. During the heat of reentry, the material is converted to a ceramic coating that provides thermal and oxidative stability to the repaired area, thus allowing the vehicle to pass safely from space into the upper atmosphere. Ceramic powders such as SiC, ZrB2 and Y2O3 are combined with allylhydridopolycarbosilane (AHPCS) resin, and are mixed to form a paste adhesive. The material is then applied to the damaged area by brush, spatula, trowel, or other means to fill cracks, gaps, and holes, or used to bond patches onto the damaged area. The material is then cured, in a vacuum, preferably at 250F (approximately equal to 121C) for two hours. The re-entry heating of the vehicle at temperatures in excess of 3,000F (approximately equal to 1,650C) then converts this material into a ceramic coating. This invention has demonstrated advantages in resistance to high temperatures, as was demonstrated in more than 100 arc-jet tests in representative environments at NASA. Extensive testing verified oxidation protection for the repaired substrate (RCC

  16. Satellite Ocean Biology: Past, Present, Future

    Science.gov (United States)

    McClain, Charles R.

    2012-01-01

    Since 1978 when the first satellite ocean color proof-of-concept sensor, the Nimbus-7 Coastal Zone Color Scanner, was launched, much progress has been made in refining the basic measurement concept and expanding the research applications of global satellite time series of biological and optical properties such as chlorophyll-a concentrations. The seminar will review the fundamentals of satellite ocean color measurements (sensor design considerations, on-orbit calibration, atmospheric corrections, and bio-optical algorithms), scientific results from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) and Moderate resolution Imaging Spectroradiometer (MODIS) missions, and the goals of future NASA missions such as PACE, the Aerosol, Cloud, Ecology (ACE), and Geostationary Coastal and Air Pollution Events (GeoCAPE) missions.

  17. On-Orbit and Ground Performance of the PGBA Plant Growth Facility

    Science.gov (United States)

    Hoehn, A.; Chamberlain, D. J.; Forsyth, S. W.; Hanna, D. S.; Scovazzo, P.; Stodieck, L. S.; Heyenga, G.; Kliss, Mark

    1997-01-01

    PGBA, a plant growth facility developed for commercial space biotechnology research, successfully grew a total of 30 plants (6 species) for 10 days on board the Space Shuttle Endeavour (STS-77) and is scheduled for reflight on board MSL-1 (STS-83) for a 16 day flight. The PGBA life support systems provide atmospheric, thermal, and humidity control as well as lighting and nutrient supply in a 23.6 liter chamber. Atmosphere treatment includes ethylene and other hydrocarbon removal, CO2 replenishment, and O2 control. The normally closed system uses controlled CO2 replenishment from the crew cabin as required by the plants. Temperature is controlled (1 C) at user-specified setpoints between 20-32 C, using water-filled coolant loops, solid state Peltier thermoelectric devices, and liquid heat exchangers. The thermoelectric cooling systems were optimized for low power consumption and high cooling efficiencies. Relative humidity is maintained between 60-100% using a cooled porous metal plate to remove water vapor from the air stream without cooling the bulk air below the dew point. The lighting system utilizes three compact fluorescent bi-axial lights with variable lighting control and light intensity (PAR) between 220 and 330 micromol/sq m/s at a distance of 20 cm in spaceflight configuration (on orbit power limited to 230 Watt for entire payload). A ground, up to 550 micromol/sq m/s light intensity can be achieved with 330 Watt payload power consumption. Plant water and nutrient support is sustained via the 'Nutrient Pack' system including the passive or active 'Water Replenishable Nutrient Pack.' The root matrix material (soil or Agar) and nutrient formulation of each pack is prepared according to plant species and experimental requirements. These systems were designed by NASA Ames personnel. Data acquisition and control systems provide 32 channels of environmental data as well as digitized or analog video signals for downlink.

  18. Hubble Space Telescope satellite

    Science.gov (United States)

    Mitchell, R. E.

    1985-01-01

    The Hubble Space Telescope, named for the American astronomer Edwin Powell Hubble, will be the largest and most powerful astronomical instrument ever orbited. Placed above the obscuring effects of the earth's atmosphere in a 600-km orbit, this remotely-controlled, free-flying satellite observatory will expand the terrestrial-equivalent resolution of the universe by a factor of seven, or a volumetric factor of 350. This telescope has a 2.4-m primary mirror and can accommodate five scientific instruments (cameras, spectrographs and photometers). The optics are suitable for a spectral range from 1100 angstrom to 1 mm wavelength. With a projected service life of fifteen years, the spacecraft can be serviced on-orbit for replacement of degraded systems, to insert advanced scientific instruments, and to reboost the telescope from decayed altitudes. The anticipated image quality will be a result of extremely precise lambda/20 optics, stringent cleanliness, and very stable pointing: jitter will be held to less than 0.01 arcsecond for indefinite observation periods, consistent with instrument apertures as small as 0.1 arcsecond.

  19. On-Orbit Assembly of a Universally Interlocking Modular Spacecraft (7225-020) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Physical Sciences Inc. and Advanced Solutions, Inc. propose a novel approach for on-orbit assembly of a modular spacecraft using a unique universal, intelligent,...

  20. TRUSSELATOR - On-Orbit Fabrication of High Performance Support Structures for Solar Arrays Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Trusselator technology will enable on-orbit fabrication of support structures for high-power solar arrays and large antennas, achieving order-of-magnitude...

  1. TRUSSELATOR - On-Orbit Fabrication of High Performance Support Structures for Solar Arrays Project

    Data.gov (United States)

    National Aeronautics and Space Administration — TUI proposes to develop and demonstrate a process for fabricating high-performance composite truss structures on-orbit and integrating them with thin film solar cell...

  2. Suspended Cell Culture ANalysis (SCAN) Tool to Enhance ISS On-Orbit Capabilities Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Aurora Flight Sciences and partner, Draper Laboratory, propose to develop an on-orbit immuno-based label-free Suspension Cell Culture ANalysis tool, SCAN tool, which...

  3. A Modular Artificial Intelligence Inference Engine System (MAIS) for support of on orbit experiments

    Science.gov (United States)

    Hancock, Thomas M., III

    1994-01-01

    This paper describes a Modular Artificial Intelligence Inference Engine System (MAIS) support tool that would provide health and status monitoring, cognitive replanning, analysis and support of on-orbit Space Station, Spacelab experiments and systems.

  4. SpiderFab: Process for On-Orbit Construction of Kilometer-Scale Apertures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This project develops a process for automated on-orbit construction of very large structures and multifunctional components. The foundation of this process is a...

  5. On-orbit validation system for space structure composite actuators Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR project delivers an On-orbit Validation System (OVS) that provides performance and durability data for Macro Fiber Composite (MFC) active piezocomposite...

  6. On-Orbit Assembly of a Universally Interlocking Modular Spacecraft (7224-110) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Physical Sciences Inc. and Advanced Solutions, Inc. propose a novel approach for on-orbit assembly of a modular spacecraft using a unique universal, intelligent,...

  7. On-orbit servicing system assessment and optimization methods based on lifecycle simulation under mixed aleatory and epistemic uncertainties

    Science.gov (United States)

    Yao, Wen; Chen, Xiaoqian; Huang, Yiyong; van Tooren, Michel

    2013-06-01

    To assess the on-orbit servicing (OOS) paradigm and optimize its utilities by taking advantage of its inherent flexibility and responsiveness, the OOS system assessment and optimization methods based on lifecycle simulation under uncertainties are studied. The uncertainty sources considered in this paper include both the aleatory (random launch/OOS operation failure and on-orbit component failure) and the epistemic (the unknown trend of the end-used market price) types. Firstly, the lifecycle simulation under uncertainties is discussed. The chronological flowchart is presented. The cost and benefit models are established, and the uncertainties thereof are modeled. The dynamic programming method to make optimal decision in face of the uncertain events is introduced. Secondly, the method to analyze the propagation effects of the uncertainties on the OOS utilities is studied. With combined probability and evidence theory, a Monte Carlo lifecycle Simulation based Unified Uncertainty Analysis (MCS-UUA) approach is proposed, based on which the OOS utility assessment tool under mixed uncertainties is developed. Thirdly, to further optimize the OOS system under mixed uncertainties, the reliability-based optimization (RBO) method is studied. To alleviate the computational burden of the traditional RBO method which involves nested optimum search and uncertainty analysis, the framework of Sequential Optimization and Mixed Uncertainty Analysis (SOMUA) is employed to integrate MCS-UUA, and the RBO algorithm SOMUA-MCS is developed. Fourthly, a case study on the OOS system for a hypothetical GEO commercial communication satellite is investigated with the proposed assessment tool. Furthermore, the OOS system is optimized with SOMUA-MCS. Lastly, some conclusions are given and future research prospects are highlighted.

  8. Impact evaluation of an orbital depot on on-orbit servicing infrastructures dedicated to modularized earth-orbiting platforms

    Science.gov (United States)

    Sarton du Jonchay, Tristan; Ho, Koki

    2017-03-01

    This paper aims to quantify the responsiveness of two on-orbit servicing infrastructures providing services to multiple serviceable platforms in coplanar medium Earth orbit (MEO) and geostationary orbit (GEO). The platforms to be serviced are assumed to be made of elementary units (EUs). EUs are small standardized structural units capable of aggregating with each other and gathering the key functions of a typical satellite within the size of a 6U cubesat. The first servicing infrastructure considered in this paper, called "Without Depot" (WoD), includes a launch vehicle and a robotic servicer. The second servicing infrastructure, called "With Depot" (WD) includes a launch vehicle, a robotic servicer and an orbital depot of EUs. The responsiveness of these infrastructures is quantified using a queueing theory-based stochastic simulation on Simulink taking into account the launch and platform random failures. The metrics used to quantify the responsiveness are the service completion rate and the average waiting time before an EU is replaced over a 10-year period of operation. With respect to those metrics, it is demonstrated that WD is more responsive than WoD. However, WD is also shown to be likely to cost more than WoD. Finally, the sensitivity of the responsiveness of WD to the capacity of the orbital depot is analyzed to find the minimum storage capacity for which WD is the most responsive. This last result could be of interest for space designers dealing with the sizing of on-orbit servicing infrastructures. We believe that the concept introduced in this paper will be a critical milestone in the design of a responsive integrated space infrastructure dedicated to the development and prosperity of a new MEO/GEO economy.

  9. Scientific Satellites

    Science.gov (United States)

    1967-01-01

    followed Hale’s into orbit. In 1879, Jules Verne wrote about launching small satellites with a gun possessing a muzzle velocity of 10 000 m/sec (ref. 3...was activated in 1950.11 It was located only a few tens of miles from the spot where Jules Verne had his Baltimore Gun Club fire a manned projectile to...principle, satellites can be launched by a single impulse applied at the Earth’s surface-say, with a large cannon, & la Jules Verne (sec. 8-3). In

  10. Small Satellite Passive Magnetic Attitude Control

    Science.gov (United States)

    Gerhardt, David T.

    Passive Magnetic Attitude Control (PMAC) is capable of aligning a satellite within 5 degrees of the local magnetic field at low resource cost, making it ideal for a small satellite. However, simulation attempts to date have not been able to predict the attitude dynamics at a level sufficient for mission design. Also, some satellites have suffered from degraded performance due to an incomplete understanding of PMAC system design. This dissertation alleviates these issues by discussing the design, inputs, and validation of PMAC systems for small satellites. Design rules for a PMAC system are defined using the Colorado Student Space Weather Experiment (CSSWE) CubeSat as an example. A Multiplicative Extended Kalman Filter (MEKF) is defined for the attitude determination of a PMAC satellite without a rate gyro. After on-orbit calibration of the off-the-shelf magnetometer and photodiodes and an on-orbit fit to the satellite magnetic moment, the MEKF regularly achieves a three sigma attitude uncertainty of 4 degrees or less. CSSWE is found to settle to the magnetic field in seven days, verifying its attitude design requirement. A Helmholtz cage is constructed and used to characterize the CSSWE bar magnet and hysteresis rods both individually and in the flight configuration. Fitted parameters which govern the magnetic material behavior are used as input to a PMAC dynamics simulation. All components of this simulation are described and defined. Simulation-based dynamics analysis shows that certain initial conditions result in abnormally decreased settling times; these cases may be identified by their dynamic response. The simulation output is compared to the MEKF output; the true dynamics are well modeled and the predicted settling time is found to possess a 20 percent error, a significant improvement over prior simulation.

  11. Inspection of the Math Model Tools for On-Orbit Assessment of Impact Damage Report. Version 1.0

    Science.gov (United States)

    Harris, Charles E.; Raju, Ivatury S.; Piascik, Robert S.; Kramer White, Julie; Labbe, Steve G.; Rotter, Hank A.

    2005-01-01

    In Spring of 2005, the NASA Engineering Safety Center (NESC) was engaged by the Space Shuttle Program (SSP) to peer review the suite of analytical tools being developed to support the determination of impact and damage tolerance of the Orbiter Thermal Protection Systems (TPS). The NESC formed an independent review team with the core disciplines of materials, flight sciences, structures, mechanical analysis and thermal analysis. The Math Model Tools reviewed included damage prediction and stress analysis, aeroheating analysis, and thermal analysis tools. Some tools are physics-based and other tools are empirically-derived. Each tool was created for a specific use and timeframe, including certification, real-time pre-launch assessments, and real-time on-orbit assessments. The tools are used together in an integrated strategy for assessing the ramifications of impact damage to tile and RCC. The NESC teams conducted a peer review of the engineering data package for each Math Model Tool. This report contains the summary of the team observations and recommendations from these reviews.

  12. Spacecraft Modularity for Serviceable Satellites

    Science.gov (United States)

    Rossetti, Dino; Keer, Beth; Panek, John; Reed, Benjamin; Cepollina, Frank; Ritter, Robert

    2015-01-01

    Satellite servicing has been a proven capability of NASA since the first servicing missions in the 1980s with astronauts on the space shuttle. This capability enabled the on-orbit assembly of the International Space Station (ISS) and saved the Hubble Space Telescope (HST) mission following the discovery of the flawed primary mirror. The effectiveness and scope of servicing opportunities, especially using robotic servicers, is a function of how cooperative a spacecraft is. In this paper, modularity will be presented as a critical design aspect for a spacecraft that is cooperative from a servicing perspective. Different features of modularity are discussed using examples from HST and the Multimission Modular Spacecraft (MMS) program from the 1980s and 1990s. The benefits of modularity will be presented including those directly related to servicing and those outside of servicing including reduced costs and increased flexibility. The new Reconfigurable Operational spacecraft for Science and Exploration (ROSE) concept is introduced as an affordable implementation of modularity that provides cost savings and flexibility. Key aspects of the ROSE architecture are discussed such as the module design and the distributed avionics architecture. The ROSE concept builds on the experience from MMS and due to its modularity, would be highly suitable as a future client for on-orbit servicing.

  13. Experimental Investigation on the Feasibility of Using a Fresnel Lens as a Solar-Energy Collection System for Enhancing On-Orbit Power Generation Performance

    Directory of Open Access Journals (Sweden)

    Tae-Yong Park

    2017-01-01

    Full Text Available Cube satellites have a limitation for generating power because of their cubic structure and extremely small size. In addition, the incidence angle between the sun and the solar panels continuously varies owing to the revolution and rotation of the satellite according to the attitude control strategy. This angle is an important parameter for determining the power generation performance of the cube satellite. In this study, we performed an experimental feasibility study that uses a Fresnel lens as a solar-energy collection system for cube satellite applications, so that the power generation efficiency can be enhanced under the worst incidence angle condition between the sun and solar panels by concentrating and redirecting solar energy onto the solar panels with a commercial Fresnel lens. To verify the effectiveness of the proposed system, we conducted a power-measurement test using a solar simulator and Fresnel lenses at various angles to the light source. In addition, we predicted the on-orbit power-generation enhancement achieved by employing the solar-energy collection system with various attitude control strategies.

  14. Tethered satellite design

    Science.gov (United States)

    Manarini, G.

    1986-01-01

    The capability of the satellite to perform a variety of space operations to be accomplished from the shuttle is reviewed considering use of the satellite with man-in-loop and closed loop modes and deployment (toward or away from Earth, up to 100 km), stationkeeping, retrieval and control of the satellite. Scientific payloads are to be used to perform experiments and scientific investigation for applications such as magnetometry, electrodynamics, atmospheric science, chemical release, communications, plasmaphysics, dynamic environment, and power and thrust generation. The TSS-S will be reused for at least 3 missions after reconfiguration and refurbishment by changing the peculiar mission items such as thermal control, fixed boom for experiments, aerodynamic tail for yaw attitude control, external skin, experiments, and any other feature. The TSS-S is to be composed of three modules in order to allow independent integration of a single module and to facilitate the refurbishment and reconfiguration between flights. The three modules are service, auxiliary propulsion, and payload modules.

  15. NOAA Coral Reef Watch Operational Near-real-time Twice-weekly Global 50 km Satellite Coral Bleaching Thermal Stress Monitoring Product Suite from 2001-01-01 to 2001-12-29 (NCEI Accession 0075816)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's polar-orbiting satellites measure SST around the globe in near-real-time, and Coral Reef Watch produces a suite of products derived from this set of satellite...

  16. NOAA Coral Reef Watch Operational Near-real-time Twice-weekly Global 50 km Satellite Coral Bleaching Thermal Stress Monitoring Product Suite from 2005-12-30 to 2006-12-30 (NODC Accession 0075821)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's polar-orbiting satellites measure SST around the globe in near-real-time, and Coral Reef Watch produces a suite of products derived from this set of satellite...

  17. NOAA Coral Reef Watch Operational Near-real-time Twice-weekly Global 50 km Satellite Coral Bleaching Thermal Stress Monitoring Product Suite from 2000-11-28 to 2000-12-31 (NCEI Accession 0075815)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's polar-orbiting satellites measure SST around the globe in near-real-time, and Coral Reef Watch produces a suite of products derived from this set of satellite...

  18. NOAA Coral Reef Watch Operational Near-real-time Twice-weekly Global 50 km Satellite Coral Bleaching Thermal Stress Monitoring Product Suite from 2008-12-31 to 2009-12-31 (NODC Accession 0075825)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's polar-orbiting satellites measure SST around the globe in near-real-time, and Coral Reef Watch produces a suite of products derived from this set of satellite...

  19. NOAA Coral Reef Watch Operational Near-real-time Twice-weekly Global 50 km Satellite Coral Bleaching Thermal Stress Monitoring Product Suite from 2009-12-31 to 2010-12-30 (NODC Accession 0075824)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's polar-orbiting satellites measure SST around the globe in near-real-time, and Coral Reef Watch produces a suite of products derived from this set of satellite...

  20. NOAA Coral Reef Watch Operational Near-real-time Twice-weekly Global 50 km Satellite Coral Bleaching Thermal Stress Monitoring Product Suite from 2007-12-31 to 2008-12-31 (NODC Accession 0075823)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's polar-orbiting satellites measure SST around the globe in near-real-time, and Coral Reef Watch produces a suite of products derived from this set of satellite...

  1. NOAA Coral Reef Watch Operational Near-real-time Twice-weekly Global 50 km Satellite Coral Bleaching Thermal Stress Monitoring Product Suite from 2001-12-29 to 2002-12-31 (NCEI Accession 0075817)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's polar-orbiting satellites measure SST around the globe in near-real-time, and Coral Reef Watch produces a suite of products derived from this set of satellite...

  2. NOAA Coral Reef Watch Operational Near-real-time Twice-weekly Global 50 km Satellite Coral Bleaching Thermal Stress Monitoring Product Suite from 2003-12-29 to 2004-12-28 (NODC Accession 0075819)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's polar-orbiting satellites measure SST around the globe in near-real-time, and Coral Reef Watch produces a suite of products derived from this set of satellite...

  3. NOAA Coral Reef Watch Operational Near-real-time Twice-weekly Global 50 km Satellite Coral Bleaching Thermal Stress Monitoring Product Suite from 2002-12-31 to 2003-12-29 (NODC Accession 0075818)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's polar-orbiting satellites measure SST around the globe in near-real-time, and Coral Reef Watch produces a suite of products derived from this set of satellite...

  4. NOAA Coral Reef Watch Operational Near-real-time Twice-weekly Global 50 km Satellite Coral Bleaching Thermal Stress Monitoring Product Suite from 2004-12-28 to 2005-12-30 (NODC Accession 0075820)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's polar-orbiting satellites measure SST around the globe in near-real-time, and Coral Reef Watch produces a suite of products derived from this set of satellite...

  5. NOAA Coral Reef Watch Operational Near-real-time Twice-weekly Global 50 km Satellite Coral Bleaching Thermal Stress Monitoring Product Suite from 2010-12-30 to 2011-12-29 (NODC Accession 0088492)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's polar-orbiting satellites measure SST around the globe in near-real-time, and Coral Reef Watch produces a suite of products derived from this set of satellite...

  6. NOAA Coral Reef Watch Operational Near-real-time Twice-weekly Global 50 km Satellite Coral Bleaching Thermal Stress Monitoring Product Suite from 2006-12-30 to 2007-12-31 (NODC Accession 0075822)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's polar-orbiting satellites measure SST around the globe in near-real-time, and Coral Reef Watch produces a suite of products derived from this set of satellite...

  7. Assessments and applications of Terra and Aqua MODIS on-orbit electronic calibration

    Science.gov (United States)

    Xiong, Xiaoxiong; Chen, Na; Li, Yonghong; Wilson, Truman

    2016-09-01

    MODIS has 36 spectral bands located on four focal plane assemblies (FPAs), covering wavelengths from 0.41 to 14.4 μm. MODIS bands 1-30 collect data using photovoltaic (PV) detectors and, therefore, are referred to as the PV bands. Similarly, bands 31-36 using photoconductive (PC) detectors are referred to as the PC bands. The MODIS instrument was built with a set of on-board calibrators (OBCs) in order to track on-orbit changes of its radiometric, spatial, and spectral characteristics. In addition, an electronic calibration (ECAL) function can be used to monitor on-orbit changes of its electronic responses (gains). This is accomplished via a series of stair step signals generated by the ECAL function. These signals, in place of the FPA detector signals, are amplified and digitized just like the detector signals. Over the entire mission of both Terra and Aqua MODIS, the ECAL has been performed for the PV bands and used to assess their on-orbit performance. This paper provides an overview of MODIS on-orbit calibration activities with a focus on the PV ECAL, including its calibration process and approaches used to monitor the electronic performance. It presents the results derived and lessons learned from Terra and Aqua MODIS on-orbit ECAL. Also discussed are some of the applications performed with the information provided by the ECAL data.

  8. Assessment of MODIS and VIIRS Solar Diffuser On-Orbit Degradation

    Science.gov (United States)

    Xiong, Xiaoxiong; Fulbright, Jon; Angal, Amit; Wang, Zhipeng; Geng, Xu; Butler, Jim

    2015-01-01

    Both MODIS and VIIRS instruments use a solar diffuser (SD) for their reflective solar bands (RSB) on-orbit calibration. On-orbit changes in SD bi-directional reflectance factor (BRF) are tracked by a solar diffuser stability monitor (SDSM) using its alternate measurements of the sunlight reflected off the SD panel and direct sunlight through a fixed attenuation screen. The SDSM calibration data are collected by a number of filtered detectors, covering wavelengths from 0.41 to 0.94 micrometers. In this paper we describe briefly the Terra and Aqua MODIS and S-NPP VIIRS SDSM on-orbit operation and calibration activities and strategies, provide an overall assessment of their SDSM on-orbit performance, including wavelength-dependent changes in the SDSM detector responses and changes in their SD BRF, and discuss remaining challenging issues and their potential impact on RSB calibration quality. Due to different launch dates, operating configurations, and calibration frequencies, the Terra and Aqua MODIS and S-NPP VIIRS SD have experienced different amount of SD degradation. However, in general the shorter the wavelength, the larger is the SD on-orbit degradation. On the other hand, the larger changes in SDSM detector responses are observed at longer wavelengths in the near infrared (NIR).

  9. On-orbit NDE: A novel approach to tube weld inspection

    Science.gov (United States)

    Michaels, Kerry; Hughes, Greg

    1994-01-01

    The challenge of fabrication and repair of structures in space must be met if we are to utilize and maintain long-duration space facilities. Welding techniques have been demonstrated to provide the most reliable means to accomplish this task. Over the past few years, methods have been developed to perform orbital tube welding employing space-based welding technology pioneered by the former Soviet Union. Welding can result in the formation of defects, which threaten the structural integrity of the welded joint. Implementation of welding on-orbit, therefore, must also include methods to evaluate the quality and integrity of the welded joints. To achieve this goal, the development of an on-orbit tube weld inspection system, utilizing alternating current field measurement (ACFM) technology, has been under taken. This paper describes the development of the ACFM on-orbit tube weld inspection tool. Topics discussed include: requirements for on-orbit NDE, basic theory of ACFM, its advantages over other NDE methods for on-orbit applications, and the ACFM NDE system design. System operation and trial inspection results are also discussed. Future work with this technology is also considered.

  10. Design of a Representative Low Earth Orbit Satellite to Improve Existing Debris Models

    Science.gov (United States)

    Clark, S.; Dietrich, A.; Werremeyer, M.; Fitz-Coy, N.; Liou, J.-C.

    2012-01-01

    This paper summarizes the process and methodologies used in the design of a small-satellite, DebriSat, that represents materials and construction methods used in modern day Low Earth Orbit (LEO) satellites. This satellite will be used in a future hypervelocity impact test with the overall purpose to investigate the physical characteristics of modern LEO satellites after an on-orbit collision. The major ground-based satellite impact experiment used by DoD and NASA in their development of satellite breakup models was conducted in 1992. The target used for that experiment was a Navy Transit satellite (40 cm, 35 kg) fabricated in the 1960 s. Modern satellites are very different in materials and construction techniques from a satellite built 40 years ago. Therefore, there is a need to conduct a similar experiment using a modern target satellite to improve the fidelity of the satellite breakup models. The design of DebriSat will focus on designing and building a next-generation satellite to more accurately portray modern satellites. The design of DebriSat included a comprehensive study of historical LEO satellite designs and missions within the past 15 years for satellites ranging from 10 kg to 5000 kg. This study identified modern trends in hardware, material, and construction practices utilized in recent LEO missions, and helped direct the design of DebriSat.

