WorldWideScience

Sample records for satellite observatory lisa

  1. Sub-Femto-g Free Fall for Space-Based Gravitational Wave Observatories: LISA Pathfinder Results

    Science.gov (United States)

    Armano, M.; Audley, H.; Auger, G.; Baird, J. T.; Bassan, M.; Binetruy, P.; Born, M.; Bortoluzzi, D.; Brandt, N.; Caleno, M.; Carbone, L.; Cavalleri, A.; Cesarini, A.; Ciani, G.; Congedo, G.; Cruise, A. M.; Danzmann, K.; de Deus Silva, M.; De Rosa, R.; Diaz-Aguiló, M.; Di Fiore, L.; Diepholz, I.; Dixon, G.; Dolesi, R.; Dunbar, N.; Ferraioli, L.; Ferroni, V.; Fichter, W.; Fitzsimons, E. D.; Flatscher, R.; Freschi, M.; García Marín, A. F.; García Marirrodriga, C.; Gerndt, R.; Gesa, L.; Gibert, F.; Giardini, D.; Giusteri, R.; Guzmán, F.; Grado, A.; Grimani, C.; Grynagier, A.; Grzymisch, J.; Harrison, I.; Heinzel, G.; Hewitson, M.; Hollington, D.; Hoyland, D.; Hueller, M.; Inchauspé, H.; Jennrich, O.; Jetzer, P.; Johann, U.; Johlander, B.; Karnesis, N.; Kaune, B.; Korsakova, N.; Killow, C. J.; Lobo, J. A.; Lloro, I.; Liu, L.; López-Zaragoza, J. P.; Maarschalkerweerd, R.; Mance, D.; Martín, V.; Martin-Polo, L.; Martino, J.; Martin-Porqueras, F.; Madden, S.; Mateos, I.; McNamara, P. W.; Mendes, J.; Mendes, L.; Monsky, A.; Nicolodi, D.; Nofrarias, M.; Paczkowski, S.; Perreur-Lloyd, M.; Petiteau, A.; Pivato, P.; Plagnol, E.; Prat, P.; Ragnit, U.; Raïs, B.; Ramos-Castro, J.; Reiche, J.; Robertson, D. I.; Rozemeijer, H.; Rivas, F.; Russano, G.; Sanjuán, J.; Sarra, P.; Schleicher, A.; Shaul, D.; Slutsky, J.; Sopuerta, C. F.; Stanga, R.; Steier, F.; Sumner, T.; Texier, D.; Thorpe, J. I.; Trenkel, C.; Tröbs, M.; Tu, H. B.; Vetrugno, D.; Vitale, S.; Wand, V.; Wanner, G.; Ward, H.; Warren, C.; Wass, P. J.; Wealthy, D.; Weber, W. J.; Wissel, L.; Wittchen, A.; Zambotti, A.; Zanoni, C.; Ziegler, T.; Zweifel, P.

    2016-06-01

    We report the first results of the LISA Pathfinder in-flight experiment. The results demonstrate that two free-falling reference test masses, such as those needed for a space-based gravitational wave observatory like LISA, can be put in free fall with a relative acceleration noise with a square root of the power spectral density of 5.2 ±0.1 fm s-2/√{Hz } , or (0.54 ±0.01 ) ×10-15 g/√{Hz } , with g the standard gravity, for frequencies between 0.7 and 20 mHz. This value is lower than the LISA Pathfinder requirement by more than a factor 5 and within a factor 1.25 of the requirement for the LISA mission, and is compatible with Brownian noise from viscous damping due to the residual gas surrounding the test masses. Above 60 mHz the acceleration noise is dominated by interferometer displacement readout noise at a level of (34.8 ±0.3 ) fm /√{Hz } , about 2 orders of magnitude better than requirements. At f ≤0.5 mHz we observe a low-frequency tail that stays below 12 fm s-2/√{Hz } down to 0.1 mHz. This performance would allow for a space-based gravitational wave observatory with a sensitivity close to what was originally foreseen for LISA.

  2. Sub-Femto-g Free Fall for Space-Based Gravitational Wave Observatories: LISA Pathfinder Results.

    Science.gov (United States)

    Armano, M; Audley, H; Auger, G; Baird, J T; Bassan, M; Binetruy, P; Born, M; Bortoluzzi, D; Brandt, N; Caleno, M; Carbone, L; Cavalleri, A; Cesarini, A; Ciani, G; Congedo, G; Cruise, A M; Danzmann, K; de Deus Silva, M; De Rosa, R; Diaz-Aguiló, M; Di Fiore, L; Diepholz, I; Dixon, G; Dolesi, R; Dunbar, N; Ferraioli, L; Ferroni, V; Fichter, W; Fitzsimons, E D; Flatscher, R; Freschi, M; García Marín, A F; García Marirrodriga, C; Gerndt, R; Gesa, L; Gibert, F; Giardini, D; Giusteri, R; Guzmán, F; Grado, A; Grimani, C; Grynagier, A; Grzymisch, J; Harrison, I; Heinzel, G; Hewitson, M; Hollington, D; Hoyland, D; Hueller, M; Inchauspé, H; Jennrich, O; Jetzer, P; Johann, U; Johlander, B; Karnesis, N; Kaune, B; Korsakova, N; Killow, C J; Lobo, J A; Lloro, I; Liu, L; López-Zaragoza, J P; Maarschalkerweerd, R; Mance, D; Martín, V; Martin-Polo, L; Martino, J; Martin-Porqueras, F; Madden, S; Mateos, I; McNamara, P W; Mendes, J; Mendes, L; Monsky, A; Nicolodi, D; Nofrarias, M; Paczkowski, S; Perreur-Lloyd, M; Petiteau, A; Pivato, P; Plagnol, E; Prat, P; Ragnit, U; Raïs, B; Ramos-Castro, J; Reiche, J; Robertson, D I; Rozemeijer, H; Rivas, F; Russano, G; Sanjuán, J; Sarra, P; Schleicher, A; Shaul, D; Slutsky, J; Sopuerta, C F; Stanga, R; Steier, F; Sumner, T; Texier, D; Thorpe, J I; Trenkel, C; Tröbs, M; Tu, H B; Vetrugno, D; Vitale, S; Wand, V; Wanner, G; Ward, H; Warren, C; Wass, P J; Wealthy, D; Weber, W J; Wissel, L; Wittchen, A; Zambotti, A; Zanoni, C; Ziegler, T; Zweifel, P

    2016-06-10

    We report the first results of the LISA Pathfinder in-flight experiment. The results demonstrate that two free-falling reference test masses, such as those needed for a space-based gravitational wave observatory like LISA, can be put in free fall with a relative acceleration noise with a square root of the power spectral density of 5.2±0.1  fm s^{-2}/sqrt[Hz], or (0.54±0.01)×10^{-15}  g/sqrt[Hz], with g the standard gravity, for frequencies between 0.7 and 20 mHz. This value is lower than the LISA Pathfinder requirement by more than a factor 5 and within a factor 1.25 of the requirement for the LISA mission, and is compatible with Brownian noise from viscous damping due to the residual gas surrounding the test masses. Above 60 mHz the acceleration noise is dominated by interferometer displacement readout noise at a level of (34.8±0.3)  fm/sqrt[Hz], about 2 orders of magnitude better than requirements. At f≤0.5  mHz we observe a low-frequency tail that stays below 12  fm s^{-2}/sqrt[Hz] down to 0.1 mHz. This performance would allow for a space-based gravitational wave observatory with a sensitivity close to what was originally foreseen for LISA.

  3. Developing Geostationary Satellite Imaging at Lowell Observatory

    Science.gov (United States)

    van Belle, G.

    2016-09-01

    Lowell Observatory operates the Navy Precision Optical Interferometer (NPOI), and owns & operates the Discovery Channel Telescope (DCT). This unique & necessary combination of facilities positions Lowell to develop a robust program of observing geostationary, GPS-plane, and other high-altitude (&1000mi) satellites. NPOI is a six-beam long-baseline optical interferometer, located in Flagstaff, Arizona; the facility is supported by a partnership between Lowell Observatory, the US Naval Observatory, and the Naval Research Laboratory. NPOI operates year-round in the visible with baselines between 8 and 100 meters (up to 432m is available), conducting programs of astronomical research and imaging technology development. NPOI is the only such facility as yet to directly observe geostationary satellites, enabling milliarcsecond resolution of these objects. To enhance this capability towards true imaging of geosats, an ongoing program of facility upgrades will be outlined. These upgrades include AO-assisted 1.0-m apertures feeding each beam line, and new near-infrared instrumentation on the back end. The large apertures will enable `at-will' observations of objects brighter than mK = 8:3 in the near-IR, corresponding to brighter than mV = 11:3 in the visible. At its core, the system is enabled by a `wavelength-baseline bootstrapping' approach discussed herein. A complementary pilot imaging study of visible speckle and aperture masked imaging at Lowell's 4.3-m DCT, for constraining the low-spatial frequency imaging information, is also outlined.

  4. LISA-2020: An Intermediate Scale Space Gravitational Wave Observatory for This Decade

    CERN Document Server

    Buchman, S; Byer, R L; DeBra, D; Balakrishnan, K; Cutler, G Dufresne; Al-Fauwaz, A; Hultgren, E; Al-Jadaan, A K; Saraf, S; Tan, S; Al-Thubiti, S; Zoellner, A

    2013-01-01

    Over the last three decades, an exceptionally good science case has been made for pursuing gravitational wave (GW) astronomy. This has engendered a worldwide effort to detect the extremely weak signals generated by expected sources. With the next round of upgrades the ground based instruments are likely to make the first detections of the sources, and a new era of astronomy will begin, possibly as early as 2017. Inconveniently, due to seismic noise and baseline length issues, the low frequency (<10Hz) part of the spectrum, where the most interesting events are expected, will not be accessible. The space-based detector, LISA1, was conceived to fill this gap extending the observational capability to about 10-4 Hz. Due to mission cost growth and severe budget constraints, a flight prior to 2030 now seems very unlikely. This paper examines the case for a scaled down mission that is comparable in cost and duration to medium scale astrophysics missions such as the 1978 ($630M) Einstein (HEAO 2) x-ray Observatory...

  5. gLISA: geosynchronous Laser Interferometer Space Antenna concepts with off-the-shelf satellites

    CERN Document Server

    Tinto, Massimo; Buchman, Sasha; Tilley, Scott

    2014-01-01

    We discuss two geosynchronous gravitational wave mission concepts, which we generically name gLISA. One relies on the science instrument hosting program onboard geostationary commercial satellites, while the other takes advantage of recent developments in the aerospace industry that result in dramatic satellite and launching vehicle cost reductions for a dedicated geosynchronous mission. To achieve the required level of disturbance free-fall onboard these large and heavy platforms we propose a "two-stage" drag-free system, which incorporates the Modular Gravitational Reference Sensor (MGRS) (developed at Stanford University) and does not rely on the use of micro-Newton thrusters. Although both mission concepts are characterized by different technical and programmatic challenges, individually they could be flown and operated at a cost significantly lower than those of previously envisioned gravitational wave missions. We estimate both mission concepts to cost less than 500M US$ each, and in the year 2015 we wi...

  6. Geomagnetic disturbances imprints in ground and satellite altitude observatories

    Science.gov (United States)

    Yahiat, Yasmina; Lamara, Souad; Zaourar, Naima; Hamoudi, Mohamed

    2016-04-01

    The temporal evolution of the geomagnetic field and its variations have been repeatedly studied from both ground observatories and near-earth orbiting platforms. With the advent of the space ageand the launches of geomagnetic low altitude orbits satellites, a global coverage has been achieved. Since Magsat mission, more satellites were put into orbit and some of them are still collecting data enhancing the spatial and temporal descriptions of the field. Our study uses new data gathered by the latest SWARM satellite mission launched on November, 22nd 2013. It consists of a constellation of three identical satellites carrying on board high resolution and accuracy scientific equipment. Data from this constellation will allow better understanding the multiscale behavior of the geomagnetic field. Our goal is to analyze and interpret the geomagnetic data collected by this Swarm mission, for a given period and try to separate the external disturbances from internal contributions. We consider in the study the variation of the horizontal component H, for different virtual geomagnetic observatories at the satellite altitude. The analysis of data by Swarm orbital segments shows clearly the external disturbances of the magnetic field like that occurring on 27th of August 2014. This perturbation is shown on geomagnetic indexes and is related to a coronal mass ejection (CME). These results from virtual observatories are confirmed, by the equivalent analysis using ground observatories data for the same geographic positions and same epochs. Key words: Geomagnetic field, external field, geomagnetic index, SWARM mission, virtual observatories.

  7. Permanent GNSS Observations at Agh-Ust Satellite Observatory

    Science.gov (United States)

    Kudrys, Jacek

    2016-06-01

    GPS satellite observations at the Faculty of Mining Surveying and Environmental Engineering AGH-UST are conducted since the early 90s of the last century. In 2001, efforts have been made on getting permanently functioning GPS station. At present, observatory is EPN operational center for two GNSS stations KRAW and KRA1. Moreover, KRA1 station is one of fundamental control points in polish horizontal network. The article gives the history and scope of the research carried out in the satellite observatory AGH-UST during the period 2001 - 2015.

  8. Management approach recommendations. Earth Observatory Satellite system definition study (EOS)

    Science.gov (United States)

    1974-01-01

    Management analyses and tradeoffs were performed to determine the most cost effective management approach for the Earth Observatory Satellite (EOS) Phase C/D. The basic objectives of the management approach are identified. Some of the subjects considered are as follows: (1) contract startup phase, (2) project management control system, (3) configuration management, (4) quality control and reliability engineering requirements, and (5) the parts procurement program.

  9. Observatory crustal magnetic biases during CHAMP satellite mission

    Science.gov (United States)

    Verbanac, G.; Mandea, M.; Bandić, M.; Subašić, S.

    2015-01-01

    Taking advantage of nine years of CHAMP satellite mission (June 2000-August 2009), we investigate the temporal evolution of the observatory monthly crustal magnetic biases. To determine biases we compute X (northward), Y (eastward) and Z (vertically downward) monthly means from 42 observatory one-minute or hourly values, and compare them to synthetic monthly means obtained from a GRIMM3 core field model (V. Lesur, personal communication, 2014). Both short period variations and long term trends in the monthly bias time series are analyzed. A comparison with biases based on MAGSAT and Ørsted satellite data, related to the 1979.92 and 1992.92 epochs is performed. Generally, the larger biases averaged over nine years and the larger differences between biases based on different models are found in Z component. This can be the signature of the induced magnetic fields. Although annual trends in most bias series are observed, no clear evidence that the constant crustal field changed significantly over the studied period is found. Time series of monthly biases exhibit distinct oscillatory pattern in the whole time span, which we assign to the external field contributions. The amplitudes of these variations are linked with the phase of the solar cycle, being significantly larger in the period 2000-2005 than in the period 2006-2009. Clear semi-annual variations are evident in all components, with extremes in spring and fall months of each year. Common external field pattern is found for European monthly biases. A dependence of the bias monthly variations on geomagnetic latitudes is not found for the non-European observatories. The results from this study represent a base to further exploit the observatory and repeat stations magnetic biases together with the data from the new satellite mission SWARM.

  10. Ocean tidal signals in observatory and satellite magnetic measurements

    DEFF Research Database (Denmark)

    Maus, S.; Kuvshinov, A.

    2004-01-01

    Ocean flow moves sea water through the Earth's magnetic field, inducing electric fields, currents and secondary magnetic fields. These motionally induced magnetic fields have a potential for the remote sensing of ocean flow variability. A first goal must be to gain a better understanding...... of magnetic field generation by tidal ocean flow. We predict the motionally induced magnetic fields for the six major tidal constituents and compare their amplitudes with the spectra of night time observatory and satellite magnetic measurements for the Indian Ocean. The magnetic variations at the solar S2, K1......, and P1 periods turn out to be dominated by unrelated external fields. In contrast, observed lunar M2 and N2 tidal signals are in fair agreement with predictions from motional induction. The lunar diurnal O1 signal, visible at some observatories, could be caused by ocean flow but disagrees in amplitude...

  11. The LISA Pathfinder Mission

    Science.gov (United States)

    McNamara, Paul

    2013-04-01

    LISA Pathfinder, the second of the European Space Agency's Small Missions for Advanced Research in Technology (SMART), is a dedicated technology validation mission for future interferometric spaceborne gravitational wave observatories, for example the proposed eLISA mission. The technologies required for eLISA are many and extremely challenging. This coupled with the fact that some flight hardware cannot be fully tested on ground due to Earth-induced noise, led to the implementation of the LISA Pathfinder mission to test the critical eLISA technologies in a flight environment. LISA Pathfinder essentially mimics one arm of the eLISA constellation by shrinking the 1 million kilometre armlength down to a few tens of centimetres, giving up the sensitivity to gravitational waves, but keeping the measurement technology: the distance between the two test masses is measured using a laser interferometric technique similar to one aspect of the eLISA interferometry system. The scientific objective of the LISA Pathfinder mission consists then of the first in-flight test of low frequency gravitational wave detection metrology. Here I will present an overview of the mission, focusing on scientific and technical goals, followed by the current status of the project.

  12. Observatories

    CERN Document Server

    Krisciunas, K

    1999-01-01

    I give a brief history of astronomical observatories as an institution. This includes: 1) observatories in Islam; 2) China and India; 3) early European observatories; 4) the rise of national observatories; 5) private (amateur) observatories; 6) mountaintop observatories and the modern era. Additional references, to material not cited in the version that will be published in the encyclopedia, are also given.

  13. Identifying clouds over the Pierre Auger Observatory using infrared satellite data

    Science.gov (United States)

    Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Antičić, T.; Aramo, C.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Badescu, A. M.; Barber, K. B.; Barbosa, A. F.; Bardenet, R.; Baughman, B.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellétoile, A.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buroker, L.; Burton, R. E.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chirinos, J.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cook, H.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Criss, A.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; De La Vega, G.; de Mello, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Diaz, J. C.; Díaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fliescher, S.; Fox, B. D.; Fracchiolla, C. E.; Fraenkel, E. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gemmeke, H.; Ghia, P. L.; Giller, M.; Gitto, J.; Glaser, C.; Glass, H.; Golup, G.; Gomez Albarracin, F.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holmes, V. C.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Jansen, S.; Jarne, C.; Jiraskova, S.; Josebachuili, M.; Kadija, K.; Kampert, K. H.; Karhan, P.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kelley, J. L.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Krause, R.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kulbartz, J. K.; Kunka, N.; La Rosa, G.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Macolino, C.; Malacari, M.; Maldera, S.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, J.; Marin, V.; Mariş, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Messina, S.; Meyhandan, R.; Mićanović, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, J. C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nhung, P. T.; Niechciol, M.; Niemietz, L.; Nierstenhoefer, N.; Niggemann, T.; Nitz, D.; Nosek, D.; Nožka, L.; Oehlschläger, J.; Olinto, A.; Oliveira, M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; Peķala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrolini, A.; Petrov, Y.; Pfendner, C.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Ponce, V. H.; Pontz, M.; Porcelli, A.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez Cabo, I.; Rodriguez Fernandez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouillé-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Rühle, C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovancova, J.; Schovánek, P.; Schröder, F. G.; Schulz, J.; Schuster, D.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Srivastava, Y. N.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Straub, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Šuša, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Tapia, A.; Tartare, M.; Taşcău, O.; Tcaciuc, R.; Thao, N. T.; Thomas, D.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Tridapalli, D. B.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Westerhoff, S.; Whelan, B. J.; Widom, A.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wundheiler, B.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano Garcia, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.

    2013-12-01

    We describe a new method of identifying night-time clouds over the Pierre Auger Observatory using infrared data from the Imager instruments on the GOES-12 and GOES-13 satellites. We compare cloud identifications resulting from our method to those obtained by the Central Laser Facility of the Auger Observatory. Using our new method we can now develop cloud probability maps for the 3000 km2 of the Pierre Auger Observatory twice per hour with a spatial resolution of ˜2.4 km by ˜5.5 km. Our method could also be applied to monitor cloud cover for other ground-based observatories and for space-based observatories.

  14. Identifying clouds over the Pierre Auger Observatory using infrared satellite data

    Energy Technology Data Exchange (ETDEWEB)

    Abreu, Pedro; et al.,

    2013-12-01

    We describe a new method of identifying night-time clouds over the Pierre Auger Observatory using infrared data from the Imager instruments on the GOES-12 and GOES-13 satellites. We compare cloud identifications resulting from our method to those obtained by the Central Laser Facility of the Auger Observatory. Using our new method we can now develop cloud probability maps for the 3000 km^2 of the Pierre Auger Observatory twice per hour with a spatial resolution of ~2.4 km by ~5.5 km. Our method could also be applied to monitor cloud cover for other ground-based observatories and for space-based observatories.

  15. Eclipses and Occultations of Galilean Satellites Observed at Yunnan Observatory in 2003

    Institute of Scientific and Technical Information of China (English)

    Qing-Yu Peng; Beno(i)t Noyelles

    2007-01-01

    We describe and analyze observations of mutual events of Galilean satellites made at the Yunnan Observatory in February 2003 from CCD imaging for the first time in China.Astrometric positions were deduced from these photometric observations by modelling the relative motion and the photometry of the involved satellites during each event.

  16. Design and observations of satellite laser ranging system for daylight tracking at Shanghai Observatory

    Institute of Scientific and Technical Information of China (English)

    杨福民; 肖炽昆; 陈婉珍; 张忠萍; 谭德同; 龚向东; 陈菊平; 黄力; 章建华

    1999-01-01

    The first satellite laser ranging system for daylight tracking in China was set up at Shanghai Observatory, Chinese Academy of Sciences. Both false alarm probability due to strong background noises and detection probability of the laser returns with single photon level from satellite in daylight for our system are analysed. The system design and performance characteristics of subsystems, adopted techniques and satellite ranging observations are given.

  17. Ocean tidal signals in observatory and satellite magnetic measurements

    DEFF Research Database (Denmark)

    Maus, S.; Kuvshinov, A.

    2004-01-01

    , and P1 periods turn out to be dominated by unrelated external fields. In contrast, observed lunar M2 and N2 tidal signals are in fair agreement with predictions from motional induction. The lunar diurnal O1 signal, visible at some observatories, could be caused by ocean flow but disagrees in amplitude...

  18. LISA Experience from GRACE-FO Optical Payload (LEGOP)

    Science.gov (United States)

    McKenzie, Kirk

    arm-locking to be used on LISA. We will modify the LISA arm- locking controller for GRACE-FO mission parameters and perform a hardware-in-the- loop simulation. GRACE-FO is the planned follow-on to the Gravity Recovery and Climate Experiment (GRACE) mission. In addition to the microwave link used to sense micron-level changes in the separation between a pair of satellites in a following orbit, GRACE-FO will include a 2-way laser link as a technology demonstrator package. LISA is a planned gravitational wave observatory consisting of three drag-free spacecraft arranged in an equilateral triangle with 5 million km separation in a heliocentric orbit. LISA will have three 2-way laser links to allow LISA to observe low frequency astrophysical and cosmological sources. Demonstration of inter-spacecraft interferometry using GRACE-FO has the potential to retire several of the highest-risk procedures for LISA and complements the drag-free performance technology demonstration of the LISA Pathfinder mission. Similarities between the GRACE-FO and LISA flight systems means we will not need to develop or deploy any new hardware to achieve this goal. Rather, we propose to develop algorithms that could be deployed on the existing GRACE-FO control and diagnostics system.

  19. Identifying clouds over the Pierre Auger Observatory using infrared satellite data

    NARCIS (Netherlands)

    Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muniz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Anticic, T.; Aramo, C.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Badescu, A. M.; Barber, K. B.; Barbosa, A. F.; Bardenet, R.; Baughman, B.; Baeuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Belletoile, A.; Bellidol, J. A.; BenZvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Bluemer, H.; Bohacova, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buroker, L.; Burton, R. E.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chirinos, J.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Collica, L.; Coluccia, M. R.; Conceicao, R.; Contreras, F.; Cook, H.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Criss, A.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; De La Vega, G.; de Mello, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Diaz, J. C.; Diaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; San Luis, P. Facal; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipcic, A.; Fliescher, S.; Fox, B. D.; Fracchiolla, C. E.; Fraenkel, E. D.; Fratu, O.; Froehlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; Garcia, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gemmeke, H.; Ghia, P. L.; Giller, M.; Gitto, J.; Glaser, C.; Glass, H.; Golup, G.; Gomez Albarracin, F.; Gomez Berisso, M.; Gomez Vitale, P. F.; Goncalves, P.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holmes, V. C.; Homola, P.; Horandel, J. R.; Horvath, P.; Hrabovsky, M.; Huber, D.; Huege, T.; Insolia, A.; Jansen, S.; Jarne, C.; Jiraskova, S.; Josebachuili, M.; Kadija, K.; Kampert, K. H.; Karhan, P.; Kasper, P.; Katkov, I.; Kegl, B.; Keilhauer, B.; Keivani, A.; Kelley, J. L.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Krause, R.; Krohm, N.; Kroemer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kulbartz, J. K.; Kunka, N.; La Rosa, G.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leao, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lopez, R.; Lopez Agueera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Macolino, C.; Malacari, M.; Maldera, S.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, J.; Marin, V.; Maris, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martinez, H.; Martinez Bravo, O.; Martraire, D.; Masias Meza, J. J.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Messina, S.; Meyhandan, R.; Micanovic, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Mirarrionti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Ragaigne, D. Monnier; Montanet, F.; Morales, B.; Morello, C.; Moreno, J. C.; Mostafa, M.; Moura, C. A.; Muller, M. A.; Mueller, G.; Muenchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, T. J.; Nhung, P. T.; Niechciol, M.; Niemietz, L.; Nierstenhoefer, N.; Niggemann, T.; Nitz, D.; Nosek, D.; Nozka, L.; Oehlschlaeger, J.; Olinto, A.; Oliveira, M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; Pekala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrolini, A.; Petrov, Y.; Pfendner, C.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Ponce, V. H.; Pontz, M.; Porcelli, A.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez Cabo, I.; Fernandez, G. Rodriguez; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodriguez-Frias, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouille-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Ruehle, C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Greus, F. Salesa; Salina, G.; Sanchez, F.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovancova, J.; Schovanek, P.; Schroeder, F. G.; Schulz, J.; Schuster, D.; Sciutto, Si.; Scuderi, M.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Smialkowski, A.; Smida, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Srivastava, Y. N.; Stanic, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Straub, M.; Stutz, A.; Suarez, F.; Suomijaervi, T.; Supanitsky, A. D.; Susa, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Tapia, A.; Tartare, M.; Tascau, O.; Tcaciuc, R.; Thao, N. T.; Thomas, D.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tome, B.; Tonachini, A.; Torralba Elipe, G.; Machado, D. Torres; Travnicek, P.; Tridapalli, D. B.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdes Galicia, J. F.; Valino, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cardenas, B.; Varner, G.; Vazquez, J. R.; Vazquez, R. A.; Veberic, D.; Verzi, V.; Vicha, J.; Videla, M.; Villasenor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Westerhoff, S.; Whelan, B. J.; Widom, A.; Wieczorek, G.; Wiencke, L.; Wilczynska, B.; Wilczynski, H.; Will, M.; Williams, C.; Winchen, T.; Wundheiler, B.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano Garcia, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Martin, L.

    2013-01-01

    We describe a new method of identifying night-time clouds over the Pierre Auger Observatory using infrared data from the Imager instruments on the GOES-12 and GOES-13 satellites. We compare cloud. identifications resulting from our method to those obtained by the Central Laser Facility of the Auger

  20. Rightsizing LISA

    CERN Document Server

    Stebbins, R T

    2009-01-01

    The LISA science requirements and conceptual design have been fairly stable for over a decade. In the interest of reducing costs, the LISA Project at NASA has looked for simplifications of the architecture, at downsizing of subsystems, and at descopes of the entire mission. This is a natural activity of the formulation phase, and one that is particularly timely in the current NASA budgetary context. There is, and will continue to be, enormous pressure for cost reduction from both ESA and NASA, reviewers and the broader research community. Here, the rationale for the baseline architecture is reviewed, and recent efforts to find simplifications and other reductions that might lead to savings are reported. A few possible simplifications have been found in the LISA baseline architecture. In the interest of exploring cost sensitivity, one moderate and one aggressive descope have been evaluated; the cost savings are modest and the loss of science is not.

  1. Rightsizing LISA

    Energy Technology Data Exchange (ETDEWEB)

    Stebbins, R T, E-mail: Robin.T.Stebbins@nasa.go [NASA Goddard Space Flight Center, Code 663, Greenbelt, MD 20771 (United States)

    2009-05-07

    The Laser Interferometer Space Antenna (LISA) science requirements and conceptual design have been fairly stable for over a decade. In the interest of reducing costs, the LISA Project at NASA has looked for simplifications of the architecture, at downsizing of subsystems and at descopes of the entire mission. This is a natural activity of the formulation phase and one that is particularly timely in the current NASA budgetary context. There is, and will continue to be, enormous pressure for cost reduction from both ESA and NASA, reviewers and the broader research community. Here, the rationale for the baseline architecture is reviewed, and recent efforts to find simplifications and other reductions that might lead to savings are reported. A few possible simplifications have been found in the LISA baseline architecture. In the interest of exploring cost sensitivity, one moderate and one aggressive descope have been evaluated; the cost savings are modest and the loss of science is not.

  2. Satellite laser ranging experiment with sub-centimeter single-shot ranging precision at Shanghai Observatory

    Institute of Scientific and Technical Information of China (English)

    YANG; Fumin(杨福民); CHEN; Wanzhen(陈婉珍); ZHANG; Zhongping(张忠萍); CHEN; Juping(陈菊平); HU; Jingfu(扈荆夫); LI; Xin(李鑫); I.; Prochazka; K.; Hamal

    2003-01-01

    The Shanghai Astronomical Observatory, Chinese Academy of Sciences, incollaboration with the Czech Technical University, carried out the experiment of satellite laser ranging with sub-centimeter precision in Shanghai in August 2001. A pico-second event timer was used for the measurement of the time interval between the transmitted and returned laser pulses for Lageos 1, 2, Starlette, Stella, Topex/Poseiden and ERS-2 in coordination with the existing laser transmitting and receiving system at the Shanghai Observatory. The analysis of the measurement showed that the single-shot ranging precision with these satellites is 7-8 mm. In order to compare ranging precision, the existing ranging system has tracked simultaneously these satellites and obtained the ranging precision of 12-15 mm. It means that the ranging precision with the new system is 80% better thanthe existing system. The systematic biases with the existing system have also been checked in the experiment.

  3. Earth Observatory Satellite system definition study. Report 4: Low cost management approach and recommendations

    Science.gov (United States)

    1974-01-01

    An analysis of low cost management approaches for the development of the Earth Observatory Satellite (EOS) is presented. The factors of the program which tend to increase costs are identified. The NASA/Industry interface is stressed to show how the interface can be improved to produce reduced program costs. Techniques and examples of cost reduction which can be applied to the EOS program are tabulated. Specific recommendations for actions to be taken to reduce costs in prescribed areas are submitted.

  4. Earth Observatory Satellite system definition study. Report no. 4: Management approach recommendations

    Science.gov (United States)

    1974-01-01

    A management approach for the Earth Observatory Satellite (EOS) which will meet the challenge of a constrained cost environment is presented. Areas of consideration are contracting techniques, test philosophy, reliability and quality assurance requirements, commonality options, and documentation and control requirements. The various functional areas which were examined for cost reduction possibilities are identified. The recommended management approach is developed to show the primary and alternative methods.

  5. Validation of satellite data with IASOA observatories and shipboard measurements in Arctic Ocean

    Science.gov (United States)

    Repina, Irina; Artamonov, Arseniy; Mazilkina, Alexandra; Valiullin, Denis; Stanichny, Sergey

    2016-04-01

    The paper shows the possibility of using surface observation data at high latitudes for the validation of different satellite products. We use data from International Arctic Systems for Observing the Atmosphere (IASOA) observatories and data from Nansen and Amundsen basins observation system (NABOS) project. The NABOS field experiment was carried out in the central part of the Arctic and in the eastern Arctic seas during summer and fall period of 2004-2009, 2013 and 2015. Newly improved satellite products and surface observations provide an opportunity to revisit remote-sensing capabilities for estimating shortwave and longwave radiative fluxes, as well as turbulent fluxes at high latitudes. Estimates of SW fluxes from the MODIS and LW fluxes from the NOAA satellites are evaluated against land observations from IASOA observatories, and unique shipboard measurements. Results show that the satellite products are in better agreement with observations than those from numerical models. Therefore, the large scale satellite based estimates should be useful for model evaluation and for providing information in formulating energy budgets at high latitudes. Visible and near-infrared albedos over snow and ice surfaces are retrieved from AVHRR. Comparison with surface measurements of albedo in arctic observatories and Arctic ocean shows very good agreement. Meteorological and micrometeorological observations were used to validate the surface temperature and surface heat fluxes in the satellite data. Compared data arrays are independent and sufficiently detailed to perform trustworthy evaluations. The spatial and temporal patterns of the resulting flux fields are investigated and compared with those derived from satellite observations such as HOAPS, from blended data such as AOFLUX (in the open water cases). A computation of the sensible heat flux at the surface is formulated on the basis of spatial variations of the surface temperature estimated from satellite data. Based on

  6. The effect of different eLISA-like configurations on massive black hole parameter estimation

    CERN Document Server

    Porter, Edward K

    2015-01-01

    As the theme for the future L3 Cosmic Vision mission, ESA has recently chosen the `Gravitational Wave Universe'. Within this call, a mission concept called eLISA has been proposed. This observatory has a current initial configuration consisting of 4 laser links between the three satellites, which are separated by a distance of one million kilometers, constructing a single channel Michelson interferometer. However, the final configuration for the observatory will not be fixed until the end of this decade. With this in mind, we investigate the effect of different eLISA-like configurations on massive black hole detections. This work compares the results of a Bayesian inference study of 120 massive black hole binaries out to a redshift of $z\\sim13$ for a $10^6$m arm-length eLISA with four and six links, as well as a $2\\times10^6$m arm-length observatory with four links. We demonstrate that the original eLISA configuration should allow us to recover the luminosity distance of the source with an error of less than ...

  7. LISA Pathfinder data analysis

    Science.gov (United States)

    Antonucci, F.; Armano, M.; Audley, H.; Auger, G.; Benedetti, M.; Binetruy, P.; Boatella, C.; Bogenstahl, J.; Bortoluzzi, D.; Bosetti, P.; Caleno, M.; Cavalleri, A.; Cesa, M.; Chmeissani, M.; Ciani, G.; Conchillo, A.; Congedo, G.; Cristofolini, I.; Cruise, M.; Danzmann, K.; De Marchi, F.; Diaz-Aguilo, M.; Diepholz, I.; Dixon, G.; Dolesi, R.; Fauste, J.; Ferraioli, L.; Fertin, D.; Fichter, W.; Fitzsimons, E.; Freschi, M.; García Marin, A.; García Marirrodriga, C.; Gesa, L.; Giardini, D.; Grimani, C.; Grynagier, A.; Guillaume, B.; Guzmán, F.; Harrison, I.; Heinzel, G.; Hewitson, M.; Hollington, D.; Hough, J.; Hoyland, D.; Hueller, M.; Huesler, J.; Jeannin, O.; Jennrich, O.; Jetzer, P.; Johlander, B.; Killow, C.; Llamas, X.; Lloro, I.; Lobo, A.; Maarschalkerweerd, R.; Madden, S.; Mance, D.; Mateos, I.; McNamara, P. W.; Mendes, J.; Mitchell, E.; Monsky, A.; Nicolini, D.; Nicolodi, D.; Nofrarias, M.; Pedersen, F.; Perreur-Lloyd, M.; Perreca, A.; Plagnol, E.; Prat, P.; Racca, G. D.; Rais, B.; Ramos-Castro, J.; Reiche, J.; Romera Perez, J. A.; Robertson, D.; Rozemeijer, H.; Sanjuan, J.; Schulte, M.; Shaul, D.; Stagnaro, L.; Strandmoe, S.; Steier, F.; Sumner, T. J.; Taylor, A.; Texier, D.; Trenkel, C.; Tombolato, D.; Vitale, S.; Wanner, G.; Ward, H.; Waschke, S.; Wass, P.; Weber, W. J.; Zweifel, P.

    2011-05-01

    As the launch of LISA Pathfinder (LPF) draws near, more and more effort is being put in to the preparation of the data analysis activities that will be carried out during the mission operations. The operations phase of the mission will be composed of a series of experiments that will be carried out on the satellite. These experiments will be directed and analysed by the data analysis team, which is part of the operations team. The operations phase will last about 90 days, during which time the data analysis team aims to fully characterize the LPF, and in particular, its core instrument the LISA Technology Package. By analysing the various couplings present in the system, the different noise sources that will disturb the system, and through the identification of the key physical parameters of the system, a detailed noise budget of the instrument will be constructed that will allow the performance of the different subsystems to be assessed and projected towards LISA. This paper describes the various aspects of the full data analysis chain that are needed to successfully characterize the LPF and build up the noise budget during mission operations.

  8. LISA Pathfinder data analysis

    Energy Technology Data Exchange (ETDEWEB)

    Antonucci, F; Cavalleri, A; Congedo, G [Dipartimento di Fisica, Universita di Trento and INFN, Gruppo Collegato di Trento, 38123 Povo, Trento (Italy); Armano, M [European Space Astronomy Centre, European Space Agency, Villanueva de la Canada, 28692 Madrid (Spain); Audley, H; Bogenstahl, J; Danzmann, K [Albert-Einstein-Institut, Max-Planck-Institut fuer Gravitationsphysik und Universitaet Hannover, 30167 Hannover (Germany); Auger, G; Binetruy, P [APC UMR7164, Universite Paris Diderot, Paris (France); Benedetti, M [Dipartimento di Ingegneria dei Materiali e Tecnologie Industriali, Universita di Trento and INFN, Gruppo Collegato di Trento, Mesiano, Trento (Italy); Boatella, C [CNES, DCT/AQ/EC, 18 Avenue Edouard Belin, 31401 Toulouse, Cedex9 (France); Bortoluzzi, D; Bosetti, P; Cristofolini, I [Dipartimento di Ingegneria Meccanica e Strutturale, Universita di Trento and INFN, Gruppo Collegato di Trento, Mesiano, Trento (Italy); Caleno, M; Cesa, M [European Space Technology Centre, European Space Agency, Keplerlaan 1, 2200 AG Noordwijk (Netherlands); Chmeissani, M [IFAE, Universitat Autonoma de Barcelona, E-08193 Bellaterra (Barcelona) (Spain); Ciani, G [Department of Physics, University of Florida, Gainesville, FL 32611-8440 (United States); Conchillo, A [ICE-CSIC/IEEC, Facultat de Ciencies, E-08193 Bellaterra (Barcelona) (Spain); Cruise, M, E-mail: martin.hewitson@aei.mpg.de [Department of Physics and Astronomy, University of Birmingham, Birmingham (United Kingdom)

    2011-05-07

    As the launch of LISA Pathfinder (LPF) draws near, more and more effort is being put in to the preparation of the data analysis activities that will be carried out during the mission operations. The operations phase of the mission will be composed of a series of experiments that will be carried out on the satellite. These experiments will be directed and analysed by the data analysis team, which is part of the operations team. The operations phase will last about 90 days, during which time the data analysis team aims to fully characterize the LPF, and in particular, its core instrument the LISA Technology Package. By analysing the various couplings present in the system, the different noise sources that will disturb the system, and through the identification of the key physical parameters of the system, a detailed noise budget of the instrument will be constructed that will allow the performance of the different subsystems to be assessed and projected towards LISA. This paper describes the various aspects of the full data analysis chain that are needed to successfully characterize the LPF and build up the noise budget during mission operations.

  9. The LISA accelerometer

    Science.gov (United States)

    Rodrigues, M.; Touboul, P.

    2003-10-01

    In the frame of investigating the fundamental nature of gravity, the Laser Interferometer Space Antenna (LISA) mission could open the way to a new kind of observations unreachable from ground. The experiment, based on a V-formation of six drag-free spacecraft, uses the cubic proof masses of inertial sensors to reflect the laser light, acting as reference mirrors of a 5 × 10 9 m arm length interferometer. The proof masses are also used as inertial references for the drag-free control of the spacecraft which constitute in return a shield against external forces. Derived from space electrostatic accelerometers developed at ONERA, such as GRADIO for the ESA ARISTOTELES and now GOCE mission (Bernard and Touboul, 1991), the proposed LISA sensor should shield its proof mass from any accelerometric disturbance at a level of 10 -15ms-2Hz- 1/2. The accurate capacitive sensing of the mass provides its position relative to the satellite with a resolution better than 10 -9m Hz- 1/2 in order to control the satellite orbit and to minimise the disturbances induced by the satellite self gravity or by the proof mass charge. The sensor configuration and accomodation has to be specifically optimised for the mission requirements. Fortunately, the sensor will benefit from the thermal stability of the LISA optical bench environment, i.e. 10 -6K Hz- 1/2, and of the selected materials that exhibit a very low coefficient of thermal expansion (CTE), ensuring a high geometrical stability. Apart from the modeling and the evaluation of the flight characteristics, the necessary indirect ground demonstration of the performance and the interfaces with the drag-free control will have to be considered in detail in the future.

  10. The Measurement of Landfill Gas Emissions with the Orbiting Carbon Observatory and CarbonSAT Satellites

    Science.gov (United States)

    Vigil, S. A.; Bovensmann, H.

    2010-12-01

    Landfill gas is a significant contributor to anthropogenic emissions of CH4 and CO2. The U.S. Environmental Protection Agency has estimated the total U.S. 2007 emissions of the CH4 component of landfill gas at 132.9 Tg CO2 Equivalent. This compares to total CH4 emission from all US sources in 2007 at 585.3 Tg CO2 Equivalent. Worldwide CH4 emissions from landfill gas have been estimated at 668 Tg CO2 Equivalent. Satellite remote sensing can also be used to characterize landfill gas emissions. The NASA Orbiting Carbon Observatory (OCO-2) and the proposed CarbonSAT (University of Bremen) satellites are particularly suited for this purpose. The Orbiting Carbon Observatory (OCO) was designed to provided high spatial resolution ( developed countries. In general, landfills in the developed countries have landfill gas control system ground based landfill gas monitoring systems. These ground-based measurements can be used to calibrate OCO-2 and CarbonSAT landfill gas measurements. OCO-2 and CarbonSAT can be used to measure landfill emissions from the large landfills and open dumps of the emerging megacities in the developing world where accurate ground measurements are not available. For example Mexico City generates 26,000 MT of municipal solid waste that is disposed of in two uncontrolled landfills. Similar conditions exist in Asia, Latin America, and Africa. Satellite based measurements of these landfill gas emissions could help prioritize greenhouse gas remediation projects for these countries.

  11. Heliospheric influences on LISA

    Science.gov (United States)

    Grimani, C.; Fabi, M.; Finetti, N.; Tombolato, D.; Marconi, L.; Stanga, R.; Lobo, A.; Chmeissani, M.; Puigdengoles, C.

    2009-05-01

    Laser interferometer space antenna (LISA) is the first interferometer devoted to the detection of low frequency gravitational waves in space. Control of the environment and the study of the effects of energetic particles traversing the LISA apparatus are mandatory for this experiment to be fully successful. Telescopes for solar and cosmic-ray particle monitoring will be placed on board LISA and its precursor mission LISA Pathfinder (LISA-PF). In particular, proton, helium and electron detection is recommended on LISA. In this paper, we report expected incident galactic proton and helium fluxes at the time of LISA and LISA-PF missions. The number of solar events with the fluence ranging between 106 and 1011 protons cm-2 above 30 MeV occurring during the LISA missions is estimated as well. Finally, we discuss the importance of electron detection on LISA to forecast upcoming solar energetic protons.

  12. Heliospheric influences on LISA

    Energy Technology Data Exchange (ETDEWEB)

    Grimani, C; Fabi, M [Istituto di Fisica, Universita degli Studi di Urbino, Urbino (Italy); Finetti, N [Dipartimento di Fisica, Universita degli Studi dell' Aquila, L' Aquila (Italy); Tombolato, D [Dipartimento di Fisica, Universita degli Studi di Trento and Istituto Nazionale di Fisica Nucleare, Padova, Gruppo collegato di Trento, Trento (Italy); Marconi, L; Stanga, R [Istituto Nazionale di Fisica Nucleare, Florence (Italy); Lobo, A [Institut d' Estudis Espacials de Catalunya (IEEC), Barcelona (Spain); Chmeissani, M; Puigdengoles, C, E-mail: catia.grimani@uniurb.i [Institut de Fisica d' Altes Energies (IFAE), Barcelona (Spain)

    2009-05-07

    Laser interferometer space antenna (LISA) is the first interferometer devoted to the detection of low frequency gravitational waves in space. Control of the environment and the study of the effects of energetic particles traversing the LISA apparatus are mandatory for this experiment to be fully successful. Telescopes for solar and cosmic-ray particle monitoring will be placed on board LISA and its precursor mission LISA Pathfinder (LISA-PF). In particular, proton, helium and electron detection is recommended on LISA. In this paper, we report expected incident galactic proton and helium fluxes at the time of LISA and LISA-PF missions. The number of solar events with the fluence ranging between 10{sup 6} and 10{sup 11} protons cm{sup -2} above 30 MeV occurring during the LISA missions is estimated as well. Finally, we discuss the importance of electron detection on LISA to forecast upcoming solar energetic protons.

  13. Search for Best Astronomical Observatory Sites in the MENA Region using Satellite Measurements

    Science.gov (United States)

    Abdelaziz, G.; Guebsi, R.; Guessoum, N.; Flamant, C.

    2017-06-01

    We perform a systematic search for astronomical observatory sites in the MENA (Middle-East and North Africa) region using space-based data for all the relevant factors, i.e. altitude (DEM), cloud fraction (CF), light pollution (NTL), precipitable water vapor (PWV), aerosol optical depth (AOD), relative humidity (RH), wind speed (WS), Richardson Number (RN), and diurnal temperature range (DTR). We look for the best locations overall even where altitudes are low (the threshold that we normally consider being 1,500 m) or where the combination of the afore-mentioned determining factors had previously excluded all locations in a given country. In this aim, we use the rich data that Earth-observing satellites provide, e.g. the Terra and Aqua multi-national NASA research satellites, with their MODIS (Moderate Resolution Imaging Spectroradiometer) and AIRS (Atmospheric Infrared Sounder) instruments, the Defense Meteorological Satellite Program’s Operational Linescan System (DMSP-OLS), and other products from climate diagnostics archives (e.g. MERRA). We present preliminary results on the best locations for the region.

  14. A. A. Michelson's Jovian Galilean-Satellite Interferometer at Lick Observatory in 1891

    Science.gov (United States)

    Osterbrock, D. E.

    2004-12-01

    Albert A. Michelson, America's first Nobel laureate in physics, measured the angular diameter of the red supergiant star Betelgeuse in 1920 with Francis G. Pease, using the 100-inch Mount Wilson reflector as the basis of his stellar interferometer. But he had first published the concept in 1890 and tested it on celestial objects with a telescope at Lick Observatory in 1891. He used its 12-inch refractor to measure the angular diameters of the four Galilean satellites of Jupiter, assisted at the telescope by W. W. Campbell, then a young astronomer who had just joined the Lick staff. Edward S. Holden, the Lick director, had invited Michelson to come to Mount Hamilton and use its telescopes as a guest observer. Michelson had first tried and proved his method on artificial circular disks in his laboratory at Clark University, Worcester, Mass., using a 2-inch "glass." Then in 1889 and 1890 he hoped to test it at Harvard College Observatory, but apparently the telescope or the atmospheric conditions did not work out. At Lick he did achieve success, and his measured angular diameters were nearer to the true values we know from close-up space measurements of today than those of any of the top visual observers of the time. Correspondence in the Lick Archives shows that Michelson intended to come back there to use its big 36-inch refractor to improve the measurements, but he never did so. Selections from Michelson's published papers and photographs of him, the telescope, and the instrument will be posted.

  15. The LISA Pathfinder mission

    Science.gov (United States)

    Antonucci, F.; Armano, M.; Audley, H.; Auger, G.; Benedetti, M.; Binetruy, P.; Bogenstahl, J.; Bortoluzzi, D.; Bosetti, P.; Brandt, N.; Caleno, M.; Cañizares, P.; Cavalleri, A.; Cesa, M.; Chmeissani, M.; Conchillo, A.; Congedo, G.; Cristofolini, I.; Cruise, M.; Danzmann, K.; De Marchi, F.; Diaz-Aguilo, M.; Diepholz, I.; Dixon, G.; Dolesi, R.; Dunbar, N.; Fauste, J.; Ferraioli, L.; Ferrone, V.; Fichter, W.; Fitzsimons, E.; Freschi, M.; García Marin, A.; García Marirrodriga, C.; Gerndt, R.; Gesa, L.; Gilbert, F.; Giardini, D.; Grimani, C.; Grynagier, A.; Guillaume, B.; Guzmán, F.; Harrison, I.; Heinzel, G.; Hernández, V.; Hewitson, M.; Hollington, D.; Hough, J.; Hoyland, D.; Hueller, M.; Huesler, J.; Jennrich, O.; Jetzer, P.; Johlander, B.; Karnesis, N.; Killow, C.; Llamas, X.; Lloro, I.; Lobo, A.; Maarschalkerweerd, R.; Madden, S.; Mance, D.; Mateos, I.; McNamara, P. W.; Mendes, J.; Mitchell, E.; Monsky, A.; Nicolini, D.; Nicolodi, D.; Nofrarias, M.; Pedersen, F.; Perreur-Lloyd, M.; Plagnol, E.; Prat, P.; Racca, G. D.; Ramos-Castro, J.; Reiche, J.; Romera Perez, J. A.; Robertson, D.; Rozemeijer, H.; Sanjuan, J.; Schleicher, A.; Schulte, M.; Shaul, D.; Stagnaro, L.; Strandmoe, S.; Steier, F.; Sumner, T. J.; Taylor, A.; Texier, D.; Trenkel, C.; Tu, H.-B.; Vitale, S.; Wanner, G.; Ward, H.; Waschke, S.; Wass, P.; Weber, W. J.; Ziegler, T.; Zweifel, P.

    2012-06-01

    In this paper, we describe the current status of the LISA Pathfinder mission, a precursor mission aimed at demonstrating key technologies for future space-based gravitational wave detectors, like LISA. Since much of the flight hardware has already been constructed and tested, we will show that performance measurements and analysis of these flight components lead to an expected performance of the LISA Pathfinder which is a significant improvement over the mission requirements, and which actually reaches the LISA requirements over the entire LISA Pathfinder measurement band.

  16. Design of the magnetic diagnostics unit onboard LISA Pathfinder

    CERN Document Server

    Diaz-Aguiló, Marc; Ramos-Castro, Juan; Lobo, Alberto; García-Berro, Enrique

    2012-01-01

    LISA (Laser Interferometer Space Antenna) is a joint mission of ESA and NASA which aims to be the first space-borne gravita- tional wave observatory. Due to the high complexity and technological challenges that LISA will face, ESA decided to launch a technological demonstrator, LISA Pathfinder. The payload of LISA Pathfinder is the so-called LISA Technology Package, and will be the highest sensitivity geodesic explorer flown to date. The LISA Technology Package is designed to measure relative accelerations between two test masses in nominal free fall (geodesic motion). The magnetic, thermal and radiation disturbances affecting the payload are monitored and dealt by the diagnostics subsystem. The diagnostics subsystem consists of several modules, and one of these is the magnetic diagnostics unit. Its main function is the assessment of differential acceleration noise between test masses due to the magnetic effects. To do so, it has to determine the magnetic characteristics of the test masses, namely their magne...

  17. Opportunities for Coordinated Observations of CO2 with the Orbiting Carbon Observatory (OCO) and Greenhouse Gases Observing Satellite (GOSAT)

    Science.gov (United States)

    Crisp, David

    2008-01-01

    The Orbiting Carbon Observatory (OCO) and the Greenhouse Gases Observing Satellite (GOSAT) are the first two satellites designed to make global measurements of atmospheric carbon dioxide (CO2) with the precision and sampling needed identify and monitor surface sources and sinks of this important greenhouse gas. Because the operational phases of the OCO and GOSAT missions overlap in time, there are numerous opportunities for comparing and combining the data from these two satellites to improve our understanding of the natural processes and human activities that control the atmospheric CO2 and it variability over time. Opportunities for cross-calibration, cross-validation, and coordinated observations that are currently under consideration are summarized here.

  18. The LISA Pathfinder Mission

    Science.gov (United States)

    Armano, M.; Audley, H.; Auger, G.; Baird, J.; Binetruy, P.; Born, M.; Bortoluzzi, D.; Brandt, N.; Bursi, A.; Caleno, M.; Cavalleri, A.; Cesarini, A.; Cruise, M.; Danzmann, K.; Diepholz, I.; Dolesi, R.; Dunbar, N.; Ferraioli, L.; Ferroni, V.; Fitzsimons, E.; Freschi, M.; Gallegos, J.; García Marirrodriga, C.; Gerndt, R.; Gesa, L. I.; Gibert, F.; Giardini, D.; Giusteri, R.; Grimani, C.; Harrison, I.; Heinzel, G.; Hewitson, M.; Hollington, D.; Hueller, M.; Huesler, J.; Inchauspé, H.; Jennrich, O.; Jetzer, P.; Johlander, B.; Karnesis, N.; Kaune, B.; Korsakova, N.; Killow, C.; Lloro, I.; Maarschalkerweerd, R.; Madden, S.; Mance, D.; Martín, V.; Martin-Porqueras, F.; Mateos, I.; McNamara, P.; Mendes, J.; Mendes, L.; Moroni, A.; Nofrarias, M.; Paczkowski, S.; Perreur-Lloyd, M.; Petiteau, A.; Pivato, P.; Plagnol, E.; Prat, P.; Ragnit, U.; Ramos-Castro, J.; Reiche, J.; Romera Perez, J. A.; Robertson, D.; Rozemeijer, H.; Russano, G.; Sarra, P.; Schleicher, A.; Slutsky, J.; Sopuerta, C. F.; Sumner, T.; Texier, D.; Thorpe, J.; Trenkel, C.; Tu, H. B.; Vetrugno, D.; Vitale, S.; Wanner, G.; Ward, H.; Waschke, S.; Wass, P.; Wealthy, D.; Wen, S.; Weber, W.; Wittchen, A.; Zanoni, C.; Ziegler, T.; Zweifel, P.

    2015-05-01

    LISA Pathfinder (LPF), the second of the European Space Agency's Small Missions for Advanced Research in Technology (SMART), is a dedicated technology validation mission for future spaceborne gravitational wave detectors, such as the proposed eLISA mission. LISA Pathfinder, and its scientific payload - the LISA Technology Package - will test, in flight, the critical technologies required for low frequency gravitational wave detection: it will put two test masses in a near-perfect gravitational free-fall and control and measure their motion with unprecedented accuracy. This is achieved through technology comprising inertial sensors, high precision laser metrology, drag-free control and an ultra-precise micro-Newton propulsion system. LISA Pathfinder is due to be launched in mid-2015, with first results on the performance of the system being available 6 months thereafter. The paper introduces the LISA Pathfinder mission, followed by an explanation of the physical principles of measurement concept and associated hardware. We then provide a detailed discussion of the LISA Technology Package, including both the inertial sensor and interferometric readout. As we approach the launch of the LISA Pathfinder, the focus of the development is shifting towards the science operations and data analysis - this is described in the final section of the paper

  19. LISA telescope spacer design investigations

    Science.gov (United States)

    Sanjuan, Josep; Mueller, Guido; Livas, Jeffrey; Preston, Alix; Arsenovic, Petar; Castellucci, Kevin; Generie, Joseph; Howard, Joseph; Stebbins, Robin

    The Laser Interferometer Space Antenna (LISA) is a space-based gravitational wave observa-tory with the goal of observing Gravitational Waves (GWs) from astronomical sources in a frequency range from 30 µHz to 0.1 Hz. The detection of GWs at such low frequency requires measurements of distances at the pico-meter level between bodies separated by 5 million kilo-meters. The LISA mission consists of three identical spacecraft (SC) separated by 5 × 106 km forming an equilateral triangle. Each SC contains two optical assemblies and two vacuum en-closures housing one proof mass (PM) in geodesic (free fall) motion each. The two assemblies on one SC are each pointing towards an identical assembly on each of the other two SC to form a non-equal arm interferometer. The measurement of the GW strain is done by measuring the change in the length of the optical path between the PMs of one arm relative to the other arms caused by the pass of a GW. An important element of the Interferometric Measurement System (IMS) is the telescope which, on one hand, gathers the light coming from the far SC (˜100 pW) and, on the other hand, expands and collimates the small outgoing beam ( 1 W) and sends it to the far SC. Due to the very demanding sensitivity requirements care must be taken in the design and validation of the telescope not to degrade the IMS performance. For instance, the diameter of the telescope sets the the shot noise of the IMS and depends critically on the diameter of the primary and the divergence angle of the outgoing beam. As the telescope is rather fast telescope, the divergence angle is a critical function of the overall separation between the primary and secondary. Any long term changes of the distance of more than a a few micro-meter would be detrimental to the LISA mission. Similarly challenging are the requirements on the in-band path-length noise for the telescope which has to be kept below 1 pm Hz-1/2 in the LISA band. Different configurations (on-axis/off axis

  20. Remote Sensing of Clouds using Satellites, Lidars, CLF/XLF and IR Cameras at the Pierre Auger Observatory

    Directory of Open Access Journals (Sweden)

    Chirinos J.

    2015-01-01

    Full Text Available Clouds in the field of view of the fluorescence detectors affect the detection of the extensive air showers. Several remote sensing techniques are used to detect night-time clouds over the 3000 km2 of the Pierre Auger Observatory. Four lidars at the fluorescence detector sites are performing different patterns of scans of the surrounding sky detecting clouds. Two laser facilities (CLF and XLF are shooting into the sky delivering cloud cover above them every 15 minutes. Four IR cameras detect the presence of clouds within the FOV of the fluorescence detectors every 5 minutes. A method using GOES-12 and GOES-13 satellites identifies night-time clouds twice per hour with a spatial resolution of 2.4 km by 5.5 km over the Observatory. We upload all this information into several databases to be used for the reconstruction of cosmic ray events and to find exotic events.

  1. Remote Sensing of Clouds using Satellites, Lidars, CLF/XLF and IR Cameras at the Pierre Auger Observatory

    Science.gov (United States)

    Chirinos, J.

    2015-12-01

    Clouds in the field of view of the fluorescence detectors affect the detection of the extensive air showers. Several remote sensing techniques are used to detect night-time clouds over the 3000 km2 of the Pierre Auger Observatory. Four lidars at the fluorescence detector sites are performing different patterns of scans of the surrounding sky detecting clouds. Two laser facilities (CLF and XLF) are shooting into the sky delivering cloud cover above them every 15 minutes. Four IR cameras detect the presence of clouds within the FOV of the fluorescence detectors every 5 minutes. A method using GOES-12 and GOES-13 satellites identifies night-time clouds twice per hour with a spatial resolution of 2.4 km by 5.5 km over the Observatory. We upload all this information into several databases to be used for the reconstruction of cosmic ray events and to find exotic events.

  2. A new model of Earth's radial conductivity structure derived from over 10 yr of satellite and observatory magnetic data

    DEFF Research Database (Denmark)

    Püthe, Christoph; Kuvshinov, Alexey; Khan, Amir;

    2015-01-01

    We present a newmodel of the radial (1-D) conductivity structure of Earth's mantle. This model is derived frommore than 10 yr of magnetic measurements from the satellites ørsted, CHAMP, SAC-C and the Swarm trio as well as the global network of geomagnetic observatories. After removal of core...... and crustal field as predicted by a recent field model, we fit the magnetic data with spherical harmonic coefficients describing ring current activity and associated induction effects and estimate global C-responses at periods between 1.5 and 150 d. The C-responses are corrected for 3-D effects due...

  3. LISA thermal design

    Energy Technology Data Exchange (ETDEWEB)

    Peabody, Hume [Swales Aerospace, Inc., 5050 Powder Mill Road, Beltsville, MD 20705 (United States); Merkowitz, Stephen [NASA' s Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2005-05-21

    The Laser Interferometer Space Antenna (LISA) mission, a space-based gravitational wave detector, uses laser metrology to measure distance fluctuations between proof masses aboard three spacecraft. The total acceleration disturbance to each proof mass is required to be below 3 x 10{sup -15} m s{sup -2} Hz{sup -1/2} at 0.1 mHz. Optical path length variations on each optical bench must be kept below about 40 pm Hz{sup -1/2} over 1-100 mHz. Noise due to spacecraft thermal distortions, temperature difference variations across the proof mass housing and other thermal effects are expected to be significant contributors to these noise budgets. The LISA Integrated Modelling team developed a detailed thermal model that is currently being used to drive the design of LISA. Several new thermal analysis techniques are also being developed in order to achieve model accuracies to LISA levels. We present here an overview of the LISA thermal design and modelling efforts. The latest thermal results calculated using the current baseline design of LISA are also discussed.

  4. Bayesian Model Selection for LISA Pathfinder

    CERN Document Server

    Karnesis, Nikolaos; Sopuerta, Carlos F; Gibert, Ferran; Armano, Michele; Audley, Heather; Congedo, Giuseppe; Diepholz, Ingo; Ferraioli, Luigi; Hewitson, Martin; Hueller, Mauro; Korsakova, Natalia; Plagnol, Eric; Vitale, and Stefano

    2013-01-01

    The main goal of the LISA Pathfinder (LPF) mission is to fully characterize the acceleration noise models and to test key technologies for future space-based gravitational-wave observatories similar to the LISA/eLISA concept. The Data Analysis (DA) team has developed complex three-dimensional models of the LISA Technology Package (LTP) experiment on-board LPF. These models are used for simulations, but more importantly, they will be used for parameter estimation purposes during flight operations. One of the tasks of the DA team is to identify the physical effects that contribute significantly to the properties of the instrument noise. A way of approaching to this problem is to recover the essential parameters of the LTP which describe the data. Thus, we want to define the simplest model that efficiently explains the observations. To do so, adopting a Bayesian framework, one has to estimate the so-called Bayes Factor between two competing models. In our analysis, we use three main different methods to estimate...

  5. Inflight magnetic characterization of the test masses onboard LISA Pathfinder

    CERN Document Server

    Diaz-Aguiló, Marc; Lobo, Alberto

    2012-01-01

    LISA Pathfinder is a science and technology demonstrator of the European Space Agency within the framework of its LISA mission, the latter aiming to be the first space-borne gravitational wave observatory. The payload of LISA Pathfinder is the so-called LISA Technology Package, which is designed to measure relative accelerations between two test masses in nominal free fall. The diagnostics subsystem consists of several modules, one of which is the magnetic diagnostics unit. Its main function is the assessment of the differential acceleration noise between the test masses due to magnetic effects. This subsystem is composed of two onboard coils intended to produce controlled magnetic fields at the location of the test masses. These magnetic fields couple with the remanent magnetic moment and susceptibility and produce forces and torques on the test masses. These, in turn, produce kinematic excursions of the test masses which are sensed by the onboard interferometer. We prove that adequately processing these exc...

  6. The Mona Lisa

    Institute of Scientific and Technical Information of China (English)

    方海昌

    2004-01-01

    Mona Lisa Was One Of Leonardo da Vincis favourite paintings he carried it with him until he died.Today it is regarded as the most famous painting in the world and is visited by many thousands of ople every year.

  7. LISA and the LTP

    Science.gov (United States)

    Jennrich, O.

    The primary objective of the LISA (Laser Interferometer Space Antenna mission is the detection and observation of gravitational waves from massive black holes (MBH) and galactic binaries in the frequency range 10 -4 Hz … 10 -1 Hz. This low-frequency range is inaccessible to ground-based interferometers due to the background of local gravitational noise and because ground-based interferometers are limited in length to a few kilometres. LISA is envisaged as an ESA/NASA collaborative project, selected an ESA cornerstone mission and included in NASA's strategic plan and with a nominal launch date in 2011. SMART-2 is primarily intended to demonstrate the key technologies for the ESA/NASA collaborative LISA cornerstone mission. The synergy with the technology being used for Darwin motivates the utilization of SMART-2 for both missions. To this end, SMART-2 will accommodate a LISA technology package (LTP), provided by European institutes and industry and possibly also a Disturbance Reduction System (DRS) that is very similar to the LTP and has the same goals but is provided by US institutes and industry.

  8. Working Towards the LISA Optical Benches at UF

    Science.gov (United States)

    Chilton, Andrew; Hillsberry, Daniel; Ciani, Giacomo; Conklin, John; Mueller, Guido

    2017-01-01

    The first space-based gravitational wave observatory will likely be a six-link LISA-like observatory with three million km scale arms. LISA aims at detecting gravitational waves from super-massive black hole mergers, compact galactic binaries, and many other exciting sources which emit gravitational waves in the 10 µHz to 1Hz frequency band. LISA will use laser interferometry to measure changes in the distance between free floating test masses at the pm/Hz level. At the core of the interferometry are the optical benches (two on each spacecraft) which receive, manipulate and redirect the different laser beams. The optical bench has been identified as a critical item in the design, manufacturing, and testing phases of this mission. Our group studies different components of the optical bench with the goal to simplify the design and manufacturing process of the optical bench.

  9. Laying the Foundation for Space-based Gravitational Wave Detection: LISA Pathfinder, the LISA Test Package, and ST7-DRS

    Science.gov (United States)

    Thorpe, James

    2014-08-01

    Efforts to develop space-based observatories of gravitational waves, such as the long-standing Laser Interferometer Space Antenna (LISA) or the more recent eLISA concept that motivated ESA’s selection of a gravitational wave mission for the L3 Mission Opportunity, have traditionally been praised for their scientific potential and criticized for their technological readiness. The LISA Pathfinder (LPF) mission is a dedicated technology demonstrator for such missions. Led by ESA and a consortium of European national agencies and with a minority contribution from NASA, LPF will demonstrate several key technologies for the LISA concept. LPF includes two scientific payloads: the European LISA Technology Package (LTP) and the NASA-provided ST7-DRS. The mission will place two test masses in drag-free flight and measure the relative acceleration between them. This measurement will validate a number of technologies that are critical to LISA-like gravitational wave instruments including sensing and control of the test masses, drag-free control laws, micro-Newton thrusters, and picometer-level laser metrology. LPF is currently in the late stages of integration and test and is planned to launch in 2015. We will present the current status of the LISA Pathfinder mission and the LTP and ST7-DRS payloads as well as the expected impact on the larger gravitational-wave effort.

  10. LISA Pathfinder: mission and status

    Science.gov (United States)

    Antonucci, F.; Armano, M.; Audley, H.; Auger, G.; Benedetti, M.; Binetruy, P.; Boatella, C.; Bogenstahl, J.; Bortoluzzi, D.; Bosetti, P.; Caleno, M.; Cavalleri, A.; Cesa, M.; Chmeissani, M.; Ciani, G.; Conchillo, A.; Congedo, G.; Cristofolini, I.; Cruise, M.; Danzmann, K.; De Marchi, F.; Diaz-Aguilo, M.; Diepholz, I.; Dixon, G.; Dolesi, R.; Dunbar, N.; Fauste, J.; Ferraioli, L.; Fertin, D.; Fichter, W.; Fitzsimons, E.; Freschi, M.; García Marin, A.; García Marirrodriga, C.; Gerndt, R.; Gesa, L.; Gilbert, F.; Giardini, D.; Grimani, C.; Grynagier, A.; Guillaume, B.; Guzmán, F.; Harrison, I.; Heinzel, G.; Hewitson, M.; Hollington, D.; Hough, J.; Hoyland, D.; Hueller, M.; Huesler, J.; Jeannin, O.; Jennrich, O.; Jetzer, P.; Johlander, B.; Killow, C.; Llamas, X.; Lloro, I.; Lobo, A.; Maarschalkerweerd, R.; Madden, S.; Mance, D.; Mateos, I.; McNamara, P. W.; Mendes, J.; Mitchell, E.; Monsky, A.; Nicolini, D.; Nicolodi, D.; Nofrarias, M.; Pedersen, F.; Perreur-Lloyd, M.; Perreca, A.; Plagnol, E.; Prat, P.; Racca, G. D.; Rais, B.; Ramos-Castro, J.; Reiche, J.; Romera Perez, J. A.; Robertson, D.; Rozemeijer, H.; Sanjuan, J.; Schleicher, A.; Schulte, M.; Shaul, D.; Stagnaro, L.; Strandmoe, S.; Steier, F.; Sumner, T. J.; Taylor, A.; Texier, D.; Trenkel, C.; Tombolato, D.; Vitale, S.; Wanner, G.; Ward, H.; Waschke, S.; Wass, P.; Weber, W. J.; Zweifel, P.

    2011-05-01

    LISA Pathfinder, the second of the European Space Agency's Small Missions for Advanced Research in Technology (SMART), is a dedicated technology demonstrator for the joint ESA/NASA Laser Interferometer Space Antenna (LISA) mission. The technologies required for LISA are many and extremely challenging. This coupled with the fact that some flight hardware cannot be fully tested on ground due to Earth-induced noise led to the implementation of the LISA Pathfinder mission to test the critical LISA technologies in a flight environment. LISA Pathfinder essentially mimics one arm of the LISA constellation by shrinking the 5 million kilometre armlength down to a few tens of centimetres, giving up the sensitivity to gravitational waves, but keeping the measurement technology: the distance between the two test masses is measured using a laser interferometric technique similar to one aspect of the LISA interferometry system. The scientific objective of the LISA Pathfinder mission consists then of the first in-flight test of low frequency gravitational wave detection metrology. LISA Pathfinder is due to be launched in 2013 on-board a dedicated small launch vehicle (VEGA). After a series of apogee raising manoeuvres using an expendable propulsion module, LISA Pathfinder will enter a transfer orbit towards the first Sun-Earth Lagrange point (L1). After separation from the propulsion module, the LPF spacecraft will be stabilized using the micro-Newton thrusters, entering a 500 000 km by 800 000 km Lissajous orbit around L1. Science results will be available approximately 2 months after launch.

  11. Time scales in LISA

    CERN Document Server

    Pireaux, S

    2007-01-01

    The LISA mission is a space interferometer aiming at the detection of gravitational waves in the [$10^{-4}$,$10^{-1}$] Hz frequency band. In order to reach the gravitational wave detection level, a Time Delay Interferometry (TDI) method must be applied to get rid of (most of) the laser frequency noise and optical bench noise. This TDI analysis is carried out in terms of the coordinate time corresponding to the Barycentric Coordinate Reference System (BCRS), TCB, whereas the data at each of the three LISA stations is recorded in terms of each station proper time. We provide here the required proper time versus BCRS time transformation. We show that the difference in rate of station proper time versus TCB is of the order of $5 10^{-8}$. The difference between station proper times and TCB exhibits an oscillatory trend with a maximum amplitude of about $10^{-3}$ s.

  12. Laser development for LISA

    Energy Technology Data Exchange (ETDEWEB)

    Troebs, M [Laser Zentrum Hannover, Hollerithallee 8, D-30419 Hannover (Germany); Wessels, P [Laser Zentrum Hannover, Hollerithallee 8, D-30419 Hannover (Germany); Fallnich, C [Laser Zentrum Hannover, Hollerithallee 8, D-30419 Hannover (Germany); Bode, M [Innolight GmbH, Garbsener Landstr. 10, D-30419 Hannover (Germany); Freitag, I [Innolight GmbH, Garbsener Landstr. 10, D-30419 Hannover (Germany); Skorupka, S [Max Planck Institute for Gravitational Physics, Callinstr. 38, D-30167 Hannover (Germany); Heinzel, G [Max Planck Institute for Gravitational Physics, Callinstr. 38, D-30167 Hannover (Germany); Danzmann, K [Max Planck Institute for Gravitational Physics, Callinstr. 38, D-30167 Hannover (Germany)

    2006-04-21

    The two most promising configurations for the LISA laser are a stand-alone diode-pumped nonplanar ring oscillator (NPRO) or a fibre amplifier seeded by a low-power NPRO. The stand-alone laser was stabilized in frequency to a ULE cavity and in power to an electronic reference. For the first time the LISA requirement of relative power noise below 2 x 10{sup -4}/Hz{sup 1/2} was fulfilled in the whole frequency range from 0.1 mHz to 1 Hz. The LISA goal of frequency noise below 30 Hz/Hz{sup 1/2} was achieved for frequencies above 3 mHz. As a first step in the characterization of an oscillator-amplifier system, the excess frequency noise of an ytterbium-doped fibre amplifier was measured. For frequencies between 0.1 mHz and 1 Hz the excess noise was measured to be below 0.1 Hz/Hz{sup 1/2}, which is significantly below the free-running frequency noise of NPROs.

