WorldWideScience

Sample records for satellite navigation errors

  1. Sources of Error in Satellite Navigation Positioning

    Directory of Open Access Journals (Sweden)

    Jacek Januszewski

    2017-09-01

    Full Text Available An uninterrupted information about the user’s position can be obtained generally from satellite navigation system (SNS. At the time of this writing (January 2017 currently two global SNSs, GPS and GLONASS, are fully operational, two next, also global, Galileo and BeiDou are under construction. In each SNS the accuracy of the user’s position is affected by the three main factors: accuracy of each satellite position, accuracy of pseudorange measurement and satellite geometry. The user’s position error is a function of both the pseudorange error called UERE (User Equivalent Range Error and user/satellite geometry expressed by right Dilution Of Precision (DOP coefficient. This error is decomposed into two types of errors: the signal in space ranging error called URE (User Range Error and the user equipment error UEE. The detailed analyses of URE, UEE, UERE and DOP coefficients, and the changes of DOP coefficients in different days are presented in this paper.

  2. Ionosphere Delay Calibration and Calibration Errors for Satellite Navigation of Aircraft

    Science.gov (United States)

    Harris, Ian; Manucci, Anthony; Iijima, Byron; Lindqwister, Ulf; Muna, Demitri; Pi, Xiaoqing; Wilson, Brian

    2000-01-01

    The Federal Aviation Administration (FAA) is implementing a satellite-based navigation system for aircraft using the Global Positioning System (GPS). Positioning accuracy of a few meters will be achieved by broadcasting corrections to the direct GPS signal. These corrections are derived using the wide-area augmentation system (WAAS), which includes a ground network of at least 24 GPS receivers across the Continental US (CONUS). WAAS will provide real-time total electron content (TEC) measurements that can be mapped to fixed grid points using a real-time mapping algorithm. These TECs will be converted into vertical delay corrections for the GPS L1 frequency and broadcast to users every five minutes via geosynchronous satellite. Users will convert these delays to slant calibrations along their own lines-of-sight (LOS) to GPS satellites. Uncertainties in the delay calibrations will also be broadcast, allowing users to estimate the uncertainty of their position. To maintain user safety without reverting to excessive safety margins an empirical model of user calibration errors has been developed. WAAS performance depends on factors that include geographic location (errors increase near WAAS borders), and ionospheric conditions, such as the enhanced spatial electron density gradients found during ionospheric storms.

  3. China Satellite Navigation Conference

    CERN Document Server

    Liu, Jingnan; Fan, Shiwei; Wang, Feixue

    2016-01-01

    These Proceedings present selected research papers from CSNC2016, held during 18th-20th May in Changsha, China. The theme of CSNC2016 is Smart Sensing, Smart Perception. These papers discuss the technologies and applications of the Global Navigation Satellite System (GNSS), and the latest progress made in the China BeiDou System (BDS) especially. They are divided into 12 topics to match the corresponding sessions in CSNC2016, which broadly covered key topics in GNSS. Readers can learn about the BDS and keep abreast of the latest advances in GNSS techniques and applications.

  4. China Satellite Navigation Conference

    CERN Document Server

    Liu, Jingnan; Yang, Yuanxi; Fan, Shiwei; Yu, Wenxian

    2017-01-01

    These proceedings present selected research papers from CSNC2017, held during 23th-25th May in Shanghai, China. The theme of CSNC2017 is Positioning, Connecting All. These papers discuss the technologies and applications of the Global Navigation Satellite System (GNSS), and the latest progress made in the China BeiDou System (BDS) especially. They are divided into 12 topics to match the corresponding sessions in CSNC2017, which broadly covered key topics in GNSS. Readers can learn about the BDS and keep abreast of the latest advances in GNSS techniques and applications.

  5. Understanding satellite navigation

    CERN Document Server

    Acharya, Rajat

    2014-01-01

    This book explains the basic principles of satellite navigation technology with the bare minimum of mathematics and without complex equations. It helps you to conceptualize the underlying theory from first principles, building up your knowledge gradually using practical demonstrations and worked examples. A full range of MATLAB simulations is used to visualize concepts and solve problems, allowing you to see what happens to signals and systems with different configurations. Implementation and applications are discussed, along with some special topics such as Kalman Filter and Ionosphere. W

  6. Development of Fast Error Compensation Algorithm for Integrated Inertial-Satellite Navigation System of Small-size Unmanned Aerial Vehicles in Complex Environment

    Directory of Open Access Journals (Sweden)

    A. V. Fomichev

    2015-01-01

    Full Text Available In accordance with the structural features of small-size unmanned aerial vehicle (UAV, and considering the feasibility of this project, the article studies an integrated inertial-satellite navigation system (INS. The INS algorithm development is based on the method of indirect filtration and principle of loosely coupled combination of output data on UAV positions and velocity. Data on position and velocity are provided from the strapdown inertial navigation system (SINS and satellite navigation system (GPS. A difference between the output flows of measuring data on position and velocity provided from the SINS and GPS is used to evaluate SINS errors by means of the basic algorithm of Kalman filtering. Then the outputs of SINS are revised. The INS possesses the following advantages: a simpler mathematical model of Kalman filtering, high reliability, two independently operating navigation systems, and high redundancy of available navigation information.But in case of loosely coupled scheme, INS can meet the challenge of high precision and reliability of navigation only when the SINS and GPS operating conditions are normal all the time. The proposed INS is used with UAV moving in complex environment due to obstacles available, severe natural climatic conditions, etc. This case expects that it is impossible for UAV to receive successful GPS-signals frequently. In order to solve this problem, was developed an algorithm for rapid compensation for errors of INS information, which could effectively solve the problem of failure of the navigation system in case there are no GPS-signals .Since it is almost impossible to obtain the data of the real trajectory in practice, in the course of simulation in accordance with the kinematic model of the UAV and the complex environment of the terrain, the flight path generator is used to produce the flight path. The errors of positions and velocities are considered as an indicator of the INS effectiveness. The results

  7. Satellite Photometric Error Determination

    Science.gov (United States)

    2015-10-18

    Satellite Photometric Error Determination Tamara E. Payne, Philip J. Castro, Stephen A. Gregory Applied Optimization 714 East Monument Ave, Suite...advocate the adoption of new techniques based on in-frame photometric calibrations enabled by newly available all-sky star catalogs that contain highly...filter systems will likely be supplanted by the Sloan based filter systems. The Johnson photometric system is a set of filters in the optical

  8. Surface navigation on Mars with a Navigation Satellite

    Science.gov (United States)

    Vijayaraghavan, A.; Thurman, Sam W.; Kahn, Robert D.; Hastrup, Rolf C.

    Radiometric navigation data from the Deep Space Network (DSN) stations on the earth to transponders and other surface elements such as rovers and landers on Mars, can determine their positions to only within a kilometer in inertial space. The positional error is mostly in the z-component of the surface element parallel to the Martian spin-axis. However, with Doppler and differenced-Doppler data from a Navigation Satellite in orbit around Mars to two or more of such transponders on the planetary surface, their positions can be determined to within 15 meters (or 20 meters for one-way Doppler beacons on Mars) in inertial space. In this case, the transponders (or other vehicles) on Mars need not even be capable of directly communicating to the earth. When the Navigation Satellite data is complemented by radiometric observations from the DSN stations also, directly to the surface elements on Mars, their positions can be determined to within 3 meters in inertial space. The relative positions of such surface elements on Mars (relative to one another) in Mars-fixed coordinates, however, can be determined to within 5 meters from simply range and Doppler data from the DSN stations to the surface elements. These results are obtained from covariance studies assuming X-band data noise levels and data-arcs not exceeding 10 days. They are significant in the planning and deployment of a Mars-based navigation network necessary to support real-time operations during critical phases of manned exploration of Mars.

  9. Fuzzy Logic Controller for Small Satellites Navigation

    National Research Council Canada - National Science Library

    Della Pietra, G; Falzini, S; Colzi, E; Crisconio, M

    2005-01-01

    .... The navigator aims at operating satellites in orbit with a minimum ground support and very good performances, by the adoption of innovative technologies, such as attitude observation GPS, attitude...

  10. Sensitivity of Magnetospheric Multi-Scale (MMS) Mission Navigation Accuracy to Major Error Sources

    Science.gov (United States)

    Olson, Corwin; Long, Anne; Car[emter. Russell

    2011-01-01

    The Magnetospheric Multiscale (MMS) mission consists of four satellites flying in formation in highly elliptical orbits about the Earth, with a primary objective of studying magnetic reconnection. The baseline navigation concept is independent estimation of each spacecraft state using GPS pseudorange measurements referenced to an Ultra Stable Oscillator (USO) with accelerometer measurements included during maneuvers. MMS state estimation is performed onboard each spacecraft using the Goddard Enhanced Onboard Navigation System (GEONS), which is embedded in the Navigator GPS receiver. This paper describes the sensitivity of MMS navigation performance to two major error sources: USO clock errors and thrust acceleration knowledge errors.

  11. An alternative ionospheric correction model for global navigation satellite systems

    Science.gov (United States)

    Hoque, M. M.; Jakowski, N.

    2015-04-01

    The ionosphere is recognized as a major error source for single-frequency operations of global navigation satellite systems (GNSS). To enhance single-frequency operations the global positioning system (GPS) uses an ionospheric correction algorithm (ICA) driven by 8 coefficients broadcasted in the navigation message every 24 h. Similarly, the global navigation satellite system Galileo uses the electron density NeQuick model for ionospheric correction. The Galileo satellite vehicles (SVs) transmit 3 ionospheric correction coefficients as driver parameters of the NeQuick model. In the present work, we propose an alternative ionospheric correction algorithm called Neustrelitz TEC broadcast model NTCM-BC that is also applicable for global satellite navigation systems. Like the GPS ICA or Galileo NeQuick, the NTCM-BC can be optimized on a daily basis by utilizing GNSS data obtained at the previous day at monitor stations. To drive the NTCM-BC, 9 ionospheric correction coefficients need to be uploaded to the SVs for broadcasting in the navigation message. Our investigation using GPS data of about 200 worldwide ground stations shows that the 24-h-ahead prediction performance of the NTCM-BC is better than the GPS ICA and comparable to the Galileo NeQuick model. We have found that the 95 percentiles of the prediction error are about 16.1, 16.1 and 13.4 TECU for the GPS ICA, Galileo NeQuick and NTCM-BC, respectively, during a selected quiet ionospheric period, whereas the corresponding numbers are found about 40.5, 28.2 and 26.5 TECU during a selected geomagnetic perturbed period. However, in terms of complexity the NTCM-BC is easier to handle than the Galileo NeQuick and in this respect comparable to the GPS ICA.

  12. Information content in reflected global navigation satellite system signals

    DEFF Research Database (Denmark)

    Høeg, Per; Carlstrom, Anders

    2011-01-01

    The direct signals from satellites in global satellite navigation satellites systems (GNSS) as, GPS, GLONASS and GALILEO, constitute the primary source for positioning, navigation and timing from space. But also the reflected GNSS signals contain an important information content of signal travel...

  13. Error Analysis of Inertial Navigation Systems Using Test Algorithms

    OpenAIRE

    Vaispacher, Tomáš; Bréda, Róbert; Adamčík, František

    2015-01-01

    Content of this contribution is an issue of inertial sensors errors, specification of inertial measurement units and generating of test signals for Inertial Navigation System (INS). Given the different levels of navigation tasks, part of this contribution is comparison of the actual types of Inertial Measurement Units. Considering this comparison, there is proposed the way of solving inertial sensors errors and their modelling for low – cost inertial navigation applications. The last part is ...

  14. Engineering satellite-based navigation and timing global navigation satellite systems, signals, and receivers

    CERN Document Server

    Betz, J

    2016-01-01

    This book describes the design and performance analysis of satnav systems, signals, and receivers. It also provides succinct descriptions and comparisons of all the world’s satnav systems. Its comprehensive and logical structure addresses all satnav signals and systems in operation and being developed. Engineering Satellite-Based Navigation and Timing: Global Navigation Satellite Systems, Signals, and Receivers provides the technical foundation for designing and analyzing satnav signals, systems, and receivers. Its contents and structure address all satnav systems and signals: legacy, modernized, and new. It combines qualitative information with detailed techniques and analyses, providing a comprehensive set of insights and engineering tools for this complex multidisciplinary field. Part I describes system and signal engineering including orbital mechanics and constellation design, signal design principles and underlying considerations, link budgets, qua tifying receiver performance in interference, and e...

  15. Ballistic Aspects of Feasibility for Prospective Satellite Navigation Technologies

    Directory of Open Access Journals (Sweden)

    L. N. Lysenko

    2015-01-01

    Full Text Available When modeling the operating processes of ballistics and navigation support it is expedient to make decomposition of the general problem of coordinate-time and navigation support into the typical options of its engineering implementation.As the satellite navigation technologies the paper considers inter-satellite measurement and autonomous navigation mode of differential correction. It also assesses the possibility of their application to improve the accuracy of navigation determinations.Technologies using inter-satellite measurement tools such as GLONASS / GPS equipment, equipment of inter-satellite radio link, astro-optical space based devices are an independent class of navigation technologies.However, each of these options has both advantages and disadvantages that affect the eva luation of the appropriateness and feasibility of their use.The paper separately considers the problem of increasing survivability of space systems and conservation of ground control complex due to introduction of requirements to ensure the independent functioning of spacecraft and application of technologies of ballistics and navigation support, supposing to involve minimum means of automated ground control complex for these purposes.Currently, there is a completely developed theory of autonomous navigation based on astronomical positional gauges, which are used as onboard optical sensors of orientation and stabilization systems.To date, the differential navigation mode is, virtually, the only approach that can allow the olution of tasks in terms of increased accuracy, but with some restrictions.The implementation of differential mode of treatment is carried out through the creation of differential subsystems of the satellite navigation systems. These subsystems are usually divided into wide-range, regional and local ones.Analysis of ballistic aspects to implement discussed navigation technologies allowed us to identify constraints for improving accuracy to define

  16. IceBridge GPS L0 Raw Satellite Navigation Data

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA IceBridge GPS L0 Raw Satellite Navigation Data (IPUTG0) data set contains GPS readings, including latitude, longitude, track, ground speed, off distance,...

  17. GNSS global navigation satellite systems : GPS, GLONASS, Galileo, and more

    CERN Document Server

    Hofmann-Wellenhof, Bernhard; Wasle, Elmar

    2008-01-01

    This book is an extension to the acclaimed scientific bestseller "GPS - Theory and Practice". It covers Global Navigation Satellite Systems (GNSS) and includes the Russian GLONASS, the European system Galileo, and additional systems.

  18. MATLAB implementation of satellite positioning error overbounding by generalized Pareto distribution

    Science.gov (United States)

    Ahmad, Khairol Amali; Ahmad, Shahril; Hashim, Fakroul Ridzuan

    2018-02-01

    In the satellite navigation community, error overbound has been implemented in the process of integrity monitoring. In this work, MATLAB programming is used to implement the overbounding of satellite positioning error CDF. Using a trajectory of reference, the horizontal position errors (HPE) are computed and its non-parametric distribution function is given by the empirical Cumulative Distribution Function (ECDF). According to the results, these errors have a heavy-tailed distribution. Sınce the ECDF of the HPE in urban environment is not Gaussian distributed, the ECDF is overbound with the CDF of the generalized Pareto distribution (GPD).

  19. Error Analysis System for Spacecraft Navigation Using the Global Positioning System (GPS)

    Science.gov (United States)

    Truong, S. H.; Hart, R. C.; Hartman, K. R.; Tomcsik, T. L.; Searl, J. E.; Bernstein, A.

    1997-01-01

    The Flight Dynamics Division (FDD) at the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) is currently developing improved space-navigation filtering algorithms to use the Global Positioning System (GPS) for autonomous real-time onboard orbit determination. In connection with a GPS technology demonstration on the Small Satellite Technology Initiative (SSTI)/Lewis spacecraft, FDD analysts and programmers have teamed with the GSFC Guidance, Navigation, and Control Branch to develop the GPS Enhanced Orbit Determination Experiment (GEODE) system. The GEODE system consists of a Kalman filter operating as a navigation tool for estimating the position, velocity, and additional states required to accurately navigate the orbiting Lewis spacecraft by using astrodynamic modeling and GPS measurements from the receiver. A parallel effort at the FDD is the development of a GPS Error Analysis System (GEAS) that will be used to analyze and improve navigation filtering algorithms during development phases and during in-flight calibration. For GEAS, the Kalman filter theory is extended to estimate the errors in position, velocity, and other error states of interest. The estimation of errors in physical variables at regular intervals will allow the time, cause, and effect of navigation system weaknesses to be identified. In addition, by modeling a sufficient set of navigation system errors, a system failure that causes an observed error anomaly can be traced and accounted for. The GEAS software is formulated using Object Oriented Design (OOD) techniques implemented in the C++ programming language on a Sun SPARC workstation. The Phase 1 of this effort is the development of a basic system to be used to evaluate navigation algorithms implemented in the GEODE system. This paper presents the GEAS mathematical methodology, systems and operations concepts, and software design and implementation. Results from the use of the basic system to evaluate

  20. Improved GPS-based Satellite Relative Navigation Using Femtosecond Laser Relative Distance Measurements

    Directory of Open Access Journals (Sweden)

    Hyungjik Oh

    2016-03-01

    Full Text Available This study developed an approach for improving Carrier-phase Differential Global Positioning System (CDGPS based realtime satellite relative navigation by applying laser baseline measurement data. The robustness against the space operational environment was considered, and a Synthetic Wavelength Interferometer (SWI algorithm based on a femtosecond laser measurement model was developed. The phase differences between two laser wavelengths were combined to measure precise distance. Generated laser data were used to improve estimation accuracy for the float ambiguity of CDGPS data. Relative navigation simulations in real-time were performed using the extended Kalman filter algorithm. The GPS and laser-combined relative navigation accuracy was compared with GPS-only relative navigation solutions to determine the impact of laser data on relative navigation. In numerical simulations, the success rate of integer ambiguity resolution increased when laser data was added to GPS data. The relative navigational errors also improved five-fold and two-fold, relative to the GPS-only error, for 250 m and 5 km initial relative distances, respectively. The methodology developed in this study is suitable for application to future satellite formation-flying missions.

  1. Satellite Imagery Assisted Road-Based Visual Navigation System

    Science.gov (United States)

    Volkova, A.; Gibbens, P. W.

    2016-06-01

    There is a growing demand for unmanned aerial systems as autonomous surveillance, exploration and remote sensing solutions. Among the key concerns for robust operation of these systems is the need to reliably navigate the environment without reliance on global navigation satellite system (GNSS). This is of particular concern in Defence circles, but is also a major safety issue for commercial operations. In these circumstances, the aircraft needs to navigate relying only on information from on-board passive sensors such as digital cameras. An autonomous feature-based visual system presented in this work offers a novel integral approach to the modelling and registration of visual features that responds to the specific needs of the navigation system. It detects visual features from Google Earth* build a feature database. The same algorithm then detects features in an on-board cameras video stream. On one level this serves to localise the vehicle relative to the environment using Simultaneous Localisation and Mapping (SLAM). On a second level it correlates them with the database to localise the vehicle with respect to the inertial frame. The performance of the presented visual navigation system was compared using the satellite imagery from different years. Based on comparison results, an analysis of the effects of seasonal, structural and qualitative changes of the imagery source on the performance of the navigation algorithm is presented. * The algorithm is independent of the source of satellite imagery and another provider can be used

  2. Emergency operation procedure navigation to avoid commission errors

    International Nuclear Information System (INIS)

    Gofuku, Akio; Ito, Koji

    2004-01-01

    New types of operation control system equipped with a large screen and CRT-based operation panels have been installed in newly constructed nuclear power plants. The operators can share important information of plant conditions by the large screen. The operation control system can know the operations by operators through the computers connected to the operation panels. The software switches placed in the CRT-based operation panels have a problem such that operators may make an error to manipulate an irrelevant software switch with their current operation. This study develops an operation procedure navigation technique to avoid this kind of commission errors. The system lies between CRT-based operation panels and plant control systems and checks an operation by operators if it follows the operation procedure of operation manuals. When the operation is a right one, the operation is executed as if the operation command is directly transmitted to control systems. If the operation does not follow the operation procedure, the system warns the commission error to operators. This paper describes the operation navigation technique, format of base operation model, and a proto-type operation navigation system for a three loop pressurized water reactor plant. The validity of the proto-type system is demonstrated by the operation procedure navigation for a steam generator tube rupture accident. (author)

  3. Advantages of Hybrid Global Navigation Satellite Systems

    Directory of Open Access Journals (Sweden)

    Asim Bilajbegović

    2007-05-01

    Full Text Available In a decision-making situation, what kind of GPS equipment to purchase, one always has a dilemma, tobuy hybrid (GPS+GLONASS or only GPS receivers? In the case of completeness of the GLONASS satellite system, this dilemma probably would not have existed. The answer to this dilemma is given in the present paper, but for the constellation of the GLONASS satellites in summer 2006 (14 satellites operational. Due to the short operational period of these satellites (for example GLONASS-M, 5 years, and not launching new ones, at this moment (February 25, 2007, only 10 satellites are operational. For the sake of research and giving answers to these questions, about 252 RTK measurements have been done using (GPS and GNSS receivers, on points with different obstructions of horizon. Besides that, initialisation time has been investigated for both systems from about 480 measurements, using rover's antenna with metal cover, during a time interval of 0.5, 2 and 5 seconds. Moreover, accuracy, firmware declared accuracy and redundancy of GPS and GNSS RTK measurements have been investigating.  

  4. Ground-Based Global Navigation Satellite System (GNSS) GLONASS Broadcast Ephemeris Data (hourly files) from NASA CDDIS

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset consists of ground-based Global Navigation Satellite System (GNSS) GLObal NAvigation Satellite System (GLONASS) Broadcast Ephemeris Data (hourly files)...

  5. Ground-Based Global Navigation Satellite System GLONASS (GLObal NAvigation Satellite System) Combined Broadcast Ephemeris Data (daily files) from NASA CDDIS

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset consists of ground-based Global Navigation Satellite System (GNSS) GLONASS Combined Broadcast Ephemeris Data (daily files of all distinct navigation...

  6. Observability of satellite launcher navigation with INS, GPS, attitude sensors and reference trajectory

    Science.gov (United States)

    Beaudoin, Yanick; Desbiens, André; Gagnon, Eric; Landry, René

    2018-01-01

    The navigation system of a satellite launcher is of paramount importance. In order to correct the trajectory of the launcher, the position, velocity and attitude must be known with the best possible precision. In this paper, the observability of four navigation solutions is investigated. The first one is the INS/GPS couple. Then, attitude reference sensors, such as magnetometers, are added to the INS/GPS solution. The authors have already demonstrated that the reference trajectory could be used to improve the navigation performance. This approach is added to the two previously mentioned navigation systems. For each navigation solution, the observability is analyzed with different sensor error models. First, sensor biases are neglected. Then, sensor biases are modelled as random walks and as first order Markov processes. The observability is tested with the rank and condition number of the observability matrix, the time evolution of the covariance matrix and sensitivity to measurement outlier tests. The covariance matrix is exploited to evaluate the correlation between states in order to detect structural unobservability problems. Finally, when an unobservable subspace is detected, the result is verified with theoretical analysis of the navigation equations. The results show that evaluating only the observability of a model does not guarantee the ability of the aiding sensors to correct the INS estimates within the mission time. The analysis of the covariance matrix time evolution could be a powerful tool to detect this situation, however in some cases, the problem is only revealed with a sensitivity to measurement outlier test. None of the tested solutions provide GPS position bias observability. For the considered mission, the modelling of the sensor biases as random walks or Markov processes gives equivalent results. Relying on the reference trajectory can improve the precision of the roll estimates. But, in the context of a satellite launcher, the roll

  7. Interference and deception detection technology of satellite navigation based on deep learning

    Science.gov (United States)

    Chen, Weiyi; Deng, Pingke; Qu, Yi; Zhang, Xiaoguang; Li, Yaping

    2017-10-01

    Satellite navigation system plays an important role in people's daily life and war. The strategic position of satellite navigation system is prominent, so it is very important to ensure that the satellite navigation system is not disturbed or destroyed. It is a critical means to detect the jamming signal to avoid the accident in a navigation system. At present, the detection technology of jamming signal in satellite navigation system is not intelligent , mainly relying on artificial decision and experience. For this issue, the paper proposes a method based on deep learning to monitor the interference source in a satellite navigation. By training the interference signal data, and extracting the features of the interference signal, the detection sys tem model is constructed. The simulation results show that, the detection accuracy of our detection system can reach nearly 70%. The method in our paper provides a new idea for the research on intelligent detection of interference and deception signal in a satellite navigation system.

  8. Initial Assessment of Cyclone Global Navigation Satellite System (CYGNSS) Observations

    Science.gov (United States)

    McKague, D. S.; Ruf, C. S.

    2017-12-01

    The NASA Cyclone Global Navigation Satellite System (CYNSS) mission provides high temporal resolution observations of cyclones from a constellation of eight low-Earth orbiting satellites. Using the relatively new technique of Global Navigation Satellite System reflectometry (GNSS-R), all-weather observations are possible, penetrating even deep convection within hurricane eye walls. The compact nature of the GNSS-R receivers permits the use of small satellites, which in turn enables the launch of a constellation of satellites from a single launch vehicle. Launched in December of 2016, the eight CYGNSS satellites provide 25 km resolution observations of mean square slope (surface roughness) and surface winds with a 2.8 hour median revisit time from 38 S to 38 N degrees latitude. In addition to the calibration and validation of CYGNSS sea state observations, the CYGNSS science team is assessing the ability of the mission to provide estimates of cyclone size, intensity, and integrated kinetic energy. With its all-weather ability and high temporal resolution, the CYGNSS mission will add significantly to our ability to monitor cyclone genesis and intensification and will significantly reduce uncertainties in our ability to estimate cyclone intensity, a key variable in predicting its destructive potential. Members of the CYGNSS Science Team are also assessing the assimilation of CYGNSS data into hurricane forecast models to determine the impact of the data on forecast skill, using the data to study extra-tropical cyclones, and looking at connections between tropical cyclones and global scale weather, including the global hydrologic cycle. This presentation will focus on the assessment of early on-orbit observations of cyclones with respect to these various applications.

  9. Individual Global Navigation Satellite Systems in the Space Service Volume

    Science.gov (United States)

    Force, Dale A.