  11. Multi-Decadal Variability of Polynya Characteristics and Ice Production in the North Water Polynya by Means of Passive Microwave and Thermal Infrared Satellite Imagery

    Directory of Open Access Journals (Sweden)

    Andreas Preußer

    2015-11-01

    Full Text Available The North Water (NOW Polynya is a regularly-forming area of open-water and thin-ice, located between northwestern Greenland and Ellesmere Island (Canada at the northern tip of Baffin Bay. Due to its large spatial extent, it is of high importance for a variety of physical and biological processes, especially in wintertime. Here, we present a long-term remote sensing study for the winter seasons 1978/1979 to 2014/2015. Polynya characteristics are inferred from (1 sea ice concentrations and brightness temperatures from passive microwave satellite sensors (Advanced Microwave Scanning Radiometer (AMSR-E and AMSR2, Scanning Multichannel Microwave Radiometer (SMMR, Special Sensor Microwave Imager/Sounder (SSM/I-SSMIS and (2 thin-ice thickness distributions, which are calculated using MODIS ice-surface temperatures and European Center for Medium-Range Weather Forecasts (ECMWF atmospheric reanalysis data in a 1D thermodynamic energy-balance model. Daily ice production rates are retrieved for each winter season from 2002/2003 to 2014/2015, assuming that all heat loss at the ice surface is balanced by ice growth. Two different cloud-cover correction schemes are applied on daily polynya area and ice production values to account for cloud gaps in the MODIS composites. Our results indicate that the NOW polynya experienced significant seasonal changes over the last three decades considering the overall frequency of polynya occurrences, as well as their spatial extent. In the 1980s, there were prolonged periods of a more or less closed ice cover in northern Baffin Bay in winter. This changed towards an average opening on more than 85% of the days between November and March during the last decade. Noticeably, the sea ice cover in the NOW polynya region shows signs of a later-appearing fall freeze-up, starting in the late 1990s. Different methods to obtain daily polynya area using passive microwave AMSR-E/AMSR2 data and SSM/I-SSMIS data were applied. A comparison

  12. An ensemble Kalman filter dual assimilation of thermal infrared and microwave satellite observations of soil moisture into the Noah land surface model

    Science.gov (United States)

    Hain, Christopher R.; Crow, Wade T.; Anderson, Martha C.; Mecikalski, John R.

    2012-11-01

    Studies that have assimilated remotely sensed soil moisture (SM) into land surface models (LSMs) have generally focused on retrievals from microwave (MW) sensors. However, retrievals from thermal infrared (TIR) sensors have also been shown to add unique information, especially where MW sensors are not able to provide accurate retrievals (due to, e.g., dense vegetation). In this study, we examine the assimilation of a TIR product based on surface evaporative flux estimates from the Atmosphere Land Exchange Inverse (ALEXI) model and the MW-based VU Amsterdam NASA surface SM product generated with the Land Parameter Retrieval Model (LPRM). A set of data assimilation experiments using an ensemble Kalman filter are performed over the contiguous United States to assess the impact of assimilating ALEXI and LPRM SM retrievals in isolation and together in a dual-assimilation case. The relative skill of each assimilation case is assessed through a data denial approach where a LSM is forced with an inferior precipitation data set. The ability of each assimilation case to correct for precipitation errors is quantified by comparing with a simulation forced with a higher-quality precipitation data set. All three assimilation cases (ALEXI, LPRM, and Dual assimilation) show relative improvements versus the open loop (i.e., reduced RMSD) for surface and root zone SM. In the surface zone, the dual assimilation case provides the largest improvements, followed by the LPRM case. However, the ALEXI case performs best in the root zone. Results from the data denial experiment are supported by comparisons between assimilation results and ground-based SM observations from the Soil Climate Analysis Network.

  13. ACS after SM4: On-orbit Verification of the HST Advanced Camera for Surveys Repair

    Science.gov (United States)

    Golimowski, David A.; Cheng, E. S.; Loose, M.; Sirianni, M.; Lupie, O. L.; Smith, L. J.; Arslanian, S.; Boyce, K. R.; Chapman, G.; Chiaberge, M.; Desjardins, T.; Dye, D.; Ellis, T.; Grogin, N. A.; Lim, P.; Lucas, R. A.; Maybhate, A.; Mil, K. J.; Mutchler, M.; Ricardo, R.; Scott, B.; Serrano, B.; Suchkov, A.; Waczynski, A.; Welty, A. D.; Wheeler, T.; Wilson, E.

    2010-01-01

    The newly replaced CCD electronics box (CEB-R) of the Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) features a programmable SIDECAR ASIC manufactured by Teledyne. The CEB-R not only restores the functionality of the ACS Wide Field Camera (WFC), but it allows optimization of the WFC's imaging performance via on-orbit adjustment of CCD bias and clock voltages and serial-data transmission timing. We describe the strategy, preparation, execution, and results of the ACS Optimization Campaign, an unprecedented on-orbit extension of ground-based integration and testing that was conducted during the HST Servicing Mission Observatory Verification period.

  14. Optimal reconfiguration of satellite constellations with the auction algorithm

    Science.gov (United States)

    de Weck, Olivier L.; Scialom, Uriel; Siddiqi, Afreen

    2008-01-01

    Traditionally, satellite constellation design has focused on optimizing global, zonal or regional coverage with a minimum number of satellites. In some instances, however, it is desirable to deploy a constellation in stages to gradually expand capacity. This requires launching additional satellites and reconfiguring the existing on-orbit satellites. Also, a constellation might be retasked and reconfigured after it is initially fielded for operational reasons. This paper presents a methodology for optimizing orbital reconfigurations of satellite constellations. The work focuses on technical aspects for transforming an initial constellation A into a new constellation, B, typically with a larger number of satellites. A general framework was developed to study the orbital reconfiguration problem. The framework was applied to low Earth orbit constellations of communication satellites. This paper specifically addresses the problem of determining the optimal assignment for transferring on-orbit satellites in constellation A to constellation B such that the total ΔV for the reconfiguration is minimized. It is shown that the auction algorithm, used for solving general network flow problems, can efficiently and reliably determine the optimum assignment of satellites of A to slots of B. Based on this methodology, reconfiguration maps can be created, which show the energy required for transforming one constellation into another as a function of type (Street-of-Coverage, Walker, Draim), altitude, ground elevation angle and fold of coverage. Suggested extensions of this work include quantification of the tradeoff between reconfiguration time and ΔV, multiple successive reconfigurations, balancing propellant consumption within the constellation during reconfiguration as well as using reconfigurability as an objective during initial constellation design.

  15. Numerical simulation of the LAGEOS thermal behavior and thermal accelerations

    NARCIS (Netherlands)

    Andrés, J.I.; Noomen, R.; Vecellio None, S.

    2006-01-01

    The temperature distribution throughout the LAGEOS satellites is simulated numerically with the objective to determine the resulting thermal force. The different elements and materials comprising the spacecraft, with their energy transfer, have been modeled with unprecedented detail. The radiation i

  16. Attitude Control Subsystem for the Advanced Communications Technology Satellite

    Science.gov (United States)

    Hewston, Alan W.; Mitchell, Kent A.; Sawicki, Jerzy T.

    1996-01-01

    This paper provides an overview of the on-orbit operation of the Attitude Control Subsystem (ACS) for the Advanced Communications Technology Satellite (ACTS). The three ACTS control axes are defined, including the means for sensing attitude and determining the pointing errors. The desired pointing requirements for various modes of control as well as the disturbance torques that oppose the control are identified. Finally, the hardware actuators and control loops utilized to reduce the attitude error are described.

  17. 核电站温排水分布卫星遥感监测及验证%Monitoring the Thermal Plume f rom Coastal Nuclear Power Plant Using Satellite Remote Sensing Data:Modeling and Validation

    Institute of Scientific and Technical Information of China (English)

    朱利; 赵利民; 王桥; 张爱玲; 吴传庆; 李家国; 石继香

    2014-01-01

    Thermal plume from coastal nuclear power plant is a small-scale human activity ,mornitoring of which requires high-frequency and high-spatial remote sensing data .The infrared scanner (IRS) ,on board of HJ-1B ,has an infrared channel IRS4 with 300 m and 4-days as its spatial and temporal resolution .Remote sensing data aquired using IRS4 is an available source for mornitoring thermal plume .Retrieval pattern for coastal sea surface temperature (SST) was built to monitor the thermal plume from nuclear power plant .The research area is located near Guangdong Daya Bay Nuclear Power Station (GNPS) ,where syn-chronized validations were also implemented .The National Centers for Environmental Prediction (NCEP) data was interpolated spatially and temporally .The interpolated data as well as surface weather conditions were subsequently employed into radiative transfer model for the atmospheric correction of IRS4 thermal image .A look-up-table (LUT) was built for the inversion between IRS4 channel radiance and radiometric temperature ,and a fitted function was also built from the LUT data for the same purpose . The SST was finally retrieved based on those preprocessing procedures mentioned above .The bulk temperature (BT) of 84 sam-ples distributed near GNPS was shipboard collected synchronically using salinity-temperature-deepness (CTD) instruments .The discrete sample data was surface interpolated and compared with the satellite retrieved SST .Results show that the average BT o-ver the study area is 0.47 ℃ higher than the retrieved skin temperature (ST) .For areas far away from outfall ,the ST is higher than BT ,with differences less than 1.0 ℃ .The main driving force for temperature variations in these regions is solar radiation . For areas near outfall ,on the contrary ,the retrieved ST is lower than BT ,and greater differences between the two (meaning >1.0 ℃) happen when it gets closer to the outfall .Unlike the former case ,the convective heat transfer resulting

  18. A model perspective on orbital forcing of monsoons and Mediterranean climate using EC-Earth

    NARCIS (Netherlands)

    Bosmans, J.H.C.|info:eu-repo/dai/nl/344765490

    2014-01-01

    This thesis focuses on orbitally forced changes of monsoons and Mediterranean climate. Changes in the shape of the Earths orbit around the Sun and its rotational axis govern the seasonal and latitudinal distribution of incoming solar radiation on time scales of thousands to millions of years. The

  19. Challenging Issues for On-orbit Calibration in the VIS and NIR

    Science.gov (United States)

    Xiong, X.; Waluschka, E.; Salomonson, V. V.; Wolfe, R.; Barnes, W.; Guenther, B.

    2004-01-01

    On-orbit calibration of Earth-observing sensors in the VIS and NIR spectral regions is usually performed using the sensors on-board devices such as internal lamp(s) or solar diffuser plate(s) to provide calibration parameters. For sensors with no (or with less reliable) on-board calibrators, lunar calibration or ground validation approaches are often used. Each of these has its own set of problems that need to be fully addressed in order to support high quality on-orbit calibration and characterization. Some science products, such as Ocean color, may impose more stringent requirements that demand greater calibration precision. This paper uses MODIS as an example to illustrate challenging issues involved in VIS and NIR on-orbit calibration. It focuses on the solar diffuser (SD) calibration approach, including the effects due to SD BRF, SD attenuation screen(s), and earthshine. The impact of optics (solar diffuser and scan mirror) on-orbit degradation, including changes in the sensor s response versus scan angle (RVS), on the calibration and subsequent data quality is also discussed.

  20. A model perspective on orbital forcing of monsoons and Mediterranean climate using EC-Earth

    NARCIS (Netherlands)

    Bosmans, J.H.C.

    2014-01-01

    This thesis focuses on orbitally forced changes of monsoons and Mediterranean climate. Changes in the shape of the Earths orbit around the Sun and its rotational axis govern the seasonal and latitudinal distribution of incoming solar radiation on time scales of thousands to millions of years. The th

  1. Interaction of the Space Shuttle on-orbit autopilot with tether dynamics

    Science.gov (United States)

    Bergmann, Edward V.

    1988-01-01

    The effect of Orbiter flight control on tether dynamics is studied by simulation. Open-loop effects of Orbiter jet firing on tether dynamics are shown, and the potential for closed-loop interaction between tether dynamics and Orbiter flight control is determined. The significance of these effects on Orbiter flight control and tether control is assessed.

  2. Technology programs and related policies - Impacts on communications satellite business ventures

    Science.gov (United States)

    Greenberg, J. S.

    1985-01-01

    The DOMSAT II stochastic communication satellite business venture financial planning simulation model is described. The specification of business scenarios and the results of several analyses are presented. In particular, the impacts of NASA on-orbit propulsion and power technology programs are described. The effects of insurance rates and self-insurance and of the use of the Space Shuttle and Ariane transportation systems on a typical fixed satellite service business venture are discussed.

  3. Technology programs and related policies - Impacts on communications satellite business ventures

    Science.gov (United States)

    Greenberg, J. S.

    1985-01-01

    The DOMSAT II stochastic communication satellite business venture financial planning simulation model is described. The specification of business scenarios and the results of several analyses are presented. In particular, the impacts of NASA on-orbit propulsion and power technology programs are described. The effects of insurance rates and self-insurance and of the use of the Space Shuttle and Ariane transportation systems on a typical fixed satellite service business venture are discussed.

  4. Calibration chain design based on integrating sphere transfer radiometer for SI-traceable on-orbit spectral radiometric calibration and its uncertainty analysis

    Science.gov (United States)

    Zhao, Wei-Ning; Fang, Wei; Sun, Li-Wei; Cui, Li-Hong; Wang, Yu-Peng

    2016-09-01

    In order to satisfy the requirement of SI-traceable on-orbit absolute radiation calibration transfer with high accuracy for satellite remote sensors, a transfer chain consisting of a fiber coupling monochromator (FBM) and an integrating sphere transfer radiometer (ISTR) was designed in this paper. Depending on the Sun, this chain based on detectors provides precise spectral radiometric calibration and measurement to spectrometers in the reflective solar band (RSB) covering 300-2500 nm with a spectral bandwidth of 0.5-6 nm. It shortens the traditional chain based on lamp source and reduces the calibration uncertainty from 5% to 0.5% by using the cryogenic radiometer in space as a radiometric benchmark and trap detectors as secondary standard. This paper also gives a detailed uncertainty budget with reasonable distribution of each impact factor, including the weak spectral signal measurement with uncertainty of 0.28%. According to the peculiar design and comprehensive uncertainty analysis, it illustrates that the spectral radiance measurement uncertainty of the ISTR system can reach to 0.48%. The result satisfies the requirements of SI-traceable on-orbit calibration and has wider significance for expanding the application of the remote sensing data with high-quality. Project supported by the National Natural Science Foundation of China (Grant No. 41474161) and the National High-Technology Program of China (Grant No. 2015AA123703).

  5. Small Earth Observing Satellites Flying with Large Satellites in the A-Train

    Science.gov (United States)

    Kelly, Angelita C.; Loverro, Adam; Case, Warren F.; Queruel, Nadege; Marechal, Chistophe; Barroso, Therese

    2009-01-01

    examples will be cited, including CloudSat's relocation (to accommodate a new viewing angle for the CALIPSO satellite), Glory's replan to move closer to PARASOL, and OCO's long term plans to minimize on-orbit operations costs while maintaining safety. In all cases, safety is ensured, science returns are enhanced, and operational flexibility is retained to the maximum extent possible.

  6. International Space Station USOS Potable Water Dispenser On-Orbit Functionality vs Design

    Science.gov (United States)

    Toon, Katherine P.; Lovell, Randal W.

    2009-01-01

    The International Space Station (ISS) currently provides potable water dispensing for rehydrating crewmembers food and drinking packages with one system located in the United States On-orbit Segment (USOS) and one system in the Russian Segment. The USOS Potable Water Dispenser (PWD) was delivered to ISS on ULF2, Shuttle Mission STS-126, and was subsequently activated in November 2008. The PWD activation on ISS is capable of supporting an ISS crew of six but nominally supplies only half the crew. The PWD is designed to provide incremental quantities of hot and ambient temperature potable water to US style food packages. PWD receives iodinated water from the US Laboratory Fuel Cell Water Bus, which is fed from the Water Processing Assembly (WPA). The PWD removes the biocidal iodine to make the water potable prior to dispensing. A heater assembly contained within the unit supplies up to 2.0 liters of hot water (65 to 93oC) every thirty minutes. This quantity supports three to four crewmembers to rehydrate their food and beverages from this location during a single meal. The unit is designed to remain functional for up to ten years with replacement of limited life items such as filters. To date, the PWD on-orbit performance has been acceptable. Since activation of the PWD, there have been several differences between on-orbit functionality and expected performance of hardware design. The comparison of on-orbit functionality to performance of hardware design is outlined for the following key areas: microbiology, PWD to food package water leakage, no-dispense scenarios, under-dispense scenarios, and crewmember feedback on actual on-orbit use.

  7. Experimental Demonstration of an Algorithm to Detect the Presence of a Parasitic Satellite

    Science.gov (United States)

    2003-03-01

    1-9 ACTEX · · · Advanced Controls Technology Experiment . . . . . . . . 2-2 ETS-VI · · · Engineering Test Satellite-VI...Technology Experiment ( ACTEX ), Stetson’s on-orbit ID work on NOAA-2 [33], and Wertz and Lee’s operational MOI estimation of the Cassini spacecraft. 2.1.2

  8. Geostationary Satellite (GOES) Images

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Visible and Infrared satellite imagery taken from radiometer instruments on SMS (ATS) and GOES satellites in geostationary orbit. These satellites produced...

  9. SODART optical block of the SRG satellite

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Frederiksen, P.; Polny, Josef

    1998-01-01

    This paper describes the design and the successful integration of the optical block of the SODART telescopes to be flown on the Spectrum Roentgen Gamma satellite. The integration involves both the integration of the two high throughput x-ray telescopes as well as the objective crystal spectrometer....... The integrated unit meets all mechanical, thermal and optical specifications and it is now in safe storage in Moscow and awaits further integration procedures with the remaining satellite structure....

  10. Neptune's small satellites

    Science.gov (United States)

    Thomas, P.

    1992-04-01

    The small satellites of Neptune and other planets discovered during the Voyager 2 mission are discussed in terms of their composition and relationship to the planetary systems. The satellite Proteus is described in terms of its orbit, five other satellites are described, and they are compared to ther small satellites and systems. Neptune's satellites are hypothesized to be related to the ring system, and the satellite Galatea is related to the confinement of the rings.

  11. Multiple Spacecrafts On-orbit Service Task Allocation Based on DPSO%基于离散粒子群算法的多飞行器在轨服务任务分配

    Institute of Scientific and Technical Information of China (English)

    张琪新; 孙富春; 许斌; 刘华平

    2012-01-01

    In order to solve multi-constrained on-orbit service task allocation for spacecraft, the programming of on-orbit service task allocation for on-orbit satellites was studied. Based on the analysis of the key factors including target satellite value, service spacecraft loss and energy-time consumption, an on-orbit servicing multi-spacecraft task allocation model was formulated. A discrete particle swarm optimization (DPSO) algorithm was proposed for on-orbit service spacecraft cooperative task allocation problems. A new particle position and new update strategy for the particle speed were developed. The simulation results show that the proposed DPSO algorithm admits better convergence, optimization capability, and can solve the on-orbit service spacecraft cooperative task allocation effectively.%为解决多约束条件下飞行器在轨服务任务分配问题,以在轨卫星群为研究对象,提出了一种基于离散粒子群算法的多服务飞行器的目标分配方法,综合分析目标飞行器价值、服务飞行器消耗以及能量时间消耗等3项关键指标因素,建立了在轨服务任务分配问题的数学模型.通过构建粒子与实际问题间的对应关系,设计了新的离散粒子群位置和速度更新公式求解任务分配问题.仿真结果表明:离散粒子群算法具有收敛速度快,寻优能力强等优点,能够有效地解决多约束条件下的服务飞行器协同任务分配问题.

  12. Investigating On-Orbit Attitude Determination Anomalies for the Solar Dynamics Observatory Mission

    Science.gov (United States)

    Vess, Melissa F.; Starin, Scott R.; Chia-Kuo, Alice Liu

    2011-01-01

    following the oscillating biases, resulting in movement of the spacecraft on the order of plus or minus 20 arcsec. Though this level of error met the ACS attitude knowledge requirement of [35, 70, 70] arcsec, 3 sigma, the desire of the ACS and instrument teams was to remove as much of the oscillation as possible. The Kearfott IRUs have an internal temperature controller, designed to maintain the IRU temperature at a constant temperature of approximately 70 C, thus minimizing the change in the bias drift and scale factors of the mechanical gyros. During ground testing of the observatory, it was discovered that the 83-Hz control cycle of the IRU heaters put a tremendous amount of stress on the spacecraft battery. Analysis by the power systems team indicated that the constant charge/discharge on the battery due to the IRU thermal control cycle could potentially limit the life of the battery. After much analysis, the decision was made not to run the internal IRU heaters. Analysis of on orbit data revealed that the oscillations in the IRU bias had a connection to the temperature of the IRU; changes in IRU temperature resulted in changes in the amplitude and period of the IRU biases. Several mitigating solutions were investigated, the result of which was to tune the KF with larger IRU noise assumptions which allows the KF to follow and correct for the time-varying IRU biases.

  13. The On-Orbit Calibrations for the Fermi Large Area Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, Aous A.; /Naval Research Lab, Wash., D.C.; Ackermann, M.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Ajello, M.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Ampe, J.; /Naval Research Lab, Wash., D.C.; Anderson, B.; /UC, Santa Cruz; Atwood, W.B.; /UC, Santa Cruz; Axelsson, M.; /Stockholm U., OKC /Stockholm U.; Bagagli, R.; /INFN, Pisa; Baldini, L.; /INFN, Pisa; Ballet, J.; /DAPNIA, Saclay; Barbiellini, Guido; /INFN, Trieste /Trieste U.; Bartelt, J.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bastieri, Denis; /INFN, Padua /Padua U.; Baughman, B.M.; /Ohio State U.; Bechtol, K.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bederede, D.; /DAPNIA, Saclay; Bellardi, F.; /INFN, Pisa; Bellazzini, R.; /INFN, Pisa; Belli, F.; /Frascati /Rome U.,Tor Vergata; Berenji, B.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bisello, D.; /INFN, Padua /Padua U. /Garching, Max Planck Inst., MPE /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Ecole Polytechnique /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /INFN, Perugia /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /DAPNIA, Saclay /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /INFN, Pisa /INFN, Pisa /Bari U. /INFN, Bari /Ecole Polytechnique /Washington U., Seattle /INFN, Padua /Padua U. /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /IASF, Milan /IASF, Milan /Kalmar U. /Stockholm U., OKC /Royal Inst. Tech., Stockholm /DAPNIA, Saclay /ASDC, Frascati /INFN, Pisa /INFN, Perugia /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /George Mason U. /Naval Research Lab, Wash., D.C. /NASA, Goddard /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /DAPNIA, Saclay /NASA, Goddard /INFN, Perugia /Perugia U.; /more authors..

    2011-11-17

    The Large Area Telescope (LAT) on-board the Fermi Gamma-ray Space Telescope began its on-orbit operations on June 23, 2008. Calibrations, defined in a generic sense, correspond to synchronization of trigger signals, optimization of delays for latching data, determination of detector thresholds, gains and responses, evaluation of the perimeter of the South Atlantic Anomaly (SAA), measurements of live time, of absolute time, and internal and spacecraft boresight alignments. Here we describe on-orbit calibration results obtained using known astrophysical sources, galactic cosmic rays, and charge injection into the front-end electronics of each detector. Instrument response functions will be described in a separate publication. This paper demonstrates the stability of calibrations and describes minor changes observed since launch. These results have been used to calibrate the LAT datasets to be publicly released in August 2009.

  14. Hubble Space Telescope Reduced-Gyro Control Law Design, Implementation, and On-Orbit Performance

    Science.gov (United States)

    Clapp, Brian R.; Ramsey, Patrick R.; Wirzburger, John H.; Smith, Daniel C.; VanArsadall, John C.

    2008-01-01

    Following gyro failures in April 2001 and April 2003, HST Pointing Control System engineers designed reduced-gyro control laws to extend the spacecraft science mission. The Two-Gyro Science (TGS) and One-Gyro Science (OGS) control laws were designed and implemented using magnetometers, star trackers, and Fine Guidance Sensors in succession to control vehicle rate about the missing gyro axes. Both TGS and OGS have demonstrated on-orbit pointing stability of 7 milli-arcseconds or less, which depends upon the guide star magnitude used by the Fine Guidance Sensor. This paper describes the design, implementation, and on-orbit performance of the TGS and OGS control law fine-pointing modes using Fixed Head Star Trackers and Fine Guidance Sensors, after successfully achieving coarse-pointing control using magnetometers.

  15. Degradation assessment of LYRA after 5 years on orbit - Technology Demonstration -

    Science.gov (United States)

    BenMoussa, A.; Giordanengo, B.; Gissot, S.; Dammasch, I. E.; Dominique, M.; Hochedez, J.-F.; Soltani, A.; Bourzgui, N.; Saito, T.; Schühle, U.; Gottwald, A.; Kroth, U.; Jones, A. R.

    2015-03-01

    We present a long-term assessment of the radiometric calibration and degradation of the Large Yield Radiometer (LYRA), which has been on orbit since 2009. LYRA is an ultraviolet (UV) solar radiometer and is the first space experiment using aboard a pioneering diamond detector technology. We show that LYRA has degraded after the commissioning phase but is still exploitable scientifically after almost 5 years on orbit thanks to its redundancy design and calibration strategy correcting for instrument degradation. We focus on the inflight detector's calibration and show that diamond photodetectors have not degraded while silicon reference photodiodes that are even less exposed to the Sun show an increase of their dark current and a decrease of their photoresponse.

  16. An overview of the configuration and manipulation of soft robotics for on-orbit servicing

    Institute of Scientific and Technical Information of China (English)

    Zhongliang; JING; Lingfeng; QIAO; Han; PAN; Yongsheng; YANG; Wujun; CHEN

    2017-01-01

    Soft robots refer to robots that are softer and more flexible when compared with conventional rigidbodied robots. Soft robots are adapted to unstructured environments due to their flexibility, deformability and energy-absorbing properties. Thus, they have tremendous application prospects in on-orbit servicing(OOS).This study discusses the configuration and manipulation of soft robotics. Usually, learning from living beings is used to develop the configurations of most soft robots. In this study, typical soft robots are introduced based on what they mimic. The discussion of manipulation is divided into two parts, namely actuation and control.The study also involves describing and comparing several types of actuations. Studies on the control of soft robots are also reviewed. In this study, potential application of soft robotics for on-orbit servicing is analyzed.A hybrid configuration and manipulation of space soft robots for future research are proposed based on the current development of soft robotics, and some challenges are discussed.

  17. Characterizing the GOES-R (GOES-16) Geostationary Lightning Mapper (GLM) On-Orbit Performance

    Science.gov (United States)

    Rudlosky, Scott D.; Goodman, Steven J.; Koshak, William J.; Blakeslee, Richard J.; Buechler, Dennis E.; Mach, Douglas M.; Bateman, Monte

    2017-01-01

    Two overlapping efforts help to characterize the GLM performance, the Post Launch Test (PLT) phase to validate the predicted pre-launch instrument performance and the Post Launch Product Test (PLPT) phase to validate the lightning detection product used in forecast and warning decision-making. This paper documents the calibration and validation plans and activities for the first 6 months of GLM on-orbit testing and validation commencing with first light on 4 January 2017. The PLT phase addresses image quality, on-orbit calibration, RTEP threshold tuning, image navigation, noise filtering, and solar intrusion assessment, resulting in a GLM calibration parameter file. The PLPT includes four main activities, the Reference Data Comparisons (RDC), Algorithm Testing (AT), Instrument Navigation and Registration Testing (INRT), and Long Term Baseline Testing (LTBT). Field campaigns are also designed to contribute valuable insights into the GLM performance capabilities. The PLPT tests each contribute to the beta, provisional, and fully validated GLM data.