  13. Coherent observations of gravitational radiation with LISA and gLISA

    Science.gov (United States)

    Tinto, Massimo; de Araujo, José C. N.

    2016-10-01

    The geosynchronous Laser Interferometer Space Antenna (gLISA) is a space-based gravitational wave (GW) mission that, for the past 5 years, has been under joint study at the Jet Propulsion Laboratory; Stanford University; the National Institute for Space Research (I.N.P.E., Brazil); and Space Systems Loral. If flown at the same time as the LISA mission, the two arrays will deliver a joint sensitivity that accounts for the best performance of both missions in their respective parts of the millihertz band. This simultaneous operation will result in an optimally combined sensitivity curve that is "white" from about 3 ×10-3 Hz to 1 Hz, making the two antennas capable of detecting, with high signal-to-noise ratios (SNRs), coalescing black-hole binaries (BHBs) with masses in the range (10 -1 08)M⊙ . Their ability of jointly tracking, with enhanced SNR, signals similar to that observed by the Advanced Laser Interferometer Gravitational Wave Observatory (aLIGO) on September 14, 2015 (the GW150914 event) will result in a larger number of observable small-mass binary black holes and an improved precision of the parameters characterizing these sources. Together, LISA, gLISA and aLIGO will cover, with good sensitivity, the (10-4-1 03) Hz frequency band.

  14. LISA: Science and Prospects for Gravitational Wave Detection in Space

    Science.gov (United States)

    Larson, Shane L.

    2017-01-01

    Spaceborne gravitational wave observatories with million kilometer armlengths will probe gravitational waves with kilosecond periods. This part of the spectrum is populated by a diverse menagerie of high energy astrophysical systems that will give new insights into stellar evolution, the formation and evolution of super-massive black holes, and the growth of structure in the Universe. LISA is a laser interferometric observatory that will be sensitive to gravitational wave frequencies from about 10 microHertz to about 1 Hertz, providing gravitational wave observations of these phenomena that will enable population studies, detailed characterization of the structure and bulk motion of matter in these systems, as well as enabling new, detailed tests of physics in strong gravitational fields. The core LISA measurement has been demonstrated by the successful flight of LISA Pathfinder, paving the way for the start of LISA mission design and planning. In this talk, we will discuss the science that low-frequency gravitational wave observations will reveal and enable, as well as the current technology status and progress forward toward an eventual LISA flight.

  15. From laboratory experiments to LISA Pathfinder: achieving LISA geodesic motion

    Science.gov (United States)

    Antonucci, F.; Armano, M.; Audley, H.; Auger, G.; Benedetti, M.; Binetruy, P.; Boatella, C.; Bogenstahl, J.; Bortoluzzi, D.; Bosetti, P.; Brandt, N.; Caleno, M.; Cavalleri, A.; Cesa, M.; Chmeissani, M.; Ciani, G.; Conchillo, A.; Congedo, G.; Cristofolini, I.; Cruise, M.; Danzmann, K.; De Marchi, F.; Diaz-Aguilo, M.; Diepholz, I.; Dixon, G.; Dolesi, R.; Dunbar, N.; Fauste, J.; Ferraioli, L.; Fertin, D.; Fichter, W.; Fitzsimons, E.; Freschi, M.; García Marin, A.; García Marirrodriga, C.; Gerndt, R.; Gesa, L.; Giardini, D.; Gibert, F.; Grimani, C.; Grynagier, A.; Guillaume, B.; Guzmán, F.; Harrison, I.; Heinzel, G.; Hewitson, M.; Hollington, D.; Hough, J.; Hoyland, D.; Hueller, M.; Huesler, J.; Jeannin, O.; Jennrich, O.; Jetzer, P.; Johlander, B.; Killow, C.; Llamas, X.; Lloro, I.; Lobo, A.; Maarschalkerweerd, R.; Madden, S.; Mance, D.; Mateos, I.; McNamara, P. W.; Mendes, J.; Mitchell, E.; Monsky, A.; Nicolini, D.; Nicolodi, D.; Nofrarias, M.; Pedersen, F.; Perreur-Lloyd, M.; Perreca, A.; Plagnol, E.; Prat, P.; Racca, G. D.; Rais, B.; Ramos-Castro, J.; Reiche, J.; Romera Perez, J. A.; Robertson, D.; Rozemeijer, H.; Sanjuan, J.; Schleicher, A.; Schulte, M.; Shaul, D.; Stagnaro, L.; Strandmoe, S.; Steier, F.; Sumner, T. J.; Taylor, A.; Texier, D.; Trenkel, C.; Tombolato, D.; Vitale, S.; Wanner, G.; Ward, H.; Waschke, S.; Wass, P.; Weber, W. J.; Zweifel, P.

    2011-05-01

    This paper presents a quantitative assessment of the performance of the upcoming LISA Pathfinder geodesic explorer mission. The findings are based on the results of extensive ground testing and simulation campaigns using flight hardware, flight control and operations algorithms. The results show that, for the central experiment of measuring the stray differential acceleration between the LISA test masses, LISA Pathfinder will be able to verify the overall acceleration noise to within a factor 2 of the LISA requirement at 1 mHz and within a factor 6 at 0.1 mHz. We also discuss the key elements of the physical model of disturbances, coming from LISA Pathfinder and ground measurement that will guarantee the LISA performance.

  16. From laboratory experiments to LISA Pathfinder: achieving LISA geodesic motion

    Energy Technology Data Exchange (ETDEWEB)

    Antonucci, F; Cavalleri, A; Congedo, G [Dipartimento di Fisica, Universita di Trento and INFN, Gruppo Collegato di Trento, 38050 Povo, Trento (Italy); Armano, M [European Space Astronomy Centre, European Space Agency, Villanueva de la Canada, 28692 Madrid (Spain); Audley, H; Bogenstahl, J [Albert-Einstein-Institut, Max-Planck-Institut fuer Gravitationsphysik und Universitaet Hannover, 30167 Hannover (Germany); Auger, G; Binetruy, P [APC UMR7164, Universite Paris Diderot, Paris (France); Benedetti, M [Dipartimento di Ingegneria dei Materiali e Tecnologie Industriali, Universita di Trento and INFN, Gruppo Collegato di Trento, Mesiano, Trento (Italy); Boatella, C [CNES, DCT/AQ/EC, 18 Avenue Edouard Belin, 31401 Toulouse, Cedex 9 (France); Bortoluzzi, D; Bosetti, P; Cristofolini, I [Dipartimento di Ingegneria Meccanica e Strutturale, Universita di Trento and INFN, Gruppo Collegato di Trento, Mesiano, Trento (Italy); Brandt, N [Astrium GmbH Claude-Dornier-Strasse, 88090 Immenstaad (Germany); Caleno, M; Cesa, M [European Space Technology Centre, European Space Agency, Keplerlaan 1, 2200 AG Noordwijk (Netherlands); Chmeissani, M [IFAE, Universitat Autonoma de Barcelona, E-08193 Bellaterra, Barcelona (Spain); Ciani, G [Department of Physics, University of Florida, Gainesville, FL 32611-8440 (United States); Conchillo, A [ICE-CSIC/IEEC, Facultat de Ciencies, E-08193 Bellaterra, Barcelona (Spain); Cruise, M, E-mail: Stefano.Vitale@unitn.it [Department of Physics and Astronomy, University of Birmingham, Birmingham (United Kingdom)

    2011-05-07

    This paper presents a quantitative assessment of the performance of the upcoming LISA Pathfinder geodesic explorer mission. The findings are based on the results of extensive ground testing and simulation campaigns using flight hardware, flight control and operations algorithms. The results show that, for the central experiment of measuring the stray differential acceleration between the LISA test masses, LISA Pathfinder will be able to verify the overall acceleration noise to within a factor 2 of the LISA requirement at 1 mHz and within a factor 6 at 0.1 mHz. We also discuss the key elements of the physical model of disturbances, coming from LISA Pathfinder and ground measurement that will guarantee the LISA performance.

  17. From laboratory experiments to LISA Pathfinder: achieving LISA geodesic motion

    CERN Document Server

    Antonucci, F; Audley, H; Auger, G; Benedetti, M; Binetruy, P; Boatella, C; Bogenstahl, J; Bortoluzzi, D; Bosetti, P; Brandt, N; Caleno, M; Cavalleri, A; Cesa, M; Chmeissani, M; Ciani, G; Conchillo, A; Congedo, G; Cristofolini, I; Cruise, M; Danzmann, K; De Marchi, F; Diaz-Aguilo, M; Diepholz, I; Dixon, G; Dolesi, R; Dunbar, N; Fauste, J; Ferraioli, L; Fertin, D; Fichter, W; Fitzsimons, E; Freschi, M; Marin, A García; Marirrodriga, C García; Gerndt, R; Gesa, L; Giardini, D; Gibert, F; Grimani, C; Grynagier, A; Guillaume, B; Guzmán, F; Harrison, I; Heinzel, G; Hewitson, M; Hollington, D; Hough, J; Hoyland, D; Hueller, M; Huesler, J; Jeannin, O; Jennrich, O; Jetzer, P; Johlander, B; Killow, C; Llamas, X; Lloro, I; Lobo, A; Maarschalkerweerd, R; Madden, S; Mance, D; Mateos, I; McNamara, P W; Mendestì, J; Mitchell, E; Monsky, A; Nicolini, D; Nicolodi, D; Nofrarias, M; Pedersen, F; Perreur-Lloyd, M; Perreca, A; Plagnol, E; Prat, P; Racca, G D; Rais, B; Ramos-Castro, J; Reiche, J; Perez, J A Romera; Robertson, D; Rozemeijer, H; Sanjuan, J; Schleicher, A; Schulte, M; Shaul, D; Stagnaro, L; Strandmoe, S; Steier, F; Sumner, T J; Taylor, A; Texier, D; Trenkel, C; Tombolato, D; Vitale, S; Wanner, G; Ward, H; Waschke, S; Wass, P; Weber, W J; Zweifel, P

    2010-01-01

    This paper presents a quantitative assessment of the performance of the upcoming LISA Pathfinder geodesic explorer mission. The findings are based on the results of extensive ground testing and simulation campaigns using flight hardware and flight control and operations algorithms. The results show that, for the central experiment of measuring the stray differential acceleration between the LISA test masses, LISA Pathfinder will be able to verify the overall acceleration noise to within a factor two of the LISA requirement at 1 mHz and within a factor 10 at 0.1 mHz. We also discuss the key elements of the physical model of disturbances, coming from LISA Pathfinder and ground measurement, that will guarantee the LISA performance.

  18. LISA and its in-flight test precursor SMART-2

    Energy Technology Data Exchange (ETDEWEB)

    Vitale, S.; Bender, P.; Brillet, A.; Buchman, S.; Cavalleri, A.; Cerdonio, M.; Cruise, M.; Cutler, C.; Danzmann, K.; Dolesi, R.; Folkner, W.; Gianolio, A.; Jafry, Y.; Hasinger, G.; Heinzel, G.; Hogan, C.; Hueller, M.; Hough, J.; Phinney, S.; Prince, T.; Richstone, D.; Robertson, D.; Rodrigues, M.; Ruediger, A.; Sandford, M.; Schilling, R.; Shoemaker, D.; Schutz, B.; Stebbins, R.; Stubbs, C.; Sumner, T.; Thorne, K.; Tinto, M.; Touboul, P.; Ward, H.; Weber, W.; Winkler, W

    2002-07-01

    LISA will be the first space-home gravitational wave observatory. It aims to detect gravitational waves in the 0.1 mHz/1 Hz range from sources including galactic binaries, super-massive black-hole binaries, capture of objects by super-massive black-holes and stochastic background. LISA is an ESA approved Cornerstone Mission foreseen as a joint ESA-NASA endeavour to be launched in 2010-11. The principle of operation of LISA is based on laser ranging of test-masses under pure geodesic motion. Achieving pure geodesic motion at the level requested for LISA, 3x10{sup -15} ms{sup -2}/{radical}Hz at 0.1 mHz, is considered a challenging technological objective. To reduce the risk, both ESA and NASA are pursuing an in-flight test of the relevant technology. The goal of the test is to demonstrate geodetic motion within one order of magnitude from the LISA performance. ESA has given this test as the primary goal of its technology dedicated mission SMART-2 with a launch in 2006. This paper describes the basics of LISA, its key technologies, and its in-flight precursor test on SMART-2.

  19. Detection and Characterization of Micrometeoroids with LISA Pathfinder

    CERN Document Server

    Thorpe, James Ira; Trigo-Rodriguez, Josep

    2015-01-01

    The Solar System contains a population of dust and small particles originating from asteroids, comets, and other bodies. These particles have been studied using a number of techniques ranging from in-situ satellite detectors to analysis of lunar microcraters to ground-based observations of zodiacal light. In this paper, we describe an approach for using the LISA Pathfinder (LPF) mission as an instrument to detect and characterize the dynamics of dust particles in the vicinity of Earth-Sun L1. Launching in late 2015, LPF is a dedicated technology demonstrator mission that will validate several key technologies for a future space-based gravitational-wave observatory. The primary science instrument aboard LPF is a precision accelerometer which we show will be capable of sensing discrete momentum impulses as small as $4\\times 10^{-8}\\,\\textrm{N}\\cdot\\textrm{s}$. We then estimate the rate of such impulses resulting from impacts of micrometeoroids based on standard models of the micrometeoroid environment in the in...

  20. LISA Pathfinder: mission and status

    Energy Technology Data Exchange (ETDEWEB)

    Antonucci, F; Cavalleri, A; Congedo, G [Dipartimento di Fisica, Universita di Trento and INFN, Gruppo Collegato di Trento, 38050 Povo, Trento (Italy); Armano, M [European Space Astronomy Centre, European Space Agency, Villanueva de la Canada, 28692 Madrid (Spain); Audley, H; Bogenstahl, J; Danzmann, K [Albert-Einstein-Institut, Max-Planck-Institut fuer Gravitationsphysik und Universitaet Hannover, 30167 Hannover (Germany); Auger, G; Binetruy, P [APC UMR7164, Universite Paris Diderot, Paris (France); Benedetti, M [Dipartimento di Ingegneria dei Materiali e Tecnologie Industriali, Universita di Trento and INFN, Gruppo Collegato di Trento, Mesiano, Trento (Italy); Boatella, C [CNES, DCT/AQ/EC, 18 Avenue Edouard Belin, 31401 Toulouse, Cedex 9 (France); Bortoluzzi, D; Bosetti, P; Cristofolini, I [Dipartimento di Ingegneria Meccanica e Strutturale, Universita di Trento and INFN, Gruppo Collegato di Trento, Mesiano, Trento (Italy); Caleno, M; Cesa, M [European Space Technology Centre, European Space Agency, Keplerlaan 1, 2200 AG Noordwijk (Netherlands); Chmeissani, M [IFAE, Universitat Autonoma de Barcelona, E-08193 Bellaterra, Barcelona (Spain); Ciani, G [Department of Physics, University of Florida, Gainesville, FL 32611-8440 (United States); Conchillo, A [ICE-CSIC/IEEC, Facultat de Ciencies, E-08193 Bellaterra, Barcelona (Spain); Cruise, M, E-mail: Paul.McNamara@esa.int [Department of Physics and Astronomy, University of Birmingham, Birmingham (United Kingdom)

    2011-05-07

    LISA Pathfinder, the second of the European Space Agency's Small Missions for Advanced Research in Technology (SMART), is a dedicated technology demonstrator for the joint ESA/NASA Laser Interferometer Space Antenna (LISA) mission. The technologies required for LISA are many and extremely challenging. This coupled with the fact that some flight hardware cannot be fully tested on ground due to Earth-induced noise led to the implementation of the LISA Pathfinder mission to test the critical LISA technologies in a flight environment. LISA Pathfinder essentially mimics one arm of the LISA constellation by shrinking the 5 million kilometre armlength down to a few tens of centimetres, giving up the sensitivity to gravitational waves, but keeping the measurement technology: the distance between the two test masses is measured using a laser interferometric technique similar to one aspect of the LISA interferometry system. The scientific objective of the LISA Pathfinder mission consists then of the first in-flight test of low frequency gravitational wave detection metrology. LISA Pathfinder is due to be launched in 2013 on-board a dedicated small launch vehicle (VEGA). After a series of apogee raising manoeuvres using an expendable propulsion module, LISA Pathfinder will enter a transfer orbit towards the first Sun-Earth Lagrange point (L1). After separation from the propulsion module, the LPF spacecraft will be stabilized using the micro-Newton thrusters, entering a 500 000 km by 800 000 km Lissajous orbit around L1. Science results will be available approximately 2 months after launch.

  1. Eccentric double white dwarfs as LISA sources in globular clusters

    CERN Document Server

    Willems, B; Vecchio, A; Ivanova, N; Rasio, F A; Fregeau, J M; Belczynski, K

    2007-01-01

    We consider the formation of double white dwarfs (DWDs) through dynamical interactions in globular clusters. Such interactions can readily give rise to eccentric DWDs, in contrast to the exclusively circular population that is expected to form in the Galactic disk. We show that for a 5-year Laser Interferometer Space Antenna (LISA) mission and distances as far as the Large Magellanic Cloud, multiple harmonics from eccentric DWDs can be detected at a signal-to-noise ratio higher than 8 for at least a handful of eccentric DWDs, given their formation rate and typical merger lifetimes estimated from current cluster simulations. Consequently the association of eccentricity with stellar-mass LISA sources does not uniquely involve neutron stars, as is usually assumed. Due to the difficulty of detecting these systems with present and planned electromagnetic observatories, LISA could provide unique dynamical identifications of eccentric DWDs in globular clusters.

  2. A torsion pendulum ground test of the LISA Pathfinder Free-fall mode

    CERN Document Server

    Russano, Giuliana

    2016-01-01

    LISA Pathfinder is the technological demonstrator space mission for the future gravitational waves observatory in space eLISA, with the aim of measure the differential acceleration between free-falling test masses orbiting in the same apparatus at a level of 30 fm/s-2Hz-1/2 at 1 mHz. Because the satellite can't follow the two masses at the same time, the second mass must be forced to follow either the other one or the spacecraft. The actuation force applied to compensate this effect introduces a dominant source of force noise in the mission noise budget at frequency near and below the mHz. The free-fall mode actuation control scheme has been designed to suppress this noise source and avoid actuation instabilities: actuation is limited to brief periodic impulses, with test masses in free fall in between two kicks. This actuation-free motion is then analyzed for the remaining sources of acceleration ultra noise. A free-fall mode parallel testing has been successfully implemented on torsion pendulum facility at ...

  3. Technology development for the LISA using the UF Torsion Pendulu

    Science.gov (United States)

    Conklin, John W.; Chilton, Andrew; Olatunde, Taiwo; Apple, Stephen; Ciani, Giacomo; Mueller, Guido

    2015-08-01

    Space-based gravitational wave observatories like LISA measure picometer changes in the distances between free falling test masses separated by millions of kilometers caused by gravitational waves. A test mass and its associated sensing, actuation, charge control and caging subsystems are referred to as a gravitational reference sensor (GRS). LISA will observe gravitational wave sources ranging from super-massive black hole mergers to compact galactic binaries in the millihertz region, and LISA science has consistently been ranked in the top two for future large space missions in the last two NASA astrophysics decadal reviews. With the 2015 launch of LISA Pathfinder (LPF) and the expected detection of gravitational waves by aLIGO and/or Pulsar Timing Arrays within in the next several years, this can arguably be called the decade of gravitational waves. Following a successful demonstration of the baseline LISA GRS by LPF, the measurement principle will be carried forward, but improvements in several GRS components are possible over the next ten years that will lead to cost savings and potential noise reductions. The UF LISA group has constructed the UF Torsion Pendulum to increase U.S. competency in this critical area and to have a facility where new technologies can be developed and evaluated. This experimental facility is based on the design of a similar facility at the University of Trento, and consists of a vacuum enclosed torsion pendulum that suspends mock-ups of the LISA test masses, surrounded by electrode housings. This presentation will describe this facility, focusing on its mechanical design, capacitive sensing and electrostatic actuation systems, and overall acceleration noise performance

  4. LISA and its in-flight test precursor SMART-2

    CERN Document Server

    Vitale, S; Brillet, A; Buchman, S; Cavalleri, A; Cerdonio, M; Cruise, M; Cutler, C; Danzmann, K; Dolesi, R; Folkner, W; Gianolio, A; Jafry, Y; Hasinger, G; Heinzel, G; Hogan, C; Hüller, M; Hough, J; Phinney, S; Prince, T; Richstone, D O; Robertson, D; Rodrigues, M; Rüdiger, A; Sandford, M; Schilling, R; Shoemaker, D; Schutz, B; Stebbins, R; Stubbs, C; Sumner, T; Thorne, K; Tinto, M; Touboul, P; Ward, H; Weber, W; Winkler, W

    2002-01-01

    LISA will be the first space-home gravitational wave observatory. It aims to detect gravitational waves in the 0.1 mHz/1 Hz range from sources including galactic binaries, super-massive black-hole binaries, capture of objects by super-massive black-holes and stochastic background. LISA is an ESA approved Cornerstone Mission foreseen as a joint ESA-NASA endeavour to be launched in 2010-11. The principle of operation of LISA is based on laser ranging of test-masses under pure geodesic motion. Achieving pure geodesic motion at the level requested for LISA, 3x10 sup - sup 1 sup 5 ms sup - sup 2 /sq root Hz at 0.1 mHz, is considered a challenging technological objective. To reduce the risk, both ESA and NASA are pursuing an in-flight test of the relevant technology. The goal of the test is to demonstrate geodetic motion within one order of magnitude from the LISA performance. ESA has given this test as the primary goal of its technology dedicated mission SMART-2 with a launch in 2006. This paper describes the basi...

  5. LISA Pathfinder: First steps to observing gravitational waves from space

    Science.gov (United States)

    LISA Pathfinder Collaboration

    2017-05-01

    LISA Pathfinder, the European Space Agency’s technology demonstrator mission for future spaceborne gravitational wave observatories, was launched on 3 December 2015, from the European space port of Kourou, French Guiana. After a short duration transfer to the final science orbit, the mission has been gathering science data since. This data has allowed the science community to validate the critical technologies and measurement principle for low frequency gravitational wave detection and thereby confirming the readiness to start the next generation gravitational wave observatories, such as LISA. This paper will briefly describe the mission, followed by a description of the science operations highlighting the performance achieved. Details of the various experiments performed during the nominal science operations phase can be found in accompanying papers in this volume.

  6. Optical testbed for the LISA phasemeter

    Science.gov (United States)

    Schwarze, T. S.; Fernández Barranco, G.; Penkert, D.; Gerberding, O.; Heinzel, G.; Danzmann, K.

    2016-05-01

    The planned spaceborne gravitational wave detector LISA will allow the detection of gravitational waves at frequencies between 0.1 mHz and 1 Hz. A breadboard model for the metrology system aka the phasemeter was developed in the scope of an ESA technology development project by a collaboration between the Albert Einstein Institute, the Technical University of Denmark and the Danish industry partner Axcon Aps. It in particular provides the electronic readout of the main interferometer phases besides auxiliary functions. These include clock noise transfer, ADC pilot tone correction, inter-satellite ranging and data transfer. Besides in LISA, the phasemeter can also be applied in future satellite geodesy missions. Here we show the planning and advances in the implementation of an optical testbed for the full metrology chain. It is based on an ultra-stable hexagonal optical bench. This bench allows the generation of three unequal heterodyne beatnotes with a zero phase combination, thus providing the possibility to probe the phase readout for non-linearities in an optical three signal test. Additionally, the utilization of three independent phasemeters will allow the testing of the auxiliary functions. Once working, components can individually be replaced with flight-qualified hardware in this setup.

  7. Toward a Space based Gravitational Wave Observatory

    Science.gov (United States)

    Stebbins, Robin T.

    2015-01-01

    A space-based GW observatory will produce spectacular science. The LISA mission concept: (a) Long history, (b) Very well-studied, including de-scopes, (c) NASAs Astrophysics Strategic Plan calls for a minority role in ESAs L3 mission opportunity. To that end, NASA is Participating in LPF and ST7 Developing appropriate technology for a LISA-like mission Preparing to seek an endorsement for L3 participation from the 2020 decadal review.

  8. The Breadboard Model of the LISA Telescope Assembly

    Science.gov (United States)

    Lucarelli, Stefano; Scheulen, Dietmar; Kemper, Daniel; Sippel, Rudolf; Ende, David

    2012-07-01

    The primary goal of the LISA mission is the detection of gravitational waves from astronomical sources in a frequency range of 10-4 to 1 Hz. This requires operational stabilities in the picometer range as well as highly predictable mechanical distortions upon cooling down, outgassing in space, and gravity release. In March 2011 ESA announced a new way forward for the L-class candidate missions, including LISA. ESA and the scientific community are now studying options for European-only missions that offer a significant reduction of the costs, while maintaining their core science objectives. In the context of this reformulation exercise LISA has become the New Gravitational wave Observatory (NGO) [1]. Despite this reformulation, the need for dimensional stability in the picometer range remains valid, and ESA have continued the corresponding LISA Technology Development Activities (TDA’s) also in view of NGO. In such frame Astrium GmbH and xperion (Immenstaad/Friedrichshafen, Germany) have designed and manufactured an ultra-stable CFRP breadboard of the LISA telescope in order to experimentally demonstrate that the structure and the M1 & M2 mirror mounts are fulfilling the LISA requirements in the mission operational thermal environment. Suitable techniques to mount the telescope mirrors and to support the M1 & M2 mirrors have been developed, with the aim of measuring a system CTE of less than 10-7 K-1 during cooling down to -80 °C. Additionally to the stringent mass and stiffness specifications, the required offset design makes the control of relative tilts and lateral displacements between the M1 and M2 mirrors particularly demanding. The thermo-elastic performance of the telescope assembly is going to be experimentally verified by TNO (Delft, The Netherlands) starting from the second half of 2012. This paper addresses challenges faced in the design phase, and shows the resulting hardware.

  9. The Results of Observations of Mutual Phenomena of the Galilean Satellites of Jupiter in 2009 and 2015 IN Nikolaev Astronomical Observatory

    Science.gov (United States)

    Pomazan, A.; Maigurova, N.; Kryuchkovskiy, V.

    The Earth and Jupiter once in 6 years have simultaneous passage of the ecliptic plane due to their orbital movement around the Sun. This makes it possible to observe the mutual occultations and eclipses in the Galilean satellites of Jupiter. We took part in the observational campaigns of the mutual phenomena in 2009 and 2014-15. The observations were made with a B/W CCD camera WAT-902H at the telescope MCT (D = 0.115 m, F = 2.0 m) of the Nikolaev Astronomical Observatory. The light curves of mutual phenomena in the satellites of Jupiter were obtained as a result of processing photometric observations. The exact moments of maximum phases and the amplitudes of the light variation have been determined from the analysis of the light curves. The data sets for the light curves have been sent in the IMCCE (Institute de Mecanique et de calcul des ephemerides, France) that coordinates the PHEMU campaigns.

  10. Spacetime Metrology with LISA Pathfinder

    CERN Document Server

    Congedo, Giuseppe

    2012-01-01

    LISA is the proposed ESA-NASA gravitational wave detector in the 0.1 mHz - 0.1 Hz band. LISA Pathfinder is the down-scaled version of a single LISA arm. The arm -- named Doppler link -- can be treated as a differential accelerometer, measuring the relative acceleration between test masses. LISA Pathfinder -- the in-flight test of the LISA instrumentation -- is currently in the final implementation and planned to be launched in 2014. It will set stringent constraints on the ability to put test masses in geodesic motion to within the required differential acceleration of 3\\times10^{-14} m s^{-2} Hz^{-1/2} and track their relative motion to within the required differential displacement measurement noise of 9\\times10^{-12} m Hz^{-1/2}, around 1 mHz. Given the scientific objectives, it will carry out -- for the first time with such high accuracy required for gravitational wave detection -- the science of spacetime metrology, in which the Doppler link between two free-falling test masses measures the curvature. Thi...

  11. The LISA Pathfinder Radiation Monitor

    Science.gov (United States)

    Wass, P. J.; Araújo, H.; Boatella, C.; Chmeissani, M.; Hajdas, W.; Lobo, A.; Puigdengoles, C.; Sumner, T.

    2006-11-01

    We present the concept, design and testing of the radiation monitor for LISA Pathfinder. Galactic cosmic rays (GCRs) and solar energetic particles (SEPs) will cause charging of the LISA Pathfinder test masses producing unwanted disturbances which could be significant during a large solar eruption. A radiation monitor on board LISA Pathfinder, using silicon PIN diodes as particle detectors, will measure the particle flux responsible for charging. It will also be able to record spectral information to identify solar energetic particle events. The design of the monitor was supported by Monte Carlo simulations which allow detailed predictions of the radiation monitor performance. We present these predictions as well as the results of high-energy proton tests carried out at the Paul Scherrer Institute, Switzerland. The tests show good agreement with our simulations and confirm the capability of the radiation monitor to perform well in the space environment, meeting all science requirements.

  12. Electrostatic disturbances aboard LISA Pathfinder

    Science.gov (United States)

    Ferroni, Valerio

    Test mass charging and stray electrostatic fields are a potentially important source of force noise for the LISA Pathfinder mission. During the flight we plan to measure the relevant stray electrostatic fields on the surfaces of both the test mass and the electrode housing and compensate them with DC electrode bias voltages. In addition we monitor the charge and reduce it to near zero by UV illumination. We describe the analysis techniques used during the mission and explain the importance of periodic charging/discharging and of long-term charge measurements to limit the force noise at low frequency, which is particularly relevant for the eLISA mission.

  13. Neural network interpolation of the magnetic field for the LISA Pathfinder Diagnostics Subsystem

    CERN Document Server

    Diaz-Aguilo, Marc; García-Berro, Enrique

    2011-01-01

    LISA Pathfinder is a science and technology demonstrator of the European Space Agency within the framework of its LISA mission, which aims to be the first space-borne gravitational wave observatory. The payload of LISA Pathfinder is the so-called LISA Technology Package, which is designed to measure relative accelerations between two test masses in nominal free fall. Its disturbances are monitored and dealt by the diagnostics subsystem. This subsystem consists of several modules, and one of these is the magnetic diagnostics system, which includes a set of four tri-axial fluxgate magnetometers, intended to measure with high precision the magnetic field at the positions of the test masses. However, since the magnetometers are located far from the positions of the test masses, the magnetic field at their positions must be interpolated. It has been recently shown that because there are not enough magnetic channels, classical interpolation methods fail to derive reliable measurements at the positions of the test m...

  14. Coherent observations of gravitational radiation with LISA and gLISA

    CERN Document Server

    Tinto, Massimo

    2016-01-01

    The geosynchronous Laser Interferometer Space Antenna (gLISA) is a space-based gravitational wave (GW) mission that, for the past five years, has been under joint study at the Jet Propulsion Laboratory, Stanford University, the National Institute for Space Research (I.N.P.E., Brazil), and Space Systems Loral. If flown at the same time as the LISA mission, the two arrays will deliver a joint sensitivity that accounts for the best performance of both missions in their respective parts of the mHz band. This simultaneous operation will result in an optimally combined sensitivity curve that is "white" from a few mHz to 1 Hz, making the two antennas capable of detecting, with high signal-to-noise ratios (SNRs), coalescing black-hole binaries (BHBs) with masses in the range (10 - 100 million) solar masses. Their ability of jointly tracking, with enhanced SNR, signals similar to that observed by the Advanced Laser Interferometer Gravitational Wave Observatory (aLIGO) on September 14, 2015 (the GW150914 event) will re...

  15. LISA: a linear structured system analysis program

    OpenAIRE

    Martinez-Martinez, Sinuhé; Mader, Theodor; Boukhobza, Taha; Hamelin, Frédéric

    2007-01-01

    International audience; In this paper the program LISA is presented. LISA is a flexible and portable program which has been developed to analyse structural properties of large scale linear and bilinear structured systems. More precisely, the program LISA contains programmed algorithms which allow us to apply recent results in the analysis of structured systems to some particular cases.

  16. Interview with Lisa Shipley. Interviewed by Lisa Parks.

    Science.gov (United States)

    Shipley, Lisa

    2013-08-01

    Lisa Shipley is Vice President of Pharmacokinetics, Pharmacodynamics and Drug Metabolism at Merck Research Laboratories. She is responsible for preclinical and clinical ADME activities and molecular biomarker assay development activities at all Merck research sites and support of all programs from discovery through to post-product launch. Prior to joining Merck in 2008, Shipley spent over 20 years at Eli Lilly and Company in roles of increasing responsibility, including the positions of executive director at Lean Six Sigma and vice president of Drug Disposition, PK/PD and Trial Simulations. Shipley obtained her undergraduate degree from McDaniel College and her doctoral degree in Pharmacology and Toxicology from the University of Maryland at Baltimore. This interview was conducted by Lisa Parks, Assistant Commissioning Editor of Bioanalysis.

  17. Lisa Jevbratt / Lisa Jevbratt ; interv. Tilman Baumgärtel

    Index Scriptorium Estoniae

    Jevbratt, Lisa

    2006-01-01

    1967. a. Rootsis sündinud ja USA-s elavast kunstnikust Lisa Jevbrattist ning tema loomingust, 2000. a. jaanuaris tehtud meiliintervjuu kunstnikuga. L. Jevbratt kuulub rühmitusse C5, tema teosed keskenduvad pigem Interneti struktuurile kui selle sisule. Pikemalt võrguteosest "1:1" (2000), mille teemaks on IP-aadressid., lühidalt tööst "The Stillman Project" (1997), kunstniku galeriist "Non-Site"

  18. Lisa Jevbratt / Lisa Jevbratt ; interv. Tilman Baumgärtel

    Index Scriptorium Estoniae

    Jevbratt, Lisa

    2006-01-01

    1967. a. Rootsis sündinud ja USA-s elavast kunstnikust Lisa Jevbrattist ning tema loomingust, 2000. a. jaanuaris tehtud meiliintervjuu kunstnikuga. L. Jevbratt kuulub rühmitusse C5, tema teosed keskenduvad pigem Interneti struktuurile kui selle sisule. Pikemalt võrguteosest "1:1" (2000), mille teemaks on IP-aadressid., lühidalt tööst "The Stillman Project" (1997), kunstniku galeriist "Non-Site"

  19. Measurements of the total ozone column using a Brewer spectrophotometer and TOMS and OMI satellite instruments over the Southern Space Observatory in Brazil

    Science.gov (United States)

    Vaz Peres, Lucas; Bencherif, Hassan; Mbatha, Nkanyiso; Passaglia Schuch, André; Toihir, Abdoulwahab Mohamed; Bègue, Nelson; Portafaix, Thierry; Anabor, Vagner; Kirsch Pinheiro, Damaris; Paes Leme, Neusa Maria; Valentin Bageston, José; Schuch, Nelson Jorge

    2017-01-01

    This paper presents 23 years (1992-2014) of quasi-continuous measurements of the total ozone column (TOC) over the Southern Space Observatory (SSO) in São Martinho da Serra, Brazil (29.26° S, 53.48° and 488 m altitude). The TOC was measured by a Brewer spectrometer, and the results are also compared to daily and monthly observations from the TOMS (Total Ozone Mapping Spectrometer) and OMI (Ozone Monitoring Instrument) satellite instruments. Analyses of the main interannual modes of variability computed using the wavelet transform method were performed. A favorable agreement between the Brewer spectrophotometer and satellite datasets was found. The seasonal TOC variation is dominated by an annual cycle, with a minimum of approximately 260 DU in April and a maximum of approximately 295 DU in September. The wavelet analysis applied in the SSO TOC anomaly time series revealed that the Quasi-Biennial Oscillation (QBO) modulation was the main mode of interannual variability. The comparison between the SSO TOC anomaly time series with the QBO index revealed that the two are in opposite phases.

  20. Mission design for LISA Pathfinder

    CERN Document Server

    Landgraf, M; Kemble, S

    2004-01-01

    Here we describe the mission design for SMART-2/LISA Pathfinder. The best trade-off between the requirements of a low-disturbance environment and communications distance is found to be a free-insertion Lissajous orbit around the first co-linear Lagrange point of the Sun-Earth system L1, 1.5x 10^6 km from Earth. In order to transfer SMART-2/LISA Pathfinder from a low Earth orbit, where it will be placed by a small launcher, the spacecraft carries out a number of apogee-raise manoeuvres, which ultimatively place it to a parabolic escape trajectory towards L1. The challenges of the design of a small mission are met, fulfilling the very demanding technology demonstration requirements without creating excessive requirements on the launch system or the ground segment.

  1. LISA propulsion module separation study

    Energy Technology Data Exchange (ETDEWEB)

    Merkowitz, S M [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Ahmad, A [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Hyde, T T [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Sweetser, T [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Ziemer, J [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Conkey, S [Swales Aerospace, 5050 Powder Mill Road, Beltsville, MD 20705 (United States); III, W Kelly [Swales Aerospace, 5050 Powder Mill Road, Beltsville, MD 20705 (United States); Shirgur, B [Swales Aerospace, 5050 Powder Mill Road, Beltsville, MD 20705 (United States)

    2005-05-21

    The Laser Interferometer Space Antenna (LISA) mission is a space-borne gravitational wave detector consisting of three sciencecraft in heliocentric orbit. Each sciencecraft is delivered to its operational orbit by a propulsion module. Because of the strict thermal and mass balancing requirements of LISA, the baseline mission concept requires that the propulsion module separate from the sciencecraft after delivery. The only propulsion system currently included in the sciencecraft design are micronewton level thrusters, such as field emission electric propulsion (FEEP) or colloid thrusters, that are used to balance the 30-40 {mu}N of solar radiation pressure and provide the drag-free and attitude control of the sciencecraft. Due to these thrusters' limited authority, the separation of the propulsion module from the sciencecraft must be well controlled to not induce a large tip-off rotation of the sciencecraft. We present here the results of a study of the propulsion module separation system requirements that are necessary to safely deliver the three LISA sciencecraft to their final operational orbits.

  2. eLISA: Astrophysics and cosmology in the millihertz regime

    CERN Document Server

    Amaro-Seoane, Pau; Babak, Stanislav; Binétruy, Pierre; Berti, Emanuele; Bohé, Alejandro; Caprini, Chiara; Colpi, Monica; Cornish, Neil J; Danzmann, Karsten; Dufaux, Jean-François; Gair, Jonathan; Jennrich, Oliver; Jetzer, Philippe; Klein, Antoine; Lang, Ryan N; Lobo, Alberto; Littenberg, Tyson; McWilliams, Sean T; Nelemans, Gijs; Petiteau, Antoine; Porter, Edward K; Schutz, Bernard F; Sesana, Alberto; Stebbins, Robin; Sumner, Tim; Vallisneri, Michele; Vitale, Stefano; Volonteri, Marta; Ward, Henry

    2012-01-01

    This document introduces the exciting and fundamentally new science and astronomy that the European New Gravitational Wave Observatory (NGO) mission (derived from the previous LISA proposal) will deliver. The mission (which we will refer to by its informal name "eLISA") will survey for the first time the low-frequency gravitational wave band (about 0.1 mHz to 1 Hz), with sufficient sensitivity to detect interesting individual astrophysical sources out to z = 15. The eLISA mission will discover and study a variety of cosmic events and systems with high sensitivity: coalescences of massive black holes binaries, brought together by galaxy mergers; mergers of earlier, less-massive black holes during the epoch of hierarchical galaxy and black-hole growth; stellar-mass black holes and compact stars in orbits just skimming the horizons of massive black holes in galactic nuclei of the present era; extremely compact white dwarf binaries in our Galaxy, a rich source of information about binary evolution and about futur...

  3. Relativistic versus Newtonian orbitography: the Relativistic Motion Integrator (RMI) software. Illustration with the LISA mission

    CERN Document Server

    Pireaux, S

    2008-01-01

    The Relativistic Motion Integrator (RMI) consists in integrating numerically the EXACT relativistic equations of motion, with respect to the appropriate gravitational metric, instead of Newtonian equations plus relativistic corrections. The aim of the present paper is to validate the method, and to illustrate how RMI can be used for space missions to produce relativistic ephemerides of satellites. Indeed, nowadays, relativistic effects have to be taken into account, and comparing a RMI ephemeris with a classical keplerian one helps to quantify such effects. LISA is a relevant example to use RMI. This mission is an interferometer formed by three spacecraft which aims at the detection of gravitational waves. Precise ephemerides of LISA spacecraft are needed not only for the sake of the orbitography but also to compute the photon flight time in laser links between spacecraft, required in LISA data pre-processing in order to reach the gravitational wave detection level. Relativistic effects in LISA orbitography n...

  4. The Mona Lisa effect: is 'our' Lisa fame or fake?

    Science.gov (United States)

    Carbon, Claus-Christian; Leder, Helmut

    2006-01-01

    This demonstration uses one of the most famous human faces, the portrait of Mona Lisa, La Gioconda, by Leonardo da Vinci. Usually, we have a very accurate and stable representation of the exact configuration of such a familiar face. Typically, we are able to rapidly recognise even subtle configural changes. However, here we show that an exposure to specific alterations performed on a familiar face substantially reduces this ability even over a time period as long as 80 min. This demonstration illustrates the flexibility of the perceptual system and adaptation to new information.

  5. Mona Lisa, lesbiahvid ja seksilaulud / Kaivo Kopli

    Index Scriptorium Estoniae

    Kopli, Kaivo

    2003-01-01

    Ameerika Teaduse Edendamise Assotsiatsiooni (AAA) konverentsil esitatud uusimatest teadusuuringutest. Artiklid: Mona Lisa naeratuse saladus paljastatud ; Lesbilised Jaapani makaagid seljatavad Darwini ; Linnud õpivad uusi laule uue partneri leidmiseks

  6. Characterization of photoreceivers for LISA

    Energy Technology Data Exchange (ETDEWEB)

    Cervantes, F Guzman; Livas, J; Silverberg, R; Buchanan, E; Stebbins, R, E-mail: felipe.guzman@nasa.gov [NASA Goddard Space Flight Center, Code 663, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States)

    2011-05-07

    LISA will use quadrant photoreceivers as front-end devices for the phasemeter measuring the motion of drag-free test masses in both angular orientation and separation. We have set up a laboratory testbed for the characterization of photoreceivers. Some of the limiting noise sources have been identified and their contribution has been either measured or derived from the measured data. We have built a photoreceiver with a 0.5 mm diameter quadrant photodiode with an equivalent input current noise of better than 1.8 pA Hz{sup -1/2} below 20 MHz and a 3 dB bandwidth of 34 MHz.

  7. LISA Pathfinder: OPD loop characterisation

    Science.gov (United States)

    Born, Michael; LPF Collaboration

    2017-05-01

    The optical metrology system (OMS) of the LISA Pathfinder mission is measuring the distance between two free-floating test masses with unprecedented precision. One of the four OMS heterodyne interferometers reads out the phase difference between the reference and the measurement laser beam. This phase from the reference interferometer is common to all other longitudinal interferometer read outs and therefore subtracted. In addition, the phase is fed back via the digital optical pathlength difference (OPD) control loop to keep it close to zero. Here, we analyse the loop parameters and compare them to on-ground measurement results.

  8. Deep Space Climate Observatory (DSCOVR)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Deep Space Climate ObserVatoRy (DSCOVR) satellite is a NOAA operated asset located at the first Lagrange point (L1). This places it approximately 1% of the...

  9. Disturbance reduction requirements for LISA

    Science.gov (United States)

    Schumaker, Bonny L.

    2003-05-01

    An overview is given of the sources and magnitudes of acceleration disturbances to the LISA proof masses (PMs). They are classified according to their sources as environmental noise, PM position sensor back-action, control-loop noise and PM-spacecraft (SC) stiffness. A general control model is used to establish relations among the noise sources, sensor errors and control-loop elements. Quantitative estimates are derived for the noise sources, and minimum requirements are inferred for sensor resolution and SC drag-free control-loop gain that are consistent both with the baseline in-band LISA budget for total acceleration noise and a possible extension to lower frequencies. For brevity, explicit expressions for each noise source are provided in tables, together with quantitative estimates for indicated parameter values. Additional tables list assumed parameter definitions and values; acceleration-noise goals and estimated totals; and minimum requirements for sensor resolution and SC control-loop gain, for frequencies ranging from 3 mHz down to 5 × 10-6 Hz.

  10. Global Characterization of CO2 Column Retrievals from Shortwave-Infrared Satellite Observations of the Orbiting Carbon Observatory-2 Mission

    Directory of Open Access Journals (Sweden)

    Charles Miller

    2011-02-01

    Full Text Available The global characteristics of retrievals of the column-averaged CO2 dry air mole fraction, XCO2, from shortwave infrared observations has been studied using the expected measurement performance of the NASA Orbiting Carbon Observatory-2 (OCO-2 mission. This study focuses on XCO2 retrieval precision and averaging kernels and their sensitivity to key parameters such as solar zenith angle (SZA, surface pressure, surface type and aerosol optical depth (AOD, for both nadir and sunglint observing modes. Realistic simulations have been carried out and the single sounding retrieval errors for XCO2 have been derived from the formal retrieval error covariance matrix under the assumption that the retrieval has converged to the correct answer and that the forward model can adequately describe the measurement. Thus, the retrieval errors presented in this study represent an estimate of the retrieval precision. For nadir observations, we find single-sounding retrieval errors with values typically less than 1 part per million (ppm over most land surfaces for SZAs less than 70° and up to 2.5 ppm for larger SZAs. Larger errors are found over snow/ice and ocean surfaces due to their low albedo in the spectral regions of the CO2 absorption bands and, for ocean, also in the O2 A band. For sunglint observations, errors over the ocean are significantly smaller than in nadir mode with values in the range of 0.3 to 0.6 ppm for small SZAs which can decrease to values as small as 0.15 for the largest SZAs. The vertical sensitivity of the retrieval that is represented by the column averaging kernel peaks near the surface and exhibits values near unity throughout most of the troposphere for most anticipated scenes. Nadir observations over dark ocean or snow/ice surfaces and observations with large AOD and large SZA show a decreased sensitivity to near-surface CO2. All simulations are carried out for a mid-latitude summer atmospheric profile, a given aerosol type and

  11. LISA Pathfinder: First steps to observing gravitational waves from space

    Science.gov (United States)

    McNamara, Paul; LISA Pathfinder Collaboration

    2017-01-01

    With the first direct detection of gravitational waves a little over a year ago, the gravitational window to the Universe has been opened. The gravitational wave spectrum spans many orders of magnitude in frequency, with several of the most interesting astronomical sources emitting gravitational waves at frequencies only observable from space The European Space Agency (ESA) has been active in the field of space-borne gravitational wave detection for many years, and in 2013 selected the Gravitational Universe as the science theme for the third large class mission in the Cosmic Vision science programme. In addition, ESA took the step of developing the LISA Pathfinder mission to demonstrate the critical technologies required for a future mission. The goal of the LISA Pathfinder mission is to place a test body in free fall such that any external forces (acceleration) are reduced to levels lower than those expected from the passage of a gravitational wave LISA Pathfinder was launched on the 3rd December 2015 from the European Spaceport in Kourou, French Guiana. After a series of 6 apogee raising manoeuvres, the satellite left earth orbit, and travelled to its final science orbit around the first Sun-Earth Lagrange point (L1). Following a relatively short commissioning phase, science operations began on 1st March 2016. In the following 3 months over 100 experiments and over 1500hours of noise measurements have been performed, demonstrating that the observation of gravitational waves from space can be realised.

  12. Breadboard model of the LISA phasemeter

    CERN Document Server

    Gerberding, Oliver; Bykov, Ioury; Danzmann, Karsten; Enggaard, Anders; Esteban, Juan Jose; Gianolio, Alberto; Hansen, Torben Vendt; Heinzel, Gerhard; Hornstrup, Allan; Jennrich, Oliver; Kullmann, Joachim; Pedersen, Søren Møller; Rasmussen, Torben; Reiche, Jens; Sodnik, Zoran; Suess, Martin

    2012-01-01

    An elegant breadboard model of the LISA phasemeter is currently under development by a Danish-German consortium. The breadboard is build in the frame of an ESA technology development activity to demonstrate the feasibility and readiness of the LISA metrology baseline architecture. This article gives an overview about the breadboard design and its components, including the distribution of key functionalities.

  13. Black Holes, Gravitational Waves, and LISA

    Science.gov (United States)

    Baker, John

    2009-01-01

    Binary black hole mergers are central to many key science objectives of the Laser Interferometer Space Antenna (LISA). For many systems the strongest part of the signal is only understood by numerical simulations. Gravitational wave emissions are understood by simulations of vacuum General Relativity (GR). I discuss numerical simulation results from the perspective of LISA's needs, with indications of work that remains to be done. Some exciting scientific opportunities associated with LISA observations would be greatly enhanced if prompt electromagnetic signature could be associated. I discuss simulations to explore this possibility. Numerical simulations are important now for clarifying LISA's science potential and planning the mission. We also consider how numerical simulations might be applied at the time of LISA's operation.

  14. What makes Mona Lisa smile?

    Science.gov (United States)

    Kontsevich, Leonid L; Tyler, Christopher W

    2004-01-01

    To study the ability of humans to read subtle changes in facial expression, we applied reverse correlation technique to reveal visual features that mediate understanding of emotion expressed by the face. Surprising findings were that (1) the noise added to a test face image had profound effect on the facial expression and (2) in almost every instance the new expression was meaningful. To quantify the effect, we asked naïve observers to rank the face of Mona Lisa superimposed with noise, based on their perception of her emotional state along the sad/happy dimension. Typically, a hundred trials (with 10 or more samples for each rank category) were sufficient to reveal areas altering the facial expression, which is about two orders of magnitude less than in the other reverse correlation studies. Moreover, the perception of smiling in the eyes was solely attributable to a configurational effect projecting from the mouth region.

  15. Fiber laser development for LISA

    Energy Technology Data Exchange (ETDEWEB)

    Numata, Kenji [Department of Astronomy, University of Maryland, College Park, Maryland, 20742 (United States); Chen, Jeffrey R [NASA Goddard Space Flight Center, Laser and electro-optics branch, Code 554, Greenbelt, Maryland, 20771 (United States); Camp, Jordan, E-mail: kenji.numata@nasa.go [NASA Goddard Space Flight Center, Gravitational astrophysics branch, Code 663, Greenbelt, Maryland, 20771 (United States)

    2010-05-01

    We have developed a linearly-polarized Ytterbium-doped fiber ring laser with single longitudinal-mode output at 1064 nm for LISA and other space applications. Single longitudinal-mode selection was achieved by using a fiber Bragg grating (FBG) and a fiber Fabry-Perot (FFP). The FFP also serves as a frequency-reference within our ring laser. Our laser exhibits comparable low frequency and intensity noise to Non-Planar Ring Oscillator (NPRO). By using a fiber-coupled phase modulator as a frequency actuator, the laser frequency can be electro-optically tuned at a rate of 100 kHz. It appears that our fiber ring laser is promising for space applications where robustness of fiber optics is desirable.

  16. Fiber laser development for LISA

    CERN Document Server

    Numata, Kenji; Camp, Jordan

    2010-01-01

    We have developed a linearly-polarized Ytterbium-doped fiber ring laser with single longitudinal-mode output at 1064nm for LISA and other space applications. Single longitudinal-mode selection was achieved by using a fiber Bragg grating (FBG) and a fiber Fabry-Perot (FFP). The FFP also serves as a frequency-reference within our ring laser. Our laser exhibits comparable low frequency and intensity noise to Non-Planar Ring Oscillator (NPRO). By using a fiber-coupled phase modulator as a frequency actuator, the laser frequency can be electro-optically tuned at a rate of 100kHz. It appears that our fiber ring laser is promising for space applications where robustness of fiber optics is desirable.

  17. Fiber Laser Development for LISA

    Science.gov (United States)

    Numata, Kenji; Chen, Jeffrey R.

    2009-01-01

    We have developed a linearly-polarized Ytterbium-doped fiber ring laser with single longitudinal-mode output at 1064nm for LISA and other space applications. Single longitudinal-mode selection was achieved by using a fiber Bragg grating (FBG) and a fiber Fabry-Perot (FFP). The FFP also serves as a frequency-reference within our ring laser. Our laser exhibits comparable low frequency and intensity noise to Non-Planar Ring Oscillator (NPRO). By using a fiber-coupled phase modulator as a frequency actuator, the laser frequency can be electro-optically tuned at a rate of 100kHz. It appears that our fiber ring laser is promising for space applications where robustness of fiber optics is desirable.

  18. LISA (Localhost Information Service Agent)

    CERN Document Server

    Legrand, Iosif C; Voicu, Ramiro; Stratan, Corina; Cirstoiu, Catalin; Musat, Lucian

    2011-01-01

    Grid computing has gained an increasing importance in the last years, especially in the academic environments, offering the possibility to rapidly solve complex scientific problems. The monitoring of the Grid jobs has a vital importance for analyzing the system's performance, for providing the users an appropriate feed-back, and for obtaining historical data which may be used for performance prediction. Several monitoring systems have been developed, with different strategies to collect and store the information. We shall present here a solution based on MonALISA, a distributed service for monitoring, control and global optimization of complex systems, and LISA, a component application of MonALISA which can help in optimizing other applications by means of monitoring services. The advantages of this system are, among others, flexibility, dynamic configuration, high communication performance.

  19. Probing the strong gravity regime with eLISA: Progress on EMRIs

    CERN Document Server

    Sopuerta, Carlos F

    2012-01-01

    The capture of a stellar-mass compact object by a supermassive black hole and the subsequent inspiral (driven by gravitational radiation emission) constitute one of the most important sources of gravitational waves for space-based observatories like eLISA/NGO. In this article we describe their potential as high-precision tools that can be used to perform tests of the geometry of black holes and also of the strong field regime of gravity.

  20. Thermo-elastic induced phase noise in the LISA Pathfinder spacecraft

    OpenAIRE

    Gibert, F; Nofrarias, M; Karnesis, N; Gesa, L.; Martín, V.; Mateos, I; Lobo, A; Flatscher, R.; Gerardi, D; Burkhardt, J.; Gerndt, R.; Robertson, D; Ward, H; McNamara, P; Guzman, F.

    2014-01-01

    During the On-Station Thermal Test campaign of the LISA Pathfinder the data and diagnostics subsystem was tested in nearly space conditions for the first time after integration in the satellite. The results showed the compliance of the temperature measurement system, obtaining temperature noise around $10^{-4}\\,{\\rm K}\\, {\\rm Hz}^{-1/2}$ in the frequency band of $1-30\\;{\\rm mHz}$. In addition, controlled injection of heat signals to the suspension struts anchoring the LISA Technology Package ...

  1. Doing Science with eLISA: Astrophysics and Cosmology in the Millihertz Regime

    Science.gov (United States)

    Amaro, Seoane, Pau; Aoudia, Sofiane; Babak, Stanislav; Binetruy, Pierre; Berti, Amanuele; Bohe, Alejandro; Caprini, Chiara; Colpi, Monica; Cornish, Neil J.; Danzmann, Karsten; Dufaux, Jean-Francois; Gair, Jonathan; Jennrich, Oliver; Jetzer, Philippe; Klein, Antoine; Lang, Ryan N.; Lobo, Albsrto; Littenberg, Tyson; McWilliams, Sean T.; Nelemans, Gijs; Petiteau, Antoine; Porter, Edward K.; Schutz, Bernard F.; Stebbins, Robin; Vallisneri, Michele

    2012-01-01

    This document introduces the exciting and fundamentally new science and astronomy that the European New Gravitational Wave Observatory (NGO) mission (derived from the previous LISA proposal) will deliver. The mission (which we will refer to by its informal name eLISA ) will survey for the first time the low-frequency gravitational wave band (about 0.1 mHz to 1 Hz), with sufficient sensitivity to detect interesting individual astrophysical sources out to z = 15. The measurements described here will address the basic scientific goals that have been captured in ESA s New Gravitational Wave Observatory Science Requirements Document ; they are presented here so that the wider scientific community can have access to them. The eLISA mission will discover and study a variety of cosmic events and systems with high sensitivity: coalescences of massive black holes binaries, brought together by galaxy mergers; mergers of earlier, less-massive black holes during the epoch of hierarchical galaxy and black-hole growth; stellar-mass black holes and compact stars in orbits just skimming the horizons of massive black holes in galactic nuclei of the present era; extremely compact white dwarf binaries in our Galaxy, a rich source of information about binary evolution and about future Type Ia supernovae; and possibly most interesting of all, the uncertain and unpredicted sources, for example relics of inflation and of the symmetry-breaking epoch directly after the Big Bang. eLISA s measurements will allow detailed studies of these signals with high signal-to-noise ratio, addressing most of the key scientific questions raised by ESA s Cosmic Vision programme in the areas of astrophysics and cosmology. They will also provide stringent tests of general relativity in the strong-field dynamical regime, which cannot be probed in any other way. This document not only describes the science but also gives an overview on the mission design and orbits. LISA s heritage in the eLISA design will be

  2. Preparing for LISA in the post-detection era

    Science.gov (United States)

    Conklin, John

    2017-01-01

    In 2016 we saw the first direct detections of gravitational waves by Advanced LIGO and the positive results from LISA Pathfinder. In this context, NASA has decided to partner with the ESA on their L3 gravitational wave observatory, whose science goals are outlined in the white paper, The Gravitational Universe. The current launch date for L3 is 2034, but with the success of Pathfinder and the increased scientific interest in gravitational waves caused by LIGO, ESA and its member states are exploring ways to move up the launch date. In the U.S., the National Academy's Astronomy Midterm Assessment has recommended that NASA restore support for a gravitational wave mission in this decade with the goal of realizing the full scientific capability of the mission envisioned in the 2020 decadal. NASA has appointed the L3 Study Team, charged with providing analysis of potential U.S. contributions to the European-led L3 mission and preparing for the next decadal survey. The LISA mission concept, proposed for L3, will improve our understanding of the formation and growth of massive black holes, create a census of compact binary systems in the Milky Way, test general relativity in extreme conditions, provide predictions of black hole binary mergers in the LIGO frequency band, and enable searches for new physics.

  3. A demonstration of LISA laser communication

    Energy Technology Data Exchange (ETDEWEB)

    Pollack, S E [JILA, University of Colorado, Boulder, CO 80309-0440 (United States); Stebbins, R T [NASA/GSFC Code 661, Greenbelt, MD 20771 (United States)

    2006-06-21

    Over the past few years, questions have been raised concerning the use of laser communications links between sciencecraft to transmit phase information crucial to the reduction of laser frequency noise in the LISA science measurement. The concern is that applying medium frequency phase modulations to the laser carrier could compromise the phase stability of the LISA fringe signal. We have modified the table-top interferometer presented in Pollack and Stebbins (2006 Demonstration of the zero-crossing phasemeter with a LISA test-bed interferometer Class. Quantum Grav.) by applying phase modulations to the laser beams in order to evaluate the effects of such modulations on the LISA science fringe signal. We have demonstrated that the phase resolution of the science signal is not degraded by the presence of medium frequency phase modulations.

  4. A demonstration of LISA laser communication

    Science.gov (United States)

    Pollack, S. E.; Stebbins, R. T.

    2006-06-01

    Over the past few years, questions have been raised concerning the use of laser communications links between sciencecraft to transmit phase information crucial to the reduction of laser frequency noise in the LISA science measurement. The concern is that applying medium frequency phase modulations to the laser carrier could compromise the phase stability of the LISA fringe signal. We have modified the table-top interferometer presented in Pollack and Stebbins (2006 Demonstration of the zero-crossing phasemeter with a LISA test-bed interferometer Class. Quantum Grav.) by applying phase modulations to the laser beams in order to evaluate the effects of such modulations on the LISA science fringe signal. We have demonstrated that the phase resolution of the science signal is not degraded by the presence of medium frequency phase modulations.

  5. Lisa's Lemonade Stand: Exploring Algebraic Ideas.

    Science.gov (United States)

    Billings, Esther M. H.; Lakatos, Tracy

    2003-01-01

    Presents an activity, "Lisa's Lemonade Stand," that actively engages students in algebraic thinking as they analyze change by investigating relationships between variables and gain experience describing and representing these relationships graphically. (YDS)

  6. Lisa's Lemonade Stand: Exploring Algebraic Ideas.

    Science.gov (United States)

    Billings, Esther M. H.; Lakatos, Tracy

    2003-01-01

    Presents an activity, "Lisa's Lemonade Stand," that actively engages students in algebraic thinking as they analyze change by investigating relationships between variables and gain experience describing and representing these relationships graphically. (YDS)

  7. Thermo-elastic induced phase noise in the LISA Pathfinder spacecraft

    Science.gov (United States)

    Gibert, F.; Nofrarias, M.; Karnesis, N.; Gesa, L.; Martín, V.; Mateos, I.; Lobo, A.; Flatscher, R.; Gerardi, D.; Burkhardt, J.; Gerndt, R.; Robertson, D. I.; Ward, H.; McNamara, P. W.; Guzmán, F.; Hewitson, M.; Diepholz, I.; Reiche, J.; Heinzel, G.; Danzmann, K.

    2015-02-01

    During the on-station thermal test campaign of the LISA Pathfinder, the diagnostics subsystem was tested in nearly space conditions for the first time after integration in the satellite. The results showed the compliance of the temperature measurement system, obtaining temperature noise around {{10}-4} K H{{z}-1/2} in the frequency band 1-30 mHz. In addition, controlled injection of heat signals to the suspension struts anchoring the LISA Technology Package (LTP) core assembly to the satellite structure allowed us to experimentally estimate, for the first time, the phase noise contribution through thermo-elastic distortion of the LTP interferometer, the satellite's main instrument. Such contribution was found to be at {{10}-12} mH{{z}-1/2}, a factor of 30 below the measured noise at the lower end of the measurement bandwidth (1 mHz).

  8. Thermo-elastic induced phase noise in the LISA Pathfinder spacecraft

    CERN Document Server

    Gibert, Ferran; Karnesis, Nikolaos; Gesa, Lluís; Martín, Víctor; Mateos, Ignacio; Lobo, Alberto; Flatscher, Reinhold; Gerardi, Domenico; Burkhardt, Johannes; Guzmán, Felipe; Heinzel, Gerhard; Danzmann, Karsten

    2014-01-01

    During the On-Station Thermal Test campaign of the LISA Pathfinder the data and diagnostics subsystem was tested in nearly space conditions for the first time after integration in the satellite. The results showed the compliance of the temperature measurement system, obtaining temperature noise around $10^{-4}\\,{\\rm K}\\, {\\rm Hz}^{-1/2}$ in the frequency band of $1-30\\;{\\rm mHz}$. In addition, controlled injection of heat signals to the suspension struts anchoring the LISA Technology Package (LTP) Core Assembly to the satellite structure allowed to experimentally estimate for the first time the phase noise contribution through thermo-elastic distortion of the LTP interferometer, the satellite's main instrument. Such contribution was found to be at $10^{-12}\\,{\\rm m}\\, {\\rm Hz}^{-1/2}$, a factor of 30 below the measured noise at the lower end of the measurement bandwidth ($1\\,{\\rm mHz}$).

  9. The end-to-end testbed of the Optical Metrology System on-board LISA Pathfinder

    CERN Document Server

    Steier, Frank; Marín, Antonio F García; Gerardi, Domenico; Heinzel, Gerhard; Danzmann, Karsten; 10.1088/0264-9381/26/9/094010

    2012-01-01

    LISA Pathfinder is a technology demonstration mission for the Laser Interferometer Space Antenna (LISA). The main experiment on-board LISA Pathfinder is the so-called LISA Technology Package (LTP) which has the aim to measure the differential acceleration between two free-falling test masses with an accuracy of 3x10^(-14) ms^(-2)/sqrt[Hz] between 1 mHz and 30 mHz. This measurement is performed interferometrically by the Optical Metrology System (OMS) on-board LISA Pathfinder. In this paper we present the development of an experimental end-to-end testbed of the entire OMS. It includes the interferometer and its sub-units, the interferometer back-end which is a phasemeter and the processing of the phasemeter output data. Furthermore, 3-axes piezo actuated mirrors are used instead of the free-falling test masses for the characterisation of the dynamic behaviour of the system and some parts of the Drag-free and Attitude Control System (DFACS) which controls the test masses and the satellite. The end-to-end testbe...

  10. Lisa-S 2.8g autopilot for GPS-based flight of MAVs

    NARCIS (Netherlands)

    Remes , B.D.W.; Esden-Tempski , P.; Van Tienen , F.; Smeur , E.; De Wagter , C.; De Croon, G.C.H.E.

    2014-01-01

    Recent advances in sensor miniaturization have enabled the development of a miniaturized fully functional autopilot. In this article, the open hardware and open software Paparazzi-UAV Lisa-S micro autopilot is presented, weighing only 2.8 grams and measuring 2 by 2 centimeters. It incorporates 2-way

  11. LISA and LISA PathFinder, the endeavour to detect low frequency GWs

    CERN Document Server

    Araujo, H; Chmeissani, M; Conchillo, A; García-Berro, E; Grimani, C; Hajdas, W; Lobo, A; Martínez, L; Nofrarias, M; Ortega, J A; Puigdengoles, C; Ramos-Castro, J; Sanjuan, J; Wass, P; Xirgu, X; Araujo, Henrique; Boatella, Cesar; Chmeissani, Mokhtar; Conchillo, Aleix; Garcia-Berro, Enrique; Grimani, Catia; Hajdas, Wojtek; Lobo, Alberto; Martinez, Lluis; Nofrarias, Miquel; Ortega, Jose Antonio; Puigdengoles, Carles; Ramos-Castro, Juan; Sanjuan, Josep; Wass, Peter; Xirgu, Xevi

    2006-01-01

    This is a review about LISA and its technology demonstrator, LISA PathFinder. We first describe the conceptual problems which need to be overcome in order to set up a working interferometric detector of low frequency Gravitational Waves (GW), then summarise the solutions to them as currently conceived by the LISA mission team. This will show that some of these solutions require new technological abilities which are still under development, and which need proper test before being fully implemented. LISA PathFinder (LPF) is the the testbed for such technologies. The final part of the paper will address the ideas and concepts behind the PathFinder as well as their impact on LISA.

  12. Free-flight experiments in LISA Pathfinder

    Science.gov (United States)

    Armano, M.; Audley, H.; Auger, G.; Baird, J.; Binetruy, P.; Born, M.; Bortoluzzi, D.; Brandt, N.; Bursi, A.; Caleno, M.; Cavalleri, A.; Cesarini, A.; Cruise, M.; Cutler, C.; Danzmann, K.; Diepholz, I.; Dolesi, R.; Dunbar, N.; Ferraioli, L.; Ferroni, V.; Fitzsimons, E.; Freschi, M.; Gallegos, J.; García Marirrodriga, C.; Gerndt, R.; Gesa, LI; Gibert, F.; Giardini, D.; Giusteri, R.; Grimani, C.; Harrison, I.; Heinzel, G.; Hewitson, M.; Hollington, D.; Hueller, M.; Huesler, J.; Inchauspé, H.; Jennrich, O.; Jetzer, P.; Johlander, B.; Karnesis, N.; Kaune, B.; Korsakova, N.; Killow, C.; Lloro, I.; Maarschalkerweerd, R.; Madden, S.; Maghami, P.; Mance, D.; Martín, V.; Martin-Porqueras, F.; Mateos, I.; McNamara, P.; Mendes, J.; Mendes, L.; Moroni, A.; Nofrarias, M.; Paczkowski, S.; Perreur-Lloyd, M.; Petiteau, A.; Pivato, P.; Plagnol, E.; Prat, P.; Ragnit, U.; Ramos-Castro, J.; Reiche, J.; Romera Perez, J. A.; Robertson, D.; Rozemeijer, H.; Russano, G.; Sarra, P.; Schleicher, A.; Slutsky, J.; Sopuerta, C. F.; Sumner, T.; Texier, D.; Thorpe, J.; Trenkel, C.; Tu, H. B.; Vetrugno, D.; Vitale, S.; Wanner, G.; Ward, H.; Waschke, S.; Wass, P.; Wealthy, D.; Wen, S.; Weber, W.; Wittchen, A.; Zanoni, C.; Ziegler, T.; Zweifel, P.

    2015-05-01

    The LISA Pathfinder mission will demonstrate the technology of drag-free test masses for use as inertial references in future space-based gravitational wave detectors. To accomplish this, the Pathfinder spacecraft will perform drag-free flight about a test mass while measuring the acceleration of this primary test mass relative to a second reference test mass. Because the reference test mass is contained within the same spacecraft, it is necessary to apply forces on it to maintain its position and attitude relative to the spacecraft. These forces are a potential source of acceleration noise in the LISA Pathfinder system that are not present in the full LISA configuration. While LISA Pathfinder has been designed to meet it's primary mission requirements in the presence of this noise, recent estimates suggest that the on-orbit performance may be limited by this ‘suspension noise’. The drift-mode or free-flight experiments provide an opportunity to mitigate this noise source and further characterize the underlying disturbances that are of interest to the designers of LISA-like instruments. This article provides a high-level overview of these experiments and the methods under development to analyze the resulting data.

  13. Self-gravity modelling for LISA

    Energy Technology Data Exchange (ETDEWEB)

    Merkowitz, Stephen M [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Haile, William B [Swales Aerospace, 5050 Powder Mill Rd, Beltsville, MD 20705 (United States); Conkey, Shelly [Swales Aerospace, 5050 Powder Mill Rd, Beltsville, MD 20705 (United States); III, William Kelly [Swales Aerospace, 5050 Powder Mill Rd, Beltsville, MD 20705 (United States); Peabody, Hume [Swales Aerospace, 5050 Powder Mill Rd, Beltsville, MD 20705 (United States)

    2005-05-21

    The Laser Interferometer Space Antenna (LISA) mission, a space-based gravitational wave detector, uses laser metrology to measure distance fluctuations between proof masses aboard three sciencecraft. The total acceleration disturbance to each proof mass is required to be below 3 x 10{sup -15} m s{sup -2} Hz{sup -1/2} at 0.1 mHz. Self-gravity noise due to sciencecraft distortion and motion is expected to be a significant contributor to the acceleration noise budget. To minimize these effects, the gravitational field at each proof mass must be kept as small, flat and constant as possible. It is estimated that the static (non-fluctuating) self-gravity acceleration must be kept below 5 x 10{sup -10} m s{sup -2} with a gradient below 3 x 10{sup -8} s{sup -2} in order to meet the required noise levels. Most likely it will not be possible to directly verify that the LISA sciencecraft meets these requirements by measurements; they must be verified by models. The LISA integrated modelling team developed a new self-gravity tool that calculates the gravitational forces and moments on the proof masses to aid in the design and verification of the LISA sciencecraft. We present here an overview of the tool and the latest self-gravity results calculated using the current baseline design of LISA.

  14. Gravitational-wave radiation from double compact objects with eLISA in the Galaxy

    CERN Document Server

    Liu, Jinzhong

    2014-01-01

    The phase of in-spiral of double compact objects (DCOs: NS+WD, NS+NS, BH+NS, and BH+BH binaries) in the disk field population of the Galaxy provides a potential source in the frequency range from $10^{-4}$ to 0.1 Hz, which can be detected by the European New Gravitational Observatory (NGO: eLISA is derived from the previous LISA proposal) project. In this frequency range, much stronger gravitational wave (GW) radiation can be obtained from DCO sources because they possess more mass than other compact binaries (e.g., close double white dwarfs). In this study, we aim to calculate the gravitational wave signals from the resolvable DCO sources in the Galaxy using a binary population synthesis approach, and to carry out physical properties of these binaries using Monte Carlo simulations. Combining the sensitivity curve of the eLISA detector and a confusion-limited noise floor of close double white dwarfs, we find that only a handful of DCO sources can be detected by the eLISA detector. The detectable number of DCO...