    2015-01-01

    Besides providing position, navigation, and timing (PNT) to terrestrial users, GPS is currently used to provide for precision orbit determination, precise time synchronization, real-time spacecraft navigation, and three-axis control of Earth orbiting satellites. With additional Global Navigation Satellite Systems (GNSS) coming into service (GLONASS, Beidou, and Galileo), it will be possible to provide these services by using other GNSS constellations. The paper, "GPS in the Space Service Volume," presented at the ION GNSS 19th International Technical Meeting in 2006 (Ref. 1), defined the Space Service Volume, and analyzed the performance of GPS out to 70,000 km. This paper will report a similar analysis of the performance of each of the additional GNSS and compare them with GPS alone. The Space Service Volume, defined as the volume between 3,000 km altitude and geosynchronous altitude, as compared with the Terrestrial Service Volume between the surface and 3,000 km. In the Terrestrial Service Volume, GNSS performance will be similar to performance on the Earth's surface. The GPS system has established signal requirements for the Space Service Volume. A separate paper presented at the conference covers the use of multiple GNSS in the Space Service Volume.

  10. The Creation of Differential Correction Systems and the Systems of Global Navigation Satellite System Monitoring

    National Research Council Canada - National Science Library

    Polishchuk, G. M; Kozlov, V. I; Urlichich, Y. M; Dvorkin, V. V; Gvozdev, V. V

    2002-01-01

    ... for the Russian Federation and a system of global navigation satellite system monitoring. These projects are some of the basic ones in the Federal program "Global Navigation System," aimed at maintenance and development of the GLONASS system...

  11. Ground-Based Global Navigation Satellite System Combined Broadcast Ephemeris Data (daily files) from NASA CDDIS

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset consists of ground-based Global Navigation Satellite System (GNSS) Combined Broadcast Ephemeris Data (daily files of all distinct navigation messages...

  12. Ground-Based Global Navigation Satellite System Data (30-second sampling, 1 hour files) from NASA CDDIS

    Data.gov (United States)

    National Aeronautics and Space Administration — Global Navigation Satellite System (GNSS) daily 30-second sampled data available from the Crustal Dynamics Data Information System (CDDIS). Global Navigation...

  13. 77 FR 42419 - Airworthiness Directives; Honeywell International, Inc. Global Navigation Satellite Sensor Units

    Science.gov (United States)

    2012-07-19

    ... Airworthiness Directives; Honeywell International, Inc. Global Navigation Satellite Sensor Units AGENCY: Federal.... Model KGS200 Mercury\\2\\ wide area augmentation system (WAAS) global navigation satellite sensor units... similar Honeywell global positioning system (GPS) sensor and the same software as the Model KGS200 Mercury...

  14. Anticipated prospects and civilian applications of Indian satellite navigation services in Sri Lanka

    Directory of Open Access Journals (Sweden)

    I.P. Senanayake

    2013-06-01

    In this paper, positive impacts of 3 Indian Navigational Satellite programmes (GAGAN, IRNSS and INSAT-MSS reporting system for the civilian applications over Sri Lanka are discussed. Other neighbouring countries covered under the footprint of Indian navigational satellite programmes can also employ these services for the location based applications productively.

  15. Combined Global Navigation Satellite Systems in the Space Service Volume

    Science.gov (United States)

    Force, Dale A.; Miller, James J.

    2013-01-01

    Besides providing position, velocity, and timing (PVT) for terrestrial users, the Global Positioning System (GPS) is also being used to provide PVT information for earth orbiting satellites. In 2006, F. H. Bauer, et. al., defined the Space Service Volume in the paper GPS in the Space Service Volume , presented at ION s 19th international Technical Meeting of the Satellite Division, and looked at GPS coverage for orbiting satellites. With GLONASS already operational, and the first satellites of the Galileo and Beidou/COMPASS constellations already in orbit, it is time to look at the use of the new Global Navigation Satellite Systems (GNSS) coming into service to provide PVT information for earth orbiting satellites. This presentation extends GPS in the Space Service Volume by examining the coverage capability of combinations of the new constellations with GPS GPS was first explored as a system for refining the position, velocity, and timing of other spacecraft equipped with GPS receivers in the early eighties. Because of this, a new GPS utility developed beyond the original purpose of providing position, velocity, and timing services for land, maritime, and aerial applications. GPS signals are now received and processed by spacecraft both above and below the GPS constellation, including signals that spill over the limb of the earth. Support of GPS space applications is now part of the system plan for GPS, and support of the Space Service Volume by other GNSS providers has been proposed to the UN International Committee on GNSS (ICG). GPS has been demonstrated to provide decimeter level position accuracy in real-time for satellites in low Earth orbit (centimeter level in non-real-time applications). GPS has been proven useful for satellites in geosynchronous orbit, and also for satellites in highly elliptical orbits. Depending on how many satellites are in view, one can keep time locked to the GNSS standard, and through that to Universal Time as long as at least one

  16. Analysis of Errors in a Special Perturbations Satellite Orbit Propagator

    Energy Technology Data Exchange (ETDEWEB)

    Beckerman, M.; Jones, J.P.

    1999-02-01

    We performed an analysis of error densities for the Special Perturbations orbit propagator using data for 29 satellites in orbits of interest to Space Shuttle and International Space Station collision avoidance. We find that the along-track errors predominate. These errors increase monotonically over each 36-hour prediction interval. The predicted positions in the along-track direction progressively either leap ahead of or lag behind the actual positions. Unlike the along-track errors the radial and cross-track errors oscillate about their nearly zero mean values. As the number of observations per fit interval decline the along-track prediction errors, and amplitudes of the radial and cross-track errors, increase.

  17. Global Navigation Satellite System (GNSS) Final Clock Product (5 minute resolution, daily files, generated weekly) from NASA CDDIS

    Data.gov (United States)

    National Aeronautics and Space Administration — This derived product set consists of Global Navigation Satellite System Final Satellite and Receiver Clock Product (5-minute granularity, daily files, generated...

  18. North error estimation based on solar elevation errors in the third step of sky-polarimetric Viking navigation.

    Science.gov (United States)

    Száz, Dénes; Farkas, Alexandra; Barta, András; Kretzer, Balázs; Egri, Ádám; Horváth, Gábor

    2016-07-01

    The theory of sky-polarimetric Viking navigation has been widely accepted for decades without any information about the accuracy of this method. Previously, we have measured the accuracy of the first and second steps of this navigation method in psychophysical laboratory and planetarium experiments. Now, we have tested the accuracy of the third step in a planetarium experiment, assuming that the first and second steps are errorless. Using the fists of their outstretched arms, 10 test persons had to estimate the elevation angles (measured in numbers of fists and fingers) of black dots (representing the position of the occluded Sun) projected onto the planetarium dome. The test persons performed 2400 elevation estimations, 48% of which were more accurate than ±1°. We selected three test persons with the (i) largest and (ii) smallest elevation errors and (iii) highest standard deviation of the elevation error. From the errors of these three persons, we calculated their error function, from which the North errors (the angles with which they deviated from the geographical North) were determined for summer solstice and spring equinox, two specific dates of the Viking sailing period. The range of possible North errors Δ ω N was the lowest and highest at low and high solar elevations, respectively. At high elevations, the maximal Δ ω N was 35.6° and 73.7° at summer solstice and 23.8° and 43.9° at spring equinox for the best and worst test person (navigator), respectively. Thus, the best navigator was twice as good as the worst one. At solstice and equinox, high elevations occur the most frequently during the day, thus high North errors could occur more frequently than expected before. According to our findings, the ideal periods for sky-polarimetric Viking navigation are immediately after sunrise and before sunset, because the North errors are the lowest at low solar elevations.

  19. Satellite Navigation Systems: Policy, Commercial and Technical Interaction.

    Science.gov (United States)

    Rycroft, M.

    2003-12-01

    This book adopts a broad perspective on positioning and navigation systems which rely on Earth orbiting satellites for their successful operation. The first of such global systems was the US Global Positioning System (GPS), and the next the Russian GLONASS system. Now studies relating to Europe's future Galileo system are gaining momentum and other nations are planning regional augmentation systems. All such systems are discussed here, particularly relating to political, commercial, legal and technical issues. The opportunities - and also the problems - of having three similar systems in operation simultaneously are examined, and several novel applications are proposed. These range from improved vehicular transport by land, sea and air, to more accurate surveying, more efficient agricultural practices and safer operations in mountainous regions. Everyone who is challenged by these topics will find this volume invaluable. ISU WWW Server; http://www.isunet.edu. Further information on ISU Symposia may also be obtained by e-mail from symposium@isu.isunet.edu Link: http://www.wkap.nl/prod/b/1-4020-1678-6

  20. Global Navigation Satellite Systems (GNSS: The Utmost Interdisciplinary Integrator

    Directory of Open Access Journals (Sweden)

    Bernd Eissfeller

    2015-08-01

    Full Text Available Currently four global satellite navigation systems are under modernization and development: The US American GPS III, the Russian GLONASS, the European Galileo and Chinese BeiDou systems. In the paper the interdisciplinary contributions of different scientific areas to GNSS are assessed. It is outlined that GNSS is not only a technical system but also a basic element of mobile computing high-tech market. At the same time a GNSS has the role of a force enabler in security related applications. Technology, market and security policies are interdependent and are sometimes in a relationship of tension. The goal of the paper is to describe the overall systemics of GNSS from a holistic point of view. The paper also addresses the human factor side of GNSS. The requirements on human resources in GNSS are at least two-fold: On the one hand very specialized engineers are needed; on the other hand the generalists are necessary who are able to understand the system aspects. Decision makers in institutions and industry need special knowledge in technologies, economics and political strategies. Is the current university system able to educate and prepare such generalists? Are specialized master courses for GNSS needed? Are external training courses necessary?

  1. Navigation errors encountered using weather-mapping radar for helicopter IFR guidance to oil rigs

    Science.gov (United States)

    Phillips, J. D.; Bull, J. S.; Hegarty, D. M.; Dugan, D. C.

    1980-01-01

    In 1978 a joint NASA-FAA helicopter flight test was conducted to examine the use of weather-mapping radar for IFR guidance during landing approaches to oil rig helipads. The following navigation errors were measured: total system error, radar-range error, radar-bearing error, and flight technical error. Three problem areas were identified: (1) operational problems leading to pilot blunders, (2) poor navigation to the downwind final approach point, and (3) pure homing on final approach. Analysis of these problem areas suggests improvement in the radar equipment, approach procedure, and pilot training, and gives valuable insight into the development of future navigation aids to serve the off-shore oil industry.

  2. IceBridge GPS L0 Raw Satellite Navigation Data, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA IceBridge GPS L0 Raw Satellite Navigation Data (IPUTG0) data set contains GPS readings, including latitude, longitude, track, ground speed, off distance,...

  3. Global Navigation Satellite System (GNSS) Rapid Clock Product Summary from NASA CDDIS

    Data.gov (United States)

    National Aeronautics and Space Administration — This derived product set consists of Global Navigation Satellite System Rapid Clock Product Summary from the NASA Crustal Dynamics Data Information System (CDDIS)....

  4. Global navigation satellite systems performance analysis and augmentation strategies in aviation

    Science.gov (United States)

    Sabatini, Roberto; Moore, Terry; Ramasamy, Subramanian

    2017-11-01

    In an era of significant air traffic expansion characterized by a rising congestion of the radiofrequency spectrum and a widespread introduction of Unmanned Aircraft Systems (UAS), Global Navigation Satellite Systems (GNSS) are being exposed to a variety of threats including signal interferences, adverse propagation effects and challenging platform-satellite relative dynamics. Thus, there is a need to characterize GNSS signal degradations and assess the effects of interfering sources on the performance of avionics GNSS receivers and augmentation systems used for an increasing number of mission-essential and safety-critical aviation tasks (e.g., experimental flight testing, flight inspection/certification of ground-based radio navigation aids, wide area navigation and precision approach). GNSS signal deteriorations typically occur due to antenna obscuration caused by natural and man-made obstructions present in the environment (e.g., elevated terrain and tall buildings when flying at low altitude) or by the aircraft itself during manoeuvring (e.g., aircraft wings and empennage masking the on-board GNSS antenna), ionospheric scintillation, Doppler shift, multipath, jamming and spurious satellite transmissions. Anyone of these phenomena can result in partial to total loss of tracking and possible tracking errors, depending on the severity of the effect and the receiver characteristics. After designing GNSS performance threats, the various augmentation strategies adopted in the Communication, Navigation, Surveillance/Air Traffic Management and Avionics (CNS + A) context are addressed in detail. GNSS augmentation can take many forms but all strategies share the same fundamental principle of providing supplementary information whose objective is improving the performance and/or trustworthiness of the system. Hence it is of paramount importance to consider the synergies offered by different augmentation strategies including Space Based Augmentation System (SBAS), Ground

  5. Observation of Wetland Dynamics with Global Navigation Satellite Signals Reflectometry

    Science.gov (United States)

    Zuffada, C.; Shah, R.; Nghiem, S. V.; Cardellach, E.; Chew, C. C.

    2015-12-01

    Wetland dynamics is crucial to changes in both atmospheric methane and terrestrial water storage. The Intergovernmental Panel on Climate Change's Fifth Assessment Report (IPCC AR5) highlights the role of wetlands as a key driver of methane (CH4) emission, which is more than one order of magnitude stronger than carbon dioxide as a greenhouse gas in the centennial time scale. Among the multitude of methane emission sources (hydrates, livestock, rice cultivation, freshwaters, landfills and waste, fossil fuels, biomass burning, termites, geological sources, and soil oxidation), wetlands constitute the largest contributor with the widest uncertainty range of 177-284 Tg(CH4) yr-1 according to the IPCC estimate. Wetlands are highly susceptible to climate change that might lead to wetland collapse. Such wetland destruction would decrease the terrestrial water storage capacity and thus contribute to sea level rise, consequently exacerbating coastal flooding problems. For both methane change and water storage change, wetland dynamics is a crucial factor with the largest uncertainty. Nevertheless, a complete and consistent map of global wetlands still needs to be obtained as the Ramsar Convention calls for a wetlands inventory and impact assessment. We develop a new method for observations of wetland change using Global Navigation Satellite Signals Reflectometry (GNSS-R) signatures for global wetland mapping in synergy with the existing capability, not only as a static inventory but also as a temporal dataset, to advance the capability for monitoring the dynamics of wetland extent relevant to addressing the science issues of CH4 emission change and terrestrial water storage change. We will demonstrate the capability of the new GNSS-R method over a rice field in the Ebro Delta wetland in Spain.

  6. Enhanced Pedestrian Navigation Based on Course Angle Error Estimation Using Cascaded Kalman Filters.

    Science.gov (United States)

    Song, Jin Woo; Park, Chan Gook

    2018-04-21

    An enhanced pedestrian dead reckoning (PDR) based navigation algorithm, which uses two cascaded Kalman filters (TCKF) for the estimation of course angle and navigation errors, is proposed. The proposed algorithm uses a foot-mounted inertial measurement unit (IMU), waist-mounted magnetic sensors, and a zero velocity update (ZUPT) based inertial navigation technique with TCKF. The first stage filter estimates the course angle error of a human, which is closely related to the heading error of the IMU. In order to obtain the course measurements, the filter uses magnetic sensors and a position-trace based course angle. For preventing magnetic disturbance from contaminating the estimation, the magnetic sensors are attached to the waistband. Because the course angle error is mainly due to the heading error of the IMU, and the characteristic error of the heading angle is highly dependent on that of the course angle, the estimated course angle error is used as a measurement for estimating the heading error in the second stage filter. At the second stage, an inertial navigation system-extended Kalman filter-ZUPT (INS-EKF-ZUPT) method is adopted. As the heading error is estimated directly by using course-angle error measurements, the estimation accuracy for the heading and yaw gyro bias can be enhanced, compared with the ZUPT-only case, which eventually enhances the position accuracy more efficiently. The performance enhancements are verified via experiments, and the way-point position error for the proposed method is compared with those for the ZUPT-only case and with other cases that use ZUPT and various types of magnetic heading measurements. The results show that the position errors are reduced by a maximum of 90% compared with the conventional ZUPT based PDR algorithms.

  7. Error Analysis and Calibration Method of a Multiple Field-of-View Navigation System

    OpenAIRE

    Shi, Shuai; Zhao, Kaichun; You, Zheng; Ouyang, Chenguang; Cao, Yongkui; Wang, Zhenzhou

    2017-01-01

    The Multiple Field-of-view Navigation System (MFNS) is a spacecraft subsystem built to realize the autonomous navigation of the Spacecraft Inside Tiangong Space Station. This paper introduces the basics of the MFNS, including its architecture, mathematical model and analysis, and numerical simulation of system errors. According to the performance requirement of the MFNS, the calibration of both intrinsic and extrinsic parameters of the system is assumed to be essential and pivotal. Hence, a n...

  8. An approach for real-time fast point positioning of the BeiDou Navigation Satellite System using augmentation information

    Science.gov (United States)

    Tu, Rui; Zhang, Rui; Zhang, Pengfei; Liu, Jinhai; Lu, Xiaochun

    2018-07-01

    This study proposes an approach to facilitate real-time fast point positioning of the BeiDou Navigation Satellite System (BDS) based on regional augmentation information. We term this as the precise positioning based on augmentation information (BPP) approach. The coordinates of the reference stations were highly constrained to extract the augmentation information, which contained not only the satellite orbit clock error correlated with the satellite running state, but also included the atmosphere error and unmodeled error, which are correlated with the spatial and temporal states. Based on these mixed augmentation corrections, a precise point positioning (PPP) model could be used for the coordinates estimation of the user stations, and the float ambiguity could be easily fixed for the single-difference between satellites. Thus, this technique provided a quick and high-precision positioning service. Three different datasets with small, medium, and large baselines (0.6 km, 30 km and 136 km) were used to validate the feasibility and effectiveness of the proposed BPP method. The validations showed that using the BPP model, 1–2 cm positioning service can be provided in a 100 km wide area after just 2 s of initialization. Thus, as the proposed approach not only capitalized on both PPP and RTK but also provided consistent application, it can be used for area augmentation positioning.

  9. Error analysis for determination of accuracy of an ultrasound navigation system for head and neck surgery.

    Science.gov (United States)

    Kozak, J; Krysztoforski, K; Kroll, T; Helbig, S; Helbig, M

    2009-01-01

    The use of conventional CT- or MRI-based navigation systems for head and neck surgery is unsatisfactory due to tissue shift. Moreover, changes occurring during surgical procedures cannot be visualized. To overcome these drawbacks, we developed a novel ultrasound-guided navigation system for head and neck surgery. A comprehensive error analysis was undertaken to determine the accuracy of this new system. The evaluation of the system accuracy was essentially based on the method of error definition for well-established fiducial marker registration methods (point-pair matching) as used in, for example, CT- or MRI-based navigation. This method was modified in accordance with the specific requirements of ultrasound-guided navigation. The Fiducial Localization Error (FLE), Fiducial Registration Error (FRE) and Target Registration Error (TRE) were determined. In our navigation system, the real error (the TRE actually measured) did not exceed a volume of 1.58 mm(3) with a probability of 0.9. A mean value of 0.8 mm (standard deviation: 0.25 mm) was found for the FRE. The quality of the coordinate tracking system (Polaris localizer) could be defined with an FLE of 0.4 +/- 0.11 mm (mean +/- standard deviation). The quality of the coordinates of the crosshairs of the phantom was determined with a deviation of 0.5 mm (standard deviation: 0.07 mm). The results demonstrate that our newly developed ultrasound-guided navigation system shows only very small system deviations and therefore provides very accurate data for practical applications.

  10. a European Global Navigation Satellite System — the German Market and Value Adding Chain Effects

    Science.gov (United States)

    Vollerthun, A.; Wieser, M.

    2002-03-01

    Since Europe is considering to establish a "market-driven" European Global Navigation Satellite System, the German Center of Aerospace initiated a market research to justify a German investment in such a European project. The market research performed included the following market segments: aviation, railway, road traffic, shipping, surveying, farming, military, space applications, leisure, and sport. In these market segments, the forementioned inputs were determined for satellite navigation hardware (receivers) as well as satellite navigation services. The forecast period was from year 2007 to 2017. For the considered period, the market amounts to a total of DM 83.0 billion (approx. US $50 billion), whereas the satellite navigation equipment market makes up DM 39.8 billion, and charges for value-added-services amount to DM 43.2 billion. On closer examination road traffic can be identified as the dominant market share, both in the receiver-market and service-market. With a share of 96% for receivers and 73% for services the significance of the road traffic segment becomes obvious. The second part of this paper investigates the effects the market potential has on the Value-Adding-Chain. Therefore, all participants in the Value-Adding-Chain are identified, using industrial cost structure models the employment effect is analyzed, and possible tax revenues for the state are examined.

  11. Precise Point Positioning with the BeiDou Navigation Satellite System

    Directory of Open Access Journals (Sweden)

    Min Li

    2014-01-01

    Full Text Available By the end of 2012, China had launched 16 BeiDou-2 navigation satellites that include six GEOs, five IGSOs and five MEOs. This has provided initial navigation and precise pointing services ability in the Asia-Pacific regions. In order to assess the navigation and positioning performance of the BeiDou-2 system, Wuhan University has built up a network of BeiDou Experimental Tracking Stations (BETS around the World. The Position and Navigation Data Analyst (PANDA software was modified to determine the orbits of BeiDou satellites and provide precise orbit and satellite clock bias products from the BeiDou satellite system for user applications. This article uses the BeiDou/GPS observations of the BeiDou Experimental Tracking Stations to realize the BeiDou and BeiDou/GPS static and kinematic precise point positioning (PPP. The result indicates that the precision of BeiDou static and kinematic PPP reaches centimeter level. The precision of BeiDou/GPS kinematic PPP solutions is improved significantly compared to that of BeiDou-only or GPS-only kinematic PPP solutions. The PPP convergence time also decreases with the use of combined BeiDou/GPS systems.

  12. Precise point positioning with the BeiDou navigation satellite system.

    Science.gov (United States)

    Li, Min; Qu, Lizhong; Zhao, Qile; Guo, Jing; Su, Xing; Li, Xiaotao

    2014-01-08

    By the end of 2012, China had launched 16 BeiDou-2 navigation satellites that include six GEOs, five IGSOs and five MEOs. This has provided initial navigation and precise pointing services ability in the Asia-Pacific regions. In order to assess the navigation and positioning performance of the BeiDou-2 system, Wuhan University has built up a network of BeiDou Experimental Tracking Stations (BETS) around the World. The Position and Navigation Data Analyst (PANDA) software was modified to determine the orbits of BeiDou satellites and provide precise orbit and satellite clock bias products from the BeiDou satellite system for user applications. This article uses the BeiDou/GPS observations of the BeiDou Experimental Tracking Stations to realize the BeiDou and BeiDou/GPS static and kinematic precise point positioning (PPP). The result indicates that the precision of BeiDou static and kinematic PPP reaches centimeter level. The precision of BeiDou/GPS kinematic PPP solutions is improved significantly compared to that of BeiDou-only or GPS-only kinematic PPP solutions. The PPP convergence time also decreases with the use of combined BeiDou/GPS systems.

  13. Time: A Critical Parameter in Satellite Navigation and Positioning ...

    African Journals Online (AJOL)

    The applications of space-borne satellites are increasing in many aspects of human endeavours; the most among them being the provision of guaranteed access to users of precise time and location services. An investigation was therefore carried out through a review process mechanism to determine the orbit parameter ...

  14. Particle Filter with Novel Nonlinear Error Model for Miniature Gyroscope-Based Measurement While Drilling Navigation

    Directory of Open Access Journals (Sweden)

    Tao Li

    2016-03-01

    Full Text Available The derivation of a conventional error model for the miniature gyroscope-based measurement while drilling (MGWD system is based on the assumption that the errors of attitude are small enough so that the direction cosine matrix (DCM can be approximated or simplified by the errors of small-angle attitude. However, the simplification of the DCM would introduce errors to the navigation solutions of the MGWD system if the initial alignment cannot provide precise attitude, especially for the low-cost microelectromechanical system (MEMS sensors operated in harsh multilateral horizontal downhole drilling environments. This paper proposes a novel nonlinear error model (NNEM by the introduction of the error of DCM, and the NNEM can reduce the propagated errors under large-angle attitude error conditions. The zero velocity and zero position are the reference points and the innovations in the states estimation of particle filter (PF and Kalman filter (KF. The experimental results illustrate that the performance of PF is better than KF and the PF with NNEM can effectively restrain the errors of system states, especially for the azimuth, velocity, and height in the quasi-stationary condition.

  15. Particle Filter with Novel Nonlinear Error Model for Miniature Gyroscope-Based Measurement While Drilling Navigation.

    Science.gov (United States)

    Li, Tao; Yuan, Gannan; Li, Wang

    2016-03-15

    The derivation of a conventional error model for the miniature gyroscope-based measurement while drilling (MGWD) system is based on the assumption that the errors of attitude are small enough so that the direction cosine matrix (DCM) can be approximated or simplified by the errors of small-angle attitude. However, the simplification of the DCM would introduce errors to the navigation solutions of the MGWD system if the initial alignment cannot provide precise attitude, especially for the low-cost microelectromechanical system (MEMS) sensors operated in harsh multilateral horizontal downhole drilling environments. This paper proposes a novel nonlinear error model (NNEM) by the introduction of the error of DCM, and the NNEM can reduce the propagated errors under large-angle attitude error conditions. The zero velocity and zero position are the reference points and the innovations in the states estimation of particle filter (PF) and Kalman filter (KF). The experimental results illustrate that the performance of PF is better than KF and the PF with NNEM can effectively restrain the errors of system states, especially for the azimuth, velocity, and height in the quasi-stationary condition.

  16. Orbit and clock determination of BDS regional navigation satellite system based on IGS M-GEX and WHU BETS tracking network

    Science.gov (United States)

    GENG, T.; Zhao, Q.; Shi, C.; Shum, C.; Guo, J.; Su, X.

