WorldWideScience

Sample records for satellite observations showing

  1. VLBI Observations of Geostationary Satellites

    Science.gov (United States)

    Artz, T.; Nothnagel, A.; La Porta, L.

    2013-08-01

    For a consistent realization of a Global Geodetic Observing System (GGOS), a proper tie between the individual global reference systems used in the analysis of space-geodetic observations is a prerequisite. For instance, the link between the terrestrial, the celestial and the dynamic reference system of artificial Earth orbiters may be realized by Very Long O Baseline Interferometry (VLBI) observations of one or several satellites. In the preparation phase for a dedicated satellite mission, one option to realize this is using a geostationary (GEO) satellite emitting a radio signal in X-Band and/or S-Band and, thus, imitating a quasar. In this way, the GEO satellite can be observed by VLBI together with nearby quasars and the GEO orbit can, thus, be determined in a celestial reference frame. If the GEO satellite is, e.g., also equipped with a GNSS-type transmitter, a further tie between GNSS and VLBI may be realized. In this paper, a concept for the generation of a radio signal is shown. Furthermore, simulation studies for estimating the GEO position are presented with a GEO satellite included in the VLBI schedule. VLBI group delay observations are then simulated for the quasars as well as for the GEO satellite. The analysis of the simulated observations shows that constant orbit changes are adequately absorbed by estimated orbit parameters. Furthermore, the post-fit residuals are comparable to those from real VLBI sessions.

  2. Satellite-derived SIF and CO2 Observations Show Coherent Responses to Interannual Climate Variations

    Science.gov (United States)

    Butterfield, Z.; Hogikyan, A.; Kulawik, S. S.; Keppel-Aleks, G.

    2017-12-01

    Gross primary production (GPP) is the single largest carbon flux in the Earth system, but its sensitivity to changes in climate is subject to significant uncertainty. Satellite measurements of solar-induced chlorophyll fluorescence (SIF) offer insight into spatial and temporal patterns in GPP at a global scale and, combined with other satellite-derived datasets, provide unprecedented opportunity to explore interactions between atmospheric CO2, GPP, and climate variability. To explore potential drivers of GPP in the Northern Hemisphere (NH), we compare monthly-averaged SIF data from the Global Ozone Monitoring Experiment 2 (GOME-2) with observed anomalies in temperature (T; CRU-TS), liquid water equivalent (LWE) from the Gravity Recovery and Climate Experiment (GRACE), and photosynthetically active radiation (PAR; CERES SYN1deg). Using observations from 2007 through 2015 for several NH regions, we calculate month-specific sensitivities of SIF to variability in T, LWE, and PAR. These sensitivities provide insight into the seasonal progression of how productivity is affected by climate variability and can be used to effectively model the observed SIF signal. In general, we find that high temperatures are beneficial to productivity in the spring, but detrimental in the summer. The influences of PAR and LWE are more heterogeneous between regions; for example, higher LWE in North American temperate forest leads to decreased springtime productivity, while exhibiting a contrasting effect in water-limited regions. Lastly, we assess the influence of variations in terrestrial productivity on atmospheric carbon using a new lower tropospheric CO2 product derived from the Greenhouse Gases Observing Satellite (GOSAT). Together, these data shed light on the drivers of interannual variability in the annual cycle of NH atmospheric CO2, and may provide improved constraints on projections of long-term carbon cycle responses to climate change.

  3. Spectroscopic Observations of Geo-Stationary Satellites Over the Korean Peninsula

    OpenAIRE

    D. K. Lee; S. J. Kim; W. Y. Han; J. S. Park; S. W. Min

    2001-01-01

    Low resolution spectroscopic observations of geo-stationary satellites over the Korean peninsula have been carried out at the KyungHee Optical Satellite Observing Facility (KOSOF) with a 40cm telescope. We have observed 9 telecommunication satellites and 1 weather satellite of 6 countries. The obtained spectral data showed that satellites could be classified and grouped with similar basic spectral feature. We divided the 10 satellites into 4 groups based on spectral slop and reflectance. It i...

  4. Spectroscopic Observations of Geo-Stationary Satellites Over the Korean Peninsula

    Directory of Open Access Journals (Sweden)

    D. K. Lee

    2001-11-01

    Full Text Available Low resolution spectroscopic observations of geo-stationary satellites over the Korean peninsula have been carried out at the KyungHee Optical Satellite Observing Facility (KOSOF with a 40cm telescope. We have observed 9 telecommunication satellites and 1 weather satellite of 6 countries. The obtained spectral data showed that satellites could be classified and grouped with similar basic spectral feature. We divided the 10 satellites into 4 groups based on spectral slop and reflectance. It is suggested that the material types of the satellites can be determined through spectral comparisons with the ground laboratory data. We will continuously observe additional geo-stationary satellites for the accurate classification of spectral features.

  5. Satellite observation of particulate organic carbon dynamics in ...

    Science.gov (United States)

    Particulate organic carbon (POC) plays an important role in coastal carbon cycling and the formation of hypoxia. Yet, coastal POC dynamics are often poorly understood due to a lack of long-term POC observations and the complexity of coastal hydrodynamic and biogeochemical processes that influence POC sources and sinks. Using field observations and satellite ocean color products, we developed a nw multiple regression algorithm to estimate POC on the Louisiana Continental Shelf (LCS) from satellite observations. The algorithm had reliable performance with mean relative error (MRE) of ?40% and root mean square error (RMSE) of ?50% for MODIS and SeaWiFS images for POC ranging between ?80 and ?1200 mg m23, and showed similar performance for a large estuary (Mobile Bay). Substantial spatiotemporal variability in the satellite-derived POC was observed on the LCS, with high POC found on the inner shelf (satellite data with carefully developed algorithms can greatly increase

  6. Artificial Satellites and How to Observe Them

    CERN Document Server

    Schmude, Jr , Richard

    2012-01-01

    Astronomers' Observing Guides provide up-to-date information for amateur astronomers who want to know all about what it is they are observing. This is the basis for the first part of the book. The second part details observing techniques for practical astronomers, working with a range of different instruments. Every amateur astronomer sees "stars" that aren't natural objects steadily slide across the background of the sky. Artificial satellites can be seen on any night, and some are as bright as the planets. But can you identify which satellite or spent launch vehicle casing you are seeing? Do you know how to image it? Artificial Satellites and How to Observe Them describes all of the different satellites that can be observed, including communication, scientific, spy satellites, and of course, the International Space Station. Richard Schmude describes how to recognize them and even how to predict their orbits. The book tells how to observe artificial satellites with the unaided eye, binoculars and with telesc...

  7. Evaluating Surface Radiation Fluxes Observed From Satellites in the Southeastern Pacific Ocean

    Science.gov (United States)

    Pinker, R. T.; Zhang, B.; Weller, R. A.; Chen, W.

    2018-03-01

    This study is focused on evaluation of current satellite and reanalysis estimates of surface radiative fluxes in a climatically important region. It uses unique observations from the STRATUS Ocean Reference Station buoy in a region of persistent marine stratus clouds 1,500 km off northern Chile during 2000-2012. The study shows that current satellite estimates are in better agreement with buoy observations than model outputs at a daily time scale and that satellite data depict well the observed annual cycle in both shortwave and longwave surface radiative fluxes. Also, buoy and satellite estimates do not show any significant trend over the period of overlap or any interannual variability. This verifies the stability and reliability of the satellite data and should make them useful to examine El Niño-Southern Oscillation variability influences on surface radiative fluxes at the STRATUS site for longer periods for which satellite record is available.

  8. Spanish Earth Observation Satellite System

    Science.gov (United States)

    Borges, A.; Cerezo, F.; Fernandez, M.; Lomba, J.; Lopez, M.; Moreno, J.; Neira, A.; Quintana, C.; Torres, J.; Trigo, R.; Urena, J.; Vega, E.; Vez, E.

    2010-12-01

    The Spanish Ministry of Industry, Tourism and Trade (MITyC) and the Ministry of Defense (MoD) signed an agreement in 2007 for the development of a "Spanish Earth Observation Satellite System" based, in first instance, on two satellites: a high resolution optical satellite, called SEOSAT/Ingenio, and a radar satellite based on SAR technology, called SEOSAR/Paz. SEOSAT/Ingenio is managed by MITyC through the Centre for the Development of Industrial Technology (CDTI), with technical and contractual support from the European Space Agency (ESA). HISDESA T together with the Spanish Instituto Nacional de Técnica Aeroespacial (INTA, National Institute for Aerospace Technology) will be responsible for the in-orbit operation and the commercial operation of both satellites, and for the technical management of SEOSAR/Paz on behalf of the MoD. In both cases EADS CASA Espacio (ECE) is the prime contractor leading the industrial consortia. The ground segment development will be assigned to a Spanish consortium. This system is the most important contribution of Spain to the European Programme Global Monitoring for Environment and Security, GMES. This paper presents the Spanish Earth Observation Satellite System focusing on SEOSA T/Ingenio Programme and with special emphasis in the potential contribution to the ESA Third Party Missions Programme and to the Global Monitoring for Environment and Security initiative (GMES) Data Access.

  9. Simultaneous ground-satellite observations of daytime traveling ionospheric disturbances over Japan using the GPS-TEC network and the CHAMP satellite

    Science.gov (United States)

    Moral, A. C.; Shiokawa, K.; Otsuka, Y.; Liu, H.; Nishioka, M.; Tsugawa, T.

    2017-12-01

    We report results of simultaneous ground-satellite measurements of daytime travelling ionospheric disturbances (TIDs) over Japan by using the GEONET GPS receiver network and the CHAMP satellite. For the two years of 2002 and 2008, we examined GPS measurements of TEC (Total Electron Content) and neutral and electron densities measured by CHAMP satellite. Total of fifteen TID events with clear southward moving structures in the GPS-TEC measurements are found by simultaneous ground-satellite measurements. On 2002, simultaneous events are only observed in January (1 event) and February (4 events). On 2008, ten events are observed around winter months (January (3 events), February (5), March (1), and October (1)). Neutral and electron densities measured by CHAMP show quasi-periodic fluctuations throughout the passages for all events. The CHAMP satellite crossed at least one clear TID phase front for all the events. We fitted a sinusoidal function to both ground and satellite data to obtain the frequencies and phase of the observed variations. We calculated the corresponding phase relationships between TEC variations and neutral and electron densities measured by CHAMP to categorize the events. In the presentations we report correspondence of these TID structures seen in the simultaneous ground-satellite observations by GPS-TEC and CHAMP, and discuss their phase relationship to identify the source of the daytime TIDs and specify how much of the observed variations are showing clear frequencies/or not in the nature at middle latitudes.

  10. QSAT: The Satellite for Polar Plasma Observation

    Science.gov (United States)

    Tsuruda, Yoshihiro; Fujimoto, Akiko; Kurahara, Naomi; Hanada, Toshiya; Yumoto, Kiyohumi; Cho, Mengu

    2009-04-01

    This paper introduces QSAT, the satellite for polar plasma observation. The QSAT project began in 2006 as an initiative by graduate students of Kyushu University, and has the potential to contribute greatly to IHY (International Heliophysical Year) by showing to the world the beauty, importance, and relevance of space science. The primary objectives of the QSAT mission are (1) to investigate plasma physics in the Earth’s aurora zone in order to better understand spacecraft charging, and (2) to conduct a comparison of the field-aligned current observed in orbit with ground-based observations. The QSAT project can provide education and research opportunities for students in an activity combining space sciences and satellite engineering. The QSAT satellite is designed to be launched in a piggyback fashion with the Japanese launch vehicle H-IIA. The spacecraft bus is being developed at the Department of Aeronautics and Astronautics of Kyushu University with collaboration of Fukuoka Institute of Technology. Regarding the payload instruments, the Space Environment Research Center of Kyushu University is developing the magnetometers, whereas the Laboratory of Spacecraft Environment Interaction Engineering of Kyushu Institute of Technology is developing the plasma probes. We aim to be ready for launch in 2009 or later.

  11. Observation of GEO Satellite Above Thailand’s Sky

    Science.gov (United States)

    Kasonsuwan, K.; Wannawichian, S.; Kirdkao, T.

    2017-09-01

    The direct observations of Geostationary Orbit (GEO) satellites above Thailand’s sky by 0.7-meters telescope were proceeded at Inthanon Mt., Chiang Mai, Thailand. The observation took place at night with Sidereal Stare Mode (SSM). With this observing mode, the moving object will appear as a streak. The star identification for image calibration is based on (1) a star catalogue, (2) the streak detection of the satellite using the software and (3) the extraction of the celestial coordinate of the satellite as a predicted position. Finally, the orbital elements for GEO satellites were calculated.

  12. Electrophotometric observations of artificial satellites

    International Nuclear Information System (INIS)

    Vovchyk, Yeva; Blagodyr, Yaroslav; Kraynyuk, Gennadiy; Bilinsky, Andriy; Lohvynenko, Alexander; Klym, Bogdan; Pochapsky, Yevhen

    2004-01-01

    Problems associated with polarimetric observations of low Earth orbit artificial satellites as important solar system objects are discussed. The instrumentation (the optical and mechanical parts, the control and drive electronics, and the application software) for performing such observations is also described

  13. Global Warming: Evidence from Satellite Observations

    Science.gov (United States)

    Prabhakara, C.; Iacovazzi, R., Jr.; Yoo, J.-M.

    2001-01-01

    Observations made in Channel 2 (53.74 GHz) of the Microwave Sounding Unit (MSU) radiometer, flown on-board sequential, sun-synchronous, polar orbiting NOAA operational satellites, indicate that the mean temperature of the atmosphere over the globe increased during the period 1980 to 1999. In this study we have minimized systematic errors in the time series introduced by the satellite orbital drift in an objective manner. This is done with the help the onboard warm black body temperature, which is used in the calibration of the MSU radiometer. The corrected MSU Channel 2 observations of the NOAA satellite series reveal that the vertically weighted global mean temperature of the atmosphere, with a peak weight near the mid-troposphere, warmed at the rate of 0.13 K per decade (with an uncertainty of 0.05 K per decade) during 1980 to 1999. The global warming deduced from conventional meteorological data that have been corrected for urbanization effects agrees reasonably with this satellite deuced result.

  14. Korea Earth Observation Satellite Program

    Science.gov (United States)

    Baek, Myung-Jin; Kim, Zeen-Chul

    via Korea Aerospace Research Institute (KARI) as the prime contractor in the area of Korea earth observation satellite program to enhance Korea's space program development capability. In this paper, Korea's on-going and future earth observation satellite programs are introduced: KOMPSAT- 1 (Korea Multi Purpose Satellite-1), KOMPSAT-2 and Communication, Broadcasting and Meteorological Satellite (CBMS) program. KOMPSAT-1 satellite successfully launched in December 1999 with Taurus launch vehicle. Since launch, KOMPSAT-1 is downlinking images of Korea Peninsular every day. Until now, KOMPSAT-1 has been operated more than 2 and half years without any major hardware malfunction for the mission operation. KOMPSAT-1 payload has 6.6m panchromatic spatial resolution at 685 km on-orbit and the spacecraft bus had NASA TOMS-EP (Total Ozone Mapping Spectrometer-Earth Probe) spacecraft bus heritage designed and built by TRW, U.S.A.KOMPSAT-1 program was international co-development program between KARI and TRW funded by Korean Government. be launched in 2004. Main mission objective is to provide geo-information products based on the multi-spectral high resolution sensor called Multi-Spectral Camera (MSC) which will provide 1m panchromatic and 4m multi-spectral high resolution images. ELOP of Israel is the prime contractor of the MSC payload system and KARI is the total system prime contractor including spacecraft bus development and ground segment. KARI also has the contract with Astrium of Europe for the purpose of technical consultation and hardware procurement. Based on the experience throughout KOMPSAT-1 and KOMPSAT-2 space system development, Korea is expecting to establish the infrastructure of developing satellite system. Currently, KOMPSAT-2 program is in the critical design stage. are scheduled to launch in 2008 and in 2014, respectively. The mission of CBMS consists of two areas. One is of space technology test for the communications mission, and the other is of a real

  15. Improving BeiDou precise orbit determination using observations of onboard MEO satellite receivers

    Science.gov (United States)

    Ge, Haibo; Li, Bofeng; Ge, Maorong; Shen, Yunzhong; Schuh, Harald

    2017-12-01

    In recent years, the precise orbit determination (POD) of the regional Chinese BeiDou Navigation Satellite System (BDS) has been a hot spot because of its special constellation consisting of five geostationary earth orbit (GEO) satellites and five inclined geosynchronous satellite orbit (IGSO) satellites besides four medium earth orbit (MEO) satellites since the end of 2012. GEO and IGSO satellites play an important role in regional BDS applications. However, this brings a great challenge to the POD, especially for the GEO satellites due to their geostationary orbiting. Though a number of studies have been carried out to improve the POD performance of GEO satellites, the result is still much worse than that of IGSO and MEO, particularly in the along-track direction. The major reason is that the geostationary characteristic of a GEO satellite results in a bad geometry with respect to the ground tracking network. In order to improve the tracking geometry of the GEO satellites, a possible strategy is to mount global navigation satellite system (GNSS) receivers on MEO satellites to collect the signals from GEO/IGSO GNSS satellites so as that these observations can be used to improve GEO/IGSO POD. We extended our POD software package to simulate all the related observations and to assimilate the MEO-onboard GNSS observations in orbit determination. Based on GPS and BDS constellations, simulated studies are undertaken for various tracking scenarios. The impact of the onboard GNSS observations is investigated carefully and presented in detail. The results show that MEO-onboard observations can significantly improve the orbit precision of GEO satellites from metres to decimetres, especially in the along-track direction. The POD results of IGSO satellites also benefit from the MEO-onboard data and the precision can be improved by more than 50% in 3D direction.

  16. Observation of cosmic-ray particles with artificial satellites in Japan

    International Nuclear Information System (INIS)

    Nagata, Katsuaki

    1981-01-01

    The present status are described on the cosmic-ray observation with artificial satellites in Japan. In 1978, an electrostatic analyzer was loaded on the satellite EXOS-A to measure low energy electrons. The spectra taken on April 27, 1978, showed that the electron flux decreased exponentially with the increasing electron energy. A space environment monitor (SEM) was loaded on a geostationary meteorological satellite (GMS) in 1977. The SEM consists of 5 Si detectors, with which particle identification can be made, and protons with the energy of 500 MeV and alpha particles with the energy of 370 MeV were observed. The time variation of particle flux was large in the low energy part and small in the high energy part. In 1984, the satellite EXOS-C will be launched. The purposes of this project are general observation of the middle atmosphere composition and the study of the anomaly of the ionosphere above the Brazilian Anomaly. Measurement of low energy particles will be done with an electrostatic analyzer, and that of high energy particles with a telescope with Si detectors. Other projects designed in Japan are OPEN-J and EXOS-D. (Kato, T.)

  17. In situ statistical observations of EMIC waves by Arase satellite

    Science.gov (United States)

    Nomura, R.; Matsuoka, A.; Teramoto, M.; Nose, M.; Yoshizumi, M.; Fujimoto, A.; Shinohara, M.; Tanaka, Y.

    2017-12-01

    We present in situ statistical survey of electromagnetic ion cyclotron (EMIC) waves observed by Arase satellite from 3 March to 16 July 2017. We identified 64 events using the fluxgate magnetometer (MGF) on the satellite. The EMIC wave is the key phenomena to understand the loss dynamics of MeV-energy electrons in the radiation belt. We will show the radial and latitudinal dependence of the wave occurance rate and the wave parameters (frequency band, coherence, polarization, and ellipticity). Especially the EMIC waves observed at localized weak background magnetic field will be discussed for the wave excitation mechanism in the deep inner magnetosphere.

  18. Delivery of information from earth observation satellites

    International Nuclear Information System (INIS)

    MacDonald, J.S.

    1992-01-01

    Satellite-based systems for measuring the surface of the earth and its atmosphere from space have evolved rapidly in the past decade. The amount of data available in the future promises to be truly staggering. This paper addresses the requirements for handling data from earth observation systems. It begins with the premise that our objective is to acquire an understanding of the state and evolution of our planet, and proceeds from there to argue that earth observation satellite systems are, in reality, systems for delivering information. This view has implications on how we approach the design of such systems, and how we handle the data they produce in order to derive maximum benefit from them. The paper examines these issues and puts forth some of the technical requirements for future satellite-based earth observation systems, based on the concept that earth observation is a quantitative measurement discipline that is driven by requirements for information. (Author). 8 refs., 3 figs

  19. Who launched what, when and why; trends in global land-cover observation capacity from civilian earth observation satellites

    Science.gov (United States)

    Belward, Alan S.; Skøien, Jon O.

    2015-05-01

    This paper presents a compendium of satellites under civilian and/or commercial control with the potential to gather global land-cover observations. From this we show that a growing number of sovereign states are acquiring capacity for space based land-cover observations and show how geopolitical patterns of ownership are changing. We discuss how the number of satellites flying at any time has progressed as a function of increased launch rates and mission longevity, and how the spatial resolutions of the data they collect has evolved. The first such satellite was launched by the USA in 1972. Since then government and/or private entities in 33 other sovereign states and geopolitical groups have chosen to finance such missions and 197 individual satellites with a global land-cover observing capacity have been successfully launched. Of these 98 were still operating at the end of 2013. Since the 1970s the number of such missions failing within 3 years of launch has dropped from around 60% to less than 20%, the average operational life of a mission has almost tripled, increasing from 3.3 years in the 1970s to 8.6 years (and still lengthening), the average number of satellites launched per-year/per-decade has increased from 2 to 12 and spatial resolution increased from around 80 m to less than 1 m multispectral and less than half a meter for panchromatic; synthetic aperture radar resolution has also fallen, from 25 m in the 1970s to 1 m post 2007. More people in more countries have access to data from global land-cover observing spaceborne missions at a greater range of spatial resolutions than ever before. We provide a compendium of such missions, analyze the changes and shows how innovation, the need for secure data-supply, national pride, falling costs and technological advances may underpin the trends we document.

  20. Spatial Heterodyne Observation of Water (SHOW) from a high altitude aircraft

    Science.gov (United States)

    Bourassa, A. E.; Langille, J.; Solheim, B.; Degenstein, D. A.; Letros, D.; Lloyd, N. D.; Loewen, P.

    2017-12-01

    The Spatial Heterodyne Observations of Water instrument (SHOW) is limb-sounding satellite prototype that is being developed in collaboration between the University of Saskatchewan, York University, the Canadian Space Agency and ABB. The SHOW instrument combines a field-widened SHS with an imaging system to observe limb-scattered sunlight in a vibrational band of water (1363 nm - 1366 nm). Currently, the instrument has been optimized for deployment on NASA's ER-2 aircraft. Flying at an altitude of 70, 000 ft the ER-2 configuration and SHOW viewing geometry provides high spatial resolution (limb-measurements of water vapor in the Upper troposphere and lower stratosphere region. During an observation campaign from July 15 - July 22, the SHOW instrument performed 10 hours of observations from the ER-2. This paper describes the SHOW measurement technique and presents the preliminary analysis and results from these flights. These observations are used to validate the SHOW measurement technique and demonstrate the sampling capabilities of the instrument.

  1. Multi-satellite observations of magnetic fields in space plasmas

    International Nuclear Information System (INIS)

    Potemra, T.A.; Zanetti, L.J.; Bythrow, P.F.; Erlandson, R.E.

    1987-01-01

    The most common method of detecting electric currents in space has been by virtue of the magnetic perturbations they produce. A satellite can pass through a field-aligned ''Birkeland'' current and measure the in-situ magnetic perturbations. Satellite-borne magnetic field experiments may also be used to observe characteristics of resonant oscillations of the Earth's magnetic field at ULF frequencies. Examples of such measurements with magnetic field experiments on the Viking, AMPTE/CCE, and DMSP-F7 satellites will be presented. The Viking satellite, launched in February, 1986, is Sweden's first satellite and is in a polar orbit with 3.1 R/sub e/ apogee. AMPTE/CCE was launched in August, 1984, with satellites from West Germany and the United Kingdom, for the purpose of creating artificial comets in space. It is in an equatorial orbit with a 8.8 R/sub e/ apogee. The Defense Meteorological Satellite Program (DMSP)-F7 satellite was launched in October, 1983 into an 800 km circular sun-synchronous orbit in the 0830-2030 magnetic local time plane. Viking and AMPTE/CCE observed harmonic ULF pulsations when they were near the same flux tube, but separated by about 10 R/sub e/. These unique observations are used to investigate the characteristics and sources of multiple field line resonances of Alfven waves. On another occasion, Viking and DMSP-F7 observed similar magnetic perturbations at widely separated locations. The authors interpret these perturbations as due to a complicated system of large-scale stable Birkeland currents in the morning sector. This multi-satellite data set is in the early stages of exploration, but already confirms the usefulness of coordinated multi-position observations of magnetic fields in space

  2. Observational and Dynamical Wave Climatologies. VOS vs Satellite Data

    Science.gov (United States)

    Grigorieva, Victoria; Badulin, Sergei; Chernyshova, Anna

    2013-04-01

    The understanding physics of wind-driven waves is crucially important for fundamental science and practical applications. This is why experimental efforts are targeted at both getting reliable information on sea state and elaborating effective tools of the sea wave forecasting. The global Visual Wave Observations and satellite data from the GLOBWAVE project of the European Space Agency are analyzed in the context of these two viewpoints. Within the first "observational" aspect we re-analyze conventional climatologies of all basic wave parameters for the last decades [5]. An alternative "dynamical" climatology is introduced as a tool of prediction of dynamical features of sea waves on global scales. The features of wave dynamics are studied in terms of one-parametric dependencies of wave heights on wave periods following the theoretical concept of self-similar wind-driven seas [3, 1, 4] and recently proposed approach to analysis of Voluntary Observing Ship (VOS) data [2]. Traditional "observational" climatologies based on VOS and satellite data collections demonstrate extremely consistent pictures for significant wave heights and dominant periods. On the other hand, collocated satellite and VOS data show significant differences in wave heights, wind speeds and, especially, in wave periods. Uncertainties of visual wave observations can explain these differences only partially. We see the key reason of this inconsistency in the methods of satellite data processing which are based on formal application of data interpolation methods rather than on up-to-date physics of wind-driven waves. The problem is considered within the alternative climatology approach where dynamical criteria of wave height-to-period linkage are used for retrieving wave periods and constructing physically consistent dynamical climatology. The key dynamical parameter - exponent R of one-parametric dependence Hs ~ TR shows dramatically less pronounced latitudinal dependence as compared to observed Hs

  3. Use of Multiangle Satellite Observations to Retrieve Aerosol Properties and Ocean Color

    Science.gov (United States)

    Martonchik, John V.; Diner, David; Khan, Ralph

    2005-01-01

    A new technique is described for retrieving aerosol over ocean water and the associated ocean color using multiangle satellite observations. Unlike current satellite aerosol retrieval algorithms which only utilize observations at red wavelengths and longer, with the assumption that these wavelengths have a negligible ocean (water-leaving radiance), this new algorithm uses all available spectral bands and simultaneously retrieves both aerosol properties and the spectral ocean color. We show some results of case studies using MISR data, performed over different water conditions (coastal water, blooms, and open water).

  4. Advancing land surface model development with satellite-based Earth observations

    Science.gov (United States)

    Orth, Rene; Dutra, Emanuel; Trigo, Isabel F.; Balsamo, Gianpaolo

    2017-04-01

    The land surface forms an essential part of the climate system. It interacts with the atmosphere through the exchange of water and energy and hence influences weather and climate, as well as their predictability. Correspondingly, the land surface model (LSM) is an essential part of any weather forecasting system. LSMs rely on partly poorly constrained parameters, due to sparse land surface observations. With the use of newly available land surface temperature observations, we show in this study that novel satellite-derived datasets help to improve LSM configuration, and hence can contribute to improved weather predictability. We use the Hydrology Tiled ECMWF Scheme of Surface Exchanges over Land (HTESSEL) and validate it comprehensively against an array of Earth observation reference datasets, including the new land surface temperature product. This reveals satisfactory model performance in terms of hydrology, but poor performance in terms of land surface temperature. This is due to inconsistencies of process representations in the model as identified from an analysis of perturbed parameter simulations. We show that HTESSEL can be more robustly calibrated with multiple instead of single reference datasets as this mitigates the impact of the structural inconsistencies. Finally, performing coupled global weather forecasts we find that a more robust calibration of HTESSEL also contributes to improved weather forecast skills. In summary, new satellite-based Earth observations are shown to enhance the multi-dataset calibration of LSMs, thereby improving the representation of insufficiently captured processes, advancing weather predictability and understanding of climate system feedbacks. Orth, R., E. Dutra, I. F. Trigo, and G. Balsamo (2016): Advancing land surface model development with satellite-based Earth observations. Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-628

  5. Improve observation-based ground-level ozone spatial distribution by compositing satellite and surface observations: A simulation experiment

    Science.gov (United States)

    Zhang, Yuzhong; Wang, Yuhang; Crawford, James; Cheng, Ye; Li, Jianfeng

    2018-05-01

    Obtaining the full spatial coverage of daily surface ozone fields is challenging because of the sparsity of the surface monitoring network and the difficulty in direct satellite retrievals of surface ozone. We propose an indirect satellite retrieval framework to utilize the information from satellite-measured column densities of tropospheric NO2 and CH2O, which are sensitive to the lower troposphere, to derive surface ozone fields. The method is applicable to upcoming geostationary satellites with high-quality NO2 and CH2O measurements. To prove the concept, we conduct a simulation experiment using a 3-D chemical transport model for July 2011 over the eastern US. The results show that a second order regression using both NO2 and CH2O column densities can be an effective predictor for daily maximum 8-h average ozone. Furthermore, this indirect retrieval approach is shown to be complementary to spatial interpolation of surface observations, especially in regions where the surface sites are sparse. Combining column observations of NO2 and CH2O with surface site measurements leads to an improved representation of surface ozone over simple kriging, increasing the R2 value from 0.53 to 0.64 at a surface site distance of 252 km. The improvements are even more significant with larger surface site distances. The simulation experiment suggests that the indirect satellite retrieval technique can potentially be a useful tool to derive the full spatial coverage of daily surface ozone fields if satellite observation uncertainty is moderate.

  6. Small Aperture Telescope Observations of Co-located Geostationary Satellites

    Science.gov (United States)

    Scott, R.; Wallace, B.

    As geostationary orbit (GEO) continues to be populated, satellite operators are increasing usage of co-location techniques to maximize usage of fewer GEO longitude slots. Co-location is an orbital formation strategy where two or more geostationary satellites reside within one GEO stationkeeping box. The separation strategy used to prevent collision between the co-located satellites generally uses eccentricity (radial separation) and inclination (latitude separation) vector offsets. This causes the satellites to move in relative motion ellipses about each other as the relative longitude drift between the satellites is near zero. Typical separations between the satellites varies from 1 to 100 kilometers. When co-located satellites are observed by optical ground based space surveillance sensors the participants appear to be separated by a few minutes of arc or less in angular extent. Under certain viewing geometries, these satellites appear to visually conjunct even though the satellites are, in fact, well separated spatially. In situations where one of the co-located satellites is more optically reflective than the other, the reflected sunglint from the more reflective satellite can overwhelm the other. This less frequently encountered issue causes the less reflective satellite to be glint masked in the glare of the other. This paper focuses on space surveillance observations on co-located Canadian satellites using a small optical telescope operated by Defence R&D Canada - Ottawa. The two above mentioned problems (cross tagging and glint masking) are investigated and we quantify the results for Canadian operated geostationary satellites. The performance of two line element sets when making in-frame CCD image correlation between the co-located satellites is also examined. Relative visual magnitudes between the co-located members are also inspected and quantified to determine the susceptibility of automated telescopes to glint masking of co-located satellite members.

  7. Improving a Spectral Bin Microphysical Scheme Using TRMM Satellite Observations

    Science.gov (United States)

    Li, Xiaowen; Tao, Wei-Kuo; Matsui, Toshihisa; Liu, Chuntao; Masunaga, Hirohiko

    2010-01-01

    Comparisons between cloud model simulations and observations are crucial in validating model performance and improving physical processes represented in the mod Tel.hese modeled physical processes are idealized representations and almost always have large rooms for improvements. In this study, we use data from two different sensors onboard TRMM (Tropical Rainfall Measurement Mission) satellite to improve the microphysical scheme in the Goddard Cumulus Ensemble (GCE) model. TRMM observed mature-stage squall lines during late spring, early summer in central US over a 9-year period are compiled and compared with a case simulation by GCE model. A unique aspect of the GCE model is that it has a state-of-the-art spectral bin microphysical scheme, which uses 33 different bins to represent particle size distribution of each of the seven hydrometeor species. A forward radiative transfer model calculates TRMM Precipitation Radar (PR) reflectivity and TRMM Microwave Imager (TMI) 85 GHz brightness temperatures from simulated particle size distributions. Comparisons between model outputs and observations reveal that the model overestimates sizes of snow/aggregates in the stratiform region of the squall line. After adjusting temperature-dependent collection coefficients among ice-phase particles, PR comparisons become good while TMI comparisons worsen. Further investigations show that the partitioning between graupel (a high-density form of aggregate), and snow (a low-density form of aggregate) needs to be adjusted in order to have good comparisons in both PR reflectivity and TMI brightness temperature. This study shows that long-term satellite observations, especially those with multiple sensors, can be very useful in constraining model microphysics. It is also the first study in validating and improving a sophisticated spectral bin microphysical scheme according to long-term satellite observations.

  8. Planning and Scheduling for Fleets of Earth Observing Satellites

    Science.gov (United States)

    Frank, Jeremy; Jonsson, Ari; Morris, Robert; Smith, David E.; Norvig, Peter (Technical Monitor)

    2001-01-01

    We address the problem of scheduling observations for a collection of earth observing satellites. This scheduling task is a difficult optimization problem, potentially involving many satellites, hundreds of requests, constraints on when and how to service each request, and resources such as instruments, recording devices, transmitters, and ground stations. High-fidelity models are required to ensure the validity of schedules; at the same time, the size and complexity of the problem makes it unlikely that systematic optimization search methods will be able to solve them in a reasonable time. This paper presents a constraint-based approach to solving the Earth Observing Satellites (EOS) scheduling problem, and proposes a stochastic heuristic search method for solving it.

  9. The Chinese FY-1 Meteorological Satellite Application in Observation on Oceanic Environment

    Science.gov (United States)

    Weimin, S.

    meteorological satellite is stated in this paper. exploration of the ocean resources has been a very important question of global strategy in the world. The exploration of the ocean resources includes following items: Making full use of oceanic resources and space, protecting oceanic environment. to observe the ocean is by using of satellite. In 1978, US successfully launched the first ocean observation satellite in the world --- Sea Satellite. It develops ancient oceanography in to advanced space-oceanography. FY-1 B and FY- IC respectively. High quality data were acquired at home and abroad. FY-1 is Chinese meteorological satellite, but with 0.43 ~ 0.48 μm ,0.48 ~ 0.53 μm and 0.53 ~ 0.58 μm three ocean color channels, actually it is a multipurpose remote sensing satellite of meteorology and oceanography. FY-1 satellite's capability of observation on ocean partly, thus the application field is expanded and the value is increased. With the addition of oceanic channels on FY-1, the design of the satellite is changed from the original with meteorological observation as its main purpose into remote sensing satellite possessing capability of observing meteorology and ocean as well. Thus, the social and economic benefit of FY-1 is increased. the social and economic benefit of the development of the satellite is the key technique in the system design of the satellite. technically feasible but also save the funds in researching and manufacturing of the satellite, quicken the tempo of researching and manufacturing satellite. the scanning radiometer for FY-1 is conducted an aviation experiment over Chinese ocean. This experiment was of vital importance to the addition of oceanic observation channel on FY-1. FY-1 oceanic channels design to be correct. detecting ocean color. This is the unique character of Chinese FY-1 meteorological satellite. meteorological remote sensing channel on FY-1 to form detecting capability of three visible channels: red, yellow and blue

  10. Applications of Satellite Observations of Tropospheric Composition

    Science.gov (United States)

    Monks, Paul S.; Beirle, Steffen

    A striking feature of the field of tropospheric composition is the sheer number of chemical species that have been detected and measured with satellite instruments. The measurements have found application both in atmospheric chemistry itself, providing evidence, for example, of unexpected cryochemistry in the Arctic regions, and also in environmental monitoring with, for example, the observed growth in NO2 emissions over eastern Asia. Chapter 8 gives an overview of the utility of satellite observations for measuring tropospheric composition, dealing with each of the many compounds seen in detail. A comprehensive compound by compound table of the many studies performed is a most useful feature.

  11. Estimates of lightning NOx production from GOME satellite observations

    Directory of Open Access Journals (Sweden)

    K. F. Boersma

    2005-01-01

    Full Text Available Tropospheric NO2 column retrievals from the Global Ozone Monitoring Experiment (GOME satellite spectrometer are used to quantify the source strength and 3-D distribution of lightning produced nitrogen oxides (NOx=NO+NO2. A sharp increase of NO2 is observed at convective cloud tops with increasing cloud top height, consistent with a power-law behaviour with power 5±2. Convective production of clouds with the same cloud height are found to produce NO2 with a ratio 1.6/1 for continents compared to oceans. This relation between cloud properties and NO2 is used to construct a 10:30 local time global lightning NO2 production map for 1997. An extensive statistical comparison is conducted to investigate the capability of the TM3 chemistry transport model to reproduce observed patterns of lightning NO2 in time and space. This comparison uses the averaging kernel to relate modelled profiles of NO2 to observed NO2 columns. It exploits a masking scheme to minimise the interference of other NOx sources on the observed total columns. Simulations are performed with two lightning parameterizations, one relating convective preciptation (CP scheme to lightning flash distributions, and the other relating the fifth power of the cloud top height (H5 scheme to lightning distributions. The satellite-retrieved NO2 fields show significant correlations with the simulated lightning contribution to the NO2 concentrations for both parameterizations. Over tropical continents modelled lightning NO2 shows remarkable quantitative agreement with observations. Over the oceans however, the two model lightning parameterizations overestimate the retrieved NO2 attributed to lightning. Possible explanations for these overestimations are discussed. The ratio between satellite-retrieved NO2 and modelled lightning NO2 is used to rescale the original modelled lightning NOx production. Eight estimates of the lightning NOx production in 1997 are obtained from spatial and temporal

  12. A Bayesian kriging approach for blending satellite and ground precipitation observations

    Science.gov (United States)

    Verdin, Andrew P.; Rajagopalan, Balaji; Kleiber, William; Funk, Christopher C.

    2015-01-01

    Drought and flood management practices require accurate estimates of precipitation. Gauge observations, however, are often sparse in regions with complicated terrain, clustered in valleys, and of poor quality. Consequently, the spatial extent of wet events is poorly represented. Satellite-derived precipitation data are an attractive alternative, though they tend to underestimate the magnitude of wet events due to their dependency on retrieval algorithms and the indirect relationship between satellite infrared observations and precipitation intensities. Here we offer a Bayesian kriging approach for blending precipitation gauge data and the Climate Hazards Group Infrared Precipitation satellite-derived precipitation estimates for Central America, Colombia, and Venezuela. First, the gauge observations are modeled as a linear function of satellite-derived estimates and any number of other variables—for this research we include elevation. Prior distributions are defined for all model parameters and the posterior distributions are obtained simultaneously via Markov chain Monte Carlo sampling. The posterior distributions of these parameters are required for spatial estimation, and thus are obtained prior to implementing the spatial kriging model. This functional framework is applied to model parameters obtained by sampling from the posterior distributions, and the residuals of the linear model are subject to a spatial kriging model. Consequently, the posterior distributions and uncertainties of the blended precipitation estimates are obtained. We demonstrate this method by applying it to pentadal and monthly total precipitation fields during 2009. The model's performance and its inherent ability to capture wet events are investigated. We show that this blending method significantly improves upon the satellite-derived estimates and is also competitive in its ability to represent wet events. This procedure also provides a means to estimate a full conditional distribution

  13. Observing outer planet satellites (except Titan) with JWST: Science justification and observational requirements

    Science.gov (United States)

    Kestay, Laszlo P.; Grundy, Will; Stansberry, John; Sivaramakrishnan, Anand; Thatte, Deepashri; Gudipati, Murthy; Tsang, Constantine; Greenbaum, Alexandra; McGruder, Chima

    2016-01-01

    The James Webb Space Telescope (JWST) will allow observations with a unique combination of spectral, spatial, and temporal resolution for the study of outer planet satellites within our Solar System. We highlight the infrared spectroscopy of icy moons and temporal changes on geologically active satellites as two particularly valuable avenues of scientific inquiry. While some care must be taken to avoid saturation issues, JWST has observation modes that should provide excellent infrared data for such studies.

  14. The Asian Tropopause Aerosol Layer: Balloon-Borne Measurements, Satellite Observations and Modeling Approaches

    Science.gov (United States)

    Fairlie, T. D.; Vernier, J.-P.; Natarajan, M.; Deshler, Terry; Liu, H.; Wegner, T.; Baker, N.; Gadhavi, H.; Jayaraman, A.; Pandit, A.; hide

    2016-01-01

    Satellite observations and numerical modeling studies have demonstrated that the Asian Summer Monsoon (ASM) can provide a conduit for gas-phase pollutants in south Asia to reach the lower stratosphere. Now, observations from the CALIPSO satellite have revealed the Asian Tropopause Aerosol Layer (ATAL), a summertime accumulation of aerosols associated with ASM anticyclone, in the upper troposphere and lower stratosphere (UTLS). The ATAL has potential implications for regional cloud properties, climate, and chemical processes in the UTLS. Here, we show in situ measurements from balloon-borne instrumentation, aircraft and satellite observations, combined with trajectory and chemical transport model (CTM) simulations to explore the origin, composition, physical and optical properties of aerosols in the ATAL. In particular, we show balloon-based observations from our BATAL-2015 field campaign to India and Saudi Arabia in summer 2015, including in situ backscatter measurements from COBALD instruments, and some of the first observations of size and volatility of aerosols in the ATAL layer using optical particle counters (OPCs). Back trajectory calculations initialized from CALIPSO observations point to deep convection over North India as a principal source of ATAL aerosols. Available aircraft observations suggest significant sulfur and carbonaceous contributions to the ATAL, which is supported by simulations using the GEOS-Chem CTM. Source elimination studies conducted with the GEOS-Chem indicate that 80-90% of ATAL aerosols originate from south Asian sources, in contrast with some earlier studies.

  15. Comparing soil moisture memory in satellite observations and models

    Science.gov (United States)

    Stacke, Tobias; Hagemann, Stefan; Loew, Alexander

    2013-04-01

    A major obstacle to a correct parametrization of soil processes in large scale global land surface models is the lack of long term soil moisture observations for large parts of the globe. Currently, a compilation of soil moisture data derived from a range of satellites is released by the ESA Climate Change Initiative (ECV_SM). Comprising the period from 1978 until 2010, it provides the opportunity to compute climatological relevant statistics on a quasi-global scale and to compare these to the output of climate models. Our study is focused on the investigation of soil moisture memory in satellite observations and models. As a proxy for memory we compute the autocorrelation length (ACL) of the available satellite data and the uppermost soil layer of the models. Additional to the ECV_SM data, AMSR-E soil moisture is used as observational estimate. Simulated soil moisture fields are taken from ERA-Interim reanalysis and generated with the land surface model JSBACH, which was driven with quasi-observational meteorological forcing data. The satellite data show ACLs between one week and one month for the greater part of the land surface while the models simulate a longer memory of up to two months. Some pattern are similar in models and observations, e.g. a longer memory in the Sahel Zone and the Arabian Peninsula, but the models are not able to reproduce regions with a very short ACL of just a few days. If the long term seasonality is subtracted from the data the memory is strongly shortened, indicating the importance of seasonal variations for the memory in most regions. Furthermore, we analyze the change of soil moisture memory in the different soil layers of the models to investigate to which extent the surface soil moisture includes information about the whole soil column. A first analysis reveals that the ACL is increasing for deeper layers. However, its increase is stronger in the soil moisture anomaly than in its absolute values and the first even exceeds the

  16. Evaluation of satellite-retrieved extreme precipitation using gauge observations

    Science.gov (United States)

    Lockhoff, M.; Zolina, O.; Simmer, C.; Schulz, J.

    2012-04-01

    Precipitation extremes have already been intensively studied employing rain gauge datasets. Their main advantage is that they represent a direct measurement with a relatively high temporal coverage. Their main limitation however is their poor spatial coverage and thus a low representativeness in many parts of the world. In contrast, satellites can provide global coverage and there are meanwhile data sets available that are on one hand long enough to be used for extreme value analysis and that have on the other hand the necessary spatial and temporal resolution to capture extremes. However, satellite observations provide only an indirect mean to determine precipitation and there are many potential observational and methodological weaknesses in particular over land surfaces that may constitute doubts concerning their usability for the analysis of precipitation extremes. By comparing basic climatological metrics of precipitation (totals, intensities, number of wet days) as well as respective characteristics of PDFs, absolute and relative extremes of satellite and observational data this paper aims at assessing to which extent satellite products are suitable for analysing extreme precipitation events. In a first step the assessment focuses on Europe taking into consideration various satellite products available, e.g. data sets provided by the Global Precipitation Climatology Project (GPCP). First results indicate that satellite-based estimates do not only represent the monthly averaged precipitation very similar to rain gauge estimates but they also capture the day-to-day occurrence fairly well. Larger differences can be found though when looking at the corresponding intensities.

  17. The NOAA Satellite Observing System Architecture Study

    Science.gov (United States)

    Volz, Stephen; Maier, Mark; Di Pietro, David

    2016-01-01

    NOAA is beginning a study, the NOAA Satellite Observing System Architecture (NSOSA) study, to plan for the future operational environmental satellite system that will follow GOES and JPSS, beginning about 2030. This is an opportunity to design a modern architecture with no pre-conceived notions regarding instruments, platforms, orbits, etc. The NSOSA study will develop and evaluate architecture alternatives to include partner and commercial alternatives that are likely to become available. The objectives will include both functional needs and strategic characteristics (e.g., flexibility, responsiveness, sustainability). Part of this study is the Space Platform Requirements Working Group (SPRWG), which is being commissioned by NESDIS. The SPRWG is charged to assess new or existing user needs and to provide relative priorities for observational needs in the context of the future architecture. SPRWG results will serve as input to the process for new foundational (Level 0 and Level 1) requirements for the next generation of NOAA satellites that follow the GOES-R, JPSS, DSCOVR, Jason-3, and COSMIC-2 missions.

  18. Satellite observations of air quality of megacities in China

    Science.gov (United States)

    Hao, N.; Valks, P.; Smedt, I. D.; Loyola, D.; Roozendael, M. V.; Zhou, B.; Zimmer, W.

    2012-04-01

    In the last three decades, air pollution has become a major environmental issue in metropolitan areas of China as a consequence of fast industrialization and urbanization, and the rapid increase of the vehicle ownership. Now in China there are 3 megacities (Beijing, Shanghai and Guangzhou) in existence. A recent study of Asian megacities showed that they cover less than 2% of the land area, hold more than 30% of the population and produce about 10% of the anthropogenic gas and aerosol emissions. Therefore, it is important to qualify and understand current air pollution distribution and development in and around the megacities of China. Satellite observations provide unique insight into the regional air quality around megacities and air pollution transport from surrounding areas. In this work, we present an investigation of air quality over Beijing, Shanghai and Guangzhou combining satellite and ground-based measurements. Aerosol optical thickness (AOT), precursors of ozone (notably NO2 and CH2O), and SO2 are observed from space. The operational GOME-2 trace gases products developed at German Aerospace Center and MODIS AOT products will be used. Moreover, near surface concentrations of particular matter (PM), NO2 and SO2 in Beijing, Shanghai and Guangzhou are investigated. The effect of air pollution transport from neighboring areas to megacities will be researched using satellite measurements. Initial comparison between satellite and ground-based measurements of air pollutants in Beijing, Shanghai and Guangzhou will be shown. We will present the relationship between AOT and PM concentrations in megacities. The use of AOT, tropospheric NO2 and CH2O columns for air quality applications will also be shown.

  19. Satellite observations of changes in air quality during the 2008 Beijing Olympics and Paralympics

    Science.gov (United States)

    Witte, J. C.; Schoeberl, M. R.; Douglass, A. R.; Gleason, J. F.; Krotkov, N. A.; Gille, J. C.; Pickering, K. E.; Livesey, N.

    2009-09-01

    For the August-September 2008 Olympic and the Paralympic Games held in Beijing, China, strict controls on pollutant emissions and motor vehicle traffic were imposed on Beijing and neighboring provinces to the South to improve the air quality in and around the city. Satellite measurements over Beijing between July and September showed 43% reductions of tropospheric column nitrogen dioxide, compared to the past three years. When neighboring provinces to the south are included in our analyses, satellite measurements show boundary layer sulfur dioxide reductions of 13% and carbon monoxide reductions of 12% at 700 hPa. Thus, based on satellites observations alone, noticeable reductions in these pollutant tracers were measured during both games.

  20. Satellite Observation Systems for Polar Climate Change Studies

    Science.gov (United States)

    Comiso, Josefino C.

    2012-01-01

    The key observational tools for detecting large scale changes of various parameters in the polar regions have been satellite sensors. The sensors include passive and active satellite systems in the visible, infrared and microwave frequencies. The monitoring started with Tiros and Nimbus research satellites series in the 1970s but during the period, not much data was stored digitally because of limitations and cost of the needed storage systems. Continuous global data came about starting with the launch of ocean color, passive microwave, and thermal infrared sensors on board Nimbus-7 and Synthetic Aperture Radar, Radar Altimeter and Scatterometer on board SeaSat satellite both launched in 1978. The Nimbus-7 lasted longer than expected and provided about 9 years of useful data while SeaSat quit working after 3 months but provided very useful data that became the baseline for follow-up systems with similar capabilities. Over the years, many new sensors were launched, some from Japan Aeronautics and Space Agency (JAXA), some from the European Space Agency (ESA) and more recently, from RuSSia, China, Korea, Canada and India. For polar studies, among the most useful sensors has been the passive microwave sensor which provides day/night and almost all weather observation of the surface. The sensor provide sea surface temperature, precipitation, wind, water vapor and sea ice concentration data that have been very useful in monitoring the climate of the region. More than 30 years of such data are now available, starting with the Scanning Multichannel Microwave Radiometer (SMMR) on board the Nimbus-7, the Special Scanning Microwave/Imager (SSM/I) on board a Defense Meteorological Satellite Program (DMSP) and the Advanced Microwave Scanning Radiometer on board the EOS/ Aqua satellite. The techniques that have been developed to derive geophysical parameters from data provided by these and other sensors and associated instrumental and algorithm errors and validation techniques

  1. Turbulence Heating ObserveRsatellite mission proposal

    Czech Academy of Sciences Publication Activity Database

    Vaivads, A.; Retinò, A.; Souček, Jan; Khotyaintsev, Y. V.; Valentini, F.; Escoubet, C. P.; Alexandrova, O.; André, M.; Bale, S. D.; Balikhin, M.; Burgess, D.; Camporeale, E.; Caprioli, D.; Chen, C. H. K.; Clacey, E.; Cully, C. M.; Keyser de, J.; Eastwood, J. P.; Fazakerley, A. N.; Eriksson, S.; Goldstein, M. L.; Graham, D. B.; Haaland, S.; Hoshino, M.; Ji, H.; Karimabadi, H.; Kucharek, H.; Lavraud, B.; Marcucci, F.; Matthaeus, W. H.; Moore, T. E.; Nakamura, R.; Narita, Y.; Němeček, Z.; Norgren, C.; Opgenoorth, H.; Palmroth, M.; Perrone, D.; Pinçon, J.-L.; Rathsman, P.; Rothkaehl, H.; Sahraoui, F.; Servidio, S.; Sorriso-Valvo, L.; Vainio, L.; Vörös, Z.; Wimmer-Schweingruber, R. F.

    2016-01-01

    Roč. 82, č. 5 (2016), 905820501/1-905820501/16 ISSN 0022-3778 Institutional support: RVO:68378289 Keywords : plasma heating * plasma properties * space plasma physics Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.160, year: 2016 https://www.cambridge.org/core/journals/journal-of-plasma-physics/article/div-classtitleturbulence-heating-observer-satellite-mission-proposaldiv/01BB69B09206CE04C48BEDA8F24ED33C/core-reader

  2. Maritime NOx Emissions Over Chinese Seas Derived From Satellite Observations

    Science.gov (United States)

    Ding, J.; van der A, R. J.; Mijling, B.; Jalkanen, J.-P.; Johansson, L.; Levelt, P. F.

    2018-02-01

    By applying an inversion algorithm to NOx satellite observations from Ozone Monitoring Instrument, monthly NOx emissions for a 10 year period (2007 to 2016) over Chinese seas are presented for the first time. No effective regulations on NOx emissions have been implemented for ships in China, which is reflected in the trend analysis of maritime emissions. The maritime emissions display a continuous increase rate of about 20% per year until 2012 and slow down to 3% after that. The seasonal cycle of shipping emissions has regional variations, but all regions show lower emissions during winter. Simulations by an atmospheric chemistry transport model show a notable influence of maritime emissions on air pollution over coastal areas, especially in summer. The satellite-derived spatial distribution and the magnitude of maritime emissions over Chinese seas are in good agreement with bottom-up studies based on the Automatic Identification System of ships.

  3. Initial Assessment of Cyclone Global Navigation Satellite System (CYGNSS) Observations

    Science.gov (United States)

    McKague, D. S.; Ruf, C. S.

    2017-12-01

    The NASA Cyclone Global Navigation Satellite System (CYNSS) mission provides high temporal resolution observations of cyclones from a constellation of eight low-Earth orbiting satellites. Using the relatively new technique of Global Navigation Satellite System reflectometry (GNSS-R), all-weather observations are possible, penetrating even deep convection within hurricane eye walls. The compact nature of the GNSS-R receivers permits the use of small satellites, which in turn enables the launch of a constellation of satellites from a single launch vehicle. Launched in December of 2016, the eight CYGNSS satellites provide 25 km resolution observations of mean square slope (surface roughness) and surface winds with a 2.8 hour median revisit time from 38 S to 38 N degrees latitude. In addition to the calibration and validation of CYGNSS sea state observations, the CYGNSS science team is assessing the ability of the mission to provide estimates of cyclone size, intensity, and integrated kinetic energy. With its all-weather ability and high temporal resolution, the CYGNSS mission will add significantly to our ability to monitor cyclone genesis and intensification and will significantly reduce uncertainties in our ability to estimate cyclone intensity, a key variable in predicting its destructive potential. Members of the CYGNSS Science Team are also assessing the assimilation of CYGNSS data into hurricane forecast models to determine the impact of the data on forecast skill, using the data to study extra-tropical cyclones, and looking at connections between tropical cyclones and global scale weather, including the global hydrologic cycle. This presentation will focus on the assessment of early on-orbit observations of cyclones with respect to these various applications.

  4. Geodynamics implication of GPS and satellite altimeter and gravity observations to the Eastern Mediterranean

    Directory of Open Access Journals (Sweden)

    Khaled H. Zahran

    2012-06-01

    Results show important zones of mass discontinuity in this region correlated with the seismological activities and temporal gravity variations agree with the crustal deformation obtained from GPS observations. The current study indicates that satellite gravity data is a valuable source of data in understanding the geodynamical behavior of the studied region and that satellite gravity data is an important contemporary source of data in the geodynamical studies.

  5. Advancing land surface model development with satellite-based Earth observations

    Science.gov (United States)

    Orth, Rene; Dutra, Emanuel; Trigo, Isabel F.; Balsamo, Gianpaolo

    2017-05-01

    The land surface forms an essential part of the climate system. It interacts with the atmosphere through the exchange of water and energy and hence influences weather and climate, as well as their predictability. Correspondingly, the land surface model (LSM) is an essential part of any weather forecasting system. LSMs rely on partly poorly constrained parameters, due to sparse land surface observations. With the use of newly available land surface temperature observations, we show in this study that novel satellite-derived datasets help improve LSM configuration, and hence can contribute to improved weather predictability. We use the Hydrology Tiled ECMWF Scheme of Surface Exchanges over Land (HTESSEL) and validate it comprehensively against an array of Earth observation reference datasets, including the new land surface temperature product. This reveals satisfactory model performance in terms of hydrology but poor performance in terms of land surface temperature. This is due to inconsistencies of process representations in the model as identified from an analysis of perturbed parameter simulations. We show that HTESSEL can be more robustly calibrated with multiple instead of single reference datasets as this mitigates the impact of the structural inconsistencies. Finally, performing coupled global weather forecasts, we find that a more robust calibration of HTESSEL also contributes to improved weather forecast skills. In summary, new satellite-based Earth observations are shown to enhance the multi-dataset calibration of LSMs, thereby improving the representation of insufficiently captured processes, advancing weather predictability, and understanding of climate system feedbacks.

  6. Observations of inner plasmasphere irregularities with a satellite-beacon radio-interferometer array

    International Nuclear Information System (INIS)

    Jacobson, A.R.; Hoogeveen, G.; Carlos, R.C.; Wu, G.; Fejer, B.G.; Kelley, M.C.

    1996-01-01

    A radio-interferometer array illuminated by 136-MHz beacons of several geosynchronous satellites has been used to study small (≥10 13 m -2 ) transient disturbances in the total electron content along the lines of sight to the satellites. High-frequency (f>3 mHz) electron content oscillations are persistently observed, particularly during night and particularly during geomagnetically disturbed periods. The oscillations move across the array plane at speeds in the range 200 endash 2000 m/s, with propagation azimuths that are strongly peaked in lobes toward the western half-plane. Detailed analysis of this azimuth behavior, involving comparison between observations on various satellite positions, indicates compellingly that the phase oscillations originate in radio refraction due to geomagnetically aligned plasma density perturbations in the inner plasmasphere. The motion of the phase perturbations across the array plane is caused by EXB drift of the plasma medium in which the irregularities are embedded. We review the statistics of 2.5 years of around-the-clock data on the local time, magnetic disturbance, seasonal, and line-of-sight variations of these observed irregularities. We compare the irregularities close-quote inferred electrodynamic drifts to what is known about midlatitude plasma drift from incoherent scatter. Finally, we show in detail how the observation of these irregularities provides a unique and complementary monitor of inner plasmasphere irregularity incidence and zonal drift.copyright 1996 American Geophysical Union

  7. Long-term Satellite Observations of Cloud and Aerosol Radiative Effects Using the (A)ATSR Satellite Data Record

    Science.gov (United States)

    Christensen, M.; McGarragh, G.; Thomas, G.; Povey, A.; Proud, S.; Poulsen, C. A.; Grainger, R. G.

    2016-12-01

    Radiative forcing by clouds, aerosols, and their interactions constitute some of the largest sources of uncertainties in the climate system (Chapter 7 IPCC, 2013). It is essential to understand the past through examination of long-term satellite observation records to provide insight into the uncertainty characteristics of these radiative forcers. As part of the ESA CCI (Climate Change Initiative) we have recently implemented a broadband radiative flux algorithm (known as BUGSrad) into the Optimal Retrieval for Aerosol and Cloud (ORAC) scheme. ORAC achieves radiative consistency of its aerosol and cloud products through an optimal estimation scheme and is highly versatile, enabling retrievals for numerous satellite sensors: ATSR, MODIS, VIIRS, AVHRR, SLSTR, SEVIRI, and AHI. An analysis of the 17-year well-calibrated Along Track Scanning Radiometer (ATSR) data is used to quantify trends in cloud and aerosol radiative effects over a wide range of spatiotemporal scales. The El Niño Southern Oscillation stands out as the largest contributing mode of variability to the radiative energy balance (long wave and shortwave fluxes) at the top of the atmosphere. Furthermore, trends in planetary albedo show substantial decreases across the Arctic Ocean (likely due to the melting of sea ice and snow) and modest increases in regions dominated by stratocumulus (e.g., off the coast of California) through notable increases in cloud fraction and liquid water path. Finally, changes in volcanic activity and biomass burning aerosol over this period show sizeable radiative forcing impacts at local-scales. We will demonstrate that radiative forcing from aerosols and clouds have played a significant role in the identified key climate processes using 17 years of satellite observational data.

  8. NEOWISE: OBSERVATIONS OF THE IRREGULAR SATELLITES OF JUPITER AND SATURN

    Energy Technology Data Exchange (ETDEWEB)

    Grav, T. [Planetary Science Institute, Tucson, AZ 85719 (United States); Bauer, J. M.; Mainzer, A. K.; Masiero, J. R.; Sonnett, S.; Kramer, E. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Nugent, C. R.; Cutri, R. M., E-mail: tgrav@psi.edu [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States)

    2015-08-10

    We present thermal model fits for 11 Jovian and 3 Saturnian irregular satellites based on measurements from the WISE/NEOWISE data set. Our fits confirm spacecraft-measured diameters for the objects with in situ observations (Himalia and Phoebe) and provide diameters and albedo for 12 previously unmeasured objects, 10 Jovian and 2 Saturnian irregular satellites. The best-fit thermal model beaming parameters are comparable to what is observed for other small bodies in the outer solar system, while the visible, W1, and W2 albedos trace the taxonomic classifications previously established in the literature. Reflectance properties for the irregular satellites measured are similar to the Jovian Trojan and Hilda Populations, implying common origins.

  9. Global distribution of pauses observed with satellite measurements

    Indian Academy of Sciences (India)

    Here we study the commonality and differences observed in the variability of all the pauses. We also examined how good other datasets will represent these features among (and in between) different satellite measurements, re-analysis, and model data. Hemispheric differences observed in all the pauses are also reported.

  10. Lunar occultation of Saturn. IV - Astrometric results from observations of the satellites

    Science.gov (United States)

    Dunham, D. W.; Elliot, J. L.

    1978-01-01

    The method of determining local lunar limb slopes, and the consequent time scale needed for diameter studies, from accurate occultation timings at two nearby telescopes is described. Results for photoelectric observations made at Mauna Kea Observatory during the occultation of Saturn's satellites on March 30, 1974, are discussed. Analysis of all observations of occultations of Saturn's satellites during 1974 indicates possible errors in the ephemerides of Saturn and its satellites.

  11. Astrometric observations of Saturn's satellites from McDonald Observatory, 1972

    Science.gov (United States)

    Abbot, R. I.; Mulholland, J. D.; Shelus, P. J.

    1975-01-01

    Observations of Saturn's satellites have been reduced by means of secondary reference stars obtained by reduction of Palomar Sky Survey plates. This involved the use of 29 SAO stars and plate overlap technique to determine the coordinates of 59 fainter stars in the satellite field. Fourteen plate constants were determined for each of the two PSS plates. Comparison of two plate measurement and reduction techniques on the satellite measures appears to demonstrate the existence of a serious background gradient effect and the utility of microdensitometry to eliminate this error source in positional determinations of close satellites.

  12. Magnetosphere VLF observation by satellite ISIS

    International Nuclear Information System (INIS)

    Ondo, Tadanori; Nakamura, Yoshikatsu; Watanabe, Shigeaki; Murakami, Toshimitsu

    1978-01-01

    On the basis of the VLF (50 Hz -- 30 kHz) electric field data from the satellite ISIS, the following works carried out in The Radio Research Laboratories are described: deuteron whistler and whistler duct, detection of plasmapause by LHR hiss, and the origin of 5 kHz hiss at low/middle latitudes. The deuteron whistlers are observable distinctly only at low latitude because of gyro-frequency and the frequency resolution of spectral analyzers. Whistler echo occurs when a whistler moves back and forth through a duct along the line of magnetic force, so it is considered that the ISIS satellite crosses the duct. The variation in ion composition around plasmapause obtained through LHR hiss is explainable by the plasamapause position and the magnetic storm effect on the plasamapause. Concerning the narrow band hiss of 5 kHz +- 1.0 kHz frequently observed on the ground at low/middle latitudes, it may occur around plasmapause, propagate through the ionosphere and then to the ground in waveguide mode, or otherwise, it may occur above the ionosphere and then propagate directly to the ground penetrating through the ionosphere. (J.P.N.)

  13. Observations of urban and suburban environments with global satellite scatterometer data

    Science.gov (United States)

    Nghiem, S. V.; Balk, D.; Rodriguez, E.; Neumann, G.; Sorichetta, A.; Small, C.; Elvidge, C. D.

    A global and consistent characterization of land use and land change in urban and suburban environments is crucial for many fundamental social and natural science studies and applications. Presented here is a dense sampling method (DSM) that uses satellite scatterometer data to delineate urban and intraurban areas at a posting scale of about 1 km. DSM results are analyzed together with information on population and housing censuses, with Landsat Enhanced Thematic Mapper Plus (ETM+) imagery, and with Defense Meteorological Satellite Program (DMSP) night-light data. The analyses include Dallas-Fort Worth and Phoenix in the United States, Bogotá in Colombia, Dhaka in Bangladesh, Guangzhou in China, and Quito in Ecuador. Results show that scatterometer signatures correspond to buildings and infrastructures in urban and suburban environments. City extents detected by scatterometer data are significantly smaller than city light extents, but not all urban areas are detectable by the current SeaWinds scatterometer on the QuikSCAT satellite. Core commercial and industrial areas with high buildings and large factories are identified as high-backscatter centers. Data from DSM backscatter and DMSP nighttime lights have a good correlation with population density. However, the correlation relations from the two satellite datasets are different for different cities indicating that they contain complementary information. Together with night-light and census data, DSM and satellite scatterometer data provide new observations to study global urban and suburban environments and their changes. Furthermore, the capability of DSM to identify hydrological channels on the Greenland ice sheet and ecological biomes in central Africa demonstrates that DSM can be used to observe persistent structures in natural environments at a km scale, providing contemporaneous data to study human impacts beyond urban and suburban areas.

  14. Tidal acceleration of the moon deduced from observations of artificial satellites

    International Nuclear Information System (INIS)

    Goad, C.C.; Douglas, B.C.

    1977-01-01

    It is stated that the existence of an apparent latitude dependence of tidal friction has been demonstrated from perturbations of the inclinations of GEOS-1 and GEOS-2 satellites. This has been correctly explained as being due to neglect of ocean tide perturbations. Parameter values for some ocean tide components have been obtained from several satellites, but values for the M 2 tide, which gives rise to the dominant effect of the oceans on tidal acceleration of the moon, have not been published. It is stated that, using an improved method for computing mean parameters, the authors obtained an observation equation for the M 2 tide from the satellite 1967-92A, and applying this technique to the GEOS-3 satellite they obtained an additional observation equation for the M 2 tide. Solid and fluid tide effects on satellites cannot be separated, requiring the assumption of the solid tide amplitude and phase parameters for a fluid tide solution. Results are compared with earlier values. (U.K.)

  15. JEOS. The JANUS earth observation satellite

    Science.gov (United States)

    Molette, P.; Jouan, J.

    The JANUS multimission platform has been designed to minimize the cost of the satellite (by a maximum reuse of equipment from other proprogrammes) and of its associated launch by Aŕiane (by a piggy-back configuration optimized for Ariane 4). The paper describes the application of the JANUS platform to an Earth observation mission with the objective to provide a given country with a permanent monitoring of its earth resources by exploitation of spaceborne imagery. According to this objective, and to minimize the overall system and operational cost, the JANUS Earth Observation Satellite (JEOS) will provide a limited coverage with real time transmission of image data, thus avoiding need for on-board storage and simplifying operations. The JEOS operates on a low earth, near polar sun synchronous orbit. Launched in a piggy-back configuration on Ariane 4, with a SPOT or ERS spacecraft, it reaches its operational orbit after a drift orbit of a few weeks maximum. In its operational mode, the JEOS is 3-axis stabilised, earth pointed. After presentation of the platform, the paper describes the solid state push-broom camera which is composed of four optical lenses mounted on a highly stable optical bench. Each lens includes an optics system, reused from an on-going development, and two CCD linear arrays of detectors. The camera provides four registered channels in visible and near IR bands. The whole optical bench is supported by a rotating mechanism which allows rotation of the optical axis in the across-track direction. The JEOS typical performance for a 700 km altitude is then summarized: spatial resolution 30 m, swath width 120 km, off-track capability 325 km,… The payload data handling and transmission electronics, derived from the French SPOT satellite, realizes the processing, formatting, and transmission to the ground; this allows reuse of the standard SPOT receiving stations. The camera is only operated when the spacecraft is within the visibility of the ground

  16. Comparison of Satellite-Observed XCO2 from GOSAT, OCO-2, and Ground-Based TCCON

    Directory of Open Access Journals (Sweden)

    Ailin Liang

    2017-10-01

    Full Text Available CO2 is one of the most important greenhouse gases. Its concentration and distribution in the atmosphere have always been important in studying the carbon cycle and the greenhouse effect. This study is the first to validate the XCO2 of satellite observations with total carbon column observing network (TCCON data and to compare the global XCO2 distribution for the passive satellites Orbiting Carbon Observatory-2 (OCO-2 and Greenhouse Gases Observing Satellite (GOSAT, which are on-orbit greenhouse gas satellites. Results show that since GOSAT was launched in 2009, its mean measurement accuracy was −0.4107 ppm with an error standard deviation of 2.216 ppm since 2009, and has since decreased to −0.62 ppm with an error standard deviation of 2.3 ppm during the past two more years (2014–2016, while the mean measurement accuracy of the OCO-2 was 0.2671 ppm with an error standard deviation of 1.56 ppm from September 2014 to December 2016. GOSAT observations have recently decreased and lagged behind OCO-2 on the ability to monitor the global distribution and monthly detection of XCO2. Furthermore, the XCO2 values gathered by OCO-2 are higher by an average of 1.765 ppm than those by GOSAT. Comparison of the latitude gradient characteristics, seasonal fluctuation amplitude, and annual growth trend of the monthly mean XCO2 distribution also showed differences in values but similar line shapes between OCO-2 and GOSAT. When compared with the NOAA statistics, both satellites’ measurements reflect the growth trend of the global XCO2 at a low and smooth level, and reflect the seasonal fluctuation with an absolutely different line shape.

  17. Asian Dust Weather Categorization with Satellite and Surface Observations

    Science.gov (United States)

    Lin, Tang-Huang; Hsu, N. Christina; Tsay, Si-Chee; Huang, Shih-Jen

    2011-01-01

    This study categorizes various dust weather types by means of satellite remote sensing over central Asia. Airborne dust particles can be identified by satellite remote sensing because of the different optical properties exhibited by coarse and fine particles (i.e. varying particle sizes). If a correlation can be established between the retrieved aerosol optical properties and surface visibility, the intensity of dust weather can be more effectively and consistently discerned using satellite rather than surface observations. In this article, datasets consisting of collocated products from Moderate Resolution Imaging Spectroradiometer Aqua and surface measurements are analysed. The results indicate an exponential relationship between the surface visibility and the satellite-retrieved aerosol optical depth, which is subsequently used to categorize the dust weather. The satellite-derived spatial frequency distributions in the dust weather types are consistent with China s weather station reports during 2003, indicating that dust weather classification using satellite data is highly feasible. Although the period during the springtime from 2004 to 2007 may be not sufficient for statistical significance, our results reveal an increasing tendency in both intensity and frequency of dust weather over central Asia during this time period.

  18. Satellite observations of the northeast monsoon coastal current

    Digital Repository Service at National Institute of Oceanography (India)

    Shenoi, S.S.C.; Gouveia, A.D.; Shetye, S.R.; Rao, L.V.G.

    Satellite Infrared observations, from Advanced Very High Resolution Radiometer (AVHRR), during November 1987-February 1988 and hydrographic data from the eastern Arabian Sea are used to describe the poleward flowing coastal current in the eastern...

  19. International Ultraviolet Explorer satellite observations of seven high-excitation planetary nebulae.

    Science.gov (United States)

    Aller, L H; Keyes, C D

    1980-03-01

    Observations of seven high-excitation planetary nebulae secured with the International Ultraviolet Explorer (IUE) satellite were combined with extensive ground-based data to obtain electron densities, gas kinetic temperatures, and ionic concentrations. We then employed a network of theoretical model nebulae to estimate the factors by which observed ionic concentrations must be multiplied to obtain elemental abundances. Comparison with a large sample of nebulae for which extensive ground-based observations have been obtained shows nitrogen to be markedly enhanced in some of these objects. Possibly most, if not all, high-excitation nebulae evolve from stars that have higher masses than progenitors of nebulae of low-to-moderate excitation.

  20. Rocket and satellite observations of electric fields and ion convection in the dayside auroral ionosphere

    International Nuclear Information System (INIS)

    Marklund, G.; Heelis, R.A.

    1984-06-01

    Electric field observations from two high-altitude rocket flights in the polar cusp have been combined with satellite observations of ion drifts to infer details of the electric field and convection pattern of the dayside auroral ionosphere. A region of shear flow reversal can be inferred from the electric field observations on one flight near 15.30 MLT 20 minutes after the Dynamics Explorer 2 satellite crossed through the same region. The drift patterns observed by the two spacecrafts were very similar although shifted by 0.5 degrees, a shift which is expected from the observed change in the interplanetary magnetic field (IMF) B(sub)Z component during this time. A region of rotational flow reversal was covered by the other flight shortly after magnetic noon, at the same time the DE-2 satellite travelled along roughly the dawn-dusk meridian. By joining points of equal potential, integrated from the two datasets and assuming the reversal boundary to be an equipotential, the instantaneous convection pattern could be drawn showing crescent-shaped convection contours in the dusk cell and more circular shaped contours in the dawn cell. (author)

  1. Water resource monitoring systems and the role of satellite observations

    Directory of Open Access Journals (Sweden)

    A. I. J. M. van Dijk

    2011-01-01

    Full Text Available Spatial water resource monitoring systems (SWRMS can provide valuable information in support of water management, but current operational systems are few and provide only a subset of the information required. Necessary innovations include the explicit description of water redistribution and water use from river and groundwater systems, achieving greater spatial detail (particularly in key features such as irrigated areas and wetlands, and improving accuracy as assessed against hydrometric observations, as well as assimilating those observations. The Australian water resources assessment (AWRA system aims to achieve this by coupling landscape models with models describing surface water and groundwater dynamics and water use. A review of operational and research applications demonstrates that satellite observations can improve accuracy and spatial detail in hydrological model estimation. All operational systems use dynamic forcing, land cover classifications and a priori parameterisation of vegetation dynamics that are partially or wholly derived from remote sensing. Satellite observations are used to varying degrees in model evaluation and data assimilation. The utility of satellite observations through data assimilation can vary as a function of dominant hydrological processes. Opportunities for improvement are identified, including the development of more accurate and higher spatial and temporal resolution precipitation products, and the use of a greater range of remote sensing products in a priori model parameter estimation, model evaluation and data assimilation. Operational challenges include the continuity of research satellite missions and data services, and the need to find computationally-efficient data assimilation techniques. The successful use of observations critically depends on the availability of detailed information on observational error and understanding of the relationship between remotely-sensed and model variables, as

  2. Antartic sea ice, 1973 - 1976: Satellite passive-microwave observations

    Science.gov (United States)

    Zwally, H. J.; Comiso, J. C.; Parkinson, C. L.; Campbell, W. J.; Carsey, F. D.; Gloersen, P.

    1983-01-01

    Data from the Electrically Scanning Microwave Radiometer (ESMR) on the Nimbus 5 satellite are used to determine the extent and distribution of Antarctic sea ice. The characteristics of the southern ocean, the mathematical formulas used to obtain quantitative sea ice concentrations, the general characteristics of the seasonal sea ice growth/decay cycle and regional differences, and the observed seasonal growth/decay cycle for individual years and interannual variations of the ice cover are discussed. The sea ice data from the ESMR are presented in the form of color-coded maps of the Antarctic and the southern oceans. The maps show brightness temperatures and concentrations of pack ice averaged for each month, 4-year monthly averages, and month-to-month changes. Graphs summarizing the results, such as areas of sea ice as a function of time in the various sectors of the southern ocean are included. The images demonstrate that satellite microwave data provide unique information on large-scale sea ice conditions for determining climatic conditions in polar regions and possible global climatic changes.

  3. Simultaneous Observations of pi 2 Pulsations on the Satellite and Geound-Based Measurements

    Directory of Open Access Journals (Sweden)

    S. H. Lee

    1997-12-01

    Full Text Available We have investigated Pi2 pulsations which were observed both on ground magnetometer array and by satellites. On November 9th in 1994, pi2 pulsations appeared globally on the 190/210 magnetometer chain and Hermanus station when two satellites(EXOS-D and ETS-VI were located near the magnetic meridian of the 210 array. The local time of measurements covers form morning(LT=8.47hr to afternoon(LT=20.3hr and the bandwidth of peak frequency is found relatively small. The signals of the electric field measurement of board the EXOS-D, which is located inside the plasmasphere(L=2.35, are highly coherent with the ground-based observations with the out of phase oscillations. However, the magnetic field measurement on the ETS-VI in the outer magnetosphere(L=6.60 shows no signature of pi2 pulsations over the same time interval and the correlation with any of ground-based stations is found to be very weak, even though both satellites and magnetometer chain are located close to each other in local time. We suggest that this event may be a direct evidence of Pi2 pulsations as virtual resonant modes which are localized in the plasmasphere(Lee 1996. The results show that the cavity mode oscillations can occur in the inner magnetosphere with less spectral noise compared to the outer magnetospheric case.

  4. Storm Time Global Observations of Large-Scale TIDs From Ground-Based and In Situ Satellite Measurements

    Science.gov (United States)

    Habarulema, John Bosco; Yizengaw, Endawoke; Katamzi-Joseph, Zama T.; Moldwin, Mark B.; Buchert, Stephan

    2018-01-01

    This paper discusses the ionosphere's response to the largest storm of solar cycle 24 during 16-18 March 2015. We have used the Global Navigation Satellite Systems (GNSS) total electron content data to study large-scale traveling ionospheric disturbances (TIDs) over the American, African, and Asian regions. Equatorward large-scale TIDs propagated and crossed the equator to the other side of the hemisphere especially over the American and Asian sectors. Poleward TIDs with velocities in the range ≈400-700 m/s have been observed during local daytime over the American and African sectors with origin from around the geomagnetic equator. Our investigation over the American sector shows that poleward TIDs may have been launched by increased Lorentz coupling as a result of penetrating electric field during the southward turning of the interplanetary magnetic field, Bz. We have observed increase in SWARM satellite electron density (Ne) at the same time when equatorward large-scale TIDs are visible over the European-African sector. The altitude Ne profiles from ionosonde observations show a possible link that storm-induced TIDs may have influenced the plasma distribution in the topside ionosphere at SWARM satellite altitude.

  5. Landsat—Earth observation satellites

    Science.gov (United States)

    ,

    2015-11-25

    Since 1972, Landsat satellites have continuously acquired space-based images of the Earth’s land surface, providing data that serve as valuable resources for land use/land change research. The data are useful to a number of applications including forestry, agriculture, geology, regional planning, and education. Landsat is a joint effort of the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA). NASA develops remote sensing instruments and the spacecraft, then launches and validates the performance of the instruments and satellites. The USGS then assumes ownership and operation of the satellites, in addition to managing all ground reception, data archiving, product generation, and data distribution. The result of this program is an unprecedented continuing record of natural and human-induced changes on the global landscape.

  6. Mapping Surface Broadband Albedo from Satellite Observations: A Review of Literatures on Algorithms and Products

    Directory of Open Access Journals (Sweden)

    Ying Qu

    2015-01-01

    Full Text Available Surface albedo is one of the key controlling geophysical parameters in the surface energy budget studies, and its temporal and spatial variation is closely related to the global climate change and regional weather system due to the albedo feedback mechanism. As an efficient tool for monitoring the surfaces of the Earth, remote sensing is widely used for deriving long-term surface broadband albedo with various geostationary and polar-orbit satellite platforms in recent decades. Moreover, the algorithms for estimating surface broadband albedo from satellite observations, including narrow-to-broadband conversions, bidirectional reflectance distribution function (BRDF angular modeling, direct-estimation algorithm and the algorithms for estimating albedo from geostationary satellite data, are developed and improved. In this paper, we present a comprehensive literature review on algorithms and products for mapping surface broadband albedo with satellite observations and provide a discussion of different algorithms and products in a historical perspective based on citation analysis of the published literature. This paper shows that the observation technologies and accuracy requirement of applications are important, and long-term, global fully-covered (including land, ocean, and sea-ice surfaces, gap-free, surface broadband albedo products with higher spatial and temporal resolution are required for climate change, surface energy budget, and hydrological studies.

  7. Role of light satellites in the high-resolution Earth observation domain

    Science.gov (United States)

    Fishman, Moshe

    1999-12-01

    Current 'classic' applications using and exploring space based earth imagery are exclusive, narrow niche tailored, expensive and hardly accessible. On the other side new, inexpensive and widely used 'consumable' applications will be only developed concurrently to the availability of appropriate imagery allowing that process. A part of these applications can be imagined today, like WWW based 'virtual tourism' or news media, but the history of technological, cultural and entertainment evolution teaches us that most of future applications are unpredictable -- they emerge together with the platforms enabling their appearance. The only thing, which can be ultimately stated, is that the definitive condition for such applications is the availability of the proper imagery platform providing low cost, high resolution, large area, quick response, simple accessibility and quick dissemination of the raw picture. This platform is a constellation of Earth Observation satellites. Up to 1995 the Space Based High Resolution Earth Observation Domain was dominated by heavy, super-expensive and very inflexible birds. The launch of Israeli OFEQ-3 Satellite by MBT Division of Israel Aircraft Industries (IAI) marked the entrance to new era of light, smart and cheap Low Earth Orbited Imaging satellites. The Earth Resource Observation System (EROS) initiated by West Indian Space, is based on OFEQ class Satellites design and it is capable to gather visual data of Earth Surface both at high resolution and large image capacity. The main attributes, derived from its compact design, low weight and sophisticated logic and which convert the EROS Satellite to valuable and productive system, are discussed. The major advantages of Light Satellites in High Resolution Earth Observation Domain are presented and WIS guidelines featuring the next generation of LEO Imaging Systems are included.