  15. Taosi Observatory

    Science.gov (United States)

    Sun, Xiaochun

    Taosi observatory is the remains of a structure discovered at the later Neolithic Taosi site located in Xiangfen County, Shanxi Province, in north-central China. The structure is a walled enclosure on a raised platform. Only rammed-earth foundations of the structure remained. Archaeoastronomical studies suggest that this structure functioned as an astronomical observatory. Historical circumstantial evidence suggests that it was probably related to the legendary kingdom of Yao from the twenty-first century BC.

  16. Mona Lisa: the enigma of the smile.

    Science.gov (United States)

    Borkowski, J E

    1992-11-01

    The Mona Lisa, painted by Leonardo Da Vinci, 1503, pictures a smile that has been long the subject of conjecture. It is believed, however, that the Mona Lisa does not smile; she wears an expression common to people who have lost their front teeth. A closeup of the lip area shows a scar that is not unlike that left by the application of blunt force. The changes evident in the perioral area are such that occur when the anterior teeth are lost. The scar under the lower lip of the Mona Lisa is similar to that created, when, as a result of force, the incisal edges of the teeth have pierced the face with a penetrating wound.

  17. LISA parameter estimation using numerical merger waveforms

    Energy Technology Data Exchange (ETDEWEB)

    Thorpe, J I; McWilliams, S T; Kelly, B J; Fahey, R P; Arnaud, K; Baker, J G, E-mail: James.I.Thorpe@nasa.go [NASA Goddard Space Flight Center, 8800 Greenbelt Rd, Greenbelt, MD 20771 (United States)

    2009-05-07

    Recent advances in numerical relativity provide a detailed description of the waveforms of coalescing massive black hole binaries (MBHBs), expected to be the strongest detectable LISA sources. We present a preliminary study of LISA's sensitivity to MBHB parameters using a hybrid numerical/analytic waveform for equal-mass, non-spinning holes. The Synthetic LISA software package is used to simulate the instrument response, and the Fisher information matrix method is used to estimate errors in the parameters. Initial results indicate that inclusion of the merger signal can significantly improve the precision of some parameter estimates. For example, the median parameter errors for an ensemble of systems with total redshifted mass of 10{sup 6} M{sub o-dot} at a redshift of z approx 1 were found to decrease by a factor of slightly more than two for signals with merger as compared to signals truncated at the Schwarzchild ISCO.

  18. LISA parameter estimation using numerical merger waveforms

    CERN Document Server

    Thorpe, J I; Kelly, B J; Fahey, R P; Arnaud, K; Baker, J G

    2008-01-01

    Recent advances in numerical relativity provide a detailed description of the waveforms of coalescing massive black hole binaries (MBHBs), expected to be the strongest detectable LISA sources. We present a preliminary study of LISA's sensitivity to MBHB parameters using a hybrid numerical/analytic waveform for equal-mass, non-spinning holes. The Synthetic LISA software package is used to simulate the instrument response and the Fisher information matrix method is used to estimate errors in the parameters. Initial results indicate that inclusion of the merger signal can significantly improve the precision of some parameter estimates. For example, the median parameter errors for an ensemble of systems with total redshifted mass of one million Solar masses at a redshift of one were found to decrease by a factor of slightly more than two for signals with merger as compared to signals truncated at the Schwarzchild ISCO.

  19. Recent results from MoNA-LISA

    Science.gov (United States)

    Spyrou, Artemisia

    2012-03-01

    Studies of the nuclear properties of nuclei close and even beyond the limits of stability have revealed exotic modes of decay and new structural characteristics. The MoNA-LISA array is used at the National Superconducting Cyclotron Laboratory at Michigan State University to study nuclei along the neutron dripline. In a typical experiment, a radioactive beam is employed to produce the neutron-unbound state of interest. This state/resonance immediately decay into a neutron, which is detected by MoNA-LISA and a remaining charged nucleus detected by the sweeper magnet detector suite. In this talk, new exciting findings from recent MoNA-LISA experiments will be presented. These include the first observation of a dineutron decay from ^16Be, the exploration of the ``south shore'' of the Island of Inversion and the first evidence of the decay of the troubling nucleus ^26O.

  20. Reconstructing the dark sector interaction with LISA

    Science.gov (United States)

    Cai, Rong-Gen; Tamanini, Nicola; Yang, Tao

    2017-05-01

    We perform a forecast analysis of the ability of the LISA space-based interferometer to reconstruct the dark sector interaction using gravitational wave standard sirens at high redshift. We employ Gaussian process methods to reconstruct the distance-redshift relation in a model independent way. We adopt simulated catalogues of standard sirens given by merging massive black hole binaries visible by LISA, with an electromagnetic counterpart detectable by future telescopes. The catalogues are based on three different astrophysical scenarios for the evolution of massive black hole mergers based on the semi-analytic model of E. Barausse, Mon. Not. Roy. Astron. Soc. 423 (2012) 2533. We first use these standard siren datasets to assess the potential of LISA in reconstructing a possible interaction between vacuum dark energy and dark matter. Then we combine the LISA cosmological data with supernovae data simulated for the Dark Energy Survey. We consider two scenarios distinguished by the time duration of the LISA mission: 5 and 10 years. Using only LISA standard siren data, the dark sector interaction can be well reconstructed from redshift z~1 to z~3 (for a 5 years mission) and z~1 up to z~5 (for a 10 years mission), though the reconstruction is inefficient at lower redshift. When combined with the DES datasets, the interaction is well reconstructed in the whole redshift region from 0z~ to z~3 (5 yr) and z~0 to z~5 (10 yr), respectively. Massive black hole binary standard sirens can thus be used to constrain the dark sector interaction at redshift ranges not reachable by usual supernovae datasets which probe only the zlesssim 1.5 range. Gravitational wave standard sirens will not only constitute a complementary and alternative way, with respect to familiar electromagnetic observations, to probe the cosmic expansion, but will also provide new tests to constrain possible deviations from the standard ΛCDM dynamics, especially at high redshift.

  1. Optimal Source Tracking and Beaming of LISA

    CERN Document Server

    Pai, A

    2007-01-01

    We revisit the directionally optimal data streams of LISA first introduced in Nayak etal. It was shown that by using appropriate choice of Time delay interferometric (TDI) combinations, a monochromatic fixed source in the barycentric frame can be optimally tracked in the LISA frame. In this work, we study the beaming properties of these optimal streams. We show that all the three streams V+, Vx and Vo with maximum, minimum and zero directional SNR respectively are highly beamed. We study in detail the frequency dependence of the beaming.

  2. Mona Lisa kuulsa naeratuse saladus leidis lahenduse / Johannes Saar

    Index Scriptorium Estoniae

    Saar, Johannes, 1965-

    2004-01-01

    Firenze kunstiajalooõpetaja Giuseppe Pallanti jõudis 25-aastase arhiivitöö tulemusena järeldusele, et Leonardo da Vinci Mona Lisa modelliks on siidikaupmehe Francesco del Giocondo abikaasa Lisa Gerardini

  3. Mona Lisa kuulsa naeratuse saladus leidis lahenduse / Johannes Saar

    Index Scriptorium Estoniae

    Saar, Johannes, 1965-

    2004-01-01

    Firenze kunstiajalooõpetaja Giuseppe Pallanti jõudis 25-aastase arhiivitöö tulemusena järeldusele, et Leonardo da Vinci Mona Lisa modelliks on siidikaupmehe Francesco del Giocondo abikaasa Lisa Gerardini

  4. Surviving on Mars: test with LISA simulator

    CERN Document Server

    Galletta, G; Bertoloni, G; Castellani, F; Visentin, R

    2009-01-01

    We present the biological results of some experiments performed in the Padua simulators of planetary environments, named LISA, used to study the limit of bacterial life on the planet Mars. The survival of Bacillus strains for some hours in Martian environment is shortly discussed.

  5. In-flight Diagnostics in LISA Pathfinder

    Science.gov (United States)

    Lobo, A.; Nofrarias, M.; Ramos-Castro, J.; Sanjuan, J.; Conchillo, A.; Ortega, J. A.; Xirgu, X.; Araujo, H.; Boatella, C.; Chmeissani, M.; Grimani, C.; Puigdengoles, C.; Wass, P.; García-Berro, E.; García, S.; Martínez, L. M.; Montero, G.

    2006-11-01

    LISA PathFinder (LPF) will be flown with the objective to test in space key technologies for LISA. However its sensitivity goals are, for good reason, one order of magnitude less than those which LISA will have to meet, both in drag-free and optical metrology requirements, and in the observation frequency band. While the expected success of LPF will of course be of itself a major step forward to LISA, one might not forget that a further improvement by an order of magnitude in performance will still be needed. Clues for the last leap are to be derived from proper disentanglement of the various sources of noise which contribute to the total noise, as measured in flight during the PathFinder mission. This paper describes the principles, workings and requirements of one of the key tools to serve the above objective: the diagnostics subsystem. This consists in sets of temperature, magnetic field, and particle counter sensors, together with generators of controlled thermal and magnetic perturbations. At least during the commissioning phase, the latter will be used to identify feed-through coefficients between diagnostics sensor readings and associated actual noise contributions. A brief progress report of the current state of development of the diagnostics subsystem will be given as well.

  6. In-flight Diagnostics in LISA Pathfinder

    CERN Document Server

    Lobo, A; Ramos-Castro, J; Sanjuan, J; Conchillo, A; Ortega, J A; Xirgu, X; Araujo, H; Boatella, C; Chmeissani, M; Grimani, C; Puigdengoles, C; Wass, P; García-Berro, E; García, S; Martínez, L; Montero, G; Lobo, Alberto; Nofrarias, Miquel; Ramos-Castro, Juan; Sanjuan, Josep; Conchillo, Aleix; Ortega, Jose Antonio; Xirgu, Xevi; Araujo, Henrique; Boatella, Cesar; Chmeissani, Mokhtar; Grimani, Catia; Puigdengoles, Carles; Wass, Peter; Garcia-Berro, Enrique; Garcia, Sergi; Martinez, Lluis; Montero, Gustau

    2007-01-01

    LISA PathFinder (LPF) will be flown with the objective to test in space key technologies for LISA. However its sensitivity goals are, for good reason, one order of magnitude less than those which LISA will have to meet, both in drag-free and optical metrology requirements, and in the observation frequency band. While the expected success of LPF will of course be of itself a major step forward to LISA, one might not forget that a further improvement by an order of magnitude in performance will still be needed. Clues for the last leap are to be derived from proper disentanglement of the various sources of noise which contribute to the total noise, as measured in flight during the PathFinder mission. This paper describes the principles, workings and requirements of one of the key tools to serve the above objective: the diagnostics subsystem. This consists in sets of temperature, magnetic field, and particle counter sensors, together with generators of controlled thermal and magnetic perturbations. At least durin...

  7. Free-flight experiments in LISA Pathfinder

    CERN Document Server

    Armano, M; Auger, G; Baird, J; Binetruy, P; Born, M; Bortoluzzi, D; Brandt, N; Bursi, A; Caleno, M; Cavalleri, A; Cesarini, A; Cruise, M; Cutler, C; Danzmann, K; Diepholz, I; Dolesi, R; Dunbar, N; Ferraioli, L; Ferroni, V; Fitzsimons, E; Freschi, M; Gallegos, J; Marirrodriga, C Garcia; Gerndt, R; Gesa, LI; Gibert, F; Giardini, D; Giusteri, R; Grimani, C; Harrison, I; Heinzel, G; Hewitson, M; Hollington, D; Hueller, M; Huesler, J; Inchauspe, H; Jennrich, O; Jetzer, P; Johlander, B; Karnesis, N; Kaune, B; Korsakova, N; Killow, C; Lloro, I; Maarschalkerweerd, R; Madden, S; Maghami, P; Mance, D; Martin, V; Martin-Porqueras, F; Mateos, I; McNamara, P; Mendes, J; Mendes, L; Moroni, A; Nofrarias, M; Paczkowski, S; Perreur-Lloyd, M; Petiteau, A; Pivato, P; Plagnol, E; Prat, P; Ragnit, U; Ramos-Castro, J; Reiche, J; Perez, J A Romera; Robertson, D; Rozemeijer, H; Russano, G; Sarra, P; Schleicher, A; Slutsky, J; Sopuerta, C F; Sumner, T; Texier, D; Thorpe, J; Trenkel, C; Tu, H B; Vetrugno, D; Vitale, S; Wanner, G; Ward, H; Waschke, S; Wass, P; Wealthy, D; Wen, S; Weber, W; Wittchen, A; Zanoni, C; Ziegler, T; Zweifel, P

    2014-01-01

    The LISA Pathfinder mission will demonstrate the technology of drag-free test masses for use as inertial references in future space-based gravitational wave detectors. To accomplish this, the Pathfinder spacecraft will perform drag-free flight about a test mass while measuring the acceleration of this primary test mass relative to a second reference test mass. Because the reference test mass is contained within the same spacecraft, it is necessary to apply forces on it to maintain its position and attitude relative to the spacecraft. These forces are a potential source of acceleration noise in the LISA Pathfinder system that are not present in the full LISA configuration. While LISA Pathfinder has been designed to meet it's primary mission requirements in the presence of this noise, recent estimates suggest that the on-orbit performance may be limited by this `suspension noise'. The drift-mode or free-flight experiments provide an opportunity to mitigate this noise source and further characterize the underlyi...

  8. Visualizing and analyzing the Mona Lisa.

    Science.gov (United States)

    Borgeat, Louis; Godin, Guy; Massicotte, Philippe; Poirier, Guillaume; Blais, François; Beraldin, J Angelo

    2007-01-01

    Size and scale issues present a complexity problem in visualizing detailed 3D models built from sensor data. A model of Leonardo da Vinci's Mona Lisa, with its thin pictorial layer, illustrates the need for intuitive real-time processing tools that are seamlessly integrated with a multiresolution visualization environment.

  9. Progress in Interferometry for LISA at JPL

    CERN Document Server

    Spero, Robert; de Vine, Glenn; Dickson, Jeffrey; Klipstein, William; Ozawa, Tetsuo; McKenzie, Kirk; Shaddock, Daniel; Robison, David; Sutton, Andrew; Ware, Brent

    2011-01-01

    Recent advances at JPL in experimentation and design for LISA interferometry include the demonstration of Time Delay Interferometry using electronically separated end stations, a new arm-locking design with improved gain and stability, and progress in flight readiness of digital and analog electronics for phase measurements.

  10. Progress in interferometry for LISA at JPL

    Energy Technology Data Exchange (ETDEWEB)

    Spero, Robert; Bachman, Brian; De Vine, Glenn; Dickson, Jeffrey; Klipstein, William; Ozawa, Tetsuo; McKenzie, Kirk; Shaddock, Daniel; Robison, David; Ware, Brent [Jet Propulsion Laboratory (JPL), California Institute of Technology, 4800 Oak Grove Drive Pasadena, CA 91109 (United States); Sutton, Andrew, E-mail: robert.spero@jpl.nasa.gov [Centre for Gravitational Physics, The Australian National University, ACT 0200 (Australia)

    2011-05-07

    Recent advances at JPL in experimentation and design for LISA interferometry include the demonstration of time delay interferometry using electronically separated end stations, a new arm-locking design with improved gain and stability, and progress in flight readiness of digital and analog electronics for phase measurements.

  11. The Mona Lisa of modern science.

    Science.gov (United States)

    Kemp, Martin

    2003-01-23

    No molecule in the history of science has reached the iconic status of the double helix of DNA. Its image has been imprinted on all aspects of society, from science, art, music, cinema, architecture and advertising. This review of the Mona Lisa of science examines the evolution of its form at the hands of both science and art.

  12. LISA telescope assembly optical stability characterization for ESA

    NARCIS (Netherlands)

    Verlaan, A.L.; Hogenhuis, H.; Pijnenburg, J.A.C.M.; Lemmen, M.H.J.; Lucarelli, S.; Scheulen, D.; Ende, D.

    2012-01-01

    The LISA Optical Stability Characterization project is part of the LISA CTP activities to achieve the required Technonlogy Readiness Level (TRL) for all of the LISA technologies used. This activity aims demonstration of the Telescope Assembly (TA), with a structure based on CFRP technology, that a C

  13. Space Based Gravitational Wave Observatories (SGOs)

    Science.gov (United States)

    Livas, Jeff

    2014-01-01

    Space-based Gravitational-wave Observatories (SGOs) will enable the systematic study of the frequency band from 0.0001 - 1 Hz of gravitational waves, where a rich array of astrophysical sources is expected. ESA has selected The Gravitational Universe as the science theme for the L3 mission opportunity with a nominal launch date in 2034. This will be at a minimum 15 years after ground-based detectors and pulsar timing arrays announce their first detections and at least 18 years after the LISA Pathfinder Mission will have demonstrated key technologies in a dedicated space mission. It is therefore important to develop mission concepts that can take advantage of the momentum in the field and the investment in both technology development and a precision measurement community on a more near-term timescale than the L3 opportunity. This talk will discuss a mission concept based on the LISA baseline that resulted from a recent mission architecture study.

  14. Parameter estimation in LISA Pathfinder operational exercises

    CERN Document Server

    Nofrarias, Miquel; Congedo, Giuseppe; Hueller, Mauro; Armano, M; Diaz-Aguilo, M; Grynagier, A; Hewitson, M

    2011-01-01

    The LISA Pathfinder data analysis team has been developing in the last years the infrastructure and methods required to run the mission during flight operations. These are gathered in the LTPDA toolbox, an object oriented MATLAB toolbox that allows all the data analysis functionalities for the mission, while storing the history of all operations performed to the data, thus easing traceability and reproducibility of the analysis. The parameter estimation methods in the toolbox have been applied recently to data sets generated with the OSE (Off-line Simulations Environment), a detailed LISA Pathfinder non-linear simulator that will serve as a reference simulator during mission operations. These operational exercises aim at testing the on-orbit experiments in a realistic environment in terms of software and time constraints. These simulations, so called operational exercises, are the last verification step before translating these experiments into tele-command sequences for the spacecraft, producing therefore ve...

  15. Engineering the LISA Project: Systems Engineering Challenges

    Science.gov (United States)

    Evans, Jordan P.

    2006-01-01

    The Laser Interferometer Space Antenna (LISA) is a joint NASA/ESA mission to detect and measure gravitational waves with periods from 1 s to 10000 s. The systems engineering challenges of developing a giant interferometer, 5 million kilometers on a side, an: numerous. Some of the key challenges are presented in this paper. The organizational challenges imposed by sharing the engineering function between three centers (ESA ESTEC, NASA GSFC, and JPL) across nine time zones are addressed. The issues and approaches to allocation of the acceleration noise and measurement sensitivity budget terms across a traditionally decomposed system are discussed. Additionally, using LISA to detect gravitational waves for the first time presents significant data analysis challenges, many of which drive the project system design. The approach to understanding the implications of science data analysis on the system is also addressed.

  16. Mapping the Milky Way Galaxy with LISA

    Science.gov (United States)

    McKinnon, Jose A.; Littenberg, Tyson

    2012-01-01

    Gravitational wave detectors in the mHz band (such as the Laser Interferometer Space Antenna, or LISA) will observe thousands of compact binaries in the galaxy which can be used to better understand the structure of the Milky Way. To test the effectiveness of LISA to measure the distribution of the galaxy, we simulated the Close White Dwarf Binary (CWDB) gravitational wave sky using different models for the Milky Way. To do so, we have developed a galaxy density distribution modeling code based on the Markov Chain Monte Carlo method. The code uses different distributions to construct realizations of the galaxy. We then use the Fisher Information Matrix to estimate the variance and covariance of the recovered parameters for each detected CWDB. This is the first step toward characterizing the capabilities of space-based gravitational wave detectors to constrain models for galactic structure, such as the size and orientation of the bar in the center of the Milky Way

  17. Progress and Prospects toward a Space-based Gravitational-Wave Observatory

    Science.gov (United States)

    Baker, John

    2012-01-01

    Over the last few years there has been much activity in the effort to produce a space-based gravitational-wave observatory. These efforts have enriched the understanding of the scientific capabilities of such an observatory leading to broad recognition of its value as an astronomical instrument. At the same time, rapidly developing events in the US and Europe have lead to a more complicated outlook than the baseline Laser Interferometer Space Antenna (LISA) project plan of a few years ago. I will discuss recent progress and developments resulting from the European eLISA study and the SGO study in the US and prospects looking forward.

  18. Measuring Massive Black Hole Binaries with LISA

    Science.gov (United States)

    Lang, Ryan N.; Hughes, Scott A.; Cornish, Neil J.

    2009-01-01

    The coalescence of two massive black holes produces gravitational waves (GWs) which can be detected by the space-based detector LISA. By measuring these waves, LISA can determine the various parameters which characterize the source. Measurements of the black hole masses and spins will provide information about the growth of black holes and their host galaxies over time. Measurements of a source's sky position and distance may help astronomers identify an electromagnetic counterpart to the GW event. The counterpart's redshift, combined with the GW-measured luminosity distance, can then be used to measure the Hubble constant and the dark energy parameter $w$. Because the potential science output is so high, it is useful to know in advance how well LISA can measure source parameters for a wide range of binaries. We calculate expected parameter estimation errors using the well-known Fisher matrix method. Our waveform model includes the physics of spin precession, as well as subleading harmonics. When these higher-order effects are not included, strong degeneracies between some parameters cause them to be poorly determined by a GW measurement. When precession and subleading harmonics are properly included, the degeneracies are broken, reducing parameter errors by one to several orders of magnitude.

  19. Testing Alternative Theories of Gravity using LISA

    CERN Document Server

    Will, Clifford M

    2004-01-01

    We investigate the possible bounds which could be placed on alternative theories of gravity using gravitational wave detection from inspiralling compact binaries with the proposed LISA space interferometer. Specifically, we estimate lower bounds on the coupling parameter \\omega of scalar-tensor theories of the Brans-Dicke type and on the Compton wavelength of the graviton \\lambda_g in hypothetical massive graviton theories. In these theories, modifications of the gravitational radiation damping formulae or of the propagation of the waves translate into a change in the phase evolution of the observed gravitational waveform. We obtain the bounds through the technique of matched filtering, employing the LISA Sensitivity Curve Generator (SCG), available online. For a neutron star inspiralling into a 10^3 M_sun black hole in the Virgo Cluster, in a two-year integration, we find a lower bound \\omega > 3 * 10^5. For lower-mass black holes, the bound could be as large as 2 * 10^6. The bound is independent of LISA arm...

  20. Testing MOND/TEVES with LISA Pathfinder

    CERN Document Server

    Trenkel, Christian; Bevis, Neil; Magueijo, Joao

    2010-01-01

    We suggest that LISA Pathfinder could be used to subject TEVES, and in particular the non-relativistic MOND phenomenology it incorporates, to a direct, controlled experimental test, in just a few years' time. The basic concept is to fly LISA Pathfinder through the region around the Sun-Earth saddle point, following its nominal mission, in order to look for anomalous gravity gradients. We examine various strategies to reach the saddle point, and conclude that the preferred strategy, resulting in relatively short transfer times of order one year, probably involves a lunar fly-by. We present robust estimates of the MOND gravity gradients that LISA Pathfinder should be exposed to, and conclude that if the gradiometer on-board the spacecraft achieves its nominal performance, these gradients will not just be detected, but measured and characterised in some detail, should they exist. Conversely, given the large predicted signal based on standard assumptions, a null result would most likely spell the end of TEVES/MON...

  1. General relativistic treatment of LISA optical links

    CERN Document Server

    Dhurandhar, S V; Nayak, K Rajesh

    2008-01-01

    LISA is a joint space mission of the NASA and the ESA for detecting low frequency gravitational waves in the band $10^{-5} - 1$ Hz. In order to attain the requisite sensitivity for LISA, the laser frequency noise must be suppressed below the other secondary noises such as the optical path noise, acceleration noise etc. This is achieved by combining time-delayed data for which precise knowledge of time-delays is required. The gravitational field, mainly that of the Sun and the motion of LISA affect the time-delays and the optical links. Further, the effect of the gravitational field of the Earth on the orbits of spacecraft is included. This leads to additional flexing over and above that of the Sun. We have written a numerical code which computes the optical links, that is, the time-delays with great accuracy $\\sim 10^{-2}$ metres - more than what is required for time delay interferometry (TDI) - for most of the orbit and with sufficient accuracy within $\\sim 10$ metres for an integrated time window of about s...

  2. Relevance and feasibility of Diagnostics Subsystems in LISA PathFinder and LISA

    Science.gov (United States)

    Lobo, Alberto; Grimani, Catia; Canizares, Priscilla; Chmeissani, Mokhtar; Diaz-Aguilo, Marc; Conchillo, Aleix; Gesa, Lluis; Lloro, Ivan; Mateos, Ignacio; Nofrarias, Miquel; Ramos-Castro, Juan; Sanjuan, Josep; Sopuerta, Carlos

    LISA PathFinder will fly equipped with a Diagnostics Subsystem which includes: 1) a Radi-ation Monitor, providing almost real time charged particle counting and spectral resolution, 2) a thermal diagnostics set with high sensitivity temperature sensors and precision heaters, and 3) four fluxgate vector magnetometers plus a pair of induction coils. The role of this in-strumentation in LISA PathFinder is to provide the necessary tools to evaluate the effect of charging, temperature and magnetic fluctuations on the interferometer readout. The use of this is to understand how the mentioned fluctuations in the LTP (LISA Technology Package) can be modelled, then use the measured data to quantify their contribution to the overall LTP noise. In this presentation we will review the LPF Diagnostics System, recently delivered for LTP and spacecraft integration. We will also make some considerations on the meaning of the diagnostics for the future LISA, and propose lines of action to meet the more severe requirements which LISA will impose on environmental conditions.

  3. Low-Frequency Gravitational-Wave Science with eLISA/ NGO

    Science.gov (United States)

    Amaro-Seoane, Pau; Aoudia, Sofiane; Babak, Stanislav; Binetruy, Pierre; Berti, Emanuele; Bohe, Alejandro; Caprini, Chiara; Colpi, Monica; Cornish, Neil J.; Danzmann, Karsten; Dufaux, Jean-Francois; Gair, Jonathan; Jennrich, Oliver; Jetzer, Philippe; Klein, Antoine; Lang, Ryan N.; Lobo, Alberto; Littenberg, Tyson; McWilliams, Sean T.; Nelemans, Gijs; Petiteau, Antoine; Porter, Edward K.; Schutz, Bernard F.; Stebbins, Robin; Vallisneri, Michele

    2011-01-01

    We review the expected science performance of the New Gravitational-Wave Observatory (NGO, a.k.a. eLISA), a mission under study by the European Space Agency for launch in the early 2020s. eLISA will survey the low-frequency gravitational-wave sky (from 0.1 mHz to 1 Hz), detecting and characterizing a broad variety of systems and events throughout the Universe, including the coalescences of massive black holes brought together by galaxy mergers; the inspirals of stellar-mass black holes and compact stars into central galactic black holes; several millions of ultracompact binaries, both detached and mass transferring, in the Galaxy; and possibly unforeseen sources such as the relic gravitational-wave radiation from the early Universe. eLISA's high signal-to-noise measurements will provide new insight into the structure and history of the Universe, and they will test general relativity in its strong-field dynamical regime.

  4. Low-frequency gravitational-wave science with eLISA/NGO

    CERN Document Server

    Amaro-Seoane, Pau; Babak, Stanislav; Binetruy, Pierre; Berti, Emanuele; Bohe, Alejandro; Caprini, Chiara; Colpi, Monica; Cornish, Neil J; Danzmann, Karsten; Dufaux, Jean-Francois; Gair, Jonathan; Jennrich, Oliver; Jetzer, Philippe; Klein, Antoine; Lang, Ryan N; Lobo, Alberto; Littenberg, Tyson; McWilliams, Sean T; Nelemans, Gijs; Petiteau, Antoine; Porter, Edward K; Schutz, Bernard F; Sesana, Alberto; Stebbins, Robin; Sumner, Tim; Vallisneri, Michele; Vitale, Stefano; Volonteri, Marta; Ward, Henry

    2012-01-01

    We review the expected science performance of the New Gravitational-Wave Observatory (NGO, a.k.a. eLISA), a mission under study by the European Space Agency for launch in the early 2020s. eLISA will survey the low-frequency gravitational-wave sky (from 0.1 mHz to 1 Hz), detecting and characterizing a broad variety of systems and events throughout the Universe, including the coalescences of massive black holes brought together by galaxy mergers; the inspirals of stellar-mass black holes and compact stars into central galactic black holes; several millions of ultracompact binaries, both detached and mass transferring, in the Galaxy; and possibly unforeseen sources such as the relic gravitational-wave radiation from the early Universe. eLISA's high signal-to-noise measurements will provide new insight into the structure and history of the Universe, and they will test general relativity in its strong-field dynamical regime.

  5. Charge-Induced Force Noise on Free-Falling Test Masses: Results from LISA Pathfinder

    Science.gov (United States)

    Armano, M.; Audley, H.; Auger, G.; Baird, J. T.; Binetruy, P.; Born, M.; Bortoluzzi, D.; Brandt, N.; Bursi, A.; Caleno, M.; Cavalleri, A.; Cesarini, A.; Cruise, M.; Danzmann, K.; de Deus Silva, M.; Diepholz, I.; Dolesi, R.; Dunbar, N.; Ferraioli, L.; Ferroni, V.; Fitzsimons, E. D.; Flatscher, R.; Freschi, M.; Gallegos, J.; García Marirrodriga, C.; Gerndt, R.; Gesa, L.; Gibert, F.; Giardini, D.; Giusteri, R.; Grimani, C.; Grzymisch, J.; Harrison, I.; Heinzel, G.; Hewitson, M.; Hollington, D.; Hueller, M.; Huesler, J.; Inchauspé, H.; Jennrich, O.; Jetzer, P.; Johlander, B.; Karnesis, N.; Kaune, B.; Killow, C. J.; Korsakova, N.; Lloro, I.; Liu, L.; López-Zaragoza, J. P.; Maarschalkerweerd, R.; Madden, S.; Mance, D.; Martín, V.; Martin-Polo, L.; Martino, J.; Martin-Porqueras, F.; Mateos, I.; McNamara, P. W.; Mendes, J.; Mendes, L.; Moroni, A.; Nofrarias, M.; Paczkowski, S.; Perreur-Lloyd, M.; Petiteau, A.; Pivato, P.; Plagnol, E.; Prat, P.; Ragnit, U.; Ramos-Castro, J.; Reiche, J.; Romera Perez, J. A.; Robertson, D. I.; Rozemeijer, H.; Rivas, F.; Russano, G.; Sarra, P.; Schleicher, A.; Slutsky, J.; Sopuerta, C.; Sumner, T. J.; Texier, D.; Thorpe, J. I.; Trenkel, C.; Vetrugno, D.; Vitale, S.; Wanner, G.; Ward, H.; Wass, P. J.; Wealthy, D.; Weber, W. J.; Wittchen, A.; Zanoni, C.; Ziegler, T.; Zweifel, P.; LISA Pathfinder Collaboration

    2017-04-01

    We report on electrostatic measurements made on board the European Space Agency mission LISA Pathfinder. Detailed measurements of the charge-induced electrostatic forces exerted on free-falling test masses (TMs) inside the capacitive gravitational reference sensor are the first made in a relevant environment for a space-based gravitational wave detector. Employing a combination of charge control and electric-field compensation, we show that the level of charge-induced acceleration noise on a single TM can be maintained at a level close to 1.0 fm s-2 Hz-1 /2 across the 0.1-100 mHz frequency band that is crucial to an observatory such as the Laser Interferometer Space Antenna (LISA). Using dedicated measurements that detect these effects in the differential acceleration between the two test masses, we resolve the stochastic nature of the TM charge buildup due to interplanetary cosmic rays and the TM charge-to-force coupling through stray electric fields in the sensor. All our measurements are in good agreement with predictions based on a relatively simple electrostatic model of the LISA Pathfinder instrument.

  6. LISA and LISA PathFinder, the endeavour to detect low frequency GWs

    Science.gov (United States)

    Araújo, H.; Boatella, C.; Chmeissani, M.; Conchillo, A.; García-Berro, E.; Grimani, C.; Hajdas, W.; Lobo, A.; Martínez, Ll; Nofrarias, M.; Ortega, J. A.; Puigdengoles, C.; Ramos-Castro, J.; Sanjuán, J.; Wass, P.; Xirgu, X.

    2007-05-01

    This is a review about LISA and its technology demonstrator, LISAPathFinder. We first describe the conceptual problems which need to be overcome in order to set up a working interferometric detector of low frequency Gravitational Waves (GW), then summarise the solutions to them as currently conceived by the LISA mission team. This will show that some of these solutions require new technological abilities which are still under development, and which need proper test before being fully implemented. LISAPathFinder (LPF) is the the testbed for such technologies. The final part of the paper will address the ideas and concepts behind the PathFinder as well as their impact on LISA.

  7. LISA and LISA PathFinder, the endeavour to detect low frequency GWs

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, H [Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2BW (United Kingdom); Boatella, C [Institut d' Estudis Espacials de Catalunya (IEEC), Edifici Nexus, Gran Capita 2-4, 08034 Barcelona (Spain); Chmeissani, M [Institut de Fisica d' Altes Energies (IFAE), Edifici C, Universitat Autonoma de Barcelona, 08193 Bellaterra (Barcelona) (Spain); Conchillo, A [Institut d' Estudis Espacials de Catalunya (IEEC), Edifici Nexus, Gran Capita 2-4, 08034 Barcelona (Spain); Garcia-Berro, E [Institut d' Estudis Espacials de Catalunya (IEEC), Edifici Nexus, Gran Capita 2-4, 08034 Barcelona (Spain); Grimani, C [Universita degli Studi di Urbino, and INFN Florence, Istituto di Fisica, Via Santa Chiara 27, 61029 Urbino (Italy); Hajdas, W [Department of Particles and Matter, Paul Scherrer Institut, ODRA 120, 5232 Villigen (Switzerland); Lobo, A [Institut d' Estudis Espacials de Catalunya (IEEC), Edifici Nexus, Gran Capita 2-4, 08034 Barcelona (Spain); Martinez, L [AtIpic, Parc Tecnologic del Valles, 08290 Cerdanyola del Valles, Barcelona (Spain); Nofrarias, M [Institut d' Estudis Espacials de Catalunya (IEEC), Edifici Nexus, Gran Capita 2-4, 08034 Barcelona (Spain); Ortega, J A [Institut d' Estudis Espacials de Catalunya (IEEC), Edifici Nexus, Gran Capita 2-4, 08034 Barcelona (Spain); Puigdengoles, C [Institut de Fisica d' Altes Energies (IFAE), Edifici C, Universitat Autonoma de Barcelona, 08193 Bellaterra (Barcelona) (Spain); Ramos-Castro, J [Departament d' Enginyeria Electronica, UPC, Campus Nord, Edif. C4, Jordi Girona 1-3, 08034 Barcelona (Spain); Sanjuan, J [Institut d' Estudis Espacials de Catalunya (IEEC), Edifici Nexus, Gran Capita 2-4, 08034 Barcelona (Spain); Wass, P [Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2BW (United Kingdom); Xirgu, X [Institut d' Estudis Espacials de Catalunya (IEEC), Edifici Nexus, Gran Capita 2-4, 08034 Barcelona (Spain)

    2007-05-15

    This is a review about LISA and its technology demonstrator, LISAPathFinder. We first describe the conceptual problems which need to be overcome in order to set up a working interferometric detector of low frequency Gravitational Waves (GW), then summarise the solutions to them as currently conceived by the LISA mission team. This will show that some of these solutions require new technological abilities which are still under development, and which need proper test before being fully implemented. LISAPathFinder (LPF) is the the testbed for such technologies. The final part of the paper will address the ideas and concepts behind the PathFinder as well as their impact on LISA.

  8. Milli-Hertz Gravitational Waves: LISA and LISA PathFinder

    Science.gov (United States)

    Araújo, H.; Cañizares, P.; Chmeissani, M.; Conchillo, A.; Díaz-Aguiló, M.; García-Berro, E.; Gesa, L.; Gibert, F.; Grimani, C.; Hajdas, W.; Hollington, D.; Lloro, I.; Lobo, A.; Mateos, I.; Nofrarias, M.; Puigdengoles, C.; Ramos-Castro, J.; Sanjuán, J.; Sopuerta, Cf; Wass, P.

    2011-09-01

    Ground based GW detectors are limited at their lower frequency band (1-10 Hz) by settlement gravity gradients and seismic noise, and their sensitivity peaks at around 100 Hz. Sources in this band are mostly short duration signals, and their rates uncertain. Going down to milli-Hertz frequencies significantly increases the number and types of available sources. LISA was planned with the idea to explore a likely richer region of the GW spectrum, beyond that accessible to ground detectors; the latter are however expected to produce the first GW observations. In this paper I will present the main LISA concepts; in particular, emphasis will be placed on LISAPathFinder, the ESA precursor of LISA, in which our research group in Barcelona is heavily involved.

  9. Milli-Hertz Gravitational Waves: LISA and LISA PathFinder

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, H; Hollington, D; Wass, P [Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2BW (United Kingdom); Canizares, P; Conchillo, A; Gesa, L; Lloro, I; Lobo, A; Mateos, I; Sopuerta, CF [Instituto de Ciencias del Espacio, CSIC, Campus UAB, Facultat de Ciencies, Torre C-5 Parell, 2a Planta, E-08193 Bellaterra (Cerdanyola del Valles), Barcelona (Spain); Chmeissani, M; Puigdengoles, C [Institut de Fisica d' Altes Energies (IFAE), Edifici C, Universitat Autonoma de Barcelona, 08193 Bellaterra, (Barcelona) (Spain); Diaz-Aguilo, M; Garcia-Berro, E; Gibert, F [Institut d' Estudis Espacials de Catalunya (IEEC), Edifici Nexus, Gran Capita 2-4, 08034 Barcelona (Spain); Grimani, C [Universita degli Studi di Urbino, and INFN Florence, Dipartimento DiSBeF, Via Santa Chiara 27, 61029 Urbino (Italy); Hajdas, W [Department of Particles and Matter, Paul Scherrer Institut, ODRA 120, 5232 Villigen (Switzerland); Nofrarias, M [Max-Planck-Institut fuer Gravitationsphysik (Albert-Einstein-Institut), Callinstrasse 38, D-30167 Hannover (Germany); Ramos-Castro, J [Departament d' Enginyeria Electronica, UPC, Campus Nord, Edif. C4, Jordi Girona 1-3, 08034 Barcelona (Spain); Sanjuan, J, E-mail: lobo@ieec.fcr.es [Department of Physics, University of Florida, NPB-22258 PO Box 118 440, Gainesville FL 32611-8440 (United States)

    2011-09-22

    Ground based GW detectors are limited at their lower frequency band (1-10 Hz) by settlement gravity gradients and seismic noise, and their sensitivity peaks at around 100 Hz. Sources in this band are mostly short duration signals, and their rates uncertain. Going down to milli-Hertz frequencies significantly increases the number and types of available sources. LISA was planned with the idea to explore a likely richer region of the GW spectrum, beyond that accessible to ground detectors; the latter are however expected to produce the first GW observations. In this paper I will present the main LISA concepts; in particular, emphasis will be placed on LISAPathFinder, the ESA precursor of LISA, in which our research group in Barcelona is heavily involved.

  10. The eLISA gravitational reference sensor and its test aboard LISA Pathfinder

    Science.gov (United States)

    Weber, William Joseph; Dolesi, Rita; Vitale, Stefano

    The upcoming LISA Pathfinder (LPF) mission represents the state-of-the-art in realizing a set of free-falling reference test masses for gravitational wave astronomy. The key hardware for achieving the smallest possible deviation from pure geodesic motion lies in the gravitational reference sensor or GRS. We present the GRS designed for achieving sub-femto-g/sqrt{mathrm{Hz}} performance with LPF and eLISA and discuss our current experimental estimates for the upcoming mission, including the latest results from the flight hardware test campaigns. Finally, we will address the LPF in-flight tests that will complete our physical model for test mass acceleration noise for eLISA and other possible experimental gravitational measurements in space.

  11. A noise simulator for eLISA: Migrating LISA Pathfinder knowledge to the eLISA mission

    Science.gov (United States)

    Armano, M.; Audley, H.; Auger, G.; Baird, J.; Binetruy, P.; Born, M.; Bortoluzzi, D.; Brandt, N.; Bursi, A.; Caleno, M.; Cavalleri, A.; Cesarini, A.; Cruise, M.; Danzmann, K.; Diepholz, I.; Dolesi, R.; Dunbar, N.; Ferraioli, L.; Ferroni, V.; Fitzsimons, E.; Freschi, M.; Gallegos, J.; García Marirrodriga, C.; Gerndt, R.; Gesa, L. I.; Gibert, F.; Giardini, D.; Giusteri, R.; Grimani, C.; Harrison, I.; Heinzel, G.; Hewitson, M.; Hollington, D.; Hueller, M.; Huesler, J.; Inchauspé, H.; Jennrich, O.; Jetzer, P.; Johlander, B.; Karnesis, N.; Kaune, B.; Korsakova, N.; Killow, C.; Lloro, I.; Maarschalkerweerd, R.; Madden, S.; Mance, D.; Martín, V.; Martin-Porqueras, F.; Mateos, I.; McNamara, P.; Mendes, J.; Mendes, L.; Moroni, A.; Nofrarias, M.; Paczkowski, S.; Perreur-Lloyd, M.; Petiteau, A.; Pivato, P.; Plagnol, E.; Prat, P.; Ragnit, U.; Ramos-Castro, J.; Reiche, J.; Romera Perez, J. A.; Robertson, D.; Rozemeijer, H.; Russano, G.; Sarra, P.; Schleicher, A.; Slutsky, J.; Sopuerta, C. F.; Sumner, T.; Texier, D.; Thorpe, J.; Trenkel, C.; Tu, H. B.; Vetrugno, D.; Vitale, S.; Wanner, G.; Ward, H.; Waschke, S.; Wass, P.; Wealthy, D.; Wen, S.; Weber, W.; Wittchen, A.; Zanoni, C.; Ziegler, T.; Zweifel, P.

    2015-05-01

    We present a new technical simulator for the eLISA mission, based on state space modeling techniques and developed in MATLAB. This simulator computes the coordinate and velocity over time of each body involved in the constellation, i.e. the spacecraft and its test masses, taking into account the different disturbances and actuations. This allows studying the contribution of instrumental noises and system imperfections on the residual acceleration applied on the TMs, the latter reflecting the performance of the achieved free-fall along the sensitive axis. A preliminary version of the results is presented.

  12. Darwin Meets Einstein: LISA Data Analysis Using Genetic Algorithms

    CERN Document Server

    Crowder, J; Reddinger, L; Cornish, Neil J.; Crowder, Jeff; Reddinger, Lucas

    2006-01-01

    This work presents the first application of the method of Genetic Algorithms (GAs) to data analysis for the Laser Interferometer Space Antenna (LISA). In the low frequency regime of the LISA band there are expected to be tens of thousands galactic binary systems that will be emitting gravitational waves detectable by LISA. The challenge of parameter extraction of such a large number of sources in the LISA data stream requires a search method that can efficiently explore the large parameter spaces involved. As signals of many of these sources will overlap, a global search method is desired. GAs represent such a global search method for parameter extraction of multiple overlapping sources in the LISA data stream. We find that GAs are able to correctly extract source parameters for overlapping sources. Several optimizations of a basic GA are presented with results derived from applications of the GA searches to simulated LISA data.

  13. A Bayesian-style approach to estimating LISA science capability

    Science.gov (United States)

    Baker, John; Marsat, Sylvain

    2017-01-01

    A full understanding of LISA's science capability will require accurate models of incident waveform signals and the instrumental response. While Fisher matrix analysis is useful for some estimates, a Bayesian characterization of simulated probability distributions is needed for understanding important cases at the limit of LISA's capability. We apply fast analysis algorithms enabling accurate treatment using EOB waveforms with relevant higher modes and the full-featured LISA response to study these aspects of LISA science capability. Supported by NASA grant 11-ATP-046.

  14. Constraining Gravity with LISA Detections of Binaries

    Science.gov (United States)

    Canizares, P.; Gair, J. R.; Sopuerta, C. F.

    2013-01-01

    General Relativity (GR) describes gravitation well at the energy scales which we have so far been able to achieve or detect. However, we do not know whether GR is behind the physics governing stronger gravitational field regimes, such as near neutron stars or massive black-holes (MBHs). Gravitational-wave (GW) astronomy is a promising tool to test and validate GR and/or potential alternative theories of gravity. The information that a GW waveform carries not only will allow us to map the strong gravitational field of its source, but also determine the theory of gravity ruling its dynamics. In this work, we explore the extent to which we could distinguish between GR and other theories of gravity through the detection of low-frequency GWs from extreme-mass-ratio inspirals (EMRIs) and, in particular, we focus on dynamical Chern-Simons modified gravity (DCSMG). To that end, we develop a framework that enables us, for the first time, to perform a parameter estimation analysis for EMRIs in DCSMG. Our model is described by a 15-dimensional parameter space, that includes the Chern-Simons (CS) parameter which characterises the deviation between the two theories, and our analysis is based on Fisher information matrix techniques together with a (maximum-mismatch) criterion to assess the validity of our results. In our analysis, we study a 5-dimensional parameter space, finding that a GW detector like the Laser Interferometer Space Antenna (LISA) or eLISA (evolved LISA) should be able to discriminate between GR and DCSMG with fractional errors below 5%, and hence place bounds four orders of magnitude better than current Solar System bounds.

  15. Direct Reactions with MoNA-LISA

    Science.gov (United States)

    Kuchera, Anthony

    2016-03-01

    Nuclear reactions can be used to probe the structure of nuclei. Direct reactions, which take place on short time scales, are well-suited for experiments with beams of short-lived nuclei. One such reaction is nucleon knockout where a proton or neutron is removed from the incoming beam from the interaction with a target. Single nucleon knockout reactions have been used to study the single-particle nature of nuclear wave functions. A recent experiment at the National Superconducting Cyclotron Laboratory was performed to measure cross sections from single nucleon knockout reactions for several p-shell nuclei. Detection of the residual nucleus in coincidence with any gamma rays emitted from the target allowed cross sections to ground and excited states to be measured. Together with input from reaction theory, ab initio structure theories can be tested. Simultaneously the accuracy of knockout reaction models can be validated by detecting the knocked out neutron with the Modular Neutron Array and Large multi-Institutional Scintillator Array (MoNA-LISA). Preliminary results from this experiment will be shown. Knockout reactions can also be used to populate nuclei which are neutron unbound, thus emit neutrons nearly instantaneously. The structure of these nuclei, therefore, cannot be probed with gamma ray spectroscopy. However, with large neutron detectors like MoNA-LISA the properties of these short-lived nuclei are able to be measured. Recent results using MoNA-LISA to study the structure of neutron-rich nuclei will be presented. The author would like to acknowledge support from the NNSA and NSF.

  16. The pLISA project in ASTERICS

    Science.gov (United States)

    De Bonis, Giulia; Bozza, Cristiano

    2017-03-01

    In the framework of Horizon 2020, the European Commission approved the ASTERICS initiative (ASTronomy ESFRI and Research Infrastructure CluSter) to collect knowledge and experiences from astronomy, astrophysics and particle physics and foster synergies among existing research infrastructures and scientific communities, hence paving the way for future ones. ASTERICS aims at producing a common set of tools and strategies to be applied in Astronomy ESFRI facilities. In particular, it will target the so-called multi-messenger approach to combine information from optical and radio telescopes, photon counters and neutrino telescopes. pLISA is a software tool under development in ASTERICS to help and promote machine learning as a unified approach to multivariate analysis of astrophysical data and signals. The library will offer a collection of classification parameters, estimators, classes and methods to be linked and used in reconstruction programs (and possibly also extended), to characterize events in terms of particle identification and energy. The pLISA library aims at offering the software infras tructure for applications developed inside different experiments and has been designed with an effort to extrapolate general, physics-related estimators from the specific features of the data model related to each particular experiment. pLISA is oriented towards parallel computing architectures, with awareness of the opportunity of using GPUs as accelerators demanding specifically optimized algorithms and to reduce the costs of pro cessing hardware requested for the reconstruction tasks. Indeed, a fast (ideally, real-time) reconstruction can open the way for the development or improvement of alert systems, typically required by multi-messenger search programmes among the different experi mental facilities involved in ASTERICS.

  17. The LISA Pathfinder DMU and Radiation Monitor

    Science.gov (United States)

    Canizares, P.; Chmeissani, M.; Conchillo, A.; Diaz–Aguiló, M.; García-Berro, E.; Gesa, L.; Gibert, F.; Grimani, C.; Lloro, I.; Lobo, A.; Mateos, I.; Nofrarias, M.; Ramos-Castro, J.; Sanjuán, J.; Sopuerta, Carlos F.; Araújo, H. M.; Wass, P.

    2011-05-01

    The LISA Pathfinder DMU (Data Management Unit) flight model was formally accepted by ESA and ASD on 11 February 2010, after all hardware and software tests had been successfully completed. The diagnostics items are scheduled to be delivered by the end of 2010. In this paper, we review the requirements and performance of this instrumentation, specially focusing on the Radiation Monitor and the DMU, as well as the status of their programmed use during mission operations, on which work is ongoing at the time of writing.

  18. The LISA Pathfinder DMU and Radiation Monitor

    Energy Technology Data Exchange (ETDEWEB)

    Canizares, P; Conchillo, A; Gesa, L; Lloro, I; Lobo, A; Mateos, I; Sopuerta, Carlos F [Institut de Ciencies de l' Espai, CSIC, Facultat de Ciencies, Torre C5 parell, 08193 Bellaterra (Spain); Chmeissani, M [Institut de Fisica d' Altes Energies (IFAE), Edifici CN, UAB Campus, 08193 Bellaterra (Spain); Diaz-Aguilo, M; GarcIa-Berro, E; Gibert, F [Institut d' Estudis Espacials de Catalunya (IEEC), Edifici Nexus, Gran Capita 2-4, 08034 Barcelona (Spain); Grimani, C [Universita degli Studi di Urbino, MFI Department, Via Santa Chiara 27, 61029 Urbino, and INFN Florence (Italy); Nofrarias, M [Max-Planck-Institut fuer Gravitationsphysik (Albert-Einstein-Institut), Callinstrasse 38, D-30167 Hannover (Germany); Ramos-Castro, J [Departament d' Enginyeria Electronica, UPC, Campus Nord, Edifici C4, Jordi Girona 1-3, 08034 Barcelona (Spain); Sanjuan, J [Department of Physics, University of Florida, NPB-22258 PO Box 118 440, Gainesville, FL 32611-8440 (United States); Araujo, H M; Wass, P, E-mail: lobo@ieec.fcr.es [High Energy Physics Blackett Laboratory, Prince Consort Road, Imperial College London, London SW7 2BW (United Kingdom)

    2011-05-07

    The LISA Pathfinder DMU (Data Management Unit) flight model was formally accepted by ESA and ASD on 11 February 2010, after all hardware and software tests had been successfully completed. The diagnostics items are scheduled to be delivered by the end of 2010. In this paper, we review the requirements and performance of this instrumentation, specially focusing on the Radiation Monitor and the DMU, as well as the status of their programmed use during mission operations, on which work is ongoing at the time of writing.

  19. P-LISA技术%P-LISA

    Institute of Scientific and Technical Information of China (English)

    李恩; 齐锦生

    2010-01-01

    原位邻近式连接分析(proximity ligation in situ assay,P-LISA)是一种用来研究蛋白质-蛋白质相互作用的新方法.该方法能够对原位,瞬时、微弱的蛋白质-蛋白质相互作用进行定量分析和亚细胞定位,在药物研发和临床诊断中将有着重要的应用价值.

  20. LISA Beyond Einstein: From the Big Bang to Black Holes. LISA Technology Development at GSFC

    Science.gov (United States)

    Thorpe, James Ira

    2008-01-01

    This viewgraph presentation reviews the work that has been ongoing at the Goddard Space Flight Center (GSFC) in the development of the technology to be used in the Laser Interferometer Space Antenna (LISA) spacecrafts. The prime focus of LISA technology development efforts at NASA/GSFC has been in LISA interferometry. Specifically efforts have been made in the area of laser frequency noise mitigation. Laser frequency noise is addressed through a combination of stabilization and common-mode rejection. Current plans call for two stages of stabilization, pre-stabilization to a local frequency reference and further stabilization using the constellation as a frequency reference. In order for these techniques to be used simultaneously, the pre-stabilization step must provide an adjustable frequency offset. This presentation reports on a modification to the standard modulation/demodulation technique used to stabilize to optical cavities that generates a frequency-tunable reference from a fixed length cavity. This technique requires no modifications to the cavity itself and only minor modifications to the components. The measured noise performance and dynamic range of the laboratory prototype meet the LISA requirements.

  1. Optimising LISA orbits: The projectile solution

    CERN Document Server

    Dhurandhar, S V; Vinet, J-Y

    2008-01-01

    LISA is a joint space mission of the NASA and the ESA for detecting low frequency gravitational waves (GW) in the band $10^{-5} - 0.1$ Hz. The proposed mission will use coherent laser beams which will be exchanged between three identical spacecraft forming a giant (almost) equilateral triangle of side $5 \\times 10^6$ kilometres. The plane of the triangle will make an angle of $\\sim 60^{\\circ}$ with the plane of the ecliptic. The spacecraft constituting LISA will be freely floating in the ambient gravitational field of the Sun and other celestial bodies. To achieve the requisite sensitivity, the spacecraft formation should remain stable, one requirement being, the distances between spacecraft should remain as constant as possible - that is the flexing of the arms should be minimal. In this paper we present a solution - the projectile solution - which constrains the flexing of the arms to below 5.5 metres/sec in a three year mission period. This solution is obtained in the field of the Sun and Earth only, which...

  2. Detection of Micrometeoroids with LISA Pathfinder

    Science.gov (United States)

    Thorpe, Ira; Littenberg, Tyson; Janchez, Diego; Baker, John; The LISA Pathfinder Team Team

    2017-01-01

    The LISA Pathfinder mission (LPF), a joint ESA/NASA technology demonstration mission currently operating at the Sun-Earth L1 point, contains the most precise accelerometry system ever flown. Analysis suggests that LPF should have sufficient sensitivity to detect impacts of small micrometeoroids and dust through their transfer of momentum to the spacecraft. Moreover, LPF's ability to fully resolve both the linear and angular momentum transfer in three dimensions allows a magnitude, direction, and location to be estimated for each impact. We present preliminary results from a systematic search of the LISA Pathfinder data for such impacts and discuss the prospects for using these and future results to inform models of the formation and evolution of dust populations in the inner solar system. These models have wide applicability to both pure and applied space science, ranging from the physics of planet formation and dynamics of minor Solar System bodies to estimates of the micrometeorite hazard for future spacecraft. 2017 NASA Science Innovation Fund.

  3. ESO's Two Observatories Merge

    Science.gov (United States)

    2005-02-01

    , a unique instrument capable of measuring stellar radial velocities with an unsurpassed accuracy better than 1 m/s, making it a very powerful tool for the discovery of extra-solar planets. In addition, astronomers have also access to the 2.2-m ESO/MPG telescope with its Wide Field Imager camera. A new control room, the RITZ (Remote Integrated Telescope Zentrum), allows operating all three ESO telescopes at La Silla from a single place. The La Silla Observatory is also the first world-class observatory to have been granted certification for the International Organization for Standardization (ISO) 9001 Quality Management System. Moreover, the infrastructure of La Silla is still used by many of the ESO member states for targeted projects such as the Swiss 1.2-m Euler telescope and the robotic telescope specialized in the follow-up of gamma-ray bursts detected by satellites, the Italian REM (Rapid Eye Mount). In addition, La Silla is in charge of the APEX (Atacama Pathfinder Experiment) 12-m sub-millimetre telescope which will soon start routine observations at Chajnantor, the site of the future Atacama Large Millimeter Array (ALMA). The APEX project is a collaboration between the Max Planck Society in Germany, Onsala Observatory in Sweden and ESO. ESO also operates Paranal, home of the Very Large Telescope (VLT) and the VLT Interferometer (VLTI). Antu, the first 8.2-m Unit Telescope of the VLT, saw First Light in May 1998, starting what has become a revolution in European astronomy. Since then, the three other Unit Telescopes - Kueyen, Melipal and Yepun - have been successfully put into operation with an impressive suite of the most advanced astronomical instruments. The interferometric mode of the VLT (VLTI) is also operational and fully integrated in the VLT data flow system. In the VLTI mode, one state-of-the-art instrument is already available and another will follow soon. With its remarkable resolution and unsurpassed surface area, the VLT is at the forefront of

  4. Portable coastal observatories

    Science.gov (United States)

    Frye, Daniel; Butman, Bradford; Johnson, Mark; von der Heydt, Keith; Lerner, Steven

    2000-01-01

    Ocean observational science is in the midst of a paradigm shift from an expeditionary science centered on short research cruises and deployments of internally recording instruments to a sustained observational science where the ocean is monitored on a regular basis, much the way the atmosphere is monitored. While satellite remote sensing is one key way of meeting the challenge of real-time monitoring of large ocean regions, new technologies are required for in situ observations to measure conditions below the ocean surface and to measure ocean characteristics not observable from space. One method of making sustained observations in the coastal ocean is to install a fiber optic cable from shore to the area of interest. This approach has the advantage of providing power to offshore instruments and essentially unlimited bandwidth for data. The LEO-15 observatory offshore of New Jersey (yon Alt et al., 1997) and the planned Katama observatory offshore of Martha's Vineyard (Edson et al., 2000) use this approach. These sites, along with other cabled sites, will play an important role in coastal ocean science in the next decade. Cabled observatories, however, have two drawbacks that limit the number of sites that are likely to be installed. First, the cable and the cable installation are expensive and the shore station needed at the cable terminus is often in an environmentally sensitive area where competing interests must be resolved. Second, cabled sites are inherently limited geographically to sites within reach of the cable, so it is difficult to cover large areas of the coastal ocean.

  5. Analysis of Teacher's Mission from Mona Lisa Smile

    Institute of Scientific and Technical Information of China (English)

    曾显宇

    2013-01-01

    Miss. Catherine in the film Mona Lisa Smile upholds the modern educational concept-equality,innovation and love. She is equipped with noble professional quality to perform a teacher’s mission. This paper makes attempt to discuss what missions the teacher should perform in the educational process through analysis of the film Mona Lisa Smile.

  6. Laser frequency stabilization by locking to a LISA arm

    Energy Technology Data Exchange (ETDEWEB)

    Sheard, Benjamin S.; Gray, Malcolm B.; McClelland, David E.; Shaddock, Daniel A

    2003-12-22

    We analyze a technique for suppressing laser frequency noise for the laser interferometer space antenna (LISA) gravitational wave detector. We demonstrate that the laser frequency can be stabilized to a LISA arm by high gain feedback. It is shown that the feedback bandwidth is not limited by the 33 second round-trip propagation time and example frequency controller designs are presented.

  7. Seafloor Observatory Science: a Review

    Directory of Open Access Journals (Sweden)

    L. Beranzoli

    2006-06-01

    Full Text Available The ocean exerts a pervasive influence on Earth’s environment. It is therefore important that we learn how this system operates (NRC, 1998b; 1999. For example, the ocean is an important regulator of climate change (e.g., IPCC, 1995. Understanding the link between natural and anthropogenic climate change and ocean circulation is essential for predicting the magnitude and impact of future changes in Earth’s climate. Understanding the ocean, and the complex physical, biological, chemical, and geological systems operating within it, should be an important goal for the opening decades of the 21st century. Another fundamental reason for increasing our understanding of ocean systems is that the global economy is highly dependent on the ocean (e.g., for tourism, fisheries, hydrocarbons, and mineral resources (Summerhayes, 1996. The establishment of a global network of seafloor observatories will help to provide the means to accomplish this goal. These observatories will have power and communication capabilities and will provide support for spatially distributed sensing systems and mobile platforms. Sensors and instruments will potentially collect data from above the air-sea interface to below the seafloor. Seafloor observatories will also be a powerful complement to satellite measurement systems by providing the ability to collect vertically distributed measurements within the water column for use with the spatial measurements acquired by satellites while also providing the capability to calibrate remotely sensed satellite measurements (NRC, 2000. Ocean observatory science has already had major successes. For example the TAO array has enabled the detection, understanding and prediction of El Niño events (e.g., Fujimoto et al., 2003. This paper is a world-wide review of the new emerging “Seafloor Observatory Science”, and describes both the scientific motivations for seafloor observatories and the technical solutions applied to their architecture. A

  8. Why we use AT.Lisa multifocals?

    Science.gov (United States)

    Filip, M; Nicolae, Miruna; Filip, A; Dragne, Carmen; Triantafyllidis, G; Antonescu, Cristina

    2014-01-01

    In this paper, the authors try to motivate their preference for implanting AT.Lisa Multifocals from all other premium IOL's from the market. It is emphasized, through clinical examples, that their choice comes after a long experience with this type of mul- tifocals IOL's. We make a short presentation of this particular type of MIOL's with their good but also weak points and try to motivate our decision to change from other types. We present the steps that each patient has to follow in our clinic prior to surgery itself, stressing out the idea that the discussion with the patient is very important in taking a decision regarding the implantation of a Premium IOL.

  9. The diagnostics subsystem on board LISA PathFinder and LISA

    CERN Document Server

    Canizares, P; García-Berro, E; Gesa, L; Grimani, C; Lloro, I; Lobo, A; Mateos, I; Nofrarias, M; Ramos-Castro, J; Sanjuan, J; Sopuerta, CF

    2008-01-01

    The Data and Diagnostics Subsystem of the LTP hardware and software are at present essentially ready for delivery. In this presentation we intend to describe the scientific and technical aspects of this subsystem, which includes thermal diagnostics, magnetic diagnostics and a Radiation Monitor, as well as the prospects for their integration within the rest of the LTP. We also sketch a few lines of progress recently opened up towards the more demanding diagnostics requirements which will be needed for LISA.

  10. eLISA and the Gravitational Universe

    Science.gov (United States)

    Danzmann, Karsten

    2015-08-01

    The last century has seen enormous progress in our understanding of the Universe. We know the life cycles of stars, the structure of galaxies, the remnants of the big bang, and have a general understanding of how the Universe evolved. We have come remarkably far using electromagnetic radiation as our tool for observing the Universe. However, gravity is the engine behind many of the processes in the Universe, and much of its action is dark. Opening a gravitational window on the Universe will let us go further than any alternative. Gravity has its own messenger: Gravitational waves, ripples in the fabric of spacetime. They travel essentially undisturbed and let us peer deep into the formation of the first seed black holes, exploring redshifts as large as z ~ 20, prior to the epoch of cosmic re-ionisation. Exquisite and unprecedented measurements of black hole masses and spins will make it possible to trace the history of black holes across all stages of galaxy evolution, and at the same time constrain any deviation from the Kerr metric of General Relativity. eLISA will be the first ever mission to study the entire Universe with gravitational waves. eLISA is an all-sky monitor and will offer a wide view of a dynamic cosmos using gravitational waves as new and unique messengers to unveil The Gravitational Universe. It provides the closest ever view of the early processes at TeV energies, has guaranteed sources in the form of verification binaries in the Milky Way, and can probe the entire Universe, from its smallest scales around singularities and black holes, all the way to cosmological dimensions.

  11. Calibration of the MoNA and LISA Arrays for the LISA Commissioning Experiment

    Science.gov (United States)

    Grovom, A.; Kwiatkowski, J.; Rogers, W. F.; MoNA Collaboration

    2011-10-01

    The new LISA (the Large-area multi-Institutional Scintillator Array) neutron detector array, designed to be used in conjunction with MoNA (Modular Neutron Array) at the NSCL was recently commissioned in an experiment designed to investigate excited states of neutron-rich Oxygen isotopes near the neutron drip-line. In order for the trajectories of neutrons arising from decay to be determined with sufficient precision to allow reconstruction of the invariant mass of the decaying system, all 288 scintillator bars must be precisely position-calibrated and time-synchronized to within a few tenths of a nanosecond, and the time origin for neutron time-of-flight determination must coincide precisely with the secondary beam particle/target interaction. The former was accomplished using cosmic muons passing through the array, and the latter using detection of gamma-rays produced at the target in each of the 18 layers of the MoNA-LISA array. Several Root C++ macros were developed in order to produce these calibrations. Results for the LISA commissioning run experiment will be presented. Work supported by NSF grant PHY-1101745.

  12. Constraining properties of the black hole population using LISA

    CERN Document Server

    Gair, Jonathan R; Berti, Emanuele; Volonteri, Marta

    2010-01-01

    LISA should detect gravitational waves from tens to hundreds of systems containing black holes with mass in the range from 10 thousand to 10 million solar masses. Black holes in this mass range are not well constrained by current electromagnetic observations, so LISA could significantly enhance our understanding of the astrophysics of such systems. In this paper, we describe a framework for combining LISA observations to make statements about massive black hole populations. We summarise the constraints that LISA observations of extreme-mass-ratio inspirals might be able to place on the mass function of black holes in the LISA range. We also describe how LISA observations can be used to choose between different models for the hierarchical growth of structure in the early Universe. We consider four models that differ in their prescription for the initial mass distribution of black hole seeds, and in the efficiency of accretion onto the black holes. We show that with as little as 3 months of LISA data we can cle...

  13. MONA, LISA and VINCI Soon Ready to Travel to Paranal

    Science.gov (United States)

    2000-11-01

    First Instruments for the VLT Interferometer Summary A few months from now, light from celestial objects will be directed for the first time towards ESO's Very Large Telescope Interferometer (VLTI) at the Paranal Observatory (Chile). During this "First Light" event and the subsequent test phase, the light will be recorded with a special test instrument, VINCI (VLT INterferometer Commissioning Instrument). The main components of this high-tech instrument are aptly named MONA (a system that combines the light beams from several telescopes by means of optical fibers) and LISA (the infrared camera). VINCI was designed and constructed within a fruitful collaboration between ESO and several research institutes and industrial companies in France and Germany . It is now being assembled at the ESO Headquarters in Garching (Germany) and will soon be ready for installation at the telescope on Paranal. With the VLTI and VINCI, Europe's astronomers are now entering the first, crucial phase of an exciting scientific and technology venture that will ultimately put the world's most powerful optical/IR interferometric facility in their hands . PR Photo 31/00 : VINCI during tests at the ESO Headquarters in Garching. The VLT Interferometer (VLTI) ESO Press Photo 31/00 ESO Press Photo 31/00 [Preview; JPEG: 400 x 301; 43k] [Normal; JPEG: 800 x 602;208xk] [Full-Res; JPEG: 1923 x 1448; 2.2Mb] PR Photo 31/00 shows the various components of the complex VINCI instrument for the VLT Interferometer , during the current tests at the Optical Laboratory at the ESO Headquarters in Garching (Germany). It will later be installed in "clean-room" conditions within the Interferometric Laboratory at the Paranal Observatory. This electronic photo was obtained for documentary purposes. VINCI (VLT INterferometer Commissioning Instrument) is the "First Light" instrument for the Very Large Telescope Interferometer (VLTI) at the Paranal Observatory (Chile). Early in 2001, it will be used for the first tests

  14. Constraints on LISA Pathfinder's self-gravity: design requirements, estimates and testing procedures

    CERN Document Server

    Ferroni, Valerio

    2016-01-01

    LISA Pathfinder satellite has been launched on 3th December 2015 toward the Sun-Earth first Lagrangian point (L1) where the LISA Technology Package (LTP), which is the main science payload, will be tested. With its cutting-edge technology, the LTP will provide the ability to achieve unprecedented geodesic motion residual acceleration measurements down to the order of $3 \\times 10^{-14}\\,\\mathrm{m/s^2/{Hz^{1/2}}}$ within the $1-30\\,\\mathrm{mHz}$ frequency band. The presence of the spacecraft itself is responsible of the local gravitational field which will interact with the two proof test-masses. Potentially, such a force interaction might prevent to achieve the targeted free-fall level originating a significant source of noise. We balanced this gravitational force with sub $\\mathrm{nm/s^2}$ accuracy, guided by a protocol based on measurements of the position and the mass of all parts that constitute the satellite, via finite element calculation tool estimates. In the following, we will introduce requirements,...

  15. Constraints on LISA Pathfinder’s self-gravity: design requirements, estimates and testing procedures

    Science.gov (United States)

    Armano, M.; Audley, H.; Auger, G.; Baird, J.; Binetruy, P.; Born, M.; Bortoluzzi, D.; Brandt, N.; Bursi, A.; Caleno, M.; Cavalleri, A.; Cesarini, A.; Cruise, M.; Danzmann, K.; de Deus Silva, M.; Desiderio, D.; Piersanti, E.; Diepholz, I.; Dolesi, R.; Dunbar, N.; Ferraioli, L.; Ferroni, V.; Fitzsimons, E.; Flatscher, R.; Freschi, M.; Gallegos, J.; García Marirrodriga, C.; Gerndt, R.; Gesa, L.; Gibert, F.; Giardini, D.; Giusteri, R.; Grimani, C.; Grzymisch, J.; Harrison, I.; Heinzel, G.; Hewitson, M.; Hollington, D.; Hueller, M.; Huesler, J.; Inchauspé, H.; Jennrich, O.; Jetzer, P.; Johlander, B.; Karnesis, N.; Kaune, B.; Korsakova, N.; Killow, C.; Lloro, I.; Liu, L.; López-Zaragoza, J. P.; Maarschalkerweerd, R.; Madden, S.; Mance, D.; Martín, V.; Martin-Polo, L.; Martino, J.; Martin-Porqueras, F.; Mateos, I.; McNamara, P. W.; Mendes, J.; Mendes, L.; Moroni, A.; Nofrarias, M.; Paczkowski, S.; Perreur-Lloyd, M.; Petiteau, A.; Pivato, P.; Plagnol, E.; Prat, P.; Ragnit, U.; Ramos-Castro, J.; Reiche, J.; Romera Perez, J. A.; Robertson, D.; Rozemeijer, H.; Rivas, F.; Russano, G.; Sarra, P.; Schleicher, A.; Slutsky, J.; Sopuerta, C. F.; Sumner, T.; Texier, D.; Thorpe, J. I.; Tomlinson, R.; Trenkel, C.; Vetrugno, D.; Vitale, S.; Wanner, G.; Ward, H.; Warren, C.; Wass, P. J.; Wealthy, D.; Weber, W. J.; Wittchen, A.; Zanoni, C.; Ziegler, T.; Zweifel, P.

    2016-12-01

    LISA Pathfinder satellite was launched on 3 December 2015 toward the Sun-Earth first Lagrangian point (L1) where the LISA Technology Package (LTP), which is the main science payload, will be tested. LTP achieves measurements of differential acceleration of free-falling test masses (TMs) with sensitivity below 3× {10}-14 {{m}} {{{s}}}-2 {{Hz}}-1/2 within the 1-30 mHz frequency band in one-dimension. The spacecraft itself is responsible for the dominant differential gravitational field acting on the two TMs. Such a force interaction could contribute a significant amount of noise and thus threaten the achievement of the targeted free-fall level. We prevented this by balancing the gravitational forces to the sub nm s-2 level, guided by a protocol based on measurements of the position and the mass of all parts that constitute the satellite, via finite element calculation tool estimates. In this paper, we will introduce the gravitational balance requirements and design, and then discuss our predictions for the balance that will be achieved in flight.

  16. Characterizing Spinning Black Hole Binaries in Eccentric Orbits with LISA

    CERN Document Server

    Key, Joey Shapiro

    2010-01-01

    The Laser Interferometer Space Antenna (LISA) is designed to detect gravitational wave signals from astrophysical sources, including those from coalescing binary systems of compact objects such as black holes. Colliding galaxies have central black holes that sink to the center of the merged galaxy and begin to orbit one another and emit gravitational waves. Some galaxy evolution models predict that the binary black hole system will enter the LISA band with significant orbital eccentricity, while other models suggest that the orbits will already have circularized. Using a full seventeen parameter waveform model that includes the effects of orbital eccentricity, spin precession and higher harmonics, we investigate how well the source parameters can be inferred from simulated LISA data. Defining the reference eccentricity as the value one year before merger, we find that for typical LISA sources, it will be possible to measure the eccentricity to an accuracy of parts in a thousand. The accuracy with which the ec...