  18. Results and lessons from a decade of Terra MODIS on-orbit spectral characterization

    Science.gov (United States)

    Xiong, Xiaoxiong; Choi, Taeyoung; Che, Nianzeng; Wang, Zhipeng; Dodd, Jennifer; Xie, Yong; Barnes, William

    2010-10-01

    Since launch in 1999, the NASA EOS Terra MODIS has successfully operated for more than a decade. MODIS acquires data in 36 spectral bands with wavelengths ranging from visible (VIS) to long-wave infrared (LWIR) and at three nadir spatial resolutions: 250m for 2 bands, 500m for 5 bands, and 1km for 29 bands. In addition to its on-board calibrators (OBC), designed for sensor radiometric calibration and characterization, MODIS was built with a unique device called the spectro-radiometric calibration assembly (SRCA), which can be configured into three different modes: radiometric, spatial, and spectral. When it is operated in the spectral mode, the SRCA can monitor changes in sensor spectral performance for the VIS and near-infrared (NIR) spectral bands. For more than 10 years, the SRCA operations have continued to provide valuable information for Terra MODIS on-orbit spectral performance. This paper briefly describes Terra MODIS SRCA on-orbit operations and calibration activities and presents results derived from its decade-long spectral characterization, including changes in the VIS and NIR spectral bands center wavelengths (CW) and bandwidths (BW). It demonstrates that the SRCA on-orbit wavelength calibration capability remains satisfactory. For most spectral bands, the changes in CW and BW are less than 0.5 nm and 1.0 nm, respectively. As expected, results and lessons from Terra MODIS on-orbit spectral characterization have and will continue to benefit the operation and calibration of its successor, Aqua MODIS, and the development of future missions and sensors, which have stringent requirements on sensor spectral performance.

  19. International Space Station USOS Potable Water Dispenser On-Orbit Functionality Versus Design

    Science.gov (United States)

    Toon, Katherine P.; Lovell, Randal W.

    2010-01-01

    The International Space Station (ISS) currently provides potable water dispensing for rehydrating crewmember food and drinking packages. There is one system located in the United States On-orbit Segment (USOS) and one system in the Russian Segment. Shuttle mission STS-126 delivered the USOS Potable Water Dispenser (PWD) to ISS on ULF2; subsequent activation occurred on November 2008. The PWD is capable of supporting an ISS crew of six, but nominally supplies only half this crew size. The PWD design provides incremental quantities of hot and ambient temperature potable water to US food and beverage packages. PWD receives iodinated water from the US Water Recovery System (WRS) Fuel Cell Water Bus, which feeds from the Water Processing Assembly (WPA). The PWD removes the biocidal iodine to make the water potable prior to dispensing. A heater assembly contained within the unit supplies up to 2.0 L of hot water (65 to 93 ?C) every 30 min. During a single meal, this quantity of water supports three to four crewmembers? food rehydration and beverages. The unit design has a functional life expectancy of 10 years, with replacement of limited life items, such as filters. To date, the PWD on-orbit performance is acceptable. Since activation of the PWD, there were several differences between on-orbit functionality and expected performance of hardware design. The comparison of on-orbit functionality to performance of hardware design is discussed for the following key areas: 1) microbial contamination, 2) no-dispense and water leakage scenarios, and 3) under-dispense scenarios.

  20. Transmitter microdischarges in communications and broadcast Satellites

    Science.gov (United States)

    Briskman, Robert D.; Kaliski, Michael A. R.

    2016-09-01

    Most commercial communications and broadcast satellites operating at microwave radio frequencies use traveling wave tube amplifiers (TWTAs) as high power transmitters. Since TWTAs work at high voltages, it is not uncommon to experience micro-discharges, especially early in life. This observation led to the introduction of an autonomous restart function in the companion high voltage power supply (the electronic power conditioner or EPC) of the TWTA as a safety feature. A microdischarge with enough energy above a threshold would lead to a momentary removal of high voltages, followed by an automatic restart, which is usually sufficient to allow the microdischarge event to clear with minimal loss of RF transmission. In most cases the energy involved in the microdischarge is low enough that the removal of high voltages is not required and the event may go undetected. However, an unusual signature was first noted in early 1997 on a Ku-band satellite transmitter, where the characteristics of the microdischarge event were such that the control anode voltage dropped below nominal and typically recovered over a 20 min period. Such microdischarge events became known as the "20 min Effect" which has since been observed over subsequent years on other Ku-band TWTAs, as well as on Ka-band and S-band satellite TWTA transmitters in numerous satellites. This paper summarizes the in-orbit data on such microdischarges as well as the believed cause. In addition, the paper includes results from three S-band TWTAs which have operated on life test for many years. Due to ease of their monitoring instrumentation as contrast to monitoring microdischarges on orbiting operational satellites via telemetry, new data have been accumulated on this effect. The data substantiate the previous findings that microdischarges do not significantly affect satellite operation or their transmissions nor diminish the TWTAs performance, including long lifetime.

  1. The Coverage Analysis for Low Earth Orbiting Satellites at Low Elevation

    Directory of Open Access Journals (Sweden)

    Shkelzen Cakaj

    2014-07-01

    Full Text Available Low Earth Orbit (LEO satellites are used for public networking and for scientific purposes. Communication via satellite begins when the satellite is positioned in its orbital position. Ground stations can communicate with LEO satellites only when the satellite is in their visibility region. The duration of the visibility and the communication vary for each LEO satellite pass over the station, since LEO satellites move too fast over the Earth. The satellite coverage area is defined as a region of the Earth where the satellite is seen at a minimum predefined elevation angle. The satellite’s coverage area on the Earth depends on orbital parameters. The communication under low elevation angles can be hindered by natural barriers. For safe communication and for savings within a link budget, the coverage under too low elevation is not always provided. LEO satellites organized in constellations act as a convenient network solution for real time global coverage. Global coverage model is in fact the complementary networking process of individual satellite’s coverage. Satellite coverage strongly depends on elevation angle. To conclude about the coverage variation for low orbiting satellites at low elevation up to 10º, the simulation for attitudes from 600km to 1200km is presented through this paper.

  2. Space Flight Validation of Design and Engineering of the ZDPS-1A Pico-satellite

    Institute of Scientific and Technical Information of China (English)

    YANG Mu; WANG Hao; WU Changju; WANG Chunhui; DING Licong; ZHENG Yangming; JIN Zhonghe

    2012-01-01

    The ZDPS-1A pico-satellites are the first satellites in China within the 1-10 kg mass range that are successfully operated on orbit.Unlike common pico-satellites,they are designed to be “larger but stronger” with more powerful platforms and unique payloads so as to bear a better promise for real applications.Through their space flight mission,the functionality and performance of the two flight models are tested on orbit and validated to be mostly normal and in consistency with design and ground tests with only several inconforming occasions.Moreover,they have worked properly on orbit for one year so far,well exceeding their life expectancy of three months.Therefore,the space flight mission has reached all its goals,and verified that the design concept and the engineering process of the pico-satellites are sufficient in allowing them the desired functionality and performance in,and the adaption to the launch procedure and the low-Earth orbit space environment.In the foreseeable future,the platform together with the design concept and the engineering process of the pico-satellites are expected to be applied to more complicated real space applications.

  3. Evaluation of spacecraft technology programs (effects on communication satellite business ventures), volume 1

    Science.gov (United States)

    Greenburg, J. S.; Gaelick, C.; Kaplan, M.; Fishman, J.; Hopkins, C.

    1985-01-01

    Commercial organizations as well as government agencies invest in spacecraft (S/C) technology programs that are aimed at increasing the performance of communications satellites. The value of these programs must be measured in terms of their impacts on the financial performane of the business ventures that may ultimately utilize the communications satellites. An economic evaluation and planning capability was developed and used to assess the impact of NASA on-orbit propulsion and space power programs on typical fixed satellite service (FSS) and direct broadcast service (DBS) communications satellite business ventures. Typical FSS and DBS spin and three-axis stabilized spacecraft were configured in the absence of NASA technology programs. These spacecraft were reconfigured taking into account the anticipated results of NASA specified on-orbit propulsion and space power programs. In general, the NASA technology programs resulted in spacecraft with increased capability. The developed methodology for assessing the value of spacecraft technology programs in terms of their impact on the financial performance of communication satellite business ventures is described. Results of the assessment of NASA specified on-orbit propulsion and space power technology programs are presented for typical FSS and DBS business ventures.

  4. Satellite data compression

    CERN Document Server

    Huang, Bormin

    2011-01-01

    Satellite Data Compression covers recent progress in compression techniques for multispectral, hyperspectral and ultra spectral data. A survey of recent advances in the fields of satellite communications, remote sensing and geographical information systems is included. Satellite Data Compression, contributed by leaders in this field, is the first book available on satellite data compression. It covers onboard compression methodology and hardware developments in several space agencies. Case studies are presented on recent advances in satellite data compression techniques via various prediction-

  5. Trends in communications satellites

    CERN Document Server

    Curtin, Denis J

    1979-01-01

    Trends in Communications Satellites offers a comprehensive look at trends and advances in satellite communications, including experimental ones such as NASA satellites and those jointly developed by France and Germany. The economic aspects of communications satellites are also examined. This book consists of 16 chapters and begins with a discussion on the fundamentals of electrical communications and their application to space communications, including spacecraft, earth stations, and orbit and wavelength utilization. The next section demonstrates how successful commercial satellite communicati

  6. Communications satellite business ventures - Measuring the impact of technology programmes and related policies

    Science.gov (United States)

    Greenberg, J. S.

    1986-01-01

    An economic evaluation and planning procedure which assesses the effects of various policies on fixed satellite business ventures is described. The procedure is based on a stochastic financial simulation model, the Domsat II, which evaluates spacecraft reliability, market performance, and cost uncertainties. The application of the Domsat II model to the assessment of NASA's ion thrusters for on-orbit propulsion and GaAs solar cell technology is discussed. The effects of insurance rates and the self-insurance option on the financial performance of communication satellite business ventures are investigated. The selection of a transportation system for placing the satellites into GEO is analyzed.

  7. Communications satellite business ventures - Measuring the impact of technology programmes and related policies

    Science.gov (United States)

    Greenberg, J. S.

    1986-01-01

    An economic evaluation and planning procedure which assesses the effects of various policies on fixed satellite business ventures is described. The procedure is based on a stochastic financial simulation model, the Domsat II, which evaluates spacecraft reliability, market performance, and cost uncertainties. The application of the Domsat II model to the assessment of NASA's ion thrusters for on-orbit propulsion and GaAs solar cell technology is discussed. The effects of insurance rates and the self-insurance option on the financial performance of communication satellite business ventures are investigated. The selection of a transportation system for placing the satellites into GEO is analyzed.

  8. Validation strategy for satellite observations of tropospheric reactive gases

    Directory of Open Access Journals (Sweden)

    Andreas Richter

    2014-01-01

    Full Text Available Over the last twodecades, satellite observations of tropospheric composition have becomepossible using nadir viewing spectrometers operating in the UV, visible, nearinfrared, and thermal infrared spectral range. [...

  9. Visual attitude propagation for small satellites

    Science.gov (United States)

    Rawashdeh, Samir A.

    As electronics become smaller and more capable, it has become possible to conduct meaningful and sophisticated satellite missions in a small form factor. However, the capability of small satellites and the range of possible applications are limited by the capabilities of several technologies, including attitude determination and control systems. This dissertation evaluates the use of image-based visual attitude propagation as a compliment or alternative to other attitude determination technologies that are suitable for miniature satellites. The concept lies in using miniature cameras to track image features across frames and extracting the underlying rotation. The problem of visual attitude propagation as a small satellite attitude determination system is addressed from several aspects: related work, algorithm design, hardware and performance evaluation, possible applications, and on-orbit experimentation. These areas of consideration reflect the organization of this dissertation. A "stellar gyroscope" is developed, which is a visual star-based attitude propagator that uses relative motion of stars in an imager's field of view to infer the attitude changes. The device generates spacecraft relative attitude estimates in three degrees of freedom. Algorithms to perform the star detection, correspondence, and attitude propagation are presented. The Random Sample Consensus (RANSAC) approach is applied to the correspondence problem to successfully pair stars across frames while mitigating falsepositive and false-negative star detections. This approach provides tolerance to the noise levels expected in using miniature optics and no baffling, and the noise caused by radiation dose on orbit. The hardware design and algorithms are validated using test images of the night sky. The application of the stellar gyroscope as part of a CubeSat attitude determination and control system is described. The stellar gyroscope is used to augment a MEMS gyroscope attitude propagation

  10. Thermal design and analysis of high power star sensors

    Directory of Open Access Journals (Sweden)

    Fan Jiang

    2015-09-01

    Full Text Available The requirement for the temperature stability is very high in the star sensors as the high precision needs for the altitude information. Thermal design and analysis thus is important for the high power star sensors and their supporters. CCD, normally with Peltier thermoelectric cooler (PTC, is the most important sensor component in the star sensors, which is also the main heat source in the star sensors suite. The major objective for the thermal design in this paper is to design a radiator to optimize the heat diffusion for CCD and PTC. The structural configuration of star sensors, the heat sources and orbit parameters were firstly introduced in this paper. The influences of the geometrical parameters and coating material characteristics of radiators on the heat diffusion were investigated by heat flux analysis. Carbon–carbon composites were then chosen to improve the thermal conductivity for the sensor supporters by studying the heat transfer path. The design is validated by simulation analysis and experiments on orbit. The satellite data show that the temperatures of three star sensors are from 17.8 °C to 19.6 °C, while the simulation results are from 18.1 °C to 20.1 °C. The temperatures of radiator are from 16.1 °C to 16.8 °C and the corresponding simulation results are from 16.0 °C to 16.5 °C. The temperature variety of each star sensor is less than 2 °C, which satisfies the design objectives.

  11. International Space Station Common Cabin Air Assembly Water Separator On-Orbit Operation, Failure, and Redesign

    Science.gov (United States)

    Balistreri, Steven F., Jr.; Shaw, Laura A.; Laliberte, Yvon

    2010-01-01

    The ability to control the temperature and humidity of an environment or habitat is critical for human survival. These factors are important to maintaining human health and comfort, as well as maintaining mechanical and electrical equipment in good working order to support the human and to accomplish mission objectives. The temperature and humidity of the International Space Station (ISS) United States On-orbit Segment (USOS) cabin air is controlled by the Common Cabin Air Assembly (CCAA). The CCAA consists of a fan, a condensing heat exchanger (CHX), an air/water separator, temperature and liquid sensors, and electrical controlling hardware and software. The Water Separator (WS) pulls in air and water from the CHX, and centrifugally separates the mixture, sending the water to the condensate bus and the air back into the CHX outlet airstream. Two distinct early failures of the CCAA Water Separator in the Quest Airlock forced operational changes and brought about the re-design of the Water Separator to improve the useful life via modification kits. The on-orbit operational environment of the Airlock presented challenges that were not foreseen with the original design of the Water Separator. Operational changes were instituted to prolong the life of the third installed WS, while waiting for newly designed Water Separators to be delivered on-orbit. The modification kit design involved several different components of the Water Separator, including the innovative use of a fabrication technique to build the impellers used in Water Separators out of titanium instead of aluminum. The technique allowed for the cost effective production of the low quantity build. This paper will describe the failures of the Water Separators in the Quest Airlock, the operational constraints that were implemented to prolong the life of the installed Water Separators throughout the USOS, and the innovative re-design of the CCAA Water Separator.

  12. Xichang Satellite Launch Center

    Institute of Scientific and Technical Information of China (English)

    LiuJie

    2004-01-01

    Xichang Satellite Launch Center(XSLC) is mainly for geosynchronous orbit launches. The main purpose of XSLC is to launch spacecraft, such as broadcasting,communications and meteorological satellites, into geo-stationary orbit.Most of the commercial satellite launches of Long March vehicles have been from Xichang Satellite Launch Center. With 20 years' development,XSLC can launch 5 kinds of launch vehicles and send satellites into geostationary orbit and polar orbit. In the future, moon exploration satellites will also be launched from XSLC.

  13. Handbook of satellite applications

    CERN Document Server

    Madry, Scott; Camacho-Lara, Sergio

    2017-01-01

    The first edition of this ground breaking reference work was the most comprehensive reference source available about the key aspects of the satellite applications field. This updated second edition covers the technology, the markets, applications and regulations related to satellite telecommunications, broadcasting and networking—including civilian and military systems; precise satellite navigation and timing networks (i.e. GPS and others); remote sensing and meteorological satellite systems. Created under the auspices of the International Space University based in France, this brand new edition is now expanded to cover new innovative small satellite constellations, new commercial launching systems, innovation in military application satellites and their acquisition, updated appendices, a useful glossary and more.

  14. Comparison of Terra and Aqua MODIS VIS Bands On-Orbit Response

    Science.gov (United States)

    Xiong, Xiaoxiong; Sun, J.; Che, N.; Choi, T.; Angal, A.

    2008-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) has 36 spectral bands with a total of 490 detectors, covering spectral regions in the visible (VIS), near-infrared (NIR), short-wave infrared (SWIR), mid-wave infrared (MWIR), and long-wave infrared (LWIR). MODIS is a cross-track scanning radiometer which collects data using a rotating scan mirror (both sides) over a wide range of scan angles. The VIS, NIR, and SWIR bands (bands 1-19 and 26) make measurements of daytime surface reflected radiances, thus are referred to as the reflective solar bands (RSB). MODIS was built with a complete set of on-board calibrators, capable of providing radiometric, spatial, and spectral calibration and characterization during its entire mission. The RSB on-orbit calibration is primarily provided using a solar diffuser (SD) and a solar diffuser stability monitor (SDSM). The SD and SDSM calibration system is operated on a regular (weekly to bi-weekly) basis. The spectro-radiometric calibration assembly (SRCA) is another on-hoard calibrator that also provides RSB radiometric calibration support. For this purpose, the SRCA is operated in a radiometric mode on a monthly basis. A complete SRCA radiometric calibration is performed using different lamp configurations, or different radiance levels, to cover the range of RSB gain. Two additional SRCA modes with slightly different configurations are designed and operated for sensor on-orbit spectral and spatial characterization. In addition to its on-hoard calibrators, each MODIS makes monthly lunar observations to monitor RSB radiometric calibration stability. The MODIS lunar observations are made through its space view (SV) port at nearly the same lunar phase angles via spacecraft roll maneuvers. The SD, SRCA, and lunar measurements are made at different scan angles and data samples are collected for all spectral bands and detectors using both sides of the scan minor. Since launch, Terra and Aqua MODIS have operated successfully for

  15. The impact of remote manipulator structural dynamics on Shuttle on-orbit flight control

    Science.gov (United States)

    Sargent, D. G.

    1984-01-01

    The performance of the Space Shuttle on-orbit flight control system during payload operations with the remote manipulator system is described. The changing mass and inertia distribution associated with payload manipulation can have a significant effect on the control authority provided by the orbiter's reaction control jets. Commanded payload motion and jet firings can excite significant flexure in the orbiter/manipulator/payload structure. These effects combine to stress the control capabilities of the flight control system. Data from recent flight tests is presented to illustrate these effects.

  16. Economic Rationality of On-Orbit Servicing by Reduction of Transportation Cost

    Science.gov (United States)

    Akiyama, Yasuhiro; Inatani, Yoshifumi

    The costs of transportation from the Earth to the orbit are very high. Decreasing the transportation costs should increase the launch market significantly. However, the objective of transportation costs is ambiguous and few studies have examined the relationship between transportation costs and commercial profits of businesses. On-Orbit Servicing (OOS) is a business that could profit from lower transportation costs, and we quantified the relationship between costs and profitability for this business. Real-coded Adaptive Range Genetic Algorithm optimized the OOS method. The results showed that the revenues generated by OOS would support the outlay required to decrease transportation costs.

  17. Solar Dynamics Observatory On-Orbit Jitter Testing, Analysis, and Mitigation Plans

    Science.gov (United States)

    Liu, Kuo-Chia (Alice); Blaurock, Carl A.; Bourkland, Kristin L.; Morgenstern, Wendy M.; Maghami, Peiman G.

    2011-01-01

    The Solar Dynamics Observatory (SDO) was designed to understand the Sun and the Sun s influence on Earth. SDO was launched on February 11, 2010 carrying three scientific instruments: the Atmospheric Imaging Assembly (AIA), the Helioseismic and Magnetic Imager (HMI), and the Extreme Ultraviolet Variability Experiment (EVE). Both AIA and HMI are sensitive to high frequency pointing perturbations and have sub-arcsecond level line-of-sight (LOS) jitter requirements. Extensive modeling and analysis efforts were directed in estimating the amount of jitter disturbing the science instruments. To verify the disturbance models and to validate the jitter performance prior to launch, many jitter-critical components and subassemblies were tested either by the mechanism vendors or at the NASA Goddard Space Flight Center (GSFC). Although detailed analysis and assembly level tests were performed to obtain good jitter predictions, there were still several sources of uncertainties in the system. The structural finite element model did not have all the modes correlated to test data at high frequencies (greater than 50 Hz). The performance of the instrument stabilization system was not known exactly but was expected to be close to the analytical model. A true disturbance-to-LOS observatory level test was not available due to the tight schedule of the flight spacecraft, the cost in time and manpower, difficulties in creating gravity negation systems, and risks of damaging flight hardware. To protect the observatory jitter performance against model uncertainties, the SDO jitter team devised several on-orbit jitter reduction plans in addition to reserve margins on analysis results. Since some of these plans severely restricted the capabilities of several spacecraft components (e.g. wheels and High Gain Antennas), the SDO team performed on-orbit jitter tests to determine which jitter reduction plans, if any, were necessary to satisfy science LOS jitter requirements. The SDO on-orbit

  18. An on-orbit experiment for dynamics and control of large structures

    Science.gov (United States)

    Buchanan, H. J.; Schock, R. W.; Waites, H. B.

    1984-01-01

    Attention is given to the definition of the on-orbit dynamic testing that is currently being planned for the flight of a large solar array test article, the Solar Array Flight Experiment (SAFE 1), which consists of a coilable longeron mast that deploys a large solar array blanket. Also discussed is the design of an additional experiment employing this structure in conjunction with a two- or three-axis gimbal system, in order to demonstrate control techniques applicable to such large structures. SAFE 1 experiment objectives, hardware, software, and the experimental operations foreseen are discussed.

  19. Spacecraft (Mobile Satellite) configuration design study

    Science.gov (United States)

    1985-01-01

    The relative costs to procure and operate a two-satellite mobile satellite system designed to operate either in the UHF band of the L Band, and with several antenna diameter options in each frequency band was investigated. As configured, the size of the spacecraft is limited to the current RCA Series 4000 Geosynchronous Communications Spacecraft bus, which spans the range from 4000 to 5800 pounds in the transfer orbit. The Series 4000 bus forms the basis around which the Mobile Satellite transponder and associated antennas were appended. Although the resultant configuration has little outward resemblance to the present Series 4000 microwave communications spacecraft, the structure, attitude control, thermal, power, and command and control subsystems of the Series 4000 spacecraft are all adapted to support the Mobile Satellite mission.

  20. Satellite Contamination and Materials Outgassing Knowledge base

    Science.gov (United States)

    Minor, Jody L.; Kauffman, William J. (Technical Monitor)

    2001-01-01

    Satellite contamination continues to be a design problem that engineers must take into account when developing new satellites. To help with this issue, NASA's Space Environments and Effects (SEE) Program funded the development of the Satellite Contamination and Materials Outgassing Knowledge base. This engineering tool brings together in one location information about the outgassing properties of aerospace materials based upon ground-testing data, the effects of outgassing that has been observed during flight and measurements of the contamination environment by on-orbit instruments. The knowledge base contains information using the ASTM Standard E- 1559 and also consolidates data from missions using quartz-crystal microbalances (QCM's). The data contained in the knowledge base was shared with NASA by government agencies and industry in the US and international space agencies as well. The term 'knowledgebase' was used because so much information and capability was brought together in one comprehensive engineering design tool. It is the SEE Program's intent to continually add additional material contamination data as it becomes available - creating a dynamic tool whose value to the user is ever increasing. The SEE Program firmly believes that NASA, and ultimately the entire contamination user community, will greatly benefit from this new engineering tool and highly encourages the community to not only use the tool but add data to it as well.

  1. Galileo satellite antenna modeling

    Science.gov (United States)

    Steigenberger, Peter; Dach, Rolf; Prange, Lars; Montenbruck, Oliver

    2015-04-01

    The space segment of the European satellite navigation system Galileo currently consists of six satellites. Four of them belong to the first generation of In-Orbit Validation (IOV) satellites whereas the other two are Full Operational Capability (FOC) satellites. High-precision geodetic applications require detailed knowledge about the actual phase center of the satellite and receiver antenna. The deviation of this actual phase center from a well-defined reference point is described by phase center offsets (PCOs) and phase center variations (PCVs). Unfortunately, no public information is available about the Galileo satellite antenna PCOs and PCVs, neither for the IOV, nor the FOC satellites. Therefore, conventional values for the IOV satellite antenna PCOs have been adopted for the Multi-GNSS experiment (MGEX) of the International GNSS Service (IGS). The effect of the PCVs is currently neglected and no PCOs for the FOC satellites are available yet. To overcome this deficiency in GNSS observation modeling, satellite antenna PCOs and PCVs are estimated for the Galileo IOV satellites based on global GNSS tracking data of the MGEX network and additional stations of the legacy IGS network. Two completely independent solutions are computed with the Bernese and Napeos software packages. The PCO and PCV values of the individual satellites are analyzed and the availability of two different solutions allows for an accuracy assessment. The FOC satellites are built by a different manufacturer and are also equipped with another type of antenna panel compared to the IOV satellites. Signal transmission of the first FOC satellite has started in December 2014 and activation of the second satellite is expected for early 2015. Based on the available observations PCO estimates and, optionally PCVs of the FOC satellites will be presented as well. Finally, the impact of the new antenna model on the precision and accuracy of the Galileo orbit determination is analyzed.

  2. Satellite Remote Sensing in Seismology. A Review

    Directory of Open Access Journals (Sweden)

    Andrew A. Tronin

    2009-12-01

    Full Text Available A wide range of satellite methods is applied now in seismology. The first applications of satellite data for earthquake exploration were initiated in the ‘70s, when active faults were mapped on satellite images. It was a pure and simple extrapolation of airphoto geological interpretation methods into space. The modern embodiment of this method is alignment analysis. Time series of alignments on the Earth's surface are investigated before and after the earthquake. A further application of satellite data in seismology is related with geophysical methods. Electromagnetic methods have about the same long history of application for seismology. Stable statistical estimations of ionosphere-lithosphere relation were obtained based on satellite ionozonds. The most successful current project "DEMETER" shows impressive results. Satellite thermal infra-red data were applied for earthquake research in the next step. Numerous results have confirmed previous observations of thermal anomalies on the Earth's surface prior to earthquakes. A modern trend is the application of the outgoing long-wave radiation for earthquake research. In ‘80s a new technology—satellite radar interferometry—opened a new page. Spectacular pictures of co-seismic deformations were presented. Current researches are moving in the direction of pre-earthquake deformation detection. GPS technology is also widely used in seismology both for ionosphere sounding and for ground movement detection. Satellite gravimetry has demonstrated its first very impressive results on the example of the catastrophic Indonesian earthquake in 2004. Relatively new applications of remote sensing for seismology as atmospheric sounding, gas observations, and cloud analysis are considered as possible candidates for applications.