    2013-12-01

    BeiDou Navigation Satellite System (BDS) began to provide the regional open service on December 27th 2012 and will provide the global open service by the end of 2020. Compared to GPS, the space segment of BDS Regional System consists of 5 Geostationary Earth Orbit satellites (GEO), 5 Inclined Geosynchronous Orbit satellites (IGSO) and 4 Medium Earth orbit (MEO) satellites. Since 2011, IGS Multiple-GNSS Experiment (M-GEX) focuses on tracking the newly available GNSS signals. This includes all signals from the modernized satellites of the GPS and GLONASS systems, as well as signals of the BDS, Galileo and QZSS systems. Up to now, BDS satellites are tracked by around 25 stations with a variety of different antennas and receivers from different GNSS manufacture communities in M-GEX network. Meanwhile, there are 17 stations with Unicore Communications Incorporation's GPS/BDS receivers in BeiDou Experimental Tracking Stations (BETS) network by Wuhan University. In addition, 5 BDS satellites have been tracking by the International Laser Ranging Service (ILRS). BDS performance is expected to be further studied by the GNSS communities. Following an introduction of the BDS system and above different tracking network, this paper discusses the achieved BDS characterization and performance assessment. Firstly, the BDS signal and measurement quality are analyzed with different antennas and receivers in detail compared to GPS. This includes depth of coverage for satellite observation, carrier-to-noise-density ratios, code noise and multipath, carrier phase errors. Secondly, BDS Precise Orbit Determination (POD) is processed. Different arc lengths and sets of orbit parameters are tested using Position And Navigation Data Analysis software (PANDA) which is developed at the Wuhan University. GEO, IGSO and MEO satellites orbit quality will be assessed using overlap comparison, 2-day orbit fit and external validations with Satellite Laser Range (SLR). Then BDS satellites are equipped

  17. Error resilient H.264/AVC Video over Satellite for low Packet Loss Rates

    DEFF Research Database (Denmark)

    Aghito, Shankar Manuel; Forchhammer, Søren; Andersen, Jakob Dahl

    2007-01-01

    The performance of video over satellite is simulated. The error resilience tools of intra macroblock refresh and slicing are optimized for live broadcast video over satellite. The improved performance using feedback, using a cross- layer approach, over the satellite link is also simulated. The ne...

  18. Nonlinear Uncertainty Propagation of Satellite State Error for Tracking and Conjunction Risk Assessment

    Science.gov (United States)

    2017-12-18

    AFRL-RV-PS- AFRL-RV-PS- TR-2017-0177 TR-2017-0177 NONLINEAR UNCERTAINTY PROPAGATION OF SATELLITE STATE ERROR FOR TRACKING AND CONJUNCTION RISK...Uncertainty Propagation of Satellite State Error for Tracking and Conjunction Risk Assessment 5a. CONTRACT NUMBER FA9453-16-1-0084 5b. GRANT NUMBER...prediction and satellite conjunction analysis. Statistical approach utilizes novel methods to build better uncertainty state characterization in the context

  19. Characteristics of BeiDou Navigation Satellite System Multipath and Its Mitigation Method Based on Kalman Filter and Rauch-Tung-Striebel Smoother.

    Science.gov (United States)

    Zhang, Qiuzhao; Yang, Wei; Zhang, Shubi; Liu, Xin

    2018-01-12

    Global Navigation Satellite System (GNSS) carrier phase measurement for short baseline meets the requirements of deformation monitoring of large structures. However, the carrier phase multipath effect is the main error source with double difference (DD) processing. There are lots of methods to deal with the multipath errors of Global Position System (GPS) carrier phase data. The BeiDou navigation satellite System (BDS) multipath mitigation is still a research hotspot because the unique constellation design of BDS makes it different to mitigate multipath effects compared to GPS. Multipath error periodically repeats for its strong correlation to geometry of satellites, reflective surface and antenna which is also repetitive. We analyzed the characteristics of orbital periods of BDS satellites which are consistent with multipath repeat periods of corresponding satellites. The results show that the orbital periods and multipath periods for BDS geostationary earth orbit (GEO) and inclined geosynchronous orbit (IGSO) satellites are about one day but the periods of MEO satellites are about seven days. The Kalman filter (KF) and Rauch-Tung-Striebel Smoother (RTSS) was introduced to extract the multipath models from single difference (SD) residuals with traditional sidereal filter (SF). Wavelet filter and Empirical mode decomposition (EMD) were also used to mitigate multipath effects. The experimental results show that the three filters methods all have obvious effect on improvement of baseline accuracy and the performance of KT-RTSS method is slightly better than that of wavelet filter and EMD filter. The baseline vector accuracy on east, north and up (E, N, U) components with KF-RTSS method were improved by 62.8%, 63.6%, 62.5% on day of year 280 and 57.3%, 53.4%, 55.9% on day of year 281, respectively.

  20. Characteristics of BeiDou Navigation Satellite System Multipath and Its Mitigation Method Based on Kalman Filter and Rauch-Tung-Striebel Smoother

    Directory of Open Access Journals (Sweden)

    Qiuzhao Zhang

    2018-01-01

    Full Text Available Global Navigation Satellite System (GNSS carrier phase measurement for short baseline meets the requirements of deformation monitoring of large structures. However, the carrier phase multipath effect is the main error source with double difference (DD processing. There are lots of methods to deal with the multipath errors of Global Position System (GPS carrier phase data. The BeiDou navigation satellite System (BDS multipath mitigation is still a research hotspot because the unique constellation design of BDS makes it different to mitigate multipath effects compared to GPS. Multipath error periodically repeats for its strong correlation to geometry of satellites, reflective surface and antenna which is also repetitive. We analyzed the characteristics of orbital periods of BDS satellites which are consistent with multipath repeat periods of corresponding satellites. The results show that the orbital periods and multipath periods for BDS geostationary earth orbit (GEO and inclined geosynchronous orbit (IGSO satellites are about one day but the periods of MEO satellites are about seven days. The Kalman filter (KF and Rauch-Tung-Striebel Smoother (RTSS was introduced to extract the multipath models from single difference (SD residuals with traditional sidereal filter (SF. Wavelet filter and Empirical mode decomposition (EMD were also used to mitigate multipath effects. The experimental results show that the three filters methods all have obvious effect on improvement of baseline accuracy and the performance of KT-RTSS method is slightly better than that of wavelet filter and EMD filter. The baseline vector accuracy on east, north and up (E, N, U components with KF-RTSS method were improved by 62.8%, 63.6%, 62.5% on day of year 280 and 57.3%, 53.4%, 55.9% on day of year 281, respectively.

  1. Error Analysis of Satellite Precipitation-Driven Modeling of Flood Events in Complex Alpine Terrain

    Directory of Open Access Journals (Sweden)

    Yiwen Mei

    2016-03-01

    Full Text Available The error in satellite precipitation-driven complex terrain flood simulations is characterized in this study for eight different global satellite products and 128 flood events over the Eastern Italian Alps. The flood events are grouped according to two flood types: rain floods and flash floods. The satellite precipitation products and runoff simulations are evaluated based on systematic and random error metrics applied on the matched event pairs and basin-scale event properties (i.e., rainfall and runoff cumulative depth and time series shape. Overall, error characteristics exhibit dependency on the flood type. Generally, timing of the event precipitation mass center and dispersion of the time series derived from satellite precipitation exhibits good agreement with the reference; the cumulative depth is mostly underestimated. The study shows a dampening effect in both systematic and random error components of the satellite-driven hydrograph relative to the satellite-retrieved hyetograph. The systematic error in shape of the time series shows a significant dampening effect. The random error dampening effect is less pronounced for the flash flood events and the rain flood events with a high runoff coefficient. This event-based analysis of the satellite precipitation error propagation in flood modeling sheds light on the application of satellite precipitation in mountain flood hydrology.

  2. Ground-Based Global Navigation Satellite System (GNSS) GPS Broadcast Ephemeris Data (daily files) from NASA CDDIS

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset consists of ground-based Global Navigation Satellite System (GNSS) GPS Broadcast Ephemeris Data (daily files) from the NASA Crustal Dynamics Data...

  3. Ground-Based Global Navigation Satellite System Mixed Broadcast Ephemeris Data (sub-hourly files) from NASA CDDIS

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset consists of ground-based Global Navigation Satellite System (GNSS) Mixed Broadcast Ephemeris Data (sub-hourly files) from the NASA Crustal Dynamics Data...

  4. Transit navigation through Northern Sea Route from satellite data and CMIP5 simulations

    Science.gov (United States)

    Khon, Vyacheslav C.; Mokhov, Igor I.; Semenov, Vladimir A.

    2017-02-01

    Rapid Arctic sea ice decline over the last few decades opens new perspectives for Arctic marine navigation. Further warming in the Arctic will promote the Northern Sea Route (NSR) as an alternative to the conventional Suez or Panama Canal routes for intercontinental shipping. Here we use both satellite data and CMIP5 ensemble of climate models to estimate the NSR transit window allowing intercontinental navigation between Atlantic and Pacific regions. To this end, we introduce a novel approach to calculate start and end dates of the navigation season along the NSR. We show that modern climate models are able to reproduce the mean time of the NSR transit window and its trend over the last few decades. The selected models demonstrate that the rate of increase of the NSR navigation season will slow down over the next few decades with the RCP4.5 scenario. By the end of the 21st century ensemble-mean estimates show an increase of the NSR transit window by about 4 and 6.5 months according to RCP4.5 and 8.5, respectively. Estimated trends for the end date of the navigation season are found to be stronger compared to those for the start date.

  5. Positioning performance improvements with European multiple-frequency satellite navigation - Galileo

    Science.gov (United States)

    Ji, Shengyue

    2008-10-01

    The rapid development of Global Positioning System has demonstrated the advantages of satellite based navigation systems. In near future, there will be a number of Global Navigation Satellite System (GNSS) available, i.e. modernized GPS, Galileo, restored GLONASS, BeiDou and many other regional GNSS augmentation systems. Undoubtedly, the new GNSS systems will significantly improve navigation performance over current GPS, with a better satellite coverage and multiple satellite signal bands. In this dissertation, the positioning performance improvement of new GNSS has been investigated based on both theoretical analysis and numerical study. First of all, the navigation performance of new GNSS systems has been analyzed, particularly for urban applications. The study has demonstrated that Receiver Autonomous Integrity Monitoring (RAIM) performance can be significantly improved with multiple satellite constellations, although the position accuracy improvement is limited. Based on a three-dimensional urban building model in Hong Kong streets, it is found that positioning availability is still very low in high-rising urban areas, even with three GNSS systems. On the other hand, the discontinuity of navigation solutions is significantly reduced with the combined constellations. Therefore, it is possible to use cheap DR systems to bridge the gaps of GNSS positioning, with high accuracy. Secondly, the ambiguity resolution performance has been investigated with Galileo multiple frequency band signals. The ambiguity resolution performance of three different algorithms is compared, including CAR, ILS and improved CAR methods (a new method proposed in this study). For short baselines, with four frequency Galileo data, it is highly possible to achieve reliable single epoch ambiguity resolution, when the carrier phase noise level is reasonably low (i.e. less than 6mm). For long baselines (up to 800 km), the integer ambiguity can be determined within 1 min on average. Ambiguity

  6. Evolving earth-based and in-situ satellite network architectures for Mars communications and navigation support

    Science.gov (United States)

    Hastrup, Rolf; Weinberg, Aaron; McOmber, Robert

    1991-09-01

    Results of on-going studies to develop navigation/telecommunications network concepts to support future robotic and human missions to Mars are presented. The performance and connectivity improvements provided by the relay network will permit use of simpler, lower performance, and less costly telecom subsystems for the in-situ mission exploration elements. Orbiting relay satellites can serve as effective navigation aids by supporting earth-based tracking as well as providing Mars-centered radiometric data for mission elements approaching, in orbit, or on the surface of Mars. The relay satellite orbits may be selected to optimize navigation aid support and communication coverage for specific mission sets.

  7. Analysis and Compensation of Modulation Angular Rate Error Based on Missile-Borne Rotation Semi-Strapdown Inertial Navigation System

    Directory of Open Access Journals (Sweden)

    Jiayu Zhang

    2018-05-01

    Full Text Available The Semi-Strapdown Inertial Navigation System (SSINS provides a new solution to attitude measurement of a high-speed rotating missile. However, micro-electro-mechanical-systems (MEMS inertial measurement unit (MIMU outputs are corrupted by significant sensor errors. In order to improve the navigation precision, a rotation modulation technology method called Rotation Semi-Strapdown Inertial Navigation System (RSSINS is introduced into SINS. In fact, the stability of the modulation angular rate is difficult to achieve in a high-speed rotation environment. The changing rotary angular rate has an impact on the inertial sensor error self-compensation. In this paper, the influence of modulation angular rate error, including acceleration-deceleration process, and instability of the angular rate on the navigation accuracy of RSSINS is deduced and the error characteristics of the reciprocating rotation scheme are analyzed. A new compensation method is proposed to remove or reduce sensor errors so as to make it possible to maintain high precision autonomous navigation performance by MIMU when there is no external aid. Experiments have been carried out to validate the performance of the method. In addition, the proposed method is applicable for modulation angular rate error compensation under various dynamic conditions.

  8. Optimization of communication network topology for navigation sharing among distributed satellites

    Science.gov (United States)

    Dang, Zhaohui; Zhang, Yulin

    2013-01-01

    Navigation sharing among distributed satellites is quite important for coordinated motion and collision avoidance. This paper proposes optimization methods of the communication network topology to achieve navigation sharing. The whole communication network constructing by inter-satellite links are considered as a topology graph. The aim of this paper is to find the communication network topology with minimum communication connections' number (MCCN) in different conditions. It has found that the communication capacity and the number of channels are two key parameters affecting the results. The model of MCCN topology for navigation sharing is established and corresponding method is designed. Two main scenarios, viz., homogeneous case and heterogeneous case, are considered. For the homogeneous case where each member has the same communication capacity, it designs a construction method (Algorithm 1) to find the MCCN topology. For the heterogeneous case, it introduces a modified genetic algorithm (Algorithm 2) to find the MCCN topology. When considering the fact that the number of channels is limited, the Algorithm 2 is further modified by adding a penalized term in the fitness function. The effectiveness of these algorithms is all proved in theoretical. Three examples are further tested to illustrate the methods developed in this paper.

  9. ERROR-CONTROL CODING OF ADS-B MESSAGES FOR IRIDIUM SATELLITES

    Directory of Open Access Journals (Sweden)

    Volodymyr Kharchenko

    2013-12-01

    Full Text Available For modelling of ADS-B messages transmitting on the base of low-orbit satellite constellation Іrіdіum the model of a communication channel “Aircraft - Satellite - Ground Station” was built using MATLAB Sіmulіnk. This model allowed to investigate dependences of the Bit Error Rate on a type of  signal coding/decoding, ratio Eb/N0 and satellite repeater gain

  10. Distributed Extended Kalman Filter for Position, Velocity, Time, Estimation in Satellite Navigation Receivers

    Directory of Open Access Journals (Sweden)

    O. Jakubov

    2013-09-01

    Full Text Available Common techniques for position-velocity-time estimation in satellite navigation, iterative least squares and the extended Kalman filter, involve matrix operations. The matrix inversion and inclusion of a matrix library pose requirements on a computational power and operating platform of the navigation processor. In this paper, we introduce a novel distributed algorithm suitable for implementation in simple parallel processing units each for a tracked satellite. Such a unit performs only scalar sum, subtraction, multiplication, and division. The algorithm can be efficiently implemented in hardware logic. Given the fast position-velocity-time estimator, frequent estimates can foster dynamic performance of a vector tracking receiver. The algorithm has been designed from a factor graph representing the extended Kalman filter by splitting vector nodes into scalar ones resulting in a cyclic graph with few iterations needed. Monte Carlo simulations have been conducted to investigate convergence and accuracy. Simulation case studies for a vector tracking architecture and experimental measurements with a real-time software receiver developed at CTU in Prague were conducted. The algorithm offers compromises in stability, accuracy, and complexity depending on the number of iterations. In scenarios with a large number of tracked satellites, it can outperform the traditional methods at low complexity.

  11. Guidance, Navigation, and Control Techniques and Technologies for Active Satellite Removal

    Science.gov (United States)

    Ortega Hernando, Guillermo; Erb, Sven; Cropp, Alexander; Voirin, Thomas; Dubois-Matra, Olivier; Rinalducci, Antonio; Visentin, Gianfranco; Innocenti, Luisa; Raposo, Ana

    2013-09-01

    This paper shows an internal feasibility analysis to de- orbit a non-functional satellite of big dimensions by the Technical Directorate of the European Space Agency ESA. The paper focuses specifically on the design of the techniques and technologies for the Guidance, Navigation, and Control (GNC) system of the spacecraft mission that will capture the satellite and ultimately will de-orbit it on a controlled re-entry.The paper explains the guidance strategies to launch, rendezvous, close-approach, and capture the target satellite. The guidance strategy uses chaser manoeuvres, hold points, and collision avoidance trajectories to ensure a safe capture. It also details the guidance profile to de-orbit it in a controlled re-entry.The paper continues with an analysis of the required sensing suite and the navigation algorithms to allow the homing, fly-around, and capture of the target satellite. The emphasis is placed around the design of a system to allow the rendezvous with an un-cooperative target, including the autonomous acquisition of both the orbital elements and the attitude of the target satellite.Analysing the capture phase, the paper provides a trade- off between two selected capture systems: the net and the tentacles. Both are studied from the point of view of the GNC system.The paper analyses as well the advanced algorithms proposed to control the final compound after the capture that will allow the controlled de-orbiting of the assembly in a safe place in the Earth.The paper ends proposing the continuation of this work with the extension to the analysis of the destruction process of the compound in consecutive segments starting from the entry gate to the rupture and break up.

  12. Experimental study on the precise orbit determination of the BeiDou navigation satellite system.

    Science.gov (United States)

    He, Lina; Ge, Maorong; Wang, Jiexian; Wickert, Jens; Schuh, Harald

    2013-03-01

    The regional service of the Chinese BeiDou satellite navigation system is now in operation with a constellation including five Geostationary Earth Orbit satellites (GEO), five Inclined Geosynchronous Orbit (IGSO) satellites and four Medium Earth Orbit (MEO) satellites. Besides the standard positioning service with positioning accuracy of about 10 m, both precise relative positioning and precise point positioning are already demonstrated. As is well known, precise orbit and clock determination is essential in enhancing precise positioning services. To improve the satellite orbits of the BeiDou regional system, we concentrate on the impact of the tracking geometry and the involvement of MEOs, and on the effect of integer ambiguity resolution as well. About seven weeks of data collected at the BeiDou Experimental Test Service (BETS) network is employed in this experimental study. Several tracking scenarios are defined, various processing schemata are designed and carried out; and then, the estimates are compared and analyzed in detail. The results show that GEO orbits, especially the along-track component, can be significantly improved by extending the tracking network in China along longitude direction, whereas IGSOs gain more improvement if the tracking network extends in latitude. The involvement of MEOs and ambiguity-fixing also make the orbits better.

  13. Data Analysis of the TK-1G Sounding Rocket Installed with a Satellite Navigation System

    Directory of Open Access Journals (Sweden)

    Lesong Zhou

    2017-10-01

    Full Text Available This article gives an in-depth analysis of the experimental data of the TK-1G sounding rocket installed with the satellite navigation system. It turns out that the data acquisition rate of the rocket sonde is high, making the collection of complete trajectory and meteorological data possible. By comparing the rocket sonde measurements with those obtained by virtue of other methods, we find that the rocket sonde can be relatively precise in measuring atmospheric parameters within the scope of 20–60 km above the ground. This establishes the fact that the TK-1G sounding rocket system is effective in detecting near-space atmospheric environment.

  14. Stand-alone error characterisation of microwave satellite soil moisture using a Fourier method

    Science.gov (United States)

    Error characterisation of satellite-retrieved soil moisture (SM) is crucial for maximizing their utility in research and applications in hydro-meteorology and climatology. Error characteristics can provide insights for retrieval development and validation, and inform suitable strategies for data fus...

  15. Analysis on coverage ability of BeiDou navigation satellite system for manned spacecraft

    Science.gov (United States)

    Zhao, Sihao; Yao, Zheng; Zhuang, Xuebin; Lu, Mingquan

    2014-12-01

    To investigate the service ability of the BeiDou Navigation Satellite System (BDS) for manned spacecraft, both the current regional and the future-planned global constellations of BDS are introduced and simulated. The orbital parameters of the International Space Station and China's Tiangong-1 spacelab are used to create the simulation scenario and evaluate the performance of the BDS constellations. The number of visible satellites and the position dilution (PDOP) of precision at the spacecraft-based receiver are evaluated. Simulation and analysis show quantitative results on the coverage ability and time percentages of both the current BDS regional and future global constellations for manned-space orbits which can be a guideline to the applications and mission design of BDS receivers on manned spacecraft.

  16. Error Analysis and Calibration Method of a Multiple Field-of-View Navigation System.

    Science.gov (United States)

    Shi, Shuai; Zhao, Kaichun; You, Zheng; Ouyang, Chenguang; Cao, Yongkui; Wang, Zhenzhou

    2017-03-22

    The Multiple Field-of-view Navigation System (MFNS) is a spacecraft subsystem built to realize the autonomous navigation of the Spacecraft Inside Tiangong Space Station. This paper introduces the basics of the MFNS, including its architecture, mathematical model and analysis, and numerical simulation of system errors. According to the performance requirement of the MFNS, the calibration of both intrinsic and extrinsic parameters of the system is assumed to be essential and pivotal. Hence, a novel method based on the geometrical constraints in object space, called checkerboard-fixed post-processing calibration (CPC), is proposed to solve the problem of simultaneously obtaining the intrinsic parameters of the cameras integrated in the MFNS and the transformation between the MFNS coordinate and the cameras' coordinates. This method utilizes a two-axis turntable and a prior alignment of the coordinates is needed. Theoretical derivation and practical operation of the CPC method are introduced. The calibration experiment results of the MFNS indicate that the extrinsic parameter accuracy of the CPC reaches 0.1° for each Euler angle and 0.6 mm for each position vector component (1σ). A navigation experiment verifies the calibration result and the performance of the MFNS. The MFNS is found to work properly, and the accuracy of the position vector components and Euler angle reaches 1.82 mm and 0.17° (1σ) respectively. The basic mechanism of the MFNS may be utilized as a reference for the design and analysis of multiple-camera systems. Moreover, the calibration method proposed has practical value for its convenience for use and potential for integration into a toolkit.

  17. Conflict between place and response navigation strategies: effects on vicarious trial and error (VTE) behaviors.

    Science.gov (United States)

    Schmidt, Brandy; Papale, Andrew; Redish, A David; Markus, Etan J

    2013-02-15

    Navigation can be accomplished through multiple decision-making strategies, using different information-processing computations. A well-studied dichotomy in these decision-making strategies compares hippocampal-dependent "place" and dorsal-lateral striatal-dependent "response" strategies. A place strategy depends on the ability to flexibly respond to environmental cues, while a response strategy depends on the ability to quickly recognize and react to situations with well-learned action-outcome relationships. When rats reach decision points, they sometimes pause and orient toward the potential routes of travel, a process termed vicarious trial and error (VTE). VTE co-occurs with neurophysiological information processing, including sweeps of representation ahead of the animal in the hippocampus and transient representations of reward in the ventral striatum and orbitofrontal cortex. To examine the relationship between VTE and the place/response strategy dichotomy, we analyzed data in which rats were cued to switch between place and response strategies on a plus maze. The configuration of the maze allowed for place and response strategies to work competitively or cooperatively. Animals showed increased VTE on trials entailing competition between navigational systems, linking VTE with deliberative decision-making. Even in a well-learned task, VTE was preferentially exhibited when a spatial selection was required, further linking VTE behavior with decision-making associated with hippocampal processing.

  18. Precise positioning with current multi-constellation Global Navigation Satellite Systems: GPS, GLONASS, Galileo and BeiDou.

    Science.gov (United States)

    Li, Xingxing; Zhang, Xiaohong; Ren, Xiaodong; Fritsche, Mathias; Wickert, Jens; Schuh, Harald

    2015-02-09

    The world of satellite navigation is undergoing dramatic changes with the rapid development of multi-constellation Global Navigation Satellite Systems (GNSSs). At the moment more than 70 satellites are already in view, and about 120 satellites will be available once all four systems (BeiDou + Galileo + GLONASS + GPS) are fully deployed in the next few years. This will bring great opportunities and challenges for both scientific and engineering applications. In this paper we develop a four-system positioning model to make full use of all available observations from different GNSSs. The significant improvement of satellite visibility, spatial geometry, dilution of precision, convergence, accuracy, continuity and reliability that a combining utilization of multi-GNSS brings to precise positioning are carefully analyzed and evaluated, especially in constrained environments.

  19. Fundamentals of Inertial Navigation, Satellite-based Positioning and their Integration

    CERN Document Server

    Noureldin, Aboelmagd; Georgy, Jacques

    2013-01-01

    Fundamentals of Inertial Navigation, Satellite-based Positioning and their Integration is an introduction to the field of Integrated Navigation Systems. It serves as an excellent reference for working engineers as well as textbook for beginners and students new to the area. The book is easy to read and understand with minimum background knowledge. The authors explain the derivations in great detail. The intermediate steps are thoroughly explained so that a beginner can easily follow the material. The book shows a step-by-step implementation of navigation algorithms and provides all the necessary details. It provides detailed illustrations for an easy comprehension. The book also demonstrates real field experiments and in-vehicle road test results with professional discussions and analysis. This work is unique in discussing the different INS/GPS integration schemes in an easy to understand and straightforward way. Those schemes include loosely vs tightly coupled, open loop vs closed loop, and many more.

  20. CPM Signals for Satellite Navigation in the S and C Bands.

    Science.gov (United States)

    Xue, Rui; Sun, Yanbo; Zhao, Danfeng

    2015-06-05

    Frequency allocations in the L band suitable for global navigation satellite system (GNSS) services are getting crowded and system providers face an ever tougher job when they try to bring in new signals and services while maintaining radio frequency compatibility. With the successive opening of the S and C bands to GNSS service, the multi-band combined navigation is predicted to become a key technology for future high-precision positioning navigation systems, and a single modulation scheme satisfying the requirements in each band is a promising solution for reducing user terminal complexity. A universal modulation scheme based on the continuous phase modulation (CPM) family suitable for the above bands' demands is proposed. Moreover, this paper has put forward two specific CPM signals for the S and C bands, respectively. Then the proposed modulation schemes, together with existing candidates, are comprehensively evaluated. Simulation results show that the proposed CPM signals can not only satisfy the constraint condition of compatibility in different bands well and reduce user terminal complexity, but also provide superior performance in terms of tracking accuracy, multi-path mitigation and anti-jamming compared to other candidate modulation schemes.

  1. A method for optical ground station reduce alignment error in satellite-ground quantum experiments

    Science.gov (United States)

    He, Dong; Wang, Qiang; Zhou, Jian-Wei; Song, Zhi-Jun; Zhong, Dai-Jun; Jiang, Yu; Liu, Wan-Sheng; Huang, Yong-Mei

    2018-03-01

    A satellite dedicated for quantum science experiments, has been developed and successfully launched from Jiuquan, China, on August 16, 2016. Two new optical ground stations (OGSs) were built to cooperate with the satellite to complete satellite-ground quantum experiments. OGS corrected its pointing direction by satellite trajectory error to coarse tracking system and uplink beacon sight, therefore fine tracking CCD and uplink beacon optical axis alignment accuracy was to ensure that beacon could cover the quantum satellite in all time when it passed the OGSs. Unfortunately, when we tested specifications of the OGSs, due to the coarse tracking optical system was commercial telescopes, the change of position of the target in the coarse CCD was up to 600μrad along with the change of elevation angle. In this paper, a method of reduce alignment error between beacon beam and fine tracking CCD is proposed. Firstly, OGS fitted the curve of target positions in coarse CCD along with the change of elevation angle. Secondly, OGS fitted the curve of hexapod secondary mirror positions along with the change of elevation angle. Thirdly, when tracking satellite, the fine tracking error unloaded on the real-time zero point position of coarse CCD which computed by the firstly calibration data. Simultaneously the positions of the hexapod secondary mirror were adjusted by the secondly calibration data. Finally the experiment result is proposed. Results show that the alignment error is less than 50μrad.