  17. Dual-Cylinder Laser Reference Cavities for LISA Project

    Data.gov (United States)

    National Aeronautics and Space Administration — "Summary: The Laser Interferometer Space Antenna (LISA) mission is under consideration by NASA and ESA as a joint mission to study gravitational wave signals from a...

  18. Distinguishing Between Formation Channels for Binary Black Holes with LISA

    CERN Document Server

    Breivik, Katelyn; Larson, Shane L; Kalogera, Vassiliki; Rasio, Frederic A

    2016-01-01

    The recent detections of GW150914 and GW151226 imply an abundance of stellar-mass binary-black-hole mergers in the local universe. While ground-based gravitational-wave detectors are limited to observing the final moments before a binary merges, space-based detectors, such as the Laser Interferometer Space Antenna (LISA), can observe binaries at lower orbital frequencies where such systems may still encode information about their formation histories. In particular, the orbital eccentricity of binary black holes in the LISA frequency band can be used discriminate between binaries formed in isolation in galactic fields, and those formed in dense stellar environments such as globular clusters. In this letter, we explore the differences in orbital eccentricities of binary black hole populations as they evolve through the LISA frequency band. Overall we find that there are three distinct populations of orbital eccentricities discernible by LISA. We show that, depending on gravitational-wave frequency, anywhere fro...

  19. Initial Results from ST7-Disturbance Reduction System on LISA Pathfinder

    Science.gov (United States)

    Dunn, Charles; Barela, Phillip; Cutler, Curt; Denzin, Richard; Franklin, Garth; Gorelik, Jacb; Hsu, Oscar; Javidnia, Shahram; Li, Irena; Maghami, Peiman; Marrese-Reading, Colleen; Mehta, Jitendra; O'Donnell, James; Romero-Wolf, Andrew; Slutsky, Jacob; Thorpe, Ira; Umfress, S. Harper; Ziemer, John

    2017-01-01

    The European Space Agency LISA Pathfinder spacecraft was launched on December, 2, 2015 carrying the NASA contribution ST7-Disturbance Reduction System (ST7-DRS). The objective of ST7-DRS is to demonstrate drag-free control and noise reduction technologies for future missions, especially a future space-based gravitational wave observatory. The system consists of a pair of Colloid Micro-Newton Thruster clusters and a computer with control algorithms. Data from the host platform is used for inertial and attitude sensing. ST7-DRS was initially powered on in January 2016 for an on-orbit check out and was fully commissioned in late June and early July. This presentation will report results relative to the 0.1 micro-Newton/ rt Hertz thrust noise requirement and the 10 nanometer/rt Hertz position control requirement. Preliminary extended mission results will be discussed. The work described here was funded by NASA.

  20. Constraining the dark energy equation of state using LISA observations of spinning Massive Black Hole binaries

    CERN Document Server

    Petiteau, Antoine; Sesana, Alberto

    2011-01-01

    Gravitational wave signals from coalescing Massive Black Hole (MBH) binaries could be used as standard sirens to measure cosmological parameters. The future space based gravitational wave observatory Laser Interferometer Space Antenna (LISA) will detect up to a hundred of those events, providing very accurate measurements of their luminosity distances. To constrain the cosmological parameters we also need to measure the redshift of the galaxy (or cluster of galaxies) hosting the merger. This requires the identification of a distinctive electromagnetic event associated to the binary coalescence. However, putative electromagnetic signatures may be too weak to be observed. Instead, we study here the possibility of constraining the cosmological parameters by enforcing statistical consistency between all the possible hosts detected within the measurement error box of a few dozen of low redshift (z<3) events. We construct MBH populations using merger tree realizations of the dark matter hierarchy in a LambdaCDM ...

  1. eLISA Telescope In-field Pointing and Scattered Light Study

    Science.gov (United States)

    Livas, J.; Sankar, S.; West, G.; Seals, L.; Howard, J.; Fitzsimons, E.

    2017-05-01

    The orbital motion of the three spacecraft that make up the eLISA Observatory constellation causes long-arm line of sight variations of approximately ± one degree over the course of a year. The baseline solution is to package the telescope, the optical bench, and the gravitational reference sensor (GRS) into an optical assembly at each end of the measurement arm, and then to articulate the assembly. An optical phase reference is exchanged between the moving optical benches with a single mode optical fiber (“backlink” fiber). An alternative solution, referred to as in-field pointing, embeds a steering mirror into the optical design, fixing the optical benches and eliminating the backlink fiber, but requiring the additional complication of a two-stage optical design for the telescope. We examine the impact of an in-field pointing design on the scattered light performance.

  2. Status of LISA phase measurement work in the US

    Energy Technology Data Exchange (ETDEWEB)

    Pollack, S E [JILA, University of Colorado, Boulder, CO 80309-0440 (United States); Jennrich, O [ESTEC, Noordwijk, The (Netherlands); Stebbins, R T [NASA/GSFC Code 661, Greenbelt, MD 20771 (United States); Bender, P [JILA, University of Colorado, Boulder, CO 80309-0440 (United States)

    2003-05-21

    Currently there are two implementations for LISA phase measurement being investigated in the United States. In this paper, we present the current status of one of these implementations, the so-called zero-crossing approach or stopwatch method. This method uses a technique of counting and timing to make phase measurements. Herein we present a description of the status of an experiment which produces an optical LISA-like fringe which we use to test our phase meter.

  3. An Interview with Lisa Summer: Discussing GIM and its adaptations

    Directory of Open Access Journals (Sweden)

    Erin Anne Montgomery

    2012-03-01

    Full Text Available This interview with Lisa Summer discusses her path to music therapy, GIM, and Helen Bonny. Lisa speaks about her adaptations to the Bonny Method of GIM and how these have been incorporated into her latest GIM trainings. Her recent doctoral work, including music-centered guiding and the use of repeated music in GIM sessions is discussed. The work of Helen Bonny and key Bonny Method GIM concepts are outlined.

  4. Current error estimates for LISA spurious accelerations

    Energy Technology Data Exchange (ETDEWEB)

    Stebbins, R T [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Bender, P L [JILA-University of Colorado, Boulder, CO (United States); Hanson, J [Stanford University, Stanford, CA (United States); Hoyle, C D [University of Trento, Trento (Italy); Schumaker, B L [Jet Propulsion Laboratory, Pasadena, CA (United States); Vitale, S [University of Trento, Trento (Italy)

    2004-03-07

    The performance of the LISA gravitational wave detector depends critically on limiting spurious accelerations of the fiducial masses. Consequently, the requirements on allowable acceleration levels must be carefully allocated based on estimates of the achievable limits on spurious accelerations from all disturbances. Changes in the allocation of requirements are being considered, and are proposed here. The total spurious acceleration error requirement would remain unchanged, but a few new error sources would be added, and the allocations for some specific error sources would be changed. In support of the recommended revisions in the requirements budget, estimates of plausible acceleration levels for 17 of the main error sources are discussed. In most cases, the formula for calculating the size of the effect is known, but there may be questions about the values of various parameters to use in the estimates. Different possible parameter values have been discussed, and a representative set is presented. Improvements in our knowledge of the various experimental parameters will come from planned experimental and modelling studies, supported by further theoretical work.

  5. LISA as a dark energy probe

    CERN Document Server

    Arun, K G; Broeck, Chris Van Den; Iyer, B R; Sathyaprakash, B S; Sinha, Siddhartha

    2008-01-01

    Recently it was shown that the inclusion of higher signal harmonics in the inspiral signals of binary supermassive black holes (SMBH) leads to dramatic improvements in parameter estimation with the Laser Interferometer Space Antenna (LISA). In particular, the angular resolution becomes good enough to identify the host galaxy or galaxy cluster, in which case the redshift can be determined by electromagnetic means. The gravitational wave signal also provides the luminosity distance with high accuracy, and the relationship between this and the redshift depends sensitively on the cosmological parameters, such as the equation-of-state parameter $w=p_{\\rm DE}/\\rho_{\\rm DE}$ of dark energy. With a single binary SMBH event at $z < 1$ having appropriate masses and orientation, one would be able to constrain $w$ to within a few percent. We show that, if the measured sky location is folded into the error analysis, the uncertainty on $w$ goes down by an additional factor of 2-3, leaving weak lensing as the only limiti...

  6. European Southern Observatory

    CERN Multimedia

    1970-01-01

    Professor A. Blaauw, Director general of the European Southern Observatory, with George Hampton on his right, signs the Agreement covering collaboration with CERN in the construction of the large telescope to be installed at the ESO Observatory in Chile.

  7. Solar Dynamics Observatory

    Data.gov (United States)

    National Aeronautics and Space Administration — A searchable database of all Solar Dynamics Observatory data including EUV, magnetograms, visible light and X-ray. SDO: The Solar Dynamics Observatory is the first...

  8. Gamma ray observatory productivity showcase

    Science.gov (United States)

    Davis, R. L.; Molgaard, D. A.

    1985-01-01

    The Gamma Ray Observatory (GRO) Program has been proclaimed to be the showcase productivity program for NASA and TRW. Among the multiple disciplines of a large-scale program, there is opportunity and need for improved efficiency, effectiveness, and reduction in the cost of doing business. The efforts and tools that will or have been implemented to achieve this end are described. Since the GRO Program is mainly an engineering program with the build of one satellite, the primary emphasis is placed on improving the efficiency and quality of management and engineering.

  9. Development of the first infrared satellite observatory

    Science.gov (United States)

    Smith, G. M.; Squibb, G. F.

    1984-01-01

    A development history is given for the Infrared Astronomical Satelite (IRAS), whose primary mission objective is an unbiased, all-sky survey in the 8-120 micron wavelength range. A point source catalog of more than 200,000 IR sources, to be published later this year, represents the accomplishment of this objective. IRAS has also conducted 10,000 pointed observations of specific objects. Attention is given to the cost increases and schedule slips which resulted from the substantial technical challenges of IRAS hardware and software development, and to the management techniques which had to be employed in this major international project.

  10. Mona Lisa Effect of Eyes and Face

    Directory of Open Access Journals (Sweden)

    Takao Sato

    2012-10-01

    Full Text Available A person depicted in portrait paintings does not appear slanted even when observers move around. The gaze is also fixed to the observer. This constancy in angle of face/body orientation or gaze direction is called the Mona Lisa effect. Do observers realize the portrait was physically slanted when the effect occurs? What is the relationship between the effect for face/body and gaze? To answer these questions, we separately measured the perceived angle of face, gaze, and background while varying the physical slant of portrait itself. The stimulus was a computer generated face (19 × 12 deg presented on a 3D LCD display. It was surrounded by a 24 × 24 deg black-contour frame filled with a noise texture. There were also no-frame and/or no-texture conditions. The slant was varied between ±30 deg. The observer was asked to judge the direction of gaze and the orientation of face or background in separate sessions. It was found that the perceived gaze almost always directed toward the observer regardless of slant angle or existence of frame or background. In contrast, the face orientation was judged facing the observer only in 40–50% of trials, and it was facing at the correct angle in 50–60% of trials. The background was perceived correctly in most trials. These results demonstrate special characteristics of eyes. The gaze is always directed to you even when the portrait is slanted and the background is perceived slanted. The face has intermediate characteristics: it is sometimes directed to you, but sometimes it appears slanted.

  11. Distinguishing Between Formation Channels for Binary Black Holes with LISA

    Science.gov (United States)

    Breivik, Katelyn; Rodriguez, Carl L.; Larson, Shane L.; Kalogera, Vassiliki; Rasio, Frederic A.

    2017-01-01

    The recent detections of GW150914 and GW151226 imply an abundance of stellar-mass binary-black-hole mergers in the local universe. While ground-based gravitational-wave detectors are limited to observing the final moments before a binary merges, space-based detectors, such as the Laser Interferometer Space Antenna (LISA), can observe binaries at lower orbital frequencies where such systems may still encode information about their formation histories. In particular, the orbital eccentricity and mass of binary black holes in the LISA frequency band can be used together to discriminate between binaries formed in isolation in galactic fields and those formed in dense stellar environments such as globular clusters. In this letter, we explore the orbital eccentricity and mass of binary-black-hole populations as they evolve through the LISA frequency band. Overall we find that there are two distinct populations discernible by LISA. We show that up to ~90% of binaries formed either dynamically or in isolation have eccentricities measurable by LISA. Finally, we note how measured eccentricities of low-mass binary black holes evolved in isolation could provide detailed constraints on the physics of black-hole natal kicks and common-envelope evolution.

  12. Active Thermal Control Experiments for LISA Ground Verification Testing

    Science.gov (United States)

    Higuchi, Sei; DeBra, Daniel B.

    2006-11-01

    The primary mission goal of LISA is detecting gravitational waves. LISA uses laser metrology to measure the distance between proof masses in three identical spacecrafts. The total acceleration disturbance to each proof mass is required to be below 3 × 10-15 m/s2√Hz . Optical path length variations on each optical bench must be kept below 40 pm/√Hz over 1 Hz to 0.1 mHz. Thermal variations due to, for example, solar radiation or temperature gradients across the proof mass housing will distort the spacecraft causing changes in the mass attraction and sensor location. We have developed a thermal control system developed for the LISA gravitational reference sensor (GRS) ground verification testing which provides thermal stability better than 1 mK/√Hz to f control for the LISA spacecraft to compensate solar irradiation. Thermally stable environment is very demanded for LISA performance verification. In a lab environment specifications can be met with considerable amount of insulation and thermal mass. For spacecraft, the very limited thermal mass calls for an active control system which can meet disturbance rejection and stability requirements simultaneously in the presence of long time delay. A simple proportional plus integral control law presently provides approximately 1 mK/√Hz of thermal stability for over 80 hours. Continuing development of a model predictive feed-forward algorithm will extend performance to below 1 mK/√Hz at f < 1 mHz and lower.

  13. Distinguishing between Formation Channels for Binary Black Holes with LISA

    Science.gov (United States)

    Breivik, Katelyn; Rodriguez, Carl L.; Larson, Shane L.; Kalogera, Vassiliki; Rasio, Frederic A.

    2016-10-01

    The recent detections of GW150914 and GW151226 imply an abundance of stellar-mass binary black hole (BBH) mergers in the local universe. While ground-based gravitational wave detectors are limited to observing the final moments before a binary merges, space-based detectors, such as the Laser Interferometer Space Antenna (LISA), can observe binaries at lower orbital frequencies where such systems may still encode information about their formation histories. In particular, the orbital eccentricity and mass of BBHs in the LISA frequency band can be used together to discriminate between binaries formed in isolation in galactic fields and those formed in dense stellar environments such as globular clusters. In this letter, we explore the orbital eccentricity and mass of BBH populations as they evolve through the LISA frequency band. Overall we find that there are two distinct populations discernible by LISA. We show that up to ∼ 90 % of binaries formed either dynamically or in isolation have eccentricities that are measurable with LISA. Finally, we note how measured eccentricities of low-mass BBHs evolved in isolation could provide detailed constraints on the physics of black hole natal kicks and common-envelope evolution.

  14. Optical Attenuation in MoNA and LISA Detector Elements

    Science.gov (United States)

    Rice, Logan; Wong, Jonathan; MoNA Collaboration

    2011-10-01

    The MoNA collaboration is a research group of students and faculty from 13 primarily undergraduate institutions, with detectors at the NSCL: MoNA (Modular Neutron Array) and the newly-built LISA (Large multi-Institutional Scintillating Array). These arrays each have 144 plastic scintillating bars. When a neutron collides with a hydrogen nucleus within the plastic, photomultiplier tubes at either end of the bar detect the scintillation photons. Their arrival times are used to determine the position of the event, but as the light travels through the detector it loses intensity exponentially. How dramatic this loss is can be described by a parameter called the attenuation length, with larger attenuation lengths corresponding to lower loss. Recently the MoNA collaboration conducted its LISA commissioning experiment investigating two-neutron decay states of 25O. As a part of LISA's commissioning, we measured the attenuation lengths of the individual detector bars that make up the LISA array and compared these lengths with those of the older MoNA array. We found that the LISA bars had a larger attenuation length on average with impacts on detector efficiency and effective threshold. The authors wish to acknowledge the contributions of the members of the MoNA Collaboration.

  15. Mona Lisa is always happy - and only sometimes sad.

    Science.gov (United States)

    Liaci, Emanuela; Fischer, Andreas; Heinrichs, Markus; van Elst, Ludger Tebartz; Kornmeier, Jürgen

    2017-03-10

    The worldwide fascination of da Vinci's Mona Lisa has been dedicated to the emotional ambiguity of her face expression. In the present study we manipulated Mona Lisa's mouth curvature as one potential source of ambiguity and studied how a range of happier and sadder face variants influences perception. In two experimental conditions we presented different stimulus ranges with different step sizes between stimuli along the happy-sad axis of emotional face expressions. Stimuli were presented in random order and participants indicated the perceived emotional face expression (first task) and the confidence of their response (second task). The probability of responding 'happy' to the original Mona Lisa was close to 100%. Furthermore, in both conditions the perceived happiness of Mona Lisa variants described sigmoidal functions of the mouth curvature. Participants' confidence was weakest around the sigmoidal inflection points. Remarkably, the sigmoidal functions, as well as confidence values and reaction times, differed significantly between experimental conditions. Finally, participants responded generally faster to happy than to sad faces. Overall, the original Mona Lisa seems to be less ambiguous than expected. However, perception of and reaction to the emotional face content is relative and strongly depends on the used stimulus range.

  16. Higher harmonics increase LISA's mass reach for supermassive black holes

    CERN Document Server

    Arun, K G; Sathyaprakash, B S; Sinha, Siddhartha

    2007-01-01

    Current expectations on the signal to noise ratios and masses of supermassive black holes which the Laser Interferometer Space Antenna (LISA) can observe are based on using in matched filtering only the dominant harmonic of the inspiral waveform at twice the orbital frequency. Other harmonics will affect the signal-to-noise ratio of systems currently believed to be observable by LISA. More significantly, inclusion of other harmonics in our matched filters would mean that more massive systems that were previously thought to be {\\it not} visible in LISA should be detectable with reasonable SNRs. Our estimates show that we should be able to significantly increase the mass reach of LISA and observe the more commonly occurring supermassive black holes of masses $\\sim 10^8M_\\odot.$ More specifically, with the inclusion of all known harmonics LISA will be able to observe even supermassive black hole coalescences with total mass $\\sim 10^8 M_\\odot (10^9M_\\odot)$ (and mass-ratio 0.1) for a low frequency cut-off of $10...

  17. First stage of LISA data processing. II. Alternative filtering dynamic models for LISA

    Science.gov (United States)

    Wang, Yan; Heinzel, Gerhard; Danzmann, Karsten

    2015-08-01

    Space-borne gravitational wave detectors, such as (e)LISA, are designed to operate in the low-frequency band (mHz to Hz), where there is a variety of gravitational wave sources of great scientific value [arXiv:1305.5720 and S. Babak et al., Classical Quantum Gravity 28, 114001 (2011)]. To achieve the extraordinary sensitivity of these detectors, the precise synchronization of the clocks on the separate spacecraft and the accurate determination of the interspacecraft distances are important ingredients. In our previous paper [Y. Wang et al., Phys. Rev. D 90, 064016 (2014)], we have described a hybrid-extend Kalman filter with a full state vector to do this job. In this paper, we explore several different state vectors and their corresponding (phenomenological) dynamic models to reduce the redundancy in the full state vector, to accelerate the algorithm, and to make the algorithm easily extendable to more complicated scenarios.

  18. First stage of LISA data processing II: Alternative filtering dynamic models for LISA

    CERN Document Server

    Wang, Yan; Danzmann, Karsten

    2015-01-01

    Space-borne gravitational wave detectors, such as (e)LISA, are designed to operate in the low-frequency band (mHz to Hz), where there is a variety of gravitational wave sources of great scientific value. To achieve the extraordinary sensitivity of these detector, the precise synchronization of the clocks on the separate spacecraft and the accurate determination of the interspacecraft distances are important ingredients. In our previous paper (Phys. Rev. D 90, 064016 [2014]), we have described a hybrid-extend Kalman filter with a full state vector to do this job. In this paper, we explore several different state vectors and their corresponding (phenomenological) dynamic models, to reduce the redundancy in the full state vector, to accelerate the algorithm, and to make the algorithm easily extendable to more complicated scenarios.

  19. Lightweight Innovative Solar Array (LISA): Providing Higher Power to Small Spacecraft

    Science.gov (United States)

    Johnson, Les; Carr, John; Fabisinski, Leo; Russell,Tiffany; Smith, Leigh

    2015-01-01

    Affordable and convenient access to electrical power is essential for all spacecraft and is a critical design driver for the next generation of smallsats, including cubesats, which are currently extremely power limited. The Lightweight Innovative Solar Array (LISA), a concept designed, prototyped, and tested at the NASA Marshall Space Flight Center (MSFC) in Huntsville, Alabama provides an affordable, lightweight, scalable, and easily manufactured approach for power generation in space. This flexible technology has many wide-ranging applications from serving small satellites to providing abundant power to large spacecraft in GEO and beyond. By using very thin, ultra-flexible solar arrays adhered to an inflatable structure, a large area (and thus large amount of power) can be folded and packaged into a relatively small volume. The LISA array comprises a launch-stowed, orbit-deployed structure on which lightweight photovoltaic devices and, potentially, transceiver elements are embedded. The system will provide a 2.5 to 5 fold increase in specific power generation (Watts/kilogram) coupled with a >2x enhancement of stowed volume (Watts/cubic-meter) and a decrease in cost (dollars/Watt) when compared to state-of-the-art solar arrays.

  20. Improved analytic extreme-mass-ratio inspiral model for scoping out eLISA data analysis

    CERN Document Server

    Chua, Alvin J K

    2015-01-01

    The space-based gravitational-wave detector eLISA has been selected as the ESA L3 mission, and the mission design will be finalised by the end of this decade. To prepare for mission formulation over the next few years, several outstanding and urgent questions in data analysis will be addressed using mock data challenges, informed by instrument measurements from the LISA Pathfinder satellite launching at the end of 2015. These data challenges will require accurate and computationally affordable waveform models for anticipated sources such as the extreme-mass-ratio inspirals (EMRIs) of stellar-mass compact objects into massive black holes. Previous data challenges have made use of the well-known analytic EMRI waveforms of Barack and Cutler, which are extremely quick to generate but dephase relative to more accurate waveforms within hours, due to their mismatched radial, polar and azimuthal frequencies. In this paper, we describe an augmented Barack-Cutler model that uses a frequency map to the correct Kerr freq...

  1. Exploring Parameter Space Coverage of Various LISA Configurations

    Science.gov (United States)

    Katz, Michael L.

    2017-01-01

    With the success of LISA Pathfinder, the measurement of gravitational waves in space has taken an important step forward. We conduct an analysis of the measurement abilities of distinctive LISA detector designs, examining how the low-frequency band-edge behavior of the detector sensitivity curve affects measurement capabilities. We are particularly interested in LISA’s ability to measure massive black holes that are merging near the band-edge, with masses in the range of $\\sim 10^6-10^{10}M_\\odot$. We examine the ringdown and insprial detectability over a wide range of Massive Black Hole (MBH) binaries along with a broad palette of possible LISA design parameters.

  2. Black-hole Merger Simulations for LISA Science

    Science.gov (United States)

    Kelly, Bernard J.; Baker, John G.; vanMeter, James R.; Boggs, William D.; Centrella, Joan M.; McWilliams, Sean T.

    2009-01-01

    The strongest expected sources of gravitational waves in the LISA band are the mergers of massive black holes. LISA may observe these systems to high redshift, z>10, to uncover details of the origin of massive black holes, and of the relationship between black holes and their host structures, and structure formation itself. These signals arise from the final stage in the development of a massive black-hole binary emitting strong gravitational radiation that accelerates the system's inspiral toward merger. The strongest part of the signal, at the point of merger, carries much information about the system and provides a probe of extreme gravitational physics. Theoretical predictions for these merger signals rely on supercomputer simulations to solve Einstein's equations. We discuss recent numerical results and their impact on LISA science expectations.

  3. Accreting Double White Dwarf Binaries: Implications for LISA

    Science.gov (United States)

    Kremer, Kyle; Breivik, Katelyn; Larson, Shane L.; Kalogera, Vassiliki

    2017-09-01

    We explore the long-term evolution of mass-transferring white dwarf (WD) binaries undergoing both direct-impact and disk accretion and explore implications of such systems to gravitational-wave (GW) astronomy. We cover a broad range of initial component masses and show that these systems, the majority of which lie within the Laser Interferometer Space Antenna (LISA) sensitivity range, exhibit prominent negative orbital frequency evolution (chirp) for a significant fraction of their lifetimes. Using a galactic population synthesis, we predict ∼2700 of these systems will be observable with a negative chirp of 0.1 yr‑2 by a space-based GW detector like LISA. We also show that detections of mass-transferring double WD systems by LISA may provide astronomers with unique ways of probing the physics governing close compact object binaries.

  4. Bayesian statistics for the calibration of the LISA Pathfinder experiment

    Science.gov (United States)

    Armano, M.; Audley, H.; Auger, G.; Binetruy, P.; Born, M.; Bortoluzzi, D.; Brandt, N.; Bursi, A.; Caleno, M.; Cavalleri, A.; Cesarini, A.; Cruise, M.; Danzmann, K.; Diepholz, I.; Dolesi, R.; Dunbar, N.; Ferraioli, L.; Ferroni, V.; Fitzsimons, E.; Freschi, M.; García Marirrodriga, C.; Gerndt, R.; Gesa, L.; Gibert, F.; Giardini, D.; Giusteri, R.; Grimani, C.; Harrison, I.; Heinzel, G.; Hewitson, M.; Hollington, D.; Hueller, M.; Huesler, J.; Inchauspé, H.; Jennrich, O.; Jetzer, P.; Johlander, B.; Karnesis, N.; Kaune, B.; Korsakova, N.; Killow, C.; Lloro, I.; Maarschalkerweerd, R.; Madden, S.; Mance, D.; Martin, V.; Martin-Porqueras, F.; Mateos, I.; McNamara, P.; Mendes, J.; Mitchell, E.; Moroni, A.; Nofrarias, M.; Paczkowski, S.; Perreur-Lloyd, M.; Pivato, P.; Plagnol, E.; Prat, P.; Ragnit, U.; Ramos-Castro, J.; Reiche, J.; Romera Perez, J. A.; Robertson, D.; Rozemeijer, H.; Russano, G.; Sarra, P.; Schleicher, A.; Slutsky, J.; Sopuerta, C. F.; Sumner, T.; Texier, D.; Thorpe, J.; Trenkel, C.; Tu, H. B.; Vitale, S.; Wanner, G.; Ward, H.; Waschke, S.; Wass, P.; Wealthy, D.; Wen, S.; Weber, W.; Wittchen, A.; Zanoni, C.; Ziegler, T.; Zweifel, P.

    2015-05-01

    The main goal of LISA Pathfinder (LPF) mission is to estimate the acceleration noise models of the overall LISA Technology Package (LTP) experiment on-board. This will be of crucial importance for the future space-based Gravitational-Wave (GW) detectors, like eLISA. Here, we present the Bayesian analysis framework to process the planned system identification experiments designed for that purpose. In particular, we focus on the analysis strategies to predict the accuracy of the parameters that describe the system in all degrees of freedom. The data sets were generated during the latest operational simulations organised by the data analysis team and this work is part of the LTPDA Matlab toolbox.

  5. Higher signal harmonics, LISA's angular resolution and dark energy

    CERN Document Server

    Arun, K G; Sathyaprakash, B S; Sinha, Siddhartha; Broeck, Chris Van Den

    2007-01-01

    It is generally believed that the angular resolution of the Laser Interferometer Space Antenna (LISA) for binary supermassive black holes (SMBH) will not be good enough to identify the host galaxy or galaxy cluster. This conclusion, based on using only the dominant harmonic of the binary SMBH signal, changes dramatically when higher signal harmonics are included in assessing the parameter estimation problem. We show that in a subset of the source parameter space the angular resolution increases by more than a factor of 10, thereby making it possible for LISA to identify the host galaxy/galaxy cluster. Thus, LISA's observation of certain binary SMBH coalescence events could constrain the dark energy equation of state to within a few percent, comparable to the level expected from other dark energy missions.

  6. E. Yiannopoulou on Lisa Blackman’s The Body.

    Directory of Open Access Journals (Sweden)

    2009-11-01

    Full Text Available Blackman, Lisa. The Body. Oxford and New York: Berg, 2008. 160 pp. “Is there anything natural about the human body?” (1. This is how Lisa Blackman begins her all too daunting task of reviewing and critically evaluating what has come to be known as “body theory” in the field of sociology. Carefully picking her way among numerous theories on the corporeal that have been produced across the humanities in the last twenty years, Blackman lays out her problematic from the start by asking to know w...

  7. Mona Lisa:. the Stochastic View and Fractality in Color Space

    Science.gov (United States)

    Pedram, Pouria; Jafari, G. R.

    A painting consists of objects which are arranged in specific ways. The art of painting is drawing the objects, which can be considered as known trends, in an expressive manner. Detrended methods are suitable for characterizing the artistic works of the painter by eliminating trends. It means that the study of paintings, regardless of its apparent purpose, as a stochastic process. Multifractal detrended fluctuation analysis is applied to characterize the statistical properties of Mona Lisa, as an instance, to exhibit the fractality of the painting. The results show that Mona Lisa is a long-range correlated and almost behaves similar in various scales.

  8. Closed loop simulations of the thermal experiments in LISA Pathfinder

    CERN Document Server

    Gibert, Ferran; Karnesis, Nikolaos; Díaz-Aguiló, Marc; Mateos, Ignacio; Lobo, Alberto; Gesa, Lluís; Martín, Víctor; Lloro, Ivan

    2013-01-01

    The thermal experiments to be carried out onboard LISA Pathfinder (LPF) will provide essential information of the dependences of the instrument with respect to temperature variations. These thermal experiments must be modelled and simulated both to be validated for mission operations purposes and also to develop a data analysis tool able to characterise the temperature noise contribution to the instrument performance. Here we will present the models developed and the simulated signals for some of the experiments together with the corresponding interferometer readouts, the latter being computed by combining the thermal models with the global LTP (LISA Technology Package) simulator of the LTP Data Analysis team.

  9. LISA and NASA's Physics of the Cosmos Theme

    Science.gov (United States)

    Stebbins, Robin T.

    2008-01-01

    In the past year, the LISA Project at NASA has completed a major review and has thoroughly reviewed its cost estimates. This talk will summarize the conclusions of the Beyond Einstein Program Assessment, and review the main conclusions of the cost estimation work done at NASA, including reduced mission concepts. Astro2010, the decadal review which sets priorities for astronomy and astrophysics projects in the U.S., is getting organized. Preparing for and participating in Astro2010 will be a crucial activity for the NASA side of the LISA Project in thc next 18 months.

  10. Lightweight Integrated Solar Array (LISA): Providing Higher Power to Small Spacecraft

    Science.gov (United States)

    Johnson, Les; Carr, John; Fabisinski, Leo; Lockett, Tiffany Russell

    2015-01-01

    Affordable and convenient access to electrical power is essential for all spacecraft and is a critical design driver for the next generation of smallsats, including CubeSats, which are currently extremely power limited. The Lightweight Integrated Solar Array (LISA), a concept designed, prototyped, and tested at the NASA Marshall Space Flight Center (MSFC) in Huntsville, Alabama provides an affordable, lightweight, scalable, and easily manufactured approach for power generation in space. This flexible technology has many wide-ranging applications from serving small satellites to providing abundant power to large spacecraft in GEO and beyond. By using very thin, ultraflexible solar arrays adhered to an inflatable or deployable structure, a large area (and thus large amount of power) can be folded and packaged into a relatively small volume.

  11. Realistic Event Rates for Detection of Supermassive Black Hole Coalescence by LISA

    CERN Document Server

    Rhook, K J; Rhook, Kirsty J.

    2005-01-01

    The gravitational waves generated during supermassive black hole (SMBH) coalescence are prime candidates for detection by the satellite LISA. We use the extended Press-Schechter formalism combined with empirically motivated estimates for the SMBH--dark matter halo mass relation and SMBH occupation fraction to estimate the maximum coalescence rate for major SMBH mergers. Assuming efficient binary coalescence, and guided by the lowest nuclear black hole mass inferred in local galactic bulges and nearby low-luminosity active galactic nuclei (10^5 Msun) we predict approximately 15 detections per year at a signal to noise greater than five, in each of the inspiral and ringdown phases. Rare coalescences between SMBHs having masses in excess of 10^7 Msun will be more readily detected via gravitational waves from the ringdown phase.

  12. A Green Robotic Observatory for Astronomy Education

    Science.gov (United States)

    Reddy, Vishnu; Archer, K.

    2008-09-01

    With the development of robotic telescopes and stable remote observing software, it is currently possible for a small institution to have an affordable astronomical facility for astronomy education. However, a faculty member has to deal with the light pollution (observatory location on campus), its nightly operations and regular maintenance apart from his day time teaching and research responsibilities. While building an observatory at a remote location is a solution, the cost of constructing and operating such a facility, not to mention the environmental impact, are beyond the reach of most institutions. In an effort to resolve these issues we have developed a robotic remote observatory that can be operated via the internet from anywhere in the world, has a zero operating carbon footprint and minimum impact on the local environment. The prototype observatory is a clam-shell design that houses an 8-inch telescope with a SBIG ST-10 CCD detector. The brain of the observatory is a low draw 12-volt harsh duty computer that runs the dome, telescope, CCD camera, focuser, and weather monitoring. All equipment runs of a 12-volt AGM-style battery that has low lead content and hence more environmental-friendly to dispose. The total power of 12-14 amp/hrs is generated from a set of solar panels that are large enough to maintain a full battery charge for several cloudy days. This completely eliminates the need for a local power grid for operations. Internet access is accomplished via a high-speed cell phone broadband connection or satellite link eliminating the need for a phone network. An independent observatory monitoring system interfaces with the observatory computer during operation. The observatory converts to a trailer for transportation to the site and is converted to a semi-permanent building without wheels and towing equipment. This ensures minimal disturbance to local environment.

  13. Mona Lisa syndrome: solving the enigma of the Gioconda smile.

    Science.gov (United States)

    Adour, K K

    1989-03-01

    The Mona Lisa smile is presented as a possible example of facial muscle contracture that develops after Bell's palsy when the facial nerve has undergone partial wallerian degeneration and has regenerated. The accompanying synkinesis would explain many of the known facts surrounding the painting and is a classic example of Leonardo da Vinci as the compulsive anatomist who combined art and science.

  14. Structural, thermal, optical and gravitational modelling for LISA

    Energy Technology Data Exchange (ETDEWEB)

    Merkowitz, Stephen M [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Conkey, Shelly [Swales Aerospace, 5050 Powder Mill Rd, Beltsville, MD 20705 (United States); Haile, William B [Swales Aerospace, 5050 Powder Mill Rd, Beltsville, MD 20705 (United States); KellyIII, William R [Swales Aerospace, 5050 Powder Mill Rd, Beltsville, MD 20705 (United States); Peabody, Hume [Swales Aerospace, 5050 Powder Mill Rd, Beltsville, MD 20705 (United States); Dumont, Philip J [Jet Propulsion Laboratory, Pasadena, CA 91109 (United States)

    2004-03-07

    The laser interferometer space antenna (LISA) mission uses laser interferometry to detect and observe gravitational waves from astrophysical sources. Modelling of LISA ultimately needs to forecast and interrelate the behaviour of the science input, structure, optics, control systems and many other factors that affect the performance of the flight hardware. These models include high precision STOP (structural-thermal-optical) analyses. In addition, self-gravity analyses of the spacecraft, based on the structural-thermal modelling results, are required for each analysis cycle to understand the gravitational interaction between the spacecraft components. The complete analysis cycle is called STOP-G. Several aspects of this analysis require unprecedented precision due to LISA's challenging design requirements. We present here a modelling approach designed to minimize analysis errors, particularly those that enter when mapping results from one modelling step to the next. Central to the approach is the use of a single model topology for all phases of the STOP-G analysis cycle. The feasibility of this approach was verified using a simplified model of the LISA spacecraft.

  15. Time-delay interferometry for LISA with one arm dysfunctional

    Energy Technology Data Exchange (ETDEWEB)

    Dhurandhar, S V [IUCAA, Postbag 4, Ganeshkind, Pune, 411 007 (India); Nayak, K Rajesh [IISER-Kolkata, PO: BCKV Campus Main Office, Mohanpur, 741252 (India); Vinet, J-Y, E-mail: rajesh@iiserkol.ac.i [ARTEMIS, Observatoire de la Cote d' Azur, BP 4229, 06304 Nice (France)

    2010-07-07

    In order to attain the requisite sensitivity for LISA (Laser Interferometric Space Antenna)-a joint space mission of the ESA and NASA-the laser frequency noise must be suppressed below the secondary noises such as the optical path noise, acceleration noise etc. By combining six appropriately time-delayed data streams containing fractional Doppler shifts-a technique called time-delay interferometry (TDI)-the laser frequency noise may be adequately suppressed. We consider the general model of LISA where the armlengths vary with time, so that second-generation TDI are relevant. However, we must envisage the possibility that not all the optical links of LISA will be operating at all times, and therefore, we here consider the case of LISA operating with two arms only. As shown earlier in the literature, obtaining even approximate solutions of TDI to the general problem is very difficult. Since here only four optical links are relevant, the algebraic problem simplifies considerably. We are then able to exhibit a large number of solutions (from a mathematical point of view an infinite number) and further present an algorithm to generate these solutions.

  16. Mona Lisa is always happy – and only sometimes sad

    Science.gov (United States)

    Liaci, Emanuela; Fischer, Andreas; Heinrichs, Markus; van Elst, Ludger Tebartz; Kornmeier, Jürgen

    2017-01-01

    The worldwide fascination of da Vinci’s Mona Lisa has been dedicated to the emotional ambiguity of her face expression. In the present study we manipulated Mona Lisa’s mouth curvature as one potential source of ambiguity and studied how a range of happier and sadder face variants influences perception. In two experimental conditions we presented different stimulus ranges with different step sizes between stimuli along the happy-sad axis of emotional face expressions. Stimuli were presented in random order and participants indicated the perceived emotional face expression (first task) and the confidence of their response (second task). The probability of responding ‘happy’ to the original Mona Lisa was close to 100%. Furthermore, in both conditions the perceived happiness of Mona Lisa variants described sigmoidal functions of the mouth curvature. Participants’ confidence was weakest around the sigmoidal inflection points. Remarkably, the sigmoidal functions, as well as confidence values and reaction times, differed significantly between experimental conditions. Finally, participants responded generally faster to happy than to sad faces. Overall, the original Mona Lisa seems to be less ambiguous than expected. However, perception of and reaction to the emotional face content is relative and strongly depends on the used stimulus range. PMID:28281547

  17. LISA Astronomy of Double White Dwarf Binary Systems

    NARCIS (Netherlands)

    Stroeer, A.; Vecchio, A.; Nelemans, G.A.

    2005-01-01

    The Laser Interferometer Space Antenna (LISA) will provide us with the largest observational sample of (interacting) double white dwarf binaries, whose evolution is driven by the radiation reaction and other effects, such as tides and mass transfer. We show that, depending on the actual physical par

  18. Angular Resolution of the LISA Gravitational Wave Detector

    CERN Document Server

    Cutler, C

    1998-01-01

    We calculate the angular resolution of the planned LISA detector, a space-based laser interferometer for measuring low-frequency gravitational waves from galactic and extragalactic sources. LISA is not a pointed instrument; it is an all-sky monitor with a quadrupolar beam pattern. LISA will measure simultaneously both polarization components of incoming gravitational waves, so the data will consist of two time series. All physical properties of the source, including its position, must be extracted from these time series. LISA's angular resolution is therefore not a fixed quantity, but rather depends on the type of signal and on how much other information must be extracted. Information about the source position will be encoded in the measured signal in three ways: 1) through the relative amplitudes and phases of the two polarization components, 2) through the periodic Doppler shift imposed on the signal by the detector's motion around the Sun, and 3) through the further modulation of the signal caused by the d...

  19. Multi-Messenger Astronomy: White Dwarf Binaries, LISA and GAIA

    Science.gov (United States)

    Bueno, Michael; Breivik, Katelyn; Larson, Shane L.

    2017-01-01

    The discovery of gravitational waves has ushered in a new era in astronomy. The low-frequency band covered by the future LISA detector provides unprecedented opportunities for multi-messenger astronomy. With the Global Astrometric Interferometer for Astrophysics (GAIA) mission, we expect to discover about 1,000 eclipsing binary systems composed of a WD and a main sequence star - a sizeable increase from the approximately 34 currently known binaries of this type. In advance of the first GAIA data release and the launch of LISA within the next decade, we used the Binary Stellar Evolution (BSE) code simulate the evolution of White Dwarf Binaries (WDB) in a fixed galaxy population of about 196,000 sources. Our goal is to assess the detectability of a WDB by LISA and GAIA using the parameters from our population synthesis, we calculate GW strength h, and apparent GAIA magnitude G. We can then use a scale factor to make a prediction of how many multi- messenger sources we expect to be detectable by both LISA and GAIA in a galaxy the size of the Milky Way. We create binaries 10 times to ensure randomness in distance assignment and average our results. We then determined whether or not astronomical chirp is the difference between the total chirp and the GW chirp. With Astronomical chirp and simulations of mass transfer and tides, we can gather more information about the internal astrophysics of stars in ultra-compact binary systems.

  20. Developing an astronomical observatory in Paraguay

    Science.gov (United States)

    Troche-Boggino, Alexis E.

    Background: Paraguay has some heritage from the astronomy of the Guarani Indians. Buenaventura Suarez S.J. was a pioneer astronomer in the country in the XVIII century. He built various astronomical instruments and imported others from England. He observed eclipses of Jupiter's satellites and of the Sun and Moon. He published his data in a book and through letters. The Japanese O.D.A. has collaborated in obtaining equipment and advised their government to assist Paraguay in building an astronomical observatory, constructing a moving-roof observatory and training astronomers as observatory operators. Future: An astronomical center is on the horizon and some possible fields of research are being considered. Goal: To improve education at all possible levels by not only observing sky wonders, but also showing how instruments work and teaching about data and image processing, saving data and building a data base. Students must learn how a modern scientist works.

  1. Beijing Ancient Observatory

    Science.gov (United States)

    Shi, Yunli

    The Beijing Ancient Observatory is now the only complete example of an observatory from the seventeenth century in the world. It is a monument to the prosperity of astronomy in traditional China. Its instruments are emblems of the encounter and amalgamation of Chinese and European Science in the seventeenth and eighteenth centuries.

  2. Zelenchukskaya Radio Astronomical Observatory

    Science.gov (United States)

    Smolentsev, Sergey; Dyakov, Andrei

    2013-01-01

    This report summarizes information about Zelenchukskaya Radio Astronomical Observatory activities in 2012. Last year a number of changes took place in the observatory to improve some technical characteristics and to upgrade some units to the required status. The report provides an overview of current geodetic VLBI activities and gives an outlook for the future.

  3. Svetloe Radio Astronomical Observatory

    Science.gov (United States)

    Smolentsev, Sergey; Rahimov, Ismail

    2013-01-01

    This report summarizes information about the Svetloe Radio Astronomical Observatory activities in 2012. Last year, a number of changes took place in the observatory to improve some technical characteristics and to upgrade some units to their required status. The report provides an overview of current geodetic VLBI activities and gives an outlook for the future.

  4. Silicon Carbide Telescope Investigations for the LISA Mission

    Science.gov (United States)

    Sanjuan, J.; Spannagel, R.; Braxmaier, C.; Korytov, D.; Mueller, G.; Preston, A.; Livas, J.

    2013-01-01

    Space-based gravitational wave (GW) detectors are conceived to detect GWs in the low frequency range (mili-Hertz) by measuring the distance between free-falling proof masses in spacecraft (SC) separated by 5 Gm. The reference in the last decade has been the joint ESA-NASA mission LISA. One of the key elements of LISA is the telescope since it simultaneously gathers the light coming from the far SC (approximately or equal to 100 pW) and expands, collimates and sends the outgoing beam (2 W) to the far SC. Demanding requirements have been imposed on the telescope structure: the dimensional stability of the telescope must be approximately or equal to 1pm Hz(exp-1/2) at 3 mHz and the distance between the primary and the secondary mirrors must change by less than 2.5 micrometer over the mission lifetime to prevent defocussing. In addition the telescope structure must be light, strong and stiff. For this reason a potential on-axis telescope structure for LISA consisting of a silicon carbide (SiC) quadpod structure has been designed, constructed and tested. The coefficient of thermal expansion (CTE) in the LISA expected temperature range has been measured with a 1% accuracy which allows us to predict the shrinkage/expansion of the telescope due to temperature changes, and pico-meter dimensional stability has been measured at room temperature and at the expected operating temperature for the LISA telescope (around -6[deg]C). This work is supported by NASA Grants NNX10AJ38G and NX11AO26G,

  5. Short-term forecasting of solar energetic ions on board LISA

    Energy Technology Data Exchange (ETDEWEB)

    Grimani, C [Istituto di Fisica Universita degli Studi di Urbino ' Carlo Bo' , Urbino (PU) and Istituto Nazionale di Fisica Nucleare, Florence (Italy); Araujo, H M; Shaul, D N A; Sumner, T J [Imperial College, London (United Kingdom); Fabi, M [Istituto di Fisica Universita degli studi di Urbino ' Carlo Bo' (Italy); Finetti, N [Dipartimento di Fisica, Universita degli Studi dell' Aquila and Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Gran Sasso, Gruppo collegato dell' Aquila, L' Aquila (Italy); Lobo, A; Mateos, I, E-mail: catia.grimani@uniurb.i [Institut d' Estudis Espacials de Catalunya (IEEC), Barcelona (Spain)

    2010-05-01

    LISA (Laser Interferometer Space Antenna) and LISA Pathfinder (LISA-PF) free-falling test-masses are charged by galactic and solar energetic particles. This process generates spurious forces on the test masses which appear as noise in the experiments. It was shown that relativistic solar electron detection can be used for up-to-one-hour forecasting of incoming energetic ions at 1 AU. Warning of incoming solar energetic particle events could allow us to optimize the test-mass discharging. The current LISA-PF radiation monitor design needs to be upgraded if solar electron detection is to be implemented in LISA.

  6. Goddard Geophysical and Astronomical Observatory

    Science.gov (United States)

    Figueroa, Ricardo

    2013-01-01

    This report summarizes the technical parameters and the technical staff of the VLBI system at the fundamental station GGAO. It also gives an overview about the VLBI activities during the report year. The Goddard Geophysical and Astronomical Observatory (GGAO) consists of a 5-meter radio telescope for VLBI, a new 12-meter radio telescope for VLBI2010 development, a 1-meter reference antenna for microwave holography development, an SLR site that includes MOBLAS-7, the NGSLR development system, and a 48" telescope for developmental two-color Satellite Laser Ranging, a GPS timing and development lab, a DORIS system, meteorological sensors, and a hydrogen maser. In addition, we are a fiducial IGS site with several IGS/IGSX receivers. GGAO is located on the east coast of the United States in Maryland. It is approximately 15 miles NNE of Washington, D.C. in Greenbelt, Maryland.

  7. The Liverpool Bay Coastal Observatory

    Science.gov (United States)

    Howarth, John; Palmer, Matthew

    2011-11-01

    A pilot Coastal Observatory has been established in Liverpool Bay which integrates (near) real-time measurements with coupled models and whose results are displayed on the web. The aim is to understand the functioning of coastal seas, their response to natural forcing and the consequences of human activity. The eastern Irish Sea is an apt test site, since it encompasses a comprehensive range of processes found in tidally dominated coastal seas, including near-shore physical and biogeochemical processes influenced by estuarine inflows, where both vertical and horizontal gradients are important. Applications include hypernutrification, since the region receives significantly elevated levels of nutrient inputs, shoreline management (coastal flooding and beach erosion/accretion), and understanding present conditions to predict the impact of climate change (for instance if the number and severity of storms, or of high or low river flows, change). The integrated measurement suite which started in August 2002 covers a range of space and time scales. It includes in situ time series, four to six weekly regional water column surveys, an instrumented ferry, a shore-based HF radar system measuring surface currents and waves, coastal tide gauges and visible and infra-red satellite data. The time series enable definition of the seasonal cycle, its inter-annual variability and provide a baseline from which the relative importance of events can be quantified. A suite of nested 3D hydrodynamic, wave and ecosystem models is run daily, focusing on the observatory area by covering the ocean/shelf of northwest Europe (at 12-km resolution) and the Irish Sea (at 1.8 km), and Liverpool Bay at the highest resolution of 200 m. The measurements test the models against events as they happen in a truly 3D context. All measurements and model outputs are displayed freely on the Coastal Observatory website (http://cobs.pol.ac.uk) for an audience of researchers, education, coastal managers and the

  8. Beginnings of Satellite Navigation

    Directory of Open Access Journals (Sweden)

    Miljenko Solarić

    2008-05-01

    Full Text Available The first satellite navigation system called the Navy Navigation Satellite System (NNSS or TRANSIT was planned in the USA in 1958. It consisted of 5-6 artificial Earth satellites, was set in motion for the USA military in 1964, and in 1967 for civilian purposes. The frequency shift of received radio waves emitted from the satellite and caused by the Doppler effect was measured. The TRANSIT satellite speed of approaching or moving away was derived from that; the TRANSIT satellites emmited also their own coordinates. Then the ship's position was determined by an intersection of three hyperboloids, which were determined from differences of distances in three time intervals. Maintenance of this navigation system was stopped in 1996, but it is still being used in the USA Navy for exploring the ionosphere. Furthermore, results of Doppler measurements in international projects at the Hvar Observatory from 1982 and 1983. This was the first time in Croatia and the former country that the coordinates of the Hvar Observatory were determined in the unique world coordinate system WGS'72. The paper ends with a brief representation of the Tsiklon Doppler navigation system produced in the former Soviet Union, and there is a list of some of numerous produced and designed satellite navigation systems.Ključne riječi

  9. Boulder Magnetic Observatory

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data are vector and scalar component values of the Earth's magnetic field for 2004 recorded at the Boulder Magnetic Observatory in Colorado. Vector values are...

  10. Global Health Observatory (GHO)

    Science.gov (United States)

    ... Data repository Reports Country statistics Map gallery Standards Global Health Observatory (GHO) data Monitoring health for the ... Health financing Health workforce 3.d National and global health risks International Health Regulations (2005) Monitoring Framework ...

  11. Coupling of relative intensity noise and pathlength noise to the length measurement in the optical metrology system of LISA Pathfinder

    Science.gov (United States)

    Wittchen, Andreas; the LPF Collaboration

    2017-05-01

    LISA Pathfinder is a technology demonstration mission for the space-based gravitational wave observatory, LISA. It demonstrated that the performance requirements for the interferometric measurement of two test masses in free fall can be met. An important part of the data analysis is to identify the limiting noise sources. [1] This measurement is performed with heterodyne interferometry. The performance of this optical metrology system (OMS) at high frequencies is limited by sensing noise. One such noise source is Relative Intensity Noise (RIN). RIN is a property of the laser, and the photodiode current generated by the interferometer signal contains frequency dependant RIN. From this electric signal the phasemeter calculates the phase change and laser power, and the coupling of RIN into the measurement signal depends on the noise frequency. RIN at DC, at the heterodyne frequency and at two times the heterodyne frequency couples into the phase. Another important noise at high frequencies is path length noise. To reduce the impact this noise is suppressed with a control loop. Path length noise not suppressed will couple directly into the length measurement. The subtraction techniques of both noise sources depend on the phase difference between the reference signal and the measurement signal, and thus on the test mass position. During normal operations we position the test mass at the interferometric zero, which is optimal for noise subtraction purposes. This paper will show results from an in-flight experiment where the test mass position was changed to make the position dependant noise visible.

  12. Design and construction of an optical test bed for eLISA imaging systems and tilt-to-length coupling

    CERN Document Server

    Chwalla, Michael; Barranco, Germán Fernández; Fitzsimons, Ewan; Gerberding, Oliver; Heinzel, Gerhard; Killow, Christian J; Lieser, Maike; Perreur-Lloyd, Michael; Robertson, David I; Schuster, Sönke; Schwarze, Thomas S; Tröbs, Michael; Ward, Henry; Zwetz, Max

    2016-01-01

    The evolved Laser Interferometer Space Antenna (eLISA) is a future space-based interferometric gravitational-wave detector consisting of three spacecraft in a triangular configuration. The interferometric measurements of path length changes between satellites will be performed on optical benches in the satellites. Angular misalignments of the interfering beams will couple into the length measurement and represent a significant noise source (tilt-to-length (TTL) coupling). Imaging systems are foreseen to reduce this TTL coupling. We have designed and built two different imaging systems to suppress this coupling. To investigate tilt-to-length coupling experimentally we designed and constructed an optical test bed. It consists of a minimal optical bench and a telescope simulator. The minimal optical bench comprises the science interferometer where the local laser is interfered with light from a remote spacecraft. In our experiment, a simulated version of this received beam is generated on the telescope simulator...

  13. Royal Observatory, Greenwich

    Science.gov (United States)

    Murdin, P.

    2000-11-01

    The Royal Observatory at Greenwich, London, founded in 1675, is the location of the Airy Transit Telescope that defines the prime meridian of the world and is the home of the Harrison Chronometers. The Observatory was founded by Charles II with the ultimate purpose of providing an accurate star catalog and model of the Moon's motion, that enabled mariners to find their longitude. During the twen...

  14. The Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Hojvat, C.

    1997-03-01

    The Pierre Auger Observatory is an international collaboration for the detailed study of the highest energy cosmic rays. It will operate at two similar sites, one in the northern hemisphere and one in the southern hemisphere. The Observatory is designed to collect a statistically significant data set of events with energies greater than 10{sup 19} eV and with equal exposures for the northern and southern skies.

  15. Xanthelasma and lipoma in Leonardo da Vinci's Mona Lisa.

    Science.gov (United States)

    Dequeker, Jan; Muls, Erik; Leenders, Kathleen

    2004-08-01

    The painting Mona Lisa in the Louvre, Paris, by Leonardo da Vinci (1503-1506), shows skin alterations at the inner end of the left upper eyelid similar to xanthelasma, and a swelling of the dorsum of the right hand suggestive of a subcutaneous lipoma. These findings in a 25-30 year old woman, who died at the age of 37, may be indicative of essential hyperlipidemia, a strong risk factor for ischemic heart disease in middle age. As far as is known, this portrait of Mona Lisa painted in 1506 is the first evidence that xanthelasma and lipoma were prevalent in the sixteenth century, long before the first description by Addison and Gall in 1851.

  16. Recent progress at NASA in LISA formulation and technology development

    Energy Technology Data Exchange (ETDEWEB)

    Stebbins, R T [NASA Goddard Space Flight Center, Code 663, Greenbelt, MD 20771 (United States)], E-mail: Robin.T.Stebbins@nasa.gov

    2008-06-07

    Over the last year, the NASA half of the joint LISA project has focused its efforts on responding to a major review, and advancing the formulation and technology development of the mission. The NAS/NRC Beyond Einstein program assessment review will be described, including the outcome. The basis of the LISA science requirements has changed from detection determined by integrated signal-to-noise ratio to observation determined by uncertainty in the estimation of astrophysical source parameters. The NASA team has further defined the spacecraft bus design, participated in many design trade studies and advanced the requirements flow down and the associated current best estimates of performance. Recent progress in technology development is also summarized.

  17. DaVinci's Mona Lisa entering the next dimension.

    Science.gov (United States)

    Carbon, Claus-Christian; Hesslinger, Vera M

    2013-01-01

    For several of Leonardo da Vinci's paintings, such as The Virgin and Child with St Anne or the Mona Lisa, there exist copies produced by his own studio. In case of the Mona Lisa, a quite exceptional, rediscovered studio copy was presented to the public in 2012 by the Prado Museum in Madrid. Not only does it mirror its famous counterpart superficially; it also features the very same corrections to the lower layers, which indicates that da Vinci and the 'copyist' must have elaborated their panels simultaneously. On the basis of subjective (thirty-two participants estimated painter-model constellations) as well as objective data (analysis of trajectories between landmarks of both paintings), we revealed that both versions differ slightly in perspective. We reconstructed the original studio setting and found evidence that the disparity between both paintings mimics human binocular disparity. This points to the possibility that the two Giocondas together might represent the first stereoscopic image in world history.

  18. Performance comparison of MoNA and LISA neutron detectors

    Science.gov (United States)

    Purtell, Kimberly; Rethman, Kaitlynne; Haagsma, Autumn; Finck, Joseph; Smith, Jenna; Snyder, Jesse

    2010-11-01

    In 2002 eight primarily undergraduate institutions constructed and tested the Modular Neutron Array (MoNA) which has been used to detect high energy neutrons at the National Superconducting Cyclotron Laboratory (NSCL). Nine institutions have now designed, constructed and tested the Large-area multi-Institutional Scintillator Array (LISA) neutron detector which will be used at the NSCL and the future Facility for Rare Isotope Beams (FRIB). Both detectors are comprised of 144 detector modules. Each module is a 200 x 10 x 10 cm^3 bar organic plastic scintillator with a photomultiplier tube mounted on each end. Using cosmic rays and a gamma source, we compared the performance of MoNA and LISA by using the same electronics to check light attenuation, position resolution, rise times, and cosmic ray peak widths. Results will be presented.

  19. [Mona Lisa syndrome: idiopathic facial paralysis during pregnancy].

    Science.gov (United States)

    Hellebrand, M-C; Friebe-Hoffmann, U; Bender, H G; Kojda, G; Hoffmann, T K

    2006-08-01

    Mona Lisa has been pregnant shortly before the famous painting of Leonardo da Vinci was created (1503-1506). Recently, it has been speculated that Mona Lisa's famous smile is caused by facial muscle contracture and/or synkinesis after Bell's palsy with incomplete nerval regeneration. During pregnancy the incidence of Bell's palsy is increased up to 3.3 times compared to nonpregnant women. The etiology, associated factors as well as various treatment options aiming at the prevention of associated complications and improving recovery of facial nerve function have intensively been evaluated over the past three decades. However, the preferred mode of therapy management, particularly in pregnant women, remains undecided. Corticosteroids may be beneficial if they are applied after the first trimester.

  20. State Space Modelling and Data Analysis Exercises in LISA Pathfinder

    Science.gov (United States)

    Nofrarias, M.; Antonucci, F.; Armano, M.; Audley, H.; Auger, G.; Benedetti, M.; Binetruy, P.; Bogenstahl, J.; Bortoluzzi, D.; Brandt, N.; Caleno, M.; Cavalleri, A.; Congedo, G.; Cruise, M.; Danzmann, K.; De Marchi, F.; Diaz-Aguilo, M.; Diepholz, I.; Dixon, G.; Dolesi, R.; Dunbar, N.; Fauste, J.; Ferraioli, L.; Ferroni, V.; Fichter, W.; Fitzsimons, E.; Freschi, M.; García Marirrodriga, C.; Gerndt, R.; Gesa, L.; Gibert, F.; Giardini, D.; Grimani, C.; Grynagier, A.; Guzmán, F.; Harrison, I.; Heinzel, G.; Hewitson, M.; Hollington, D.; Hoyland, D.; Hueller, M.; Huesler, J.; Jennrich, O.; Jetzer, P.; Johlander, B.; Karnesis, N.; Korsakova, N.; Killow, C.; Llamas, X.; Lloro, I.; Lobo, A.; Maarschalkerweerd, R.; Madden, S.; Mance, D.; Martin, V.; Mateos, I.; McNamara, P.; Mendes, J.; Mitchell, E.; Nicolodi, D.; Perreur-Lloyd, M.; Plagnol, E.; Prat, P.; Ramos-Castro, J.; Reiche, J.; Romera Perez, J. A.; Robertson, D.; Rozemeijer, H.; Russano, G.; Schleicher, A.; Shaul, D.; Sopuerta, C. F.; Sumner, T. J.; Taylor, A.; Texier, D.; Trenkel, C.; Tu, H. B.; Vitale, S.; Wanner, G.; Ward, H.; Waschke, S.; Wass, P.; Wealthy, D.; Wen, S.; Weber, W.; Ziegler, T.; Zweifel, P.

    2013-01-01

    LISA Pathfinder is a mission planned by the European Space Agency (ESA) to test the key technologies that will allow the detection of gravitational waves in space. The instrument on-board, the LISA Technology package, will undergo an exhaustive campaign of calibrations and noise characterisation campaigns in order to fully describe the noise model. Data analysis plays an important role in the mission and for that reason the data analysis team has been developing a toolbox which contains all the functionality required during operations. In this contribution we give an overview of recent activities, focusing on the improvements in the modelling of the instrument and in the data analysis campaigns performed both with real and simulated data.

  1. State space modelling and data analysis exercises in LISA Pathfinder

    CERN Document Server

    Nofrarias, M; Armano, M; Audley, H; Auger, G; Benedetti, M; Binetruy, P; Bogenstahl, J; Bortoluzzi, D; Bosetti, P; Brandt, N; Caleno, M; Cañizares, P; Cavalleri, A; Cesa, M; Chmeissani, M; Conchillo, A; Congedo, G; Cristofolin, I; Cruise, M; Danzmann, K; De Marchi, F; Diaz-Aguilo, M; Diepholz, I; Dixon, G; Dolesi, R; Dunbar, N; Fauste, J; Ferraioli, L; Fichter, V Ferroni W; Fitzsimons, E; Freschi, M; Marin, A García; Marirrodriga, C García; Gesa, R Gerndt L; Gibert, F; Giardini, D; Grimani, C; Grynagier, A; Guillaume, B; Guzmán, F; Harrison, I; Heinzel, G; Hernández, V; Hewitson, M; Hollington, D; Hough, J; Hoyland, D; Hueller, M; Huesler, J; Jennrich, O; Jetzer, P; Johlander, B; Killow, C; Llamas, X; Lloro, I; Lobo, A; Maarschalkerweerd, R; Madden, S; Mance, D; Mateos, I; McNamara, P W; Mendes, J; Mitchell, E; Monsky, A; Nicolini, D; Nicolodi, D; Pedersen, F; Perreur-Lloyd, M; Plagnol, E; Prat, P; Racca, G D; Ramos-Castro, J; Reiche, J; Perez, J A Romera; Robertson, D; Rozemeijer, H; Sanjuan, J; Schleicher, A; Schulte, M; Shaul, D; Stagnaro, L; Strandmoe, S; Steier, F; Sumner, T J; Taylor, A; Texier, D; Trenkel, C; Vitale, H-B Tu S; Wanner, G; Ward, H; Waschke, S; Wass, P; Weber, W J; Ziegler, T; Zweifel, P

    2013-01-01

    LISA Pathfinder is a mission planned by the European Space Agency to test the key technologies that will allow the detection of gravitational waves in space. The instrument on-board, the LISA Technology package, will undergo an exhaustive campaign of calibrations and noise characterisation campaigns in order to fully describe the noise model. Data analysis plays an important role in the mission and for that reason the data analysis team has been developing a toolbox which contains all the functionalities required during operations. In this contribution we give an overview of recent activities, focusing on the improvements in the modelling of the instrument and in the data analysis campaigns performed both with real and simulated data.

  2. Development of a US Gravitational Wave Laser System for LISA

    Science.gov (United States)

    Camp, Jordan B.; Numata, Kenji

    2015-01-01

    A highly stable and robust laser system is a key component of the space-based LISA mission architecture.In this talk I will describe our plans to demonstrate a TRL 5 LISA laser system at Goddard Space Flight Center by 2016.The laser system includes a low-noise oscillator followed by a power amplifier. The oscillator is a low-mass, compact 10mW External Cavity Laser, consisting of a semiconductor laser coupled to an optical cavity, built by the laser vendorRedfern Integrated Optics. The amplifier is a diode-pumped Yb fiber with 2W output, built at Goddard. I will show noiseand reliability data for the full laser system, and describe our plans to reach TRL 5 by 2016.

  3. Discrete derivative estimation in LISA Pathfinder data reduction

    CERN Document Server

    Ferraioli, Luigi; Vitale, Stefano

    2009-01-01

    Data analysis for the LISA Technology package (LTP) experiment to be flown aboard the LISA Pathfinder mission requires the solution of the system dynamics for the calculation of the force acting on the test masses (TMs) starting from interferometer position data. The need for a solution to this problem has prompted us to implement a discrete time domain derivative estimator suited for the LTP experiment requirements. We first report on the mathematical procedures for the definition of two methods; the first based on a parabolic fit approximation and the second based on a Taylor series expansion. These two methods are then generalized and incorporated in a more general class of five point discrete derivative estimators. The same procedure employed for the second derivative can be applied to the estimation of the first derivative and of a data smoother allowing defining a class of simple five points estimators for both. The performances of three particular realization of the five point second derivative estimat...

  4. Constellation X-Ray Observatory Unlocking the Mysteries of Black Holes, Dark Matter and Life Cycles of Matter in the Universe

    Science.gov (United States)

    Weaver, Kim; Wanjek, Christopher

    2004-01-01

    This document provides an overview of the Contellation X-Ray Observatory and its mission. The observatory consists of four x-ray telescopes borne on a satellite constellation at the Earth-Sun L2 point.

  5. [The Mona Lisa: a compendium of Internal Medicine].

    Science.gov (United States)

    Martínez García, A

    2006-03-01

    Through the history of art many artists in their works have portrayed different signs of pathologies. In some cases, the illnesses are easily recognised, although in others a well trained specialist is necessary to reach the diagnosis. Within the numerous works of art that have attracted medical interest, there is none comparable to the most famous and enigmatic portrait painted by Leonardo da Vinci, the Mona Lisa.

  6. Cosmological Backgrounds of Gravitational Waves and eLISA

    CERN Document Server

    Dufaux, Jean-Francois

    2012-01-01

    We review cosmological backgrounds of gravitational waves with a particular attention to the scientific potential of the eLISA/NGO mission. After an overview of cosmological backgrounds and detectors, we consider different cosmological sources that could lead to an observable signal. We then study the backgrounds produced by first-order phase transitions and networks of cosmic strings, assessing the prospects for their detection.

  7. LISA-The Library and Information Services in Astronomy Conferences

    Science.gov (United States)

    2007-01-01

    WorldCat shows that 107 libraries have copies of these proceedings. Much credit must be given overall to Gart Westerhout, for without his support...the comparatively small number of core journals and databases , coupled with generous funding from space agencies and non-profit organizations, astron...appeared in July 1995. More recent LISA meetings discussed net- worked databases , digitization projects, open access projects in astronomy libraries, digital

  8. Computer Studies Of The Isleworth And Louvre Mona Lisas

    Science.gov (United States)

    Asmus, John F.

    1989-07-01

    One of the most pervasive problems in the scholarship of classical paintings is that of authenticity. Traditionally, the attribution of a work of art rests on the subjective opinion of an art historian bolstered by scientific data pertaining to the types and possibly the ages of the materials of the artwork. To expand the range of technical information that may be applied to the painting authentication problem, the methods of computer image processing (IP) have been employed to compare the techniques in two paintings. One is the Mona Lisa del Gioconda by Leonardo da Vinci. The other is known as the Isleworth Mona Lisa and has also been attributed to Leonardo by a few scholars. Computer IP was used to compare statistical and geometrical features of the two paintings. It emerged that the Isleworth work is not a copy of the Louvre painting but does have numerous similarities in composition and execution. These findings lend support to the theory that the Louvre Mona Lisa may be a portrait of Costanza by Leonardo that had been thought lost.

  9. Nested sampling as a tool for LISA data analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gair, Jonathan R [Institute of Astronomy, Madingley Road, CB3 0HA, Cambridge (United Kingdom); Feroz, Farhan; Graff, Philip; Hobson, Michael P [Astrophysics Group, Cavendish Laboratory, JJ Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Babak, Stanislav; Petiteau, Antoine [Max-Planck-Institut fuer Gravitationsphysik, Am Muehlenberg 1, 14476, Potsdam (Germany); Porter, Edward K, E-mail: jgair@ast.cam.ac.u [APC, UMR 7164, Universite Paris 7 Denis Diderot, 10, rue Alice Domon et Leonie Duquet, 75205 Paris Cedex 13 (France)

    2010-05-01

    Nested sampling is a technique for efficiently computing the probability of a data set under a particular hypothesis, also called the Bayesian Evidence or Marginal Likelihood, and for evaluating the posterior. MULTINEST is a multi-modal nested sampling algorithm which has been designed to efficiently explore and characterize posterior probability surfaces containing multiple secondary solutions. We have applied the MULTINEST algorithm to a number of problems in gravitational wave data analysis. In this article, we describe the algorithm and present results for several applications of the algorithm to analysis of mock LISA data. We summarise recently published results for a test case in which we searched for two non-spinning black hole binary merger signals in simulated LISA data. We also describe results obtained with MULTINEST in the most recent round of the Mock LISA Data Challenge (MLDC), in which the algorithm was used to search for and characterise both spinning supermassive black hole binary inspirals and bursts from cosmic string cusps. In all these applications, the algorithm found the correct number of signals and efficiently recovered the posterior probability distribution. Moreover, in most cases the waveform corresponding to the best a-posteriori parameters had an overlap in excess of 99% with the true signal.

  10. LISA Framework for Enhancing Gravitational Wave Signal Extraction Techniques

    Science.gov (United States)

    Thompson, David E.; Thirumalainambi, Rajkumar

    2006-01-01

    This paper describes the development of a Framework for benchmarking and comparing signal-extraction and noise-interference-removal methods that are applicable to interferometric Gravitational Wave detector systems. The primary use is towards comparing signal and noise extraction techniques at LISA frequencies from multiple (possibly confused) ,gravitational wave sources. The Framework includes extensive hybrid learning/classification algorithms, as well as post-processing regularization methods, and is based on a unique plug-and-play (component) architecture. Published methods for signal extraction and interference removal at LISA Frequencies are being encoded, as well as multiple source noise models, so that the stiffness of GW Sensitivity Space can be explored under each combination of methods. Furthermore, synthetic datasets and source models can be created and imported into the Framework, and specific degraded numerical experiments can be run to test the flexibility of the analysis methods. The Framework also supports use of full current LISA Testbeds, Synthetic data systems, and Simulators already in existence through plug-ins and wrappers, thus preserving those legacy codes and systems in tact. Because of the component-based architecture, all selected procedures can be registered or de-registered at run-time, and are completely reusable, reconfigurable, and modular.

  11. Precise timing calibration for MoNA and LISA detectors

    Science.gov (United States)

    Garrett, Sierra; Barker, Alyson; Taylor, Nathaniel; Rogers, Warren F.; MoNA Collaboration

    2013-10-01

    The Modular Neutron Array (MoNA) and the Large multi-Institutional Scintillator Array (LISA), working in conjunction with the Sweeper Magnet and Detector Chamber at the NSCL, MSU, are used to determine the properties of neutron-unbound ground and excited states of neutron-rich nuclei. In order to determine the decay energy, precise energy and trajectory for both the charged fragment and the neutron need to be determined. This requires very precise time calibration for each of the 288 scintillator detectors in the two neutron arrays. Initial timing calibrations for all bars in a vertical layer are achieved using muons passing through all 16 detectors, taking into account the muon transit time from bar to bar. Vertical layers are then ``tied'' to one another using the arrival times of gamma rays originating from the target during production runs. In the LISA commissioning experiment, prompt gamma rays from the contaminant beam 29Na were used instead of those from the 26F production beam since they constituted 98% of the beam intensity (compared with the 26F production beam). Results for the LISA commissioning experiment will be presented. Work supported by NSF grant PHY-1101745.