  3. Satellite-Delivered Learning.

    Science.gov (United States)

    Arnall, Gail C.

    1987-01-01

    Discusses the application of satellite information delivery to training. Describes a new trend, horizontal programming. Also discusses vertical programming and in-house production of training materials. Lists vendors of satellite-based training. (CH)

  4. GPS Satellite Simulation Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The GPS satellite simulation facility consists of a GPS satellite simulator controlled by either a Silicon Graphics Origin 2000 or PC depending upon unit under test...

  5. China's Recoverable Satellites

    Institute of Scientific and Technical Information of China (English)

    Tang Boehang

    2008-01-01

    @@ By the end of 2006, China had launched 24 recoverable satellites (FSW) in total. Among them, 23 were launched successfully, of which all but one were successfully recovered. Recoverable satellites launched by China are listed in Table 1.

  6. Satellite Tags- Hawaii EEZ

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Satellite tagging was implemented in 2013. Satellite tagging is conducted using a Dan Inject air rifle and deployment arrows designed by Wildlife Computers. Two...

  7. Landsat 8 Operational Land Imager On-Orbit Geometric Calibration and Performance

    Directory of Open Access Journals (Sweden)

    James Storey

    2014-11-01

    Full Text Available The Landsat 8 spacecraft was launched on 11 February 2013 carrying the Operational Land Imager (OLI payload for moderate resolution imaging in the visible, near infrared (NIR, and short-wave infrared (SWIR spectral bands. During the 90-day commissioning period following launch, several on-orbit geometric calibration activities were performed to refine the prelaunch calibration parameters. The results of these calibration activities were subsequently used to measure geometric performance characteristics in order to verify the OLI geometric requirements. Three types of geometric calibrations were performed including: (1 updating the OLI-to-spacecraft alignment knowledge; (2 refining the alignment of the sub-images from the multiple OLI sensor chips; and (3 refining the alignment of the OLI spectral bands. The aspects of geometric performance that were measured and verified included: (1 geolocation accuracy with terrain correction, but without ground control (L1Gt; (2 Level 1 product accuracy with terrain correction and ground control (L1T; (3 band-to-band registration accuracy; and (4 multi-temporal image-to-image registration accuracy. Using the results of the on-orbit calibration update, all aspects of geometric performance were shown to meet or exceed system requirements.

  8. Synchronicity of Antarctic temperatures and local solar insolation on orbital timescales.

    Science.gov (United States)

    Laepple, Thomas; Werner, Martin; Lohmann, Gerrit

    2011-03-03

    The Milankovitch theory states that global climate variability on orbital timescales from tens to hundreds of thousands of years is dominated by the summer insolation at high northern latitudes. The supporting evidence includes reconstructed air temperatures in Antarctica that are nearly in phase with boreal summer insolation and out of phase with local summer insolation. Antarctic climate is therefore thought to be driven by northern summer insolation. A clear mechanism that links the two hemispheres on orbital timescales is, however, missing. We propose that key Antarctic temperature records derived from ice cores are biased towards austral winter because of a seasonal cycle in snow accumulation. Using present-day estimates of this bias in the 'recorder' system, here we show that the local insolation can explain the orbital component of the temperature record without having to invoke a link to the Northern Hemisphere. Therefore, the Antarctic ice-core-derived temperature record, one of the best-dated records of the late Pleistocene temperature evolution, cannot be used to support or contradict the Milankovitch hypothesis that global climate changes are driven by Northern Hemisphere summer insolation variations.

  9. Landsat 8 operational land imager on-orbit geometric calibration and performance

    Science.gov (United States)

    Storey, James C.; Choate, Michael J.; Lee, Kenton

    2014-01-01

    The Landsat 8 spacecraft was launched on 11 February 2013 carrying the Operational Land Imager (OLI) payload for moderate resolution imaging in the visible, near infrared (NIR), and short-wave infrared (SWIR) spectral bands. During the 90-day commissioning period following launch, several on-orbit geometric calibration activities were performed to refine the prelaunch calibration parameters. The results of these calibration activities were subsequently used to measure geometric performance characteristics in order to verify the OLI geometric requirements. Three types of geometric calibrations were performed including: (1) updating the OLI-to-spacecraft alignment knowledge; (2) refining the alignment of the sub-images from the multiple OLI sensor chips; and (3) refining the alignment of the OLI spectral bands. The aspects of geometric performance that were measured and verified included: (1) geolocation accuracy with terrain correction, but without ground control (L1Gt); (2) Level 1 product accuracy with terrain correction and ground control (L1T); (3) band-to-band registration accuracy; and (4) multi-temporal image-to-image registration accuracy. Using the results of the on-orbit calibration update, all aspects of geometric performance were shown to meet or exceed system requirements.

  10. Preliminary GN&C Design for the On-Orbit Autonomous Assembly of Nanosatellite Demonstration Mission

    Science.gov (United States)

    Pei, Jing; Walsh, Matt; Roithmayr, Carlos; Karlgaard, Chris; Peck, Mason; Murchison, Luke

    2017-01-01

    Small spacecraft autonomous rendezvous and docking (ARD) is an essential technology for future space structure assembly missions. The On-orbit Autonomous Assembly of Nanosatellites (OAAN) team at NASA Langley Research Center (LaRC) intends to demonstrate the technology to autonomously dock two nanosatellites to form an integrated system. The team has developed a novel magnetic capture and latching mechanism that allows for docking of two CubeSats without precise sensors and actuators. The proposed magnetic docking hardware not only provides the means to latch the CubeSats, but it also significantly increases the likelihood of successful docking in the presence of relative attitude and position errors. The simplicity of the design allows it to be implemented on many CubeSat rendezvous missions. Prior to demonstrating the docking subsystem capabilities on orbit, the GN&C subsystem should have a robust design such that it is capable of bringing the CubeSats from an arbitrary initial separation distance of as many as a few thousand kilometers down to a few meters. The main OAAN Mission can be separated into the following phases: 1) Launch, checkout, and drift, 2) Far-Field Rendezvous or Drift Recovery, 3) Proximity Operations, 4) Docking. This paper discusses the preliminary GN&C design and simulation results for each phase of the mission.

  11. Sixteen years of Terra MODIS on-orbit operation, calibration, and performance

    Science.gov (United States)

    Xiong, X.; Angal, A.; Wu, A.; Link, D.; Geng, X.; Barnes, W.; Salomonson, V.

    2016-10-01

    Terra MODIS has successfully operated for more than 16 years since its launch in December 1999. From its observations, many science data products have been generated in support of a broad range of research activities and remote sensing applications. Terra MODIS has operated in a number of configurations and experienced a few anomalies, including spacecraft and instrument related events. MODIS collects data in 36 spectral bands that are calibrated regularly by a set of on-board calibrators for their radiometric, spectral, and spatial performance. Periodic lunar observations and long-term radiometric trending over well-characterized ground targets are also used to support sensor on-orbit calibration. Dedicated efforts made by the MODIS Characterization Support Team (MCST) and continuing support from the MODIS Science Team have contributed to the mission success, enabling well-calibrated data products to be continuously generated and routinely delivered to users worldwide. This paper presents an overview of Terra MODIS mission operations, calibration activities, and instrument performance of the past 16 years. It illustrates and describes the results of key sensor performance parameters derived from on-orbit calibration and characterization, such as signal-to-noise ratio (SNR), noise equivalent temperature difference (NEdT), solar diffuser (SD) degradation, changes in sensor responses, center wavelengths, and band-to-band registration (BBR). Also discussed in this paper are the calibration approaches and strategies developed and implemented in support of MODIS Level 1B data production and re-processing, major challenging issues, and lessons learned.

  12. Conceptual study of on orbit production of cryogenic propellants by water electrolysis

    Science.gov (United States)

    Moran, Matthew E.

    1991-01-01

    The feasibility is assessed of producing cryogenic propellants on orbit by water electrolysis in support of NASA's proposed Space Exploration Initiative (SEI) missions. Using this method, water launched into low earth orbit (LEO) would be split into gaseous hydrogen and oxygen by electrolysis in an orbiting propellant processor spacecraft. The resulting gases would then be liquified and stored in cryogenic tanks. Supplying liquid hydrogen and oxygen fuel to space vehicles by this technique has some possible advantages over conventional methods. The potential benefits are derived from the characteristics of water as a payload, and include reduced ground handling and launch risk, denser packaging, and reduced tankage and piping requirements. A conceptual design of a water processor was generated based on related previous studies, and contemporary or near term technologies required. Extensive development efforts would be required to adapt the various subsystems needed for the propellant processor for use in space. Based on the cumulative results, propellant production by on orbit water electrolysis for support of SEI missions is not recommended.

  13. VIIRS reflective solar bands on-orbit calibration and performance: a three-year update

    Science.gov (United States)

    Sun, Junqiang; Wang, Menghua

    2014-11-01

    The on-orbit calibration of the reflective solar bands (RSBs) of VIIRS and the result from the analysis of the up-to-date 3 years of mission data are presented. The VIIRS solar diffuser (SD) and lunar calibration methodology are discussed, and the calibration coefficients, called F-factors, for the RSBs are given for the latest reincarnation. The coefficients derived from the two calibrations are compared and the uncertainties of the calibrations are discussed. Numerous improvements are made, with the major improvement to the calibration result come mainly from the improved bidirectional reflectance factor (BRF) of the SD and the vignetting functions of both the SD screen and the sun-view screen. The very clean results, devoid of many previously known noises and artifacts, assures that VIIRS has performed well for the three years on orbit since launch, and in particular that the solar diffuser stability monitor (SDSM) is functioning essentially without flaws. The SD degradation, or H-factors, for most part shows the expected decline except for the surprising rise on day 830 lasting for 75 days signaling a new degradation phenomenon. Nevertheless the SDSM and the calibration methodology have successfully captured the SD degradation for RSB calibration. The overall improvement has the most significant and direct impact on the ocean color products which demands high accuracy from RSB observations.

  14. Two years of on-orbit gallium arsenide performance from the LIPS solar cell panel experiment

    Science.gov (United States)

    Francis, R. W.; Betz, F. E.

    1985-01-01

    The LIPS on-orbit performance of the gallium arsenide panel experiment was analyzed from flight operation telemetry data. Algorithms were developed to calculate the daily maximum power and associated solar array parameters by two independent methods. The first technique utilizes a least mean square polynomial fit to the power curve obtained with intensity and temperature corrected currents and voltages; whereas, the second incorporates an empirical expression for fill factor based on an open circuit voltage and the calculated series resistance. Maximum power, fill factor, open circuit voltage, short circuit current and series resistance of the solar cell array are examined as a function of flight time. Trends are analyzed with respect to possible mechanisms which may affect successive periods of output power during 2 years of flight operation. Degradation factors responsible for the on-orbit performance characteristics of gallium arsenide are discussed in relation to the calculated solar cell parameters. Performance trends and the potential degradation mechanisms are correlated with existing laboratory and flight data on both gallium arsenide and silicon solar cells for similar environments.

  15. Satellite communication engineering

    CERN Document Server

    Kolawole, Michael Olorunfunmi

    2013-01-01

    An undeniably rich and thorough guide to satellite communication engineering, Satellite Communication Engineering, Second Edition presents the fundamentals of information communications systems in a simple and succinct way. This book considers both the engineering aspects of satellite systems as well as the practical issues in the broad field of information transmission. Implementing concepts developed on an intuitive, physical basis and utilizing a combination of applications and performance curves, this book starts off with a progressive foundation in satellite technology, and then moves on

  16. Taiyuan Satellite Launch Center

    Institute of Scientific and Technical Information of China (English)

    LiuJie

    2004-01-01

    There are three major space launch bases in China, the Jiuquan Satellite Launch Center,the Taiyuan Satellite Launch Center and the Xichang Satellite Launch Center. All the three launch centers are located in sparsely populated areas where the terrain is even and the field of vision is broad. Security, transport conditions and the influence of the axial rotation

  17. Geodetic Secor Satellite

    Science.gov (United States)

    1974-06-01

    simple, and had low-power lem. 17 14. Satellite Orientation . The satellite was designed to maintain a constant relationship between the antenna...the same satellite orientation . Further considerations were Th oscillations, however, when higher orbital ranges (500-2500 nautical miles) -, 3 a

  18. TC-2 Satellite Delivered

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    On April 18, 2005, TC-2, the second satellite of Double Star Program (DSP), which was jointly developed by CNSA and ESA, was approved to be delivered to the user after the on-board test and trial operation. The satellite is working well and the performance can meet the user's need. The satellite has collected large amount of valuable scientific data

  19. Research on HJ-1A/B satellite data automatic geometric precision correction design

    Institute of Scientific and Technical Information of China (English)

    Xiong Wencheng; Shen Wenming; Wang Qiao; Shi Yuanli; Xiao Rulin; Fu Zhuo

    2014-01-01

    Developed independently by China,HJ-1A/B satellites have operated well on-orbit for five years and acquired a large number of high-quality observation data. The realization of the observation data geometric precision correction is of great significance for macro and dynamic ecological environment monitoring. The pa-per analyzed the parameter characteristics of HJ-1 satellite and geometric features of HJ-1 satellite level 2 data (systematic geo-corrected data). Based on this,the overall HJ-1 multi-sensor geometric correction flow and charge-coupled device (CCD) automatic geometric precision correction method were designed. Actual operating data showed that the method could achieve good result for automatic geometric precision correction of HJ-1 sat-ellite data,automatic HJ-1 CCD image geometric precision correction accuracy could be achieved within two pixels and automatic matching accuracy between the images of same satellite could be obtained less than one pixel.

  20. A universal on-orbit servicing system used in the geostationary orbit

    Science.gov (United States)

    Xu, Wenfu; Liang, Bin; Li, Bing; Xu, Yangsheng

    2011-07-01

    The geostationary orbit (GEO), a unique satellite orbit of the human beings, is a very precious orbit resource. However, the continuous increasing of GEO debris makes the GEO orbit more and more crowded. Moreover, the failures of GEO spacecrafts will result in large economic cost and other bad impacts. In this paper, we proposed a space robotic servicing system, and developed key pose (position and orientation) measurement and control algorithm. Firstly, the necessity of orbit service in GEO was analyzed. Then, a servicing concept for GEO non-cooperative targets was presented and a universal space robotic servicing system was designed. The system has a 2-DOF docking mechanism, a 7-DOF redundant manipulator and a set of stereo vision, in addition to the traditional subsystems of a spacecraft. This system can serve most existing satellites in GEO, not requiring specially designed objects for grappling and measuring on the target. The servicing contents include: (a) visual inspecting; (b) target tracking, approaching and docking; (c) ORUs (Orbital Replacement Units) replacement; (d) Malfunctioned mechanism deploying; (e) satellites life extension by taking over its control, or re-orbiting the abandoned satellites. As an example, the servicing mission of a malfunctioned GEO satellite with three severe mechanical failures was designed and simulated. The results showed the validity and flexibility of the proposed system.

  1. Design and Analysis of on-Orbit Servicing Architectures for the Global Positioning System Constellation

    Science.gov (United States)

    1999-03-01

    rocket motor calculations. There is not much cost data on solar thermal rocket engines, so we used the only data available - the Boeing SOTV’s...was applicable. The Air Force Research Laboratory’s (AFRL) Solar Orbit Transfer Vehicle (SOTV) provided a representative Isp for solar thermal rockets of...page 1) except for the following rows: Leisman & Wallen, 170 Row 1: Kinematic inefficiency of a solar thermal rocket burn profile compared to an

  2. Irregular satellite capture during planetary resonance passage

    Science.gov (United States)

    Ćuk, Matija; Gladman, Brett J.

    2006-08-01

    The passage of Jupiter and Saturn through mutual 1:2 mean-motion resonance has recently been put forward as explanation for their relatively high eccentricities [Tsiganis, K., Gomes, R., Morbidelli, A., Levison, H.F., 2005. Nature 435, 459-461] and the origin of Jupiter's Trojans [Morbidelli, A., Levison, H.F., Tsiganis, K., Gomes, R., 2005. Nature 435, 462-465]. Additional constraints on this event based on other small-body populations would be highly desirable. Since some outer satellite orbits are known to be strongly affected by the near-resonance of Jupiter and Saturn ("the Great Inequality"; Ćuk, M., Burns, J.A., 2004b. Astron. J. 128, 2518-2541), the irregular satellites are natural candidates for such a connection. In order to explore this scenario, we have integrated 9200 test particles around both Jupiter and Saturn while they went through a resonance-crossing event similar to that described by Tsiganis et al. [Tsiganis, K., Gomes, R., Morbidelli, A., Levison, H.F., 2005. Nature 435, 459-461]. The test particles were positioned on a grid in semimajor axes and inclinations, while their initial pericenters were put at just 0.01 AU from their parent planets. The goal of the experiment was to find out if short-lived bodies, spiraling into the planet due to gas drag (or alternatively on orbits crossing those of the regular satellites), could have their pericenters raised by the resonant perturbations. We found that about 3% of the particles had their pericenters raised above 0.03 AU (i.e. beyond Iapetus) at Saturn, but the same happened for only 0.1% of the particles at Jupiter. The distribution of surviving particles at Saturn has strong similarities to that of the known irregular satellites. If saturnian irregular satellites had their origin during the 1:2 resonance crossing, they present an excellent probe into the early Solar System's evolution. We also explore the applicability of this mechanism for Uranus, and find that only some of the uranian

  3. Meteorological satellite systems

    CERN Document Server

    Tan, Su-Yin

    2014-01-01

    “Meteorological Satellite Systems” is a primer on weather satellites and their Earth applications. This book reviews historic developments and recent technological advancements in GEO and polar orbiting meteorological satellites. It explores the evolution of these remote sensing technologies and their capabilities to monitor short- and long-term changes in weather patterns in response to climate change. Satellites developed by various countries, such as U.S. meteorological satellites, EUMETSAT, and Russian, Chinese, Japanese and Indian satellite platforms are reviewed. This book also discusses international efforts to coordinate meteorological remote sensing data collection and sharing. This title provides a ready and quick reference for information about meteorological satellites. It serves as a useful tool for a broad audience that includes students, academics, private consultants, engineers, scientists, and teachers.

  4. Theory of geostationary satellites

    CERN Document Server

    Zee, Chong-Hung

    1989-01-01

    Geostationary or equatorial synchronous satellites are a daily reminder of our space efforts during the past two decades. The nightly television satellite weather picture, the intercontinental telecommunications of television transmissions and telephone conversations, and the establishrnent of educational programs in remote regions on Earth are constant reminders of the presence of these satellites. As used here, the term 'geo­ stationary' must be taken loosely because, in the long run, the satellites will not remain 'stationary' with respect to an Earth-fixed reference frame. This results from the fact that these satellites, as is true for all satellites, are incessantly subject to perturbations other than the central-body attraction of the Earth. Among the more predominant pertur­ bations are: the ellipticity of the Earth's equator, the Sun and Moon, and solar radiation pressure. Higher harmonics of the Earth's potential and tidal effects also influence satellite motion, but they are of second­ order whe...

  5. Design and Testing of a Flexible Solar Generator for On-Orbit Verification Misison

    Science.gov (United States)

    Langendorf, Sven; Brunner, Sebastian; Zajac, Kai

    2014-06-01

    Novel flexible, lightweight and highly efficient Cu(In,Ga)Se2 (CIGSe) thin film solar cells on polyimide (PI) foil substrate were the starting point for the development of a flexible solar generator.The presented solar generator consists of an aluminium support structure and a drum on which the CIGSe thin film solar cells are rolled up. When releasing the mechanism a flexible solar array of 128 mm x 344 mm will be self-deployed, without requiring any electric power. When deployed the solar array is self-locked. This paper presents a short overview of the baseline design requirements for a potential On-Orbit verification mission, the developed design, results of the first verification tests and an outlook on a possible scalability.

  6. Sequence Planning for On-Orbit Assembly of Large Space Truss Structures in a Multirobot Environment

    Institute of Scientific and Technical Information of China (English)

    GUO Jifeng; WANG Ping; CUI Naigang

    2006-01-01

    An approach to sequence planning for on-orbit assembly of large space truss structures in a multirobot environment is presented. A hierarchical representation of large space truss structures at the structural volume element level and strut level is adopted. The representation of connectivity matrix and directed graph is respectively presented at the strut level and SVE level. The multirobot environment that consists of autonomous space robots and struts is supposed. Then the multirobot serial assembly strategy, assembly states, assembly tasks and assembly sequences are described. The assembly sequence planning algorithms at the strut level and SVE level are respectively discussed. The results of the simulations show that this approach is feasible and efficient. Two extensions of this approach include more accurate assessment of the efficiency representation and improvements in planning algorithm. In the future, the assembly sequence planning of more large space truss structures and complex multirobot environments and assembly tasks will be considered.

  7. Lab tests of a thermomechanical pump for shoot. [Superfluid Helium On-Orbit Transfer

    Science.gov (United States)

    Dipirro, Michael J.; Boyle, Robert F.

    1988-01-01

    Laboratory tests of a thermomechanical (TM) pump utilizing a commercially available porous disk have been conducted. Various size disks, heater configurations, and outlet flow impedances have been used to characterize scale models of the pump proposed for the Superfluid Helium On-Orbit Transfer (SHOOT) Flight Experiment. The results yield the scalability of the TM pump to larger diameters, and hence larger pumping rates, the dependence of flow rate on back pressure and heater power, and the limits of pumping speed due to internal losses within the porous disk due to mutual and superfluid friction. Analysis indicates that for low back pressures the flow rate is limited by the superfluid friction rather than the mutual friction. For the porous plug used in the early tests this amounts to a practical limit of 4.4 liters per hour per square centimeter. For a baselined flight plug area of 180 sq cm this yields 790 liters per hour.

  8. Inter-band effects of magnetic field on orbital susceptibility and Hall conductivity - case of bismuth

    Energy Technology Data Exchange (ETDEWEB)

    Fukuyama, H. [Institute for Materials Research, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577 (Japan)

    2006-07-03

    Interband effects of magnetic field on orbital susceptibility and Hall conductivity have been theoretically studied with special reference to single crystal bismuth (Bi), whose energy bands near the band-edges are similar to those of Dirac electrons. It has long been known that orbital susceptibilty in Bi has a maximum when the Fermi energy is located in the band-gap and then the density of states at the Fermi energy is vanishing. This implies that the magnetic field induces persistent current even in the insulating state. On the other hand, weak-field Hall conductivity, which reflects transport current, has turned out to be vanishing if the Fermi energy is in the band-gap. Interesting possibility has been pointed out of the inter-band contributions to the Hall conductivity once the Fermi energy lies slightly in the energy band. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  9. On-Orbit Performance and Calibration of the Soft X-Ray Telescope on Yohkoh

    Science.gov (United States)

    Acton, Loren W.

    2016-02-01

    This paper documents details of the on-orbit performance, data problem solving, and calibration of the Soft X-ray Telescope (SXT) experiment on Yohkoh. This information is important to a full understanding of the strengths and weaknesses of the SXT data set. The paper begins with summaries of SXT calibration issues and how they have been addressed, operational anomalies experienced during the mission, and a brief discussion of the SXT optical train. The following section on the accuracy of Yohkoh pointing determination provides information important for alignment of SXT images with each other and with other solar data. The remainder of the paper gives details of work by the experiment team to understand and ameliorate the many instrument anomalies and changes which impacted the scientific data.

  10. On-Orbit Measurement of Next Generation Space Solar Cell Technology on the International Space Station

    Science.gov (United States)

    Wolford, David S.; Myers, Matthew G.; Prokop, Norman F.; Krasowski, Michael J.; Parker, David S.; Cassidy, Justin C.; Davies, William E.; Vorreiter, Janelle O.; Piszczor, Michael F.; McNatt, Jeremiah S.

    2015-01-01

    Measurement is essential for the evaluation of new photovoltaic (PV) technology for space solar cells. NASA Glenn Research Center (GRC) is in the process of measuring several solar cells in a supplemental experiment on NASA Goddard Space Flight Center's (GSFC) Robotic Refueling Mission's (RRM) Task Board 4 (TB4). Four industry and government partners have provided advanced PV devices for measurement and orbital environment testing. The experiment will be on-orbit for approximately 18 months. It is completely self-contained and will provide its own power and internal data storage. Several new cell technologies including four- junction (4J) Inverted Metamorphic Multijunction (IMM) cells will be evaluated and the results compared to ground-based measurements.

  11. HJ-1A HSI on-orbit radiometric calibration and validation research

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The calibration experiment data at Dunhuang radiometric calibration site in October, 2008 were used to achieve the on-orbit radiometric calibration for HJ-1A hyper spectral imager (HSI). Two other field experiments data were used to validate the Dunhuang calibration results. One field experiment took place in Inner-Mongolia, China in September, 2008, and the other field experiment took place in Lake Frome, Australia in February, 2009. Finally, the ‘confidence interval of calibration error’ concept was put forward for quantitatively computing the calibration coefficient error confidence interval. The results showed that the Dunhuang calibration results in 2008 had high reliability. The confidence intervals of calibration error for all HSI channels were between 2% to 12%, which could satisfy the requirement of the HSI quantitative applications.

  12. Real-time automated failure analysis for on-orbit operations

    Science.gov (United States)

    Kirby, Sarah; Lauritsen, Janet; Pack, Ginger; Ha, Anhhoang; Jowers, Steven; Mcnenny, Robert; Truong, The; Dell, James

    1993-01-01

    A system which is to provide real-time failure analysis support to controllers at the NASA Johnson Space Center Control Center Complex (CCC) for both Space Station and Space Shuttle on-orbit operations is described. The system employs monitored systems' models of failure behavior and model evaluation algorithms which are domain-independent. These failure models are viewed as a stepping stone to more robust algorithms operating over models of intended function. The described system is designed to meet two sets of requirements. It must provide a useful failure analysis capability enhancement to the mission controller. It must satisfy CCC operational environment constraints such as cost, computer resource requirements, verification, and validation. The underlying technology and how it may be used to support operations is also discussed.

  13. Autonomous rendezvous and docking: A commercial approach to on-orbit technology validation

    Science.gov (United States)

    Tchoryk, Peter, Jr.; Whitten, Raymond P.