  8. A new approach to estimate ice dynamic rates using satellite observations in East Antarctica

    Directory of Open Access Journals (Sweden)

    B. Kallenberg

    2017-05-01

    Full Text Available Mass balance changes of the Antarctic ice sheet are of significant interest due to its sensitivity to climatic changes and its contribution to changes in global sea level. While regional climate models successfully estimate mass input due to snowfall, it remains difficult to estimate the amount of mass loss due to ice dynamic processes. It has often been assumed that changes in ice dynamic rates only need to be considered when assessing long-term ice sheet mass balance; however, 2 decades of satellite altimetry observations reveal that the Antarctic ice sheet changes unexpectedly and much more dynamically than previously expected. Despite available estimates on ice dynamic rates obtained from radar altimetry, information about ice sheet changes due to changes in the ice dynamics are still limited, especially in East Antarctica. Without understanding ice dynamic rates, it is not possible to properly assess changes in ice sheet mass balance and surface elevation or to develop ice sheet models. In this study we investigate the possibility of estimating ice sheet changes due to ice dynamic rates by removing modelled rates of surface mass balance, firn compaction, and bedrock uplift from satellite altimetry and gravity observations. With similar rates of ice discharge acquired from two different satellite missions we show that it is possible to obtain an approximation of the rate of change due to ice dynamics by combining altimetry and gravity observations. Thus, surface elevation changes due to surface mass balance, firn compaction, and ice dynamic rates can be modelled and correlated with observed elevation changes from satellite altimetry.

  9. Multi-Satellite Orbit Determination Using Interferometric Observables with RF Localization Applications

    Science.gov (United States)

    Geeraert, Jeroen L.

    Very long baseline interferometry (VLBI) specifically same-beam interferometry (SBI), and dual-satellite geolocation are two fields of research not previously connected. This is due to the different application of each field, SBI is used for relative interplanetary navigation of two satellites while dual-satellite geolocation is used to locate the source of a radio frequency (RF) signal. In this dissertation however, we leverage both fields to create a novel method for multi-satellite orbit determination (OD) using time difference of arrival (TDOA) and frequency difference of arrival (FDOA) measurements. The measurements are double differenced between the satellites and the stations, in so doing, many of the common errors are canceled which can significantly improve measurement precision. Provided with this novel OD technique, the observability is first analyzed to determine the benefits and limitations of this method. In all but a few scenarios the measurements successfully reduce the covariance when examining the Cramer-Rao Lower Bound (CRLB). Reduced observability is encountered with geostationary satellites as their motion with respect to the stations is limited, especially when only one baseline is used. However, when using satellite pairs with greater relative motion with respect to the stations, even satellites that are close to, but not exactly in a geostationary orbit can be estimated accurately. We find that in a strong majority of cases the OD technique provides lower uncertainties and solutions far more accurate than using conventional OD observables such as range and range-rate while also not being affected by common errors and biases. We specifically examine GEO-GEO, GEO-MEO, and GEO-LEO dual-satellite estimation cases. The work is further extended by developing a relative navigation scenario where the chief satellite is assumed to have perfect knowledge, or some small amount of uncertainty considered but not estimated, while estimating the deputy

  10. Co-ordination of satellite and data programs: The committee on earth observation satellites' approach

    Science.gov (United States)

    Embleton, B. J. J.; Kingwell, J.

    1997-01-01

    Every year, an average of eight new civilian remote sensing satellite missions are launched. Cumulatively, over 250 such missions, each with a cost equivalent in current value to between US 100 million to US 1000 million, have been sponsored by space agencies in perhaps two dozen countries. These missions produce data and information products which are vital for informed decision making all over the world, on matters relating to natural resource exploitation, health and safety, sustainable national development, infrastructure planning, and a host of other applications. By contributing to better scientific understanding of global changes in the atmosphere, land surface, oceans and ice caps, these silently orbiting sentinels in the sky make it possible for governments and industries to make wiser environmental policy decisions and support the economic development needs of humanity. The international Committee on Earth Observation Satellites (CEOS) is the premier world body for co-ordinating and planning civilian satellite missions for Earth observation. Through its technical working groups and special task teams, it endeavours to: • maximise the international benefits from Earth observation satellites; and • harmonise practice in calibration, validation, data management and information systems for Earth observation. CEOS encompasses not only space agencies (data providers), but also the great international scientific and operational programs which rely on Earth science data from space. The user organisations affiliated with CEOS, together with the mission operators, attempt to reconcile user needs with the complex set of considerations — including national interests, cost, schedule — which affect the undertaking of space missions. Without such an internationally co-ordinated consensual approach, there is a much greater risk of waste through duplication, and of missed opportunity, or through the absence of measurements of some vital physical or biological

  11. Regional scale variations of atmospheric CO2 and CH4 from satellite observation

    International Nuclear Information System (INIS)

    Ru, F; Lei, L; Guan, X; Bu, R; Qi, J

    2014-01-01

    To identify the sources, sinks and changes of atmospheric CO 2 and CH 4 , this study investigates the spatio-temporal changes of atmospheric CO 2 and CH 4 concentration on the regional scale by the satellite observations. In this paper, choosing the land region of China as the study area, we investigate the spatio-temporal changes of atmospheric CO 2 and CH 4 concentrations using the data of the CO 2 dry air mixing ratio (XCO 2 ), and the CH 4 dry air mixing ratio (XCH 4 ), retrieved by the Greenhouse Gases Observing Satellite (GOSAT) from Jan. 2010 to Dec. 2012. The results show that (1) both XCO 2 and XCH 4 show higher concentrations in southeastern regions than that in the northwestern, and tend to yearly increasing from 2010 to 2013; (2) XCO 2 shows obvious seasonal change with higher values in the spring than that in summer. The seasonal peak-to-peak amplitude is 8 ppm and the annual growth is about 2 ppm. XCH 4 , however, does not show a seasonal change; (3) With regard to different land-use backgrounds, XCO 2 shows larger concentrations over the areas of urban agglomeration than that over the grasslands and deserts, and XCH 4 shows lower concentrations over deserts than that over the Yangtze River Delta region and Sichuan Basin

  12. Sea level change along the Black Sea coast from satellite altimetry, tide gauge and GPS observations

    Directory of Open Access Journals (Sweden)

    Nevin B. Avsar

    2016-01-01

    Full Text Available Sea level change affects human living conditions, particularly ocean coasts. However, sea level change is still unclear along the Black Sea coast due to lack of in-situ measurements and low resolution satellite data. In this paper, sea level change along the Black Sea coast is investigated from joint satellite altimetry, tide gauge (TG and Global Positioning System (GPS observations. The linear trend and seasonal components of sea level change are estimated at 8 TG stations (Amasra, Igneada, Trabzon-II, Sinop, Sile, Poti, Tuapse, and Batumi located along the Black Sea coast, which are compared with Satellite Altimetry and GPS. At the tide gauge stations with long-term records such as Poti (about 21 years and Tuapse (about 19 years, the results obtained from the satellite altimetry and tide gauge observations show a remarkably good agreement. While some big differences are existed between Satellite Altimetry and TG at other stations, after adding vertical motion from GPS, correlation coefficients of the trend have been greatly improved from 0.37 to 0.99 at 3 co-located GPS and TG stations (Trabzon-II, Sinop and Sile.

  13. Global observations of tropospheric BrO columns using GOME-2 satellite data

    Science.gov (United States)

    Theys, N.; van Roozendael, M.; Hendrick, F.; Yang, X.; de Smedt, I.; Richter, A.; Begoin, M.; Errera, Q.; Johnston, P. V.; Kreher, K.; de Mazière, M.

    2011-02-01

    Measurements from the GOME-2 satellite instrument have been analyzed for tropospheric BrO using a residual technique that combines measured BrO columns and estimates of the stratospheric BrO content from a climatological approach driven by O3 and NO2 observations. Comparisons between the GOME-2 results and BrO vertical columns derived from correlative ground-based and SCIAMACHY nadir observations, present a good level of consistency. We show that the adopted technique enables separation of stratospheric and tropospheric fractions of the measured total BrO columns and allows quantitative study of the BrO plumes in polar regions. While some satellite observed plumes of enhanced BrO can be explained by stratospheric descending air, we show that most BrO hotspots are of tropospheric origin, although they are often associated to regions with low tropopause heights as well. Elaborating on simulations using the p-TOMCAT tropospheric chemical transport model, this result is found to be consistent with the mechanism of bromine release through sea salt aerosols production during blowing snow events. No definitive conclusion can be drawn however on the importance of blowing snow sources in comparison to other bromine release mechanisms. Outside polar regions, evidence is provided for a global tropospheric BrO background with column of 1-3 × 1013 molec cm-2, consistent with previous estimates.

  14. Precipitation characteristics in tropical Africa using satellite and in situ observations

    Science.gov (United States)

    Dezfuli, A. K.; Ichoku, I.; Huffman, G. J.; Mohr, K. I.

    2017-12-01

    Tropical Africa receives nearly all its precipitation as a result of convection. The characteristics of rain-producing systems in this region have not been well-understood, despite their crucial role in regional and global circulation. This is mainly due to the lack of in situ observations. Here, we have used precipitation records from the Trans-African Hydro-Meteorological Observatory (TAHMO) ground-based gauge network to improve our knowledge about the rainfall systems in the region, and to validate the recently-released IMERG precipitation product based on satellite observations from the Global Precipitation Measurement (GPM) constellation. The high temporal resolution of the gauge data has allowed us to identify three classes of rain events based on their duration and intensity. The contribution of each class to the total rainfall and the favorable surface atmospheric conditions for each class have been examined. As IMERG aims to continue the legacy of its predecessor, TRMM Multi-Satellite Precipitation Analysis (TMPA), and provide higher resolution data, continent-wide comparisons are made between these two products. Due to its improved temporal resolution, IMERG shows some advantages over TMPA in capturing the diurnal cycle and propagation of the meso-scale convective systems. However, the performance of the two satellite-based products varies by season, region and the evaluation statistics. The results of this study serve as a basis for our ongoing work on the impacts of biomass burning on precipitation processes in Africa.

  15. Characterizing the Asian Tropopause Aerosol Layer (ATAL) Using Satellite Observations, Balloon Measurements and a Chemical Transport Model

    Science.gov (United States)

    Fairlie, T. D.; Vernier, J.-P.; Liu, H.; Deshler, T.; Natarajan, M.; Bedka, K.; Wegner, T.; Baker, N.; Gadhavi, H.; Ratnam, M. V.; hide

    2016-01-01

    Satellite observations and numerical modeling studies have demonstrated that the Asian Summer Monsoon (ASM) provide a conduit for gas-phase pollutants in south Asia to reach the lower stratosphere. Now, observations from the CALIPSO satellite have revealed the Asian Tropopause Aerosol Layer (ATAL), a summertime accumulation of aerosols in the upper troposphere and lower stratosphere (UTLS), associated with the ASM anticyclone. The ATAL has potential implications for regional cloud properties, climate, and chemical processes in the UTLS. Here, we show in situ measurements from balloon-borne instruments, aircraft, and satellite observations, together with trajectory and chemical transport model (CTM) simulations to explore the origin, composition, physical, and optical properties of aerosols in the ATAL. In particular, we show balloon-data from our BATAL-2015 field campaign to India and Saudi Arabia in summer 2015, which includes in situ backscatter measurements from COBALD instruments, and the first observations of size and volatility of aerosols in the ATAL layer using optical particle counters (OPCs). Back trajectory calculations initialized from CALIPSO observations point to deep convection over North India as a principal source of ATAL aerosols. Available aircraft observations suggest significant sulfur and carbonaceous components to the ATAL, which is supported by simulations using the GEOS-Chem CTM. Source elimination studies conducted with the GEOS-Chem indicate that ATAL aerosols originate primary from south Asian sources, in contrast with some earlier studies.

  16. Size and Albedo of Irregular Saturnian Satellites from Spitzer Observations

    Science.gov (United States)

    Mueller, Michael; Grav, T.; Trilling, D.; Stansberry, J.; Sykes, M.

    2008-09-01

    Using MIPS onboard the Spitzer Space Telescope, we observed the thermal emission (24 and, for some targets, 70 um) of eight irregular satellites of Saturn: Albiorix, Siarnaq, Paaliaq, Kiviuq, Ijiraq, Tarvos, Erriapus, and Ymir. We determined the size and albedo of all targets. An analysis of archived MIPS observations of Phoebe reproduces Cassini results very accurately, thereby validating our method. For all targets, the geometric albedo is found to be low, probably below 10% and clearly below 15%. Irregular satellites are much darker than the large regular satellites. Their albedo is, however, quite similar to that of small bodies in the outer Solar System (such as cometary nuclei, Jupiter Trojans, or TNOs). This is consistent with color measurements as well as dynamical considerations which suggest a common origin of the said populations. There appear to be significant object-to-object albedo differences. Similar albedos found for some members of dynamical clusters support the idea that they may have originated in the breakup of a parent body. For three satellites, thermal data at two wavelengths are available, enabling us to constrain their thermal properties. Sub-solar temperatures are similar to that found from Cassini's Phoebe fly-by. This suggests a rather low thermal inertia, as expected for regolith-covered objects. This work is based on observations made with the Spitzer Space Telescope, which is operated by JPL under a contract with NASA. Support for this work was provided by NASA.

  17. Ground-based observations coordinated with Viking satellite measurements

    International Nuclear Information System (INIS)

    Opgenoorth, H.J.; Kirkwood, S.

    1989-01-01

    The instrumentation and the orbit of the Viking satellite made this first Swedish satellite mission ideally suited for coordinated observations with the dense network of ground-based stations in northern Scandinavia. Several arrays of complementing instruments such as magnetometers, all-sky cameras, riometers and doppler radars monitored on a routine basis the ionosphere under the magnetospheric region passed by Viking. For a large number of orbits the Viking passages close to Scandinavia were covered by the operation of specially designed programmes at the European incoherent-scatter facility (EISCAT). First results of coordinated observations on the ground and aboard Viking have shed new light on the most spectacular feature of substorm expansion, the westward-travelling surge. The end of a substorm and the associated decay of a westward-travelling surge have been analysed. EISCAT measurements of high spatial and temporal resolution indicate that the conductivities and electric fields associated with westward-travelling surges are not represented correctly by the existing models. (author)

  18. Flare observation by the satellite 'Hinotori'

    International Nuclear Information System (INIS)

    Tanaka, Toshio

    1981-01-01

    The satellite ''Hinotori'' makes 5 rounds a day and is doing flare observation. The total observation days amounted to 94 days. Among the observed flares, the quiet mode flares were picked up from the reproduced data. The plot of the time variation of flares was obtained for four energy bands, HXM-1 (17 to 40 keV), HXM2 - 7 (over 40 keV), FLM-L (1 to 5 keV) and FLM-H (5 to 12 keV). At present, the judge of flares is made by using hard X-ray of the HXM-1 plot. False signals were completely removed. A large percentage of big flares was collected by Hinotori, eleven X-class flares were recorded. The operation status of ''Hinotori'' has been in good condition. The spin frequency has increased with a constant rate. (Kato, T.)

  19. SATELLITE OBSERVATIONS FOR EDUCATION OF CLIMATE CHANGE

    Directory of Open Access Journals (Sweden)

    ILONA PAJTÓK-TARI

    2011-03-01

    Full Text Available This paper surveys the key statements of the IPCC (2007 Reportbased mainly on the satellite-borne observations to support teaching climatechange and geography by using the potential of this technology. In theIntroduction we briefly specify the potential and the constraints of remote sensing.Next the key climate variables for indicating the changes are surveyed. Snow andsea-ice changes are displayed as examples for these applications. Testing theclimate models is a two-sided task involving satellites, as well. Validation of theability of reconstructing the present climate is the one side of the coin, whereassensitivity of the climate system is another key task, leading to consequences onthe reality of the projected changes. Finally some concluding remarks arecompiled, including a few ideas on the ways how these approaches can be appliedfor education of climate change.

  20. Using Deep Learning for Targeted Data Selection, Improving Satellite Observation Utilization for Model Initialization

    Science.gov (United States)

    Lee, Y. J.; Bonfanti, C. E.; Trailovic, L.; Etherton, B.; Govett, M.; Stewart, J.

    2017-12-01

    At present, a fraction of all satellite observations are ultimately used for model assimilation. The satellite data assimilation process is computationally expensive and data are often reduced in resolution to allow timely incorporation into the forecast. This problem is only exacerbated by the recent launch of Geostationary Operational Environmental Satellite (GOES)-16 satellite and future satellites providing several order of magnitude increase in data volume. At the NOAA Earth System Research Laboratory (ESRL) we are researching the use of machine learning the improve the initial selection of satellite data to be used in the model assimilation process. In particular, we are investigating the use of deep learning. Deep learning is being applied to many image processing and computer vision problems with great success. Through our research, we are using convolutional neural network to find and mark regions of interest (ROI) to lead to intelligent extraction of observations from satellite observation systems. These targeted observations will be used to improve the quality of data selected for model assimilation and ultimately improve the impact of satellite data on weather forecasts. Our preliminary efforts to identify the ROI's are focused in two areas: applying and comparing state-of-art convolutional neural network models using the analysis data from the National Center for Environmental Prediction (NCEP) Global Forecast System (GFS) weather model, and using these results as a starting point to optimize convolution neural network model for pattern recognition on the higher resolution water vapor data from GOES-WEST and other satellite. This presentation will provide an introduction to our convolutional neural network model to identify and process these ROI's, along with the challenges of data preparation, training the model, and parameter optimization.

  1. Sentinel-2: next generation satellites for optical land observation from space

    Science.gov (United States)

    Lautenschläger, G.; Gessner, R.; Gockel, W.; Haas, C.; Schweickert, G.; Bursch, S.; Welsch, M.; Sontag, H.

    2013-10-01

    The first Sentinel-2 satellites, which constitute the next generation of operational Earth observation satellites for optical land monitoring from space, are undergoing completion in the facilities at Astrium ready for launch end 2014. Sentinel-2 will feature a major breakthrough in the area of optical land observation since it will for the first time enable continuous and systematic acquisition of all land surfaces world-wide with the Multi-Spectral Instrument (MSI), thus providing the basis for a truly operational service. Flying in the same orbital plane and spaced at 180°, the constellation of two satellites, designed for an in-orbit nominal operational lifetime of 7 years each, will acquire all land surfaces in only 5 days at the equator. In order to support emergency operations, the satellites can further be operated in an extended observation mode allowing to image any point on Earth even on a daily basis. MSI acquires images in 13 spectral channels from Visible-to-Near Infrared (VNIR) to Short Wave Infrared (SWIR) with a swath of almost 300 km on ground and a spatial resolution up to 10 m. The data ensure continuity to the existing data sets produced by the series of Landsat and SPOT satellites, and will further provide detailed spectral information to enable derivation of biophysical or geophysical products. Excellent geometric image quality performances are achieved with geolocation better than 16 m, thanks to an innovative instrument design in conjunction with a high-performance satellite AOCS subsystem centered around a 2-band GPS receiver, high-performance star trackers and a fiberoptic gyro. To cope with the high data volume on-board, data are compressed using a state-of-the-art wavelet compression scheme. Thanks to a powerful mission data handling system built around a newly developed very large solid-state mass memory based on flash technology, on-board compression losses will be kept to a minimum. The Sentinel-2 satellite design features a highly

  2. Global observations of tropospheric BrO columns using GOME-2 satellite data

    Directory of Open Access Journals (Sweden)

    N. Theys

    2011-02-01

    Full Text Available Measurements from the GOME-2 satellite instrument have been analyzed for tropospheric BrO using a residual technique that combines measured BrO columns and estimates of the stratospheric BrO content from a climatological approach driven by O3 and NO2 observations. Comparisons between the GOME-2 results and BrO vertical columns derived from correlative ground-based and SCIAMACHY nadir observations, present a good level of consistency. We show that the adopted technique enables separation of stratospheric and tropospheric fractions of the measured total BrO columns and allows quantitative study of the BrO plumes in polar regions. While some satellite observed plumes of enhanced BrO can be explained by stratospheric descending air, we show that most BrO hotspots are of tropospheric origin, although they are often associated to regions with low tropopause heights as well. Elaborating on simulations using the p-TOMCAT tropospheric chemical transport model, this result is found to be consistent with the mechanism of bromine release through sea salt aerosols production during blowing snow events. No definitive conclusion can be drawn however on the importance of blowing snow sources in comparison to other bromine release mechanisms. Outside polar regions, evidence is provided for a global tropospheric BrO background with column of 1–3 × 1013 molec cm−2, consistent with previous estimates.

  3. Challenges of coordinating global climate observations - Role of satellites in climate monitoring

    Science.gov (United States)

    Richter, C.

    2017-12-01

    Global observation of the Earth's atmosphere, ocean and land is essential for identifying climate variability and change, and for understanding their causes. Observation also provides data that are fundamental for evaluating, refining and initializing the models that predict how the climate system will vary over the months and seasons ahead, and that project how climate will change in the longer term under different assumptions concerning greenhouse gas emissions and other human influences. Long-term observational records have enabled the Intergovernmental Panel on Climate Change to deliver the message that warming of the global climate system is unequivocal. As the Earth's climate enters a new era, in which it is forced by human activities, as well as natural processes, it is critically important to sustain an observing system capable of detecting and documenting global climate variability and change over long periods of time. High-quality climate observations are required to assess the present state of the ocean, cryosphere, atmosphere and land and place them in context with the past. The global observing system for climate is not a single, centrally managed observing system. Rather, it is a composite "system of systems" comprising a set of climate-relevant observing, data-management, product-generation and data-distribution systems. Data from satellites underpin many of the Essential Climate Variables(ECVs), and their historic and contemporary archives are a key part of the global climate observing system. In general, the ECVs will be provided in the form of climate data records that are created by processing and archiving time series of satellite and in situ measurements. Early satellite data records are very valuable because they provide unique observations in many regions which were not otherwise observed during the 1970s and which can be assimilated in atmospheric reanalyses and so extend the satellite climate data records back in time.

  4. Establishing the Antarctic Dome C community reference standard site towards consistent measurements from Earth observation satellites

    Science.gov (United States)

    Cao, C.; Uprety, S.; Xiong, J.; Wu, A.; Jing, P.; Smith, D.; Chander, G.; Fox, N.; Ungar, S.

    2010-01-01

    Establishing satellite measurement consistency by using common desert sites has become increasingly more important not only for climate change detection but also for quantitative retrievals of geophysical variables in satellite applications. Using the Antarctic Dome C site (75°06′S, 123°21′E, elevation 3.2 km) for satellite radiometric calibration and validation (Cal/Val) is of great interest owing to its unique location and characteristics. The site surface is covered with uniformly distributed permanent snow, and the atmospheric effect is small and relatively constant. In this study, the long-term stability and spectral characteristics of this site are evaluated using well-calibrated satellite instruments such as the Moderate Resolution Imaging Spectroradiometer (MODIS) and Sea-viewing Wide Field-of-view Sensor (SeaWiFS). Preliminary results show that despite a few limitations, the site in general is stable in the long term, the bidirectional reflectance distribution function (BRDF) model works well, and the site is most suitable for the Cal/Val of reflective solar bands in the 0.4–1.0 µm range. It was found that for the past decade, the reflectivity change of the site is within 1.35% at 0.64 µm, and interannual variability is within 2%. The site is able to resolve calibration biases between instruments at a level of ~1%. The usefulness of the site is demonstrated by comparing observations from seven satellite instruments involving four space agencies, including OrbView-2–SeaWiFS, Terra–Aqua MODIS, Earth Observing 1 (EO-1) – Hyperion, Meteorological Operational satellite programme (MetOp) – Advanced Very High Resolution Radiometer (AVHRR), Envisat Medium Resolution Imaging Spectrometer (MERIS) – dvanced Along-Track Scanning Radiometer (AATSR), and Landsat 7 Enhanced Thematic Mapper Plus (ETM+). Dome C is a promising candidate site for climate quality calibration of satellite radiometers towards more consistent satellite measurements, as part

  5. Satellite observation analysis of aerosols loading effect over Monrovia-Liberia

    International Nuclear Information System (INIS)

    Emetere, M E; Esisio, F; Oladapo, F

    2017-01-01

    The effect of aerosols loading most often results in aerosols retention in the atmosphere. Aside the health hazards of aerosol retention, its effect on climate change are visible. In this research, it was proposed that the effect of aerosol retention also affects rain pattern. The Tropical Rainfall Measuring Mission (TRMM) layer 3 observations and the multi-imaging spectro-reflectometer (MISR) was used for the study. The aerosols loading over were investigated using sixteen years satellite observation in Monrovia-Liberia. Its effect on the rain rate over the region was documented. The results show that aerosol loading over the region is high and may have effect on farming in the nearest future. It was affirmed that the scanty AOD data was as a result of the rain rate that is higher within May and October. (paper)

  6. Satellite observation analysis of aerosols loading effect over Monrovia-Liberia

    Science.gov (United States)

    Emetere, M. E.; Esisio, F.; Oladapo, F.

    2017-05-01

    The effect of aerosols loading most often results in aerosols retention in the atmosphere. Aside the health hazards of aerosol retention, its effect on climate change are visible. In this research, it was proposed that the effect of aerosol retention also affects rain pattern. The Tropical Rainfall Measuring Mission (TRMM) layer 3 observations and the multi-imaging spectro-reflectometer (MISR) was used for the study. The aerosols loading over were investigated using sixteen years satellite observation in Monrovia-Liberia. Its effect on the rain rate over the region was documented. The results show that aerosol loading over the region is high and may have effect on farming in the nearest future. It was affirmed that the scanty AOD data was as a result of the rain rate that is higher within May and October.

  7. Satellite Observations of Volcanic Clouds from the Eruption of Redoubt Volcano, Alaska, 2009

    Science.gov (United States)

    Dean, K. G.; Ekstrand, A. L.; Webley, P.; Dehn, J.

    2009-12-01

    Redoubt Volcano began erupting on 23 March 2009 (UTC) and consisted of 19 events over a 14 day period. The volcano is located on the Alaska Peninsula, 175 km southwest of Anchorage, Alaska. The previous eruption was in 1989/1990 and seriously disrupted air traffic in the region, including the near catastrophic engine failure of a passenger airliner. Plumes and ash clouds from the recent eruption were observed on a variety of satellite data (AVHRR, MODIS and GOES). The eruption produced volcanic clouds up to 19 km which are some of the highest detected in recent times in the North Pacific region. The ash clouds primarily drifted north and east of the volcano, had a weak ash signal in the split window data and resulted in light ash falls in the Cook Inlet basin and northward into Alaska’s Interior. Volcanic cloud heights were measured using ground-based radar, and plume temperature and wind shear methods but each of the techniques resulted in significant variations in the estimates. Even though radar showed the greatest heights, satellite data and wind shears suggest that the largest concentrations of ash may be at lower altitudes in some cases. Sulfur dioxide clouds were also observed on satellite data (OMI, AIRS and Calipso) and they primarily drifted to the east and were detected at several locations across North America, thousands of kilometers from the volcano. Here, we show time series data collected by the Alaska Volcano Observatory, illustrating the different eruptive events and ash clouds that developed over the subsequent days.

  8. Pre-seismic anomalies from optical satellite observations: a review

    Science.gov (United States)

    Jiao, Zhong-Hu; Zhao, Jing; Shan, Xinjian

    2018-04-01

    Detecting various anomalies using optical satellite data prior to strong earthquakes is key to understanding and forecasting earthquake activities because of its recognition of thermal-radiation-related phenomena in seismic preparation phases. Data from satellite observations serve as a powerful tool in monitoring earthquake preparation areas at a global scale and in a nearly real-time manner. Over the past several decades, many new different data sources have been utilized in this field, and progressive anomaly detection approaches have been developed. This paper reviews the progress and development of pre-seismic anomaly detection technology in this decade. First, precursor parameters, including parameters from the top of the atmosphere, in the atmosphere, and on the Earth's surface, are stated and discussed. Second, different anomaly detection methods, which are used to extract anomalous signals that probably indicate future seismic events, are presented. Finally, certain critical problems with the current research are highlighted, and new developing trends and perspectives for future work are discussed. The development of Earth observation satellites and anomaly detection algorithms can enrich available information sources, provide advanced tools for multilevel earthquake monitoring, and improve short- and medium-term forecasting, which play a large and growing role in pre-seismic anomaly detection research.

  9. HIMAWARI-8 Geostationary Satellite Observation of the Internal Solitary Waves in the South China Sea

    Science.gov (United States)

    Gao, Q.; Dong, D.; Yang, X.; Husi, L.; Shang, H.

    2018-04-01

    The new generation geostationary meteorological satellite, Himawari-8 (H-8), was launched in 2015. Its main payload, the Advanced Himawari Imager (AHI), can observe the earth with 10-minute interval and as high as 500-m spatial resolution. This makes the H-8 satellite an ideal data source for marine and atmospheric phenomena monitoring. In this study, the propagation of internal solitary waves (ISWs) in the South China Sea is investigated using AHI imagery time series for the first time. Three ISWs cases were studied at 3:30-8:00 UTC on 30 May, 2016. In all, 28 ISWs were detected and tracked between the time series image pairs. The propagation direction and phase speeds of these ISWs are calculated and analyzed. The observation results show that the properties of ISW propagation not stable and maintains nonlinear during its lifetime. The resultant ISW speeds agree well with the theoretical values estimated from the Taylor-Goldstein equation using Argo dataset. This study has demonstrated that the new generation geostationary satellite can be a useful tool to monitor and investigate the oceanic internal waves.

  10. Climatology of GPS signal loss observed by Swarm satellites

    Directory of Open Access Journals (Sweden)

    C. Xiong

    2018-04-01

    Full Text Available By using 3-year global positioning system (GPS measurements from December 2013 to November 2016, we provide in this study a detailed survey on the climatology of the GPS signal loss of Swarm onboard receivers. Our results show that the GPS signal losses prefer to occur at both low latitudes between ±5 and ±20° magnetic latitude (MLAT and high latitudes above 60° MLAT in both hemispheres. These events at all latitudes are observed mainly during equinoxes and December solstice months, while totally absent during June solstice months. At low latitudes the GPS signal losses are caused by the equatorial plasma irregularities shortly after sunset, and at high latitude they are also highly related to the large density gradients associated with ionospheric irregularities. Additionally, the high-latitude events are more often observed in the Southern Hemisphere, occurring mainly at the cusp region and along nightside auroral latitudes. The signal losses mainly happen for those GPS rays with elevation angles less than 20°, and more commonly occur when the line of sight between GPS and Swarm satellites is aligned with the shell structure of plasma irregularities. Our results also confirm that the capability of the Swarm receiver has been improved after the bandwidth of the phase-locked loop (PLL widened, but the updates cannot radically avoid the interruption in tracking GPS satellites caused by the ionospheric plasma irregularities. Additionally, after the PLL bandwidth increased larger than 0.5 Hz, some unexpected signal losses are observed even at middle latitudes, which are not related to the ionospheric plasma irregularities. Our results suggest that rather than 1.0 Hz, a PLL bandwidth of 0.5 Hz is a more suitable value for the Swarm receiver.

  11. Climatology of GPS signal loss observed by Swarm satellites

    Science.gov (United States)

    Xiong, Chao; Stolle, Claudia; Park, Jaeheung

    2018-04-01

    By using 3-year global positioning system (GPS) measurements from December 2013 to November 2016, we provide in this study a detailed survey on the climatology of the GPS signal loss of Swarm onboard receivers. Our results show that the GPS signal losses prefer to occur at both low latitudes between ±5 and ±20° magnetic latitude (MLAT) and high latitudes above 60° MLAT in both hemispheres. These events at all latitudes are observed mainly during equinoxes and December solstice months, while totally absent during June solstice months. At low latitudes the GPS signal losses are caused by the equatorial plasma irregularities shortly after sunset, and at high latitude they are also highly related to the large density gradients associated with ionospheric irregularities. Additionally, the high-latitude events are more often observed in the Southern Hemisphere, occurring mainly at the cusp region and along nightside auroral latitudes. The signal losses mainly happen for those GPS rays with elevation angles less than 20°, and more commonly occur when the line of sight between GPS and Swarm satellites is aligned with the shell structure of plasma irregularities. Our results also confirm that the capability of the Swarm receiver has been improved after the bandwidth of the phase-locked loop (PLL) widened, but the updates cannot radically avoid the interruption in tracking GPS satellites caused by the ionospheric plasma irregularities. Additionally, after the PLL bandwidth increased larger than 0.5 Hz, some unexpected signal losses are observed even at middle latitudes, which are not related to the ionospheric plasma irregularities. Our results suggest that rather than 1.0 Hz, a PLL bandwidth of 0.5 Hz is a more suitable value for the Swarm receiver.

  12. Investigation of snow cover dust pollution by contact and satellite observations

    Science.gov (United States)

    Raputa, Vladimir F.; Yaroslavtseva, Tatyana V.

    2015-11-01

    The problems of reconstructing the snow cover pollution fields from dusting, point, linear and area sources according to ground and satellite observations are considered. Using reconstruction models, the methods of the combined analysis of the characteristic images of snow cover pollution haloes in the vicinity of sources of dust and contact data observations have been developed. On the basis of the numerical data analysis of ground monitoring and satellite imagery, the stable quantitative regularities between the fields of dust fallouts and the intensity of a change of tones of gray in the radial directions relative to the main sources are identified.

  13. The high resolution optical instruments for the Pleiades HR Earth observation satellites

    Science.gov (United States)

    Gaudin-Delrieu, Catherine; Lamard, Jean-Luc; Cheroutre, Philippe; Bailly, Bruno; Dhuicq, Pierre; Puig, Olivier

    2017-11-01

    Coming after the SPOT satellites series, PLEIADESHR is a CNES optical high resolution satellite dedicated to Earth observation, part of a larger optical and radar multi-sensors system, ORFEO, which is developed in cooperation between France and Italy for dual Civilian and Defense use. The development of the two PLEIADES-HR cameras was entrusted by CNES to Thales Alenia Space. This new generation of instrument represents a breakthrough in comparison with the previous SPOT instruments owing to a significant step in on-ground resolution, which approaches the capabilities of aerial photography. The PLEIADES-HR instrument program benefits from Thales Alenia Space long and successful heritage in Earth observation from space. The proposed solution benefits from an extensive use of existing products, Cannes Space Optics Centre facilities, unique in Europe, dedicated to High Resolution instruments. The optical camera provides wide field panchromatic images supplemented by 4 multispectral channels with narrow spectral bands. The optical concept is based on a four mirrors Korsch telescope. Crucial improvements in detector technology, optical fabrication and electronics make it possible for the PLEIADES-HR instrument to achieve the image quality requirements while respecting the drastic limitations of mass and volume imposed by the satellite agility needs and small launchers compatibility. The two flight telescopes were integrated, aligned and tested. After the integration phase, the alignment, mainly based on interferometric measurements in vacuum chamber, was successfully achieved within high accuracy requirements. The wave front measurements show outstanding performances, confirmed, after the integration of the PFM Detection Unit, by MTF measurements on the Proto-Flight Model Instrument. Delivery of the proto flight model occurred mi-2008. The FM2 Instrument delivery is planned Q2-2009. The first optical satellite launch of the PLEIADES-HR constellation is foreseen

  14. A multievent study of broadband electrons observed by the DMSP satellites and their relation to red aurora observed at midlatitude stations

    International Nuclear Information System (INIS)

    Shiokawa, K.; Meng, C.; Reeves, G.D.; Rich, F.J.; Yumoto, K.

    1997-01-01

    Broadband electrons during magnetic storms are characterized by an unusually intense flux of precipitating electrons in the broadband energy range from 30 eV to 30 keV near the equatorward edge of the auroral oval (47 degree endash 66 degree magnetic latitude). Broadband electrons were first reported by Shiokawa et al. [1996]. In this paper, we report a multievent study of broadband electrons, using particle data obtained by the Defense Meteorological Satellite Program (DMSP) satellites during 23 magnetic storms from January 1989 through May 1992. Twelve broadband electron events are identified. Most of them are observed in the night sector, but some are observed in the morning sector. Particle data for successive polar passes of the DMSP multisatellites are used to show that broadband electrons generally last for less than 30 min and that for some events, they precipitate over a wide range of local times simultaneously. On the basis of a quantitative calculation of optical emissions from electrons in the neutral atmosphere, we conclude that broadband electrons are a possible cause of red auroras observed at midlatitude ground stations. We suggest that broadband electrons are associated with certain substorms during the main phase of magnetic storms. This conjecture comes from observations of H component positive bays and Pi 2 pulsations observed at low-latitude magnetic stations and from magnetic field variations observed at geosynchronous satellites. We conclude that the magnetospheric source of broadband electrons lies within the inner part of the plasma sheet. This conclusion is based on the facts that broadband electrons appear in latitudes where plasma sheet particles were observed before the event and that broadband electrons are observed poleward of the subauroral ion drifts, a position that corresponds to the inner edge of the injected particle layer during storms. (Abstract Truncated)

  15. Features of High-Latitude Ionospheric Irregularities Development as Revealed by Ground-Based GPS Observations, Satellite-Borne GPS Observations and Satellite In Situ Measurements over the Territory of Russia during the Geomagnetic Storm on March 17-18, 2015

    Science.gov (United States)

    Zakharenkova, I. E.; Cherniak, Iu. V.; Shagimuratov, I. I.; Klimenko, M. V.

    2018-01-01

    The dynamic picture of the response of the high- and mid-latitude ionosphere to the strong geomagnetic disturbances on March 17-18, 2015, has been studied with ground-based and satellite observations, mainly, by transionospheric measurements of delays of GPS (Global Positioning System) signals. The advantages of the joint use of ground-based GPS measurements and GPS measurements on board of the Swarm Low-Earth-Orbit satellite mission for monitoring of the appearance of ionospheric irregularities over the territory of Russia are shown for the first time. The results of analysis of ground-based and space-borne GPS observations, as well as satellite, in situ measurements, revealed large-scale ionospheric plasma irregularities observed over the territory of Russia in the latitude range of 50°-85° N during the main phase of the geomagnetic storm. The most intense ionospheric irregularities were detected in the auroral zone and in the region of the main ionospheric trough (MIT). It has been found that sharp changes in the phase of the carrier frequency of the navigation signal from all tracked satellites were recorded at all GPS stations located to the North from 55° MLAT. The development of a deep MIT was related to dynamic processes in the subauroral ionosphere, in particular, with electric fields of the intense subauroral polarization stream. Analysis of the electron and ion density values obtained by instruments on board of the Swarm and DMSP satellites showed that the zone of highly structured auroral ionosphere extended at least to heights of 850-900 km.

  16. Quantifying Fire Impact on Alaskan Tundra from Satellite Observations and Field Measurements

    Science.gov (United States)

    Loboda, T. V.; Chen, D.; He, J.; Jenkins, L. K.

    2017-12-01

    Wildfire is a major disturbance agent in Alaskan tundra. The frequency and extent of fire events obtained from paleo, management, and satellite records may yet underestimate the scope of tundra fire impact. Field measurements, collected within the NASA's ABoVE campaign, revealed unexpectedly shallow organic soils ( 15 cm) across all sampled sites of the Noatak valley with no significant difference between recently burned and unburned sites. In typical small and medium-sized tundra burns vegetation recovers rapidly and scars are not discernable in 30 m optical satellite imagery by the end of the first post-fire season. However, field observations indicate that vegetation and subsurface characteristics within fire scars of different ages vary across the landscape. In this study we develop linkages between fire-induced changes to tundra and satellite-based observations from optical, thermal, and microwave imagers to enable extrapolation of in-situ observations to cover the full extent of Alaskan tundra. Our results show that recent ( 30 years) fire history can be reconstructed from optical observations (R2 0.65, pfire history can be determined for 4 years post fire primarily due to increased soil moisture at burned sites. Field measurements suggest that the relatively quick SAR signal dissipation results from more even distribution of surface moisture through the soil column with increases in Active Layer Thickness (ALT). Similar to previous long-term field studies we find an increase in shrub fraction and shrub height within burns over time at the landscape scale; however, the strength and significance of the relationship between shrub fraction and time since fire is governed by burn severity with more severe burns predictably (p post-fire shrub cover. Although reasonably well-correlated to each other when adjusted for topography (R2 0.35, p < 0.001), neither ALT nor soil temperature can be directly linked to optical or thermal brightness observations with acceptable

  17. Integrating Satellite, Radar and Surface Observation with Time and Space Matching

    Science.gov (United States)

    Ho, Y.; Weber, J.

    2015-12-01

    The Integrated Data Viewer (IDV) from Unidata is a Java™-based software framework for analyzing and visualizing geoscience data. It brings together the ability to display and work with satellite imagery, gridded data, surface observations, balloon soundings, NWS WSR-88D Level II and Level III RADAR data, and NOAA National Profiler Network data, all within a unified interface. Applying time and space matching on the satellite, radar and surface observation datasets will automatically synchronize the display from different data sources and spatially subset to match the display area in the view window. These features allow the IDV users to effectively integrate these observations and provide 3 dimensional views of the weather system to better understand the underlying dynamics and physics of weather phenomena.

  18. Satellite Earth observation data to identify climate and anthropogenic pressures on Bucharest periurban forests

    Energy Technology Data Exchange (ETDEWEB)

    Zoran, Maria; Savastru, Roxana; Savastru, Dan [National Institute of R& D for Optoelectronics, MG5 Bucharest-Magurele, 077125 Romania (Romania); Dida, Adrian [University Transylvania of Brasov, Brasov (Romania)

    2016-03-25

    Satellite Earth observation data in the visible and near-infrared (VNIR) wavelengths represent a useful source of information for forest systems monitoring through derived biogeophysical parameters (vegetation index, leaf area index, canopy cover, fraction of absorbed photosynthetically active radiation, chlorophyll content, net primary production, canopy water stress, etc.). Use of satellite remote sensing data to assess forest spatio-temporal changes due to climatic or anthropogenic stressors is an excellent example of the value of multispectral and multitemporal observations. Fusion technique was applied to time-series multispectral and multitemporal satellite imagery (NOAA AVHRR, MODIS Terra/Aqua, Landsat ETM and IKONOS satellite data) for periurban forest areas Cernica-Branesti, placed in the neighboring of Bucharest town, Romania, over 2002-2014 period.

  19. Satellite Earth observation data to identify climate and anthropogenic pressures on Bucharest periurban forests

    International Nuclear Information System (INIS)

    Zoran, Maria; Savastru, Roxana; Savastru, Dan; Dida, Adrian

    2016-01-01

    Satellite Earth observation data in the visible and near-infrared (VNIR) wavelengths represent a useful source of information for forest systems monitoring through derived biogeophysical parameters (vegetation index, leaf area index, canopy cover, fraction of absorbed photosynthetically active radiation, chlorophyll content, net primary production, canopy water stress, etc.). Use of satellite remote sensing data to assess forest spatio-temporal changes due to climatic or anthropogenic stressors is an excellent example of the value of multispectral and multitemporal observations. Fusion technique was applied to time-series multispectral and multitemporal satellite imagery (NOAA AVHRR, MODIS Terra/Aqua, Landsat ETM and IKONOS satellite data) for periurban forest areas Cernica-Branesti, placed in the neighboring of Bucharest town, Romania, over 2002-2014 period.

  20. A Topology Control Strategy with Reliability Assurance for Satellite Cluster Networks in Earth Observation.

    Science.gov (United States)

    Chen, Qing; Zhang, Jinxiu; Hu, Ze

    2017-02-23

    This article investigates the dynamic topology control problemof satellite cluster networks (SCNs) in Earth observation (EO) missions by applying a novel metric of stability for inter-satellite links (ISLs). The properties of the periodicity and predictability of satellites' relative position are involved in the link cost metric which is to give a selection criterion for choosing the most reliable data routing paths. Also, a cooperative work model with reliability is proposed for the situation of emergency EO missions. Based on the link cost metric and the proposed reliability model, a reliability assurance topology control algorithm and its corresponding dynamic topology control (RAT) strategy are established to maximize the stability of data transmission in the SCNs. The SCNs scenario is tested through some numeric simulations of the topology stability of average topology lifetime and average packet loss rate. Simulation results show that the proposed reliable strategy applied in SCNs significantly improves the data transmission performance and prolongs the average topology lifetime.

  1. Global observations of BrO in the troposphere using GOME-2 satellite data

    Science.gov (United States)

    Theys, N.; van Roozendael, M.; Hendrick, F.; Xin, Y.; Isabelle, D.; Richter, A.; Mathias, B.; Quentin, E.; Johnston, P. V.; Kreher, K.; Martine, D.

    2010-12-01

    Measurements from the GOME-2 satellite instrument have been analyzed for tropospheric BrO using a residual technique that combines measured BrO columns and estimates of the stratospheric BrO content from a climatological approach driven by O3 and NO2 observations. Comparisons between the GOME-2 results and correlative data including ground-based BrO vertical columns and total BrO columns derived from SCIAMACHY nadir observations, present a good level of consistency. We show that the adopted technique enables to separate the stratospheric and tropospheric fractions of the measured total BrO columns and allows studying the BrO plumes in polar region in more detail. While several satellite BrO plumes can largely be explained by an influence of stratospheric descending air, we show that numerous tropospheric BrO hotspots are associated to regions with low tropopause heights as well. Elaborating on simulations using the p-TOMCAT tropospheric chemical transport model, this finding is found to be consistent with the mechanism of bromine release through sea salt aerosols production during blowing snow events. Outside the polar region, evidences are provided for a global tropospheric BrO background with columns of 1-3 x 1013 molec/cm2.

  2. Astrometric observations of Saturn's satellites from McDonald Observatory, 1972. [using reference stars

    Science.gov (United States)

    Abbot, R. I.; Mulholland, J. D.; Shelus, P. J.

    1974-01-01

    Observations of Saturn's satellites were reduced by means of secondary reference stars obtained by reduction of Palomar Sky Survey (PSS) plates. This involved the use of 39 SAO stars and plate overlap technique to determine the coordinates of 59 fainter stars in the satellite field. Fourteen plate constants were determined for each of the two PSS plates. Comparison of two plate measurement and reduction techniques on the satellite measurements demonstrate the existence of a serious background gradient effect and the utility of microdensitometry to eliminate this error source in positional determinations of close satellites.

  3. Global assessment of ocean carbon export by combining satellite observations and food-web models

    Science.gov (United States)

    Siegel, D. A.; Buesseler, K. O.; Doney, S. C.; Sailley, S. F.; Behrenfeld, M. J.; Boyd, P. W.

    2014-03-01

    The export of organic carbon from the surface ocean by sinking particles is an important, yet highly uncertain, component of the global carbon cycle. Here we introduce a mechanistic assessment of the global ocean carbon export using satellite observations, including determinations of net primary production and the slope of the particle size spectrum, to drive a food-web model that estimates the production of sinking zooplankton feces and algal aggregates comprising the sinking particle flux at the base of the euphotic zone. The synthesis of observations and models reveals fundamentally different and ecologically consistent regional-scale patterns in export and export efficiency not found in previous global carbon export assessments. The model reproduces regional-scale particle export field observations and predicts a climatological mean global carbon export from the euphotic zone of 6 Pg C yr-1. Global export estimates show small variation (typically model parameter values. The model is also robust to the choices of the satellite data products used and enables interannual changes to be quantified. The present synthesis of observations and models provides a path for quantifying the ocean's biological pump.

  4. Contrasting trends in light pollution across Europe based on satellite observed night time lights.

    Science.gov (United States)

    Bennie, Jonathan; Davies, Thomas W; Duffy, James P; Inger, Richard; Gaston, Kevin J

    2014-01-21

    Since the 1970s nighttime satellite images of the Earth from space have provided a striking illustration of the extent of artificial light. Meanwhile, growing awareness of adverse impacts of artificial light at night on scientific astronomy, human health, ecological processes and aesthetic enjoyment of the night sky has led to recognition of light pollution as a significant global environmental issue. Links between economic activity, population growth and artificial light are well documented in rapidly developing regions. Applying a novel method to analysis of satellite images of European nighttime lights over 15 years, we show that while the continental trend is towards increasing brightness, some economically developed regions show more complex patterns with large areas decreasing in observed brightness over this period. This highlights that opportunities exist to constrain and even reduce the environmental impact of artificial light pollution while delivering cost and energy-saving benefits.

  5. Retrieving Temperature Anomaly in the Global Subsurface and Deeper Ocean From Satellite Observations

    Science.gov (United States)

    Su, Hua; Li, Wene; Yan, Xiao-Hai

    2018-01-01

    Retrieving the subsurface and deeper ocean (SDO) dynamic parameters from satellite observations is crucial for effectively understanding ocean interior anomalies and dynamic processes, but it is challenging to accurately estimate the subsurface thermal structure over the global scale from sea surface parameters. This study proposes a new approach based on Random Forest (RF) machine learning to retrieve subsurface temperature anomaly (STA) in the global ocean from multisource satellite observations including sea surface height anomaly (SSHA), sea surface temperature anomaly (SSTA), sea surface salinity anomaly (SSSA), and sea surface wind anomaly (SSWA) via in situ Argo data for RF training and testing. RF machine-learning approach can accurately retrieve the STA in the global ocean from satellite observations of sea surface parameters (SSHA, SSTA, SSSA, SSWA). The Argo STA data were used to validate the accuracy and reliability of the results from the RF model. The results indicated that SSHA, SSTA, SSSA, and SSWA together are useful parameters for detecting SDO thermal information and obtaining accurate STA estimations. The proposed method also outperformed support vector regression (SVR) in global STA estimation. It will be a useful technique for studying SDO thermal variability and its role in global climate system from global-scale satellite observations.

  6. Fast Emission Estimates in China Constrained by Satellite Observations (Invited)

    Science.gov (United States)

    Mijling, B.; van der A, R.

    2013-12-01

    Emission inventories of air pollutants are crucial information for policy makers and form important input data for air quality models. Unfortunately, bottom-up emission inventories, compiled from large quantities of statistical data, are easily outdated for an emerging economy such as China, where rapid economic growth changes emissions accordingly. Alternatively, top-down emission estimates from satellite observations of air constituents have important advantages of being spatial consistent, having high temporal resolution, and enabling emission updates shortly after the satellite data become available. Constraining emissions from concentration measurements is, however, computationally challenging. Within the GlobEmission project of the European Space Agency (ESA) a new algorithm has been developed, specifically designed for fast daily emission estimates of short-lived atmospheric species on a mesoscopic scale (0.25 × 0.25 degree) from satellite observations of column concentrations. The algorithm needs only one forward model run from a chemical transport model to calculate the sensitivity of concentration to emission, using trajectory analysis to account for transport away from the source. By using a Kalman filter in the inverse step, optimal use of the a priori knowledge and the newly observed data is made. We apply the algorithm for NOx emission estimates in East China, using the CHIMERE model together with tropospheric NO2 column retrievals of the OMI and GOME-2 satellite instruments. The observations are used to construct a monthly emission time series, which reveal important emission trends such as the emission reduction measures during the Beijing Olympic Games, and the impact and recovery from the global economic crisis. The algorithm is also able to detect emerging sources (e.g. new power plants) and improve emission information for areas where proxy data are not or badly known (e.g. shipping emissions). The new emission estimates result in a better

  7. Estimates of lightning NOx production from GOME satellite observations

    NARCIS (Netherlands)

    Boersma, K.F.; Eskes, H.J.; Meijer, E.W.; Kelder, H.M.

    2005-01-01

    Tropospheric NO2 column retreivals from the Global Ozone Monitoring Expeiment (GOME) satellite spectrometer are used to quantify the source strength and 3-D distribution of lightning produced nitrogen oxides (NOx=NO+NO2). A sharp increase of NO2 is observed at convective cloud tops with increasing

  8. Review: advances in in situ and satellite phenological observations in Japan

    Science.gov (United States)

    Nagai, Shin; Nasahara, Kenlo Nishida; Inoue, Tomoharu; Saitoh, Taku M.; Suzuki, Rikie

    2016-04-01

    To accurately evaluate the responses of spatial and temporal variation of ecosystem functioning (evapotranspiration and photosynthesis) and services (regulating and cultural services) to the rapid changes caused by global warming, we depend on long-term, continuous, near-surface, and satellite remote sensing of phenology over wide areas. Here, we review such phenological studies in Japan and discuss our current knowledge, problems, and future developments. In contrast with North America and Europe, Japan has been able to evaluate plant phenology along vertical and horizontal gradients within a narrow area because of the country's high topographic relief. Phenological observation networks that support scientific studies and outreach activities have used near-surface tools such as digital cameras and spectral radiometers. Differences in phenology among ecosystems and tree species have been detected by analyzing the seasonal variation of red, green, and blue digital numbers (RGB values) extracted from phenological images, as well as spectral reflectance and vegetation indices. The relationships between seasonal variations in RGB-derived indices or spectral characteristics and the ecological and CO2 flux measurement data have been well validated. In contrast, insufficient satellite remote-sensing observations have been conducted because of the coarse spatial resolution of previous datasets, which could not detect the heterogeneous plant phenology that results from Japan's complex topography and vegetation. To improve Japanese phenological observations, multidisciplinary analysis and evaluation will be needed to link traditional phenological observations with "index trees," near-surface and satellite remote-sensing observations, "citizen science" (observations by citizens), and results published on the Internet.

  9. The artificial satellite observation chronograph controlled by single chip microcomputer.

    Science.gov (United States)

    Pan, Guangrong; Tan, Jufan; Ding, Yuanjun

    1991-06-01

    The instrument specifications, hardware structure, software design, and other characteristics of the chronograph mounting on a theodolite used for artificial satellite observation are presented. The instrument is a real time control system with a single chip microcomputer.

  10. Classification of Clouds and Deep Convection from GEOS-5 Using Satellite Observations

    Science.gov (United States)

    Putman, William; Suarez, Max

    2010-01-01

    With the increased resolution of global atmospheric models and the push toward global cloud resolving models, the resemblance of model output to satellite observations has become strikingly similar. As we progress with our adaptation of the Goddard Earth Observing System Model, Version 5 (GEOS-5) as a high resolution cloud system resolving model, evaluation of cloud properties and deep convection require in-depth analysis beyond a visual comparison. Outgoing long-wave radiation (OLR) provides a sufficient comparison with infrared (IR) satellite imagery to isolate areas of deep convection. We have adopted a binning technique to generate a series of histograms for OLR which classify the presence and fraction of clear sky versus deep convection in the tropics that can be compared with a similar analyses of IR imagery from composite Geostationary Operational Environmental Satellite (GOES) observations. We will present initial results that have been used to evaluate the amount of deep convective parameterization required within the model as we move toward cloud system resolving resolutions of 10- to 1-km globally.

  11. The first observations of laser satellites from plasma created by high intense laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Skobelev, I.Yu.; Faenov, A.Ya.; Magunov, A.I. [Multicharged Ions Spectra Data Center of VNIIFTRI, Mendeleevo (Russian Federation); Osterheld, A.; Young, B.; Dunn, J.; Stewart, R.E. [Lawrence Livermore National Lab., CA (United States)

    1997-12-31

    Laser satellites, i.e. spectral lines caused by non-linear interaction of strong laser radiation with multicharged ions, are observed for the first time. Their identification are carried out by comparison of both experimental wavelengths and intensities with theoretical ones. It is shown that observation of laser satellites allows to measure directly the energies of ionic metastable states. (orig.). 3 refs.

  12. Intercomparison and evaluation of satellite peroxyacetyl nitrate observations in the upper troposphere–lower stratosphere

    Directory of Open Access Journals (Sweden)

    R. J. Pope

    2016-11-01

    Full Text Available Peroxyacetyl nitrate (PAN is an important chemical species in the troposphere as it aids the long-range transport of NOx and subsequent formation of O3 in relatively clean remote regions. Over the past few decades observations from aircraft campaigns and surface sites have been used to better understand the regional distribution of PAN. However, recent measurements made by satellites allow for a global assessment of PAN in the upper troposphere–lower stratosphere (UTLS. In this study, we investigate global PAN distributions from two independent retrieval methodologies, based on measurements from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS instrument, on board Envisat from the Institute of Meteorology and Climate Research (IMK, Karlsruhe Institute of Technology, and the Department of Physics and Astronomy, University of Leicester (UoL. Retrieving PAN from MIPAS is challenging due to the weak signal in the measurements and contamination from other species. Therefore, we compare the two MIPAS datasets with observations from the Atmospheric Chemistry Experiment Fourier transform spectrometer (ACE-FTS, in situ aircraft data and the 3-D chemical transport model TOMCAT. MIPAS shows peak UTLS PAN concentrations over the biomass burning regions (e.g. ranging from 150 to  >  200 pptv at 150 hPa and during the summertime Asian monsoon as enhanced convection aids the vertical transport of PAN from the lower atmosphere. At 150 hPa, we find significant differences between the two MIPAS datasets in the tropics, where IMK PAN concentrations are larger by 50–100 pptv. Comparisons between MIPAS and ACE-FTS show better agreement with the UoL MIPAS PAN concentrations at 200 hPa, but with mixed results above this altitude. TOMCAT generally captures the magnitude and structure of climatological aircraft PAN profiles within the observational variability allowing it to be used to investigate the MIPAS PAN differences

  13. Evaluation of high-resolution satellite precipitation products with surface rain gauge observations from Laohahe Basin in northern China

    Directory of Open Access Journals (Sweden)

    Shan-hu Jiang

    2010-12-01

    Full Text Available Three high-resolution satellite precipitation products, the Tropical Rainfall Measuring Mission (TRMM standard precipitation products 3B42V6 and 3B42RT and the Climate Precipitation Center's (CPC morphing technique precipitation product (CMORPH, were evaluated against surface rain gauge observations from the Laohahe Basin in northern China. Widely used statistical validation indices and categorical statistics were adopted. The evaluations were performed at multiple time scales, ranging from daily to yearly, for the years from 2003 to 2008. The results show that all three satellite precipitation products perform very well in detecting the occurrence of precipitation events, but there are some different biases in the amount of precipitation. 3B42V6, which has a bias of 21%, fits best with the surface rain gauge observations at both daily and monthly scales, while the biases of 3B42RT and CMORPH, with values of 81% and 67%, respectively, are much higher than a normal receivable threshold. The quality of the satellite precipitation products also shows monthly and yearly variation: 3B42RT has a large positive bias in the cold season from September to April, while CMORPH has a large positive bias in the warm season from May to August, and they all attained their best values in 2006 (with 10%, 50%, and −5% biases for 3B42V6, 3B42RT, and CMORPH, respectively. Our evaluation shows that, for the Laohahe Basin, 3B42V6 has the best correspondence with the surface observations, and CMORPH performs much better than 3B42RT. The large errors of 3B42RT and CMORPH remind us of the need for new improvements to satellite precipitation retrieval algorithms or feasible bias adjusting methods.

  14. The local ionospheric modeling by integration ground GPS observations and satellite altimetry data

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Sharifi

    2017-01-01

    Full Text Available The free electrons in the ionosphere have a strong impact on the propagation of radio waves. When the signals pass through the ionosphere, both their group and phase velocity are disturbed. Several space geodetic techniques such as satellite altimetry, low Earth orbit (LEO satellite and very long baseline interferometry (VLBI can be used to model the total electron content. At present, the classical input data for development of ionospheric models are based on dual-frequency GPS observations, However, a major problem with this observation type is the nonuniform distribution of the terrestrial GPS reference stations with large gaps notably over the sea surface and ocean where only some single stations are located on islands, leading to lower the precision of the model over these areas. In these regions the dual-frequency satellite altimeters provide precise information about the parameters of the ionosphere. Combination of GPS and satellite altimetry observations allows making best use of the advantages of their different spatial and temporal distributions. In this study, the local ionosphere modeling was done by the combination of space geodetic observations using spherical Slepian function. The combination of the data from ground GPS observations over the western part of the USA and the altimetry mission Jason-2 was performed on the normal equation level in the least-square procedure and a least-square variance component estimation (LS-VCE was applied to take into account the different accuracy levels of the observations. The integrated ionosphere model is more accurate and more reliable than the results derived from the ground GPS observations over the oceans.

  15. Satellite observations of oil spills in Bohai Sea

    International Nuclear Information System (INIS)

    Wei, Y L; Tang, Z Y; Li, X F

    2014-01-01

    Several oil spills occurred at two oil platforms in Bohai Sea, China on June 4 and 17, 2011. The oil spills were subsequently imaged by different types of satellite sensors including SAR (Synthetic Aperture Radar), Chinese HJ-1-B CCD and NOAA MODIS. In order to detect the oil spills more accurately, images of the former three sensors were used in this study. Oil spills were detected using the semi-supervised Texture-Classifying Neural Network Algorithm (TCNNA) in SAR images and gradient edge detection algorithm in HJ-1-B and MODIS images. The results show that, on June 11, the area of oil slicks is 31 km 2 and they are observed in the vicinity and to the north of the oilfield in SAR image. The coverage of the oil spill expands dramatically to 244 km 2 due to the newly released oil after June 11 in SAR image of June 14. The results on June 19 show that under a cloud-free condition, CCD and MODIS images capture the oil spills clearly while TCNNA cannot separate them from the background surface, which implies that the optical images play an important role in oil detection besides SAR images

  16. OH Airglow and Equatorial Variations Observed by ISUAL Instrument on Board the FORMOSAT 2 Satellite

    Directory of Open Access Journals (Sweden)

    Jan-Bai Nee

    2010-01-01

    Full Text Available OH airglow observed by the ISUAL (Imager of Sprites and Upper Atmospheric Lightning instrument on board the FORMOSAT 2 satellite is reported in this paper. The satellite is sun-synchronous and it returns to the same orbit at the same local time daily. By using this property, we can study the upper atmosphere in detail. With a CCD camera, ISUAL has measured the emission layers of OH Meinel band at 630 nm for several two-week periods in 2004 and 2007 in equatorial regions. ISUAL images are snapshots of the atmosphere 250 km (height ¡_ 1200 km (horizontal distance. These images of OH airglow are analyzed to derive its peak height and latitudinal variations. ISUAL observation is unique in its capability of continuous observation of the upper atmosphere as the satellite travels from south to north along a specific orbit. However, 630 nm filter also measured O(1D at 200 km, and there are interferences between O(1D and OH airglows as as observed from a distance in space. We have studied the overlap of two airglows by simulations, and our final analyses show that OH airglow can be correctly derived with its average peak height of 89 ¡_ 2.1 km usually lying within ¡_10¢X latitude about the equator. ISUAL data reveal detailed structures of equatorial OH airglow such as the existences of a few secondary maxima within the equatorial regions, and the oscillations of the peak latitudes. These results are discussed and compared with previous reports.

  17. A Study of Mesoscale Gravity Waves over the North Atlantic with Satellite Observations and a Mesoscale Model

    Science.gov (United States)

    Wu, Dong L.; Zhang, Fuqing

    2004-01-01

    Satellite microwave data are used to study gravity wave properties and variabilities over the northeastern United States and the North Atlantic in the December-January periods. The gravity waves in this region, found in many winters, can reach the stratopause with growing amplitude. The Advanced Microwave Sounding Unit-A (AMSU-A) observations show that the wave occurrences are correlated well with the intensity and location of the tropospheric baroclinic jet front systems. To further investigate the cause(s) and properties of the North Atlantic gravity waves, we focus on a series of wave events during 19-21 January 2003 and compare AMSU-A observations to simulations from a mesoscale model (MM5). The simulated gravity waves compare qualitatively well with the satellite observations in terms of wave structures, timing, and overall morphology. Excitation mechanisms of these large-amplitude waves in the troposphere are complex and subject to further investigations.

  18. Global Surface Mass Variations from Continuous GPS Observations and Satellite Altimetry Data

    Directory of Open Access Journals (Sweden)

    Xinggang Zhang

    2017-09-01

    Full Text Available The Gravity Recovery and Climate Experiment (GRACE mission is able to observe the global large-scale mass and water cycle for the first time with unprecedented spatial and temporal resolution. However, no other time-varying gravity fields validate GRACE. Furthermore, the C20 of GRACE is poor, and no GRACE data are available before 2002 and there will likely be a gap between the GRACE and GRACE-FOLLOW-ON mission. To compensate for GRACE’s shortcomings, in this paper, we provide an alternative way to invert Earth’s time-varying gravity field, using a priori degree variance as a constraint on amplitudes of Stoke’s coefficients up to degree and order 60, by combining continuous GPS coordinate time series and satellite altimetry (SA mean sea level anomaly data from January 2003 to December 2012. Analysis results show that our estimated zonal low-degree gravity coefficients agree well with those of GRACE, and large-scale mass distributions are also investigated and assessed. It was clear that our method effectively detected global large-scale mass changes, which is consistent with GRACE observations and the GLDAS model, revealing the minimums of annual water cycle in the Amazon in September and October. The global mean mass uncertainty of our solution is about two times larger than that of GRACE after applying a Gaussian spatial filter with a half wavelength at 500 km. The sensitivity analysis further shows that ground GPS observations dominate the lower-degree coefficients but fail to contribute to the higher-degree coefficients, while SA plays a complementary role at higher-degree coefficients. Consequently, a comparison in both the spherical harmonic and geographic domain confirms our global inversion for the time-varying gravity field from GPS and Satellite Altimetry.

  19. Fast emission estimates in China and South Africa constrained by satellite observations

    Science.gov (United States)

    Mijling, Bas; van der A, Ronald

    2013-04-01

    Emission inventories of air pollutants are crucial information for policy makers and form important input data for air quality models. Unfortunately, bottom-up emission inventories, compiled from large quantities of statistical data, are easily outdated for emerging economies such as China and South Africa, where rapid economic growth change emissions accordingly. Alternatively, top-down emission estimates from satellite observations of air constituents have important advantages of being spatial consistent, having high temporal resolution, and enabling emission updates shortly after the satellite data become available. However, constraining emissions from observations of concentrations is computationally challenging. Within the GlobEmission project (part of the Data User Element programme of ESA) a new algorithm has been developed, specifically designed for fast daily emission estimates of short-lived atmospheric species on a mesoscopic scale (0.25 × 0.25 degree) from satellite observations of column concentrations. The algorithm needs only one forward model run from a chemical transport model to calculate the sensitivity of concentration to emission, using trajectory analysis to account for transport away from the source. By using a Kalman filter in the inverse step, optimal use of the a priori knowledge and the newly observed data is made. We apply the algorithm for NOx emission estimates in East China and South Africa, using the CHIMERE chemical transport model together with tropospheric NO2 column retrievals of the OMI and GOME-2 satellite instruments. The observations are used to construct a monthly emission time series, which reveal important emission trends such as the emission reduction measures during the Beijing Olympic Games, and the impact and recovery from the global economic crisis. The algorithm is also able to detect emerging sources (e.g. new power plants) and improve emission information for areas where proxy data are not or badly known (e

  20. An Observation Task Chain Representation Model for Disaster Process-Oriented Remote Sensing Satellite Sensor Planning: A Flood Water Monitoring Application

    Directory of Open Access Journals (Sweden)

    Chao Yang

    2018-03-01

    Full Text Available An accurate and comprehensive representation of an observation task is a prerequisite in disaster monitoring to achieve reliable sensor observation planning. However, the extant disaster event or task information models do not fully satisfy the observation requirements for the accurate and efficient planning of remote-sensing satellite sensors. By considering the modeling requirements for a disaster observation task, we propose an observation task chain (OTChain representation model that includes four basic OTChain segments and eight-tuple observation task metadata description structures. A prototype system, namely OTChainManager, is implemented to provide functions for modeling, managing, querying, and visualizing observation tasks. In the case of flood water monitoring, we use a flood remote-sensing satellite sensor observation task for the experiment. The results show that the proposed OTChain representation model can be used in modeling process-owned flood disaster observation tasks. By querying and visualizing the flood observation task instances in the Jinsha River Basin, the proposed model can effectively express observation task processes, represent personalized observation constraints, and plan global remote-sensing satellite sensor observations. Compared with typical observation task information models or engines, the proposed OTChain representation model satisfies the information demands of the OTChain and its processes as well as impels the development of a long time-series sensor observation scheme.

  1. Improving the Transition of Earth Satellite Observations from Research to Operations

    Science.gov (United States)

    Goodman, Steven J.; Lapenta, William M.; Jedlovec, Gary J.

    2004-01-01

    There are significant gaps between the observations, models, and decision support tools that make use of new data. These challenges include: 1) Decreasing the time to incorporate new satellite data into operational forecast assimilation systems, 2) Blending in-situ and satellite observing systems to produce the most accurate and comprehensive data products and assessments, 3) Accelerating the transition from research to applications through national test beds, field campaigns, and pilot demonstrations, and 4) Developing the partnerships and organizational structures to effectively transition new technology into operations. At the Short-term Prediction Research and Transition (SPORT) Center in Huntsville, Alabama, a NASA-NOAA-University collaboration has been developed to accelerate the infusion of NASA Earth science observations, data assimilation and modeling research into NWS forecast operations and decision-making. The SPoRT Center research focus is to improve forecasts through new observation capability and the regional prediction objectives of the US Weather Research Program dealing with 0-1 day forecast issues such as convective initiation and 24-hr quantitative precipitation forecasting. The near real-time availability of high-resolution experimental products of the atmosphere, land, and ocean from the Moderate Resolution Imaging Spectroradiometer (MODIS), the Advanced Infrared Spectroradiometer (AIRS), and lightning mapping systems provide an opportunity for science and algorithm risk reduction, and for application assessment prior to planned observations from the next generation of operational low Earth orbiting and geostationary Earth orbiting satellites. This paper describes the process for the transition of experimental products into forecast operations, current products undergoing assessment by forecasters, and plans for the future. The SPoRT Web page is at (http://www.ghcc.msfc.nasa.gov/sport).

  2. Significant results from using earth observation satellites for mineral and energy resource exploration

    Science.gov (United States)

    Carter, William D.

    1981-01-01

    A large number of Earth-observation satellites orbit our world several times each day, providing new information about the land and sea surfaces and the overlying thin layer of atmosphere that makes our planet unique. Meteorological satellites have had the longest history of experimental use and most are now considered operational. The geologic information collected by the Landsat, Polar Orbiting Geophysical Observatory (POGO), Magsat, Heat Capacity Mapping Mission (HCMM) and Seasat land and ocean observation systems is being thoroughly tested, and some of these systems are now approaching operational use.

  3. Size and Albedo of Irregular Saturnian Satellites from Spitzer Observations

    NARCIS (Netherlands)

    Mueller, Michael; Grav, T.; Trilling, D.; Stansberry, J.; Sykes, M.

    2008-01-01

    Using MIPS onboard the Spitzer Space Telescope, we observed the thermal emission (24 and, for some targets, 70 um) of eight irregular satellites of Saturn: Albiorix, Siarnaq, Paaliaq, Kiviuq, Ijiraq, Tarvos, Erriapus, and Ymir. We determined the size and albedo of all targets. An analysis of

  4. Al Gore attends Fall Meeting session on Earth observing satellite

    Science.gov (United States)

    Richman, Barbara T.

    2011-12-01

    Former U.S. vice president Al Gore, making unscheduled remarks at an AGU Fall Meeting session, said, "The reason you see so many pictures" of the Deep Space Climate Observatory (DSCOVR) satellite at this session is "that it already has been built." However, "because one of its primary missions was to help document global warming, it was canceled. So for those who are interested in struggling against political influence," Gore said, "the benefits have been documented well here." Gore made his comments after the third oral presentation at the 8 December session entitled "Earth Observations From the L1 (Lagrangian Point No. 1)," which focused on the capabilities of and progress on refurbishing DSCOVR. The satellite, formerly called Triana, had been proposed by Gore in 1998 to collect climate data. Although Triana was built, it was never launched: Congress mandated that before the satellite could be sent into space the National Academies of Science needed to confirm that the science it would be doing was worthwhile. By the time the scientific validation was complete, the satellite "was no longer compatible with the space shuttle manifest," Robert C. Smith, program manager for strategic integration at the NASA Goddard Space Flight Center, told Eos.

  5. Climate Model Diagnostic and Evaluation: With a Focus on Satellite Observations

    Science.gov (United States)

    Waliser, Duane

    2011-01-01

    Each year, we host a summer school that brings together the next generation of climate scientists - about 30 graduate students and postdocs from around the world - to engage with premier climate scientists from the Jet Propulsion Laboratory and elsewhere. Our yearly summer school focuses on topics on the leading edge of climate science research. Our inaugural summer school, held in 2011, was on the topic of "Using Satellite Observations to Advance Climate Models," and enabled students to explore how satellite observations can be used to evaluate and improve climate models. Speakers included climate experts from both NASA and the National Oceanic and Atmospheric Administration (NOAA), who provided updates on climate model diagnostics and evaluation and remote sensing of the planet. Details of the next summer school will be posted here in due course.

  6. Gravity field modeling at the sea areas using satellite altimetry observations Case study: Gravity field modeling at the Coastal Fars

    International Nuclear Information System (INIS)

    Jomegi, A.

    2007-01-01

    Nowadays, satellite altimetry observations had made it possible to determine sea surface variations, in the global scale, to high degree of precision. Using satellite altimetry observations, Mean Sea Level (MSL) can be determined, which by Kowing Sea Surface Topography (SST), can be converted into high-resolution marine geoid. In this paper we are proposing a method for computation of the Earth's gravity field at the sea areas, which is different from usual methods. Indeed, our method is based on conversion of geoidal heights into gravity potential values at the reference ellipsoid 2 Ea,b , by using ellipsoidal Brun's formula, and forward application of solution of Fixed-Free Two Boundary Value Problem (FFTBVP), previously proposed by the authors for the geoid computations without application of Stokes formula. Numerical results of application of the proposed method at the test area of CoastalFars (at southern part of Iran) show the success of the method. Considering the low cost and high precision of satellite altimetry observations, the proposed method suggests an efficient substitution to shipborne gravity observations for gravity field molding at the sea areas

  7. Contribution of Tropical Cyclones to the North Pacific Climatological Rainfall as Observed from Satellites.

    Science.gov (United States)

    Rodgers, Edward B.; Adler, Robert F.; Pierce, Harold F.

    2000-10-01

    Tropical cyclone monthly rainfall amounts are estimated from passive microwave satellite observations for an 11-yr period. These satellite-derived rainfall amounts are used to assess the impact of tropical cyclone rainfall in altering the geographical, seasonal, and interannual distribution of the North Pacific Ocean total rainfall during June-November when tropical cyclones are most important.To estimate these tropical cyclone rainfall amounts, mean monthly rain rates are derived from passive microwave satellite observations within 444-km radius of the center of those North Pacific tropical cyclones that reached storm stage and greater. These rain-rate observations are converted to monthly rainfall amounts and then compared with those for nontropical cyclone systems.The main results of this study indicate that 1) tropical cyclones contribute 7% of the rainfall to the entire domain of the North Pacific during the tropical cyclone season and 12%, 3%, and 4% when the study area is limited to, respectively, the western, central, and eastern third of the ocean; 2) the maximum tropical cyclone rainfall is poleward (5°-10° latitude depending on longitude) of the maximum nontropical cyclone rainfall; 3) tropical cyclones contribute a maximum of 30% northeast of the Philippine Islands and 40% off the lower Baja California coast; 4) in the western North Pacific, the tropical cyclone rainfall lags the total rainfall by approximately two months and shows seasonal latitudinal variation following the Intertropical Convergence Zone; and 5) in general, tropical cyclone rainfall is enhanced during the El Niño years by warm SSTs in the eastern North Pacific and by the monsoon trough in the western and central North Pacific.

  8. Ionospheric and satellite observations for studying the dynamic behavior of typhoons and the detection of severe storms and tsunamis

    Science.gov (United States)

    Hung, R. J.; Smith, R. E.

    1978-01-01

    Atmospheric acoustic-gravity waves associated with severe thunderstorms, tornadoes, typhoons (hurricanes) and tsunamis can be studied through the coupling between the ionosphere and the troposphere. Reverse ray tracing computations of acoustic-gravity waves observed by an ionospheric Doppler sounder array show that wave sources are in the nearby storm systems and that the waves are excited prior to the storms. Results show that ionospheric observations, together with satellite observations, can contribute to the understanding of the dynamical behavior of typhoons, severe storms and tsunamis.

  9. A high-resolution and observationally constrained OMI NO2 satellite retrieval

    International Nuclear Information System (INIS)

    Goldberg, Daniel L.; Lamsal, Lok N.; Loughner, Christopher P.

    2017-01-01

    Here, this work presents a new high-resolution NO 2 dataset derived from the NASA Ozone Monitoring Instrument (OMI) NO 2 version 3.0 retrieval that can be used to estimate surface-level concentrations. The standard NASA product uses NO 2 vertical profile shape factors from a 1.25° × 1° (~110 km × 110 km) resolution Global Model Initiative (GMI) model simulation to calculate air mass factors, a critical value used to determine observed tropospheric NO 2 vertical columns. To better estimate vertical profile shape factors, we use a high-resolution (1.33 km × 1.33 km) Community Multi-scale Air Quality (CMAQ) model simulation constrained by in situ aircraft observations to recalculate tropospheric air mass factors and tropospheric NO 2 vertical columns during summertime in the eastern US. In this new product, OMI NO 2 tropospheric columns increase by up to 160% in city centers and decrease by 20–50 % in the rural areas outside of urban areas when compared to the operational NASA product. Our new product shows much better agreement with the Pandora NO 2 and Airborne Compact Atmospheric Mapper (ACAM) NO 2 spectrometer measurements acquired during the DISCOVER-AQ Maryland field campaign. Furthermore, the correlation between our satellite product and EPA NO 2 monitors in urban areas has improved dramatically: r 2 = 0.60 in the new product vs. r 2 = 0.39 in the operational product, signifying that this new product is a better indicator of surface concentrations than the operational product. Our work emphasizes the need to use both high-resolution and high-fidelity models in order to recalculate satellite data in areas with large spatial heterogeneities in NO x emissions. Although the current work is focused on the eastern US, the methodology developed in this work can be applied to other world regions to produce high-quality region-specific NO 2 satellite retrievals.

  10. Spatio-temporal variability of the polar middle atmosphere. Insights from over 30 years of research satellite observations

    Energy Technology Data Exchange (ETDEWEB)

    Lahoz, W.A.; Orsolini, Y.J.; Manney, G.L.; Minschwaner, K.; Allen, D.R.; Errera, Q.; Jackson, D.R.; Lambert, A.; Lee, J.; Pumphrey, H.; Schwartz, M.; Wu, D.

    2012-07-01

    We discuss the insights that research satellite observations from the last 30 years have provided on the spatio-temporal variability of the polar middle atmosphere. Starting from the time of the NASA LIMS (Limb Infrared Monitor of the Stratosphere) and TOMS (Total Ozone Mapping Spectrometer) instruments, both launched in 1978, we show how these observations have augmented our knowledge of the polar middle atmosphere, in particular how information on ozone and tracers has augmented our knowledge of: (i) the spatial and temporal characteristics of the wintertime polar stratosphere and the summertime circulation; and (ii) the roles of chemistry and transport in determining the stratospheric ozone distribution. We address the increasing joint use of observations and models, in particular in data assimilation, in contributing to this understanding. Finally, we outline requirements to allow continuation of the wealth of information on the polar middle atmosphere provided by research satellites over the last 30 years.(Author)

  11. Potential and limitations of multidecadal satellite soil moisture observations for selected climate model evaluation studies

    Directory of Open Access Journals (Sweden)

    A. Loew

    2013-09-01

    Full Text Available Soil moisture is an essential climate variable (ECV of major importance for land–atmosphere interactions and global hydrology. An appropriate representation of soil moisture dynamics in global climate models is therefore important. Recently, a first multidecadal, observation-based soil moisture dataset has become available that provides information on soil moisture dynamics from satellite observations (ECVSM, essential climate variable soil moisture. The present study investigates the potential and limitations of this new dataset for several applications in climate model evaluation. We compare soil moisture data from satellite observations, reanalysis and simulations from a state-of-the-art land surface model and analyze relationships between soil moisture and precipitation anomalies in the different dataset. Other potential applications like model parameter optimization or model initialization are not investigated in the present study. In a detailed regional study, we show that ECVSM is capable to capture well the interannual and intraannual soil moisture and precipitation dynamics in the Sahelian region. Current deficits of the new dataset are critically discussed and summarized at the end of the paper to provide guidance for an appropriate usage of the ECVSM dataset for climate studies.

  12. ASTER satellite observations for international disaster management

    Science.gov (United States)

    Duda, K.A.; Abrams, M.

    2012-01-01

    When lives are threatened or lost due to catastrophic disasters, and when massive financial impacts are experienced, international emergency response teams rapidly mobilize to provide urgently required support. Satellite observations of affected areas often provide essential insight into the magnitude and details of the impacts. The large cost and high complexity of developing and operating satellite flight and ground systems encourages international collaboration in acquiring imagery for such significant global events in order to speed delivery of critical information to help those affected, and optimize spectral, spatial, and temporal coverage of the areas of interest. The International Charter-Space and Major Disasters was established to enable such collaboration in sensor tasking during times of crisis and is often activated in response to calls for assistance from authorized users. Insight is provided from a U.S. perspective into sensor support for Charter activations and other disaster events through a description of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), which has been used to support emergency situations for over a decade through its expedited tasking and near real-time data delivery capabilities. Examples of successes achieved and challenges encountered in international collaboration to develop related systems and fulfill tasking requests suggest operational considerations for new missions as well as areas for future enhancements.