  12. Creating Griffith Observatory

    Science.gov (United States)

    Cook, Anthony

    2013-01-01

    Griffith Observatory has been the iconic symbol of the sky for southern California since it began its public mission on May 15, 1935. While the Observatory is widely known as being the gift of Col. Griffith J. Griffith (1850-1919), the story of how Griffith’s gift became reality involves many of the people better known for other contributions that made Los Angeles area an important center of astrophysics in the 20th century. Griffith began drawing up his plans for an observatory and science museum for the people of Los Angeles after looking at Saturn through the newly completed 60-inch reflector on Mt. Wilson. He realized the social impact that viewing the heavens could have if made freely available, and discussing the idea of a public observatory with Mt. Wilson Observatory’s founder, George Ellery Hale, and Director, Walter Adams. This resulted, in 1916, in a will specifying many of the features of Griffith Observatory, and establishing a committee managed trust fund to build it. Astronomy popularizer Mars Baumgardt convinced the committee at the Zeiss Planetarium projector would be appropriate for Griffith’s project after the planetarium was introduced in Germany in 1923. In 1930, the trust committee judged funds to be sufficient to start work on creating Griffith Observatory, and letters from the Committee requesting help in realizing the project were sent to Hale, Adams, Robert Millikan, and other area experts then engaged in creating the 200-inch telescope eventually destined for Palomar Mountain. A Scientific Advisory Committee, headed by Millikan, recommended that Caltech Physicist Edward Kurth be put in charge of building and exhibit design. Kurth, in turn, sought help from artist Russell Porter. The architecture firm of John C. Austin and Fredrick Ashley was selected to design the project, and they adopted the designs of Porter and Kurth. Philip Fox of the Adler Planetarium was enlisted to manage the completion of the Observatory and become its

  13. Pulsar virtual observatory

    CERN Document Server

    Keith, M; Lyne, A; Brooke, J

    2007-01-01

    The Pulsar Virtual Observatory will provide a means for scientists in all fields to access and analyze the large data sets stored in pulsar surveys without specific knowledge about the data or the processing mechanisms. This is achieved by moving the data and processing tools to a grid resource where the details of the processing are seen by the users as abstract tasks. By developing intelligent scheduling middle-ware the issues of interconnecting tasks and allocating resources are removed from the user domain. This opens up large sets of radio time-series data to a wider audience, enabling greater cross field astronomy, in line with the virtual observatory concept. Implementation of the Pulsar Virtual Observatory is underway, utilising the UK National Grid Service as the principal grid resource.

  14. Mexican Virtual Solar Observatory

    Science.gov (United States)

    Santillan, A.; Hernandez-Cervantes, L.; Gonzalez-Ponce, A.; Hill, F.; Blanco-Cano, X.

    2007-12-01

    The Virtual Solar Observatory (VSO) concept contains software tools for searching, manipulating, and analyzing data from archives of solar data at many different observatories around the world (Hill 2000). The VSO not only provides fast and reliable access to the existing solar data, but also represents a powerful and unique machinery to perform numerical simulations for the evolution of a variety of different phenomena associated with solar activity. Two Mexican Universities, Universidad Nacional Autónoma de México and the Universidad de Sonora, are working together to create the Mexican Virtual Solar Observatory (MVSO) that will be part of a wider National effort. In this work we present a general description of the MVSO project, as well as the advances obtained in the development of Graphical User Interfaces (GUI) to Remotely Perform Numerical Simulation of the Evolution of Coronal Mass Ejection in the Interplanetary Medium.

  15. The Collaborative Heliophysics Observatory

    Science.gov (United States)

    Hurlburt, N.; Freeland, S.; Cheung, M.; Bose, P.

    2007-12-01

    The Collaborative Heliophysics Observatory (CHO) would provide a robust framework and enabling tools to fully utilize the VOs for scientific discovery and collaboration. Scientists across the realm of heliophysics would be able to create, use and share applications -- either as services using familiar tools or through intuitive workflows -- that orchestrate access to data across all virtual observatories. These applications can be shared freely knowing that proper recognition of data and processing components are acknowledged; that erroneous use of data is flagged; and that results from the analysis runs will in themselves be shared Ð all in a transparent and automatic fashion. In addition, the CHO would incorporate cross-VO models and tools to weave the various virtual observatories into a unified system. These provide starting points for interactions across the solar/heliospheric and heliospheric/magnetospheric boundaries.

  16. LISA extreme-mass-ratio inspiral events as probes of the black hole mass function

    CERN Document Server

    Gair, Jonathan R; Volonteri, Marta

    2010-01-01

    One of the sources of gravitational waves for the proposed space-based gravitational wave detector, the Laser Interferometer Space Antenna (LISA), are the inspirals of compact objects into supermassive black holes in the centres of galaxies - extreme-mass-ratio inspirals (EMRIs). Using LISA observations, we will be able to measure the parameters of each EMRI system detected to very high precision. However, the statistics of the set of EMRI events observed by LISA will be more important in constraining astrophysical models than extremely precise measurements for individual systems. The black holes to which LISA is most sensitive are in a mass range that is difficult to probe using other techniques, so LISA provides an almost unique window onto these objects. In this paper we explore, using Bayesian techniques, the constraints that LISA EMRI observations can place on the mass function of black holes at low redshift. We describe a general framework for approaching inference of this type --- using multiple observ...

  17. Astronomical Virtual Observatories Through International Collaboration

    Directory of Open Access Journals (Sweden)

    Masatoshi Ohishi

    2010-03-01

    Full Text Available Astronomical Virtual Observatories (VOs are emerging research environment for astronomy, and 16 countries and a region have funded to develop their VOs based on international standard protocols for interoperability. The 16 funded VO projects have established the International Virtual Observatory Alliance (http://www.ivoa.net/ to develop the standard interoperable interfaces such as registry (meta data, data access, query languages, output format (VOTable, data model, application interface, and so on. The IVOA members have constructed each VO environment through the IVOA interfaces. National Astronomical Observatory of Japan (NAOJ started its VO project (Japanese Virtual Observatory - JVO in 2002, and developed its VO system. We have succeeded to interoperate the latest JVO system with other VOs in the USA and Europe since December 2004. Observed data by the Subaru telescope, satellite data taken by the JAXA/ISAS, etc. are connected to the JVO system. Successful interoperation of the JVO system with other VOs means that astronomers in the world will be able to utilize top-level data obtained by these telescopes from anywhere in the world at anytime. System design of the JVO system, experiences during our development including problems of current standard protocols defined in the IVOA, and proposals to resolve these problems in the near future are described.

  18. The Sudbury Neutrino Observatory

    Science.gov (United States)

    Boger, J.; Hahn, R. L.; Rowley, J. K.; Carter, A. L.; Hollebone, B.; Kessler, D.; Blevis, I.; Dalnoki-Veress, F.; DeKok, A.; Farine, J.; Grant, D. R.; Hargrove, C. K.; Laberge, G.; Levine, I.; McFarlane, K.; Mes, H.; Noble, A. T.; Novikov, V. M.; O'Neill, M.; Shatkay, M.; Shewchuk, C.; Sinclair, D.; Clifford, E. T. H.; Deal, R.; Earle, E. D.; Gaudette, E.; Milton, G.; Sur, B.; Bigu, J.; Cowan, J. H. M.; Cluff, D. L.; Hallman, E. D.; Haq, R. U.; Hewett, J.; Hykawy, J. G.; Jonkmans, G.; Michaud, R.; Roberge, A.; Roberts, J.; Saettler, E.; Schwendener, M. H.; Seifert, H.; Sweezey, D.; Tafirout, R.; Virtue, C. J.; Beck, D. N.; Chan, Y. D.; Chen, X.; Dragowsky, M. R.; Dycus, F. W.; Gonzalez, J.; Isaac, M. C. P.; Kajiyama, Y.; Koehler, G. W.; Lesko, K. T.; Moebus, M. C.; Norman, E. B.; Okada, C. E.; Poon, A. W. P.; Purgalis, P.; Schuelke, A.; Smith, A. R.; Stokstad, R. G.; Turner, S.; Zlimen, I.; Anaya, J. M.; Bowles, T. J.; Brice, S. J.; Esch, E.-I.; Fowler, M. M.; Goldschmidt, A.; Hime, A.; McGirt, A. F.; Miller, G. G.; Teasdale, W. A.; Wilhelmy, J. B.; Wouters, J. M.; Anglin, J. D.; Bercovitch, M.; Davidson, W. F.; Storey, R. S.; Biller, S.; Black, R. A.; Boardman, R. J.; Bowler, M. G.; Cameron, J.; Cleveland, B.; Ferraris, A. P.; Doucas, G.; Heron, H.; Howard, C.; Jelley, N. A.; Knox, A. B.; Lay, M.; Locke, W.; Lyon, J.; Majerus, S.; Moorhead, M.; Omori, M.; Tanner, N. W.; Taplin, R. K.; Thorman, M.; Wark, D. L.; West, N.; Barton, J. C.; Trent, P. T.; Kouzes, R.; Lowry, M. M.; Bell, A. L.; Bonvin, E.; Boulay, M.; Dayon, M.; Duncan, F.; Erhardt, L. S.; Evans, H. C.; Ewan, G. T.; Ford, R.; Hallin, A.; Hamer, A.; Hart, P. M.; Harvey, P. J.; Haslip, D.; Hearns, C. A. W.; Heaton, R.; Hepburn, J. D.; Jillings, C. J.; Korpach, E. P.; Lee, H. W.; Leslie, J. R.; Liu, M.-Q.; Mak, H. B.; McDonald, A. B.; MacArthur, J. D.; McLatchie, W.; Moffat, B. A.; Noel, S.; Radcliffe, T. J.; Robertson, B. C.; Skensved, P.; Stevenson, R. L.; Zhu, X.; Gil, S.; Heise, J.; Helmer, R. L.; Komar, R. J.; Nally, C. W.; Ng, H. S.; Waltham, C. E.; Allen, R. C.; Bühler, G.; Chen, H. H.; Aardsma, G.; Andersen, T.; Cameron, K.; Chon, M. C.; Hanson, R. H.; Jagam, P.; Karn, J.; Law, J.; Ollerhead, R. W.; Simpson, J. J.; Tagg, N.; Wang, J.-X.; Alexander, C.; Beier, E. W.; Cook, J. C.; Cowen, D. F.; Frank, E. D.; Frati, W.; Keener, P. T.; Klein, J. R.; Mayers, G.; McDonald, D. S.; Neubauer, M. S.; Newcomer, F. M.; Pearce, R. J.; de Water, R. G. V.; Berg, R. V.; Wittich, P.; Ahmad, Q. R.; Beck, J. M.; Browne, M. C.; Burritt, T. H.; Doe, P. J.; Duba, C. A.; Elliott, S. R.; Franklin, J. E.; Germani, J. V.; Green, P.; Hamian, A. A.; Heeger, K. M.; Howe, M.; Drees, R. M.; Myers, A.; Robertson, R. G. H.; Smith, M. W. E.; Steiger, T. D.; Wechel, T. V.; Wilkerson, J. F.

    2000-07-01

    The Sudbury Neutrino Observatory is a second-generation water Cherenkov detector designed to determine whether the currently observed solar neutrino deficit is a result of neutrino oscillations. The detector is unique in its use of D2O as a detection medium, permitting it to make a solar model-independent test of the neutrino oscillation hypothesis by comparison of the charged- and neutral-current interaction rates. In this paper the physical properties, construction, and preliminary operation of the Sudbury Neutrino Observatory are described. Data and predicted operating parameters are provided whenever possible.

  19. The Sudbury Neutrino Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Boger, J.; Hahn, R.L.; Rowley, J.K.; Carter, A.L.; Hollebone, B.; Kessler, D.; Blevis, I.; Dalnoki-Veress, F.; DeKok, A.; Farine, J.; Grant, D.R.; Hargrove, C.K.; Laberge, G.; Levine, I.; McFarlane, K.; Mes, H.; Noble, A.T.; Novikov, V.M.; O' Neill, M.; Shatkay, M.; Shewchuk, C.; Sinclair, D.; Clifford, E.T.H.; Deal, R.; Earle, E.D.; Gaudette, E.; Milton, G.; Sur, B.; Bigu, J.; Cowan, J.H.M.; Cluff, D.L.; Hallman, E.D.; Haq, R.U.; Hewett, J.; Hykawy, J.G.; Jonkmans, G.; Michaud, R.; Roberge, A.; Roberts, J.; Saettler, E.; Schwendener, M.H.; Seifert, H.; Sweezey, D.; Tafirout, R.; Virtue, C.J.; Beck, D.N.; Chan, Y.D.; Chen, X.; Dragowsky, M.R.; Dycus, F.W.; Gonzalez, J.; Isaac, M.C.P.; Kajiyama, Y.; Koehler, G.W.; Lesko, K.T.; Moebus, M.C.; Norman, E.B.; Okada, C.E.; Poon, A.W.P.; Purgalis, P.; Schuelke, A.; Smith, A.R.; Stokstad, R.G.; Turner, S.; Zlimen, I.; Anaya, J.M.; Bowles, T.J.; Brice, S.J.; Esch, Ernst-Ingo; Fowler, M.M.; Goldschmidt, Azriel; Hime, A.; McGirt, A.F.; Miller, G.G.; Teasdale, W.A.; Wilhelmy, J.B.; Wouters, J.M.; Anglin, J.D.; Bercovitch, M.; Davidson, W.F.; Storey, R.S.; Biller, S.; Black, R.A.; Boardman, R.J.; Bowler, M.G.; Cameron, J.; Cleveland, B.; Ferraris, A.P.; Doucas, G.; Heron, H.; Howard, C.; Jelley, N.A. E-mail: N.Jelley1@physics.ox.ac.uk; Knox, A.B.; Lay, M.; Locke, W.; Lyon, J.; Majerus, S.; Moorhead, M.; Omori, M.; Tanner, N.W.; Taplin, R.K.; Thorman, M.; Wark, D.L.; West, N.; Barton, J.C.; Trent, P.T.; Kouzes, R.; Lowry, M.M.; Bell, A.L.; Bonvin, E.; Boulay, M.; Dayon, M.; Duncan, F.; Erhardt, L.S.; Evans, H.C.; Ewan, G.T.; Ford, R.; Hallin, A.; Hamer, A.; Hart, P.M.; Harvey, P.J.; Haslip, D.; Hearns, C.A.W.; Heaton, R.; Hepburn, J.D.; Jillings, C.J.; Korpach, E.P.; Lee, H.W.; Leslie, J.R.; Liu, M.-Q.; Mak, H.B.; McDonald, A.B.; MacArthur, J.D.; McLatchie, W.; Moffat, B.A.; Noel, S.; Radcliffe, T.J.; Robertson, B.C.; Skensved, P.; Stevenson, R.L.; Zhu, X.; Gil, S.; Heise, J.; Helmer, R.L.; Komar, R.J.; Nally, C.W. [and others

    2000-07-11

    The Sudbury Neutrino Observatory is a second-generation water Cherenkov detector designed to determine whether the currently observed solar neutrino deficit is a result of neutrino oscillations. The detector is unique in its use of D{sub 2}O as a detection medium, permitting it to make a solar model-independent test of the neutrino oscillation hypothesis by comparison of the charged- and neutral-current interaction rates. In this paper the physical properties, construction, and preliminary operation of the Sudbury Neutrino Observatory are described. Data and predicted operating parameters are provided whenever possible.

  20. Arecibo Observatory for All

    Science.gov (United States)

    Isidro, Gloria M.; Pantoja, C. A.; Bartus, P.; La Rosa, C.

    2006-12-01

    We describe new materials available at Arecibo Observatory for visitors with visual impairments. These materials include a guide in Braille that describes the telescope, some basic terms used in radio astronomy and frequently asked questions. We have also designed a tactile model of the telescope. We are interested that blind visitors can participate of the excitement of the visit to the worlds largest radio telescope. We would like to thank the "Fundacion Comunitaria de Puerto Rico" for the scholarship that allowed GMI to work on this project. We would like to express our gratitude to the Arecibo Observatory/NAIC for their support.

  1. The Sudbury Neutrino Observatory

    CERN Document Server

    Boger, J; Rowley, J K; Carter, A L; Hollebone, B; Kessler, D; Blevis, I; Dalnoki-Veress, F; De Kok, A; Farine, J; Grant, D R; Hargrove, C K; Laberge, G; Levine, I; McFarlane, K W; Mes, H; Noble, A T; Novikov, V M; O'Neill, M; Shatkay, M; Shewchuk, C; Sinclair, D; Clifford, E T H; Deal, R; Earle, E D; Gaudette, E; Milton, G; Sur, B; Bigu, J; Cowan, J H M; Cluff, D L; Hallman, E D; Haq, R U; Hewett, J L; Hykawy, J G; Jonkmans, G; Michaud, R; Roberge, A; Roberts, J; Saettler, E; Schwendener, M H; Seifert, H; Sweezey, D; Tafirout, R; Virtue, C J; Beck, D N; Chan, Y D; Chen, X; Dragowsky, M R; Dycus, F W; González, J; Isaac, M C P; Kajiyama, Y; Köhler, G W; Lesko, K T; Moebus, M C; Norman, E B; Okada, C E; Poon, A W P; Purgalis, P; Schülke, A; Smith, A R; Stokstad, R G; Turner, S; Zlimen, I; Anaya, J M; Bowles, T J; Brice, S J; Esch, E I; Fowler, M M; Goldschmidt, A; Hime, A; McGirt, A F; Miller, G G; Teasdale, W A; Wilhelmy, J B; Wouters, J M; Anglin, J D; Bercovitch, M; Davidson, W F; Storey, R S; Biller, S; Black, R A; Boardman, R J; Bowler, M G; Cameron, J; Cleveland, B; Ferraris, A P; Doucas, G; Heron, H; Howard, C; Jelley, N A; Knox, A B; Lay, M; Locke, W; Lyon, J; Majerus, S; Moorhead, M E; Omori, Mamoru; Tanner, N W; Taplin, R K; Thorman, M; Wark, D L; West, N; Barton, J C; Trent, P T; Kouzes, R; Lowry, M M; Bell, A L; Bonvin, E; Boulay, M; Dayon, M; Duncan, F; Erhardt, L S; Evans, H C; Ewan, G T; Ford, R; Hallin, A; Hamer, A; Hart, P M; Harvey, P J; Haslip, D; Hearns, C A W; Heaton, R; Hepburn, J D; Jillings, C J; Korpach, E P; Lee, H W; Leslie, J R; Liu, M Q; Mak, H B; McDonald, A B; MacArthur, J D; McLatchie, W; Moffat, B A; Noel, S; Radcliffe, T J; Robertson, B C; Skensved, P; Stevenson, R L; Zhu, X; Gil, S; Heise, J; Helmer, R L; Komar, R J; Nally, C W; Ng, H S; Waltham, C E; Allen, R C; Buhler, G; Chen, H H; Aardsma, G; Andersen, T; Cameron, K; Chon, M C; Hanson, R H; Jagam, P; Karn, J; Law, J; Ollerhead, R W; Simpson, J J; Tagg, N; Wang, J X; Alexander, C; Beier, E W; Cook, J C; Cowen, D F; Frank, E D; Frati, W; Keener, P T; Klein, J R; Mayers, G; McDonald, D S; Neubauer, M S; Newcomer, F M; Pearce, R J; Van de Water, R G; Van Berg, R; Wittich, P; Ahmad, Q R; Beck, J M; Browne, M C; Burritt, T H; Doe, P J; Duba, C A; Elliott, S R; Franklin, J E; Germani, J V; Green, P; Hamian, A A; Heeger, K M; Howe, M; Meijer-Drees, R; Myers, A; Robertson, R G H; Smith, M W E; Steiger, T D; Van Wechel, T; Wilkerson, J F

    2000-01-01

    The Sudbury Neutrino Observatory is a second generation water Cherenkov detector designed to determine whether the currently observed solar neutrino deficit is a result of neutrino oscillations. The detector is unique in its use of D2O as a detection medium, permitting it to make a solar model-independent test of the neutrino oscillation hypothesis by comparison of the charged- and neutral-current interaction rates. In this paper the physical properties, construction, and preliminary operation of the Sudbury Neutrino Observatory are described. Data and predicted operating parameters are provided whenever possible.

  2. Laser Stabilization and Material Studies for the Laser Interferometer Space Antenna (LISA)

    Science.gov (United States)

    Cordes, Amanda; Mueller, G.; Tanner, D. B.; Arsenovic, P.; Livas, J.; Preston, A.; Sanjuan, J.; Reza, S. A.; Mitryk, S.; Eichholz, J.; Spector, A.; Donelan, D.; Spannagel, R.; Korytov, D.

    2011-05-01

    The Laser Interferometer Space Antenna (LISA) is a joint NASA/ESA project designed to detect gravitational waves. The University of Florida (UF) LISA laboratory is currently implementing and testing much of the instrumentation of the LISA interferometer measurement system to ensure the success of the upcoming LISA mission. LISA will consist of three spacecraft (SC) orbiting the sun in an equilateral triangular formation with an arm length of 5 Gm. Each SC will house two free floating proof-masses, two laser interferometer benches and two telescopes to transmit the laser light between SC. The constellation will trail the earth by 20° and be tilted by 60° with respect to the ecliptic. LISA is designed to detect low frequency gravitational waves (GWs) in the frequency band of .1mHz to 1 Hz with optimal strain sensitivity of 10^-21/sqrt(Hz) at 3 mHz corresponding to sources such as galactic binaries and black hole mergers. The dimensional stability of all optical paths within each interferometer arm is imperative for the success of LISA. Changes larger than a pm/sqrt(Hz) in the distance between optical components in the interferometer would limit the sensitivity of LISA. The UF LISA lab is testing materials with low thermal expansion coefficients which could be used as spacer materials for the telescopes or as the base material for the optical benches. Together with the LISA group at Goddard Space Flight Center we currently also test the dimensional stability of a silicon carbide telescope structure for LISA. The most demanding requirement on material stability is the requirement for the optical reference cavity which is used as the frequency reference for the lasers. We currently test different sensing schemes for the laser frequency stabilization system of LISA and will also report about these experiments. This work is supported by NASA Contract #00078244 and NASA Grant NNX08AG75G.

  3. The Paris Observatory has 350 years

    Science.gov (United States)

    Lequeux, James

    2017-01-01

    The Paris Observatory is the oldest astronomical observatory that has worked without interruption since its foundation to the present day. The building due to Claude Perrault is still in existence with few modifications, but of course other buildings have been added all along the centuries for housing new instruments and laboratories. In particular, a large dome has been built on the terrace in 1847, with a 38-cm diameter telescope completed in 1857: both are still visible. The main initial purpose of the Observatory was to determine longitudes. This was achieved by Jean-Dominique Cassini using the eclipses of the satellites of Jupiter: a much better map of France was the produced using this method, which unfortunately does not work at sea. Incidentally, the observation of these eclipses led to the discovery in 1676 of the finite velocity of light by Cassini and Rømer. Cassini also discovered the differential rotation of Jupiter and four satellites of Saturn. Then, geodesy was to be the main activity of the Observatory for more than a century, culminating in the famous Cassini map of France completed around 1790. During the first half of the 19th century, under François Arago, the Observatory was at the centre of French physics, which then developed very rapidly. Arago initiated astrophysics in 1810 by showing that the Sun and stars are made of incandescent gas. In 1854, the new director, Urbain Le Verrier, put emphasis on astrometry and celestial mechanics, discovering in particular the anomalous advance of the perihelion of Mercury, which was later to be a proof of General Relativity. In 1858, Leon Foucault built the first modern reflecting telescopes with their silvered glass mirror. Le Verrier created on his side modern meteorology, including some primitive forecasts. The following period was not so bright, due to the enormous project of the Carte du Ciel, which took much of the forces of the Observatory for half a century with little scientific return. In

  4. The LISA PathFinder DMU and Radiation Monitor

    CERN Document Server

    Canizares, Priscilla; Diaz--Aguilo, Marc; Garcia-Berro, Enrique; Gesa, Lluis; Gibert, Ferran; Grimani, Catia; Lloro, Ivan; Lobo, Alberto; Mateos, Ignacio; Nofrarias, Miquel; Ramos-Castro, Juan; Sanjuan, Josep; Sopuerta, Carlos F

    2010-01-01

    The LISA PathFinder DMU (Data Management Unit) flight model was formally accepted by ESA and ASD on 11 February 2010, after all hardware and software tests had been successfully completed. The diagnostics items are scheduled to be delivered by the end of 2010. In this paper we review the requirements and performance of this instrumentation, specially focusing on the Radiation Monitor and the DMU, as well as the status of their programmed use during mission operations, on which work is ongoing at the time of writing.

  5. Observatory of Shiraz University

    Science.gov (United States)

    Bordbar, G. H.; Bahrani, F.

    2016-12-01

    Here we write about the observatory of Shiraz University, which has the largest active telescope in Iran but now, because of problems like light pollution of the nearby city and exhaustion of its largest telescope we need a plan for modernization and automatization in a new place.

  6. Arecibo Observatory for All

    Science.gov (United States)

    Bartus, P.; Isidro, G. M.; La Rosa, C.; Pantoja, C. A.

    2007-01-01

    We describe new materials available at the Arecibo Observatory for visitors with visual impairments. These materials include a guide in Braille that describes the telescope, explains some basic terms used in radio astronomy, and lists frequently asked questions. We have also designed a tactile model of the telescope. Our interest is in enabling…

  7. Plans for a Next Generation Space-Based Gravitational-Wave Observatory (NGO)

    Science.gov (United States)

    Livas, Jeffrey C.; Stebbins, Robin T.; Jennrich, Oliver

    2012-01-01

    The European Space Agency (ESA) is currently in the process of selecting a mission for the Cosmic Visions Program. A space-based gravitational wave observatory in the low-frequency band (0.0001 - 1 Hz) of the gravitational wave spectrum is one of the leading contenders. This low frequency band has a rich spectrum of astrophysical sources, and the LISA concept has been the key mission to cover this science for over twenty years. Tight budgets have recently forced ESA to consider a reformulation of the LISA mission concept that wi" allow the Cosmic Visions Program to proceed on schedule either with the US as a minority participant, or independently of the US altogether. We report on the status of these reformulation efforts.

  8. US Naval Observatory Hourly Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hourly observations journal from the National Observatory in Washington DC. The observatory is the first station in the United States to produce hourly observations...

  9. Bruce Medalists at the Mt. Wilson Observatory

    Science.gov (United States)

    Tenn, J. S.

    2004-12-01

    The institution which succeeded the Mt. Wilson Station of Yerkes Observatory in 1904 has had six names and three sites. From 1948-1980 it was united with Caltech's Palomar Observatory, and since then its main observatory has been in Chile, though still headquartered on Santa Barbara Street in Pasadena. For more than half of the twentieth century it was the leading observatory in the world. One bit of evidence for this is the amazing number of its staff members awarded the Bruce Medal. The Catherine Wolfe Bruce Gold Medal of the Astronomical Society of the Pacific has been awarded for lifetime contributions to astronomy since 1898. It is an international award. It wasn't until 1963 that the number of medalists who had worked primarily in the United States reached half the total. Yet fourteen of the first 87 medalists spent most of their careers at Mt. Wilson, including the period when it was Mt. Wilson and Palomar, and another three were Caltech observers who used the telescopes of the jointly operated observatory. Several more medalists made substantial use of the telescopes on Mt. Wilson and Palomar Mountain. We will discuss highlights of the careers of a number of these distinguished astronomers: directors George Ellery Hale, Walter Adams, Ira Bowen, and Horace Babcock; solar observer and satellite discoverer Seth Nicholson; instrument builder Harold Babcock; galactic and cosmological observers Frederick Seares, Edwin Hubble, Walter Baade, Rudolph Minkowski, and Allan Sandage; and spectroscopists Paul Merrill, Alfred Joy, Olin Wilson, Jesse Greenstein, Maarten Schmidt, and Wallace Sargent. We will touch briefly on others who used Mt. Wilson and/or Palomar, including Harlow Shapley, Joel Stebbins, Charlotte Moore Sitterly, Donald Osterbrock, and Albert Whitford.

  10. Cultural heritage of astronomical observatories

    Science.gov (United States)

    Wolfschmidt, Gudrun

    2011-06-01

    We present the results of the ICOMOS international symposium ``Cultural Heritage of Astronomical Observatories (around 1900) - From Classical Astronomy to Modern Astrophysics'' (Oct. 2008). The objective of the symposium was to discuss the relevance of modern observatories to the cultural heritage of humankind and to select partner observatories which, due to the date of their construction or to their architectural or scientific importance are comparable to Hamburg Observatory, as international cooperation partners for a serial trans-national application.

  11. Disentangling the magnetic force noise contribution in LISA Pathfinder

    Science.gov (United States)

    Armano, M.; Audley, H.; Auger, G.; Baird, J.; Binetruy, P.; Born, M.; Bortoluzzi, D.; Brandt, N.; Bursi, A.; Caleno, M.; Cavalleri, A.; Cesarini, A.; Cruise, M.; Danzmann, K.; Diepholz, I.; Dolesi, R.; Dunbar, N.; Ferraioli, L.; Ferroni, V.; Fitzsimons, E.; Freschi, M.; Gallegos, J.; García Marirrodriga, C.; Gerndt, R.; Gesa, L. I.; Gibert, F.; Giardini, D.; Giusteri, R.; Grimani, C.; Harrison, I.; Heinzel, G.; Hewitson, M.; Hollington, D.; Hueller, M.; Huesler, J.; Inchauspé, H.; Jennrich, O.; Jetzer, P.; Johlander, B.; Karnesis, N.; Kaune, B.; Korsakova, N.; Killow, C.; Lloro, I.; Maarschalkerweerd, R.; Madden, S.; Mance, D.; Martín, V.; Martin-Porqueras, F.; Mateos, I.; McNamara, P.; Mendes, J.; Mendes, L.; Moroni, A.; Nofrarias, M.; Paczkowski, S.; Perreur-Lloyd, M.; Petiteau, A.; Pivato, P.; Plagnol, E.; Prat, P.; Ragnit, U.; Ramos-Castro, J.; Reiche, J.; Romera Perez, J. A.; Robertson, D.; Rozemeijer, H.; Russano, G.; Sarra, P.; Schleicher, A.; Slutsky, J.; Sopuerta, C. F.; Sumner, T.; Texier, D.; Thorpe, J.; Trenkel, C.; Tu, H. B.; Vitale, S.; Wanner, G.; Ward, H.; Waschke, S.; Wass, P.; Wealthy, D.; Wen, S.; Weber, W.; Wittchen, A.; Zanoni, C.; Ziegler, T.; Zweifel, P.

    2015-05-01

    Magnetically-induced forces on the inertial masses on-board LISA Pathfinder are expected to be one of the dominant contributions to the mission noise budget, accounting for up to 40%. The origin of this disturbance is the coupling of the residual magnetization and susceptibility of the test masses with the environmental magnetic field. In order to fully understand this important part of the noise model, a set of coils and magnetometers are integrated as a part of the diagnostics subsystem. During operations a sequence of magnetic excitations will be applied to precisely determine the coupling of the magnetic environment to the test mass displacement using the on-board magnetometers. Since no direct measurement of the magnetic field in the test mass position will be available, an extrapolation of the magnetic measurements to the test mass position will be carried out as a part of the data analysis activities. In this paper we show the first results on the magnetic experiments during an end- to-end LISA Pathfinder simulation, and we describe the methods under development to map the magnetic field on-board.

  12. T.D Lee and Lisa Randall visit ATLAS

    CERN Multimedia

    Pauline Gagnon

    Professor Tsung-Dao Lee, who received the Nobel Prize for Physics in 1957 for postulating that parity is not conserved in weak interactions, visited the ATLAS detector this month. He is seen here in the company of Peter Jenni, spokesperson for ATLAS. T.D. Lee is still very active at over 80, pursuing his theory work to this day. Professor Lisa Randall from Harvard University, the well-known theorist behind the Randall-Sundrum theory for extra dimensions, was also part of the group visiting the ATLAS detector. She is seen here with Fabiola Gianotti, deputy spokesperson for ATLAS. Lisa Randall's two initial papers have been quoted both more than 2500 times, making her the most cited theoretical physicist in the world in the last five years as of last autumn - a total of about 10,000 citations! One wonders here if Peter is pointing to a CP-violating graviton spotted in the ATLAS cavern... From left to right: Fabiola Gianotti, Gustaaf Brooijmans, convener of the ATLAS Exotics physics gro...

  13. Modeling neutron events in MoNA-LISA using MCNPX

    Science.gov (United States)

    Elliston, Margaret; Peters, Alexander; Stryker, Kristen; Stephenson, Sharon; MoNA Collaboration

    2011-10-01

    The MoNA-LISA collaboration uses time-of-flight techniques and charged particle detectors to determine the structure of exotic nuclei such as 24 O and 12 Be . To determine the decay energy in particular, a neutron that hits the Modular Neutron Array and the Large multi-Institutional Scintillator Array has its energy, position and angle of incidence recorded if and only if the charged particle detector system detects an appropriate charged-particle fragment. However, the analysis uses only the first neutron to hit the detector array even in the case of 2n events, since the data acquisition system cannot distinguish between simultaneous but random 2n events and events due to 2n reactions. We are using MCNPX to model the reaction channels possible in the MoNA-LISA detector system in an effort to better improve the resolution on decay energy spectra for events with multiple neutrons. This work was supported in part by US National Science Foundation Award 0922335.

  14. Charged Particle Trajectories in Sweeper Magnet for LISA Commissioning Run

    Science.gov (United States)

    Barker, Alyson; Garrett, Sierra; Taylor, Nathaniel; Rogers, Warren F.; MoNA Collaboration

    2013-10-01

    The Large multi-Institutional Scintillator Array (LISA) located at NSCL, MSU, is used in conjunction with the Modular Neutron Array (MoNA) and the Sweeper Magnet for experiments investigating the properties of exotic neutron-rich nuclei near the neutron dripline. In the LISA commissioning experiment, designed to study neutron unstable 24O excited states, decay energy calculations require careful determination of charged fragment and neutron trajectories following breakup. Tracking of charged particles through the Sweeper Chamber is accomplished using two Cathode Readout Drift Chamber (CRDC) detectors separated by 1.8 m. During analysis of individual charged fragment passages through both CRDCs we recognized a majority of events had incomplete charge collection in the center pads. Without correction, standard peak location algorithms incorrectly determined the individual event centroids thereby reducing trajectory resolution. We developed a method and algorithm for correctly determining the centroids to restore trajectory resolution, critical for neutron breakup event reconstruction and decay energy determination. Work supported by NSF grant PHY-1101745.

  15. Using LISA to Learn How Pairs of Black Holes Formed

    Science.gov (United States)

    Kohler, Susanna

    2016-11-01

    Artists impression of the European Space Agencys Laser Interferometer Space Antenna, currently planned for a 2034 launch. [NASA]How are black-hole binaries built? Observations of gravitational waves from these systems made using the European Space Agencys upcoming mission, the Laser Interferometer Space Antenna (LISA) may be able to reveal their origins.Formation ChannelsThere are two primary placeswhere stellar-mass black-hole binaries are thought to form:In isolation in the galactic field, as the components of a stellar binary independently evolve into black holes but remain bound to each other.In dense stellar environments like globular clusters, where the high density of already-formed black holes can cause a pair to dynamically interact and form a binary before being ejected from the cluster.Can we differentiate between these origins based on future detections of gravitational waves from black-hole binaries? A team of scientists led by Katelyn Breivik (CIERA, Northwestern University) thinks that we can!The gravitational-wave spectrum and how we detect it (click for a closer look!). While ground-based interferometers like LIGO detect black-hole binaries in the final moments before merger, LISAs lower frequency band will allow it to detect binaries earlier in their inspiral. [NASA Goddard SFC]Differentiation by EccentricityBreivik and collaborators believe that the key clue is the binarys eccentricity. Gravitational-wave emission will eventually circularize all black-hole binaries during their inspiral. But in the first formation scenario, binary evolution processes like tidal circularization and mass transfer will reduce the binarys eccentricity early on whereas in the second scenario, the binaries that form in globular clusters may retain eccentricity in their orbits long enough that we can detect it.Ground-based interferometers wont be up to this task; by the time the binary orbits shrink enough to evolve into the LIGO frequency band, the orbits wont have

  16. Gravitational-wave cosmography with LISA and the Hubble tension

    Science.gov (United States)

    Kyutoku, Koutarou; Seto, Naoki

    2017-04-01

    We propose that stellar-mass binary black holes like GW150914 will become a tool to explore the local Universe within ˜100 Mpc in the era of the Laser Interferometer Space Antenna (LISA). High calibration accuracy and annual motion of LISA could enable us to localize up to ≈60 binaries more accurately than the error volume of ≈100 Mpc3 without electromagnetic counterparts under moderately optimistic assumptions. This accuracy will give us a fair chance to determine the host object solely by gravitational waves. By combining the luminosity distance extracted from gravitational waves with the cosmological redshift determined from the host, the local value of the Hubble parameter will be determined up to a few % without relying on the empirically constructed distance ladder. Gravitational-wave cosmography would pave the way for resolution of the disputed Hubble tension, where the local and global measurements disagree in the value of the Hubble parameter at 3.4 σ level, which amounts to ≈9 %.

  17. Charge Management for Gravitational Wave Observatories using UV LEDs

    CERN Document Server

    Pollack, S E; Schlamminger, S; Hagedorn, C A; Gundlach, J H

    2009-01-01

    Accumulation of electrical charge on the end mirrors of gravitational wave observatories, such as the space-based LISA mission and ground-based LIGO detectors, can become a source of noise limiting the sensitivity of such detectors through electronic couplings to nearby surfaces. Torsion balances provide an ideal means for testing gravitational wave technologies due to their high sensitivity to small forces. Our torsion pendulum apparatus consists of a movable Au-coated Cu plate brought near a Au-coated Si plate pendulum suspended from a non-conducting quartz fiber. A UV LED located near the pendulum photoejects electrons from the surface, and a UV LED driven electron gun directs photoelectrons towards the pendulum surface. We have demonstrated both charging and discharging of the pendulum with equivalent charging rates of $\\sim

  18. Research, Education, and Outreach at the Oakley Observatories

    Science.gov (United States)

    Ditteon, Richard

    2013-05-01

    Rose-Hulman Institute of Technology is a four-year college specializing in undergraduate engineering, science and mathematics education. Rose students have a strong interest in anything space-related. In the early days of the space age, Rose established a campus observatory to collect data on man-made satellites. In 2000, a new observatory was completed and named the Oakley Observatory. The new observatory was designed primarily for education and outreach, but we have successfully used it for minor planet astrometry, and photometry of minor planets and variable stars. Rose-Hulman students have discovered 33 main belt asteroids. Faculty, Rose students, and local high school students have worked together to publish more than 350 minor planet lightcurves. To supplement the campus observatory, The Oakley Southern Sky Observatory was completed in 2007 near Siding Spring in New South Wales, Australia. OSSO makes it possible to observe the southern sky, and it has much less cloud cover, as well as, significantly darker skies than our campus. Rose-Hulman offers an area minor in astronomy and all of the astronomy courses are available to all majors as technical electives. Classes are normally filled to capacity. Finally, we also use the campus observatory for public outreach. We host scout troops, school classes and many other types of groups who want to look through a telescope. We also hold public open houses for special astronomical events such as the transit of Venus.

  19. Expanding the HAWC Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Johanna [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-17

    The High Altitude Water Cherenkov Gamma-Ray Observatory is expanding its current array of 300 water tanks to include 350 outrigger tanks to increase sensitivity to gamma rays above 10 TeV. This involves creating and testing hardware with which to build the new tanks, including photomultiplier tubes, high voltage supply units, and flash analog to digital converters. My responsibilities this summer included preparing, testing and calibrating that equipment.

  20. Megalithic observatory Kokino

    Science.gov (United States)

    Cenev, Gj.

    2006-05-01

    In 2001, on the footpath of a mountain peak, near the village of Kokino, archeologist Jovica Stankovski discovered an archeological site from The Bronze Age. The site occupies a large area and is scaled in two levels. Several stone seats (thrones) are dominant in this site and they are pointing towards the east horizon. The high concentration of the movable archeological material found on the upper platform probably indicates its use in a function containing still unknown cult activities. Due to precise measurements and a detailed archaeoastronomical analysis of the site performed in the past three years by Gjore Cenev, physicist from the Planetarium in Skopje, it was shown that the site has characteristics of a sacred site, but also of a Megalithic Observatory. The markers found in this observatory point on the summer and winter solstices and spring and autumn equinoxes. It can be seen that on both sides of the solstice markers, that there are markers for establishing Moon's positions. The markers are crafted in such a way that for example on days when special rites were performed (harvest rites for example) the Sun filled a narrow space of the marker and special ray lighted the man sitting on only one of the thrones, which of course had a special meaning. According to the positions of the markers that are used for Sun marking, especially on the solstice days, it was calculated that this observatory dates from 1800 B.C.

  1. eLISA eccentricity measurements as tracers of binary black hole formation

    Science.gov (United States)

    Nishizawa, Atsushi; Berti, Emanuele; Klein, Antoine; Sesana, Alberto

    2016-09-01

    Up to hundreds of black hole binaries individually resolvable by eLISA will coalesce in the Advanced LIGO and Virgo band within 10 yr, allowing for multiband gravitational wave observations. Binaries formed via dynamical interactions in dense star clusters are expected to have eccentricities e0˜10-3-10-1 at the frequencies f0=10-2 Hz where eLISA is most sensitive, while binaries formed in the field should have negligible eccentricity in both frequency bands. We estimate that eLISA should always be able to detect a nonzero e0 whenever e0≳10-2; if e0˜10-3, eLISA should detect nonzero eccentricity for a fraction ˜90 % (˜25 %) of binaries when the observation time is Tobs=5 (2) yr, respectively. Therefore eLISA observations of black hole binaries have the potential to distinguish between field and cluster formation scenarios.

  2. eLISA eccentricity measurements as tracers of binary black hole formation

    CERN Document Server

    Nishizawa, Atsushi; Klein, Antoine; Sesana, Alberto

    2016-01-01

    Up to hundreds of black hole binaries individually resolvable by eLISA will coalesce in the Advanced LIGO/Virgo band within ten years, allowing for multi-band gravitational wave observations. Binaries formed via dynamical interactions in dense star clusters are expected to have eccentricities $e_0\\sim 10^{-3}$-$10^{-1}$ at the frequencies $f_0=10^{-2}$ Hz where eLISA is most sensitive, while binaries formed in the field should have negligible eccentricity in both frequency bands. We estimate that eLISA should always be able to detect a nonzero $e_0$ whenever $e_0\\gtrsim 10^{-2}$; if $e_0\\sim 10^{-3}$, eLISA should detect nonzero eccentricity for a fraction $\\sim 90\\%$ ($\\sim 25\\%$) of binaries when the observation time is $T_{\\rm obs}=5$ ($2$) years, respectively. Therefore eLISA observations of BH binaries have the potential to distinguish between field and cluster formation scenarios.

  3. The LISA Pathfinder interferometry—hardware and system testing

    Science.gov (United States)

    Audley, H.; Danzmann, K.; García Marín, A.; Heinzel, G.; Monsky, A.; Nofrarias, M.; Steier, F.; Gerardi, D.; Gerndt, R.; Hechenblaikner, G.; Johann, U.; Luetzow-Wentzky, P.; Wand, V.; Antonucci, F.; Armano, M.; Auger, G.; Benedetti, M.; Binetruy, P.; Boatella, C.; Bogenstahl, J.; Bortoluzzi, D.; Bosetti, P.; Caleno, M.; Cavalleri, A.; Cesa, M.; Chmeissani, M.; Ciani, G.; Conchillo, A.; Congedo, G.; Cristofolini, I.; Cruise, M.; De Marchi, F.; Diaz-Aguilo, M.; Diepholz, I.; Dixon, G.; Dolesi, R.; Fauste, J.; Ferraioli, L.; Fertin, D.; Fichter, W.; Fitzsimons, E.; Freschi, M.; García Marirrodriga, C.; Gesa, L.; Gibert, F.; Giardini, D.; Grimani, C.; Grynagier, A.; Guillaume, B.; Guzmán, F.; Harrison, I.; Hewitson, M.; Hollington, D.; Hough, J.; Hoyland, D.; Hueller, M.; Huesler, J.; Jeannin, O.; Jennrich, O.; Jetzer, P.; Johlander, B.; Killow, C.; Llamas, X.; Lloro, I.; Lobo, A.; Maarschalkerweerd, R.; Madden, S.; Mance, D.; Mateos, I.; McNamara, P. W.; Mendes, J.; Mitchell, E.; Nicolini, D.; Nicolodi, D.; Pedersen, F.; Perreur-Lloyd, M.; Perreca, A.; Plagnol, E.; Prat, P.; Racca, G. D.; Rais, B.; Ramos-Castro, J.; Reiche, J.; Romera Perez, J. A.; Robertson, D.; Rozemeijer, H.; Sanjuan, J.; Schulte, M.; Shaul, D.; Stagnaro, L.; Strandmoe, S.; Sumner, T. J.; Taylor, A.; Texier, D.; Trenkel, C.; Tombolato, D.; Vitale, S.; Wanner, G.; Ward, H.; Waschke, S.; Wass, P.; Weber, W. J.; Zweifel, P.

    2011-05-01

    Preparations for the LISA Pathfinder mission have reached an exciting stage. Tests of the engineering model (EM) of the optical metrology system have recently been completed at the Albert Einstein Institute, Hannover, and flight model tests are now underway. Significantly, they represent the first complete integration and testing of the space-qualified hardware and are the first tests on an optical system level. The results and test procedures of these campaigns will be utilized directly in the ground-based flight hardware tests, and subsequently during in-flight operations. In addition, they allow valuable testing of the data analysis methods using the MATLAB-based LTP data analysis toolbox. This paper presents an overview of the results from the EM test campaign that was successfully completed in December 2009.

  4. Obesity, a disorder of nutrient partitioning: the MONA LISA hypothesis.

    Science.gov (United States)

    Bray, G A

    1991-08-01

    The mechanisms underlying different types of obesity have been gradually clarified. Animal models with hypothalamic, genetic or dietary obesity have been examined with a feedback model. Four common final pathways are involved in this model. One of these final common pathways is the sympathetic nervous system. Most Obesities kNown Are Low In Sympathetic Activity states the MONA LISA Hypothesis. A second common pathway is the endocrine system involving adrenal glucocorticosteroids. The third common pathway is hyperphagia. Although not essential for most obesities, hyperphagia may be essential in animals with injury to the hypothalamic paraventricular nucleus. The final pathway is reduced physical activity. The tonic activity of these systems and their response to changes in the diet affect nutrient partitioning between fat and protein. This framework has been used to review genetic obesity, hypothalamic obesity and dietary obesity.

  5. The case for testing MOND using LISA Pathfinder

    CERN Document Server

    Magueijo, Joao

    2011-01-01

    We quantify the potential for testing MOdified Newtonian Dynamics (MOND) with LISA Pathfinder (LPF), should a saddle point flyby be incorporated into the mission. We forecast the expected signal to noise ratio (SNR) for a variety of instrument noise models and trajectories past the saddle. For standard theoretical parameters the SNR reaches middle to high double figures even with modest assumptions about instrument performance and saddle approach. Obvious concerns, like systematics arising from LPF self-gravity, or the Newtonian background, are examined and shown not to be a problem. We also investigate the impact of a negative observational result upon the free-function determining the theory. We demonstrate that, if Newton's gravitational constant is constrained not be re-normalized by more than a few percent, only very contrived MONDian free-functions would survive a negative result. Finally we scan the structure of all proposed relativistic MONDian theories. We conclude that only the Einstein-Aether formu...

  6. Bayesian modeling of source confusion in LISA data

    CERN Document Server

    Umstätter, R; Hendry, M; Meyer, R; Simha, V; Veitch, J; Vigeland, S; Woan, G; Umst\\"atter, Richard; Christensen, Nelson; Hendry, Martin; Meyer, Renate; Simha, Vimal; Veitch, John; Vigeland, Sarah; Woan, Graham

    2005-01-01

    One of the greatest data analysis challenges for the Laser Interferometer Space Antenna (LISA) is the need to account for a large number of gravitational wave signals from compact binary systems expected to be present in the data. We introduce the basis of a Bayesian method that we believe can address this challenge, and demonstrate its effectiveness on a simplified problem involving one hundred synthetic sinusoidal signals in noise. We use a reversible jump Markov chain Monte Carlo technique to infer simultaneously the number of signals present, the parameters of each identified signal, and the noise level. Our approach therefore tackles the detection and parameter estimation problems simultaneously, without the need to evaluate formal model selection criteria, such as the Akaike Information Criterion or explicit Bayes factors. The method does not require a stopping criterion to determine the number of signals, and produces results which compare very favorably with classical spectral techniques.

  7. The eLISA/NGO Data Processing Centre

    Science.gov (United States)

    Beckmann, V.; Petiteau, A.; Porter, E.; Auger, G.; Plagnol, E.; Binétruy, P.

    2013-01-01

    Data analysis for the eLISA/NGO mission is going to be performed in several steps. The telemetry is unpacked and checked at ESA's Science Operations Centre (SOC). The instrument teams are providing the necessary calibration files for the SOC to process the Level 1 data. The next steps, the source identification, parameter extraction and construction of a catalogue of sources is performed at the Data Processing Centre (DPC). This includes determining the physical and astrophysical parameters of the sources and their strain time series. At the end of the processing, the produced Level 2 and Level 3 data are then transferred back to the SOC, which provides the data archive and the interface for the scientific community. The DPC is organised by the member states of the consortium. In this paper we describe a possible outline of the data processing centre, including the tasks to be performed, and the organisational structure.

  8. Orbit design for the Laser Interferometer Space Antenna (LISA)

    Institute of Scientific and Technical Information of China (English)

    Gerhard; HEINZEL; Albrecht; RDIGER

    2010-01-01

    The Laser Interferometer Space Antenna (LISA) is a joint ESA-NASA mission for detecting low-frequency gravitational waves in the frequency range from 0.1 mHz to 1 Hz, by using accurate laser interferometry between three spacecrafts, which will be launched around 2018 and one year later reach their operational orbits around the Sun. In order to operate successfully, it is crucial for the constellation of the three spacecrafts to have extremely high stability. Based on the study of operational orbits for a 2015 launch, we design the operational orbits of beginning epoch on 2019-03-01, and introduce the method of orbit design and optimization. We design the orbits of the transfer from Earth to the operational orbits, including launch phase and separation phase; furthermore, the relationship between energy requirement and flight time of these two orbit phases is investigated. Finally, an example of the whole orbit design is presented.

  9. Simulation and template generation for LISA Pathfinder Data Analysis

    Science.gov (United States)

    Rais, Boutheina; Grynagier, Adrien; Diaz-Aguiló, Marc; Armano, Michele

    The LISA PathFinder (LPF) mission is a technology demonstration mission which aims at testing a number of critical technical challenges that the future LISA (Gravitational wave detection in space) mission will face: LPF can be seen as a complex laboratory experiment in space. It is therefore critical to be able to define which measurements and which actuations will be applied during the scientific part of the mission. The LISA Technology Package (LTP), part of ESA's hardware contribution to LPF, outlines hence the importance of developing an appropriate simulation tool in order to test these strate-gies before launch and to analyse the dynamical behaviour of the system during the mission. The detailed model of the simulation can be used in an off-line mode for further planning: cor-rect estimation of timeline priorities, risk factors, duty cycles, data analysis readiness. The Lisa Technology Package Data Analysis (LTPDA) team has developed an object-oriented MATLAB toolbox for general case of data analysis needs. However, to meet specific needs of LPF mis-sion, a template generation tool has been developed. It provides a recognizable data pattern, avoiding the risk of missing the model during mission's analysis. The aim of the template generator tool is to provide tools to analyse LTP system modeled in State Space Model (SSM). The SSM class, the aim of this poster, includes this tools within the LTPDA toolbox. It can be used to generate the time-domain response for any given actuation and/or noise, the frequency response using bode diagrams and the steady state of the system. It allows the user to project noises on system outputs to get spectra of outputs for given input noises spectra. This class is sufficiently general to be used with a variety of systems once the SSM of the system is provided in the library. Furthermore, one of the main objectives of the data analysis for LPF (the estimation of different parameters of the system), can be achieved by a new

  10. Astronomical publications of Melbourne Observatory

    Science.gov (United States)

    Andropoulos, Jenny Ioanna

    2014-05-01

    During the second half of the 19th century and the first half of the 20th century, four well-equipped government observatories were maintained in Australia - in Melbourne, Sydney, Adelaide and Perth. These institutions conducted astronomical observations, often in the course of providing a local time service, and they also collected and collated meteorological data. As well, some of these observatories were involved at times in geodetic surveying, geomagnetic recording, gravity measurements, seismology, tide recording and physical standards, so the term "observatory" was being used in a rather broad sense! Despite the international renown that once applied to Williamstown and Melbourne Observatories, relatively little has been written by modern-day scholars about astronomical activities at these observatories. This research is intended to rectify this situation to some extent by gathering, cataloguing and analysing the published astronomical output of the two Observatories to see what contributions they made to science and society. It also compares their contributions with those of Sydney, Adelaide and Perth Observatories. Overall, Williamstown and Melbourne Observatories produced a prodigious amount of material on astronomy in scientific and technical journals, in reports and in newspapers. The other observatories more or less did likewise, so no observatory of those studied markedly outperformed the others in the long term, especially when account is taken of their relative resourcing in staff and equipment.

  11. The Observatory Health Report

    Directory of Open Access Journals (Sweden)

    Laura Murianni

    2008-06-01

    Full Text Available

    Background: The number of indicators aiming to provide a clear picture of healthcare needs and the quality and efficiency of healthcare systems and services has proliferated in recent years. The activity of the National Observatory on Health Status in the Italian Regions is multidisciplinary, involving around 280 public health care experts, clinicians, demographers, epidemiologists, mathematicians, statisticians and economists who with their different competencies, and scientific interests aim to improve the collective health of individuals and their conditions through the use of “core indicators”. The main outcome of the National Observatory on Health Status in the Italian Regions is the “Osservasalute Report – a report on health status and the quality of healthcare assistance in the Italian Regions”.

    Methods: The Report adopts a comparative analysis, methodology and internationally validated indicators.

    Results: The results of Observatory Report show it is necessary:

    • to improve the monitoring of primary health care services (where the chronic disease could be cared through implementation of clinical path;

     • to improve in certain areas of hospital care such as caesarean deliveries, as well as the average length of stay in the pre-intervention phase, etc.;

    • to try to be more focused on the patients/citizens in our health care services; • to practice more geographical interventions to reduce the North-South divide as well as reduce gender inequity.

    Conclusions: The health status of Italian people is good with positive results and outcomes, but in the meantime some further efforts should be done especially in the South that still has to improve the quality and the organization of health care services. There are huge differences in accuracy and therefore usefulness of the reported data, both between diseases and between

  12. The HAWC observatory

    Energy Technology Data Exchange (ETDEWEB)

    DeYoung, Tyce, E-mail: deyoung@phys.psu.edu [Department of Physics, Pennsylvania State University, University Park, PA 16802 (United States)

    2012-11-11

    The High Altitude Water Cherenkov (HAWC) observatory is a new very high energy water Cherenkov gamma ray telescope, now under construction at 4100 m altitude at Sierra Negra, Mexico. Due to its increased altitude, larger surface area and improved design, HAWC will be about 15 times more sensitive than its predecessor, Milagro. With its wide field of view and high duty factor, HAWC will be an excellent instrument for the studies of diffuse gamma ray emission, the high energy spectra of Galactic gamma ray sources, and transient emission from extragalactic objects such as GRBs and AGN, as well as surveying a large fraction of the VHE sky.

  13. The HAWC observatory

    Science.gov (United States)

    DeYoung, Tyce; HAWC Collaboration

    2012-11-01

    The High Altitude Water Cherenkov (HAWC) observatory is a new very high energy water Cherenkov gamma ray telescope, now under construction at 4100 m altitude at Sierra Negra, Mexico. Due to its increased altitude, larger surface area and improved design, HAWC will be about 15 times more sensitive than its predecessor, Milagro. With its wide field of view and high duty factor, HAWC will be an excellent instrument for the studies of diffuse gamma ray emission, the high energy spectra of Galactic gamma ray sources, and transient emission from extragalactic objects such as GRBs and AGN, as well as surveying a large fraction of the VHE sky.

  14. Next Generation Virtual Observatories

    Science.gov (United States)

    Fox, P.; McGuinness, D. L.

    2008-12-01

    Virtual Observatories (VO) are now being established in a variety of geoscience disciplines beyond their origins in Astronomy and Solar Physics. Implementations range from hydrology and environmental sciences to solid earth sciences. Among the goals of VOs are to provide search/ query, access and use of distributed, heterogeneous data resources. With many of these goals being met and usage increasing, new demands and requirements are arising. In particular there are two of immediate and pressing interest. The first is use of VOs by non-specialists, especially for information products that go beyond the usual data, or data products that are sought for scientific research. The second area is citation and attribution of artifacts that are being generated by VOs. In some sense VOs are re-publishing (re-packaging, or generating new synthetic) data and information products. At present only a few VOs address this need and it is clear that a comprehensive solution that includes publishers is required. Our work in VOs and related semantic data framework and integration areas has lead to a view of the next generation of virtual observatories which the two above-mentioned needs as well as others that are emerging. Both of the needs highlight a semantic gap, i.e. that the meaning and use for a user or users beyond the original design intention is very often difficult or impossible to bridge. For example, VOs created for experts with complex, arcane or jargon vocabularies are not accessible to the non-specialist and further, information products the non-specialist may use are not created or considered for creation. In the second case, use of a (possibly virtual) data or information product (e.g. an image or map) as an intellectual artifact that can be accessed as part of the scientific publication and review procedure also introduces terminology gaps, as well as services that VOs may need to provide. Our supposition is that formalized methods in semantics and semantic web

  15. DSN Transient Observatory

    Science.gov (United States)

    Kuiper, T. B. H.; Monroe, R. M.; White, L. A.; Garcia Miro, C.; Levin, S. M.; Majid, W. A.; Soriano, M.

    2016-11-01

    The Deep Space Network (DSN) Transient Observatory (DTO) is a signal processing facility that can monitor up to four DSN downlink bands for astronomically interesting signals. The monitoring is done commensally with reception of deep space mission telemetry. The initial signal processing is done with two CASPERa ROACH1 boards, each handling one or two baseband signals. Each ROACH1 has a 10 GBe interface with a GPU-equipped Debian Linux workstation for additional processing. The initial science programs include monitoring Mars for electrostatic discharges, radio spectral lines, searches for fast radio bursts and pulsars and SETI. The facility will be available to the scientific community through a peer review process.

  16. Running PILOT: operational challenges and plans for an Antarctic Observatory

    Science.gov (United States)

    McGrath, Andrew; Saunders, Will; Gillingham, Peter; Ward, David; Storey, John; Lawrence, Jon; Haynes, Roger

    2008-07-01

    We highlight the operational challenges and planned solutions faced by an optical observatory taking advantage of the superior astronomical observing potential of the Antarctic plateau. Unique operational aspects of an Antarctic optical observatory arise from its remoteness, the polar environment and the unusual observing cycle afforded by long continuous periods of darkness and daylight. PILOT is planned to be run with remote observing via satellite communications, and must overcome both limited physical access and data transfer. Commissioning and lifetime operations must deal with extended logistics chains, continual wintertime darkness, extremely low temperatures and frost accumulation amidst other challenging issues considered in the PILOT operational plan, and discussed in this presentation.

  17. Byurakan Astrophysical Observatory

    Science.gov (United States)

    Mickaelian, A. M.

    2016-09-01

    This booklet is devoted to NAS RA V. Ambartsumian Byurakan Astrophysical Observatory and is aimed at people interested in astronomy and BAO, pupils and students, BAO visitors and others. The booklet is made as a visiting card and presents concise and full information about BAO. A brief history of BAO, the biography of the great scientist Viktor Ambartsumian, brief biographies of 13 other deserved scientists formerly working at BAO (B.E. Markarian, G.A. Gurzadyan, L.V. Mirzoyan, M.A. Arakelian, et al.), information on BAO telescopes (2.6m, 1m Schmidt, etc.) and other scientific instruments, scientific library and photographic plate archive, Byurakan surveys (including the famous Markarian Survey included in the UNESCO Memory of the World International Register), all scientific meetings held in Byurakan, international scientific collaboration, data on full research staff of the Observatory, as well as former BAO researchers, who have moved to foreign institutions are given in the booklet. At the end, the list of the most important books published by Armenian astronomers and about them is given.

  18. Science with the space-based interferometer LISA. IV: probing inflation with gravitational waves

    Science.gov (United States)

    Bartolo, Nicola; Caprini, Chiara; Domcke, Valerie; Figueroa, Daniel G.; Garcia-Bellido, Juan; Chiara Guzzetti, Maria; Liguori, Michele; Matarrese, Sabino; Peloso, Marco; Petiteau, Antoine; Ricciardone, Angelo; Sakellariadou, Mairi; Sorbo, Lorenzo; Tasinato, Gianmassimo

    2016-12-01

    We investigate the potential for the LISA space-based interferometer to detect the stochastic gravitational wave background produced from different mechanisms during inflation. Focusing on well-motivated scenarios, we study the resulting contributions from particle production during inflation, inflationary spectator fields with varying speed of sound, effective field theories of inflation with specific patterns of symmetry breaking and models leading to the formation of primordial black holes. The projected sensitivities of LISA are used in a model-independent way for various detector designs and configurations. We demonstrate that LISA is able to probe these well-motivated inflationary scenarios beyond the irreducible vacuum tensor modes expected from any inflationary background.

  19. An intensive case analysis of client metacognition in a good-outcome psychotherapy: Lisa's case.

    Science.gov (United States)

    Carcione, Antonino; Dimaggio, Giancarlo; Fiore, Donatella; Nicolo, Giuseppe; Procacci, Michele; Semerari, Antonio; Pedone, Roberto

    2008-11-01

    The authors analyzed the successful case of Lisa, a client with major depression, using the Metacognitive Assessment Scale (MAS). Consistently with the literature on depression, the authors hypothesize that Lisa's ability to reflect on mental states--here metacognition--is marginally affected. The authors found that Lisa was better at describing her own mind rather than understanding the mind of the others. Furthermore, the most severe impairment was in using metacognition to cope with mental state source of distress and to enact strategies to solve interpersonal problems. During the therapy such difficulties improved progressively. Limitations and implications of these findings are discussed.

  20. Science with the space-based interferometer LISA. IV: Probing inflation with gravitational waves

    CERN Document Server

    Bartolo, Nicola; Domcke, Valerie; Figueroa, Daniel G; Garcia-Bellido, Juan; Guzzetti, Maria Chiara; Liguori, Michele; Matarrese, Sabino; Peloso, Marco; Petiteau, Antoine; Ricciardone, Angelo; Sakellariadou, Mairi; Sorbo, Lorenzo; Tasinato, Gianmassimo

    2016-01-01

    We investigate the potential for the LISA space-based interferometer to detect the stochastic gravitational wave background produced from different mechanisms during inflation. Focusing on well-motivated scenarios, we study the resulting contributions from particle production during inflation, inflationary spectator fields with varying speed of sound, effective field theories of inflation with specific patterns of symmetry breaking and models leading to the formation of primordial black holes. The projected sensitivities of LISA are used in a model-independent way for various detector designs and configurations. We demonstrate that LISA is able to probe these well-motivated inflationary scenarios beyond the irreducible vacuum tensor modes expected from any inflationary background.

  1. Stratospheric Observatory for Infrared Astronomy

    CERN Document Server

    Hamidouche, M; Marcum, P; Krabbe, A

    2010-01-01

    We present one of the new generations of observatories, the Stratospheric Observatory For Infrared Astronomy (SOFIA). This is an airborne observatory consisting of a 2.7-m telescope mounted on a modified Boeing B747-SP airplane. Flying at an up to 45,000 ft (14 km) altitude, SOFIA will observe above more than 99 percent of the Earth's atmospheric water vapor allowing observations in the normally obscured far-infrared. We outline the observatory capabilities and goals. The first-generation science instruments flying on board SOFIA and their main astronomical goals are also presented.

  2. Satellite Communication.

    Science.gov (United States)

    Technology Teacher, 1985

    1985-01-01

    Presents a discussion of communication satellites: explains the principles of satellite communication, describes examples of how governments and industries are currently applying communication satellites, analyzes issues confronting satellite communication, links mathematics and science to the study of satellite communication, and applies…

  3. Running a distributed virtual observatory: US Virtual Astronomical Observatory operations

    CERN Document Server

    McGlynn, Thomas A; Berriman, G Bruce; Thakar, Aniruddha R

    2012-01-01

    Operation of the US Virtual Astronomical Observatory shares some issues with modern physical observatories, e.g., intimidating data volumes and rapid technological change, and must also address unique concerns like the lack of direct control of the underlying and scattered data resources, and the distributed nature of the observatory itself. In this paper we discuss how the VAO has addressed these challenges to provide the astronomical community with a coherent set of science-enabling tools and services. The distributed nature of our virtual observatory-with data and personnel spanning geographic, institutional and regime boundaries-is simultaneously a major operational headache and the primary science motivation for the VAO. Most astronomy today uses data from many resources. Facilitation of matching heterogeneous datasets is a fundamental reason for the virtual observatory. Key aspects of our approach include continuous monitoring and validation of VAO and VO services and the datasets provided by the commun...

  4. LCOGT Network Observatory Operations

    CERN Document Server

    Pickles, Andrew; Boroson, Todd; Burleson, Ben; Conway, Patrick; de Vera, Jon; Elphick, Mark; Haworth, Brian; Rosing, Wayne; Saunders, Eric; Thomas, Doug; White, Gary; Willis, Mark; Walker, Zach

    2014-01-01

    We describe the operational capabilities of the Las Cumbres Observatory Global Telescope Network. We summarize our hardware and software for maintaining and monitoring network health. We focus on methodologies to utilize the automated system to monitor availability of sites, instruments and telescopes, to monitor performance, permit automatic recovery, and provide automatic error reporting. The same jTCS control system is used on telescopes of apertures 0.4m, 0.8m, 1m and 2m, and for multiple instruments on each. We describe our network operational model, including workloads, and illustrate our current tools, and operational performance indicators, including telemetry and metrics reporting from on-site reductions. The system was conceived and designed to establish effective, reliable autonomous operations, with automatic monitoring and recovery - minimizing human intervention while maintaining quality. We illustrate how far we have been able to achieve that.

  5. The Virtual Observatory Registry

    CERN Document Server

    Demleitner, Markus; Sidaner, Pierre Le; Plante, Raymond L

    2014-01-01

    In the Virtual Observatory (VO), the Registry provides the mechanism with which users and applications discover and select resources -- typically, data and services -- that are relevant for a particular scientific problem. Even though the VO adopted technologies in particular from the bibliographic community where available, building the Registry system involved a major standardisation effort, involving about a dozen interdependent standard texts. This paper discusses the server-side aspects of the standards and their application, as regards the functional components (registries), the resource records in both format and content, the exchange of resource records between registries (harvesting), as well as the creation and management of the identifiers used in the system based on the notion of authorities. Registry record authors, registry operators or even advanced users thus receive a big picture serving as a guideline through the body of relevant standard texts. To complete this picture, we also mention comm...

  6. The virtual observatory registry

    Science.gov (United States)

    Demleitner, M.; Greene, G.; Le Sidaner, P.; Plante, R. L.

    2014-11-01

    In the Virtual Observatory (VO), the Registry provides the mechanism with which users and applications discover and select resources-typically, data and services-that are relevant for a particular scientific problem. Even though the VO adopted technologies in particular from the bibliographic community where available, building the Registry system involved a major standardisation effort, involving about a dozen interdependent standard texts. This paper discusses the server-side aspects of the standards and their application, as regards the functional components (registries), the resource records in both format and content, the exchange of resource records between registries (harvesting), as well as the creation and management of the identifiers used in the system based on the notion of authorities. Registry record authors, registry operators or even advanced users thus receive a big picture serving as a guideline through the body of relevant standard texts. To complete this picture, we also mention common usage patterns and open issues as appropriate.

  7. The Sudbury Neutrino Observatory

    Science.gov (United States)

    Bellerive, A.; Klein, J. R.; McDonald, A. B.; Noble, A. J.; Poon, A. W. P.

    2016-07-01

    This review paper provides a summary of the published results of the Sudbury Neutrino Observatory (SNO) experiment that was carried out by an international scientific collaboration with data collected during the period from 1999 to 2006. By using heavy water as a detection medium, the SNO experiment demonstrated clearly that solar electron neutrinos from 8B decay in the solar core change into other active neutrino flavors in transit to Earth. The reaction on deuterium that has equal sensitivity to all active neutrino flavors also provides a very accurate measure of the initial solar flux for comparison with solar models. This review summarizes the results from three phases of solar neutrino detection as well as other physics results obtained from analyses of the SNO data.

  8. The Sudbury Neutrino Observatory

    CERN Document Server

    Bellerive, A; McDonald, A B; Noble, A J; Poon, A W P

    2016-01-01

    This review paper provides a summary of the published results of the Sudbury Neutrino Observatory (SNO) experiment that was carried out by an international scientific collaboration with data collected during the period from 1999 to 2006. By using heavy water as a detection medium, the SNO experiment demonstrated clearly that solar electron neutrinos from $^8$B decay in the solar core change into other active neutrino flavors in transit to Earth. The reaction on deuterium that has equal sensitivity to all active neutrino flavors also provides a very accurate measure of the initial solar flux for comparison with solar models. This review summarizes the results from three phases of solar neutrino detection as well as other physics results obtained from analyses of the SNO data.

  9. Massive Black Hole Binary Inspirals: Results from the LISA Parameter Estimation Taskforce

    CERN Document Server

    Arun, K G; Berti, Emanuele; Cornish, Neil; Cutler, Curt; Gair, Jonathan; Hughes, Scott A; Iyer, Bala R; Lang, Ryan N; Mandel, Ilya; Porter, Edward K; Sathyaprakash, Bangalore S; Sinha, Siddhartha; Sintes, Alicia M; Trias, Miquel; Broeck, Chris Van Den; Volonteri, Marta

    2008-01-01

    The LISA Parameter Estimation (LISAPE) Taskforce was formed in September 2007 to provide the LISA Project with vetted codes, source distribution models, and results related to parameter estimation. The Taskforce's goal is to be able to quickly calculate the impact of any mission design changes on LISA's science capabilities, based on reasonable estimates of the distribution of astrophysical sources in the universe. This paper describes our Taskforce's work on massive black-hole binaries (MBHBs). Given present uncertainties in the formation history of MBHBs, we adopt four different population models, based on (i) whether the initial black-hole seeds are small or large, and (ii) whether accretion is efficient or inefficient at spinning up the holes. We compare four largely independent codes for calculating LISA's parameter-estimation capabilities. All codes are based on the Fisher-matrix approximation, but in the past they used somewhat different signal models, source parametrizations and noise curves. We show ...

  10. A Space-Qualified Single Frequency Fiber Laser for LISA Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Single frequency high power lasers have been considered to be an enabling technology for NASA's Laser Interferometer Space Antenna (LISA). PolarOnyx proposes, for...

  11. Integration and Testing of the Inertial Sensor for LISA Pathfinder mission

    Science.gov (United States)

    Sarra, Paolo

    High-precision technologies are essential for space-borne gravitational wave observatory, but full on-ground testing is not feasible. The ESA (European Space Agency) mission LISA Pathfinder (LPF) is aimed to perform in-flight verification of these key technologies, among them the Inertial Sensor, also known as Gravitational Reference Sensor (GRS). The core of the Inertial Sensor is the gravitational reference test mass: a cube of 46 mm made of Au/Pt used as mirror of the LPF interferometer. The “free floating” test mass is surrounded by a capacitive sensor providing the information to perform the “drag-free” control loop required to keep the spacecraft centred with respect to some fiducial points. The Inertial Sensor is equipped with two mechanisms. The caging and venting mechanism lock the test mass during on-ground activities and at launch. It also open the valve for Inertial Sensor venting to space. The grabbing, positioning and release mechanism controls the test mass during in-flight operational phases from caged to free-floating condition. Charge control of the free floating test mass is performed by illuminating its surface, or the electrodes surfaces, with UV light. The Inertial Sensor is equipped with optical fibers and feed-throughs for UV photons supply. Another key component of the Inertial Sensor is the balance mass. Balance masses are required to null the self-gravitational fields seen by the test mass. The test mass, the sensing electrodes, the mechanisms, the balance masses and the UV optical fibers are accommodated inside a dedicated high-vacuum chamber. The vacuum chamber is maintained in static vacuum during on-ground phase an then vented to space to provide the required in-flight vacuum environment around the test mass. A challenging alignment accuracy is required for the manufacturing, assembly and integration of the various equipment composing the Inertial Sensor. In particular for the test mass and the capacitance sensor micron level

  12. Rolloff Roof Observatory Construction (Abstract)

    Science.gov (United States)

    Ulowetz, J. H.