    1991-01-01

    SpARC, in conjunction with its corporate affiliates, is planning an on-orbit validation of autonomous rendezvous and docking (ARD) technology. The emphasis in this program is to utilize existing technology and commercially available components wherever possible. The primary subsystems to be validated by this demonstration include GPS receivers for navigation, a video-based sensor for proximity operations, a fluid connector mechanism to demonstrate fluid resupply capability, and a compliant, single-point docking mechanism. The focus for this initial experiment will be ELV based and will make use of two residual Commercial Experiment Transporter (COMET) service modules. The first COMET spacecraft will be launched in late 1992 and will serve as the target vehicle. After the second COMET spacecraft has been launched in late 1994, the ARD demonstration will take place. The service module from the second COMET will serve as the chase vehicle.

  14. International Space Station Nickel-Hydrogen Batteries Approached 3-Year On-Orbit Mark

    Science.gov (United States)

    Dalton, Penni J.

    2004-01-01

    The International Space Station's (ISS) electric power system (EPS) employs nickel-hydrogen (Ni-H2) batteries as part of its power system to store electrical energy. The batteries are charged during insolation and discharged, providing station power, during eclipse. The batteries are designed to operate at a maximum 35-percent depth of discharge during normal operation. Thirty-eight individual pressure vessel Ni-H2 battery cells are series-connected and packaged in an orbital replacement unit (ORU), and two ORUs are series-connected, using a total of 76 cells, to form one battery. When the ISS is in its assembly-complete form, the electrical power system will have a total of 24 batteries (48 ORUs) on-orbit. The ISS is the first application for low-Earth-orbit cycling of this quantity of series-connected cells.

  15. Thermal performance testing of the Explorer Platform

    Science.gov (United States)

    Wasson, David; Ducas, William; Ousley, Wes

    1993-01-01

    The Explorer Platform (EP) has been designed to accommodate on-orbit payload and bus module changeout via Space Transportation System (STS) servicing. Such a versatile spacecraft platform designed to experience widely different environmental exposures and operational conditions, coupled with program constraints on schedule and budget, presented a challenge to implementing a technically sound thermal vacuum/thermal balance test program. This paper discusses thermal performance tests implemented at the subsystem and system levels, and the risks accepted resulting from test sequence, configuration. and tests omitted from the program. No thermal cycling or thermal balance tests were performed on the integrated spacecraft level, although both the Payload (EUVE) and Platform (EP) received independent testing. The decision to take this approach is discussed with respect to the thermal design and the associated risks taken to maintain budget and schedule.

  16. Satellite Power Systems (SPS) concept definition study. Volume 4: SPS point design definition

    Science.gov (United States)

    Hanley, G.

    1978-01-01

    The satellite power systems point design concept is described. The concept definition includes satellite, ground and space systems, and their relationships. Emphasis is placed on the definition of the GaAlAs photovoltaic satellite system. The major subsystems of the satellite system including power conversion, power distribution and control, microwave, attitude control and stationkeeping, thermal control, structures, and information management and control are discussed.

  17. Correlation of Amine Swingbed On-Orbit CO2 Performance with a Hardware Independent Predictive Model

    Science.gov (United States)

    Papale, William; Sweterlitsch, Jeffery

    2015-01-01

    The Amine Swingbed Payload is an experimental system deployed on the International Space Station (ISS) that includes a two-bed, vacuum regenerated, amine-based carbon dioxide (CO2) removal subsystem as the principal item under investigation. The aminebased subsystem, also described previously in various publications as CAMRAS 3, was originally designed, fabricated and tested by Hamilton Sundstrand Space Systems International, Inc. (HSSSI) and delivered to NASA in November 2008. The CAMRAS 3 unit was subsequently designed into a flight payload experiment in 2010 and 2011, with flight test integration activities accomplished on-orbit between January 2012 and March 2013. Payload activation was accomplished in May 2013 followed by a 1000 hour experimental period. The experimental nature of the Payload and the interaction with the dynamic ISS environment present unique scientific and engineering challenges, in particular to the verification and validation of the expected Payload CO2 removal performance. A modeling and simulation approach that incorporates principles of chemical reaction engineering has been developed for the amine-based system to predict the dynamic cabin CO2 partial pressure with given inputs of sorbent bed size, process air flow, operating temperature, half-cycle time, CO2 generation rate, cabin volume and the magnitude of vacuum available. Simulation runs using the model to predict ambient CO2 concentrations show good correlation to on-orbit performance measurements and ISS dynamic concentrations for the assumed operating conditions. The dynamic predictive modelling could benefit operational planning to help ensure ISS CO2 concentrations are maintained below prescribed limits and for the Orion vehicle to simulate various operating conditions, scenarios and transients.

  18. On-orbit identifying the inertia parameters of space robotic systems using simple equivalent dynamics

    Science.gov (United States)

    Xu, Wenfu; Hu, Zhonghua; Zhang, Yu; Liang, Bin

    2017-03-01

    After being launched into space to perform some tasks, the inertia parameters of a space robotic system may change due to fuel consumption, hardware reconfiguration, target capturing, and so on. For precision control and simulation, it is required to identify these parameters on orbit. This paper proposes an effective method for identifying the complete inertia parameters (including the mass, inertia tensor and center of mass position) of a space robotic system. The key to the method is to identify two types of simple dynamics systems: equivalent single-body and two-body systems. For the former, all of the joints are locked into a designed configuration and the thrusters are used for orbital maneuvering. The object function for optimization is defined in terms of acceleration and velocity of the equivalent single body. For the latter, only one joint is unlocked and driven to move along a planned (exiting) trajectory in free-floating mode. The object function is defined based on the linear and angular momentum equations. Then, the parameter identification problems are transformed into non-linear optimization problems. The Particle Swarm Optimization (PSO) algorithm is applied to determine the optimal parameters, i.e. the complete dynamic parameters of the two equivalent systems. By sequentially unlocking the 1st to nth joints (or unlocking the nth to 1st joints), the mass properties of body 0 to n (or n to 0) are completely identified. For the proposed method, only simple dynamics equations are needed for identification. The excitation motion (orbit maneuvering and joint motion) is also easily realized. Moreover, the method does not require prior knowledge of the mass properties of any body. It is general and practical for identifying a space robotic system on-orbit.

  19. Development of the GPM Observatory Thermal Vacuum Test Model

    Science.gov (United States)

    Yang, Kan; Peabody, Hume

    2012-01-01

    A software-based thermal modeling process was documented for generating the thermal panel settings necessary to simulate worst-case on-orbit flight environments in an observatory-level thermal vacuum test setup. The method for creating such a thermal model involved four major steps: (1) determining the major thermal zones for test as indicated by the major dissipating components on the spacecraft, then mapping the major heat flows between these components; (2) finding the flight equivalent sink temperatures for these test thermal zones; (3) determining the thermal test ground support equipment (GSE) design and initial thermal panel settings based on the equivalent sink temperatures; and (4) adjusting the panel settings in the test model to match heat flows and temperatures with the flight model. The observatory test thermal model developed from this process allows quick predictions of the performance of the thermal vacuum test design. In this work, the method described above was applied to the Global Precipitation Measurement (GPM) core observatory spacecraft, a joint project between NASA and the Japanese Aerospace Exploration Agency (JAXA) which is currently being integrated at NASA Goddard Space Flight Center for launch in Early 2014. From preliminary results, the thermal test model generated from this process shows that the heat flows and temperatures match fairly well with the flight thermal model, indicating that the test model can simulate fairly accurately the conditions on-orbit. However, further analysis is needed to determine the best test configuration possible to validate the GPM thermal design before the start of environmental testing later this year. Also, while this analysis method has been applied solely to GPM, it should be emphasized that the same process can be applied to any mission to develop an effective test setup and panel settings which accurately simulate on-orbit thermal environments.

  20. Recommended satellite imagery capabilities for disaster management

    Science.gov (United States)

    Richards, P. B.; Robinove, C. J.; Wiesnet, D. R.; Salomonson, V. V.; Maxwell, M. S.

    1982-01-01

    This study explores the role that satellite imaging systems might play in obtaining information needed in the management of natural and manmade disasters. Information requirements which might conceivably be met by satellite were identified for over twenty disasters. These requirements covered pre-disaster mitigation and preparedness activities, disaster response activities, and post-disaster recovery activities. The essential imaging satellite characteristics needed to meet most of the information requirements are 30 meter (or finer) spatial resolution, frequency of observations of one week or less, data delivery times of one day or less, and stereo, synoptic all-weather coverage of large areas in the visible, near infrared, thermal infrared and microwave bands. Of the current and planned satellite systems investigated for possible application to disaster management, Landsat-D and SPOT appear to have the greatest potential during disaster mitigation and preparedness activities, but all satellites studied have serious deficiencies during response and recovery activities. Several strawman concepts are presented for a satellite system optimized to support all disaster management activities.

  1. Multispectral Thermal Imager (MTI) Payload Overview

    Energy Technology Data Exchange (ETDEWEB)

    Bender, S.C.; Brock, B.C.; Bullington, D.M.; Byrd, D.A.; Claassen, P.J.; Decker, M.L.; Henson, T.D.; Kay, R.R.; Kidner, R.E.; Lanes, C.E.; Little, C.; Marbach, K.D.; Rackley, N.G.; Rienstra, J.L.; Smith, B.W.; Taplin, R.B.; Weber, P.G.

    1999-07-07

    MTI is a comprehensive research and development project that includes up-front modeling and analysis, satellite system design, fabrication, assembly and testing, on-orbit operations, and experimentation and data analysis. The satellite is designed to collect radiometrically calibrated, medium resolution imagery in 15 spectral bands ranging from 0.45 to 10.70 pm. The payload portion of the satellite includes the imaging system components, associated electronics boxes, and payload support structure. The imaging system includes a three-mirror anastigmatic off-axis telescope, a single cryogenically cooled focal plane assembly, a mechanical cooler, and an onboard calibration system. Payload electronic subsystems include image digitizers, real-time image compressors, a solid state recorder, calibration source drivers, and cooler temperature and vibration controllers. The payload support structure mechanically integrates all payload components and provides a simple four point interface to the spacecraft bus. All payload components have been fabricated and tested, and integrated.

  2. Evaluation on Radiometric Capability of Chinese Optical Satellite Sensors

    Science.gov (United States)

    Yang, Aixia; Zhong, Bo; Wu, Shanlong; Liu, Qinhuo

    2017-01-01

    The radiometric capability of on-orbit sensors should be updated on time due to changes induced by space environmental factors and instrument aging. Some sensors, such as Moderate Resolution Imaging Spectroradiometer (MODIS), have onboard calibrators, which enable real-time calibration. However, most Chinese remote sensing satellite sensors lack onboard calibrators. Their radiometric calibrations have been updated once a year based on a vicarious calibration procedure, which has affected the applications of the data. Therefore, a full evaluation of the sensors’ radiometric capabilities is essential before quantitative applications can be made. In this study, a comprehensive procedure for evaluating the radiometric capability of several Chinese optical satellite sensors is proposed. In this procedure, long-term radiometric stability and radiometric accuracy are the two major indicators for radiometric evaluation. The radiometric temporal stability is analyzed by the tendency of long-term top-of-atmosphere (TOA) reflectance variation; the radiometric accuracy is determined by comparison with the TOA reflectance from MODIS after spectrally matching. Three Chinese sensors including the Charge-Coupled Device (CCD) camera onboard Huan Jing 1 satellite (HJ-1), as well as the Visible and Infrared Radiometer (VIRR) and Medium-Resolution Spectral Imager (MERSI) onboard the Feng Yun 3 satellite (FY-3) are evaluated in reflective bands based on this procedure. The results are reasonable, and thus can provide reliable reference for the sensors’ application, and as such will promote the development of Chinese satellite data. PMID:28117745

  3. Space Solar Power Satellite Systems, Modern Small Satellites, and Space Rectenna

    Science.gov (United States)

    Bergsrud, Corey Alexis Marvin

    Space solar power satellite (SSPS) systems is the concept of placing large satellite into geostationary Earth orbit (GEO) to harvest and convert massive amounts of solar energy into microwave energy, and to transmit the microwaves to a rectifying antenna (rectenna) array on Earth. The rectenna array captures and converts the microwave power into usable power that is injected into the terrestrial electric grid for use. This work approached the microwave power beam as an additional source of power (with solar) for lower orbiting satellites. Assuming the concept of retrodirectivity, a GEO-SSPS antenna array system tracks and delivers microwave power to lower orbiting satellites. The lower orbiting satellites are equipped with a stacked photovoltaic (PV)/rectenna array hybrid power generation unit (HPGU) in order to harvest solar and/or microwave energy for on-board use during orbit. The area, and mass of the PV array part of the HPGU was reduced at about 32% beginning-of-life power in order to achieve the spacecraft power requirements. The HPGU proved to offer a mass decrease in the PGU, and an increase in mission life due to longer living component life of the rectenna array. Moreover, greater mission flexibility is achieved through a track and power delivery concept. To validate the potential advantages offered by a HPGU, a mission concept was presented that utilizes modern small satellites as technology demonstrators. During launch, a smaller power receiving "daughter" satellite sits inside a larger power transmitting "mother" satellite. Once separated from the launch vehicle the daughter satellite is ejected away from the mother satellite, and each satellite deploys its respective power transmitting or power receiving hardware's for experimentation. The concept of close proximity mission operations between the satellites is considered. To validate the technology of the space rectenna array part of the HPGU, six milestones were completed in the design. The first

  4. Development of a Nitrous Oxide-Based Monopropellant Propulsion System for Small Satellites

    OpenAIRE

    Tarantini, Vincent; Risi, Ben; Orr, Nathan

    2016-01-01

    As the demand for highly capable microsatellite missions continues to grow, so too does the need for small yet effective satellite technologies. One area which needs to be addressed is compact propulsion systems capable of performing on-orbit maneuvers, station keeping, and de-orbit impulses with good efficiency. Another important consideration for propulsion systems is the safety and ease in handling, integrating, and testing the propulsion system. This is particularly important for small sa...

  5. Mobile satellite communications handbook

    CERN Document Server

    Cochetti, Roger

    2014-01-01

    With a Preface by noted satellite scientist Dr. Ahmad Ghais, the Second Edition reflects the expanded user base for this technology by updating information on historic, current, and planned commercial and military satellite systems and by expanding sections that explain the technology for non-technical professionals.   The book begins with an introduction to satellite communications and goes on to provide an overview of the technologies involved in mobile satellite communications, providing basic introductions to RF Issues, power Issues, link issues and system issues. It describes

  6. Satellite communication antenna technology

    Science.gov (United States)

    Mittra, R. (Editor); Imbriale, W. A. (Editor); Maanders, E. J. (Editor)

    1983-01-01

    A general overview of current technology in the field of communication satellite antennas is presented. Among the topics discussed are: the design of multiple beam systems; frequency reuse; and polarization control of antenna measurements. Consideration is also given to: contour beam synthesis; dual shaped reflector synthesis; beam shaping; and offset reflector design. The applications of the above technologies to present and future generations of communications satellites is considered, with emphasis given to such systems as: the Intelsats; the Defense Satellite Communications System, (DSCS-III); Satellite Business System (SBS), and Comstar.

  7. Methods of satellite oceanography

    Science.gov (United States)

    Stewart, R. H.

    1985-01-01

    The theoretical basis for remote sensing measurements of climate and ocean dynamics is examined. Consideration is given to: the absorption of electromagnetic radiation in the atmosphere; scattering in the atmosphere; and satellite observations using visible light. Consideration is also given to: the theory of radio scatter from the sea; scatter of centimeter waves from the sea; and the theory of operation of synthetic aperture radars. Additional topics include: the coordinate systems of satellite orbits for oceanographic remote sensing applications; the operating features of the major U.S. satellite systems for viewing the ocean; and satellite altimetry.

  8. Satellite Attitude Determination with Low-Cost Sensors

    Science.gov (United States)

    Springmann, John C.

    This dissertation contributes design and data processing techniques to maximize the accuracy of low-cost attitude determination systems while removing pre-flight calibration requirements. This enables rapid development of small spacecraft to perform increasingly complex missions. The focus of this work is magnetometers and sun sensors, which are the two most common types of attitude sensors. Magnetometer measurements are degraded by the magnetic fields of nearby electronics, which traditionally limit their utility on satellites unless a boom is used to provide physical separation between the magnetometer and the satellite. This dissertation presents an on-orbit, attitude-independent method for magnetometer calibration that mitigates the effect of nearby electronics. With this method, magnetometers can be placed anywhere within the spacecraft, and as demonstrated through application to flight data, the accuracy of the integrated magnetometer is reduced to nearly that of the stand-alone magnetometer. Photodiodes are light sensors that can be used for sun sensing. An individual photodiode provides a measurement of a single sun vector component, and since orthogonal photodiodes do not provide sufficient coverage due to photodiode field-of-view limitations, there is a tradeoff between photodiode orientation and sun sensing angular accuracy. This dissertation presents a design method to optimize the photodiode configuration for sun sensing, which is also generally applicable to directional sensors. Additionally, an on-orbit calibration method is developed to estimate the photodiode scale factors and orientation, which are critical for accurate sun sensing. Combined, these methods allow a magnetometer to be placed anywhere within a spacecraft and provide an optimal design technique for photodiode placement. On-orbit calibration methods are formulated for both types of sensors that correct the sensor errors on-orbit without requiring pre-flight calibration. The calibration

  9. On-Orbit Absolute Radiance Standard for the Next Generation of IR Remote Sensing Instruments

    OpenAIRE

    Best, Fred. A.; Adler, Douglas P.; Pettersen, P. Claire; Gero, Jonathan; Taylor, Joseph K.; Revercomb, Henry E.; Knuteson, Robert O.; Perepezko, John H.

    2012-01-01

    The next generation of infrared remote sensing satellite instrumentation, including climate benchmark missions will require better absolute measurement accuracy than now available, and will most certainly rely on the emerging capability to fly SI traceable standards that provide irrefutable absolute measurement accuracy. As an example, instrumentation designed to measure spectrally resolved infrared radiances with an absolute brightness temperature error of better than 0.1 K will require high...

  10. Geologic mapping using thermal images

    Science.gov (United States)

    Abrams, M. J.; Kahle, A. B.; Palluconi, F. D.; Schieldge, J. P.

    1984-01-01

    Thermal radiance data from the Heat Capacity Mapping Mission (HCMM) satellite has been used to measure surface reflectance data and to provide additional material composition information through remote sensing. The primary goal was to investigate the utility of HCMM data for geologic applications. Three techniques were used for displaying and combining thermal and visible near infrared (VNIR) data for two desert areas in southern California (Trona and Pisgah): color additive composites (CAC) for day and night IR and day VNIR, principal components, and calculation of thermal inertia images. The HCMM thermal data were more effective than Landsat data in producing separation of compositionally different areas including volcanic and intrusive rocks. The satellite CAC data produced an image for a 1 x 2 degree area, and the color picture was enlarged to a scale of 1:250,000. Playa composition, moisture content, presence of standing water, and vegetation cover were displayed in a variety of colors according to physical characteristics. Areas such as sand dunes were not distinguishable because of the coarse 500-mm HCMM resolution. HCMM thermal data have shown a new dimension to geologic remote sensing, and future satellite missions should allow the continued development of the thermal infrared data for geology.

  11. JPSS-1 VIIRS reflective solar band on-orbit calibration performance impacts due to SWIR nonlinearity artifacts

    Science.gov (United States)

    Moyer, D.; De Luccia, F.; Haas, E.

    2016-10-01

    The Joint Polar Satellite System 1 (JPSS-1) is the follow on mission to the Suomi-National Polar-orbiting Partnership (SNPP) and provides critical weather and global climate products to the user community. A primary sensor on both JPSS-1 and S-NPP is the Visible-Infrared Imaging Radiometer Suite (VIIRS) with the Reflective Solar Band (RSB), Thermal Emissive Band (TEB) and Day Night Band (DNB) imagery providing a diverse spectral range of Earth observations. These VIIRS observation are radiometrically calibrated within the Sensor Data Records (SDRs) for use in Environmental Data Record (EDR) products such as Ocean Color/Chlorophyll (OCC) and Sea Surface Temperature (SST). Spectrally the VIIRS sensor can be broken down into 4 groups: the Visible Near Infra-Red (VNIR), Short-Wave Infra-Red (SWIR), Mid- Wave Infra-Red (MWIR) and Long-Wave Infra-Red (LWIR). The SWIR spectral bands on JPSS-1 VIIRS have a nonlinear response at low light levels affecting the calibration quality where Earth scenes are dark (like oceans). This anomalous behavior was not present on S-NPP VIIRS and will be a unique feature of the JPSS-1 VIIRS sensor. This paper will show the behavior of the SWIR response non-linearity on JPSS-1 VIIRS and potential mitigation approaches to limit its impact on the SDR and EDR products.

  12. Satellites of spiral galaxies

    Science.gov (United States)

    Zaritsky, Dennis; Smith, Rodney; Frenk, Carlos; White, Simon D. M.

    1993-01-01

    We present a survey of satellites around a homogeneous set of late-type spirals with luminosity similar to that of the Milky Way. On average, we find fewer than 1.5 satellites per primary, but we argue that we can treat the survey as an ensemble and so derive the properties of the halo of a 'typical' isolated spiral. The projected density profile of the ensemble falls off approximately as 1/r. Within 50 kpc the azimuthal distribution of satellites shows some evidence for the 'Holmberg effect', an excess near the minor axis of the primary; however, at larger projected distances, the distribution appears isotropic. There is a weak but significant correlation between the size of a satellite and its distance from its primary, as expected if satellites are tidally truncated. Neither Hubble type nor spectral characteristics correlate with apparent separation. The ensemble of satellites appears to be rotating at about 30 km/s in the same direction as the galactic disk. Satellites on prograde orbits tend to be brighter than those on retrograde orbits. The typical velocity difference between a satellite and its primary shows no clear dependence either on apparent separation, or on the rotation speed of the primary. Thus our survey demonstrates that isolated spiral galaxies have massive halos that extend to many optical radii.

  13. Communication satellite technology trends

    Science.gov (United States)

    Cuccia, Louis

    1986-01-01

    A chronology of space-Earth interconnectivity is presented. The Advanced Communications Technology Satellite (ACTS) system, Land Mobile Satellite, space-Earth antennas, impact of antenna size on coverage, intersatellite links are outlined. This presentation is represented by graphs and charts only.

  14. Northward extent of East Asian monsoon covaries with intensity on orbital and millennial timescales.

    Science.gov (United States)

    Goldsmith, Yonaton; Broecker, Wallace S; Xu, Hai; Polissar, Pratigya J; deMenocal, Peter B; Porat, Naomi; Lan, Jianghu; Cheng, Peng; Zhou, Weijian; An, Zhisheng

    2017-02-21

    The magnitude, rate, and extent of past and future East Asian monsoon (EAM) rainfall fluctuations remain unresolved. Here, late Pleistocene-Holocene EAM rainfall intensity is reconstructed using a well-dated northeastern China closed-basin lake area record located at the modern northwestern fringe of the EAM. The EAM intensity and northern extent alternated rapidly between wet and dry periods on time scales of centuries. Lake levels were 60 m higher than present during the early and middle Holocene, requiring a twofold increase in annual rainfall, which, based on modern rainfall distribution, requires a ∼400 km northward expansion/migration of the EAM. The lake record is highly correlated with both northern and southern Chinese cave deposit isotope records, supporting rainfall "intensity based" interpretations of these deposits as opposed to an alternative "water vapor sourcing" interpretation. These results indicate that EAM intensity and the northward extent covary on orbital and millennial timescales. The termination of wet conditions at 5.5 ka BP (∼35 m lake drop) triggered a large cultural collapse of Early Neolithic cultures in north China, and possibly promoted the emergence of complex societies of the Late Neolithic.

  15. Survey of On-Orbit Sleep Quality: Short-Duration Flyers

    Science.gov (United States)

    Locke, J.; Leveton, L.; Keeton, K.; Whitmire, A.; Patterson, H.; Faulk, J.

    2010-01-01

    The NASA Human Research Program (HRP) Behavioral Health and Performance Element (BHP), in conjunction with the NASA Space Medicine Division, is currently completing the largest systematic, subjective assessment of shuttle astronauts sleep behaviors and sleep quality on Earth, during training periods, and during space flight missions. Since July 2009, a total of 66 astronauts have completed a secure online survey regarding specific sleep strategies, crew policies, and mitigation effectiveness. In addition to the survey, each astronaut participant met individually with trained BHP and SD representatives for a structured, follow-up interview. Data are currently being assessed and the study s principal investigator will be providing some preliminary findings at the Investigators Workshop. Additional analyses will be conducted in the following months to examine predictors of optimal sleep in space, and to evaluate the differences in countermeasure effectiveness between groups based on their sleep experience on the ground and on orbit. A revised survey for a subsequent investigation on the experiences of long-duration flyers will be developed in the Spring and implemented in the Summer of 2010. Findings from both of these investigations will inform countermeasure strategies for astronauts, medical operations, and habitat designers for future exploration missions, as well as upcoming shuttle and ISS missions.

  16. On-orbit real-time robust cooperative target identification in complex background

    Institute of Scientific and Technical Information of China (English)

    Wen Zhuoman; Wang Yanjie; Arjan Kuijper; Di Nan; Luo Jun; Zhang Lei; Jin Minghe

    2015-01-01

    Cooperative target identification is the prerequisite for the relative position and orienta-tion measurement between the space robot arm and the to-be-arrested object. We propose an on-orbit real-time robust algorithm for cooperative target identification in complex background using the features of circle and lines. It first extracts only the interested edges in the target image using an adaptive threshold and refines them to about single-pixel-width with improved non-maximum sup-pression. Adapting a novel tracking approach, edge segments changing smoothly in tangential directions are obtained. With a small amount of calculation, large numbers of invalid edges are removed. From the few remained edges, valid circular arcs are extracted and reassembled to obtain circles according to a reliable criterion. Finally, the target is identified if there are certain numbers of straight lines whose relative positions with the circle match the known target pattern. Experiments demonstrate that the proposed algorithm accurately identifies the cooperative target within the range of 0.3–1.5 m under complex background at the speed of 8 frames per second, regardless of lighting condition and target attitude. The proposed algorithm is very suitable for real-time visual measurement of space robot arm because of its robustness and small memory requirement.

  17. Characterization of the OCO-2 instrument line shape functions using on-orbit solar measurements

    Science.gov (United States)

    Sun, Kang; Liu, Xiong; Nowlan, Caroline R.; Cai, Zhaonan; Chance, Kelly; Frankenberg, Christian; Lee, Richard A. M.; Pollock, Randy; Rosenberg, Robert; Crisp, David

    2017-03-01

    Accurately characterizing the instrument line shape (ILS) of the Orbiting Carbon Observatory-2 (OCO-2) is challenging and highly important due to its high spectral resolution and requirement for retrieval accuracy (0. 25 %) compared to previous spaceborne grating spectrometers. On-orbit ILS functions for all three bands of the OCO-2 instrument have been derived using its frequent solar measurements and high-resolution solar reference spectra. The solar reference spectrum generated from the 2016 version of the Total Carbon Column Observing Network (TCCON) solar line list shows significant improvements in the fitting residual compared to the solar reference spectrum currently used in the version 7 Level 2 algorithm in the O2 A band. The analytical functions used to represent the ILS of previous grating spectrometers are found to be inadequate for the OCO-2 ILS. Particularly, the hybrid Gaussian and super-Gaussian functions may introduce spurious variations, up to 5 % of the ILS width, depending on the spectral sampling position, when there is a spectral undersampling. Fitting a homogeneous stretch of the preflight ILS together with the relative widening of the wings of the ILS is insensitive to the sampling grid position and accurately captures the variation of ILS in the O2 A band between decontamination events. These temporal changes of ILS may explain the spurious signals observed in the solar-induced fluorescence retrieval in barren areas.