  13. Three-dimensional disc-satellite interaction: torques, migration, and observational signatures

    Science.gov (United States)

    Arzamasskiy, Lev; Zhu, Zhaohuan; Stone, James M.

    2018-04-01

    The interaction of a satellite with a gaseous disc results in the excitation of spiral density waves, which remove angular momentum from the orbit. In addition, if the orbit is not coplanar with the disc, three-dimensional effects will excite bending and eccentricity waves. We perform three-dimensional hydrodynamic simulations to study nonlinear disc-satellite interaction in inviscid protoplanetary discs for a variety of orbital inclinations from 0° to 180°. It is well known that three-dimensional effects are important even for zero inclination. In this work, we (1) show that for planets with small inclinations (as in the Solar system), effects such as the total torque and migration rate strongly depend on the inclination and are significantly different (about 2.5 times smaller) from the two-dimensional case, (2) give formulae for the migration rate, inclination damping, and precession rate of planets with different inclination angles in disc with different scale heights, and (3) present the observational signatures of a planet on an inclined orbit with respect to the protoplanetary disc. For misaligned planets, we find good agreement with linear theory in the limit of small inclinations, and with dynamical friction estimates for intermediate inclinations. We find that in the latter case, the dynamical friction force is not parallel to the relative planetary velocity. Overall, the derived formulae will be important for studying exoplanets with obliquity.

  14. Offshore Wind Energy: Wind and Sea Surface Temperature from Satellite Observations

    DEFF Research Database (Denmark)

    Karagali, Ioanna

    as the entire atmosphere above. Under conditions of light winds and strong solar insolation, warming of the upper oceanic layer may occur. In this PhD study, remote sensing from satellites is used to obtain information for the near-surface ocean wind and the sea surface temperature over the North Sea......, demonstrate that wind information from SAR is more appropriate when small scale local features are of interest, not resolved by scatterometers. Hourly satellite observations of the sea surface temperature, from a thermal infra-red sensor, are used to identify and quantify the daily variability of the sea...

  15. Committee on Earth Observation Satellites (CEOS) perspectives about the GEO Supersite initiative

    Science.gov (United States)

    Lengert, Wolfgang; Zoffoli, Simona; Giguere, Christine; Hoffmann, Joern; Lindsay, Francis; Seguin, Guy

    2014-05-01

    This presentation is outlining the effort of the Committee on Earth Observation Satellites (CEOS) using its global collaboration structure to support implementing the GEO priority action DI-01 Informing Risk Management and Disaster Reduction addressing the component: C2 Geohazards Monitoring, Alert, and Risk Assessment. A CEOS Supersites Coordination Team (SCT) has been established in order to make best use of the CEOS global satellite resources. For this, the CEOS SCT has taken a holistic view on the science data needs and availability of resources, considering the constraints and exploitation potentials of synergies. It is interfacing with the Supersites Science Advisory Group and the Principle Investigators to analyze how the satellite data associated with seismic and Global Navigation Satellite System (GNSS) data can support national authorities and policy makers in risk assessment and the development of mitigation strategies. CEOS SCT aims to support the establishment of a fully integrated approach to geohazards monitoring, based on collaboration among existing networks and international initiatives, using new instrumentation such as in-situ sensors, and aggregating space (radar, optical imagery) and ground-based (subsurface) observations. The three Supersites projects which are funded under the EC FP7 action, namely (i) FUTUREVOLC: A European volcanological supersite in Iceland: a monitoring system and network for the future Geohazards Monitoring, Alert, and Risk Assessment, (ii) MARsite: New Directions in Seismic Hazard assessment through Focused Earth Observation in the Marmara Supersite, (iii) MED-SUV: MEDiterranean Volcanoes and related seismic risks, have been examined as a vehicle to fulfill these ambitious objectives. FUTUREVOLC has already been granted CEOS support. This presentation will outline CEOS agreed process and criteria applied by the Supersites Coordination Team (SCT), for selecting these Supersites in the context of the GSNL initiative, as

  16. Observations of lower hybrid cavities in the inner magnetosphere by the Cluster and Viking satellites

    Directory of Open Access Journals (Sweden)

    A. Tjulin

    2004-09-01

    Full Text Available Observations by the Viking and Cluster satellites at altitudes up to 35000km show that Lower Hybrid Cavities (LHCs are common in the inner magnetosphere. LHCs are density depletions filled with waves in the lower hybrid frequency range. The LHCs have, until recently, only been found at altitudes up to 2000km. Statistics of the locations and general shape of the LHCs is performed to obtain an overview of some of their properties. In total, we have observed 166 LHCs on Viking during 27h of data, and 535 LHCs on Cluster during 87h of data. These LHCs are found at invariant latitudes from the auroral region to the plasmapause. A comparison with lower altitude observations shows that the LHC occurrence frequency does not scale with the flux tube radius, so that the LHCs are moderately rarer at high altitudes. This indicates that the individual LHCs do not reach from the ionosphere to 35000km altitude, which gives an upper bound for their length. The width of the LHCs perpendicular to the geomagnetic field at high altitudes is a few times the ion gyroradius, consistent with observations at low altitudes. The estimated depth of the density depletions vary with altitude, being larger at altitudes of 20000-35000km (Cluster, 10-20%, smaller around 1500-13000km (Viking and previous Freja results, a few percent and again larger around 1000km (previous sounding rocket observations, 10-20%. The LHCs in the inner magnetosphere are situated in regions with background electrostatic hiss in the lower hybrid frequency range, consistent with investigations at low altitudes. Individual LHCs observed at high altitudes are stable at least on time scales of 0.2s (about the ion gyro period, which is consistent with previous results at lower altitudes, and observations by the four Cluster satellites show that the occurrence of LHCs in a region in space is a stable phenomenon, at least on time scales of an hour.

  17. Improved Specification of Transboundary Air Pollution over the Gulf of Mexico Using Satellite Observations

    Science.gov (United States)

    Pour Biazar, A.; Khan, M. N.; Park, Y. H.; McNider, R. T.; Cameron, B.

    2010-12-01

    The assessment of potential environmental impact of oil and gas operations in the Gulf of Mexico (GoM) and in particular the onshore air quality impact of such operations is important to State and Federal regulatory agencies. In adapting sound policies for control strategies, it is crucial to assess the impact of local pollution versus transboundary air pollution, and in a region such as GoM with scarce monitoring capability over open waters such distinctions represents a challenge. Furthermore, GoM region can be impacted by the recirculation of pollution in the southeastern United States. The current study examines the efficacy of utilizing the newly available satellite observations of aerosols and trace gases in air quality impacts assessment for addressing these issues. In particular, ozone profiles from the Tropospheric Emission Spectrometer (TES) and Ozone Monitoring Instrument (OMI) onboard Aura and aerosol products from Moderate Resolution Imaging Spectroradiometer (MODIS) onboard Terra and Aqua satellites were utilized in a modeling study during August 2006. The satellite observations were used in the specification of the background and lateral boundary and also once daily for the re-adjustment of the concentration fields. The results were then evaluated against ozonesonde and surface observations. The utilization of OMI ozone profiles significantly improved model performance in the free troposphere and the use of MODIS aerosol products substantially enhanced model prediction of aerosols in the boundary layer. Neither OMI nor TES provide adequate information in the boundary layer with respect to O3 and as a result they can only marginally impact ozone predictions in the boundary layer. The utilization of the satellite data for lateral boundary condition (BC) was helpful in the realization of transboundary transport of pollution. The hypothesis that the recirculation of pollution from Northeast Corridor can play a role over the Gulf of Mexico was tested and

  18. NASA Satellite Observations: A Unique Asset for the Study of the Environment and Implications for Public Health

    Science.gov (United States)

    Estes Sue M.

    2010-01-01

    This slide presentation highlights how satellite observation systems are assets for studying the environment in relation to public health. It includes information on current and future satellite observation systems, NASA's public health and safety research, surveillance projects, and NASA's public health partners.

  19. The Effect of Satellite Observing System Changes on MERRA Water and Energy Fluxes

    Science.gov (United States)

    Robertson, Franklin R.; Bosilovich, M. G.; Chen, J.; Miller, T. L.

    2011-01-01

    Because reanalysis data sets offer state variables and fluxes at regular space / time intervals, atmospheric reanalyses have become a mainstay of the climate community for diagnostic purposes and for driving offline ocean and land models. Although one weakness of these data sets is the susceptibility of the flux products to uncertainties because of shortcomings in parameterized model physics, another issue, perhaps less appreciated, is the fact that continual but discreet changes in the evolving observational system, particularly from satellite sensors, may also introduce artifacts in the time series of quantities. In this paper we examine the ability of the NASA MERRA (Modern Era Retrospective Analysis for Research and Applications) and other recent reanalyses to determine variability in the climate system over the satellite record (approx. the last 30 years). In particular we highlight the effect on the reanalysis of discontinuities at the junctures of the onset of passive microwave imaging (Special Sensor Microwave Imager) in late 1987 and, more prominently, with improved sounding and imaging with the Advanced Microwave Sounding Unit, AMSU-A, in 1998. We first examine MERRA fluxes from the perspective of how physical modes of variability (e.g. ENSO events, Pacific Decadal Variability) are contained by artificial step-like trends induced by the onset of new moisture data these two satellite observing systems. Secondly, we show how Redundancy Analysis, a statistical regression methodology, is effective in relating these artifact signals in the moisture and temperature analysis increments to their presence in the physical flux terms (e.g. precipitation, radiation). This procedure is shown to be effective greatly reducing the artificial trends in the flux quantities.

  20. Fine-tuning satellite-based rainfall estimates

    Science.gov (United States)

    Harsa, Hastuadi; Buono, Agus; Hidayat, Rahmat; Achyar, Jaumil; Noviati, Sri; Kurniawan, Roni; Praja, Alfan S.

    2018-05-01

    Rainfall datasets are available from various sources, including satellite estimates and ground observation. The locations of ground observation scatter sparsely. Therefore, the use of satellite estimates is advantageous, because satellite estimates can provide data on places where the ground observations do not present. However, in general, the satellite estimates data contain bias, since they are product of algorithms that transform the sensors response into rainfall values. Another cause may come from the number of ground observations used by the algorithms as the reference in determining the rainfall values. This paper describe the application of bias correction method to modify the satellite-based dataset by adding a number of ground observation locations that have not been used before by the algorithm. The bias correction was performed by utilizing Quantile Mapping procedure between ground observation data and satellite estimates data. Since Quantile Mapping required mean and standard deviation of both the reference and the being-corrected data, thus the Inverse Distance Weighting scheme was applied beforehand to the mean and standard deviation of the observation data in order to provide a spatial composition of them, which were originally scattered. Therefore, it was possible to provide a reference data point at the same location with that of the satellite estimates. The results show that the new dataset have statistically better representation of the rainfall values recorded by the ground observation than the previous dataset.

  1. Multi-instrument observations of midlatitude summer nighttime anomaly from satellite and ground

    Science.gov (United States)

    Yamamoto, Mamoru; Thampi, Smitha V.; Liu, Huixin; Lin, Charles

    "Midlatitude Summer Nighttime Anomaly (MSNA)" is a phenomenon that the nighttime elec-tron densities exceed the daytime values on almost all days in summer over latitudes of 33-34N of more. We recently found the MSNA over the northeast Asian region from multi-instrument observations. The observations include the tomography analysis based on the chain of digital beacon receivers at Shionomisaki (33.45N, 135.8E), Shigaraki (34.85N, 136.1E), and Fukui (36.06N,136E), the ionosonde network over Japan (especially data from Wakkanai (45.4N, 141.7E)), ground-based GPS TEC observations using the GEONET. Also from satellites, CHAMP in situ electron density measurements, and Formosat3/COSMIC (F3/C) occultation measurements are useful to confirm the presence of MSNA over this region. In the presen-tation we show detailed features of the MSNA based on these multi-instrument, and discuss importance of the neutral atmosphere as a driver of the phenomenon.

  2. Optical Tracking Data Validation and Orbit Estimation for Sparse Observations of Satellites by the OWL-Net.

    Science.gov (United States)

    Choi, Jin; Jo, Jung Hyun; Yim, Hong-Suh; Choi, Eun-Jung; Cho, Sungki; Park, Jang-Hyun

    2018-06-07

    An Optical Wide-field patroL-Network (OWL-Net) has been developed for maintaining Korean low Earth orbit (LEO) satellites' orbital ephemeris. The OWL-Net consists of five optical tracking stations. Brightness signals of reflected sunlight of the targets were detected by a charged coupled device (CCD). A chopper system was adopted for fast astrometric data sampling, maximum 50 Hz, within a short observation time. The astrometric accuracy of the optical observation data was validated with precise orbital ephemeris such as Consolidated Prediction File (CPF) data and precise orbit determination result with onboard Global Positioning System (GPS) data from the target satellite. In the optical observation simulation of the OWL-Net for 2017, an average observation span for a single arc of 11 LEO observation targets was about 5 min, while an average optical observation separation time was 5 h. We estimated the position and velocity with an atmospheric drag coefficient of LEO observation targets using a sequential-batch orbit estimation technique after multi-arc batch orbit estimation. Post-fit residuals for the multi-arc batch orbit estimation and sequential-batch orbit estimation were analyzed for the optical measurements and reference orbit (CPF and GPS data). The post-fit residuals with reference show few tens-of-meters errors for in-track direction for multi-arc batch and sequential-batch orbit estimation results.

  3. Estimating tropical vertical motion profile shapes from satellite observations

    Science.gov (United States)

    Back, L. E.; Handlos, Z.

    2013-12-01

    The vertical structure of tropical deep convection strongly influences interactions with larger scale circulations and climate. This research focuses on investigating this vertical structure and its relationship with mesoscale tropical weather states. We test the hypothesis that vertical motion shape varies in association with weather state type. We estimate mean state vertical motion profile shapes for six tropical weather states defined using cloud top pressure and optical depth properties from the International Satellite Cloud Climatology Project. The relationship between vertical motion and the dry static energy budget are utilized to set up a regression analysis that empirically determines two modes of variability in vertical motion from reanalysis data. We use these empirically determined modes, this relationship and surface convergence to estimate vertical motion profile shape from observations of satellite retrievals of rainfall and surface convergence. We find that vertical motion profile shapes vary systematically between different tropical weather states. The "isolated systems" regime exhibits a more ''bottom-heavy'' profile shape compared to the convective/thick cirrus and vigorous deep convective regimes, with maximum upward vertical motion occurring in the lower troposphere rather than the middle to upper troposphere. The variability we observe with our method does not coincide with that expected based on conventional ideas about how stratiform rain fraction and vertical motion are related.

  4. Simulating satellite observations of 100 kHz radio waves from relativistic electron beams above thunderclouds

    OpenAIRE

    M. Füllekrug; C. Hanuise; M. Parrot

    2010-01-01

    Relativistic electron beams above thunderclouds emit 100 kHz radio waves which illuminate the Earth's atmosphere and near-Earth space. This contribution aims to clarify the physical processes which are relevant for the spatial spreading of the radio wave energy below and above the ionosphere and thereby enables simulating satellite observations of 100 kHz radio waves from relativistic electron beams above thunderclouds. The simulation uses the DEMETER satellite which observes 100 kHz ...

  5. Thermospheric Extension of the Quasi 6-day Wave Observed by the TIMED Satellite

    Science.gov (United States)

    Gan, Q.; Oberheide, J.

    2017-12-01

    The quasi 6-day wave is one of the most prevailing planetary waves in the mesosphere and lower thermosphere (MLT) region. Its peak amplitude can attain 20-30 m/s in low-latitude zonal winds at around equinoxes. Consequently, it is anticipated that the 6-day wave can induce not only significantly dynamic effects (via wave-mean flow and wave-wave interactions) in the MLT, but also have significant impacts on the Thermosphere and Ionosphere (T-I). The understanding of the 6-day wave impact on the T-I system has been advanced a lot due to the recent development of whole atmosphere models and new satellite observations. Three pathways were widely proposed to explain the upward coupling due to the 6-day wave: E-region dynamo modulation, dissipation and nonlinear interaction with thermal tides. The current work aims to show a comprehensive pattern of the 6-day wave from the mesosphere up to the thermosphere/ionosphere in neutral fields (temperature, 3-D winds and density) and plasma drifts. To achieve this goal, we carry out the 6-day wave diagnostics by two different means. Firstly, the output of a one-year WACCM+DART run with data assimilation is analyzed to show the global structure of the 6-day wave in the MLT, followed by E-P flux diagnostics to elucidate the 6-day wave source and wave-mean flow interactions. Secondly, we produce observation-based 6-day wave patterns throughout the whole thermosphere by constraining modeled (TIME-GCM) 6-day wave patterns with observed 6-day wave patterns from SABER and TIDI in the MLT region. This allows us to fill the 110-400 km gap between remote sensing and in-situ satellites, and to obtain more realistic 6-day wave plasma drift patterns.

  6. Satellite-borne study of seismic phenomena by low frequency magnetic field observations

    Science.gov (United States)

    Schwingenschuh, Konrad; Magnes, Werner; Xuhui, Shen; Wang, Jindong; Pollinger, Andreas; Hagen, Christian; Prattes, Gustav; Eichelberger, Hans-Ulrich; Wolbang, Daniel; Boudjada, Mohammed Y.; Besser, Bruno P.; Rozhnoi, Alexander A.; Zhang, Tielong

    2015-04-01

    A combined scalar-vector magnetic field experiment will be flown on the upcoming CSES mission (China Seismo-Electromagnetic Satellite). Magnetic field data from DC to 30 Hz will be measured with an accuracy of about 10 pT. A fluxgate instrument will provide the 3 magnetic field components and a new type of an optically pumped magnetometer [see Pollinger, 2010] will measure the magnitude of the ambient magnetic field. The satellite will operate in a Sun synchronous polar orbit at an altitude of about 500 km and with an inclination of 97°. We present a model of magnetic field fluctuations in the upper ionosphere based on previous satellite observations and on a model of the lithospheric-atmospheric-ionospheric coupling. Pollinger et al., CDSM-a new scalar magnetometer, EGU General Assembly 2010

  7. Sub-kilometer Simulation of Equatorial Plasma Bubble and Comparison with Satellite Observations

    Science.gov (United States)

    Yokoyama, T.; Pfaff, R. F., Jr.; Stolle, C.; Su, S. Y.

    2016-12-01

    Equatorial plasma bubble (EPB) is a well-known phenomenon in the equatorial ionospheric F region. As it causes severe scintillation in the amplitude and phase of radio signals, it is important to understand and forecast the occurrence of EPB from a space weather point of view. The development of EPB is presently believed as an evolution of the generalized Rayleigh-Taylor instability. We have already developed a 3D high-resolution bubble (HIRB) model with a grid spacing of as small as 1 km and presented nonlinear growth of EPB which shows very turbulent internal structures such as bifurcation and pinching. Recent upgrade of the HIRB model has made it possible to conduct the simulation with sub-kilometer grid spacing. The simulation results can be compared with various in situ satellite observations such as plasma drift velocity, plasma density, magnetic field, and their structures and power spectra, e.g. from the C/NOFS, ROCSAT, CHAMP, or Swarm missions. Our initial results show encouraging agreement between model results and observational data.

  8. Sea level variability in the Arctic Ocean observed by satellite altimetry

    OpenAIRE

    Prandi, P.; Ablain, M.; Cazenave, A.; Picot, N.

    2012-01-01

    We investigate sea level variability in the Arctic Ocean from observations. Variability estimates are derived both at the basin scale and on smaller local spatial scales. The periods of the signals studied vary from high frequency (intra-annual) to long term trends. We also investigate the mechanisms responsible for the observed variability. Different data types are used, the main one being a recent reprocessing of satellite altimetry data...

  9. Bio-Optical Data Assimilation With Observational Error Covariance Derived From an Ensemble of Satellite Images

    Science.gov (United States)

    Shulman, Igor; Gould, Richard W.; Frolov, Sergey; McCarthy, Sean; Penta, Brad; Anderson, Stephanie; Sakalaukus, Peter

    2018-03-01

    An ensemble-based approach to specify observational error covariance in the data assimilation of satellite bio-optical properties is proposed. The observational error covariance is derived from statistical properties of the generated ensemble of satellite MODIS-Aqua chlorophyll (Chl) images. The proposed observational error covariance is used in the Optimal Interpolation scheme for the assimilation of MODIS-Aqua Chl observations. The forecast error covariance is specified in the subspace of the multivariate (bio-optical, physical) empirical orthogonal functions (EOFs) estimated from a month-long model run. The assimilation of surface MODIS-Aqua Chl improved surface and subsurface model Chl predictions. Comparisons with surface and subsurface water samples demonstrate that data assimilation run with the proposed observational error covariance has higher RMSE than the data assimilation run with "optimistic" assumption about observational errors (10% of the ensemble mean), but has smaller or comparable RMSE than data assimilation run with an assumption that observational errors equal to 35% of the ensemble mean (the target error for satellite data product for chlorophyll). Also, with the assimilation of the MODIS-Aqua Chl data, the RMSE between observed and model-predicted fractions of diatoms to the total phytoplankton is reduced by a factor of two in comparison to the nonassimilative run.

  10. The ecology of malaria--as seen from Earth-observation satellites.

    Science.gov (United States)

    Thomson, M C; Connor, S J; Milligan, P J; Flasse, S P

    1996-06-01

    Data from sensors on board geostationary and polar-orbiting, meteorological satellites (Meteosat and NOAA series) are routinely obtained free, via local reception systems, in an increasing number of African countries. Data collected by these satellites are processed to produce proxy ecological variables which have been extensively investigated for monitoring changes in the distribution and condition of different natural resources, including rainfall and vegetation state. How these data products (once incorporated, along with other data, into a geographical information system) could contribute to the goals of monitoring patterns of malaria transmission, predicting epidemics and planning control strategies is the subject of the present review. By way of illustration, an analysis of two of these products, normalized difference vegetation index (NVDI) and cold-cloud duration (CCD), is given in conjunction with epidemiological and entomological data from The Gambia, a country where extensive studies on malaria transmission have been undertaken in recent years. Preliminary results indicate that even simple analysis of proxy ecological variables derived from satellite data can indicate variation in environmental factors affecting malaria-transmission indices. However, it is important to note that the associations observed will vary depending on the local ecology, season and species of vector. Whilst further quantitative research is required to validate the relationship between satellite-data products and malaria-transmission indices, this approach offers a means by which detailed knowledge of the underlying spatial and temporal variation in the environment can be incorporated into a decision-support system for malaria control.

  11. Precise Orbit Determination of GPS Satellites Using Phase Observables

    Directory of Open Access Journals (Sweden)

    Myung-Kook Jee

    1997-12-01

    Full Text Available The accuracy of user position by GPS is heavily dependent upon the accuracy of satellite position which is usually transmitted to GPS users in radio signals. The real-time satellite position information directly obtained from broadcast ephimerides has the accuracy of 3 x 10 meters which is very unsatisfactory to measure 100km baseline to the accuracy of less than a few mili-meters. There are globally at present seven orbit analysis centers capable of generating precise GPS ephimerides and their orbit quality is of the order of about 10cm. Therefore, precise orbit model and phase processing technique were reviewed and consequently precise GPS ephimerides were produced after processing the phase observables of 28 global GPS stations for 1 day. Initial 6 orbit parameters and 2 solar radiation coefficients were estimated using batch least square algorithm and the final results were compared with the orbit of IGS, the International GPS Service for Geodynamics.

  12. The survey on data format of Earth observation satellite data at JAXA.

    Science.gov (United States)

    Matsunaga, M.; Ikehata, Y.

    2017-12-01

    JAXA's earth observation satellite data are distributed by a portal web site for search and deliver called "G-Portal". Users can download the satellite data of GPM, TRMM, Aqua, ADEOS-II, ALOS (search only), ALOS-2 (search only), MOS-1, MOS-1b, ERS-1 and JERS-1 from G-Portal. However, these data formats are different by each satellite like HDF4, HDF5, NetCDF4, CEOS, etc., and which formats are not familiar to new data users. Although the HDF type self-describing format is very convenient and useful for big dataset information, old-type format product is not readable by open GIS tool nor apply OGC standard. Recently, the satellite data are widely used to be applied to the various needs such as disaster, earth resources, monitoring the global environment, Geographic Information System(GIS) and so on. In order to remove a barrier of using Earth Satellite data for new community users, JAXA has been providing the format-converted product like GeoTIFF or KMZ. In addition, JAXA provides format conversion tool itself. We investigate the trend of data format for data archive, data dissemination and data utilization, then we study how to improve the current product format for various application field users and make a recommendation for new product.

  13. Observing System Simulations for Small Satellite Formations Estimating Bidirectional Reflectance

    Science.gov (United States)

    Nag, Sreeja; Gatebe, Charles K.; de Weck, Olivier

    2015-01-01

    The bidirectional reflectance distribution function (BRDF) gives the reflectance of a target as a function of illumination geometry and viewing geometry, hence carries information about the anisotropy of the surface. BRDF is needed in remote sensing for the correction of view and illumination angle effects (for example in image standardization and mosaicing), for deriving albedo, for land cover classification, for cloud detection, for atmospheric correction, and other applications. However, current spaceborne instruments provide sparse angular sampling of BRDF and airborne instruments are limited in the spatial and temporal coverage. To fill the gaps in angular coverage within spatial, spectral and temporal requirements, we propose a new measurement technique: Use of small satellites in formation flight, each satellite with a VNIR (visible and near infrared) imaging spectrometer, to make multi-spectral, near-simultaneous measurements of every ground spot in the swath at multiple angles. This paper describes an observing system simulation experiment (OSSE) to evaluate the proposed concept and select the optimal formation architecture that minimizes BRDF uncertainties. The variables of the OSSE are identified; number of satellites, measurement spread in the view zenith and relative azimuth with respect to solar plane, solar zenith angle, BRDF models and wavelength of reflection. Analyzing the sensitivity of BRDF estimation errors to the variables allow simplification of the OSSE, to enable its use to rapidly evaluate formation architectures. A 6-satellite formation is shown to produce lower BRDF estimation errors, purely in terms of angular sampling as evaluated by the OSSE, than a single spacecraft with 9 forward-aft sensors. We demonstrate the ability to use OSSEs to design small satellite formations as complements to flagship mission data. The formations can fill angular sampling gaps and enable better BRDF products than currently possible.

  14. Observing system simulations for small satellite formations estimating bidirectional reflectance

    Science.gov (United States)

    Nag, Sreeja; Gatebe, Charles K.; Weck, Olivier de

    2015-12-01

    The bidirectional reflectance distribution function (BRDF) gives the reflectance of a target as a function of illumination geometry and viewing geometry, hence carries information about the anisotropy of the surface. BRDF is needed in remote sensing for the correction of view and illumination angle effects (for example in image standardization and mosaicing), for deriving albedo, for land cover classification, for cloud detection, for atmospheric correction, and other applications. However, current spaceborne instruments provide sparse angular sampling of BRDF and airborne instruments are limited in the spatial and temporal coverage. To fill the gaps in angular coverage within spatial, spectral and temporal requirements, we propose a new measurement technique: use of small satellites in formation flight, each satellite with a VNIR (visible and near infrared) imaging spectrometer, to make multi-spectral, near-simultaneous measurements of every ground spot in the swath at multiple angles. This paper describes an observing system simulation experiment (OSSE) to evaluate the proposed concept and select the optimal formation architecture that minimizes BRDF uncertainties. The variables of the OSSE are identified; number of satellites, measurement spread in the view zenith and relative azimuth with respect to solar plane, solar zenith angle, BRDF models and wavelength of reflection. Analyzing the sensitivity of BRDF estimation errors to the variables allow simplification of the OSSE, to enable its use to rapidly evaluate formation architectures. A 6-satellite formation is shown to produce lower BRDF estimation errors, purely in terms of angular sampling as evaluated by the OSSE, than a single spacecraft with 9 forward-aft sensors. We demonstrate the ability to use OSSEs to design small satellite formations as complements to flagship mission data. The formations can fill angular sampling gaps and enable better BRDF products than currently possible.

  15. A Topology Control Strategy with Reliability Assurance for Satellite Cluster Networks in Earth Observation

    Directory of Open Access Journals (Sweden)

    Qing Chen

    2017-02-01

    Full Text Available This article investigates the dynamic topology control problemof satellite cluster networks (SCNs in Earth observation (EO missions by applying a novel metric of stability for inter-satellite links (ISLs. The properties of the periodicity and predictability of satellites’ relative position are involved in the link cost metric which is to give a selection criterion for choosing the most reliable data routing paths. Also, a cooperative work model with reliability is proposed for the situation of emergency EO missions. Based on the link cost metric and the proposed reliability model, a reliability assurance topology control algorithm and its corresponding dynamic topology control (RAT strategy are established to maximize the stability of data transmission in the SCNs. The SCNs scenario is tested through some numeric simulations of the topology stability of average topology lifetime and average packet loss rate. Simulation results show that the proposed reliable strategy applied in SCNs significantly improves the data transmission performance and prolongs the average topology lifetime.

  16. Photographical observations of planet satellite carried out in MAO NASU in 1961- 1990

    Science.gov (United States)

    Izhakevich, E. M.; Kulik, I. V.; Shatohina, S. V.

    2001-10-01

    Intensive photographic observations of the Solar System body were made during the 1961-1990 at Golosiiv. More than 300 photographic plates were obtained for this period. The images of the satellites of Jupiter, Saturn, Uran are available in these plates. The photographic observations of the natural moons were acquired in 1986-1990 at Majdanak. All accumulated plates were remeasured and astrometric positions all available moons were obtained in the ACT and Tyho-2 systems. We present about 900 positions of eight Saturian satellites, Uranium moons Ariel, Umbriel, Oberon, Titanium and Neptunium moon Triton. The differences calculated and theoretical positions were obtained. Mean rms errors of the (O-C) are in the range 0.2-0.3 arcsec.

  17. Polar clouds and radiation in satellite observations, reanalyses, and climate models

    NARCIS (Netherlands)

    Lenaerts, JTM; Van Tricht, Kristof; Lhermitte, S.L.M.; L'Ecuyer, T.S.

    2017-01-01

    Clouds play a pivotal role in the surface energy budget of the polar regions. Here we use two largely independent data sets of cloud and surface downwelling radiation observations derived by satellite remote sensing (2007–2010) to evaluate simulated clouds and radiation over both polar ice sheets

  18. Impact of Assimilation of Conventional and Satellite Radiance GTS Observations on Simulation of Mesoscale Convective System Over Southeast India Using WRF-3DVar

    Science.gov (United States)

    Madhulatha, A.; Rajeevan, M.; Bhowmik, S. K. Roy; Das, A. K.

    2018-01-01

    The primary goal of present study is to investigate the impact of assimilation of conventional and satellite radiance observations in simulating the mesoscale convective system (MCS) formed over south east India. An assimilation methodology based on Weather Research and Forecasting model three dimensional variational data assimilation is considered. Few numerical experiments are carried out to examine the individual and combined impact of conventional and non-conventional (satellite radiance) observations. After the successful inclusion of additional observations, strong analysis increments of temperature and moisture fields are noticed and contributed to significant improvement in model's initial fields. The resulting model simulations are able to successfully reproduce the prominent synoptic features responsible for the initiation of MCS. Among all the experiments, the final experiment in which both conventional and satellite radiance observations assimilated has showed considerable impact on the prediction of MCS. The location, genesis, intensity, propagation and development of rain bands associated with the MCS are simulated reasonably well. The biases of simulated temperature, moisture and wind fields at surface and different pressure levels are reduced. Thermodynamic, dynamic and vertical structure of convective cells associated with the passage of MCS are well captured. Spatial distribution of rainfall is fairly reproduced and comparable to TRMM observations. It is demonstrated that incorporation of conventional and satellite radiance observations improved the local and synoptic representation of temperature, moisture fields from surface to different levels of atmosphere. This study highlights the importance of assimilation of conventional and satellite radiances in improving the models initial conditions and simulation of MCS.

  19. Operational Estimation of Accumulated Precipitation using Satellite Observation, by Eumetsat Satellite Application facility in Support to Hydrology (H-SAF Consortium).

    Science.gov (United States)

    di Diodato, A.; de Leonibus, L.; Zauli, F.; Biron, D.; Melfi, D.

    2009-04-01

    Operational Estimation of Accumulated Precipitation using Satellite Observation, by Eumetsat Satellite Application facility in Support to Hydrology (H-SAF Consortium). Cap. Attilio DI DIODATO(*), T.Col. Luigi DE LEONIBUS(*), T.Col Francesco ZAULI(*), Cap. Daniele BIRON(*), Ten. Davide Melfi(*) Satellite Application Facilities (SAFs) are specialised development and processing centres of the EUMETSAT Distributed Ground Segment. SAFs process level 1b data from meteorological satellites (geostationary and polar ones) in conjunction with all other relevant sources of data and appropriate models to generate services and level 2 products. Each SAF is a consortium of EUMETSAT European partners lead by a host institute responsible for the management of the complete SAF project. The Meteorological Service of Italian Air Force is the host Institute for the Satellite Application Facility on Support to Operational Hydrology and Water Management (H-SAF). HSAF has the commitment to develop and to provide, operationally after 2010, products regarding precipitation, soil moisture and snow. HSAF is going to provide information on error structure of its products and validation of the products via their impacts into Hydrological models. To that purpose it has been structured a specific subgroups. Accumulated precipitation is computed by temporal integration of the instantaneous rain rate achieved by the blended LEO/MW and GEO/IR precipitation rate products generated by Rapid Update method available every 15 minutes. The algorithm provides four outputs, consisting in accumulated precipitation in 3, 6, 12 and 24 hours, delivered every 3 hours at the synoptic hours. These outputs are our precipitation background fields. Satellite estimates can cover most of the globe, however, they suffer from errors due to lack of a direct relationship between observation parameters and precipitation, the poor sampling and algorithm imperfections. For this reason the 3 hours accumulated precipitation is

  20. Statistically Optimized Inversion Algorithm for Enhanced Retrieval of Aerosol Properties from Spectral Multi-Angle Polarimetric Satellite Observations

    Science.gov (United States)

    Dubovik, O; Herman, M.; Holdak, A.; Lapyonok, T.; Taure, D.; Deuze, J. L.; Ducos, F.; Sinyuk, A.

    2011-01-01

    The proposed development is an attempt to enhance aerosol retrieval by emphasizing statistical optimization in inversion of advanced satellite observations. This optimization concept improves retrieval accuracy relying on the knowledge of measurement error distribution. Efficient application of such optimization requires pronounced data redundancy (excess of the measurements number over number of unknowns) that is not common in satellite observations. The POLDER imager on board the PARASOL microsatellite registers spectral polarimetric characteristics of the reflected atmospheric radiation at up to 16 viewing directions over each observed pixel. The completeness of such observations is notably higher than for most currently operating passive satellite aerosol sensors. This provides an opportunity for profound utilization of statistical optimization principles in satellite data inversion. The proposed retrieval scheme is designed as statistically optimized multi-variable fitting of all available angular observations obtained by the POLDER sensor in the window spectral channels where absorption by gas is minimal. The total number of such observations by PARASOL always exceeds a hundred over each pixel and the statistical optimization concept promises to be efficient even if the algorithm retrieves several tens of aerosol parameters. Based on this idea, the proposed algorithm uses a large number of unknowns and is aimed at retrieval of extended set of parameters affecting measured radiation.

  1. Evaluation of the shortwave cloud radiative effect over the ocean by use of ship and satellite observations

    Directory of Open Access Journals (Sweden)

    T. Hanschmann

    2012-12-01

    Full Text Available In this study the shortwave cloud radiative effect (SWCRE over ocean calculated by the ECHAM 5 climate model is evaluated for the cloud property input derived from ship based measurements and satellite based estimates and compared to ship based radiation measurements. The ship observations yield cloud fraction, liquid water path from a microwave radiometer, cloud bottom height as well as temperature and humidity profiles from radiosonde ascents. Level-2 products of the Satellite Application Facility on Climate Monitoring (CM~SAF from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI have been used to characterize clouds. Within a closure study six different experiments have been defined to find the optimal set of measurements to calculate downward shortwave radiation (DSR and the SWCRE from the model, and their results have been evaluated under seven different synoptic situations. Four of these experiments are defined to investigate the advantage of including the satellite-based cloud droplet effective radius as additional cloud property. The modeled SWCRE based on satellite retrieved cloud properties has a comparable accuracy to the modeled SWCRE based on ship data. For several cases, an improvement through introducing the satellite-based estimate of effective radius as additional information to the ship based data was found. Due to their different measuring characteristics, however, each dataset shows best results for different atmospheric conditions.

  2. Broadband VHF observations for lightning impulses from a small satellite SOHLA-1 (Maido 1)

    Science.gov (United States)

    Morimoto, T.; Kikuchi, H.; Ushio, T.; Kawasaki, Z.; Hidekazu, H.; Aoki, T.

    2009-12-01

    analog-to-digital converter (ADC) to record broadband VHF pulses in orbit. The waveforms of 100 EM pulses in VHF band emitted from a lightning flash are obtained. Three pairs of BMW with accurate synchronized 3-channel-ADC are needed to realize DITF. From the successful satellite observation like TRMM/LIS, the effectiveness and impact of satellite observations for lightning are obvious. The combination of optical and VHF lightning observations are complimentary each other. ISS/JEM is a candidate platform to realize the simplest DITF and synchronous observations with optical sensors. SOHLA-1 was launched by a HII-A rocket at January 23, 2009 and named Maido-1. Then BMW has worked well and recorded VHF EM waveforms. The development of Maido-1 and its observations results will be presented.

  3. Observability of satellite launcher navigation with INS, GPS, attitude sensors and reference trajectory

    Science.gov (United States)

    Beaudoin, Yanick; Desbiens, André; Gagnon, Eric; Landry, René

    2018-01-01

    The navigation system of a satellite launcher is of paramount importance. In order to correct the trajectory of the launcher, the position, velocity and attitude must be known with the best possible precision. In this paper, the observability of four navigation solutions is investigated. The first one is the INS/GPS couple. Then, attitude reference sensors, such as magnetometers, are added to the INS/GPS solution. The authors have already demonstrated that the reference trajectory could be used to improve the navigation performance. This approach is added to the two previously mentioned navigation systems. For each navigation solution, the observability is analyzed with different sensor error models. First, sensor biases are neglected. Then, sensor biases are modelled as random walks and as first order Markov processes. The observability is tested with the rank and condition number of the observability matrix, the time evolution of the covariance matrix and sensitivity to measurement outlier tests. The covariance matrix is exploited to evaluate the correlation between states in order to detect structural unobservability problems. Finally, when an unobservable subspace is detected, the result is verified with theoretical analysis of the navigation equations. The results show that evaluating only the observability of a model does not guarantee the ability of the aiding sensors to correct the INS estimates within the mission time. The analysis of the covariance matrix time evolution could be a powerful tool to detect this situation, however in some cases, the problem is only revealed with a sensitivity to measurement outlier test. None of the tested solutions provide GPS position bias observability. For the considered mission, the modelling of the sensor biases as random walks or Markov processes gives equivalent results. Relying on the reference trajectory can improve the precision of the roll estimates. But, in the context of a satellite launcher, the roll

  4. Ionospheric Simulation System for Satellite Observations and Global Assimilative Model Experiments - ISOGAME

    Science.gov (United States)

    Pi, Xiaoqing; Mannucci, Anthony J.; Verkhoglyadova, Olga; Stephens, Philip; Iijima, Bryron A.

    2013-01-01

    Modeling and imaging the Earth's ionosphere as well as understanding its structures, inhomogeneities, and disturbances is a key part of NASA's Heliophysics Directorate science roadmap. This invention provides a design tool for scientific missions focused on the ionosphere. It is a scientifically important and technologically challenging task to assess the impact of a new observation system quantitatively on our capability of imaging and modeling the ionosphere. This question is often raised whenever a new satellite system is proposed, a new type of data is emerging, or a new modeling technique is developed. The proposed constellation would be part of a new observation system with more low-Earth orbiters tracking more radio occultation signals broadcast by Global Navigation Satellite System (GNSS) than those offered by the current GPS and COSMIC observation system. A simulation system was developed to fulfill this task. The system is composed of a suite of software that combines the Global Assimilative Ionospheric Model (GAIM) including first-principles and empirical ionospheric models, a multiple- dipole geomagnetic field model, data assimilation modules, observation simulator, visualization software, and orbit design, simulation, and optimization software.

  5. Evaluation of Integrated Multi-satellitE Retrievals for GPM with All Weather Gauge Observations over CONUS

    Science.gov (United States)

    Chen, S.; Qi, Y.; Hu, B.; Hu, J.; Hong, Y.

    2015-12-01

    The Global Precipitation Measurement (GPM) mission is composed of an international network of satellites that provide the next-generation global observations of rain and snow. Integrated Multi-satellitE Retrievals for GPM (IMERG) is the state-of-art precipitation products with high spatio-temporal resolution of 0.1°/30min. IMERG unifies precipitation measurements from a constellation of research and operational satellites with the core sensors dual-frequency precipitation radar (DPR) and microwave imager (GMI) on board a "Core" satellite. Additionally, IMERG blends the advantages of currently most popular satellite-based quantitative precipitation estimates (QPE) algorithms, i.e. TRMM Multi-satellite Precipitation Analysis (TMPA), Climate Prediction Center morphing technique (CMORPH), Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Cloud Classification System (PERSIANN-CCS). The real-time and post real-time IMERG products are now available online at https://stormpps.gsfc.nasa.gov/storm. In this study, the final run post real-time IMERG is evaluated with all-weather manual gauge observations over CONUS from June 2014 through May 2015. Relative Bias (RB), Root-Mean-Squared Error (RMSE), Correlation Coefficient (CC), Probability Of Detection (POD), False Alarm Ratio (FAR), and Critical Success Index (CSI) are used to quantify the performance of IMERG. The performance of IMERG in estimating snowfall precipitation is highlighted in the study. This timely evaluation with all-weather gauge observations is expected to offer insights into performance of IMERG and thus provide useful feedback to the algorithm developers as well as the GPM data users.

  6. Stratospheric dryness: model simulations and satellite observations

    Directory of Open Access Journals (Sweden)

    J. Lelieveld

    2007-01-01

    Full Text Available The mechanisms responsible for the extreme dryness of the stratosphere have been debated for decades. A key difficulty has been the lack of comprehensive models which are able to reproduce the observations. Here we examine results from the coupled lower-middle atmosphere chemistry general circulation model ECHAM5/MESSy1 together with satellite observations. Our model results match observed temperatures in the tropical lower stratosphere and realistically represent the seasonal and inter-annual variability of water vapor. The model reproduces the very low water vapor mixing ratios (below 2 ppmv periodically observed at the tropical tropopause near 100 hPa, as well as the characteristic tape recorder signal up to about 10 hPa, providing evidence that the dehydration mechanism is well-captured. Our results confirm that the entry of tropospheric air into the tropical stratosphere is forced by large-scale wave dynamics, whereas radiative cooling regionally decelerates upwelling and can even cause downwelling. Thin cirrus forms in the cold air above cumulonimbus clouds, and the associated sedimentation of ice particles between 100 and 200 hPa reduces water mass fluxes by nearly two orders of magnitude compared to air mass fluxes. Transport into the stratosphere is supported by regional net radiative heating, to a large extent in the outer tropics. During summer very deep monsoon convection over Southeast Asia, centered over Tibet, moistens the stratosphere.

  7. Identification of weak autoionizing resonances observed through fluorescence from the satellite states of Ar+

    International Nuclear Information System (INIS)

    McLaughlin, K.W.; Yenen, O.; Samson, J.A.R.

    1997-01-01

    Photoionization accompanied by excitation of the residual ionic state violates an independent electron model since, according to QED, photons interact only with individual electrons. By allowing measurements at a threshold event with high resolution, the observation of the fluorescence from the decay of these excited states (satellite states) is a sensitive method in the study of electron-electron interactions, providing complementary information to photoelectron spectroscopy. In the measurements reported here, an atomic beam of argon has been photoionized with 34 to 39 eV synchrotron radiation at beamline 9.0.1 of the Advanced Light Source. This energy range encompasses the 3p 4 [ 3 P] 4p 4 P, 2 P, and 2 D as well as the [ 1 D]4p 2 F satellite states of Ar + . By observing the fine-structure resolved fluorescence from these satellite states, new Rydberg series and extensions of previously known series have been resolved with an energy resolution of 3 meV. With the high photon flux available from the high resolution monochromator of beamline 9.0.1, even the weakly excited [ 3 P] 4p ( 2 S) ns,d autoionizing structure has been observed for the first time

  8. Capture of irregular satellites at Jupiter

    International Nuclear Information System (INIS)

    Nesvorný, David; Vokrouhlický, David; Deienno, Rogerio

    2014-01-01

    The irregular satellites of outer planets are thought to have been captured from heliocentric orbits. The exact nature of the capture process, however, remains uncertain. We examine the possibility that irregular satellites were captured from the planetesimal disk during the early solar system instability when encounters between the outer planets occurred. Nesvorný et al. already showed that the irregular satellites of Saturn, Uranus, and Neptune were plausibly captured during planetary encounters. Here we find that the current instability models present favorable conditions for capture of irregular satellites at Jupiter as well, mainly because Jupiter undergoes a phase of close encounters with an ice giant. We show that the orbital distribution of bodies captured during planetary encounters provides a good match to the observed distribution of irregular satellites at Jupiter. The capture efficiency for each particle in the original transplanetary disk is found to be (1.3-3.6) × 10 –8 . This is roughly enough to explain the observed population of jovian irregular moons. We also confirm Nesvorný et al.'s results for the irregular satellites of Saturn, Uranus, and Neptune.

  9. Implementing earth observation and advanced satellite based atmospheric sounders for water resource and climate modelling

    DEFF Research Database (Denmark)

    Boegh, E.; Dellwik, Ebba; Hahmann, Andrea N.

    2010-01-01

    This paper discusses preliminary remote sensing (MODIS) based hydrological modelling results for the Danish island Sjælland (7330 km2) in relation to project objectives and methodologies of a new research project “Implementing Earth observation and advanced satellite based atmospheric sounders....... For this purpose, a) internal catchment processes will be studied using a Distributed Temperature Sensing (DTS) system, b) Earth observations will be used to upscale from field to regional scales, and c) at the largest scale, satellite based atmospheric sounders and meso-scale climate modelling will be used...

  10. International Collaboration in Satellite Observations for Disaster Management

    Science.gov (United States)

    Duda, Kenneth A.; Abrams, Michael

    2012-01-01

    When lives are threatened or lost due to catastrophic disasters, and when massive financial impacts are experienced, international emergency response teams rapidly mobilize to provide urgently required support. Satellite observations of affected areas often provide essential insight into the magnitude and details of the impacts. The large cost and high complexity of developing and operating satellite flight and ground systems encourages international collaboration in acquiring imagery for such significant global events in order to speed delivery of critical information to help those affected, and optimize spectral, spatial, and temporal coverage of the areas of interest. The International Charter-Space and Major Disasters was established to enable such collaboration in sensor tasking during times of crisis and is often activated in response to calls for assistance from authorized users. Insight is provided from a U.S. perspective into sensor support for Charter activations and other disaster events through a description of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), which has been used to support emergency situations for over a decade through its expedited tasking and near real-time data delivery capabilities. Examples of successes achieved and challenges encountered in international collaboration to develop related systems and fulfill tasking requests suggest operational considerations for new missions as well as areas for future enhancements.

  11. Surface net solar radiation estimated from satellite measurements - Comparisons with tower observations

    Science.gov (United States)

    Li, Zhanqing; Leighton, H. G.; Cess, Robert D.

    1993-01-01

    A parameterization that relates the reflected solar flux at the top of the atmosphere to the net solar flux at the surface in terms of only the column water vapor amount and the solar zenith angle was tested against surface observations. Net surface fluxes deduced from coincidental collocated satellite-measured radiances and from measurements from towers in Boulder during summer and near Saskatoon in winter have mean differences of about 2 W/sq m, regardless of whether the sky is clear or cloudy. Furthermore, comparisons between the net fluxes deduced from the parameterization and from surface measurements showed equally good agreement when the data were partitioned into morning and afternoon observations. This is in contrast to results from an empirical clear-sky algorithm that is unable to account adequately for the effects of clouds and that shows, at Boulder, a distinct morning to afternoon variation. It is also demonstrated that the parameterization may be applied to irradiances at the top of the atmosphere that have been temporally averaged. The good agreement between the results of the parameterization and surface measurements suggests that the algorithm is a useful tool for a variety of climate studies.

  12. Estimation of time-series properties of gourd observed solar irradiance data using cloud properties derived from satellite observations

    Science.gov (United States)

    Watanabe, T.; Nohara, D.

    2017-12-01

    The shorter temporal scale variation in the downward solar irradiance at the ground level (DSI) is not understood well because researches in the shorter-scale variation in the DSI is based on the ground observation and ground observation stations are located coarsely. Use of dataset derived from satellite observation will overcome such defect. DSI data and MODIS cloud properties product are analyzed simultaneously. Three metrics: mean, standard deviation and sample entropy, are used to evaluate time-series properties of the DSI. Three metrics are computed from two-hours time-series centered at the observation time of MODIS over the ground observation stations. We apply the regression methods to design prediction models of each three metrics from cloud properties. The validation of the model accuracy show that mean and standard deviation are predicted with a higher degree of accuracy and that the accuracy of prediction of sample entropy, which represents the complexity of time-series, is not high. One of causes of lower prediction skill of sample entropy is the resolution of the MODIS cloud properties. Higher sample entropy is corresponding to the rapid fluctuation, which is caused by the small and unordered cloud. It seems that such clouds isn't retrieved well.

  13. Synergy of Satellite-Surface Observations for Studying the Properties of Absorbing Aerosols in Asia

    Science.gov (United States)

    Tsay, Si-Chee

    2010-01-01

    Through interaction with clouds and alteration of the Earth's radiation budget, atmospheric aerosols significantly influence our weather and climate. Monsoon rainfalls, for example, sustain the livelihood of more than half of the world's population. Thus, understanding the mechanism that drives the water cycle and freshwater distribution is high-lighted as one of the major near-term goals in NASA's Earth Science Enterprise Strategy. Every cloud droplet/ice-crystal that serves as an essential element in portraying water cycle and distributing freshwater contains atmospheric aerosols at its core. In addition, the spatial and temporal variability of atmospheric aerosol properties is complex due to their dynamic nature. In fact, the predictability of the tropical climate system is much reduced during the boreal spring, which is associated with the peak season of biomass burning activities and regional/long-range transport of dust aerosols. Therefore, to accurately assess the impact of absorbing aerosols on regional-to-global climate requires not only modeling efforts but also continuous observations from satellites, aircraft, networks of ground-based instruments and dedicated field experiments. Since 1997 NASA has been successfully launching a series of satellites the Earth Observing System - to intensively study, and gain a better understanding of, the Earth as an integrated system. Through participation in many satellite remote-sensing/retrieval and validation projects over the years, we have gradually developed and refined the SMART (Surface-sensing Measurements for Atmospheric Radiative Transfer) and COMMIT (Chemical, Optical & Microphysical Measurements of In-situ Troposphere) mobile observatories, a suite of surface remote sensing and in-situ instruments that proved to be vital in providing high temporal measurements, which complement the satellite observations. In this talk, we will present SMART-COMMIT which has played key roles, serving as network or supersite

  14. A Terrestrial Reference Frame realised on the observation level using a GPS-LEO satellite constellation

    Science.gov (United States)

    Koenig, Daniel

    2018-02-01

    Applying a one-step integrated process, i.e. by simultaneously processing all data and determining all satellite orbits involved, a Terrestrial Reference Frame (TRF) consisting of a geometric as well as a dynamic part has been determined at the observation level using the EPOS-OC software of Deutsches GeoForschungsZentrum. The satellite systems involved comprise the Global Positioning System (GPS) as well as the twin GRACE spacecrafts. Applying a novel approach, the inherent datum defect has been overcome empirically. In order not to rely on theoretical assumptions this is done by carrying out the TRF estimation based on simulated observations and using the associated satellite orbits as background truth. The datum defect is identified here as the total of all three translations as well as the rotation about the z-axis of the ground station network leading to a rank-deficient estimation problem. To rectify this singularity, datum constraints comprising no-net translation (NNT) conditions in x, y, and z as well as a no-net rotation (NNR) condition about the z-axis are imposed. Thus minimally constrained, the TRF solution covers a time span of roughly a year with daily resolution. For the geometric part the focus is put on Helmert transformations between the a priori and the estimated sets of ground station positions, and the dynamic part is represented by gravity field coefficients of degree one and two. The results of a reference solution reveal the TRF parameters to be estimated reliably with high precision. Moreover, carrying out a comparable two-step approach using the same data and models leads to parameters and observational residuals of worse quality. A validation w.r.t. external sources shows the dynamic origin to coincide at a level of 5 mm or better in x and y, and mostly better than 15 mm in z. Comparing the derived GPS orbits to IGS final orbits as well as analysing the SLR residuals for the GRACE satellites reveals an orbit quality on the few cm level

  15. Multiple-Satellite Observation of Magnetic Dip Event During the Substorm on 10 October 2013

    Science.gov (United States)

    He, Zhaoguo; Chen, Lunjin; Zhu, Hui; Xia, Zhiyang; Reeves, G. D.; Xiong, Ying; Xie, Lun; Cao, Yong

    2017-09-01

    We present a multiple-satellite observation of the magnetic dip event during the substorm on 10 October 2013. The observation illustrates the temporal and spatial evolution of the magnetic dip and gives a compelling evidence that ring current ions induce the magnetic dip by enhanced plasma beta. The dip moves with the energetic ions in a comparable drift velocity and affects the dynamics of relativistic electrons in the radiation belt. In addition, the magnetic dip provides a favorable condition for the electromagnetic ion cyclotron (EMIC) wave generation based on the linear theory analysis. The calculated proton diffusion coefficients show that the observed EMIC wave can lead to the pitch angle scattering losses of the ring current ions, which in turn partially relax the magnetic dip in the observations. This study enriches our understanding of magnetic dip evolution and demonstrates the important role of the magnetic dip for the coupling of radiation belt and ring current.

  16. Lower stratospheric observations from aircraft and satellite during the 2015/2016 El Nino

    Science.gov (United States)

    Rosenlof, K. H.; Avery, M. A.; Davis, S. M.; Gao, R. S.; Thornberry, T. D.

    2016-12-01

    Winter 2015/2016 experienced a strong El Nino that was heavily observed by aircraft, radiosonde and satellite platforms. During the National Oceanographic and Atmospheric Administration's (NOAA) Sensing Hazards with Operational Unmanned Technology (SHOUT)/El Nino Rapid Response (ENRR) flights of the NASA Global Hawk, in situ ozone measurements were made in the lower stratosphere over the Pacific. These will be contrasted with ozone measurements taken during La Nina and ENSO neutral conditions during past Global Hawk aircraft campaigns. Additionally, lower stratospheric water vapor and ozone measurements from the Microwave Limb Sounder satellite instrument and stratospheric ice measurements above the tropopause from the Cloud-Aerosol Aerosol Lidar with Orthogonal Polarization (CALIOP) will be presented. Our aircraft ozone measurements are higher for the El Nino flights than during other missions previously sampled, while zonally averaged lower stratospheric water vapor and central Pacific ice path above the tropopause reached record highs. Implications and possible reasons for these anomalous observations will be discussed. Winter 2015/2016 experienced a strong El Nino that was heavily observed by aircraft, radiosonde and satellite platforms. During the National Oceanographic and Atmospheric Administration's (NOAA) Sensing Hazards with Operational Unmanned Technology (SHOUT)/El Nino Rapid Response (ENRR) flights of the NASA Global Hawk, in situ ozone measurements were made in the upper troposphere and lower stratosphere (UTLS) over the Pacific. These will be contrasted with ozone measurements made during La Nina and ENSO neutral conditions during past Global Hawk aircraft campaigns. Additionally, UTLS water vapor and ozone measurements from the Microwave Limb Sounder (MLS) satellite instrument and stratospheric ice measurements above the tropopause from the Cloud-Aerosol Aerosol Lidar with Orthogonal Polarization (CALIOP) will be presented. Our aircraft ozone

  17. Evolution in the lineament patterns associated to strong earthquakes revealed by satellite observations

    Science.gov (United States)

    Soto-Pinto, C. A.; Arellano-Baeza, A. A.; Ouzounov, D. P.

    2011-12-01

    We study the temporal evolution of the stress patterns in the crust by using high-resolution (10-300 m) satellite images from MODIS and ASTER satellite sensors. We are able to detect some changes in density and orientation of lineaments preceding earthquake events. A lineament is generally defined as a straight or a somewhat curved feature in the landscape visible in a satellite image as an aligned sequence of pixels of a contrasting intensity compared to the background. The system of lineaments extracted from the satellite images is not identical to the geological lineaments; nevertheless, it generally reflects the structure of the faults and fractures in the Earth's crust. Our analysis has shown that the system of lineaments is very dynamical, and the significant number of lineaments appeared approximately one month before an earthquake, while one month after the earthquake the lineament configuration returned to its initial state. These features were not observed in the test areas that are free of any seismic activity in that period (null hypothesis). We have designed a computational prototype capable to detect lineament evolution and to utilize both ASTER and MODIS satellite L1/L2. We will demonstrate the first successful test results for several Mw> 5 earthquakes in Chile, Peru, China, and California (USA).

  18. Global Partitioning of NOx Sources Using Satellite Observations: Relative Roles of Fossil Fuel Combustion, Biomass Burning and Soil Emissions

    Science.gov (United States)

    Jaegle, Lyatt; Steinberger, Linda; Martin, Randall V.; Chance, Kelly

    2005-01-01

    This document contains the following abstract for the paper "Global partitioning of NOx sources using satellite observations: Relative roles of fossil fuel combustion, biomass burning and soil emissions." Satellite observations have been used to provide important new information about emissions of nitrogen oxides. Nitrogen oxides (NOx) are significant in atmospheric chemistry, having a role in ozone air pollution, acid deposition and climate change. We know that human activities have led to a three- to six-fold increase in NOx emissions since pre-industrial times, and that there are three main surface sources of NOx: fuel combustion, large-scale fires, and microbial soil processes. How each of these sources contributes to the total NOx emissions is subject to some doubt, however. The problem is that current NOx emission inventories rely on bottom-up approaches, compiling large quantities of statistical information from diverse sources such as fuel and land use, agricultural data, and estimates of burned areas. This results in inherently large uncertainties. To overcome this, Lyatt Jaegle and colleagues from the University of Washington, USA, used new satellite observations from the Global Ozone Monitoring Experiment (GOME) instrument. As the spatial and seasonal distribution of each of the sources of NOx can be clearly mapped from space, the team could provide independent topdown constraints on the individual strengths of NOx sources, and thus help resolve discrepancies in existing inventories. Jaegle's analysis of the satellite observations, presented at the recent Faraday Discussion on "Atmospheric Chemistry", shows that fuel combustion dominates emissions at northern mid-latitudes, while fires are a significant source in the Tropics. Additionally, she discovered a larger than expected role for soil emissions, especially over agricultural regions with heavy fertilizer use. Additional information is included in the original extended abstract.

  19. What do the data show? Fostering physical intuition with ClimateBits and NASA Earth Observations

    Science.gov (United States)

    Schollaert Uz, S.; Ward, K.

    2017-12-01

    Through data visualizations using global satellite imagery available in NASA Earth Observations (NEO), we explain Earth science concepts (e.g. albedo, urban heat island effect, phytoplankton). We also provide examples of ways to explore the satellite data in NEO within a new blog series. This is an ideal tool for scientists and non-scientists alike who want to quickly check satellite imagery for large scale features or patterns. NEO analysis requires no software or plug-ins; only a browser and an internet connection. You can even check imagery and perform simple analyses from your smart phone. NEO can be used to create graphics for presentations and papers or as a first step before acquiring data for more rigorous analysis. NEO has potential application to easily explore large scale environmental and climate patterns that impact operations and infrastructure. This is something we are currently exploring with end user groups.

  20. Global trends in satellite-based emergency mapping

    Science.gov (United States)

    Voigt, Stefan; Giulio-Tonolo, Fabio; Lyons, Josh; Kučera, Jan; Jones, Brenda; Schneiderhan, Tobias; Platzeck, Gabriel; Kaku, Kazuya; Hazarika, Manzul Kumar; Czaran, Lorant; Li, Suju; Pedersen, Wendi; James, Godstime Kadiri; Proy, Catherine; Muthike, Denis Macharia; Bequignon, Jerome; Guha-Sapir, Debarati

    2016-01-01

    Over the past 15 years, scientists and disaster responders have increasingly used satellite-based Earth observations for global rapid assessment of disaster situations. We review global trends in satellite rapid response and emergency mapping from 2000 to 2014, analyzing more than 1000 incidents in which satellite monitoring was used for assessing major disaster situations. We provide a synthesis of spatial patterns and temporal trends in global satellite emergency mapping efforts and show that satellite-based emergency mapping is most intensively deployed in Asia and Europe and follows well the geographic, physical, and temporal distributions of global natural disasters. We present an outlook on the future use of Earth observation technology for disaster response and mitigation by putting past and current developments into context and perspective.

  1. Retrieval of spatially distributed hydrological properties from satellite observations for spatial evaluation of a national water resources model.

    Science.gov (United States)

    Mendiguren González, G.; Stisen, S.; Koch, J.

    2016-12-01

    The NASA Cyclone Global Navigation Satellite System (CYNSS) mission provides high temporal resolution observations of cyclones from a constellation of eight low-Earth orbiting satellites. Using the relatively new technique of Global Navigation Satellite System reflectometry (GNSS-R), all-weather observations are possible, penetrating even deep convection within hurricane eye walls. The compact nature of the GNSS-R receivers permits the use of small satellites, which in turn enables the launch of a constellation of satellites from a single launch vehicle. Launched in December of 2016, the eight CYGNSS satellites provide 25 km resolution observations of mean square slope (surface roughness) and surface winds with a 2.8 hour median revisit time from 38 S to 38 N degrees latitude. In addition to the calibration and validation of CYGNSS sea state observations, the CYGNSS science team is assessing the ability of the mission to provide estimates of cyclone size, intensity, and integrated kinetic energy. With its all-weather ability and high temporal resolution, the CYGNSS mission will add significantly to our ability to monitor cyclone genesis and intensification and will significantly reduce uncertainties in our ability to estimate cyclone intensity, a key variable in predicting its destructive potential. Members of the CYGNSS Science Team are also assessing the assimilation of CYGNSS data into hurricane forecast models to determine the impact of the data on forecast skill, using the data to study extra-tropical cyclones, and looking at connections between tropical cyclones and global scale weather, including the global hydrologic cycle. This presentation will focus on the assessment of early on-orbit observations of cyclones with respect to these various applications.

  2. Observational Constraints on Cloud Feedbacks: The Role of Active Satellite Sensors

    Science.gov (United States)

    Winker, David; Chepfer, Helene; Noel, Vincent; Cai, Xia

    2017-11-01

    Cloud profiling from active lidar and radar in the A-train satellite constellation has significantly advanced our understanding of clouds and their role in the climate system. Nevertheless, the response of clouds to a warming climate remains one of the largest uncertainties in predicting climate change and for the development of adaptions to change. Both observation of long-term changes and observational constraints on the processes responsible for those changes are necessary. We review recent progress in our understanding of the cloud feedback problem. Capabilities and advantages of active sensors for observing clouds are discussed, along with the importance of active sensors for deriving constraints on cloud feedbacks as an essential component of a global climate observing system.

  3. The Nimbus satellites - Pioneering earth observers

    Science.gov (United States)

    White, Carolynne

    1990-01-01

    The many scientific achievements of the Nimbus series of seven satellites for low-altitude atmospheric research and global weather surveillance are reviewed. The series provides information on fishery resources, weather modeling, atmospheric pollution monitoring, earth's radiation budget, ozone monitoring, ocean dynamics, and the effects of cloudiness. Data produced by the forty-eight instruments and sensors flown on the satellites are applied in the fields of oceanography, hydrology, geology, geomorphology, geography, cartography, agriculture and meteorology. The instruments include the Coastal Zone Color Scanner (which depicts phytoplankton concentrations in coastal areas), the Scanning Multichannel Microwave Radiometer (which measures sea-surface temperatures and sea-surface wind-speed), and the Total Ozone Mapping Spectrometer (which provides information on total amounts of ozone in the earth's atmosphere).

  4. Investigating the Role of Gravity Wave on Equatorial Ionospheric Irregularities using SABER and C/NOFS Satellites Observations

    Science.gov (United States)

    Nigussie, M.; Damtie, B.; Moldwin, M.; Yizengaw, E.; Tesema, F.; Tebabal, A.

    2017-12-01

    Theoretical simulations have shown that gravity wave (GW) seeded perturbations amplified by Rayleigh-Taylor Instability (RTI) results in ESF (equatorial spread F); however, there have been limited observational studies using simultaneous observations of GW and ionospheric parameters. In this paper, for the fist time, simultaneous atmospheric temperature perturbation profiles that are due to GWs obtained from Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) on-board the TIMED satellite and equatorial in -situ ion density and vertical plasma drift velocity observations with and without ESF activity obtained from C/NOFS satellites are used to investigate the effect of GW on the generation of ESF. The horizontal and vertical wavelengths of ionospheric oscillations and GWs respectively have been estimated applying wavelet transforms. Cross wavelet analysis has also been applied between two closely observed profiles of temperature perturbations to estimate the horizontal wavelength of the GWs. Moreover, vertically propagating GWs that dissipate energy at the upper atmosphere have been investigated using spectral analysis compared with theoretical results. The analysis show that when the ion density shows strong post sunset irregularity between 20 and 24 LT, vertically upward drift velocities increase between 17 and 19 LT, but it becomes vertically downward when the ion density shows smooth variation. The horizontal wavelengths estimated from C/NOFS and SABER observations show excellent agreement when ion density observations show strong fluctuations; otherwise, they have poor agreement. It is also found that altitude profiles of potential energy of GW increases up to 90 km and then decreases significantly. It is found that the vertical wavelength of GW, corresponding to the dominant spectral power, ranges from about 7 km to 20 km regardless of the situation of the ionosphere; however, GWs with vertical wavelengths between 100 m to 1 km are found to

  5. Ground and Satellite Observations of ULF Waves Artificially Produced by HAARP

    Science.gov (United States)

    Chang, C.; Labenski, J.; Shroff, H.; Doxas, I.; Papadopoulos, D.; Milikh, G.; Parrot, M.

    2008-12-01

    Modulated ionospheric heating at ULF frequencies using the HAARP heater was performed from April 28 to May 3, 2008 (http://www.haarp.alaska.edu). Simultaneous ground-based ULF measurements were made locally at Gakona, AK and at Lake Ozette, WA that is 2000 km away. The ground-based results showed that ULF amplitudes measured at Gakona are mostly proportional to the electrojet strength above HAARP, indicating electrojet modulation to be the source of the local ULF waves. However, the timing of ULF events recorded at Lake Ozette did not correlated with the electrojet strength at Gakona, indicating that modulation of F region pressure is the more likely source for distant ULF waves. These observations are consistent with the theoretical understanding that ULF waves generated by current modulation are shear Alfven waves propagating along the magnetic field line, thus at high latitude their observations are limited to the vicinity of the heated spot. On the other hand, propagation of ULF waves at significant lateral distances requires generation of magnetosonic waves since they are the only mode that propagates isotropically and can thus couple efficiently in the Alfvenic duct. In addition to ground-based observations, the DEMETER satellite also provided space measurements of the heating effects during its passes over HAARP. The DEMETER results showed direct detection of HAARP ULF waves at 0.1 Hz. Moreover, density dips were observed every time HAARP was operated at CW mode, which provides clear evidence of duct formation by direct HF heating at F peak. Details of these results will be presented at the meeting. We would like to acknowledge the support provided by the HAARP facility during our ULF experiments.

  6. Evaluation of Daily Evapotranspiration Over Orchards Using METRIC Approach and Landsat Satellite Observations

    Science.gov (United States)

    He, R.; Jin, Y.; Daniele, Z.; Kandelous, M. M.; Kent, E. R.

    2016-12-01

    The pistachio and almond acreage in California has been rapidly growing in the past 10 years, raising concerns about competition for limited water resources in California. A robust and cost-effective mapping of crop water use, mostly evapotranspiration (ET), by orchards, is needed for improved farm-level irrigation management and regional water planning. METRIC™, a satellite-based surface energy balance approach, has been widely used to map field-scale crop ET, mostly over row crops. We here aim to apply METRIC with Landsat satellite observations over California's orchards and evaluate the ET estimates by comparing with field measurements in South San Joaquin Valley, California. Reference ET of grass (ETo) from California Irrigation Management Information system (CIMIS) stations was used to estimate daily ET of commercial almond and pistachio orchards. Our comparisons showed that METRIC-Landsat ET daily estimates agreed well with ET measured by the eddy covariance and surface renewal stations, with a RMSE of 1.25 and a correlation coefficient of 0.84 for the pistachio orchard. A slight high bias of satellite based ET estimates was found for both pistachio and almond orchards. We also found time series of NDVI was highly correlated with ET temporal dynamics within each field, but the correlation was reduced to 0.56 when all fields were pooled together. Net radiation, however, remained highly correlated with ET across all the fields. The METRIC ET was able to distinguish the differences in ET among salt- and non-salt affected pistachio orchards, e.g., mean daily ET during growing season in salt-affected orchards was lower than that of non-salt affected one by 0.87 mm/day. The remote sensing based ET estimate will support a variety of state and local interests in water use and management, for both planning and regulatory/compliance purposes, and provide the farmers observation-based guidance for site-specific and time-sensitive irrigation management.

  7. Estimating the top altitude of optically thick ice clouds from thermal infrared satellite observations using CALIPSO data

    Science.gov (United States)

    Minnis, Patrick; Yost, Chris R.; Sun-Mack, Sunny; Chen, Yan

    2008-06-01

    The difference between cloud-top altitude Z top and infrared effective radiating height Z eff for optically thick ice clouds is examined using April 2007 data taken by the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) and the Moderate-Resolution Imaging Spectroradiometer (MODIS). For even days, the difference ΔZ between CALIPSO Z top and MODIS Z eff is 1.58 +/- 1.26 km. The linear fit between Z top and Z eff , applied to odd-day data, yields a difference of 0.03 +/- 1.21 km and can be used to estimate Z top from any infrared-based Z eff for thick ice clouds. Random errors appear to be due primarily to variations in cloud ice-water content (IWC). Radiative transfer calculations show that ΔZ corresponds to an optical depth of ~1, which based on observed ice-particle sizes yields an average cloud-top IWC of ~0.015 gm-3, a value consistent with in situ measurements. The analysis indicates potential for deriving cloud-top IWC using dual-satellite data.

  8. Tropical convection regimes in climate models: evaluation with satellite observations

    Directory of Open Access Journals (Sweden)

    A. K. Steiner

    2018-04-01

    Full Text Available High-quality observations are powerful tools for the evaluation of climate models towards improvement and reduction of uncertainty. Particularly at low latitudes, the most uncertain aspect lies in the representation of moist convection and interaction with dynamics, where rising motion is tied to deep convection and sinking motion to dry regimes. Since humidity is closely coupled with temperature feedbacks in the tropical troposphere, a proper representation of this region is essential. Here we demonstrate the evaluation of atmospheric climate models with satellite-based observations from Global Positioning System (GPS radio occultation (RO, which feature high vertical resolution and accuracy in the troposphere to lower stratosphere. We focus on the representation of the vertical atmospheric structure in tropical convection regimes, defined by high updraft velocity over warm surfaces, and investigate atmospheric temperature and humidity profiles. Results reveal that some models do not fully capture convection regions, particularly over land, and only partly represent strong vertical wind classes. Models show large biases in tropical mean temperature of more than 4 K in the tropopause region and the lower stratosphere. Reasonable agreement with observations is given in mean specific humidity in the lower to mid-troposphere. In moist convection regions, models tend to underestimate moisture by 10 to 40 % over oceans, whereas in dry downdraft regions they overestimate moisture by 100 %. Our findings provide evidence that RO observations are a unique source of information, with a range of further atmospheric variables to be exploited, for the evaluation and advancement of next-generation climate models.

  9. Tropical convection regimes in climate models: evaluation with satellite observations

    Science.gov (United States)

    Steiner, Andrea K.; Lackner, Bettina C.; Ringer, Mark A.

    2018-04-01

    High-quality observations are powerful tools for the evaluation of climate models towards improvement and reduction of uncertainty. Particularly at low latitudes, the most uncertain aspect lies in the representation of moist convection and interaction with dynamics, where rising motion is tied to deep convection and sinking motion to dry regimes. Since humidity is closely coupled with temperature feedbacks in the tropical troposphere, a proper representation of this region is essential. Here we demonstrate the evaluation of atmospheric climate models with satellite-based observations from Global Positioning System (GPS) radio occultation (RO), which feature high vertical resolution and accuracy in the troposphere to lower stratosphere. We focus on the representation of the vertical atmospheric structure in tropical convection regimes, defined by high updraft velocity over warm surfaces, and investigate atmospheric temperature and humidity profiles. Results reveal that some models do not fully capture convection regions, particularly over land, and only partly represent strong vertical wind classes. Models show large biases in tropical mean temperature of more than 4 K in the tropopause region and the lower stratosphere. Reasonable agreement with observations is given in mean specific humidity in the lower to mid-troposphere. In moist convection regions, models tend to underestimate moisture by 10 to 40 % over oceans, whereas in dry downdraft regions they overestimate moisture by 100 %. Our findings provide evidence that RO observations are a unique source of information, with a range of further atmospheric variables to be exploited, for the evaluation and advancement of next-generation climate models.

  10. Field and Satellite Observations of the Formation and Distribution of Arctic Atmospheric Bromine Above a Rejuvenated Sea Ice Cover

    Science.gov (United States)

    Nghiem, Son V.; Rigor, Ignatius G.; Richter, Andreas; Burrows, John P.; Shepson, Paul B.; Bottenheim, Jan; Barber, David G.; Steffen, Alexandra; Latonas, Jeff; Wang, Feiyue; hide

    2012-01-01

    Recent drastic reduction of the older perennial sea ice in the Arctic Ocean has resulted in a vast expansion of younger and saltier seasonal sea ice. This increase in the salinity of the overall ice cover could impact tropospheric chemical processes. Springtime perennial ice extent in 2008 and 2009 broke the half-century record minimum in 2007 by about one million km2. In both years seasonal ice was dominant across the Beaufort Sea extending to the Amundsen Gulf, where significant field and satellite observations of sea ice, temperature, and atmospheric chemicals have been made. Measurements at the site of the Canadian Coast Guard Ship Amundsen ice breaker in the Amundsen Gulf showed events of increased bromine monoxide (BrO), coupled with decreases of ozone (O3) and gaseous elemental mercury (GEM), during cold periods in March 2008. The timing of the main event of BrO, O3, and GEM changes was found to be consistent with BrO observed by satellites over an extensive area around the site. Furthermore, satellite sensors detected a doubling of atmospheric BrO in a vortex associated with a spiral rising air pattern. In spring 2009, excessive and widespread bromine explosions occurred in the same region while the regional air temperature was low and the extent of perennial ice was significantly reduced compared to the case in 2008. Using satellite observations together with a Rising-Air-Parcel model, we discover a topographic control on BrO distribution such that the Alaskan North Slope and the Canadian Shield region were exposed to elevated BrO, whereas the surrounding mountains isolated the Alaskan interior from bromine intrusion.

  11. Biome-Scale Forest Properties in Amazonia Based on Field and Satellite Observations

    Directory of Open Access Journals (Sweden)

    Liana O. Anderson

    2012-05-01

    Full Text Available Amazonian forests are extremely heterogeneous at different spatial scales. This review intends to present the large-scale patterns of the ecosystem properties of Amazonia, and focuses on two parts of the main components of the net primary production: the long-lived carbon pools (wood and short-lived pools (leaves. First, the focus is on forest biophysical properties, and secondly, on the macro-scale leaf phenological patterns of these forests, looking at field measurements and bringing into discussion the recent findings derived from remote sensing dataset. Finally, I discuss the results of the three major droughts that hit Amazonia in the last 15 years. The panorama that emerges from this review suggests that slow growing forests in central and eastern Amazonia, where soils are poorer, have significantly higher above ground biomass and higher wood density, trees are higher and present lower proportions of large-leaved species than stands in northwest and southwest Amazonia. However, the opposite pattern is observed in relation to forest productivity and dynamism, which is higher in western Amazonia than in central and eastern forests. The spatial patterns on leaf phenology across Amazonia are less marked. Field data from different forest formations showed that new leaf production can be unrelated to climate seasonality, timed with radiation, timed with rainfall and/or river levels. Oppositely, satellite images exhibited a large-scale synchronized peak in new leaf production during the dry season. Satellite data and field measurements bring contrasting results for the 2005 drought. Discussions on data processing and filtering, aerosols effects and a combined analysis with field and satellite images are presented. It is suggested that to improve the understanding of the large-scale patterns on Amazonian forests, integrative analyses that combine new technologies in remote sensing and long-term field ecological data are imperative.

  12. High-resolution sensing for precision agriculture: from Earth-observing satellites to unmanned aerial vehicles

    Science.gov (United States)

    McCabe, Matthew F.; Houborg, Rasmus; Lucieer, Arko

    2016-10-01

    With global population projected to approach 9 billion by 2050, it has been estimated that a 40% increase in cereal production will be required to satisfy the worlds growing nutritional demands. Any such increases in agricultural productivity are likely to occur within a system that has limited room for growth and in a world with a climate that is different from that of today. Fundamental to achieving food and water security, is the capacity to monitor the health and condition of agricultural systems. While space-agency based satellites have provided the backbone for earth observation over the last few decades, many developments in the field of high-resolution earth observation have been advanced by the commercial sector. These advances relate not just to technological developments in the use of unmanned aerial vehicles (UAVs), but also the advent of nano-satellite constellations that offer a radical shift in the way earth observations are now being retrieved. Such technologies present opportunities for improving our description of the water, energy and carbon cycles. Efforts towards developing new observational techniques and interpretative frameworks are required to provide the tools and information needed to improve the management and security of agricultural and related sectors. These developments are one of the surest ways to better manage, protect and preserve national food and water resources. Here we review the capabilities of recently deployed satellite systems and UAVs and examine their potential for application in precision agriculture.

  13. High-resolution sensing for precision agriculture: from Earth-observing satellites to unmanned aerial vehicles

    KAUST Repository

    McCabe, Matthew

    2016-10-25

    With global population projected to approach 9 billion by 2050, it has been estimated that a 40% increase in cereal production will be required to satisfy the worlds growing nutritional demands. Any such increases in agricultural productivity are likely to occur within a system that has limited room for growth and in a world with a climate that is different from that of today. Fundamental to achieving food and water security, is the capacity to monitor the health and condition of agricultural systems. While space-Agency based satellites have provided the backbone for earth observation over the last few decades, many developments in the field of high-resolution earth observation have been advanced by the commercial sector. These advances relate not just to technological developments in the use of unmanned aerial vehicles (UAVs), but also the advent of nano-satellite constellations that offer a radical shift in the way earth observations are now being retrieved. Such technologies present opportunities for improving our description of the water, energy and carbon cycles. Efforts towards developing new observational techniques and interpretative frameworks are required to provide the tools and information needed to improve the management and security of agricultural and related sectors. These developments are one of the surest ways to better manage, protect and preserve national food and water resources. Here we review the capabilities of recently deployed satellite systems and UAVs and examine their potential for application in precision agriculture.

  14. Mixed layer heat budget of Kuroshio-Tango Triangle using satellite and ship observations

    Digital Repository Service at National Institute of Oceanography (India)

    Pankajakshan, T.; Akiyama, M.; Sugimori, Y.; Wuwa, J.; Okada, Y.; Siripong, A.

    heat flux across the air-sea boundary both satellite (NIMBUS-7 SMMR) and ship observations are used. The advective fluxes across the lateral boundaries of the system are derived from sequential images of AVHRR. The net heat divergence of the triangular...

  15. Comparison of total column ozone obtained by the IASI-MetOp satellite with ground-based and OMI satellite observations in the southern tropics and subtropics

    Directory of Open Access Journals (Sweden)

    A. M. Toihir

    2015-09-01

    Full Text Available This paper presents comparison results of the total column ozone (TCO data product over 13 southern tropical and subtropical sites recorded from the Infrared Atmospheric Sounder Interferometer (IASI onboard the EUMETSAT (European organization for the exploitation of METeorological SATellite MetOp (Meteorological Operational satellite program satellite. TCO monthly averages obtained from IASI between June 2008 and December 2012 are compared with collocated TCO measurements from the Ozone Monitoring Instrument (OMI on the OMI/Aura satellite and the Dobson and SAOZ (Système d'Analyse par Observation Zénithale ground-based instruments. The results show that IASI displays a positive bias with an average less than 2 % with respect to OMI and Dobson observations, but exhibits a negative bias compared to SAOZ over Bauru with a bias around 2.63 %. There is a good agreement between IASI and the other instruments, especially from 15° S southward where a correlation coefficient higher than 0.87 is found. IASI exhibits a seasonal dependence, with an upward trend in autumn and a downward trend during spring, especially before September 2010. After September 2010, the autumn seasonal bias is considerably reduced due to changes made to the retrieval algorithm of the IASI level 2 (L2 product. The L2 product released after August (L2 O3 version 5 (v5 matches TCO from the other instruments better compared to version 4 (v4, which was released between June 2008 and August 2010. IASI bias error recorded from September 2010 is estimated to be at 1.5 % with respect to OMI and less than ±1 % with respect to the other ground-based instruments. Thus, the improvement made by O3 L2 version 5 (v5 product compared with version 4 (v4, allows IASI TCO products to be used with confidence to study the distribution and interannual variability of total ozone in the southern tropics and subtropics.