    2015-12-01

    (Abstract only) Lessons learned about building an observatory by someone with limited construction experience, and the advantages of having one for imaging and variable star studies. Sample results shown of composite light curves for cataclysmic variables UX UMa and V1101 Aql with data from my observatory combined with data from others around the world.

  13. Space Research in Baldone Observatory

    Directory of Open Access Journals (Sweden)

    Eglitis, I.

    2017-01-01

    Full Text Available The Baldone observatory deals with the U-, B-, V-, R-, I-photometry and low resolution spectroscopy of carbon stars, the monitoring of small bodies of Solar system, and with the digitizing and processing of 24 300 plates from the Schmidt wide field telescope archive. The astronomers from the observatory are working to popularize astronomy.

  14. On the role of radiation monitors on board LISA Pathfinder and future space interferometers

    Science.gov (United States)

    Grimani, C.; Boatella, C.; Chmeissani, M.; Fabi, M.; Finetti, N.; Laurenza, M.; Lobo, A.; Mateos, I.; Storini, M.

    2012-05-01

    LISA (Laser Interferometer Space Antenna) and its precursor mission LISA Pathfinder (LISA-PF) will carry particle monitors for noise diagnostics. It was proposed to build and place radiation detectors on board the ASTROD missions as well. We present here a study of the solar energetic particle (SEP) events that the LISA-PF radiation monitors are able to detect above the galactic cosmic-ray (GCR) background predicted at the time of the mission data taking in 2015. In order to optimize the correlation between radiation monitor measurements and gravitational sensor test-mass charging, the energy threshold for particles traversing both detectors should be approximately the same. In LISA-PF, the radiation monitor particle energy cut-off was conservatively set at 75 MeV per nucleon (MeV/n) for protons and ion normal incidence, while the minimum energy of the same particles reaching the test masses is 100 MeV/n. We find that SEP events detectable on LISA-PF are characterized by peak fluxes and fluences at energies >75 MeV/n larger than about 45%, on average, with respect to those at energies >100 MeV/n. We conclude that for an accurate correlation between radiation monitor count rates and test-mass charging, it is mandatory to benefit from absolute flux measurements of both galactic and high-energy solar particles provided by experiments carrying magnetic spectrometers in space at the time of LISA-PF (PAMELA, AMS). On the other hand, the role of the radiation detectors on board LISA-PF is crucial allowing for SEP event onset and dynamics monitoring.

  15. EU-LISA, the new model of operational management of the various EU databases

    Directory of Open Access Journals (Sweden)

    Mariona Illamola Dausà

    2015-12-01

    Full Text Available In 2011, a new agency, EU-LISA, was created in the Area of Freedom, Security and Justice (AFSJ to manage largescale IT systems. From then onwards, the agency has been responsible for the communication infrastructure of SIS II, VIS and Eurodac, without merging those databases. Due to its short time in operation, it is difficult to assess the effectiveness of EU-LISA, but this paper aims to give an overview of the agency to facilitate knowledge about it.

  16. Ancient "Observatories" - A Relevant Concept?

    Science.gov (United States)

    Belmonte, Juan Antonio

    It is quite common, when reading popular books on astronomy, to see a place referred to as "the oldest observatory in the world". In addition, numerous books on archaeoastronomy, of various levels of quality, frequently refer to the existence of "prehistoric" or "ancient" observatories when describing or citing monuments that were certainly not built with the primary purpose of observing the skies. Internet sources are also guilty of this practice. In this chapter, the different meanings of the word observatory will be analyzed, looking at how their significances can be easily confused or even interchanged. The proclaimed "ancient observatories" are a typical result of this situation. Finally, the relevance of the concept of the ancient observatory will be evaluated.

  17. LISA double black holes: Dynamics in gaseous nuclear discs

    CERN Document Server

    Dotti, M; Haardt, F

    2006-01-01

    We study the inspiral of double black holes, with masses in the LISA window of detectability, orbiting inside a massive circum-nuclear disc. Using high-resolution SPH simulations, we follow the black hole dynamics in the early phase when gas-dynamical friction acts on the black holes individually, and continue our simulation until they form a close binary. We find that in the early sinking the black holes loose memory of their initial orbital eccentricity if they co-rotate with the gaseous disc. As a consequence the massive black holes bind forming a binary with a low eccentricity, consistent with zero within our numerical resolution limit. The cause of circularization resides in the rotation present in the gaseous background where dynamical friction operates. Circularization may hinder gravitational waves from taking over and leading the binary to coalescence. In the case of counter-rotating orbits the initial eccentricity (if present) does not decreases, and the black holes may bind forming an eccentric bin...

  18. Isotope Separation and Decay Energy Calculation for LISA Commissioning Experiment

    Science.gov (United States)

    Taylor, Nathaniel; Barker, Alyson; Garrett, Sierra; Rogers, Warren F.; MoNA Collaboration

    2013-10-01

    The commissioning experiment for the Large multi-Institutional Scintillator Array (LISA) was designed to investigate properties of neutron-unstable excited states of the 24O. The array is located at the NSCL, MSU and is used in conjunction with the Modular Neutron Array (MoNA) and the Sweeper Magnet. Oxygen fragments produced by the 26F secondary beam incident on a Be target are directed through the Sweeper Chamber which includes two tracking CRDC detectors, an ion chamber, and a thin and thick scintillator. Plotting the fragment's trajectory position vs. angle vs. time of flight allows for separation of the individual 22 , 23 , and 24 O isotopes, necessary for the calculation of the decay properties of individual states. Anomalous features in the fragments' emittance distribution, believed to result from little understood issues with the tracking detectors, required that we adopt a slightly different approach than that developed recently by the collaboration. Once the isotopes are successfully separated, decay energies are calculated by applying mass-invariant decay spectroscopy by associating the fragment's precise trajectory (determined by inverse-tracking through the Sweeper Magnet) and energy with those of the emitted neutron. Work supported by NSF grant PHY-1101745.

  19. Measuring the dark energy equation of state with LISA

    CERN Document Server

    Broeck, Chris Van Den; Sathyaprakash, B S; Sintes, A M

    2010-01-01

    The Laser Interferometer Space Antenna's (LISA's) observation of supermassive binary black holes (SMBBH) could provide a new tool for precision cosmography. Inclusion of sub-dominant signal harmonics in the inspiral signal allows for high-accuracy sky localization, dramatically improving the chances of finding the host galaxy and obtaining its redshift. Combined with the measurement of the luminosity distance, this could allow us to significantly constrain the dark energy equation-of-state parameter $w$ even with a single SMBBH merger at $z \\lesssim 1$. Such an event can potentially have component masses from a wide range ($10^5 - 10^8 \\Ms$) over which parameter accuracies vary considerably. We perform an in-depth study in order to understand (i) what fraction of possible SMBBH mergers allow for sky localization, depending on the parameters of the source, and (ii) how accurately $w$ can be measured when the host galaxy can be identified. We also investigate how accuracies on all parameters improve when a know...

  20. Binary Black Hole Mergers, Gravitational Waves, and LISA

    Science.gov (United States)

    Centrella, Joan; Baker, J.; Boggs, W.; Kelly, B.; McWilliams, S.; van Meter, J.

    2007-12-01

    The final merger of comparable mass binary black holes is expected to be the strongest source of gravitational waves for LISA. Since these mergers take place in regions of extreme gravity, we need to solve Einstein's equations of general relativity on a computer in order to calculate these waveforms. For more than 30 years, scientists have tried to compute black hole mergers using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Within the past few years, however, this situation has changed dramatically, with a series of remarkable breakthroughs. We will present the results of new simulations of black hole mergers with unequal masses and spins, focusing on the gravitational waves emitted and the accompanying astrophysical "kicks.” The magnitude of these kicks has bearing on the production and growth of supermassive blackholes during the epoch of structure formation, and on the retention of black holes in stellar clusters. This work was supported by NASA grant 06-BEFS06-19, and the simulations were carried out using Project Columbia at the NASA Advanced Supercomputing Division (Ames Research Center) and at the NASA Center for Computational Sciences (Goddard Space Flight Center).

  1. MONDian three-body predictions for LISA Pathfinder

    Energy Technology Data Exchange (ETDEWEB)

    Bevis, Neil; Magueijo, Joao [Theoretical Physics, Blackett Laboratory, Imperial College, London, SW7 2BZ (United Kingdom); Trenkel, Christian; Kemble, Steve, E-mail: n.bevis@imperial.ac.u, E-mail: magueijo@ic.ac.u, E-mail: Christian.Trenkel@astrium.eads.ne [Astrium Ltd, Gunnels Wood Road, Stevenage SG1 2AS (United Kingdom)

    2010-11-07

    In previous work it was shown that modified Newtonian dynamics (MOND) theories predict anomalously strong tidal stresses near the saddle points of the Newtonian gravitational potential. An analytical examination of the saddle between two bodies revealed a linear and a nonlinear solution, valid for the outer and inner regions. Here we present a numerical algorithm for solving the MOND equations. We check the code against the two-body analytical solutions and explore the region transitioning between them. We then develop a realistic model for the MONDian effects on the saddles of the Sun-Earth-Moon system (including further sources is straightforward). For the Sun-Earth saddle we find that the two-body results are almost unchanged, with corrections increasing from full to new Moon. In contrast, the Moon saddle is an intrinsically three-body problem, but we numerically find a recipe for adapting the two-body solution to this case, by means of a suitable rescaling and axis reorientation. We explore possible experimental scenarios for LISA Pathfinder and the prospect of a visit to the saddle(s) at the end of the mission. Given the chaotic nature of the orbits, awareness of the full range of the possibilities is crucial for a realistic prediction. We conclude that even with very conservative assumptions on the impact parameter, the accelerometers are abundantly sensitive to vindicate or rule out the theory.

  2. Binary Black Hole Mergers, Gravitational Waves, and LISA

    Science.gov (United States)

    Centrella, Joan; Baker, J.; Boggs, W.; Kelly, B.; McWilliams, S.; vanMeter, J.

    2008-01-01

    The final merger of comparable mass binary black holes is expected to be the strongest source of gravitational waves for LISA. Since these mergers take place in regions of extreme gravity, we need to solve Einstein's equations of general relativity on a computer in order to calculate these waveforms. For more than 30 years, scientists have tried to compute black hole mergers using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Within the past few years, however, this situation has changed dramatically, with a series of remarkable breakthroughs. We will present the results of new simulations of black hole mergers with unequal masses and spins, focusing on the gravitational waves emitted and the accompanying astrophysical "kicks." The magnitude of these kicks has bearing on the production and growth of supermassive black holes during the epoch of structure formation, and on the retention of black holes in stellar clusters.

  3. Design and construction of an optical test bed for LISA imaging systems and tilt-to-length coupling

    Science.gov (United States)

    Chwalla, M.; Danzmann, K.; Fernández Barranco, G.; Fitzsimons, E.; Gerberding, O.; Heinzel, G.; Killow, C. J.; Lieser, M.; Perreur-Lloyd, M.; Robertson, D. I.; Schuster, S.; Schwarze, T. S.; Tröbs, M.; Ward, H.; Zwetz, M.

    2016-12-01

    The laser interferometer space antenna (LISA) is a future space-based interferometric gravitational-wave detector consisting of three spacecraft in a triangular configuration. The interferometric measurements of path length changes between satellites will be performed on optical benches in the satellites. Angular misalignments of the interfering beams couple into the length measurement and represent a significant noise source. Imaging systems will be used to reduce this tilt-to-length coupling. We designed and constructed an optical test bed to experimentally investigate tilt-to-length coupling. It consists of two separate structures, a minimal optical bench and a telescope simulator. The minimal optical bench comprises the science interferometer where the local laser is interfered with light from a remote spacecraft. In our experiment, a simulated version of this received beam is generated on the telescope simulator. The telescope simulator provides a tilting beam, a reference interferometer and an additional static beam as a phase reference. The tilting beam can either be a flat-top beam or a Gaussian beam. We avoid tilt-to-length coupling in the reference interferometer by using a small photo diode placed at an image of the beam rotation point. We show that the test bed is operational with an initial measurement of tilt-to-length coupling without imaging systems. Furthermore, we show the design of two different imaging systems whose performance will be investigated in future experiments.

  4. Demonstration of the zero-crossing phasemeter with a LISA test-bed interferometer

    Science.gov (United States)

    Pollack, S. E.; Stebbins, R. T.

    2006-06-01

    The laser interferometer space antenna (LISA) is being designed to detect and study in detail gravitational waves from sources throughout the Universe such as massive black hole binaries. The conceptual formulation of the LISA space-borne gravitational wave detector is now well developed. The interferometric measurements between the sciencecraft remain one of the most important technological and scientific design areas for the mission. Our work has concentrated on developing the interferometric technologies to create a LISA-like optical signal and to measure the phase of that signal using commercially available instruments. One of the most important goals of this research is to demonstrate the LISA phase timing and phase reconstruction for a LISA-like fringe signal, in the case of a high fringe rate and a low signal level. We present current results of a test-bed interferometer designed to produce an optical LISA-like fringe signal previously discussed in Jennrich O, Stebbins R T, Bender P L and Pollack S (2001 Class. Quantum Grav. 18 4159 64) and Pollack S E, Jennrich O, Stebbins R T and Bender P (2003 Class. Quantum Grav. 20 S291 00).

  5. Demonstration of the zero-crossing phasemeter with a LISA test-bed interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Pollack, S E [JILA, University of Colorado, Boulder, CO 80309-0440 (United States); Stebbins, R T [NASA/GSFC Code 661, Greenbelt, MD 20771 (United States)

    2006-06-21

    The laser interferometer space antenna (LISA) is being designed to detect and study in detail gravitational waves from sources throughout the Universe such as massive black hole binaries. The conceptual formulation of the LISA space-borne gravitational wave detector is now well developed. The interferometric measurements between the sciencecraft remain one of the most important technological and scientific design areas for the mission. Our work has concentrated on developing the interferometric technologies to create a LISA-like optical signal and to measure the phase of that signal using commercially available instruments. One of the most important goals of this research is to demonstrate the LISA phase timing and phase reconstruction for a LISA-like fringe signal, in the case of a high fringe rate and a low signal level. We present current results of a test-bed interferometer designed to produce an optical LISA-like fringe signal previously discussed in Jennrich O, Stebbins R T, Bender P L and Pollack S (2001 Class. Quantum Grav. 18 4159-64) and Pollack S E, Jennrich O, Stebbins R T and Bender P (2003 Class. Quantum Grav. 20 S291-00)

  6. Numerical simulation of time delay interferometry for NGO/eLISA

    CERN Document Server

    Wang, Gang

    2012-01-01

    NGA/eLISA is a new mission proposal with arm length 106 km and one interferometer down-scaled from LISA (http://elisa-ngo.org/). Just like LISA and ASTROD-GW, in order to attain the requisite sensitivity for NGO/eLISA, laser frequency noise must be suppressed below the secondary noises such as the optical path noise, acceleration noise etc. In previous papers, we have used the CGC 2.7 ephemeris to numerically simulate the time delay interferometry for LISA and ASTROD-GW with one arm dysfunctional and found that they are both well below their respective limits under which the laser frequency noise is required to be suppressed. In this paper, we follow the same procedure to simulate the time delay interferometry numerically. To do this, we work out a set of 1000-day optimized mission orbits of NGO/eLISA spacecraft starting at January 1st, 2021 using the CGC 2.7 ephemeris framework. We then use this numerical solution to calculate the residual optical path differences in the second-generation solutions of our pr...

  7. Constraining stellar binary black hole formation scenarios with eLISA eccentricity measurements

    CERN Document Server

    Nishizawa, Atsushi; Berti, Emanuele; Klein, Antoine

    2016-01-01

    A space-based interferometer such as eLISA could observe few to few thousands progenitors of black hole binaries (BHBs) similar to those recently detected by Advanced LIGO. Gravitational radiation circularizes the orbit during inspiral, but some BHBs retain a measurable eccentricity at the low frequencies where eLISA is most sensitive. The eccentricity of a BHB carries precious information about its formation channel: BHBs formed in the field, in globular clusters, or close to a massive black hole (MBH) have distinct eccentricity distributions in the eLISA band. We generate mock eLISA observations, folding in measurement errors, and using Bayesian model selection we study whether eLISA measurements can identify the BHB formation channel. We find that a handful of observations would suffice to tell whether BHBs were formed in the gravitational field of a MBH. Conversely, several tens of observations are needed to tell apart field formation from globular cluster formation. A five-year eLISA mission with the lon...

  8. Constraining stellar binary black hole formation scenarios with eLISA eccentricity measurements

    Science.gov (United States)

    Nishizawa, Atsushi; Sesana, Alberto; Berti, Emanuele; Klein, Antoine

    2017-03-01

    A space-based interferometer such as the evolved Laser Interferometer Space Antenna (eLISA) could observe a few to a few thousands of progenitors of black hole binaries (BHBs) similar to those recently detected by Advanced LIGO. Gravitational radiation circularizes the orbit during inspiral, but some BHBs retain a measurable eccentricity at the low frequencies where eLISA is the most sensitive. The eccentricity of a BHB carries precious information about its formation channel: BHBs formed in the field, in globular clusters, or close to a massive black hole (MBH) have distinct eccentricity distributions in the eLISA band. We generate mock eLISA observations, folding in measurement errors, and using a Bayesian model selection, we study whether eLISA measurements can identify the BHB formation channel. We find that a handful of observations would suffice to tell whether BHBs were formed in the gravitational field of an MBH. Conversely, several tens of observations are needed to tell apart field formation from globular cluster formation. A 5-yr eLISA mission with the longest possible armlength is desirable to shed light on BHB formation scenarios.

  9. Wide-Field InfraRed Survey Telescope (WFIRST) Mission and Synergies with LISA and LIGO-Virgo

    Science.gov (United States)

    Gehrels, N.; Spergel, D.

    2015-01-01

    The Wide-Field InfraRed Survey Telescope (WFIRST) is a NASA space mission in study for launch in 2024. It has a 2.4 m telescope, wide-field IR instrument operating in the 0.7 - 2.0 micron range and an exoplanet imaging coronagraph instrument operating in the 400 - 1000 nm range. The observatory will perform galaxy surveys over thousands of square degrees to J=27 AB for dark energy weak lensing and baryon acoustic oscillation measurements and will monitor a few square degrees for dark energy SN Ia studies. It will perform microlensing observations of the galactic bulge for an exoplanet census and direct imaging observations of nearby exoplanets with a pathfinder coronagraph. The mission will have a robust and wellfunded guest observer program for 25% of the observing time. WFIRST will be a powerful tool for time domain astronomy and for coordinated observations with gravitational wave experiments. Gravitational wave events produced by mergers of nearby binary neutron stars (LIGO-Virgo) or extragalactic supermassive black hole binaries (LISA) will produce electromagnetic radiation that WFIRST can observe.

  10. The Sudbury Neutrino Observatory

    Science.gov (United States)

    Ewan, G. T.

    1992-04-01

    The Sudbury Neutrino Observatory (SNO) detector is a 1000 ton heavy water (D2O) Cherenkov detector designed to study neutrinos from the sun and other astrophysical sources. The use of heavy water allows both electron neutrinos and all other types of neutrinos to be observed by three complementary reactions. The detector will be sensitive to the electron neutrino flux and energy spectrum shape and to the total neutrino flux irrespective of neutrino type. These measurements will provide information on both vacuum neutrino oscillations and matter-enhanced oscillations, the MSW effect. In the event of a supernova it will be very sensitive to muon and tau neutrinos as well as the electron neutrinos emitted in the initial burst, enabling sensitive mass measurements as well as providing details of the physics of stellar collapse. On behalf of the Sudbury Neutrino Observatory (SNO) Collaboration : H.C . Evans, G.T . Ewan, H.W. Lee, J .R . Leslie, J .D. MacArthur, H .-B . Mak, A.B . McDonald, W. McLatchie, B.C . Robertson, B. Sur, P. Skensved (Queen's University) ; C.K . Hargrove, H. Mes, W.F. Davidson, D. Sinclair, 1 . Blevis, M. Shatkay (Centre for Research in Particle Physics) ; E.D. Earle, G.M. Milton, E. Bonvin, (Chalk River Laboratories); J .J . Simpson, P. Jagam, J . Law, J .-X . Wang (University of Guelph); E.D . Hallman, R.U. Haq (Laurentian University); A.L. Carter, D. Kessler, B.R . Hollebone (Carleton University); R. Schubank . C.E . Waltha m (University of British Columbia); R.T. Kouzes, M.M. Lowry, R.M. Key (Princeton University); E.W. Beier, W. Frati, M. Newcomer, R. Van Berg (University of Penn-sylvania), T.J . Bowles, P.J . Doe, S.R . Elliott, M.M. Fowler, R.G.H. Robertson, D.J . Vieira, J .B . Wilhelmy, J .F. Wilker-son, J .M. Wouters (Los Alamos National Laboratory) ; E. Norman, K. Lesko, A. Smith, R. Fulton, R. Stokstad (Lawrence Berkeley Laboratory), N.W. Tanner, N. JCIILY, P. Trent, J . Barton, D.L . Wark (University of Oxford).

  11. HETE Satellite Power Subsystem

    OpenAIRE

    1993-01-01

    The HETE (High-Energy Transient Experiment) satellite a joint project between MIT's Center for Space Research and AeroAstro. is a high-energy gamma-ray burst/X-Ray/UV observatory platform. HETE will be launched into a 550 km circular orbit with an inclination of 37.7°, and has a design lifetime of 18 months. This paper presents a description of the spacecraft's power subsystem, which collects, regulates, and distributes power to the experiment payload modules and to the various spacecraft sub...

  12. DORIS research activities at Geodetic Observatory Pecny

    Science.gov (United States)

    Štěpánek, Petr; Filler, Vratislav; Buday, Michal

    2017-04-01

    Geodesy Observatory Pecný (GOP) provides one of the International DORIS Service (IDS) analyses centers, participating on the combined IDS products including the solution for ITRF2014. As the unique approach, GOP employs a DORIS-developed version of the Bernese GPS Software. The recent research focuses on several topics. Our experiment, based on 9 year of data, shows a possibility to reach LOD estimation accuracy close to 0.1 msec per day (compared to reference IERS C04 model), when not adjusting the cross-track harmonics in the Satellite orbit model. We also compare different preprocessing strategies and data weighting and discuss the impact on the solution accuracy and on the scale bias. Moreover, we present the initial results of the station clock modelling from the DORIS/pseudorange measurements.

  13. The Automated Astrophysical Site Testing Infant Observatory

    Science.gov (United States)

    Lawrence, Jon S.; Ashley, Michael C.; Burton, Michael G.; Storey, John W.

    The AASTINO is an autonomous remote observatory deployed to Dome C on the Antarctic plateau in the 2003 summer for the purpose of collecting data on the atmospheric characteristics of the site. Heat and power for the AASTINO are provided by a Stirling engine running on Jet-A1 fuel and while the sun is up two solar panels. Up to six instruments can be located on the roof. A supervisor computer running under Linux automates the complete system and sends back instrument engine and health and status data via an Iridium satellite link. The computer also allows command and control of the instruments and power system from Sydney Australia. In the event of a communications failure the AASTINO can operate completely autonomously saving data on-site.

  14. Health Observatories in Iran

    Directory of Open Access Journals (Sweden)

    K Shad­pour

    2013-01-01

    Full Text Available Background: The Islamic Republic of Iran, in her 20 year vision by the year 2025, is a developed country with the first economic, scientific and technological status in the region, with revolutionary and Islamic identity, inspiring Islamic world, as well as effective and constructive interaction in international relations. Enjoying health, welfare, food security, social security, equal opportunities, fair income distribution, strong family structure; to be away from poverty, corruption, and discrimination; and benefiting desirable living environment are also considered out of characteristics of Iranian society in that year. Strategic leadership towards perceived vision in each setting requires restrictive, complete and timely information. According to constitution of National Institute for Health Researches, law of the Fifth Development Plan of the country and characteristics of health policy making, necessity of designing a Health Observatory System (HOS was felt. Some Principles for designing such system were formulated by taking following steps: reviewing experience in other countries, having local history of the HOS in mind, superior documents, analysis of current production and management of health information, taking the possibilities to run a HOS into account. Based on these principles, the protocol of HOS was outlined in 3 different stages of opinion poll of informed experts responsible for production on management of information, by using questionnaires and Focus Group Discussions. The protocol includes executive regulations, the list of health indicators, vocabulary and a calendar for periodic studies of the community health situation.

  15. The CTA Observatory

    CERN Document Server

    Wagner, R M; Sillanpää, A; Wagner, S; ),

    2009-01-01

    In recent years, ground-based very-high-energy (VHE; E>100 GeV) gamma-ray astronomy has experienced a major breakthrough with the impressive astrophysical results obtained mainly by the current generation experiments like H.E.S.S., MAGIC, MILAGRO and VERITAS. The ground-based Imaging Air Cherenkov Technique for detecting VHE gamma-rays has matured, and a fast assembly of inexpensive and robust telescopes is possible. The goal for the next generation of instruments is to increase their sensitivity by a factor >10 compared to current facilities, to extend the accessible gamma-ray energies from a few tens of GeV to a hundred TeV, and to improve on other parameters like the energy and angular resolution (improve the point-spread function by a factor 4-5 w.r.t. current instruments). The Cherenkov Telescope Array (CTA) project is an initiative to build the next generation ground-based gamma-ray instrument, will serve as an observatory to a wide astrophysics community. I discuss the key physics goals and resulting d...

  16. Health observatories in iran.

    Science.gov (United States)

    Rashidian, A; Damari, B; Larijani, B; Vosoogh Moghadda, A; Alikhani, S; Shadpour, K; Khosravi, A

    2013-01-01

    The Islamic Republic of Iran, in her 20 year vision by the year 2025, is a developed country with the first economic, scientific and technological status in the region, with revolutionary and Islamic identity, inspiring Islamic world, as well as effective and constructive interaction in international relations. Enjoying health, welfare, food security, social security, equal opportunities, fair income distribution, strong family structure; to be away from poverty, corruption, and discrimination; and benefiting desirable living environment are also considered out of characteristics of Iranian society in that year. Strategic leadership towards perceived vision in each setting requires restrictive, complete and timely information. According to constitution of National Institute for Health Researches, law of the Fifth Development Plan of the country and characteristics of health policy making, necessity of designing a Health Observatory System (HOS) was felt. Some Principles for designing such system were formulated by taking following steps: reviewing experience in other countries, having local history of the HOS in mind, superior documents, analysis of current production and management of health information, taking the possibilities to run a HOS into account. Based on these principles, the protocol of HOS was outlined in 3 different stages of opinion poll of informed experts responsible for production on management of information, by using questionnaires and Focus Group Discussions. The protocol includes executive regulations, the list of health indicators, vocabulary and a calendar for periodic studies of the community health situation.

  17. Expanding the HAWC Observatory

    Science.gov (United States)

    Mori, Johanna; HAWC Collaboration; College of Idaho; HAWC Collaboration

    2017-01-01

    To increase the effective area and sensitivity of the High Altitude Water Cherenkov Observatory to gamma-ray photons with energies higher than 10 TeV, we are building 350 smaller outrigger tanks around the main array of 300 existing tanks. HAWC detects cascades of charged particles (``extensive air showers'') created by TeV gamma rays hitting the atmosphere. Increasing the size of the array will improve the sensitivity of the array by a factor of 2 to 4 above 10 TeV, allowing for more accurate gamma-ray origin reconstruction and energy estimation. Building the outrigger array requires carefully calibrated equipment, including PMTs and high voltage signal cables of the correct length. Origin reconstruction relies on precise signal timing, so the signal cables' lengths were standardized so that the signal transit time varied by less than 5 ns. Energy estimation depends on accurate photon counts from each tank, so the PMTs were calibrated with a laser and filter wheels to give the PMTs a known amount of light.

  18. Hanohano: Hawaiian antineutrino observatory

    Energy Technology Data Exchange (ETDEWEB)

    Maricic, Jelena, E-mail: jelena@physics.drexel.ed [Drexel University, 3141 Chestnut St. 12-816, Philadelphia, PA, 19104 (United States)

    2010-01-01

    Design studies are underway for the deep ocean antineutrino observatory Hanohano. The 10 kton monolitic underwater detector will be able to make precision measurement of neutrino mixing parameters (including {theta}{sub 13} and neutrino mass hierarchy) if stationed around 60 km offshore, from the nuclear reactor. Hanohano will be a mobile detector and placing it in a mid-Pacific location will provide the first ever flux measurement of geoneutrinos (antineutrinos emitted in the radioactive decay series of uranium and thorium), coming from the Earth's mantle and perform a sensitivity search for a hypothetical natural fission reactor in the Earth's core. Additional deployment at a different mid-ocean location will lead to tests of lateral heterogeneity of uranium and thorium in the Earth's mantle. These measurements would provide an important insight into deep-Earth geophysics, mantle composition and understanding of the Earth's heat flow and sources of energy inside the Earth.

  19. Data and Diagnostics in LISA PathFinder

    Science.gov (United States)

    Lobo, A.; Nofrarias, M.; Ramos, J.; Sanjuan, J.; Conchillo, A.; Ortega, J. A.; Xirgu, X.; Araujo, H.; Boatella, C.; Chmeissani, M.; Grimani, C.; Puigdengoles, C.; Wass, P.; Anza, S.; Díaz Michelena, M.; García-Berro, E.; Pérez del Real, R.

    2006-06-01

    The Diagnostics measurement set is a subsystem of the LTP which is intended to monitor a number of spurious disturbances, even if the satellite complies with all cleanliness requirements. It monitors thermal and magnetic perturbations, and incorporates a charged particle counter. The purpose of this communication is to discuss the conceptual aspects of the mentioned subsystem, and to summarise its current status of development.

  20. The Farid & Moussa Raphael Observatory

    Science.gov (United States)

    Hajjar, R.

    2017-06-01

    The Farid & Moussa Raphael Observatory (FMRO) at Notre Dame University Louaize (NDU) is a teaching, research, and outreach facility located at the main campus of the university. It located very close to the Lebanese coast, in an urbanized area. It features a 60-cm Planewave CDK telescope, and instruments that allow for photometric and spetroscopic studies. The observatory currently has one thinned, back-illuminated CCD camera, used as the main imager along with Johnson-Cousin and Sloan photometric filters. It also features two spectrographs, one of which is a fiber fed echelle spectrograph. These are used with a dedicated CCD. The observatory has served for student projects, and summer schools for advanced undergraduate and graduate students. It is also made available for use by the regional and international community. The control system is currently being configured for remote observations. A number of long-term research projects are also being launched at the observatory.

  1. Geomagnetic Observatory Database February 2004

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA National Centers for Environmental Information (formerly National Geophysical Data Center) maintains an active database of worldwide geomagnetic observatory...

  2. Islamic Astronomical Instruments and Observatories

    Science.gov (United States)

    Heidarzadeh, Tofigh

    This chapter is a brief survey of astronomical instruments being used and developed in Islamic territories from the eighth to the fifteenth centuries as well as a concise account of major observatories and observational programs in this period.

  3. Verification of time-delay interferometry techniques using the University of Florida LISA interferometry simulator

    Energy Technology Data Exchange (ETDEWEB)

    Mitryk, Shawn J; Wand, Vinzenz; Mueller, Guido, E-mail: smitryk@phys.ufl.ed, E-mail: mueller@phys.ufl.ed [Department of Physics, University of Florida, PO Box 118440, Gainesville, FL 32611-8440 (United States)

    2010-04-21

    Laser Interferometer Space Antenna (LISA) is a cooperative NASA/ESA mission proposed to directly measure gravitational waves (GW) in the frequency range from 30 muHz to 1 Hz with an optimal strain sensitivity of 10{sup -21}/sq root(Hz) at 3 mHz. LISA will utilize a modified Michelson interferometer to measure length changes of 40 pm/sq root(Hz) between drag-free proof masses located on three separate spacecraft (SC) separated by a distance of 5 Gm. The University of Florida has developed a hardware-in-the-loop simulator of the LISA constellation to verify the laser noise cancellation technique known as time-delay interferometry (TDI). We replicate the frequency stabilization of the laser on the local SC and the phase-locking of the lasers on the far SC. The laser photodetector beatnotes are electronically delayed, Doppler shifted and applied with a mock GW signal to simulate the laser link between the SC. The beatnotes are also measured with a LISA-like phasemeter and the data are used to extract the laser phase and residual phase-lock loop noise in post-processing through TDI. This uncovers the GW modulation signal buried under the laser noise. The results are then compared to the requirements defined by the LISA science collaboration.

  4. Hybrid local FEM/global LISA modeling of damped guided wave propagation in complex composite structures

    Science.gov (United States)

    Shen, Yanfeng; Cesnik, Carlos E. S.

    2016-09-01

    This paper presents a new hybrid modeling technique for the efficient simulation of guided wave generation, propagation, and interaction with damage in complex composite structures. A local finite element model is deployed to capture the piezoelectric effects and actuation dynamics of the transmitter, while the global domain wave propagation and interaction with structural complexity (structure features and damage) are solved utilizing a local interaction simulation approach (LISA). This hybrid approach allows the accurate modeling of the local dynamics of the transducers and keeping the LISA formulation in an explicit format, which facilitates its readiness for parallel computing. The global LISA framework was extended through the 3D Kelvin-Voigt viscoelasticity theory to include anisotropic damping effects for composite structures, as an improvement over the existing LISA formulation. The global LISA framework was implemented using the compute unified device architecture running on graphic processing units. A commercial preprocessor is integrated seamlessly with the computational framework for grid generation and material property allocation to handle complex structures. The excitability and damping effects are successfully captured by this hybrid model, with experimental validation using the scanning laser doppler vibrometry. To demonstrate the capability of our hybrid approach for complex structures, guided wave propagation and interaction with a delamination in a composite panel with stiffeners is presented.

  5. LISA Pathfinder test-mass charging during galactic cosmic-ray flux short-term variations

    Science.gov (United States)

    Grimani, C.; Fabi, M.; Lobo, A.; Mateos, I.; Telloni, D.

    2015-02-01

    Metal free-floating test masses aboard the future interferometers devoted to gravitational wave detection in space are charged by galactic and solar cosmic rays with energies \\gt 100 MeV/n. This process represents one of the main sources of noise in the lowest frequency band (\\lt 10-3 Hz) of these experiments. We study here the charging of the LISA Pathfinder (LISA-PF) gold-platinum test masses due to galactic cosmic-ray (GCR) protons and helium nuclei with the Fluka Monte Carlo toolkit. Projections of the energy spectra of GCRs during the LISA-PF operations in 2015 are considered. This work was carried out on the basis of the solar activity level and solar polarity epoch expected for LISA-PF. The effects of GCR short-term variations are evaluated here for the first time. Classical Forbush decreases, GCR variations induced by the Sun rotation, and fluctuations in the LISA-PF frequency bandwidth are discussed.

  6. The LTP Experiment on LISA Pathfinder: Operational Definition of TT Gauge in Space

    CERN Document Server

    Armano, Michele

    2011-01-01

    The European Space Agency (ESA) and the National Aeronautics and Space Administration (NASA) are planning the Laser Interferometer Space Antenna (LISA) mission in order to detect GW. The need of accurate testing of free-fall and knowledge of noise in a space environment similar to LISA's is considered mandatory a pre-phase for the project. Therefore the LISA Pathfinder mission has been designed by ESA to fly the LISA Technology Package (LTP), aiming at testing free-fall by measuring the residual acceleration between two test-bodies in the dynamical scheme we address as "drag-free". The spectral map of the residual acceleration as function of frequency will convey information on the local noise level, thus producing a picture of the environmental working conditions for LISA itself. The thesis contains abundant material on the problem of compensating static gravity, the development of a theory of orthogonalization of reference and cross-talk for the LTP experiment. The construction of the laser detection proced...

  7. Experimental Satellite Quantum Communications.

    Science.gov (United States)

    Vallone, Giuseppe; Bacco, Davide; Dequal, Daniele; Gaiarin, Simone; Luceri, Vincenza; Bianco, Giuseppe; Villoresi, Paolo

    2015-07-24

    Quantum communication (QC), namely, the faithful transmission of generic quantum states, is a key ingredient of quantum information science. Here we demonstrate QC with polarization encoding from space to ground by exploiting satellite corner cube retroreflectors as quantum transmitters in orbit and the Matera Laser Ranging Observatory of the Italian Space Agency in Matera, Italy, as a quantum receiver. The quantum bit error ratio (QBER) has been kept steadily low to a level suitable for several quantum information protocols, as the violation of Bell inequalities or quantum key distribution (QKD). Indeed, by taking data from different satellites, we demonstrate an average value of QBER=4.6% for a total link duration of 85 s. The mean photon number per pulse μ_{sat} leaving the satellites was estimated to be of the order of one. In addition, we propose a fully operational satellite QKD system by exploiting our communication scheme with orbiting retroreflectors equipped with a modulator, a very compact payload. Our scheme paves the way toward the implementation of a QC worldwide network leveraging existing receivers.

  8. Jesuit Geophysical Observatories

    Science.gov (United States)

    Udias, Agustin; Stauder, William

    Jesuits have had ah interest in observing and explaining geophysical phenomena since this religious order, the Society of Jesus, was founded by Ignatius of Loyola in 1540. Three principal factors contributed to this interest: their educational work in colleges and universities, their missionary endeavors to remote lands where they observed interesting and often as yet undocumented natural phenomena, and a network of communication that brought research of other Jesuits readily to their awareness.One of the first and most important Jesuit colleges was the Roman College (today the Gregorian University) founded in 1551 in Rome, which served as a model for many other universities throughout the world. By 1572, Christopher Clavius (1537-1612), professor of mathematics at the Roman College, had already initiated an important tradition of Jesuit research by emphasizing applied mathematics and insisting on the need of serious study of mathematics in the program of studies in the humanities. In 1547 he directed a publication of Euclid's work with commentaries, and published several treatises on mathematics, including Arithmetica Practica [1585], Gnomonicae [1581], and Geometrica Practica [1606]. Clavius was also a Copernican and supported his friend Galileo when he announced the discovery of the satellites of Jupiter.

  9. Two 18th Century Observatories of Ireland

    Science.gov (United States)

    Hambleton, Robert

    A visit to the two major observatories of Ireland, Armagh Observatory in Northern Ireland, and Dunsink Observatory in Dublin. Mentioned are Herschel, Thomas Grubb, Thomas Jones transit instrument, Howard Grubb, Kew Observatory, John Arnold & Sons clocks, Birr Castle, and the Earl of Rosse.

  10. The Carl Sagan solar and stellar observatories as remote observatories

    Science.gov (United States)

    Saucedo-Morales, J.; Loera-Gonzalez, P.

    In this work we summarize recent efforts made by the University of Sonora, with the goal of expanding the capability for remote operation of the Carl Sagan Solar and Stellar Observatories, as well as the first steps that have been taken in order to achieve autonomous robotic operation in the near future. The solar observatory was established in 2007 on the university campus by our late colleague A. Sánchez-Ibarra. It consists of four solar telescopes mounted on a single equatorial mount. On the other hand, the stellar observatory, which saw the first light on 16 February 2010, is located 21 km away from Hermosillo, Sonora at the site of the School of Agriculture of the University of Sonora. Both observatories can now be remotely controlled, and to some extent are able to operate autonomously. In this paper we discuss how this has been accomplished in terms of the use of software as well as the instruments under control. We also briefly discuss the main scientific and educational objectives, the future plans to improve the control software and to construct an autonomous observatory on a mountain site, as well as the opportunities for collaborations.

  11. Sounding of Icy Galilean Satellites by Surface Observatories

    Science.gov (United States)

    Khurana, K. K.; Banerdt, W. B.; Johnson, T. V.; Russell, C. T.; Kivelson, M. G.; Davis, P. M.; Vidale, J. E.

    2001-01-01

    Several independent geological and geophysical investigations suggest that Europa and Ganymede contain subsurface oceans. Using Jupiter's rotating magnetic field as a primary signal, the magnetometer experiment onboard Galileo has measured secondary induction signals emanating from Europa, Ganymede, and surprisingly Callisto. The strong electromagnetic induction from these moons suggests that large global electrical conductors are located just below their icy crusts. A detailed analysis reveals that global salty oceans with salinity similar to the Earth's ocean and thicknesses in the range of approx. 6-100 kms can explain the induction observed by the Galileo magnetometer. Additional information is contained in the original extended abstract.

  12. GEOSCOPE Observatory Recent Developments

    Science.gov (United States)

    Leroy, N.; Pardo, C.; Bonaime, S.; Stutzmann, E.; Maggi, A.

    2010-12-01

    The GEOSCOPE observatory consists of a global seismic network and a data center. The 31 GEOSCOPE stations are installed in 19 countries, across all continents and on islands throughout the oceans. They are equipped with three component very broadband seismometers (STS1 or STS2) and 24 or 26 bit digitizers, as required by the Federation of Seismic Digital Network (FDSN). In most stations, a pressure gauge and a thermometer are also installed. Currently, 23 stations send data in real or near real time to GEOSCOPE Data Center and tsunami warning centers. In 2009, two stations (SSB and PPTF) have been equipped with warpless base plates. Analysis of one year of data shows that the new installation decreases long period noise (20s to 1000s) by 10 db on horizontal components. SSB is now rated in the top ten long period stations for horizontal components according to the LDEO criteria. In 2010, Stations COYC, PEL and RER have been upgraded with Q330HR, Metrozet electronics and warpless base plates. They have been calibrated with the calibration table CT-EW1 and the software jSeisCal and Calex-EW. Aluminum jars are now installed instead of glass bells. A vacuum of 100 mbars is applied in the jars which improves thermal insulation of the seismometers and reduces moisture and long-term corrosion in the sensor. A new station RODM has just been installed in Rodrigues Island in Mauritius with standard Geoscope STS2 setup: STS2 seismometer on a granite base plate and covered by cooking pot and thermal insulation, it is connected to Q330HR digitizer, active lightning protection, Seiscomp PC and real-time internet connection. Continuous data of all stations are collected in real time or with a delay by the GEOSCOPE Data Center in Paris where they are validated, archived and made available to the international scientific community. Data are freely available to users by different interfaces according data types (see : http://geoscope.ipgp.fr) - Continuous data in real time coming

  13. Extracting galactic binary signals from the first round of Mock LISA Data Challenges

    CERN Document Server

    Crowder, Jeff

    2007-01-01

    We report on the performance of an end-to-end Bayesian analysis pipeline for detecting and characterizing galactic binary signals in simulated LISA data. Our principal analysis tool is the Blocked-Annealed Metropolis Hasting (BAM) algorithm, which has been optimized to search for tens of thousands of overlapping signals across the LISA band. The BAM algorithm employs Bayesian model selection to determine the number of resolvable sources, and provides posterior distribution functions for all the model parameters. The BAM algorithm performed almost flawlessly on all the Round 1 Mock LISA Data Challenge data sets, including those with many highly overlapping sources. The only misses were later traced to a coding error that affected high frequency sources. In addition to the BAM algorithm we also successfully tested a Genetic Algorithm (GA), but only on data sets with isolated signals as the GA has yet to be optimized to handle large numbers of overlapping signals.

  14. Magnetic Back Action Effect of Magnetic Sensors for eLISA/NGO

    Science.gov (United States)

    Mateos, I.; Diaz-Aguiló, M.; Gibert, F.; Lloro, I.; Lobo, A.; Nofrarias, M.; Ramos-Castro, J.

    2013-01-01

    The fluxgate magnetometers used in LISA Pathfinder mission are able to perform very low noise measurements at milli-Hertz frequency, however they need to be kept somehow away from the Test Masses (TMs) due to the quantity of ferromagnetic material contained in the fluxgate's core, which constitutes a potential source of disturbance to the performance. As a result, the estimation of the magnetic field and gradient in the TMs is very problematic, despite the excellent quality of the readout data. The design of a magnetic diagnostic measuring system able to deal with the magnetic constraints for eLISA/NGO will imply the magnetic characterization of the sensors in order to estimate the magnetic back action effect on their environment. The magnetic impact caused by the magnetometers also depends on the noise reduction techniques used in the signal conditioning circuit, which is being studied to develop criteria for the best choice of magnetic sensors for eLISA/NGO.

  15. Low-frequency Gravitational-wave Science with eLISA

    Science.gov (United States)

    Vallisneri, Michele; eLISA Science Study Team

    2013-01-01

    I review the expected science performance of eLISA, the proposed European-led gravitational-wave detector that may be selected as ESA "L2" Cosmic Vision mission. eLISA will survey the low-frequency gravitational-wave sky (from 0.1 mHz to 1 Hz), detecting and characterizing a broad variety of systems and events throughout the Universe, including the coalescences of massive black holes brought together by galaxy mergers; the inspirals of stellar-mass black holes and compact stars into central galactic black holes; several millions of ultracompact binaries, both detached and mass transferring, in the Galaxy; and possibly unforeseen sources such as the relic gravitational-wave radiation from the early Universe. eLISA's high signal-to-noise measurements will provide new insight into the structure and history of the Universe, and they will test general relativity in its strong-field dynamical regime.

  16. Torsion pendulum facility for ground testing of gravitational sensors for LISA

    CERN Document Server

    Hüller, M; Dolesi, R; Vitale, S; Weber, W J

    2002-01-01

    We report here on a torsion pendulum facility for ground-based testing of the Laser Interferometer Space Antenna (LISA) gravitational sensors. We aim to measure weak forces exerted by a capacitive position sensor on a lightweight version of the LISA test mass, suspended from a thin torsion fibre. This facility will permit measurement of the residual, springlike coupling between the test mass and the sensor and characterization of other stray forces relevant to LISA drag-free control. The expected force sensitivity of the proposed torsion pendulum is limited by the intrinsic thermal noise at approx 3x10 sup - sup 1 sup 3 N Hz sup - sup 1 sup / sup 2 at 1 mHz. We briefly describe the design and implementation of the apparatus, its expected performance and preliminary experimental data.

  17. The Mock LISA Data Challenges: from challenge 3 to challenge 4

    Energy Technology Data Exchange (ETDEWEB)

    Babak, Stanislav; Petiteau, Antoine; Robinson, Emma L [Max-Planck-Institut fuer Gravitationsphysik (Albert-Einstein-Institut), Am Muehlenberg 1, D-14476 Golm bei Potsdam (Germany); Baker, John G; McWilliams, Sean T; Arnaud, Keith A [Gravitational Astrophysics Laboratory, NASA Goddard Space Flight Center, 8800 Greenbelt Rd, Greenbelt, MD 20771 (United States); Benacquista, Matthew J [Center for Gravitational Wave Astronomy, University of Texas at Brownsville, Brownsville, TX 78520 (United States); Cornish, Neil J; Adams, Matt [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Larson, Shane L [Department of Physics, Utah State University, Logan, UT 84322 (United States); Mandel, Ilya [Department of Physics and Astronomy, Northwestern University, Evanston, IL (United States); Porter, Edward K [APC, UMR 7164, University Paris 7 Denis Diderot, 10, rue Alice Domon et Leonie Duquet, 75025 Paris Cedex 13 (France); Vallisneri, Michele; Cutler, Curt [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Vecchio, Alberto [School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B152TT (United Kingdom); Blaut, Arkadiusz [Institute of Theoretical Physics, University of Wroclaw, Wroclaw (Poland); Bridges, Michael; Feroz, Farhan [Astrophysics Group, Cavendish Laboratory, University of Cambridge, Cambridge CB30HE (United Kingdom); Cohen, Michael [Theoretical Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Gair, Jonathan R., E-mail: Michele.Vallisneri@jpl.nasa.go [Institute of Astronomy, University of Cambridge, Cambridge CB30HA (United Kingdom)

    2010-04-21

    The Mock LISA Data Challenges are a program to demonstrate LISA data-analysis capabilities and to encourage their development. Each round of challenges consists of one or more datasets containing simulated instrument noise and gravitational waves from sources of undisclosed parameters. Participants analyze the datasets and report best-fit solutions for the source parameters. Here we present the results of the third challenge, issued in April 2008, which demonstrated the positive recovery of signals from chirping galactic binaries, from spinning supermassive-black-hole binaries (with optimal SNRs between approx10 and 2000), from simultaneous extreme-mass-ratio inspirals (SNRs of 10-50), from cosmic-string-cusp bursts (SNRs of 10-100), and from a relatively loud isotropic background with OMEGA{sub gw}(f) approx 10{sup -11}, slightly below the LISA instrument noise.

  18. In-flight thermal experiments for LISA Pathfinder: Simulating temperature noise at the Inertial Sensors

    Science.gov (United States)

    Gibert, F.; Nofrarias, M.; Armano, M.; Audley, H.; Auger, G.; Baird, J.; Binetruy, P.; Born, M.; Bortoluzzi, D.; Brandt, N.; Bursi, A.; Caleno, M.; Cavalleri, A.; Cesarini, A.; Cruise, M.; Danzmann, K.; Diepholz, I.; Dolesi, R.; Dunbar, N.; Ferraioli, L.; Ferroni, V.; Fitzsimons, E.; Freschi, M.; Gallegos, J.; García Marirrodriga, C.; Gerndt, R.; Gesa, Ll; Giardini, D.; Giusteri, R.; Grimani, C.; Harrison, I.; Heinzel, G.; Hewitson, M.; Hollington, D.; Hueller, M.; Huesler, J.; Inchauspé, H.; Jennrich, O.; Jetzer, P.; Johlander, B.; Karnesis, N.; Kaune, B.; Korsakova, N.; Killow, C.; Lloro, I.; Maarschalkerweerd, R.; Madden, S.; Maghami, P.; Mance, D.; Martín, V.; Martin-Porqueras, F.; Mateos, I.; McNamara, P.; Mendes, J.; Mendes, L.; Moroni, A.; Paczkowski, S.; Perreur-Lloyd, M.; Petiteau, A.; Pivato, P.; Plagnol, E.; Prat, P.; Ragnit, U.; Ramos-Castro, J.; Reiche, J.; Romera Perez, J. A.; Robertson, D.; Rozemeijer, H.; Russano, G.; Sarra, P.; Schleicher, A.; Slutsky, J.; Sopuerta, C. F.; Sumner, T.; Texier, D.; Thorpe, J.; Trenkel, C.; Tu, H. B.; Vetrugno, D.; Vitale, S.; Wanner, G.; Ward, H.; Waschke, S.; Wass, P.; Wealthy, D.; Wen, S.; Weber, W.; Wittchen, A.; Zanoni, C.; Ziegler, T.; Zweifel, P.

    2015-05-01

    Thermal Diagnostics experiments to be carried out on board LISA Pathfinder (LPF) will yield a detailed characterisation of how temperature fluctuations affect the LTP (LISA Technology Package) instrument performance, a crucial information for future space based gravitational wave detectors as the proposed eLISA. Amongst them, the study of temperature gradient fluctuations around the test masses of the Inertial Sensors will provide as well information regarding the contribution of the Brownian noise, which is expected to limit the LTP sensitivity at frequencies close to 1 mHz during some LTP experiments. In this paper we report on how these kind of Thermal Diagnostics experiments were simulated in the last LPF Simulation Campaign (November, 2013) involving all the LPF Data Analysis team and using an end-to-end simulator of the whole spacecraft. Such simulation campaign was conducted under the framework of the preparation for LPF operations.

  19. A new torsion pendulum for testing the limits of free-fall for LISA test masses

    Science.gov (United States)

    Cavalleri, A.; Ciani, G.; Dolesi, R.; Heptonstall, A.; Hueller, M.; Nicolodi, D.; Rowan, S.; Tombolato, D.; Vitale, S.; Wass, P. J.; Weber, W. J.

    2009-05-01

    On-ground verification of the precision with which a test mass can be in perfect free-fall, without any stray forces, is among the most challenging aspects of preparing for LISA and LISA Pathfinder. This study aims at improving the sensitivity in torsion pendulum measurements of the stray forces arising in the interaction between a test mass and the capacitive position sensor that surrounds it. Measurements are performed with pendulum suspensions based on both tungsten and higher quality factor uncoated fused silica torsion fibers. The results achieved with the fused silica pendulum establish more stringent upper limits on the excess force noise attributable to the sensor—at a level that roughly coincides with the LISA Pathfinder flight goal around 1 mHz. Additionally, these measurements demonstrate a force sensitivity improvement over what can be achieved with thermal noise-limited tungsten over a wide range of frequencies, with significant further improvements still possible.

  20. Torsion pendulum facility for direct force measurements of LISA GRS related disturbances

    CERN Document Server

    Carbone, L; Ciani, G; Dolesi, R; Hüller, M; Tombolato, D; Vitale, S; Weber, W J

    2007-01-01

    A four mass torsion pendulum facility for testing of the LISA GRS is under development in Trento. With a LISA-like test mass suspended off-axis with respect to the pendulum fiber, the facility allows for a direct measurement of surface force disturbances arising in the GRS. We present here results with a prototype pendulum integrated with very large-gap sensors, which allows an estimate of the intrinsic pendulum noise floor in the absence of sensor related force noise. The apparatus has shown a torque noise near to its mechanical thermal noise limit, and would allow to place upper limits on GRS related disturbances with a best sensitivity of 300 fN/Hz^(1/2) at 1mHz, a factor 50 from the LISA goal. Also, we discuss the characterization of the gravity gradient noise, one environmental noise source that could limit the apparatus performances, and report on the status of development of the facility.

  1. Observatory Bibliographies as Research Tools

    Science.gov (United States)

    Rots, Arnold H.; Winkelman, S. L.

    2013-01-01

    Traditionally, observatory bibliographies were maintained to provide insight in how successful a observatory is as measured by its prominence in the (refereed) literature. When we set up the bibliographic database for the Chandra X-ray Observatory (http://cxc.harvard.edu/cgi-gen/cda/bibliography) as part of the Chandra Data Archive ((http://cxc.harvard.edu/cda/), very early in the mission, our objective was to make it primarily a useful tool for our user community. To achieve this we are: (1) casting a very wide net in collecting Chandra-related publications; (2) including for each literature reference in the database a wealth of metadata that is useful for the users; and (3) providing specific links between the articles and the datasets in the archive that they use. As a result our users are able to browse the literature and the data archive simultaneously. As an added bonus, the rich metadata content and data links have also allowed us to assemble more meaningful statistics about the scientific efficacy of the observatory. In all this we collaborate closely with the Astrophysics Data System (ADS). Among the plans for future enhancement are the inclusion of press releases and the Chandra image gallery, linking with ADS semantic searching tools, full-text metadata mining, and linking with other observatories' bibliographies. This work is supported by NASA contract NAS8-03060 (CXC) and depends critically on the services provided by the ADS.

  2. The role of interplanetary electrons at the time of the LISA missions

    Energy Technology Data Exchange (ETDEWEB)

    Grimani, C; Fabi, M [Istituto di Fisica, Universtita degli Studi di Urbino ' Carlo Bo' , Urbino (Italy); Finetti, N [Dipartimento di Fisica, Universita degli Studi dell' Aquila, L' Aquila (Italy); Tombolato, D, E-mail: catia.grimani@uniurb.i [Dipartimento di Fisica, Universita degli Studi di Trento, Trento (Italy)

    2009-11-07

    LISA (Laser Interferometer Space Antenna) is the first space interferometer devoted to the detection of gravitational waves in the frequency range 10{sup -4} to 10{sup -1} Hz. Free-fall gold-platinum test masses constitute the mirrors of the interferometer. Solar and galactic particles charging the test masses induce spurious forces that might mimic genuine gravitational wave signals. Proton and helium nuclei are more than 98% in composition of both galactic and energetic solar particles. The charging due to these ions was carefully studied. However, highly penetrating interplanetary electrons play a role similar to helium nuclei at solar minimum and balance more than half of the net charge induced by galactic protons at solar maximum. In this paper, we report the study of LISA test-mass charging and radiation monitor countrate due to interplanetary electrons under different conditions of solar modulation and global solar magnetic field (GSMF) polarity. The radiation monitors designed for the LISA precursor mission, LISA Pathfinder (LISA-PF), were considered. Solar electrons do not produce any detectable signal in the radiation monitors. No relevant increase in the test-mass charging is generated by solar electrons with respect to protons as well. However, we point out that the detection of electrons of solar origin on-board LISA will allow us to short-forecast incoming, intense solar ion fluxes. An optimized environmental survey would lead us to further improve the test-mass discharging process, reduce the overall noise and, possibly, extend the mission lifetime. Important contributions to solar physics and space-weather investigations will be provided as well.

  3. Observing extreme-mass-ratio inspirals with eLISA/NGO

    CERN Document Server

    Gair, Jonathan R

    2012-01-01

    The extreme-mass-ratio inspirals (EMRIs) of stellar mass compact objects into massive black holes in the centres of galaxies are an important source of low-frequency gravitational waves for space-based detectors. We discuss the prospects for detecting these sources with the evolved Laser Interferometer Space Antenna (eLISA), recently proposed as an ESA mission candidate under the name NGO. We show that NGO could observe a few tens of EMRIs over its two year mission lifetime at redshifts z < 0.5 and describe how the event rate changes under possible alternative specifications of the eLISA design.

  4. Keskkonnatoetuste lisa-aasta - kas vastutulek või lõks? / Henno Nurmsalu

    Index Scriptorium Estoniae

    Nurmsalu, Henno

    2014-01-01

    Kuna valitsus ja Euroopa Komisjon ei ole veel kinnitanud maaelu arengukava 2014-2020 ning käesoleval aastal uued meetmed ei käivitu, on põllumajandusminister 24. märtsil 2014 vastu võtnud määruse nr 21, mille kohaselt on võimalik 2014. a võetud keskkonnatoetuse kohustusi pikendada nn lisa-aastaks. Sellest tulenevalt on osal põllumeestel neist endist sõltumatult tekkinud olukord, kus ähvardab lisa-aasta toetuse taotlemisel viie aasta toetuse tagasinõudmine

  5. Subtraction of test mass angular noise in the LISA Technology Package interferometer

    CERN Document Server

    Cervantes, Felipe Guzmán; Wanner, Gudrun; Heinzel, Gerhard; Danzmann, Karsten

    2012-01-01

    We present recent sensitivity measurements of the LISA Technology Package interferometer with articulated mirrors as test masses, actuated by piezo-electric transducers. The required longitudinal displacement resolution of 9 pm/sqrt[Hz] above 3 mHz has been demonstrated with an angular noise that corresponds to the expected in on-orbit operation. The excess noise contribution of this test mass jitter onto the sensitive displacement readout was completely subtracted by fitting the angular interferometric data streams to the longitudinal displacement measurement. Thus, this cross-coupling constitutes no limitation to the required performance of the LISA Technology Package interferometry.

  6. COMMITTEES: LISA 7 Science Organizing Committee and Local Organizing Committee LISA 7 Science Organizing Committee and Local Organizing Committee

    Science.gov (United States)

    2009-05-01

    Science Organising Committee (SOC) Pierre Binetruy, APC - College de France Massimo Cerdonio, University of Padova Karsten Danzmann, AEI/University of Hannover Mike Cruise, University of Birmingham Jim Hough, University of Glasgow Oliver Jennrich, ESTEC Philippe Jetzer, University Zurich Alberto Lobo (Chair), ICE-CSIC and IEEC Yannick Mellier, IAP, Paris Bernard Schutz, AEI Potsdam Tim Sumner, Imperial College, London Jean-Yves Vinet, OCA, Nice Stefano Vitale, University of Trento Peter Bender, University of Colorado Sasha Buchman, Stanford University Joan Centrella, NASA/Goddard Neil Cornish, Montana State University Curt Cutler, NASA/JPL Sam Finn, Penn State University Jens Gundlach, NPL Craig Hogan, University of Washington Scott Hughes, MIT Piero Madau, Lick Observatory Tom Prince, NASA/JPL Sterl Phinney, Caltech Doug Richstone, University of Michigan Tuck Stebbins, NASA/Goddard Kip Thorne, Caltech Roger Blandford, Stanford University Eugenio Coccia, University of Roma-2 Carlos F Sopuerta,ICE-CSIC and IEEC Enrique Garcia-Berro, Universitat Politècnica de Catalunya, Barcelona Seiji Kawamura, National Observatory, Japan Jay Marx, LIGO Laboratory Stephen Merkowitz, NASA/Goddard Benoit Mours, Laboratoire d'Annec Gijs Nelemans, IMAPP, Nijmegen Enric Verdaguer, University of Barcelona Clifford M Will, Washington University, St Louis Local Organising Committee (LOC) Anna Bertolín (IEEC) Priscilla Cañizares (ICE-CSIC and IEEC) Carlos F Sopuerta (ICE-CSIC and IEEC) Ivan Lloro (ICE-CSIC and IEEC),Chair Alberto Lobo (ICE-CSIC and IEEC) Nacho Mateos (ICE-CSIC and IEEC) Pilar Montes (IEEC) Miquel Nofrarias (IEEC) Juan Ramos-Castro (Universitat Politècnica de Catalunya) Josep Sanjuán (IEEC)

  7. LISA 8 Science Organizing Committee and Local Organizing Committee LISA 8 Science Organizing Committee and Local Organizing Committee

    Science.gov (United States)

    2011-05-01

    Science Organising Committee (SOC) Tom Abel, Stanford University Odylio Aguiar, Instituto Nacional de Pesquisas Espaciais Tal Alexander, Wizemann Institute Peter Bender, University of Colorado Pierre Binetruy, APC - College de France Sasha Buchman, Stanford University Robert Byer, Stanford University Manuela Campanelli, University of Texas Joan Centrella, NASA/Goddard Massimo Cerdonio, University of Padova Eugenio Coccia, University of Roma-2 Neil Cornish, Montana State University Michael Cruise, University of Birmingham Curt Cutler, NASA/JPL Karsten Danzmann, University of Hannover Sam Finn, Penn State University Jens Gundlach, NPL Gerhard Heinzel, Max-Planck-Institut fuer Gravitationsphysik Craig Hogan, University of Washington Jim Hough, University of Glasgow Scott Hughes, MIT Oliver Jennrich, ESTEC Philippe Jetzer, University Zurich Seiji Kawamura, National Observatory, Japan Alberto Lobo, ICE-CSIC and IEEC Avi Loeb, Harvard University Piero Madau, Lick Observatory Yannick Mellier, IAP, Paris Peter Michelson, Stanford University Guido Mueller, University of Florida Sterl Phinney, Caltech Tom Prince, NASA/JPL Doug Richstone, University of Michigan Bernard Schutz, AEI Potsdam Tuck Stebbins, NASA/Goddard Tim Sumner, Imperial College, London Ke-Xun Sun, Stanford University Kip Thorne, Caltech Michele Vallisneri, NASA/JPL Alberto Vecchio, University of Birmingham Jean-Yves Vinet, OCA, Nice Stefano Vitale, University of Trento Rai Weiss, MIT Nick White, NASA/Goddard Local Organising Committee (LOC) Sasha Buchman (Stanford University) Robert Byer (Stanford University) Sara Charbonneau-Lefort (Stanford University) Nancy Christianson (Stanford University) John Conklin (Stanford University) Dan DeBra (Stanford University) Jan Goebel (Stanford University) Vivian Drew (Stanford University) Ke-Xun Sun (Stanford University) Lucy Zhou (Stanford University) Andrea Zoellner (Stanford University)

  8. Australian network of magnetic observatories

    Science.gov (United States)

    Barton, C. E.

    Six magnetic observatories are presently operated by the Australian Bureau of Mineral Resources, Geology and Geophysics (BMR), with assistance from various other organizations. Variometer recordings are made of three or more elements of the field at minute intervals, and absolute measurements are made weekly. There are four observatories on the continent (Canberra, Gnangara, Charters Towers, and Learmonth), one on Macquarie Island, and one at Mawson Station in eastern Antarctica (Figure 1). In addition, semiweekly absolute observations of the field (D, H, and F) are made at the other two permanent Australian Antarctic bases (Casey and Davis). A three-axis fluxgate magnetometer (EDA Electronics, Toronto , Canada) is operated independently by the Upper Atmosphere Physics group at Davis. Monthly mean values, K indices, and information about magnetic disturbances are published monthly in the BMR Geophysical Observatory Report.

  9. Theory in a Virtual Observatory

    CERN Document Server

    Teuben, P; Hut, P; Levy, S; Makino, J; McMillan, S; Zwart, S P; Slavin, S D; Teuben, Peter; Young, Dave De; Hut, Piet; Levy, Stuart; Makino, Jun; Millan, Steve Mc; Zwart, Simon Portegies; Slavin, Shawn

    2001-01-01

    During the last couple of years, observers have started to make plans for a Virtual Observatory, as a federation of existing data bases, connected through levels of software that enable rapid searches, correlations, and various forms of data mining. We propose to extend the notion of a Virtual Observatory by adding archives of simulations, together with interactive query and visualization capabilities, as well as ways to simulate observations of simulations in order to compare them with observations. For this purpose, we have already organized two small workshops, earlier in 2001, in Tucson and Aspen. We have also provided concrete examples of theory data, designed to be federated with a Virtual Observatory. These data stem from a project to construct an archive for our large-scale simulations using the GRAPE-6 (a 32-Teraflops special purpose computer for stellar dynamics). We are constructing interfaces by which remote observers can observe these simulations. In addition, these data will enable detailed comp...

  10. Mexican Virtual Solar Observatory project

    Science.gov (United States)

    Santillán, Alfredo J.; Hernández, Liliana; Salas, Guillermo; Sánchez, Antonio; González, Alejandro; Franco, José

    2007-08-01

    The Virtual Solar Observatory (VSO) concept outlines a software environment for searching, obtaining and analyzing data from archives of solar data that are distributed at many different observatories around the world (Hill 2006, in this volume). The VSO, however, not only provides fast and reliable access to the existing data of Solar Active Regions, but also represents a powerful and unique tool to perform numerical simulations of the evolution and present state of solar phenomena. Two centers at UNAM, the Institute of Astronomy (IA) and the Supercomputer Center (DGSCA), along with the Sonora University, are working together to create the Mexican Virtual Solar Observatory (MVSO) that will be part of a wider national effort.

  11. Environmental Observatories and Hydrologic Modeling

    Science.gov (United States)

    Hooper, R. P.; Duncan, J. M.

    2006-12-01

    During the past several years, the environmental sciences community has been attempting to design large- scale obsevatories that will transform the science. A watershed-based observatory has emerged as an effective landscape unit for a broad range of environmental sciences and engineering. For an effective observatory, modeling is a central requirement because models are precise statements of the hypothesized conceptual organization of watersheds and of the processes believed to be controlling hydrology of the watershed. Furthermore, models can serve to determine the value of existing data and the incremental value of any additional data to be collected. Given limited resources, such valuation is mandatory for an objective design of an observatory. Modeling is one part of a "digital watershed" that must be constructed for any observatory, a concept that has been developed by the CUAHSI Hydrologic Information Systems project. A digital watershed has three functions. First, it permits assembly of time series (such as stream discharge or precipitation measurements), static spatial coverages (such as topography), and dynamic fields (such as precipitation radar and other remotely sensed data). Second, based upon this common data description, a digital observatory permits multiple conceptualizations of the observatory to be created and to be stored. These conceptualizations could range from lumped box-and-arrow watershed models, to semi-distributed topographically based models, to three-dimensional finite element models. Finally, each conceptualization can lead to multiple models--that is, a set of equations that quantitatively describe hydrologic (or biogeochemical or geomorphologic) processes through libraries of tools that can be linked as workflow sequences. The advances in cyberinfrastructure that allow the storage of multiple conceptualizations and multiple model formulations of these conceptualizations promise to accelerate advances in environmental science both

  12. Possible Space-Based Gravitational-Wave Observatory Mission Concept

    Science.gov (United States)

    Livas, Jeffrey C.

    2015-01-01

    The existence of gravitational waves was established by the discovery of the Binary Pulsar PSR 1913+16 by Hulse and Taylor in 1974, for which they were awarded the 1983 Nobel Prize. However, it is the exploitation of these gravitational waves for the extraction of the astrophysical parameters of the sources that will open the first new astronomical window since the development of gamma ray telescopes in the 1970's and enable a new era of discovery and understanding of the Universe. Direct detection is expected in at least two frequency bands from the ground before the end of the decade with Advanced LIGO and Pulsar Timing Arrays. However, many of the most exciting sources will be continuously observable in the band from 0.1-100 mHz, accessible only from space due to seismic noise and gravity gradients in that band that disturb groundbased observatories. This talk will discuss a possible mission concept developed from the original Laser Interferometer Space Antenna (LISA) reference mission but updated to reduce risk and cost.

  13. Telescopes for a Space-Based Gravitational Wave Observatory

    Science.gov (United States)

    Sankar, Shannon; Livas, Jeffrey

    2017-01-01

    Telescopes are an important part of the science measurement for a space-based gravitational wave observatory. The telescopes should not introduce excess phase noise which might lower the signal-to-noise of the gravitational wave signal. This requirement constrains both the telescope stability and the phase noise due to scattered light. The photoreceiver senses a combination of a local beam, the received beam and scattered light. If the scattered light has significant spatial overlap, and if there is displacement noise in the scatter path, the signal-to-noise of the main measurement can be impacted. We will discuss our approach to addressing this concern. We model the scattered power from the telescope under expected conditions and use these models for evaluating potential telescope designs. We also determine allowable mirror surface roughness and contamination levels from the scattered light models. We implement the best designs by fabricating a series of prototype telescopes of increasing flight readiness, using eLISA as a reference mission for design specifications. Finally, we perform laboratory tests of the fabricated prototype telescope to validate the models and inform our understanding of the eventual flight telescopes.

  14. Astronomical Research Using Virtual Observatories

    Directory of Open Access Journals (Sweden)

    M Tanaka

    2010-01-01

    Full Text Available The Virtual Observatory (VO for Astronomy is a framework that empowers astronomical research by providing standard methods to find, access, and utilize astronomical data archives distributed around the world. VO projects in the world have been strenuously developing VO software tools and/or portal systems. Interoperability among VO projects has been achieved with the VO standard protocols defined by the International Virtual Observatory Alliance (IVOA. As a result, VO technologies are now used in obtaining astronomical research results from a huge amount of data. We describe typical examples of astronomical research enabled by the astronomical VO, and describe how the VO technologies are used in the research.

  15. Satellite RNAs and Satellite Viruses.

    Science.gov (United States)

    Palukaitis, Peter

    2016-03-01

    Satellite RNAs and satellite viruses are extraviral components that can affect either the pathogenicity, the accumulation, or both of their associated viruses while themselves being dependent on the associated viruses as helper viruses for their infection. Most of these satellite RNAs are noncoding RNAs, and in many cases, have been shown to alter the interaction of their helper viruses with their hosts. In only a few cases have the functions of these satellite RNAs in such interactions been studied in detail. In particular, work on the satellite RNAs of Cucumber mosaic virus and Turnip crinkle virus have provided novel insights into RNAs functioning as noncoding RNAs. These effects are described and potential roles for satellite RNAs in the processes involved in symptom intensification or attenuation are discussed. In most cases, models describing these roles involve some aspect of RNA silencing or its suppression, either directly or indirectly involving the particular satellite RNA.

  16. Multidisciplinary development of Belerofont Observatory.

    Science.gov (United States)

    Babović, V.

    1997-08-01

    Belerofont Astronomical Observatory in Kragujevac, inaugurated on the occasion of the appearance of Halley's comet on February 26, 1986, develops astronomical activities among pupils, university youth and people interested in cosmic phenomena. In preparing a course of astronomy and astrophysics in the physics study curriculum, the society tends toward a multidisciplinary way of work.

  17. The National Ecological Observatory Network

    Science.gov (United States)

    Michener, W. K.