  2. Bio-Optical Data Assimilation With Observational Error Covariance Derived From an Ensemble of Satellite Images

    Science.gov (United States)

    Shulman, Igor; Gould, Richard W.; Frolov, Sergey; McCarthy, Sean; Penta, Brad; Anderson, Stephanie; Sakalaukus, Peter

    2018-03-01

    An ensemble-based approach to specify observational error covariance in the data assimilation of satellite bio-optical properties is proposed. The observational error covariance is derived from statistical properties of the generated ensemble of satellite MODIS-Aqua chlorophyll (Chl) images. The proposed observational error covariance is used in the Optimal Interpolation scheme for the assimilation of MODIS-Aqua Chl observations. The forecast error covariance is specified in the subspace of the multivariate (bio-optical, physical) empirical orthogonal functions (EOFs) estimated from a month-long model run. The assimilation of surface MODIS-Aqua Chl improved surface and subsurface model Chl predictions. Comparisons with surface and subsurface water samples demonstrate that data assimilation run with the proposed observational error covariance has higher RMSE than the data assimilation run with "optimistic" assumption about observational errors (10% of the ensemble mean), but has smaller or comparable RMSE than data assimilation run with an assumption that observational errors equal to 35% of the ensemble mean (the target error for satellite data product for chlorophyll). Also, with the assimilation of the MODIS-Aqua Chl data, the RMSE between observed and model-predicted fractions of diatoms to the total phytoplankton is reduced by a factor of two in comparison to the nonassimilative run.

  3. Bit Error Rate Due to Misalignment of Earth Station Antenna Pointing to Satellite

    Directory of Open Access Journals (Sweden)

    Wahyu Pamungkas

    2010-04-01

    Full Text Available One problem causing reduction of energy in satellite communications system is the misalignment of earth station antenna pointing to satellite. Error in pointing would affect the quality of information signal to energy bit in earth station. In this research, error in pointing angle occurred only at receiver (Rx antenna, while the transmitter (Tx antennas precisely point to satellite. The research was conducted towards two satellites, namely TELKOM-1 and TELKOM-2. At first, measurement was made by directing Tx antenna precisely to satellite, resulting in an antenna pattern shown by spectrum analyzer. The output from spectrum analyzers is drawn with the right scale to describe swift of azimuth and elevation pointing angle towards satellite. Due to drifting from the precise pointing, it influenced the received link budget indicated by pattern antenna. This antenna pattern shows reduction of power level received as a result of pointing misalignment. As a conclusion, the increasing misalignment of pointing to satellite would affect in the reduction of received signal parameters link budget of down-link traffic.

  4. The Design of Compass/BeiDou Navigation Satellite Terminal for Migrant Bird Research

    Directory of Open Access Journals (Sweden)

    Yaohui Li

    2014-01-01

    Full Text Available A terminal of Compass Navigation Satellite System (CNSS, which can not only support BeiDou-1 and BeiDou-2 but also support Global Positioning System (GPS, is designed to research the activities of the migrant birds, with our novel design of a multiband antenna. By a high-density integration, this terminal is designed with a compact size and light weight. When the terminal is assembled to a whooper swan, its flying trace is recorded by the CNSS, which is in agreement with that of GPS. The flying route map based on the CNSS is useful to check the situation and habit of the migrant bird, which is important for animal protection and bird flu outbreak prediction.

  5. Comprehensive Comparisons of Satellite Data, Signals, and Measurements between the BeiDou Navigation Satellite System and the Global Positioning System †

    Science.gov (United States)

    Jan, Shau-Shiun; Tao, An-Lin

    2016-01-01

    The Chinese BeiDou navigation satellite system (BDS) aims to provide global positioning service by 2020. The combined use of BDS and Global Positioning System (GPS) is proposed to provide navigation service with more stringent requirements. Actual satellite data, signals and measurements were collected for more than one month to analyze the positioning service qualities from both BDS and GPS. In addition to the conversions of coordinate and timing system, five data quality analysis (DQA) methods, three signal quality analysis (SQA) methods, and four measurement quality analysis (MQA) methods are proposed in this paper to improve the integrated positioning performance of BDS and GPS. As shown in the experiment results, issues related to BDS and GPS are resolved by the above proposed quality analysis methods. Thus, the anomalies in satellite data, signals and measurements can be detected by following the suggested resolutions to enhance the positioning performance of the combined use of BDS and GPS in the Asia Pacific region. PMID:27187403

  6. Estimating Zenith Tropospheric Delays from BeiDou Navigation Satellite System Observations

    Directory of Open Access Journals (Sweden)

    Xin Sui

    2013-04-01

    Full Text Available The GNSS derived Zenith Tropospheric Delay (ZTD plays today a very critical role in meteorological study and weather forecasts, as ZTDs of thousands of GNSS stations are operationally assimilated into numerical weather prediction models. Recently, the Chinese BeiDou Navigation Satellite System (BDS was officially announced to provide operational services around China and its neighborhood and it was demonstrated to be very promising for precise navigation and positioning. In this contribution, we concentrate on estimating ZTD using BDS observations to assess its capacity for troposphere remote sensing. A local network which is about 250 km from Beijing and comprised of six stations equipped with GPS- and BDS-capable receivers is utilized. Data from 5 to 8 November 2012 collected on the network is processed in network mode using precise orbits and in Precise Point Positioning mode using precise orbits and clocks. The precise orbits and clocks are generated from a tracking network with most of the stations in China and several stations around the world. The derived ZTDs are compared with that estimated from GPS data using the final products of the International GNSS Service (IGS. The comparison shows that the bias and the standard deviation of the ZTD differences are about 2 mm and 5 mm, respectively, which are very close to the differences of GPS ZTD estimated using different software packages.

  7. A new stochastic model considering satellite clock interpolation errors in precise point positioning

    Science.gov (United States)

    Wang, Shengli; Yang, Fanlin; Gao, Wang; Yan, Lizi; Ge, Yulong

    2018-03-01

    Precise clock products are typically interpolated based on the sampling interval of the observational data when they are used for in precise point positioning. However, due to the occurrence of white noise in atomic clocks, a residual component of such noise will inevitable reside within the observations when clock errors are interpolated, and such noise will affect the resolution of the positioning results. In this paper, which is based on a twenty-one-week analysis of the atomic clock noise characteristics of numerous satellites, a new stochastic observation model that considers satellite clock interpolation errors is proposed. First, the systematic error of each satellite in the IGR clock product was extracted using a wavelet de-noising method to obtain the empirical characteristics of atomic clock noise within each clock product. Then, based on those empirical characteristics, a stochastic observation model was structured that considered the satellite clock interpolation errors. Subsequently, the IGR and IGS clock products at different time intervals were used for experimental validation. A verification using 179 stations worldwide from the IGS showed that, compared with the conventional model, the convergence times using the stochastic model proposed in this study were respectively shortened by 4.8% and 4.0% when the IGR and IGS 300-s-interval clock products were used and by 19.1% and 19.4% when the 900-s-interval clock products were used. Furthermore, the disturbances during the initial phase of the calculation were also effectively improved.

  8. Ranging error analysis of single photon satellite laser altimetry under different terrain conditions

    Science.gov (United States)

    Huang, Jiapeng; Li, Guoyuan; Gao, Xiaoming; Wang, Jianmin; Fan, Wenfeng; Zhou, Shihong

    2018-02-01

    Single photon satellite laser altimeter is based on Geiger model, which has the characteristics of small spot, high repetition rate etc. In this paper, for the slope terrain, the distance of error's formula and numerical calculation are carried out. Monte Carlo method is used to simulate the experiment of different terrain measurements. The experimental results show that ranging accuracy is not affected by the spot size under the condition of the flat terrain, But the inclined terrain can influence the ranging error dramatically, when the satellite pointing angle is 0.001° and the terrain slope is about 12°, the ranging error can reach to 0.5m. While the accuracy can't meet the requirement when the slope is more than 70°. Monte Carlo simulation results show that single photon laser altimeter satellite with high repetition rate can improve the ranging accuracy under the condition of complex terrain. In order to ensure repeated observation of the same point for 25 times, according to the parameters of ICESat-2, we deduce the quantitative relation between the footprint size, footprint, and the frequency repetition. The related conclusions can provide reference for the design and demonstration of the domestic single photon laser altimetry satellite.

  9. Navigation strategies as revealed by error patterns on the Magic Carpet test in children with cerebral palsy

    Directory of Open Access Journals (Sweden)

    Vittorio eBelmonti

    2015-07-01

    Full Text Available IntroductionShort-term memory develops differently in navigation vs. manual space. The Magic Carpet (MC is a novel navigation test derived from the Walking Corsi Test and the manual Corsi Block-tapping Task (CBT. The MC requires mental rotations and executive function. In Cerebral Palsy (CP, CBT and MC scores relate differently to clinical and lesional factors. Hypotheses of this study are: that frontal lesions specifically affect navigation in CP; that brain lesions affect MC cognitive strategies.Material and methodsTwenty-two children with spastic CP, aged 5 to 14 years, 14 with a unilateral and 8 with a bilateral form, underwent the CBT and the MC. Errors were classified into 7 patterns by a recently described algorithm. Brain lesions were quantified according to a novel semi-quantitative MRI scale. Control data were partially drawn from a previous study on 91 typically developing children.ResultsChildren with CP performed worse than controls on both tests. Right hemispheric impairment correlated with spatial memory. MC span was reduced less than CBT span and was more selectively related to right middle white-matter and frontal lesions. Error patterns were differently distributed in CP than in typical development and depended on right brain impairment: children with more extensive right lesions made more positional than sequential errors.DiscussionIn CP, navigation is affected only by extensive lesions involving the right frontal lobe. In addition, these are associated with abnormal cognitive strategies. Whereas in typical development positional errors, preserving serial order, increase with age and performance, in CP they are associated with poorer performance and more extensive right-brain lesions. The explanation may lie in lesion side: right brain is crucial for mental rotations, necessary for spatial updating. Left-lateralized spatial memory strategies, relying on serial order, are not efficient if not accompanied by right-brain spatial

  10. Case-related factors affecting cutting errors of the proximal tibia in total knee arthroplasty assessed by computer navigation.

    Science.gov (United States)

    Tsukeoka, Tadashi; Tsuneizumi, Yoshikazu; Yoshino, Kensuke; Suzuki, Mashiko

    2018-05-01

    The aim of this study was to determine factors that contribute to bone cutting errors of conventional instrumentation for tibial resection in total knee arthroplasty (TKA) as assessed by an image-free navigation system. The hypothesis is that preoperative varus alignment is a significant contributory factor to tibial bone cutting errors. This was a prospective study of a consecutive series of 72 TKAs. The amount of the tibial first-cut errors with reference to the planned cutting plane in both coronal and sagittal planes was measured by an image-free computer navigation system. Multiple regression models were developed with the amount of tibial cutting error in the coronal and sagittal planes as dependent variables and sex, age, disease, height, body mass index, preoperative alignment, patellar height (Insall-Salvati ratio) and preoperative flexion angle as independent variables. Multiple regression analysis showed that sex (male gender) (R = 0.25 p = 0.047) and preoperative varus alignment (R = 0.42, p = 0.001) were positively associated with varus tibial cutting errors in the coronal plane. In the sagittal plane, none of the independent variables was significant. When performing TKA in varus deformity, careful confirmation of the bone cutting surface should be performed to avoid varus alignment. The results of this study suggest technical considerations that can help a surgeon achieve more accurate component placement. IV.

  11. A modified error correction protocol for CCITT signalling system no. 7 on satellite links

    Science.gov (United States)

    Kreuer, Dieter; Quernheim, Ulrich

    1991-10-01

    Comite Consultatif International des Telegraphe et Telephone (CCITT) Signalling System No. 7 (SS7) provides a level 2 error correction protocol particularly suited for links with propagation delays higher than 15 ms. Not being originally designed for satellite links, however, the so called Preventive Cyclic Retransmission (PCR) Method only performs well on satellite channels when traffic is low. A modified level 2 error control protocol, termed Fix Delay Retransmission (FDR) method is suggested which performs better at high loads, thus providing a more efficient use of the limited carrier capacity. Both the PCR and the FDR methods are investigated by means of simulation and results concerning throughput, queueing delay, and system delay, respectively. The FDR method exhibits higher capacity and shorter delay than the PCR method.

  12. Determination of the centre of mass kinematics in alpine skiing using differential global navigation satellite systems.

    Science.gov (United States)

    Gilgien, Matthias; Spörri, Jörg; Chardonnens, Julien; Kröll, Josef; Limpach, Philippe; Müller, Erich

    2015-01-01

    In the sport of alpine skiing, knowledge about the centre of mass (CoM) kinematics (i.e. position, velocity and acceleration) is essential to better understand both performance and injury. This study proposes a global navigation satellite system (GNSS)-based method to measure CoM kinematics without restriction of capture volume and with reasonable set-up and processing requirements. It combines the GNSS antenna position, terrain data and the accelerations acting on the skier in order to approximate the CoM location, velocity and acceleration. The validity of the method was assessed against a reference system (video-based 3D kinematics) over 12 turn cycles on a giant slalom skiing course. The mean (± s) position, velocity and acceleration differences between the CoM obtained from the GNSS and the reference system were 9 ± 12 cm, 0.08 ± 0.19 m · s(-1) and 0.22 ± 1.28 m · s(-2), respectively. The velocity and acceleration differences obtained were smaller than typical differences between the measures of several skiers on the same course observed in the literature, while the position differences were slightly larger than its discriminative meaningful change. The proposed method can therefore be interpreted to be technically valid and adequate for a variety of biomechanical research questions in the field of alpine skiing with certain limitations regarding position.

  13. Public road infrastructure inventory in degraded global navigation satellite system signal environments

    Science.gov (United States)

    Sokolova, N.; Morrison, A.; Haakonsen, T. A.

    2015-04-01

    Recent advancement of land-based mobile mapping enables rapid and cost-effective collection of highquality road related spatial information. Mobile Mapping Systems (MMS) can provide spatial information with subdecimeter accuracy in nominal operation environments. However, performance in challenging environments such as tunnels is not well characterized. The Norwegian Public Roads Administration (NPRA) manages the country's public road network and its infrastructure, a large segment of which is represented by road tunnels (there are about 1 000 road tunnels in Norway with a combined length of 800 km). In order to adopt mobile mapping technology for streamlining road network and infrastructure management and maintenance tasks, it is important to ensure that the technology is mature enough to meet existing requirements for object positioning accuracy in all types of environments, and provide homogeneous accuracy over the mapping perimeter. This paper presents results of a testing campaign performed within a project funded by the NPRA as a part of SMarter road traffic with Intelligent Transport Systems (ITS) (SMITS) program. The testing campaign objective was performance evaluation of high end commercial MMSs for inventory of public areas, focusing on Global Navigation Satellite System (GNSS) signal degraded environments.

  14. Validation of High Wind Retrievals from the Cyclone Global Navigation Satellite System (CYGNSS) Mission

    Science.gov (United States)

    McKague, D. S.; Ruf, C. S.; Balasubramaniam, R.; Clarizia, M. P.

    2017-12-01

    The Cyclone Global Navigation Satellite System (CYGNSS) mission, launched in December of 2016, provides all-weather observations of sea surface winds. Using GPS-based bistatic reflectometry, the CYGNSS satellites can estimate sea surface winds even through a hurricane eye wall. This, combined with the high temporal resolution of the CYGNSS constellation (median revisit time of 2.8 hours), yields unprecedented ability to estimate hurricane strength winds. While there are a number of other sources of sea surface wind estimates, such as buoys, dropsondes, passive and active microwave from aircraft and satellite, and models, the combination of all-weather, high accuracy, short revisit time, high spatial coverage, and continuous operation of the CYGNSS mission enables significant advances in the understanding, monitoring, and prediction of cyclones. Validating CYGNSS wind retrievals over the bulk of the global wind speed distribution, which peaks at around 7 meters per second, is relatively straight-forward, requiring spatial-temporal matching of observations with independent sources (such as those mentioned above). Validating CYGNSS wind retrievals for "high" winds (> 20 meters per second), though, is problematic. Such winds occur only in intense storms. While infrequent, making validation opportunities also infrequent and problematic due to their intense nature, such storms are important to study because of the high potential for damage and loss of life. This presentation will describe the efforts of the CYGNSS Calibration/Validation team to gather measurements of high sea surface winds for development and validation of the CYGNSS geophysical model function (GMF), which forms the basis of retrieving winds from CYGNSS observations. The bulk of these observations come from buoy measurements as well as aircraft ("hurricane hunter") measurements from passive microwave and dropsondes. These data are matched in space and time to CYGNSS observations for training of the

  15. Modeling and Assessment of Precise Time Transfer by Using BeiDou Navigation Satellite System Triple-Frequency Signals

    Science.gov (United States)

    Zhang, Pengfei; Zhang, Rui; Liu, Jinhai; Lu, Xiaochun

    2018-01-01

    This study proposes two models for precise time transfer using the BeiDou Navigation Satellite System triple-frequency signals: ionosphere-free (IF) combined precise point positioning (PPP) model with two dual-frequency combinations (IF-PPP1) and ionosphere-free combined PPP model with a single triple-frequency combination (IF-PPP2). A dataset with a short baseline (with a common external time frequency) and a long baseline are used for performance assessments. The results show that IF-PPP1 and IF-PPP2 models can both be used for precise time transfer using BeiDou Navigation Satellite System (BDS) triple-frequency signals, and the accuracy and stability of time transfer is the same in both cases, except for a constant system bias caused by the hardware delay of different frequencies, which can be removed by the parameter estimation and prediction with long time datasets or by a priori calibration. PMID:29596330

  16. Phase Error Modeling and Its Impact on Precise Orbit Determination of GRACE Satellites

    Directory of Open Access Journals (Sweden)

    Jia Tu

    2012-01-01

    Full Text Available Limiting factors for the precise orbit determination (POD of low-earth orbit (LEO satellite using dual-frequency GPS are nowadays mainly encountered with the in-flight phase error modeling. The phase error is modeled as a systematic and a random component each depending on the direction of GPS signal reception. The systematic part and standard deviation of random part in phase error model are, respectively, estimated by bin-wise mean and standard deviation values of phase postfit residuals computed by orbit determination. By removing the systematic component and adjusting the weight of phase observation data according to standard deviation of random component, the orbit can be further improved by POD approach. The GRACE data of 1–31 January 2006 are processed, and three types of orbit solutions, POD without phase error model correction, POD with mean value correction of phase error model, and POD with phase error model correction, are obtained. The three-dimensional (3D orbit improvements derived from phase error model correction are 0.0153 m for GRACE A and 0.0131 m for GRACE B, and the 3D influences arisen from random part of phase error model are 0.0068 m and 0.0075 m for GRACE A and GRACE B, respectively. Thus the random part of phase error model cannot be neglected for POD. It is also demonstrated by phase postfit residual analysis, orbit comparison with JPL precise science orbit, and orbit validation with KBR data that the results derived from POD with phase error model correction are better than another two types of orbit solutions generated in this paper.

  17. Ground-Based Global Navigation Satellite System (GNSS) Compact Observation Data (1-second sampling, sub-hourly files) from NASA CDDIS

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset consists of ground-based Global Navigation Satellite System (GNSS) Observation Data (1-second sampling, sub-hourly files) from the NASA Crustal Dynamics...

  18. GAUSS Market Analysis for Integrated Satellite Communication and Navigation Location Based services

    Science.gov (United States)

    Di Fazio, Antonella; Dricot, Fabienne; Tata, Francesco

    2003-07-01

    The demand for mobile information services coupled with positioning technologies for delivering value- added services that depend on a user's location has rapidly increased during last years. In particular, services and applications related with improved mobility safety and transport efficiency look very attractive.Solutions for location services vary in respect of positioning accuracy and the technical infrastructure required, and the associated investment in terminals and networks. From the analysis of the state-of-the art, it comes that various technologies are currently available on the European market, while mobile industry is gearing up to launch a wide variety of location services like tracking, alarming and locating.Nevertheless, when addressing safety of life as well as security applications, severe hurdles have to be posed in the light of existing technologies. Existing navigation (e.g. GPS) and communication systems are not able to completely satisfy the needs and requirements of safety-of-life-critical applications. As a matter of fact, the GPS system's main weaknesses today is its lack of integrity, which means its inability to warn users of a malfunction in a reasonable time, while the other positioning techniques do not provide satisfactory accuracy as well, and terrestrial communication networks are not capable to cope with stringent requirement in terms of service reliability and coverage.In this context, GAUSS proposes an innovative satellite-based solution using novel technology and effective tools for addressing mobility challenges in a cost efficient manner, improving safety and effectiveness.GAUSS (Galileo And UMTS Synergetic System) is a Research and Technological Development project co- funded by European Commission, within the frame of the 5th IST Programme. The project lasted two years, and it was successfully completed in November 2002. GAUSS key concept is the integration of Satellite Navigation GNSS and UMTS communication technology, to

  19. Tropospheric and ionospheric media calibrations based on global navigation satellite system observation data

    Science.gov (United States)

    Feltens, Joachim; Bellei, Gabriele; Springer, Tim; Kints, Mark V.; Zandbergen, René; Budnik, Frank; Schönemann, Erik

    2018-06-01

    Context: Calibration of radiometric tracking data for effects in the Earth atmosphere is a crucial element in the field of deep-space orbit determination (OD). The troposphere can induce propagation delays in the order of several meters, the ionosphere up to the meter level for X-band signals and up to tens of meters, in extreme cases, for L-band ones. The use of media calibrations based on Global Navigation Satellite Systems (GNSS) measurement data can improve the accuracy of the radiometric observations modelling and, as a consequence, the quality of orbit determination solutions. Aims: ESOC Flight Dynamics employs ranging, Doppler and delta-DOR (Delta-Differential One-Way Ranging) data for the orbit determination of interplanetary spacecraft. Currently, the media calibrations for troposphere and ionosphere are either computed based on empirical models or, under mission specific agreements, provided by external parties such as the Jet Propulsion Laboratory (JPL) in Pasadena, California. In order to become independent from external models and sources, decision fell to establish a new in-house internal service to create these media calibrations based on GNSS measurements recorded at the ESA tracking sites and processed in-house by the ESOC Navigation Support Office with comparable accuracy and quality. Methods: For its concept, the new service was designed to be as much as possible depending on own data and resources and as less as possible depending on external models and data. Dedicated robust and simple algorithms, well suited for operational use, were worked out for that task. This paper describes the approach built up to realize this new in-house internal media calibration service. Results: Test results collected during three months of running the new media calibrations in quasi-operational mode indicate that GNSS-based tropospheric corrections can remove systematic signatures from the Doppler observations and biases from the range ones. For the ionosphere, a

  20. Climatologies from satellite measurements: the impact of orbital sampling on the standard error of the mean

    Directory of Open Access Journals (Sweden)

    M. Toohey

    2013-04-01

    Full Text Available Climatologies of atmospheric observations are often produced by binning measurements according to latitude and calculating zonal means. The uncertainty in these climatological means is characterised by the standard error of the mean (SEM. However, the usual estimator of the SEM, i.e., the sample standard deviation divided by the square root of the sample size, holds only for uncorrelated randomly sampled measurements. Measurements of the atmospheric state along a satellite orbit cannot always be considered as independent because (a the time-space interval between two nearest observations is often smaller than the typical scale of variations in the atmospheric state, and (b the regular time-space sampling pattern of a satellite instrument strongly deviates from random sampling. We have developed a numerical experiment where global chemical fields from a chemistry climate model are sampled according to real sampling patterns of satellite-borne instruments. As case studies, the model fields are sampled using sampling patterns of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS and Atmospheric Chemistry Experiment Fourier-Transform Spectrometer (ACE-FTS satellite instruments. Through an iterative subsampling technique, and by incorporating information on the random errors of the MIPAS and ACE-FTS measurements, we produce empirical estimates of the standard error of monthly mean zonal mean model O3 in 5° latitude bins. We find that generally the classic SEM estimator is a conservative estimate of the SEM, i.e., the empirical SEM is often less than or approximately equal to the classic estimate. Exceptions occur only when natural variability is larger than the random measurement error, and specifically in instances where the zonal sampling distribution shows non-uniformity with a similar zonal structure as variations in the sampled field, leading to maximum sensitivity to arbitrary phase shifts between the sample distribution and

  1. Conflict between Place and Response Navigation Strategies: Effects on Vicarious Trial and Error (VTE) Behaviors

    Science.gov (United States)

    Schmidt, Brandy; Papale, Andrew; Redish, A. David; Markus, Etan J.

    2013-01-01

    Navigation can be accomplished through multiple decision-making strategies, using different information-processing computations. A well-studied dichotomy in these decision-making strategies compares hippocampal-dependent "place" and dorsal-lateral striatal dependent "response" strategies. A place strategy depends on the ability to flexibly respond…

  2. Geometrically constrained kinematic global navigation satellite systems positioning: Implementation and performance

    Science.gov (United States)

    Asgari, Jamal; Mohammadloo, Tannaz H.; Amiri-Simkooei, Ali Reza

    2015-09-01

    GNSS kinematic techniques are capable of providing precise coordinates in extremely short observation time-span. These methods usually determine the coordinates of an unknown station with respect to a reference one. To enhance the precision, accuracy, reliability and integrity of the estimated unknown parameters, GNSS kinematic equations are to be augmented by possible constraints. Such constraints could be derived from the geometric relation of the receiver positions in motion. This contribution presents the formulation of the constrained kinematic global navigation satellite systems positioning. Constraints effectively restrict the definition domain of the unknown parameters from the three-dimensional space to a subspace defined by the equation of motion. To test the concept of the constrained kinematic positioning method, the equation of a circle is employed as a constraint. A device capable of moving on a circle was made and the observations from 11 positions on the circle were analyzed. Relative positioning was conducted by considering the center of the circle as the reference station. The equation of the receiver's motion was rewritten in the ECEF coordinates system. A special attention is drawn onto how a constraint is applied to kinematic positioning. Implementing the constraint in the positioning process provides much more precise results compared to the unconstrained case. This has been verified based on the results obtained from the covariance matrix of the estimated parameters and the empirical results using kinematic positioning samples as well. The theoretical standard deviations of the horizontal components are reduced by a factor ranging from 1.24 to 2.64. The improvement on the empirical standard deviation of the horizontal components ranges from 1.08 to 2.2.