  16. Satellite observations and modeling of oil spill trajectories in the Bohai Sea

    DEFF Research Database (Denmark)

    Xu, Qing; Li, Xiaofeng; Wei, Yongliang

    2013-01-01

    On June 4 and 17, 2011, separate oil spill accidents occurred at two oil platforms in the Bohai Sea, China. The oil spills were subsequently observed on different types of satellite images including SAR (Synthetic Aperture Radar), Chinese HJ-1-B CCD and NASA MODIS. To illustrate the fate of the oil...

  17. Estimating Winter Annual Biomass in the Sonoran and Mojave Deserts with Satellite- and Ground-Based Observations

    Directory of Open Access Journals (Sweden)

    Bradley C. Reed

    2013-02-01

    Full Text Available Winter annual plants in southwestern North America influence fire regimes, provide forage, and help prevent erosion. Exotic annuals may also threaten native species. Monitoring winter annuals is difficult because of their ephemeral nature, making the development of a satellite monitoring tool valuable. We mapped winter annual aboveground biomass in the Desert Southwest from satellite observations, evaluating 18 algorithms using time-series vegetation indices (VI. Field-based biomass estimates were used to calibrate and evaluate each algorithm. Winter annual biomass was best estimated by calculating a base VI across the period of record and subtracting it from the peak VI for each winter season (R2 = 0.92. The normalized difference vegetation index (NDVI derived from 8-day reflectance data provided the best estimate of winter annual biomass. It is important to account for the timing of peak vegetation when relating field-based estimates to satellite VI data, since post-peak field estimates may indicate senescent biomass which is inaccurately represented by VI-based estimates. Images generated from the best-performing algorithm show both spatial and temporal variation in winter annual biomass. Efforts to manage this variable resource would be enhanced by a tool that allows the monitoring of changes in winter annual resources over time.

  18. Arctic Climate Variability and Trends from Satellite Observations

    Directory of Open Access Journals (Sweden)

    Xuanji Wang

    2012-01-01

    Full Text Available Arctic climate has been changing rapidly since the 1980s. This work shows distinctly different patterns of change in winter, spring, and summer for cloud fraction and surface temperature. Satellite observations over 1982–2004 have shown that the Arctic has warmed up and become cloudier in spring and summer, but cooled down and become less cloudy in winter. The annual mean surface temperature has increased at a rate of 0.34°C per decade. The decadal rates of cloud fraction trends are −3.4%, 2.3%, and 0.5% in winter, spring, and summer, respectively. Correspondingly, annually averaged surface albedo has decreased at a decadal rate of −3.2%. On the annual average, the trend of cloud forcing at the surface is −2.11 W/m2 per decade, indicating a damping effect on the surface warming by clouds. The decreasing sea ice albedo and surface warming tend to modulate cloud radiative cooling effect in spring and summer. Arctic sea ice has also declined substantially with decadal rates of −8%, −5%, and −15% in sea ice extent, thickness, and volume, respectively. Significant correlations between surface temperature anomalies and climate indices, especially the Arctic Oscillation (AO index, exist over some areas, implying linkages between global climate change and Arctic climate change.

  19. Seismic, satellite, and site observations of internal solitary waves in the NE South China Sea.

    Science.gov (United States)

    Tang, Qunshu; Wang, Caixia; Wang, Dongxiao; Pawlowicz, Rich

    2014-06-20

    Internal solitary waves (ISWs) in the NE South China Sea (SCS) are tidally generated at the Luzon Strait. Their propagation, evolution, and dissipation processes involve numerous issues still poorly understood. Here, a novel method of seismic oceanography capable of capturing oceanic finescale structures is used to study ISWs in the slope region of the NE SCS. Near-simultaneous observations of two ISWs were acquired using seismic and satellite imaging, and water column measurements. The vertical and horizontal length scales of the seismic observed ISWs are around 50 m and 1-2 km, respectively. Wave phase speeds calculated from seismic observations, satellite images, and water column data are consistent with each other. Observed waveforms and vertical velocities also correspond well with those estimated using KdV theory. These results suggest that the seismic method, a new option to oceanographers, can be further applied to resolve other important issues related to ISWs.

  20. Using Satellite Observations to Evaluate the AeroCOM Volcanic Emissions Inventory and the Dispersal of Volcanic SO2 Clouds in MERRA

    Science.gov (United States)

    Hughes, Eric J.; Krotkov, Nickolay; da Silva, Arlindo; Colarco, Peter

    2015-01-01

    Simulation of volcanic emissions in climate models requires information that describes the eruption of the emissions into the atmosphere. While the total amount of gases and aerosols released from a volcanic eruption can be readily estimated from satellite observations, information about the source parameters, like injection altitude, eruption time and duration, is often not directly known. The AeroCOM volcanic emissions inventory provides estimates of eruption source parameters and has been used to initialize volcanic emissions in reanalysis projects, like MERRA. The AeroCOM volcanic emission inventory provides an eruptions daily SO2 flux and plume top altitude, yet an eruption can be very short lived, lasting only a few hours, and emit clouds at multiple altitudes. Case studies comparing the satellite observed dispersal of volcanic SO2 clouds to simulations in MERRA have shown mixed results. Some cases show good agreement with observations Okmok (2008), while for other eruptions the observed initial SO2 mass is half of that in the simulations, Sierra Negra (2005). In other cases, the initial SO2 amount agrees with the observations but shows very different dispersal rates, Soufriere Hills (2006). In the aviation hazards community, deriving accurate source terms is crucial for monitoring and short-term forecasting (24-h) of volcanic clouds. Back trajectory methods have been developed which use satellite observations and transport models to estimate the injection altitude, eruption time, and eruption duration of observed volcanic clouds. These methods can provide eruption timing estimates on a 2-hour temporal resolution and estimate the altitude and depth of a volcanic cloud. To better understand the differences between MERRA simulations and volcanic SO2 observations, back trajectory methods are used to estimate the source term parameters for a few volcanic eruptions and compared to their corresponding entry in the AeroCOM volcanic emission inventory. The nature of

  1. Satellite-Observed Black Water Events off Southwest Florida: Implications for Coral Reef Health in the Florida Keys National Marine Sanctuary

    OpenAIRE

    Zhao, Jun; Hu, Chuanmin; Lapointe, Brian; Melo, Nelson; Johns, Elizabeth; Smith, Ryan

    2013-01-01

    A “black water” event, as observed from satellites, occurred off southwest Florida in 2012. Satellite observations suggested that the event started in early January and ended in mid-April 2012. The black water patch formed off central west Florida and advected southward towards Florida Bay and the Florida Keys with the shelf circulation, which was confirmed by satellite-tracked surface drifter trajectories. Compared with a previous black water event in 2002, the 2012 event was weaker in terms...

  2. Satellite lidar and radar: Key components of the future climate observing system

    Science.gov (United States)

    Winker, D. M.

    2017-12-01

    Cloud feedbacks represent the dominant source of uncertainties in estimates of climate sensitivity and aerosols represent the largest source of uncertainty in climate forcing. Both observation of long-term changes and observational constraints on the processes responsible for those changes are necessary. The existing 30-year record of passive satellite observations has not yet provided constraints to significantly reduce these uncertainties, though. We now have more than a decade of experience with active sensors flying in the A-Train. These new observations have demonstrated the strengths of active sensors and the benefits of continued and more advanced active sensors. This talk will discuss the multiple roles for active sensors as an essential component of a global climate observing system.

  3. Developing A Model for Lake Ice Phenology Using Satellite Remote Sensing Observations

    Science.gov (United States)

    Skoglund, S. K.; Weathers, K. C.; Norouzi, H.; Prakash, S.; Ewing, H. A.

    2017-12-01

    Many northern temperate freshwater lakes are freezing over later and thawing earlier. This shift in timing, and the resulting shorter duration of seasonal ice cover, is expected to impact ecological processes, negatively affecting aquatic species and the quality of water we drink. Long-term, direct observations have been used to analyze changes in ice phenology, but those data are sparse relative to the number of lakes affected. Here we develop a model to utilize remote sensing data in approximating the dates of ice-on and ice-off for many years over a variety of lakes. Day and night surface temperatures from MODIS (Moderate Resolution Imaging Spectroradiometer) Aqua and Terra (MYD11A1 and MOD11A1 data products) for 2002-2017 were utilized in combination with observed ice-on and ice-off dates of Lake Auburn, Maine, to determine the ability of MODIS data to match ground-based observations. A moving average served to interpolate MODIS temperature data to fill data gaps from cloudy days. The nighttime data were used for ice-off, and the daytime measurements were used for ice-on predictions to avoid fluctuations between day and night ice/water status. The 0˚C intercepts of those data were used to mark approximate days of ice-on or ice-off. This revealed that approximations for ice-off dates were satisfactory (average ±8.2 days) for Lake Auburn as well as for Lake Sunapee, New Hampshire (average ±8.1 days), while approximations for Lake Auburn ice-on were less accurate and showed consistently earlier-than-observed ice-on dates (average -33.8 days). The comparison of observed and remotely sensed Lake Auburn ice cover duration showed relative agreement with a correlation coefficient of 0.46. Other remote sensing observations, such as the new GOES-R satellite, and further exploration of the ice formation process can improve ice-on approximation methods. The model shows promise for estimating ice-on, ice-off, and ice cover duration for northern temperate lakes.

  4. Local time dependences of electron flux changes during substorms derived from mulit-satellite observation at synchronous orbit

    International Nuclear Information System (INIS)

    Nagai, T.

    1982-01-01

    Energetic electron (energy higher than 2 MeV) observation by a synchronous satellite chain (which consists of GOES 2, GOES 3, and GMS covering the local time extent of approximately 10 hr) have been used to study the large-scale characteristics of the dynamic behavior in the near-earth magnetosphere for substorms, in which low-latitude positive bay aspects are clearly seen in the ground magnetic data. Simultaneous multi-satellite observations have clearly demonstrated the local time dependence of electron flux changes during substorms and the longitudinal extent of electron flux variations. Before a ground substorm onset the energetic electron flux decreases in a wide longitudinal region of the nighttime and the flux decrease is seen even on the afternoonside. For the flux behavior associated with the onset of the substorm expansion phase, there exists a demarcation line, the LT position of which can be represented as LT = 24.3-1.5 K/sub p/. The flux shows a recovery to a normal level east of the demarcation line, and it shows a decrease west of the demarcation line. The region of the flux decrease during the expansion phase is restricted, and it is observed mainly on the afternoonside. The afternoonside flux decrease has a different characteristic from the nightside flux decrease preceding the expansion phase. The nighside flux decrease-recovery sequence is observed in a wide region of more than 6 hr in the nighttime and the center of this variation exists in the premidnight region. It should be noted that the afternoonside flux decrease is not observed for every substorm and the nightside signature noted that the afternoonside flux sometimes becomes a dominent feature even on the afternoonside

  5. Design of the high resolution optical instrument for the Pleiades HR Earth observation satellites

    Science.gov (United States)

    Lamard, Jean-Luc; Gaudin-Delrieu, Catherine; Valentini, David; Renard, Christophe; Tournier, Thierry; Laherrere, Jean-Marc

    2017-11-01

    As part of its contribution to Earth observation from space, ALCATEL SPACE designed, built and tested the High Resolution cameras for the European intelligence satellites HELIOS I and II. Through these programmes, ALCATEL SPACE enjoys an international reputation. Its capability and experience in High Resolution instrumentation is recognised by the most customers. Coming after the SPOT program, it was decided to go ahead with the PLEIADES HR program. PLEIADES HR is the optical high resolution component of a larger optical and radar multi-sensors system : ORFEO, which is developed in cooperation between France and Italy for dual Civilian and Defense use. ALCATEL SPACE has been entrusted by CNES with the development of the high resolution camera of the Earth observation satellites PLEIADES HR. The first optical satellite of the PLEIADES HR constellation will be launched in mid-2008, the second will follow in 2009. To minimize the development costs, a mini satellite approach has been selected, leading to a compact concept for the camera design. The paper describes the design and performance budgets of this novel high resolution and large field of view optical instrument with emphasis on the technological features. This new generation of camera represents a breakthrough in comparison with the previous SPOT cameras owing to a significant step in on-ground resolution, which approaches the capabilities of aerial photography. Recent advances in detector technology, optical fabrication and electronics make it possible for the PLEIADES HR camera to achieve their image quality performance goals while staying within weight and size restrictions normally considered suitable only for much lower performance systems. This camera design delivers superior performance using an innovative low power, low mass, scalable architecture, which provides a versatile approach for a variety of imaging requirements and allows for a wide number of possibilities of accommodation with a mini-satellite

  6. Magnetic-field fluctuations from 0 to 26 Hz observed from a polar-orbiting satellite

    International Nuclear Information System (INIS)

    Erlandson, R.E.; Zanetti, L.J.; Potemra, T.A.

    1989-01-01

    The polar orbit of the Viking satellite provides a unique opportunity to obtain observations of magnetic fluctuations at mid-altitudes on the dayside of the magnetosphere and in the polar-cusp region. One type of magnetic-field fluctuation, observed in the dayside magnetosphere, was Pc 1 waves. Pc 1 waves are in the electromagnetic ion-cyclotron mode and are generated by anisotropies in energetic ion distributions. The waves are thought to be generated near the equator and to propagate large distances along magnetic-field lines. Most observations of Pc 1 waves have been obtained near the equator using geosynchronous satellites and on the surface of the earth. The Viking observations provide an opportunity to observe Pc 1 waves at mid-latitudes above the ionosphere and to determine the spectral structure and polarization of the waves. ULF/ELF broadband noise represents a second type of magnetic fluctuation acquired by Viking. This type of magnetic fluctuation was observed at high latitudes near the polar cusp and may be useful in the identification of polar-cusp boundaries. Thirdly, electromagnetic ion-cyclotron waves have also been observed in the polar-cusp region. These waves occur only during an unusually high level of magnetic activity and appear to be generated locally

  7. An Assessment of Satellite-Derived Rainfall Products Relative to Ground Observations over East Africa

    Directory of Open Access Journals (Sweden)

    Margaret Wambui Kimani

    2017-05-01

    Full Text Available Accurate and consistent rainfall observations are vital for climatological studies in support of better agricultural and water management decision-making and planning. In East Africa, accurate rainfall estimation with an adequate spatial distribution is limited due to sparse rain gauge networks. Satellite rainfall products can potentially play a role in increasing the spatial coverage of rainfall estimates; however, their performance needs to be understood across space–time scales and factors relating to their errors. This study assesses the performance of seven satellite products: Tropical Applications of Meteorology using Satellite and ground-based observations (TAMSAT, African Rainfall Climatology And Time series (TARCAT, Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS, Tropical Rainfall Measuring Mission (TRMM-3B43, Climate Prediction Centre (CPC Morphing technique (CMORPH, Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks Climate Data Record (PERSIANN-CDR, CPC Merged Analysis of Precipitation (CMAP, and Global Precipitation Climatology Project (GPCP, using locally developed gridded (0.05° rainfall data for 15 years (1998–2012 over East Africa. The products’ assessments were done at monthly and yearly timescales and were remapped to the gridded rain gauge data spatial scale during the March to May (MAM and October to December (OND rainy seasons. A grid-based statistical comparison between the two datasets was used, but only pixel values located at the rainfall stations were considered for validation. Additionally, the impact of topography on the performance of the products was assessed by analyzing the pixels in areas of highest negative bias. All the products could substantially replicate rainfall patterns, but their differences are mainly based on retrieving high rainfall amounts, especially of localized orographic types. The products exhibited systematic errors, which

  8. Trend in Air Quality of Kathmandu Valley: A Satellite, Observation and Modelling Perspective

    Science.gov (United States)

    Mahapatra, P. S.; Praveen, P. S.; Adhikary, B.; Panday, A. K.; Putero, D.; Bonasoni, P.

    2016-12-01

    Kathmandu (floor area of 340 km2) in Nepal is considered to be a `hot spot' of urban air pollution in South Asia. Its structure as a flat basin surrounded by tall mountains provides a unique case study for analyzing pollution trapped by topography. Only a very small number of cities with similar features have been studied extensively including Mexico and Santiago-de-Chile. This study presents the trend in satellite derived Aerosol Optical Depth (AOD) from MODIS AQUA and TERRA (3x3km, Level 2) over Kathmandu from 2000 to 2015. Trend analysis of AOD shows 35% increase during the study period. Determination of the background pollution would reveal the contribution of only Kathmandu Valley for the observation period. For this, AOD at 1340m altitude outside Kathmandu, but nearby areas were considered as background. This analysis was further supported by investigating AOD at different heights around Kathmandu as well as determining AOD from CALIPSO vertical profiles. These analysis suggest that background AOD contributed 30% in winter and 60% in summer to Kathmandu Valley's observed AOD. Thereafter the background AOD was subtracted from total Kathmandu AOD to determine contribution of only Kathmandu Valley's AOD. Trend analysis of only Kathmandu Valley AOD (subtracting background AOD) suggested an increase of 50% during the study period. Further analysis of Kathmandu's visibility and AOD suggest profound role of background AOD on decreasing visibility. In-situ Black Carbon (BC) mass concentration measurements (BC being used as a proxy for surface observations) at two sites within Kathmandu valley have been analyzed. Kathmandu valley lacks long term trends of ambient air quality measurement data. Therefore, surface observations would be coupled with satellite measurements for understanding the urban air pollution scenario. Modelling studies to estimate the contribution of background pollution to Kathmandu's own pollution as well as the weekend effect on air quality will

  9. Observations of interstellar ultraviolet extinction from the S2/68 experiment in the TD-1 satellite

    International Nuclear Information System (INIS)

    Nandy, K.; Thompson, G.I.; Carnochan, D.J.; Wilson, R.

    1978-01-01

    The galactic distribution of the agents which cause the extinction bump near 2200 A and the ultraviolet colour excess E(1550-2740) within 2 kpc of the Sun in the galactic plane have been studied from the observations obtained with the S2/68 experiment in the TD-1 satellite. The mean reddening-distance relation in the galactic plane has been obtained for different longitudes. The study of the extinction parameter with galactic latitude shows a strong concentration of the dust towards the galactic plane with a scale height of 110 pc. (author)

  10. The Impact of Time Difference between Satellite Overpass and Ground Observation on Cloud Cover Performance Statistics

    Directory of Open Access Journals (Sweden)

    Jędrzej S. Bojanowski

    2014-12-01

    Full Text Available Cloud property data sets derived from passive sensors onboard the polar orbiting satellites (such as the NOAA’s Advanced Very High Resolution Radiometer have global coverage and now span a climatological time period. Synoptic surface observations (SYNOP are often used to characterize the accuracy of satellite-based cloud cover. Infrequent overpasses of polar orbiting satellites combined with the 3- or 6-h SYNOP frequency lead to collocation time differences of up to 3 h. The associated collocation error degrades the cloud cover performance statistics such as the Hanssen-Kuiper’s discriminant (HK by up to 45%. Limiting the time difference to 10 min, on the other hand, introduces a sampling error due to a lower number of corresponding satellite and SYNOP observations. This error depends on both the length of the validated time series and the SYNOP frequency. The trade-off between collocation and sampling error call for an optimum collocation time difference. It however depends on cloud cover characteristics and SYNOP frequency, and cannot be generalized. Instead, a method is presented to reconstruct the unbiased (true HK from HK affected by the collocation differences, which significantly (t-test p < 0.01 improves the validation results.

  11. FCJ-201 Visual Evidence from Above: Assessing the Value of Earth Observation Satellites for Supporting Human Rights

    Directory of Open Access Journals (Sweden)

    Tanya Notley

    2016-03-01

    Full Text Available Public access to data collected by remote sensing Earth Observation Satellites has, until recently, been very limited. Now, citizens and rights advocacy groups are increasingly utilising satellite-collected images to interrogate justice issues; to document, prevent and verify rights abuses; and to imagine and propose social change. Yet while other communication technologies have received substantial critical analysis regarding their value as tools of social justice, activism and resistance, satellites have received comparatively scant attention. This article examines the uses of satellite-collected images in human rights contexts including the opportunities, challenges and risks they pose. We conclude this examination by arguing that if satellites are to be used effectively to collect evidence from above by rights advocates, greater attention to and capacity for ensuring accountability from below is required.

  12. Observation of new satellites in Cs-Ar system using resonance ionization spectroscopy

    International Nuclear Information System (INIS)

    Nayfeh, M.H.; Hurst, G.S.; Payne, M.G.; Young, J.P.

    1978-01-01

    The absorption line shape of Cs-Ar system is recorded using two-photon ionization of the system with Cs(7P) as an intermediate state. New satellite structures in the wings of Cs(7P) are observed which were not resolved in previous absorption measurements. Also the absolute absorption cross section in the blue wing is measured

  13. Two decades of satellite observations of AOD over mainland China using ATSR-2, AATSR and MODIS/Terra: data set evaluation and large-scale patterns

    Science.gov (United States)

    de Leeuw, Gerrit; Sogacheva, Larisa; Rodriguez, Edith; Kourtidis, Konstantinos; Georgoulias, Aristeidis K.; Alexandri, Georgia; Amiridis, Vassilis; Proestakis, Emmanouil; Marinou, Eleni; Xue, Yong; van der A, Ronald

    2018-02-01

    The retrieval of aerosol properties from satellite observations provides their spatial distribution over a wide area in cloud-free conditions. As such, they complement ground-based measurements by providing information over sparsely instrumented areas, albeit that significant differences may exist in both the type of information obtained and the temporal information from satellite and ground-based observations. In this paper, information from different types of satellite-based instruments is used to provide a 3-D climatology of aerosol properties over mainland China, i.e., vertical profiles of extinction coefficients from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), a lidar flying aboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite and the column-integrated extinction (aerosol optical depth - AOD) available from three radiometers: the European Space Agency (ESA)'s Along-Track Scanning Radiometer version 2 (ATSR-2), Advanced Along-Track Scanning Radiometer (AATSR) (together referred to as ATSR) and NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the Terra satellite, together spanning the period 1995-2015. AOD data are retrieved from ATSR using the ATSR dual view (ADV) v2.31 algorithm, while for MODIS Collection 6 (C6) the AOD data set is used that was obtained from merging the AODs obtained from the dark target (DT) and deep blue (DB) algorithms, further referred to as the DTDB merged AOD product. These data sets are validated and differences are compared using Aerosol Robotic Network (AERONET) version 2 L2.0 AOD data as reference. The results show that, over China, ATSR slightly underestimates the AOD and MODIS slightly overestimates the AOD. Consequently, ATSR AOD is overall lower than that from MODIS, and the difference increases with increasing AOD. The comparison also shows that neither of the ATSR and MODIS AOD data sets is better than the other one everywhere. However, ATSR ADV

  14. Real-Time Estimation of Volcanic ASH/SO2 Cloud Height from Combined Uv/ir Satellite Observations and Numerical Modeling

    Science.gov (United States)

    Vicente, Gilberto A.

    An efficient iterative method has been developed to estimate the vertical profile of SO2 and ash clouds from volcanic eruptions by comparing near real-time satellite observations with numerical modeling outputs. The approach uses UV based SO2 concentration and IR based ash cloud images, the volcanic ash transport model PUFF and wind speed, height and directional information to find the best match between the simulated and the observed displays. The method is computationally fast and is being implemented for operational use at the NOAA Volcanic Ash Advisory Centers (VAACs) in Washington, DC, USA, to support the Federal Aviation Administration (FAA) effort to detect, track and measure volcanic ash cloud heights for air traffic safety and management. The presentation will show the methodology, results, statistical analysis and SO2 and Aerosol Index input products derived from the Ozone Monitoring Instrument (OMI) onboard the NASA EOS/Aura research satellite and from the Global Ozone Monitoring Experiment-2 (GOME-2) instrument in the MetOp-A. The volcanic ash products are derived from AVHRR instruments in the NOAA POES-16, 17, 18, 19 as well as MetOp-A. The presentation will also show how a VAAC volcanic ash analyst interacts with the system providing initial condition inputs such as location and time of the volcanic eruption, followed by the automatic real-time tracking of all the satellite data available, subsequent activation of the iterative approach and the data/product delivery process in numerical and graphical format for operational applications.

  15. A statistical method to get surface level air-temperature from satellite observations of precipitable water

    Digital Repository Service at National Institute of Oceanography (India)

    Pankajakshan, T.; Shikauchi, A; Sugimori, Y.; Kubota, M.

    -T a and precipitable water. The rms errors of the SSMI-T a , in this case are found to be reduced to 1.0°C. 1. Introduction Satellite derived surface-level meteorological parameters are considered to be a better alternative to sparse ship... Vol. 49, pp. 551 to 558. 1993 A Statistical Method to Get Surface Level Air-Temperature from Satellite Observations of Precipitable Water PANKAJAKSHAN THADATHIL*, AKIRA SHIKAUCHI, YASUHIRO SUGIMORI and MASAHISA KUBOTA School of Marine Science...

  16. Long-Term Water Temperature Variations in Daya Bay, China Using Satellite and In Situ Observations

    Directory of Open Access Journals (Sweden)

    Jing Yu

    2010-01-01

    Full Text Available Daya Bay is a shallow, semi-en closed bay in the northern section of the South China Sea. The present study analyzed variations of water temperature in Daya Bay over the past 21 years (1985 - 2005 using Advanced Very High Resolution Radiometer (AVHRR satellite remote sensing data and in situ observations. Results showed that AVHRR readings of sea surface temperature (SST increased by 0.07°C y-1. Linear regression anal y sis for monthly SST anomalies (SSTA showed a shift from negative to positive from 1995 - 1996, when the Daya Bay nuclear power station commenced operations in 1994. The slope of linear regression analysis for SSTA nearly doubled from 0.05 (1985 - 1993 to 0.09 (1994 - 2005. Monthly AVHRR images showed a thermal plume from the power station and revealed the in crease of SST over 21 years. In situ observations in water temperature also showed an in creasing trend for the same period (1985 - 2005. Variations in water temperature in Daya Bay were connected with climatic perturbations and in creasing human activity including thermal discharge from nuclear power stations and the rapid economic development around the bay area.

  17. Identification of weak autoionizing resonances observed through fluorescence from the satellite states of Ar{sup +}

    Energy Technology Data Exchange (ETDEWEB)

    McLaughlin, K.W.; Yenen, O.; Samson, J.A.R. [Univ. of Nebraska, Lincoln, NE (United States)] [and others

    1997-04-01

    Photoionization accompanied by excitation of the residual ionic state violates an independent electron model since, according to QED, photons interact only with individual electrons. By allowing measurements at a threshold event with high resolution, the observation of the fluorescence from the decay of these excited states (satellite states) is a sensitive method in the study of electron-electron interactions, providing complementary information to photoelectron spectroscopy. In the measurements reported here, an atomic beam of argon has been photoionized with 34 to 39 eV synchrotron radiation at beamline 9.0.1 of the Advanced Light Source. This energy range encompasses the 3p{sup 4} [{sup 3}P] 4p {sup 4}P, {sup 2}P, and {sup 2}D as well as the [{sup 1}D]4p {sup 2}F satellite states of Ar{sup +}. By observing the fine-structure resolved fluorescence from these satellite states, new Rydberg series and extensions of previously known series have been resolved with an energy resolution of 3 meV. With the high photon flux available from the high resolution monochromator of beamline 9.0.1, even the weakly excited [{sup 3}P] 4p ({sup 2}S) ns,d autoionizing structure has been observed for the first time.

  18. Seismic, satellite, and site observations of internal solitary waves in the NE South China Sea

    Science.gov (United States)

    Tang, Qunshu; Wang, Caixia; Wang, Dongxiao; Pawlowicz, Rich

    2014-01-01

    Internal solitary waves (ISWs) in the NE South China Sea (SCS) are tidally generated at the Luzon Strait. Their propagation, evolution, and dissipation processes involve numerous issues still poorly understood. Here, a novel method of seismic oceanography capable of capturing oceanic finescale structures is used to study ISWs in the slope region of the NE SCS. Near-simultaneous observations of two ISWs were acquired using seismic and satellite imaging, and water column measurements. The vertical and horizontal length scales of the seismic observed ISWs are around 50 m and 1–2 km, respectively. Wave phase speeds calculated from seismic observations, satellite images, and water column data are consistent with each other. Observed waveforms and vertical velocities also correspond well with those estimated using KdV theory. These results suggest that the seismic method, a new option to oceanographers, can be further applied to resolve other important issues related to ISWs. PMID:24948180

  19. Representation of solar tides in the stratosphere and lower mesosphere in state-of-the-art reanalyses and in satellite observations

    Science.gov (United States)

    Sakazaki, Takatoshi; Fujiwara, Masatomo; Shiotani, Masato

    2018-02-01

    Atmospheric solar tides in the stratosphere and the lower mesosphere are investigated using temperature data from five state-of-the-art reanalysis data sets (MERRA-2, MERRA, JRA-55, ERA-Interim, and CFSR) as well as TIMED SABER and Aura MLS satellite measurements. The main focus is on the period 2006-2012 during which the satellite observations are available for direct comparison with the reanalyses. Diurnal migrating tides, semidiurnal migrating tides, and nonmigrating tides are diagnosed. Overall the reanalyses agree reasonably well with each other and with the satellite observations for both migrating and nonmigrating components, including their vertical structure and the seasonality. However, the agreement among reanalyses is more pronounced in the lower stratosphere and relatively weaker in the upper stratosphere and mesosphere. A systematic difference between SABER and the reanalyses is found for diurnal migrating tides in the upper stratosphere and the lower mesosphere; specifically, the amplitude of trapped modes in reanalyses is significantly smaller than that in SABER, although such difference is less clear between MLS and the reanalyses. The interannual variability and the possibility of long-term changes in migrating tides are also examined using the reanalyses during 1980-2012. All the reanalyses agree in exhibiting a clear quasi-biennial oscillation (QBO) in the tides, but the most significant indications of long-term changes in the tides represented in the reanalyses are most plausibly explained by the evolution of the satellite observing systems during this period. The tides are also compared in the full reanalyses produced by the Japan Meteorological Agency (i.e., JRA-55) and in two parallel data sets from this agency: one (JRA-55C) that repeats the reanalysis procedure but without any satellite data assimilated and one (JRA-55AMIP) that is a free-running integration of the model constrained only by observed sea surface temperatures. Many aspects

  20. Multi-Satellite Observation Scheduling for Large Area Disaster Emergency Response

    Science.gov (United States)

    Niu, X. N.; Tang, H.; Wu, L. X.

    2018-04-01

    an optimal imaging plan, plays a key role in coordinating multiple satellites to monitor the disaster area. In the paper, to generate imaging plan dynamically according to the disaster relief, we propose a dynamic satellite task scheduling method for large area disaster response. First, an initial robust scheduling scheme is generated by a robust satellite scheduling model in which both the profit and the robustness of the schedule are simultaneously maximized. Then, we use a multi-objective optimization model to obtain a series of decomposing schemes. Based on the initial imaging plan, we propose a mixed optimizing algorithm named HA_NSGA-II to allocate the decomposing results thus to obtain an adjusted imaging schedule. A real disaster scenario, i.e., 2008 Wenchuan earthquake, is revisited in terms of rapid response using satellite resources and used to evaluate the performance of the proposed method with state-of-the-art approaches. We conclude that our satellite scheduling model can optimize the usage of satellite resources so as to obtain images in disaster response in a more timely and efficient manner.

  1. A hybrid online scheduling mechanism with revision and progressive techniques for autonomous Earth observation satellite

    Science.gov (United States)

    Li, Guoliang; Xing, Lining; Chen, Yingwu

    2017-11-01

    The autonomicity of self-scheduling on Earth observation satellite and the increasing scale of satellite network attract much attention from researchers in the last decades. In reality, the limited onboard computational resource presents challenge for the online scheduling algorithm. This study considered online scheduling problem for a single autonomous Earth observation satellite within satellite network environment. It especially addressed that the urgent tasks arrive stochastically during the scheduling horizon. We described the problem and proposed a hybrid online scheduling mechanism with revision and progressive techniques to solve this problem. The mechanism includes two decision policies, a when-to-schedule policy combining periodic scheduling and critical cumulative number-based event-driven rescheduling, and a how-to-schedule policy combining progressive and revision approaches to accommodate two categories of task: normal tasks and urgent tasks. Thus, we developed two heuristic (re)scheduling algorithms and compared them with other generally used techniques. Computational experiments indicated that the into-scheduling percentage of urgent tasks in the proposed mechanism is much higher than that in periodic scheduling mechanism, and the specific performance is highly dependent on some mechanism-relevant and task-relevant factors. For the online scheduling, the modified weighted shortest imaging time first and dynamic profit system benefit heuristics outperformed the others on total profit and the percentage of successfully scheduled urgent tasks.

  2. Synchronous observations of long-periodic geomagnetic pulsations on the ATS-6 satellite and on the Earth surface

    International Nuclear Information System (INIS)

    Barfild, Dzh.N.; Bondarenko, N.M.; Buloshnikov, A.M.; Gokhberg, M.B.; Kalisher, A.L.; Mak-Ferron, R.L.; Troitskaya, V.A.

    1977-01-01

    Geomagnetic pulsations of the Pi2 and Pc4 types recorded by the ATS-6 geostationary satellite and by observatories located near the geomagnetic longitude of the space satellite from the 24th of May, 1974 to the 1st of September, 1976 are compared. The periods of the Pi2 pulsations measured by the space satellite and on the Earth practically coincide, dynamic spectra and spectral densities are similar. The amplitude of the Pi2 pulsations recorded in auroral latitudes is several times wider than the amplitude measured by the ATS-6 while in middle latitudes the amplitude is much smaller than on the satellite. The Pc4 pulsations are not practically observed on the Earth for they are probably excited in narrow local areas of the magnitosphere. In order to arrive to the single-valued solution of the problem of the mechanism of the generation and localization of the pulsation source it is necessary to carry out simultaneous observations on the Earth and in the magnitosphere

  3. Progress in Near Real-Time Volcanic Cloud Observations Using Satellite UV Instruments

    Science.gov (United States)

    Krotkov, N. A.; Yang, K.; Vicente, G.; Hughes, E. J.; Carn, S. A.; Krueger, A. J.

    2011-12-01

    Volcanic clouds from explosive eruptions can wreak havoc in many parts of the world, as exemplified by the 2010 eruption at the Eyjafjöll volcano in Iceland, which caused widespread disruption to air traffic and resulted in economic impacts across the globe. A suite of satellite-based systems offer the most effective means to monitor active volcanoes and to track the movement of volcanic clouds globally, providing critical information for aviation hazard mitigation. Satellite UV sensors, as part of this suite, have a long history of making unique near-real time (NRT) measurements of sulfur dioxide (SO2) and ash (aerosol Index) in volcanic clouds to supplement operational volcanic ash monitoring. Recently a NASA application project has shown that the use of near real-time (NRT,i.e., not older than 3 h) Aura/OMI satellite data produces a marked improvement in volcanic cloud detection using SO2 combined with Aerosol Index (AI) as a marker for ash. An operational online NRT OMI AI and SO2 image and data product distribution system was developed in collaboration with the NOAA Office of Satellite Data Processing and Distribution. Automated volcanic eruption alarms, and the production of volcanic cloud subsets for multiple regions are provided through the NOAA website. The data provide valuable information in support of the U.S. Federal Aviation Administration goal of a safe and efficient National Air Space. In this presentation, we will highlight the advantages of UV techniques and describe the advances in volcanic SO2 plume height estimation and enhanced volcanic ash detection using hyper-spectral UV measurements, illustrated with Aura/OMI observations of recent eruptions. We will share our plan to provide near-real-time volcanic cloud monitoring service using the Ozone Mapping and Profiler Suite (OMPS) on the Joint Polar Satellite System (JPSS).

  4. Predicting Near-Term Water Quality from Satellite Observations of Watershed Conditions

    Science.gov (United States)

    Weiss, W. J.; Wang, L.; Hoffman, K.; West, D.; Mehta, A. V.; Lee, C.

    2017-12-01

    Despite the strong influence of watershed conditions on source water quality, most water utilities and water resource agencies do not currently have the capability to monitor watershed sources of contamination with great temporal or spatial detail. Typically, knowledge of source water quality is limited to periodic grab sampling; automated monitoring of a limited number of parameters at a few select locations; and/or monitoring relevant constituents at a treatment plant intake. While important, such observations are not sufficient to inform proactive watershed or source water management at a monthly or seasonal scale. Satellite remote sensing data on the other hand can provide a snapshot of an entire watershed at regular, sub-monthly intervals, helping analysts characterize watershed conditions and identify trends that could signal changes in source water quality. Accordingly, the authors are investigating correlations between satellite remote sensing observations of watersheds and source water quality, at a variety of spatial and temporal scales and lags. While correlations between remote sensing observations and direct in situ measurements of water quality have been well described in the literature, there are few studies that link remote sensing observations across a watershed with near-term predictions of water quality. In this presentation, the authors will describe results of statistical analyses and discuss how these results are being used to inform development of a desktop decision support tool to support predictive application of remote sensing data. Predictor variables under evaluation include parameters that describe vegetative conditions; parameters that describe climate/weather conditions; and non-remote sensing, in situ measurements. Water quality parameters under investigation include nitrogen, phosphorus, organic carbon, chlorophyll-a, and turbidity.

  5. Estimation of Transpiration and Water Use Efficiency Using Satellite and Field Observations

    Science.gov (United States)

    Choudhury, Bhaskar J.; Quick, B. E.

    2003-01-01

    Structure and function of terrestrial plant communities bring about intimate relations between water, energy, and carbon exchange between land surface and atmosphere. Total evaporation, which is the sum of transpiration, soil evaporation and evaporation of intercepted water, couples water and energy balance equations. The rate of transpiration, which is the major fraction of total evaporation over most of the terrestrial land surface, is linked to the rate of carbon accumulation because functioning of stomata is optimized by both of these processes. Thus, quantifying the spatial and temporal variations of the transpiration efficiency (which is defined as the ratio of the rate of carbon accumulation and transpiration), and water use efficiency (defined as the ratio of the rate of carbon accumulation and total evaporation), and evaluation of modeling results against observations, are of significant importance in developing a better understanding of land surface processes. An approach has been developed for quantifying spatial and temporal variations of transpiration, and water-use efficiency based on biophysical process-based models, satellite and field observations. Calculations have been done using concurrent meteorological data derived from satellite observations and four dimensional data assimilation for four consecutive years (1987-1990) over an agricultural area in the Northern Great Plains of the US, and compared with field observations within and outside the study area. The paper provides substantive new information about interannual variation, particularly the effect of drought, on the efficiency values at a regional scale.

  6. The impact of urban morphology and land cover on the sensible heat flux retrieved by satellite and in-situ observations

    Science.gov (United States)

    Gawuc, L.; Łobocki, L.; Kaminski, J. W.

    2017-12-01

    Land surface temperature (LST) is a key parameter in various applications for urban environments research. However, remotely-sensed radiative surface temperature is not equivalent to kinetic nor aerodynamic surface temperature (Becker and Li, 1995; Norman and Becker, 1995). Thermal satellite observations of urban areas are also prone to angular anisotropy which is directly connected with the urban structure and relative sun-satellite position (Hu et al., 2016). Sensible heat flux (Qh) is the main component of surface energy balance in urban areas. Retrieval of Qh, requires observations of, among others, a temperature gradient. The lower level of temperature measurement is commonly replaced by remotely-sensed radiative surface temperature (Chrysoulakis, 2003; Voogt and Grimmond, 2000; Xu et al., 2008). However, such replacement requires accounting for the differences between aerodynamic and radiative surface temperature (Chehbouni et al., 1996; Sun and Mahrt, 1995). Moreover, it is important to avoid micro-scale processes, which play a major role in the roughness sublayer. This is due to the fact that Monin-Obukhov similarity theory is valid only in dynamic sublayer. We will present results of the analyses of the impact of urban morphology and land cover on the seasonal changes of sensible heat flux (Qh). Qh will be retrieved by two approaches. First will be based on satellite observations of radiative surface temperature and second will be based on in-situ observations of kinetic road temperature. Both approaches will utilize wind velocity, and air temperature observed in-situ. We will utilize time series of MODIS LST observations for the period of 2005-2014 as well as simultaneous in-situ observations collected by road weather network (9 stations). Ground stations are located across the city of Warsaw, outside the city centre in low-rise urban structure. We will account for differences in urban morphology and land cover in the proximity of ground stations. We will

  7. Evaluation of GFDL-AM4 simulations of nitrogen oxides with OMI satellite observations

    Science.gov (United States)

    Penn, E.; Horowitz, L. W.; Naik, V.

    2017-12-01

    We examine the seasonal cycle and interannual variability of NO2 from 2005-2015 of NO2 over key global regions using simulations with a nudged version of the GFDL-AM4 chemistry-climate model and satellite-based observations from OMI (Ozone Monitoring Instrument), which observes near-global NO2 column abundances at 1pm local time daily. We gridded TEMIS (Tropospheric Emissions Monitoring Internet Service) OMI data to the model spatial grid using WHIPS 2.0 (Wisconsin Horizontal Interpolation Program for Satellites version 2.0) and applied the OMI averaging kernel to weight the model's NO2 concentrations vertically. Model-simulated tropospheric NO2 columns reproduce well the OMI spatial patterns (averaging r2=0.81) and seasonal cycles, but underestimate observations in most regions by 16-62%. A notable exception is the overestimate by 5-35% in East Asia. In regions dominated by biomass burning, these emissions tend to control the seasonal cycle of NO2. However, where anthropogenic emissions dominate, the photochemical conversion of NO2 to PAN and nitric acid controls the seasonal cycle, as indicated by NO2/NOy ratios. Future work is required to explain AM4 biases relative to OMI.

  8. Ground and satellite observations of multiple sun-aligned auroral arcs on the duskside

    Science.gov (United States)

    Hosokawa, K.; Maggiolo, R.; Zhang, Y.; Fear, R. C.; Fontaine, D.; Cumnock, J. A.; Kullen, A.; Milan, S. E.; Kozlovsky, A.; Echim, M.; Shiokawa, K.

    2014-12-01

    Sun-aligned auroral arcs (SAAs) are one of the outstanding phenomena in the high-latitude region during periods of northward interplanetary magnetic field (IMF). Smaller scale SAAs tend to occur either in the duskside or dawnside of the polar cap and are known to drift in the dawn-dusk direction depending on the sign of the IMF By. Studies of SAAs are of particular importance because they represent dynamical characteristics of their source plasma in the magnetosphere, for example in the interaction region between the solar wind and magnetosphere or in the boundary between the plasma sheet and tail lobe. To date, however, very little has been known about the spatial structure and/or temporal evolution of the magnetospheric counterpart of SAAs. In order to gain more comprehensive understanding of the field-aligned plasma transport in the vicinity of SAAs, we have investigated an event of SAAs on November 10, 2005, during which multiple SAAs were detected by a ground-based all-sky camera at Resolute Bay, Canada. During this interval, several SAAs were detached from the duskside oval and moved poleward. The large-scale structure of these arcs was visualized by space-based imagers of TIMED/GUVI and DMSP/SSUSI. In addition to these optical observations, we employ the Cluster satellites to reveal the high-altitude particle signature corresponding to the small-scale SAAs. The ionospheric footprints of the 4 Cluster satellites encountered the SAAs sequentially and observed well correlated enhancements of electron fluxes at weak energies (SAAs. This implies that these ions and electrons were accelerated upward by a quasi-stationary electric field existing in the vicinity of the SAAs and constitute a current system in the magnetosphere-ionosphere coupling system. Ionospheric convection measurement from one of the SuperDARN radars shows an indication that the SAAs are embedded in the lobe cell during northward IMF conditions. In the presentation, we will show the results of

  9. Onsets of Solar Proton Events in Satellite and Ground Level Observations: A Comparison

    Science.gov (United States)

    He, Jing; Rodriguez, Juan V.

    2018-03-01

    The early detection of solar proton event onsets is essential for protecting humans and electronics in space, as well as passengers and crew at aviation altitudes. Two commonly compared methods for observing solar proton events that are sufficiently large and energetic to be detected on the ground through the creation of secondary radiation—known as ground level enhancements (GLEs)—are (1) a network of ground-based neutron monitors (NMs) and (2) satellite-based particle detectors. Until recently, owing to the different time resolution of the two data sets, it has not been feasible to compare these two types of observations using the same detection algorithm. This paper presents a comparison between the two observational platforms using newly processed >100 MeV 1 min count rates and fluxes from National Oceanic and Atmospheric Administration's Geostationary Operational Environmental Satellite (GOES) 8-12 satellites, and 1 min count rates from the Neutron Monitor Database. We applied the same detection algorithm to each data set (tuned to the different background noise levels of the instrument types). Seventeen SPEs with GLEs were studied: GLEs 55-70 from Solar Cycle 23 and GLE 71 from Solar Cycle 24. The median difference in the event detection times by GOES and NM data is 0 min, indicating no innate benefit in time of either system. The 10th, 25th, 75th, and 90th percentiles of the onset time differences (GOES minus NMs) are -7.2 min, -1.5 min, 2.5 min, and 4.2 min, respectively. This is in contrast to previous studies in which NM detections led GOES by 8 to 52 min without accounting for different alert protocols.

  10. Observations of magnetohydrodynamic waves on the ground and on a satellite

    International Nuclear Information System (INIS)

    Lanzerotti, L.J.; Fukunishi, H.; Maclennan, C.G.; Cahill, L.J. Jr.

    1976-01-01

    A comparison is made of magnetohydrodynamic waves observed near the equator on Explorer 45 and at an array of ground stations in the northern hemisphere and at their conjugate station at Siple, Antartica. The data comparisons strongly support the notion that the observed waves can be considered odd mode standing waves in the magnetosphere. This conclusion has important implications for the interpretation of single-point satellite and/or ground measurements of ULF plasma wave phenomena in the magnetosphere. Further, the data comparisons strongly suggest that the overall ULF (approx.5-30 mHz) power levels are quite similar in the magnetosphere and on the ground, at least during the intervals studied

  11. Comparison of seasonal variation between anthropogenic and natural emission inventory and Satellite observation in Southeast Asia

    Science.gov (United States)

    Kurata, G.; Lalitaporn, P.

    2012-12-01

    Since the economic growth of the countries in Southeast Asia is significantly rapid, the emission of air pollutant from the anthropogenic activity, such as industry, power generation and transportation is rapidly increasing. Moreover, biomass burning due to unsuitable agricultural management, deforestation and expansion of farmland are discharging large amount of pollutants, such as Carbon monoxide, volatile organic compound and particulate matter. Especially, the particulate matter from biomass burning causes the serious haze pollution in surrounding area in Southeast Asia. Furthermore, the biomass fuel used for cooking at residential sector discharges harmful pollutants including a particulate matter, and causes the adverse health impact to people on indoor and outdoor. In this study, we evaluated the spatial distribution and the seasonal variation of emission inventory for Southeast Asia region by comparing with satellite observation data in order to improve the accuracy of the impact assessment of air pollution by regional atmospheric chemistry transport model (WRF and CMAQ). As an emission inventory data, we used our original regional emission inventory for Southeast Asia region developed from detail transportation and industry data sets as well as a several existing emission inventories. As satellite observation data, the vertical column density of NO2, Particulate matter and Carbon monoxide obtained by various satellite, such as GOME, GOME2, SCIAMACY, OMI and so on. As a result of comparisons between satellite observation and emission inventories from 1996 to 2011, in the case of anthropogenic emission, seasonal variation was comparatively well in agreement with the seasonal variation of satellite data. However, the uncertainty of the seasonal variation was large on several large cities. In the case of emission from biomass burning, the seasonal variation was clear, but inter-annual variation was also large due to large scale climate condition.

  12. Surface Net Solar Radiation Estimated from Satellite Measurements: Comparisons with Tower Observations

    Science.gov (United States)

    Li, Zhanqing; Leighton, H. G.; Cess, Robert D.

    1993-01-01

    A parameterization that relates the reflected solar flux at the top of the atmosphere to the net solar flux at the surface in terms of only the column water vapor amount and the solar zenith angle was tested against surface observations. Net surface fluxes deduced from coincidental collocated satellite-measured radiances and from measurements from towers in Boulder during summer and near Saskatoon in winter have mean differences of about 2 W/sq m, regardless of whether the sky is clear or cloudy. Furthermore, comparisons between the net fluxes deduced from the parameterization and from surface measurements showed equally good agreement when the data were partitioned into morning and afternoon observations. This is in contrast to results from an empirical clear-sky algorithm that is unable to account adequately for the effects of clouds and that shows, at Boulder, a distinct morning to afternoon variation, which is presumably due to the predominance of different cloud types throughout the day. It is also demonstrated that the parameterization may be applied to irradiances at the top of the atmosphere that have been temporally averaged by using the temporally averaged column water vapor amount and the temporally averaged cosine of the solar zenith angle. The good agreement between the results of the parameterization and surface measurements suggests that the algorithm is a useful tool for a variety of climate studies.

  13. Observational capabilities of solar satellite "Coronas-Photon"

    Science.gov (United States)

    Kotov, Yu.

    Coronas-Photon mission is the third satellite of the Russian Coronas program on solar activity observation The main goal of the Coronas-Photon is the study of solar hard electromagnetic radiation in the wide energy range from UV up to high energy gamma-radiation sim 2000MeV Scientific payload for solar radiation observation consists of three type of instruments 1 monitors Natalya-2M Konus-RF RT-2 Penguin-M BRM Phoka Sphin-X Sokol for spectral and timing measurements of full solar disk radiation with timing in flare burst mode up to one msec Instruments Natalya-2M Konus-RF RT-2 will cover the wide energy range of hard X-rays and soft Gamma rays 15keV to 2000MeV and will together constitute the largest area detectors ever used for solar observations Detectors of gamma-ray monitors are based on structured inorganic scintillators with energy resolution sim 5 for nuclear gamma-line band to 35 for GeV-band PSD analysis is used for gamma neutron separation for solar neutron registration T 30MeV Penguin-M has capability to measure linear polarization of hard X-rays using azimuth are measured by Compton scattering asymmetry in case of polarization of an incident flux For X-ray and EUV monitors the scintillation phoswich detectors gas proportional counter CZT assembly and Filter-covered Si-diodes are used 2 Telescope-spectrometer TESIS for imaging solar spectroscopy in X-rays with angular resolution up to 1 in three spectral lines and RT-2 CZT assembly of CZT

  14. Preliminary Feasibility Study of the Solar Observation Payloads for STSAT-CLASS Satellites

    Directory of Open Access Journals (Sweden)

    Yong-Jae Moon

    2004-12-01

    Full Text Available In this paper, we present preliminary feasibility studies on three types of solar observation payloads for future Korean Science and Technology Satellite (STSAT programs. The three candidates are (1 an UV imaging telescope, (2 an UV spectrograph, and (3 an X-ray spectrometer. In the case of UV imaging telescope, the most important constraint seems to be the control stability of a satellite in order to obtain a reasonably good spatial resolution. Considering that the current pointing stability estimated from the data of the Far ultraviolet Imaging Spectrograph (FIMS onboard the Korean STSAT-1, is around 1 arc minutes/sec, we think that it is hard to obtain a spatial resolution sufficient for scientific research by such an UV Imaging Telescope. For solar imaging missions, we realize that an image stabilization system, which is composed of a small guide telescope with limb sensor and a servo controller of secondary mirror, is quite essential for a very good pointing stability of about 0.1 arcsec. An UV spectrograph covering the solar full disk seems to be a good choice in that there is no risk due to poor pointing stability as well as that it can provide us with valuable UV spectral irradiance data valuable for studying their effects on the Earth's atmosphere and satellites. The heritage of the FIMS can be a great advantage of developing the UV spectrograph. Its main disadvantage is that two major missions are in operation or scheduled. Our preliminary investigations show that an X-ray spectrometer for the full disk Sun seems to be the best choice among the three candidates. The reasons are : (1 high temporal and spectral X-ray data are very essential for studying the acceleration process of energetic particles associated with solar flares, (2 we have a good heritage of X-ray detectors including a rocket-borne X-ray detector, (3 in the case of developing countries such as India and Czech, solar X-ray spectrometers were selected as their early stage

  15. Ionospheric turbulence from ground-based and satellite VLF/LF transmitter signal observations for the Simushir earthquake (November 15, 2006

    Directory of Open Access Journals (Sweden)

    Pier Francesco Biagi

    2012-04-01

    Full Text Available

    Signals from very low frequency (VLF/ low frequency (LF transmitters recorded on the ground station at Petropavlovsk-Kamchatsky and on board the French DEMETER satellite were analyzed for the Simushir earthquake (M 8.3; November 15, 2006. The period of analysis was from October 1, 2006, to January 31, 2007. The ground and satellite data were processed by a method based on the difference between the real signal at night-time and the model signal. The model for the ground observations was the monthly averaged signal amplitudes and phases, as calculated for the quiet days of every month. For the satellite data, a two-dimensional model of the signal distribution over the selected area was constructed. Preseismic effects were found several days before the earthquake, in both the ground and satellite observations.

     

  16. Photometry and position observations of Saturnian satellites during their mutual eclipses and occultations in 1995 performed at the Observatories in Russia and Kazakhstan

    Science.gov (United States)

    Emelianov, N. V.; Irsmambetova, T. R.; Kiseleva, T. P.; Tejfel, V. G.; Vashkovjak, S. N.; Glushkova, E. A.; Kornilov, V. G.; Charitonova, G. A.

    1999-10-01

    Photometry of mutual eclipses and occultations of planetary satellites is a powerful technique to explore these bodies. Observations of these rare events are a source of much precise information. In 1995 the Celestial Mechanics Department of the Sternberg Astronomical Institute (SAI) has organized the observations of mutual eclipses and occultations of Saturnian satellites on a number of observatories of the Commonwealth of Independent States (CIS) -- the former Soviet Union (FSU). The ephemerides of satellites and their observing conditions have been computed beforehand and mailed these data to many observatories of CIS. The Crimean laboratory (CL) of the Sternberg Astronomical Institute, two observatories of the Fesenkov Astrophysical Institute of the Academy of Sciences of the Republic of Kazakhstan (FAI AS RK) in Almaty, and the Main Astronomical Observatory of Russian Academy of Sciences (MAO RAS) in Pulkovo took part in observations. A photoelectric photometer was used in CL of SAI, a CCD was employed to secure satellite images in FAI AS RK, and both CCD and photographic plates were used in MAO RAS. As a result of this observing campaign, photometric data and light curves were obtained for three mutual eclipses and occultations of Saturnian satellites. A number of position observations made allowed us to measure relative coordinates of satellites. Astrometric information has already been derived from photometric data. The mutual apparent positions of satellites were calculated with an accuracy of 0farcs 002 - 0farcs 003. In this paper observations are described and the parameters characterizing the observed phenomena are given. The results of observations are available in electronic form. This work supported by the Russian Foundation for Basic Research, projects Nos. 95-02-05042, 97-02-16551. Results of observations available in electronic form at CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/Abstract.html

  17. Globally Increased Crop Growth and Cropping Intensity from the Long-Term Satellite-Based Observations

    Science.gov (United States)

    Chen, Bin

    2018-04-01

    Understanding the spatiotemporal change trend of global crop growth and multiple cropping system under climate change scenarios is a critical requirement for supporting the food security issue that maintains the function of human society. Many studies have predicted the effects of climate changes on crop production using a combination of filed studies and models, but there has been limited evidence relating decadal-scale climate change to global crop growth and the spatiotemporal distribution of multiple cropping system. Using long-term satellite-derived Normalized Difference Vegetation Index (NDVI) and observed climate data from 1982 to 2012, we investigated the crop growth trend, spatiotemporal pattern trend of agricultural cropping intensity, and their potential correlations with respect to the climate change drivers at a global scale. Results show that 82.97 % of global cropland maximum NDVI witnesses an increased trend while 17.03 % of that shows a decreased trend over the past three decades. The spatial distribution of multiple cropping system is observed to expand from lower latitude to higher latitude, and the increased cropping intensity is also witnessed globally. In terms of regional major crop zones, results show that all nine selected zones have an obvious upward trend of crop maximum NDVI (p impact on the crop growth trend.

  18. Observations of X-ray sources in the Large Magellanic cloud by the OSO-7 satellite

    International Nuclear Information System (INIS)

    Markert, T.H.; Clark, G.W.

    1975-01-01

    Observations of the Large Magellanic Cloud with the 1-40 keV X-ray detectors on the OSO-7 satellite are reported. Results include the discovery of a previously unreported source LMC X-5, measurements of the spectral characteristics of four sources, and observations of their variability on time scales of months

  19. Connecting Satellite Observations with Water Cycle Variables Through Land Data Assimilation: Examples Using the NASA GEOS-5 LDAS

    Science.gov (United States)

    Reichle, Rolf H.; De Lannoy, Gabrielle J. M.; Forman, Barton A.; Draper, Clara S.; Liu, Qing

    2013-01-01

    A land data assimilation system (LDAS) can merge satellite observations (or retrievals) of land surface hydrological conditions, including soil moisture, snow, and terrestrial water storage (TWS), into a numerical model of land surface processes. In theory, the output from such a system is superior to estimates based on the observations or the model alone, thereby enhancing our ability to understand, monitor, and predict key elements of the terrestrial water cycle. In practice, however, satellite observations do not correspond directly to the water cycle variables of interest. The present paper addresses various aspects of this seeming mismatch using examples drawn from recent research with the ensemble-based NASA GEOS-5 LDAS. These aspects include (1) the assimilation of coarse-scale observations into higher-resolution land surface models, (2) the partitioning of satellite observations (such as TWS retrievals) into their constituent water cycle components, (3) the forward modeling of microwave brightness temperatures over land for radiance-based soil moisture and snow assimilation, and (4) the selection of the most relevant types of observations for the analysis of a specific water cycle variable that is not observed (such as root zone soil moisture). The solution to these challenges involves the careful construction of an observation operator that maps from the land surface model variables of interest to the space of the assimilated observations.

  20. Comparisons of aerosol optical depth provided by seviri satellite observations and CAMx air quality modelling

    Science.gov (United States)

    Fernandes, A.; Riffler, M.; Ferreira, J.; Wunderle, S.; Borrego, C.; Tchepel, O.

    2015-04-01

    Satellite data provide high spatial coverage and characterization of atmospheric components for vertical column. Additionally, the use of air pollution modelling in combination with satellite data opens the challenging perspective to analyse the contribution of different pollution sources and transport processes. The main objective of this work is to study the AOD over Portugal using satellite observations in combination with air pollution modelling. For this purpose, satellite data provided by Spinning Enhanced Visible and Infra-Red Imager (SEVIRI) on-board the geostationary Meteosat-9 satellite on AOD at 550 nm and modelling results from the Chemical Transport Model (CAMx - Comprehensive Air quality Model) were analysed. The study period was May 2011 and the aim was to analyse the spatial variations of AOD over Portugal. In this study, a multi-temporal technique to retrieve AOD over land from SEVIRI was used. The proposed method takes advantage of SEVIRI's high temporal resolution of 15 minutes and high spatial resolution. CAMx provides the size distribution of each aerosol constituent among a number of fixed size sections. For post processing, CAMx output species per size bin have been grouped into total particulate sulphate (PSO4), total primary and secondary organic aerosols (POA + SOA), total primary elemental carbon (PEC) and primary inert material per size bin (CRST1 to CRST_4) to be used in AOD quantification. The AOD was calculated by integration of aerosol extinction coefficient (Qext) on the vertical column. The results were analysed in terms of temporal and spatial variations. The analysis points out that the implemented methodology provides a good spatial agreement between modelling results and satellite observation for dust outbreak studied (10th -17th of May 2011). A correlation coefficient of r=0.79 was found between the two datasets. This work provides relevant background to start the integration of these two different types of the data in order

  1. Global-scale Observations of the Limb and Disk (GOLD) Mission: Science from Geostationary Orbit on-board a Commercial Communications Satellite

    Science.gov (United States)

    Eastes, R.; Deaver, T.; Krywonos, A.; Lankton, M. R.; McClintock, W. E.; Pang, R.

    2011-12-01

    Geostationary orbits are ideal for many science investigations of the Earth system on global scales. These orbits allow continuous observations of the same geographic region, enabling spatial and temporal changes to be distinguished and eliminating the ambiguity inherent to observations from low Earth orbit (LEO). Just as observations from geostationary orbit have revolutionized our understanding of changes in the troposphere, they will dramatically improve our understanding of the space environment at higher altitudes. However, geostationary orbits are infrequently used for science missions because of high costs. Geostationary satellites are large, typically weighing tons. Consequently, devoting an entire satellite to a science mission requires a large financial commitment, both for the spacecraft itself and for sufficient science instrumentation to justify a dedicated spacecraft. Furthermore, the small number of geostationary satellites produced for scientific missions increases the costs of each satellite. For these reasons, it is attractive to consider flying scientific instruments on satellites operated by commercial companies, some of whom have fleets of ~40 satellites. However, scientists' lack of understanding of the capabilities of commercial spacecraft as well as commercial companies' concerns about risks to their primary mission have impeded the cooperation necessary for the shared use of a spacecraft. Working with a commercial partner, the GOLD mission has successfully overcome these issues. Our experience indicates that there are numerous benefits to flying on commercial communications satellites (e.g., it is possible to downlink large amounts of data) and the costs are low if the experimental requirements adequately match the capabilities and available resources of the host spacecraft. Consequently, affordable access to geostationary orbit aboard a communications satellite now appears possible for science payloads.

  2. Using satellite observations in performance evaluation for regulatory air quality modeling: Comparison with ground-level measurements

    Science.gov (United States)

    Odman, M. T.; Hu, Y.; Russell, A.; Chai, T.; Lee, P.; Shankar, U.; Boylan, J.

    2012-12-01

    Regulatory air quality modeling, such as State Implementation Plan (SIP) modeling, requires that model performance meets recommended criteria in the base-year simulations using period-specific, estimated emissions. The goal of the performance evaluation is to assure that the base-year modeling accurately captures the observed chemical reality of the lower troposphere. Any significant deficiencies found in the performance evaluation must be corrected before any base-case (with typical emissions) and future-year modeling is conducted. Corrections are usually made to model inputs such as emission-rate estimates or meteorology and/or to the air quality model itself, in modules that describe specific processes. Use of ground-level measurements that follow approved protocols is recommended for evaluating model performance. However, ground-level monitoring networks are spatially sparse, especially for particulate matter. Satellite retrievals of atmospheric chemical properties such as aerosol optical depth (AOD) provide spatial coverage that can compensate for the sparseness of ground-level measurements. Satellite retrievals can also help diagnose potential model or data problems in the upper troposphere. It is possible to achieve good model performance near the ground, but have, for example, erroneous sources or sinks in the upper troposphere that may result in misleading and unrealistic responses to emission reductions. Despite these advantages, satellite retrievals are rarely used in model performance evaluation, especially for regulatory modeling purposes, due to the high uncertainty in retrievals associated with various contaminations, for example by clouds. In this study, 2007 was selected as the base year for SIP modeling in the southeastern U.S. Performance of the Community Multiscale Air Quality (CMAQ) model, at a 12-km horizontal resolution, for this annual simulation is evaluated using both recommended ground-level measurements and non-traditional satellite

  3. Observing and Modelling the HighWater Level from Satellite Radar Altimetry During Tropical Cyclones

    DEFF Research Database (Denmark)

    Deng, Xiaoli; Gharineiat, Zahra; Andersen, Ole Baltazar

    2016-01-01

    This paper investigates the capability of observing tropical cyclones using satellite radar altimetry. Two representative cyclones Yasi (February 2011) and Larry (March 2006) in the northeast Australian coastal area are selected based also on available tide gauge sea level measurements. It is sho...

  4. Fault Diagnosis for Satellite Sensors and Actuators using Nonlinear Geometric Approach and Adaptive Observers

    DEFF Research Database (Denmark)

    Baldi, P.; Blanke, Mogens; Castaldi, P.

    2018-01-01

    This paper presents a novel scheme for diagnosis of faults affecting sensors that measure the satellite attitude, body angular velocity, flywheel spin rates, and defects in control torques from reaction wheel motors. The proposed methodology uses adaptive observers to provide fault estimates that...

  5. SHOCK-DRIVEN ACCRETION IN CIRCUMPLANETARY DISKS: OBSERVABLES AND SATELLITE FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Zhaohuan [Department of Physics and Astronomy, University of Nevada, Las Vegas, 4505 South Maryland Parkway, Las Vegas, NV 89154 (United States); Ju, Wenhua; Stone, James M., E-mail: zhzhu@physics.unlv.edu [Department of Astrophysical Sciences, 4 Ivy Lane, Peyton Hall, Princeton University, Princeton, NJ 08544 (United States)

    2016-12-01

    Circumplanetary disks (CPDs) control the growth of planets, supply material for satellites to form, and provide observational signatures of young forming planets. We have carried out two-dimensional hydrodynamical simulations with radiative cooling to study CPDs and suggested a new mechanism to drive the disk accretion. Two spiral shocks are present in CPDs, excited by the central star. We find that spiral shocks can at least contribute to, if not dominate, the angular momentum transport and energy dissipation in CPDs. Meanwhile, dissipation and heating by spiral shocks have a positive feedback on shock-driven accretion itself. As the disk is heated up by spiral shocks, the shocks become more open, leading to more efficient angular momentum transport. This shock-driven accretion is, on the other hand, unsteady due to production and destruction of vortices in disks. After being averaged over time, a quasi-steady accretion is reached from the planet’s Hill radius all the way to the planet surface, and the disk α  coefficient characterizing angular momentum transport is ∼0.001–0.02. The disk surface density ranges from 10 to 1000 g cm{sup −2} in our simulations, which is at least three orders of magnitude smaller than the “minimum-mass subnebula” model used to study satellite formation; instead it is more consistent with the “gas-starved” satellite formation model. Finally, we calculate the millimeter flux emitted by CPDs at ALMA and EVLA wavelength bands and predict the flux for several recently discovered CPD candidates, which suggests that ALMA is capable of discovering these accreting CPDs.

  6. SHOCK-DRIVEN ACCRETION IN CIRCUMPLANETARY DISKS: OBSERVABLES AND SATELLITE FORMATION

    International Nuclear Information System (INIS)

    Zhu, Zhaohuan; Ju, Wenhua; Stone, James M.

    2016-01-01

    Circumplanetary disks (CPDs) control the growth of planets, supply material for satellites to form, and provide observational signatures of young forming planets. We have carried out two-dimensional hydrodynamical simulations with radiative cooling to study CPDs and suggested a new mechanism to drive the disk accretion. Two spiral shocks are present in CPDs, excited by the central star. We find that spiral shocks can at least contribute to, if not dominate, the angular momentum transport and energy dissipation in CPDs. Meanwhile, dissipation and heating by spiral shocks have a positive feedback on shock-driven accretion itself. As the disk is heated up by spiral shocks, the shocks become more open, leading to more efficient angular momentum transport. This shock-driven accretion is, on the other hand, unsteady due to production and destruction of vortices in disks. After being averaged over time, a quasi-steady accretion is reached from the planet’s Hill radius all the way to the planet surface, and the disk α  coefficient characterizing angular momentum transport is ∼0.001–0.02. The disk surface density ranges from 10 to 1000 g cm −2 in our simulations, which is at least three orders of magnitude smaller than the “minimum-mass subnebula” model used to study satellite formation; instead it is more consistent with the “gas-starved” satellite formation model. Finally, we calculate the millimeter flux emitted by CPDs at ALMA and EVLA wavelength bands and predict the flux for several recently discovered CPD candidates, which suggests that ALMA is capable of discovering these accreting CPDs.

  7. The YORP effect on the GOES 8 and GOES 10 satellites: A case study

    Science.gov (United States)

    Albuja, Antonella A.; Scheeres, Daniel J.; Cognion, Rita L.; Ryan, William; Ryan, Eileen V.

    2018-01-01

    The Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect is a proposed explanation for the observed rotation behavior of inactive satellites in Earth orbit. This paper further explores the YORP effect for highly asymmetric inactive satellites. Satellite models are developed to represent the GOES 8 and GOES 10 satellites, both of which are currently inactive in geosynchronous Earth orbit (GEO). A simple satellite model for the GOES 8 satellite is used to analyze the short period variations of the angular velocity and obliquity as a result of the YORP effect. A more complex model for the rotational dynamics of the GOES 8 and GOES 10 satellites are developed to probe their sensitivity and to match observed spin periods and states of these satellites. The simulated rotation periods are compared to observations for both satellites. The comparison between YORP theory and observed rotation rates for both satellites show that the YORP effect could be the cause for the observed rotational behavior. The YORP model also predicts a novel state for the GOES 8 satellite, namely that it could periodically fall into a tumbling rotation state. Recent observations of this satellite are consistent with this prediction.

  8. The utility of satellite observations for constraining fine-scale and transient methane sources

    Science.gov (United States)

    Turner, A. J.; Jacob, D.; Benmergui, J. S.; Brandman, J.; White, L.; Randles, C. A.

    2017-12-01

    Resolving differences between top-down and bottom-up emissions of methane from the oil and gas industry is difficult due, in part, to their fine-scale and often transient nature. There is considerable interest in using atmospheric observations to detect these sources. Satellite-based instruments are an attractive tool for this purpose and, more generally, for quantifying methane emissions on fine scales. A number of instruments are planned for launch in the coming years from both low earth and geostationary orbit, but the extent to which they can provide fine-scale information on sources has yet to be explored. Here we present an observation system simulation experiment (OSSE) exploring the tradeoffs between pixel resolution, measurement frequency, and instrument precision on the fine-scale information content of a space-borne instrument measuring methane. We use the WRF-STILT Lagrangian transport model to generate more than 200,000 column footprints at 1.3×1.3 km2 spatial resolution and hourly temporal resolution over the Barnett Shale in Texas. We sub-sample these footprints to match the observing characteristics of the planned TROPOMI and GeoCARB instruments as well as different hypothetical observing configurations. The information content of the various observing systems is evaluated using the Fisher information matrix and its singular values. We draw conclusions on the capabilities of the planned satellite instruments and how these capabilities could be improved for fine-scale source detection.

  9. Assessment of the Latest GPM-Era High-Resolution Satellite Precipitation Products by Comparison with Observation Gauge Data over the Chinese Mainland

    Directory of Open Access Journals (Sweden)

    Shaowei Ning

    2016-10-01

    Full Text Available The Global Precipitation Mission (GPM Core Observatory that was launched on 27 February 2014 ushered in a new era for estimating precipitation from satellites. Based on their high spatial–temporal resolution and near global coverage, satellite-based precipitation products have been applied in many research fields. The goal of this study was to quantitatively compare two of the latest GPM-era satellite precipitation products (GPM IMERG and GSMap-Gauge Ver. 6 with a network of 840 precipitation gauges over the Chinese mainland. Direct comparisons of satellite-based precipitation products with rain gauge observations over a 20 month period from April 2014 to November 2015 at 0.1° and daily/monthly resolutions showed the following results: Both of the products were capable of capturing the overall spatial pattern of the 20 month mean daily precipitation, which was characterized by a decreasing trend from the southeast to the northwest. GPM IMERG overestimated precipitation by approximately 0.09 mm/day while GSMap-Gauge Ver. 6 underestimated precipitation by −0.04 mm/day. The two satellite-based precipitation products performed better over wet southern regions than over dry northern regions. They also showed better performance in summer than in winter. In terms of mean error, root mean square error, correlation coefficient, and probability of detection, GSMap-Gauge was better able to estimate precipitation and had more stable quality results than GPM IMERG on both daily and monthly scales. GPM IMERG was more sensitive to conditions of no rain or light rainfall and demonstrated good capability of capturing the behavior of extreme precipitation events. Overall, the results revealed some limitations of these two latest satellite-based precipitation products when used over the Chinese mainland, helping to characterize some of the error features in these datasets for potential users.

  10. Backthinned TDI CCD image sensor design and performance for the Pleiades high resolution Earth observation satellites

    Science.gov (United States)

    Materne, A.; Bardoux, A.; Geoffray, H.; Tournier, T.; Kubik, P.; Morris, D.; Wallace, I.; Renard, C.

    2017-11-01

    The PLEIADES-HR Earth observing satellites, under CNES development, combine a 0.7m resolution panchromatic channel, and a multispectral channel allowing a 2.8 m resolution, in 4 spectral bands. The 2 satellites will be placed on a sun-synchronous orbit at an altitude of 695 km. The camera operates in push broom mode, providing images across a 20 km swath. This paper focuses on the specifications, design and performance of the TDI detectors developed by e2v technologies under CNES contract for the panchromatic channel. Design drivers, derived from the mission and satellite requirements, architecture of the sensor and measurement results for key performances of the first prototypes are presented.

  11. Gridded sunshine duration climate data record for Germany based on combined satellite and in situ observations

    Science.gov (United States)

    Walawender, Jakub; Kothe, Steffen; Trentmann, Jörg; Pfeifroth, Uwe; Cremer, Roswitha

    2017-04-01

    The purpose of this study is to create a 1 km2 gridded daily sunshine duration data record for Germany covering the period from 1983 to 2015 (33 years) based on satellite estimates of direct normalised surface solar radiation and in situ sunshine duration observations using a geostatistical approach. The CM SAF SARAH direct normalized irradiance (DNI) satellite climate data record and in situ observations of sunshine duration from 121 weather stations operated by DWD are used as input datasets. The selected period of 33 years is associated with the availability of satellite data. The number of ground stations is limited to 121 as there are only time series with less than 10% of missing observations over the selected period included to keep the long-term consistency of the output sunshine duration data record. In the first step, DNI data record is used to derive sunshine hours by applying WMO threshold of 120 W/m2 (SDU = DNI ≥ 120 W/m2) and weighting of sunny slots to correct the sunshine length between two instantaneous image data due to cloud movement. In the second step, linear regression between SDU and in situ sunshine duration is calculated to adjust the satellite product to the ground observations and the output regression coefficients are applied to create a regression grid. In the last step regression residuals are interpolated with ordinary kriging and added to the regression grid. A comprehensive accuracy assessment of the gridded sunshine duration data record is performed by calculating prediction errors (cross-validation routine). "R" is used for data processing. A short analysis of the spatial distribution and temporal variability of sunshine duration over Germany based on the created dataset will be presented. The gridded sunshine duration data are useful for applications in various climate-related studies, agriculture and solar energy potential calculations.

  12. Validation of ultraviolet radiation budgets using satellite observations from the OMI instrument

    International Nuclear Information System (INIS)

    Den Outer, P.N.; Van Dijk, A.; Slaper, H.

    2008-11-01

    Satellite retrieval of ozone, clouds, aerosols and ground albedo allows the modelling of ultraviolet (UV)-doses received at the ground. UV-doses derived from satellite observations are highly useful in analyzing regional differences in the effects of ozone depletion and climate change on the biologically effective UV-radiation levels. RIVM has developed and used UV-mapping and UV-risk mapping techniques in environmental assessments in evaluating the effects of ozone depletion and climate change. This project provides a validation study on the OMUVB product by means of a comparison with ground-based measurements. This validation should demonstrate if the OMUVB product can be used from the perspective of long-term environmental trend assessments. Comparing ground-based UV-measurements with the OMUVB product, we show that the product consistently overestimates the UV-doses received at the ground in Europe. The systematic comparison with data from 8 European sites shows on average a 15% overestimate in the yearly integrated UV with a site-to-site variability of around 8%. For four of the more northern sites the overestimation in yearly doses is between 5-10%, and for the four sites that are more southern the deviation is 20-27%. Using the ozone and reflectivity data from the OMI-instrument (Ozone Monitoring Instrument) in combination with the AMOUR-algorithm (Assessment Model for Ultraviolet radiation and Risks) shows smaller overestimates of on average 5-6% with a similar variability between the sites. The variability between sites is largely caused by aerosol and albedo effects and is reduced to 3% if local data on aerosol and albedo are used. The overestimates in the OMUVB product are primarily due to too low (tropospheric) aerosol loads used for the European sites. In addition, our comparison shows that under heavy clouded conditions the cloud modification factors are too high. This contributes to the overall too high UV-doses of the OMUVB product. Environmental

  13. Validation of ultraviolet radiation budgets using satellite observations from the OMI instrument

    Energy Technology Data Exchange (ETDEWEB)

    Den Outer, P.N.; Van Dijk, A.; Slaper, H.

    2008-11-15

    Satellite retrieval of ozone, clouds, aerosols and ground albedo allows the modelling of ultraviolet (UV)-doses received at the ground. UV-doses derived from satellite observations are highly useful in analyzing regional differences in the effects of ozone depletion and climate change on the biologically effective UV-radiation levels. RIVM has developed and used UV-mapping and UV-risk mapping techniques in environmental assessments in evaluating the effects of ozone depletion and climate change. This project provides a validation study on the OMUVB product by means of a comparison with ground-based measurements. This validation should demonstrate if the OMUVB product can be used from the perspective of long-term environmental trend assessments. Comparing ground-based UV-measurements with the OMUVB product, we show that the product consistently overestimates the UV-doses received at the ground in Europe. The systematic comparison with data from 8 European sites shows on average a 15% overestimate in the yearly integrated UV with a site-to-site variability of around 8%. For four of the more northern sites the overestimation in yearly doses is between 5-10%, and for the four sites that are more southern the deviation is 20-27%. Using the ozone and reflectivity data from the OMI-instrument (Ozone Monitoring Instrument) in combination with the AMOUR-algorithm (Assessment Model for Ultraviolet radiation and Risks) shows smaller overestimates of on average 5-6% with a similar variability between the sites. The variability between sites is largely caused by aerosol and albedo effects and is reduced to 3% if local data on aerosol and albedo are used. The overestimates in the OMUVB product are primarily due to too low (tropospheric) aerosol loads used for the European sites. In addition, our comparison shows that under heavy clouded conditions the cloud modification factors are too high. This contributes to the overall too high UV-doses of the OMUVB product. Environmental

  14. Characterizing biospheric carbon balance using CO2 observations from the OCO-2 satellite

    Directory of Open Access Journals (Sweden)

    S. M. Miller

    2018-05-01

    Full Text Available NASA's Orbiting Carbon Observatory 2 (OCO-2 satellite launched in summer of 2014. Its observations could allow scientists to constrain CO2 fluxes across regions or continents that were previously difficult to monitor. This study explores an initial step toward that goal; we evaluate the extent to which current OCO-2 observations can detect patterns in biospheric CO2 fluxes and constrain monthly CO2 budgets. Our goal is to guide top-down, inverse modeling studies and identify areas for future improvement. We find that uncertainties and biases in the individual OCO-2 observations are comparable to the atmospheric signal from biospheric fluxes, particularly during Northern Hemisphere winter when biospheric fluxes are small. A series of top-down experiments indicate how these errors affect our ability to constrain monthly biospheric CO2 budgets. We are able to constrain budgets for between two and four global regions using OCO-2 observations, depending on the month, and we can constrain CO2 budgets at the regional level (i.e., smaller than seven global biomes in only a handful of cases (16 % of all regions and months. The potential of the OCO-2 observations, however, is greater than these results might imply. A set of synthetic data experiments suggests that retrieval errors have a salient effect. Advances in retrieval algorithms and to a lesser extent atmospheric transport modeling will improve the results. In the interim, top-down studies that use current satellite observations are best-equipped to constrain the biospheric carbon balance across only continental or hemispheric regions.

  15. Satellite constraints on surface concentrations of particulate matter

    Science.gov (United States)

    Ford Hotmann, Bonne

    Because of the increasing evidence of the widespread adverse effects on human health from exposure to poor air quality and the recommendations of the World Health Organization to significantly reduce PM2.5 in order to reduce these risks, better estimates of surface air quality globally are required. However, surface measurements useful for monitoring particulate exposure are scarce, especially in developing countries which often experience the worst air pollution. Therefore, other methods are necessary to augment estimates in regions with limited surface observations. The prospect of using satellite observations to infer surface air quality is attractive; however, it requires knowledge of the complicated relationship between satellite-observed aerosol optical depth (AOD) and surface concentrations. This dissertation explores how satellite observations can be used in conjunction with a chemical transport model (GEOS-Chem) to better understand this relationship. First, we investigate the seasonality in aerosols over the Southeastern United States using observations from several satellite instruments (MODIS, MISR, CALIOP) and surface network sites (IMPROVE, SEARCH, AERONET). We find that the strong summertime enhancement in satellite-observed aerosol optical depth (factor 2-3 enhancement over wintertime AOD) is not present in surface mass concentrations (25-55% summertime enhancement). Goldstein et al. [2009] previously attributed this seasonality in AOD to biogenic organic aerosol; however, surface observations show that organic aerosol only accounts for ~35% of PM2.5 mass and exhibits similar seasonality to total surface PM2.5. The GEOS-Chem model generally reproduces these surface aerosol measurements, but under represents the AOD seasonality observed by satellites. We show that seasonal differences in water uptake cannot sufficiently explain the magnitude of AOD increase. As CALIOP profiles indicate the presence of additional aerosol in the lower troposphere

  16. Quantifying offshore wind resources from satellite wind maps: Study area the North Sea

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Barthelmie, Rebecca Jane; Christiansen, Merete B.

    2006-01-01

    Offshore wind resources are quantified from satellite synthetic aperture radar (SAR) and satellite scatterometer observations at local and regional scale respectively at the Horns Rev site in Denmark. The method for wind resource estimation from satellite observations interfaces with the wind atlas...... of the Horns Rev wind farm is quantified from satellite SAR images and compared with state-of-the-art wake model results with good agreement. It is a unique method using satellite observations to quantify the spatial extent of the wake behind large offshore wind farms. Copyright © 2006 John Wiley & Sons, Ltd....... analysis and application program (WAsP). An estimate of the wind resource at the new project site at Horns Rev is given based on satellite SAR observations. The comparison of offshore satellite scatterometer winds, global model data and in situ data shows good agreement. Furthermore, the wake effect...