  18. Northward extent of East Asian monsoon covaries with intensity on orbital and millennial timescales

    Science.gov (United States)

    Goldsmith, Yonaton; Broecker, Wallace S.; Xu, Hai; Polissar, Pratigya J.; deMenocal, Peter B.; Porat, Naomi; Lan, Jianghu; Cheng, Peng; Zhou, Weijian; An, Zhisheng

    2017-02-01

    The magnitude, rate, and extent of past and future East Asian monsoon (EAM) rainfall fluctuations remain unresolved. Here, late Pleistocene-Holocene EAM rainfall intensity is reconstructed using a well-dated northeastern China closed-basin lake area record located at the modern northwestern fringe of the EAM. The EAM intensity and northern extent alternated rapidly between wet and dry periods on time scales of centuries. Lake levels were 60 m higher than present during the early and middle Holocene, requiring a twofold increase in annual rainfall, which, based on modern rainfall distribution, requires a ˜400 km northward expansion/migration of the EAM. The lake record is highly correlated with both northern and southern Chinese cave deposit isotope records, supporting rainfall “intensity based” interpretations of these deposits as opposed to an alternative “water vapor sourcing” interpretation. These results indicate that EAM intensity and the northward extent covary on orbital and millennial timescales. The termination of wet conditions at 5.5 ka BP (˜35 m lake drop) triggered a large cultural collapse of Early Neolithic cultures in north China, and possibly promoted the emergence of complex societies of the Late Neolithic.

  19. On-orbit real-time robust cooperative target identification in complex background

    Directory of Open Access Journals (Sweden)

    Wen Zhuoman

    2015-10-01

    Full Text Available Cooperative target identification is the prerequisite for the relative position and orientation measurement between the space robot arm and the to-be-arrested object. We propose an on-orbit real-time robust algorithm for cooperative target identification in complex background using the features of circle and lines. It first extracts only the interested edges in the target image using an adaptive threshold and refines them to about single-pixel-width with improved non-maximum suppression. Adapting a novel tracking approach, edge segments changing smoothly in tangential directions are obtained. With a small amount of calculation, large numbers of invalid edges are removed. From the few remained edges, valid circular arcs are extracted and reassembled to obtain circles according to a reliable criterion. Finally, the target is identified if there are certain numbers of straight lines whose relative positions with the circle match the known target pattern. Experiments demonstrate that the proposed algorithm accurately identifies the cooperative target within the range of 0.3–1.5 m under complex background at the speed of 8 frames per second, regardless of lighting condition and target attitude. The proposed algorithm is very suitable for real-time visual measurement of space robot arm because of its robustness and small memory requirement.

  20. Landsat-8 Operational Land Imager (OLI Radiometric Performance On-Orbit

    Directory of Open Access Journals (Sweden)

    Ron Morfitt

    2015-02-01

    Full Text Available Expectations of the Operational Land Imager (OLI radiometric performance onboard Landsat-8 have been met or exceeded. The calibration activities that occurred prior to launch provided calibration parameters that enabled ground processing to produce imagery that met most requirements when data were transmitted to the ground. Since launch, calibration updates have improved the image quality even more, so that all requirements are met. These updates range from detector gain coefficients to reduce striping and banding to alignment parameters to improve the geometric accuracy. This paper concentrates on the on-orbit radiometric performance of the OLI, excepting the radiometric calibration performance. Topics discussed in this paper include: signal-to-noise ratios that are an order of magnitude higher than previous Landsat missions; radiometric uniformity that shows little residual banding and striping, and continues to improve; a dynamic range that limits saturation to extremely high radiance levels; extremely stable detectors; slight nonlinearity that is corrected in ground processing; detectors that are stable and 100% operable; and few image artifacts.

  1. On Orbit Osteobiology Experiments: from "STROMA" to "MDS" -from in vitro to in vivo

    Science.gov (United States)

    Liu, Yi; Cancedda, Ranieri

    Spaceflight causes profound changes in the skeleton, in particular, in the weight-loading bones. Uncoupling of bone remodeling equilibrium between bone formation and resorption is con-sidered responsible for the microgravity-induced bone loss. These changes result in weak-ened and brittle bones prone to fracture on re-entry and in accelerated osteoporosis, making bone deterioration a major problem obstructing the prospects of long-duration manned space flight. Osteoblasts (bone forming cells) and osteocytes (bone resorption cells) are known to be mechano-sensors. Short-exposure of osteoblasts to simulated microgravity ensnarled cell adhe-sion and cytoskeleton. Also osteoblast precursors such as bone marrow stroma cells (BMSC) were shown to be sensitive to mechanical loading. We performed a series of STROMA space-flight experiments by culturing BMSC or co-culturing osteoblasts and osteoclast precursors in automated bioreactors on orbit. Genechip analysis revealed an inhibition of cell proliferation and an unexpected activation of nervous system development genes by spaceflight. To unravel effects of microgravity on genes governing bone mass, transgenic mice with a higher bone mass were flown to orbit inside the Mice Drawer System (MDS) payload. The MDS experiment was launched inside Shuttle Discovery in STS-128 on August 28 2009 at 23:58 EST, and returned to earth by Shuttle Atlantis in STS129 on November 27 2009 at 9:47 EST, marking it as the first long duration animal experiment on the International Space Station (ISS).

  2. Landsat-8 Operational Land Imager (OLI) radiometric performance on-orbit

    Science.gov (United States)

    Morfitt, Ron; Barsi, Julia A.; Levy, Raviv; Markham, Brian L.; Micijevic, Esad; Ong, Lawrence; Scaramuzza, Pat; Vanderwerff, Kelly

    2015-01-01

    Expectations of the Operational Land Imager (OLI) radiometric performance onboard Landsat-8 have been met or exceeded. The calibration activities that occurred prior to launch provided calibration parameters that enabled ground processing to produce imagery that met most requirements when data were transmitted to the ground. Since launch, calibration updates have improved the image quality even more, so that all requirements are met. These updates range from detector gain coefficients to reduce striping and banding to alignment parameters to improve the geometric accuracy. This paper concentrates on the on-orbit radiometric performance of the OLI, excepting the radiometric calibration performance. Topics discussed in this paper include: signal-to-noise ratios that are an order of magnitude higher than previous Landsat missions; radiometric uniformity that shows little residual banding and striping, and continues to improve; a dynamic range that limits saturation to extremely high radiance levels; extremely stable detectors; slight nonlinearity that is corrected in ground processing; detectors that are stable and 100% operable; and few image artifacts.

  3. Advances in Orion's On-Orbit Guidance and Targeting System Architecture

    Science.gov (United States)

    Scarritt, Sara K.; Fill, Thomas; Robinson, Shane

    2015-01-01

    NASA's manned spaceflight programs have a rich history of advancing onboard guidance and targeting technology. In order to support future missions, the guidance and targeting architecture for the Orion Multi-Purpose Crew Vehicle must be able to operate in complete autonomy, without any support from the ground. Orion's guidance and targeting system must be sufficiently flexible to easily adapt to a wide array of undecided future missions, yet also not cause an undue computational burden on the flight computer. This presents a unique design challenge from the perspective of both algorithm development and system architecture construction. The present work shows how Orion's guidance and targeting system addresses these challenges. On the algorithm side, the system advances the state-of-the-art by: (1) steering burns with a simple closed-loop guidance strategy based on Shuttle heritage, and (2) planning maneuvers with a cutting-edge two-level targeting routine. These algorithms are then placed into an architecture designed to leverage the advantages of each and ensure that they function in concert with one another. The resulting system is characterized by modularity and simplicity. As such, it is adaptable to the on-orbit phases of any future mission that Orion may attempt.

  4. GRIFEX Payload Data System Architecture for On-Orbit Focal Plane Array Evaluation

    Science.gov (United States)

    Bekker, D. L.; Bryk, M.; DeLucca, J.; Franklin, B.; Hancock, B.; Klesh, A. T.; Meehan, C.; Meshkaty, N.; Nichols, J.; Pingree, P.; Rider, D. M.; Werne, T.; Wu, J.

    2012-12-01

    The GEO-CAPE ROIC In-Flight Performance Experiment (GRIFEX) is 3U CubeSat mission with the goal of on-orbit verification of a high performance focal plane array (FPA). The FPA is a custom silicon PIN diode array hybridized to the JPL-developed GEO-CAPE readout integrated circuit (ROIC). The FPA is 128 x 128 pixels, with a frame rate of up to 16 kHz, and 14 bits-per-pixel dynamic range. The FPA is designed to meet the measurement requirements of the PanFTS instrument, currently in development for the Earth Science Decadal Survey Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission. The GRIFEX FPA will operate at 8 kHz frame rate, producing a 1.84 Gbps data stream. This data will be buffered in the GRIFEX data system and will be telemetered to a ground station at the University of Michigan in short bursts when the GRIFEX CubeSat is in view of the station. The work presented here highlights the development of the GRIFEX payload data system, with emphasis on the system architecture, data storage strategy, and payload operations. Considerations for low power design and radiation robustness are also discussed. Initial images and a characterization of the FPA performance is presented. The GRIFEX mission is a joint effort between JPL (payload) and the University of Michigan (CubeSat). The launch is scheduled for 2014.

  5. Landsat-7 ETM+ On-Orbit Reflective-Band Radiometric Stability and Absolute Calibration

    Science.gov (United States)

    Markham, Brian L.; Thome, Kurtis J.; Barsi, Julia A.; Kaita, Ed; Helder, Dennis L.; Barker, John L.

    2003-01-01

    The Landsat-7 spacecraft carries the Enhanced Thematic Mapper Plus (ETM+) instrument. This instrument images the Earth land surface in eight parts of the electromagnetic spectrum, termed spectral bands. These spectral images are used to monitor changes in the land surface, so a consistent relationship, i.e., calibration, between the image data and the Earth surface brightness, is required. The ETM+ has several on- board calibration devices that are used to monitor this calibration. The best on-board calibration source employs a flat white painted reference panel and has indicated changes of between 0.5% to 2% per year in the ETM+ response, depending on the spectral band. However, most of these changes are believed to be caused by changes in the reference panel, as opposed to changes in the instrument's sensitivity. This belief is based partially on on-orbit calibrations using instrumented ground sites and observations of "invariant sites", hyper-arid sites of the Sahara and Arabia. Changes determined from these data sets indicate are 0.1% - 0.6% per year. Tests and comparisons to other sensors also indicate that the uncertainty of the calibration is at the 5% level.

  6. The Algorithm for MODIS Wavelength On-Orbit Calibration Using the SRCA

    Science.gov (United States)

    Montgomery, Harry; Che, Nianzeng; Parker, Kirsten; Bowser, Jeff

    1998-01-01

    The Spectro-Radiometric Calibration Assembly (SRCA) provides on-orbit spectral calibration of the MODerate resolution Imaging Spectroradiometer (MODIS) reflected solar bands and this paper describes how it is accomplished. The SRCA has two adjacent exit slits: 1) Main slit and 2) Calibration slit. The output from the main slit is measured by a reference silicon photo-diode (SIPD) and then passes through the MODIS. The output from the calibration slit passes through a piece of didymium transmission glass and then it is measured by a calibration SIPD. The centroids of the sharp spectral peaks of a didymium glass are utilized as wavelength standards. After normalization using the reference SIPD signal to eliminate the effects of the illuminating source spectra, the calibration SIPD establishes the relationship between the peaks of the didymium spectra and the grating angle; this is accomplished through the grating equation. In the grating equation the monochromator parameters, Beta (half angle between the incident and diffractive beams) and Theta(sub off) (offset angle of the grating motor) are determined by matching, in a least square sense, the known centroid wavelengths of the didymium peaks and the calculated centroid grating angles from the calibration SIPD signals for the peaks. A displacement between the calibration SIPD and the reference SIPD complicates the signal processing.

  7. Close Range Photogrammetry in Space - Measuring the On-Orbit Clearance between Hardware on the International Space Station

    Science.gov (United States)

    Liddle, Donn

    2017-01-01

    real clearance between the ammonia lines and expected position of the thruster bell using existing on-orbit imagery. Imagery of the area of interest, taken several years earlier from the Space Shuttle during a fly-around of the ISS, was found and used to set a stereo pair. Space Vision System Targets and Handrail bolts measured in the ISS analytical coordinate system (ISSACS) prior to launch, were used to obtain an absolute orientation so all photogrammetric measurement's would be in the ISSACS coordinate system. Coordinates for the design location of the edges of the thruster bell, when the cargo vehicle was fully berthed to the ISS, were displayed in 3-D relative to the as-installed ammonia lines. This immediately revealed a positive clearance, which was later quantified to be a minimum of 10" +/0.5". The analysis was completed over a single weekend by a single analyst. Using updated imagery, acquired from the station's robotic arm, a complete as-installed model of the coolant lines was generated from stereo photography and replaced the design model in the master ISS CAD database.

  8. On-orbit calibration of Visible Infrared Imaging Radiometer Suite reflective solar bands and its challenges using a solar diffuser.

    Science.gov (United States)

    Sun, Junqiang; Wang, Menghua

    2015-08-20

    nm, Band M11), respectively, since 20 January 2012. It is established that the SD calibration accurately catches the on-orbit RSB degradation according to the instrument design and the calibration algorithm. However, due to the inherent nonuniform degradation of the SD affecting especially the short wavelength bands and the lack of capability of the SDSM calibration to catch degradation beyond 935 nm, the direct and the unmitigated application of the SD calibration result will introduce nonnegligible error into the calibration coefficients resulting in long-term drifts in the sensor data records and consequently the high-level products. We explicitly unveil the effect of the nonuniformity in SD degradation in the RSB calibration coefficients but also briefly discuss a critical yet simple mitigation to restore the accuracy of the calibration coefficients based on lunar observations. The methodology presented here thus remains intact as the cornerstone of the RSB calibration, and our derived RSB calibration coefficients represent the optimal result. This work has the most impact on the quality of the ocean color products that sensitively depend on the moderate visible and NIR bands (M1-M7), as well as the SWIR bands (M8, M10, and M11).

  9. Evaluation of reliability, availability, maintainability and safety requirements for manned space vehicles with extended on-orbit stay time

    Science.gov (United States)

    Carlier, S.; Coindoz, M.; Deneuville, L.; Garbellini, L.; Altavilla, A.

    1996-01-01

    The recent manned space transportation vehicles studies performed by ESA and European Industry, investigate the possibility of extended on-orbit stay time. From the RAMS (Reliability, Availability, Maintainability, Safety) point of view, these vehicles will have to meet, in addition to the multi-phase mission safety and reliability constraints, stringent on-orbit availability levels which will be among the most important design and operations drivers. The objective of the paper is to derive the lessons learnt from the Assured Crew Return Vehicle (ACRV) feasibility phase study, in terms of RAMS requirements specification. The paper briefly assesses the deterministic RAMS requirements derived from ESA and NASA applicable standards and focuses on the probabilistic requirements which were the subject of numerous interpretations. Different approaches are presented together with their impacts on the design (maintainability, testability, on-orbit replaceable units concept,…) and on the operations (check-out frequency, logistics,…). The main uncertainties are also assessed. In conclusion, recommendations are made for the specification of RAMS requirements for manned space vehicles with extended on-orbit stay time.

  10. Alternative Method of On-Orbit Response-Versus-Scan-Angle Characterization for MODIS Reflective Solar Bands

    Science.gov (United States)

    Chen, Hongda; Xiong, Xiaoxiong; Angal, Amit; Geng, Xu; Wu, Aisheng

    2016-01-01

    The moderate resolution imaging spectroradiometer (MODIS) has 20 reflective solar bands (RSB), covering a spectral range from 0.41 to 2.2 microns, which are calibrated on-orbit using its onboard calibrators, which include a solar diffuser, a solar diffuser stability monitor, and a spectroradiometric calibration assembly. A space view (SV) port is used to provide a background reference and also facilitates near-monthly lunar observations through a spacecraft roll. In every scan, the Earth's surface, SV, and onboard calibrators are viewed via a two-sided scan mirror, the reflectance of which depends on the angle of incidence (AOI) as well as the wavelength of the incident light. Response-versus-scan-angle (RVS) is defined as a dependence function of the scan mirror's reflectance over AOI. An initial RVS for each RSB was measured prelaunch for both Terra and Aqua MODIS. Algorithms have been developed to track the on-orbit RVS variation using the measurements from the onboard calibrators, supplemented with the earth view (EV) trends from pseudoinvariant desert targets obtained at different AOI. Since the mission beginning, the MODIS characterization support team (MCST) has dedicated efforts in evaluating approaches of characterizing the on-orbit RVS. A majority of the approaches focused on fitting the data at each AOI over time and then deriving the relative change at different AOI. The current version of the on-orbit RVS algorithm, as implemented in the collection 6 (C6) level-1B (L1B), is also based on the above rationale. It utilizes the EV response trends from the pseudoinvariant Libyan desert targets to supplement the gain derived from the onboard calibrators. The primary limitation of this approach is the assumption of the temporal stability of these desert sites. Consequently, MCST developed an approach that derives the on-orbit RVS change using measurements from a single desert site, combined with the on-orbit lunar measurements. In addition, the EV and onboard

  11. Beginnings of Satellite Navigation

    Directory of Open Access Journals (Sweden)

    Miljenko Solarić

    2008-05-01

    Full Text Available The first satellite navigation system called the Navy Navigation Satellite System (NNSS or TRANSIT was planned in the USA in 1958. It consisted of 5-6 artificial Earth satellites, was set in motion for the USA military in 1964, and in 1967 for civilian purposes. The frequency shift of received radio waves emitted from the satellite and caused by the Doppler effect was measured. The TRANSIT satellite speed of approaching or moving away was derived from that; the TRANSIT satellites emmited also their own coordinates. Then the ship's position was determined by an intersection of three hyperboloids, which were determined from differences of distances in three time intervals. Maintenance of this navigation system was stopped in 1996, but it is still being used in the USA Navy for exploring the ionosphere. Furthermore, results of Doppler measurements in international projects at the Hvar Observatory from 1982 and 1983. This was the first time in Croatia and the former country that the coordinates of the Hvar Observatory were determined in the unique world coordinate system WGS'72. The paper ends with a brief representation of the Tsiklon Doppler navigation system produced in the former Soviet Union, and there is a list of some of numerous produced and designed satellite navigation systems.Ključne riječi

  12. SCD 02 thermal design

    Science.gov (United States)

    Cardoso, Humberto Pontes

    1990-01-01

    The Satelite de Coleta de Dados (SCD) 02 (Data Collection Satellite) has the following characteristics: 115 kg weight, octagonal prism shape, 1 m diameter, and 0.67 m height. Its specified orbit is nearly circular, 700 km altitude, is inclined 25 deg with respect to the equator line, and has 100 min period. The electric power is supplied by eight solar panels installed on the lateral sides of the satellite. The equipment is located on the central (both faces) and lower (internal face) panels. The satellite is spin stabilized and its attitude control is such that during its lifetime, the solar aspect angle will vary between 80 and 100 deg with respect to its spin axis. Two critical cases were selected for thermal control design purposes: Hot case (maximum solar constant, solar aspect angle equal to 100 deg, minimum eclipse time and maximum internal heat dissipation); and a passive thermal design concept was achieved and the maximum and minimum equipment operating temperatures were obtained through a 109 node finite difference mathematical model.

  13. Landsat-7 ETM+: 12 years on-orbit reflective-band radiometric performance

    Science.gov (United States)

    Markham, B.L.; Haque, M.O.; Barsi, J.A.; Micijevic, E.; Helder, D.L.; Thome, K.J.; Aaron, D.; Czapla-Myers, J. S.

    2012-01-01

    The Landsat-7 ETM+ sensor has been operating on orbit for more than 12 years, and characterizations of its performance have been ongoing over this period. In general, the radiometric performance of the instrument has been remarkably stable: 1) noise performance has degraded by 2% or less overall, with a few detectors displaying step changes in noise of 2% or less; 2) coherent noise frequencies and magnitudes have generally been stable, though the within-scan amplitude variation of the 20 kHz noise in bands 1 and 8 disappeared with the failure of the scan line corrector and a new similar frequency noise (now about 18 kHz) has appeared in two detectors in band 5 and increased in magnitude with time; 3) bias stability has been better than 0.25 DN out of a normal value of 15 DN in high gain; 4) relative gains, the differences in response between the detectors in the band, have generally changed by 0.1% or less over the mission, with the exception of a few detectors with a step response change of 1% or less; and 5) gain stability averaged across all detectors in a band, which is related to the stability of the absolute calibration, has been more stable than the techniques used to measure it. Due to the inability to confirm changes in the gain (beyond a few detectors that have been corrected back to the band average), ETM+ reflective band data continues to be calibrated with the prelaunch measured gains. In the worst case, some bands may have changed as much as 2% in uncompensated absolute calibration over the 12 years.

  14. Touchless attitude correction for satellite with constant magnetic moment

    Science.gov (United States)

    Ao, Hou-jun; Yang, Le-ping; Zhu, Yan-wei; Zhang, Yuan-wen; Huang, Huan

    2017-09-01

    Rescue of satellite with attitude fault is of great value. Satellite with improper injection attitude may lose contact with ground as the antenna points to the wrong direction, or encounter energy problems as solar arrays are not facing the sun. Improper uploaded command may set the attitude out of control, exemplified by Japanese Hitomi spacecraft. In engineering practice, traditional physical contact approaches have been applied, yet with a potential risk of collision and a lack of versatility since the mechanical systems are mission-specific. This paper puts forward a touchless attitude correction approach, in which three satellites are considered, one having constant dipole and two having magnetic coils to control attitude of the first. Particular correction configurations are designed and analyzed to maintain the target's orbit during the attitude correction process. A reference coordinate system is introduced to simplify the control process and avoid the singular value problem of Euler angles. Based on the spherical triangle basic relations, the accurate varying geomagnetic field is considered in the attitude dynamic mode. Sliding mode control method is utilized to design the correction law. Finally, numerical simulation is conducted to verify the theoretical derivation. It can be safely concluded that the no-contact attitude correction approach for the satellite with uniaxial constant magnetic moment is feasible and potentially applicable to on-orbit operations.

  15. Raven: An On-Orbit Relative Navigation Demonstration Using International Space Station Visiting Vehicles

    Science.gov (United States)

    Strube, Matthew; Henry, Ross; Skeleton, Eugene; Eepoel, John Van; Gill, Nat; McKenna, Reed

    2015-01-01

    Since the last Hubble Servicing Mission five years ago, the Satellite Servicing Capabilities Office (SSCO) at the NASA Goddard Space Flight Center (GSFC) has been focusing on maturing the technologies necessary to robotically service orbiting legacy assets-spacecraft not necessarily designed for in-flight service. Raven, SSCO's next orbital experiment to the International Space Station (ISS), is a real-time autonomous non-cooperative relative navigation system that will mature the estimation algorithms required for rendezvous and proximity operations for a satellite-servicing mission. Raven will fly as a hosted payload as part of the Space Test Program's STP-H5 mission, which will be mounted on an external ExPRESS Logistics Carrier (ELC) and will image the many visiting vehicles arriving and departing from the ISS as targets for observation. Raven will host multiple sensors: a visible camera with a variable field of view lens, a long-wave infrared camera, and a short-wave flash lidar. This sensor suite can be pointed via a two-axis gimbal to provide a wide field of regard to track the visiting vehicles as they make their approach. Various real-time vision processing algorithms will produce range, bearing, and six degree of freedom pose measurements that will be processed in a relative navigation filter to produce an optimal relative state estimate. In this overview paper, we will cover top-level requirements, experimental concept of operations, system design, and the status of Raven integration and test activities.

  16. International Space Station Passive Thermal Control System Analysis, Top Ten Lessons-Learned

    Science.gov (United States)

    Iovine, John

    2011-01-01

    The International Space Station (ISS) has been on-orbit for over 10 years, and there have been numerous technical challenges along the way from design to assembly to on-orbit anomalies and repairs. The Passive Thermal Control System (PTCS) management team has been a key player in successfully dealing with these challenges. The PTCS team performs thermal analysis in support of design and verification, launch and assembly constraints, integration, sustaining engineering, failure response, and model validation. This analysis is a significant body of work and provides a unique opportunity to compile a wealth of real world engineering and analysis knowledge and the corresponding lessons-learned. The analysis lessons encompass the full life cycle of flight hardware from design to on-orbit performance and sustaining engineering. These lessons can provide significant insight for new projects and programs. Key areas to be presented include thermal model fidelity, verification methods, analysis uncertainty, and operations support.

  17. Advanced thermal control for spacecraft applications

    Science.gov (United States)

    Hardesty, Robert; Parker, Kelsey

    2015-09-01

    In optical systems just like any other space borne system, thermal control plays an important role. In fact, most advanced designs are plagued with volume constraints that further complicate the thermal control challenges for even the most experienced systems engineers. Peregrine will present advances in satellite thermal control based upon passive heat transfer technologies to dissipate large thermal loads. This will address the use of 700 W/m K and higher conducting products that are five times better than aluminum on a specific basis providing enabling thermal control while maintaining structural support.

  18. Trends In Satellite Communication

    Science.gov (United States)

    Poley, William A.; Stevens, Grady H.; Stevenson, Steven M.; Lekan, Jack; Arth, Clifford H.; Hollansworth, James E.; Miller, Edward F.

    1988-01-01

    Report assesses trends in satellite communication from present to year 2010. Examines restrictions imposed by limited spectrum resource and technology needs created by trends. Personal communications, orbiting switchboards, and videophones foreseen.

  19. Domestic Communication Satellites

    Science.gov (United States)

    Horowitz, Andrew

    1974-01-01

    A discussion of the Federal Communications Commission's new policy on domestic satellites in light of our 1) military and economic history; 2) corporate interests; 3) citizen surveillance; and 4) media control. (HB)

  20. Biological satellite Kosmos-936

    Science.gov (United States)

    Vedeshin, L. A.

    1978-01-01

    A description is given of physiological experiments performed on the biological satellite Kosmos-936. Other experiments to determine the electrostatic and dielectric responses to the effects of cosmic radiation are discussed.

  1. Small Satellite Transporter Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The primary objective is to determine whether this small satellite transporter is capable of transporting at least four 6U CubeSats is possible for a given set of...