  3. On land-use modeling: A treatise of satellite imagery data and misclassification error

    Science.gov (United States)

    Sandler, Austin M.

    Recent availability of satellite-based land-use data sets, including data sets with contiguous spatial coverage over large areas, relatively long temporal coverage, and fine-scale land cover classifications, is providing new opportunities for land-use research. However, care must be used when working with these datasets due to misclassification error, which causes inconsistent parameter estimates in the discrete choice models typically used to model land-use. I therefore adapt the empirical correction methods developed for other contexts (e.g., epidemiology) so that they can be applied to land-use modeling. I then use a Monte Carlo simulation, and an empirical application using actual satellite imagery data from the Northern Great Plains, to compare the results of a traditional model ignoring misclassification to those from models accounting for misclassification. Results from both the simulation and application indicate that ignoring misclassification will lead to biased results. Even seemingly insignificant levels of misclassification error (e.g., 1%) result in biased parameter estimates, which alter marginal effects enough to affect policy inference. At the levels of misclassification typical in current satellite imagery datasets (e.g., as high as 35%), ignoring misclassification can lead to systematically erroneous land-use probabilities and substantially biased marginal effects. The correction methods I propose, however, generate consistent parameter estimates and therefore consistent estimates of marginal effects and predicted land-use probabilities.

  4. Error analysis of satellite attitude determination using a vision-based approach

    Science.gov (United States)

    Carozza, Ludovico; Bevilacqua, Alessandro

    2013-09-01

    Improvements in communication and processing technologies have opened the doors to exploit on-board cameras to compute objects' spatial attitude using only the visual information from sequences of remote sensed images. The strategies and the algorithmic approach used to extract such information affect the estimation accuracy of the three-axis orientation of the object. This work presents a method for analyzing the most relevant error sources, including numerical ones, possible drift effects and their influence on the overall accuracy, referring to vision-based approaches. The method in particular focuses on the analysis of the image registration algorithm, carried out through on-purpose simulations. The overall accuracy has been assessed on a challenging case study, for which accuracy represents the fundamental requirement. In particular, attitude determination has been analyzed for small satellites, by comparing theoretical findings to metric results from simulations on realistic ground-truth data. Significant laboratory experiments, using a numerical control unit, have further confirmed the outcome. We believe that our analysis approach, as well as our findings in terms of error characterization, can be useful at proof-of-concept design and planning levels, since they emphasize the main sources of error for visual based approaches employed for satellite attitude estimation. Nevertheless, the approach we present is also of general interest for all the affine applicative domains which require an accurate estimation of three-dimensional orientation parameters (i.e., robotics, airborne stabilization).

  5. Prediction of Navigation Satellite Clock Bias Considering Clock's Stochastic Variation Behavior with Robust Least Square Collocation

    Directory of Open Access Journals (Sweden)

    WANG Yupu

    2016-06-01

    Full Text Available In order to better express the characteristic of satellite clock bias (SCB and further improve its prediction precision, a new SCB prediction model is proposed, which can take the physical feature, cyclic variation and stochastic variation behaviors of the space-borne atomic clock into consideration by using a robust least square collocation (LSC method. The proposed model firstly uses a quadratic polynomial model with periodic terms to fit and abstract the trend term and cyclic terms of SCB. Then for the residual stochastic variation part and possible gross errors hidden in SCB data, the model employs a robust LSC method to process them. The covariance function of the LSC is determined by selecting an empirical function and combining SCB prediction tests. Using the final precise IGS SCB products to conduct prediction tests, the results show that the proposed model can get better prediction performance. Specifically, the results' prediction accuracy can enhance 0.457 ns and 0.948 ns respectively, and the corresponding prediction stability can improve 0.445 ns and 1.233 ns, compared with the results of quadratic polynomial model and grey model. In addition, the results also show that the proposed covariance function corresponding to the new model is reasonable.

  6. Guidance, Navigation, and Control System for Maneuverable Pico-Satellites, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A compact, low-power GN&C system is essential to the success of pico-satellite Automated Rendezvous and Docking (AR&D). Austin Satellite Design (ASD)...

  7. Error Modelling for Multi-Sensor Measurements in Infrastructure-Free Indoor Navigation

    Directory of Open Access Journals (Sweden)

    Laura Ruotsalainen

    2018-02-01

    Full Text Available The long-term objective of our research is to develop a method for infrastructure-free simultaneous localization and mapping (SLAM and context recognition for tactical situational awareness. Localization will be realized by propagating motion measurements obtained using a monocular camera, a foot-mounted Inertial Measurement Unit (IMU, sonar, and a barometer. Due to the size and weight requirements set by tactical applications, Micro-Electro-Mechanical (MEMS sensors will be used. However, MEMS sensors suffer from biases and drift errors that may substantially decrease the position accuracy. Therefore, sophisticated error modelling and implementation of integration algorithms are key for providing a viable result. Algorithms used for multi-sensor fusion have traditionally been different versions of Kalman filters. However, Kalman filters are based on the assumptions that the state propagation and measurement models are linear with additive Gaussian noise. Neither of the assumptions is correct for tactical applications, especially for dismounted soldiers, or rescue personnel. Therefore, error modelling and implementation of advanced fusion algorithms are essential for providing a viable result. Our approach is to use particle filtering (PF, which is a sophisticated option for integrating measurements emerging from pedestrian motion having non-Gaussian error characteristics. This paper discusses the statistical modelling of the measurement errors from inertial sensors and vision based heading and translation measurements to include the correct error probability density functions (pdf in the particle filter implementation. Then, model fitting is used to verify the pdfs of the measurement errors. Based on the deduced error models of the measurements, particle filtering method is developed to fuse all this information, where the weights of each particle are computed based on the specific models derived. The performance of the developed method is

  8. Particle-induced bit errors in high performance fiber optic data links for satellite data management

    International Nuclear Information System (INIS)

    Marshall, P.W.; Carts, M.A.; Dale, C.J.; LaBel, K.A.

    1994-01-01

    Experimental test methods and analysis tools are demonstrated to assess particle-induced bit errors on fiber optic link receivers for satellites. Susceptibility to direct ionization from low LET particles is quantified by analyzing proton and helium ion data as a function of particle LET. Existing single event analysis approaches are shown to apply, with appropriate modifications, to the regime of temporally (rather than spatially) distributed bits, even though the sensitivity to single events exceeds conventional memory technologies by orders of magnitude. The cross-section LET dependence follows a Weibull distribution at data rates from 200 to 1,000 Mbps and at various incident optical power levels. The LET threshold for errors is shown, through both experiment and modeling, to be 0 in all cases. The error cross-section exhibits a strong inverse dependence on received optical power in the LET range where most orbital single events would occur, thus indicating that errors can be minimized by operating links with higher incident optical power. Also, an analytic model is described which incorporates the appropriate physical characteristics of the link as well as the optical and receiver electrical characteristics. Results indicate appropriate steps to assure suitable link performance even in severe particle orbits

  9. Clock error models for simulation and estimation

    International Nuclear Information System (INIS)

    Meditch, J.S.

    1981-10-01

    Mathematical models for the simulation and estimation of errors in precision oscillators used as time references in satellite navigation systems are developed. The results, based on all currently known oscillator error sources, are directly implementable on a digital computer. The simulation formulation is sufficiently flexible to allow for the inclusion or exclusion of individual error sources as desired. The estimation algorithms, following from Kalman filter theory, provide directly for the error analysis of clock errors in both filtering and prediction

  10. GLOBAL NAVIGATION SATELLITE SYSTEMS (GNSS IN GEOGRAPHICAL EDUCATION AND APPLIED RESEARCH

    Directory of Open Access Journals (Sweden)

    A. A. Suchilin

    2017-01-01

    Full Text Available The paper considers the introduction of the newest methods of topographic surveying into the educational and scientific process, using global navigation satellite systems (GNSS at the Faculty of Geography of Moscow State University. It describes the designation and use of the current reference geodetic training network for the training of students within the program of topographic practice. The basic concepts and purpose of the equipment of the geodetic class of the user segment of GNSS, both the basic location (reference stations and mobile complexes are disclosed. The technique of measuring and processing the accumulated data after field fixation (in static or kinematic modes of geographic objects and phenomena using GNSS has been given. A constantly operating network of reference stations of the faculty has been described. A full-scale example of using the GNSS complex by students of the faculty of the study area is given, the collected materials have been used for subsequent modeling (relief restoration based on the results of field measurements. Within the framework of the perspective development of the network of GNSS reference stations of the Moscow State University, the scheme of their location in the meridian direction on an ongoing basis has been shown, which will substantially expand the territorial coverage of the use of mobile GNSS complexes in geographic studies. Within the framework of the program of preservation of monuments of Russia’s cultural heritage, an example has been shown of the joint use of groundbased laser scanning techniques and a mobile GNSS complex conducted by students and teachers of leading Moscow universities and representatives of GFK Firm LLC. The result is the fixation of the geometric characteristics of the object in 1 cm steps in real coordinates, which makes it possible to carry out the necessary modeling, visualize the object in perspective form, carry out the necessary measurements, build sections

  11. Error estimates for near-Real-Time Satellite Soil Moisture as Derived from the Land Parameter Retrieval Model

    NARCIS (Netherlands)

    Parinussa, R.M.; Meesters, A.G.C.A.; Liu, Y.Y.; Dorigo, W.; Wagner, W.; de Jeu, R.A.M.

    2011-01-01

    A time-efficient solution to estimate the error of satellite surface soil moisture from the land parameter retrieval model is presented. The errors are estimated using an analytical solution for soil moisture retrievals from this radiative-transfer-based model that derives soil moisture from

  12. Errors of Mean Dynamic Topography and Geostrophic Current Estimates in China's Marginal Seas from GOCE and Satellite Altimetry

    DEFF Research Database (Denmark)

    Jin, Shuanggen; Feng, Guiping; Andersen, Ole Baltazar

    2014-01-01

    and geostrophic current estimates from satellite gravimetry and altimetry are investigated and evaluated in China's marginal seas. The cumulative error in MDT from GOCE is reduced from 22.75 to 9.89 cm when compared to the Gravity Recovery and Climate Experiment (GRACE) gravity field model ITG-Grace2010 results......The Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) and satellite altimetry can provide very detailed and accurate estimates of the mean dynamic topography (MDT) and geostrophic currents in China's marginal seas, such as, the newest high-resolution GOCE gravity field model GO......-CONS-GCF-2-TIM-R4 and the new Centre National d'Etudes Spatiales mean sea surface model MSS_CNES_CLS_11 from satellite altimetry. However, errors and uncertainties of MDT and geostrophic current estimates from satellite observations are not generally quantified. In this paper, errors and uncertainties of MDT...

  13. SIMULATION OF INERTIAL NAVIGATION SYSTEM ERRORS AT AERIAL PHOTOGRAPHY FROM UAV

    Directory of Open Access Journals (Sweden)

    R. Shults

    2017-05-01

    Full Text Available The problem of accuracy determination of the UAV position using INS at aerial photography can be resolved in two different ways: modelling of measurement errors or in-field calibration for INS. The paper presents the results of INS errors research by mathematical modelling. In paper were considered the following steps: developing of INS computer model; carrying out INS simulation; using reference data without errors, estimation of errors and their influence on maps creation accuracy by UAV data. It must be remembered that the values of orientation angles and the coordinates of the projection centre may change abruptly due to the influence of the atmosphere (different air density, wind, etc.. Therefore, the mathematical model of the INS was constructed taking into account the use of different models of wind gusts. For simulation were used typical characteristics of micro electromechanical (MEMS INS and parameters of standard atmosphere. According to the simulation established domination of INS systematic errors that accumulate during the execution of photographing and require compensation mechanism, especially for orientation angles. MEMS INS have a high level of noise at the system input. Thanks to the developed model, we are able to investigate separately the impact of noise in the absence of systematic errors. According to the research was found that on the interval of observations in 5 seconds the impact of random and systematic component is almost the same. The developed model of INS errors studies was implemented in Matlab software environment and without problems can be improved and enhanced with new blocks.

  14. Lightning-generated whistler waves observed by probes on the Communication/Navigation Outage Forecast System satellite at low latitudes

    Science.gov (United States)

    Holzworth, R. H.; McCarthy, M. P.; Pfaff, R. F.; Jacobson, A. R.; Willcockson, W. L.; Rowland, D. E.

    2011-06-01

    Direct evidence is presented for a causal relationship between lightning and strong electric field transients inside equatorial ionospheric density depletions. In fact, these whistler mode plasma waves may be the dominant electric field signal within such depletions. Optical lightning data from the Communication/Navigation Outage Forecast System (C/NOFS) satellite and global lightning location information from the World Wide Lightning Location Network are presented as independent verification that these electric field transients are caused by lightning. The electric field instrument on C/NOFS routinely measures lightning-related electric field wave packets or sferics, associated with simultaneous measurements of optical flashes at all altitudes encountered by the satellite (401-867 km). Lightning-generated whistler waves have abundant access to the topside ionosphere, even close to the magnetic equator.

  15. Modeling and Assessment of Precise Time Transfer by Using BeiDou Navigation Satellite System Triple-Frequency Signals

    Directory of Open Access Journals (Sweden)

    Rui Tu

    2018-03-01

    Full Text Available This study proposes two models for precise time transfer using the BeiDou Navigation Satellite System triple-frequency signals: ionosphere-free (IF combined precise point positioning (PPP model with two dual-frequency combinations (IF-PPP1 and ionosphere-free combined PPP model with a single triple-frequency combination (IF-PPP2. A dataset with a short baseline (with a common external time frequency and a long baseline are used for performance assessments. The results show that IF-PPP1 and IF-PPP2 models can both be used for precise time transfer using BeiDou Navigation Satellite System (BDS triple-frequency signals, and the accuracy and stability of time transfer is the same in both cases, except for a constant system bias caused by the hardware delay of different frequencies, which can be removed by the parameter estimation and prediction with long time datasets or by a priori calibration.

  16. Statistical theory for estimating sampling errors of regional radiation averages based on satellite measurements

    Science.gov (United States)

    Smith, G. L.; Bess, T. D.; Minnis, P.

    1983-01-01

    The processes which determine the weather and climate are driven by the radiation received by the earth and the radiation subsequently emitted. A knowledge of the absorbed and emitted components of radiation is thus fundamental for the study of these processes. In connection with the desire to improve the quality of long-range forecasting, NASA is developing the Earth Radiation Budget Experiment (ERBE), consisting of a three-channel scanning radiometer and a package of nonscanning radiometers. A set of these instruments is to be flown on both the NOAA-F and NOAA-G spacecraft, in sun-synchronous orbits, and on an Earth Radiation Budget Satellite. The purpose of the scanning radiometer is to obtain measurements from which the average reflected solar radiant exitance and the average earth-emitted radiant exitance at a reference level can be established. The estimate of regional average exitance obtained will not exactly equal the true value of the regional average exitance, but will differ due to spatial sampling. A method is presented for evaluating this spatial sampling error.

  17. Adjustment errors of sunstones in the first step of sky-polarimetric Viking navigation: studies with dichroic cordierite/ tourmaline and birefringent calcite crystals.

    Science.gov (United States)

    Száz, Dénes; Farkas, Alexandra; Blahó, Miklós; Barta, András; Egri, Ádám; Kretzer, Balázs; Hegedüs, Tibor; Jäger, Zoltán; Horváth, Gábor

    2016-01-01

    According to an old but still unproven theory, Viking navigators analysed the skylight polarization with dichroic cordierite or tourmaline, or birefringent calcite sunstones in cloudy/foggy weather. Combining these sunstones with their sun-dial, they could determine the position of the occluded sun, from which the geographical northern direction could be guessed. In psychophysical laboratory experiments, we studied the accuracy of the first step of this sky-polarimetric Viking navigation. We measured the adjustment error e of rotatable cordierite, tourmaline and calcite crystals when the task was to determine the direction of polarization of white light as a function of the degree of linear polarization p. From the obtained error functions e(p), the thresholds p* above which the first step can still function (i.e. when the intensity change seen through the rotating analyser can be sensed) were derived. Cordierite is about twice as reliable as tourmaline. Calcite sunstones have smaller adjustment errors if the navigator looks for that orientation of the crystal where the intensity difference between the two spots seen in the crystal is maximal, rather than minimal. For higher p (greater than p crit) of incident light, the adjustment errors of calcite are larger than those of the dichroic cordierite (p crit=20%) and tourmaline (p crit=45%), while for lower p (less than p crit) calcite usually has lower adjustment errors than dichroic sunstones. We showed that real calcite crystals are not as ideal sunstones as it was believed earlier, because they usually contain scratches, impurities and crystal defects which increase considerably their adjustment errors. Thus, cordierite and tourmaline can also be at least as good sunstones as calcite. Using the psychophysical e(p) functions and the patterns of the degree of skylight polarization measured by full-sky imaging polarimetry, we computed how accurately the northern direction can be determined with the use of the Viking

  18. Satellites

    International Nuclear Information System (INIS)

    Burns, J.A.; Matthews, M.S.

    1986-01-01

    The present work is based on a conference: Natural Satellites, Colloquium 77 of the IAU, held at Cornell University from July 5 to 9, 1983. Attention is given to the background and origins of satellites, protosatellite swarms, the tectonics of icy satellites, the physical characteristics of satellite surfaces, and the interactions of planetary magnetospheres with icy satellite surfaces. Other topics include the surface composition of natural satellites, the cratering of planetary satellites, the moon, Io, and Europa. Consideration is also given to Ganymede and Callisto, the satellites of Saturn, small satellites, satellites of Uranus and Neptune, and the Pluto-Charon system

  19. A navigation system for percutaneous needle interventions based on PET/CT images: design, workflow and error analysis of soft tissue and bone punctures.

    Science.gov (United States)

    Oliveira-Santos, Thiago; Klaeser, Bernd; Weitzel, Thilo; Krause, Thomas; Nolte, Lutz-Peter; Peterhans, Matthias; Weber, Stefan

    2011-01-01

    Percutaneous needle intervention based on PET/CT images is effective, but exposes the patient to unnecessary radiation due to the increased number of CT scans required. Computer assisted intervention can reduce the number of scans, but requires handling, matching and visualization of two different datasets. While one dataset is used for target definition according to metabolism, the other is used for instrument guidance according to anatomical structures. No navigation systems capable of handling such data and performing PET/CT image-based procedures while following clinically approved protocols for oncologic percutaneous interventions are available. The need for such systems is emphasized in scenarios where the target can be located in different types of tissue such as bone and soft tissue. These two tissues require different clinical protocols for puncturing and may therefore give rise to different problems during the navigated intervention. Studies comparing the performance of navigated needle interventions targeting lesions located in these two types of tissue are not often found in the literature. Hence, this paper presents an optical navigation system for percutaneous needle interventions based on PET/CT images. The system provides viewers for guiding the physician to the target with real-time visualization of PET/CT datasets, and is able to handle targets located in both bone and soft tissue. The navigation system and the required clinical workflow were designed taking into consideration clinical protocols and requirements, and the system is thus operable by a single person, even during transition to the sterile phase. Both the system and the workflow were evaluated in an initial set of experiments simulating 41 lesions (23 located in bone tissue and 18 in soft tissue) in swine cadavers. We also measured and decomposed the overall system error into distinct error sources, which allowed for the identification of particularities involved in the process as well

  20. Use of Earth's magnetic field for mitigating gyroscope errors regardless of magnetic perturbation.

    Science.gov (United States)

    Afzal, Muhammad Haris; Renaudin, Valérie; Lachapelle, Gérard

    2011-01-01

    Most portable systems like smart-phones are equipped with low cost consumer grade sensors, making them useful as Pedestrian Navigation Systems (PNS). Measurements of these sensors are severely contaminated by errors caused due to instrumentation and environmental issues rendering the unaided navigation solution with these sensors of limited use. The overall navigation error budget associated with pedestrian navigation can be categorized into position/displacement errors and attitude/orientation errors. Most of the research is conducted for tackling and reducing the displacement errors, which either utilize Pedestrian Dead Reckoning (PDR) or special constraints like Zero velocity UPdaTes (ZUPT) and Zero Angular Rate Updates (ZARU). This article targets the orientation/attitude errors encountered in pedestrian navigation and develops a novel sensor fusion technique to utilize the Earth's magnetic field, even perturbed, for attitude and rate gyroscope error estimation in pedestrian navigation environments where it is assumed that Global Navigation Satellite System (GNSS) navigation is denied. As the Earth's magnetic field undergoes severe degradations in pedestrian navigation environments, a novel Quasi-Static magnetic Field (QSF) based attitude and angular rate error estimation technique is developed to effectively use magnetic measurements in highly perturbed environments. The QSF scheme is then used for generating the desired measurements for the proposed Extended Kalman Filter (EKF) based attitude estimator. Results indicate that the QSF measurements are capable of effectively estimating attitude and gyroscope errors, reducing the overall navigation error budget by over 80% in urban canyon environment.

  1. Precise Receiver Clock Offset Estimations According to Each Global Navigation Satellite Systems (GNSS) Timescales

    Science.gov (United States)

    Thongtan, Thayathip; Tirawanichakul, Pawit; Satirapod, Chalermchon

    2017-12-01

    Each GNSS constellation operates its own system times; namely, GPS system time (GPST), GLONASS system time (GLONASST), BeiDou system time (BDT) and Galileo system time (GST). They could be traced back to Coordinated Universal Time (UTC) scale and are aligned to GPST. This paper estimates the receiver clock offsets to three timescales: GPST, GLONASST and BDT. The two measurement scenarios use two identical multi-GNSS geodetic receivers connected to the same geodetic antenna through a splitter. One receiver is driven by its internal oscillators and another receiver is connected to the external frequency oscillators, caesium frequency standard, kept as the Thailand standard time scale at the National Institute of Metrology (Thailand) called UTC(NIMT). The three weeks data are observed at 30 seconds sample rate. The receiver clock offsets with respected to the three system time are estimated and analysed through the geodetic technique of static Precise Point Positioning (PPP) using a data processing software developed by Wuhan University - Positioning And Navigation Data Analyst (PANDA) software. The estimated receiver clock offsets are around 32, 33 and 18 nanoseconds from GPST, GLONASST and BDT respectively. This experiment is initially stated that each timescale is inter-operated with GPST and further measurements on receiver internal delay has to be determined for clock comparisons especially the high accuracy clock at timing laboratories.

  2. Technological utilization of space with special regard to navigation satellite systems

    Science.gov (United States)

    Stiller, A. H.

    With financial support from the German Minister of Research and Technology (BMFT) two German companies have developed two GPS-C/A-Code-receivers for different applications with low weight and small volume. The measured results of positions in connection with the ABS of a car (Anti lock braking system) and in Diff.-GPS-mode are very satisfying and in the range of 15 and/or 3 meters. Both receivers worked quite well and both companies have demonstrated their capability to meet our high exspectations. Unfortunately the GPS-satellite to be launched are behind schedule, therefore the two German companies cannot sell their products and if the GPS-system will be completed in the year 1991 other technologies with smaller and cheaper receivers will be on the market.

  3. Response of Global Navigation Satellite System receivers to known shaking between 0.2 and 20 Hertz

    Science.gov (United States)

    Langbein, John; Evans, John R.; Blume, Fredrick; Johanson, Ingrid

    2014-01-01

    Over the past decade, several technological advances have allowed Global Navigation Satellite Systems (GNSS) receivers to have the capability to record displacements at high frequencies, with sampling rates approaching 100 samples per second (sps). In addition, communication and computer hardware and software have allowed various institutions, including the U.S. Geological Survey (USGS), to retrieve, process, and display position changes recorded by a network of GNSS sites with small, less than 1-s delays between the time that the GNSS receiver records signals from a constellation of satellites and the time that the position is estimated (a method known as “real-time”). These improvements in hardware and software have allowed the USGS to process GNSS (or a subset of the GNSS, the Global Positioning System, GPS) data in real-time at 1 sps with the goal of determining displacements from earthquakes and volcanoes in real-time. However, the current set of GNSS equipment can record at rates of 100 sps, which allows the possibility of using this equipment to record earthquake displacements over the full range of frequencies that typically are recorded by acceleration and velocity transducers. The advantage of using GNSS to record earthquakes is that the displacement, rather than acceleration or velocity, is recorded, and for large earthquakes, the GNSS sensor stays on scale and will not distort the observations due to clipping of the signal at its highest amplitude. The direct observation of displacement is advantageous in estimating the size and spatial extent of the earthquake rupture. Otherwise, when using velocity or acceleration sensors, the displacements are determined by numerical integration of the observations, which can introduce significant uncertainty in the estimated displacements. However, GNSS technology can, at best, resolve displacements of a few millimeters, and for most earthquakes, their displacements are less than 1 mm. Consequently, to be useful

  4. Influence of Ephemeris Error on GPS Single Point Positioning Accuracy

    Science.gov (United States)

    Lihua, Ma; Wang, Meng

    2013-09-01

    The Global Positioning System (GPS) user makes use of the navigation message transmitted from GPS satellites to achieve its location. Because the receiver uses the satellite's location in position calculations, an ephemeris error, a difference between the expected and actual orbital position of a GPS satellite, reduces user accuracy. The influence extent is decided by the precision of broadcast ephemeris from the control station upload. Simulation analysis with the Yuma almanac show that maximum positioning error exists in the case where the ephemeris error is along the line-of-sight (LOS) direction. Meanwhile, the error is dependent on the relationship between the observer and spatial constellation at some time period.

  5. Use of Faraday-rotation data from beacon satellites to determine ionospheric corrections for interplanetary spacecraft navigation

    Science.gov (United States)

    Royden, H. N.; Green, D. W.; Walson, G. R.

    1981-01-01

    Faraday-rotation data from the linearly polarized 137-MHz beacons of the ATS-1, SIRIO, and Kiku-2 geosynchronous satellites are used to determine the ionospheric corrections to the range and Doppler data for interplanetary spacecraft navigation. The JPL operates the Deep Space Network of tracking stations for NASA; these stations monitor Faraday rotation with dual orthogonal, linearly polarized antennas, Teledyne polarization tracking receivers, analog-to-digital converter/scanners, and other support equipment. Computer software examines the Faraday data, resolves the pi ambiguities, constructs a continuous Faraday-rotation profile and converts the profile to columnar zenith total electron content at the ionospheric reference point; a second program computes the line-of-sight ionospheric correction for each pass of the spacecraft over each tracking complex. Line-of-sight ionospheric electron content using mapped Faraday-rotation data is compared with that using dispersive Doppler data from the Voyager spacecraft; a difference of about 0.4 meters, or 5 x 10 to the 16th electrons/sq m is obtained. The technique of determining the electron content of interplanetary plasma by subtraction of the ionospheric contribution is demonstrated on the plasma torus surrounding the orbit of Io.