  17. Aerosol contamination survey during dust storm process in Northwestern China using ground, satellite observations and atmospheric modeling data

    Science.gov (United States)

    Filonchyk, Mikalai; Yan, Haowen; Shareef, Tawheed Mohammed Elhessin; Yang, Shuwen

    2018-01-01

    The present survey addresses the comprehensive description of geographic locations, transport ways, size, and vertical aerosol distribution during four large dust events which occurred in the Northwest China. Based on the data from 35 ground-based air quality monitoring stations and the satellite data, emission flows for dust events within the period of 2014 to 2017 have been estimated. The data show that maximum peak daily average PM10 and PM2.5 concentrations exceeded 380 and 150 μg/m3, respectively, and the PM2.5/PM10 ratio was ranging within 0.12-0.66. Both satellite data and simulation data of the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) coincide with location and extension of a dust cloud. The Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) found dust at 0 to 10 km altitude which remained at this level during the most part of its trajectory. The vertical aerosol distribution at a wave of 532 nm total attenuated backscatter coefficient range of 0.0025-0.003 km-1 × sr-1. Moderate Resolution Imaging Spectroradiometer (MODIS) (Terra) Collection 6 Level-3 aerosol products data show that aerosol optical depth (AOD) at pollution epicenters exceeds 1. A comprehensive data survey thus demonstrated that the main sources of high aerosol pollutions in the territory were deserted areas of North and Northwest China as well as the most part of the Republic of Mongolia, where one of the largest deserts, Gobi, extends.

  18. Multisensor satellite observations of meso- and submesoscale surface circulation in the Liguro-Provençal Basin

    Science.gov (United States)

    Karimova, Svetlana; Alvera-Azcarate, Aida

    2017-04-01

    . Even though the region of interest belongs to the areas with low mean eddy kinetic energy, analysis of the images listed above revealed that the Liguro-Provençal Basin was showing a surprisingly high eddy activity among submesoscale and mesoscale features. However, the typical size of eddies in this area was smaller than that in the southern part of the Western Mediterranean. The general impression retrieved from the observations performed is that the main contributors to generation of observed mesoscale vortical structures are (i) the instability of the main currents in the region of interest and especially frontal instability at the Liguro-Provençal front and (ii) instabilities caused by the coastline inhomogeneity, especially in the eastern part of the Basin. Submesoscale eddy activity seems to be developed to its full extent during the periods when the mesoscale activity in the region of interest is not so prominent. This study is supported by the University of Liege and the EU in the context of the FP7-PEOPLE-COFUND-BeIPD project. Satellite imagery is provided by the European Space Agency.

  19. The Variation of Tropical Cyclone Rainfall within the North Atlantic and Pacific as Observed from Satellites

    Science.gov (United States)

    Rodgers, Edward; Pierce, Harold; Adler, Robert

    1999-01-01

    Tropical cyclone monthly rainfall amounts are estimated from passive microwave satellite observations in the North Atlantic and in three equal geographical regions of the North Pacific (i.e., Western, Central, and Eastern North Pacific). These satellite-derived rainfall amounts are used to assess the impact of tropical cyclone rainfall in altering the geographical, seasonal, and inter-annual distribution of the 1987-1989, 1991-1998 North Atlantic and Pacific rainfall during June-November when tropical cyclones are most abundant. To estimate these tropical cyclone rainfall amounts, mean monthly rain rates are derived from the Defence Meteorological Satellite Program (DMSP) Special Sensor Microwave/ Radiometer (SSM/I) observations within 444 km radius of the center of those North Atlantic and Pacific tropical cyclones that reached storm stage and greater. These rain rate observations are then multiplied by the number of hours in a given month. Mean monthly rainfall amounts are also constructed for all the other North Atlantic and Pacific raining systems during this eleven year period for the purpose of estimating the geographical distribution and intensity of rainfall contributed by non-tropical cyclone systems. Further, the combination of the non-tropical cyclone and tropical cyclone (i.e., total) rainfall is constructed to delineate the fractional amount that tropical cyclones contributed to the total North Pacific rainfall.

  20. Satellite Observations of Declining Aerosol Burden in The Twenty-First Century in the Southeast United States

    Science.gov (United States)

    Feng, N.; Tosca, M.; Kalashnikova, O. V.; Campbell, J. R.; Garay, M. J.; Seidel, F. C.

    2017-12-01

    The Southeast US (SEUS) has long been recognized as a region where the climatic effect of atmospheric aerosols can cool the Earth and have thus reduced the effect of greenhouse warming. However, previous studies have assessed that abundant carbonaceous aerosols over SEUS from a combination of anthropogenic and natural sources are systematically underestimated by most atmospheric models, especially during summer when the average carbon concentration in SEUS is the highest in the country. In this study, we utilize an ensemble of surface (AERONET) and satellite (MISR, CALIPSO) observations over the SEUS from 2001 to 2015 to better understand the spatially and vertically-resolved decadal trend of SEUS aerosol burden. Results from CALIOP show significant aerosol loading extending from the surface to 5km year-round. Additionally, these data show aerosol extinction coefficients as large as 0.01 km-1 extending well above 8km during the summertime. CALIOP measurements corroborate seasonal observations from MISR and indicate that much of the aerosol burden in the SEUS is comprised of smoke, polluted continental and polluted dust species. Using boundary layer heights from the ERA Interim dataset, CALIOP data show that while summertime aerosol burden above the boundary layer (elevated) is equal to about half of the AOD in the surface layer (0.17 vs. 0.08), during wintertime, the vast majority of aerosols are below the boundary layer (0.12 vs. 0.03). Despite strong seasonality in overall aerosol burden, decadal trends in AOD did not exhibit similarly large seasonal differences; data show AOD decreasing between 2001 and 2015 during both summer and winter and in both the MISR and CALIOP datasets. Between 2001 and 2015, the average summertime aerosol optical depth (AOD) from MISR fell from 0.23 to 0.15, and the trend was -0.05 decade-1 (23% decade-1). The fit was statistically significant, with an r2=0.53. Measurement campaigns such as SEAC4RC will be extensively leveraged, which

  1. Preliminary Products of Precise Orbit Determination Using Satellite Laser Ranging Observations for ILRS AAC

    Directory of Open Access Journals (Sweden)

    Young-Rok Kim

    2012-09-01

    Full Text Available In this study, we present preliminary results of precise orbit determination (POD using satellite laser ranging (SLR observations for International Laser Ranging Service (ILRS Associate Analysis Center (AAC. Using SLR normal point observations of LAGEOS-1, LAGEOS-2, ETALON-1, and ETALON-2, the NASA/GSFC GEODYN II software are utilized for POD. Weekly-based orbit determination strategy is applied to process SLR observations and the post-fit residuals check, and external orbit comparison are performed for orbit accuracy assessment. The root mean square (RMS value of differences between observations and computations after final iteration of estimation process is used for post-fit residuals check. The result of ILRS consolidated prediction format (CPF is used for external orbit comparison. Additionally, we performed the precision analysis of each ILRS station by post-fit residuals. The post-fit residuals results show that the precisions of the orbits of LAGEOS-1 and LAGEOS-2 are 0.9 and 1.3 cm, and those of ETALON-1 and ETALON-2 are 2.5 and 1.9 cm, respectively. The orbit assessment results by ILRS CPF show that the radial accuracies of LAGEOS-1 and LAGEOS-2 are 4.0 cm and 5.3 cm, and the radial accuracies of ETALON-1 and ETALON-2 are 30.7 cm and 7.2 cm. These results of station precision analysis confirm that the result of this study is reasonable to have implications as preliminary results for administrating ILRS AAC.

  2. How long do satellites need to overlap? Evaluation of climate data stability from overlapping satellite records

    Science.gov (United States)

    Weatherhead, Elizabeth C.; Harder, Jerald; Araujo-Pradere, Eduardo A.; Bodeker, Greg; English, Jason M.; Flynn, Lawrence E.; Frith, Stacey M.; Lazo, Jeffrey K.; Pilewskie, Peter; Weber, Mark; Woods, Thomas N.

    2017-12-01

    Sensors on satellites provide unprecedented understanding of the Earth's climate system by measuring incoming solar radiation, as well as both passive and active observations of the entire Earth with outstanding spatial and temporal coverage. A common challenge with satellite observations is to quantify their ability to provide well-calibrated, long-term, stable records of the parameters they measure. Ground-based intercomparisons offer some insight, while reference observations and internal calibrations give further assistance for understanding long-term stability. A valuable tool for evaluating and developing long-term records from satellites is the examination of data from overlapping satellite missions. This paper addresses how the length of overlap affects the ability to identify an offset or a drift in the overlap of data between two sensors. Ozone and temperature data sets are used as examples showing that overlap data can differ by latitude and can change over time. New results are presented for the general case of sensor overlap by using Solar Radiation and Climate Experiment (SORCE) Spectral Irradiance Monitor (SIM) and Solar Stellar Irradiance Comparison Experiment (SOLSTICE) solar irradiance data as an example. To achieve a 1 % uncertainty in estimating the offset for these two instruments' measurement of the Mg II core (280 nm) requires approximately 5 months of overlap. For relative drift to be identified within 0.1 % yr-1 uncertainty (0.00008 W m-2 nm-1 yr-1), the overlap for these two satellites would need to be 2.5 years. Additional overlap of satellite measurements is needed if, as is the case for solar monitoring, unexpected jumps occur adding uncertainty to both offsets and drifts; the additional length of time needed to account for a single jump in the overlap data may be as large as 50 % of the original overlap period in order to achieve the same desired confidence in the stability of the merged data set. Results presented here are directly

  3. Spatio-temporal Variations of Nitrogen Dioxide over Western China from Satellite Observations during 2005-2013

    Science.gov (United States)

    Cui, Y.; Lin, J.; Huang, B.; Song, C.

    2015-12-01

    Western China has experienced rapid urbanization and industrialization since the implementation of National Western Development Strategy by Chinese Government. Most resource-intensive industries and high-pollution factories had been moved from the east coast to Western China after 2000. In this research, the spatial and temporal variations of tropospheric NO2 concentration in 2005 - 2013 is analyzed based on the satellite observations by Ozone Measurement Instrument (OMI). The annual trends and seasonality of tropospheric NO2 over Western China are calculated. The results show that large increases are observed in urban areas and the polluted regions are expanding. Additionally, the seasonal patterns of some regions over Western China are changing significantly and more clean areas tend to changing from the characteristics of natural emissions to those of anthropogenic emissions. The spatial and temporal variations of NO2 concentrations are well responded to the rapid urbanization and industrialization over Western China.

  4. Satellite Geomagnetism

    DEFF Research Database (Denmark)

    Olsen, Nils; Stolle, Claudia

    2012-01-01

    Observations of Earth’s magnetic field from space began more than 50 years ago. A continuous monitoring of the field using low Earth orbit (LEO) satellites, however, started only in 1999, and three satellites have taken highprecision measurements of the geomagnetic field during the past decade....... The unprecedented time-space coverage of their data opened revolutionary new possibilities for monitoring, understanding, and exploring Earth’s magnetic field. In the near future, the three-satellite constellation Swarm will ensure continuity of such measurement and provide enhanced possibilities to improve our...... ability to characterize and understand the many sources that contribute to Earth’s magnetic field. In this review, we summarize investigations of Earth’s interior and environment that have been possible through the analysis of high-precision magnetic field observations taken by LEO satellites....

  5. Estimating Field Scale Crop Evapotranspiration using Landsat and MODIS Satellite Observations

    Science.gov (United States)

    Wong, A.; Jin, Y.; Snyder, R. L.; Daniele, Z.; Gao, F.

    2016-12-01

    Irrigation accounts for 80% of human freshwater consumption, and most of it return to the atmosphere through Evapotranspiration (ET). Given the challenges of already-stressed water resources and ground water regulation in California, a cost-effective, timely, and consistent spatial estimate of crop ET, from the farm to watershed level, is becoming increasingly important. The Priestley-Taylor (PT) approach, calibrated with field data and driven by satellite observations, shows great promise for accurate ET estimates across diverse ecosystems. We here aim to improve the robustness of the PT approach in agricultural lands, to enable growers and farm managers to tailor irrigation management based on in-field spatial variability and in-season variation. We optimized the PT coefficients for each crop type with available ET measurements from eddy covariance towers and/or surface renewal stations at six crop fields (Alfalfa, Almond, Citrus, Corn, Pistachio and Rice) in California. Good agreement was found between satellite-based estimates and field measurements of net radiation, with a RMSE of less than 36 W m-2. The crop type specific optimization performed well, with a RMSE of 30 W m-2 and a correlation of 0.81 for predicted daily latent heat flux. The calibrated algorithm was used to estimate ET at 30 m resolution over the Sacramento-San Joaquin Delta region for 2015 water year. It captures well the seasonal dynamics and spatial distribution of ET in Sacramento-San Joaquin Delta. A continuous monitoring of the dynamics and spatial heterogeneity of canopy and consumptive water use at a field scale, will help the growers to be well prepared and informed to adaptively manage water, canopy, and grove density to maximize the yield with the least amount of water.

  6. Satellite Phenology Observations Inform Peak Season of Allergenic Grass Pollen Aerobiology across Two Continents

    Science.gov (United States)

    Huete, A. R.; Devadas, R.; Davies, J.

    2015-12-01

    Pollen exposure and prevalence of allergenic diseases have increased in many parts of the world during the last 30 years, with exposure to aeroallergen grass pollen expected to intensify with climate change, raising increased concerns for allergic diseases. The primary contributing factors to higher allergenic plant species presence are thought to be climate change, land conversion, and biotic mixing of species. Conventional methods for monitoring airborne pollen are hampered by a lack of sampling sites and heavily rely on meteorology with less attention to land cover updates and monitoring of key allergenic species phenology stages. Satellite remote sensing offers an alternative method to overcome the restrictive coverage afforded by in situ pollen networks by virtue of its synoptic coverage and repeatability of measurements that enable timely updates of land cover and land use information and monitoring landscape dynamics and interactions with human activity and climate. In this study, we assessed the potential of satellite observations of urban/peri-urban environments to directly inform landscape conditions conducive to pollen emissions. We found satellite measurements of grass cover phenological evolution to be highly correlated with in situ aerobiological grass pollen concentrations in five urban centres located across two hemispheres (Australia and France). Satellite greenness data from the Moderate Resolution Imaging Spectroradiometer (MODIS) were found to be strongly synchronous with grass pollen aerobiology in both temperate grass dominated sites (France and Melbourne), as well as in Sydney, where multiple pollen peaks coincided with the presence of subtropical grasses. Employing general additive models (GAM), the satellite phenology data provided strong predictive capabilities to inform airborne pollen levels and forecast periods of grass pollen emissions at all five sites. Satellite phenology offer promising opportunities of improving public health risk

  7. Winds observed in the Northern European seas with wind lidars, meteorological masts and satellite

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Stein, D.; Peña, Alfredo

    2013-01-01

    Ocean winds have been observed in the Baltic, Irish and North Seas from a combination of groundbased lidars, tall offshore meteorological masts and satellites remote sensing in recent years. In the FP7 project NORSEWInD (2008-2012) the project partners joined forces to ensure collection of these ...

  8. Mediterranean hurricanes: large-scale environment and convective and precipitating areas from satellite microwave observations

    Directory of Open Access Journals (Sweden)

    C. Claud

    2010-10-01

    Full Text Available Subsynoptic scale vortices that have been likened to tropical cyclones or polar lows (medicanes are occasionally observed over the Mediterranean Sea. Generated over the sea, they are usually associated with strong winds and heavy precipitation and thus can be highly destructive in islands and costal areas. Only an accurate forecasting of such systems could mitigate these effects. However, at the moment, the predictability of these systems remains limited.

    Due to the scarcity of conventional observations, use is made of NOAA/MetOp satellite observations, for which advantage can be taken of the time coverage differences between the platforms that carry it, to give a very complete temporal description of the disturbances. A combination of AMSU-B (Advanced Microwave Sounding Unit-B/MHS (Microwave Humidity Sounder observations permit to investigate precipitation associated with these systems while coincident AMSU-A (Advanced Microwave Sounding Unit-A observations give insights into the larger synoptic-scale environment in which they occur.

    Three different cases (in terms of intensity, location, trajectory, duration, and periods of the year – May, September and December, respectively were investigated. Throughout these time periods, AMSU-A observations show that the persisting deep outflow of cold air over the sea together with an upper-level trough upstream constituted a favourable environment for the development of medicanes. AMSU-B/MHS based diagnostics show that convection and precipitation areas are large in the early stage of the low, but significantly reduced afterwards. Convection is maximum just after the upper-level trough, located upstream of cold mid-tropospheric air, reached its maximum intensity and acquired a cyclonic orientation.

  9. A Lagrangian Analysis of Cold Cloud Clusters and Their Life Cycles With Satellite Observations

    Science.gov (United States)

    Esmaili, Rebekah Bradley; Tian, Yudong; Vila, Daniel Alejandro; Kim, Kyu-Myong

    2016-01-01

    Cloud movement and evolution signify the complex water and energy transport in the atmosphere-ocean-land system. Detecting, clustering, and tracking clouds as semi coherent cluster objects enables study of their evolution which can complement climate model simulations and enhance satellite retrieval algorithms, where there are large gaps between overpasses. Using an area-overlap cluster tracking algorithm, in this study we examine the trajectories, horizontal extent, and brightness temperature variations of millions of individual cloud clusters over their lifespan, from infrared satellite observations at 30-minute, 4-km resolution, for a period of 11 years. We found that the majority of cold clouds were both small and short-lived and that their frequency and location are influenced by El Nino. More importantly, this large sample of individually tracked clouds shows their horizontal size and temperature evolution. Longer lived clusters tended to achieve their temperature and size maturity milestones at different times, while these stages often occurred simultaneously in shorter lived clusters. On average, clusters with this lag also exhibited a greater rainfall contribution than those where minimum temperature and maximum size stages occurred simultaneously. Furthermore, by examining the diurnal cycle of cluster development over Africa and the Indian subcontinent, we observed differences in the local timing of the maximum occurrence at different life cycle stages. Over land there was a strong diurnal peak in the afternoon while over the ocean there was a semi-diurnal peak composed of longer-lived clusters in the early morning hours and shorter-lived clusters in the afternoon. Building on regional specific work, this study provides a long-term, high-resolution, and global survey of object-based cloud characteristics.

  10. An Observation Capability Semantic-Associated Approach to the Selection of Remote Sensing Satellite Sensors: A Case Study of Flood Observations in the Jinsha River Basin.

    Science.gov (United States)

    Hu, Chuli; Li, Jie; Lin, Xin; Chen, Nengcheng; Yang, Chao

    2018-05-21

    Observation schedules depend upon the accurate understanding of a single sensor’s observation capability and the interrelated observation capability information on multiple sensors. The general ontologies for sensors and observations are abundant. However, few observation capability ontologies for satellite sensors are available, and no study has described the dynamic associations among the observation capabilities of multiple sensors used for integrated observational planning. This limitation results in a failure to realize effective sensor selection. This paper develops a sensor observation capability association (SOCA) ontology model that is resolved around the task-sensor-observation capability (TSOC) ontology pattern. The pattern is developed considering the stimulus-sensor-observation (SSO) ontology design pattern, which focuses on facilitating sensor selection for one observation task. The core aim of the SOCA ontology model is to achieve an observation capability semantic association. A prototype system called SemOCAssociation was developed, and an experiment was conducted for flood observations in the Jinsha River basin in China. The results of this experiment verified that the SOCA ontology based association method can help sensor planners intuitively and accurately make evidence-based sensor selection decisions for a given flood observation task, which facilitates efficient and effective observational planning for flood satellite sensors.

  11. An Observation Capability Semantic-Associated Approach to the Selection of Remote Sensing Satellite Sensors: A Case Study of Flood Observations in the Jinsha River Basin

    Directory of Open Access Journals (Sweden)

    Chuli Hu

    2018-05-01

    Full Text Available Observation schedules depend upon the accurate understanding of a single sensor’s observation capability and the interrelated observation capability information on multiple sensors. The general ontologies for sensors and observations are abundant. However, few observation capability ontologies for satellite sensors are available, and no study has described the dynamic associations among the observation capabilities of multiple sensors used for integrated observational planning. This limitation results in a failure to realize effective sensor selection. This paper develops a sensor observation capability association (SOCA ontology model that is resolved around the task-sensor-observation capability (TSOC ontology pattern. The pattern is developed considering the stimulus-sensor-observation (SSO ontology design pattern, which focuses on facilitating sensor selection for one observation task. The core aim of the SOCA ontology model is to achieve an observation capability semantic association. A prototype system called SemOCAssociation was developed, and an experiment was conducted for flood observations in the Jinsha River basin in China. The results of this experiment verified that the SOCA ontology based association method can help sensor planners intuitively and accurately make evidence-based sensor selection decisions for a given flood observation task, which facilitates efficient and effective observational planning for flood satellite sensors.

  12. GLOBALLY INCREASED CROP GROWTH AND CROPPING INTENSITY FROM THE LONG-TERM SATELLITE-BASED OBSERVATIONS

    Directory of Open Access Journals (Sweden)

    B. Chen

    2018-04-01

    Full Text Available Understanding the spatiotemporal change trend of global crop growth and multiple cropping system under climate change scenarios is a critical requirement for supporting the food security issue that maintains the function of human society. Many studies have predicted the effects of climate changes on crop production using a combination of filed studies and models, but there has been limited evidence relating decadal-scale climate change to global crop growth and the spatiotemporal distribution of multiple cropping system. Using long-term satellite-derived Normalized Difference Vegetation Index (NDVI and observed climate data from 1982 to 2012, we investigated the crop growth trend, spatiotemporal pattern trend of agricultural cropping intensity, and their potential correlations with respect to the climate change drivers at a global scale. Results show that 82.97 % of global cropland maximum NDVI witnesses an increased trend while 17.03 % of that shows a decreased trend over the past three decades. The spatial distribution of multiple cropping system is observed to expand from lower latitude to higher latitude, and the increased cropping intensity is also witnessed globally. In terms of regional major crop zones, results show that all nine selected zones have an obvious upward trend of crop maximum NDVI (p < 0.001, and as for climatic drivers, the gradual temperature and precipitation changes have had a measurable impact on the crop growth trend.

  13. The Sentinel satellites revolutionise environmental observation; Los satelites Sentinel revolucionan la observacion medioambiental

    Energy Technology Data Exchange (ETDEWEB)

    River, A.

    2016-08-01

    Europe has in orbit three Sentinel satellites that are the backbone of the ambitious Copernicus system. Aimed at revolutionising environmental observation from both the scientific and commercial points of view, their objective is to capture massive volumes of data on the Earth with a view to ensuring progress in research into climate change, the oceans and the evolution of ice formations. (Author)

  14. Satellite observations of middle atmosphere–thermosphere vertical coupling by gravity waves

    Directory of Open Access Journals (Sweden)

    Q. T. Trinh

    2018-03-01

    Full Text Available Atmospheric gravity waves (GWs are essential for the dynamics of the middle atmosphere. Recent studies have shown that these waves are also important for the thermosphere/ionosphere (T/I system. Via vertical coupling, GWs can significantly influence the mean state of the T/I system. However, the penetration of GWs into the T/I system is not fully understood in modeling as well as observations. In the current study, we analyze the correlation between GW momentum fluxes observed in the middle atmosphere (30–90 km and GW-induced perturbations in the T/I. In the middle atmosphere, GW momentum fluxes are derived from temperature observations of the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER satellite instrument. In the T/I, GW-induced perturbations are derived from neutral density measured by instruments on the Gravity field and Ocean Circulation Explorer (GOCE and CHAllenging Minisatellite Payload (CHAMP satellites. We find generally positive correlations between horizontal distributions at low altitudes (i.e., below 90 km and horizontal distributions of GW-induced density fluctuations in the T/I (at 200 km and above. Two coupling mechanisms are likely responsible for these positive correlations: (1 fast GWs generated in the troposphere and lower stratosphere can propagate directly to the T/I and (2 primary GWs with their origins in the lower atmosphere dissipate while propagating upwards and generate secondary GWs, which then penetrate up to the T/I and maintain the spatial patterns of GW distributions in the lower atmosphere. The mountain-wave related hotspot over the Andes and Antarctic Peninsula is found clearly in observations of all instruments used in our analysis. Latitude–longitude variations in the summer midlatitudes are also found in observations of all instruments. These variations and strong positive correlations in the summer midlatitudes suggest that GWs with origins related to convection also

  15. Satellite observations of middle atmosphere-thermosphere vertical coupling by gravity waves

    Science.gov (United States)

    Trinh, Quang Thai; Ern, Manfred; Doornbos, Eelco; Preusse, Peter; Riese, Martin

    2018-03-01

    Atmospheric gravity waves (GWs) are essential for the dynamics of the middle atmosphere. Recent studies have shown that these waves are also important for the thermosphere/ionosphere (T/I) system. Via vertical coupling, GWs can significantly influence the mean state of the T/I system. However, the penetration of GWs into the T/I system is not fully understood in modeling as well as observations. In the current study, we analyze the correlation between GW momentum fluxes observed in the middle atmosphere (30-90 km) and GW-induced perturbations in the T/I. In the middle atmosphere, GW momentum fluxes are derived from temperature observations of the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) satellite instrument. In the T/I, GW-induced perturbations are derived from neutral density measured by instruments on the Gravity field and Ocean Circulation Explorer (GOCE) and CHAllenging Minisatellite Payload (CHAMP) satellites. We find generally positive correlations between horizontal distributions at low altitudes (i.e., below 90 km) and horizontal distributions of GW-induced density fluctuations in the T/I (at 200 km and above). Two coupling mechanisms are likely responsible for these positive correlations: (1) fast GWs generated in the troposphere and lower stratosphere can propagate directly to the T/I and (2) primary GWs with their origins in the lower atmosphere dissipate while propagating upwards and generate secondary GWs, which then penetrate up to the T/I and maintain the spatial patterns of GW distributions in the lower atmosphere. The mountain-wave related hotspot over the Andes and Antarctic Peninsula is found clearly in observations of all instruments used in our analysis. Latitude-longitude variations in the summer midlatitudes are also found in observations of all instruments. These variations and strong positive correlations in the summer midlatitudes suggest that GWs with origins related to convection also propagate up to the T

  16. Experimental simulation of satellite observations of 100 kHz radio waves from relativistic electron beams above thunderclouds

    OpenAIRE

    Fullekrug, Martin; Hanuise, C; Parrot, M

    2011-01-01

    Relativistic electron beams above thunderclouds emit 100 kHz radio waves which illuminate the Earth's atmosphere and near-Earth space. This contribution aims to clarify the physical processes which are relevant for the spatial spreading of the radio wave energy below and above the ionosphere and thereby enables an experimental simulation of satellite observations of 100 kHz radio waves from relativistic electron beams above thunderclouds. The simulation uses the DEMETER satellite which...

  17. Report on workshop "Study of the polar atmosphere and cryosphere using satellite data with surface validation observations including unmanned one"

    Directory of Open Access Journals (Sweden)

    Hiroshi Kanzawa

    1993-07-01

    Full Text Available The workshop was organized to discuss algorithms to derive parameters of the polar atmosphere and cryosphere using satellite data received mainly at Syowa Station (69°S, 40°E, Antarctica, i.e., the data from NOAA, MOS (Marine Observation Satellite-1,ERS (European Remote Sensing Satellite-1,JERS (Japanese Earth Resources Satellite-1 with validation data at the surface. It was held on 16 March 1993 at the National Institute of Polar Research (NIPR, total number of participants being about 40. The contents of the workshop are as follows : The present status of receipt and utilization of the satellite data of NOAA, MOS-1,ERS-1,JERS-1; The Atmosphere; Sea ice; The Cryosphere; Introduction to the satellite data analysis system at the Information Science Center at NIPR.

  18. Blending Satellite Observed, Model Simulated, and in Situ Measured Soil Moisture over Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    Yijian Zeng

    2016-03-01

    Full Text Available The inter-comparison of different soil moisture (SM products over the Tibetan Plateau (TP reveals the inconsistency among different SM products, when compared to in situ measurement. It highlights the need to constrain the model simulated SM with the in situ measured data climatology. In this study, the in situ soil moisture networks, combined with the classification of climate zones over the TP, were used to produce the in situ measured SM climatology at the plateau scale. The generated TP scale in situ SM climatology was then used to scale the model-simulated SM data, which was subsequently used to scale the SM satellite observations. The climatology-scaled satellite and model-simulated SM were then blended objectively, by applying the triple collocation and least squares method. The final blended SM can replicate the SM dynamics across different climatic zones, from sub-humid regions to semi-arid and arid regions over the TP. This demonstrates the need to constrain the model-simulated SM estimates with the in situ measurements before their further applications in scaling climatology of SM satellite products.

  19. Electric Field and Plasma Density Observations of Irregularities and Plasma Instabilities in the Low Latitude Ionosphere Gathered by the C/NOFS Satellite

    Science.gov (United States)

    Pfaff, Robert F.; Freudenreich, H.; Rowland, D.; Klenzing, J.; Liebrecht, C.

    2012-01-01

    The Vector Electric Field Investigation (VEFI) on the C/NOFS equatorial satellite provides a unique data set which includes detailed measurements of irregularities associated with the equatorial ionosphere and in particular with spread-F depletions. We present vector AC electric field observations gathered on C/NOFS that address a variety of key questions regarding how plasma irregularities, from meter to kilometer scales, are created and evolve. The talk focuses on occasions where the ionosphere F-peak has been elevated above the C/NOFS satellite perigee of 400 km as solar activity has increased. In particular, during the equinox periods of 2011, the satellite consistently journeyed below the F-peak whenever the orbit was in the region of the South Atlantic anomaly after sunset. During these passes, data from the electric field and plasma density probes on the satellite have revealed two types of instabilities which had not previously been observed in the C/NOFS data set: The first is evidence for 400-500km-scale bottomside "undulations" that appear in the density and electric field data. In one case, these large scale waves are associated with a strong shear in the zonal E x B flow, as evidenced by variations in the meridional (outward) electric fields observed above and below the F-peak. These undulations are devoid of smaller scale structures in the early evening, yet appear at later local times along the same orbit associated with fully-developed spread-F with smaller scale structures. This suggests that they may be precursor waves for spread-F, driven by a collisional shear instability, following ideas advanced previously by researchers using data from the Jicamarca radar. A second result is the appearance of km-scale irregularities that are a common feature in the electric field and plasma density data that also appear when the satellite is near or below the F-peak at night. The vector electric field instrument on C/NOFS clearly shows that the electric field

  20. Non-Stationary Internal Tides Observed with Satellite Altimetry

    Science.gov (United States)

    Ray, Richard D.; Zaron, E. D.

    2011-01-01

    Temporal variability of the internal tide is inferred from a 17-year combined record of Topex/Poseidon and Jason satellite altimeters. A global sampling of along-track sea-surface height wavenumber spectra finds that non-stationary variance is generally 25% or less of the average variance at wavenumbers characteristic of mode-l tidal internal waves. With some exceptions the non-stationary variance does not exceed 0.25 sq cm. The mode-2 signal, where detectable, contains a larger fraction of non-stationary variance, typically 50% or more. Temporal subsetting of the data reveals interannual variability barely significant compared with tidal estimation error from 3-year records. Comparison of summer vs. winter conditions shows only one region of noteworthy seasonal changes, the northern South China Sea. Implications for the anticipated SWOT altimeter mission are briefly discussed.

  1. TOPEX/El Nino Watch - Satellite shows El Nino-related Sea Surface Height, Mar, 14, 1998

    Science.gov (United States)

    1998-01-01

    This image of the Pacific Ocean was produced using sea surface height measurements taken by the U.S.-French TOPEX/Poseidon satellite. The image shows sea surface height relative to normal ocean conditions on Mar. 14, 1998 and sea surface height is an indicator of the heat content of the ocean. The image shows that the sea surface height along the central equatorial Pacific has returned to a near normal state. Oceanographers indicate this is a classic pattern, typical of a mature El Nino condition. Remnants of the El Nino warm water pool, shown in red and white, are situated to the north and south of the equator. These sea surface height measurements have provided scientists with a detailed view of how the 1997-98 El Nino's warm pool behaves because the TOPEX/Poseidon satellite measures the changing sea surface height with unprecedented precision. In this image, the white and red areas indicate unusual patterns of heat storage; in the white areas, the sea surface is between 14 and 32 centimeters (6 to 13 inches) above normal; in the red areas, it's about 10 centimeters (4 inches) above normal. The green areas indicate normal conditions, while purple (the western Pacific) means at least 18 centimeters (7 inches) below normal sea level. The El Nino phenomenon is thought to be triggered when the steady westward blowing trade winds weaken and even reverse direction. This change in the winds allows a large mass of warm water (the red and white area) that is normally located near Australia to move eastward along the equator until it reaches the coast of South America. The displacement of so much warm water affects evaporation, where rain clouds form and, consequently, alters the typical atmospheric jet stream patterns around the world. Using satellite imagery, buoy and ship data, and a forecasting model of the ocean-atmosphere system, the National Oceanic and Atmospheric Administration, (NOAA), has continued to issue an advisory indicating the so-called El Nino weather

  2. Vegetation coupling to global climate: Trajectories of vegetation change and phenology modeling from satellite observations

    Science.gov (United States)

    Fisher, Jeremy Isaac

    Important systematic shifts in ecosystem function are often masked by natural variability. The rich legacy of over two decades of continuous satellite observations provides an important database for distinguishing climatological and anthropogenic ecosystem changes. Examples from semi-arid Sudanian West Africa and New England (USA) illustrate the response of vegetation to climate and land-use. In Burkina Faso, West Africa, pastoral and agricultural practices compete for land area, while degradation may follow intensification. The Nouhao Valley is a natural experiment in which pastoral and agricultural land uses were allocated separate, coherent reserves. Trajectories of annual net primary productivity were derived from 18 years of coarse-grain (AVHRR) satellite data. Trends suggested that pastoral lands had responded rigorously to increasing rainfall after the 1980's droughts. A detailed analysis at Landsat resolution (30m) indicated that the increased vegetative cover was concentrated in the river basins of the pastoral region, implying a riparian wood expansion. In comparison, riparian cover was reduced in agricultural regions. We suggest that broad-scale patterns of increasing semi-arid West African greenness may be indicative of climate variability, whereas local losses may be anthropogenic in nature. The contiguous deciduous forests, ocean proximity, topography, and dense urban developments of New England provide an ideal landscape to examine influences of climate variability and the impact of urban development vegetation response. Spatial and temporal patterns of interannual climate variability were examined via green leaf phenology. Phenology, or seasonal growth and senescence, is driven by deficits of light, temperature, and water. In temperate environments, phenology variability is driven by interannual temperature and precipitation shifts. Average and interannual phenology analyses across southern New England were conducted at resolutions of 30m (Landsat

  3. The mass dependence of dwarf satellite galaxy quenching

    International Nuclear Information System (INIS)

    Slater, Colin T.; Bell, Eric F.

    2014-01-01

    We combine observations of the Local Group with data from the NASA-Sloan Atlas to show the variation in the quenched fraction of satellite galaxies from low-mass dwarf spheroidals and dwarf irregulars to more massive dwarfs similar to the Magellanic Clouds. While almost all of the low-mass (M * ≲ 10 7 M ☉ ) dwarfs are quenched, at higher masses the quenched fraction decreases to approximately 40%-50%. This change in the quenched fraction is large and suggests a sudden change in the effectiveness of quenching that correlates with satellite mass. We combine this observation with models of satellite infall and ram pressure stripping to show that the low-mass satellites must quench within 1-2 Gyr of pericenter passage to maintain a high quenched fraction, but that many more massive dwarfs must continue to form stars today even though they likely fell into their host >5 Gyr ago. We also characterize how the susceptibility of dwarfs to ram pressure must vary as a function of mass if it is to account for the change in quenched fractions. Though neither model predicts the quenching effectiveness a priori, this modeling illustrates the physical requirements that the observed quenched fractions place on possible quenching mechanisms.

  4. A global satellite assisted precipitation climatology

    Science.gov (United States)

    Funk, Christopher C.; Verdin, Andrew P.; Michaelsen, Joel C.; Pedreros, Diego; Husak, Gregory J.; Peterson, P.

    2015-01-01

    Accurate representations of mean climate conditions, especially in areas of complex terrain, are an important part of environmental monitoring systems. As high-resolution satellite monitoring information accumulates with the passage of time, it can be increasingly useful in efforts to better characterize the earth's mean climatology. Current state-of-the-science products rely on complex and sometimes unreliable relationships between elevation and station-based precipitation records, which can result in poor performance in food and water insecure regions with sparse observation networks. These vulnerable areas (like Ethiopia, Afghanistan, or Haiti) are often the critical regions for humanitarian drought monitoring. Here, we show that long period of record geo-synchronous and polar-orbiting satellite observations provide a unique new resource for producing high resolution (0.05°) global precipitation climatologies that perform reasonably well in data sparse regions. Traditionally, global climatologies have been produced by combining station observations and physiographic predictors like latitude, longitude, elevation, and slope. While such approaches can work well, especially in areas with reasonably dense observation networks, the fundamental relationship between physiographic variables and the target climate variables can often be indirect and spatially complex. Infrared and microwave satellite observations, on the other hand, directly monitor the earth's energy emissions. These emissions often correspond physically with the location and intensity of precipitation. We show that these relationships provide a good basis for building global climatologies. We also introduce a new geospatial modeling approach based on moving window regressions and inverse distance weighting interpolation. This approach combines satellite fields, gridded physiographic indicators, and in situ climate normals. The resulting global 0.05° monthly precipitation climatology, the Climate

  5. Australian Soil Moisture Field Experiments in Support of Soil Moisture Satellite Observations

    Science.gov (United States)

    Kim, Edward; Walker, Jeff; Rudiger, Christopher; Panciera, Rocco

    2010-01-01

    L-band imaging radar is being added to the complement to provide simultaneous active-passive L-band observations, for algorithm development activities in support of NASA's upcoming Soil Moisture Active Passive (.S"M) mission. This paper will describe the campaigns, their objectives, their datasets, and some of the unique advantages of working with small/light sensors and aircraft. We will also review the main scientific findings, including improvements to the SMOS retrieval algorithm enabled by NAFE observations and the evaluation of the Simpson Desert as a calibration target for L-band satellite missions. Plans for upcoming campaigns will also be discussed.

  6. Observations of environmental quenching in groups in the 11 Gyr since z = 2.5: Different quenching for central and satellite galaxies

    International Nuclear Information System (INIS)

    Tal, Tomer; Illingworth, Garth D.; Magee, Daniel; Dekel, Avishai; Oesch, Pascal; Van Dokkum, Pieter G.; Leja, Joel; Momcheva, Ivelina; Nelson, Erica J.; Muzzin, Adam; Franx, Marijn; Brammer, Gabriel B.; Marchesini, Danilo; Patel, Shannon G.; Quadri, Ryan F.; Rix, Hans-Walter; Skelton, Rosalind E.; Wake, David A.; Whitaker, Katherine E.

    2014-01-01

    We present direct observational evidence for star formation quenching in galaxy groups in the redshift range 0 < z < 2.5. We utilize a large sample of nearly 6000 groups, selected by fixed cumulative number density from three photometric catalogs, to follow the evolving quiescent fractions of central and satellite galaxies over roughly 11 Gyr. At z ∼ 0, central galaxies in our sample range in stellar mass from Milky Way/M31 analogs (M * /M ☉ = 6.5 × 10 10 ) to nearby massive ellipticals (M * /M ☉ = 1.5 × 10 11 ). Satellite galaxies in the same groups reach masses as low as twice that of the Large Magellanic Cloud (M * /M ☉ = 6.5 × 10 9 ). Using statistical background subtraction, we measure the average rest-frame colors of galaxies in our groups and calculate the evolving quiescent fractions of centrals and satellites over seven redshift bins. Our analysis shows clear evidence for star formation quenching in group halos, with a different quenching onset for centrals and their satellite galaxies. Using halo mass estimates for our central galaxies, we find that star formation shuts off in centrals when typical halo masses reach between 10 12 and 10 13 M ☉ , consistent with predictions from the halo quenching model. In contrast, satellite galaxies in the same groups most likely undergo quenching by environmental processes, whose onset is delayed with respect to their central galaxy. Although star formation is suppressed in all galaxies over time, the processes that govern quenching are different for centrals and satellites. While mass plays an important role in determining the star formation activity of central galaxies, quenching in satellite galaxies is dominated by the environment in which they reside.

  7. Observations of environmental quenching in groups in the 11 Gyr since z = 2.5: Different quenching for central and satellite galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Tal, Tomer; Illingworth, Garth D.; Magee, Daniel [UCO/Lick Observatory, University of California, Santa Cruz, CA 95064 (United States); Dekel, Avishai [Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel); Oesch, Pascal; Van Dokkum, Pieter G.; Leja, Joel; Momcheva, Ivelina; Nelson, Erica J. [Yale University Astronomy Department, P.O. Box 208101, New Haven, CT 06520-8101 (United States); Muzzin, Adam; Franx, Marijn [Leiden Observatory, Leiden University, NL-2300 RA Leiden (Netherlands); Brammer, Gabriel B. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Marchesini, Danilo [Department of Physics and Astronomy, Tufts University, Medford, MA 02155 (United States); Patel, Shannon G.; Quadri, Ryan F. [Carnegie Observatories, Pasadena, CA 91101 (United States); Rix, Hans-Walter [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Skelton, Rosalind E. [South African Astronomical Observatory, Observatory Road, Cape Town (South Africa); Wake, David A. [Department of Astronomy, University of Wisconsin-Madison, Madison, WI 53706 (United States); Whitaker, Katherine E., E-mail: tal@ucolick.org [Astrophysics Science Division, Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2014-07-10

    We present direct observational evidence for star formation quenching in galaxy groups in the redshift range 0 < z < 2.5. We utilize a large sample of nearly 6000 groups, selected by fixed cumulative number density from three photometric catalogs, to follow the evolving quiescent fractions of central and satellite galaxies over roughly 11 Gyr. At z ∼ 0, central galaxies in our sample range in stellar mass from Milky Way/M31 analogs (M{sub *}/M{sub ☉} = 6.5 × 10{sup 10}) to nearby massive ellipticals (M{sub *}/M{sub ☉} = 1.5 × 10{sup 11}). Satellite galaxies in the same groups reach masses as low as twice that of the Large Magellanic Cloud (M{sub *}/M{sub ☉} = 6.5 × 10{sup 9}). Using statistical background subtraction, we measure the average rest-frame colors of galaxies in our groups and calculate the evolving quiescent fractions of centrals and satellites over seven redshift bins. Our analysis shows clear evidence for star formation quenching in group halos, with a different quenching onset for centrals and their satellite galaxies. Using halo mass estimates for our central galaxies, we find that star formation shuts off in centrals when typical halo masses reach between 10{sup 12} and 10{sup 13} M{sub ☉}, consistent with predictions from the halo quenching model. In contrast, satellite galaxies in the same groups most likely undergo quenching by environmental processes, whose onset is delayed with respect to their central galaxy. Although star formation is suppressed in all galaxies over time, the processes that govern quenching are different for centrals and satellites. While mass plays an important role in determining the star formation activity of central galaxies, quenching in satellite galaxies is dominated by the environment in which they reside.

  8. Observing System Simulation Experiment (OSSE) for a future Doppler Wind Lidar satellite in Japan:

    Science.gov (United States)

    Baron, Philippe; Ishii, Shoken; Okamoto, Kozo

    2017-04-01

    A feasibility study of tropospheric wind measurements by a coherent Doppler lidar aboard a super-low-altitude satellite is being conducted in Japan. We consider a coherent lidar with a laser light source at 2.05 μm whose characteristics correspond to an existing ground-based instrument (power=3.75 W, PRF=30 Hz and pulse width=200 ns). An Observing System Simulation Experiment (OSSE) has been implemented based on the Sensitivity Observing System experiment (SOSE) developed at the Japanese Meteorological-Research-Institute using the Japan Meteorological Agency global Numerical Weather Prediction model. The measurement simulator uses wind, aerosol and cloud 3-d global fields from the OSSE speudo-truth and the aerosol model MASINGAR. In this presentation, we will first discuss the measurement performances. Considering measurement horizontal resolutions of 100 km along the orbit track, we found that below 3 km, the median horizontal wind error is between 0.8-1 m/s for a vertical resolution of 0.5 km, and that near 50% of the data are valid measurements. Decreasing the vertical resolution to 1 km allows us to maintain similar performances up to 8 km almost over most latitudes. Above, the performances significantly fall down but a relatively good percentage of valid measurements (20-40%) are still found near the tropics where cirrus clouds frequently occur. The potential of the instrument to improve weather prediction models will be discussed using the OSSE results obtained for both polar and low inclination orbit satellites. The first results show positive improvements of short-term forecasts (Meteor. Soc. Japan, 2016 P. Baron et al., "Feasibility study for future space-borne coherent Doppler wind lidar, Part 2: Measurement simulation algorithms and retrieval error characterization", submitted to J. Meteor. Soc. Japan, 2016.

  9. Satellite-Observed Black Water Events off Southwest Florida: Implications for Coral Reef Health in the Florida Keys National Marine Sanctuary

    Directory of Open Access Journals (Sweden)

    Brian Lapointe

    2013-01-01

    Full Text Available A “black water” event, as observed from satellites, occurred off southwest Florida in 2012. Satellite observations suggested that the event started in early January and ended in mid-April 2012. The black water patch formed off central west Florida and advected southward towards Florida Bay and the Florida Keys with the shelf circulation, which was confirmed by satellite-tracked surface drifter trajectories. Compared with a previous black water event in 2002, the 2012 event was weaker in terms of spatial and temporal coverage. An in situ survey indicated that the 2012 black water patch contained toxic K. brevis and had relatively low CDOM (colored dissolved organic matter and turbidity but high chlorophyll-a concentrations, while salinity was somewhat high compared with historical values. Further analysis revealed that the 2012 black water was formed by the K. brevis bloom initiated off central west Florida in late September 2011, while river runoff, Trichodesmium and possibly submarine groundwater discharge also played important roles in its formation. Black water patches can affect benthic coral reef communities by decreasing light availability at the bottom, and enhanced nutrient concentrations from black water patches support massive macroalgae growth that can overgrow coral reefs. It is thus important to continue the integrated observations where satellites provide synoptic and repeated observations of such adverse water quality events.

  10. Monitoring the Algerian Basin through glider observations, satellite altimetry and numerical simulations along a SARAL/AltiKa track

    Science.gov (United States)

    Aulicino, G.; Cotroneo, Y.; Ruiz, S.; Sánchez Román, A.; Pascual, A.; Fusco, G.; Tintoré, J.; Budillon, G.

    2018-03-01

    The Algerian Basin is a key component of the general circulation in the Western Mediterranean Sea. The presence of both fresh Atlantic water and more saline Mediterranean water gives the basin an intense inflow/outflow regime and complex circulation patterns. Energetic mesoscale structures that evolve from meanders of the Algerian Current into isolated cyclonic and anticyclonic eddies dominate the area, with marked repercussions on biological activity. Despite its remarkable importance, this region and its variability are still poorly known and basin-wide knowledge of its meso- and submesoscale features is still incomplete. Studying such complex processes requires a synergistic approach that involves integrated observing systems. In recent years, several studies have demonstrated the advantages of combined use of autonomous underwater vehicles, such as gliders, with a new generation of satellite altimetry. In this context, we present results of an observational program conducted in the Algerian Basin during fall 2014 and 2015 that aimed to advance our knowledge of its main features. The study was carried out through analysis of high resolution glider observations, collected along the Algerian BAsin Circulation Unmanned Survey (ABACUS) chokepoint, in synergy with co-located SARAL/AltiKa altimetric products and CMEMS numerical simulations. Results show that glider-derived dynamic height and SARAL/AltiKa absolute dynamic topography have similar patterns, with RMS of the differences ranging between 1.11 and 2.90 cm. Even though larger discrepancies are observed near the Balearic and Algerian coasts, correlation coefficients between glider and satellite observations seem mostly to be affected by reduced synopticity between the measurements. Glider observations acquired during the four surveys reveal the presence of several water masses of Atlantic and Mediterranean origin (i.e., AW and LIW at different modification levels) with marked seasonal variability.

  11. Comparison between satellite precipitation product and observation rain gauges in the Red-Thai Binh River Basin

    Science.gov (United States)

    Lakshmi, V.; Le, M. H.; Sutton, J. R. P.; Bui, D. D.; Bolten, J. D.

    2017-12-01

    The Red-ThaiBinh River is the second largest river in Vietnam in terms of economic impact and is home to around 29 million people. The river has been facing challenges for water resources allocation, which require reliable and routine hydrological assessments. However, hydrological analysis is difficult due to insufficient spatial coverage by rain gauges. Satellite-based precipitation estimates are a promising alternative with high-resolution in both time and space. This study aims at investigating the uncertainties in satellite-based precipitation product TRMM 3B42 v7.0 by comparing them against in-situ measurements over the Red-ThaiBinh River basin. The TRMM 3B42 v7.0 are assessed in terms of seasonal, monthly and daily variations over a 17-year period (1998 - 2014). Preliminary results indicate that at a daily scale, except for low Mean Bias Error (MBE), satellite based rainfall product has weak relationship with ground observation data, indicating by average performance of 0.326 and -0.485 for correlation coefficient and Nash Sutcliffe Efficiency (NSE), respectively. At monthly scale, we observe that the TRMM 3B42 v7.0 has higher correlation with the correlation increased significantly to 0.863 and NSE of 0.522. By analyzing wet season (May - October) and dry season (November - April) separately we find that the correlation between the TRMM 3B42 v7.0 with ground observations were higher for wet season than the dry season.

  12. Magnetic field observations on the Akebono (KXOS-D) satellite

    International Nuclear Information System (INIS)

    Fukunishi, H.; Fujii, R.; Kokubum, S.

    1990-01-01

    The Akebono (EXOS-D) satellite carries triaxial fluxgate and search coil magnetometers with sensors mounted on 5-and 3m masts, respectively. The fluxgate magnetometer has four automatically switchable ranges from ±1024 to ±65536 nT (full scale), and resolutions commensurate with a 16-bit A/D converter in each range (0.031 to 2 nT). The rate of sampling is 32 vectors per second. The triaxial search coil magnetometer has a frequency response up to 800 Hz. Signals in the frequency range higher than 100 Hz are used for VLF plasma wave experiments, while signals less than 100 Hz are used for magnetic field experiments. Both magnetometers have been operating consinuously since the 3- and 5-m masts were extended on March 7 and 8, 1989, respectively. Intense small-scale field-aligned currents embedded in the large-scale field-aligned current system were always observed at 1-2 Re altitudes in all local time regions. The region 0 currents which flow in the poleward region adjacent to the region 1 currents were also frequently observed. The search coil magnetometers measured ion cyclotron waves at 1-2 Re altitudes near the equator. (N.K.)

  13. Migration to Earth Observation Satellite Product Dissemination System at JAXA

    Science.gov (United States)

    Ikehata, Y.; Matsunaga, M.

    2017-12-01

    JAXA released "G-Portal" as a portal web site for search and deliver data of Earth observation satellites in February 2013. G-Portal handles ten satellites data; GPM, TRMM, Aqua, ADEOS-II, ALOS (search only), ALOS-2 (search only), MOS-1, MOS-1b, ERS-1 and JERS-1 and archives 5.17 million products and 14 million catalogues in total. Users can search those products/catalogues in GUI web search and catalogue interface(CSW/Opensearch). In this fiscal year, we will replace this to "Next G-Portal" and has been doing integration, test and migrations. New G-Portal will treat data of satellites planned to be launched in the future in addition to those handled by G - Portal. At system architecture perspective, G-Portal adopted "cluster system" for its redundancy, so we must replace the servers into those with higher specifications when we improve its performance ("scale up approach"). This requests a lot of cost in every improvement. To avoid this, Next G-Portal adopts "scale out" system: load balancing interfaces, distributed file system, distributed data bases. (We reported in AGU fall meeting 2015(IN23D-1748).) At customer usability perspective, G-Portal provides complicated interface: "step by step" web design, randomly generated URLs, sftp (needs anomaly tcp port). Customers complained about the interfaces and the support team had been tired from answering them. To solve this problem, Next G-Portal adopts simple interfaces: "1 page" web design, RESTful URL, and Normal FTP. (We reported in AGU fall meeting 2016(IN23B-1778).) Furthermore, Next G-Portal must merge GCOM-W data dissemination system to be terminated in the next March as well as the current G-Portal. This might arrise some difficulties, since the current G-Portal and GCOM-W data dissemination systems are quite different from Next G-Portal. The presentation reports the knowledge obtained from the process of merging those systems.

  14. Dynamics of the turbidity maximum zone in a macrotidal estuary (the Gironde, France): Observations from field and MODIS satellite data

    Science.gov (United States)

    Doxaran, David; Froidefond, Jean-Marie; Castaing, Patrice; Babin, Marcel

    2009-02-01

    Over a 1-year period, field and satellite measurements of surface water turbidity were combined in order to study the dynamics of the turbidity maximum zone (TM) in a macrotidal estuary (the Gironde, France). Four fixed platforms equipped with turbidity sensors calibrated to give the suspended particulate matter (SPM) concentration provided continuous information in the upper estuary. Full resolution data recorded by the moderate resolution imaging spectroradiometer (MODIS) sensors onboard the Terra and Aqua satellite platforms provided information in the central and lower estuary twice a day (depending on cloud cover). Field data were used to validate a recently developed SPM quantification algorithm applied to the MODIS 'surface reflectance' product. The algorithm is based on a relationship between the SPM concentration and a reflectance ratio of MODIS bands 2 (near-infrared) and 1 (red). Based on 62 and 75 match-ups identified in 2005 with MODIS Terra and Aqua data, the relative uncertainty of the algorithm applied to these sensors was found to be 22 and 18%, respectively. Field measurements showed the tidal variations of turbidity in the upper estuary, while monthly-averaged MODIS satellite data complemented by field data allowed observing the monthly movements of the TM in the whole estuary. The trapping of fine sediments occurred in the upper estuary during the period of low river flow. This resulted in the formation of a highly concentrated TM during a 4-month period. With increasing river flow, the TM moved rapidly to the central estuary. A part of the TM detached, moved progressively in the lower estuary and was finally either massively exported to the ocean during peak floods or temporary trapped (settled) on intertidal mudflats. The massive export to the ocean was apparently the result of combined favorable environmental conditions: presence of fluid mud near the mouth, high river flow, high tides and limited wind speeds. The mean SPM concentration

  15. Mapping Global Ocean Surface Albedo from Satellite Observations: Models, Algorithms, and Datasets

    Science.gov (United States)

    Li, X.; Fan, X.; Yan, H.; Li, A.; Wang, M.; Qu, Y.

    2018-04-01

    Ocean surface albedo (OSA) is one of the important parameters in surface radiation budget (SRB). It is usually considered as a controlling factor of the heat exchange among the atmosphere and ocean. The temporal and spatial dynamics of OSA determine the energy absorption of upper level ocean water, and have influences on the oceanic currents, atmospheric circulations, and transportation of material and energy of hydrosphere. Therefore, various parameterizations and models have been developed for describing the dynamics of OSA. However, it has been demonstrated that the currently available OSA datasets cannot full fill the requirement of global climate change studies. In this study, we present a literature review on mapping global OSA from satellite observations. The models (parameterizations, the coupled ocean-atmosphere radiative transfer (COART), and the three component ocean water albedo (TCOWA)), algorithms (the estimation method based on reanalysis data, and the direct-estimation algorithm), and datasets (the cloud, albedo and radiation (CLARA) surface albedo product, dataset derived by the TCOWA model, and the global land surface satellite (GLASS) phase-2 surface broadband albedo product) of OSA have been discussed, separately.

  16. Identification of tropospheric emissions sources from satellite observations: Synergistic use of HCHO, NO2, and SO2 trace gas measurements

    Science.gov (United States)

    Marbach, T.; Beirle, S.; Khokhar, F.; Platt, U.

    2005-12-01

    We present case studies for combined HCHO, NO2, and SO2 satellite observations, derived from GOME measurements. Launched on the ERS-2 satellite in April 1995, GOME has already performed continuous operations over 8 years providing global observations of the different trace gases. In this way, satellite observations provide unique opportunities for the identifications of trace gas sources. The satellite HCHO observations provide information concerning the localization of biomass burning (intense source of HCHO). The principal biomass burning areas can be observed in the Amazon basin region and in central Africa Weaker HCHO sources (south east of the United States, northern part of the Amazon basin, and over the African tropical forest), not correlated with biomass burning, could be due to biogenic isoprene emissions. The HCHO data can be compared with NO2 and SO2 results to identify more precisely the tropospheric sources (biomass burning events, human activities, additional sources like volcanic emissions). Biomass burning are important tropospheric sources for both HCHO and NO2. Nevertheless HCHO reflects more precisely the biomass burning as it appears in all biomass burning events. NO2 correlate with HCHO over Africa (grassland fires) but not over Indonesia (forest fires). In south America, an augmentation of the NO2 concentrations can be observed with the fire shift from the forest to grassland vegetation. So there seems to be a dependence between the NO2 emissions during biomass burning and the vegetation type. Other high HCHO, SO2, and NO2 emissions can be correlated with climatic events like the El Nino in 1997, which induced dry conditions in Indonesia causing many forest fires.

  17. The height variation of supergranular velocity fields determined from simultaneous OSO 8 satellite and ground-based observations

    Science.gov (United States)

    November, L. J.; Toomre, J.; Gebbie, K. B.; Simon, G. W.

    1979-01-01

    Results are reported for simultaneous satellite and ground-based observations of supergranular velocities in the sun, which were made using a UV spectrometer aboard OSO 8 and a diode-array instrument operating at the exit slit of an echelle spectrograph attached to a vacuum tower telescope. Observations of the steady Doppler velocities seen toward the limb in the middle chromosphere and the photosphere are compared; the observed spectral lines of Si II at 1817 A and Fe I at 5576 A are found to differ in height of formation by about 1400 km. The results show that supergranular motions are able to penetrate at least 11 density scale heights into the middle chromosphere, that the patterns of motion correlate well with the cellular structure seen in the photosphere, and that the motion increases from about 800 m/s in the photosphere to at least 3000 m/s in the middle chromosphere. These observations imply that supergranular velocities should be evident in the transition region and that strong horizontal shear layers in supergranulation should produce turbulence and internal gravity waves.

  18. Hurricane Satellite (HURSAT) Microwave (MW)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Hurricane Satellite (HURSAT) from Microwave (MW) observations of tropical cyclones worldwide data consist of raw satellite observations. The data derive from the...

  19. Satellite Remote Sensing in Seismology. A Review

    Directory of Open Access Journals (Sweden)

    Andrew A. Tronin

    2009-12-01

    Full Text Available A wide range of satellite methods is applied now in seismology. The first applications of satellite data for earthquake exploration were initiated in the ‘70s, when active faults were mapped on satellite images. It was a pure and simple extrapolation of airphoto geological interpretation methods into space. The modern embodiment of this method is alignment analysis. Time series of alignments on the Earth's surface are investigated before and after the earthquake. A further application of satellite data in seismology is related with geophysical methods. Electromagnetic methods have about the same long history of application for seismology. Stable statistical estimations of ionosphere-lithosphere relation were obtained based on satellite ionozonds. The most successful current project "DEMETER" shows impressive results. Satellite thermal infra-red data were applied for earthquake research in the next step. Numerous results have confirmed previous observations of thermal anomalies on the Earth's surface prior to earthquakes. A modern trend is the application of the outgoing long-wave radiation for earthquake research. In ‘80s a new technology—satellite radar interferometry—opened a new page. Spectacular pictures of co-seismic deformations were presented. Current researches are moving in the direction of pre-earthquake deformation detection. GPS technology is also widely used in seismology both for ionosphere sounding and for ground movement detection. Satellite gravimetry has demonstrated its first very impressive results on the example of the catastrophic Indonesian earthquake in 2004. Relatively new applications of remote sensing for seismology as atmospheric sounding, gas observations, and cloud analysis are considered as possible candidates for applications.

  20. Monsoon Convection during the South China Sea Monsoon Experiment Observed from Shipboard Radar and the TRMM Satellite

    Science.gov (United States)

    Rickenbach, Tom; Cifelli, Rob; Halverson, Jeff; Kucera, Paul; Atkinson, Lester; Fisher, Brad; Gerlach, John; Harris, Kathy; Kaufman, Cristina; Liu, Ching-Hwang; hide

    1999-01-01

    A main goal of the recent South China Sea Monsoon Experiment (SCSMEX) was to study convective processes associated with the onset of the Southeast Asian summer monsoon. The NASA TOGA C-band scanning radar was deployed on the Chinese research vessel Shi Yan #3 for two 20 day cruises, collecting dual-Doppler measurements in conjunction with the BMRC C-Pol dual-polarimetric radar on Dongsha Island. Soundings and surface meteorological data were also collected with an NCAR Integrated Sounding System (ISS). This experiment was the first major tropical field campaign following the launch of the Tropical Rainfall Measuring Mission (TRMM) satellite. These observations of tropical oceanic convection provided an opportunity to make comparisons between surface radar measurements and the Precipitation Radar (PR) aboard the TRMM satellite in an oceanic environment. Nearly continuous radar operations were conducted during two Intensive Observing Periods (IOPS) straddling the onset of the monsoon (5-25 May 1998 and 5-25 June 1998). Mesoscale lines of convection with widespread regions of both trailing and forward stratiform precipitation were observed during the active monsoon periods in a southwesterly flow regime. Several examples of mesoscale convection will be shown from ship-based and spacebome radar reflectivity data during times of TRMM satellite overpasses. Further examples of pre-monsoon convection, characterized by isolated cumulonimbus and shallow, precipitating congestus clouds, will be discussed. A strong waterspout was observed very near the ship from an isolated cell in the pre-monsoon period, and was well documented with photography, radar, sounding, and sounding data.

  1. Best Longitudinal Adjustment of Satellite Trajectories for the Observation of Forest Fires (Blastoff): A Stochastic Programming Approach to Satellite System Design

    Science.gov (United States)

    Hoskins, Aaron B.

    Forest fires cause a significant amount of damage and destruction each year. Optimally dispatching resources reduces the amount of damage a forest fire can cause. Models predict the fire spread to provide the data required to optimally dispatch resources. However, the models are only as accurate as the data used to build them. Satellites are one valuable tool in the collection of data for the forest fire models. Satellites provide data on the types of vegetation, the wind speed and direction, the soil moisture content, etc. The current operating paradigm is to passively collect data when possible. However, images from directly overhead provide better resolution and are easier to process. Maneuvering a constellation of satellites to fly directly over the forest fire provides higher quality data than is achieved with the current operating paradigm. Before launch, the location of the forest fire is unknown. Therefore, it is impossible to optimize the initial orbits for the satellites. Instead, the expected cost of maneuvering to observe the forest fire determines the optimal initial orbits. A two-stage stochastic programming approach is well suited for this class of problem where initial decisions are made with an uncertain future and then subsequent decisions are made once a scenario is realized. A repeat ground track orbit provides a non-maneuvering, natural solution providing a daily flyover of the forest fire. However, additional maneuvers provide a second daily flyover of the forest fire. The additional maneuvering comes at a significant cost in terms of additional fuel, but provides more data collection opportunities. After data are collected, ground stations receive the data for processing. Optimally selecting the ground station locations reduce the number of built ground stations and reduces the data fusion issues. However, the location of the forest fire alters the optimal ground station sites. A two-stage stochastic programming approach optimizes the

  2. Electron acceleration observed by the FAST satellite within the IAR during a 3 Hz modulated EISCAT heater experiment

    Directory of Open Access Journals (Sweden)

    S. R. Cash

    2002-09-01

    Full Text Available A quantitative analysis is presented of the FAST satellite electric field and particle flux data during an EISCAT heating experiment run on 8 October 1998. Radio frequency heating, modulated at 3 Hz, launched ULF waves from the ionosphere into the lower magnetosphere. The ULF waves were observed in FAST data and constituted the first satellite detection of artificially excited Alfvénic ULF waves. The downward electron flux data for this event contain the first observations of electrons undergoing acceleration within the Ionospheric Alfvén Resonator (IAR due to parallel electric fields associated with an artificially stimulated Alfvén wave. The time history and spectral content of the observed down-ward electron fluxes is investigated by considering the effects of a localised parallel electric field. Furthermore, it is demonstrated that a power law electron energy distribution describes the time-variable observed fluxes better than a Maxwellian distribution.Key words. Ionosphere (active experiments; particle acceleration – Magnetospheric physics (electric fields

  3. Electron acceleration observed by the FAST satellite within the IAR during a 3 Hz modulated EISCAT heater experiment

    Directory of Open Access Journals (Sweden)

    S. R. Cash

    Full Text Available A quantitative analysis is presented of the FAST satellite electric field and particle flux data during an EISCAT heating experiment run on 8 October 1998. Radio frequency heating, modulated at 3 Hz, launched ULF waves from the ionosphere into the lower magnetosphere. The ULF waves were observed in FAST data and constituted the first satellite detection of artificially excited Alfvénic ULF waves. The downward electron flux data for this event contain the first observations of electrons undergoing acceleration within the Ionospheric Alfvén Resonator (IAR due to parallel electric fields associated with an artificially stimulated Alfvén wave. The time history and spectral content of the observed down-ward electron fluxes is investigated by considering the effects of a localised parallel electric field. Furthermore, it is demonstrated that a power law electron energy distribution describes the time-variable observed fluxes better than a Maxwellian distribution.

    Key words. Ionosphere (active experiments; particle acceleration – Magnetospheric physics (electric fields

  4. Mutual Events in the Uranian satellite system in 2007

    Science.gov (United States)

    Arlot, J. E.

    2008-09-01

    observed "pole-on" and the relative inclinations of the orbits of the satellites are very difficult to know. More, this knowledge should allow us to determine the precession of Uranus which is not yet known. Another reason to improve the dynamics of the Uranian satellites is to quantify the dissipation of energy inside the satellites because of the tides: only very accurate astrometric observations may allow to reach such a result. We used two models for our purpose: the one from Laskar and Jacobson (GUST86) based upon observations made using observations made from 1911 to 1986 [1] and the one from Arlot, Lainey and Thuillot (LA06) [2] based upon a different sets of observations made from 1950 to 2006. Astrometric observations Since the mutual events are observable only every 42 years (in fact, 2007 was the first time where mutual events were observed on the Uranian system), many other astrometric observations were performed, mainly with photographic plates, CCD targets or using a meridian transit circle. These observations and their accuracy will be compared with mutual events. Note that these observations introduce some biases in the data (date of the opposition, absolute position of the planet), different than those of mutual events (equinox time). Observations of mutual events in 2007 Due to the difficulty of the observations, very few observations were made: about 15 events were observed using telescopes with apertures from 40 cm to 8 meters... The observing sites which reported observations were Marseille and Pic du Midi (France), Canarian Islands (Spain), La Silla and Paranal (Chile), Itajuba (Brazil), Tubitak (Turkey), Hanle (India) and Siding Spring (Australia). A preliminary analysis Some light curves were reduced and a comparison has been made with the theoretical calculations of the events. A preliminary analysis shows that LA06 has smaller residuals in the longitudes of the satellites than GUST86 but the residuals are equivalent in latitude. This confirms the

  5. Comparing offshore wind farm wake observed from satellite SAR and wake model results

    Science.gov (United States)

    Bay Hasager, Charlotte

    2014-05-01

    Offshore winds can be observed from satellite synthetic aperture radar (SAR). In the FP7 EERA DTOC project, the European Energy Research Alliance project on Design Tools for Offshore Wind Farm Clusters, there is focus on mid- to far-field wind farm wakes. The more wind farms are constructed nearby other wind farms, the more is the potential loss in annual energy production in all neighboring wind farms due to wind farm cluster effects. It is of course dependent upon the prevailing wind directions and wind speed levels, the distance between the wind farms, the wind turbine sizes and spacing. Some knowledge is available within wind farm arrays and in the near-field from various investigations. There are 58 offshore wind farms in the Northern European seas grid connected and in operation. Several of those are spaced near each other. There are several twin wind farms in operation including Nysted-1 and Rødsand-2 in the Baltic Sea, and Horns Rev 1 and Horns Rev 2, Egmond aan Zee and Prinses Amalia, and Thompton 1 and Thompton 2 all in the North Sea. There are ambitious plans of constructing numerous wind farms - great clusters of offshore wind farms. Current investigation of offshore wind farms includes mapping from high-resolution satellite SAR of several of the offshore wind farms in operation in the North Sea. Around 20 images with wind farm wake cases have been retrieved and processed. The data are from the Canadian RADARSAT-1/-2 satellites. These observe in microwave C-band and have been used for ocean surface wind retrieval during several years. The satellite wind maps are valid at 10 m above sea level. The wakes are identified in the raw images as darker areas downwind of the wind farms. In the SAR-based wind maps the wake deficit is found as areas of lower winds downwind of the wind farms compared to parallel undisturbed flow in the flow direction. The wind direction is clearly visible from lee effects and wind streaks in the images. The wind farm wake cases

  6. 20 Years of Total and Tropical Ozone Time Series Based on European Satellite Observations

    Science.gov (United States)

    Loyola, D. G.; Heue, K. P.; Coldewey-Egbers, M.

    2016-12-01

    Ozone is an important trace gas in the atmosphere, while the stratospheric ozone layer protects the earth surface from the incident UV radiation, the tropospheric ozone acts as green house gas and causes health damages as well as crop loss. The total ozone column is dominated by the stratospheric column, the tropospheric columns only contributes about 10% to the total column.The ozone column data from the European satellite instruments GOME, SCIAMACHY, OMI, GOME-2A and GOME-2B are available within the ESA Climate Change Initiative project with a high degree of inter-sensor consistency. The tropospheric ozone columns are based on the convective cloud differential algorithm. The datasets encompass a period of more than 20 years between 1995 and 2015, for the trend analysis the data sets were harmonized relative to one of the instruments. For the tropics we found an increase in the tropospheric ozone column of 0.75 ± 0.12 DU decade^{-1} with local variations between 1.8 and -0.8. The largest trends were observed over southern Africa and the Atlantic Ocean. A seasonal trend analysis led to the assumption that the increase is caused by additional forest fires.The trend for the total column was not that certain, based on model predicted trend data and the measurement uncertainty we estimated that another 10 to 15 years of observations will be required to observe a statistical significant trend. In the mid latitudes the trends are currently hidden in the large variability and for the tropics the modelled trends are low. Also the possibility of diverging trends at different altitudes must be considered; an increase in the tropospheric ozone might be accompanied by decreasing stratospheric ozone.The European satellite data record will be extended over the next two decades with the atmospheric satellite missions Sentinel 5 Precursor (launch end of 2016), Sentinel 4 and Sentinel 5.

  7. Optical Tracking Data Validation and Orbit Estimation for Sparse Observations of Satellites by the OWL-Net

    Directory of Open Access Journals (Sweden)

    Jin Choi

    2018-06-01

    Full Text Available An Optical Wide-field patroL-Network (OWL-Net has been developed for maintaining Korean low Earth orbit (LEO satellites’ orbital ephemeris. The OWL-Net consists of five optical tracking stations. Brightness signals of reflected sunlight of the targets were detected by a charged coupled device (CCD. A chopper system was adopted for fast astrometric data sampling, maximum 50 Hz, within a short observation time. The astrometric accuracy of the optical observation data was validated with precise orbital ephemeris such as Consolidated Prediction File (CPF data and precise orbit determination result with onboard Global Positioning System (GPS data from the target satellite. In the optical observation simulation of the OWL-Net for 2017, an average observation span for a single arc of 11 LEO observation targets was about 5 min, while an average optical observation separation time was 5 h. We estimated the position and velocity with an atmospheric drag coefficient of LEO observation targets using a sequential-batch orbit estimation technique after multi-arc batch orbit estimation. Post-fit residuals for the multi-arc batch orbit estimation and sequential-batch orbit estimation were analyzed for the optical measurements and reference orbit (CPF and GPS data. The post-fit residuals with reference show few tens-of-meters errors for in-track direction for multi-arc batch and sequential-batch orbit estimation results.

  8. M2 Internal Tides and Their Observed Wavenumber Spectra from Satellite Altimetry*

    Science.gov (United States)

    Ray, R. D.; Zaron, E. D.

    2015-01-01

    A near-global chart of surface elevations associated with the stationary M2 internal tide is empirically constructed from multi-mission satellite altimeter data. An advantage of a strictly empirical mapping approach is that results are independent of assumptions about ocean wave dynamics and, in fact, can be used to test such assumptions. A disadvantage is that present-day altimeter coverage is only marginally adequate to support mapping such short-wavelength features. Moreover, predominantly north-south ground-track orientations and contamination from nontidal oceanographic variability can lead to deficiencies in mapped tides. Independent data from Cryosphere Satellite-2 (CryoSat-2) and other altimeters are used to test the solutions and show positive reduction in variance except in regions of large mesoscale variability. The tidal fields are subjected to two-dimensional wavenumber spectral analysis, which allows for the construction of an empirical map of modal wavelengths. Mode-1 wavelengths show good agreement with theoretical wavelengths calculated from the ocean's mean stratification, with a few localized exceptions (e.g., Tasman Sea). Mode-2 waves are detectable in much of the ocean, with wavelengths in reasonable agreement with theoretical expectations, but their spectral signatures grow too weak to map in some regions.

  9. Exploring image data assimilation in the prospect of high-resolution satellite oceanic observations

    Science.gov (United States)

    Durán Moro, Marina; Brankart, Jean-Michel; Brasseur, Pierre; Verron, Jacques

    2017-07-01

    Satellite sensors increasingly provide high-resolution (HR) observations of the ocean. They supply observations of sea surface height (SSH) and of tracers of the dynamics such as sea surface salinity (SSS) and sea surface temperature (SST). In particular, the Surface Water Ocean Topography (SWOT) mission will provide measurements of the surface ocean topography at very high-resolution (HR) delivering unprecedented information on the meso-scale and submeso-scale dynamics. This study investigates the feasibility to use these measurements to reconstruct meso-scale features simulated by numerical models, in particular on the vertical dimension. A methodology to reconstruct three-dimensional (3D) multivariate meso-scale scenes is developed by using a HR numerical model of the Solomon Sea region. An inverse problem is defined in the framework of a twin experiment where synthetic observations are used. A true state is chosen among the 3D multivariate states which is considered as a reference state. In order to correct a first guess of this true state, a two-step analysis is carried out. A probability distribution of the first guess is defined and updated at each step of the analysis: (i) the first step applies the analysis scheme of a reduced-order Kalman filter to update the first guess probability distribution using SSH observation; (ii) the second step minimizes a cost function using observations of HR image structure and a new probability distribution is estimated. The analysis is extended to the vertical dimension using 3D multivariate empirical orthogonal functions (EOFs) and the probabilistic approach allows the update of the probability distribution through the two-step analysis. Experiments show that the proposed technique succeeds in correcting a multivariate state using meso-scale and submeso-scale information contained in HR SSH and image structure observations. It also demonstrates how the surface information can be used to reconstruct the ocean state below

  10. Analysis of Specular Reflections Off Geostationary Satellites

    Science.gov (United States)

    Jolley, A.

    2016-09-01

    Many photometric studies of artificial satellites have attempted to define procedures that minimise the size of datasets required to infer information about satellites. However, it is unclear whether deliberately limiting the size of datasets significantly reduces the potential for information to be derived from them. In 2013 an experiment was conducted using a 14 inch Celestron CG-14 telescope to gain multiple night-long, high temporal resolution datasets of six geostationary satellites [1]. This experiment produced evidence of complex variations in the spectral energy distribution (SED) of reflections off satellite surface materials, particularly during specular reflections. Importantly, specific features relating to the SED variations could only be detected with high temporal resolution data. An update is provided regarding the nature of SED and colour variations during specular reflections, including how some of the variables involved contribute to these variations. Results show that care must be taken when comparing observed spectra to a spectral library for the purpose of material identification; a spectral library that uses wavelength as the only variable will be unable to capture changes that occur to a material's reflected spectra with changing illumination and observation geometry. Conversely, colour variations with changing illumination and observation geometry might provide an alternative means of determining material types.

  11. Novel method of drizzle formation observation at large horizontal scales using multi-wavelength satellite imagery simulation

    NARCIS (Netherlands)

    Stepanov, I.; Russchenberg, H.W.J.

    2014-01-01

    The observations of on-board satellite imaging radiometers are representative of a far-reaching two-dimensional cloud top properties, however with a cutback in the capacity of profiling the cloud vertically. A combination of simulated radiances calculated at the top of the cloud in the near-infrared

  12. Satellite III non-coding RNAs show distinct and stress-specific patterns of induction

    International Nuclear Information System (INIS)

    Sengupta, Sonali; Parihar, Rashmi; Ganesh, Subramaniam

    2009-01-01

    The heat shock response in human cells is associated with the transcription of satellite III repeats (SatIII) located in the 9q12 locus. Upon induction, the SatIII transcripts remain associated with the locus and recruit several transcription and splicing factors to form the nuclear stress bodies (nSBs). The nSBs are thought to modulate epigenetic changes during the heat shock response. We demonstrate here that the nSBs are induced by a variety of stressors and show stress-specific patterns of induction. While the transcription factor HSF1 is required for the induction of SatIII locus by the stressors tested, its specific role in the transcriptional process appears to be stress dependent. Our results suggest the existence of multiple transcriptional loci for the SatIII transcripts and that their activation might depend upon the type of stressors. Thus, induction of SatIII transcripts appears to be a generic response to a variety of stress conditions.

  13. Real-time clock and orbit calculation of the GPS satellite constellation based on observation data of RTIGS-station network

    International Nuclear Information System (INIS)

    Thaler, G.

    2011-01-01

    from the RTIGS stations. For both calculation steps the principle of Kalman-Filtering is used. All calculated real-time clock corrections and orbit solutions are stored in standardised product les (clock-rinex, orbit-SP3) but also transmitted in real-time within a continuous data stream to support real-time positioning applications. Comparisons of the RTIGU-Control products with for example the precise IGS products show the signicant increase of quality of the RTIGU-Control real-time clock products in relation to the predicted IGU clock corrections. The standard deviation of the real-time clock values lies in the region of about 0.30.5 nanoseconds. This value seems rather realistic using code-smoothed observations with a standard deviation of 1.52 dm. One of the main elds of use of real-time orbit and clock products is the precise positioning and navigation of GNSS receivers without building baselines to adjacient GNSS reference stations (zero-dierence). A suitable approach for doing this is the so called algorithm of Precise Point Positioning or PPP. PPP uses additionally to appropriate models accounting for a number of inuences eecting the GNSS observations precise satellite orbit and clock informations. Using the real-time clock correction terms of RTIGU-Control together with the predicted IGU orbit solutions the huge potential of applying this type of real-time products to global PPP solutions becomes visible (Real-Time PPP, RTPPP). Test measurements have shown a positioning accuracy of a state of the art GPS receiver in the region of 0.30.5 meters. The development of RTIGU-Control is the rst step in the eld of providing precise real-time satellite clock and orbit parameters. This PHD-thesis has shown the great potential of using this real-time products for near real-time postprocessing or real-time positioning algorithms. (author) [de

  14. Surface Freshwater Storage Variations in the Orinoco Floodplains Using Multi-Satellite Observations

    Directory of Open Access Journals (Sweden)

    Frédéric Frappart

    2014-12-01

    Full Text Available Variations in surface water extent and storage are poorly characterized from regional to global scales. In this study, a multi-satellite approach is proposed to estimate the water stored in the floodplains of the Orinoco Basin at a monthly time-scale using remotely-sensed observations of surface water from the Global Inundation Extent Multi-Satellite (GIEMS and stages from Envisat radar altimetry. Surface water storage variations over 2003–2007 exhibit large interannual variability and a strong seasonal signal, peaking during summer, and associated with the flood pulse. The volume of surface water storage in the Orinoco Basin was highly correlated with the river discharge at Ciudad Bolivar (R = 0.95, the closest station to the mouth where discharge was estimated, although discharge lagged one month behind storage. The correlation remained high (R = 0.73 after removing seasonal effects. Mean annual variations in surface water volume represented ~170 km3, contributing to ~45% of the Gravity Recovery and Climate Experiment (GRACE-derived total water storage variations and representing ~13% of the total volume of water that flowed out of the Orinoco Basin to the Atlantic Ocean.

  15. Land surface skin temperature climatology: benefitting from the strengths of satellite observations

    International Nuclear Information System (INIS)

    Jin Menglin; Dickinson, Robert E

    2010-01-01

    Surface skin temperature observations (T skin ), as obtained by satellite remote sensing, provide useful climatological information of high spatial resolution and global coverage that enhances the traditional ground observations of surface air temperature (T air ) and so, reveal new information about land surface characteristics. This letter analyzes nine years of moderate-resolution imaging spectroradiometer (MODIS) skin temperature observations to present monthly skin temperature diurnal, seasonal, and inter-annual variations at a 0.05 deg. latitude/longitude grid over the global land surface and combines these measurements with other MODIS-based variables in an effort to understand the physical mechanisms responsible for T skin variations. In particular, skin temperature variations are found to be closely related to vegetation cover, clouds, and water vapor, but to differ from 2 m surface T air in terms of both physical meaning and magnitude. Therefore, the two temperatures (T skin and T air ) are complementary in their contribution of valuable information to the study of climate change.

  16. An Assessment of Satellite-Derived Rainfall Products Relative to Ground Observations over East Africa

    OpenAIRE

    Kimani, M.W.; Hoedjes, Johannes Cornelis Bernardus; Su, Z.