    2006-05-01

    The National Ecological Observatory Network (NEON) is a research platform designed to advance understanding of how ecosystems and organisms respond to variations in climate and changes in land use. NEON is the first long-term ecological observatory conceived as a continental-scale network; equipped with standardized sensors, cyberinfrastructure, and data-collection protocols across the network; and designed to simultaneously address a common set of research questions and support investigator-driven ecological research in all regions of the United States. The Observatory focuses on variations in climate and land use because they are primary drivers of the Nation's environmental challenges, as identified by the National Research Council--i.e., biodiversity, biogeochemical cycles, climate change, hydroecology, infectious disease, invasive species, and land use. At the broadest scale, NEON links the complexity of climate variation to the behavior of ecological systems, a core aspect of ecological complexity. At the same time, because of the complexity of the interactions among humans and ecosystems, the network design includes NEON sites in wild, managed and urban systems within climate domains. Observatory data will also be part of a national education program designed to advance ecological science literacy through new programs and activities that develop and promote scientific ways of thinking.

  18. Heterodyne stabilization as a possible laser frequency stabilization technique for LISA

    Science.gov (United States)

    Eichholz, Johannes

    The Laser Interferometer Space Antenna is a joint NASA/ESA mission aimed at the detection of gravitational wave radiation in the frequency range from 30 uHz to 0.1 Hz. LISA uses a modified Michelson interferometer setup consisting of three identical spacecraft, arranged in an equilateral triangular constellation. It measures the differential length changes of the 5 · 109 m long interferometer arms between free-floating proof masses housed within each spacecraft. Laser pre-stabilization is required in conjunction with Time-Delay Interferometry data post-processing to monitor the armlength changes with picometer precision. A modulation/demodulation technique to stabilize the frequency of the lasers to an optical reference cavity has been proposed for a long time, but it requires several additional optical components and would need to be built as a separate system. Using a different sensing tech-nique, heterodyne interferometry, we propose a modified stabilization scheme, which similarly transfers the stability of an optical reference cavity to the laser frequency. It only uses com-ponents that are already available in the LISA assembly and can easily be integrated into the optical bench design. A similar stabilization scheme is going to be used in LISA Pathfinder. We will discuss this technique in detail and present initial experimental results, as well as predicted performances on the LISA bench.

  19. Estudo bibliométrico do descritor “Ergonomia” na base LISA

    Directory of Open Access Journals (Sweden)

    Eliana Maria dos Santos Bahia

    2011-03-01

    Full Text Available Objetivo: O estudo analisa a produção científica sobre ergonomia utilizando a base de dados Library and Information Science Abstracts (LISA. A base de dados LISA, iniciada em 1969, mantém sua cobertura temática na área de Biblioteconomia e Ciência da Informação.Método: No estudo utilizou-se o método da bibliometria aplicada para verificar a produção científica indexada.Resultados: Entre os resultados da busca de termos indexados na base de dados LISA, encontraram-se 503 artigos com o termo “Ergonomic”; 352 artigos, com a expressão “Design”; 111 artigos com o descritor “Systems”; 110 artigos com o termo “Work”; e , 98 artigos com o termo “Evaluation”. Dentre os 34 títulos de periódicos, 4 títulos cobrem 79% dos artigos que tratam sobre Ergonomia na base LISA. Os demais 30 títulos de periódicos cobrem 21% dos artigos indexados sob essa temática.Conclusões: O presente estudo bibliométrico oferece possibilita um panorama de como a ergonomia é percebida na área da Biblioteconomia e Ciência da Informação.

  20. Interpolation of the magnetic field at the test masses in eLISA

    Science.gov (United States)

    Mateos, I.; Díaz-Aguiló, M.; Ramos-Castro, J.; García-Berro, E.; Lobo, A.

    2015-08-01

    A feasible design for a magnetic diagnostics subsystem for eLISA will be based on that of its precursor mission, LISA Pathfinder. Previous experience indicates that magnetic field estimation at the positions of the test masses has certain complications. This is due to two reasons. The first is that magnetometers usually back-act due to their measurement principles (i.e., they also create their own magnetic fields), while the second is that the sensors selected for LISA Pathfinder have a large size, which conflicts with space resolution and with the possibility of having a sufficient number of them to properly map the magnetic field around the test masses. However, high-sensitivity and small-sized sensors that significantly mitigate the two aforementioned limitations exist, and have been proposed to overcome these problems. Thus, these sensors will be likely selected for the magnetic diagnostics subsystem of eLISA. Here we perform a quantitative analysis of the new magnetic subsystem, as it is currently conceived, and assess the feasibility of selecting these sensors in the final configuration of the magnetic diagnostic subsystem.

  1. A Strategy to Characterize the LISA-Pathfinder Cold Gas Thruster System

    Science.gov (United States)

    Armano, M.; Audley, H.; Auger, G.; Baird, J.; Binetruy, P.; Born, M.; Bortoluzzi, D.; Brandt, N.; Bursi, A.; Caleno, M.; Cavalleri, A.; Cesarini, A.; Cruise, M.; Danzmann, K.; Diepholz, I.; Dolesi, R.; Dunbar, N.; Ferraioli, L.; Ferroni, V.; Fitzsimons, E.; Freschi, M.; Gallegos, J.; Garcia Marirrodriga, C.; Gerndt, R.; Gesa, L. I.; Gibert, F.; Giardini, D.; Giusteri, R.; Grimani, C.; Harrison, I.; Heinzel, G.; Hewitson, M.; Hollington, D.; Hueller, M.; Huesler, J.; Inchauspé, H.; Jennrich, O.; Jetzer, P.; Johlander, B.; Karnesis, N.; Kaune, B.; Korsakova, N.; Killow, C.; Lloro, I.; Maarschalkerweerd, R.; Madden, S.; Mance, D.; Martin, V.; Martin-Porqueras, F.; Mateos, I.; McNamara, P.; Mendes, J.; Mendes, L.; Moroni, A.; Nofrarias, M.; Paczkowski, S.; Perreur-Lloyd, M.; Petiteau, A.; Pivato, P.; Plagnol, E.; Prat, P.; Ragnit, U.; Ramos-Castro, J.; Reiche, J.; Romera Perez, J. A.; Robertson, D.; Rozemeijer, H.; Russano, G.; Sarra, P.; Schleicher, A.; Slutsky, J.; Sopuerta, C. F.; Sumner, T.; Texier, D.; Thorpe, J.; Trenkel, C.; Tu, H. B.; Vitale, S.; Wanner, G.; Ward, H.; Waschke, S.; Wass, P.; Wealthy, D.; Wen, S.; Weber, W.; Wittchen, A.; Zanoni, C.; Ziegler, T.; Zweifel, P.

    2015-05-01

    The cold gas micro-propulsion system that will be used during the LISA-Pathfinder mission will be one of the most important component used to ensure the "free-fall" of the enclosed test masses. In this paper we present a possible strategy to characterize the effective direction and amplitude gain of each of the 6 thrusters of this system.

  2. Simulating Neutron Interactions in the MoNA-LISA/Sweeper Setup with Geant4

    Science.gov (United States)

    McArthur, Magdalene

    2012-10-01

    The sweeper magnet is a superconducting dipole designed to bend charged particles of 4 Tm rigidity 43 degrees at a radius of approximately one meter. In a typical experiment neutron-unbound states are populated in a reaction in front of the magnet and emitted neutrons are subsequently detected with the high-efficiency position sensitive neutron detector arrays, MoNA and LISA. Before the neutrons interact in MoNA or LISA, they have to pass through the walls of the sweeper magnet chamber. A Monte Carlo simulation was written using Geant 4 which included MoNA and LISA, as well as the geometry of the sweeper magnet and the chamber. In a recent experiment LISA was positioned at large angles were the neutrons passed through the sidewalls of the chamber. The impact of the sidewalls on the neutron spectra was explored for neutrons from the decay of 12Li -> 11Li + n produced from 50 MeV/u 14B beams on a beryllium target.

  3. Sky Localization of Complete Inspiral-Merger-Ringdown Signals for Nonspinning Black Hole Binaries with LISA

    Science.gov (United States)

    McWilliams, Sean T.; Lang, Ryan N.; Baker, John G.; Thorpe, James Ira

    2011-01-01

    We investigate the capability of LISA to measure the sky position of equal-mass, nonspinning black hole binaries, including for the first time the entire inspiral-merger-ringdown signal, the effect of the LISA orbits, and the complete three-channel LISA response. For an ensemble of systems near the peak of LISA's sensitivity band, with total rest mass of 2 x l0(exp 6) Stellar Mass at a redshift of z = 1 with random orientations and sky positions, we find median sky localization errors of approximately approx. 3 arcminutes. This is comparable to the field of view of powerful electromagnetic telescopes, such as the James Webb Space Telescope, that could be used to search for electromagnetic signals associated with merging black holes. We investigate the way in which parameter errors decrease with measurement time, focusing specifically on the additional information provided during the merger-ringdown segment of the signal. We find that this information improves all parameter estimates directly, rather than through diminishing correlations with any subset of well-determined parameters.

  4. ADC non-linear error corrections for low-noise temperature measurements in the LISA band

    Energy Technology Data Exchange (ETDEWEB)

    Sanjuan, J; Lobo, A; Mateos, N [Institut de Ciencies de l' Espai, CSIC, Fac. de Ciencies, Torre C5, 08193 Bellaterra (Spain); Ramos-Castro, J [Dep. Eng. Electronica, UPC, Campus Nord, Ed. C4, J Girona 1-3, 08034 Barcelona (Spain); DIaz-Aguilo, M, E-mail: sanjuan@ieec.fcr.e [Dep. Fisica Aplicada, UPC, Campus Nord, Ed. B4/B5, J Girona 1-3, 08034 Barcelona (Spain)

    2010-05-01

    Temperature fluctuations degrade the performance of different subsystems in the LISA mission. For instance, they can exert stray forces on the test masses and thus hamper the required drag-free accuracy. Also, the interferometric system performance depends on the stability of the temperature in the optical elements. Therefore, monitoring the temperature in specific points of the LISA subsystems is required. These measurements will be useful to identify the sources of excess noise caused by temperature fluctuations. The required temperature stability is still to be defined, but a figure around 10{mu}K Hz{sup -1/2} from 0.1 mHz to 0.1 Hz can be a good rough guess. The temperature measurement subsystem on board the LISA Pathfinder mission exhibits noise levels of 10{mu}K Hz{sup -1/2} for f >0.1 mHz. For LISA, based on the above hypothesis, the measurement system should overcome limitations related to the analog-to-digital conversion stage which degrades the performance of the measurement when temperature drifts. Investigations on the mitigation of such noise will be here presented.

  5. Modulation of LISA free-fall orbits due to the Earth-Moon system

    Science.gov (United States)

    Cerdonio, Massimo; De Marchi, Fabrizio; De Pietri, Roberto; Jetzer, Philippe; Marzari, Francesco; Mazzolo, Giulio; Ortolan, Antonello; Sereno, Mauro

    2010-08-01

    We calculate the effect of the Earth-Moon (EM) system on the free-fall motion of LISA test masses. We show that the periodic gravitational pulling of the EM system induces a resonance with fundamental frequency 1 yr-1 and a series of periodic perturbations with frequencies equal to integer harmonics of the synodic month (sime 3.92 × 10-7 Hz). We then evaluate the effects of these perturbations (up to the 6th harmonics) on the relative motions between each test mass couple, finding that they range between 3 mm and 10 pm for the 2nd and 6th harmonic, respectively. If we take the LISA sensitivity curve, as extrapolated down to 10-6 Hz in Bender (2003 Class. Quantum Grav. 20 301-10), we obtain that a few harmonics of the EM system can be detected in the Doppler data collected by the LISA space mission. This suggests that the EM system gravitational near field could provide an additional crosscheck to the calibration of LISA, as extended to such low frequencies.

  6. Modulation of LISA free-fall orbits due to the Earth-Moon system

    CERN Document Server

    Cerdonio, M; De Pietri, R; Jetzer, P; Marzari, F; Mazzolo, G; Ortolan, A; Sereno, M

    2010-01-01

    We calculate the effect of the Earth-Moon (EM) system on the free-fall motion of LISA test masses. We show that the periodic gravitational pulling of the EM system induces a resonance with fundamental frequency 1 yr^-1 and a series of periodic perturbations with frequencies equal to integer harmonics of the synodic month (9.92 10^-7 Hz). We then evaluate the effects of these perturbations (up to the 6th harmonics) on the relative motions between each test masses couple, finding that they range between 3mm and 10pm for the 2nd and 6th harmonic, respectively. If we take the LISA sensitivity curve, as extrapolated down to 10^-6 Hz, we obtain that a few harmonics of the EM system can be detected in the Doppler data collected by the LISA space mission. This suggests that the EM system gravitational near field could provide an absolute calibration for the LISA sensitivity at very low frequencies.

  7. LISA sensitivities to gravitational waves from relativistic metric theories of gravity

    Science.gov (United States)

    Tinto, Massimo; Alves, Márcio Eduardo Da Silva

    2010-12-01

    The direct observation of gravitational waves will provide a unique tool for probing the dynamical properties of highly compact astrophysical objects, mapping ultrarelativistic regions of space-time, and testing Einstein’s general theory of relativity. LISA (Laser Interferometer Space Antenna), a joint National Aeronautics and Space Administration and European Space Agency mission to be launched in the next decade, will perform these scientific tasks by detecting and studying low-frequency cosmic gravitational waves through their influence on the phases of six modulated laser beams exchanged between three remote spacecraft. By directly measuring the polarization components of the waves LISA will detect, we will be able to test Einstein’s theory of relativity with good sensitivity. Since a gravitational wave signal predicted by the most general relativistic metric theory of gravity accounts for six polarization modes (the usual two Einstein’s tensor polarizations as well as two vector and two scalar wave components), we have derived the LISA time-delay interferometric responses and estimated their sensitivities to vector- and scalar-type waves. We find that (i) at frequencies larger than roughly the inverse of the one-way light time (≈6×10-2Hz), LISA is more than ten times sensitive to scalar-longitudinal and vector signals than to tensor and scalar-transverse waves, and (ii) in the low part of its frequency band is equally sensitive to tensor and vector waves and somewhat less sensitive to scalar signals.

  8. Continuous Glucose Monitoring Enables the Detection of Losses in Infusion Set Actuation (LISAs

    Directory of Open Access Journals (Sweden)

    Daniel P. Howsmon

    2017-01-01

    Full Text Available Reliable continuous glucose monitoring (CGM enables a variety of advanced technology for the treatment of type 1 diabetes. In addition to artificial pancreas algorithms that use CGM to automate continuous subcutaneous insulin infusion (CSII, CGM can also inform fault detection algorithms that alert patients to problems in CGM or CSII. Losses in infusion set actuation (LISAs can adversely affect clinical outcomes, resulting in hyperglycemia due to impaired insulin delivery. Prolonged hyperglycemia may lead to diabetic ketoacidosis—a serious metabolic complication in type 1 diabetes. Therefore, an algorithm for the detection of LISAs based on CGM and CSII signals was developed to improve patient safety. The LISA detection algorithm is trained retrospectively on data from 62 infusion set insertions from 20 patients. The algorithm collects glucose and insulin data, and computes relevant fault metrics over two different sliding windows; an alarm sounds when these fault metrics are exceeded. With the chosen algorithm parameters, the LISA detection strategy achieved a sensitivity of 71.8% and issued 0.28 false positives per day on the training data. Validation on two independent data sets confirmed that similar performance is seen on data that was not used for training. The developed algorithm is able to effectively alert patients to possible infusion set failures in open-loop scenarios, with limited evidence of its extension to closed-loop scenarios.

  9. Improving Markov Chain Monte Carlo algorithms in LISA Pathfinder Data Analysis

    Science.gov (United States)

    Karnesis, N.; Nofrarias, M.; Sopuerta, C. F.; Lobo, A.

    2012-06-01

    The LISA Pathfinder mission (LPF) aims to test key technologies for the future LISA mission. The LISA Technology Package (LTP) on-board LPF will consist of an exhaustive suite of experiments and its outcome will be crucial for the future detection of gravitational waves. In order to achieve maximum sensitivity, we need to have an understanding of every instrument on-board and parametrize the properties of the underlying noise models. The Data Analysis team has developed algorithms for parameter estimation of the system. A very promising one implemented for LISA Pathfinder data analysis is the Markov Chain Monte Carlo. A series of experiments are going to take place during flight operations and each experiment is going to provide us with essential information for the next in the sequence. Therefore, it is a priority to optimize and improve our tools available for data analysis during the mission. Using a Bayesian framework analysis allows us to apply prior knowledge for each experiment, which means that we can efficiently use our prior estimates for the parameters, making the method more accurate and significantly faster. This, together with other algorithm improvements, will lead us to our main goal, which is no other than creating a robust and reliable tool for parameter estimation during the LPF mission.

  10. Interpolation of the magnetic field at the test masses in eLISA

    CERN Document Server

    Mateos, I; Ramos-Castro, J; García-Berro, E; Lobo, A

    2016-01-01

    A feasible design for a magnetic diagnostics subsystem for eLISA will be based on that of its precursor mission, LISA Pathfinder. Previous experience indicates that magnetic field estimation at the positions of the test masses has certain complications. This is due to two reasons. The first one is that magnetometers usually back-act due to their measurement principles (i.e., they also create their own magnetic fields), while the second is that the sensors selected for LISA Pathfinder have a large size, which conflicts with space resolution and with the possibility of having a sufficient number of them to properly map the magnetic field around the test masses. However, high-sensitivity and small-size sensors that significantly mitigate the two aforementioned limitations exist, and have been proposed to overcome these problems. Thus, these sensors will be likely selected for the magnetic diagnostics subsystem of eLISA. Here we perform a quantitative analysis of the new magnetic subsystem, as it is currently con...

  11. PREFACE: Proceedings of the 7th International LISA Symposium, Barcelona, Spain, 16-20 June 2008

    Science.gov (United States)

    Lobo, Alberto; Sopuerta, Carlos F.

    2009-07-01

    In June 2006 the LISA International Science Team (LIST) accepted the bid presented by the Institut d'Estudis Espacials de Catalunya (IEEC) to host the 7th International LISA Symposium. This was during its 11th meeting at the University of Maryland, just before the 6th edition of the Symposium started in NASA's Goddard Space Flight Center. The 7th International LISA Symposium took place at the city of Barcelona, Spain, from 16-20 June 2008, in the premises of CosmoCaixa, a modern Science Museum located in the hills near Tibidabo. Almost 240 delegates registered for the event, a record breaking figure compared to previous editions of the Symposium. Many of the most renowned world experts in LISA, Gravitational Wave Science, and Astronomy, as well as Engineers, attended LISA 7 and produced state-of-the-art presentations, while everybody benefited from the opportunity to have live discussions during the week in a friendly environment. The programme included 31 invited plenary lectures in the mornings, and 8 parallel sessions in the afternoons. These were classified into 7 major areas of research: LISA Technology, LISA PathFinder, LISA PathFinder Data Analysis, LISA Data Analysis, Gravitational Wave sources, Cosmology and Fundamental Physics with LISA and Other Gravitational Wave Detectors. 138 abstracts for communications were received, of which a selection was made by the session convenors which would fit time constraints. Up to 63 posters completed the scientific programme. More details on the programme, including some of the talks, can be found at the Symposium website: http://www.ice.cat/research/LISA_Symposium. There was however a remarkable add-on: Professor Clifford Will delivered a startling presentation to the general public, who completely filled the Auditori—the main Conference Room, 320 seats—and were invited to ask questions to the speaker who had boldly guided them through the daunting world of Black Holes, Waves of Gravity, and other Warped Ideas of

  12. Playing Harry Potter: Essays and interviews on fandom and performance, edited by Lisa S. Brenner

    Directory of Open Access Journals (Sweden)

    Abigail De Kosnik

    2016-09-01

    Full Text Available Lisa S. Brenner, editor. Playing Harry Potter: Essays and interviews on fandom and performance. Jefferson, NC: McFarland, 2015, paperback, $29.95 (238p ISBN 978-0-7864-9657-0; e-book $14.43 (5374 KB ISBN 978-1-4766-2136-4, ASIN B012E9G0R6.

  13. LISA: a java API for performing simulations of trajectories for all types of balloons

    Science.gov (United States)

    Conessa, Huguette

    2016-07-01

    LISA (LIbrarie de Simulation pour les Aerostats) is a java API for performing simulations of trajectories for all types of balloons (Zero Pressure Balloons, Pressurized Balloons, Infrared Montgolfier), and for all phases of flight (ascent, ceiling, descent). This library has for goals to establish a reliable repository of Balloons flight physics models, to capitalize developments and control models used in different tools. It is already used for flight physics study software in CNES, to understand and reproduce the behavior of balloons, observed during real flights. It will be used operationally for the ground segment of the STRATEOLE2 mission. It was developed with quality rules of "critical software." It is based on fundamental generic concepts, linking the simulation state variables to interchangeable calculation models. Each LISA model defines how to calculate a consistent set of state variables combining validity checks. To perform a simulation for a type of balloon and a phase of flight, it is necessary to select or create a macro-model that is to say, a consistent set of models to choose from among those offered by LISA, defining the behavior of the environment and the balloon. The purpose of this presentation is to introduce the main concepts of LISA, and the new perspectives offered by this library.

  14. Norwegian Ocean Observatory Network (NOON)

    Science.gov (United States)

    Ferré, Bénédicte; Mienert, Jürgen; Winther, Svein; Hageberg, Anne; Rune Godoe, Olav; Partners, Noon

    2010-05-01

    The Norwegian Ocean Observatory Network (NOON) is led by the University of Tromsø and collaborates with the Universities of Oslo and Bergen, UniResearch, Institute of Marine Research, Christian Michelsen Research and SINTEF. It is supported by the Research Council of Norway and oil and gas (O&G) industries like Statoil to develop science, technology and new educational programs. Main topics relate to ocean climate and environment as well as marine resources offshore Norway from the northern North Atlantic to the Arctic Ocean. NOON's vision is to bring Norway to the international forefront in using cable based ocean observatory technology for marine science and management, by establishing an infrastructure that enables real-time and long term monitoring of processes and interactions between hydrosphere, geosphere and biosphere. This activity is in concert with the EU funded European Strategy Forum on Research Infrastructures (ESFRI) roadmap and European Multidisciplinary Seafloor Observation (EMSO) project to attract international leading research developments. NOON envisions developing towards a European Research Infrastructure Consortium (ERIC). Beside, the research community in Norway already possesses a considerable marine infrastructure that can expand towards an international focus for real-time multidisciplinary observations in times of rapid climate change. PIC The presently established cable-based fjord observatory, followed by the establishment of a cable-based ocean observatory network towards the Arctic from an O&G installation, will provide invaluable knowledge and experience necessary to make a successful larger cable-based observatory network at the Norwegian and Arctic margin (figure 1). Access to large quantities of real-time observation from the deep sea, including high definition video, could be used to provide the public and future recruits to science a fascinating insight into an almost unexplored part of the Earth beyond the Arctic Circle

  15. Centriolar satellites

    DEFF Research Database (Denmark)

    Tollenaere, Maxim A X; Mailand, Niels; Bekker-Jensen, Simon

    2015-01-01

    Centriolar satellites are small, microscopically visible granules that cluster around centrosomes. These structures, which contain numerous proteins directly involved in centrosome maintenance, ciliogenesis, and neurogenesis, have traditionally been viewed as vehicles for protein trafficking...... highlight newly discovered regulatory mechanisms targeting centriolar satellites and their functional status, and we discuss how defects in centriolar satellite components are intimately linked to a wide spectrum of human diseases....

  16. Calibration and Simulation of the GRB trigger detector of the Ultra Fast Flash Observatory

    DEFF Research Database (Denmark)

    Huang, M.-H.A.; Ahmad, S.; Barrillon, P.

    2013-01-01

    The UFFO (Ultra-Fast Flash Observatory) is a GRB detector on board the Lomonosov satellite, to be launched in 2013. The GRB trigger is provided by an X-ray detector, called UBAT (UFFO Burst Alarm & Trigger Telescope), which detects X-rays from the GRB and then triggers to determine the direction ...

  17. Preliminary trajectory design for a solar polar observatory using SEP and multiple gravity assists

    NARCIS (Netherlands)

    Corpaccioli, L.; Noomen, R.; De Smet, S.; Parker, J.S.; Herman, J.F.C.

    2015-01-01

    Satellite solar observatories have always been of central importance to heliophysics; while there have been numerous such missions, the solar poles have been extremely under-observed. This paper proposes to use low-thrust as well as multiple gravity assists to reach the enormous energies required ob

  18. Preliminary trajectory design for a solar polar observatory using SEP and multiple gravity assists

    NARCIS (Netherlands)

    Corpaccioli, L.; Noomen, R.; De Smet, S.; Parker, J.S.; Herman, J.F.C.

    2015-01-01

    Satellite solar observatories have always been of central importance to heliophysics; while there have been numerous such missions, the solar poles have been extremely under-observed. This paper proposes to use low-thrust as well as multiple gravity assists to reach the enormous energies required ob

  19. Citizen Observatories and the New Earth Observation Science

    Directory of Open Access Journals (Sweden)

    Alan Grainger

    2017-02-01

    Full Text Available Earth observation is diversifying, and now includes new types of systems, such as citizen observatories, unmanned aerial vehicles and wireless sensor networks. However, the Copernicus Programme vision of a seamless chain from satellite data to usable information in the hands of decision makers is still largely unrealized, and remote sensing science lacks a conceptual framework to explain why. This paper reviews the literatures on citizen science, citizen observatories and conceptualization of remote sensing systems. It then proposes a Conceptual Framework for Earth Observation which can be used in a new Earth observation science to explain blockages in the chain from collecting data to disseminating information in any Earth observation system, including remote sensing systems. The framework differs from its predecessors by including social variables as well as technological and natural ones. It is used here, with evidence from successful citizen science projects, to compare the factors that are likely to influence the effectiveness of satellite remote sensing systems and citizen observatories. The paper finds that constraints on achieving the seamless “Copernicus Chain” are not solely technical, as assumed in the new Space Strategy for Europe, but include social constraints too. Achieving the Copernicus Chain will depend on the balance between: (a the ‘forward’ momentum generated by the repetitive functioning of each component in the system, as a result of automatic operation or human institutions, and by the efficiency of interfaces between components; and (b the ‘backward’ flow of information on the information needs of end users. Citizen observatories will face challenges in components which for satellite remote sensing systems are: (a automatic or straightforward, e.g., sensor design and launch, data collection, and data products; and (b also challenging, e.g., data processing. Since citizen observatories will rely even more on

  20. Satellite theory

    Science.gov (United States)

    Kozai, Y.

    1981-04-01

    The dynamical characteristics of the natural satellite of Mars, Jupiter, Saturn, Uranus and Neptune are analyzed on the basis of the solar tidal perturbation factor and the oblateness factor of the primary planet for each satellite. For the inner satellites, for which the value of the solar tidal factor is much smaller than the planetary oblateness factor, it is shown that the eccentricity and inclination of satellite orbits are generally very small and almost constant; several pairs of inner satellites are also found to exhibit commensurable mean motions, or secular accelerations in mean longitude. In the case of the outer satellites, for which solar perturbations are dominant, secular perturbations and long-period perturbations may be derived by the solution of equations of motion reduced to one degree of freedom. The existence of a few satellites, termed intermediary satellites, for which the solar tidal perturbation is on the order of the planetary oblateness factor, is also observed, and the pole of the orbital plane of the satellite is noted to execute a complex motion around the pole of the planet or the orbital plane of the planet.

  1. Evaluation of new technologies for the LISA gravitational reference sensor using the UF torsion pendulum

    Science.gov (United States)

    Conklin, John; Chilton, Andrew; Olatunde, Taiwo; Apple, Stephen; Aitken, Michael; Ciani, Giacomo; Mueller, Guido

    2016-01-01

    The Laser Interferometer Space Antenna (LISA) is the most mature concept for detecting gravitational waves from space. The LISA design has been studied for more than 20 years as a joint effort between NASA and the European Space Agency. LISA consists of three Sun-orbiting spacecraft that form an equilateral triangle, with each side measuring 1-5 million kilometers in length. Each spacecraft houses two free-floating test masses, which are protected from all disturbing forces so that they follow pure geodesics. A single test mass together with its protective housing and associated components is referred to as a gravitational reference sensor. A drag-free control system is supplied with measurements of the test mass position from these sensors and commands external micronewton thrusters to force the spacecraft to fly in formation with the test masses. Laser interferometry is used to measure the minute variations in the distance, or light travel time, between these purely free-falling TMs, caused by gravitational waves. We have constructed a new torsion pendulum facility with a force sensitivity in the range of pN/Hz1/2 around 1 mHz for testing new gravitational reference sensor technologies. This experimental facility consists of a vacuum enclosed torsion pendulum that suspends mock-ups of the LISA test masses, surrounded by their electrode housings. With the aid of this facility, we are (a) developing a novel test mass charge control scheme based on ultraviolet LEDs, (b) examining alternate test mass and electrode housing coatings, and (c) evaluating alternate operational modes of the LISA gravitational reference sensor. This presentation will describe this facility and the development status of these new technologies.

  2. The Old Vilnius University Observatory (in German)

    Science.gov (United States)

    Matulaitytė, S.

    The history of the Vilnius University Astronomical Observatory in 1753--1882 is described (in German). The observatory is one of the oldest astronomical institutions in Europe. In 2003 its 250th anniversary was celebrated.

  3. Observatory bibliographies: a vital resource in operating an observatory

    Science.gov (United States)

    Winkelman, Sherry; Rots, Arnold

    2016-07-01

    The Chandra Data Archive (CDA) maintains an extensive observatory bibliography. By linking the published articles with the individual datasets analyzed in the paper, we have the opportunity to join the bibliographic metadata (including keywords, subjects, objects, data references from other observatories, etc.) with the meta- data associated with the observational datasets. This rich body of information is ripe for far more sophisticated data mining than the two repositories (publications and data) would afford individually. Throughout the course of the mission the CDA has investigated numerous questions regarding the impact of specific types of Chandra programs such as the relative science impact of GTO, GO, and DDT programs or observing, archive, and theory programs. Most recently the Chandra bibliography was used to assess the impact of programs based on the size of the program to examine whether the dividing line between standard and large projects should be changed and whether another round of X-ray Visionary Programs should be offered. Traditionally we have grouped observations by proposal when assessing the impact of programs. For this investigation we aggregated observations by pointing and instrument configuration such that objects observed multiple times in the mission were considered single observing programs. This change in perspective has given us new ideas for assessing the science impact of Chandra and for presenting data to our users. In this paper we present the methodologies used in the recent study, some of its results, and most importantly some unexpected insights into assessing the science impact of an observatory.

  4. The MicroObservatory Net

    Science.gov (United States)

    Brecher, K.; Sadler, P.

    1994-12-01

    A group of scientists, engineers and educators based at the Harvard-Smithsonian Center for Astrophysics (CfA) has developed a prototype of a small, inexpensive and fully integrated automated astronomical telescope and image processing system. The project team is now building five second generation instruments. The MicroObservatory has been designed to be used for classroom instruction by teachers as well as for original scientific research projects by students. Probably in no other area of frontier science is it possible for a broad spectrum of students (not just the gifted) to have access to state-of-the-art technologies that would allow for original research. The MicroObservatory combines the imaging power of a cooled CCD, with a self contained and weatherized reflecting optical telescope and mount. A microcomputer points the telescope and processes the captured images. The MicroObservatory has also been designed to be used as a valuable new capture and display device for real time astronomical imaging in planetariums and science museums. When the new instruments are completed in the next few months, they will be tried with high school students and teachers, as well as with museum groups. We are now planning to make the MicroObservatories available to students, teachers and other individual users over the Internet. We plan to allow the telescope to be controlled in real time or in batch mode, from a Macintosh or PC compatible computer. In the real-time mode, we hope to give individual access to all of the telescope control functions without the need for an "on-site" operator. Users would sign up for a specific period of time. In the batch mode, users would submit jobs for the telescope. After the MicroObservatory completed a specific job, the images would be e-mailed back to the user. At present, we are interested in gaining answers to the following questions: (1) What are the best approaches to scheduling real-time observations? (2) What criteria should be used

  5. Study of test-mass charging process in the LISA missions due to diffuse γ-rays

    Science.gov (United States)

    Finetti, N.; Scrimaglio, R.; Grimani, C.; Fabi, M.

    2009-03-01

    Gravitational inertial sensors will be placed on board the Laser Interferometer Space Antenna (LISA) and aboard its precursor mission LISA Pathfinder (LISA-PF) in order to detect low frequency gravitational waves in space. Free-floating test-masses (Au7Pt3 cubes) will be housed in inertial sensors for detecting possible laser signal variations induced by gravitational waves. Charging of the LISA test-masses due to exposure of the spacecraft to cosmic radiation and energetic solar particles will affect operation of gravitational inertial sensors. In this paper we report on the role of diffuse γ-rays in charging the LISA and LISA-PF test-masses with respect to protons and helium nuclei. The diffuse γ-ray flux in the Galaxy has been interpolated taking into account the outcomes of recent calculations. A comparison with γ-ray observations gathered by different experiments (COMPTEL and EGRET, Milagro, Whipple, HEGRA, TIBET) has been carried out. Simulations of the test-mass charging process have been performed by means of the FLUKA2006.3b package. Monte Carlo simulations of the interaction of cosmic particles with the LISA spacecraft indicate that the diffuse γ-ray contribution to the average steady-state test-mass charging rate and to the single-sided power spectrum of the charge rate noise is marginal with respect to that due to galactic cosmic-rays.

  6. Study of test-mass charging process in the LISA missions due to diffuse gamma-rays

    Energy Technology Data Exchange (ETDEWEB)

    Finetti, N; Scrimaglio, R [Dipartimento di Fisica dell' Universita degli Studi dell' Aquila and Gruppo INFN dell' Aquila collegato ai Laboratori Nazionali del Gran Sasso, Via Vetoio, 67010 Coppito, L' Aquila (Italy); Grimani, C; Fabi, M, E-mail: noemi.finetti@aquila.infn.i [Istituto di Fisica dell' Universita degli Studi di Urbino ' Carlo Bo' , Via S. Chiara, 27, 61029, Urbino (Italy)

    2009-03-01

    Gravitational inertial sensors will be placed on board the Laser Interferometer Space Antenna (LISA) and aboard its precursor mission LISA Pathfinder (LISA-PF) in order to detect low frequency gravitational waves in space. Free-floating test-masses (Au{sub 7}Pt{sub 3} cubes) will be housed in inertial sensors for detecting possible laser signal variations induced by gravitational waves. Charging of the LISA test-masses due to exposure of the spacecraft to cosmic radiation and energetic solar particles will affect operation of gravitational inertial sensors. In this paper we report on the role of diffuse gamma-rays in charging the LISA and LISA-PF test-masses with respect to protons and helium nuclei. The diffuse gamma-ray flux in the Galaxy has been interpolated taking into account the outcomes of recent calculations. A comparison with gamma-ray observations gathered by different experiments (COMPTEL and EGRET, Milagro, Whipple, HEGRA, TIBET) has been carried out. Simulations of the test-mass charging process have been performed by means of the FLUKA2006.3b package. Monte Carlo simulations of the interaction of cosmic particles with the LISA spacecraft indicate that the diffuse gamma-ray contribution to the average steady-state test-mass charging rate and to the single-sided power spectrum of the charge rate noise is marginal with respect to that due to galactic cosmic-rays.

  7. The Pierre Auger Cosmic Ray Observatory

    NARCIS (Netherlands)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Al Samarai, I.; Albert, J. N.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muniz, J.; Batista, R. Alves; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Aramo, C.; Aranda, V. M.; Argiro, S.; Arisaka, K.; Arneodo, F.; Arqueros, F.; Asch, T.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Awal, N.; Badescu, A. M.; Balzer, M.; Barber, K. B.; Barbosa, A.; Barenthien, N.; Barkhausen, M.; Baeuml, J.; Baus, C.; Beatty, J.; Becker, K. H.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bergmann, T.; Bertaina, M. E.; Biermann, P. L.; Bilhaut, R.; Billoir, P.; Blaes, S. G.; Blanco, M.; Bleve, C.; Bluemer, H.; Bohacova, M.; Bolz, H.; Boncioli, D.; Bonifaz, C.; Bonino, R.; Boratav, M.; Borodai, N.; Bracci, F.; Brack, J.; Brancus, I.; Bridgeman, A.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Camin, D.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Castera, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Chiavassa, A.; Chinellato, J. A.; Chiosso, M.; Chudoba, J.; Cilmo, M.; Clark, P. D. J.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Coleman, A.; Collica, L.; Colombo, E.; Colonges, S.; Coluccia, M. R.; Conceicao, R.; Contreras, F.; Cooper, M. J.; Coppens, J.; Cordier, A.; Courty, B.; Coutu, S.; Covault, C. E.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; De Donato, C.; de Jong, S. J.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; de Vries, K. D.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Diaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, C.; Dolron, P.; Dorofeev, A.; Hasankiadeh, Q. Dorosti; Dova, M. T.; D'Urso, D.; Ebr, J.; Engel, R.; Epele, L. N.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fernandes, M.; Ferrero, A.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipcic, A.; Fox, B. D.; Fraenkel, E. D.; Fratu, O.; Freire, M. M.; Froehlich, U.; Fuchs, B.; Fulgione, W.; Fujii, T.; Garcia, B.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gate, F.; Geenen, H.; Gemmeke, H.; Genolini, B.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Gibbs, K.; Giller, M.; Giudice, N.; Glaser, C.; Glass, H.; Gomez Berisso, M.; Gomez Vitale, P. F.; Goncalves, P.; Gonzalez, J. G.; Gonzalez, N.; Gookin, B.; Gora, D.; Gordon, J.; Gorgi, A.; Gorham, P.; Gotink, W.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Grygar, J.; Guardone, N.; Guarino, F.; Guedes, G. P.; Guglielmi, L.; Habraken, R.; Hampel, M. R.; Hansen, P.; Harari, D.; Harmsma, S.; Harrison, T. A.; Hartmann, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hoerandel, J. R.; Horneffer, A.; Horvat, M.; Horvath, P.; Hrabovsky, M.; Huber, D.; Hucker, H.; Huege, T.; Iarlori, M.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Jarne, C.; Johnsen, J. A.; Josebachuili, M.; Kaeaepae, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Kegl, B.; Keilhauer, B.; Keivani, A.; Kelley, J.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Kopmann, A.; Krause, R.; Krohm, N.; Kroemer, O.; Kuempel, D.; Kunka, N.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leao, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lopez, R.; Lopez Casado, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Malacari, M.; Maldera, S.; Mallamaci, M.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Maris, I. C.; Marsella, G.; Martello, D.; Martina, L.; Martinez, H.; Martinez, N.; Martinez Bravo, O.; Martraire, D.; Masias Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Meissner, R.; Melissas, M.; Mello, V. B. B.; Melo, D.; Menichetti, E.; Menshikov, A.; Messina, S.; Meyhandan, R.; Micanovic, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Montanet, F.; Morello, C.; Mostafa, M.; Moura, C. A.; Muller, M. A.; Mueller, G.; Mueller, S.; Muenchmeyer, M.; Mussa, R.; Navarra, G.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nguyen, P. H.; Nicotra, D.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nozka, L.; Ochilo, L.; Ohnuki, T.; Oikonomou, F.; Olinto, A.; Oliveira, M.; Olmos-Gilbaja, V. M.; Pacheco, N.; PakkSelmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Papenbreer, P.; Parente, G.; Parra, A.; Patel, M.; Paul, T.; Pech, M.; Pekala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Petermann, E.; Peters, C.; Petrera, S.; Petrinca, P.; Petrov, Y.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porcelli, A.; Porowski, C.; Porter, T.; Pouryamout, J.; Pouthas, J.; Prado, R. R.; Privitera, P.; Prouza, M.; Pryke, C. L.; Purrello, V.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Randriatoamanana, R.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenua, B.; Ridky, J.; Risse, M.; Ristori, P.; Rizi, V.; Robbins, S.; Roberts, M.; Rodrigues de Carvalho, W.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rodriguez-Frias, M. D.; Rogozin, D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Roulet, E.; Rovero, A. C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sanchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Schmidt, D.; Scholten, O.; Schoorlemmer, H.; Schovanek, P.; Schreuder, F.; Schroeder, F. G.; Schulz, A.; Schulz, J.; Schuessler, F.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Sequeiros, G.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Smialkowski, A.; Smida, R.; Smith, A. G. K.; Snow, G. R.; Sommers, P.; Sorokin, J.; Speelman, R.; Spinka, H.; Squartini, R.; Srivastava, Y. N.; Stanic, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijaervi, T.; Supanitsky, A. D.; Sutherland, M. S.; Sutter, M.; Swain, J.; Szadkowski, Z.; Szuba, M.; Taborda, O. A.; Tapia, A.; Tcherniakhovski, D.; Tepe, A.; Theodoro, V. M.; Timmermans, C.; Tkaczyk, W.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tome, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Trovato, E.; Trung, T. N.; Tunnicliffe, V.; Tusi, E.; Ulrich, R.; Unger, M.; Urban, M.; Valdes Galicia, J. F.; Valino, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cardenas, B.; Varnav, D. M.; Varner, G.; Vasquez, R.; Vazquez, J. R.; Vazquez, R. A.; Veberic, D.; Verkooijen, H.; Verzi, V.; Vicha, J.; Videla, M.; Villasenor, L.; Vitali, G.; Vlcek, B.; Vorenholt, H.; Vorobiov, S.; Voyvodic, L.; Wahlberg, H.; Wainberg, O.; Walker, P.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Westerhoff, S.; Widom, A.; Wiebusch, C.; Wiencke, L.; Wijnen, T.; Wilczynska, B.; Wilczynski, H.; Wild, N.; Winchen, T.; Wittkowski, D.; Woerner, G.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zepeda, A.; Zhou, J.; Zhu, Y.; Silva, M. Zimbres; Zimmermann, B.; Ziolkowski, M.; Zuccarello, F.

    2015-01-01

    The Pierre Auger Observatory, located on a vast, high plain in western Argentina, is the world's largest cosmic ray observatory. The objectives of the Observatory are to probe the origin and characteristics of cosmic rays above 10(17) eV and to study the interactions of these, the most energetic par

  8. Acceleration Noise Considerations for Drag-free Satellite Geodesy Missions

    Science.gov (United States)

    Hong, S. H.; Conklin, J. W.

    2016-12-01

    The GRACE mission, which launched in 2002, opened a new era of satellite geodesy by providing monthly mass variation solutions with spatial resolution of less than 200 km. GRACE proved the usefulness of a low-low satellite-to-satellite tracking formation. Analysis of the GRACE data showed that the K-Band ranging system, which is used to measure the range between the two satellites, is the limiting factor for the precision of the solution. Consequently, the GRACE-FO mission, schedule for launch in 2017, will continue the work of GRACE, but will also test a new, higher precision laser ranging interferometer compared with the K-Band ranging system. Beyond GRACE-FO, drag-free systems are being considered for satellite geodesy missions. GOCE tested a drag-free attitude control system with a gravity gradiometer and showed improvements in the acceleration noise compensation compared to the electrostatic accelerometers used in GRACE. However, a full drag-free control system with a gravitational reference sensor has not yet been applied to satellite geodesy missions. More recently, this type of drag-free system was used in LISA Pathfinder, launched in 2016, with an acceleration noise performance two orders of magnitude better than that of GOCE. We explore the effects of drag-free performance in satellite geodesy missions similar to GRACE-FO by applying three different residual acceleration noises from actual space missions: GRACE, GOCE and LISA Pathfinder. Our solutions are limited to degree 60 spherical harmonic coefficients with biweekly time resolution. Our analysis shows that a drag-free system with acceleration noise performance comparable to GOCE and LISA-Pathfinder would greatly improve the accuracy of gravity solutions. In addition to these results, we also present the covariance shaping process used in the estimation. In the future, we plan to use actual acceleration noise data measured using the UF torsion pendulum. This apparatus is a ground facility at

  9. The SAS-3 X-ray observatory

    Science.gov (United States)

    Mayer, W. F.

    1975-01-01

    The experiment section of the Small Astronomy Satellite-3 (SAS-3) launched in May 1975 is an X-ray observatory intended to determine the location of bright X-ray sources to an accuracy of 15 arc-seconds; to study a selected set of sources over a wide energy range, from 0.1 to 55 keV, while performing very specific measurements of the spectra and time variability of known X-ray sources; and to monitor the sky continuously for X-ray novae, flares, and unexpected phenomena. The improvements in SAS-3 spacecraft include a clock accurate to 1 part in 10 billion, rotatable solar panels, a programmable data format, and improved nutation damper, a delayed command system, improved magnetic trim and azimuth control systems. These improvements enable SAS-3 to perform three-axis stabilized observations of any point on the celestial sphere at any time of the year. The description of the experiment section and the SAS-3 operation is followed by a synopsis of scientific results obtained from the observations of X-ray sources, such as Vela X-1 (supposed to be an accreting neutron star), a transient source of hard X-ray (less than 36 min in duration) detected by SAS-3, the Crab Nebula pulsar, the Perseus cluster of galaxies, and the Vela supernova remnant.

  10. New Geophysical Observatory in Uruguay

    Science.gov (United States)

    Sanchez Bettucci, L.; Nuñez, P.; Caraballo, R. R.; Ogando, R.

    2013-05-01

    In 2011 began the installation of the first geophysical observatory in Uruguay, with the aim of developing the Geosciences. The Astronomical and Geophysical Observatory Aiguá (OAGA) is located within the Cerro Catedral Tourist Farm (-34 ° 20 '0 .89 "S/-54 ° 42 '44.72" W, h: 270m). This has the distinction of being located in the center of the South Atlantic Magnetic Anomaly. Geologically is emplaced in a Neoproterozoic basement, in a region with scarce anthropogenic interference. The OAGA has, since 2012, with a GSM-90FD dIdD v7.0 and GSM-90F Overhauser, both of GEM Systems. In addition has a super-SID receiver provided by the Stanford University SOLAR Center, as a complement for educational purposes. Likewise the installation of a seismograph REF TEK-151-120A and VLF antenna is being done since the beginning of 2013.

  11. Exploring the Digital Universe with Europe's Astrophysical Virtual Observatory

    Science.gov (United States)

    2001-12-01

    need for virtual observatories has also been recognised by other astronomical communities. The National Science Foundation in the USA has awarded $10 million (EUR 11.4 m) for a National Virtual Observatory (NVO). The AVO project team has formed a close alliance with the NVO and both teams have representatives on each other's committees. It is clear to the NVO and AVO communities that there are no intrinsic boundaries to the virtual observatory concept and that all astronomers should be working towards a truly global virtual observatory that will enable new science to be carried out on the wealth of astronomical data held in the growing number of first-class international astronomical archives. AVO involves six partner organisations led by the European Southern Observatory (ESO) in Munich. The other partner organisations are the European Space Agency (ESA), the United Kingdom's ASTROGRID consortium, the CNRS-supported Centre de Données Astronomiques de Strasbourg (CDS) at the University Louis Pasteur in Strasbourg, the CNRS-supported TERAPIX astronomical data centre at the Institut d'Astrophysique in Paris and the Jodrell Bank Observatory at the University of Manchester. Note for editors A 13-minute background video (broadcast PAL) is available from ESO PR and the Hubble European Space Agency Information Centre (addresses below). It will also be transmitted via satellite on Wednesday 12 December 2001 from 12:00 to 12:15 CET on the ESA TV Service: http://television.esa.int

  12. Results from the LISA Commissioning Experiment on the decay of 24O* --> 22O + n

    Science.gov (United States)

    Rogers, Warren F.; MoNA Collaboration

    2014-09-01

    The Large multi-Institutional Scintillator Array (LISA) at NSCL, Michigan State University was constructed and tested by undergraduate students from several institutions in the MoNA (Modular Neutron Array) collaboration. LISA is used in conjunction with MoNA for detection of neutrons at large angles to the beam axis, corresponding to high energy decays from exotic nuclei at or beyond the neutron dripline. The LISA commissioning experiment was designed to measure and resolve neutron decays from the first two excited states (2+ and 1+) of 24O to the 23O ground state, using proton-knockout of 26F on a thin Be target. The trajectories of charged fragments at the site of the decay were identified using the Sweeper Magnet chamber detectors and inverse-tracking through the magnet. The two scintillator arrays measured the time of flight path of neutrons. Decay energies were determined using these decay kinematics and invariant mass spectroscopy. The two 24O states were previously observed, but with insufficient resolution to separate the two cleanly. This experiment provided sufficiently resolution to separate the two states cleanly. Results for the decay energies and comparison with Monte Carlo simulations will be presented. The Large multi-Institutional Scintillator Array (LISA) at NSCL, Michigan State University was constructed and tested by undergraduate students from several institutions in the MoNA (Modular Neutron Array) collaboration. LISA is used in conjunction with MoNA for detection of neutrons at large angles to the beam axis, corresponding to high energy decays from exotic nuclei at or beyond the neutron dripline. The LISA commissioning experiment was designed to measure and resolve neutron decays from the first two excited states (2+ and 1+) of 24O to the 23O ground state, using proton-knockout of 26F on a thin Be target. The trajectories of charged fragments at the site of the decay were identified using the Sweeper Magnet chamber detectors and inverse

  13. Improvements in geomagnetic observatory data quality

    DEFF Research Database (Denmark)

    Reda, Jan; Fouassier, Danielle; Isac, Anca

    2011-01-01

    between observatories and the establishment of observatory networks has harmonized standards and practices across the world; improving the quality of the data product available to the user. Nonetheless, operating a highquality geomagnetic observatory is non-trivial. This article gives a record...... of the current state of observatory instrumentation and methods, citing some of the general problems in the complex operation of geomagnetic observatories. It further gives an overview of recent improvements of observatory data quality based on presentation during 11th IAGA Assembly at Sopron and INTERMAGNET......Geomagnetic observatory practice and instrumentation has evolved significantly over the past 150 years. Evolution continues to be driven by advances in technology and by the need of the data user community for higher-resolution, lower noise data in near-real time. Additionally, collaboration...

  14. Satellite Communications

    CERN Document Server

    Pelton, Joseph N

    2012-01-01

    The field of satellite communications represents the world's largest space industry. Those who are interested in space need to understand the fundamentals of satellite communications, its technology, operation, business, economic, and regulatory aspects. This book explains all this along with key insights into the field's future growth trends and current strategic challenges. Fundamentals of Satellite Communications is a concise book that gives all of the key facts and figures as well as a strategic view of where this dynamic industry is going. Author Joseph N. Pelton, PhD, former Dean of the International Space University and former Director of Strategic Policy at Intelstat, presents a r

  15. Review: Lisa Mackenrodt, Swahili Spirit Possession and Islamic Healing in Contemporary Tanzania: The Jinn Fly on Friday (2011 Buchbesprechung: Lisa Mackenrodt, Swahili Spirit Possession and Islamic Healing in Contemporary Tanzania: The Jinn Fly on Friday (2011

    Directory of Open Access Journals (Sweden)

    Jigal Beez

    2013-01-01

    Full Text Available Review of the monograph:Lisa Mackenrodt, Swahili Spirit Possession and Islamic Healing in Contemporary Tanzania: The Jinn Fly on Friday, Hamburg: Verlag Dr. Kovač, 2011, ISBN 978-3-8300-5806-9, 216 pagesBesprechung der Monographie:Lisa Mackenrodt, Swahili Spirit Possession and Islamic Healing in Contemporary Tanzania: The Jinn Fly on Friday, Hamburg: Verlag Dr. Kovač, 2011, ISBN 978-3-8300-5806-9, 216 Seiten

  16. State-space modelling for heater induced thermal effects on LISA Pathfinder's Test Masses

    CERN Document Server

    Gibert, Ferran; Diaz-Aguiló, Marc; Lobo, Alberto; Karnesis, Nikolaos; Mateos, Ignacio; Sanjuán, Josep; Lloro, Ivan; Gesa, Lluís; Martín, Víctor; 10.1088/1742-6596/363/1/012044

    2012-01-01

    The OSE (Offline Simulations Environment) simulator of the LPF (LISA Pathfinder) mission is intended to simulate the different experiments to be carried out in flight. Amongst these, the thermal diagnostics experiments are intended to relate thermal disturbances and interferometer readouts, thereby allowing the subtraction of thermally induced interferences from the interferometer channels. In this paper we report on the modelling of these simulated experiments, including the parametrisation of different thermal effects (radiation pressure effect, radiometer effect) that will appear in the Inertial Sensor environment of the LTP (LISA Technology Package). We report as well how these experiments are going to be implemented in the LTPDA toolbox, which is a dedicated tool for LPF data analysis that will allow full traceability and reproducibility of the analysis thanks to complete recording of the processes.

  17. Construction of an optical test-bed for eLISA

    Science.gov (United States)

    Lieser, Maike; Fitzsimons, E.; Isleif, K.-S.; Killow, C.; Perreur-Lloyd, M.; Robertson, D.; Schuster, S.; Tröbs, M.; Veith, S.; Ward, H.; Heinzel, G.; Danzmann, K.

    2016-05-01

    In the planned eLISA mission a key part of the system is the optical bench that holds the interferometers for reading out the inter-spacecraft distance and the test mass position. We report on ongoing technology development for the eLISA optical system like the back-link between the optical benches and the science interferometer where the local beam is interfered with the received beam from the distant spacecraft. The focus will be on a setup to investigate the tilt-to-pathlength coupling in the science interferometer. To test the science interferometer in the lab a second bench providing a laser beam and a reference interferometer is needed. We present a setup with two ultra-stable low expansion glass benches and bonded optics. To suppress the tilt-to-pathlength coupling to the required level (few μm/rad) imaging optics are placed in front of the interferometer photo diodes.

  18. An Analysis of Coupling between the x1 and x12 Interferometers for LISA Pathfinder

    Science.gov (United States)

    Howard, Brittany

    2017-01-01

    Due to tolerances in the manufacturing process, noise from the jittering of the spacecraft housing LISA Pathfinder (LPF) is appearing in the differential measurement between its two test masses (TM's). This phenomenon manifests as a small but measurable coupling between the readouts of LPF's two heterodyne interferometers, x1 and x12. In this study, two LISA Pathfinder experiments are analyzed using three methods in an effort to characterize and quantify the coupling as well as to potentially identify its source. The main question considered is this: does the coupling change with the absolute displacement between the TM's? As a result of this work, reliable values for coupling between LPF's x1 and x12 interferometers are found, and they are seen to depend on the absolute displacement between the test masses to some degree. Completed at the Albert Einstein Institute for Gravitational Physics under the International REU program from the University of Florida.

  19. High-stability temperature control for ST-7/LISA Pathfinder gravitational reference sensor ground verification testing

    Science.gov (United States)

    Higuchi, S.; Allen, G.; Bencze, W.; Byer, R.; Dang, A.; DeBra, D. B.; Lauben, D.; Dorlybounxou, S.; Hanson, J.; Ho, L.; Huffman, G.; Sabur, F.; Sun, K.; Tavernetti, R.; Rolih, L.; Van Patten, R.; Wallace, J.; Williams, S.

    2006-03-01

    This article demonstrates experimental results of a thermal control system developed for ST-7 gravitational reference sensor (GRS) ground verification testing which provides thermal stability δT control of the LISA spacecraft to compensate solar irradiate 1/f fluctuations. Although for ground testing these specifications can be met fairly readily with sufficient insulation and thermal mass, in contrast, for spacecraft the very limited thermal mass calls for an active control system which can simultaneously meet disturbance rejection and stability requirements in the presence of long time delay; a considerable design challenge. Simple control laws presently provide ~ 1mK/surdHz for >24 hours. Continuing development of a model predictive feedforward control algorithm will extend performance to <1 mK/surdHz at f < 0.01 mHz and possibly lower, extending LISA coverage of super massive black hole mergers.

  20. The Mona Lisa effect: Testing the limits of perceptual robustness vis-à-vis slanted images

    Directory of Open Access Journals (Sweden)

    Hecht Heiko

    2014-01-01

    Full Text Available We report three experiments that test the limits of the Mona Lisa effect. The gaze of a portrait that is looking at us appears to follow us around as we move with respect to the picture. Even if our position is shifted considerably to the side, or if the picture is severely slanted, do we feel the gaze to be directed at us? We determined the threshold where this effect breaks down to be maximally 70° of picture slant relative to the observer. Different factors modulate this remarkable robustness, among them being the display medium and the nature of the picture. The threshold was considerably lower when the picture was mounted on a physical surface as opposed to a computer simulation of slant. Also, the more the portrayed object deviated from the photograph of a human head, the less robust the Mona Lisa effect became. Implications for theories of perspective distortion are discussed.

  1. The new Digital Data Acquisition System for MoNA-LISA

    Science.gov (United States)

    Chrisman, Dayah; Deyoung, Paul; MoNA Collaboration Collaboration

    2017-01-01

    The Modular Neutron Array (MoNA) and the Large multi-Institutional Scintillator Array (LISA) at the National Superconducting Cyclotron Laboratory (NSCL) are used to detect neutrons emitted during the decay of exotic nuclei near the neutron dripline. The arrays consist of 288 10cm x 10cm x 2m long plastic scintillation detectors coupled to photomultipliers at each end. The Time of Flight (TOF) of these neutrons determines the neutron energy, which is needed to find the decay energy of the exotic nuclei. A Digital Data Acquisition System (DDAS) based on the XIA PXI modules is being developed to read out and record the signals of the MoNA-LISA scintillation detectors. A 500 Mega Samples per Second (MSPS) PXI module was used to test the time and energy resolution as it compares to the existing analog DAQ setup. NSF PHY-1002511, DOE-NNSA DE-NA0000979.

  2. 3D imaging from theory to practice: the Mona Lisa story

    Science.gov (United States)

    Blais, Francois; Cournoyer, Luc; Beraldin, J.-Angelo; Picard, Michel

    2008-08-01

    The warped poplar panel and the technique developed by Leonardo to paint the Mona Lisa present a unique research and engineering challenge for the design of a complete optical 3D imaging system. This paper discusses the solution developed to precisely measure in 3D the world's most famous painting despite its highly contrasted paint surface and reflective varnish. The discussion focuses on the opto-mechanical design and the complete portable 3D imaging system used for this unique occasion. The challenges associated with obtaining 3D color images at a resolution of 0.05 mm and a depth precision of 0.01 mm are illustrated by exploring the virtual 3D model of the Mona Lisa.

  3. Theory and modeling of the magnetic field measurement in LISA PathFinder

    CERN Document Server

    Diaz-Aguilo, M; Lobo, A

    2009-01-01

    The magnetic diagnostics subsystem of the LISA Technology Package (LTP) on board the LISA PathFinder (LPF) spacecraft includes a set of four tri-axial fluxgate magnetometers, intended to measure with high precision the magnetic field at their respective positions. However, their readouts do not provide a direct measurement of the magnetic field at the positions of the test masses, and hence an interpolation method must be designed and implemented to obtain the values of the magnetic field at these positions. However, such interpolation process faces serious difficulties. Indeed, the size of the interpolation region is excessive for a linear interpolation to be reliable while, on the other hand, the number of magnetometer channels does not provide sufficient data to go beyond the linear approximation. We describe an alternative method to address this issue, by means of neural network algorithms. The key point in this approach is the ability of neural networks to learn from suitable training data representing t...

  4. Subtraction of temperature induced phase noise in the LISA frequency band

    CERN Document Server

    Nofrarias, M; Karnesis, N; Garcia, A F; Hewitson, M; Heinzel, G; Danzmann, K

    2013-01-01

    Temperature fluctuations are expected to be one of the limiting factors for gravitational wave detectors in the very low frequency range. Here we report the characterisation of this noise source in the LISA Pathfinder optical bench and propose a method to remove its contribution from the data. Our results show that temperature fluctuations are indeed limiting our measurement below one millihertz, and that their subtraction leads to a factor 5.6 (15 dB) reduction in the noise level at the lower end of the LISA measurement band 10^{-4} Hz, which increases to 20.2 (26 dB) at even lower frequencies, i.e., 1.5x10^{-5} Hz. The method presented here can be applied to the subtraction of other noise sources in gravitational wave detectors in the general situation where multiple sensors are used to characterise the noise source.

  5. Tidally-Induced Apsidal Precession in Double White Dwarfs: a new mass measurement tool with LISA

    CERN Document Server

    Valsecchi, Francesca; Willems, Bart; Deloye, Christopher J; Kalogera, Vassiliki

    2011-01-01

    Galactic interacting double white dwarfs (DWD) are guaranteed gravitational wave (GW) sources for the GW detector LISA, with more than 10^4 binaries expected to be detected over the mission's lifetime. While the majority of DWDs are expected to be circular, dynamical interactions in globular clusters can lead to a sub-population of eccentric DWDs detectable by LISA. Here we investigate the potential for constraining the white dwarf (WD) properties through apsidal precession in these binaries. We analyze the tidal, rotational, and general relativistic contributions to apsidal precession by using detailed He WD models, where the evolution of the star's interior is followed throughout the cooling phase. In agreement with previous studies of zero-temperature WDs, we find that apsidal precession in eccentric DWDs can lead to a detectable shift in the emitted GW signal when binaries with cool (old) components are considered. This shift increases significantly for hot (young) WDs. We find that apsidal motion in hot ...

  6. Lifetime testing UV LEDs for use in the LISA charge management system

    Science.gov (United States)

    Hollington, D.; Baird, J. T.; Sumner, T. J.; Wass, P. J.

    2017-10-01

    As a future charge management light source, UV light-emitting diodes (UV LEDs) offer far superior performance in a range of metrics compared to the mercury lamps used in the past. As part of a qualification program a number of short wavelength UV LEDs have been subjected to a series of lifetime tests for potential use on the laser interferometer space antenna (LISA) mission. These tests were performed at realistic output levels for both fast and continuous discharging in either a DC or pulsed mode of operation and included a DC fast discharge test spanning 50 days, a temperature dependent pulsed fast discharge test spanning 21 days and a pulsed continuous discharge test spanning 507 days. Two types of UV LED have demonstrated lifetimes equivalent to over 25 years of realistic mission usage with one type providing a baseline for LISA and the other offering a backup solution.

  7. Analysis of the residual force noise for the LISA Technology Package

    CERN Document Server

    Ferraioli, Luigi; Congedo, Giuseppe; Diaz-Aguilo, Marc; De Marchi, Fabrizio; Grynagier, Adrien; Hewitson, Martin; Hueller, Mauro; Monsky, Anneke; Nofrarias, Miquel; Plagnol, Eric; Rais, Boutheina; Vitale, Stefano

    2011-01-01

    The analysis of the noise sources perturbing a test mass (TM) geodesic motion is the main scientific objective of the LISA Technology Package experiment (LTP) on board of the LISA Pathfinder space mission. Information on force noise acting on TMs are obtained with a data reduction procedure involving system parameters. Such parameters can be estimated from dedicated experimental runs. Therefore the final estimation of force noise is affected by two sources of uncertainty. One is statistical and connected to the random nature of noisy signals. The other is connected to the uncertainties on the system parameters. The analysis of simulated LTP data is indicating that the major contribution to the force noise power spectral density uncertainties is coming from the statistical properties of the spectrum estimator.

  8. Laser frequency stabilization and stray light issues for LISA and other future multi-spacecraft missions Project

    Data.gov (United States)

    National Aeronautics and Space Administration — "The Laser Interferometer Space Antenna (LISA) is a joint NASA/ESA project which will use laser interferometry between drag-free proof masses to measure...

  9. Satellite Geomagnetism

    DEFF Research Database (Denmark)

    Olsen, Nils; Stolle, Claudia

    2012-01-01

    Observations of Earth’s magnetic field from space began more than 50 years ago. A continuous monitoring of the field using low Earth orbit (LEO) satellites, however, started only in 1999, and three satellites have taken highprecision measurements of the geomagnetic field during the past decade...... ability to characterize and understand the many sources that contribute to Earth’s magnetic field. In this review, we summarize investigations of Earth’s interior and environment that have been possible through the analysis of high-precision magnetic field observations taken by LEO satellites........ The unprecedented time-space coverage of their data opened revolutionary new possibilities for monitoring, understanding, and exploring Earth’s magnetic field. In the near future, the three-satellite constellation Swarm will ensure continuity of such measurement and provide enhanced possibilities to improve our...

  10. LISA detection of binary black holes in the Milky Way galaxy

    Science.gov (United States)

    Christian, Pierre; Loeb, Abraham

    2017-07-01

    Using the black hole merger rate inferred from LIGO, we calculate the abundance of tightly bound binary black holes in the Milky Way galaxy. Binaries with a small semimajor axis (≲10 R⊙) originate at larger separations through conventional formation mechanisms and evolve as a result of gravitational wave emission. We find that LISA could detect them in the Milky Way. We also identify possible X-ray signatures of such binaries.

  11. A new torsion pendulum for testing enhancements to the LISA Gravitational Reference Sensor

    Science.gov (United States)

    Conklin, John; Chilton, A.; Ciani, G.; Mueller, G.; Olatunde, T.; Shelley, R.

    2014-01-01

    The Laser Interferometer Space Antenna (LISA), the most mature concept for observing gravitational waves from space, consists of three Sun-orbiting spacecraft that form a million km-scale equilateral triangle. Each spacecraft houses two free-floating test masses (TM), which are protected from disturbing forces so that they follow pure geodesics in spacetime. A single test mass together with its housing and associated components is referred to as a gravitational reference sensor (GRS). Laser interferometry is used to measure the minute variations in the distance between these free-falling TMs, caused by gravitational waves. The demanding acceleration noise requirement of 3E-15 m/sec^2Hz^1/2 for the LISA GRS has motivated a rigorous testing campaign in Europe and a dedicated technology mission, LISA Pathfinder, scheduled for launch in 2015. Recently, efforts have begun in the U.S. to design and assemble a new, nearly thermally noise limited torsion pendulum for testing GRS technology enhancements and for understanding the dozens of acceleration noise sources that affect the performance of the GRS. This experimental facility is based on the design of a similar facility at the University of Trento, and will consist of a vacuum enclosed torsion pendulum that suspends mock-ups of the LISA test masses, surrounded by electrode housings. The GRS technology enhancements under development include a novel TM charge control scheme based on ultraviolet LEDs, simplified capacitive readout electronics, and a six degree-of-freedom, all-optical TM sensor. This presentation will describe the design of the torsion pendulum facility, its expected performance, and the potential technology enhancements.

  12. Extremely stable piezo mechanisms for the New Gravitational Wave Observatory

    NARCIS (Netherlands)

    Pijnenburg, J.A.C.M.; Rijnveld, N.; Hogenhuis, H.

    2012-01-01

    Detection and observation of gravitational waves requires extreme stability in the frequency range 3e-5 Hz to 1 Hz. NGO/LISA will attain this by creating a giant interferometer in space, based on free floating proof masses in three spacecrafts. To operate NGO/LISA, the following piezo mechanisms are

  13. Satellite (Natural)

    Science.gov (United States)

    Murdin, P.

    2000-11-01

    In its most general sense, any celestial object in orbit around a similar larger object. Thus, for example, the Magellanic Clouds are satellite galaxies of our own Milky Way galaxy. Without qualification, the term is used to mean a body in orbit around a planet; an alternative term is moon. The term natural satellite distinguishes these bodies from artificial satellites—spacecraft placed in orbi...

  14. Attentiography of the Body: correlations between Lisa Nelson and Gilbert Simondon’s work from a narrative fragment

    Directory of Open Access Journals (Sweden)

    Francisco de Assis Gaspar Neto

    2017-01-01

    Full Text Available The paper suggests an interconnection between art and philosophy through approaching the practice of attention upon a section of Tuning Scores, described by the American choreographer and videomaker Lisa Nelson and the individual’s relationship with the environment and with others thought by the French philosopher Gilbert Simondon. Lisa Nelson’s fragment describing the Attentiography of Body is presented in conjunction with Simondon’s characters by covering some interpersonal relationship traits: individuation, individuality, and personality.

  15. Metals in sediments and fish from Sea Lots and Point Lisas harbors, Trinidad and Tobago

    Science.gov (United States)

    Mohammed, Azad; May, Thomas; Echols, Kathy; Walther, Mike; Manoo, Anton; Maraj, Dexter; Agard, John; Orazio, Carl

    2012-01-01

    Concentrations of heavy metals were determined in nearshore marine sediments and fish tissue from Sea Lots area on the west coast, at Caroni Lagoon National Park, and in the Point Lisas harbor, Trinidad. The most dominant metals found in sediments were Al, Fe and Zn with mean concentrations highest at Sea Lots (Al-39420 μg/g; Fe-45640 μg/g; Zn-245 μg/g), when compared to sediments from Point Lisas (Al-11936 μg/g; Fe-30171 μg/g; Zn-69 μg/g) and Caroni (Al-0400 μg/g; Fe-19000 μg/g; Zn-32 μg/g), High concentration of Cu, Al, Fe and Zn were also detected in fish tissue from Point Lisas and Caroni. Metal concentrations in fish tissue showed significant correlation with sediment metals concentration, which suggests that tissue levels are influenced by sediment concentration. Of the metals, only Zn, Hg and Cu had a bioaccumulation factor (BAF) greater than one, which suggests a high bioaccumulation potential for these metals.

  16. Detection of secular acceleration pulses from magnetic observatory data

    Science.gov (United States)

    Soloviev, Anatoly; Chulliat, Arnaud; Bogoutdinov, Shamil

    2017-09-01

    Geomagnetic secular variation (SV) models for the epochs before the space era are based on magnetic observatory data, which represent relatively rough and noisy time series due to magnetic storms, anthropogenic spikes and gaps. These models are often strongly regularized in time, so that fast variations in the SV are smoothed out. However, recent studies show that at least some of the geomagnetic jerks observed at the Earth's surface emanate from increasing and decreasing phases of secular acceleration (SA) pulses at the core surface. The latter ones are direct manifestation of the dynamic processes taking place in the liquid core. They were first detected from satellite data, which are both of higher quality and more homogeneous in terms of geographical coverage than ground data. Herein we attempt to carry out similar studies based on observatory data available for a longer period. The proposed method of SV modeling and recognition of SA pulses relies on a new technique of processing time series based on fuzzy mathematics. Comparison with the SV modeling results derived from satellite data shows their high conformity with the proposed method. Stability and reliability of the SA pulse recognition are demonstrated by the examples of well-studied SA pulses in 2006, 2009 and 2012. Moreover, several new SA pulses around 1996, 1999, 2002 and 2014 are discovered as a result of the new approach application to multi-observatory data analysis. The latter provides a basis for applying the method to older historical data and investigate SA pulses and geomagnetic jerks further back in time.

  17. CIAO: the CNR-IMAA advanced observatory for atmospheric research

    Directory of Open Access Journals (Sweden)

    F. Madonna

    2010-11-01

    Full Text Available The long-term observations of aerosol and clouds are of crucial importance to understand the weather climate system. At the Istituto di Metodologie per l'Analisi Ambientale of the Italian National Research Council (CNR-IMAA an advanced atmospheric observatory, named CIAO, is operative. CIAO (CNR-IMAA Atmospheric Observatory main scientific objective is the long-term measurement for the climatology of aerosol and cloud properties. Its equipment addresses the state-of-the-art for the ground-based remote sensing of aerosol, water vapour and clouds including active and passive sensors, like lidars, ceilometers, radiometers, a radar. This paper describes the CIAO infrastructure, its scientific activities as well as the observation strategy. The observation strategy is mainly organized in order to provide quality assured measurements for satellite validation and model evaluation and to fully exploit the synergy and integration of the active and passive sensors for the improvement of the atmospheric profiling. Data quality is ensured both by the application of protocols and dedicated quality assurance programmes mainly related to the projects and networks in which the infrastructure is involved. The paper also introduces examples of observations performed at CIAO and of the synergies and integration algorithms (using Raman lidar and microwave profiler data developed and implemented at the observatory for the optimization and improvement of water vapour profiling. The CIAO database represents an optimal basis to study the synergy between different sensors and to investigate aerosol-clouds interactions, and can give a significant contribution to the validation programmes of the incoming new generation satellite missions.