  6. Kinematic Localization for Global Navigation Satellite Systems: A Kalman Filtering Approach

    Science.gov (United States)

    Tabatabaee, Mohammad Hadi

    Use of the Global Positioning System (GNSS) has expanded significantly in the past decade, especially with advances in embedded systems and the emergence of smartphones and the Internet of Things (IoT). The growing demand has stimulated research on development of GNSS techniques and programming tools. The focus of much of the research efforts have been on high-level algorithms and augmentations. This dissertation focuses on the low-level methods at the heart of GNSS systems and proposes a new methods for GNSS positioning problems based on concepts of distance geometry and the use of Kalman filters. The methods presented in this dissertation provide algebraic solutions to problems that have predominantly been solved using iterative methods. The proposed methods are highly efficient, provide accurate estimates, and exhibit a degree of robustness in the presence of unfavorable satellite geometry. The algorithm operates in two stages; an estimation of the receiver clock bias and removal of the bias from the pseudorange observables, followed by the localization of the GNSS receiver. The use of a Kalman filter in between the two stages allows for an improvement of the clock bias estimate with a noticeable impact on the position estimates. The receiver localization step has also been formulated in a linear manner allowing for the direct application of a Kalman filter without any need for linearization. The methodology has also been extended to double differential observables for high accuracy pseudorange and carrier phase position estimates.

  7. Supporting Development of Satellite's Guidance Navigation and Control Software: A Product Line Approach

    Science.gov (United States)

    McComas, David; Stark, Michael; Leake, Stephen; White, Michael; Morisio, Maurizio; Travassos, Guilherme H.; Powers, Edward I. (Technical Monitor)

    2000-01-01

    The NASA Goddard Space Flight Center Flight Software Branch (FSB) is developing a Guidance, Navigation, and Control (GNC) Flight Software (FSW) product line. The demand for increasingly more complex flight software in less time while maintaining the same level of quality has motivated us to look for better FSW development strategies. The GNC FSW product line has been planned to address the core GNC FSW functionality very similar on many recent low/near Earth missions in the last ten years. Unfortunately these missions have not accomplished significant drops in development cost since a systematic approach towards reuse has not been adopted. In addition, new demands are continually being placed upon the FSW which means the FSB must become more adept at providing GNC FSW functionality's core so it can accommodate additional requirements. These domain features together with engineering concepts are influencing the specification, description and evaluation of FSW product line. Domain engineering is the foundation for emerging product line software development approaches. A product line is 'A family of products designed to take advantage of their common aspects and predicted variabilities'. In our product line approach, domain engineering includes the engineering activities needed to produce reusable artifacts for a domain. Application engineering refers to developing an application in the domain starting from reusable artifacts. The focus of this paper is regarding the software process, lessons learned and on how the GNC FSW product line manages variability. Existing domain engineering approaches do not enforce any specific notation for domain analysis or commonality and variability analysis. Usually, natural language text is the preferred tool. The advantage is the flexibility and adapt ability of natural language. However, one has to be ready to accept also its well-known drawbacks, such as ambiguity, inconsistency, and contradictions. While most domain analysis

  8. Sensitivity of Magnetospheric Multi-Scale (MMS) Mission Naviation Accuracy to Major Error Sources

    Science.gov (United States)

    Olson, Corwin; Long, Anne; Carpenter, J. Russell

    2011-01-01

    The Magnetospheric Multiscale (MMS) mission consists of four satellites flying in formation in highly elliptical orbits about the Earth, with a primary objective of studying magnetic reconnection. The baseline navigation concept is independent estimation of each spacecraft state using GPS pseudorange measurements referenced to an Ultra Stable Oscillator (USO) with accelerometer measurements included during maneuvers. MMS state estimation is performed onboard each spacecraft using the Goddard Enhanced Onboard Navigation System (GEONS), which is embedded in the Navigator GPS receiver. This paper describes the sensitivity of MMS navigation performance to two major error sources: USO clock errors and thrust acceleration knowledge errors.

  9. Detection of Traveling Ionospheric Disturbances (TIDs) from various man-made sources using Global Navigation Satellite System (GNSS)

    Science.gov (United States)

    Helmboldt, J.; Park, J.; von Frese, R. R. B.; Grejner-Brzezinska, D. A.

    2016-12-01

    Traveling ionospheric disturbance (TID) is generated by various sources and detectable by observing the spatial and temporal change of electron contents in the ionosphere. This study focused on detecting and analyzing TIDs generated by acoustic-gravity waves from man-made events including underground nuclear explosions (UNEs), mine collapses, mine blasts, and large chemical explosions (LCEs) using Global Navigation Satellite System (GNSS). In this study we selected different types of events for case study which covers two US and three North Korean UNEs, two large US mine collapses, three large US mine blasts, and a LCE in northern China and a second LCE at the Nevada Test Site. In most cases, we successfully detected the TIDs as array signatures from the multiple nearby GNSS stations. The array-based TID signatures from these studies were found to yield event-appropriate TID propagation speeds ranging from about a few hundred m/s to roughly a km/s. In addition, the event TID waveforms, and propagation angles and directions were established. The TID waveforms and the maximum angle between each event and the IPP of its TID with the longest travel distance from the source may help differentiate UNEs and LCEs, but the uneven distributions of the observing GNSS stations complicates these results. Thus, further analysis is required of the utility of the apertures of event signatures in the ionosphere for discriminating these events. In general, the results of this study show the potential utility of GNSS observations for detecting and mapping the ionospheric signatures of large-energy anthropological explosions and subsurface collapses.

  10. Assessment of Systematic Errors in the Computation of Gravity Gradients from Satellite Altimeter Data

    Czech Academy of Sciences Publication Activity Database

    Bouman, J.; Bosch, W.; Sebera, Josef

    2011-01-01

    Roč. 34, č. 2 (2011), s. 85-107 ISSN 0149-0419 Institutional research plan: CEZ:AV0Z10030501 Keywords : satellite altimetry * gravity gradients * GOCE Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 1.329, year: 2011

  11. IMPLEMENTATION OF INTERTIAL NAVIGATION SYSTEM MODEL DURING AIRCRAFT TESTING

    Directory of Open Access Journals (Sweden)

    2016-01-01

    Full Text Available The flight subset control is required during the aviation equipment test flights. In order to achieve this objective the complex consisting of strap down inertial navigation system (SINS and user equipment of satellite navigation systems (SNS can be used. Such combination needs to be used for error correction in positioning which is accumulated in SINS with time. This article shows the research results of the inertial navigation system (INS model. The results of the position- ing error calculation for various INS classes are given. Each of the examined INS has a different accumulated error for the same time lag. The methods of combining information of INS and SRNS are covered. The results obtained can be applied for upgrading the aircraft flight and navigation complexes. In particular, they can allow to continuously determine speed, coordinates, angular situation and repositioning rate of change of axes of the instrument frame.

  12. The role of positional errors while interpolating soil organic carbon contents using satellite imagery

    NARCIS (Netherlands)

    Samsonova, V.P.; Meshalkina, J.L.; Blagoveschensky, Y.N.; Yaroslavtsev, A.M.; Stoorvogel, J.J.

    2018-01-01

    Increasingly, soil surveys make use of a combination of legacy data, ancillary data and new field data. While combining the different sources of information, positional errors can play a large role. For example, the spatial discrepancy between remote sensing images and field data can depend on

  13. The Michelson Stellar Interferometer Error Budget for Triple Triple-Satellite Configuration

    Science.gov (United States)

    Marathay, Arvind S.; Shiefman, Joe

    1996-01-01

    This report presents the results of a study of the instrumentation tolerances for a conventional style Michelson stellar interferometer (MSI). The method used to determine the tolerances was to determine the change, due to the instrument errors, in the measured fringe visibility and phase relative to the ideal values. The ideal values are those values of fringe visibility and phase that would be measured by a perfect MSI and are attributable solely to the object being detected. Once the functional relationship for changes in visibility and phase as a function of various instrument errors is understood it is then possible to set limits on the instrument errors in order to ensure that the measured visibility and phase are different from the ideal values by no more than some specified amount. This was done as part of this study. The limits we obtained are based on a visibility error of no more than 1% and a phase error of no more than 0.063 radians (this comes from 1% of 2(pi) radians). The choice of these 1% limits is supported in the literture. The approach employed in the study involved the use of ASAP (Advanced System Analysis Program) software provided by Breault Research Organization, Inc., in conjunction with parallel analytical calculations. The interferometer accepts object radiation into two separate arms each consisting of an outer mirror, an inner mirror, a delay line (made up of two moveable mirrors and two static mirrors), and a 10:1 afocal reduction telescope. The radiation coming out of both arms is incident on a slit plane which is opaque with two openings (slits). One of the two slits is centered directly under one of the two arms of the interferometer and the other slit is centered directly under the other arm. The slit plane is followed immediately by an ideal combining lens which images the radiation in the fringe plane (also referred to subsequently as the detector plane).

  14. GLORI (GLObal navigation satellite system Reflectometry Instrument): A New Airborne GNSS-R receiver for land surface applications

    Science.gov (United States)

    Motte, Erwan; Zribi, Mehrez; Fanise, Pascal

    2015-04-01

    GLORI (GLObal navigation satellite system Reflectometry Instrument) is a new receiver dedicated to the airborne measurement of surface parameters such as soil moisture and biomass above ground and sea state (wave height and direction) above oceans. The instrument is based on the PARIS concept [Martin-Neira, 1993] using both the direct and surface-reflected L-band signals from the GPS constellation as a multistatic radar source. The receiver is based on one up-looking and one down-looking dual polarization hemispherical active antennas feeding a low-cost 4-channel SDR direct down-conversion receiver tuned to the GPS L1 frequency. The raw measurements are sampled at 16.368MHz and stored as 2-bit, IQ binary files. In post-processing, GPS acquisition and tracking are performed on the direct up-looking signal while the down-looking signal is processed blindly using tracking parameters from the direct signal. The obtained direct and reflected code-correlation waveforms are the basic observables for geophysical parameters inversion. The instrument was designed to be installed aboard the ATR42 experimental aircraft from the French SAFIRE fleet as a permanent payload. The long term goal of the project is to provide real-time continuous surface information for every flight performed. The aircraft records attitude information through its Inertial Measurement Unit and a commercial GPS receiver records additional information such as estimated doppler and code phase, receiver location, satellites azimuth and elevation. A series of test flights were performed over both the Toulouse and Gulf of Lion (Mediterranean Sea) regions during the period 17-21 Nov 2014 together with the KuROS radar [Hauser et al., 2014]. Using processing methods from the literature [Egido et al., 2014], preliminary results demonstrate the instrument sensitivity to both ground and ocean surface parameters estimation. A dedicated scientific flight campaign is planned at the end of second quarter 2015 with

  15. Accounting of fundamental components of the rotation parameters of the Earth in the formation of a high-accuracy orbit of navigation satellites

    Science.gov (United States)

    Markov, Yu. G.; Mikhailov, M. V.; Pochukaev, V. N.

    2012-07-01

    An analysis of perturbing factors influencing the motion of a navigation satellite (NS) is carried out, and the degree of influence of each factor on the GLONASS orbit is estimated. It is found that fundamental components of the Earth's rotation parameters (ERP) are one substantial factor commensurable with maximum perturbations. Algorithms for the calculation of orbital perturbations caused by these parameters are given; these algorithms can be implemented in a consumer's equipment. The daily prediction of NS coordinates is performed on the basis of real GLONASS satellite ephemerides transmitted to a consumer, using the developed prediction algorithms taking the ERP into account. The obtained accuracy of the daily prediction of GLONASS ephemerides exceeds by tens of times the accuracy of the daily prediction performed using algorithms recommended in interface control documents.

  16. Power management of a new generation navigation satellite%新一代导航卫星电源系统自主管理方法

    Institute of Scientific and Technical Information of China (English)

    张泰峰

    2017-01-01

    对新一代导航卫星电源系统的组成结构和工作原理进行了介绍,详细论述了母线控制方式、充电管理方法、电池均衡技术、在轨管理策略等,实现了电源系统高可靠、长寿命的设计目标.%The composition,structure and working principle of the new generation navigation satellite power system were introduced.The main-bus control,battery charging,battery balancing,on-orbit management were presented in detail.Satellite power system with high reliability and long life was achieved.

  17. Addressing the Influence of Space Weather on Airline Navigation

    Science.gov (United States)

    Sparks, Lawrence

    2012-01-01

    The advent of satellite-based augmentation systems has made it possible to navigate aircraft safely using radio signals emitted by global navigation satellite systems (GNSS) such as the Global Positioning System. As a signal propagates through the earth's ionosphere, it suffers delay that is proportional to the total electron content encountered along the raypath. Since the magnitude of this total electron content is strongly influenced by space weather, the safety and reliability of GNSS for airline navigation requires continual monitoring of the state of the ionosphere and calibration of ionospheric delay. This paper examines the impact of space weather on GNSS-based navigation and provides an overview of how the Wide Area Augmentation System protects its users from positioning error due to ionospheric disturbances

  18. 有色噪声下的平方根UKF在天文自主导航中的应用%Square-Root Unscented Kalman Filter for Satellite Autonomous Celestial Navi-gation System with Colored Measurement Noise

    Institute of Scientific and Technical Information of China (English)

    孙会敏; 庄纯清; 许胜中

    2015-01-01

    To address the satellite autonomous celestial navigation system based-on star sensor/optical camera, traditional square-root unscented Kalman filter can not well solve the nonlinear filtering problem with colored noise, which leads to the navigation system accuracy decreased. So a square-root unscented Kalman filter (CSRUKF) applied to measurement system with colored noise is proposed in this paper. In addition, in order to avoid destructing the positive and symmetry of covariance matrix caused by the errors of numerical calculation during the filtering procedure, the square-root of covariance matrix is adopted throughout recursive calculation, which improves the stability of filter. The square-root of covariance matrix update is calculated by cholesky decomposition and qr decomposition. The method was applied to satellite autonomous navigation systems. The simulation results show that, compared to traditional SRUKF, this proposed SRUKF can well solve the problem of poor estimation accuracy in measurement system with colored noise.%针对由星敏感器和光学导航相机组成的卫星天文自主导航系统, 传统的平方根 UKF 不能很好地解决测量噪声为有色噪声情况下的非线性滤波问题, 导致导航系统的精度下降. 为此, 提出了一种有色噪声情况下的平方根 UKF 方法. 同时, 为了避免在数值计算的过程中, 由于舍入误差而破坏误差协方差矩阵的正定性和对称性,在整个递推计算过程中, 借鉴平方根 Kalman 滤波理论, 采用协方差矩阵平方根进行递推计算, 改善滤波算法的稳定性, 协方差矩阵的平方根更新用cholesky分解和qr分解来计算. 将该方法应用于卫星天文自主导航系统中,实验仿真结果表明, 相对于传统的平方根UKF算法, 所设计的平方根UKF算法能够很好地解决测量噪声为有色噪声情况下估计精度低问题.

  19. Quantifying Uncertainty in Satellite-Retrieved Land Surface Temperature from Cloud Detection Errors

    Directory of Open Access Journals (Sweden)

    Claire E. Bulgin

    2018-04-01

    Full Text Available Clouds remain one of the largest sources of uncertainty in remote sensing of surface temperature in the infrared, but this uncertainty has not generally been quantified. We present a new approach to do so, applied here to the Advanced Along-Track Scanning Radiometer (AATSR. We use an ensemble of cloud masks based on independent methodologies to investigate the magnitude of cloud detection uncertainties in area-average Land Surface Temperature (LST retrieval. We find that at a grid resolution of 625 km 2 (commensurate with a 0.25 ∘ grid size at the tropics, cloud detection uncertainties are positively correlated with cloud-cover fraction in the cell and are larger during the day than at night. Daytime cloud detection uncertainties range between 2.5 K for clear-sky fractions of 10–20% and 1.03 K for clear-sky fractions of 90–100%. Corresponding night-time uncertainties are 1.6 K and 0.38 K, respectively. Cloud detection uncertainty shows a weaker positive correlation with the number of biomes present within a grid cell, used as a measure of heterogeneity in the background against which the cloud detection must operate (e.g., surface temperature, emissivity and reflectance. Uncertainty due to cloud detection errors is strongly dependent on the dominant land cover classification. We find cloud detection uncertainties of a magnitude of 1.95 K over permanent snow and ice, 1.2 K over open forest, 0.9–1 K over bare soils and 0.09 K over mosaic cropland, for a standardised clear-sky fraction of 74.2%. As the uncertainties arising from cloud detection errors are of a significant magnitude for many surface types and spatially heterogeneous where land classification varies rapidly, LST data producers are encouraged to quantify cloud-related uncertainties in gridded products.

  20. Error sources in the retrieval of aerosol information over bright surfaces from satellite measurements in the oxygen A band

    Science.gov (United States)

    Nanda, Swadhin; de Graaf, Martin; Sneep, Maarten; de Haan, Johan F.; Stammes, Piet; Sanders, Abram F. J.; Tuinder, Olaf; Pepijn Veefkind, J.; Levelt, Pieternel F.

    2018-01-01

    Retrieving aerosol optical thickness and aerosol layer height over a bright surface from measured top-of-atmosphere reflectance spectrum in the oxygen A band is known to be challenging, often resulting in large errors. In certain atmospheric conditions and viewing geometries, a loss of sensitivity to aerosol optical thickness has been reported in the literature. This loss of sensitivity has been attributed to a phenomenon known as critical surface albedo regime, which is a range of surface albedos for which the top-of-atmosphere reflectance has minimal sensitivity to aerosol optical thickness. This paper extends the concept of critical surface albedo for aerosol layer height retrievals in the oxygen A band, and discusses its implications. The underlying physics are introduced by analysing the top-of-atmosphere reflectance spectrum as a sum of atmospheric path contribution and surface contribution, obtained using a radiative transfer model. Furthermore, error analysis of an aerosol layer height retrieval algorithm is conducted over dark and bright surfaces to show the dependence on surface reflectance. The analysis shows that the derivative with respect to aerosol layer height of the atmospheric path contribution to the top-of-atmosphere reflectance is opposite in sign to that of the surface contribution - an increase in surface brightness results in a decrease in information content. In the case of aerosol optical thickness, these derivatives are anti-correlated, leading to large retrieval errors in high surface albedo regimes. The consequence of this anti-correlation is demonstrated with measured spectra in the oxygen A band from the GOME-2 instrument on board the Metop-A satellite over the 2010 Russian wildfires incident.

  1. Radar and electronic navigation

    CERN Document Server

    Sonnenberg, G J

    2013-01-01

    Radar and Electronic Navigation, Sixth Edition discusses radar in marine navigation, underwater navigational aids, direction finding, the Decca navigator system, and the Omega system. The book also describes the Loran system for position fixing, the navy navigation satellite system, and the global positioning system (GPS). It reviews the principles, operation, presentations, specifications, and uses of radar. It also describes GPS, a real time position-fixing system in three dimensions (longitude, latitude, altitude), plus velocity information with Universal Time Coordinated (UTC). It is accur

  2. Research on the Effectiveness of Different Estimation Algorithm on the Autonomous Orbit Determination of Lagrangian Navigation Constellation

    Directory of Open Access Journals (Sweden)

    Youtao Gao

    2016-01-01

    Full Text Available The accuracy of autonomous orbit determination of Lagrangian navigation constellation will affect the navigation accuracy for the deep space probes. Because of the special dynamical characteristics of Lagrangian navigation satellite, the error caused by different estimation algorithm will cause totally different autonomous orbit determination accuracy. We apply the extended Kalman filter and the fading–memory filter to determinate the orbits of Lagrangian navigation satellites. The autonomous orbit determination errors are compared. The accuracy of autonomous orbit determination using fading-memory filter can improve 50% compared to the autonomous orbit determination accuracy using extended Kalman filter. We proposed an integrated Kalman fading filter to smooth the process of autonomous orbit determination and improve the accuracy of autonomous orbit determination. The square root extended Kalman filter is introduced to deal with the case of inaccurate initial error variance matrix. The simulations proved that the estimation method can affect the accuracy of autonomous orbit determination greatly.

  3. Effects of transionospheric signal decorrelation on Global Navigation Satellite Systems (GNSS) performance studied from irregularity dynamics around the northern crest of the EIA

    Science.gov (United States)

    Das, T.; Roy, B.; Paul, A.

    2014-10-01

    Transionospheric satellite navigation links operate primarily at L band and are frequently subject to severe degradation of performances arising out of ionospheric irregularities. Various characteristic features of equatorial ionospheric irregularity bubbles like the drift velocity, characteristic velocity, decorrelation time, and decorrelation distance can be determined using spaced aerial measurements at VHF. These parameters measured at VHF from a station Calcutta situated near the northern crest of the Equatorial Ionization Anomaly (EIA) in the geophysically sensitive Indian longitude sector have been correlated with L band scintillation indices and GPS position accuracy parameters for identifying possible proxies to L band scintillations. Good correspondences have been observed between decorrelation times and distances at VHF with GPS S4 and Position Dilution of Precision during periods of GPS scintillations (S4 > 0.3) for February-April 2011, August-October 2011, and February-April 2012. A functional relation has been developed between irregularity drift velocity measured at VHF and S4 at L band during February-April 2011, and validation of measured S4 and predicted values performed during August-October 2011 and February-April 2012. Significant improvement in L band scintillation prediction and consequent navigational accuracy will result using such relations derived from VHF irregularity measurements which are much simpler and inexpensive.

  4. Simulation and Analysis of Autonomous Time Synchronization Based on Asynchronism Two-way Inter-satellite Link

    Science.gov (United States)

    Fang, L.; Yang, X. H.; Sun, B. Q.; Qin, W. J.; Kong, Y.

    2013-09-01

    The measurement of the inter-satellite link is one of the key techniques in the autonomous operation of satellite navigation system. Based on the asynchronism inter-satellite two-way measurement mode in GPS constellation, the reduction formula of the inter-satellite time synchronization is built in this paper. Moreover, the corrective method of main systematic errors is proposed. Inter-satellite two-way time synchronization is simulated on the basis of IGS (International GNSS Service) precise ephemeris. The impacts of the epoch domestication of asynchronism inter-satellite link pseudo-range, the initial orbit, and the main systematic errors on satellite time synchronization are analyzed. Furthermore, the broadcast clock error of each satellite is calculated by the ``centralized'' inter-satellite autonomous time synchronization. Simulation results show that the epoch domestication of asynchronism inter-satellite link pseudo-range and the initial orbit have little impact on the satellite clock errors, and thus they needn't be taken into account. The errors caused by the relativistic effect and the asymmetry of path travel have large impact on the satellite clock errors. These should be corrected with theoretical formula. Compared with the IGS precise clock error, the root mean square of the broadcast clock error of each satellite is about 0.4 ns.

  5. Correcting Measurement Error in Satellite Aerosol Optical Depth with Machine Learning for Modeling PM2.5 in the Northeastern USA

    Directory of Open Access Journals (Sweden)

    Allan C. Just

    2018-05-01

    Full Text Available Satellite-derived estimates of aerosol optical depth (AOD are key predictors in particulate air pollution models. The multi-step retrieval algorithms that estimate AOD also produce quality control variables but these have not been systematically used to address the measurement error in AOD. We compare three machine-learning methods: random forests, gradient boosting, and extreme gradient boosting (XGBoost to characterize and correct measurement error in the Multi-Angle Implementation of Atmospheric Correction (MAIAC 1 × 1 km AOD product for Aqua and Terra satellites across the Northeastern/Mid-Atlantic USA versus collocated measures from 79 ground-based AERONET stations over 14 years. Models included 52 quality control, land use, meteorology, and spatially-derived features. Variable importance measures suggest relative azimuth, AOD uncertainty, and the AOD difference in 30–210 km moving windows are among the most important features for predicting measurement error. XGBoost outperformed the other machine-learning approaches, decreasing the root mean squared error in withheld testing data by 43% and 44% for Aqua and Terra. After correction using XGBoost, the correlation of collocated AOD and daily PM2.5 monitors across the region increased by 10 and 9 percentage points for Aqua and Terra. We demonstrate how machine learning with quality control and spatial features substantially improves satellite-derived AOD products for air pollution modeling.

  6. Evaluation of NWP-based Satellite Precipitation Error Correction with Near-Real-Time Model Products and Flood-inducing Storms

    Science.gov (United States)

    Zhang, X.; Anagnostou, E. N.; Schwartz, C. S.

    2017-12-01

    Satellite precipitation products tend to have significant biases over complex terrain. Our research investigates a statistical approach for satellite precipitation adjustment based solely on numerical weather simulations. This approach has been evaluated in two mid-latitude (Zhang et al. 2013*1, Zhang et al. 2016*2) and three topical mountainous regions by using the WRF model to adjust two high-resolution satellite products i) National Oceanic and Atmospheric Administration (NOAA) Climate Prediction Center morphing technique (CMORPH) and ii) Global Satellite Mapping of Precipitation (GSMaP). Results show the adjustment effectively reduces the satellite underestimation of high rain rates, which provides a solid proof-of-concept for continuing research of NWP-based satellite correction. In this study we investigate the feasibility of using NCAR Real-time Ensemble Forecasts*3 for adjusting near-real-time satellite precipitation datasets over complex terrain areas in the Continental United States (CONUS) such as Olympic Peninsula, California coastal mountain ranges, Rocky Mountains and South Appalachians. The research will focus on flood-inducing storms occurred from May 2015 to December 2016 and four satellite precipitation products (CMORPH, GSMaP, PERSIANN-CCS and IMERG). The error correction performance evaluation will be based on comparisons against the gauge-adjusted Stage IV precipitation data. *1 Zhang, Xinxuan, et al. "Using NWP simulations in satellite rainfall estimation of heavy precipitation events over mountainous areas." Journal of Hydrometeorology 14.6 (2013): 1844-1858. *2 Zhang, Xinxuan, et al. "Hydrologic Evaluation of NWP-Adjusted CMORPH Estimates of Hurricane-Induced Precipitation in the Southern Appalachians." Journal of Hydrometeorology 17.4 (2016): 1087-1099. *3 Schwartz, Craig S., et al. "NCAR's experimental real-time convection-allowing ensemble prediction system." Weather and Forecasting 30.6 (2015): 1645-1654.