    2017-01-01

    Accurate and consistent rainfall observations are vital for climatological studies in support of better agricultural and water management decision-making and planning. In East Africa, accurate rainfall estimation with an adequate spatial distribution is limited due to sparse rain gauge networks. Satellite rainfall products can potentially play a role in increasing the spatial coverage of rainfall estimates; however, their performance needs to be understood across space–time scales and factors...

  17. Effective fiber hypertrophy in satellite cell-depleted skeletal muscle

    Science.gov (United States)

    McCarthy, John J.; Mula, Jyothi; Miyazaki, Mitsunori; Erfani, Rod; Garrison, Kelcye; Farooqui, Amreen B.; Srikuea, Ratchakrit; Lawson, Benjamin A.; Grimes, Barry; Keller, Charles; Van Zant, Gary; Campbell, Kenneth S.; Esser, Karyn A.; Dupont-Versteegden, Esther E.; Peterson, Charlotte A.

    2011-01-01

    An important unresolved question in skeletal muscle plasticity is whether satellite cells are necessary for muscle fiber hypertrophy. To address this issue, a novel mouse strain (Pax7-DTA) was created which enabled the conditional ablation of >90% of satellite cells in mature skeletal muscle following tamoxifen administration. To test the hypothesis that satellite cells are necessary for skeletal muscle hypertrophy, the plantaris muscle of adult Pax7-DTA mice was subjected to mechanical overload by surgical removal of the synergist muscle. Following two weeks of overload, satellite cell-depleted muscle showed the same increases in muscle mass (approximately twofold) and fiber cross-sectional area with hypertrophy as observed in the vehicle-treated group. The typical increase in myonuclei with hypertrophy was absent in satellite cell-depleted fibers, resulting in expansion of the myonuclear domain. Consistent with lack of nuclear addition to enlarged fibers, long-term BrdU labeling showed a significant reduction in the number of BrdU-positive myonuclei in satellite cell-depleted muscle compared with vehicle-treated muscle. Single fiber functional analyses showed no difference in specific force, Ca2+ sensitivity, rate of cross-bridge cycling and cooperativity between hypertrophied fibers from vehicle and tamoxifen-treated groups. Although a small component of the hypertrophic response, both fiber hyperplasia and regeneration were significantly blunted following satellite cell depletion, indicating a distinct requirement for satellite cells during these processes. These results provide convincing evidence that skeletal muscle fibers are capable of mounting a robust hypertrophic response to mechanical overload that is not dependent on satellite cells. PMID:21828094

  18. How ground-based observations can support satellite greenhouse gas retrievals

    Science.gov (United States)

    Butler, J. H.; Tans, P. P.; Sweeney, C.; Dlugokencky, E. J.

    2012-04-01

    Global society will eventually accelerate efforts to reduce greenhouse gas emissions in a variety of ways. These would likely involve international treaties, national policies, and regional strategies that will affect a number of economic, social, and environmental sectors. Some strategies will work better than others and some will not work at all. Because trillions of dollars will be involved in pursuing greenhouse gas emission reductions - through realignment of energy production, improvement of efficiencies, institution of taxes, implementation of carbon trading markets, and use of offsets - it is imperative that society be given all the tools at its disposal to ensure the ultimate success of these efforts. Providing independent, globally coherent information on the success of these efforts will give considerable strength to treaties, policies, and strategies. Doing this will require greenhouse gas observations greatly expanded from what we have today. Satellite measurements may ultimately be indispensable in achieving global coverage, but the requirements for accuracy and continuity of measurements over time are demanding if the data are to be relevant. Issues such as those associated with sensor drift, aging electronics, and retrieval artifacts present challenges that can be addressed in part by close coordination with ground-based and in situ systems. This presentation identifies the information that ground-based systems provide very well, but it also looks at what would be deficient even in a greatly expanded surface system, where satellites can fill these gaps, and how on-going, ground and in situ measurements can aid in addressing issues associated with accuracy, long-term continuity, and retrieval artifacts.

  19. Virtual Satellite Construction and Application for Image Classification

    International Nuclear Information System (INIS)

    Su, W G; Su, F Z; Zhou, C H

    2014-01-01

    Nowadays, most remote sensing image classification uses single satellite remote sensing data, so the number of bands and band spectral width is consistent. In addition, observed phenomenon such as land cover have the same spectral signature, which causes the classification accuracy to decrease as different data have unique characteristic. Therefore, this paper analyzes different optical remote sensing satellites, comparing the spectral differences and proposes the ideas and methods to build a virtual satellite. This article illustrates the research on the TM, HJ-1 and MODIS data. We obtained the virtual band X 0 through these satellites' bands combined it with the 4 bands of a TM image to build a virtual satellite with five bands. Based on this, we used these data for image classification. The experimental results showed that the virtual satellite classification results of building land and water information were superior to the HJ-1 and TM data respectively

  20. The High Visible Resolution (HVR) instrument of the spot ground observation satellite

    Science.gov (United States)

    Otrio, G.

    1980-01-01

    Two identical high resolution cameras, capable of attaining a track width of 116 km in an almost vertical line of sight from the two 60 km images of each instrument, will be carried on the initial mission of the space observation of Earth satellite (SPOT). Specifications for the instrument, including the telescope and CCD devices are summarized. The present status of development is described including the optical characteristics, structure and thermal control, detector assembly, electronic equipment, and calibration. SPOT mission objectives include the developments relating to soil use, the exploration of EART Earth resources, the discrimination of plant species, and cartography.

  1. Mathematical pointing model establishment of the visual tracking theodolite for satellites in two kinds of observation methods.

    Science.gov (United States)

    Zhang, Yuncheng

    The mathematical pointing model is establishment of the visual tracking theodolite for satellites in two kinds of observation methods at Yunnan Observatory, which is related to the digitalisation reform and the optical-electronic technique reform, is introduced respectively in this paper.

  2. Evaluation of sulfate aerosol optical depths over the North Atlantic and comparison with satellite observations

    International Nuclear Information System (INIS)

    Berkowitz, C.M.; Ghan, S.J.; Benkovitz, C.M.; Wagener, R.; Nemesure, S.; Schwartz, S.E.

    1993-11-01

    It has been postulated that scattering of sunlight by aerosols can significantly reduce the amount of solar energy absorbed by the climate system. Aerosol measurement programs alone cannot provide all the information needed to evaluate the radiative forcing due to anthropogenic aerosols. Thus, comprehensive global-scale aerosol models, properly validated against surface-based and satellite measurements, are a fundamental tool for evaluating the impacts of aerosols on the planetary radiation balance. Analyzed meteorological fields from the European Centre for Medium-Range Weather Forecasts are used to drive a modified version of the PNL Global Chemistry Model, applied to the atmospheric sulfur cycle. The resulting sulfate fields are used to calculate aerosol optical depths, which in turn are compared to estimates of aerosol optical depth based on satellite observations

  3. Comparison of mapped and measured total ionospheric electron content using global positioning system and beacon satellite observations

    International Nuclear Information System (INIS)

    Lanyi, G.E.; Roth, T.

    1988-01-01

    Total ionospheric electron contents (TEC) were measured by global positioning system (GPS) dual-frequency receivers developed by the Jet Propulsion Laboratory. The measurements included P-code (precise ranging code) and carrier phase data for six GPS satellites during multiple five-hour observing sessions. A set of these GPS TEC measurements were mapped from the GPS lines of sight to the line of sight of a Faraday beacon satellite by statistically fitting the TEC data to a simple model of the ionosphere. The mapped GPS TEC values were compared with the Faraday rotation measurements. Because GPS transmitter offsets are different for each satellite and because some GPS receiver offsets were uncalibrated, the sums of the satellite and receiver offsets were estimated simultaneously with the TEC in a least squares procedure. The accuracy of this estimation procedure is evaluated indicating that the error of the GPS-determined line of sight TEC can be at or below 1 x 10 to the 16th el/sq cm. Consequently, the current level of accuracy is comparable to the Faraday rotation technique; however, GPS provides superior sky coverage. 15 references

  4. A Study of the Oklahoma City Urban Heat Island Effect Using a WRF/Single-Layer Urban Canopy Model, a Joint Urban 2003 Field Campaign, and MODIS Satellite Observations

    Directory of Open Access Journals (Sweden)

    Hengyue Zhang

    2017-09-01

    Full Text Available The urban heat island effect (UHI for inner land regions was investigated using satellite data, ground observations, and simulations with an Single-Layer Urban Canopy Parameterization (SLUCP coupled into the regional Weather Research Forecasting model (WRF, http://wrf-model.org/index.php. Specifically, using the satellite-observed surface skin temperatures (Tskin, the intensity of the UHI was first compared for two inland cities (Xi’an City, China, and Oklahoma City (OKC, which have different city populations and building densities. The larger population density and larger building density in Xi’an lead to a stronger skin-level UHI by 2 °C. However, the ground observed 2 m surface air temperature (Tair observations showed an urban cooling island effect (UCI over the downtown region in OKC during the daytime of 19 July 2003, from a DOE field campaign (Joint Urban 2003. To understand this contrast between satellite-based Tskin and ground-based Tair, a sensitivity study using WRF/SLUCP was analyzed. The model reproduced a UCI in OKC. Furthermore, WRF/Noah/SLUCM simulations were also compared with the Joint Urban 2003 ground observations, including wind speeds, wind directions, and energy fluxes. Although the WRF/SLUCM model failed to simulate these variables accurately, it reproduced the diurnal variations of surface temperatures, wind speeds, wind directions, and energy fluxes reasonably well.

  5. Characteristics of tropospheric ozone depletion events in the Arctic spring: analysis of the ARCTAS, ARCPAC, and ARCIONS measurements and satellite BrO observations

    Directory of Open Access Journals (Sweden)

    J.-H. Koo

    2012-10-01

    Full Text Available Arctic ozone depletion events (ODEs are caused by halogen catalyzed ozone loss. In situ chemistry, advection of ozone-poor air mass, and vertical mixing in the lower troposphere are important factors affecting ODEs. To better characterize the ODEs, we analyze the combined set of surface, ozonesonde, and aircraft in situ measurements of ozone and bromine compounds during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS, the Aerosol, Radiation, and Cloud Processes affecting Arctic Climate (ARCPAC, and the Arctic Intensive Ozonesonde Network Study (ARCIONS experiments (April 2008. Tropospheric BrO columns retrieved from satellite measurements and back trajectory calculations are also used to investigate the characteristics of observed ODEs. In situ observations from these field experiments are inadequate to validate tropospheric BrO columns derived from satellite measurements. In view of this difficulty, we construct an ensemble of tropospheric column BrO estimates from two satellite (OMI and GOME-2 measurements and with three independent methods of calculating stratospheric BrO columns. Furthermore, we select analysis methods that do not depend on the absolute magnitude of column BrO, such as time-lagged correlation analysis of ozone and tropospheric column BrO, to understand characteristics of ODEs. Time-lagged correlation analysis between in situ (surface and ozonesonde measurements of ozone and satellite derived tropospheric BrO columns indicates that the ODEs are due to either local halogen-driven ozone loss or short-range (∼1 day transport from nearby regions with ozone depletion. The effect of in situ ozone loss is also evident in the diurnal variation difference between low (10th and 25th percentiles and higher percentiles of surface ozone concentrations at Alert, Canada. Aircraft observations indicate low-ozone air mass transported from adjacent high-BrO regions. Correlation analyses of ozone

  6. Characterisation of Central-African emissions based on MAX-DOAS measurements, satellite observations and model simulations over Bujumbura, Burundi.

    Science.gov (United States)

    Gielen, Clio; Hendrick, Francois; Pinardi, Gaia; De Smedt, Isabelle; Stavrakou, Trissevgeni; Yu, Huan; Fayt, Caroline; Hermans, Christian; Bauwens, Maité; Ndenzako, Eugene; Nzohabonayo, Pierre; Akimana, Rachel; Niyonzima, Sébastien; Müller, Jean-Francois; Van Roozendael, Michel

    2016-04-01

    Central Africa is known for its strong biogenic, pyrogenic, and to a lesser extent anthropogenic emissions. Satellite observations of species like nitrogen dioxide (NO2) and formaldehyde (HCHO), as well as inverse modelling results have shown that there are large uncertainties associated with the emissions in this region. There is thus a need for additional measurements, especially from the ground, in order to better characterise the biomass-burning and biogenic products emitted in this area. We present MAX-DOAS measurements of NO2, HCHO, and aerosols performed in Central Africa, in the city of Bujumbura, Burundi (3°S, 29°E, 850m). A MAX-DOAS instrument has been operating at this location by BIRA-IASB since late 2013. Aerosol-extinction and trace-gases vertical profiles are retrieved by applying the optimal-estimation-based profiling tool bePRO to the measured O4, NO2 and HCHO slant-column densities. The MAX-DOAS vertical columns and profiles are used for investigating the diurnal and seasonal cycles of NO2, HCHO, and aerosols. Regarding the aerosols, the retrieved AODs are compared to co-located AERONET sun photometer measurements for verification purpose, while in the case of NO2 and HCHO, the MAX-DOAS vertical columns and profiles are used for validating GOME-2 and OMI satellite observations. To characterise the biomass-burning and biogenic emissions in the Bujumbura region, the trace gases and aerosol MAX-DOAS retrievals are used in combination to MODIS fire counts/radiative-power and GOME-2/OMI NO2 and HCHO satellite data, as well as simulations from the NOAA backward trajectory model HYSPLIT. First results show that HCHO seasonal variation around local noon is driven by the alternation of rain and dry periods, the latter being associated with intense biomass-burning agricultural activities and forest fires in the south/south-east and transport from this region to Bujumbura. In contrast, NO2 is seen to depend mainly on local emissions close to the city, due

  7. Living with floods - Household perception and satellite observations in the Barotse floodplain, Zambia

    Science.gov (United States)

    Cai, Xueliang; Haile, Alemseged Tamiru; Magidi, James; Mapedza, Everisto; Nhamo, Luxon

    2017-08-01

    The Barotse Floodplain, a designated Ramsar site, is home to thousands of indigenous people along with an extensive wetland ecosystem and food production system. Increasingly it is also a popular tourist destination with its annual Kuomboka festival which celebrates the relocation of the king and the Lozi people to higher ground before the onset of the flood season. This paper presents an integrated approach which cross validates and combines the floodplain residents' perceptions about recent floods with information on flood inundation levels derived from satellite observations. Local residents' surveys were conducted to assess farmers' perception on the flooding patterns and the impact on their livelihoods. Further, a series of flood inundation maps from 1989 to 2014 generated from remotely sensed Landsat imagery were used to assess the recent patterns of floods. Results show that the floodplain has a population of 33 thousand living in 10,849 small permeant or temporary buildings with a total cropland area of 4976 ha. The floodplain hydrology and flooding patterns have changed, confirmed by both surveys and satellite image analysis, due to catchment development and changing climate. The average annual inundated areas have increased from about 316 thousand ha in 1989-1998 to 488 thousand ha in 2005-2014. As a result the inundated cropland and houses increased from 9% to 6% in 1989 to 73% and 47% in 2014, respectively. The timing of the floods has also changed with both delaying and early onset happening more frequently. These changes cause increasing difficulties in flood forecast and preparation using indigenous knowledge, therefore creating greater damages to crops, livestock, and houses. Current floodplain management system is inadequate and new interventions are needed to help manage the floods at a systematic manner.

  8. Satellite instrument provides nighttime sensing capability

    Science.gov (United States)

    Showstack, Randy

    2012-12-01

    "This is not your father's low-light sensor," Steve Miller, senior research scientist and deputy director of the Cooperative Institute for Research in the Atmosphere at Colorado State University, Fort Collins, said at a 5 December news briefing at the AGU Fall Meeting. He and others at the briefing were showing off the nighttime sensing capability of the day/night band of the Visible Infrared Imaging Radiometer Suite (VIIRS) of instruments onboard the Suomi National Polar-orbiting Partnership (NPP) Earth-observing research satellite, a joint NASA and National Oceanic and Atmospheric Administration (NOAA) satellite that was launched on 28 October 2011. Noting that low-light satellite technology has been available for about 40 years, Miller said that the VIIRS day/night band "is truly a paradigm shift in the technology and capability."

  9. Mapping and Visualization of The Deepwater Horizon Oil Spill Using Satellite Imagery

    Science.gov (United States)

    Ferreira Pichardo, E.

    2017-12-01

    Satellites are man-made objects hovering around the Earth's orbit and are essential for Earth observation, i.e. the monitoring and gathering of data about the Earth's vital systems. Environmental Satellites are used for atmospheric research, weather forecasting, and warning as well as monitoring extreme weather events. These satellites are categorized into Geosynchronous and Low Earth (Polar) orbiting satellites. Visualizing satellite data is critical to understand the Earth's systems and changes to our environment. The objective of this research is to examine satellite-based remotely sensed data that needs to be processed and rendered in the form of maps or other forms of visualization to understand and interpret the satellites' observations to monitor the status, changes and evolution of the mega-disaster Deepwater Horizon Spill that occurred on April 20, 2010 in the Gulf of Mexico. In this project, we will use an array of tools and programs such as Python, CSPP and Linux. Also, we will use data from the National Oceanic and Atmospheric Administration (NOAA): Polar-Orbiting Satellites Terra Earth Observing System AM-1 (EOS AM-1), and Aqua EOS PM-1 to investigate the mega-disaster. Each of these satellites carry a variety of instruments, and we will use the data obtained from the remote sensor Moderate-Resolution Imaging Spectroradiometer (MODIS). Ultimately, this study shows the importance of mapping and visualizing data such as satellite data (MODIS) to understand the extents of environmental impacts disasters such as the Deepwater Horizon Oil spill.

  10. The Antarctic Ice Sheet, Sea Ice, and the Ozone Hole: Satellite Observations of how they are Changing

    Science.gov (United States)

    Parkinson, Claire L.

    2012-01-01

    Antarctica is the Earth's coldest and highest continent and has major impacts on the climate and life of the south polar vicinity. It is covered almost entirely by the Earth's largest ice sheet by far, with a volume of ice so great that if all the Antarctic ice were to go into the ocean (as ice or liquid water), this would produce a global sea level rise of about 60 meters (197 feet). The continent is surrounded by sea ice that in the wintertime is even more expansive than the continent itself and in the summertime reduces to only about a sixth of its wintertime extent. Like the continent, the expansive sea ice cover has major impacts, reflecting the sun's radiation back to space, blocking exchanges between the ocean and the atmosphere, and providing a platform for some animal species while impeding other species. Far above the continent, the Antarctic ozone hole is a major atmospheric phenomenon recognized as human-caused and potentially quite serious to many different life forms. Satellites are providing us with remarkable information about the ice sheet, the sea ice, and the ozone hole. Satellite visible and radar imagery are providing views of the large scale structure of the ice sheet never seen before; satellite laser altimetry has produced detailed maps of the topography of the ice sheet; and an innovative gravity-measuring two-part satellite has allowed mapping of regions of mass loss and mass gain on the ice sheet. The surrounding sea ice cover has a satellite record that goes back to the 1970s, allowing trend studies that show a decreasing sea ice presence in the region of the Bellingshausen and Amundsen seas, to the west of the prominent Antarctic Peninsula, but increasing sea ice presence around much of the rest of the continent. Overall, sea ice extent around Antarctica has increased at an average rate of about 17,000 square kilometers per year since the late 1970s, as determined from satellite microwave data that can be collected under both light and

  11. The role of satellite cells in muscle hypertrophy.

    Science.gov (United States)

    Blaauw, Bert; Reggiani, Carlo

    2014-02-01

    The role of satellite cells in muscle hypertrophy has long been a debated issue. In the late 1980s it was shown that proteins remain close to the myonucleus responsible for its synthesis, giving rise to the idea of a nuclear domain. This, together with the observation that during various models of muscle hypertrophy there is an activation of the muscle stem cells, i.e. satellite cells, lead to the idea that satellite cell activation is required for muscle hypertrophy. Thus, satellite cells are not only responsible for muscle repair and regeneration, but also for hypertrophic growth. Further support for this line of thinking was obtained after studies showing that irradiation of skeletal muscle, and therefore elimination of all satellite cells, completely prevented overload-induced hypertrophy. Recently however, using different transgenic approaches, it has become clear that muscle hypertrophy can occur without a contribution of satellite cells, even though in most situations of muscle hypertrophy satellite cells are activated. In this review we will discuss the contribution of satellite cells, and other muscle-resident stem cells, to muscle hypertrophy both in mice as well as in humans.

  12. Cirrus cloud-temperature interactions over a tropical station, Gadanki from lidar and satellite observations

    International Nuclear Information System (INIS)

    S, Motty G; Satyanarayana, M.; Krishnakumar, V.; Dhaman, Reji k.

    2014-01-01

    The cirrus clouds play an important role in the radiation budget of the earth's atmospheric system and are important to characterize their vertical structure and optical properties. LIDAR measurements are obtained from the tropical station Gadanki (13.5 0 N, 79.2 0 E), India, and meteorological indicators derived from Radiosonde data. Most of the cirrus clouds are observed near to the tropopause, which substantiates the strength of the tropical convective processes. The height and temperature dependencies of cloud height, optical depth, and depolarization ratio were investigated. Cirrus observations made using CALIPSO satellite are compared with lidar data for systematic statistical study of cirrus climatology

  13. Effect of tropical cyclones on the stratosphere–troposphere exchange observed using satellite observations over the north Indian Ocean

    Directory of Open Access Journals (Sweden)

    M. Venkat Ratnam

    2016-07-01

    Full Text Available Tropical cyclones play an important role in modifying the tropopause structure and dynamics as well as stratosphere–troposphere exchange (STE processes in the upper troposphere and lower stratosphere (UTLS region. In the present study, the impact of cyclones that occurred over the north Indian Ocean during 2007–2013 on the STE processes is quantified using satellite observations. Tropopause characteristics during cyclones are obtained from the Global Positioning System (GPS radio occultation (RO measurements, and ozone and water vapour concentrations in the UTLS region are obtained from Aura Microwave Limb Sounder (MLS satellite observations. The effect of cyclones on the tropopause parameters is observed to be more prominent within 500 km of the centre of the tropical cyclone. In our earlier study, we observed a decrease (increase in the tropopause altitude (temperature up to 0.6 km (3 K, and the convective outflow level increased up to 2 km. This change leads to a total increase in the tropical tropopause layer (TTL thickness of 3 km within 500 km of the centre of cyclone. Interestingly, an enhancement in the ozone mixing ratio in the upper troposphere is clearly noticed within 500 km from the cyclone centre, whereas the enhancement in the water vapour in the lower stratosphere is more significant on the south-east side, extending from 500 to 1000 km away from the cyclone centre. The cross-tropopause mass flux for different intensities of cyclones is estimated and it is found that the mean flux from the stratosphere to the troposphere for cyclonic storms is 0.05 ± 0.29 × 10−3 kg m−2, and for very severe cyclonic storms it is 0.5 ± 1.07 × 10−3 kg m−2. More downward flux is noticed on the north-west and south-west side of the cyclone centre. These results indicate that the cyclones have significant impact in effecting the tropopause structure, ozone and water vapour budget, and

  14. Precipitation Characteristics in Tropical Africa Using Satellite and In-Situ Observations

    Science.gov (United States)

    Dezfuli, Amin; Ichoku, Charles; Huffman, George; Mohr, Karen

    2017-01-01

    Tropical Africa receives nearly all its precipitation as a result of convection. The characteristics of rain-producing systems in this region, despite their crucial role in regional and global circulation, have not been well-understood. This is mainly due to the lack of in situ observations. Here, we have used precipitation records from the Trans-African Hydro-Meteorological Observatory (TAHMO) to improve our knowledge about the rainfall systems in the region, and to validate the recently-released IMERG precipitation product. The high temporal resolution of the gauge data has allowed us to identify three classes of rain events based on their duration and intensity. The contribution of each class to the total rainfall and the favorable surface atmospheric conditions for each class have been examined. As IMERG aims to continue the legacy of its predecessor, TMPA, and provide higher resolution data, continent-wide comparisons are made between these two products. IMERG, due to its improved temporal resolution, shows some advantages over TMPA in capturing the diurnal cycle and propagation of the meso-scale convective systems. However, the performance of the two satellite-based products varies by season, region and the evaluation statistics. The results of this study serve as a basis for our ongoing work on the impacts of biomass burning on precipitation processes in Africa.

  15. Estimating Zenith Tropospheric Delays from BeiDou Navigation Satellite System Observations

    Directory of Open Access Journals (Sweden)

    Xin Sui

    2013-04-01

    Full Text Available The GNSS derived Zenith Tropospheric Delay (ZTD plays today a very critical role in meteorological study and weather forecasts, as ZTDs of thousands of GNSS stations are operationally assimilated into numerical weather prediction models. Recently, the Chinese BeiDou Navigation Satellite System (BDS was officially announced to provide operational services around China and its neighborhood and it was demonstrated to be very promising for precise navigation and positioning. In this contribution, we concentrate on estimating ZTD using BDS observations to assess its capacity for troposphere remote sensing. A local network which is about 250 km from Beijing and comprised of six stations equipped with GPS- and BDS-capable receivers is utilized. Data from 5 to 8 November 2012 collected on the network is processed in network mode using precise orbits and in Precise Point Positioning mode using precise orbits and clocks. The precise orbits and clocks are generated from a tracking network with most of the stations in China and several stations around the world. The derived ZTDs are compared with that estimated from GPS data using the final products of the International GNSS Service (IGS. The comparison shows that the bias and the standard deviation of the ZTD differences are about 2 mm and 5 mm, respectively, which are very close to the differences of GPS ZTD estimated using different software packages.

  16. Influence of the Arctic Oscillation on the vertical distribution of clouds as observed by the A-Train constellation of satellites

    Directory of Open Access Journals (Sweden)

    A. Devasthale

    2012-11-01

    Full Text Available The main purpose of this study is to investigate the influence of the Arctic Oscillation (AO, the dominant mode of natural variability over the northerly high latitudes, on the spatial (horizontal and vertical distribution of clouds in the Arctic. To that end, we use a suite of sensors onboard NASA's A-Train satellites that provide accurate observations of the distribution of clouds along with information on atmospheric thermodynamics. Data from three independent sensors are used (AQUA-AIRS, CALIOP-CALIPSO and CPR-CloudSat covering two time periods (winter half years, November through March, of 2002–2011 and 2006–2011, respectively along with data from the ERA-Interim reanalysis.

    We show that the zonal vertical distribution of cloud fraction anomalies averaged over 67–82° N to a first approximation follows a dipole structure (referred to as "Greenland cloud dipole anomaly", GCDA, such that during the positive phase of the AO, positive and negative cloud anomalies are observed eastwards and westward of Greenland respectively, while the opposite is true for the negative phase of AO. By investigating the concurrent meteorological conditions (temperature, humidity and winds, we show that differences in the meridional energy and moisture transport during the positive and negative phases of the AO and the associated thermodynamics are responsible for the conditions that are conducive for the formation of this dipole structure. All three satellite sensors broadly observe this large-scale GCDA despite differences in their sensitivities, spatio-temporal and vertical resolutions, and the available lengths of data records, indicating the robustness of the results. The present study also provides a compelling case to carry out process-based evaluation of global and regional climate models.

  17. A new CM SAF Solar Surface Radiation Climate Data Set derived from Meteosat Satellite Observations

    Science.gov (United States)

    Trentmann, J.; Mueller, R. W.; Pfeifroth, U.; Träger-Chatterjee, C.; Cremer, R.

    2014-12-01

    The incoming surface solar radiation has been defined as an essential climate variable by GCOS. It is mandatory to monitor this part of the earth's energy balance, and thus gain insights on the state and variability of the climate system. In addition, data sets of the surface solar radiation have received increased attention over the recent years as an important source of information for the planning of solar energy applications. The EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF) is deriving surface solar radiation from geostationary and polar-orbiting satellite instruments. While CM SAF is focusing on the generation of high-quality long-term climate data records, also operationally data is provided in short time latency within 8 weeks. Here we present SARAH (Solar Surface Radiation Dataset - Heliosat), i.e. the new CM SAF Solar Surface Radiation data set based on Meteosat satellite observations. SARAH provides instantaneous, daily- and monthly-averaged data of the effective cloud albedo (CAL), the direct normalized solar radiation (DNI) and the solar irradiance (SIS) from 1983 to 2013 for the full view of the Meteosat satellite (i.e, Europe, Africa, parts of South America, and the Atlantic ocean). The data sets are generated with a high spatial resolution of 0.05 deg allowing for detailed regional studies, and are available in netcdf-format at no cost without restrictions at www.cmsaf.eu. We provide an overview of the data sets, including a validation against reference measurements from the BSRN and GEBA surface station networks.

  18. Ground-Based Global Navigation Satellite System (GNSS) Compact Observation Data (1-second sampling, sub-hourly files) from NASA CDDIS

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset consists of ground-based Global Navigation Satellite System (GNSS) Observation Data (1-second sampling, sub-hourly files) from the NASA Crustal Dynamics...

  19. Global High Resolution Sea Surface Flux Parameters From Multiple Satellites

    Science.gov (United States)

    Zhang, H.; Reynolds, R. W.; Shi, L.; Bates, J. J.

    2007-05-01

    Advances in understanding the coupled air-sea system and modeling of the ocean and atmosphere demand increasingly higher resolution data, such as air-sea fluxes of up to 3 hourly and every 50 km. These observational requirements can only be met by utilizing multiple satellite observations. Generation of such high resolution products from multiple-satellite and in-situ observations on an operational basis has been started at the U.S. National Oceanic and Atmospheric Administration (NOAA) National Climatic Data Center. Here we describe a few products that are directly related to the computation of turbulent air-sea fluxes. Sea surface wind speed has been observed from in-situ instruments and multiple satellites, with long-term observations ranging from one satellite in the mid 1987 to six or more satellites since mid 2002. A blended product with a global 0.25° grid and four snapshots per day has been produced for July 1987 to present, using a near Gaussian 3-D (x, y, t) interpolation to minimize aliases. Wind direction has been observed from fewer satellites, thus for the blended high resolution vector winds and wind stresses, the directions are taken from the NCEP Re-analysis 2 (operationally run near real time) for climate consistency. The widely used Reynolds Optimum Interpolation SST analysis has been improved with higher resolutions (daily and 0.25°). The improvements use both infrared and microwave satellite data that are bias-corrected by in- situ observations for the period 1985 to present. The new versions provide very significant improvements in terms of resolving ocean features such as the meandering of the Gulf Stream, the Aghulas Current, the equatorial jets and other fronts. The Ta and Qa retrievals are based on measurements from the AMSU sounder onboard the NOAA satellites. Ta retrieval uses AMSU-A data, while Qa retrieval uses both AMSU-A and AMSU-B observations. The retrieval algorithms are developed using the neural network approach. Training

  20. Contributions of Tropical Cyclones to the North Atlantic Climatological Rainfall as Observed from Satellites

    Science.gov (United States)

    Rodgers, Edward B.; Adler, Robert F.; Pierce, Harold F.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The tropical cyclone rainfall climatology study that was performed for the North Pacific was extended to the North Atlantic. Similar to the North Pacific tropical cyclone study, mean monthly rainfall within 444 km of the center of the North Atlantic tropical cyclones (i.e., that reached storm stage and greater) was estimated from passive microwave satellite observations during, an eleven year period. These satellite-observed rainfall estimates were used to assess the impact of tropical cyclone rainfall in altering the geographical, seasonal, and inter-annual distribution of the North Atlantic total rainfall during, June-November when tropical cyclones were most abundant. The main results from this study indicate: 1) that tropical cyclones contribute, respectively, 4%, 3%, and 4% to the western, eastern, and entire North Atlantic; 2) similar to that observed in the North Pacific, the maximum in North Atlantic tropical cyclone rainfall is approximately 5 - 10 deg poleward (depending on longitude) of the maximum non-tropical cyclone rainfall; 3) tropical cyclones contribute regionally a maximum of 30% of the total rainfall 'northeast of Puerto Rico, within a region near 15 deg N 55 deg W, and off the west coast of Africa; 4) there is no lag between the months with maximum tropical cyclone rainfall and non-tropical cyclone rainfall in the western North Atlantic, while in the eastern North Atlantic, maximum tropical cyclone rainfall precedes maximum non-tropical cyclone rainfall; 5) like the North Pacific, North Atlantic tropical cyclones Of hurricane intensity generate the greatest amount of rainfall in the higher latitudes; and 6) warm ENSO events inhibit tropical cyclone rainfall.

  1. Trend analysis of evapotranspiration over India: Observed from long-term satellite measurements

    Science.gov (United States)

    Goroshi, Sheshakumar; Pradhan, Rohit; Singh, Raghavendra P.; Singh, K. K.; Parihar, Jai Singh

    2017-12-01

    Owing to the lack of consistent spatial time series data on actual evapotranspiration ( ET), very few studies have been conducted on the long-term trend and variability in ET at a national scale over the Indian subcontinent. The present study uses biome specific ET data derived from NOAA satellite's advanced very high resolution radiometer to investigate the trends and variability in ET over India from 1983 to 2006. Trend analysis using the non-parametric Mann-Kendall test showed that the domain average ET decreased during the period at a rate of 0.22 mm year^{-1}. A strong decreasing trend (m = -1.75 mm year^{-1}, F = 17.41, P 0.01) was observed in forest regions. Seasonal analyses indicated a decreasing trend during southwest summer monsoon (m= -0.320 mm season^{-1} year^{-1}) and post-monsoon period (m= -0.188 mm season^{-1 } year^{-1}). In contrast, an increasing trend was observed during northeast winter monsoon (m = 0.156 mm season^{-1 } year^{-1}) and pre-monsoon (m = 0.068 mm season^{-1 } year^{-1}) periods. Despite an overall net decline in the country, a considerable increase ( 4 mm year^{-1}) was observed over arid and semi-arid regions. Grid level correlation with various climatic parameters exhibited a strong positive correlation (r >0.5) of ET with soil moisture and precipitation over semi-arid and arid regions, whereas a negative correlation (r -0.5) occurred with temperature and insolation in dry regions of western India. The results of this analysis are useful for understanding regional ET dynamics and its relationship with various climatic parameters over India. Future studies on the effects of ET changes on the hydrological cycle, carbon cycle, and energy partitioning are needed to account for the feedbacks to the climate.

  2. Precipitation Characteristics in West and East Africa from Satellite and in Situ Observations

    Science.gov (United States)

    Dezfuli, Amin K.; Ichoku, Charles M.; Mohr, Karen I.; Huffman, George J.

    2017-01-01

    Using in situ data, three precipitation classes are identified for rainy seasons of West and East Africa: weak convective rainfall (WCR), strong convective rainfall (SCR), and mesoscale convective systems (MCSs).Nearly 75% of the total seasonal precipitation is produced by the SCR and MCSs, even though they represent only 8% of the rain events. Rain events in East Africa tend to have a longer duration and lower intensity than in West Africa, reflecting different characteristics of the SCR and MCS events in these two regions. Surface heating seems to be the primary convection trigger for the SCR, particularly in East Africa, whereas the WCR requires a dynamical trigger such as low-level convergence. The data are used to evaluate the performance of the recently launched Integrated Multi-satellite Retrievals for Global Precipitation Measurement (IMERG)project. The IMERG-based precipitation shows significant improvement over its predecessor, the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA), particularly in capturing the MCSs, due to its improved temporal resolution.

  3. Why do satellite imageries show exceptionally high chlorophyll in the Gulf of mannar and the Palk bay during the norteast monsoon?.

    Digital Repository Service at National Institute of Oceanography (India)

    Jyothibabu, R.; Madhu, N.V.; Jagadeesan, L.; Anjusha, A.; Mohan, A.P.; Ullas, N.; Sudheesh, K.; Karnan, C.

    in the Indian sector of the GoM and the PB in January 2011 showed significant overestimations in the satellite data. This error was much higher in the PB (60–80 %) as compared to the GoM (18–28 %). The multivariate analyses evidenced that the exceptionally high...

  4. Observations of A0535 + 26 with the SMM satellite

    Science.gov (United States)

    Sembay, S.; Schwartz, R. A.; Orwig, L. E.; Dennis, B. R.; Davies, S. R.

    1990-01-01

    An examination of archival data from the hard X-ray instruments on the Solar Maximum Mission (SMM) satellite has revealed a previously undetected outburst from the recurrent X-ray transient, A0535 + 26. The outburst occurred in June 1983 and reached a peak intensity of about 2 crab units in the energy range 32-91 keV. The outburst was detected over a span of 18 days, and the pulse period was observed to spin-up with an average rate of about -6 x 10 to the -8th s/s. A recently proposed model for A0535 + 26 has a pulsar powered by a short-lived accretion disk. A thin accretion disk model is fitted to the present data, assuming an orbital period of 111 days. Two solutions to the magnetic moment of the neutron star are derived. The slow rotator solution is more consistent with the model than the fast rotator, on the grounds that the conditions for the formation of an accretion disk are more favorable for a lower magnetic field strength.

  5. Land-mobile satellite excess path loss measurements

    Science.gov (United States)

    Hess, G. C.

    1980-05-01

    An experiment conducted with the ATS-6 satellite to determine the additional path loss over free-space loss experienced by land-mobile communication links is described. This excess path loss is measured as a function of 1) local environment, 2) vehicle heading, 3) link frequency, 4) satellite elevation angle, and 5) street side. A statistical description of excess loss developed from the data shows that the first two parameters dominate. Excess path loss on the order of 25 dB is typical in urban situations, but decreases to under 10 dB in suburban/rural areas. Spaced antenna selection diversity is found to provide only a slight decrease (4 dB, typically) in the urban excess path loss observed. Level crossing rates are depressed in satellite links relative to those of Rayleigh-faded terrestrial links, but increases in average fade durations tend to offset that advantage. The measurements show that the excess path loss difference between 860-MHz links and 1550-MHz links is generally negligible.

  6. Angular Normalization of Ground and Satellite Observations of Sun-induced Chlorophyll Fluorescence for Assessing Vegetation Productivity

    Science.gov (United States)

    Chen, J. M.; He, L.; Chou, S.; Ju, W.; Zhang, Y.; Joiner, J.; Liu, J.; Mo, G.

    2017-12-01

    Sun-induced chlorophyll fluorescence (SIF) measured from plant canopies originates mostly from sunlit leaves. Observations of SIF by satellite sensors, such as GOME-2 and GOSAT, are often made over large view zenith angle ranges, causing large changes in the viewed sunlit leaf fraction across the scanning swath. Although observations made by OCO-2 are near nadir, the observed sunlit leaf fraction could still vary greatly due to changes in the solar zenith angle with latitude and time of overpass. To demonstrate the importance of considering the satellite-target-view geometry in using SIF for assessing vegetation productivity, we conducted multi-angle measurements of SIF using a hyperspectral sensor mounted on an automated rotating system over a rice field near Nanjing, China. A method is developed to separate SIF measurements at each angle into sunlit and shaded leaf components, and an angularly normalized canopy-level SIF is obtained as the weighted sum of sunlit and shaded SIF. This normalized SIF is shown to be a much better proxy of GPP of the rice field measured by an eddy covariance system than the unnormalized SIF observations. The same normalization scheme is also applied to the far-red GOME-2 SIF observations on sunny days, and we found that the normalized SIF is better correlated with model-simulated GPP than the original SIF observations. The coefficient of determination (R2) is improved by 0.07±0.04 on global average using the normalization scheme. The most significant improvement in R2 by 0.09±0.04 is found in deciduous broadleaf forests, where the observed sunlit leaf fraction is highly sensitive to solar zenith angle.

  7. Dynamical and observational constraints on satellites in the inner Pluto-Charon system

    Science.gov (United States)

    Stern, S. Alan; Parker, Joel William; Duncan, Martin J.; Snowdall, J. Clark, Jr.; Levison, Harold F.

    1994-01-01

    It is not known if Pluto has other satellites besides its massive partner Charon. In the past, searches for additional satellites in the Pluto-Charon system have extended from the solar-tidal stability boundary (approximately 90 arcsec from Pluto) inward to about 1 arcsec from Pluto. Here we further explore the inner (i.e., less than 10 arcsec) region of the Pluto-Charon system to determine where additional satellites might lie. In particular, we report on (1) dynamical simulations to delineate the region where unstable orbits lie around Charon, (2) dynamical simulations which use the low orbital eccentricity of Charon to constrain the mass of any third body near Pluto, and (3) analysis of Hubble Space Telescope (HST) archival images to search for satellites in the inner Pluto-Charon system. Although no objects were found, significant new constraints on bodies orbiting in the inner Pluto-Charon system were obtained.

  8. The Rapid Intensification of Typhoon Soudelor (2015) Explored through Next-Generation Satellite Observations

    Science.gov (United States)

    Munsell, E.; Braun, S. A.; Zhang, F.

    2017-12-01

    The dynamics that govern the intensification of tropical cyclones (TC) are dominated by rapidly evolving moist convective processes in the inner-core region. Remotely sensed satellite observations are typically available but in the past have lacked the necessary resolution to sufficiently examine TC intensification processes. However, as a result of the recent launch of next-generation high-resolution satellites (JMA's Himawari-8 and NOAA/NASA's GOES-16), the spatial and temporal frequency of remotely-sensed observations of TCs have increased significantly. This study utilizes brightness temperatures observed by the Advanced Himawari Imager to examine the structure of Typhoon Soudelor (2015) throughout its rapid intensification (RI) from a tropical storm to a super typhoon. Wavenumber decompositions are performed on brightness temperature fields that correspond to channels sensitive to upper-, mid-, and lower-level water vapor, and IR longwave radiation, to study wave features associated with the inner-core region. A scale-separation is also performed to assess the degree to which the intensification processes are dominated by phenomenon of various wavelengths. Higher-order wavenumbers reveal asymmetric features that propagate outwards from the storm on short time scales ( 1-2 h). The identification of these waves and their contribution to intensification is ongoing. A deterministic forecast of Typhoon Soudelor performed using a convection-permitting WRF simulation coupled to an Ensemble Kalman Filter that assimilates brightness temperatures, accurately captures the TCs RI event. The Community Radiative Transfer Model (CRTM) is used to produce simulated brightness temperature fields for the applicable channels. The model demonstrates the ability to reproduce the observed brightness temperatures in great detail, including smaller-scale features such as primary rainbands and the eye; however, a uniform warm bias is present. It is hypothesized that this likely results

  9. Dekametric and hectometric observations of Jupiter from the RAE-1 satellite

    Science.gov (United States)

    Desch, M. D.; Carr, T. D.

    1974-01-01

    Analysis of RAE-1 satellite data has revealed the presence of radio bursts from Jupiter in the frequency range from 4700 kHz to 450 kHz. Variations in the activity with respect to the planet's system III longitude are presented at seven frequencies. A merge of ground-based and satellite-acquired data indicates that the long-sought-for peak in Jupiter's low-frequency flux spectrum occurs at about 8 MHz.

  10. Monsoon Convective During the South China Sea Monsoon Experiment: Observations from Ground-Based Radar and the TRMM Satellite

    Science.gov (United States)

    Cifelli, Rob; Rickenbach, Tom; Halverson, Jeff; Keenan, Tom; Kucera, Paul; Atkinson, Lester; Fisher, Brad; Gerlach, John; Harris, Kathy; Kaufman, Cristina

    1999-01-01

    A main goal of the recent South China Sea Monsoon Experiment (SCSMEX) was to study convective processes associated with the onset of the Southeast Asian summer monsoon. The NASA TOGA C-band scanning radar was deployed on the Chinese research vessel Shi Yan #3 for two 20 day cruises, collecting dual-Doppler measurements in conjunction with the BMRC C-Pol dual-polarimetric radar on Dongsha Island. Soundings and surface meteorological data were also collected with an NCAR Integrated Sounding System (ISS). This experiment was the first major tropical field campaign following the launch of the Tropical Rainfall Measuring Mission (TRMM) satellite. These observations of tropical oceanic convection provided an opportunity to make comparisons between surface radar measurements and the Precipitation Radar (PR) aboard the TRMM satellite in an oceanic environment. Nearly continuous radar operations were conducted during two Intensive Observing Periods (IOPS) straddling the onset of the monsoon (5-25 May 1998 and 5-25 June 1998). Mesoscale lines of convection with widespread regions of both trailing and forward stratiform precipitation were observed following the onset of the active monsoon in the northern South China Sea region. The vertical structure of the convection during periods of strong westerly flow and relatively moist environmental conditions in the lower to mid-troposphere contrasted sharply with convection observed during periods of low level easterlies, weak shear, and relatively dry conditions in the mid to upper troposphere. Several examples of mesoscale convection will be shown from the ground (ship)-based and spaceborne radar data during times of TRMM satellite overpasses. Examples of pre-monsoon convection, characterized by isolated cumulonimbus and shallow, precipitating congestus clouds, will also be discussed.

  11. Hurricane Satellite (HURSAT) from International Satellite Cloud Climatology Project (ISCCP) B1, Version 6

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Hurricane Satellite (HURSAT) from derived International Satellite Cloud Climatology Project (ISCCP) B1 observations of tropical cyclones worldwide. The B1 data...

  12. Spatial variability and trends of seasonal snowmelt processes over Antarctic sea ice observed by satellite scatterometers

    Science.gov (United States)

    Arndt, S.; Haas, C.

    2017-12-01

    Snow is one of the key drivers determining the seasonal energy and mass budgets of sea ice in the Southern Ocean. Here, we analyze radar backscatter time series from the European Remote Sensing Satellites (ERS)-1 and-2 scatterometers, from the Quick Scatterometer (QSCAT), and from the Advanced Scatterometer (ASCAT) in order to observe the regional and inter-annual variability of Antarctic snowmelt processes from 1992 to 2014. On perennial ice, seasonal backscatter changes show two different snowmelt stages: A weak backscatter rise indicating the initial warming and metamorphosis of the snowpack (pre-melt), followed by a rapid rise indicating the onset of internal snowmelt and thaw-freeze cycles (snowmelt). In contrast, similar seasonal backscatter cycles are absent on seasonal ice, preventing the periodic retrieval of spring/summer transitions. This may be due to the dominance of ice bottom melt over snowmelt, leading to flooding and ice disintegration before strong snowmelt sets in. Resulting snowmelt onset dates on perennial sea ice show the expected latitudinal gradient from early melt onsets (mid-November) in the northern Weddell Sea towards late (end-December) or even absent snowmelt conditions further south. This result is likely related to seasonal variations in solar shortwave radiation (absorption). In addition, observations with different microwave frequencies allow to detect changing snow properties at different depths. We show that short wavelengths of passive microwave observations indicate earlier pre-melt and snowmelt onset dates than longer wavelength scatterometer observations, in response to earlier warming of upper snow layers compared to lower snow layers. Similarly, pre-melt and snowmelt onset dates retrieved from Ku-Band radars were earlier by an average of 11 and 23 days, respectively, than those retrieved from C-Band. This time difference was used to correct melt onset dates retrieved from Ku-Band to compile a consistent time series from

  13. An early warning system to forecast the close of the spring burning window from satellite-observed greenness.

    Science.gov (United States)

    Pickell, Paul D; Coops, Nicholas C; Ferster, Colin J; Bater, Christopher W; Blouin, Karen D; Flannigan, Mike D; Zhang, Jinkai

    2017-10-27

    Spring represents the peak of human-caused wildfire events in populated boreal forests, resulting in catastrophic loss of property and human life. Human-caused wildfire risk is anticipated to increase in northern forests as fuels become drier, on average, under warming climate scenarios and as population density increases within formerly remote regions. We investigated springtime human-caused wildfire risk derived from satellite-observed vegetation greenness in the early part of the growing season, a period of increased ignition and wildfire spread potential from snow melt to vegetation green-up with the aim of developing an early warning wildfire risk system. The initial system was developed for 392,856 km 2 of forested lands with satellite observations available prior to the start of the official wildfire season and predicted peak human-caused wildfire activity with 10-day accuracy for 76% of wildfire-protected lands by March 22. The early warning system could have significant utility as a cost-effective solution for wildfire managers to prioritize the deployment of wildfire protection resources in wildfire-prone landscapes across boreal-dominated ecosystems of North America, Europe, and Russia using open access Earth observations.

  14. Multiple current sheets in a double auroral oval observed from the MAGION-2 and MAGION-3 satellites

    Directory of Open Access Journals (Sweden)

    M. Echim

    1997-04-01

    Full Text Available A case is described of multiple current sheets crossed by the MAGION-2 satellite in the near-midnight quieting auroral oval. The data were obtained by the magnetometer experiment onboard. Results show during a quieting period after a preceding substorm, or during an early growth phase of the next substorm, two double-sheet current bands, POLB and EQUB, located at respectively the polar and equatorial borders of the auroral oval separated by about 500 km in latitude. This is consistent with the double-oval structure during recovery introduced by Elphinstone et al. (1995. Within the POLB, the magnetic field data show simultaneous existence of several narrow parallel bipolar current sheets within the upward current branch (at 69.5–70.3° invariant latitude with an adjacent downward current branch at its polar side at (70.5–71.3°. The EQUB was similarly stratified and located at 61.2–63.5° invariant latitude. The narrow current sheets were separated on average by about 35 km and 15 km, respectively, within the POLB and EQUB. A similar case of double-oval current bands with small-scale structuring of their upward current branches during a quieting period is found in the data from the MAGION-3 satellite. These observations contribute to the double-oval structure of the late recovery phase, and add a small-scale structuring of the upward currents producing the auroral arcs in the double- oval pattern, at least for the cases presented here. Other observations of multiple auroral current sheets and theories of auroral arc multiplicity are briefly discussed. It is suggested that multiple X-lines in the distant tail, and/or leakage of energetic particles and FA currents from a series of plasmoids formed during preceding magnetic activity, could be one cause of highly stratified upward FA currents at the polar edge of the quieting double auroral oval.

  15. Analysis of satellite-derived solar irradiance over the Netherlands

    Science.gov (United States)

    Dirksen, Marieke; Fokke Meirink, Jan; Sluiter, Raymond

    2017-04-01

    Measurements from geostationary satellites allow the retrieval of surface solar irradiance homogeneously over large areas, thereby providing essential information for the solar energy sector. In this paper, the SICCS solar irradiance data record derived from 12 years of Meteosat Second Generation satellite measurements is analysed with a focus on the Netherlands, where the spatial resolution is about 6 by 3 km2. Extensive validation of the SICCS data with pyranometer observations is performed, indicating a bias of approximately 3 W/m2 and RMSE of 11 W/m2 for daily data. Long term averages and seasonal variations of solar irradiance show regional patterns related to the surface type (e.g., coastal waters, forests, cities). The inter-annual variability over the time frame of the data record is quantified. Methods to merge satellite and surface observations into an optimized data record are explored.

  16. Wide-banded NTC radiation: local to remote observations by the four Cluster satellites

    Directory of Open Access Journals (Sweden)

    P. M. E. Décréau

    2015-10-01

    latitudes, is radiating radio waves. The radio waves are issued from multiple sources of small size, each related to a given fs series and radiating inside a beam of narrow cone angle, referred to as a beamlet. The beamlets illuminate different satellites simultaneously, at different characteristic fs values, according to the latitude at which the satellite is placed. Second, when an observing satellite moves away from its assumed source region (the plasmapause surface, it is illuminated by several beamlets, issued from nearby sources with characteristic fs values close to each other. The addition of radio waves blurs the spectra of the overall received electric field. It can move the signal peaks such that their position fs satisfiesfs = (n+α df, with 0 < α < 1. These findings open new perspectives for the interpretation of NTC events displaying harmonic signatures.

  17. An introduction to optimal satellite range scheduling

    CERN Document Server

    Vázquez Álvarez, Antonio José

    2015-01-01

    The satellite range scheduling (SRS) problem, an important operations research problem in the aerospace industry consisting of allocating tasks among satellites and Earth-bound objects, is examined in this book. SRS principles and solutions are applicable to many areas, including: Satellite communications, where tasks are communication intervals between sets of satellites and ground stations Earth observation, where tasks are observations of spots on the Earth by satellites Sensor scheduling, where tasks are observations of satellites by sensors on the Earth. This self-contained monograph begins with a structured compendium of the problem and moves on to explain the optimal approach to the solution, which includes aspects from graph theory, set theory, game theory and belief networks. This book is accessible to students, professionals and researchers in a variety of fields, including: operations research, optimization, scheduling theory, dynamic programming and game theory. Taking account of the distributed, ...

  18. Experimental simulation of satellite observations of 100 kHz radio waves from relativistic electron beams above thunderclouds

    Directory of Open Access Journals (Sweden)

    M. Füllekrug

    2011-01-01

    Full Text Available Relativistic electron beams above thunderclouds emit 100 kHz radio waves which illuminate the Earth's atmosphere and near-Earth space. This contribution aims to clarify the physical processes which are relevant for the spatial spreading of the radio wave energy below and above the ionosphere and thereby enables an experimental simulation of satellite observations of 100 kHz radio waves from relativistic electron beams above thunderclouds. The simulation uses the DEMETER satellite which observes 100 kHz radio waves from fifty terrestrial Long Range Aid to Navigation (LORAN transmitters. Their mean luminosity patch in the plasmasphere is a circular area with a radius of 300 km and a power density of 22 μW/Hz as observed at 660 km height above the ground. The luminosity patches exhibit a southward displacement of 450 km with respect to the locations of the LORAN transmitters. The displacement is reduced to 150 km when an upward propagation of the radio waves along the geomagnetic field line is assumed. This residual displacement indicates that the radio waves undergo 150 km sub-ionospheric propagation prior to entering a magnetospheric duct and escaping into near-Earth space. The residual displacement at low (L < 2.14 and high (L > 2.14 geomagnetic latitudes ranges from 100 km to 200 km which suggests that the smaller inclination of the geomagnetic field lines at low latitudes helps to trap the radio waves and to keep them in the magnetospheric duct. Diffuse luminosity areas are observed northward of the magnetic conjugate locations of LORAN transmitters at extremely low geomagnetic latitudes (L < 1.36 in Southeast Asia. This result suggests that the propagation along the geomagnetic field lines results in a spatial spreading of the radio wave energy over distances of 1 Mm. The summative assessment of the electric field intensities measured in space show that nadir observations of terrestrial 100 kHz radio waves, e.g., from

  19. Merging Satellite Precipitation Products for Improved Streamflow Simulations

    Science.gov (United States)

    Maggioni, V.; Massari, C.; Barbetta, S.; Camici, S.; Brocca, L.

    2017-12-01

    Accurate quantitative precipitation estimation is of great importance for water resources management, agricultural planning and forecasting and monitoring of natural hazards such as flash floods and landslides. In situ observations are limited around the Earth, especially in remote areas (e.g., complex terrain, dense vegetation), but currently available satellite precipitation products are able to provide global precipitation estimates with an accuracy that depends upon many factors (e.g., type of storms, temporal sampling, season, etc.). The recent SM2RAIN approach proposes to estimate rainfall by using satellite soil moisture observations. As opposed to traditional satellite precipitation methods, which sense cloud properties to retrieve instantaneous estimates, this new bottom-up approach makes use of two consecutive soil moisture measurements for obtaining an estimate of the fallen precipitation within the interval between two satellite overpasses. As a result, the nature of the measurement is different and complementary to the one of classical precipitation products and could provide a different valid perspective to substitute or improve current rainfall estimates. Therefore, we propose to merge SM2RAIN and the widely used TMPA 3B42RT product across Italy for a 6-year period (2010-2015) at daily/0.25deg temporal/spatial scale. Two conceptually different merging techniques are compared to each other and evaluated in terms of different statistical metrics, including hit bias, threat score, false alarm rates, and missed rainfall volumes. The first is based on the maximization of the temporal correlation with a reference dataset, while the second is based on a Bayesian approach, which provides a probabilistic satellite precipitation estimate derived from the joint probability distribution of observations and satellite estimates. The merged precipitation products show a better performance with respect to the parental satellite-based products in terms of categorical

  20. Validation of the CHIRPS Satellite Rainfall Estimates over Eastern of Africa

    Science.gov (United States)

    Dinku, T.; Funk, C. C.; Tadesse, T.; Ceccato, P.

    2017-12-01

    Long and temporally consistent rainfall time series are essential in climate analyses and applications. Rainfall data from station observations are inadequate over many parts of the world due to sparse or non-existent observation networks, or limited reporting of gauge observations. As a result, satellite rainfall estimates have been used as an alternative or as a supplement to station observations. However, many satellite-based rainfall products with long time series suffer from coarse spatial and temporal resolutions and inhomogeneities caused by variations in satellite inputs. There are some satellite rainfall products with reasonably consistent time series, but they are often limited to specific geographic areas. The Climate Hazards Group Infrared Precipitation (CHIRP) and CHIRP combined with station observations (CHIRPS) are recently produced satellite-based rainfall products with relatively high spatial and temporal resolutions and quasi-global coverage. In this study, CHIRP and CHIRPS were evaluated over East Africa at daily, dekadal (10-day) and monthly time scales. The evaluation was done by comparing the satellite products with rain gauge data from about 1200 stations. The is unprecedented number of validation stations for this region covering. The results provide a unique region-wide understanding of how satellite products perform over different climatic/geographic (low lands, mountainous regions, and coastal) regions. The CHIRP and CHIRPS products were also compared with two similar satellite rainfall products: the African Rainfall Climatology version 2 (ARC2) and the latest release of the Tropical Applications of Meteorology using Satellite data (TAMSAT). The results show that both CHIRP and CHIRPS products are significantly better than ARC2 with higher skill and low or no bias. These products were also found to be slightly better than the latest version of the TAMSAT product. A comparison was also done between the latest release of the TAMSAT product

  1. Bringing satellite winds to hub-height

    DEFF Research Database (Denmark)

    Badger, Merete; Pena Diaz, Alfredo; Bredesen, Rolv Erlend

    2012-01-01

    Satellite observations of the ocean surface can provide detailed information about the spatial wind variability over large areas. This is very valuable for the mapping of wind resources offshore where other measurements are costly and sparse. Satellite sensors operating at microwave frequencies...... measure the amount of radar backscatter from the sea surface, which is a function of the instant wind speed, wind direction, and satellite viewing geometry. A major limitation related to wind retrievals from satellite observations is that existing empirical model functions relate the radar backscatter...... to wind speed at the height 10 m only. The extrapolation of satellite wind fields to higher heights, which are more relevant for wind energy, remains a challenge which cannot be addressed by means of satellite data alone. As part of the EU-NORSEWInD project (2008-12), a hybrid method has been developed...

  2. New eyes on the sun a guide to satellite images and amateur observation

    CERN Document Server

    Wilkinson, John

    2012-01-01

    Information collected by satellites recently sent by the USA, the European Space Agency, Japan, Germany, the United Kingdom, and Russia to monitor the Sun has changed our knowledge and understanding of the Sun, particularly its effect on Earth. This book presents these findings in a way that will be welcomed by amateur astronomers, students, educators and anyone interested in the Sun. Enhanced by many colour photographs, the book combines newly acquired scientific understanding with detailed descriptions of features visible on the Sun’s surface and in its atmosphere. In the past, observing the Sun has been left to academics with specialised instruments, since solar observation has been unsafe because of the risk of eye damage.  This book explains how amateur astronomers can safely observe the various solar phenomena using special hydrogen-alpha telescopes that are not too expensive. Amateurs can now make a positive contribution to science by monitoring the Sun as professionals do.  Amateurs can also acces...

  3. Bridging Ground Validation and Algorithms: Using Scattering and Integral Tables to Incorporate Observed DSD Correlations into Satellite Algorithms

    Science.gov (United States)

    Williams, C. R.

    2012-12-01

    The NASA Global Precipitation Mission (GPM) raindrop size distribution (DSD) Working Group is composed of NASA PMM Science Team Members and is charged to "investigate the correlations between DSD parameters using Ground Validation (GV) data sets that support, or guide, the assumptions used in satellite retrieval algorithms." Correlations between DSD parameters can be used to constrain the unknowns and reduce the degrees-of-freedom in under-constrained satellite algorithms. Over the past two years, the GPM DSD Working Group has analyzed GV data and has found correlations between the mass-weighted mean raindrop diameter (Dm) and the mass distribution standard deviation (Sm) that follows a power-law relationship. This Dm-Sm power-law relationship appears to be robust and has been observed in surface disdrometer and vertically pointing radar observations. One benefit of a Dm-Sm power-law relationship is that a three parameter DSD can be modeled with just two parameters: Dm and Nw that determines the DSD amplitude. In order to incorporate observed DSD correlations into satellite algorithms, the GPM DSD Working Group is developing scattering and integral tables that can be used by satellite algorithms. Scattering tables describe the interaction of electromagnetic waves on individual particles to generate cross sections of backscattering, extinction, and scattering. Scattering tables are independent of the distribution of particles. Integral tables combine scattering table outputs with DSD parameters and DSD correlations to generate integrated normalized reflectivity, attenuation, scattering, emission, and asymmetry coefficients. Integral tables contain both frequency dependent scattering properties and cloud microphysics. The GPM DSD Working Group has developed scattering tables for raindrops at both Dual Precipitation Radar (DPR) frequencies and at all GMI radiometer frequencies less than 100 GHz. Scattering tables include Mie and T-matrix scattering with H- and V

  4. Characteristics of monsoon inversions over the Arabian Sea observed by satellite sounder and reanalysis data sets

    Directory of Open Access Journals (Sweden)

    S. Dwivedi

    2016-04-01

    Full Text Available Monsoon inversion (MI over the Arabian Sea (AS is one of the important characteristics associated with the monsoon activity over Indian region during summer monsoon season. In the present study, we have used 5 years (2009–2013 of temperature and water vapour measurement data obtained from satellite sounder instrument, an Infrared Atmospheric Sounding Interferometer (IASI onboard MetOp satellite, in addition to ERA-Interim data, to study their characteristics. The lower atmospheric data over the AS have been examined first to identify the areas where MIs are predominant and occur with higher strength. Based on this information, a detailed study has been made to investigate their characteristics separately in the eastern AS (EAS and western AS (WAS to examine their contrasting features. The initiation and dissipation times of MIs, their percentage occurrence, strength, etc., has been examined using the huge database. The relation with monsoon activity (rainfall over Indian region during normal and poor monsoon years is also studied. WAS ΔT values are  ∼  2 K less than those over the EAS, ΔT being the temperature difference between 950 and 850 hPa. A much larger contrast between the WAS and EAS in ΔT is noticed in ERA-Interim data set vis-à-vis those observed by satellites. The possibility of detecting MI from another parameter, refractivity N, obtained directly from another satellite constellation of GPS Radio Occultation (RO (COSMIC, has also been examined. MI detected from IASI and Atmospheric Infrared Sounder (AIRS onboard the NOAA satellite have been compared to see how far the two data sets can be combined to study the MI characteristics. We suggest MI could also be included as one of the semipermanent features of southwest monsoon along with the presently accepted six parameters.

  5. Diurnal changes in ocean color sensed in satellite imagery

    Science.gov (United States)

    Arnone, Robert; Vandermuelen, Ryan; Soto, Inia; Ladner, Sherwin; Ondrusek, Michael; Yang, Haoping

    2017-07-01

    Measurements of diurnal changes in ocean color in turbid coastal regions in the Gulf of Mexico were characterized using above water spectral radiometry from a National Aeronautics and Space Administration (aerosol robotic network-WaveCIS CSI-06) site that can provide 8 to 10 observations per day. Satellite capability to detect diurnal changes in ocean color was characterized using hourly overlapping afternoon orbits of the visual infrared imaging radiometer suite (VIIRS) Suomi National Polar-orbiting Partnership ocean color sensor and validated with in situ observations. The monthly cycle of diurnal changes was investigated for different water masses using VIIRS overlaps. Results showed the capability of satellite observations to monitor hourly color changes in coastal regions that can be impacted by vertical movement of optical layers, in response to tides, resuspension, and river plume dispersion. The spatial variability of VIIRS diurnal changes showed the occurrence and displacement of phytoplankton blooming and decaying processes. The diurnal change in ocean color was above 20%, which represents a 30% change in chlorophyll-a. Seasonal changes in diurnal ocean color for different water masses suggest differences in summer and winter responses to surface processes. The diurnal changes observed using satellite ocean color can be used to define the following: surface processes associated with biological activity, vertical changes in optical depth, and advection of water masses.

  6. Satellites You Can See for Homework

    Science.gov (United States)

    Broderick, Stephen

    2012-01-01

    Artificial satellites are easily observed most nights when the weather is fine. The website called "Heavens Above" at www.heavens-above.com will help locate these satellites flying over one's location. It also includes how bright they will appear. The direction of travel of each satellite in the night sky also indicates the type of satellite. For…

  7. Photometrical Observations "SBIRS GEO-2"

    Science.gov (United States)

    Sukhov, P. P.; Epishev, V. P.; Karpenko, G. F.; Sukhov, K. P.; Kudak, V. I.

    2015-08-01

    Photometrical observations GSS "SBIRS GEO 2" in B,V,R filters were carried near the equinoxes 2014-2015. Used velocity electrophotometer based on the FEU-79 in the pulse-counting mode. Received more than 25 light curves. From the known dimensions are defined; effective reflecting area - Sγλ, the spectral reflectance index - γλ, periods of light variation. Color-indices showed that in the reflected light flux from the GSS prevails "red" component. In the light curves are periodically dips and specular flash. This shows that GSS orbit is not in a static position specified triaxial orientation as in dynamic motion. Assumed following dynamics of the satellite "SBIRS GEO 2" in orbit. Helical scanning the Earth's surface visible infrared sensors satellite occurs with a period P1 = 15.66 sec. and swinging of the GSS about the direction of the motion vector of the satellite in an orbit with P2 = 62.64 sec., from the northern to the southern pole. Thus, during the period of swinging GSS going on 2 scan the visible part of the northern and southern hemispheres. In some dates observations dynamics work satellite in orbit changed.

  8. Observation of high energy electrons and protons in the South Atlantic geomagnetic anomaly by Ohzora Satellite

    International Nuclear Information System (INIS)

    Nagata, K.; Murakami, H.; Nakamoto, A.; Hasebe, N.; Kikuche, J.; Doke, T.

    1988-01-01

    Observed results of the high energy electrons (0.19 - 3.2 MeV) and protons (0.58 - 35 MeV) of the South Atlantic Geomagnetic Anomaly are presented. Two silicon Δ E-E telescopes on the ohzora satellite (EXOS-C, 1984-15A) were used to observe the high energy particle and the maximum intensity of electrons and protons. The powers of energy spectra above 1 MeV have different values from energy region below 1 MeV. The electron and proton intensities are greatest at pitch angle maximized at 90 0 . (author) [pt

  9. Spatial Heterodyne Observations of Water (SHOW) vapour in the upper troposphere and lower stratosphere from a high altitude aircraft: Modelling and sensitivity analysis

    Science.gov (United States)

    Langille, J. A.; Letros, D.; Zawada, D.; Bourassa, A.; Degenstein, D.; Solheim, B.

    2018-04-01

    A spatial heterodyne spectrometer (SHS) has been developed to measure the vertical distribution of water vapour in the upper troposphere and the lower stratosphere with a high vertical resolution (∼500 m). The Spatial Heterodyne Observations of Water (SHOW) instrument combines an imaging system with a monolithic field-widened SHS to observe limb scattered sunlight in a vibrational band of water (1363 nm-1366 nm). The instrument has been optimized for observations from NASA's ER-2 aircraft as a proof-of-concept for a future low earth orbit satellite deployment. A robust model has been developed to simulate SHOW ER-2 limb measurements and retrievals. This paper presents the simulation of the SHOW ER-2 limb measurements along a hypothetical flight track and examines the sensitivity of the measurement and retrieval approach. Water vapour fields from an Environment and Climate Change Canada forecast model are used to represent realistic spatial variability along the flight path. High spectral resolution limb scattered radiances are simulated using the SASKTRAN radiative transfer model. It is shown that the SHOW instrument onboard the ER-2 is capable of resolving the water vapour variability in the UTLS from approximately 12 km - 18 km with ±1 ppm accuracy. Vertical resolutions between 500 m and 1 km are feasible. The along track sampling capability of the instrument is also discussed.

  10. Evaluation of Satellite and Model Precipitation Products Over Turkey

    Science.gov (United States)

    Yilmaz, M. T.; Amjad, M.

    2017-12-01

    Satellite-based remote sensing, gauge stations, and models are the three major platforms to acquire precipitation dataset. Among them satellites and models have the advantage of retrieving spatially and temporally continuous and consistent datasets, while the uncertainty estimates of these retrievals are often required for many hydrological studies to understand the source and the magnitude of the uncertainty in hydrological response parameters. In this study, satellite and model precipitation data products are validated over various temporal scales (daily, 3-daily, 7-daily, 10-daily and monthly) using in-situ measured precipitation observations from a network of 733 gauges from all over the Turkey. Tropical Rainfall Measurement Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) 3B42 version 7 and European Center of Medium-Range Weather Forecast (ECMWF) model estimates (daily, 3-daily, 7-daily and 10-daily accumulated forecast) are used in this study. Retrievals are evaluated for their mean and standard deviation and their accuracies are evaluated via bias, root mean square error, error standard deviation and correlation coefficient statistics. Intensity vs frequency analysis and some contingency table statistics like percent correct, probability of detection, false alarm ratio and critical success index are determined using daily time-series. Both ECMWF forecasts and TRMM observations, on average, overestimate the precipitation compared to gauge estimates; wet biases are 10.26 mm/month and 8.65 mm/month, respectively for ECMWF and TRMM. RMSE values of ECMWF forecasts and TRMM estimates are 39.69 mm/month and 41.55 mm/month, respectively. Monthly correlations between Gauges-ECMWF, Gauges-TRMM and ECMWF-TRMM are 0.76, 0.73 and 0.81, respectively. The model and the satellite error statistics are further compared against the gauges error statistics based on inverse distance weighting (IWD) analysis. Both the model and satellite data have less IWD errors (14

  11. New aspects of the ionospheric response to the October 2003 superstorms from multiple-satellite observations

    Science.gov (United States)

    Lei, Jiuhou; Wang, Wenbin; Burns, Alan G.; Yue, Xinan; Dou, Xiankang; Luan, Xiaoli; Solomon, Stanley C.; Liu, Yong C.-M.

    2014-03-01

    The total electron content (TEC) data measured by the Jason, CHAMP, GRACE, and SAC-C satellites, the in situ electron densities from CHAMP and GRACE, and the vertical E × B drifts from the ROCSAT, have been utilized to examine the ionospheric response to the October 2003 superstorms. The combination of observations from multiple satellites provides a unique global view of ionospheric storm effects, especially over the Pacific Ocean and American regions, which were under sunlit conditions during the main phases of the October 2003 superstorms. The main results of this study are as follows: (1) There were substantial increases in TEC in the daytime at low and middle latitudes during both superstorms. (2) The enhancements were greater during the 30 October superstorm and occurred over a wider range of local times. (3) They also tended to peak at earlier local times during this second event. (4) These TEC enhancement events occurred at the local times when there were enhancements in the upward vertical drift. (5) The strong upward vertical drifts are attributed to penetration electric fields, suggesting that these penetration electric fields played a significant role in the electron density enhancements during these superstorms. Overall, the main contribution of this study is the simultaneous view of the storm time ionospheric response from multiple satellites, and the association of local time differences in ionospheric plasma response with measured vertical drift variations.

  12. Satellite observed salinity distributions at high latitudes in the Northern Hemisphere: A comparison of four products

    Science.gov (United States)

    Garcia-Eidell, Cynthia; Comiso, Josefino C.; Dinnat, Emmanuel; Brucker, Ludovic

    2017-09-01

    Global surface ocean salinity measurements have been available since the launch of SMOS in 2009 and coverage was further enhanced with the launch of Aquarius in 2011. In the polar regions where spatial and temporal changes in sea surface salinity (SSS) are deemed important, the data have not been as robustly validated because of the paucity of in situ measurements. This study presents a comparison of four SSS products in the ice-free Arctic region, three using Aquarius data and one using SMOS data. The accuracy of each product is assessed through comparative analysis with ship and other in situ measurements. Results indicate RMS errors ranging between 0.33 and 0.89 psu. Overall, the four products show generally good consistency in spatial distribution with the Atlantic side being more saline than the Pacific side. A good agreement between the ship and satellite measurements was also observed in the low salinity regions in the Arctic Ocean, where SSS in situ measurements are usually sparse, at the end of summer melt seasons. Some discrepancies including biases of about 1 psu between the products in spatial and temporal distribution are observed. These are due in part to differences in retrieval techniques, geophysical filtering, and sea ice and land masks. The monthly SSS retrievals in the Arctic from 2011 to 2015 showed variations (within ˜1 psu) consistent with effects of sea ice seasonal cycles. This study indicates that spaceborne observations capture the seasonality and interannual variability of SSS in the Arctic with reasonably good accuracy.

  13. Yearly to decennial beach morphodynamics south the Arcachon inlet, France from satellite observations

    Science.gov (United States)

    Dehouck, Aurelie; Sénéchal, Nadia; Lafon, Virginie; Almar, Rafael; Castelle, Bruno; Froidefond, Jean-Marie

    2010-05-01

    shallow waters off the sandy beaches (Dehouck et al., 2008). Validation showed that the underwater morphology was perfectly reproduced up to 6-7 m deep and retrieved depths were accurate to 0.4 m (Dehouck et al., 2009). Annual bathymetric maps of the area were produced from twelve SPOT scenes spanning from 1997 to 2009 and used to analyze nearshore sandbar evolution. Sandbar morphology is a good proxy of the magnitude of sand supply along the south Gironde coast, with sandbar growth enhancing natural beach protection against severe storm waves, while sandbar deepening/narrowening is more likely conjugated to potential areas of beaches at risk. From the satellite observation timeseries, we found evidence for : (1) Repeted events of breaching of the Arguin sandbank causing sandbank disconnection from its main body and their travelling through the southern tidal channel until merging and feeding the Pineau Bank located along the southern coast. The Pineau Bank acts as the main ‘source' of sediment for the downdrift coast, giving birth to a remarkable alongshore sandbar in 1997 that migrated south by 1400 m a year and then up to 400 m/yr until 2003, and feeding durably the downdrift nearshore sandbars over the period of observation; (2) an inhibation process causing rhythmic crescentic patterns to only appear at the southern end of the Pineau sandbar where wave-induced circulation patterns can self-organize again properly; (3) an intriguing event of nearshore sandbar merging during February 2006 storm, leading to a continuous, quasi-rectilinear nearshore sandbar from north to south, this one benefited from a strong littoral drift over the last three years explaining its persistance and growth ; (4) the presence of two shallow south-propagating sandy bodies almost welded to the beachface, one of them migrating along Biscarrosse Beach in the video cams field of view between 2007 and 2009, thus only provoking occasional perturbations within outer-bar dynamics.

  14. Sequential optimization of a terrestrial biosphere model constrained by multiple satellite based products

    Science.gov (United States)

    Ichii, K.; Kondo, M.; Wang, W.; Hashimoto, H.; Nemani, R. R.

    2012-12-01

    Various satellite-based spatial products such as evapotranspiration (ET) and gross primary productivity (GPP) are now produced by integration of ground and satellite observations. Effective use of these multiple satellite-based products in terrestrial biosphere models is an important step toward better understanding of terrestrial carbon and water cycles. However, due to the complexity of terrestrial biosphere models with large number of model parameters, the application of these spatial data sets in terrestrial biosphere models is difficult. In this study, we established an effective but simple framework to refine a terrestrial biosphere model, Biome-BGC, using multiple satellite-based products as constraints. We tested the framework in the monsoon Asia region covered by AsiaFlux observations. The framework is based on the hierarchical analysis (Wang et al. 2009) with model parameter optimization constrained by satellite-based spatial data. The Biome-BGC model is separated into several tiers to minimize the freedom of model parameter selections and maximize the independency from the whole model. For example, the snow sub-model is first optimized using MODIS snow cover product, followed by soil water sub-model optimized by satellite-based ET (estimated by an empirical upscaling method; Support Vector Regression (SVR) method; Yang et al. 2007), photosynthesis model optimized by satellite-based GPP (based on SVR method), and respiration and residual carbon cycle models optimized by biomass data. As a result of initial assessment, we found that most of default sub-models (e.g. snow, water cycle and carbon cycle) showed large deviations from remote sensing observations. However, these biases were removed by applying the proposed framework. For example, gross primary productivities were initially underestimated in boreal and temperate forest and overestimated in tropical forests. However, the parameter optimization scheme successfully reduced these biases. Our analysis

  15. Spaceborne observations of a changing Earth - Contribution from ESÁ s operating and approved satellite missions.

    Science.gov (United States)

    Johannessen, J. A.

    2009-04-01

    The overall vision for ESÁs Earth Observation activities is to play a central role in developing the global capability to understand planet Earth, predict changes, and mitigate negative effects of global change on its populations. Since Earth observation from space first became possible more than forty years ago, it has become central to monitoring and understanding how the dynamics of the Earth System work. The greatest progress has been in meteorology, where space-based observations have become indispensable, but it is now also progressively penetrating many of the fields making up Earth sciences. Exploiting Earth observation from space presents major multidisciplinary challenges to the researches working in the Earth sciences, to the technologists who build the state-of-the-art sensors, and to the scientists interpreting measurements made of processes occurring on or within the Earth's surface and in its atmosphere. The scientific community has shown considerable imagination in rising to these challenges, and in exploiting the latest technological developments to measure from space the complex processes and interactions that occur in the Earth System. In parallel, there has been significant progress in developing computer models that represent the many processes that make up the Earth System, and the interactions and feedback between them. Success in developing this holistic view is inextricably linked to the data provided by Earth Observation systems. Satellites provide the fundamental, consistent, regular and global measurements needed to drive, parameterise, test and improve those Earth System models. These developments, together with changes in society's awareness of the need for information on a changing world, have repetitively supported the decisions on how ESA can best focus its resources, and those of the European community that it serves, in order to address critical issues in Earth System science. Moreover, it is a fact that many operational

  16. Smoke Dispersion Modeling Over Complex Terrain Using High-Resolution Meteorological Data and Satellite Observations: The FireHub Platform

    Science.gov (United States)

    Solomos, S.; Amiridis, V.; Zanis, P.; Gerasopoulos, E.; Sofiou, F. I.; Herekakis, T.; Brioude, J.; Stohl, A.; Kahn, R. A.; Kontoes, C.

    2015-01-01

    A total number of 20,212 fire hot spots were recorded by the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite instrument over Greece during the period 2002e2013. The Fire Radiative Power (FRP) of these events ranged from 10 up to 6000 MW at 1 km resolution, and many of these fire episodes resulted in long-range transport of smoke over distances up to several hundred kilometers. Three different smoke episodes over Greece are analyzed here using real time hot-spot observations from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) satellite instrument as well as from MODIS hot-spots. Simulations of smoke dispersion are performed with the FLEXPART-WRF model and particulate matter emissions are calculated directly from the observed FRP. The modeled smoke plumes are compared with smoke stereo-heights from the Multiangle Imaging Spectroradiometer (MISR) instrument and the sensitivities to atmospheric and modeling parameters are examined. Driving the simulations with high resolution meteorology (4 4 km) and using geostationary satellite data to identify the hot spots allows the description of local scale features that govern smoke dispersion. The long-range transport of smoke is found to be favored over the complex coastline environment of Greece due to the abrupt changes between land and marine planetary boundary layers (PBL) and the decoupling of smoke layers from the surface.

  17. Evaluating the Capacity of Global CO2 Flux and Atmospheric Transport Models to Incorporate New Satellite Observations

    Science.gov (United States)

    Kawa, S. R.; Collatz, G. J.; Erickson, D. J.; Denning, A. S.; Wofsy, S. C.; Andrews, A. E.

    2007-01-01

    As we enter the new era of satellite remote sensing for CO2 and other carbon cyclerelated quantities, advanced modeling and analysis capabilities are required to fully capitalize on the new observations. Model estimates of CO2 surface flux and atmospheric transport are required for initial constraints on inverse analyses, to connect atmospheric observations to the location of surface sources and sinks, and ultimately for future projections of carbon-climate interactions. For application to current, planned, and future remotely sensed CO2 data, it is desirable that these models are accurate and unbiased at time scales from less than daily to multi-annual and at spatial scales from several kilometers or finer to global. Here we focus on simulated CO2 fluxes from terrestrial vegetation and atmospheric transport mutually constrained by analyzed meteorological fields from the Goddard Modeling and Assimilation Office for the period 1998 through 2006. Use of assimilated meteorological data enables direct model comparison to observations across a wide range of scales of variability. The biospheric fluxes are produced by the CASA model at lxi degrees on a monthly mean basis, modulated hourly with analyzed temperature and sunlight. Both physiological and biomass burning fluxes are derived using satellite observations of vegetation, burned area (as in GFED-2), and analyzed meteorology. For the purposes of comparison to CO2 data, fossil fuel and ocean fluxes are also included in the transport simulations. In this presentation we evaluate the model's ability to simulate CO2 flux and mixing ratio variability in comparison to in situ observations at sites in Northern mid latitudes and the continental tropics. The influence of key process representations is inferred. We find that the model can resolve much of the hourly to synoptic variability in the observations, although there are limits imposed by vertical resolution of boundary layer processes. The seasonal cycle and its

  18. BeppoSAX Observations of MKN 110

    Science.gov (United States)

    Nicastro, Fabrizio; Oliversen, Ronald J. (Technical Monitor)

    2002-01-01

    Mkn 110 is a bright, nearby Seyfert 1 galaxy, which underwent a long optical monitoring campaign, during the past 12 years. Optical observations show that Mkn 110 vary, both in flux and spectral shape. The intensity and width of its Broad Emission Lines (BELs) also vary, from typical Seyfert 1, to typical Narrow Line Seyfert 1 (NLSyl) values, so suggesting that this could be the first supermassive black holes where accretion state related transitions, as frequently observed in stellar-size black holes, have finally been observed. To verify these suggestions we asked to monitor Mkn 110 with BeppoSAX with three 50 ksec observations six months apart. The goal of the proposal was to observe spectral variations in X-ray, already suggested by previous, existing ROSAT (Roentgen Satellite) and ASCA (Advanced Satellite for Cosmology and Astrophysics) observations of the same source. The first of these three SAX (Satellite per Astronomia X) observations was taken on May 2000, and lacks the Low-Energy instrument (0.1-2 keV is the band in which NLSy1 and Sy1 X-ray spectra differ most).