  18. CIAO: the CNR-IMAA advanced observatory for atmospheric research

    Directory of Open Access Journals (Sweden)

    F. Madonna

    2011-06-01

    Full Text Available Long-term observations of aerosol and clouds are of crucial importance to understand the weather climate system. At the Istituto di Metodologie per l'Analisi Ambientale of the Italian National Research Council (CNR-IMAA an advanced atmospheric observatory, named CIAO, is operative. CIAO (CNR-IMAA Atmospheric Observatory main scientific objective is the long term measurement for the climatology of aerosol and cloud properties. Its equipment addresses the state-of-the-art for the ground-based remote sensing of aerosol, water vapour and clouds including active and passive sensors, like lidars, ceilometers, radiometers, and a radar. This paper describes the CIAO infrastructure, its scientific activities as well as the observation strategy. The observation strategy is mainly organized in order to provide quality assured measurements for satellite validation and model evaluation and to fully exploit the synergy and integration of the active and passive sensors for the improvement of atmospheric profiling. Data quality is ensured both by the application of protocols and dedicated quality assurance programs mainly related to the projects and networks in which the infrastructure is involved. The paper also introduces examples of observations performed at CIAO and of the synergies and integration algorithms (using Raman lidar and microwave profiler data developed and implemented at the observatory for the optimization and improvement of water vapour profiling. CIAO database represents an optimal basis to study the synergy between different sensors and to investigate aerosol-clouds interactions, and can give a significant contribution to the validation programs of the incoming new generation satellite missions.

  19. The Arecibo Observatory Space Academy

    Science.gov (United States)

    Rodriguez-Ford, Linda A.; Zambrano-Marin, Luisa; Petty, Bryan M.; Sternke, Elizabeth; Ortiz, Andrew M.; Rivera-Valentin, Edgard G.

    2015-11-01

    The Arecibo Observatory Space Academy (AOSA) is a ten (10) week pre-college research program for students in grades 9-12. Our mission is to prepare students for academic and professional careers by allowing them to receive an independent and collaborative research experience on topics related to space and aide in their individual academic and social development. Our objectives are to (1) Supplement the student’s STEM education via inquiry-based learning and indirect teaching methods, (2) Immerse students in an ESL environment, further developing their verbal and written presentation skills, and (3) To foster in every student an interest in science by exploiting their natural curiosity and knowledge in order to further develop their critical thinking and investigation skills. AOSA provides students with the opportunity to share lectures with Arecibo Observatory staff, who have expertise in various STEM fields. Each Fall and Spring semester, selected high school students, or Cadets, from all over Puerto Rico participate in this Saturday academy where they receive experience designing, proposing, and carrying out research projects related to space exploration, focusing on four fields: Physics/Astronomy, Biology, Engineering, and Sociology. Cadets get the opportunity to explore their topic of choice while practicing many of the foundations of scientific research with the goal of designing a space settlement, which they present at the NSS-NASA Ames Space Settlement Design Contest. At the end of each semester students present their research to their peers, program mentors, and Arecibo Observatory staff. Funding for this program is provided by NASA SSERVI-LPI: Center for Lunar Science and Exploration with partial support from the Angel Ramos Visitor Center through UMET and management by USRA.

  20. Light pollution around Tonantzintla Observatory

    Science.gov (United States)

    Vázquez-Mata, José A.; Hernández-Toledo, Héctor M.; Martínez-Vázquez, Luis A.; Pani-Cielo, Atanacio

    2011-06-01

    Being close to the cities of Puebla to east and Cholula to the north, both having potential for large growth, the National Astronomical Observatory in Tonantzintla (OAN-Tonantzintla) faces the danger of deteriorating its sky conditions even more. In order to maintain competitiveness for education and scientific programs, it is important to preserve the sky brightness conditions. through: 1) our awareness of the night sky characteristics in continuous monitoring campaigns, doing more measurements over the next years to monitor changes and 2) encouraging local authorities about the need to regulate public lighting at the same time, showing them the benefits of such initiatives when well planed and correctly implemented.

  1. India-based Neutrino Observatory

    Indian Academy of Sciences (India)

    Naba K Mondal; for the INO Collaboration

    2012-11-01

    The current status of the India-based Neutrino Observatory (INO) is summarized. The main physics goals are described followed by the motivation for building a magnetized iron calorimetric (ICAL) detector. The charge identification capability of ICAL would make it complementary to large water Cerenkov and other detectors worldwide. The status of the design of the 50 kt magnet, the construction of a prototype ICAL detector, the experience with resistive plate chambers which will be the active elements in ICAL and the status of the associated electronics and data acquisition system are discussed.

  2. CM5, a pre-Swarm comprehensive geomagnetic field model derived from over 12 yr of CHAMP, Ørsted, SAC-C and observatory data

    DEFF Research Database (Denmark)

    Sabaka, Terence J.; Olsen, Nils; Tyler, Robert H.

    2015-01-01

    A comprehensive magnetic field model named CM5 has been derived from CHAMP, Orsted and SAC-C satellite and observatory hourly-means data from 2000 August to 2013 January using the Swarm Level-2 Comprehensive Inversion (CI) algorithm. Swarm is a recently launched constellation of three satellites ...

  3. ``Route of astronomical observatories'' project: Classical observatories from the Renaissance to the rise of astrophysics

    Science.gov (United States)

    Wolfschmidt, Gudrun

    2016-10-01

    Observatories offer a good possibility for serial transnational applications. For example one can choose groups like baroque or neoclassical observatories, solar physics observatories or a group of observatories equipped with the same kind of instruments or made by famous firms. I will discuss what has been achieved and show examples, like the route of astronomical observatories, the transition from classical astronomy to modern astrophysics. I will also discuss why the implementation of the World Heritage & Astronomy initiative is difficult and why there are problems to nominate observatories for election in the national tentative lists.

  4. Protection of the Guillermo Haro Astrophysical Observatory

    Science.gov (United States)

    Carrasco, E.; Carraminana, A. P.

    The Guillermo Haro Astrophysical Observatory, with a 2m telescope, is one of only two professional observatories in Mexico. The observatory, run by the InstitutoNacional de Astrofisica, Optica y Electronica (INAOE), is located in the north of Mexico, in Cananea, Sonora. Since 1995 the observatory has faced the potential threat of pollution by an open cast mine to be opened at 3kms from the observatory. In the absence of national or regional laws enforcing protection to astronomical sites in Mexico, considerable effort has been needed to guarantee the conditions of the site. We present the studies carried out to ensure the protection of the Guillermo Haro Observatory from pollution due to dust, light and vibrations.

  5. EMSO: European multidisciplinary seafloor observatory

    Energy Technology Data Exchange (ETDEWEB)

    Favali, Paolo [Istituto Nazionale di Geofisica e Vulcanologia (INGV), Via di Vigna Murata 605, 00143 Roma (Italy); Universita degli Studi di Roma ' La Sapienza' , P.le Aldo Moro 5, 00185 Roma (Italy)], E-mail: emsopp@ingv.it; Beranzoli, Laura [Istituto Nazionale di Geofisica e Vulcanologia (INGV), Via di Vigna Murata 605, 00143 Roma (Italy)

    2009-04-11

    EMSO has been identified by the ESFRI Report 2006 as one of the Research Infrastructures that European members and associated states are asked to develop in the next decades. It will be based on a European-scale network of multidisciplinary seafloor observatories from the Arctic to the Black Sea with the aim of long-term real-time monitoring of processes related to geosphere/biosphere/hydrosphere interactions. EMSO will enhance our understanding of processes, providing long time series data for the different phenomenon scales which constitute the new frontier for study of Earth interior, deep-sea biology and chemistry, and ocean processes. The development of an underwater network is based on past EU projects and is supported by several EU initiatives, such as the on-going ESONET-NoE, aimed at strengthening the ocean observatories' scientific and technological community. The EMSO development relies on the synergy between the scientific community and industry to improve European competitiveness with respect to countries such as USA, Canada and Japan. Within the FP7 Programme launched in 2006, a call for Preparatory Phase (PP) was issued in order to support the foundation of the legal and organisational entity in charge of building up and managing the infrastructure, and coordinating the financial effort among the countries. The EMSO-PP project, coordinated by the Italian INGV with participation by 11 institutions from as many European countries, started in April 2008 and will last four years.

  6. The International Virtual Observatory Alliance

    Science.gov (United States)

    Kembhavi, Ajit

    Over the last few years Astronomical Virtual Observatory (VO) projects have been initiated in several countries. The aim of these projects is to make astronomical data gathered in all ways and in all places available to every person who may need it along with appropriate software for data access analysis visualization and interpretation. The VO projects largely work in their own ways and with their own priorities shaped by scientific interests and available resources. For the VO concept to be successful these efforts have to be meshed together seamlessly through interoperability standards new data formats which take into account emerging technology and software developed in forms which are largely independent of platforms and operating systems. It is also necessary to develop computing grids which will cross national and project boundaries and can be accessed by any researcher who wishes to use the data mountains. This process of integration and assimilation is to be fostered through international alliances spanning various VO efforts. I will describe in my talk formal alliances like the International Virtual Observatory as well as specific bilateral and multilateral collaborations between individuals institutions or projects and the VO related products that have been launched through these collaborations.

  7. The 2014 geomagnetic jerk as observed by southern African magnetic observatories

    Science.gov (United States)

    Kotzé, P. B.

    2017-01-01

    Rapid secular variation pulses in the Earth's geomagnetic field have been identified during the last decade. In particular, the 2014 jerk is the latest in a series of localised rapid secular variation events observed at the Earth's surface which are thought to be the result of rapid oscillations at the core surface approximately at a depth of 3000 km. In Southern Africa, the 2014 jerk has been analysed using data from four observatories located at Hermanus, Hartebeesthoek, Keetmanshoop and Tsumeb and found that this event occurred with varying strengths in the different components at a particular observatory, while different observatories in the region showed strong individual characteristics. The changes in the secular variation patterns at individual magnetic observatories in this study took place in an area characterised by rapid changes in the geomagnetic field with time. Of particular interest is that global field models like CHAOS-6 and POMME 10 derived from various combinations of ground and satellite data do not always indicate similar short-period patterns in X, Y and Z as revealed by observatory measurements. This has been confirmed by comparing the secular variation pattern at the Kourou magnetic observatory located in French Guiana, a station close to the current centre of the South Atlantic Anomaly.

  8. Worldwide R&D of Virtual Observatory

    CERN Document Server

    Cui, Chenzhou

    2007-01-01

    Virtual Observatory (VO) is a data intensive online astronomical research and education environment, taking advantages of advanced information technologies to achieve seamless and uniform access to astronomical information. The concept of VO was introduced in late of 1990s to meet challenges brought up with data avalanche in astronomy. This paper reviews current status of International Virtual Observatory Alliance, technical highlights from world wide VO projects, and a brief introduction of Chinese Virtual Observatory.

  9. A Global Observatory of Lake Water Quality

    Science.gov (United States)

    Tyler, Andrew N.; Hunter, Peter D.; Spyrakos, Evangelos; Neil, Claire; Simis, Stephen; Groom, Steve; Merchant, Chris J.; Miller, Claire A.; O'Donnell, Ruth; Scott, E. Marian

    2017-04-01

    Our planet's surface waters are a fundamental resource encompassing a broad range of ecosystems that are core to global biogeochemical cycling, biodiversity and food and energy security. Despite this, these same waters are impacted by multiple natural and anthropogenic pressures and drivers of environmental change. The complex interaction between physical, chemical and biological processes in surface waters poses significant challenges for in situ monitoring and assessment and this often limits our ability to adequately capture the dynamics of aquatic systems and our understanding of their status, functioning and response to pressures. Recent developments in the availability of satellite platforms for Earth observation (including ESA's Copernicus Programme) offers an unprecedented opportunity to deliver measures of water quality at a global scale. The UK NERC-funded GloboLakes project is a five-year research programme investigating the state of lakes and their response to climatic and other environmental drivers of change through the realization of a near-real time satellite based observatory (Sentinel-3) and archive data processing (MERIS, SeaWiFS) to produce a 20-year time-series of observed ecological parameters and lake temperature for more than 1000 lakes globally. However, the diverse and complex optical properties of lakes mean that algorithm performance often varies markedly between different water types. The GloboLakes project is overcoming this challenge by developing a processing chain whereby algorithms are dynamically selected according to the optical properties of the lake under observation. The development and validation of the GloboLakes processing chain has been supported by access to extensive in situ data from more than thirty partners around the world that are now held in the LIMNADES community-owned data repository developed under the auspices of GloboLakes. This approach has resulted in a step-change in our ability to produce regional and

  10. A new Magnetic Observatory in Pantanal - Brazil

    Science.gov (United States)

    Siqueira, F.; Pinheiro, K.; Linthe, H.

    2013-05-01

    The aim of a Magnetic Observatory is to register the variations of the Earth's magnetic field in a long temporal scale. Using this data it is possible to study field variations of both external and internal origins. The external variations concern interactions between the magnetosphere and the solar wind, in general are measured in a short time scale. The internal field generated by convection of a high electrical conductivity fluid in the external core by a mechanism known as the geodynamo. Usually the internal field time variations are longer than in the external field and are called secular variations. Measurements carried out over the last century suggest that field intensity is decreasing rapidly. The decreasing of the field's intensity is not the same around the globe, especially at the SAMA (South Atlantic Magnetic Anomaly) regions, where this reduction is occurring faster. The global distribution of magnetic observatories is uneven, with few observatories in South America. In Brazil, there are three magnetic observatories, but only Vassouras Observatory (VSS- RJ) is part of the INTERMAGNET network. The National Observatory has plans to install seven new observatories in Brazil. Pantanal was the chosen location for installing the first observatory because of its privileged location, close to the SAMA region, and its data can contribute to more information about its origin. We followed the procedures suggested by the IAGA to build this observatory. The first step is to perform a magnetic survey in order to avoid strong magnetic gradients in the location where the absolute and variometers houses will be installed. The next step, the construction of the observatory, includes the selection of special non-magnetic material for the variometer and absolute houses. All materials used were previously tested using a proton magnetometer GSM-19. After construction of the whole infrastructure, the equipment was installed. This Project is a cooperation between Brazilian

  11. Byurakan Astrophysical Observatory as Cultural Centre

    Science.gov (United States)

    Mickaelian, A. M.; Farmanyan, S. V.

    2017-07-01

    NAS RA V. Ambartsumian Byurakan Astrophysical Observatory is presented as a cultural centre for Armenia and the Armenian nation in general. Besides being scientific and educational centre, the Observatory is famous for its unique architectural ensemble, rich botanical garden and world of birds, as well as it is one of the most frequently visited sightseeing of Armenia. In recent years, the Observatory has also taken the initiative of the coordination of the Cultural Astronomy in Armenia and in this field, unites the astronomers, historians, archaeologists, ethnographers, culturologists, literary critics, linguists, art historians and other experts. Keywords: Byurakan Astrophysical Observatory, architecture, botanic garden, tourism, Cultural Astronomy.

  12. Internal waves and vortices in satellite images

    CERN Document Server

    Sparavigna, Amelia Carolina

    2012-01-01

    Some recent papers proposed the use of the satellite images of Google Earth in teaching physics, in particular to see some behaviours of waves. Reflection, refraction, diffraction and interference are easy to be found in these satellite maps. Besides Google Earth, other sites exist, such as Earth Observatory or Earth Snapshot, suitable for illustrating the large-scale phenomena in atmosphere and oceans In this paper, we will see some examples for teaching surface and internal sea waves, and internal waves and the K\\'arm\\'an vortices in the atmosphere. Aim of this proposal is attracting the interest of students of engineering schools to the physics of waves.

  13. AO corrected satellite imaging from Mount Stromlo

    Science.gov (United States)

    Bennet, F.; Rigaut, F.; Price, I.; Herrald, N.; Ritchie, I.; Smith, C.

    2016-07-01

    The Research School of Astronomy and Astrophysics have been developing adaptive optics systems for space situational awareness. As part of this program we have developed satellite imaging using compact adaptive optics systems for small (1-2 m) telescopes such as those operated by Electro Optic Systems (EOS) from the Mount Stromlo Observatory. We have focused on making compact, simple, and high performance AO systems using modern high stroke high speed deformable mirrors and EMCCD cameras. We are able to track satellites down to magnitude 10 with a Strehl in excess of 20% in median seeing.

  14. Virtual Energetic Particle Observatory (VEPO)

    Science.gov (United States)

    Cooper, John F.; Lal, Nand; McGuire, Robert E.; Szabo, Adam; Narock, Thomas W.; Armstrong, Thomas P.; Manweiler, Jerry W.; Patterson, J. Douglas; Hill, Matthew E.; Vandergriff, Jon D.; McKibben, Robert B.; Lopate, Clifford; Tranquille, Cecil

    2008-01-01

    The Virtual Energetic Particle Observatory (VEPO) focuses on improved discovery, access, and usability of heliospheric energetic particle and ancillary data products from selected spacecraft and sub-orbital instruments of the heliophysics data environment. The energy range of interest extends over the full range of particle acceleration from keV energies of suprathermal seed particles to GeV energies of galactic cosmic ray particles. Present spatial coverage is for operational and legacy spacecraft operating from the inner to the outer heliosphere, e.g. from measurements by the two Helios spacecraft to 0.3 AU to the inner heliosheath region now being traversed by the two Voyager spacecraft. This coverage will eventually be extended inward to ten solar radii by the planned NASA solar probe mission and at the same time beyond the heliopause into the outer heliosheath by continued Voyager operations. The geospace fleet of spacecraft providing near-Earth interplanetary measurements, selected magnetospheric spacecraft providing direct measurements of penetrating interplanetary energetic particles, and interplanetary cruise measurements from planetary spacecraft missions further extend VEPO resources to the domain of geospace and planetary interactions. Ground-based (e.g., neutron monitor) and high-altitude suborbital measurements can expand coverage to the highest energies of galactic cosmic rays affected by heliospheric interaction and of solar energetic particles. Science applications include investigation of solar flare and coronal mass ejection events. acceleration and transport of interplanetary particles within the inner heliosphere, cosmic ray interactions with planetary surfaces and atmospheres, sources of suprathermal and anomalous cosmic ray ions in the outer heliosphere, and solar cycle modulation of galactic cosmic rays. Robotic and human exploration, and eventual habitation, of planetary and space environments beyond the Earth require knowledge of radiation

  15. Scientific Satellites

    Science.gov (United States)

    1967-01-01

    followed Hale’s into orbit. In 1879, Jules Verne wrote about launching small satellites with a gun possessing a muzzle velocity of 10 000 m/sec (ref. 3...was activated in 1950.11 It was located only a few tens of miles from the spot where Jules Verne had his Baltimore Gun Club fire a manned projectile to...principle, satellites can be launched by a single impulse applied at the Earth’s surface-say, with a large cannon, & la Jules Verne (sec. 8-3). In

  16. Hybrid local FEM/global LISA modeling of guided wave propagation and interaction with damage in composite structures

    Science.gov (United States)

    Shen, Yanfeng; Cesnik, Carlos E. S.

    2015-03-01

    This paper presents a hybrid modeling technique for the efficient simulation of guided wave propagation and interaction with damage in composite structures. This hybrid approach uses a local finite element model (FEM) to compute the excitability of guided waves generated by piezoelectric transducers, while the global domain wave propagation, wave-damage interaction, and boundary reflections are modeled with the local interaction simulation approach (LISA). A small-size multi-physics FEM with non-reflective boundaries (NRB) was built to obtain the excitability information of guided waves generated by the transmitter. Frequency-domain harmonic analysis was carried out to obtain the solution for all the frequencies of interest. Fourier and inverse Fourier transform and frequency domain convolution techniques are used to obtain the time domain 3-D displacement field underneath the transmitter under an arbitrary excitation. This 3-D displacement field is then fed into the highly efficient time domain LISA simulation module to compute guided wave propagation, interaction with damage, and reflections at structural boundaries. The damping effect of composite materials was considered in the modified LISA formulation. The grids for complex structures were generated using commercial FEM preprocessors and converted to LISA connectivity format. Parallelization of the global LISA solution was achieved through Compute Unified Design Architecture (CUDA) running on Graphical Processing Unit (GPU). The multi-physics local FEM can reliably capture the detailed dimensions and local dynamics of the piezoelectric transducers. The global domain LISA can accurately solve the 3-D elastodynamic wave equations in a highly efficient manner. By combining the local FEM with global LISA, the efficient and accurate simulation of guided wave structural health monitoring procedure is achieved. Two numerical case studies are presented: (1) wave propagation in a unidirectional CFRP composite plate

  17. Automatic system for quantification and visualization of lung aeration on chest computed tomography images: the Lung Image System Analysis - LISA

    Energy Technology Data Exchange (ETDEWEB)

    Felix, John Hebert da Silva; Cortez, Paulo Cesar, E-mail: jhsfelix@gmail.co [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Dept. de Engenharia de Teleinformatica; Holanda, Marcelo Alcantara [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Hospital Universitario Walter Cantidio. Dept. de Medicina Clinica

    2010-12-15

    High Resolution Computed Tomography (HRCT) is the exam of choice for the diagnostic evaluation of lung parenchyma diseases. There is an increasing interest for computational systems able to automatically analyze the radiological densities of the lungs in CT images. The main objective of this study is to present a system for the automatic quantification and visualization of the lung aeration in HRCT images of different degrees of aeration, called Lung Image System Analysis (LISA). The secondary objective is to compare LISA to the Osiris system and also to specific algorithm lung segmentation (ALS), on the accuracy of the lungs segmentation. The LISA system automatically extracts the following image attributes: lungs perimeter, cross sectional area, volume, the radiological densities histograms, the mean lung density (MLD) in Hounsfield units (HU), the relative area of the lungs with voxels with density values lower than -950 HU (RA950) and the 15th percentile of the least density voxels (PERC15). Furthermore, LISA has a colored mask algorithm that applies pseudo-colors to the lung parenchyma according to the pre-defined radiological density chosen by the system user. The lungs segmentations of 102 images of 8 healthy volunteers and 141 images of 11 patients with Chronic Obstructive Pulmonary Disease (COPD) were compared on the accuracy and concordance among the three methods. The LISA was more effective on lungs segmentation than the other two methods. LISA's color mask tool improves the spatial visualization of the degrees of lung aeration and the various attributes of the image that can be extracted may help physicians and researchers to better assess lung aeration both quantitatively and qualitatively. LISA may have important clinical and research applications on the assessment of global and regional lung aeration and therefore deserves further developments and validation studies. (author)

  18. Digitization and Position Measurement of Astronomical Plates of Saturnian Satellites

    Science.gov (United States)

    Yan, D.; Yu, Y.; Zhang, H. Y.; Qiao, R. C.

    2014-05-01

    Using the advanced commercial scanners to digitize astronomical plates may be a simple and effective way. In this paper, we discuss the method of digitizing and astrometrically reducing six astronomical plates of Saturnian satellites, which were taken from the 1 m RCC (Ritchey Chretien Coude) telescope of Yunnan Observatory in 1988, by using the 10000XL scanner of Epson. The digitized images of the astronomical plates of Saturnian satellites are re-reduced, and the positions of Saturnian satellites based on the UCAC2 (The Second US Naval Observatory CCD Astrograph Catalog) catalogue are given. A comparison of our measured positions with the IMCCE (Institut de Mecanique Celeste et de Calcul des Ephemerides) ephemeris of Saturnian satellites shows the high quality of our measurements, which have an accuracy of 106 mas in right ascension and 89 mas in declination. Moreover, our measurements appear to be consistent with this ephemeris within only about 56 mas in right ascension and 9 mas in declination.

  19. OPTICON and the Virtual Observatory

    CERN Document Server

    Gilmore, G

    2000-01-01

    The challenges of multi-wavelength astrophysics require new outlooks from those appropriate to traditional astronomy. The next generation of research scientists must be trained to exploit the potentiality now being provided for the first time. Just as importantly, the full range of available information must be indexed and made available, to avoid wasteful repeat observations, or incomplete analyses. Perhaps the greatest challenge in the immediate future is to ensure the wealth of multi-wavelength data already available, and being accumulated, is available for efficient scientific exploitation. The difference between observations in a depositary and a fully-operational data archive is the difference between waste and cutting-edge science. The EU Optical Infrared Coordination Network for Astronomy (OPTICON) provides a forum to coordinate and develop the many national and international efforts and desires leading towards an operational virtial observatory.

  20. Autonomous Infrastructure for Observatory Operations

    Science.gov (United States)

    Seaman, R.

    This is an era of rapid change from ancient human-mediated modes of astronomical practice to a vision of ever larger time domain surveys, ever bigger "big data", to increasing numbers of robotic telescopes and astronomical automation on every mountaintop. Over the past decades, facets of a new autonomous astronomical toolkit have been prototyped and deployed in support of numerous space missions. Remote and queue observing modes have gained significant market share on the ground. Archives and data-mining are becoming ubiquitous; astroinformatic techniques and virtual observatory standards and protocols are areas of active development. Astronomers and engineers, planetary and solar scientists, and researchers from communities as diverse as particle physics and exobiology are collaborating on a vast range of "multi-messenger" science. What then is missing?

  1. IAXO - The International Axion Observatory

    CERN Document Server

    Vogel, J K; Cantatore, G.; Carmona, J.M.; Caspi, S.; Cetin, S.A.; Christensen, F.E.; Dael, A.; Dafni, T.; Davenport, M.; Derbin, A.V.; Desch, K.; Diago, A.; Dudarev, A.; Eleftheriadis, C.; Fanourakis, G.; Ferrer-Ribas, E.; Galan, J.; Garcia, J.A.; Garza, J.G.; Geralis, T.; Gimeno, B.; Giomataris, I.; Gninenko, S.; Gomez, H.; Hailey, C.J.; Hiramatsu, T.; Hoffmann, D.H.H.; Iguaz, F.J.; Irastorza, I.G.; Isern, J.; Jaeckel, J.; Jakovcic, K.; Kaminski, J.; Kawasaki, M.; Krcmar, M.; Krieger, C.; Lakic, B.; Lindner, A.; Liolios, A.; Luzon, G.; Ortega, I.; Papaevangelou, T.; Pivovaroff, M.J.; Raffelt, G.; Redondo, J.; Ringwald, A.; Russenschuck, S.; Ruz, J.; Saikawa, K.; Savvidis, I.; Sekiguchi, T.; Shilon, I.; Silva, H.; ten Kate, H.H.J.; Tomas, A.; Troitsky, S.; van Bibber, K.; Vedrine, P.; Villar, J.A.; Walckiers, L.; Wester, W.; Yildiz, S.C.; Zioutas, K.

    2013-01-01

    The International Axion Observatory (IAXO) is a next generation axion helioscope aiming at a sensitivity to the axion-photon coupling of a few 10^{-12} GeV^{-1}, i.e. 1-1.5 orders of magnitude beyond sensitivities achieved by the currently most sensitive axion helioscope, the CERN Axion Solar Telescope (CAST). Crucial factors in improving the sensitivity for IAXO are the increase of the magnetic field volume together with the extensive use of x-ray focusing optics and low background detectors, innovations already successfully tested at CAST. Electron-coupled axions invoked to explain the white dwarf cooling, relic axions, and a large variety of more generic axion-like particles (ALPs) along with other novel excitations at the low-energy frontier of elementary particle physics could provide additional physics motivation for IAXO.

  2. National Astronomical Observatory of Japan

    CERN Document Server

    Haubold, Hans J; UN/ESA/NASA Workshop on the International Heliophysical Year 2007 and Basic Space Science, hosted by the National Astronomical Observatory of Japan

    2010-01-01

    This book represents Volume II of the Proceedings of the UN/ESA/NASA Workshop on the International Heliophysical Year 2007 and Basic Space Science, hosted by the National Astronomical Observatory of Japan, Tokyo, 18 - 22 June, 2007. It covers two programme topics explored in this and past workshops of this nature: (i) non-extensive statistical mechanics as applicable to astrophysics, addressing q-distribution, fractional reaction and diffusion, and the reaction coefficient, as well as the Mittag-Leffler function and (ii) the TRIPOD concept, developed for astronomical telescope facilities. The companion publication, Volume I of the proceedings of this workshop, is a special issue in the journal Earth, Moon, and Planets, Volume 104, Numbers 1-4, April 2009.

  3. The Jiangmen Underground Neutrino Observatory

    CERN Document Server

    Grassi, Marco

    2016-01-01

    The Jiangmen Underground Neutrino Observatory (JUNO) is a large and high precision liquid scintillator detector under construction in the south of China. With its 20 kt target mass, it aims to achieve an unprecedented 3% energy resolution at 1 MeV. Its main goal is to study the disappearance of reactor antineutrino to determine the neutrino mass ordering, and to precisely measure the mixing parameters $\\theta_{12}$, $\\Delta m^2_{12}$, and $\\Delta m ^2_{ee}$. It also aims to detect neutrinos emitted from radioactive processes taking place within the inner layers of the Earth (geonutrinos), as well as neutrinos produced during rare supernova bursts. Neutrinos emitted in solar nuclear reactions could also be observed, if stringent radiopurity requirements on the scintillator are met. This manuscript provides some highlights of JUNO's Physics Programme, and describes the detector design, as well as the ongoing detector R&D.

  4. Submicrosecond comparisons of time standards via the Navigation Technology Satellites (NTS)

    Science.gov (United States)

    Buisson, J. A.; Mccaskill, T.; Oaks, J.; Lynch, D.; Wardrip, S. C.; Whitworth, G.

    1978-01-01

    An interim demonstration was performed of the time transfer capability of the NAVSTAR GPS system using a single NTS satellite. Measurements of time difference (pseudo-range) are made from the NTS tracking network and at the participating observatories. The NTS network measurements are used to compute the NTS orbit trajectory. The central NTS tracking station has a time link to the Naval Observatory UTC (USNO,MC1) master clock. Measurements are used with the NTS receiver at the remote observatory, the time transfer value UTC (USNO,MC1)-UTC (REMOTE, VIA NTS) is calculated. Intercomparisons were computed using predicted values of satellite clock offset and ephemeus.

  5. TUM Critical Zone Observatory, Germany

    Science.gov (United States)

    Völkel, Jörg; Eden, Marie

    2014-05-01

    Founded 2011 the TUM Critical Zone Observatory run by the Technische Universität München and partners abroad is the first CZO within Germany. TUM CZO is both, a scientific as well as an education project. It is a watershed based observatory, but moving behind this focus. In fact, two mountainous areas are integrated: (1) The Ammer Catchment area as an alpine and pre alpine research area in the northern limestone Alps and forelands south of Munich; (2) the Otter Creek Catchment in the Bavarian Forest with a crystalline setting (Granite, Gneiss) as a mid mountainous area near Regensburg; and partly the mountainous Bavarian Forest National Park. The Ammer Catchment is a high energy system as well as a sensitive climate system with past glacial elements. The lithology shows mostly carbonates from Tertiary and Mesozoic times (e.g. Flysch). Source-to-sink processes are characteristic for the Ammer Catchment down to the last glacial Ammer Lake as the regional erosion and deposition base. The consideration of distal depositional environments, the integration of upstream and downstream landscape effects are characteristic for the Ammer Catchment as well. Long term datasets exist in many regards. The Otter Creek catchment area is developed in a granitic environment, rich in saprolites. As a mid mountainous catchment the energy system is facing lower stage. Hence, it is ideal comparing both of them. Both TUM CZO Catchments: The selected catchments capture the depositional environment. Both catchment areas include historical impacts and rapid land use change. Crosscutting themes across both sites are inbuilt. Questions of ability to capture such gradients along climosequence, chronosequence, anthroposequence are essential.

  6. HELIO: A Heliospheric Virtual Observatory

    Science.gov (United States)

    Aboudarham, J.; Bentley, R. D.; Csillaghy, A.

    2012-09-01

    HELIO, the Heliophysics Integrated Observatory, is a Research Infrastructure funded under EC's FP7 Capacities Specific Programme. It began in June 2009 for three years. It will provide the heliophysics research community with an integrated e-infrastructure that has no equivalent anywhere else. The project objectives are as follows: - to create a collaborative environment where scientists can discover, understand and model the connection between solar phenomena, interplanetary disturbances and their effects on the planets (esp. the Earth) - to establish a consensus on standards for describing all heliophysical data and champion them within international standards bodies, e.g. the IVOA - to develop new ways to interact with a virtual observatory that are more closely aligned with the way researchers wish to use the data. HELIO is based on a Service-Oriented architecture. For this purpose, HELIO developed a Front End, which facilitates the search for data, using series of search metadata services covering different domains (many Events and Features available; use of context information to refine selection); Services to identify and retrieve observations based on search results (knows which data are stored where and how to access them); Enabling services such as tools to find and track events/phenomena in 4D environment (i.e. including the propagation of phenomena). Services can be used individually or combined through workflow capability. Heliophysics Event Catalogue and Heliophysics Features Catalogue provide a specific access to information concerning phenomena that occur in the Solar system. A semantic-driven approach is used to integrate data from different domains, based on ontology derived from existing data models. Thirteen partners from Europe and US are involved in this project. And although it is not completed, a prototype is already available, which can be accessed through HELIO web site (http://www.helio-vo.eu/).

  7. WIMPs search at OTO Cosmo Observatory

    Science.gov (United States)

    Fushimi, K.; Ichihara, K.; Koori, N.; Nakayama, S.; Shichijo, Y.; Ogawa, I.; Yoshida, S.; Ajimura, S.; Hazama, R.; Ishikawa, Y.; Itamura, M.; Kishimoto, T.; Kunitomi, G.; Matsuoka, K.; Miyawaki, H.; Shiomi, S.; Suzuki, N.; Tanaka, Y.; Umehara, S.; Ejiri, H.; Kudomi, N.; Kume, K.; Takahisa, K.; Ohsumi, H.; Yanagida, Y.

    2003-03-01

    WIMPs dark matter and double beta decays has been studied at OTO Cosmo Observatory. The observatory has great advantages of small cosmic ray flux, small neutron flux and small radon density. The recent status of WIMPs search by huge NaI (ELEGANT V), large CaF2Eu) (ELEGANT VI) and high sesitive NaI detector are reported.

  8. HAWC observatory catches first gamma rays

    Science.gov (United States)

    Frías Villegas, Gabriela

    2013-06-01

    The world's largest and most modern gamma-ray observatory has carried out its first successful observations. Located inside the Pico de Orizaba national park in the Mexican state of Puebla, the High-Altitude Water Cherenkov Observatory (HAWC) is a collaboration between 26 Mexican and US institutions.

  9. Highlights from the Pierre Auger Observatory

    NARCIS (Netherlands)

    Letessier-Selvon, Antoine; for the Pierre Auger Collaboration, [No Value; :, [No Value; Aab, A.; Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muniz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Antivcic, T.; Aramo, C.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Badescu, A. M.; Barber, K. B.; Bardenet, R.; Baeuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Belletoile, A.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blumer, H.; Bohacova, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Burton, R. E.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Collica, L.; Coluccia, M. R.; Conceicao, R.; Contreras, F.; Cook, H.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Criss, A.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; De La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Diaz, J. C.; Diaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipcic, A.; Foerster, N.; Fox, B. D.; Fracchiolla, C. E.; Fraenkel, E. D.; Fratu, O.; Frohlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; Garcia, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gemmeke, H.; Ghia, P. L.; Giller, M.; Gitto, J.; Glaser, C.; Glass, H.; Gomez Albarracin, F.; Gomez Berisso, M.; Gomez Vitale, P. F.; Goncalves, P.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Homola, P.; Hoerandel, J. R.; Horvath, P.; Hrabovsky, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kadija, K.; Kambeitz, O.; Kampert, K. H.; Karhan, P.; Kasper, P.; Katkov, I.; Kegl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp d, J.; Krause, R.; Krohm, N.; Kroemer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; La Rosa, G.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leao, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Lhenry-Yvon, I.; Link, K.; Lopez, R.; Lopez Aguera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Macolino, C.; Malacari, M.; Maldera, S.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Maris, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martinez, H.; Martinez Bravo, O.; Martraire, D.; Masias Meza, J. J.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Messina, S.; Meyhandan, R.; Micanovic, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, J. C.; Mostafa, M.; Moura, C. A.; Muller, M. A.; Muller, G.; Munchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nhung, P. T.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novzka, L.; Oehlschlager, J.; Olinto, A.; Oliveira, M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; Pekala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrolini, A.; Petrov, Y.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Pontz, M.; Porcelli, A.; Preda, T.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez Cabo, I.; Rodriguez Fernandez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodriguez-Frias, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouille-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Ruhle, C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Salesa Greus, F.; Salina, G.; Sanchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovanek, P.; Schroeder, F. G.; Schulz, A.; Schulz, J.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Smialkowski, A.; Smida, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Srivastava, Y. N.; Stanic, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Straub, M.; Stutz, A.; Suarez, F.; Suomijarvi, T.; Supanitsky, A. D.; Susa, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Tapia, A.; Tartare, M.; Tacscuau, O.; Tcaciuc, R.; Thao, N. T.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tome, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Tridapalli, D. B.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Valdes Galicia, J. F.; Valino, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cardenas, B.; Varner, G.; Vazquez, J. R.; Vazquez, R. A.; Veberic, D.; Verzi, V.; Vicha, J.; Videla, M.; Villasenor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Westerhoff, S.; Whelan, B. J.; Widom, A.; Wieczorek, G.; Wiencke, L.; Wilczynska, B.; Wilczynski, H.; Will, M.; Williams, C.; Winchen, T.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Martin, L.

    2013-01-01

    The Pierre Auger Observatory is the world's largest cosmic ray observatory. Our current exposure reaches nearly 40,000 km$^2$ str and provides us with an unprecedented quality data set. The performance and stability of the detectors and their enhancements are described. Data analyses have led to a n

  10. Global Health Observatory (GHO): Life Expectancy

    Science.gov (United States)

    ... WHO Language عربي 中文 English Français Русский Español Global Health Observatory (GHO) data Menu Global Health Observatory ... years on average in 2015 MORE MORTALITY AND GLOBAL HEALTH ESTIMATES DATA PRODUCTS Maps Country profiles About ...

  11. Highlights from the Pierre Auger Observatory

    NARCIS (Netherlands)

    Letessier-Selvon, Antoine; for the Pierre Auger Collaboration, [No Value; :, [No Value; Aab, A.; Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muniz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Antivcic, T.; Aramo, C.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Badescu, A. M.; Barber, K. B.; Bardenet, R.; Baeuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Belletoile, A.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blumer, H.; Bohacova, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Burton, R. E.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Collica, L.; Coluccia, M. R.; Conceicao, R.; Contreras, F.; Cook, H.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Criss, A.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; De La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Diaz, J. C.; Diaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipcic, A.; Foerster, N.; Fox, B. D.; Fracchiolla, C. E.; Fraenkel, E. D.; Fratu, O.; Frohlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; Garcia, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gemmeke, H.; Ghia, P. L.; Giller, M.; Gitto, J.; Glaser, C.; Glass, H.; Gomez Albarracin, F.; Gomez Berisso, M.; Gomez Vitale, P. F.; Goncalves, P.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Homola, P.; Hoerandel, J. R.; Horvath, P.; Hrabovsky, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kadija, K.; Kambeitz, O.; Kampert, K. H.; Karhan, P.; Kasper, P.; Katkov, I.; Kegl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp d, J.; Krause, R.; Krohm, N.; Kroemer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; La Rosa, G.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leao, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Lhenry-Yvon, I.; Link, K.; Lopez, R.; Lopez Aguera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Macolino, C.; Malacari, M.; Maldera, S.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Maris, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martinez, H.; Martinez Bravo, O.; Martraire, D.; Masias Meza, J. J.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Messina, S.; Meyhandan, R.; Micanovic, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, J. C.; Mostafa, M.; Moura, C. A.; Muller, M. A.; Muller, G.; Munchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nhung, P. T.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novzka, L.; Oehlschlager, J.; Olinto, A.; Oliveira, M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; Pekala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrolini, A.; Petrov, Y.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Pontz, M.; Porcelli, A.; Preda, T.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez Cabo, I.; Rodriguez Fernandez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodriguez-Frias, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouille-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Ruhle, C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Salesa Greus, F.; Salina, G.; Sanchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovanek, P.; Schroeder, F. G.; Schulz, A.; Schulz, J.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Smialkowski, A.; Smida, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Srivastava, Y. N.; Stanic, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Straub, M.; Stutz, A.; Suarez, F.; Suomijarvi, T.; Supanitsky, A. D.; Susa, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Tapia, A.; Tartare, M.; Tacscuau, O.; Tcaciuc, R.; Thao, N. T.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tome, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Tridapalli, D. B.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Valdes Galicia, J. F.; Valino, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cardenas, B.; Varner, G.; Vazquez, J. R.; Vazquez, R. A.; Veberic, D.; Verzi, V.; Vicha, J.; Videla, M.; Villasenor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Westerhoff, S.; Whelan, B. J.; Widom, A.; Wieczorek, G.; Wiencke, L.; Wilczynska, B.; Wilczynski, H.; Will, M.; Williams, C.; Winchen, T.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Martin, L.

    2013-01-01

    The Pierre Auger Observatory is the world's largest cosmic ray observatory. Our current exposure reaches nearly 40,000 km$^2$ str and provides us with an unprecedented quality data set. The performance and stability of the detectors and their enhancements are described. Data analyses have led to a n

  12. The Pierre Auger Cosmic Ray Observatory

    CERN Document Server

    ,

    2015-01-01

    The Pierre Auger Observatory, located on a vast, high plain in western Argentina, is the world's largest cosmic ray observatory. The objectives of the Observatory are to probe the origin and characteristics of cosmic rays above $10^{17}$ eV and to study the interactions of these, the most energetic particles observed in nature. The Auger design features an array of 1660 water-Cherenkov particle detector stations spread over 3000 km$^2$ overlooked by 24 air fluorescence telescopes. In addition, three high elevation fluorescence telescopes overlook a 23.5 km$^2$, 61 detector infill array. The Observatory has been in successful operation since completion in 2008 and has recorded data from an exposure exceeding 40,000 km$^2$ sr yr. This paper describes the design and performance of the detectors, related subsystems and infrastructure that make up the Auger Observatory.

  13. The Pierre Auger Cosmic Ray Observatory

    Science.gov (United States)

    Pierre Auger Collaboration

    2015-10-01

    The Pierre Auger Observatory, located on a vast, high plain in western Argentina, is the world's largest cosmic ray observatory. The objectives of the Observatory are to probe the origin and characteristics of cosmic rays above 1017 eV and to study the interactions of these, the most energetic particles observed in nature. The Auger design features an array of 1660 water Cherenkov particle detector stations spread over 3000 km2 overlooked by 24 air fluorescence telescopes. In addition, three high elevation fluorescence telescopes overlook a 23.5 km2, 61-detector infilled array with 750 m spacing. The Observatory has been in successful operation since completion in 2008 and has recorded data from an exposure exceeding 40,000 km2 sr yr. This paper describes the design and performance of the detectors, related subsystems and infrastructure that make up the Observatory.

  14. Contributions of the Onsala Space Observatory to the GGOS

    Science.gov (United States)

    Haas, Rüdiger; Elgered, Gunnar; Hobiger, Thomas; Scherneck, Hans-Georg

    2015-04-01

    The Onsala Space Observatory on the Swedish west coast is the fundamental geodetic station of Sweden and operates several geodetic and geophysical infrastructures that contribute to the GGOS. Onsala is the European observatory with the longest history in Very Long Baseline Interferometry (VLBI). Already 1968 Onsala was involved in geodetic/astrometric VLBI observations, at that time with the 25 m telescope. Since 1979 the 20 m telescope is used for geodetic/astrometric VLBI, and currently about 40-50 sessions per year are observed in the programs of the International VLBI Service for Geodesy and Astrometry (IVS). Onsala also participated in all continuous (CONT) campaigns of the IVS. In 2011 we received funding for twin telescopes at Onsala, to be part of the VLBI2010 Global Observing System (VGOS) network. The project has been delayed due to difficulties to get the necessary building permits, but finally a contract to purchase the new telescopes has been signed in late 2014. We expect that the Onsala Twin Telescopes will become operational in 2016/2017. In parallel to the VLBI activities, the observatory operates other instrumentation for geosciences, in particular receivers for Global Navigation Satellite Systems (GNSS), and ground-based microwave radiometers. There are several monuments used for GNSS measurements, and Onsala is actively contributing to the International GNSS Service (IGS). Recently a GNSS array consisting of six new GNSS monuments, in the area around the Onsala Twin Telescopes, has been installed. Also several microwave radiometers are operated for tropospheric measurements. A superconducting gravimeter is operated at the observatory since 2009 in a dedicated gravity laboratory which is also hosting visiting absolute gravimeters, and in 2011 a seismometer station has been installed that is part of the Swedish National Seismic Network (SNSN). Since 2010 we operate a so-called GNSS-R tide gauge, based on the principle of reflectometry. Additional

  15. Constraining early and interacting dark energy with gravitational wave standard sirens: the potential of the eLISA mission

    Science.gov (United States)

    Caprini, Chiara; Tamanini, Nicola

    2016-10-01

    We perform a forecast analysis of the capability of the eLISA space-based interferometer to constrain models of early and interacting dark energy using gravitational wave standard sirens. We employ simulated catalogues of standard sirens given by merging massive black hole binaries visible by eLISA, with an electromagnetic counterpart detectable by future telescopes. We consider three-arms mission designs with arm length of 1, 2 and 5 million km, 5 years of mission duration and the best-level low frequency noise as recently tested by the LISA Pathfinder. Standard sirens with eLISA give access to an intermediate range of redshift 1 lesssim z lesssim 8, and can therefore provide competitive constraints on models where the onset of the deviation from ΛCDM (i.e. the epoch when early dark energy starts to be non-negligible, or when the interaction with dark matter begins) occurs relatively late, at z lesssim 6. If instead early or interacting dark energy is relevant already in the pre-recombination era, current cosmological probes (especially the cosmic microwave background) are more efficient than eLISA in constraining these models, except possibly in the interacting dark energy model if the energy exchange is proportional to the energy density of dark energy.

  16. LISA, the next generation: from a web-based application to a fat client.

    Science.gov (United States)

    Pierlet, Noëlla; Aerts, Werner; Vanautgaerden, Mark; Van den Bosch, Bart; De Deurwaerder, André; Schils, Erik; Noppe, Thomas

    2008-01-01

    The LISA application, developed by the University Hospitals Leuven, permits referring physicians to consult the electronic medical records of their patients over the internet in a highly secure way. We decided to completely change the way we secured the application, discard the existing web application and build a completely new application, based on the in-house developed hospital information system, used in the University Hospitals Leuven. The result is a fat Java client, running on a Windows Terminal Server, secured by a commercial SSL-VPN solution.

  17. Massive Black Hole Mergers: Can We "See" what LISA will "Hear"?

    Science.gov (United States)

    Centrella, Joan

    2010-01-01

    The final merger of massive black holes produces strong gravitational radiation that can be detected by the space-borne LISA. If the black hole merger takes place in the presence of gas and magnetic fields, various types of electromagnetic signals may also be produced. Modeling such electromagnetic counterparts of the final merger requires evolving the behavior of both gas and fields in the strong-field regions around the black holes. We will review current efforts to simulate these systems, and discuss possibilities for observing the electromagnetic signals they produce.

  18. Massive Black Hole Mergers: Can We "See" what LISA will "Hear"?

    Science.gov (United States)

    Centrella, Joan

    2010-01-01

    The final merger of massive black holes produces strong gravitational radiation that can be detected by the space-borne LISA. If the black hole merger takes place in the presence of gas and magnetic fields, various types of electromagnetic signals may also be produced. Modeling such electromagnetic counterparts of the final merger requires evolving the behavior of both gas and fields in the strong-field regions around the black holes. We will review current efforts to simulate these systems, and discuss possibilities for observing the electromagnetic signals they produce.

  19. Massive gravitational waves from f(R) theories of gravity: Potential detection with LISA

    Energy Technology Data Exchange (ETDEWEB)

    Capozziello, Salvatore [Dipartimento di Scienze Fisiche, Universita di Napoli ' Federico II' , INFN Sezione di Napoli, Complesso Universitario di Monte S. Angelo, Edificio G, via Cintia, I-80126 Napoli (Italy)], E-mail: capozzie@na.infn.it; Corda, Christian [Associazione Galileo Galilei, via Pier Cironi 16, 59100 Prato (Italy); Centro di Scienze Naturali, via di Galceti 74, 59100 Prato (Italy)], E-mail: christian.corda@ego-gw.it; De Laurentis, Maria Felicia [Relativity and Gravitation Group, Politecnico di Torino, Corso Duca degli Abruzzi 24, I-10129 Torino (Italy)], E-mail: mariafelicia.delaurentist@polito.it

    2008-11-27

    This Letter is a generalization of previous results on gravitational waves (GWs) from f(R) theories of gravity. In some previous papers, particular f(R) theories have been linearized for the first time in the literature. Now, the process is further generalized, showing that every f(R) theory can be linearized producting a third massive mode of gravitational radiation. In this framework, previous results are particular cases of the more general problem that is discussed in this Letter. The potential detectability of such massive GWs with LISA is also discussed with the auxilium of longitudinal response functions.

  20. Massive gravitational waves from f(R) theories of gravity: Potential detection with LISA

    CERN Document Server

    Capozziello, Salvatore; De Laurentis, Maria Felicia

    2008-01-01

    This letter is a generalization of previous results on gravitational waves (GWs) from f(R) theories of gravity. In some previous papers, particular f(R) theories have been linearized for the first time in the literature. Now, the process is further generalized, showing that every f(R) theory can be linearized producting a third massive mode of gravitational radiation. In this framework, previous results are particular cases of the more general problem that is discussed in this letter. The potential detectability of such massive GWs with LISA is also discussed with the auxilium of longitudinal response functions.

  1. Análise experimental de lajes lisas nervuradas de concreto armado com armadura de cisalhamento

    OpenAIRE

    SOUZA, Shirley do Socorro Melo de

    2007-01-01

    Lajes lisas nervuradas bidirecionais são elementos estruturais de concreto armado apoiados diretamente sobre pilares, sujeitas a solicitações importantes nas duas direções, possibilitam maior velocidade na execução da obra e economia considerável de formas e concreto e, conseqüentemente, mão-de-obra. Este trabalho visa contribuir para o estudo do comportamento deste tipo de laje, quanto a resistência ao cisalhamento nas nervuras e à punção na região maciça das lajes, através de ensaios de 8 l...

  2. Qualifciation test series of the indium needle FEEP micro-propulsion system for LISA Pathfinder

    Science.gov (United States)

    Scharlemann, C.; Buldrini, N.; Killinger, R.; Jentsch, M.; Polli, A.; Ceruti, L.; Serafini, L.; DiCara, D.; Nicolini, D.

    2011-11-01

    The Laser Interferometer Space Antenna project (LISA) is a co-operative program between ESA and NASA to detect gravitational waves by measuring distortions in the space-time fabric. LISA Pathfinder is the precursor mission to LISA designed to validate the core technologies intended for LISA. One of the enabling technologies is the micro-propulsion system based on field emission thrusters necessary to achieve the uniquely stringent propulsion requirements. A consortium consisting of Astrium GmbH and the University of Applied Sciences Wiener Neustadt (formerly AIT) was commissioned by ESA to develop and qualify the micro-propulsion system based on the Indium Needle FEEP technology. Several successful tests have verified the proper Needle Field Emission Electric Propulsion (FEEP) operation and the thermal and mechanical design of subcomponents of the developed system. For all functional tests, the flight representative Power Control Unit developed by SELEX Galileo S.p.A (also responsible for the Micro-Propulsion Subsystem (MPS) development) was used. Measurements have shown the exceptional stability of the thruster. An acceptance test of one Thruster Cluster Assembly (TCA) over 3600 h has shown the stable long term operation of the developed system. During the acceptance test compliance to all the applicable requirements have been shown such as a thrust resolution of 0.1 μN, thrust range capability between 0 and 100 μN, thrust overshoot much lower than the required 0.3 μN+3% and many others. In particular important is the voltage stability of the thruster (±1% over the duration of the testing) and the confirmation of the very low thrust noise. Based on the acceptance test the lifetime of the thruster is expected to exceed 39,000 h generating a total impulse bit of 6300 Ns at an average thrust level of 50 μN. A flight representative qualification model of the Needle FEEP Cluster Assembly (DM1) equipped with one active TCA has performed a qualification program

  3. Regional Tourism Observatory of Alentejo (Portugal) - A conceptual framework to develop a Tourism Satelite Account

    OpenAIRE

    Serra, Jaime; Marujo, Noémi; Borges, Maria do Rosário; Eusébio, Celeste

    2012-01-01

    This poster focuses on the methodological features of the project Tourism Satellite Account (TSA) in the Alentejo Regional Area of Portugal, developed in the context of Regional Observatory for Tourism in the Alentejo 2010-2012. The purpose is to present the conceptual framework designed to be used in developing a Regional TSA. The literature review was undertaken to identify the methodological frameworks that have been presented at international level to develop the TSA and also to assess th...

  4. The GEOSCOPE broadband seismic observatory

    Science.gov (United States)

    Douet, Vincent; Vallée, Martin; Zigone, Dimitri; Bonaimé, Sébastien; Stutzmann, Eléonore; Maggi, Alessia; Pardo, Constanza; Bernard, Armelle; Leroy, Nicolas; Pesqueira, Frédéric; Lévêque, Jean-Jacques; Thoré, Jean-Yves; Bes de Berc, Maxime; Sayadi, Jihane

    2016-04-01

    The GEOSCOPE observatory has provided continuous broadband data to the scientific community for the past 34 years. The 31 operational GEOSCOPE stations are installed in 17 countries, across all continents and on islands throughout the oceans. They are equipped with three component very broadband seismometers (STS1, T240 or STS2) and 24 or 26 bit digitizers (Q330HR). Seismometers are installed with warpless base plates, which decrease long period noise on horizontal components by up to 15dB. All stations send data in real time to the IPGP data center, which transmits them automatically to other data centers (FDSN/IRIS-DMC and RESIF) and tsunami warning centers. In 2016, three stations are expected to be installed or re-installed: in Western China (WUS station), in Saint Pierre and Miquelon Island (off the East coast of Canada) and in Walis and Futuna (SouthWest Pacific Ocean). The waveform data are technically validated by IPGP (25 stations) or EOST (6 stations) in order to check their continuity and integrity. Scientific data validation is also performed by analyzing seismic noise level of the continuous data and by comparing real and synthetic earthquake waveforms (body waves). After these validations, data are archived by the IPGP data center in Paris. They are made available to the international scientific community through different interfaces (see details on http://geoscope.ipgp.fr). Data are duplicated at the FDSN/IRIS-DMC data center and a similar duplication at the French national data center RESIF will be operational in 2016. The GEOSCOPE broadband seismic observatory also provides near-real time information on global moderate-to-large seismicity (above magnitude 5.5-6) through the automated application of the SCARDEC method (Vallée et al., 2011). By using global data from the FDSN - in particular from GEOSCOPE and IRIS/USGS stations -, earthquake source parameters (depth, moment magnitude, focal mechanism, source time function) are determined about 45

  5. EMSO: European Multidisciplinary Seafloor Observatory

    Science.gov (United States)

    Favali, Paolo

    2010-05-01

    EMSO, a Research Infrastructure listed within ESFRI (European Strategy Forum on Research Infrastructures) Roadmap (Report 2006, http://cordis.europa.eu/esfri/roadmap.htm), is the European-scale network of multidisciplinary seafloor observatories from the Arctic to the Black Sea with the scientific objective of long-term real-time monitoring of processes related to geosphere/biosphere/hydrosphere interactions. EMSO will enhance our understanding of processes through long time series appropriate to the scale of the phenomena, constituting the new frontier of studying Earth interior, deep-sea biology and chemistry and ocean processes. The development of an underwater network is based on previous EU-funded projects since early '90 and is being supported by several EU initiatives, as the on-going ESONET-NoE, coordinated by IFREMER (2007-2011, http://www.esonet-emso.org/esonet-noe/), and aims at gathering together the Research Community of the Ocean Observatories. In 2006 the FP7 Capacities Programme launched a call for Preparatory Phase (PP) projects, that will provide the support to create the legal and organisational entities in charge of managing the infrastructures, and coordinating the financial effort among the countries. Under this call the EMSO-PP project was approved in 2007 with the coordination of INGV and the participation of other 11 Institutions of 11 countries. The project has started in April 2008 and will last 4 years. The EMSO is a key-infrastructure both for Ocean Sciences and for Solid Earth Sciences. In this respect it will enhance and complement profitably the capabilities of other European research infrastructures such as EPOS, ERICON-Aurora Borealis, and SIOS. The perspective of the synergy among EMSO and other ESFRI Research Infrastructures will be outlined. EMSO Partners: IFREMER-Institut Français de Recherche pour l'exploitation de la mer (France, ref. Roland Person); KDM-Konsortium Deutsche Meeresforschung e.V. (Germany, ref. Christoph

  6. Color Survey of the Irregular Planetary Satellites

    Science.gov (United States)

    Graykowski, Ariel; Jewitt, David

    2016-10-01

    Irregular satellites are characterized by their larger orbital distance from their planet, their high eccentricity and their high inclination, all indicating that they were captured. However, the mechanism of capture and the location of origin of the satellites remain unknown. We are conducting a photometric survey of the irregular satellites of the giant planets using the LRIS instrument on the 10-meter telescope at the Keck Observatory in Hawaii. The measured colors will be compared to other planetary bodies in search for similarities and differences that may reflect upon the origin of the satellites. For example, if irregular satellites were captured from the Kuiper Belt then some should contain the ultrared material that is common in the trans-Neptunian and Centaur populations. If the irregular satellites of Jupiter were captured from the same source population as the Jovian Trojans, then it is natural to expect that the surface properties of satellites and Trojans should be the same. We will present initial results of this work.

  7. A Bibliometric Analysis of Observatory Publications 2008-2012

    Science.gov (United States)

    Crabtree, D. R.

    2015-04-01

    Refereed publications are the primary output of modern observatories. I examine the productivity and impact of a significant number of observatories, as well as some other interesting aspects of observatory papers.

  8. Solar Imagery - Photosphere - Sunspot Drawings - McMath-Hulbert Observatory

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The McMath-Hulbert Observatory is a decommissioned solar observatory in Lake Angelus, Michigan, USA. It was established in 1929 as a private observatory by father...

  9. Upper limits to surface-force disturbances on LISA proof masses and the possibility of observing galactic binaries

    Science.gov (United States)

    Carbone, Ludovico; Ciani, Giacomo; Dolesi, Rita; Hueller, Mauro; Tombolato, David; Vitale, Stefano; Weber, William Joseph; Cavalleri, Antonella

    2007-02-01

    We have measured surface-force noise on a hollow replica of a LISA proof mass surrounded by its capacitive motion sensor. Forces are detected through the torque exerted on the proof mass by means of a torsion pendulum in the 0.1 30 mHz range. The sensor and electronics have the same design as for the flight hardware, including 4 mm gaps around the proof mass. The measured upper limit for forces would allow detection of a number of galactic binaries signals with signal-to-noise ratio up to ≈40 for 1 yr integration. We also discuss how LISA Pathfinder will substantially improve this limit, approaching the LISA performance.

  10. Science with the space-based interferometer eLISA. II. Gravitational waves from cosmological phase transitions

    Energy Technology Data Exchange (ETDEWEB)

    Caprini, Chiara [CEA Saclay, Gif-sur-Yvette (France). IPht; CNRS, Gif-sur Yvette (France); Hindmarsh, Mark [Sussex Univ. (United Kingdom). Dept. of Physics and Astronomy; Helsinki Univ. (Finland). Dept. of Physics and Helsinki Inst. of Physics; Huber, Stephan [Sussex Univ. (United Kingdom). Dept. of Physics and Astronomy; and others

    2016-04-15

    We investigate the potential for the eLISA space-based interferometer to detect the stochastic gravitational wave background produced by strong first-order cosmological phase transitions. We discuss the resulting contributions from bubble collisions, magnetohydrodynamic turbulence, and sound waves to the stochastic background, and estimate the total corresponding signal predicted in gravitational waves. The projected sensitivity of eLISA to cosmological phase transitions is computed in a model-independent way for various detector designs and configurations. By applying these results to several specific models, we demonstrate that eLISA is able to probe many well-motivated scenarios beyond the Standard Model of particle physics predicting strong first-order cosmological phase transitions in the early Universe.

  11. Science with the space-based interferometer eLISA. II: Gravitational waves from cosmological phase transitions

    CERN Document Server

    Caprini, Chiara; Huber, Stephan; Konstandin, Thomas; Kozaczuk, Jonathan; Nardini, Germano; No, Jose Miguel; Petiteau, Antoine; Schwaller, Pedro; Servant, Geraldine; Weir, David J

    2015-01-01

    We investigate the potential for the eLISA space-based interferometer to detect the stochastic gravitational wave background produced by strong first-order cosmological phase transitions. We discuss the resulting contributions from bubble collisions, magnetohydrodynamic turbulence, and sound waves to the stochastic background, and estimate the total corresponding signal predicted in gravitational waves. The projected sensitivity of eLISA to cosmological phase transitions is computed in a model-independent way for various detector designs and configurations. By applying these results to several specific models, we demonstrate that eLISA is able to probe many well-motivated scenarios beyond the Standard Model of particle physics predicting strong first-order cosmological phase transitions in the early Universe.

  12. The Malaysian Robotic Solar Observatory (P29)

    Science.gov (United States)

    Othman, M.; Asillam, M. F.; Ismail, M. K. H.

    2006-11-01

    Robotic observatory with small telescopes can make significant contributions to astronomy observation. They provide an encouraging environment for astronomers to focus on data analysis and research while at the same time reducing time and cost for observation. The observatory will house the primary 50cm robotic telescope in the main dome which will be used for photometry, spectroscopy and astrometry observation activities. The secondary telescope is a robotic multi-apochromatic refractor (maximum diameter: 15 cm) which will be housed in the smaller dome. This telescope set will be used for solar observation mainly in three different wavelengths simultaneously: the Continuum, H-Alpha and Calcium K-line. The observatory is also equipped with an automated weather station, cloud & rain sensor and all-sky camera to monitor the climatic condition, sense the clouds (before raining) as well as to view real time sky view above the observatory. In conjunction with the Langkawi All-Sky Camera, the observatory website will also display images from the Malaysia - Antarctica All-Sky Camera used to monitor the sky at Scott Base Antarctica. Both all-sky images can be displayed simultaneously to show the difference between the equatorial and Antarctica skies. This paper will describe the Malaysian Robotic Observatory including the systems available and method of access by other astronomers. We will also suggest possible collaboration with other observatories in this region.

  13. Lyman Alpha Spicule Observatory (LASO)

    Science.gov (United States)

    Chamberlin, P. C.; Allred, J. C.; Airapetian, V.; Gong, Q.; Mcintosh, S. W.; De Pontieu, B.; Fontenla, J. M.

    2011-12-01

    The Lyman Alpha Spicule Observatory (LASO) sounding rocket will observe small-scale eruptive events called "Rapid Blue-shifted Events" (RBEs) [Rouppe van der Voort et al., 2009], the on-disk equivalent of Type-II spicules, and extend observations that explore their role in the solar coronal heating problem [De Pontieu et al., 2011]. LASO utilizes a new and novel optical design to simultaneously observe two spatial dimensions at 4.2" spatial resolution (2.1" pixels) over a 2'x2' field of view with high spectral resolution of 66mÅ (33mÅ pixels) across a broad 20Å spectral window. This spectral window contains three strong chromospheric and transition region emissions and is centered on the strong Hydrogen Lyman-α emission at 1216Å. This instrument makes it possible to obtain new data crucial to the physical understanding of these phenomena and their role in the overall energy and momentum balance from the upper chromosphere to lower corona. LASO was submitted March 2011 in response to the ROSES SHP-LCAS call.

  14. The Jiangmen Underground Neutrino Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Sawatzki, Julia [Technische Universitaet Muenchen, Physik Department E15, James-Franck-Strasse 1, 85748 Garching (Germany)

    2016-07-01

    The Jiangmen Underground Neutrino Observatory (JUNO) is a next-generation medium-baseline reactor neutrino experiment located in southern China, close to Kaiping. The construction of the 700 m deep underground facility already started and the experiment is scheduled to start data-taking in 2020, and is expected to operate for at least 20 years. The 20 kt liquid scintillator detector will detect low-energy neutrinos with an unprecedented energy resolution of 3% (at 1 MeV). The primary experimental goal is the determination of the neutrino mass hierarchy at 3σ significance from the measurement of the reactor neutrino energy spectrum. Two nuclear power plants: Yangjiang and Taishan are located at a distance of ∝ 53 km from the detector. Moreover, JUNO will measure the solar neutrino mixing parameters and the atmospheric neutrino squared-mass splitting with a precision < 1%. In addition, supernova neutrinos, geo-neutrinos, sterile neutrinos as well as solar and atmospheric neutrinos can be studied. This talk reviews the status of the project and highlight important scientific objectives.

  15. Strainmeters at Moxa observatory, Germany

    Science.gov (United States)

    Jahr, Thomas; Kroner, Corinna; Lippmann, Andrea

    2006-01-01

    Since 1997, two quartz tube strainmeters at the Geodynamic Observatory Moxa, located 30 km south of Jena, are used to observe long-period horizontal deformation signals. Both strainmeters are 26 m long with orientations NS and EW and are installed in a gallery. To this system a third component was added in 1999, which connects the ends of the quartz tubes diagonally. This component is realised as a laser strainmeter, running through a 38 m long horizontal borehole. The first data analyses show high signal-to-noise ratios for the tidal frequencies and also the free oscillations caused by the Sumatra earthquake in December 2004 are clearly detectable. It can be shown that the quartz strainmeter extending in EW direction generally contains significant more noise induced by barometric pressure than the NS-component. The laser strainmeter record shows strong influences of changing barometric pressure, due to the fact that the beam does not run in a vacuum. This influence is reduced in the higher frequencies by sealing the ends of the horizontal borehole with high quality glass. In addition, the observations are clearly temperature dependent and the influence of rainfall could be verified by two irrigation experiments.

  16. Mona Lisa: sentidos múltiplos de um sorriso enigmático

    Directory of Open Access Journals (Sweden)

    Érika de Moraes

    2013-01-01

    Full Text Available Este texto resgata um pouco da história da famosa pintura de Leonardo da Vinci, a Mona Lisa, ou Gioconda, do século XVI, com objetivo de discorrer a respeito de alguns dos múltiplos sentidos (ou discursos em torno de seu significado, tendo como suporte o respaldo teórico-metodológico da Análise do Discurso de linha francesa, com base especialmente em conceitos desenvolvidos por D. Maingueneau. Como é característico da obra de arte, trata-se de efeitos de sentidos em aberto, o que não exclui a possibilidade de destacamentos, entre os quais se sobressai o "sorriso de Mona Lisa" como um dos principais traços da autoria de Leonardo Da Vinci e, simultaneamente, um traço propício à aforização. Assim, a obra de arte desvincula-se da autoria exclusiva de Da Vinci ao suscitar diversas releituras, as quais ajudam a compor um ethos discursivo em torno desta consagrada pintura e, ao mesmo tempo, fazem circular estereótipos distintos.

  17. Gravitational-wave cosmography with eLISA and the Hubble tension

    CERN Document Server

    Kyutoku, Koutarou

    2016-01-01

    We propose that stellar-mass binary black holes like GW150914 will become a tool to explore the local Universe within ~100Mpc in the era of evolved Laser Interferometer Space Antenna (eLISA). High calibration accuracy and annual motion of eLISA could enable us to localize up to ~60 binaries more accurately than the error volume of ~100Mpc^3 without presumably absent electromagnetic counterparts. This accuracy will give us a fair chance to determine the host object solely by gravitational waves. By combining the luminosity distance extracted from gravitational waves with the cosmological redshift determined from the host, the local value of the Hubble parameter will be determined up to a few % without relying on the empirically-constructed distance ladder. Gravitational-wave cosmography would pave the way for resolution of the disputed Hubble tension, where the local and global measurements disagree in the value of the Hubble parameter at 3.4sigma level, which amounts to ~9%.

  18. Rapid, automated, parallel quantitative immunoassays using highly integrated microfluidics and AlphaLISA

    Science.gov (United States)

    TakYu, Zeta; Guan, Huijiao; Ki Cheung, Mei; McHugh, Walker M.; Cornell, Timothy T.; Shanley, Thomas P.; Kurabayashi, Katsuo; Fu, Jianping

    2015-06-01

    Immunoassays represent one of the most popular analytical methods for detection and quantification of biomolecules. However, conventional immunoassays such as ELISA and flow cytometry, even though providing high sensitivity and specificity and multiplexing capability, can be labor-intensive and prone to human error, making them unsuitable for standardized clinical diagnoses. Using a commercialized no-wash, homogeneous immunoassay technology (‘AlphaLISA’) in conjunction with integrated microfluidics, herein we developed a microfluidic immunoassay chip capable of rapid, automated, parallel immunoassays of microliter quantities of samples. Operation of the microfluidic immunoassay chip entailed rapid mixing and conjugation of AlphaLISA components with target analytes before quantitative imaging for analyte detections in up to eight samples simultaneously. Aspects such as fluid handling and operation, surface passivation, imaging uniformity, and detection sensitivity of the microfluidic immunoassay chip using AlphaLISA were investigated. The microfluidic immunoassay chip could detect one target analyte simultaneously for up to eight samples in 45 min with a limit of detection down to 10 pg mL-1. The microfluidic immunoassay chip was further utilized for functional immunophenotyping to examine cytokine secretion from human immune cells stimulated ex vivo. Together, the microfluidic immunoassay chip provides a promising high-throughput, high-content platform for rapid, automated, parallel quantitative immunosensing applications.

  19. Coupling characterization and noise studies of the optical metrology system onboard the LISA Pathfinder mission.

    Science.gov (United States)

    Hechenblaikner, Gerald; Gerndt, Rüdiger; Johann, Ulrich; Luetzow-Wentzky, Peter; Wand, Vinzenz; Audley, Heather; Danzmann, Karsten; Garcia-Marin, Antonio; Heinzel, Gerhard; Nofrarias, Miquel; Steier, Frank

    2010-10-10

    We describe the first investigations of the complete engineering model of the optical metrology system (OMS), a key subsystem of the LISA Pathfinder science mission to space. The latter itself is a technological precursor mission to LISA, a spaceborne gravitational wave detector. At its core, the OMS consists of four heterodyne Mach-Zehnder interferometers, a highly stable laser with an external modulator, and a phase meter. It is designed to monitor and track the longitudinal motion and attitude of two floating test masses in the optical reference frame with (relative) precision in the picometer and nanorad range, respectively. We analyze sensor signal correlations and determine a physical sensor noise limit. The coupling parameters between motional degrees of freedom and interferometer signals are analytically derived and compared to measurements. We also measure adverse cross-coupling effects originating from system imperfections and limitations and describe algorithmic mitigation techniques to overcome some of them. Their impact on system performance is analyzed within the context of the Pathfinder mission.

  20. Preparation for MoNA/LISA VANDLE ^56Ni(d,n) Experiment at the NSCL

    Science.gov (United States)

    Bergstrom, Z. J.; Kozub, R. L.; Peters, W. A.; Cizewski, J. A.; Howard, M. E.; Bardayan, D. W.; Ikeyama, R.; Paulauskas, S. V.; Madurga, M.; Grzywacz, R.; Deyoung, P. A.; Baumann, T.; Smith, J.; Thoennessen, M.

    2012-10-01

    The rp-process is the explosive nucleosynthesis process in novae by which ions rapidly capture hydrogen nuclei, forming heavy, proton-rich nuclei. Most of the rp-process reactions are believed to pass through the ^56Ni(p,γ)^57Cu reaction which cannot presently be measured directly. An experiment to be performed at the NSCL employs the method of (d,n) proton transfer reactions in inverse kinematics to determine pertinent properties of this reaction via ^56Ni(d,n)^57Cu at 30 MeV/nucleon. The experiment will be carried out using two neutron detector arrays of plastic scintillator bars. The Versatile Array of Neutron Detectors at Low Energy (VANDLE) is able to detect neutrons in the 100 keV to 20 MeV range; however, when used in conjunction with MONA/LISA and the Sweeper detectors at the NSCL, the combined arrays allow for the detection of a wider range of neutron energies. Recently, the trigger logic was tested for the VANDLE-Sweeper coincidences and for the left-right coincidence trigger for MoNA/LISA. Results from these tests will be presented along with details of the approved (d,n) experimental setup.