  7. PAU/GNSS-R: Implementation, Performance and First Results of a Real-Time Delay-Doppler Map Reflectometer Using Global Navigation Satellite System Signals

    Directory of Open Access Journals (Sweden)

    Enric Valencia

    2008-05-01

    Full Text Available Signals from Global Navigation Satellite Systems (GNSS were originally conceived for position and speed determination, but they can be used as signals of opportunity as well. The reflection process over a given surface modifies the properties of the scattered signal, and therefore, by processing the reflected signal, relevant geophysical data regarding the surface under study (land, sea, ice… can be retrieved. In essence, a GNSS-R receiver is a multi-channel GNSS receiver that computes the received power from a given satellite at a number of different delay and Doppler bins of the incoming signal. The first approaches to build such a receiver consisted of sampling and storing the scattered signal for later post-processing. However, a real-time approach to the problem is desirable to obtain immediately useful geophysical variables and reduce the amount of data. The use of FPGA technology makes this possible, while at the same time the system can be easily reconfigured. The signal tracking and processing constraints made necessary to fully design several new blocks. The uniqueness of the implemented system described in this work is the capability to compute in real-time Delay-Doppler maps (DDMs either for four simultaneous satellites or just one, but with a larger number of bins. The first tests have been conducted from a cliff over the sea and demonstrate the successful performance of the instrument to compute DDMs in real-time from the measured reflected GNSS/R signals. The processing of these measurements shall yield quantitative relationships between the sea state (mainly driven by the surface wind and the swell and the overall DDM shape. The ultimate goal is to use the DDM shape to correct the sea state influence on the L-band brightness temperature to improve the retrieval of the sea surface salinity (SSS.

  8. Solution Method and Precision Analysis of Double-difference Dynamic Precise Orbit Determination of BeiDou Navigation Satellite System

    Directory of Open Access Journals (Sweden)

    LIU Weiping

    2016-02-01

    Full Text Available To resolve the high relativity between the transverse element of GEO orbit and double-difference ambiguity, the classical double-difference dynamic method is improved and the method, which is to determine precise BeiDou satellite orbit using carrier phase and pseudo-range smoothed by phase, is proposed. The feasibility of the method is discussed and the influence of the method about ambiguity fixing is analyzed. Considering the characteristic of BeiDou, the method, which is to fix double-difference ambiguity of BeiDou satellites by QIF, is derived. The real data analysis shows that the new method, which can reduce the relativity and assure the precision, is better than the classical double-difference dynamic method. The result of ambiguity fixing is well by QIF, but the ambiguity fixing success rate is not high on the whole. So the precision of BeiDou orbit can't be improved clearly after ambiguity fixing.

  9. The effects of rectification and Global Positioning System errors on satellite image-based estimates of forest area

    Science.gov (United States)

    Ronald E. McRoberts

    2010-01-01

    Satellite image-based maps of forest attributes are of considerable interest and are used for multiple purposes such as international reporting by countries that have no national forest inventory and small area estimation for all countries. Construction of the maps typically entails, in part, rectifying the satellite images to a geographic coordinate system, observing...

  10. Error threshold inference from Global Precipitation Measurement (GPM) satellite rainfall data and interpolated ground-based rainfall measurements in Metro Manila

    Science.gov (United States)

    Ampil, L. J. Y.; Yao, J. G.; Lagrosas, N.; Lorenzo, G. R. H.; Simpas, J.

    2017-12-01

    The Global Precipitation Measurement (GPM) mission is a group of satellites that provides global observations of precipitation. Satellite-based observations act as an alternative if ground-based measurements are inadequate or unavailable. Data provided by satellites however must be validated for this data to be reliable and used effectively. In this study, the Integrated Multisatellite Retrievals for GPM (IMERG) Final Run v3 half-hourly product is validated by comparing against interpolated ground measurements derived from sixteen ground stations in Metro Manila. The area considered in this study is the region 14.4° - 14.8° latitude and 120.9° - 121.2° longitude, subdivided into twelve 0.1° x 0.1° grid squares. Satellite data from June 1 - August 31, 2014 with the data aggregated to 1-day temporal resolution are used in this study. The satellite data is directly compared to measurements from individual ground stations to determine the effect of the interpolation by contrast against the comparison of satellite data and interpolated measurements. The comparisons are calculated by taking a fractional root-mean-square error (F-RMSE) between two datasets. The results show that interpolation improves errors compared to using raw station data except during days with very small amounts of rainfall. F-RMSE reaches extreme values of up to 654 without a rainfall threshold. A rainfall threshold is inferred to remove extreme error values and make the distribution of F-RMSE more consistent. Results show that the rainfall threshold varies slightly per month. The threshold for June is inferred to be 0.5 mm, reducing the maximum F-RMSE to 9.78, while the threshold for July and August is inferred to be 0.1 mm, reducing the maximum F-RMSE to 4.8 and 10.7, respectively. The maximum F-RMSE is reduced further as the threshold is increased. Maximum F-RMSE is reduced to 3.06 when a rainfall threshold of 10 mm is applied over the entire duration of JJA. These results indicate that

  11. Development of field navigation system; Field navigation system no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Ibara, S; Minode, M; Nishioka, K [Daihatsu Motor Co. Ltd., Osaka (Japan)

    1995-04-20

    This paper describes the following matters on a field navigation system developed for the purpose of covering a field of several kilometer square. This system consists of a center system and a vehicle system, and the center system comprises a map information computer and a communication data controlling computer; since the accuracy for a vehicle position detected by a GPS is not sufficient, an attempt of increasing the accuracy of vehicle position detection is made by means of a hybrid system; the hybrid system uses a satellite navigation method of differential system in which the error components in the GPS are transmitted from the center, and also uses a self-contained navigation method which performs an auxiliary function when the accuracy in the GPS has dropped; corrected GPS values, emergency messages to all of the vehicles and data of each vehicle position are communicated by wireless transmission in two ways between the center and vehicles; and accommodation of the map data adopted a system that can respond quickly to any change in roads and facilities. 3 refs., 13 figs., 1 tab.

  12. Volumetrically-Derived Global Navigation Satellite System Performance Assessment from the Earths Surface through the Terrestrial Service Volume and the Space Service Volume

    Science.gov (United States)

    Welch, Bryan W.

    2016-01-01

    NASA is participating in the International Committee on Global Navigation Satellite Systems (GNSS) (ICG)'s efforts towards demonstrating the benefits to the space user from the Earth's surface through the Terrestrial Service Volume (TSV) to the edge of the Space Service Volume (SSV), when a multi-GNSS solution space approach is utilized. The ICG Working Group: Enhancement of GNSS Performance, New Services and Capabilities has started a three phase analysis initiative as an outcome of recommendations at the ICG-10 meeting, in preparation for the ICG-11 meeting. The first phase of that increasing complexity and fidelity analysis initiative was recently expanded to compare nadir-facing and zenith-facing user hemispherical antenna coverage with omnidirectional antenna coverage at different distances of 8,000 km altitude and 36,000 km altitude. This report summarizes the performance using these antenna coverage techniques at distances ranging from 100 km altitude to 36,000 km to be all encompassing, as well as the volumetrically-derived system availability metrics.

  13. A New Navigation Satellite Clock Bias Prediction Method Based on Modified Clock-bias Quadratic Polynomial Model

    Science.gov (United States)

    Wang, Y. P.; Lu, Z. P.; Sun, D. S.; Wang, N.

    2016-01-01

    In order to better express the characteristics of satellite clock bias (SCB) and improve SCB prediction precision, this paper proposed a new SCB prediction model which can take physical characteristics of space-borne atomic clock, the cyclic variation, and random part of SCB into consideration. First, the new model employs a quadratic polynomial model with periodic items to fit and extract the trend term and cyclic term of SCB; then based on the characteristics of fitting residuals, a time series ARIMA ~(Auto-Regressive Integrated Moving Average) model is used to model the residuals; eventually, the results from the two models are combined to obtain final SCB prediction values. At last, this paper uses precise SCB data from IGS (International GNSS Service) to conduct prediction tests, and the results show that the proposed model is effective and has better prediction performance compared with the quadratic polynomial model, grey model, and ARIMA model. In addition, the new method can also overcome the insufficiency of the ARIMA model in model recognition and order determination.

  14. Using the Global Navigation Satellite System (GNSS) data for Hazard Estimation in Some Active Regions in Egypt

    Science.gov (United States)

    Sayed Mohamed, Abdel-Monem

    2016-07-01

    Egypt rapidly growing development is accompanied by increasing levels of standard living particular in its urban areas. However, there is a limited experience in quantifying the sources of risk management in Egypt and in designing efficient strategies to keep away serious impacts of earthquakes. From the historical point of view and recent instrumental records, there are some seismo-active regions in Egypt, where some significant earthquakes had occurred in different places. The special tectonic features in Egypt: Aswan, Greater Cairo, Red Sea and Sinai Peninsula regions are the territories of a high seismic risk, which have to be monitored by up-to date technologies. The investigations of the seismic events and interpretations led to evaluate the seismic hazard for disaster prevention and for the safety of the dense populated regions and the vital national projects as the High Dam. In addition to the monitoring of the recent crustal movements, the most powerful technique of satellite geodesy GNSS are used where geodetic networks are covering such seismo-active regions. The results from the data sets are compared and combined in order to determine the main characteristics of the deformation and hazard estimation for specified regions. The final compiled output from the seismological and geodetic analysis threw lights upon the geodynamical regime of these seismo-active regions and put Aswan and Greater Cairo under the lowest class according to horizontal crustal strains classifications. This work will serve a basis for the development of so-called catastrophic models and can be further used for catastrophic risk management. Also, this work is trying to evaluate risk of large catastrophic losses within the important regions including the High Dam, strategic buildings and archeological sites. Studies on possible scenarios of earthquakes and losses are a critical issue for decision making in insurance as a part of mitigation measures.

  15. A Leapfrog Navigation System

    Science.gov (United States)

    Opshaug, Guttorm Ringstad

    There are times and places where conventional navigation systems, such as the Global Positioning System (GPS), are unavailable due to anything from temporary signal occultations to lack of navigation system infrastructure altogether. The goal of the Leapfrog Navigation System (LNS) is to provide localized positioning services for such cases. The concept behind leapfrog navigation is to advance a group of navigation units teamwise into an area of interest. In a practical 2-D case, leapfrogging assumes known initial positions of at least two currently stationary navigation units. Two or more mobile units can then start to advance into the area of interest. The positions of the mobiles are constantly being calculated based on cross-range distance measurements to the stationary units, as well as cross-ranges among the mobiles themselves. At some point the mobile units stop, and the stationary units are released to move. This second team of units (now mobile) can then overtake the first team (now stationary) and travel even further towards the common goal of the group. Since there always is one stationary team, the position of any unit can be referenced back to the initial positions. Thus, LNS provides absolute positioning. I developed navigation algorithms needed to solve leapfrog positions based on cross-range measurements. I used statistical tools to predict how position errors would grow as a function of navigation unit geometry, cross-range measurement accuracy and previous position errors. Using this knowledge I predicted that a 4-unit Leapfrog Navigation System using 100 m baselines and 200 m leap distances could travel almost 15 km before accumulating absolute position errors of 10 m (1sigma). Finally, I built a prototype leapfrog navigation system using 4 GPS transceiver ranging units. I placed the 4 units in the vertices a 10m x 10m square, and leapfrogged the group 20 meters forwards, and then back again (40 m total travel). Average horizontal RMS position

  16. The impact of different background errors in the assimilation of satellite radiances and in-situ observational data using WRFDA for three rainfall events over Iran

    Science.gov (United States)

    Zakeri, Zeinab; Azadi, Majid; Ghader, Sarmad

    2018-01-01

    Satellite radiances and in-situ observations are assimilated through Weather Research and Forecasting Data Assimilation (WRFDA) system into Advanced Research WRF (ARW) model over Iran and its neighboring area. Domain specific background error based on x and y components of wind speed (UV) control variables is calculated for WRFDA system and some sensitivity experiments are carried out to compare the impact of global background error and the domain specific background errors, both on the precipitation and 2-m temperature forecasts over Iran. Three precipitation events that occurred over the country during January, September and October 2014 are simulated in three different experiments and the results for precipitation and 2-m temperature are verified against the verifying surface observations. Results show that using domain specific background error improves 2-m temperature and 24-h accumulated precipitation forecasts consistently, while global background error may even degrade the forecasts compared to the experiments without data assimilation. The improvement in 2-m temperature is more evident during the first forecast hours and decreases significantly as the forecast length increases.

  17. The value of ocean reflections of GPS signals to enhance satellite altimetry: data distribution and error analysis

    Czech Academy of Sciences Publication Activity Database

    Wagner, C.; Klokočník, Jaroslav

    2003-01-01

    Roč. 77, 3-4 (2003), s. 128-138 ISSN 0949-7714 Institutional research plan: CEZ:AV0Z1003909 Keywords : bistatic * satellite * altimetry Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 0.983, year: 2003

  18. Is ozone model bias driven by errors in cloud predictions? A quantitative assessment using satellite cloud retrievals in WRF-Chem

    Science.gov (United States)

    Ryu, Y. H.; Hodzic, A.; Barré, J.; Descombes, G.; Minnis, P.

    2017-12-01

    Clouds play a key role in radiation and hence O3 photochemistry by modulating photolysis rates and light-dependent emissions of biogenic volatile organic compounds (BVOCs). It is not well known, however, how much of the bias in O3 predictions is caused by inaccurate cloud predictions. This study quantifies the errors in surface O3 predictions associated with clouds in summertime over CONUS using the Weather Research and Forecasting with Chemistry (WRF-Chem) model. Cloud fields used for photochemistry are corrected based on satellite cloud retrievals in sensitivity simulations. It is found that the WRF-Chem model is able to detect about 60% of clouds in the right locations and generally underpredicts cloud optical depths. The errors in hourly O3 due to the errors in cloud predictions can be up to 60 ppb. On average in summertime over CONUS, the errors in 8-h average O3 of 1-6 ppb are found to be attributable to those in cloud predictions under cloudy sky conditions. The contribution of changes in photolysis rates due to clouds is found to be larger ( 80 % on average) than that of light-dependent BVOC emissions. The effects of cloud corrections on O­3 are about 2 times larger in VOC-limited than NOx-limited regimes, suggesting that the benefits of accurate cloud predictions would be greater in VOC-limited than NOx-limited regimes.

  19. Methods of practice and guidelines for using survey-grade global navigation satellite systems (GNSS) to establish vertical datum in the United States Geological Survey

    Science.gov (United States)

    Rydlund, Jr., Paul H.; Densmore, Brenda K.

    2012-01-01

    Geodetic surveys have evolved through the years to the use of survey-grade (centimeter level) global positioning to perpetuate and post-process vertical datum. The U.S. Geological Survey (USGS) uses Global Navigation Satellite Systems (GNSS) technology to monitor natural hazards, ensure geospatial control for climate and land use change, and gather data necessary for investigative studies related to water, the environment, energy, and ecosystems. Vertical datum is fundamental to a variety of these integrated earth sciences. Essentially GNSS surveys provide a three-dimensional position x, y, and z as a function of the North American Datum of 1983 ellipsoid and the most current hybrid geoid model. A GNSS survey may be approached with post-processed positioning for static observations related to a single point or network, or involve real-time corrections to provide positioning "on-the-fly." Field equipment required to facilitate GNSS surveys range from a single receiver, with a power source for static positioning, to an additional receiver or network communicated by radio or cellular for real-time positioning. A real-time approach in its most common form may be described as a roving receiver augmented by a single-base station receiver, known as a single-base real-time (RT) survey. More efficient real-time methods involving a Real-Time Network (RTN) permit the use of only one roving receiver that is augmented to a network of fixed receivers commonly known as Continually Operating Reference Stations (CORS). A post-processed approach in its most common form involves static data collection at a single point. Data are most commonly post-processed through a universally accepted utility maintained by the National Geodetic Survey (NGS), known as the Online Position User Service (OPUS). More complex post-processed methods involve static observations among a network of additional receivers collecting static data at known benchmarks. Both classifications provide users

  20. Pursuing atmospheric water vapor retrieval through NDSA measurements between two LEO satellites: evaluation of estimation errors in spectral sensitivity measurements

    Science.gov (United States)

    Facheris, L.; Cuccoli, F.; Argenti, F.

    2008-10-01

    NDSA (Normalized Differential Spectral Absorption) is a novel differential measurement method to estimate the total content of water vapor (IWV, Integrated Water Vapor) along a tropospheric propagation path between two Low Earth Orbit (LEO) satellites. A transmitter onboard the first LEO satellite and a receiver onboard the second one are required. The NDSA approach is based on the simultaneous estimate of the total attenuations at two relatively close frequencies in the Ku/K bands and of a "spectral sensitivity parameter" that can be directly converted into IWV. The spectral sensitivity has the potential to emphasize the water vapor contribution, to cancel out all spectrally flat unwanted contributions and to limit the impairments due to tropospheric scintillation. Based on a previous Monte Carlo simulation approach, through which we analyzed the measurement accuracy of the spectral sensitivity parameter at three different and complementary frequencies, in this work we examine such accuracy for a particularly critical atmospheric status as simulated through the pressure, temperature and water vapor profiles measured by a high resolution radiosonde. We confirm the validity of an approximate expression of the accuracy and discuss the problems that may arise when tropospheric water vapor concentration is lower than expected.

  1. A novel angle computation and calibration algorithm of bio-inspired sky-light polarization navigation sensor.

    Science.gov (United States)

    Xian, Zhiwen; Hu, Xiaoping; Lian, Junxiang; Zhang, Lilian; Cao, Juliang; Wang, Yujie; Ma, Tao

    2014-09-15

    Navigation plays a vital role in our daily life. As traditional and commonly used navigation technologies, Inertial Navigation System (INS) and Global Navigation Satellite System (GNSS) can provide accurate location information, but suffer from the accumulative error of inertial sensors and cannot be used in a satellite denied environment. The remarkable navigation ability of animals shows that the pattern of the polarization sky can be used for navigation. A bio-inspired POLarization Navigation Sensor (POLNS) is constructed to detect the polarization of skylight. Contrary to the previous approach, we utilize all the outputs of POLNS to compute input polarization angle, based on Least Squares, which provides optimal angle estimation. In addition, a new sensor calibration algorithm is presented, in which the installation angle errors and sensor biases are taken into consideration. Derivation and implementation of our calibration algorithm are discussed in detail. To evaluate the performance of our algorithms, simulation and real data test are done to compare our algorithms with several exiting algorithms. Comparison results indicate that our algorithms are superior to the others and are more feasible and effective in practice.

  2. Assessment of long-range kinematic GPS positioning errors by comparison with airborne laser altimetry and satellite altimetry

    DEFF Research Database (Denmark)

    Zhang, X.H.; Forsberg, René

    2007-01-01

    Long-range airborne laser altimetry and laser scanning (LIDAR) or airborne gravity surveys in, for example, polar or oceanic areas require airborne kinematic GPS baselines of many hundreds of kilometers in length. In such instances, with the complications of ionospheric biases, it can be a real...... challenge for traditional differential kinematic GPS software to obtain reasonable solutions. In this paper, we will describe attempts to validate an implementation of the precise point positioning (PPP) technique on an aircraft without the use of a local GPS reference station. We will compare PPP solutions...... of the Arctic Ocean north of Greenland, near-coincident in time and space with the ICESat satellite laser altimeter. Both of these flights were more than 800 km long. Comparisons between different GPS methods and four different software packages do not suggest a clear preference for any one, with the heights...

  3. Does the GPM mission improve the systematic error component in satellite rainfall estimates over TRMM? An evaluation at a pan-India scale

    Science.gov (United States)

    Beria, Harsh; Nanda, Trushnamayee; Singh Bisht, Deepak; Chatterjee, Chandranath

    2017-12-01

    The last couple of decades have seen the outburst of a number of satellite-based precipitation products with Tropical Rainfall Measuring Mission (TRMM) as the most widely used for hydrologic applications. Transition of TRMM into the Global Precipitation Measurement (GPM) promises enhanced spatio-temporal resolution along with upgrades to sensors and rainfall estimation techniques. The dependence of systematic error components in rainfall estimates of the Integrated Multi-satellitE Retrievals for GPM (IMERG), and their variation with climatology and topography, was evaluated over 86 basins in India for year 2014 and compared with the corresponding (2014) and retrospective (1998-2013) TRMM estimates. IMERG outperformed TRMM for all rainfall intensities across a majority of Indian basins, with significant improvement in low rainfall estimates showing smaller negative biases in 75 out of 86 basins. Low rainfall estimates in TRMM showed a systematic dependence on basin climatology, with significant overprediction in semi-arid basins, which gradually improved in the higher rainfall basins. Medium and high rainfall estimates of TRMM exhibited a strong dependence on basin topography, with declining skill in higher elevation basins. The systematic dependence of error components on basin climatology and topography was reduced in IMERG, especially in terms of topography. Rainfall-runoff modeling using the Variable Infiltration Capacity (VIC) model over two flood-prone basins (Mahanadi and Wainganga) revealed that improvement in rainfall estimates in IMERG did not translate into improvement in runoff simulations. More studies are required over basins in different hydroclimatic zones to evaluate the hydrologic significance of IMERG.

  4. Does the GPM mission improve the systematic error component in satellite rainfall estimates over TRMM? An evaluation at a pan-India scale

    Directory of Open Access Journals (Sweden)

    H. Beria

    2017-12-01

    Full Text Available The last couple of decades have seen the outburst of a number of satellite-based precipitation products with Tropical Rainfall Measuring Mission (TRMM as the most widely used for hydrologic applications. Transition of TRMM into the Global Precipitation Measurement (GPM promises enhanced spatio-temporal resolution along with upgrades to sensors and rainfall estimation techniques. The dependence of systematic error components in rainfall estimates of the Integrated Multi-satellitE Retrievals for GPM (IMERG, and their variation with climatology and topography, was evaluated over 86 basins in India for year 2014 and compared with the corresponding (2014 and retrospective (1998–2013 TRMM estimates. IMERG outperformed TRMM for all rainfall intensities across a majority of Indian basins, with significant improvement in low rainfall estimates showing smaller negative biases in 75 out of 86 basins. Low rainfall estimates in TRMM showed a systematic dependence on basin climatology, with significant overprediction in semi-arid basins, which gradually improved in the higher rainfall basins. Medium and high rainfall estimates of TRMM exhibited a strong dependence on basin topography, with declining skill in higher elevation basins. The systematic dependence of error components on basin climatology and topography was reduced in IMERG, especially in terms of topography. Rainfall-runoff modeling using the Variable Infiltration Capacity (VIC model over two flood-prone basins (Mahanadi and Wainganga revealed that improvement in rainfall estimates in IMERG did not translate into improvement in runoff simulations. More studies are required over basins in different hydroclimatic zones to evaluate the hydrologic significance of IMERG.

  5. Approaches to relativistic positioning around Earth and error estimations

    Science.gov (United States)

    Puchades, Neus; Sáez, Diego

    2016-01-01

    In the context of relativistic positioning, the coordinates of a given user may be calculated by using suitable information broadcast by a 4-tuple of satellites. Our 4-tuples belong to the Galileo constellation. Recently, we estimated the positioning errors due to uncertainties in the satellite world lines (U-errors). A distribution of U-errors was obtained, at various times, in a set of points covering a large region surrounding Earth. Here, the positioning errors associated to the simplifying assumption that photons move in Minkowski space-time (S-errors) are estimated and compared with the U-errors. Both errors have been calculated for the same points and times to make comparisons possible. For a certain realistic modeling of the world line uncertainties, the estimated S-errors have proved to be smaller than the U-errors, which shows that the approach based on the assumption that the Earth's gravitational field produces negligible effects on photons may be used in a large region surrounding Earth. The applicability of this approach - which simplifies numerical calculations - to positioning problems, and the usefulness of our S-error maps, are pointed out. A better approach, based on the assumption that photons move in the Schwarzschild space-time governed by an idealized Earth, is also analyzed. More accurate descriptions of photon propagation involving non symmetric space-time structures are not necessary for ordinary positioning and spacecraft navigation around Earth.

  6. The synchronization method for distributed small satellite SAR

    Science.gov (United States)

    Xing, Lei; Gong, Xiaochun; Qiu, Wenxun; Sun, Zhaowei

    2007-11-01

    One of critical requirement for distributed small satellite SAR is the trigger time precision when all satellites turning on radar loads. This trigger operation is controlled by a dedicated communication tool or GPS system. In this paper a hardware platform is proposed which has integrated navigation, attitude control, and data handling system together. Based on it, a probabilistic synchronization method is proposed for SAR time precision requirement with ring architecture. To simplify design of transceiver, half-duplex communication way is used in this method. Research shows that time precision is relevant to relative frequency drift rate, satellite number, retry times, read error and round delay length. Installed with crystal oscillator short-term stability 10 -11 magnitude, this platform can achieve and maintain nanosecond order time error with a typical three satellites formation experiment during whole operating process.

  7. Handbook of satellite applications

    CERN Document Server

    Madry, Scott; Camacho-Lara, Sergio

    2017-01-01

    The first edition of this ground breaking reference work was the most comprehensive reference source available about the key aspects of the satellite applications field. This updated second edition covers the technology, the markets, applications and regulations related to satellite telecommunications, broadcasting and networking—including civilian and military systems; precise satellite navigation and timing networks (i.e. GPS and others); remote sensing and meteorological satellite systems. Created under the auspices of the International Space University based in France, this brand new edition is now expanded to cover new innovative small satellite constellations, new commercial launching systems, innovation in military application satellites and their acquisition, updated appendices, a useful glossary and more.

  8. A New PDR Navigation Device for Challenging Urban Environments

    Directory of Open Access Journals (Sweden)

    Miguel Ortiz

    2017-01-01

    Full Text Available The motivations, the design, and some applications of the new Pedestrian Dead Reckoning (PDR navigation device, ULISS (Ubiquitous Localization with Inertial Sensors and Satellites, are presented in this paper. It is an original device conceived to follow the European recommendation of privacy by design to protect location data which opens new research toward self-contained pedestrian navigation approaches. Its application is presented with an enhanced PDR algorithm to estimate pedestrian’s footpaths in an autonomous manner irrespective of the handheld device carrying mode: texting or swinging. An analysis of real-time coding issues toward a demonstrator is also conducted. Indoor experiments, conducted with 3 persons, give a 5.8% mean positioning error over the 3 km travelled distances.

  9. Compact autonomous navigation system (CANS)

    Science.gov (United States)

    Hao, Y. C.; Ying, L.; Xiong, K.; Cheng, H. Y.; Qiao, G. D.