  19. Dust storm events over Delhi: verification of dust AOD forecasts with satellite and surface observations

    Science.gov (United States)

    Singh, Aditi; Iyengar, Gopal R.; George, John P.

    2016-05-01

    Thar desert located in northwest part of India is considered as one of the major dust source. Dust storms originate in Thar desert during pre-monsoon season, affects large part of Indo-Gangetic plains. High dust loading causes the deterioration of the ambient air quality and degradation in visibility. Present study focuses on the identification of dust events and verification of the forecast of dust events over Delhi and western part of IG Plains, during the pre-monsoon season of 2015. Three dust events have been identified over Delhi during the study period. For all the selected days, Terra-MODIS AOD at 550 nm are found close to 1.0, while AURA-OMI AI shows high values. Dust AOD forecasts from NCMRWF Unified Model (NCUM) for the three selected dust events are verified against satellite (MODIS) and ground based observations (AERONET). Comparison of observed AODs at 550 nm from MODIS with NCUM predicted AODs reveals that NCUM is able to predict the spatial and temporal distribution of dust AOD, in these cases. Good correlation (~0.67) is obtained between the NCUM predicted dust AODs and location specific observations available from AERONET. Model under-predicted the AODs as compared to the AERONET observations. This may be mainly because the model account for only dust and no anthropogenic activities are considered. The results of the present study emphasize the requirement of more realistic representation of local dust emission in the model both of natural and anthropogenic origin, to improve the forecast of dust from NCUM during the dust events.

  20. IMF By-Related Cusp Currents Observed from the Ørsted Satellite and from Ground

    DEFF Research Database (Denmark)

    Stauning, P.; Primdahl, Fritz; Watermann, J.

    2001-01-01

    Orsted is the first satellite to conduct high-precision magnetometer observations from low-altitude noonmidnight orbits passing through the polar cusp regions. Field-aligned currents (FAC) derived from Orsted magnetic field measurements have been combined with ionospheric current patterns inferred...... statistical analysis defines for the noon region the variations in FAC latitude with IMF B-Z. Comparisons with the statistical cusp location indicate that the more equatorward region of IMF B-gamma-while the more B related FAC is located on field lines closing at the dayside poleward FAC are on "open" field...

  1. Cyberinfrastructure Initiatives of the Committee on Earth Observation Satellites (CEOS) Working Group on Information Systems and Services (WGISS)

    Science.gov (United States)

    McDonald, K. R.; Faundeen, J. L.; Petiteville, I.

    2005-12-01

    The Committee on Earth Observation Satellites (CEOS) was established in 1984 in response to a recommendation from the Economic Summit of Industrialized Nations Working Group on Growth, Technology, and Employment's Panel of Experts on Satellite Remote Sensing. CEOS participants are Members, who are national or international governmental organizations who operate civil spaceborne Earth observation satellites, and Associates who are governmental organizations with civil space programs in development or international scientific or governmental bodies who have an interest in and support CEOS objectives. The primary objective of CEOS is to optimize benefits of satellite Earth observations through cooperation of its participants in mission planning and in development of compatible data products, formats, services, applications and policies. To pursue its objectives, CEOS establishes working groups and associated subgroups that focus on relevant areas of interest. While the structure of CEOS has evolved over its lifetime, today there are three permanent working groups. One is the Working Group on Calibration and Validation that addresses sensor-specific calibration and validation and geophysical parameter validation. A second is the Working Group on Education, Training, and Capacity Building that facilitates activities that enhance international education and training in Earth observation techniques, data analysis, interpretation and applications, with a particular focus on developing countries. The third permanent working group is the Working Group on Information Systems and Services (WGISS). The purpose of WGISS is to promote collaboration in the development of the systems and services based on international standards that manage and supply the Earth observation data and information from participating agencies' missions. WGISS places great emphasis on the use of demonstration projects involving user groups to solve the critical interoperability issues associated with the

  2. A first in-flight absolute calibration of the Chilean Earth Observation Satellite

    Science.gov (United States)

    Mattar, C.; Hernández, J.; Santamaría-Artigas, A.; Durán-Alarcón, C.; Olivera-Guerra, L.; Inzunza, M.; Tapia, D.; Escobar-lavín, E.

    2014-06-01

    This work describes the first in-flight absolute calibration of the "Sistema Satelital para la Observación de la Tierra" (SSOT or Fasat-C). It was performed on January 29th 2013 at Antumapu site located in the southern area of Santiago, Chile. A description of the procedure is presented which includes both ground measurement and atmospheric characterization. The Chilean satellite for Earth observation carries on board a "New AstroSat Optical Modular Instrument" (NAOMI) high-resolution pushbroom imager which provides a 1.45 m ground sampling distance in the panchromatic (0.455-0.744 μm) channel and a 5.8 m ground sampling distance for the green (0.455-0.52 μm), blue (0.528-0.588 μm), red (0.625-0.695 μm) and near-infrared (0.758-0.881 μm) channels from a 620 km orbit. Radiometric calibration was carried out in order to estimate the land leaving radiance and bidirectional reflectance at the top of the atmosphere. To correct the reflectance data for atmospheric effects, the Second Simulation of a Satellite Signal in the Solar Spectrum (6S) code was used. Aerosol Optical Depth (AOD), water vapor and ozone content were obtained from MOD04, MOD05 and MOD07 products respectively, which are derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) data. Statistical results such as BIAS, SIGMA and RMSE were calculated for the comparison between surface reflectance values and in situ measurements. Results show that the overall accuracy of the atmospherically corrected surface reflectance calculated from Fasat-C imagery can be estimated to around ±5%, with a R2 coefficient of 0.939 between atmospherically corrected reflectance values and in situ measurements. The atmospheric correction applied in this work by combining MODIS data and the 6S radiative transfer code could be used for further calibration of the Fasat-C images, although in situ atmospheric irradiance measurements are necessary to estimate reliable values of surface reflectance. Future

  3. Optical Orbit Determination of a Geosynchronous Earth Orbit Satellite Effected by Baseline Distances between Various Ground-based Tracking Stations Ⅱ: COMS Case with Analysis of Actual Observation Data

    Directory of Open Access Journals (Sweden)

    Ju Young Son

    2015-09-01

    Full Text Available We estimated the orbit of the Communication, Ocean and Meteorological Satellite (COMS, a Geostationary Earth Orbit (GEO satellite, through data from actual optical observations using telescopes at the Sobaeksan Optical Astronomy Observatory (SOAO of the Korea Astronomy and Space Science Institute (KASI, Optical Wide field Patrol (OWL at KASI, and the Chungbuk National University Observatory (CNUO from August 1, 2014, to January 13, 2015. The astrometric data of the satellite were extracted from the World Coordinate System (WCS in the obtained images, and geometrically distorted errors were corrected. To handle the optically observed data, corrections were made for the observation time, light-travel time delay, shutter speed delay, and aberration. For final product, the sequential filter within the Orbit Determination Tool Kit (ODTK was used for orbit estimation based on the results of optical observation. In addition, a comparative analysis was conducted between the precise orbit from the ephemeris of the COMS maintained by the satellite operator and the results of orbit estimation using optical observation. The orbits estimated in simulation agree with those estimated with actual optical observation data. The error in the results using optical observation data decreased with increasing number of observatories. Our results are useful for optimizing observation data for orbit estimation.

  4. Predicting Near Real-Time Inundation Occurrence from Complimentary Satellite Microwave Brightness Temperature Observations

    Science.gov (United States)

    Fisher, C. K.; Pan, M.; Wood, E. F.

    2017-12-01

    Throughout the world, there is an increasing need for new methods and data that can aid decision makers, emergency responders and scientists in the monitoring of flood events as they happen. In many regions, it is possible to examine the extent of historical and real-time inundation occurrence from visible and infrared imagery provided by sensors such as MODIS or the Landsat TM; however, this is not possible in regions that are densely vegetated or are under persistent cloud cover. In addition, there is often a temporal mismatch between the sampling of a particular sensor and a given flood event, leading to limited observations in near real-time. As a result, there is a need for alternative methods that take full advantage of complimentary remotely sensed data sources, such as available microwave brightness temperature observations (e.g., SMAP, SMOS, AMSR2, AMSR-E, and GMI), to aid in the estimation of global flooding. The objective of this work was to develop a high-resolution mapping of inundated areas derived from multiple satellite microwave sensor observations with a daily temporal resolution. This system consists of first retrieving water fractions from complimentary microwave sensors (AMSR-2 and SMAP) which may spatially and temporally overlap in the region of interest. Using additional information in a Random Forest classifier, including high resolution topography and multiple datasets of inundated area (both historical and empirical), the resulting retrievals are spatially downscaled to derive estimates of the extent of inundation at a scale relevant to management and flood response activities ( 90m or better) instead of the relatively coarse resolution water fractions, which are limited by the microwave sensor footprints ( 5-50km). Here we present the training and validation of this method for the 2015 floods that occurred in Houston, Texas. Comparing the predicted inundation against historical occurrence maps derived from the Landsat TM record and MODIS

  5. Coordinated Cluster, ground-based instrumentation and low-altitude satellite observations of transient poleward-moving events in the ionosphere and in the tail lobe

    Directory of Open Access Journals (Sweden)

    M. Lockwood

    2001-09-01

    Full Text Available During the interval between 8:00–9:30 on 14 January 2001, the four Cluster spacecraft were moving from the central magnetospheric lobe, through the dusk sector mantle, on their way towards intersecting the magnetopause near 15:00 MLT and 15:00 UT. Throughout this interval, the EISCAT Svalbard Radar (ESR at Longyearbyen observed a series of poleward-moving transient events of enhanced F-region plasma concentration ("polar cap patches", with a repetition period of the order of 10 min. Allowing for the estimated solar wind propagation delay of 75 ( ± 5 min, the interplanetary magnetic field (IMF had a southward component during most of the interval. The magnetic footprint of the Cluster spacecraft, mapped to the ionosphere using the Tsyganenko T96 model (with input conditions prevailing during this event, was to the east of the ESR beams. Around 09:05 UT, the DMSP-F12 satellite flew over the ESR and showed a sawtooth cusp ion dispersion signature that also extended into the electrons on the equatorward edge of the cusp, revealing a pulsed magnetopause reconnection. The consequent enhanced ionospheric flow events were imaged by the SuperDARN HF backscatter radars. The average convection patterns (derived using the AMIE technique on data from the magnetometers, the EISCAT and SuperDARN radars, and the DMSP satellites show that the associated poleward-moving events also convected over the predicted footprint of the Cluster spacecraft. Cluster observed enhancements in the fluxes of both electrons and ions. These events were found to be essentially identical at all four spacecraft, indicating that they had a much larger spatial scale than the satellite separation of the order of 600 km. Some of the events show a correspondence between the lowest energy magnetosheath electrons detected by the PEACE instrument on Cluster (10–20 eV and the topside ionospheric enhancements seen by the ESR (at 400–700 km. We suggest that a potential barrier at the

  6. Coordinated Cluster, ground-based instrumentation and low-altitude satellite observations of transient poleward-moving events in the ionosphere and in the tail lobe

    Directory of Open Access Journals (Sweden)

    M. Lockwood

    Full Text Available During the interval between 8:00–9:30 on 14 January 2001, the four Cluster spacecraft were moving from the central magnetospheric lobe, through the dusk sector mantle, on their way towards intersecting the magnetopause near 15:00 MLT and 15:00 UT. Throughout this interval, the EISCAT Svalbard Radar (ESR at Longyearbyen observed a series of poleward-moving transient events of enhanced F-region plasma concentration ("polar cap patches", with a repetition period of the order of 10 min. Allowing for the estimated solar wind propagation delay of 75 ( ± 5 min, the interplanetary magnetic field (IMF had a southward component during most of the interval. The magnetic footprint of the Cluster spacecraft, mapped to the ionosphere using the Tsyganenko T96 model (with input conditions prevailing during this event, was to the east of the ESR beams. Around 09:05 UT, the DMSP-F12 satellite flew over the ESR and showed a sawtooth cusp ion dispersion signature that also extended into the electrons on the equatorward edge of the cusp, revealing a pulsed magnetopause reconnection. The consequent enhanced ionospheric flow events were imaged by the SuperDARN HF backscatter radars. The average convection patterns (derived using the AMIE technique on data from the magnetometers, the EISCAT and SuperDARN radars, and the DMSP satellites show that the associated poleward-moving events also convected over the predicted footprint of the Cluster spacecraft. Cluster observed enhancements in the fluxes of both electrons and ions. These events were found to be essentially identical at all four spacecraft, indicating that they had a much larger spatial scale than the satellite separation of the order of 600 km. Some of the events show a correspondence between the lowest energy magnetosheath electrons detected by the PEACE instrument on Cluster (10–20 eV and the topside ionospheric enhancements seen by the ESR (at 400–700 km. We suggest that a potential barrier at the

  7. Observations of El Niño impacts using in situ GLOBE protocols and satellite data

    Science.gov (United States)

    Srinivasan, M. M.; Destaerke, D.

    2015-12-01

    The El Niño phenomenon is a periodic ocean condition that occurs every two to ten years in the central and east-central equatorial Pacific Ocean. It alters the normal patterns of ocean circulation, surface temperature, and evaporation, causing noticeable and often severe changes in weather conditions in many areas of the world. El Niño is the warm phase of the El Niño Southern Oscillation (ENSO), and usually reaches its peak between December and February time period. El Niño and its worldwide consequences are studied by the school network of the GLOBE Program (www.globe.gov) which brings together students, teachers, and scientists in support of student research and validation of international Earth science research projects. Since the start of the GLOBE Program over 20 years ago, GLOBE classrooms utilize carefully developed daily, weekly, or seasonally protocols such as maximum, minimum and current temperatures, rainfall, soil moisture, and others, to measure changes in the environment. The data collected by the students is entered in an online GLOBE database. In addition to the student-contributed data, automated stations also collect and send measurements to the GLOBE database.Students compare their data with global data acquired by satellites to help validate the satellite data. With a potentially historic-level El Niño event thought to be on the horizon--possibly one of the strongest in 50 years—we will propose an emphasis on measurements from GLOBE schools that will support studies and satellite observations of El Niño. We plan to provide the schools with additional satellite data sets such as ocean temperature measurements from Advanced Very High Resolution Radiometer (AVHRR), sea surface elevation measurements from Jason-2 and 3 (after it launches), and others to be identified. We wish to address and support the following educational objectives: - Demonstrate how El Niño affects local precipitation and temperature across the globe, - Link teachers

  8. The feasibility of retrieving vertical temperature profiles from satellite nadir UV observations: A sensitivity analysis and an inversion experiment with neural network algorithms

    International Nuclear Information System (INIS)

    Sellitto, P.; Del Frate, F.

    2014-01-01

    Atmospheric temperature profiles are inferred from passive satellite instruments, using thermal infrared or microwave observations. Here we investigate on the feasibility of the retrieval of height resolved temperature information in the ultraviolet spectral region. The temperature dependence of the absorption cross sections of ozone in the Huggins band, in particular in the interval 320–325 nm, is exploited. We carried out a sensitivity analysis and demonstrated that a non-negligible information on the temperature profile can be extracted from this small band. Starting from these results, we developed a neural network inversion algorithm, trained and tested with simulated nadir EnviSat-SCIAMACHY ultraviolet observations. The algorithm is able to retrieve the temperature profile with root mean square errors and biases comparable to existing retrieval schemes that use thermal infrared or microwave observations. This demonstrates, for the first time, the feasibility of temperature profiles retrieval from space-borne instruments operating in the ultraviolet. - Highlights: • A sensitivity analysis and an inversion scheme to retrieve temperature profiles from satellite UV observations (320–325 nm). • The exploitation of the temperature dependence of the absorption cross section of ozone in the Huggins band is proposed. • First demonstration of the feasibility of temperature profiles retrieval from satellite UV observations. • RMSEs and biases comparable with more established techniques involving TIR and MW observations

  9. Spectroscopic Characterization of GEO Satellites with Gunma LOW Resolution Spectrograph

    Science.gov (United States)

    Endo, T.; Ono, H.; Hosokawa, M.; Ando, T.; Takanezawa, T.; Hashimoto, O.

    The spectroscopic observation is potentially a powerful tool for understanding the Geostationary Earth Orbit (GEO) objects. We present here the results of an investigation of energy spectra of GEO satellites obtained from a groundbased optical telescope. The spectroscopic observations were made from April to June 2016 with the Gunma LOW resolution Spectrograph and imager (GLOWS) at the Gunma Astronomical Observatory (GAO) in JAPAN. The observation targets consist of eleven different satellites: two weather satellites, four communications satellites, and five broadcasting satellites. All the spectra of those GEO satellites are inferred to be solar-like. A number of well-known absorption features such as H-alpha, H-beta, Na-D,water vapor and oxygen molecules are clearly seen in thewavelength range of 4,000 - 8,000 Å. For comparison, we calculated the intensity ratio of the spectra of GEO satellites to that of the Moon which is the natural satellite of the earth. As a result, the following characteristics were obtained. 1) Some variations are seen in the strength of absorption features of water vapor and oxygen originated by the telluric atmosphere, but any other characteristic absorption features were not found. 2) For all observed satellites, the intensity ratio of the spectrum of GEO satellites decrease as a function of wavelength or to be flat. It means that the spectral reflectance of satellite materials is bluer than that of the Moon. 3) A characteristic dip at around 4,800 Å is found in all observed spectra of a weather satellite. Based on these observations, it is indicated that the characteristics of the spectrum are mainly derived from the solar panels because the apparent area of the solar cell is probably larger than that of the satellite body.

  10. An Alternative Inter-Satellite Calibration of the UMD HIRS OLR Retrievals

    Science.gov (United States)

    Robertson, Franklin R.; Lee, Hai-Tien

    2012-01-01

    Outgoing Longwave Radiation (OLR) at the top-of-atmosphere (TOA) is a fundamental component of Earth's energy balance and represents the heat energy in the thermal bands rejected to space by the planet. Determination of OLR from satellites has a long and storied history, but the observational record remains largely fragmented with gaps in satellite measurements over the past three decades. Perhaps the most semi-continuous set of retrievals comes from the University of Maryland (UMD) algorithm that uses four HIRS (High Resolution Infrared Sounder) channels on the NOAA polar orbiting satellites to estimate OLR. This data set shows great promise in helping to bridge the discontinuous ERBS (Earth Radiation Budget Satellite) and CERES (Clouds and the Earth s Radiant Energy System) measurements. However, significant satellite inter-calibration biases persist with the present UMD data, principally outside the tropics. Difficulties relate to the combination of drift of the satellite equator crossing time through the diurnal cycle and changes in HIRS channel response function design. Here we show how an ad hoc recalibration of the UMD retrievals among the different satellites removes much of the remaining uncertainty due to diurnal drift of the satellite orbit. The adjusted HIRS data (using no other external information) show much better agreement with OLR from the European Center Interim Reanalysis (EC-Int), longer-term signals in the Global Energy and Water Cycle Experiment / Surface Radiation Budget (GEWEX/SRB) retrievals, and also agree well with ERBS and CERES OLR measurements. These results augur well for narrowing the uncertainties in multi-decadal estimates of this important climate variable.

  11. PERSPECTIVE Working towards a community-wide understanding of satellite skin temperature observations

    Science.gov (United States)

    Shreve, Cheney

    2010-12-01

    cover, water vapor, cloud cover), they show that skin temperature is clearly a different physical parameter from air temperature and varies from air temperature in magnitude, response to atmospheric conditions, and diurnal phase. Although the accuracy of skin temperature (Tskin) algorithms has improved to within 0.5-1°C for field measurements and clear-sky satellite observations (Becker and Li 1995, Goetz et al 1995, Wan and Dozier 1996), general confusion regarding the physical definition of 'surface temperature' and how it can be used for climate studies has persisted throughout the scientific community and limited the applications of these data (Jin and Dickinson 2010). For example, satellite sea surface temperature was used as evidence of global climate change instead of skin temperature in the IPCC 2001 and 2007 reports (Jin and Dickinson 2010). This work provides clarity in the theoretical definition of temperature variables, demonstrates the difference between air and skin temperature, and aids the understanding of the MODIS Tskin product, which could be very beneficial for future climate studies. As outlined by Jin and Dickinson, 'surface temperature' is a vague term commonly used in reference to air temperature, aerodynamic temperature, and skin temperature. Air temperature (Tair), or thermodynamic temperature, is measured by an in situ instrument usually 1.5-2 m above the ground. Aerodynamic temperature (Taero) refers to the temperature at the height of the roughness length of heat. Satellite derived skin temperature (Tskin) is the radiometric temperature derived from the inverse of Planck's function. While these different temperature variables are typically correlated, they differ as a result of environmental conditions (e.g. land cover and sky conditions; Jin and Dickinson 2010). With an extensive network of Tair measurements, some have questioned the benefits of using Tskin at all (Peterson et al 1997, 1998). Tskin and Tair can vary depending on land cover

  12. On-Orbit Camera Misalignment Estimation Framework and Its Application to Earth Observation Satellite

    Directory of Open Access Journals (Sweden)

    Seungwoo Lee

    2015-03-01

    Full Text Available Despite the efforts for precise alignment of imaging sensors and attitude sensors before launch, the accuracy of pre-launch alignment is limited. The misalignment between attitude frame and camera frame is especially important as it is related to the localization error of the spacecraft, which is one of the essential factors of satellite image quality. In this paper, a framework for camera misalignment estimation is presented with its application to a high-resolution earth-observation satellite—Deimos-2. The framework intends to provide a solution for estimation and correction of the camera misalignment of a spacecraft, covering image acquisition planning to mathematical solution of camera misalignment. Considerations for effective image acquisition planning to obtain reliable results are discussed, followed by a detailed description on a practical method for extracting many GCPs automatically using reference ortho-photos. Patterns of localization errors that commonly occur due to the camera misalignment are also investigated. A mathematical model for camera misalignment estimation is described comprehensively. The results of simulation experiments showing the validity and accuracy of the misalignment estimation model are provided. The proposed framework was applied to Deimos-2. The real-world data and results from Deimos-2 are presented.

  13. Analysis of orbit determination from Earth-based tracking for relay satellites in a perturbed areostationary orbit

    Science.gov (United States)

    Romero, P.; Pablos, B.; Barderas, G.

    2017-07-01

    Areostationary satellites are considered a high interest group of satellites to satisfy the telecommunications needs of the foreseen missions to Mars. An areostationary satellite, in an areoequatorial circular orbit with a period of 1 Martian sidereal day, would orbit Mars remaining at a fixed location over the Martian surface, analogous to a geostationary satellite around the Earth. This work addresses an analysis of the perturbed orbital motion of an areostationary satellite as well as a preliminary analysis of the aerostationary orbit estimation accuracy based on Earth tracking observations. First, the models for the perturbations due to the Mars gravitational field, the gravitational attraction of the Sun and the Martian moons, Phobos and Deimos, and solar radiation pressure are described. Then, the observability from Earth including possible occultations by Mars of an areostationary satellite in a perturbed areosynchronous motion is analyzed. The results show that continuous Earth-based tracking is achievable using observations from the three NASA Deep Space Network Complexes in Madrid, Goldstone and Canberra in an occultation-free scenario. Finally, an analysis of the orbit determination accuracy is addressed considering several scenarios including discontinuous tracking schedules for different epochs and different areoestationary satellites. Simulations also allow to quantify the aerostationary orbit estimation accuracy for various tracking series durations and observed orbit arc-lengths.

  14. Monthly-Diurnal Water Budget Variability Over Gulf of Mexico-Caribbean Sea Basin from Satellite Observations

    Science.gov (United States)

    Smith, E. A.; Santos, P.

    2006-01-01

    This study presents results from a multi-satellite/multi-sensor retrieval system design d to obtain the atmospheric water budget over the open ocean. A combination of hourly-sampled monthly datasets derived from the GOES-8 5-channel Imager, the TRMM TMI radiometer, and the DMSP 7-channel passive microwave radiometers (SSM/I) have been acquired for the combined Gulf of Mexico-Caribbean Sea basin. Whereas the methodology has been tested over this basin, the retrieval system is designed for portability to any open-ocean region. Algorithm modules using the different datasets to retrieve individual geophysical parameters needed in the water budget equation are designed in a manner that takes advantage of the high temporal resolution of the GOES-8 measurements, as well as the physical relationships inherent to the TRMM and SSM/I passive microwave measurements in conjunction with water vapor, cloud liquid water, and rainfall. The methodology consists of retrieving the precipitation, surface evaporation, and vapor-cloud water storage terms in the atmospheric water balance equation from satellite techniques, with the water vapor advection term being obtained as the residue needed for balance. Thus, the intent is to develop a purely satellite-based method for obtaining the full set of terms in the atmospheric water budget equation without requiring in situ sounding information on the wind profile. The algorithm is validated by cross-checking all the algorithm components through multiple-algorithm retrieval intercomparisons. A further check on the validation is obtained by directly comparing water vapor transports into the targeted basin diagnosed from the satellite algorithms to those obtained observationally from a network of land-based upper air stations that nearly uniformly surround the basin, although it is fair to say that these checks are more effective in identifying problems in estimating vapor transports from a "leaky" operational radiosonde network than in

  15. Implementing a Nitrogen-Based Model for Autotrophic Respiration Using Satellite and Field Observations

    Science.gov (United States)

    Choudhury, Bhaskar J.; Houser, Paul (Technical Monitor)

    2001-01-01

    The rate of carbon accumulation by terrestrial plant communities in a process-level, mechanistic modeling is the difference of the rate of gross photosynthesis by a canopy (A(sub g)) and autotrophic respiration (R) of the stand. Observations for different biomes often show that R to be a large and variable fraction of A(sub g), ca. 35% to 75%, although other studies suggest the ratio of R and A(sub g) to be less variable. Here, R has been calculated according to the two compartment model as being the sum of maintenance and growth components. The maintenance respiration of foliage and living fine roots for different biomes has been determined objectively from observed nitrogen content of these organs. The sapwood maintenance respiration is based on pipe theory, and checked against an independently derived equation considering sapwood biomass and its maintenance coefficient. The growth respiration has been calculated from the difference of A(sub g) and maintenance respiration. The A(sub g) is obtained as the product of biome-specific radiation use efficiency for gross photosynthesis under unstressed conditions and intercepted photosynthetically active radiation, and adjusted for stress. Calculations have been done using satellite and ground observations for 36 consecutive months (1987-1989) over large contiguous areas (ca. 10(exp 5) sq km) of boreal forests, crop land, temperate deciduous forest, temperate grassland, tropical deciduous forest, tropical evergreen forest, tropical savanna, and tundra. The ratio of annual respiration and gross photosynthesis, (R/A(sub g)), is found to be 0.5-0.6 for temperate and cold adopted biome areas, but somewhat higher for tropical biome areas (0.6-0.7). Interannual variation of the fluxes is found to be generally less than 15%. Calculated fluxes are compared with observations and several previous estimates. Results of sensitivity analysis are presented for uncertainties in parameterization and input data. It is found that

  16. Modeling Prairie Pothole Lakes: Linking Satellite Observation and Calibration (Invited)

    Science.gov (United States)

    Schwartz, F. W.; Liu, G.; Zhang, B.; Yu, Z.

    2009-12-01

    This paper examines the response of a complex lake wetland system to variations in climate. The focus is on the lakes and wetlands of the Missouri Coteau, which is part of the larger Prairie Pothole Region of the Central Plains of North America. Information on lake size was enumerated from satellite images, and yielded power law relationships for different hydrological conditions. More traditional lake-stage data were made available to us from the USGS Cottonwood Lake Study Site in North Dakota. A Probabilistic Hydrologic Model (PHM) was developed to simulate lake complexes comprised of tens-of-thousands or more individual closed-basin lakes and wetlands. What is new about this model is a calibration scheme that utilizes remotely-sensed data on lake area as well as stage data for individual lakes. Some ¼ million individual data points are used within a Genetic Algorithm to calibrate the model by comparing the simulated results with observed lake area-frequency power law relationships derived from Landsat images and water depths from seven individual lakes and wetlands. The simulated lake behaviors show good agreement with the observations under average, dry, and wet climatic conditions. The calibrated model is used to examine the impact of climate variability on a large lake complex in ND, in particular, the “Dust Bowl Drought” 1930s. This most famous drought of the 20th Century devastated the agricultural economy of the Great Plains with health and social impacts lingering for years afterwards. Interestingly, the drought of 1930s is unremarkable in relation to others of greater intensity and frequency before AD 1200 in the Great Plains. Major droughts and deluges have the ability to create marked variability of the power law function (e.g. up to one and a half orders of magnitude variability from the extreme Dust Bowl Drought to the extreme 1993-2001 deluge). This new probabilistic modeling approach provides a novel tool to examine the response of the

  17. Improving ROLO lunar albedo model using PLEIADES-HR satellites extra-terrestrial observations

    Science.gov (United States)

    Meygret, Aimé; Blanchet, Gwendoline; Colzy, Stéphane; Gross-Colzy, Lydwine

    2017-09-01

    The accurate on orbit radiometric calibration of optical sensors has become a challenge for space agencies which have developed different technics involving on-board calibration systems, ground targets or extra-terrestrial targets. The combination of different approaches and targets is recommended whenever possible and necessary to reach or demonstrate a high accuracy. Among these calibration targets, the moon is widely used through the well-known ROLO (RObotic Lunar Observatory) model developed by USGS. A great and worldwide recognized work was done to characterize the moon albedo which is very stable. However the more and more demanding needs for calibration accuracy have reached the limitations of the model. This paper deals with two mains limitations: the residual error when modelling the phase angle dependency and the absolute accuracy of the model which is no more acceptable for the on orbit calibration of radiometers. Thanks to PLEIADES high resolution satellites agility, a significant data base of moon and stars images was acquired, allowing to show the limitations of ROLO model and to characterize the errors. The phase angle residual dependency is modelled using PLEIADES 1B images acquired for different quasi-complete moon cycles with a phase angle varying by less than 1°. The absolute albedo residual error is modelled using PLEIADES 1A images taken over stars and the moon. The accurate knowledge of the stars spectral irradiance is transferred to the moon spectral albedo using the satellite as a transfer radiometer. This paper describes the data set used, the ROLO model residual errors and their modelling, the quality of the proposed correction and show some calibration results using this improved model.

  18. Link between EMIC waves in a plasmaspheric plume and a detached sub-auroral proton arc with observations of Cluster and IMAGE satellites

    Science.gov (United States)

    Yuan, Zhigang; Deng, Xiaohua; Lin, Xi; Pang, Ye; Zhou, Meng; Décréau, P. M. E.; Trotignon, J. G.; Lucek, E.; Frey, H. U.; Wang, Jingfang

    2010-04-01

    In this paper, we report observations from a Cluster satellite showing that ULF wave occurred in the outer boundary of a plasmaspheric plume on September 4, 2005. The band of observed ULF waves is between the He+ ion gyrofrequency and O+ ion gyrofrequency at the equatorial plane, implying that those ULF waves can be identified as EMIC waves generated by ring current ions in the equatorial plane and strongly affected by rich cold He+ ions in plasmaspheric plumes. During the interval of observed EMIC waves, the footprint of Cluster SC3 lies in a subauroral proton arc observed by the IMAGE FUV instrument, demonstrating that the subauroral proton arc was caused by energetic ring current protons scattered into the loss cone under the Ring Current (RC)-EMIC interaction in the plasmaspheric plume. Therefore, the paper provides a direct proof that EMIC waves can be generated in the plasmaspheric plume and scatter RC ions to cause subauroral proton arcs.

  19. The mass dependence of satellite quenching in Milky Way-like haloes

    Science.gov (United States)

    Phillips, John I.; Wheeler, Coral; Cooper, Michael C.; Boylan-Kolchin, Michael; Bullock, James S.; Tollerud, Erik

    2015-02-01

    Using the Sloan Digital Sky Survey, we examine the quenching of satellite galaxies around isolated Milky Way-like hosts in the local Universe. We find that the efficiency of satellite quenching around isolated galaxies is low and roughly constant over two orders of magnitude in satellite stellar mass (M⋆ = 108.5-1010.5 M⊙), with only ˜20 per cent of systems quenched as a result of environmental processes. While largely independent of satellite stellar mass, satellite quenching does exhibit clear dependence on the properties of the host. We show that satellites of passive hosts are substantially more likely to be quenched than those of star-forming hosts, and we present evidence that more massive haloes quench their satellites more efficiently. These results extend trends seen previously in more massive host haloes and for higher satellite masses. Taken together, it appears that galaxies with stellar masses larger than about 108 M⊙ are uniformly resistant to environmental quenching, with the relative harshness of the host environment likely serving as the primary driver of satellite quenching. At lower stellar masses (<108 M⊙), however, observations of the Local Group suggest that the vast majority of satellite galaxies are quenched, potentially pointing towards a characteristic satellite mass scale below which quenching efficiency increases dramatically.

  20. Different AT-rich satellite DNAs in Cucurbita pepo and Cucurbita maxima.

    Science.gov (United States)

    Ganal, M; Hemleben, V

    1986-11-01

    The AT-rich highly repeated satellite DNA of Cucurbita pepo (zucchini) and Cucurbita maxima (pumpkin) were cloned and their DNA structure was investigated. DNA sequencing revealed that the repeat length of satellite DNA in Cucurbita pepo is 349-352 base pairs. The percentage of AT-base pairs is about 61%. This satellite is highly conserved in restriction enzyme pattern and DNA sequence; sequence heterogeneity is about 10%. In contrast, the satellite DNA of Cucurbita maxima has a repeat length of 168-169 base pairs. This satellite is also rich in AT-base pairs (64%), existing in at least three different variants as revealed by restriction enzyme analysis and DNA sequencing. The sequence heterogeneity between these variants is about 15%. The two satellite DNAs showed no cross-hybridization to each other and sequence homology is only limited. Nevertheless, we found in the C. pepo genome a high amount of sequences resembling the satellite of C. maxima. In contrast, the satellite repeat of C. pepo is found in the C. maxima DNA only in a few copies. These observations were discussed with respect to satellite DNA evolution and compared to the data received from monocotyledonous species.

  1. A Method for Estimating BeiDou Inter-frequency Satellite Clock Bias

    Directory of Open Access Journals (Sweden)

    LI Haojun

    2016-02-01

    Full Text Available A new method for estimating the BeiDou inter-frequency satellite clock bias is proposed, considering the shortage of the current methods. The constant and variable parts of the inter-frequency satellite clock bias are considered in the new method. The data from 10 observation stations are processed to validate the new method. The characterizations of the BeiDou inter-frequency satellite clock bias are also analyzed using the computed results. The results of the BeiDou inter-frequency satellite clock bias indicate that it is stable in the short term. The estimated BeiDou inter-frequency satellite clock bias results are molded. The model results show that the 10 parameters of model for each satellite can express the BeiDou inter-frequency satellite clock bias well and the accuracy reaches cm level. When the model parameters of the first day are used to compute the BeiDou inter-frequency satellite clock bias of the second day, the accuracy also reaches cm level. Based on the stability and modeling, a strategy for the BeiDou satellite clock service is presented to provide the reference of our BeiDou.

  2. Satellite information for wind energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, M.; Astrup, P.; Bay Hasager, C.

    2004-11-01

    An introduction to satellite information relevant for wind energy applications is given. It includes digital elevation model (DEM) data based on satellite observations. The Shuttle Radar Topography Mission (SRTM) is useful for regional scale wind resource studies. Comparison results from complex terrain in Spain and flat terrain in Denmark are found to be acceptable for both sites. Also land cover type information can be retrieved from satellite observations. Land cover type maps have to be combined with roughness data from field observation or literature values. Land cover type maps constitute an aid to map larger regions within shorter time. Field site observations of obstacles and hedges are still necessary. The raster-based map information from DEM and land cover maps can be converted for use in WASP. For offshore locations it is possible to estimate the wind resources based on ocean surface wind data from several types of satellite observations. The RWT software allows an optimal calculation of SAR wind resource statistics. A tab-file with SAR-based observed wind climate (OWC) data can be obtained for 10 m above sea level and used in WASP. RWT uses a footprint averaging technique to obtain data as similar as possible to mast observations. Maximum-likelihood fitting is used to calculate the Weibull A and k parameters from the constrained data set. Satellite SAR wind maps cover the coastal zone from 3 km and offshore with very detailed information of 400 m by 400 m grid resolution. Spatial trends in mean wind, energy density, Weibull A and k and uncertainty values are provided for the area of interest. Satellite scatterometer wind observations have a spatial resolution of 25 km by 25 km. These data typically represent a site further offshore, and the tab-file statistics should be used in WASP combined with topography and roughness information to assess the coastal wind power potential. Scatterometer wind data are observed {approx} twice per day, whereas SAR only

  3. Are the Satellite-Observed Narrow, Streaky Chlorophyll Filaments Locally Intensified by the Submesoscale Processes?

    Science.gov (United States)

    2015-11-05

    HIS I’OR’A CANCELS AND SUPERSEOFS Al l PRFV•OUS VERSIONS ARE THE SATELLITE-OBSERVED NARROW, STREAKY CHLOROPHYLL FILAMENTS LOCALLY INTENSIFIED BY...AUGUST 2003 cold, dense jeto C 17 16 15 14 13 122.4W 122W 122.4W 122W warm, anticyclonic eddy CHLOROPHYLL 122.4W 122W 122.4W 122W 122.4W 122W filament...122.4W 122W mg/m 3 10 4 2 1 0.4 0.2 Figure 1. MODIS-Aqua SST and Chlorophyll a images for August 2003. Black lines on MODIS SST and Chlorophyll a

  4. Rocket and satellite observations of the local interstellar medium

    International Nuclear Information System (INIS)

    Jelinsky, P.N.

    1988-01-01

    The purpose of the study described in this thesis was to obtained new information on the structure of the local interstellar medium (ISM). Two separate experiments using different instruments were used in this study. The first experiment employed a spectrometer with a spectral bandpass from 350-1150 angstrom which was placed at the focus of a 95 cm, f/2.8 normal incidence telescope flown on an Aries sounding rocket. The purpose of this experiment was to measure the interstellar absorption edges, due to neutral helium and neutral hydrogen, in the spectrum of a hot white dwarf. The hot white dwarf G191-B2B was observed for 87 seconds during the flight. Unfortunately, due to high pressure in the rocket, no scientifically useful data was obtained during the flight. The second experiment utilized the high resolution spectrometer on the International Ultraviolet Explorer satellite. The purpose of the experiment was to observe interstellar absorption lines in the spectrum of hot white dwarfs. A new method of determining the equivalent widths of absorption lines and their uncertainties was developed. The neutral hydrogen column density is estimated from the N I, Si II, and C II columns. Unfortunately, the uncertainties in the neutral hydrogen columns are very large, only two are constrained to better than an order of magnitude. High ionization species (N V, Si IV, and C IV) are seen in five of the stars. Upper limits to the temperature of the ISM are determined from the velocity dispersions. The temperature of the low ionization gas toward four of the stars is constrained to be less than 50,000 K

  5. Assessing modelled spatial distributions of ice water path using satellite data

    Science.gov (United States)

    Eliasson, S.; Buehler, S. A.; Milz, M.; Eriksson, P.; John, V. O.

    2010-05-01

    The climate models used in the IPCC AR4 show large differences in monthly mean cloud ice. The most valuable source of information that can be used to potentially constrain the models is global satellite data. For this, the data sets must be long enough to capture the inter-annual variability of Ice Water Path (IWP). PATMOS-x was used together with ISCCP for the annual cycle evaluation in Fig. 7 while ECHAM-5 was used for the correlation with other models in Table 3. A clear distinction between ice categories in satellite retrievals, as desired from a model point of view, is currently impossible. However, long-term satellite data sets may still be used to indicate the climatology of IWP spatial distribution. We evaluated satellite data sets from CloudSat, PATMOS-x, ISCCP, MODIS and MSPPS in terms of monthly mean IWP, to determine which data sets can be used to evaluate the climate models. IWP data from CloudSat cloud profiling radar provides the most advanced data set on clouds. As CloudSat data are too short to evaluate the model data directly, it was mainly used here to evaluate IWP from the other satellite data sets. ISCCP and MSPPS were shown to have comparatively low IWP values. ISCCP shows particularly low values in the tropics, while MSPPS has particularly low values outside the tropics. MODIS and PATMOS-x were in closest agreement with CloudSat in terms of magnitude and spatial distribution, with MODIS being the best of the two. As PATMOS-x extends over more than 25 years and is in fairly close agreement with CloudSat, it was chosen as the reference data set for the model evaluation. In general there are large discrepancies between the individual climate models, and all of the models show problems in reproducing the observed spatial distribution of cloud-ice. Comparisons consistently showed that ECHAM-5 is the GCM from IPCC AR4 closest to satellite observations.

  6. Seismo-Ionospheric Coupling as Intensified EIA Observed by Satellite Electron Density and GPS-TEC Data

    Science.gov (United States)

    Ryu, K.; Jangsoo, C.; Kim, S. G.; Jeong, K. S.; Parrot, M.; Pulinets, S. A.; Oyama, K. I.

    2014-12-01

    Examples of intensified EIA features temporally and spatially related to large earthquakes observed by satellites and GPS-TEC are introduced. The precursory, concurrent, and ex-post enhancements of EIA represented by the equatorial electron density, which are thought to be related to the M8.7 Northern Sumatra earthquake of March 2005, the M8.0 Pisco earthquake of August 2007, and the M7.9 Wenchuan Earthquake of 12 May 2008, are shown with space weather condition. Based on the case studies, statistical analysis on the ionospheric electron density data measured by the Detection of Electro-Magnetic Emissions Transmitted from Earthquake Regions satellite (DEMETER) over a period of 2005-2010 was executed in order to investigate the correlation between seismic activity and equatorial plasma density variations. To simplify the analysis, three equatorial regions with frequent earthquakes were selected and then one-dimensional time series analysis between the daily seismic activity indices and the EIA intensity indices were performed for each region with excluding the possible effects from the geomagnetic and solar activity. The statistically significant values of the lagged cross-correlation function, particularly in the region with minimal effects of longitudinal asymmetry, indicate that some of the very large earthquakes with M > 7.0 in the low latitude region can accompany observable seismo-ionospheric coupling phenomena in the form of EIA enhancements, even though the seismic activity is not the most significant driver of the equatorial ionospheric evolution. The physical mechanisms of the seismo-ionospheric coupling to explain the observation and the possibility of earthquake prediction using the EIA intensity variation are discussed.

  7. LUMINOUS SATELLITES OF EARLY-TYPE GALAXIES. I. SPATIAL DISTRIBUTION

    International Nuclear Information System (INIS)

    Nierenberg, A. M.; Auger, M. W.; Treu, T.; Marshall, P. J.; Fassnacht, C. D.

    2011-01-01

    We study the spatial distribution of faint satellites of intermediate redshift (0.1 s = 1.7 +0.9 -0.8 ) that is comparable to the number of Milky Way satellites with similar host-satellite contrast. The average projected radial profile of the satellite distribution is isothermal (γ p = -1.0 +0.3 -0.4 ), which is consistent with the observed central mass density profile of massive early-type galaxies. Furthermore, the satellite distribution is highly anisotropic (isotropy is ruled out at a >99.99% confidence level). Defining φ to be the offset between the major axis of the satellite spatial distribution and the major axis of the host light profile, we find a maximum posterior probability of φ = 0 and |φ| less than 42 0 at the 68% confidence level. The alignment of the satellite distribution with the light of the host is consistent with simulations, assuming that light traces mass for the host galaxy as observed for lens galaxies. The anisotropy of the satellite population enhances its ability to produce the flux ratio anomalies observed in gravitationally lensed quasars.

  8. Dark Matter Constraints from Observations of 25 Milky Way Satellite Galaxies with the Fermi Large Area Telescope

    Science.gov (United States)

    Ackermann, M.; Albert, A.; Anderson, B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Bissaldi, E.; hide

    2013-01-01

    The dwarf spheroidal satellite galaxies of the Milky Way are some of the most dark-matter-dominated objects known. Due to their proximity, high dark matter content, and lack of astrophysical backgrounds, dwarf spheroidal galaxies are widely considered to be among the most promising targets for the indirect detection of dark matter via gamma rays. Here we report on gamma ray observations of 25 Milky Way dwarf spheroidal satellite galaxies based on 4 years of Fermi Large Area Telescope (LAT) data. None of the dwarf galaxies are significantly detected in gamma rays, and we present gamma ray flux upper limits between 500MeV and 500 GeV. We determine the dark matter content of 18 dwarf spheroidal galaxies from stellar kinematic data and combine LAT observations of 15 dwarf galaxies to constrain the dark matter annihilation cross section. We set some of the tightest constraints to date on the annihilation of dark matter particles with masses between 2 GeV and 10TeV into prototypical standard model channels. We find these results to be robust against systematic uncertainties in the LAT instrument performance, diffuse gamma ray background modeling, and assumed dark matter density profile.

  9. A Comparison of Satellite Based, Modeled Derived Daily Solar Radiation Data with Observed Data for the Continental US

    Science.gov (United States)

    White, Jeffrey W.; Hoogenboom, Gerrit; Wilkens, Paul W.; Stackhouse, Paul W., Jr.; Hoell, James M.

    2010-01-01

    Many applications of simulation models and related decision support tools for agriculture and natural resource management require daily meteorological data as inputs. Availability and quality of such data, however, often constrain research and decision support activities that require use of these tools. Daily solar radiation (SRAD) data are especially problematic because the instruments require electronic integrators, accurate sensors are expensive, and calibration standards are seldom available. The Prediction Of Worldwide Energy Resources (NASA/POWER; power.larc.nasa.gov) project at the NASA Langley Research Center estimates daily solar radiation based on data that are derived from satellite observations of outgoing visible radiances and atmospheric parameters based upon satellite observations and assimilation models. The solar data are available for a global 1 degree x 1 degree coordinate grid. SRAD can also be estimated based on attenuation of extraterrestrial radiation (Q0) using daily temperature and rainfall data to estimate the optical thickness of the atmosphere. This study compares daily solar radiation data from NASA/POWER (SRADNP) with instrument readings from 295 stations (SRADOB), as well as with values that were estimated with the WGENR solar generator. WGENR was used both with daily temperature and precipitation records from the stations reporting solar data and records from the NOAA Cooperative Observer Program (COOP), thus providing two additional sources of solar data, SRADWG and SRADCO. Values of SRADNP for different grid cells consistently showed higher correlations (typically 0.85 to 0.95) with SRADOB data than did SRADWG or SRADCO for sites within the corresponding cells. Mean values of SRADOB, SRADWG and SRADNP for sites within a grid cell usually were within 1 MJm-2d-1 of each other, but NASA/POWER values averaged 1.1 MJm-2d-1 lower than SRADOB. The magnitude of this bias was greater at lower latitudes and during summer months and may be at

  10. Human Artificial Chromosomes with Alpha Satellite-Based De Novo Centromeres Show Increased Frequency of Nondisjunction and Anaphase Lag

    OpenAIRE

    Rudd, M. Katharine; Mays, Robert W.; Schwartz, Stuart; Willard, Huntington F.

    2003-01-01

    Human artificial chromosomes have been used to model requirements for human chromosome segregation and to explore the nature of sequences competent for centromere function. Normal human centromeres require specialized chromatin that consists of alpha satellite DNA complexed with epigenetically modified histones and centromere-specific proteins. While several types of alpha satellite DNA have been used to assemble de novo centromeres in artificial chromosome assays, the extent to which they fu...

  11. Lightning climatology over Jakarta, Indonesia, based on long-term surface operational, satellite, and campaign observations

    Science.gov (United States)

    Mori, Shuichi; Wu, Peiming; Yamanaka, Manabu D.; Hattori, Miki; Hamada, Jun-Ichi; Arbain, Ardhi A.; Lestari, Sopia; Sulistyowati, Reni; Syamsudin, Fadli

    2016-04-01

    Lightning frequency over Indonesian Maritime Continent (MC) is quite high (Petersen and Rutledge 2001, Christian et al. 2003, Takayabu 2006, etc). In particular, Bogor (south of Jakarta, west Jawa) had 322 days of lightning in one year (Guinness Book in 1988). Lightning causes serious damage on nature and society over the MC; forest fore, power outage, inrush/surge currents on many kinds of electronics. Lightning climatology and meso-scale characteristics of thunderstorm over the MC, in particular over Jakarta, where social damage is quite serious, were examined. We made Statistical analysis of lightning and thunderstorm based on TRMM Lightning Image Sensor (LIS) and Global Satellite Mapping of Precipitation (GSMaP) together with long-term operational surface observation data (SYNOP) in terms of diurnal, intraseasonal, monsoonal, and interannual variations. In addition, we carried out a campaign observation in February 2015 in Bogor to obtain meso-scale structure and dynamics of thunderstorm over Jakarta to focus on graupel and other ice phase particles inside by using an X-band dual-polarimetric (DP) radar. Recently, Virts et al. (2013a, b) showed comprehensive lightning climatology based on the World Wide Lightning Location Network (WWLLN). However, they also reported problems with its detection efficiency (Japan Society for the Promotion of Science (JSPS) KAKENHI (Grants-in-Aid for Scientific Research) grant number 25350515 and the Japan Aerospace Exploration Agency (JAXA) 7th Research Announcement (RA).

  12. The Relationship of High-Latitude Thermospheric Wind With Ionospheric Horizontal Current, as Observed by CHAMP Satellite

    Science.gov (United States)

    Huang, Tao; Lühr, Hermann; Wang, Hui; Xiong, Chao

    2017-12-01

    The relationship between high-latitude ionospheric currents (Hall current and field-aligned current) and thermospheric wind is investigated. The 2-D patterns of horizontal wind and equivalent current in the Northern Hemisphere derived from the CHAMP satellite are considered for the first time simultaneously. The equivalent currents show strong dependences on both interplanetary magnetic field (IMF) By and Bz components. However, IMF By orientation is more important in controlling the wind velocity patterns. The duskside wind vortex as well as the antisunward wind in the morning polar cap is more evident for positive By. To better understand their spatial relation in different sectors, a systematic superposed epoch analysis is applied. Our results show that in the dusk sector, the vectors of the zonal wind and equivalent current are anticorrelated, and both of them form a vortical flow pattern for different activity levels. The currents and zonal wind are intensified with the increase of merging electric field. However, on the dawnside, where the relation is less clear, antisunward zonal winds dominate. Plasma drift seems to play a less important role for the wind than neutral forces in this sector. In the noon sector, the best anticorrelation between equivalent current and wind is observed for a positive IMF By component and it is less obvious for negative By. A clear seasonal effect with current intensities increasing from winter to summer is observed in the noon sector. Different from the currents, the zonal wind intensity shows little dependence on seasons. Our results indicate that the plasma drift and the neutral forces are of comparable influence on the zonal wind at CHAMP altitude in the noon sector.

  13. Magnetic Satellite Missions and Data

    DEFF Research Database (Denmark)

    Olsen, Nils; Kotsiaros, Stavros

    2011-01-01

    Although the first satellite observations of the Earth’s magnetic field were already taken more than 50 years ago, continuous geomagnetic measurements from space are only available since 1999. The unprecedented time-space coverage of this recent data set opened revolutionary new possibilities...... for exploring the Earth’s magnetic field from space. In this chapter we discuss characteristics of satellites measuring the geomagnetic field and report on past, present and upcoming magnetic satellite missions. We conclude with some basics about space magnetic gradiometry as a possible path for future...... exploration of Earth’s magnetic field with satellites....

  14. Detecting ecosystem performance anomalies for land management in the upper colorado river basin using satellite observations, climate data, and ecosystem models

    Science.gov (United States)

    Gu, Yingxin; Wylie, B.K.

    2010-01-01

    This study identifies areas with ecosystem performance anomalies (EPA) within the Upper Colorado River Basin (UCRB) during 2005-2007 using satellite observations, climate data, and ecosystem models. The final EPA maps with 250-m spatial resolution were categorized as normal performance, underperformance, and overperformance (observed performance relative to weather-based predictions) at the 90% level of confidence. The EPA maps were validated using "percentage of bare soil" ground observations. The validation results at locations with comparable site potential showed that regions identified as persistently underperforming (overperforming) tended to have a higher (lower) percentage of bare soil, suggesting that our preliminary EPA maps are reliable and agree with ground-based observations. The 3-year (2005-2007) persistent EPA map from this study provides the first quantitative evaluation of ecosystem performance anomalies within the UCRB and will help the Bureau of Land Management (BLM) identify potentially degraded lands. Results from this study can be used as a prototype by BLM and other land managers for making optimal land management decisions. ?? 2010 by the authors.

  15. Satellite Eye for Galathea 3. Annual report 2006

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Sørensen, Peter; Pedersen, Leif Toudal

    The Satellite Eye for Galathea 3 project is collecting satellite images from many satellites and, in particular, from the European ENVISAT satellite along the Galathea 3 global route. The expedition takes place from 11 August 2006 to 27 April 2007. Prior to the expedition several satellite images...... Vædderen, pupils in the classrooms and the public at any moment can take a look at the conditions seen from the eyes of the Earth observing satellites....

  16. Myostatin signals through Pax7 to regulate satellite cell self-renewal

    International Nuclear Information System (INIS)

    McFarlane, Craig; Hennebry, Alex; Thomas, Mark; Plummer, Erin; Ling, Nicholas; Sharma, Mridula; Kambadur, Ravi

    2008-01-01

    Myostatin, a Transforming Growth Factor-beta (TGF-β) super-family member, has previously been shown to negatively regulate satellite cell activation and self-renewal. However, to date the mechanism behind Myostatin function in satellite cell biology is not known. Here we show that Myostatin signals via a Pax7-dependent mechanism to regulate satellite cell self-renewal. While excess Myostatin inhibited Pax7 expression via ERK1/2 signaling, an increase in Pax7 expression was observed following both genetic inactivation and functional antagonism of Myostatin. As a result, we show that either blocking or inactivating Myostatin enhances the partitioning of the fusion-incompetent self-renewed satellite cell lineage (high Pax7 expression, low MyoD expression) from the pool of actively proliferating myogenic precursor cells. Consistent with this result, over-expression of Pax7 in C2C12 myogenic cells resulted in increased self-renewal through a mechanism which slowed both myogenic proliferation and differentiation. Taken together, these results suggest that increased expression of Pax7 promotes satellite cell self-renewal, and furthermore Myostatin may control the process of satellite cell self-renewal through regulation of Pax7. Thus we speculate that, in addition to the intrinsic factors (such as Pax7), extrinsic factors both positive and negative in nature, will play a major role in determining the stemness of skeletal muscle satellite cells

  17. Satellite information for wind energy applications

    DEFF Research Database (Denmark)

    Nielsen, M.; Astrup, Poul; Hasager, Charlotte Bay

    2004-01-01

    An introduction to satellite information relevant for wind energy applications is given. It includes digital elevation model (DEM) data based on satellite observations. The Shuttle Radar Topography Mission (SRTM) is useful for regional scale wind resourcestudies. Comparison results from complex...... terrain in Spain and flat terrain in Denmark are found to be acceptable for both sites. Also land cover type information can be retrieved from satellite observations. Land cover type maps have to be combined withroughness data from field observation or literature values. Land cover type maps constitute...... an aid to map larger regions within shorter time. Field site observations of obstacles and hedges are still necessary. The raster-based map information from DEMand land cover maps can be converted for use in WASP. For offshore locations it is possible to estimate the wind resources based on ocean surface...

  18. Convective and large-scale mass flux profiles over tropical oceans determined from synergistic analysis of a suite of satellite observations

    Science.gov (United States)

    Masunaga, Hirohiko; Luo, Zhengzhao Johnny

    2016-07-01

    A new, satellite-based methodology is developed to evaluate convective mass flux and large-scale total mass flux. To derive the convective mass flux, candidate profiles of in-cloud vertical velocity are first constructed with a simple plume model under the constraint of ambient sounding and then narrowed down to the solution that matches satellite-derived cloud top buoyancy. Meanwhile, the large-scale total mass flux is provided separately from satellite soundings by a method developed previously. All satellite snapshots are sorted into a composite time series that delineates the evolution of a vigorous and organized convective system. Principal findings are the following. First, convective mass flux is modulated primarily by convective cloud cover, with the intensity of individual convection being less variable over time. Second, convective mass flux dominates the total mass flux only during the early hours of the convective evolution; as convective system matures, a residual mass flux builds up in the mass flux balance that is reminiscent of stratiform dynamics. The method developed in this study is expected to be of unique utility for future observational diagnosis of tropical convective dynamics and for evaluation of global climate model cumulus parameterizations in a global sense.

  19. Illuminating the star clusters and satellite galaxies with multi-scale baryonic simulations

    Science.gov (United States)

    Maji, Moupiya; Zhu, Qirong; Li, Yuexing; Marinacci, Federico; Charlton, Jane; Hernquist, Lars; Knebe, Alexander

    2018-01-01

    Over the past decade, advances in computational architecture have made it possible for the first time to investigate some of the fundamental questions around the formation, evolution and assembly of the building blocks of the universe; star clusters and galaxies. In this talk, I will focus on two major questions: What is the origin of the observed universal lognormal mass function in globular clusters? What is the statistical distribution of the properties of satellite planes in a large sample of satellite systems?Observations of globular clusters show that they have universal lognormal mass functions with a characteristic peak at 2X105 MSun, although the origin of this peaked distribution is unclear. We investigate the formation of star clusters in interacting galaxies using baryonic simulations and found that massive clusters preferentially form in extremely high pressure gas clouds which reside in highly shocked regions produced by galaxy interactions. These massive clusters have quasi-lognormal initial mass functions with a peak around ~106MSun which may survive dynamical evolution and slowly evolve into the universal lognormal profiles observed today.The classical Milky Way (MW) satellites are observed to be distributed in a highly-flattened plane, called Disk of Satellites (DoS). However the significance, coherence and origin of DoS is highly debated. To understand this, we first analyze all MW satellites and find that a small sample size can artificially produce a highly anisotropic spatial distribution and a strong clustering of their angular momentum. Comparing a baryonic simulation of a MW-sized galaxy with its N-body counterpart we find that an anisotropic DoS can originate from baryonic processes. Furthermore, we explore the statistical distribution of DoS properties by analyzing 2591 satellite systems in the cosmological hydrodynamic simulation Illustris. We find that the DoS becomes more isotropic with increasing sample sizes and most (~90%) satellite

  20. Jovian magnetosphere-satellite interactions: aspects of energetic charged particle loss

    International Nuclear Information System (INIS)

    Thomsen, M.F.

    1979-01-01

    Observations of energetic charged particles obtained by Pioneers 10 and 11 near the orbits of the inner Jovian satellites are reviewed with particular emphasis on the implications of these observations with regard to possible models of the access of charged particles to the satellite surfaces. The observed effects on particle pitch angle distributions and the observed energy dependence of the intensity depletions seen at the satellite orbits are compared with predictions of satellite sweepup based on several different access models. The two major uncertainties which hamper the comparisons are those associated with the satellite conductivities and the ionospheric dynamo electric field power spectrum. The satellite conductivity is important because it governs the access of the particles to the satellite surface and therefore the lifetime tau: the dynamo power spectrum is important because it controls the magnitude and energy dependence of the radial diffusion coefficient. In spite of these uncertainties we can nevertheless make the following conclusions. The electron pitch angle distributions at Io's orbit are compatible with expectations based on sweeping. The energy dependences of the observed electron depletions at all three inner satellites (Amalthea, Io, and Europa) are incompatible with expectations based on a perfect conductor model of a satellite and its flux tube but are compatible with the energy dependence expected for perfectly insulating or partially conducting satellites However, the proton losses at Io are observed to be much stronger than the electron losses, in contradiction to expectations based on sweeping. The most attractive explanation for the proton-electron discrepancy at Io is that the large proton losses at Io's orbit are principally due to enhanced pitch angle scattering in the region of higher plasma density

  1. Passivity based nonlinear attitude control of the Rømer satellite

    DEFF Research Database (Denmark)

    Quottrup, Michael Melholt; Krogh-Sørensen, J.; Wisniewski, Rafal

    This paper suggests nonlinear attitude control of the Danish satellite Rømer. This satellite will be designed to fulfil two scientific objectives: The observation of stellar oscillations and the detection and localisation of gamma-ray bursts. The satellite will be equipped with a tetrahedron...... configuration of Wide Angle Telescopes for Cosmic Hard x-rays (WATCH), that server the dual purpose of X-ray detectors and momentum wheels. By employing passivity theory it is shown, that the satellite is a passive system. This paper shows, that global asymptotic can be obtained with a passive and an imput...... and output strictly passive system in a feedback interconnection. It is demonstrated in a simulation study that the resultant control has a potential for on-board implementation in the acquistion phase, where global stabillity of the control law is vital...

  2. The influence of regional surface soil moisture anomalies on forest fires in Siberia observed from satellites

    Energy Technology Data Exchange (ETDEWEB)

    Bartsch, A [Institute of Photogrammetry and Remote Sensing, Vienna University of Technology, 1040 Vienna (Austria); Balzter, H [Department of Geography, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); George, C, E-mail: ab@ipf.tuwien.ac.a [Earth Observation, Centre for Ecology and Hydrology, Crowmarsh Gifford, Wallingford OX10 8BB (United Kingdom)

    2009-10-15

    Forest fires are frequent in the Siberian taiga and are predicted to increase in frequency as a result of increased fire risk under drought conditions, and prolonged fire seasons caused by climate change. There is, however, some uncertainty as to the extent to which drought influences forest fire frequency at a regional scale. Here, we present an analysis of satellite derived soil moisture anomaly data from ERS-1/2 (ERS: Earth Resources Satellite) scatterometer data and burned area maps from MODIS/AVHRR/ATSR (Moderate Resolution Imaging Spectroradiometer/Advanced Very High Resolution Radiometer/Along-Track Scanning Radiometer) over Central Siberia for the years 1992-2000. The purpose of this study is to investigate the relationship of remotely sensed soil moisture deviations from the long-term mean and fire within the boreal biome on a sub-continental scale. Results show that wet surface soil moisture conditions limit the extent of burned area. They can prevent the outbreak of fires but the magnitude of a negative (dry) deviation does not determine the maximum size of fire affected areas. It is known from the literature, however, that an ignition is more likely to occur under low surface wetness conditions, such as those that we observed during July and August in both permafrost and non-permafrost regions. Although the burned area under drier conditions in July is lowest over non-permafrost, the actual number of fires is as high as over continuous permafrost. Approximately 80% of all events occurred under such conditions during that month. The fire size was below 50 km{sup 2} under moist conditions. Larger burned areas have in general not been detected when the surface wetness deviation exceeded +5%.

  3. The influence of regional surface soil moisture anomalies on forest fires in Siberia observed from satellites

    International Nuclear Information System (INIS)

    Bartsch, A; Balzter, H; George, C

    2009-01-01

    Forest fires are frequent in the Siberian taiga and are predicted to increase in frequency as a result of increased fire risk under drought conditions, and prolonged fire seasons caused by climate change. There is, however, some uncertainty as to the extent to which drought influences forest fire frequency at a regional scale. Here, we present an analysis of satellite derived soil moisture anomaly data from ERS-1/2 (ERS: Earth Resources Satellite) scatterometer data and burned area maps from MODIS/AVHRR/ATSR (Moderate Resolution Imaging Spectroradiometer/Advanced Very High Resolution Radiometer/Along-Track Scanning Radiometer) over Central Siberia for the years 1992-2000. The purpose of this study is to investigate the relationship of remotely sensed soil moisture deviations from the long-term mean and fire within the boreal biome on a sub-continental scale. Results show that wet surface soil moisture conditions limit the extent of burned area. They can prevent the outbreak of fires but the magnitude of a negative (dry) deviation does not determine the maximum size of fire affected areas. It is known from the literature, however, that an ignition is more likely to occur under low surface wetness conditions, such as those that we observed during July and August in both permafrost and non-permafrost regions. Although the burned area under drier conditions in July is lowest over non-permafrost, the actual number of fires is as high as over continuous permafrost. Approximately 80% of all events occurred under such conditions during that month. The fire size was below 50 km 2 under moist conditions. Larger burned areas have in general not been detected when the surface wetness deviation exceeded +5%.

  4. InSAR atmospheric correction using Himawari-8 Geostationary Meteorological Satellite

    Science.gov (United States)

    Kinoshita, Y.; Nimura, T.; Furuta, R.

    2017-12-01

    The atmospheric delay effect is one of the limitations for the accurate surface displacement detection by Synthetic Aperture Radar Interferometry (InSAR). Many previous studies have attempted to mitigate the neutral atmospheric delay in InSAR (e.g. Jolivet et al. 2014; Foster et al. 2006; Kinoshita et al. 2013). Hanssen et al. (2001) investigated the relationship between the 27 hourly observations of GNSS precipitable water vapor (PWV) and the infrared brightness temperature derived from visible satellite imagery, and showed a good correlation. Here we showed a preliminary result of the newly developed method for the neutral atmospheric delay correction using the Himawari-8 Japanese geostationary meteorological satellite data. The Himawari-8 satellite is the Japanese state-of-the-art geostationary meteorological satellite that has 16 observation channels and has spatial resolutions of 0.5 km (visible) and 2.0 km (near-infrared and infrared) with an time interval of 2.5 minutes around Japan. To estimate the relationship between the satellite brightness temperature and the atmospheric delay amount. Since the InSAR atmospheric delay is principally the same as that in GNSS, we at first compared the Himawari-8 data with the GNSS zenith tropospheric delay data derived from the Japanese dense GNSS network. The comparison of them showed that the band with the wavelength of 6.9 μm had the highest correlation to the GNSS observation. Based on this result, we developed an InSAR atmospheric delay model that uses the Himawari-8 6.9 μm band data. For the model validation, we generated InSAR images from the ESA's C-band Sentinel-1 SLC data with the GAMMA SAR software. We selected two regions around Tokyo and Sapporo (both in Japan) as the test sites because of the less temporal decorrelation. The validation result showed that the delay model reasonably estimate large scale phase variation whose spatial scale was on the order of over 20 km. On the other hand, phase variations of

  5. Shadow imaging of geosynchronous satellites

    Science.gov (United States)

    Douglas, Dennis Michael

    Geosynchronous (GEO) satellites are essential for modern communication networks. If communication to a GEO satellite is lost and a malfunction occurs upon orbit insertion such as a solar panel not deploying there is no direct way to observe it from Earth. Due to the GEO orbit distance of ~36,000 km from Earth's surface, the Rayleigh criteria dictates that a 14 m telescope is required to conventionally image a satellite with spatial resolution down to 1 m using visible light. Furthermore, a telescope larger than 30 m is required under ideal conditions to obtain spatial resolution down to 0.4 m. This dissertation evaluates a method for obtaining high spatial resolution images of GEO satellites from an Earth based system by measuring the irradiance distribution on the ground resulting from the occultation of the satellite passing in front of a star. The representative size of a GEO satellite combined with the orbital distance results in the ground shadow being consistent with a Fresnel diffraction pattern when observed at visible wavelengths. A measurement of the ground shadow irradiance is used as an amplitude constraint in a Gerchberg-Saxton phase retrieval algorithm that produces a reconstruction of the satellite's 2D transmission function which is analogous to a reverse contrast image of the satellite. The advantage of shadow imaging is that a terrestrial based redundant set of linearly distributed inexpensive small telescopes, each coupled to high speed detectors, is a more effective resolved imaging system for GEO satellites than a very large telescope under ideal conditions. Modeling and simulation efforts indicate sub-meter spatial resolution can be readily achieved using collection apertures of less than 1 meter in diameter. A mathematical basis is established for the treatment of the physical phenomena involved in the shadow imaging process. This includes the source star brightness and angular extent, and the diffraction of starlight from the satellite

  6. Observations of auroral zone processes by the Viking satellite

    International Nuclear Information System (INIS)

    Hultqvist, B.

    1989-01-01

    The scientific results of the Viking project obtained up to the spring of 1988 are reviewed. During solar minimum conditions, when Viking was operated, the dayside auroral oval has been found to be the most active part, except during strong substorms and storms. A number of new auroral morphological features have been seen with the imaging experiment onboard Viking. Large-amplitude slow fluctuations of the electric field heat the ionospheric plasma and pump up the magnetic moment of the ionospheric ions so that they may leave the ionosphere. These fluctuations also accelerate ionospheric electrons upwards along the magnetic field lines. The importance of the acceleration of auroral electrons into the atmosphere by magnetic field-aligned potential differences has been confirmed. The first satellite-borne plasma wave interferometer on Viking has made it possible to determine a number of characteristics of the 'weak' double layers, seen first by the S3-3 satellite. A large number of these along the magnetic field lines produce large electric potential differences. Many new results concerning wave-particle interactions have been obtained, of which a few are presented here. (author)

  7. GUST86 - An analytical ephemeris of the Uranian satellites. [General Uranus Satellite Theory

    Science.gov (United States)

    Laskar, J.; Jacobson, R. A.

    1987-01-01

    The General Uranus Satellite Theory GUST (Laskar, 1986) is used for the construction of an analytical ephemeris for the Uranian satellites. The theory is fitted against earth-based observations from 1911 to 1986, and all radio and optical data obtained during Voyager encounter with Uranus. Earth-based observations alone allow the determination of masses which are within 15 percent of the values determined by the Uranus flyby. The analysis of all the observations confirm the values of the masses obtained during the encounter (Stone and Miner, 1986) and give a complete set of dynamical parameters for the analytical theory. An analytical ephemeris, GUST86, with an estimated precision of about 100 km with respect to Uranus is obtained.

  8. Wideband satellite phase coherent beacon observations at auroral and equatorial latitudes - A review

    International Nuclear Information System (INIS)

    Rino, C.L.; Livingston, R.C.; Cousins, M.D.; Fair, B.C.

    1978-01-01

    This paper presents a brief review of some of the principal results from the first two years of operation of the Wideband satellite which transmits phase-coherent signals from S-band to VHF. The auroral zone data show narrow regions of enhanced scintillation well equatorward of the discrete aurora. Such enhancements can be explained as a purely geometrical effect if the irregularities within the major precipitation regions have a sheet-like structure. Evidence of a localized irregularity source at the poleward boundary of the plasma trough is also found. Model computations are discussed and applied to the interpretation of equatorial data

  9. Geostationary satellite observations of the april 1979 soufriere eruptions.

    Science.gov (United States)

    Krueger, A F

    1982-06-04

    Infrared images from the geostationary satellite SMS-1 were used to study the growth of the eight major eruptions of Soufriere, St. Vincent, during April 1979. These eruptions differed considerably in growth and intensity, the most intense being that of 17 April which formed an ash cloud of 96,000 square kilometers in 4 hours. The weakest eruption formed a cloud of only 16,000 square kilometers.

  10. Observations of upflowing ionospheric ions in the mid-altitude cusp/cleft region with the Viking satellite

    International Nuclear Information System (INIS)

    Thelin, B.; Aparicio, B.; Lundin, R.

    1990-01-01

    Measurements of positive ions (0.1-10 keV) from the polar-orbiting Viking satellite have been obtained in the cusp/cleft region and have been tabulated in MLT versus invariant latitude plots to get a synoptic picture of the occurrence of upgoing auroral positive ions. A distinction was made between ion distributions with peak fluxes along B (ion beam) and those exhibiting flux maxima that are not field-aligned (conics). Both beams and conics are shown to be common auroral phenomena, whose frequencies of occurrence in MLT, invariant latitude, and altitude were studied. During the period of study (March-June 1986) the ion beams were more frequenty (about a factor of 2) in the dusk sector than in the dawn sector. This effect seemed to increase with magnetic activity but was mostly unchanged with the sign of the interplanetary magnetic field B y component. An investigation was also made of the invariant latitude dependence for beams and conics, where the dawn sector beams have a tendency to be lcoated toward higher invariant latitudes for both positive and negative B y components. The ion beams were observed primarily above 5,000 km with a frequency of occurrence increasing with altitude up to the satellite apogee at about 13,500 km. The ion conics were observed from above 7,000 km to be steadily increasing in altitude

  11. Wind-driven marine phytoplank blooms: Satellite observation and analysis

    Science.gov (United States)

    Tang, DanLing

    2016-07-01

    Algal bloom is defined as a rapid increase or accumulation in biomass in an aquatic system. It not only can increase the primary production but also could result in negative ecological consequence, e.g.,Harmful Algal Blooms (HABs). According to the classic theory for the formation of algal blooms "critical depth" and "eutrophication", oligotrophic sea area is usually difficult to form a large area of algal blooms, and actuallythe traditional observation is only sporadic capture to the existence of algal blooms.Taking full advantage of multiple data of satellite remote sensing , this study introduces "Wind-driven algal blooms in open oceans: observation and mechanisms" It explained except classic coastal Ekman transport, the wind through a variety of mechanisms affecting the formation of algal blooms. Proposed a conceptual model of "Strong wind -upwelling-nutrient-phytoplankton blooms" in Western South China Sea (SCS) to assess role of wind-induced advection transport in phytoplankton bloom formation. It illustrates the nutrient resources that support long-term offshore phytoplankton blooms in the western SCS; (2)Proposal of the theory that "typhoons cause vertical mixing, induce phytoplankton blooms", and quantify their important contribution to marine primary production; Proposal a new ecological index for typhoon. Proposed remote sensing inversion models. (3)Finding of the spatial and temporaldistributions pattern of harmful algal bloom (HAB)and species variations of HAB in the South Yellow Sea and East China Sea, and in the Pearl River estuary, and their oceanic dynamic mechanisms related with monsoon; The project developed new techniques and generated new knowledge, which significantly improved understanding of the formation mechanisms of algal blooms. The proposed "wind-pump" mechanism integrates theoretical system combined "ocean dynamics, development of algal blooms, and impact on primary production", which will benefit fisheries management. These

  12. Satellite Sounder Observations of Contrasting Tropospheric Moisture Transport Regimes: Saharan Air Layers, Hadley Cells, and Atmospheric Rivers

    Energy Technology Data Exchange (ETDEWEB)

    Nalli, Nicholas R.; Barnet, Christopher D.; Reale, Tony; Liu, Quanhua; Morris, Vernon R.; Spackman, J. Ryan; Joseph, Everette; Tan, Changyi; Sun, Bomin; Tilley, Frank; Leung, L. Ruby; Wolfe, Daniel

    2016-12-01

    This paper examines the performance of satellite sounder atmospheric vertical moisture proles (AVMP) under tropospheric conditions encompassing moisture contrasts driven by convection and advection transport mechanisms, specifically Atlantic Ocean Saharan air layers (SALs) and Pacific Ocean moisture conveyer belts (MCBs) commonly referred to as atmospheric rivers (ARs), both of these being mesoscale to synoptic meteorological phenomena within the vicinity of subtropical Hadley subsidence zones. Operational AVMP environmental data records retrieved from the Suomi National Polar-orbiting Partnership (SNPP) NOAA-Unique Combined Atmospheric Processing System (NUCAPS) are collocated with dedicated radiosonde observations (RAOBs) obtained from ocean-based intensive field campaigns; these RAOBs provide uniquely independent correlative truth data not assimilated into numerical weather prediction models for satellite sounder validation over open ocean. Using these marine-based data, we empirically assess the performance of the operational NUCAPS AVMP product for detecting and resolving these tropospheric moisture features over otherwise RAOB-sparse regions.

  13. THEMIS satellite observations of hot flow anomalies at Earth's bow shock

    Directory of Open Access Journals (Sweden)

    C. Chu

    2017-03-01

    Full Text Available Hot flow anomalies (HFAs at Earth's bow shock were identified in Time History of Events and Macroscale Interactions During Substorms (THEMIS satellite data from 2007 to 2009. The events were classified as young or mature and also as regular or spontaneous hot flow anomalies (SHFAs. The dataset has 17 young SHFAs, 49 mature SHFAs, 15 young HFAs, and 55 mature HFAs. They span a wide range of magnetic local times (MLTs from approximately 7 to 16.5 MLT. The largest ratio of solar wind to HFA core density occurred near dusk and at larger distances from the bow shock. In this study, HFAs and SHFAs were observed up to 6.3 RE and 6.1 RE (Earth radii, respectively, upstream from the model bow shock. HFA–SHFA occurrence decreases with distance upstream from the bow shock. HFAs of the highest event core ion temperatures were not seen at the flanks. The ratio of HFA ion temperature increase to HFA electron temperature increase is highest around 12 MLT and slightly duskward. For SHFAs, (Tihfa∕Tisw/(Tehfa∕Tesw generally increased with distance from the bow shock. Both mature and young HFAs are more prevalent when there is an approximately radial interplanetary magnetic field. HFAs occur most preferentially for solar wind speeds from 550 to 600 km s−1. The correlation coefficient between the HFA increase in thermal energy density from solar wind values and the decrease in kinetic energy density from solar wind values is 0.62. SHFAs and HFAs do not show major differences in this study.

  14. Assessment of Two Types of Observations (SATWND and GPSRO) for the Operational Global 4DVAR System

    Science.gov (United States)

    Leng, H.

    2017-12-01

    The performance of a data assimilation system is significantly dependent on the quality and quantity of observations assimilated. In these years, more and more satellite observations have been applied in many operational assimilation systems. In this paper, the assessment of satellite-derived winds (SATWND) and GPS radio occultation (GPSRO) bending angles has been performed using a range of diagnostics. The main positive impacts are made when satellite-derived cloud data (GOES cloud data and MODIS cloud data) is assimilated, but benefit is hardly obtained from GPSRO data in the Operational Global 4DVAR System. In a full system configuration, the assimilation of satellite-derived observations is globally beneficial on the analysis, and the benefit can be well propagated into the forecast. The assimilation of the GPSRO observations has a slightly positive impact in the Tropics, but is neutral in the Northern Hemisphere and in the Southern Hemisphere. To assess the synergies of satellite-derived observations with other types of observation, experiments assimilating satellite-derived data and AMSU-A and AMSU-B observations were run. The results show that the analysis increments structure is not modified when AMSU-A and AMSU-B observations are also assimilated. This suggests that the impact of satellite-derived observations is not limited by the large impact of satellite radiance observations.

  15. Satellites

    International Nuclear Information System (INIS)

    Burns, J.A.; Matthews, M.S.

    1986-01-01

    The present work is based on a conference: Natural Satellites, Colloquium 77 of the IAU, held at Cornell University from July 5 to 9, 1983. Attention is given to the background and origins of satellites, protosatellite swarms, the tectonics of icy satellites, the physical characteristics of satellite surfaces, and the interactions of planetary magnetospheres with icy satellite surfaces. Other topics include the surface composition of natural satellites, the cratering of planetary satellites, the moon, Io, and Europa. Consideration is also given to Ganymede and Callisto, the satellites of Saturn, small satellites, satellites of Uranus and Neptune, and the Pluto-Charon system

  16. Numerical experiment with modelled return echo of a satellite

    Indian Academy of Sciences (India)

    Abstract. We have simulated the return echo of a satellite altimeter from a rough ocean surface using an analytical formula and have studied its sensitivity with respect to various oceanic and altimeter parameters. Our numerical expcriment shows that for normally observed significant wave heights (SWFI) the effect of ...

  17. Handbook of satellite applications

    CERN Document Server

    Madry, Scott; Camacho-Lara, Sergio

    2013-01-01

    Top space experts from around the world have collaborated to produce this comprehensive, authoritative, and clearly illustrated reference guide to the fast growing, multi-billion dollar field of satellite applications and space communications. This handbook, done under the auspices of the International Space University based in France, addresses not only system technologies but also examines market dynamics, technical standards and regulatory constraints. The handbook is a completely multi-disciplinary reference book that covers, in an in-depth fashion, the fields of satellite telecommunications, Earth observation, remote sensing, satellite navigation, geographical information systems, and geosynchronous meteorological systems. It covers current practices and designs as well as advanced concepts and future systems. It provides a comparative analysis of the common technologies and design elements for satellite application bus structures, thermal controls, power systems, stabilization techniques, telemetry, com...

  18. Mapping plasma structures in the high-latitude ionosphere using beacon satellite, incoherent scatter radar and ground-based magnetometer observations

    Directory of Open Access Journals (Sweden)

    T. Neubert

    2002-06-01

    Full Text Available In the autumn of the year 2000, four radio receivers capable of tracking various beacon satellites were set up along the southwestern coast of Greenland. They are used to reconstruct images of the ionospheric plasma density distribution via the tomographic method. In order to test and validate tomographic imaging under the highly variable conditions often prevailing in the high-latitude ionosphere, a time interval was selected when the Sondrestrom incoherent scatter radar conducted measurements of the ionospheric plasma density while the radio receivers tracked a number of beacon satellites. A comparison between two-dimensional images of the plasma density distribution obtained from the radar and the satellite receivers revealed generally good agreement between radar measurements and tomographic images. Observed discrepancies can be attributed to F region plasma patches moving through the field of view with a speed of several hundred meters per second, thereby smearing out the tomographic image. A notable mismatch occurred around local magnetic midnight when a magnetospheric substorm breakup occurred in the vicinity of southwest Greenland (identified from ground-based magnetometer observations. The breakup was associated with a sudden intensification of the westward auroral electrojet which was centered at about 69 and extended up to some 73 corrected geomagnetic latitude. Ground-based magnetometer data may thus have the potential of indicating when the tomographic method is at risk and may fail. We finally outline the application of tomographic imaging, when combined with magnetic field data, to estimate ionospheric Joule heating rates.