  2. On-orbit performance and calibration improvements for the reflective solar bands of Terra and Aqua MODIS

    Science.gov (United States)

    Angal, Amit; Xiong, Xiaoxiong (Jack); Wu, Aisheng; Chen, Hongda; Geng, Xu; Link, Daniel; Li, Yonghong; Wald, Andrew; Brinkmann, Jake

    2016-05-01

    Moderate Resolution Imaging Spectroradiometer (MODIS) is the keystone instrument for NASA's EOS Terra and Aqua missions, designed to extend and improve heritage sensor measurements and data records of the land, oceans and atmosphere. The reflective solar bands (RSB) of MODIS covering wavelengths from 0.41 μm to 2.2 μm, are calibrated on-orbit using a solar diffuser (SD), with its on-orbit bi-directional reflectance factor (BRF) changes tracked using a solar diffuser stability monitor (SDSM). MODIS is a scanning radiometer using a two-sided paddle-wheel mirror to collect earth view (EV) data over a range of +/-55° off instrument nadir. In addition to the solar calibration provided by the SD and SDSM system, lunar observations at nearly constant phase angles are regularly scheduled to monitor the RSB calibration stability. For both Terra and Aqua MODIS, the SD and lunar observations are used together to track the on-orbit changes of RSB response versus scan angle (RVS) as the SD and SV port are viewed at different angles of incidence (AOI) on the scan mirror. The MODIS Level 1B (L1B) Collection 6 (C6) algorithm incorporated several enhancements over its predecessor Collection 5 (C5) algorithm. A notable improvement was the use of the earth-view (EV) response trends from pseudo-invariant desert targets to characterize the on-orbit RVS for select RSB (Terra bands 1-4, 8, 9 and Aqua bands 8, 9) and the time, AOI, and wavelength-dependent uncertainty. The MODIS Characterization Support Team (MCST) has been maintaining and enhancing the C6 algorithm since its first update in November, 2011 for Aqua MODIS, and February, 2012 for Terra MODIS. Several calibration improvements have been incorporated that include extending the EV-based RVS approach to other RSB, additional correction for SD degradation at SWIR wavelengths, and alternative approaches for on-orbit RVS characterization. In addition to the on-orbit performance of the MODIS RSB, this paper also discusses in

  3. DFH-3 Satellite Platform

    Institute of Scientific and Technical Information of China (English)

    RenShufang

    2005-01-01

    The DFH-3 satellite platform is designed and developed by China Academy of Space Technology (CAST). It is a medium capability communications satellite platform. The platform adopts threeaxis attitude stabilization control system, having solar array output power of 1.7kW by the end of its design lifetime of 8 years. Its mass is 2100kg with payload capacity of 220kg.

  4. The Archimedes satellite system

    Science.gov (United States)

    Taylor, Stuart C.; Shurvinton, William D.

    1992-03-01

    Archimedes is a satellite system conceived by the European Space Agency (ESA) to effectively serve the European market for Mobile Radio Services (MRS). This paper describes the requirements and technical design of the Archimedes satellite system. The underlying assumptions and trade-offs behind the design are detailed and the design is compared and contrasted against alternative design solutions, both technically and economically. A path forward for the development of the system is indicated.

  5. ASTRID II satellit projekt

    DEFF Research Database (Denmark)

    Jørgensen, John Leif; Primdahl, Fritz

    1997-01-01

    The report describes the instruments developed for the Swedish micro satellite "ASTRID II". Specifications of the two instruments realized under this contract, a Stellar Compass and a CSC magnetometer are given follwed by a description of the project status and plan.......The report describes the instruments developed for the Swedish micro satellite "ASTRID II". Specifications of the two instruments realized under this contract, a Stellar Compass and a CSC magnetometer are given follwed by a description of the project status and plan....

  6. Satellite formation. II

    Science.gov (United States)

    Harris, A. W.

    1978-01-01

    A satellite formation model is extended to include evolution of planetary ring material and elliptic orbital motion. In this model the formation of the moon begins at a later time in the growth of the earth, and a significant fraction of the lunar material is processed through a circumterrestrial debris cloud where volatiles might have been lost. Thus, the chemical differences between the earth and moon are more plausibly accounted for. Satellites of the outer planets probably formed in large numbers throughout the growth of those planets. Because of rapid inward evolution of the orbits of small satellites, the present satellite systems represent only satellites formed in the last few percent of the growths of their primaries. The rings of Saturn and Uranus are most plausibly explained as the debris of satellites disrupted within the Roche limit. Because such a ring would collapse onto the planet in the course of any significant further accretion by the planet, the rings must have formed very near or even after the conclusion of accretion.

  7. Communication Satellite Payload Special Check out Equipment (SCOE) for Satellite Testing

    Science.gov (United States)

    Subhani, Noman

    2016-07-01

    This paper presents Payload Special Check out Equipment (SCOE) for the test and measurement of communication satellite Payload at subsystem and system level. The main emphasis of this paper is to demonstrate the principle test equipment, instruments and the payload test matrix for an automatic test control. Electrical Ground Support Equipment (EGSE)/ Special Check out Equipment (SCOE) requirements, functions and architecture for C-band and Ku-band payloads are presented in details along with their interface with satellite during different phases of satellite testing. It provides test setup, in a single rack cabinet that can easily be moved from payload assembly and integration environment to thermal vacuum chamber all the way to launch site (for pre-launch test and verification).

  8. CHINA LAUNCHES NEW SCIENTIFIC SATELLITE

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    China on Sept. 27, 2004 launched a scientific satellite atop a Long March 2D carrier rocket from Jiuquan Satellite Launch Center in Gansu province. 10 minutes after the launch, the satellite entered a preset orbit and is running sound at the orbit. It is the 20th recoverable satellite for scientific and technological

  9. On-Orbit Multi-Field Wavefront Control with a Kalman Filter

    Science.gov (United States)

    Lou, John; Sigrist, Norbert; Basinger, Scott; Redding, David

    2008-01-01

    A document describes a multi-field wavefront control (WFC) procedure for the James Webb Space Telescope (JWST) on-orbit optical telescope element (OTE) fine-phasing using wavefront measurements at the NIRCam pupil. The control is applied to JWST primary mirror (PM) segments and secondary mirror (SM) simultaneously with a carefully selected ordering. Through computer simulations, the multi-field WFC procedure shows that it can reduce the initial system wavefront error (WFE), as caused by random initial system misalignments within the JWST fine-phasing error budget, from a few dozen micrometers to below 50 nm across the entire NIRCam Field of View, and the WFC procedure is also computationally stable as the Monte-Carlo simulations indicate. With the incorporation of a Kalman Filter (KF) as an optical state estimator into the WFC process, the robustness of the JWST OTE alignment process can be further improved. In the presence of some large optical misalignments, the Kalman state estimator can provide a reasonable estimate of the optical state, especially for those degrees of freedom that have a significant impact on the system WFE. The state estimate allows for a few corrections to the optical state to push the system towards its nominal state, and the result is that a large part of the WFE can be eliminated in this step. When the multi-field WFC procedure is applied after Kalman state estimate and correction, the stability of fine-phasing control is much more certain. Kalman Filter has been successfully applied to diverse applications as a robust and optimal state estimator. In the context of space-based optical system alignment based on wavefront measurements, a KF state estimator can combine all available wavefront measurements, past and present, as well as measurement and actuation error statistics to generate a Maximum-Likelihood optimal state estimator. The strength and flexibility of the KF algorithm make it attractive for use in real-time optical system

  10. Inspection of the Math Model Tools for On-Orbit Assessment of Impact Damage Report

    Science.gov (United States)

    Harris, Charles E.; Raju, Ivatury S.; Piascik, Robert S> KramerWhite, Julie A.; KramerWhite, Julie A.; Labbe, Steve G.; Rotter, Hank A.

    2007-01-01

    In Spring of 2005, the NASA Engineering Safety Center (NESC) was engaged by the Space Shuttle Program (SSP) to peer review the suite of analytical tools being developed to support the determination of impact and damage tolerance of the Orbiter Thermal Protection Systems (TPS). The NESC formed an independent review team with the core disciplines of materials, flight sciences, structures, mechanical analysis and thermal analysis. The Math Model Tools reviewed included damage prediction and stress analysis, aeroheating analysis, and thermal analysis tools. Some tools are physics-based and other tools are empirically-derived. Each tool was created for a specific use and timeframe, including certification, real-time pre-launch assessments. In addition, the tools are used together in an integrated strategy for assessing the ramifications of impact damage to tile and RCC. The NESC teams conducted a peer review of the engineering data package for each Math Model Tool. This report contains the summary of the team observations and recommendations from these reviews.

  11. Monitoring on-orbit calibration stability of the Terra MODIS and Landsat 7 ETM+ sensors using pseudo-invariant test sites

    Science.gov (United States)

    Chander, G.; Xiong, X.(J.); Choi, T.(J.); Angal, A.

    2010-01-01

    The ability to detect and quantify changes in the Earth's environment depends on sensors that can provide calibrated, consistent measurements of the Earth's surface features through time. A critical step in this process is to put image data from different sensors onto a common radiometric scale. This work focuses on monitoring the long-term on-orbit calibration stability of the Terra Moderate Resolution Imaging Spectroradiometer (MODIS) and the Landsat 7 (L7) Enhanced Thematic Mapper Plus (ETM+) sensors using the Committee on Earth Observation Satellites (CEOS) reference standard pseudo-invariant test sites (Libya 4, Mauritania 1/2, Algeria 3, Libya 1, and Algeria 5). These sites have been frequently used as radiometric targets because of their relatively stable surface conditions temporally. This study was performed using all cloud-free calibrated images from the Terra MODIS and the L7 ETM+ sensors, acquired from launch to December 2008. Homogeneous regions of interest (ROI) were selected in the calibrated images and the mean target statistics were derived from sensor measurements in terms of top-of-atmosphere (TOA) reflectance. For each band pair, a set of fitted coefficients (slope and offset) is provided to monitor the long-term stability over very stable pseudo-invariant test sites. The average percent differences in intercept from the long-term trends obtained from the ETM + TOA reflectance estimates relative to the MODIS for all the CEOS reference standard test sites range from 2.5% to 15%. This gives an estimate of the collective differences due to the Relative Spectral Response (RSR) characteristics of each sensor, bi-directional reflectance distribution function (BRDF), spectral signature of the ground target, and atmospheric composition. The lifetime TOA reflectance trends from both sensors over 10 years are extremely stable, changing by no more than 0.4% per year in its TOA reflectance over the CEOS reference standard test sites. ?? 2009 Elsevier Inc.

  12. Thermal Management Architecture for Future Responsive Spacecraft

    Science.gov (United States)

    Bugby, D.; Zimbeck, W.; Kroliczek, E.

    2009-03-01

    This paper describes a novel thermal design architecture that enables satellites to be conceived, configured, launched, and operationally deployed very quickly. The architecture has been given the acronym SMARTS for Satellite Modular and Reconfigurable Thermal System and it involves four basic design rules: modest radiator oversizing, maximum external insulation, internal isothermalization and radiator heat flow modulation. The SMARTS philosophy is being developed in support of the DoD Operationally Responsive Space (ORS) initiative which seeks to drastically improve small satellite adaptability, deployability, and design flexibility. To illustrate the benefits of the philosophy for a prototypical multi-paneled small satellite, the paper describes a SMARTS thermal control system implementation that uses: panel-to-panel heat conduction, intra-panel heat pipe isothermalization, radiator heat flow modulation via a thermoelectric cooler (TEC) cold-biased loop heat pipe (LHP) and maximum external multi-layer insulation (MLI). Analyses are presented that compare the traditional "cold-biasing plus heater power" passive thermal design approach to the SMARTS approach. Plans for a 3-panel SMARTS thermal test bed are described. Ultimately, the goal is to incorporate SMARTS into the design of future ORS satellites, but it is also possible that some aspects of SMARTS technology could be used to improve the responsiveness of future NASA spacecraft. [22 CFR 125.4(b)(13) applicable

  13. Satellite Communications for ATM

    Science.gov (United States)

    Shamma, Mohammed A.

    2003-01-01

    This presentation is an overview on Satellite Communication for the Aeronautical Telecommunication Management (ATM) research. Satellite Communications are being considered by the FAA and NASA as a possible alternative to the present and future ground systems supporting Air Traffic Communications. The international Civil Aviation Organization (ICAO) have in place Standards and Recommended Practices (SARPS) for the Aeronautical Mobile Satellite Services (AMSS) which is mainly derived from the pre-existing Inmarsat service that has been in service since the 1980s. The Working Group A of the Aeronautical Mobile Communication Panel of ICAO has also been investigating SARPS for what is called the Next Generation Satellite Service (NGSS) which conforms less to the Inmarsat based architecture and explores wider options in terms of satellite architectures. Several designs are being proposed by Firms such as Boeing, ESA, NASA that are geared toward full or secondary usage of satellite communications for ATM. Satellite communications for ATM can serve several purposes ranging from primary usage where ground services would play a minimal backup role, to an integrated solution where it will be used to cover services, or areas that are less likely to be supported by the proposed and existing ground infrastructure. Such Integrated roles can include usage of satellite communications for oceanic and remote land areas for example. It also can include relieving the capacity of the ground network by providing broadcast based services of Traffic Information Services messages (TIS-B), or Flight Information Services (FIS-B) which can take a significant portion of the ground system capacity. Additionally, satellite communication can play a backup role to support any needs for ground replacement, or additional needed capacity even after the new digital systems are in place. The additional bandwidth that can be provided via satellite communications can also open the door for many new

  14. Experimental Satellite 2 Successfully Launched

    Institute of Scientific and Technical Information of China (English)

    LiuJie

    2004-01-01

    Small satellite Experimental Satellite 2 (SY-2) was launched by LM-2C launch vehicle from Xichang Satellite Launch Center on Nov. 18, 2004. Later the satellite entered the preset sun-synchronous orbit, which is 700 kilometers above the earth. The launch was the eighthmission this year by China Aerospace Science and Technology Corporation(CASC), which aims to test the technology of the satellite, conduct survey and monitoring of the land and resources and geographical environment on a trial basis.

  15. China's Meteorological Satellite Application System

    Institute of Scientific and Technical Information of China (English)

    Zhang Jiashen

    2008-01-01

    @@ China's meteorological satellite program consists of five systems,namely the satellite system,the launch vehicle system,the launch center system,TT&C and the ground application system.The satellite system consists of FengYun (FY) polar orbiting series and FY geostationary series,which are launched by LM launch vehicles from Taiyan Satellite Launch Center (TSLC) and Xichang Satellite Launch Center (XSLC) respectively.

  16. ZDPS-1A卫星电源系统设计与在轨验证%Design and on-orbit verification of ZDPS-1A power system

    Institute of Scientific and Technical Information of China (English)

    丁立聪; 金小军; 王春晖; 金仲和

    2012-01-01

    为满足“皮星一号A”(ZDPS-1A)卫星微小型化的要求,提出一种新型电源系统的设计方案.通过采用三结砷化镓(Tri-Junction GaInP2/GaAs/Ge)太阳能电池、锂离子蓄电池等高效、轻型器件和在功率转换、分配电路中大量应用工业级集成电路芯片,以提高卫星功率和电源系统效率.通过简化供配电电路结构,合理规划工作模式,以提高电源系统的可靠性.建立基于Matlab/Simulink的能量平衡仿真系统,以研究卫星的能量平衡.分析卫星电源系统近一年的在轨数据、地面测试数据和仿真数据,结果表明:仿真得到太阳能电池输出平均功率为3.7W,在轨输出平均功率高于4.5W,电力充足、储能性能稳定;锂离子电池组功能正常,但工作电压长期高于母线电压设计最大值(4.2V),内阻逐渐增加,储能性能随时间下降;各系统负载长期工作后功率有所上升,但整星仍然能够保持能量平衡.%A new scheme of the power system was proposed in order to meet the microminiaturization need of ZDPS-1A. To improve the power level of the satellite and to obtain a high efficiency power system, high efficient and high-tech devices such as GaInP2/GaAs/Ge solar cells, Li-ion batteries were adopted, and industrial power management Ics were widely used in the design of the power conversion and distribution circuit. Besides, the electric system was optimized and the operation mode of the satellite was reasonably planned to improve the reliability of the power system. Furthermore, a simulation model of the power system based on Matlab/Simulink was established to study the energy balance performance of the satellite. Analysis of the simulation, ground test and on-orbit data for nearly one year of the power system, show that the solar cells can output 3. 7 W in the case of simulation and 4. 5 W under actual operating conditions, that the performance of the battery has deteriorated along time, and that the power

  17. Multispectral thermal imaging

    Energy Technology Data Exchange (ETDEWEB)

    Weber, P.G.; Bender, S.C.; Borel, C.C.; Clodius, W.B.; Smith, B.W. [Los Alamos National Lab., NM (United States). Space and Remote Sensing Sciences Group; Garrett, A.; Pendergast, M.M. [Westinghouse Savannah River Corp., Aiken, SC (United States). Savannah River Technology Center; Kay, R.R. [Sandia National Lab., Albuquerque, NM (United States). Monitoring Systems and Technology Center

    1998-12-01

    Many remote sensing applications rely on imaging spectrometry. Here the authors use imaging spectrometry for thermal and multispectral signatures measured from a satellite platform enhanced with a combination of accurate calibrations and on-board data for correcting atmospheric distortions. The approach is supported by physics-based end-to-end modeling and analysis, which permits a cost-effective balance between various hardware and software aspects. The goal is to develop and demonstrate advanced technologies and analysis tools toward meeting the needs of the customer; at the same time, the attributes of this system can address other applications in such areas as environmental change, agriculture, and volcanology.

  18. Investigation on Satellite-borne High-power Solid-state Power Amplifier Technology and Experiment

    OpenAIRE

    Wu Xiao-po; Zhao Hai-yang; Xi Song-tao

    2014-01-01

    Based on the research and development efforts of satellite-borne lumped solid-state transmitters, the design of a satellite-borne high-power microwave amplifier module is introduced. Focusing on satellite-borne applications, aspects of the high-power density thermal design, multipactor proof design, EMC design and so on, which are critical technologies for a solid-state power amplifier, are discussed. Subsequently, experiments are used to verify the concept.

  19. Investigation on Satellite-borne High-power Solid-state Power Amplifier Technology and Experiment

    Directory of Open Access Journals (Sweden)

    Wu Xiao-po

    2014-06-01

    Full Text Available Based on the research and development efforts of satellite-borne lumped solid-state transmitters, the design of a satellite-borne high-power microwave amplifier module is introduced. Focusing on satellite-borne applications, aspects of the high-power density thermal design, multipactor proof design, EMC design and so on, which are critical technologies for a solid-state power amplifier, are discussed. Subsequently, experiments are used to verify the concept.

  20. WetLab-2: Tools for Conducting On-Orbit Quantitative Real-Time Gene Expression Analysis on ISS

    Science.gov (United States)

    Parra, Macarena; Almeida, Eduardo; Boone, Travis; Jung, Jimmy; Schonfeld, Julie

    2014-01-01

    The objective of NASA Ames Research Centers WetLab-2 Project is to place on the ISS a research platform capable of conducting gene expression analysis via quantitative real-time PCR (qRT-PCR) of biological specimens sampled or cultured on orbit. The project has selected a Commercial-Off-The-Shelf (COTS) qRT-PCR system, the Cepheid SmartCycler and will fly it in its COTS configuration. The SmartCycler has a number of advantages including modular design (16 independent PCR modules), low power consumption, rapid ramp times and the ability to detect up to four separate fluorescent channels at one time enabling multiplex assays that can be used for normalization and to study multiple genes of interest in each module. The team is currently working with Cepheid to enable the downlink of data from the ISS to the ground and provide uplink capabilities for programming, commanding, monitoring, and instrument maintenance. The project has adapted commercial technology to design a module that can lyse cells and extract RNA of sufficient quality and quantity for use in qRT-PCR reactions while using a housekeeping gene to normalize RNA concentration and integrity. The WetLab-2 system is capable of processing multiple sample types ranging from microbial cultures to animal tissues dissected on-orbit. The ability to conduct qRT-PCR on-orbit eliminates the confounding effects on gene expression of reentry stresses and shock acting on live cells and organisms or the concern of RNA degradation of fixed samples. The system can be used to validate terrestrial analyses of samples returned from ISS by providing on-orbit gene expression benchmarking prior to sample return. The ability to get on orbit data will provide investigators with the opportunity to adjust experiment parameters for subsequent trials based on the real-time data analysis without need for sample return and re-flight. Researchers will also be able to sample multigenerational changes in organisms. Finally, the system can be

  1. Correcting Errors in Catchment-Scale Satellite Rainfall Accumulation Using Microwave Satellite Soil Moisture Products

    Science.gov (United States)

    Ryu, D.; Crow, W. T.

    2011-12-01

    Streamflow forecasting in the poorly gauged or ungauged catchments is very difficult mainly due to the absence of the input forcing data for forecasting models. This challenge poses a threat to human safety and industry in the areas where proper warning system is not provided. Currently, a number of studies are in progress to calibrate streamflow models without relying on ground observations as an effort to construct a streamflow forecasting systems in the ungauged catchments. Also, recent advances in satellite altimetry and innovative application of the optical has enabled mapping streamflow rate and flood extent in the remote areas. In addition, remotely sensed hydrological variables such as the real-time satellite precipitation data, microwave soil moisture retrievals, and surface thermal infrared observations have the great potential to be used as a direct input or signature information to run the forecasting models. In this work, we evaluate a real-time satellite precipitation product, TRMM 3B42RT, and correct errors of the product using the microwave satellite soil moisture products over 240 catchments in Australia. The error correction is made by analyzing the difference between output soil moisture of a simple model forced by the TRMM product and the satellite retrievals of soil moisture. The real-time satellite precipitation products before and after the error correction are compared with the daily gauge-interpolated precipitation data produced by the Australian Bureau of Meteorology. The error correction improves overall accuracy of the catchment-scale satellite precipitation, especially the root mean squared error (RMSE), correlation, and the false alarm ratio (FAR), however, only a marginal improvement is observed in the probability of detection (POD). It is shown that the efficiency of the error correction is affected by the surface vegetation density and the annual precipitation of the catchments.

  2. The Milky Way's Mass Inferered by Satellite Kinematics from the Illustris Simulation

    Science.gov (United States)

    Lazar, Alexander; Boylan-Kolchin, Michael

    2017-06-01

    A precise interpretion of the Milky Way’s dark matter halo mass has limited our ability to depict the Milky Way in cosmological context. One of the noteworthy issues is that only a handful of tracers — satellite galaxies — probe the gravitational potential at large radii, and converting observed velocities into a constraint on the mass profile requires significant assumptions. High resolution cosmological simulations provide a powerful tool for interpreting data, but most results to date rely on dark-matter-only simulations that neglect the effects of galaxy formation physics. We compare the orbital kinematics of satellite galaxies in the Illustris simulation with its dark-matter-only counterpart, which allows us to compare, on an object-by-object basis, the differences influenced in orbits from baryonic physics. We quantify the effects of galaxy formation physics on orbital distributions of satellites and describe how these differences affect inferences for the mass of the Milky Way.

  3. Design considerations for solar power satellites

    Science.gov (United States)

    Arndt, G. D.; Leopold, L.

    1978-01-01

    This report summarizes the performance characteristics of a conceptual solar power satellite (SPS) system with emphasis on the microwave power transmission system. The latest tradeoff studies on photovoltaic and thermal systems for converting solar energy into electricity at the satellite are reviewed. The microwave system, consisting of dc-RF amplifiers, a 1-km phased array, and a ground antenna/rectifier scheme is capable of delivering 5 GW of power to the commercial grid. The transmission efficiencies of smaller system sizes (down to 1 GW) are compared with that of the nominal 5 GW system. At present the frequency region of interest is the IMS (industrial, medical, and scientific) band at 2450 plus or minus 50 MHz. Economic and technical tradeoffs as a function of the microwave operating frequency are considered. Candidate dc-RF power converter tubes, including medium-power amplitrons, high-power klystrons, and low-power solid state amplifiers, are examined.

  4. Radiometric calibration stability of the EO-1 advanced land imager: 5 years on-orbit

    Science.gov (United States)

    Markham, B.L.; Ong, L.; Barsi, J.A.; Mendenhall, J.A.; Lencioni, D.E.; Helder, D.L.; Hollaren, D.M.; Morfitt, R.

    2006-01-01

    The Advanced Land Imager (ALI) was developed as a prototype sensor for follow on missions to Landsat-7. It was launched in November 2000 on the Earth Observing One (EO-1) satellite as a nominal one-year technology demonstration mission. As of this writing, the sensor has continued to operate in excess of 5 years. Six of the ALl's nine multi-spectral (MS) bands and the panchromatic band have similar spectral coverage as those on the Landsat-7 ETM+. In addition to on-board lamps, which have been significantly more stable than the lamps on ETM+, the ALI has a solar diffuser and has imaged the moon monthly since launch. This combined calibration dataset allows understanding of the radiometric stability of the ALI system, its calibrators and some differentiation of the sources of the changes with time. The solar dataset is limited as the mechanism controlling the aperture to the solar diffuser failed approximately 18 months after launch. Results over 5 years indicate that: the shortest wavelength band (443 nm) has degraded in response about 2%; the 482 nm and 565 nm bands decreased in response about 1%; the 660 nm, 790 nm and 868 nm bands each degraded about 5%; the 1250 nm and 1650 nm bands did not change significantly and the 2215 nm band increased in response about 2%.

  5. LightForce: An Update on Orbital Collision Avoidance Using Photon Pressure

    Science.gov (United States)

    Stupl, Jan; Mason, James; De Vries, Willem; Smith, Craig; Levit, Creon; Marshall, William; Salas, Alberto Guillen; Pertica, Alexander; Olivier, Scot; Ting, Wang

    2012-01-01

    We present an update on our research on collision avoidance using photon-pressure induced by ground-based lasers. In the past, we have shown the general feasibility of employing small orbit perturbations, induced by photon pressure from ground-based laser illumination, for collision avoidance in space. Possible applications would be protecting space assets from impacts with debris and stabilizing the orbital debris environment. Focusing on collision avoidance rather than de-orbit, the scheme avoids some of the security and liability implications of active debris removal, and requires less sophisticated hardware than laser ablation. In earlier research we concluded that one ground based system consisting of a 10 kW class laser, directed by a 1.5 m telescope with adaptive optics, could avoid a significant fraction of debris-debris collisions in low Earth orbit. This paper describes our recent efforts, which include refining our original analysis, employing higher fidelity simulations and performing experimental tracking tests. We investigate the efficacy of one or more laser ground stations for debris-debris collision avoidance and satellite protection using simulations to investigate multiple case studies. The approach includes modeling of laser beam propagation through the atmosphere, the debris environment (including actual trajectories and physical parameters), laser facility operations, and simulations of the resulting photon pressure. We also present the results of experimental laser debris tracking tests. These tests track potential targets of a first technical demonstration and quantify the achievable tracking performance.

  6. The effects of geopotential resonance on orbit determination for Landsat-4

    Science.gov (United States)

    Hoge, S. L.; Casteel, D. O.; Phenneger, M. C.; Smith, E. A.