  19. Proper Elements and Secular Resonances for Irregular Satellites

    Science.gov (United States)

    Beaugé, C.; Nesvorný, D.

    2007-06-01

    We present results of an analytical study of proper elements and secular resonances for the irregular satellites of the outer planets. In the case of the Jovian system we identify three satellite families, two of them previously known (Carme and Ananke), plus a new agglomeration of four bodies that includes Pasiphae as its largest member. While the distribution of proper elements for Saturn's moons seems to be more random, a small cluster was found for the direct moons formed by Albiorix, Erriapo, and 2004 S1, slightly different from the so-called Gaulish cluster. No significant families are detected in the present study for the Uranian or Neptunian satellite systems. For each satellite system we determine the location of several secular resonances in the proper element space. Apart from the well-known resonance locks of Pasiphae, Sinope, and Siarnaq, a comparison between the resonance locations and proper elements shows that Saturn's satellite Narvi also exhibits temporary librations in the ϖ-ϖsolar resonance. However, unlike the resonant Jovian moons that are located in the same configuration, Narvi's critical argument librates alternately around values near 90° and 270°. Neither the Uranian nor Neptunian systems seem to have resonant moons. The resonant dynamics of the real satellites in the vicinity of ϖ˙-ϖ˙solar=0 is studied with a simple model for secular resonances based on the restricted three-body problem. Depending on the initial conditions, we show the existence of one or two modes of libration that can occur at different values of the critical angle, showing a good correspondence with the observed behavior of all the resonant moons. Finally, we discuss the global distribution of the real satellites with respect to the secular resonances, as compared with synthetic populations of bodies drawn solely from stability conditions. For Saturn, we find that the present satellite population appears compatible with simple random distributions. Although

  20. Modulation of the Ganges-Brahmaputra River Plume by the Indian Ocean Dipole and Eddies Inferred From Satellite Observations

    Science.gov (United States)

    Fournier, S.; Vialard, J.; Lengaigne, M.; Lee, T.; Gierach, M. M.; Chaitanya, A. V. S.

    2017-12-01

    The Bay of Bengal receives large amounts of freshwater from the Ganga-Brahmaputra (GB) river during the summer monsoon. The resulting upper-ocean freshening influences seasonal rainfall, cyclones, and biological productivity. Sparse in situ observations and previous modeling studies suggest that the East India Coastal Current (EICC) transports these freshwaters southward after the monsoon as an approximately 200 km wide, 2,000 km long "river in the sea" along the East Indian coast. Sea surface salinity (SSS) from the Soil Moisture Active Passive (SMAP) satellite provides unprecedented views of this peculiar feature from intraseasonal to interannual timescales. SMAP SSS has a 0.83 correlation and 0.49 rms-difference to 0-5 m in situ measurements. SMAP and in stu data both indicate a SSS standard deviation of ˜0.7 to 1 away from the coast, that rises to 2 pss within 100 km of the coast, providing a very favorable signal-to-noise ratio in coastal areas. SMAP also captures the strong northern BoB, postmonsoon cross-shore SSS contrasts (˜10 pss) measured along ship transects. SMAP data are also consistent with previous modeling results that suggested a modulation of the EICC/GB plume southward extent by the Indian Ocean Dipole (IOD). Remote forcing associated with the negative Indian Ocean Dipole in the fall of 2016 indeed caused a stronger EICC and "river in the sea" that extended by approximately 800 km further south than that in 2015 (positive IOD year). The combination of SMAP and altimeter data shows eddies stirring the freshwater plume away from the coast.Plain Language SummaryThe Bay of Bengal receives large quantity of freshwater from the Ganges-Brahmaputra river during the monsoon. The resulting low-salinity sea surface has strong implications for the regional climate and living marine resources. In situ observations are too sparse to provide salinity maps in this basin, even every 3 months. In contrast, the SMAP satellite provides maps at 40 km resolution

  1. Merging thermal and microwave satellite observations for a high-resolution soil moisture data product

    Science.gov (United States)

    Many societal applications of soil moisture data products require high spatial resolution and numerical accuracy. Current thermal geostationary satellite sensors (GOES Imager and GOES-R ABI) could produce 2-16km resolution soil moisture proxy data. Passive microwave satellite radiometers (e.g. AMSR...

  2. Satellite air temperature estimation for monitoring the canopy layer heat island of Milan

    DEFF Research Database (Denmark)

    Pichierri, Manuele; Bonafoni, Stefania; Biondi, Riccardo

    2012-01-01

    across the city center from June to September confirming that, in Milan, urban heating is not an occasional phenomenon. Furthermore, this study shows the utility of space missions to monitor the metropolis heat islands if they are able to provide nighttime observations when CLHI peaks are generally......In this work, satellite maps of the urban heat island of Milan are produced using satellite-based infrared sensor data. For this aim, we developed suitable algorithms employing satellite brightness temperatures for the direct air temperature estimation 2 m above the surface (canopy layer), showing...... 2007 and 2010 were processed. Analysis of the canopy layer heat island (CLHI) maps during summer months reveals an average heat island effect of 3–4K during nighttime (with some peaks around 5K) and a weak CLHI intensity during daytime. In addition, the satellite maps reveal a well defined island shape...

  3. UV Spectrophotometry of the Galilean Satellites, Saturnian Satellites & Selected Asteroids

    Science.gov (United States)

    Nelson, Robert M.

    We propose a series of ultraviolet spectral observations of solid surfaces of selected solar system objects, specifically the Galilean satellites of Jupiter, several atmosphereless satellites of Saturn, and the asteroids, 5 Astraea, 18 Melpomene, 532 Herculina, 68 Leto, 31 Euphmsyne, 80 Sappho, 3 Juno, and 39 Laetitia. Historically such spectral observations have allowed for the Identification of spectrally active solid state materials on planetary surfaces. Furthermore, because the rotational properties are known for all the objects proposed for study, this technique will provide a longitude map of such materials on the objects' surfaces. The study of asteroid surface mineralogy is an important method of constraining solar system formation models. The asteroid spectra we have previously acquired with IUE have created unique subdivisions within the existent asteroid types. The new spectra will provide more sophisticated mineralogical characterizations of asteroid surface materials. Our other accomplishments with IUE include mapping of the distribution of condensed S02 on Io, identification of a longitudinal asymmetry on Europa associated with magnetospheric particle bombardment of the surface, and establishing the ultraviolet geometric albedo variation as a function of longitude for all the Galilean satellites. Because Io is the most volcanically active body In the solar system, and short tern variations in selected regions of the Jovian magnetosphere are known to occur, it is important to periodically check for temporal variations in the spectra of the Galilean satellites that may be due to variations n Io tectonic/volcanic activity, or magnetosphere changes. These proposed UV observations are critical to the design and operation of several instruments on Project Galileo, NASA's Jupiter Orbiter and Probe Mission. Spectra of Iapetus, Rhea and Dione have been acquired during the previous year; however, only at orbital locations near elongation. In addition, the dark

  4. Incorporating Satellite Time-Series Data into Modeling

    Science.gov (United States)

    Gregg, Watson

    2008-01-01

    In situ time series observations have provided a multi-decadal view of long-term changes in ocean biology. These observations are sufficiently reliable to enable discernment of even relatively small changes, and provide continuous information on a host of variables. Their key drawback is their limited domain. Satellite observations from ocean color sensors do not suffer the drawback of domain, and simultaneously view the global oceans. This attribute lends credence to their use in global and regional model validation and data assimilation. We focus on these applications using the NASA Ocean Biogeochemical Model. The enhancement of the satellite data using data assimilation is featured and the limitation of tongterm satellite data sets is also discussed.

  5. The Study of a Super Low Altitude Satellite

    Science.gov (United States)

    Noda, Atsushi; Homma, Masanori; Utashima, Masayoshi

    This paper reports the result of a study for super low altitude satellite. The altitude of this satellite's orbit is lower than ever. The altitude of a conventional earth observing satellite is generally around from 600km to 900km. The lowest altitude of earth observing satellite launched in Japan was 350km; the Tropical Rainfall Measuring Mission (TRMM). By comparison, the satellite reported in this paper is much lower than that and it is planned to orbit below 200km. Furthermore, the duration of the flight planned is more than two years. Any satellite in the world has not achieved to keep such a low altitude that long term. The satellite in such a low orbit drops quickly because of the strong air drag. Our satellite will cancel the air drag effect by ion engine thrust. To realize this idea, a drag-free system will be applied. This usually leads a complicated and expensive satellite system. We, however, succeeded in finding a robust control law for a simple system even under the unpredictable change of air drag. When the altitude of the satellite is lowered successfully, the spatial resolution of an optical sensor can be highly improved. If a SAR is equipped with the satellite, it enables the drastic reduction of electric power consumption and the fabulous spatial resolution improvement at the same time.

  6. Relative tracking control of constellation satellites considering inter-satellite link

    Science.gov (United States)

    Fakoor, M.; Amozegary, F.; Bakhtiari, M.; Daneshjou, K.

    2017-11-01

    In this article, two main issues related to the large-scale relative motion of satellites in the constellation are investigated to establish the Inter Satellite Link (ISL) which means the dynamic and control problems. In the section related to dynamic problems, a detailed and effective analytical solution is initially provided for the problem of satellite relative motion considering perturbations. The direct geometric method utilizing spherical coordinates is employed to achieve this solution. The evaluation of simulation shows that the solution obtained from the geometric method calculates the relative motion of the satellite with high accuracy. Thus, the proposed analytical solution will be applicable and effective. In the section related to control problems, the relative tracking control system between two satellites will be designed in order to establish a communication link between the satellites utilizing analytical solution for relative motion of satellites with respect to the reference trajectory. Sliding mode control approach is employed to develop the relative tracking control system for body to body and payload to payload tracking control. Efficiency of sliding mode control approach is compared with PID and LQR controllers. Two types of payload to payload tracking control considering with and without payload degree of freedom are designed and suitable one for practical ISL applications is introduced. Also, Fuzzy controller is utilized to eliminate the control input in the sliding mode controller.

  7. Simulations of VLBI observations of a geodetic satellite providing co-location in space

    Science.gov (United States)

    Anderson, James M.; Beyerle, Georg; Glaser, Susanne; Liu, Li; Männel, Benjamin; Nilsson, Tobias; Heinkelmann, Robert; Schuh, Harald

    2018-02-01

    We performed Monte Carlo simulations of very-long-baseline interferometry (VLBI) observations of Earth-orbiting satellites incorporating co-located space-geodetic instruments in order to study how well the VLBI frame and the spacecraft frame can be tied using such measurements. We simulated observations of spacecraft by VLBI observations, time-of-flight (TOF) measurements using a time-encoded signal in the spacecraft transmission, similar in concept to precise point positioning, and differential VLBI (D-VLBI) observations using angularly nearby quasar calibrators to compare their relative performance. We used the proposed European Geodetic Reference Antenna in Space (E-GRASP) mission as an initial test case for our software. We found that the standard VLBI technique is limited, in part, by the present lack of knowledge of the absolute offset of VLBI time to Coordinated Universal Time at the level of microseconds. TOF measurements are better able to overcome this problem and provide frame ties with uncertainties in translation and scale nearly a factor of three smaller than those yielded from VLBI measurements. If the absolute time offset issue can be resolved by external means, the VLBI results can be significantly improved and can come close to providing 1 mm accuracy in the frame tie parameters. D-VLBI observations with optimum performance assumptions provide roughly a factor of two higher uncertainties for the E-GRASP orbit. We additionally simulated how station and spacecraft position offsets affect the frame tie performance.

  8. World map of ELF/VLF emissions as observed by a low-orbiting satellite

    International Nuclear Information System (INIS)

    Parrot, M.

    1990-01-01

    Statistical studies were performed of the intensities of the ELF/VLF emissions observed by the low-orbiting satellite AUREOL-3. Data were obtained from filterbanks and the frequency range of observations extends from a few tens of Hz up to 15 kHz. The most important phenomena observed are ELF hiss and VLF hiss. Electric and magnetic components are used. Thus, representation of the waves intensities in geographical coordinates was made at different frequencies. The relative ability of natural waves (whistler, hiss) and man-made waves, such as powerful VLF transmitters or powerline harmonic radiations (PLHR), to precipitate particles in the slot region, is studied. Using geomagnetical representation, it is shown that ELF hiss is maximum between 06 and 20 Magnetic Local Time and in the invariant latitude range 50 0 -70 0 as usual, but geographic representation indicates that the waves are intensified at the longitudes of VLF transmitters and near the South Atlantic Anomaly (SAA). The SAA plays a dominant role in the localization of the strongest ELF hiss. Weakest intensities are observed to the east of the SAA. As to the VLF hiss, the maximum intensity is related to regions of enhanced thunderstorm activity, and may be influenced by powerline harmonic radiations (PLHR) over USA. Comparisons with past work, experimental as well as theoretical, are made

  9. Dark matter constraints from observations of 25 Milky Way satellite galaxies with the Fermi Large Area Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, M.; et al.

    2014-02-11

    The dwarf spheroidal satellite galaxies of the Milky Way are some of the most dark-matter-dominated objects known. Due to their proximity, high dark matter content, and lack of astrophysical backgrounds, dwarf spheroidal galaxies are widely considered to be among the most promising targets for the indirect detection of dark matter via gamma rays. Here we report on gamma-ray observations of 25 Milky Way dwarf spheroidal satellite galaxies based on 4 years of Fermi Large Area Telescope (LAT) data. None of the dwarf galaxies are significantly detected in gamma rays, and we present gamma-ray flux upper limits between 500 MeV and 500 GeV. We determine the dark matter content of 18 dwarf spheroidal galaxies from stellar kinematic data and combine LAT observations of 15 dwarf galaxies to constrain the dark matter annihilation cross section. We set some of the tightest constraints to date on the the annihilation of dark matter particles with masses between 2 GeV and 10 TeV into prototypical Standard Model channels. We find these results to be robust against systematic uncertainties in the LAT instrument performance, diffuse gamma-ray background modeling, and assumed dark matter density profile.

  10. Probabilistic inference of ecohydrological parameters using observations from point to satellite scales

    Science.gov (United States)

    Bassiouni, Maoya; Higgins, Chad W.; Still, Christopher J.; Good, Stephen P.

    2018-06-01

    Vegetation controls on soil moisture dynamics are challenging to measure and translate into scale- and site-specific ecohydrological parameters for simple soil water balance models. We hypothesize that empirical probability density functions (pdfs) of relative soil moisture or soil saturation encode sufficient information to determine these ecohydrological parameters. Further, these parameters can be estimated through inverse modeling of the analytical equation for soil saturation pdfs, derived from the commonly used stochastic soil water balance framework. We developed a generalizable Bayesian inference framework to estimate ecohydrological parameters consistent with empirical soil saturation pdfs derived from observations at point, footprint, and satellite scales. We applied the inference method to four sites with different land cover and climate assuming (i) an annual rainfall pattern and (ii) a wet season rainfall pattern with a dry season of negligible rainfall. The Nash-Sutcliffe efficiencies of the analytical model's fit to soil observations ranged from 0.89 to 0.99. The coefficient of variation of posterior parameter distributions ranged from interest. In these cases, model inversion converged more slowly but ultimately provided better goodness of fit and lower uncertainty. Results were robust using as few as 100 daily observations randomly sampled from the full records, demonstrating the advantage of analyzing soil saturation pdfs instead of time series to estimate ecohydrological parameters from sparse records. Our work combines modeling and empirical approaches in ecohydrology and provides a simple framework to obtain scale- and site-specific analytical descriptions of soil moisture dynamics consistent with soil moisture observations.

  11. Online Resource for Earth-Observing Satellite Sensor Calibration

    Science.gov (United States)

    McCorkel, J.; Czapla-Myers, J.; Thome, K.; Wenny, B.

    2015-01-01

    The Radiometric Calibration Test Site (RadCaTS) at Railroad Valley Playa, Nevada is being developed by the University of Arizona to enable improved accuracy and consistency for airborne and satellite sensor calibration. Primary instrumentation at the site consists of ground-viewing radiometers, a sun photometer, and a meteorological station. Measurements made by these instruments are used to calculate surface reflectance, atmospheric properties and a prediction for top-of-atmosphere reflectance and radiance. This work will leverage research for RadCaTS, and describe the requirements for an online database, associated data formats and quality control, and processing levels.

  12. Properties of the Irregular Satellite System around Uranus Inferred from K2, Herschel, and Spitzer Observations

    Science.gov (United States)

    Farkas-Takács, A.; Kiss, Cs.; Pál, A.; Molnár, L.; Szabó, Gy. M.; Hanyecz, O.; Sárneczky, K.; Szabó, R.; Marton, G.; Mommert, M.; Szakáts, R.; Müller, T.; Kiss, L. L.

    2017-09-01

    In this paper, we present visible-range light curves of the irregular Uranian satellites Sycorax, Caliban, Prospero, Ferdinand, and Setebos taken with the Kepler Space Telescope over the course of the K2 mission. Thermal emission measurements obtained with the Herschel/PACS and Spitzer/MIPS instruments of Sycorax and Caliban were also analyzed and used to determine size, albedo, and surface characteristics of these bodies. We compare these properties with the rotational and surface characteristics of irregular satellites in other giant planet systems and also with those of main belt and Trojan asteroids and trans-Neptunian objects. Our results indicate that the Uranian irregular satellite system likely went through a more intense collisional evolution than the irregular satellites of Jupiter and Saturn. Surface characteristics of Uranian irregular satellites seem to resemble the Centaurs and trans-Neptunian objects more than irregular satellites around other giant planets, suggesting the existence of a compositional discontinuity in the young solar system inside the orbit of Uranus.

  13. Properties of the Irregular Satellite System around Uranus Inferred from K2 , Herschel , and Spitzer Observations

    Energy Technology Data Exchange (ETDEWEB)

    Farkas-Takács, A.; Kiss, Cs.; Pál, A.; Molnár, L.; Szabó, Gy. M.; Hanyecz, O.; Sárneczky, K.; Szabó, R.; Marton, G.; Szakáts, R.; Kiss, L. L. [Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, Konkoly Thege Miklós út 15-17, H-1121 Budapest (Hungary); Mommert, M. [Department of Physics and Astronomy, Northern Arizona University, P.O. Box 6010, Flagstaff, AZ 86011 (United States); Müller, T., E-mail: farkas.aniko@csfk.mta.hu [Max-Plank-Institut für extraterrestrsiche Pyhsik, Garching (Germany)

    2017-09-01

    In this paper, we present visible-range light curves of the irregular Uranian satellites Sycorax, Caliban, Prospero, Ferdinand, and Setebos taken with the Kepler Space Telescope over the course of the K2 mission. Thermal emission measurements obtained with the Herschel /PACS and Spitzer /MIPS instruments of Sycorax and Caliban were also analyzed and used to determine size, albedo, and surface characteristics of these bodies. We compare these properties with the rotational and surface characteristics of irregular satellites in other giant planet systems and also with those of main belt and Trojan asteroids and trans-Neptunian objects. Our results indicate that the Uranian irregular satellite system likely went through a more intense collisional evolution than the irregular satellites of Jupiter and Saturn. Surface characteristics of Uranian irregular satellites seem to resemble the Centaurs and trans-Neptunian objects more than irregular satellites around other giant planets, suggesting the existence of a compositional discontinuity in the young solar system inside the orbit of Uranus.

  14. Application of Satellite Observations to Manage Natural Disasters in the Lake Victoria Basin

    Science.gov (United States)

    Habib, Shahid; Policelli, F.; Irwin, D.; Korme, Tesfaye; Adler, Bob; Hong, Yang

    2010-01-01

    Lake Victoria, the second largest fresh water lake in the Eastern part of Africa is a vital natural resource for the economic well being and prosperity of over 30 million people located in riparian regions of Uganda, Kenya and Tanzania. It covers a large area of about 68,870 km2 and produces a GDP of about US $30 billion per year. The region is also very much prone to natural disasters such as severe floods during heavy precipitation periods in the Eastern part of Africa. In addition to floods, the precipitation also produces large infestations of mosquito larvae due to the standing water in many areas. This further causes multiple vector borne diseases such as Malaria, Rift Valley Fever and more. These problems are of serious concern and require active and aggressive surveillance and management to minimize the loss of human and animal lives and property damage. Satellite imagery and observations along with the in situ measurements provide a great tool to analyze and study this area and inform the policy makers to make calculated policy decisions which are more beneficial to the environment. Recently, NASA and USAID have joined forces with the Regional Center for Mapping of Resources for Development (RCMRD) located in Nairobi, Kenya to utilize multiple NASA sensors such as TRMM, SRTM and MODIS to develop flood potential maps for the Lake Victoria Basin. The idea is to generate a flood forecasts and "nowcasts" that can be sent to the disaster management organizations of Uganda, Kenya, and Tanzania. Post flood event satellite imagery is becoming a common tool to assess the areas inundated by flooding. However, this work is unique undertaking by utilizing land imaging and atmospheric satellites to build credible flood potential maps. At same time, we are also studying the potential occurrence and spread of Rift Valley Fever disease based on the short term climate records and precipitation data. These activities require multi-nation coordination and agreements and

  15. The Lightning Mapping Imager (LMI) on the FY-4 satellite and a typical application experiment using the LMI data

    Science.gov (United States)

    Huang, F.; Hui, W.; Li, X.; Liu, R.; Zhang, Z.; Zheng, Y.; Kang, N.

    2017-12-01

    The Lightning Mapping Imager (LMI) on the FY-4A satellite, which was launched successfully in December 2016, is the first satellite-based lightning detector from space independently developed in China, and one of the world's first two stationary satellite LMIs. The optical imaging technique with a 400x600 CCD array plane and a frequency of 500 frames/s is adopted in the FY-4A LMI to perform real-time and continuous observation of total lightening in the Chinese mainland and adjacent areas. As of July 2017, the in-orbit test shows that the lightening observation date could be accurately obtained by the FY-4A LMI, and that the geo-location could be verified by the ground lightening observation network over China. Since the beginning of the 2017 flood season, every process of strong thunderstorms has been monitored by the FY-4A LMI throughout the various areas of China, and of these are used as a typical application case in this talk. On April 8 and 9, 2017, a strong convective precipitation process occurred in the middle-lower reaches of the Yangtze River, China. The observation data of the FY-4A LMI are used to monitor the occurrence, development, shift and extinction of the thunderstorm track. By means of analyzing the station's synchronous precipitation observation data, it is indicated that the moving track of the thunderstorm is not completely consistent with that of the precipitation center, and while the distribution areas of thunderstorm and precipitation are consistent to a certain extent, a significant difference also exists. This difference is mainly caused by the convective precipitation and stratus precipitation area during the precipitation process. Through comparative analysis, the preliminary satellite and foundation lightening observation data show a higher consistency. However, the time of lightening activity observed by satellite is one hour earlier than that of the ground observation, which is likely related to the total lightning observation by

  16. Larger Optics and Improved Calibration Techniques for Small Satellite Observations with the ERAU OSCOM System

    Science.gov (United States)

    Bilardi, S.; Barjatya, A.; Gasdia, F.

    OSCOM, Optical tracking and Spectral characterization of CubeSats for Operational Missions, is a system capable of providing time-resolved satellite photometry using commercial-off-the-shelf (COTS) hardware and custom tracking and analysis software. This system has acquired photometry of objects as small as CubeSats using a Celestron 11” RASA and an inexpensive CMOS machine vision camera. For satellites with known shapes, these light curves can be used to verify a satellite’s attitude and the state of its deployed solar panels or antennae. While the OSCOM system can successfully track satellites and produce light curves, there is ongoing improvement towards increasing its automation while supporting additional mounts and telescopes. A newly acquired Celestron 14” Edge HD can be used with a Starizona Hyperstar to increase the SNR for small objects as well as extend beyond the limiting magnitude of the 11” RASA. OSCOM currently corrects instrumental brightness measurements for satellite range and observatory site average atmospheric extinction, but calibrated absolute brightness is required to determine information about satellites other than their spin rate, such as surface albedo. A calibration method that automatically detects and identifies background stars can use their catalog magnitudes to calibrate the brightness of the satellite in the image. We present a photometric light curve from both the 14” Edge HD and 11” RASA optical systems as well as plans for a calibration method that will perform background star photometry to efficiently determine calibrated satellite brightness in each frame.

  17. Improved monitoring of phytoplankton bloom dynamics in a Norwegian fjord by integrating satellite data, pigment analysis, and Ferrybox data with a coastal observation network

    Science.gov (United States)

    Volent, Zsolt; Johnsen, Geir; Hovland, Erlend K.; Folkestad, Are; Olsen, Lasse M.; Tangen, Karl; Sørensen, Kai

    2011-01-01

    Monitoring of the coastal environment is vitally important as these areas are of economic value and at the same time highly exposed to anthropogenic influence, in addition to variation of environmental variables. In this paper we show how the combination of bio-optical data from satellites, analysis of water samples, and a ship-mounted automatic flow-through sensor system (Ferrybox) can be used to detect and monitor phytoplankton blooms both spatially and temporally. Chlorophyll a (Chl a) data and turbidity from Ferrybox are combined with remotely sensed Chl a and total suspended matter from the MERIS instrument aboard the satellite ENVISAT (ENVIronmental SATellite) European Space Agency. Data from phytoplankton speciation and enumeration obtained by a national coastal observation network consisting of fish farms and the Norwegian Food Safety Authority are supplemented with data on phytoplankton pigments. All the data sets are then integrated in order to describe phytoplankton bloom dynamics in a Norwegian fjord over a growth season, with particular focus on Emiliania huxleyi. The approach represents a case example of how coastal environmental monitoring can be improved with existing instrument platforms. The objectives of the paper is to present the operative phytoplankton monitoring scheme in Norway, and to present an improved model of how such a scheme can be designed for a large part of the world's coastal areas.

  18. Monitoring soil wetness variations by means of satellite passive microwave observations: the HYDROPTIMET study cases

    Directory of Open Access Journals (Sweden)

    T. Lacava

    2005-01-01

    Full Text Available Soil moisture is an important component of the hydrological cycle. In the framework of modern flood warning systems, the knowledge of soil moisture is crucial, due to the influence on the soil response in terms of infiltration-runoff. Precipitation-runoff processes, in fact, are related to catchment's hydrological conditions before the precipitation. Thus, an estimation of these conditions is of significant importance to improve the reliability of flood warning systems. Combining such information with other weather-related satellite products (i.e. rain rate estimation might represent a useful exercise in order to improve our capability to handle (and possibly mitigate or prevent hydro-geological hazards. Remote sensing, in the last few years, has supported several techniques for soil moisture/wetness monitoring. Most of the satellite-based techniques use microwave data, thanks to the all-weather and all-time capability of these data, as well as to their high sensitivity to water content in the soil. On the other hand, microwave data are unfortunately highly affected by the presence of surface roughness or vegetation coverage within the instantaneous satellite field of view (IFOV. Those problems, consequently, strongly limit the efficiency and the reliability of traditional satellite techniques. Recently, using data coming from AMSU (Advanced Microwave Sounding Unit, flying aboard NOAA (National Oceanic and Atmospheric Administration satellites, a new methodology for soil wetness estimation has been proposed. The proposed index, called Soil Wetness Variation Index (SWVI, developed by a multi-temporal analysis of AMSU records, seems able to reduce the problems related to vegetation and/or roughness effects. Such an approach has been tested, with promising results, on the analysis of some flooding events which occurred in Europe in the past. In this study, results achieved for the HYDROPTIMET test cases will be analysed and discussed in detail

  19. Assessing satellite-based start-of-season trends in the US High Plains

    International Nuclear Information System (INIS)

    Lin, X; Sassenrath, G F; Hubbard, K G; Mahmood, R

    2014-01-01

    To adequately assess the effects of global warming it is necessary to address trends and impacts at the local level. This study examines phenological changes in the start-of-season (SOS) derived from satellite observations from 1982–2008 in the US High Plains region. The surface climate-based SOS was also evaluated. The averaged profiles of SOS from 37° to 49°N latitude by satellite- and climate-based methods were in reasonable agreement, especially for areas where croplands were masked out and an additional frost date threshold was adopted. The statistically significant trends of satellite-based SOS show a later spring arrival ranging from 0.1 to 4.9 days decade −1 over nine Level III ecoregions. We found the croplands generally exhibited larger trends (later arrival) than the non-croplands. The area-averaged satellite-based SOS for non-croplands (i.e. mostly grasslands) showed no significant trends. We examined the trends of temperatures, precipitation, and standardized precipitation index (SPI), as well as the strength of correlation between the satellite-based SOS and these climatic drivers. Our results indicate that satellite-based SOS trends are spatially and primarily related to annual maximum normalized difference vegetation index (NDVI, mostly in summertime) and/or annual minimum NDVI (mostly in wintertime) and these trends showed the best correlation with six-month SPI over the period 1982–2008 in the US High Plains region. (letter)

  20. High-Resolution Observations of a Filament showing Activated Barb

    Science.gov (United States)

    Joshi, Anand; Martin, Sara F.; Mathew, Shibu; Srivastava, Nandita

    2012-07-01

    Analysis of a filament showing an activated barb using observations from the Dutch Open Telescope (DOT) on 2010 August 20 are presented. The DOT takes Doppler images in Hα, among other wavelengths, in a region about 110 × 110 arcsec^{2} in area, at a cadence of 30~seconds. The offline image restoration technique of speckle reconstruction is applied to obtain diffraction limited images. The filament developed a new barb in 10~minutes, which disappeared within the next 35~minutes. Such a rapid formation and disappearance of a filament barb is unusual, and has not been reported earlier. Line-of-sight velocity maps were constructed from the Doppler images of the target filament. We observe flows in the filament spine towards the barb location prior to its formation, and flows in the barb towards the spine during its disappearance. Photospheric magnetograms from Heliospheric Magnetic Imager on board the Solar Dynamics Observatory, at a cadence of 45~seconds, were used to determine the changes in magnetic flux in the region surrounding the barb location. The variation of magnetic flux in this duration supports the view that barbs are rooted in minor magnetic polarity. Our analysis shows that barbs can be short-lived and formation and disappearance of the barb was associated with cancellation of magnetic flux.

  1. Integrated Satellite-HAP Systems

    DEFF Research Database (Denmark)

    Cianca, Ernestina; De Sanctis, Mauro; De Luise, Aldo

    2005-01-01

    Thus far, high-altitude platform (HAP)-based systems have been mainly conceived as an alternative to satellites for complementing the terrestrial network. This article aims to show that HAP should no longer be seen as a competitor technology by investors of satellites, but as a key element for an...

  2. Human artificial chromosomes with alpha satellite-based de novo centromeres show increased frequency of nondisjunction and anaphase lag.

    Science.gov (United States)

    Rudd, M Katharine; Mays, Robert W; Schwartz, Stuart; Willard, Huntington F

    2003-11-01

    Human artificial chromosomes have been used to model requirements for human chromosome segregation and to explore the nature of sequences competent for centromere function. Normal human centromeres require specialized chromatin that consists of alpha satellite DNA complexed with epigenetically modified histones and centromere-specific proteins. While several types of alpha satellite DNA have been used to assemble de novo centromeres in artificial chromosome assays, the extent to which they fully recapitulate normal centromere function has not been explored. Here, we have used two kinds of alpha satellite DNA, DXZ1 (from the X chromosome) and D17Z1 (from chromosome 17), to generate human artificial chromosomes. Although artificial chromosomes are mitotically stable over many months in culture, when we examined their segregation in individual cell divisions using an anaphase assay, artificial chromosomes exhibited more segregation errors than natural human chromosomes (P artificial chromosomes missegregate over a fivefold range, the data suggest that variable centromeric DNA content and/or epigenetic assembly can influence the mitotic behavior of artificial chromosomes.

  3. First data from X-ray astronomy satellite

    International Nuclear Information System (INIS)

    Cox, J.

    1984-01-01

    EXOSAT, the European Space Agency's first x-ray astronomy satellite which was launched last year, has sent back information on x-ray sources. The article briefly discusses the observations made by the satellite concerning Cygnus x-1 and the galactic supernova remnant Cassiopeia A. EXOSAT is the first x-ray astronomy satellite to be operated in a deep space orbit

  4. Sustained Satellite Missions for Climate Data Records

    Science.gov (United States)

    Halpern, David

    2012-01-01

    Satellite CDRs possess the accuracy, longevity, and stability for sustained moni toring of critical variables to enhance understanding of the global integrated Earth system and predict future conditions. center dot Satellite CDRs are a critical element of a global climate observing system. center dot Satellite CDRs are a difficult challenge and require high - level managerial commitment, extensive intellectual capital, and adequate funding.

  5. Latitudinal extent of the January 2005 solar proton event in the Northern Hemisphere from satellite observations of hydroxyl

    Directory of Open Access Journals (Sweden)

    P. T. Verronen

    2007-11-01

    Full Text Available We utilise hydroxyl observations from the MLS/Aura satellite instrument to study the latitudinal extent of particle forcing in the northern polar region during the January 2005 solar proton event. MLS is the first satellite instrument to observe HOx changes during such an event. We also predict the hydroxyl changes with respect to the magnetic latitude by the Sodankylä Ion and Neutral Chemistry model, estimating the variable magnetic cutoff energies for protons using a parameterisation based on magnetosphere modelling and the planetary magnetic index Kp. In the middle and lower mesosphere, HOx species are good indicators of the changes in the atmosphere during solar proton events, because they respond rapidly to both increases and decreases in proton forcing. Also, atmospheric transport has a negligible effect on HOx because of its short chemical lifetime. The observations indicate the boundary of the proton forcing and a transition region, from none to the "full" effect, which ranges from about 57 to 64 degrees of magnetic latitude. When saturating the rigidity cutoff Kp at 6 in the model, as suggested by earlier studies using observations of cosmic radio noise absorption, the equatorward boundary of the transition region is offset by ≈2 degrees polewards compared with the data, thus the latitudinal extent of the proton forcing in the atmosphere is underestimated. However, the model predictions are in reasonable agreement with the MLS measurements when the Kp index is allowed to vary within its nominal range, i.e., from 1 to 9 in the cutoff calculation.

  6. Photometric and Spectral Study of the Saturnian Satellites

    Science.gov (United States)

    Newman, Sarah F.

    2005-01-01

    Photometric and spectra analysis of data from the Cassini Visual and Infrared Mapping Spectrometer (VIMS) has yielded intriguing findings regarding the surface properties of several of the icy Saturnian satellites. Spectral cubes were obtained of these satellites with a wavelength distribution in the IR far more extensive than from any previous observations. Disk-integrated solar phase curves were constructed in several key IR wavelengths that are indicative of key properties of the surface of the body, such as macroscopic roughness, fluffiness (or the porosity of the surface), global albedo and scattering properties of surface particles. Polynomial fits to these phase curves indicate a linear albedo trend of the curvature of the phase functions. Rotational phase functions from Enceladus were found to exhibit a double-peaked sinusoidal curve, which shows larger amplitudes for bands corresponding to water ice and a linear amplitude-albedo trend. These functions indicate regions on the surface of the satellite of more recent geologic activity. In addition, recent images of Enceladus show tectonic features and an absence of impact craters on Southern latitudes which could be indicative of a younger surface. Investigations into the properties of these features using VIMS are underway.

  7. Reduced Dnmt3a increases Gdf5 expression with suppressed satellite cell differentiation and impaired skeletal muscle regeneration.

    Science.gov (United States)

    Hatazawa, Yukino; Ono, Yusuke; Hirose, Yuma; Kanai, Sayaka; Fujii, Nobuharu L; Machida, Shuichi; Nishino, Ichizo; Shimizu, Takahiko; Okano, Masaki; Kamei, Yasutomi; Ogawa, Yoshihiro

    2018-03-01

    DNA methylation is an epigenetic mechanism regulating gene expression. In this study, we observed that DNA methyltransferase 3a (Dnmt3a) expression is decreased after muscle atrophy. We made skeletal muscle-specific Dnmt3a-knockout (Dnmt3a-KO) mice. The regeneration capacity after muscle injury was markedly decreased in Dnmt3a-KO mice. Diminished mRNA and protein expression of Dnmt3a were observed in skeletal muscles as well as in satellite cells, which are important for muscle regeneration, in Dnmt3a-KO mice. Dnmt3a-KO satellite cell showed smaller in size (length/area), suggesting suppressed myotube differentiation. Microarray analysis of satellite cells showed that expression of growth differentiation factor 5 (Gdf5) mRNA was markedly increased in Dnmt3a-KO mice. The DNA methylation level of the Gdf5 promoter was markedly decreased in Dnmt3a-KO satellite cells. In addition, DNA methylation inhibitor azacytidine treatment increased Gdf5 expression in wild-type satellite cells, suggesting Gdf5 expression is regulated by DNA methylation. Also, we observed increased inhibitor of differentiation (a target of Gdf5) mRNA expression in Dnmt3a-KO satellite cells. Thus, Dnmt3a appears to regulate satellite cell differentiation via DNA methylation. This mechanism may play a role in the decreased regeneration capacity during atrophy such as in aged sarcopenia.-Hatazawa, Y., Ono, Y., Hirose, Y., Kanai, S., Fujii, N. L., Machida, S., Nishino, I., Shimizu, T., Okano, M., Kamei, Y., Ogawa, Y. Reduced Dnmt3a increases Gdf5 expression with suppressed satellite cell differentiation and impaired skeletal muscle regeneration.

  8. Comparison of aerosol optical depth from satellite (MODIS), sun photometer and broadband pyrheliometer ground-based observations in Cuba

    Science.gov (United States)

    Antuña-Marrero, Juan Carlos; Cachorro Revilla, Victoria; García Parrado, Frank; de Frutos Baraja, Ángel; Rodríguez Vega, Albeth; Mateos, David; Estevan Arredondo, René; Toledano, Carlos

    2018-04-01

    In the present study, we report the first comparison between the aerosol optical depth (AOD) and Ångström exponent (AE) of the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments on the Terra (AODt) and Aqua (AODa) satellites and those measured using a sun photometer (AODSP) at Camagüey, Cuba, for the period 2008 to 2014. The comparison of Terra and Aqua data includes AOD derived with both deep blue (DB) and dark target (DT) algorithms from MODIS Collection 6. Combined Terra and Aqua (AODta) data were also considered. Assuming an interval of ±30 min around the overpass time and an area of 25 km around the sun photometer site, two coincidence criteria were considered: individual pairs of observations and both spatial and temporal mean values, which we call collocated daily means. The usual statistics (root mean square error, RMSE; mean absolute error, MAE; median bias, BIAS), together with linear regression analysis, are used for this comparison. Results show very similar values for both coincidence criteria: the DT algorithm generally displays better statistics and higher homogeneity than the DB algorithm in the behaviour of AODt, AODa, AODta compared to AODSP. For collocated daily means, (a) RMSEs of 0.060 and 0.062 were obtained for Terra and Aqua with the DT algorithm and 0.084 and 0.065 for the DB algorithm, (b) MAE follows the same patterns, (c) BIAS for both Terra and Aqua presents positive and negative values but its absolute values are lower for the DT algorithm; (d) combined AODta data also give lower values of these three statistical indicators for the DT algorithm; (e) both algorithms present good correlations for comparing AODt, AODa, AODta vs. AODSP, with a slight overestimation of satellite data compared to AODSP, (f). The DT algorithm yields better figures with slopes of 0.96 (Terra), 0.96 (Aqua) and 0.96 (Terra + Aqua) compared to the DB algorithm (1.07, 0.90, 0.99), which displays greater variability. Multi-annual monthly means of

  9. Entropy-Based Block Processing for Satellite Image Registration

    Directory of Open Access Journals (Sweden)

    Ikhyun Lee

    2012-11-01

    Full Text Available Image registration is an important task in many computer vision applications such as fusion systems, 3D shape recovery and earth observation. Particularly, registering satellite images is challenging and time-consuming due to limited resources and large image size. In such scenario, state-of-the-art image registration methods such as scale-invariant feature transform (SIFT may not be suitable due to high processing time. In this paper, we propose an algorithm based on block processing via entropy to register satellite images. The performance of the proposed method is evaluated using different real images. The comparative analysis shows that it not only reduces the processing time but also enhances the accuracy.

  10. Spatial and Temporal Analysis of Winter Fog Episodes over South Asia by exploiting ground-based and satellite observations

    Science.gov (United States)

    Fahim Khokhar, Muhammad; Yasmin, Naila; Zaib, Naila; Murtaza, Rabia; Noreen, Asma; Ishtiaq, Hira; Khayyam, Junaid; Panday, Arnico

    2016-04-01

    The South Asian region in general and the Indo-Gangetic Plains (IGP) in particular hold about 1/6th of the world's population and is considered as one of the major hotspots with increasing air pollution. Due to growing population and globalization, South Asia is experiencing high transformations in the urban and industrial sectors. Fog is one of the meteorological/environmental phenomena which can generate significant social and economic problems especially havoc to air and road traffic. Meteorological stations provide information about the fog episodes only on the basis of point observation. Continuous monitoring as well as a spatially coherent picture of fog distribution can only be possible through the use of satellite imagery. Current study focus on winter fog episodes over South Asian region using Moderate Resolution Image Spectrometer (MODIS) Level 2 Terra Product and other MODIS Aerosol Product in addition to ground-based sampling and AERONET measurements. MODIS Corrected Reflectance RGBs are used to analyse the spatial extent of fog over study area. MOD04 level 2 Collection 6 data is used to study aerosol load and distribution which are further characterised by using aerosol type land product of MODIS. In order to study the variation of ground based observations from satellite data MODIS, AERONET and high volume air Sampler were used. Main objective of this study was to explore the spatial extent of fog, its causes and to analyse the Aerosol Optical Depth (AOD) over South Asia with particular focus over Indo-Gangetic Plains (IGP). Current studies show a descent increase in AOD from past few decades over South Asia and is contributing to poor air quality in the region due to growing population, urbanization, and industrialization. Smoke and absorbing aerosol are major constituent of fog over South Asia. Furthermore, winter 2014-15 extended span of Fog was also observed over South Asia. A significant correlation between MODIS (AOD) and AERONET Station (AOD

  11. Limitations of Electromagnetic Ion Cyclotron Wave Observations in Low Earth Orbit

    Directory of Open Access Journals (Sweden)

    Junga Hwang

    2018-03-01

    Full Text Available Pc1 pulsations are geomagnetic fluctuations in the frequency range of 0.2 to 5 Hz. There have been several observations of Pc1 pulsations in low earth orbit by MAGSAT, DE-2, Viking, Freja, CHAMP, and SWARM satellites. However, there has been a clear limitation in resolving the spatial and temporal variations of the pulsation by using a single-point observation by a single satellite. To overcome such limitations of previous observations, a new space mission was recently initiated, using the concept of multi-satellites, named the Small scale magNetospheric and Ionospheric Plasma Experiments (SNIPE. The SNIPE mission consists of four nanosatellites (~10 kg, which will be launched into a polar orbit at an altitude of 600 km (TBD in 2020. Four satellites will be deployed in orbit, and the distances between each satellite will be controlled from 10 to 1,000 km by a high-end formation-flying algorithm. One of the possible science targets of the SNIPE mission is observing electromagnetic ion cyclotron (EMIC waves. In this paper, we report on examples of observations, showing the limitations of previous EMIC observations in low earth orbit, and suggest possibilities to overcome those limitations through a new mission.

  12. Snow Grain Size Retrieval over the Polar Ice Sheets with the Ice, Cloud and Land Elevation Satellite (ICESat) Observations

    Science.gov (United States)

    Yang, Yuekui; Marshak, Alexander; Han, Mei; Palm, Stephen P.; Harding, David J.

    2016-01-01

    Snow grain size is an important parameter for cryosphere studies. As a proof of concept, this paper presents an approach to retrieve this parameter over Greenland, East and West Antarctica ice sheets from surface reflectances observed with the Geoscience Laser Altimeter System (GLAS) onboard the Ice, Cloud, and land Elevation Satellite (ICESat) at 1064 nanometers. Spaceborne lidar observations overcome many of the disadvantages in passive remote sensing, including difficulties in cloud screening and low sun angle limitations; hence tend to provide more accurate and stable retrievals. Results from the GLAS L2A campaign, which began on 25 September and lasted until 19 November, 2003, show that the mode of the grain size distribution over Greenland is the largest (approximately 300 microns) among the three, West Antarctica is the second (220 microns) and East Antarctica is the smallest (190 microns). Snow grain sizes are larger over the coastal regions compared to inland the ice sheets. These results are consistent with previous studies. Applying the broadband snow surface albedo parameterization scheme developed by Garder and Sharp (2010) to the retrieved snow grain size, ice sheet surface albedo is also derived. In the future, more accurate retrievals can be achieved with multiple wavelengths lidar observations.

  13. The major horse satellite DNA family is associated with centromere competence.

    Science.gov (United States)

    Cerutti, Federico; Gamba, Riccardo; Mazzagatti, Alice; Piras, Francesca M; Cappelletti, Eleonora; Belloni, Elisa; Nergadze, Solomon G; Raimondi, Elena; Giulotto, Elena

    2016-01-01

    The centromere is the specialized locus required for correct chromosome segregation during cell division. The DNA of most eukaryotic centromeres is composed of extended arrays of tandem repeats (satellite DNA). In the horse, we previously showed that, although the centromere of chromosome 11 is completely devoid of tandem repeat arrays, all other centromeres are characterized by the presence of satellite DNA. We isolated three horse satellite DNA sequences (37cen, 2P1 and EC137) and described their chromosomal localization in four species of the genus Equus. In the work presented here, using the ChIP-seq methodology, we showed that, in the horse, the 37cen satellite binds CENP-A, the centromere-specific histone-H3 variant. The 37cen sequence bound by CENP-A is GC-rich with 221 bp units organized in a head-to-tail fashion. The physical interaction of CENP-A with 37cen was confirmed through slot blot experiments. Immuno-FISH on stretched chromosomes and chromatin fibres demonstrated that the extension of satellite DNA stretches is variable and is not related to the organization of CENP-A binding domains. Finally, we proved that the centromeric satellite 37cen is transcriptionally active. Our data offer new insights into the organization of horse centromeres. Although three different satellite DNA families are cytogenetically located at centromeres, only the 37cen family is associated to the centromeric function. Moreover, similarly to other species, CENP-A binding domains are variable in size. The transcriptional competence of the 37cen satellite that we observed adds new evidence to the hypothesis that centromeric transcripts may be required for centromere function.

  14. Estimating Global Impervious Surface based on Social-economic Data and Satellite Observations

    Science.gov (United States)

    Zeng, Z.; Zhang, K.; Xue, X.; Hong, Y.

    2016-12-01

    Impervious surface areas around the globe are expanding and significantly altering the surface energy balance, hydrology cycle and ecosystem services. Many studies have underlined the importance of impervious surface, r from hydrological modeling to contaminant transport monitoring and urban development estimation. Therefore accurate estimation of the global impervious surface is important for both physical and social sciences. Given the limited coverage of high spatial resolution imagery and ground survey, using satellite remote sensing and geospatial data to estimate global impervious areas is a practical approach. Based on the previous work of area-weighted imperviousness for north branch of the Chicago River provided by HDR, this study developed a method to determine the percentage of impervious surface using latest global land cover categories from multi-source satellite observations, population density and gross domestic product (GDP) data. Percent impervious surface at 30-meter resolution were mapped. We found that 1.33% of the CONUS (105,814 km2) and 0.475% of the land surface (640,370km2) are impervious surfaces. To test the utility and practicality of the proposed method, National Land Cover Database (NLCD) 2011 percent developed imperviousness for the conterminous United States was used to evaluate our results. The average difference between the derived imperviousness from our method and the NLCD data across CONUS is 1.14%, while difference between our results and the NLCD data are within ±1% over 81.63% of the CONUS. The distribution of global impervious surface map indicates that impervious surfaces are primarily concentrated in China, India, Japan, USA and Europe where are highly populated and/or developed. This study proposes a straightforward way of mapping global imperviousness, which can provide useful information for hydrologic modeling and other applications.

  15. Recent Ship, Satellite and Autonomous Observations of Southern Ocean Eddies

    Science.gov (United States)

    Strutton, P. G.; Moreau, S.; Llort, J.; Phillips, H. E.; Patel, R.; Della Penna, A.; Langlais, C.; Lenton, A.; Matear, R.; Dawson, H.; Boyd, P. W.

    2016-12-01

    The Southern Ocean is the area of greatest uncertainty regarding the exchange of CO2 between the ocean and atmosphere. It is also a region of abundant energetic eddies that significantly impact circulation and biogeochemistry. In the Indian sector of the Southern Ocean, cyclonic eddies are unusual in that they are upwelling favorable, as for cyclonic eddies elsewhere, but during summer they are low in silicate and phytoplankton biomass. The reverse is true for anticyclonic eddies in that they have counter-intuitive positive chlorophyll anomalies in summer. Similar but less obvious patterns occur in the Pacific and Atlantic sectors. Using ship, satellite and autonomous observations in the region south of Australia, the physical and biogeochemical signatures of both types of eddies were documented in 2016. A cyclonic eddy that lived for seven weeks exhibited doming isopycnals indicative of upwelling. However, low surface silicate and chlorophyll concentrations appeared to be characteristic of surface waters to the south where the eddy formed. Higher chlorophyll was confined to filaments at the eddy edge. Surface nitrate and phosphate concentrations were more than sufficient for a bloom of non-siliceous phytoplankton to occur. Acoustic observations from a high resolution TRIAXUS transect through the eddy documented high zooplankton biomass in the upper 150m. It is hypothesized that a non-diatom bloom was prevented by grazing pressure, but light may have also been an important limiting resource in late summer (April). Two SOCCOM floats that were deployed in the eddy field continued to monitor the physics, nitrate and bio-optics through the transition to winter. These observations across complementary platforms have identified and then explained the reason for these unexpected biological anomalies in an energetic and globally important region of the global ocean. Understanding the role of eddies in this region will be critical to the representation of mesoscale

  16. Origin of the Local Group satellite planes

    Science.gov (United States)

    Banik, Indranil; O'Ryan, David; Zhao, Hongsheng

    2018-04-01

    We attempt to understand the planes of satellite galaxies orbiting the Milky Way (MW) and M31 in the context of Modified Newtonian Dynamics (MOND), which implies a close MW-M31 flyby occurred ≈8 Gyr ago. Using the timing argument, we obtain MW-M31 trajectories consistent with cosmological initial conditions and present observations. We adjust the present M31 proper motion within its uncertainty in order to simulate a range of orbital geometries and closest approach distances. Treating the MW and M31 as point masses, we follow the trajectories of surrounding test particle disks, thereby mapping out the tidal debris distribution. Around each galaxy, the resulting tidal debris tends to cluster around a particular orbital pole. We find some models in which these preferred spin vectors align fairly well with those of the corresponding observed satellite planes. The radial distributions of material in the simulated satellite planes are similar to what we observe. Around the MW, our best-fitting model yields a significant fraction (0.22) of counter-rotating material, perhaps explaining why Sculptor counter-rotates within the MW satellite plane. In contrast, our model yields no counter-rotating material around M31. This is testable with proper motions of M31 satellites. In our best model, the MW disk is thickened by the flyby 7.65 Gyr ago to a root mean square height of 0.75 kpc. This is similar to the observed age and thickness of the Galactic thick disk. Thus, the MW thick disk may have formed together with the MW and M31 satellite planes during a past MW-M31 flyby.

  17. An Exploitation of Satellite-based Observation for Health Information: The UFOS Project

    Energy Technology Data Exchange (ETDEWEB)

    Mangin, A.; Morel, M.; Fanton d' Andon, O

    2000-07-01

    Short, medium and long-term trends of UV intensity levels are of crucial importance for either assessing effective biological impacts on human population, or implementing adequate preventive behaviours. Better information on a large spatial scale and increased public awareness of the short-term variations in UV values will help to support health agencies' goals of educating the public on UV risks. The Ultraviolet Forecast Operational Service Project (UFAS), financed in part by the European Commission/DG Information Society (TEN-TELECOM programme), aims to exploit satellite-based observations and to supply a set of UV products directly useful to health care. The short-term objective is to demonstrate the technical and economical feasibility and benefits that could be brought by such a system. UFOS is carried out by ACRI, with the support of an Advisory Group chaired by WHO and involving representation from the sectors of Health (WHO, INTERSUN collaborating centres, ZAMBON), Environment (WMO, IASB), and Telecommunications (EURECOM, IMET). (author)

  18. An Exploitation of Satellite-based Observation for Health Information: The UFOS Project

    International Nuclear Information System (INIS)

    Mangin, A.; Morel, M.; Fanton d'Andon, O.

    2000-01-01

    Short, medium and long-term trends of UV intensity levels are of crucial importance for either assessing effective biological impacts on human population, or implementing adequate preventive behaviours. Better information on a large spatial scale and increased public awareness of the short-term variations in UV values will help to support health agencies' goals of educating the public on UV risks. The Ultraviolet Forecast Operational Service Project (UFAS), financed in part by the European Commission/DG Information Society (TEN-TELECOM programme), aims to exploit satellite-based observations and to supply a set of UV products directly useful to health care. The short-term objective is to demonstrate the technical and economical feasibility and benefits that could be brought by such a system. UFOS is carried out by ACRI, with the support of an Advisory Group chaired by WHO and involving representation from the sectors of Health (WHO, INTERSUN collaborating centres, ZAMBON), Environment (WMO, IASB), and Telecommunications (EURECOM, IMET). (author)

  19. Magnetospheric Multiscale Satellites Observations of Parallel Electric Fields Associated with Magnetic Reconnection

    Science.gov (United States)

    Ergun, R. E.; Goodrich, K. A.; Wilder, F. D.; Holmes, J. C.; Stawarz, J. E.; Eriksson, S.; Sturner, A. P.; Malaspina, D. M.; Usanova, M. E.; Torbert, R. B.; Lindqvist, P.-A.; Khotyaintsev, Y.; Burch, J. L.; Strangeway, R. J.; Russell, C. T.; Pollock, C. J.; Giles, B. L.; Hesse, M.; Chen, L. J.; Lapenta, G.; Goldman, M. V.; Newman, D. L.; Schwartz, S. J.; Eastwood, J. P.; Phan, T. D.; Mozer, F. S.; Drake, J.; Shay, M. A.; Cassak, P. A.; Nakamura, R.; Marklund, G.

    2016-06-01

    We report observations from the Magnetospheric Multiscale satellites of parallel electric fields (E∥ ) associated with magnetic reconnection in the subsolar region of the Earth's magnetopause. E∥ events near the electron diffusion region have amplitudes on the order of 100 mV /m , which are significantly larger than those predicted for an antiparallel reconnection electric field. This Letter addresses specific types of E∥ events, which appear as large-amplitude, near unipolar spikes that are associated with tangled, reconnected magnetic fields. These E∥ events are primarily in or near a current layer near the separatrix and are interpreted to be double layers that may be responsible for secondary reconnection in tangled magnetic fields or flux ropes. These results are telling of the three-dimensional nature of magnetopause reconnection and indicate that magnetopause reconnection may be often patchy and/or drive turbulence along the separatrix that results in flux ropes and/or tangled magnetic fields.

  20. Satellite Remote Sensing For Aluminum And Nickel Laterites

    Science.gov (United States)

    Henderson, Frederick B.; Penfield, Glen T.; Grubbs, Donald K.

    1984-08-01

    The new LANDSAT-4,-5/Thematic Mapper (TM) land observational satellite remote sensing systems are providing dramatically new and important short wave infrared (SWIR) data, which combined with Landsat's Multi-Spectral Scanner (MSS) visible (VIS), very near infrared (VNIR), and thermal infrared (TI) data greatly improves regional geological mapping on a global scale. The TM will significantly improve clay, iron oxide, aluminum, and nickel laterite mapping capabilities over large areas of the world. It will also improve the ability to discriminate vegetation stress and species distribution associated with lateritic environments. Nickel laterites on Gag Island, Indonesia are defined by MSS imagery. Satellite imagery of the Cape Bougainville and the Darling Range, Australia bauxite deposits show the potential use of MSS data for exploration and mining applications. Examples of satellite syn-thetic aperture radar (SAR) for Jamaica document the use of this method for bauxite exploration. Thematic Mapper data will be combined with the French SPOT satellite's high spatial resolution and stereoscopic digital data, and U.S., Japanese, European, and Canadian Synthetic Aperture Radar (SAR) data to assist with logistics, mine development, and environ-mental concerns associated with aluminum and nickel lateritic deposits worldwide.

  1. GMTR: two-dimensional geo-fit multitarget retrieval model for michelson interferometer for passive atmospheric sounding/environmental satellite observations.

    Science.gov (United States)

    Carlotti, Massimo; Brizzi, Gabriele; Papandrea, Enzo; Prevedelli, Marco; Ridolfi, Marco; Dinelli, Bianca Maria; Magnani, Luca

    2006-02-01

    We present a new retrieval model designed to analyze the observations of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS), which is on board the ENVironmental SATellite (ENVISAT). The new geo-fit multitarget retrieval model (GMTR) implements the geo-fit two-dimensional inversion for the simultaneous retrieval of several targets including a set of atmospheric constituents that are not considered by the ground processor of the MIPAS experiment. We describe the innovative solutions adopted in the inversion algorithm and the main functionalities of the corresponding computer code. The performance of GMTR is compared with that of the MIPAS ground processor in terms of accuracy of the retrieval products. Furthermore, we show the capability of GMTR to resolve the horizontal structures of the atmosphere. The new retrieval model is implemented in an optimized computer code that is distributed by the European Space Agency as "open source" in a package that includes a full set of auxiliary data for the retrieval of 28 atmospheric targets.

  2. Towards a merged satellite and in situ fluorescence ocean chlorophyll product

    Directory of Open Access Journals (Sweden)

    H. Lavigne

    2012-06-01

    accuracy. The method was applied to two different data sets to demonstrate its utility. Using fluorescence profiles at BATS, we show that the integration of "satellite-corrected" fluorescence profiles in chlorophyll a climatologies could improve both the statistical relevance of chlorophyll a averages and the vertical structure of the chlorophyll a field. We also show that our method could be efficiently used to process, within near-real time, profiles obtained by a fluorometer deployed on autonomous platforms, in our case a bio-optical profiling float. The application of the proposed method should provide a first step towards the generation of a merged satellite/fluorescence chlorophyll a product, as the "satellite-corrected" profiles should then be consistent with satellite observations. Improved climatologies with more consistent satellite and in situ data are likely to enhance the performance of present biogeochemical models.

  3. Micro-satellite for space debris observation by optical sensors

    Science.gov (United States)

    Thillot, Marc; Brenière, Xavier; Midavaine, Thierry

    2017-11-01

    The purpose of this theoretical study carried out under CNES contract is to analyze the feasibility of small space debris detection and classification with an optical sensor on-board micro-satellite. Technical solutions based on active and passive sensors are analyzed and compared. For the most appropriated concept an optimization was made and theoretical performances in terms of number of detection versus class of diameter were calculated. Finally we give some preliminary physical sensor features to illustrate the concept (weight, volume, consumption,…).

  4. Uniform Distance Scaling Behavior of Planet-Satellite Nanostructures Made by Star Polymers.

    Science.gov (United States)

    Rossner, Christian; Tang, Qiyun; Glatter, Otto; Müller, Marcus; Vana, Philipp

    2017-02-28

    Planet-satellite nanostructures from RAFT star polymers and larger (planet) as well as smaller (satellite) gold nanoparticles are analyzed in experiments and computer simulations regarding the influence of arm number of star polymers. A uniform scaling behavior of planet-satellite distances as a function of arm length was found both in the dried state (via transmission electron microscopy) after casting the nanostructures on surfaces and in the colloidally dispersed state (via simulations and small-angle X-ray scattering) when 2-, 3-, and 6-arm star polymers were employed. This indicates that the planet-satellite distances are mainly determined by the arm length of star polymers. The observed discrepancy between TEM and simulated distances can be attributed to the difference of polymer configurations in dried and dispersed state. Our results also show that these distances are controlled by the density of star polymers end groups, and the number of grabbed satellite particles is determined by the magnitude of the corresponding density. These findings demonstrate the feasibility to precisely control the planet-satellite structures at the nanoscale.

  5. National Satellite Land Remote Sensing Data Archive

    Science.gov (United States)

    Faundeen, John L.; Kelly, Francis P.; Holm, Thomas M.; Nolt, Jenna E.

    2013-01-01

    The National Satellite Land Remote Sensing Data Archive (NSLRSDA) resides at the U.S. Geological Survey's (USGS) Earth Resources Observation and Science (EROS) Center. Through the Land Remote Sensing Policy Act of 1992, the U.S. Congress directed the Department of the Interior (DOI) to establish a permanent Government archive containing satellite remote sensing data of the Earth's land surface and to make this data easily accessible and readily available. This unique DOI/USGS archive provides a comprehensive, permanent, and impartial observational record of the planet's land surface obtained throughout more than five decades of satellite remote sensing. Satellite-derived data and information products are primary sources used to detect and understand changes such as deforestation, desertification, agricultural crop vigor, water quality, invasive plant species, and certain natural hazards such as flood extent and wildfire scars.

  6. Improving retrieval of volcanic sulphur dioxide from backscattered UV satellite observations

    NARCIS (Netherlands)

    Yang, Kai; Krotkov, N.A.; Krueger, A.J.; Carn, S.A.; Bhartia, P.K.; Levelt, P.F.

    2009-01-01

    Existing algorithms that use satellite measurements of solar backscattered ultraviolet (BUV) radiances to retrieve sulfur dioxide (SO2) vertical columns underestimate the large SO2 amounts encountered in fresh volcanic eruption clouds. To eliminate this underestimation we have developed a new

  7. An Improved BeiDou-2 Satellite-Induced Code Bias Estimation Method

    Directory of Open Access Journals (Sweden)

    Jingyang Fu

    2018-04-01

    Full Text Available Different from GPS, GLONASS, GALILEO and BeiDou-3, it is confirmed that the code multipath bias (CMB, which originate from the satellite end and can be over 1 m, are commonly found in the code observations of BeiDou-2 (BDS IGSO and MEO satellites. In order to mitigate their adverse effects on absolute precise applications which use the code measurements, we propose in this paper an improved correction model to estimate the CMB. Different from the traditional model which considering the correction values are orbit-type dependent (estimating two sets of values for IGSO and MEO, respectively and modeling the CMB as a piecewise linear function with a elevation node separation of 10°, we estimate the corrections for each BDS IGSO + MEO satellite on one hand, and a denser elevation node separation of 5° is used to model the CMB variations on the other hand. Currently, the institutions such as IGS-MGEX operate over 120 stations which providing the daily BDS observations. These large amounts of data provide adequate support to refine the CMB estimation satellite by satellite in our improved model. One month BDS observations from MGEX are used for assessing the performance of the improved CMB model by means of precise point positioning (PPP. Experimental results show that for the satellites on the same orbit type, obvious differences can be found in the CMB at the same node and frequency. Results show that the new correction model can improve the wide-lane (WL ambiguity usage rate for WL fractional cycle bias estimation, shorten the WL and narrow-lane (NL time to first fix (TTFF in PPP ambiguity resolution (AR as well as improve the PPP positioning accuracy. With our improved correction model, the usage of WL ambiguity is increased from 94.1% to 96.0%, the WL and NL TTFF of PPP AR is shorten from 10.6 to 9.3 min, 67.9 to 63.3 min, respectively, compared with the traditional correction model. In addition, both the traditional and improved CMB model have

  8. SatelliteDL: a Toolkit for Analysis of Heterogeneous Satellite Datasets

    Science.gov (United States)

    Galloy, M. D.; Fillmore, D.

    2014-12-01

    SatelliteDL is an IDL toolkit for the analysis of satellite Earth observations from a diverse set of platforms and sensors. The core function of the toolkit is the spatial and temporal alignment of satellite swath and geostationary data. The design features an abstraction layer that allows for easy inclusion of new datasets in a modular way. Our overarching objective is to create utilities that automate the mundane aspects of satellite data analysis, are extensible and maintainable, and do not place limitations on the analysis itself. IDL has a powerful suite of statistical and visualization tools that can be used in conjunction with SatelliteDL. Toward this end we have constructed SatelliteDL to include (1) HTML and LaTeX API document generation,(2) a unit test framework,(3) automatic message and error logs,(4) HTML and LaTeX plot and table generation, and(5) several real world examples with bundled datasets available for download. For ease of use, datasets, variables and optional workflows may be specified in a flexible format configuration file. Configuration statements may specify, for example, a region and date range, and the creation of images, plots and statistical summary tables for a long list of variables. SatelliteDL enforces data provenance; all data should be traceable and reproducible. The output NetCDF file metadata holds a complete history of the original datasets and their transformations, and a method exists to reconstruct a configuration file from this information. Release 0.1.0 distributes with ingest methods for GOES, MODIS, VIIRS and CERES radiance data (L1) as well as select 2D atmosphere products (L2) such as aerosol and cloud (MODIS and VIIRS) and radiant flux (CERES). Future releases will provide ingest methods for ocean and land surface products, gridded and time averaged datasets (L3 Daily, Monthly and Yearly), and support for 3D products such as temperature and water vapor profiles. Emphasis will be on NPP Sensor, Environmental and

  9. GNSS-SLR satellite co-location for the estimate of local ties

    Science.gov (United States)

    Bruni, Sara; Zerbini, Susanna; Errico, Maddalena; Santi, Efisio

    2013-04-01

    The current realization of the International Terrestrial Reference Frame (ITRF) is based on four different space-geodetic techniques, so that the benefits brought by each observing system to the definition of the frame can compensate for the drawbacks of the others and technique-specific systematic errors might be identified. The strategy used to combine the observations from the different techniques is then of prominent importance for the realization of a precise and stable reference frame. This study concentrates, in particular, on the combination of Satellite Laser Ranging (SLR) and Global Navigation Satellite System (GNSS) observations by exploiting satellite co-locations. This innovative approach is based on the fact that laser tracking of GNSS satellites, carrying on board laser reflector arrays, allows for the combination of optical and microwave signals in the determination of the spacecraft orbit. Besides, the use of satellite co-locations differs quite significantly from the traditional combination method in which each single technique solution is carried out autonomously and is interrelated in a second step. One of the benefits of the approach adopted in this study is that it allows for an independent validation of the local tie, i.e. of the vector connecting the SLR and GNSS reference points in a multi-techniques station. Typically, local ties are expressed by a single value, measured with ground-based geodetic techniques and taken as constant. In principle, however, local ties might show time variations likely caused by the different monumentation characteristics of the GNSS antennas with respect to those of a SLR system. This study evaluates the possibility of using the satellite co-location approach to generate local-ties time series by means of observations available for a selected network of ILRS stations. The data analyzed in this study were acquired as part of the NASA's Earth Science Data Systems and are archived and distributed by the Crustal

  10. Classification of Clouds in Satellite Imagery Using Adaptive Fuzzy Sparse Representation

    Directory of Open Access Journals (Sweden)

    Wei Jin

    2016-12-01

    Full Text Available Automatic cloud detection and classification using satellite cloud imagery have various meteorological applications such as weather forecasting and climate monitoring. Cloud pattern analysis is one of the research hotspots recently. Since satellites sense the clouds remotely from space, and different cloud types often overlap and convert into each other, there must be some fuzziness and uncertainty in satellite cloud imagery. Satellite observation is susceptible to noises, while traditional cloud classification methods are sensitive to noises and outliers; it is hard for traditional cloud classification methods to achieve reliable results. To deal with these problems, a satellite cloud classification method using adaptive fuzzy sparse representation-based classification (AFSRC is proposed. Firstly, by defining adaptive parameters related to attenuation rate and critical membership, an improved fuzzy membership is introduced to accommodate the fuzziness and uncertainty of satellite cloud imagery; secondly, by effective combination of the improved fuzzy membership function and sparse representation-based classification (SRC, atoms in training dictionary are optimized; finally, an adaptive fuzzy sparse representation classifier for cloud classification is proposed. Experiment results on FY-2G satellite cloud image show that, the proposed method not only improves the accuracy of cloud classification, but also has strong stability and adaptability with high computational efficiency.

  11. Classification of Clouds in Satellite Imagery Using Adaptive Fuzzy Sparse Representation

    Science.gov (United States)

    Jin, Wei; Gong, Fei; Zeng, Xingbin; Fu, Randi

    2016-01-01

    Automatic cloud detection and classification using satellite cloud imagery have various meteorological applications such as weather forecasting and climate monitoring. Cloud pattern analysis is one of the research hotspots recently. Since satellites sense the clouds remotely from space, and different cloud types often overlap and convert into each other, there must be some fuzziness and uncertainty in satellite cloud imagery. Satellite observation is susceptible to noises, while traditional cloud classification methods are sensitive to noises and outliers; it is hard for traditional cloud classification methods to achieve reliable results. To deal with these problems, a satellite cloud classification method using adaptive fuzzy sparse representation-based classification (AFSRC) is proposed. Firstly, by defining adaptive parameters related to attenuation rate and critical membership, an improved fuzzy membership is introduced to accommodate the fuzziness and uncertainty of satellite cloud imagery; secondly, by effective combination of the improved fuzzy membership function and sparse representation-based classification (SRC), atoms in training dictionary are optimized; finally, an adaptive fuzzy sparse representation classifier for cloud classification is proposed. Experiment results on FY-2G satellite cloud image show that, the proposed method not only improves the accuracy of cloud classification, but also has strong stability and adaptability with high computational efficiency. PMID:27999261

  12. Retained Myogenic Potency of Human Satellite Cells from Torn Rotator Cuff Muscles Despite Fatty Infiltration.

    Science.gov (United States)

    Koide, Masashi; Hagiwara, Yoshihiro; Tsuchiya, Masahiro; Kanzaki, Makoto; Hatakeyama, Hiroyasu; Tanaka, Yukinori; Minowa, Takashi; Takemura, Taro; Ando, Akira; Sekiguchi, Takuya; Yabe, Yutaka; Itoi, Eiji

    2018-01-01

    Rotator cuff tears (RCTs) are a common shoulder problem in the elderly that can lead to both muscle atrophy and fatty infiltration due to less physical load. Satellite cells, quiescent cells under the basal lamina of skeletal muscle fibers, play a major role in muscle regeneration. However, the myogenic potency of human satellite cells in muscles with fatty infiltration is unclear due to the difficulty in isolating from small samples, and the mechanism of the progression of fatty infiltration has not been elucidated. The purpose of this study was to analyze the population of myogenic and adipogenic cells in disused supraspinatus (SSP) and intact subscapularis (SSC) muscles of the RCTs from the same patients using fluorescence-activated cell sorting. The microstructure of the muscle with fatty infiltration was observed as a whole mount condition under multi-photon microscopy. Myogenic differentiation potential and gene expression were evaluated in satellite cells. The results showed that the SSP muscle with greater fatty infiltration surrounded by collagen fibers compared with the SSC muscle under multi-photon microscopy. A positive correlation was observed between the ratio of muscle volume to fat volume and the ratio of myogenic precursor to adipogenic precursor. Although no difference was observed in the myogenic potential between the two groups in cell culture, satellite cells in the disused SSP muscle showed higher intrinsic myogenic gene expression than those in the intact SSC muscle. Our results indicate that satellite cells from the disused SSP retain sufficient potential of muscle growth despite the fatty infiltration.

  13. Towards validation of ammonia (NH3) measurements from the IASI satellite

    Science.gov (United States)

    Van Damme, M.; Clarisse, L.; Dammers, E.; Liu, X.; Nowak, J. B.; Clerbaux, C.; Flechard, C. R.; Galy-Lacaux, C.; Xu, W.; Neuman, J. A.; Tang, Y. S.; Sutton, M. A.; Erisman, J. W.; Coheur, P. F.

    2015-03-01

    Limited availability of ammonia (NH3) observations is currently a barrier for effective monitoring of the nitrogen cycle. It prevents a full understanding of the atmospheric processes in which this trace gas is involved and therefore impedes determining its related budgets. Since the end of 2007, the Infrared Atmospheric Sounding Interferometer (IASI) satellite has been observing NH3 from space at a high spatio-temporal resolution. This valuable data set, already used by models, still needs validation. We present here a first attempt to validate IASI-NH3 measurements using existing independent ground-based and airborne data sets. The yearly distributions reveal similar patterns between ground-based and space-borne observations and highlight the scarcity of local NH3 measurements as well as their spatial heterogeneity and lack of representativity. By comparison with monthly resolved data sets in Europe, China and Africa, we show that IASI-NH3 observations are in fair agreement, but they are characterized by a smaller variation in concentrations. The use of hourly and airborne data sets to compare with IASI individual observations allows investigations of the impact of averaging as well as the representativity of independent observations for the satellite footprint. The importance of considering the latter and the added value of densely located airborne measurements at various altitudes to validate IASI-NH3 columns are discussed. Perspectives and guidelines for future validation work on NH3 satellite observations are presented.

  14. Temperature diagnostics using lithium-like satellites

    International Nuclear Information System (INIS)

    Datla, R.U.; Jones, L.A.; Thomson, D.B.

    1980-10-01

    A 60-kJ theta-pinch was operated at a filling pressure of 16 mtorr using a gas mixture of 2% neon and 98% helium. The resonance and intercombination lines from Ne IX and the Li-like satellites were observed with a Bragg crystal monochromator. The electron temperature of the plasma was deduced from the intensity ratios of the Ne IX resonance line and the dielectronic satellites using recent theoretical calculations. The temperature values ranged from 210 eV to 340 eV during the time of occurrence of these satellites. The temperature measured at 1.0 μs by laser scattering for a similar plasma condition was in close agreement with that obtained by the resonance line/satellite ratio. This lends confidence to use of the satellite technique for temperature measurements in other plasmas

  15. Strengthening IAEA safeguards using high-resolution commercial satellite imagery

    International Nuclear Information System (INIS)

    Zhang Hui

    2001-01-01

    associated reprocessing plants or uranium enrichment plants. These plants would have some characteristic visible features, which can be seen from lm-resolution satellite images. For example, from an initial study of these lm-resolution IKONOS images: 1) it is quite straightforward to identify characteristic features of a dedicated plutonium production reactor site: a cooling system of cooling towers or other water source, a high narrow stack, a reactor building, and the security fence; 2) it can reveal identifiable features of a reprocessing plant: a reprocessing building, and a very high stack (which would be unable to be discerned by the medium-resolution images); 3) it suggests common characteristics of a uranium-enriched gaseous diffusion plant (GDP) would include large-area processing buildings; cooling towers or a nearby river or lake; a nearby fossil-fuel power plant to supply the enrichment complex; and waste management and disposal facilities at some enrichment sites. However, for smaller scales such as gas centrifuge plants (CEP) which could be a preferred way for future proliferants, they will have much less obviously observable characteristic as a GDP have for satellite images. The identification of a CEP had to rely heavily on other collateral information; 4) the one-meter resolution images also show the observable features of a typical heavy water production plant using GS process: a row of exchange columns, the high tower for discharge pious H 2 S gas, and a number of water storage tanks. Facing this new challenge of widely available high-resolution satellite imagery, some states in the future could take deceptions and antisatellite-imaging countermeasures to make their dedicated nuclear facilities hide such as underground. However, the cost of such clandestine program would be substantially higher. Moreover, based on the experience of a few known underground nuclear facilities, there are still some observable characteristic features for high- resolution

  16. A near real-time satellite-based global drought climate data record

    International Nuclear Information System (INIS)

    AghaKouchak, Amir; Nakhjiri, Navid

    2012-01-01

    Reliable drought monitoring requires long-term and continuous precipitation data. High resolution satellite measurements provide valuable precipitation information on a quasi-global scale. However, their short lengths of records limit their applications in drought monitoring. In addition to this limitation, long-term low resolution satellite-based gauge-adjusted data sets such as the Global Precipitation Climatology Project (GPCP) one are not available in near real-time form for timely drought monitoring. This study bridges the gap between low resolution long-term satellite gauge-adjusted data and the emerging high resolution satellite precipitation data sets to create a long-term climate data record of droughts. To accomplish this, a Bayesian correction algorithm is used to combine GPCP data with real-time satellite precipitation data sets for drought monitoring and analysis. The results showed that the combined data sets after the Bayesian correction were a significant improvement compared to the uncorrected data. Furthermore, several recent major droughts such as the 2011 Texas, 2010 Amazon and 2010 Horn of Africa droughts were detected in the combined real-time and long-term satellite observations. This highlights the potential application of satellite precipitation data for regional to global drought monitoring. The final product is a real-time data-driven satellite-based standardized precipitation index that can be used for drought monitoring especially over remote and/or ungauged regions. (letter)

  17. Solar Power Satellites

    CERN Document Server

    Flournoy, Don M

    2012-01-01

    Communication satellites are a $144 billion industry. Is there any space-based industry that could possibly beat that market? 'Solar Power Satellites' shows why and how the space satellite industry will soon begin expanding its market from relaying signals to Earth to generating energy in space and delivering it to the ground as electricity. In all industrialized nations, energy demand is growing exponentially. In the developing world, the need for energy is as basic as food and water. The Sun's energy is available everywhere, and it is non-polluting. As business plans demonstrate its technical feasibility, commercial potential, and environmental acceptability, every country on Earth will look to space for the power it needs.

  18. The use of satellite laser observations in studying the crustal movements

    Directory of Open Access Journals (Sweden)

    Gamal F. Attia

    2012-12-01

    Full Text Available The mutual tectonic displacements of the lithospheric blocks take place within the deep fracture dividing them into hundreds and thousands kilometers long. It is possible to suggest that the reason of the accumulation of considerable local shift deformations is the change of the velocity of the tectonic motion in some or other parts of fractures as a result of different physical, chemical and mechanical processes. Nowadays, the range precision of Satellite Laser Ranging (SLR technique reaches a few millimeters level. Therefore, the space geodesy technique becomes a very important tool in detecting and monitoring recent crustal movements. Regular repeated measurements of the baselines between some stations on different plates give the possibility to construct precise and detail models of crustal movements. In this paper, the length of four baselines between Helwan-SLR station and other four SLR stations are calculated using satellite geodetical technique.

  19. Study of Sea Surface Temperatures changes due to tropical cyclone fanoos in the southwest Bay of Bengal using satellite and argo observations

    Science.gov (United States)

    Krishna Kailasam, Muni

    Sea surface temperature (SST) plays an important role in the studies of global climate system and as a boundary condition for operational numerical forecasts. Estimation of SST has tra-ditionally been performed with satellite based sensors operating in the infrared (IR) portion of the electromagnetic spectrum, where the ocean emissivity is close to unity. The National Oceanic and Atmospheric Administration (NOAA) satellite series, the GOES Imagers on the Geostationary Operational Environmental Satellites, the Along Track Scanning Radiometer (ATSR) on the European Remote Sensing satellites and the Moderate Resolution Imaging Spectroradiometer (MODIS) on the NASA EOS platform are successful examples of IR sen-sors currently used for operational SST retrievals. Significant progress in SST retrieval from remote sensing data came with the introduction of a new low-frequency channel (10.7 GHz) on microwave (MW) sensors. The anthropogenic effects over a period of time resulted in increase of infrared absorbers such as greenhouse gases and absorbing aerosol would produce increase of both daytime maximum and nighttime minimum temperatures. In contrast, the increases of visible reflectors such as sulfate aerosols and low cloud amount would result in a decrease of the daytime maximum temperature. Solar radiation, wind stress and vertical mixing are known to be the three major factors impacting the SST seasonal variations. In the present study, impact of absorbing aerosols on the sea surface temperature (SST) over Bay of Bengal (BoB) region was investigated. Increased aerosol loading over BoB was observed due to advection of aerosols from continental region consisting of absorbing particles primarily from dust and biomass burning. This increased loading over BoB resulted in reduction of surface reaching solar radiation. Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) de-rived SST over BoB showed negative correlation with OMI-Aerosol Index (AI) (R = 0.87) and

  20. Multi-temporal dynamics of suspended particulate matter in a macro-tidal river Plume (the Gironde) as observed by satellite data

    Science.gov (United States)

    Constantin, Sorin; Doxaran, David; Derkacheva, Anna; Novoa, Stéfani; Lavigne, Héloïse

    2018-03-01

    The Gironde River plume area is unique in terms of Suspended Particulate Matter (SPM) dynamics. Multiple factors contribute to the variations of SPM at multiple time scales, from river outputs to wind stress, currents and tidal cycles. The formation and evolution of the Maximum Turbidity Zone (MTZ) inside the estuary also plays a significant role. Thus, detailed analyses and monitoring of the region is important for better understanding the mechanisms governing the turbid plume dynamics, for proper future management and monitoring of SPM export from the estuary to the coastal ocean. In this study we use an unprecedented volume of satellite data to capture and better understand the dynamics of the river plume. We combine two types of satellite information in order to achieve these goals: data collected by the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Spinning Enhanced Visible and Infrared Imager (SEVIRI) sensors. The integrated information allows accounting for multiple time scales, i.e. from seasonal to diurnal cycles. We show and parameterize the overall effects of river discharge rates over the plume extension. Seasonal variations are also analyzed and an overall relationship between river discharge rates and plume magnitude is computed. For the first time, we clearly observe and explain the diurnal cycle of SPM dynamics in the river plume. Despite the limited capabilities of the SEVIRI sensor, geostationary data was successfully used to derive such information and results similar to in-situ datasets were obtained. The same patterns are observed, with significant increase in SPM plume during spring/ebb tide periods. Results from our study can be further used to refine sediment transport models and to gain a better perspective on the ecological implications of the sediment output in the continental shelf area.