    1988-01-01

    Analysis is presented demonstrating improved performance for Landsat-4 orbit determination using the Goddard Trajectory Determination System with an adjusted Goddard Earth Model-9 (GEM-9) for geopotential coefficients of the 15th degree and order. The orbital state is estimated along with the sine and cosine coefficients of degree and order 15, (C, S) sub 15,15. The estimates are made for two 5-day intervals of range and doppler data, primarily from the Tracking and Data Relay Satellite, during a period of low solar activity in January 1987. The average values of the estimated coefficients (C, S) sub 15,15 are used to modify the GEM-9 model, and orbit determination performance is tested on 17 consecutive 34-hour operational tracking data arcs in January 1987. Significant reductions in the mean values and standard deviations of the along-track position difference and the drag model scaling parameter from solution to solution are observed. The approach is guided by the shallow resonance theory of geopotential orbit perturbations.

  7. Solar Power Satellites

    CERN Document Server

    Flournoy, Don M

    2012-01-01

    Communication satellites are a $144 billion industry. Is there any space-based industry that could possibly beat that market? 'Solar Power Satellites' shows why and how the space satellite industry will soon begin expanding its market from relaying signals to Earth to generating energy in space and delivering it to the ground as electricity. In all industrialized nations, energy demand is growing exponentially. In the developing world, the need for energy is as basic as food and water. The Sun's energy is available everywhere, and it is non-polluting. As business plans demonstrate its technical feasibility, commercial potential, and environmental acceptability, every country on Earth will look to space for the power it needs.

  8. Geostationary satellites collocation

    CERN Document Server

    Li, Hengnian

    2014-01-01

    Geostationary Satellites Collocation aims to find solutions for deploying a safe and reliable collocation control. Focusing on the orbital perturbation analysis, the mathematical foundations for orbit and control of the geostationary satellite are summarized. The mathematical and physical principle of orbital maneuver and collocation strategies for multi geostationary satellites sharing with the same dead band is also stressed. Moreover, the book presents some applications using the above algorithms and mathematical models to help readers master the corrective method for planning station keeping maneuvers. Engineers and scientists in the fields of aerospace technology and space science can benefit from this book. Hengnian Li is the Deputy Director of State Key Laboratory of Astronautic Dynamics, China.

  9. ESA's satellite communications programme

    Science.gov (United States)

    Bartholome, P.

    1985-02-01

    The developmental history, current status, and future plans of the ESA satellite-communications programs are discussed in a general survey and illustrated with network diagrams and maps. Consideration is given to the parallel development of national and European direct-broadcast systems and telecommunications networks, the position of the European space and electronics industries in the growing world market, the impact of technological improvements (both in satellite systems and in ground-based networks), and the technological and commercial advantages of integrated space-terrestrial networks. The needs for a European definition of the precise national and international roles of satellite communications, for maximum speed in implementing such decisions (before the technology becomes obsolete), and for increased cooperation and standardization to assure European equipment manufacturers a reasonable share of the market are stressed.

  10. AVS on satellite

    Science.gov (United States)

    Zhao, Haiwu; Wang, Guozhong; Hou, Gang

    2005-07-01

    AVS is a new digital audio-video coding standard established by China. AVS will be used in digital TV broadcasting and next general optical disk. AVS adopted many digital audio-video coding techniques developed by Chinese company and universities in recent years, it has very low complexity compared to H.264, and AVS will charge very low royalty fee through one-step license including all AVS tools. So AVS is a good and competitive candidate for Chinese DTV and next generation optical disk. In addition, Chinese government has published a plan for satellite TV signal directly to home(DTH) and a telecommunication satellite named as SINO 2 will be launched in 2006. AVS will be also one of the best hopeful candidates of audio-video coding standard on satellite signal transmission.

  11. Satellite Control Laboratory

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Bak, Thomas

    2001-01-01

    The Satellite Laboratory at the Department of Control Engineering of Aalborg University (SatLab) is a dynamic motion facility designed for analysis and test of micro spacecraft. A unique feature of the laboratory is that it provides a completely gravity-free environment. A test spacecraft...... is suspended on an air bearing, and rotates freely in 3 degrees of freedom. In order to avoid any influence of the gravitational force the centre of mass of the satellite is placed in the geometric centre of the air bearing by an automatic balancing system. The test spacecraft is equipped with a three......-axis magnetometer, three piezoelectric gyros, and four reaction wheels in a tetrahedron configuration. The operation of the spacecraft is fully autonomous. The data flow between the transducers and the onboard computer placed physically outside the satellite is provided by a radio link. The purpose...

  12. General framework for the reconfiguration of satellite constellations

    Science.gov (United States)

    Ferringer, Matthew Phillip

    From remote sensing to navigation and communication, satellite constellations have become an indispensible component of our society's infrastructure. Recent events, including China's intercept of their Feng Yun-1C weather satellite and the United States' intercept of a non-functioning satellite, have dramatically increased the amount of space debris, which poses an increased risk for on-orbit collisions. When the loss or degradation of a satellite in a constellation is experienced---be it from a collision with space debris, on-orbit malfunctions, or natural causes---the constellation may no longer be capable of fulfilling its mission requirements. Instead of simply accepting the degraded performance, stakeholders may consider reconfiguration of the remaining spacecraft. In this research, a general framework for the reconfiguration of satellite constellations is developed. The key characteristic that separates this research from others that have come before it is that the future state of the reconfigured constellation is not assumed a priori; rather, it is this state that is found. In other words, the reconfigured geometry can occupy any feasible region (this is mission dependent) of the design space in an attempt to provide optimal performance with respect to multiple-criterion. These include the propellant expended, time of transfer, reduction in mission life, coverage performance, and risk due to maneuvering. When modeled as mathematical functions, some of these concerns exhibit continuous behavior; however, most have nonlinear, discrete, discontinuous, and/or multimodal characteristics. The framework adapts a best-in-class parallel Multi-Objective Evolutionary Algorithm to approximate the optimal hypervolumes for this complex tradeoff-space. Several loss scenarios for the Global Positioning System constellation are presented to demonstrate the framework. An a posteriori procedure for decision support is introduced that enables down-selection to a final design

  13. Size and Albedo of Irregular Saturnian Satellites from Spitzer Observations

    NARCIS (Netherlands)

    Mueller, Michael; Grav, T.; Trilling, D.; Stansberry, J.; Sykes, M.

    2008-01-01

    Using MIPS onboard the Spitzer Space Telescope, we observed the thermal emission (24 and, for some targets, 70 um) of eight irregular satellites of Saturn: Albiorix, Siarnaq, Paaliaq, Kiviuq, Ijiraq, Tarvos, Erriapus, and Ymir. We determined the size and albedo of all targets. An analysis of archive

  14. Size and Albedo of Irregular Saturnian Satellites from Spitzer Observations

    NARCIS (Netherlands)

    Mueller, Michael; Grav, T.; Trilling, D.; Stansberry, J.; Sykes, M.

    2008-01-01

    Using MIPS onboard the Spitzer Space Telescope, we observed the thermal emission (24 and, for some targets, 70 um) of eight irregular satellites of Saturn: Albiorix, Siarnaq, Paaliaq, Kiviuq, Ijiraq, Tarvos, Erriapus, and Ymir. We determined the size and albedo of all targets. An analysis of archive

  15. Size and Albedo of Irregular Saturnian Satellites from Spitzer Observations

    NARCIS (Netherlands)

    Mueller, Michael; Grav, T.; Trilling, D.; Stansberry, J.; Sykes, M.

    2008-01-01

    Using MIPS onboard the Spitzer Space Telescope, we observed the thermal emission (24 and, for some targets, 70 um) of eight irregular satellites of Saturn: Albiorix, Siarnaq, Paaliaq, Kiviuq, Ijiraq, Tarvos, Erriapus, and Ymir. We determined the size and albedo of all targets. An analysis of

  16. Progress on the use of satellite technology for gravity exploration

    Directory of Open Access Journals (Sweden)

    Yanwei Ding

    2015-07-01

    Full Text Available In this paper, the technological progress on Chinese gravity exploration satellites is presented. Novel features such as ultra-stable structure, high accurate thermal control, drag-free and attitude control, micro-thrusters, aerodynamic configuration, the ability to perform micro-vibration analyses, microwave ranging system and mass center trimmer are described.

  17. GPS satellite surveying

    CERN Document Server

    Leick, Alfred; Tatarnikov, Dmitry

    2015-01-01

    THE MOST COMPREHENSIVE, UP-TO-DATE GUIDE ON GPS TECHNOLOGY FOR SURVEYING Three previous editions have established GPS Satellite Surveying as the definitive industry reference. Now fully updated and expanded to reflect the newest developments in the field, this Fourth Edition features cutting-edge information on GNSS antennas, precise point positioning, real-time relative positioning, lattice reduction, and much more. Expert authors examine additional tools and applications, offering complete coverage of geodetic surveying using satellite technologies. The past decade has seen a major evolut

  18. Declassified intelligence satellite photographs

    Science.gov (United States)

    ,

    1998-01-01

    Recently declassified photographs from spy satellites are an important addition to the record of the Earth?s land surface held by the U.S. Geological Survey (USGS). More than 800,000 high-resolution photos taken between 1959 through 1972 were made available by Executive Order of the President. The collection is held at the USGS EROS Data Center, near Sioux Falls, S. Dak., and are offered for public sale. For some purposes in earth science studies, these photos extend the record of changes in the land surface another decade back in time from the advent of the Landsat earth-observing satellite program.

  19. Oceanography from satellites

    Science.gov (United States)

    Wilson, W. S.

    1981-01-01

    It is pointed out that oceanographers have benefited from the space program mainly through the increased efficiency it has brought to ship operations. For example, the Transit navigation system has enabled oceanographers to compile detailed maps of sea-floor properties and to more accurately locate moored subsurface instrumentation. General descriptions are given of instruments used in satellite observations (altimeter, color scanner, infrared radiometer, microwave radiometer, scatterometer, synthetic aperture radar). It is pointed out that because of the large volume of data that satellite instruments generate, the development of algorithms for converting the data into a form expressed in geophysical units has become especially important.

  20. Satellite oceanography - The instruments

    Science.gov (United States)

    Stewart, R. H.

    1981-01-01

    It is pointed out that no instrument is sensitive to only one oceanographic variable; rather, each responds to a combination of atmospheric and oceanic phenomena. This complicates data interpretation and usually requires that a number of observations, each sensitive to somewhat different phenomena, be combined to provide unambiguous information. The distinction between active and passive instruments is described. A block diagram illustrating the steps necessary to convert data from satellite instruments into oceanographic information is included, as is a diagram illustrating the operation of a radio-frequency radiometer. Attention is also given to the satellites that carry the various oceanographic instruments.

  1. Integrated Satellite-HAP Systems

    DEFF Research Database (Denmark)

    Cianca, Ernestina; De Sanctis, Mauro; De Luise, Aldo

    2005-01-01

    for an efficient hybrid terrestrial-satellite communication system. Two integrated HAP-satellite scenarios are presented, in which the HAP is used to overcome some of the shortcomings of satellite- based communications. Moreover, it is shown that the integration of HAPs with satellite systems can be used......Thus far, high-altitude platform (HAP)-based systems have been mainly conceived as an alternative to satellites for complementing the terrestrial network. This article aims to show that HAP should no longer be seen as a competitor technology by investors of satellites, but as a key element...

  2. Thermal comfort

    CSIR Research Space (South Africa)

    Osburn, L

    2010-01-01

    Full Text Available Thermal comfort is influenced by environmental parameters as well as other influences including asymmetric heating and cooling conditions. Additionally, some aspects of thermal comfort may be exploited so as to enable a building to operate within a...

  3. Modeling Earth Albedo for Satellites in Earth Orbit

    DEFF Research Database (Denmark)

    Bhanderi, Dan; Bak, Thomas

    2005-01-01

    Many satellite are influences by the Earthøs albedo, though very few model schemes exist.in order to predict this phenomenon. Earth albedo is often treated as noise, or ignored completely. When applying solar cells in the attitude hardware, Earth albedo can cause the attitude estimate to deviate...... with as much as 20 deg. Digital Sun sensors with Earth albedo correction in hardware exist, but are expensive. In addition, albedo estimates are necessary in thermal calculations and power budgets. We present a modeling scheme base4d on Eartht reflectance, measured by NASA's Total Ozone Mapping Spectrometer......, in which the Earth Probe Satellite has recorded reflectivity data daily since mid 1996. The mean of these data can be used to calculate the Earth albedo given the positions of the satellite and the Sun. Our results show that the albedo varies highly with the solar angle to the satellite's field of view...

  4. Mapping cultivable land from satellite imagery with clustering algorithms

    Science.gov (United States)

    Arango, R. B.; Campos, A. M.; Combarro, E. F.; Canas, E. R.; Díaz, I.

    2016-07-01

    Open data satellite imagery provides valuable data for the planning and decision-making processes related with environmental domains. Specifically, agriculture uses remote sensing in a wide range of services, ranging from monitoring the health of the crops to forecasting the spread of crop diseases. In particular, this paper focuses on a methodology for the automatic delimitation of cultivable land by means of machine learning algorithms and satellite data. The method uses a partition clustering algorithm called Partitioning Around Medoids and considers the quality of the clusters obtained for each satellite band in order to evaluate which one better identifies cultivable land. The proposed method was tested with vineyards using as input the spectral and thermal bands of the Landsat 8 satellite. The experimental results show the great potential of this method for cultivable land monitoring from remote-sensed multispectral imagery.

  5. Orbit Propagation and Determination of Low Earth Orbit Satellites

    Directory of Open Access Journals (Sweden)

    Ho-Nien Shou

    2014-01-01

    Full Text Available This paper represents orbit propagation and determination of low Earth orbit (LEO satellites. Satellite global positioning system (GPS configured receiver provides position and velocity measures by navigating filter to get the coordinates of the orbit propagation (OP. The main contradictions in real-time orbit which is determined by the problem are orbit positioning accuracy and the amount of calculating two indicators. This paper is dedicated to solving the problem of tradeoffs. To plan to use a nonlinear filtering method for immediate orbit tasks requires more precise satellite orbit state parameters in a short time. Although the traditional extended Kalman filter (EKF method is widely used, its linear approximation of the drawbacks in dealing with nonlinear problems was especially evident, without compromising Kalman filter (unscented Kalman Filter, UKF. As a new nonlinear estimation method, it is measured at the estimated measurements on more and more applications. This paper will be the first study on UKF microsatellites in LEO orbit in real time, trying to explore the real-time precision orbit determination techniques. Through the preliminary simulation results, they show that, based on orbit mission requirements and conditions using UKF, they can satisfy the positioning accuracy and compute two indicators.

  6. A study of multiple access schemes in satellite control network

    Science.gov (United States)

    Mo, Zijian; Wang, Zhonghai; Xiang, Xingyu; Wang, Gang; Chen, Genshe; Nguyen, Tien; Pham, Khanh; Blasch, Erik

    2016-05-01

    Satellite Control Networks (SCN) have provided launch control for space lift vehicles; tracking, telemetry and commanding (TTC) for on-orbit satellites; and, test support for space experiments since the 1960s. Currently, SCNs encounter a new challenge: how to maintain the high reliability of services when sharing the spectrum with emerging commercial services. To achieve this goal, the capability of multiple satellites reception is deserved as an update/modernization of SCN in the future. In this paper, we conducts an investigation of multiple access techniques in SCN scenario, e.g., frequency division multiple access (FDMA) and coded division multiple access (CDMA). First, we introduce two upgrade options of SCN based on FDMA and CDMA techniques. Correspondingly, we also provide their performance analysis, especially the system improvement in spectrum efficiency and interference mitigation. Finally, to determine the optimum upgrade option, this work uses CRISP, i.e., Cost, Risk, Installation, Supportability and Performance, as the baseline approach for a comprehensive trade study of these two options. Extensive numerical and simulation results are presented to illustrate the theoretical development.

  7. Laser beaming demonstrations to high-orbit satellites

    Science.gov (United States)

    Lipinski, Ronald J.; Meister, Dorothy C.; Tucker, Steve D.; Fugate, Robert Q.; Leatherman, Phillip; Maes, Carl F.; Lange, W. Joseph; Cowan, William D.; Meulenberg, Andrew; Cleis, Richard A.; Spinhirne, James M.; Ruane, Raymond E.; Michie, Robert B.; Vonderhaar, Donald F.

    1994-05-01

    A team of Phillips Laboratory, COMSAT Laboratories, and Sandia National Laboratories plans to demonstrate state-of-the-art laser-beaming demonstrations to high-orbit satellites. The demonstrations will utilize the 1.5-m diameter telescope with adaptive optics at the AFPL Starfire Optical Range (SOR) and a ruby laser provided by the Air Force and Sandia (1 - 50 kW and 6 ms at 694.3 nm). The first targets will be corner-cube retro-reflectors left on the moon by the Apollo 11, 14, and 15 landings. We attempt to use adaptive optics for atmospheric compensation to demonstrate accurate and reliable beam projection with a series of shots over a span of time and shot angle. We utilize the return signal from the retro- reflectors to help determine the beam diameter on the moon and the variations in pointing accuracy caused by atmospheric tilt. This is especially challenging because the retro-reflectors need to be in the lunar shadow to allow detection over background light. If the results from this experiment are encouraging, we will at a later date direct the beam at a COMSAT satellite in geosynchronous orbit as it goes into the shadow of the earth. We utilize an onboard monitor to measure the current generated in the solar panels on the satellite while the beam is present. A threshold irradiance of about 4 W/m2 on orbit is needed for this demonstration.

  8. Satellite Docking Simulator with Generic Contact Dynamics Capabilities

    Science.gov (United States)

    Ma, O.; Crabtree, D.; Carr, R.; Gonthier, Y.; Martin, E.; Piedboeuf, J.-C.

    2002-01-01

    Satellite docking (and capture) systems are critical for the servicing or salvage of satellites. Satellite servicing has comparatively recently become a realistic and promising space operation/mission. Satellite servicing includes several of the following operations: rendezvous; docking (capturing); inspection; towing (transporting); refueling; refurbishing (replacement of faulty or "used-up" modules/boxes); and un-docking (releasing). Because spacecraft servicing has been, until recently non-feasible or non-economical, spacecraft servicing technology has been neglected. Accordingly, spacecraft designs have featured self- contained systems without consideration for operational servicing. Consistent with this view, most spacecrafts were designed and built without docking interfaces. If, through some mishap, a spacecraft was rendered non-operational, it was simply considered expendable. Several feasibility studies are in progress on salvaging stranded satellites (which, in fact had led to this project). The task of the designer of the docking system for a salvaging task is difficult. He/she has to work with whatever it is on orbit, and this excludes any special docking interfaces, which might have made his/her task easier. As satellite servicing becomes an accepted design requirement, many future satellites will be equipped with appropriate docking interfaces. The designer of docking systems will be faced with slightly different challenges: reliable, cost-effective, docking (and re-supply) systems. Thus, the role of designers of docking systems will increase from one of a kind, ad-hoc interfaces intended for salvaging operations, to docking systems for satellites and "caretaker" spacecraft which are meant for servicing and are produced in larger numbers. As in any space system (for which full and representative ground hardware test-beds are very expensive and often impossible to develop), simulations are mandatory for the development of systems and operations for

  9. Man-made Satellites

    Institute of Scientific and Technical Information of China (English)

    郝昌明

    2005-01-01

    If you watch the sky about an hour after the sun goes down, you may see some “moving stars”. But they're not real stars. They're manmade satellites (卫星). And the biggest of all is the International Space Station (ISS国际空间站).

  10. Observations of artificial satellites

    Directory of Open Access Journals (Sweden)

    A. MAMMANO

    1964-06-01

    Full Text Available The following publication gives the results of photographic
    observations of artificial satellites made at Asiago during the second
    and third year of this programme. The fixed camera technique and that
    with moving film (the latter still in its experimental stage have been used.

  11. Experimental Satellite Quantum Communications.

    Science.gov (United States)

    Vallone, Giuseppe; Bacco, Davide; Dequal, Daniele; Gaiarin, Simone; Luceri, Vincenza; Bianco, Giuseppe; Villoresi, Paolo

    2015-07-24

    Quantum communication (QC), namely, the faithful transmission of generic quantum states, is a key ingredient of quantum information science. Here we demonstrate QC with polarization encoding from space to ground by exploiting satellite corner cube retroreflectors as quantum transmitters in orbit and the Matera Laser Ranging Observatory of the Italian Space Agency in Matera, Italy, as a quantum receiver. The quantum bit error ratio (QBER) has been kept steadily low to a level suitable for several quantum information protocols, as the violation of Bell inequalities or quantum key distribution (QKD). Indeed, by taking data from different satellites, we demonstrate an average value of QBER=4.6% for a total link duration of 85 s. The mean photon number per pulse μ_{sat} leaving the satellites was estimated to be of the order of one. In addition, we propose a fully operational satellite QKD system by exploiting our communication scheme with orbiting retroreflectors equipped with a modulator, a very compact payload. Our scheme paves the way toward the implementation of a QC worldwide network leveraging existing receivers.

  12. Perception via satellite

    Science.gov (United States)

    Robinove, Charles J.

    1970-01-01

    The earth resources observation satellite (EROS) program in the Department of the Interior is intended to gather and use data from satellites and aircraft on natural and man-made features of the earth's surface. Earth resources technology satellite will provide the EROS program with data for use in dealing with natural resource problems and understanding the interaction between man and the environment. Applications will include studies of tectonic features, hydrologic problems, location of fish schools, determination of the conditions of range land, mapping land use for urban planning, studies of erosion and change along coastlines and major streams, and inventories of land use and land forms. In addition, the ERTS data may be used for detecting forest and crop diseases and inventorying crops. The ERTS satellite will be in a polar, sun-synchronous orbit so that each point on the earth's surface will be sensed every 17 to 20 days, at the same time of day. Multispectral photography is being investigated for its usefulness in hydrology. Side-looking airborne radar has not yet been widely used in hydrologic studies, although it is an excellent tool for all-weather, day or night, coverage of large areas. Other techniques being investigated include passive microwave radiometry, ultraviolet and visible stimulated luminescence, and absorption spectroscopy.

  13. Satellite Photometric Error Determination

    Science.gov (United States)

    2015-10-18

    of nearly specular reflections from most solar panels. Our primary purpose in presenting these two plots is to demonstrate the usefulness of...than a transformation for stars because the spectral energy distribution of satellites can change with phase angle and is subject to specular

  14. Creating Better Satellite Conferences.

    Science.gov (United States)

    Horner, Tommy

    1998-01-01

    Presents four ways to improve broadcasts of company satellite conferences, including creative site selection (using facilities at educational institutions rather than hotel rooms); creative programming (using graphics and other interruptions to break up lectures or speeches); creative crew selection; and creative downlink site activities (to…

  15. Ocean surveillance satellites

    Science.gov (United States)

    Laurent, D.

    Soviet and U.S. programs involving satellites for surveillance of ships and submarines are discussed, considering differences in approaches. The Soviet program began with the Cosmos 198 in 1967 and the latest, the Cosmos 1400 series, 15 m long and weighing 5 tons, carry radar for monitoring ships and a nuclear reactor for a power supply. Other Soviet spacecraft carrying passive microwave sensors and ion drives powered by solar panels have recently been detonated in orbit for unknown reasons. It has also been observed that the Soviet satellites are controlled in pairs, with sequential orbital changes for one following the other, and both satellites then overflying the same points. In contrast, U.S. surveillance satellites have been placed in higher orbits, thus placing greater demands on the capabilities of the on-board radar and camera systems. Project White Cloud and the Clipper Bow program are described, noting the continued operation of the White Cloud spacecraft, which are equipped to intercept radio signals from surface ships. Currently, the integrated tactical surveillance system program has completed its study and a decision is expected soon.

  16. OMV With Satellite

    Science.gov (United States)

    1986-01-01

    This 1986 artist's concept shows the Orbital Maneuvering Vehicle (OMV) towing a satellite. As envisioned by Marshall Space Flight Center plarners, the OMV would be a remotely-controlled free-flying space tug which would place, rendezvous, dock, and retrieve orbital payloads.

  17. Advances in satellite oceanography

    Science.gov (United States)

    Brown, O. B.; Cheney, R. E.

    1983-01-01

    Technical advances and recent applications of active and passive satellite remote sensing techniques to the study of oceanic processes are summarized. The general themes include infrared and visible radiometry, active and passive microwave sensors, and buoy location systems. The surface parameters of sea surface temperature, windstream, sea state, altimetry, color, and ice are treated as applicable under each of the general methods.

  18. Cibola flight experiment satellite

    Science.gov (United States)

    Davies, P.; Liddle, Doug; Paffett, John; Sweeting, Martin; Curiel, A.; Sun, Wei; Eves, Stuart

    2004-11-01

    In order to achieve an "economy of scale" with respect to payload capacity the major trend in telecommunications satellites is for larger and larger platforms. With these large platforms the level of integration between platform and payload is increasing leading to longer delivery schedules. The typical lifecycle for procurement of these large telecommunications satellites is now 3-6 years depending on the level of non-recurring engineering needed. Surrey Satellite Technology Ltd (SSTL) has designed a low-cost platform aimed at telecommunications and navigation applications. SSTL's Geostationary Minisatellite Platform (GMP) is a new entrant addressing the lower end of the market with payloads up to 250kg requiring less than 1.5 kW power. The British National Space Centre through the MOSAIC Small Satellite Initiative supported the development of GMP. The main design goals for GMP are low-cost for the complete mission including launch and operations and a platform allowing flexible payload accommodation. GMP is specifically designed to allow rapid development and deployment with schedules typically between 1 and 2 years from contract signature to flight readiness. GMP achieves these aims by a modular design where the level of integration between the platform and payload is low. The modular design decomposes the satellite into three major components - the propulsion bay, the avionics bay and the payload module. Both the propulsion and avionics bays are reusable, largely unchanged, and independent of the payload configuration. Such a design means that SSTL or a 3rd party manufacturer can manufacture the payload in parallel to the platform with integration taking place quite late in the schedule. In July 2003 SSTL signed a contract for ESA's first Galileo navigation satellite known as GSTBV2/A. The satellite is based on GMP and ESA plan to launch it into a MEO orbit late in 2005. The second flight of GMP is likely to be in 2006 carrying a geostationary payload

  19. Defense Meteorological Satellite Program (DMSP)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Defense Meteorological Satellite Program (DMSP) satellites collect visible and infrared cloud imagery as well as monitoring the atmospheric, oceanographic,...

  20. DFH Satellite Co.,Ltd.

    Institute of Scientific and Technical Information of China (English)

    SunQing

    2004-01-01

    DFH Satellite Co.,Ltd. is a hi-tech enterprise founded and sponsored by China Aerospace Science and Technology Corporation(CASC) and one of CASC subsidiaries,China Academy of Space Technology (CAST). The company is mainly engaged in the research and development of small satellites and micro-satellites, Osystem designs and product development for satellite application projects as well as the international exchanges and cooperation.