    2017-11-01

    Autonomous navigation of Satellite and constellation has series of benefits, such as to reduce operation cost and ground station workload, to avoid the event of crises of war and natural disaster, to increase spacecraft autonomy, and so on. Autonomous navigation satellite is independent of ground station support. Many systems are developed for autonomous navigation of satellite in the past 20 years. Along them American MANS (Microcosm Autonomous Navigation System) [1] of Microcosm Inc. and ERADS [2] [3] (Earth Reference Attitude Determination System) of Honeywell Inc. are well known. The systems anticipate a series of good features of autonomous navigation and aim low cost, integrated structure, low power consumption and compact layout. The ERADS is an integrated small 3-axis attitude sensor system with low cost and small volume. It has the Earth center measurement accuracy higher than the common IR sensor because the detected ultraviolet radiation zone of the atmosphere has a brightness gradient larger than that of the IR zone. But the ERADS is still a complex system because it has to eliminate many problems such as making of the sapphire sphere lens, birefringence effect of sapphire, high precision image transfer optical fiber flattener, ultraviolet intensifier noise, and so on. The marginal sphere FOV of the sphere lens of the ERADS is used to star imaging that may be bring some disadvantages., i.e. , the image energy and attitude measurements accuracy may be reduced due to the tilt image acceptance end of the fiber flattener in the FOV. Besides Japan, Germany and Russia developed visible earth sensor for GEO [4] [5]. Do we have a way to develop a cheaper/easier and more accurate autonomous navigation system that can be used to all LEO spacecraft, especially, to LEO small and micro satellites? To return this problem we provide a new type of the system—CANS (Compact Autonomous Navigation System) [6].

  10. A Geometry-Based Cycle Slip Detection and Repair Method with Time-Differenced Carrier Phase (TDCP for a Single Frequency Global Position System (GPS + BeiDou Navigation Satellite System (BDS Receiver

    Directory of Open Access Journals (Sweden)

    Chuang Qian

    2016-12-01

    Full Text Available As the field of high-precision applications based on carriers continues to expand, the development of low-cost, small, modular receivers and their application in diverse scenarios and situations with complex data quality has increased the requirements of carrier-phase data preprocessing. A new geometry-based cycle slip detection and repair method based on Global Position System (GPS + BeiDou Navigation Satellite System (BDS is proposed. The method uses a Time-differenced Carrier Phase (TDCP model, which eliminates the Inner-System Bias (ISB between GPS and BDS, and it is conducive to the effective combination of GPS and BDS. It avoids the interference of the noise of the pseudo-range with cycle slip detection, while the cycle slips are preserved as integers. This method does not limit the receiver frequency number, and it is applicable to single-frequency data. The process is divided into two steps to detect and repair cycle slip. The first step is cycle slip detection, using the Improved Local Analysis Method (ILAM to find satellites that have cycle slips; The second step is to repair the cycle slips, including estimating the float solution of changes in ambiguities at the satellites that have cycle slips with the least squares method and the integer solution of the cycle slips by rounding. In the process of rounding, in addition to the success probability, a decimal test is carried out to validate the result. Finally, experiments with filed test data are carried out to prove the effectiveness of this method. The results show that the detectable cycle slips number with GPS + BDS is much greater than that with GPS. The method can also detect the non-integer outliers while fixing the cycle slip. The maximum decimal bias in repair is less than that with GPS. It implies that this method takes full advantages of multi-system.

  11. SFOL Pulse: A High Accuracy DME Pulse for Alternative Aircraft Position and Navigation

    Directory of Open Access Journals (Sweden)

    Euiho Kim

    2017-09-01

    Full Text Available In the Federal Aviation Administration’s (FAA performance based navigation strategy announced in 2016, the FAA stated that it would retain and expand the Distance Measuring Equipment (DME infrastructure to ensure resilient aircraft navigation capability during the event of a Global Navigation Satellite System (GNSS outage. However, the main drawback of the DME as a GNSS back up system is that it requires a significant expansion of the current DME ground infrastructure due to its poor distance measuring accuracy over 100 m. The paper introduces a method to improve DME distance measuring accuracy by using a new DME pulse shape. The proposed pulse shape was developed by using Genetic Algorithms and is less susceptible to multipath effects so that the ranging error reduces by 36.0–77.3% when compared to the Gaussian and Smoothed Concave Polygon DME pulses, depending on noise environment.

  12. Ecodesign Navigator

    DEFF Research Database (Denmark)

    Simon, M; Evans, S.; McAloone, Timothy Charles

    The Ecodesign Navigator is the product of a three-year research project called DEEDS - DEsign for Environment Decision Support. The initial partners were Manchester Metropolitan University, Cranfield University, Engineering 6 Physical Sciences Resaech Council, Electrolux, ICL, and the Industry...

  13. Integrated navigation method of a marine strapdown inertial navigation system using a star sensor

    International Nuclear Information System (INIS)

    Wang, Qiuying; Diao, Ming; Gao, Wei; Zhu, Minghong; Xiao, Shu

    2015-01-01

    This paper presents an integrated navigation method of the strapdown inertial navigation system (SINS) using a star sensor. According to the principle of SINS, its own navigation information contains an error that increases with time. Hence, the inertial attitude matrix from the star sensor is introduced as the reference information to correct the SINS increases error. For the integrated navigation method, the vehicle’s attitude can be obtained in two ways: one is calculated from SINS; the other, which we have called star sensor attitude, is obtained as the product between the SINS position and the inertial attitude matrix from the star sensor. Therefore, the SINS position error is introduced in the star sensor attitude error. Based on the characteristics of star sensor attitude error and the mathematical derivation, the SINS navigation errors can be obtained by the coupling calculation between the SINS attitude and the star sensor attitude. Unlike several current techniques, the navigation process of this method is non-radiating and invulnerable to jamming. The effectiveness of this approach was demonstrated by simulation and experimental study. The results show that this integrated navigation method can estimate the attitude error and the position error of SINS. Therefore, the SINS navigation accuracy is improved. (paper)

  14. Investigation of Ionospheric Spatial Gradients for Gagan Error Correction

    Science.gov (United States)

    Chandra, K. Ravi

    In India, Indian Space Research Organization (ISRO) has established with an objective to develop space technology and its application to various national tasks. The national tasks include, establishment of major space systems such as Indian National Satellites (INSAT) for communication, television broadcasting and meteorological services, Indian Remote Sensing Satellites (IRS), etc. Apart from these, to cater to the needs of civil aviation applications, GPS Aided Geo Augmented Navigation (GAGAN) system is being jointly implemented along with Airports Authority of India (AAI) over the Indian region. The most predominant parameter affecting the navigation accuracy of GAGAN is ionospheric delay which is a function of total number of electrons present in one square meter cylindrical cross-sectional area in the line of site direction between the satellite and the user on the earth, i.e. Total Electron Content (TEC). In the equatorial and low latitude regions such as India, TEC is often quite high with large spatial gradients. Carrier phase data from the GAGAN network of Indian TEC Stations is used for estimating and identifying ionospheric spatial gradients inmultiple viewing directions. In this paper amongst the satellite signals arriving in multipledirections,Vertical ionospheric gradients (σVIG) are calculated, inturn spatial ionospheric gradients are identified. In addition, estimated temporal gradients, i.e. rate of TEC Index is also compared. These aspects which contribute to errors can be treated for improved GAGAN system performance.

  15. Initial results of centralized autonomous orbit determination of the new-generation BDS satellites with inter-satellite link measurements

    Science.gov (United States)

    Tang, Chengpan; Hu, Xiaogong; Zhou, Shanshi; Liu, Li; Pan, Junyang; Chen, Liucheng; Guo, Rui; Zhu, Lingfeng; Hu, Guangming; Li, Xiaojie; He, Feng; Chang, Zhiqiao

    2018-01-01

    Autonomous orbit determination is the ability of navigation satellites to estimate the orbit parameters on-board using inter-satellite link (ISL) measurements. This study mainly focuses on data processing of the ISL measurements as a new measurement type and its application on the centralized autonomous orbit determination of the new-generation Beidou navigation satellite system satellites for the first time. The ISL measurements are dual one-way measurements that follow a time division multiple access (TDMA) structure. The ranging error of the ISL measurements is less than 0.25 ns. This paper proposes a derivation approach to the satellite clock offsets and the geometric distances from TDMA dual one-way measurements without a loss of accuracy. The derived clock offsets are used for time synchronization, and the derived geometry distances are used for autonomous orbit determination. The clock offsets from the ISL measurements are consistent with the L-band two-way satellite, and time-frequency transfer clock measurements and the detrended residuals vary within 0.5 ns. The centralized autonomous orbit determination is conducted in a batch mode on a ground-capable server for the feasibility study. Constant hardware delays are present in the geometric distances and become the largest source of error in the autonomous orbit determination. Therefore, the hardware delays are estimated simultaneously with the satellite orbits. To avoid uncertainties in the constellation orientation, a ground anchor station that "observes" the satellites with on-board ISL payloads is introduced into the orbit determination. The root-mean-square values of orbit determination residuals are within 10.0 cm, and the standard deviation of the estimated ISL hardware delays is within 0.2 ns. The accuracy of the autonomous orbits is evaluated by analysis of overlap comparison and the satellite laser ranging (SLR) residuals and is compared with the accuracy of the L-band orbits. The results indicate

  16. Surgical Navigation

    DEFF Research Database (Denmark)

    Azarmehr, Iman; Stokbro, Kasper; Bell, R. Bryan

    2017-01-01

    Purpose: This systematic review investigates the most common indications, treatments, and outcomes of surgical navigation (SN) published from 2010 to 2015. The evolution of SN and its application in oral and maxillofacial surgery have rapidly developed over recent years, and therapeutic indicatio...

  17. Responsibility navigator

    NARCIS (Netherlands)

    Kuhlmann, Stefan; Edler, Jakob; Ordonez Matamoros, Hector Gonzalo; Randles, Sally; Walhout, Bart; Walhout, Bart; Gough, Clair; Lindner, Ralf; Lindner, Ralf; Kuhlmann, Stefan; Randles, Sally; Bedsted, Bjorn; Gorgoni, Guido; Griessler, Erich; Loconto, Allison; Mejlgaard, Niels

    2016-01-01

    Research and innovation activities need to become more responsive to societal challenges and concerns. The Responsibility Navigator, developed in the Res-AGorA project, supports decision-makers to govern such activities towards more conscious responsibility. What is considered “responsible” will

  18. Cislunar navigation

    Science.gov (United States)

    Cesarone, R. J.; Burke, J. D.; Hastrup, R. C.; Lo, M. W.

    2003-01-01

    In the future, navigation and communication in Earth-Moon space and on the Moon will differ from past practice due to evolving technology and new requirements. Here we describe likely requirements, discuss options for meeting them, and advocate steps that can be taken now to begin building the navcom systems needed in coming years for exploring and using the moon.

  19. Lunar Navigation Architecture Design Considerations

    Science.gov (United States)

    D'Souza, Christopher; Getchius, Joel; Holt, Greg; Moreau, Michael

    2009-01-01

    The NASA Constellation Program is aiming to establish a long-term presence on the lunar surface. The Constellation elements (Orion, Altair, Earth Departure Stage, and Ares launch vehicles) will require a lunar navigation architecture for navigation state updates during lunar-class missions. Orion in particular has baselined earth-based ground direct tracking as the primary source for much of its absolute navigation needs. However, due to the uncertainty in the lunar navigation architecture, the Orion program has had to make certain assumptions on the capabilities of such architectures in order to adequately scale the vehicle design trade space. The following paper outlines lunar navigation requirements, the Orion program assumptions, and the impacts of these assumptions to the lunar navigation architecture design. The selection of potential sites was based upon geometric baselines, logistical feasibility, redundancy, and abort support capability. Simulated navigation covariances mapped to entry interface flightpath- angle uncertainties were used to evaluate knowledge errors. A minimum ground station architecture was identified consisting of Goldstone, Madrid, Canberra, Santiago, Hartebeeshoek, Dongora, Hawaii, Guam, and Ascension Island (or the geometric equivalent).

  20. GPS Navigation and Tracking Device

    Directory of Open Access Journals (Sweden)

    Yahya Salameh Khraisat

    2011-10-01

    Full Text Available Since the introduction of GPS Navigation systems in the marketplace, consumers and businesses have been coming up with innovative ways to use the technology in their everyday life. GPS Navigation and Tracking systems keep us from getting lost when we are in strange locations, they monitor children when they are away from home, keep track of business vehicles and can even let us know where a philandering partner is at all times. Because of this we attend to build a GPS tracking device to solve the mentioned problems. Our work consists of the GPS module that collects data from satellites and calculates the position information before transmitting them to the user’s PC (of Navigation system or observers (of Tracking System using wireless technology (GSM.

  1. Real-time precision pedestrian navigation solution using Inertial Navigation System and Global Positioning System

    OpenAIRE

    Yong-Jin Yoon; King Ho Holden Li; Jiahe Steven Lee; Woo-Tae Park

    2015-01-01

    Global Positioning System and Inertial Navigation System can be used to determine position and velocity. A Global Positioning System module is able to accurately determine position without sensor drift, but its usage is limited in heavily urbanized environments and heavy vegetation. While high-cost tactical-grade Inertial Navigation System can determine position accurately, low-cost micro-electro-mechanical system Inertial Navigation System sensors are plagued by significant errors. Global Po...

  2. Multi-Satellite Orbit Determination Using Interferometric Observables with RF Localization Applications

    Science.gov (United States)

    Geeraert, Jeroen L.

    Very long baseline interferometry (VLBI) specifically same-beam interferometry (SBI), and dual-satellite geolocation are two fields of research not previously connected. This is due to the different application of each field, SBI is used for relative interplanetary navigation of two satellites while dual-satellite geolocation is used to locate the source of a radio frequency (RF) signal. In this dissertation however, we leverage both fields to create a novel method for multi-satellite orbit determination (OD) using time difference of arrival (TDOA) and frequency difference of arrival (FDOA) measurements. The measurements are double differenced between the satellites and the stations, in so doing, many of the common errors are canceled which can significantly improve measurement precision. Provided with this novel OD technique, the observability is first analyzed to determine the benefits and limitations of this method. In all but a few scenarios the measurements successfully reduce the covariance when examining the Cramer-Rao Lower Bound (CRLB). Reduced observability is encountered with geostationary satellites as their motion with respect to the stations is limited, especially when only one baseline is used. However, when using satellite pairs with greater relative motion with respect to the stations, even satellites that are close to, but not exactly in a geostationary orbit can be estimated accurately. We find that in a strong majority of cases the OD technique provides lower uncertainties and solutions far more accurate than using conventional OD observables such as range and range-rate while also not being affected by common errors and biases. We specifically examine GEO-GEO, GEO-MEO, and GEO-LEO dual-satellite estimation cases. The work is further extended by developing a relative navigation scenario where the chief satellite is assumed to have perfect knowledge, or some small amount of uncertainty considered but not estimated, while estimating the deputy

  3. DC cancellation as a method of generating a t2-response and of solving the radial position error in a concentric free-falling two-sphere equivalence-principle experiment in a drag-free satellite

    International Nuclear Information System (INIS)

    Lange, Benjamin

    2010-01-01

    This paper presents a new method for doing a free-fall equivalence-principle (EP) experiment in a satellite at ambient temperature which solves two problems that have previously blocked this approach. By using large masses to change the gravity gradient at the proof masses, the orbit dynamics of a drag-free satellite may be changed in such a way that the experiment can mimic a free-fall experiment in a constant gravitational field on the earth. An experiment using a sphere surrounded by a spherical shell both completely unsupported and free falling has previously been impractical because (1) it is not possible to distinguish between a small EP violation and a slight difference in the semi-major axes of the orbits of the two proof masses and (2) the position difference in the orbit due to an EP violation only grows as t whereas the largest disturbance grows as t 3/2 . Furthermore, it has not been known how to independently measure the positions of a shell and a solid sphere with sufficient accuracy. The measurement problem can be solved by using a two-color transcollimator (see the main text), and since the radial-position-error and t-response problems arise from the earth's gravity gradient and not from its gravity field, one solution is to modify the earth's gravity gradient with local masses fixed in the satellite. Since the gravity gradient at the surface of a sphere, for example, depends only on its density, the gravity gradients of laboratory masses and of the earth unlike their fields are of the same order of magnitude. In a drag-free satellite spinning perpendicular to the orbit plane, two fixed spherical masses whose connecting line parallels the satellite spin axis can generate a dc gravity gradient at test masses located between them which cancels the combined gravity gradient of the earth and differential centrifugal force. With perfect cancellation, the position-error problem vanishes and the response grows as t 2 along a line which always points toward

  4. Relationships between GPS-signal propagation errors and EISCAT observations

    Directory of Open Access Journals (Sweden)

    N. Jakowski

    1996-12-01

    Full Text Available When travelling through the ionosphere the signals of space-based radio navigation systems such as the Global Positioning System (GPS are subject to modifications in amplitude, phase and polarization. In particular, phase changes due to refraction lead to propagation errors of up to 50 m for single-frequency GPS users. If both the L1 and the L2 frequencies transmitted by the GPS satellites are measured, first-order range error contributions of the ionosphere can be determined and removed by difference methods. The ionospheric contribution is proportional to the total electron content (TEC along the ray path between satellite and receiver. Using about ten European GPS receiving stations of the International GPS Service for Geodynamics (IGS, the TEC over Europe is estimated within the geographic ranges -20°≤ λ ≤40°E and 32.5°≤ Φ ≤70°N in longitude and latitude, respectively. The derived TEC maps over Europe contribute to the study of horizontal coupling and transport proces- ses during significant ionospheric events. Due to their comprehensive information about the high-latitude ionosphere, EISCAT observations may help to study the influence of ionospheric phenomena upon propagation errors in GPS navigation systems. Since there are still some accuracy limiting problems to be solved in TEC determination using GPS, data comparison of TEC with vertical electron density profiles derived from EISCAT observations is valuable to enhance the accuracy of propagation-error estimations. This is evident both for absolute TEC calibration as well as for the conversion of ray-path-related observations to vertical TEC. The combination of EISCAT data and GPS-derived TEC data enables a better understanding of large-scale ionospheric processes.

  5. E-navigation Services for Non-SOLAS Ships

    Directory of Open Access Journals (Sweden)

    Kwang An

    2016-06-01

    Full Text Available It is clearly understood that the main benefits of e-navigation are improved safety and better protection of the environment through the promotion of standards of navigational system and a reduction in human error. In order to meet the expectations on the benefit of e-navigation, e-navigation services should be more focused on non-SOLAS ships. The purpose of this paper is to present necessary e-navigation services for non-SOLAS ships in order to prevent marine accidents in Korean coastal waters. To meet the objectives of the study, an examination on the present navigation and communication system for non-SOLAS ships was performed. Based on the IMO's e-navigation Strategy Implementation Plan (SIP and Korea's national SIP for e-navigation, future trends for the development and implementation of e-navigation were discussed. Consequently, Electronic Navigational Chart (ENC download and ENC up-date service, ENC streaming service, route support service and communication support service based on Maritime Cloud were presented as essential e-navigation services for non-SOLAS ships. This study will help for the planning and designing of the Korean e-navigation system. It is expected that the further researches on the navigation support systems based on e-navigation will be carried out in order to implement the essential e-navigation services for non-SOLAS ships.

  6. Autonomous Navigation Using LiAISON in the Earth-Moon System

    Data.gov (United States)

    National Aeronautics and Space Administration — An innovative technique using satellite-to-satellite tracking for onboard autonomous absolute navigation has been conceived at the Colorado Center for Astrodynamics...

  7. Global Navigation Satellite System and Augmentation

    Indian Academy of Sciences (India)

    aircraft-based augmentation system (ABAS). ... segment, the ground segment (or) control segment and the user segment ... control station (MCS), and ground antennas. ... repeatability, multipath rejection, size, profile, and environmental.

  8. Error Free Software

    Science.gov (United States)

    1985-01-01

    A mathematical theory for development of "higher order" software to catch computer mistakes resulted from a Johnson Space Center contract for Apollo spacecraft navigation. Two women who were involved in the project formed Higher Order Software, Inc. to develop and market the system of error analysis and correction. They designed software which is logically error-free, which, in one instance, was found to increase productivity by 600%. USE.IT defines its objectives using AXES -- a user can write in English and the system converts to computer languages. It is employed by several large corporations.

  9. Navigation Lights - USACE IENC

    Data.gov (United States)

    Department of Homeland Security — These inland electronic Navigational charts (IENCs) were developed from available data used in maintenance of Navigation channels. Users of these IENCs should be...

  10. Low Cost Integrated Navigation System for Unmanned Vessel

    Directory of Open Access Journals (Sweden)

    Yang Changsong

    2017-11-01

    Full Text Available Large errors of low-cost MEMS inertial measurement unit (MIMU lead to huge navigation errors, even wrong navigation information. An integrated navigation system for unmanned vessel is proposed. It consists of a low-cost MIMU and Doppler velocity sonar (DVS. This paper presents an integrated navigation method, to improve the performance of navigation system. The integrated navigation system is tested using simulation and semi-physical simulation experiments, whose results show that attitude, velocity and position accuracy has improved awfully, giving exactly accurate navigation results. By means of the combination of low-cost MIMU and DVS, the proposed system is able to overcome fast drift problems of the low cost IMU.

  11. GNSS-based receiver autonomous integrity monitoring for aircraft navigation

    NARCIS (Netherlands)

    Imparato, D.

    2016-01-01

    Nowadays, GNSS-based navigation is moving more and more to critical applications. Global Navigation Satellite Systems (GNSS), which in the past used to be represented by the American GPS and the Russian GLONASS are now growing in number and performance. The European systemGalileo and the Chinese

  12. Satellite navigation—Amazing technology but insidious risk: Why everyone needs to understand space weather

    Science.gov (United States)

    Hapgood, Mike

    2017-04-01

    Global navigation satellite systems (GNSS) are one of the technological wonders of the modern world. Popularly known as satellite navigation, these systems have provided global access to precision location and timing services and have thereby stimulated advances in industry and consumer services, including all forms of transport, telecommunications, financial trading, and even the synchronization of power grids. But this wonderful technology is at risk from natural phenomena in the form of space weather. GNSS signals experience a slight delay as they pass through the ionosphere. This delay varies with space weather conditions and is the most significant source of error for GNSS. Scientific efforts to correct these errors have stimulated billions of dollars of investment in systems that provide accurate correction data for suitably equipped GNSS receivers in a growing number of regions around the world. This accuracy is essential for GNSS use by aircraft and ships. Space weather also provides a further occasional but severe risk to GNSS: an extreme space weather event may deny access to GNSS as ionospheric scintillation scrambles the radio signals from satellites, and rapid ionospheric changes outstrip the ability of error correction systems to supply accurate corrections. It is vital that GNSS users have a backup for such occasions, even if it is only to hunker down and weather the storm.

  13. INTEGRITY ANALYSIS OF REAL-TIME PPP TECHNIQUE WITH IGS-RTS SERVICE FOR MARITIME NAVIGATION

    Directory of Open Access Journals (Sweden)

    M. El-Diasty

    2017-10-01

    Full Text Available Open sea and inland waterways are the most widely used mode for transporting goods worldwide. It is the International Maritime Organization (IMO that defines the requirements for position fixing equipment for a worldwide radio-navigation system, in terms of accuracy, integrity, continuity, availability and coverage for the various phases of navigation. Satellite positioning systems can contribute to meet these requirements, as well as optimize marine transportation. Marine navigation usually consists of three major phases identified as Ocean/Coastal/Port approach/Inland waterway, in port navigation and automatic docking with alert limit ranges from 25 m to 0.25 m. GPS positioning is widely used for many applications and is currently recognized by IMO for a future maritime navigation. With the advancement in autonomous GPS positioning techniques such as Precise Point Positioning (PPP and with the advent of new real-time GNSS correction services such as IGS-Real-Time-Service (RTS, it is necessary to investigate the integrity of the PPP-based positioning technique along with IGS-RTS service in terms of availability and reliability for safe navigation in maritime application. This paper monitors the integrity of an autonomous real-time PPP-based GPS positioning system using the IGS real-time service (RTS for maritime applications that require minimum availability of integrity of 99.8 % to fulfil the IMO integrity standards. To examine the integrity of the real-time IGS-RTS PPP-based technique for maritime applications, kinematic data from a dual frequency GPS receiver is collected onboard a vessel and investigated with the real-time IGS-RTS PPP-based GPS positioning technique. It is shown that the availability of integrity of the real-time IGS-RTS PPP-based GPS solution is 100 % for all navigation phases and therefore fulfil the IMO integrity standards (99.8 % availability immediately (after 1 second, after 2 minutes and after 42 minutes

  14. Integrity Analysis of Real-Time Ppp Technique with Igs-Rts Service for Maritime Navigation

    Science.gov (United States)

    El-Diasty, M.

    2017-10-01

    Open sea and inland waterways are the most widely used mode for transporting goods worldwide. It is the International Maritime Organization (IMO) that defines the requirements for position fixing equipment for a worldwide radio-navigation system, in terms of accuracy, integrity, continuity, availability and coverage for the various phases of navigation. Satellite positioning systems can contribute to meet these requirements, as well as optimize marine transportation. Marine navigation usually consists of three major phases identified as Ocean/Coastal/Port approach/Inland waterway, in port navigation and automatic docking with alert limit ranges from 25 m to 0.25 m. GPS positioning is widely used for many applications and is currently recognized by IMO for a future maritime navigation. With the advancement in autonomous GPS positioning techniques such as Precise Point Positioning (PPP) and with the advent of new real-time GNSS correction services such as IGS-Real-Time-Service (RTS), it is necessary to investigate the integrity of the PPP-based positioning technique along with IGS-RTS service in terms of availability and reliability for safe navigation in maritime application. This paper monitors the integrity of an autonomous real-time PPP-based GPS positioning system using the IGS real-time service (RTS) for maritime applications that require minimum availability of integrity of 99.8 % to fulfil the IMO integrity standards. To examine the integrity of the real-time IGS-RTS PPP-based technique for maritime applications, kinematic data from a dual frequency GPS receiver is collected onboard a vessel and investigated with the real-time IGS-RTS PPP-based GPS positioning technique. It is shown that the availability of integrity of the real-time IGS-RTS PPP-based GPS solution is 100 % for all navigation phases and therefore fulfil the IMO integrity standards (99.8 % availability) immediately (after 1 second), after 2 minutes and after 42 minutes of convergence

  15. Design of an Image Motion Compenstaion (IMC Algorithm for Image Registration of the Communication, Ocean, Meteorolotical Satellite (COMS-1

    Directory of Open Access Journals (Sweden)

    Taek Seo Jung

    2006-03-01

    Full Text Available This paper presents an Image Motion Compensation (IMC algorithm for the Korea's Communication, Ocean, and Meteorological Satellite (COMS-1. An IMC algorithm is a priority component of image registration in Image Navigation and Registration (INR system to locate and register radiometric image data. Due to various perturbations, a satellite has orbit and attitude errors with respect to a reference motion. These errors cause depointing of the imager aiming direction, and in consequence cause image distortions. To correct the depointing of the imager aiming direction, a compensation algorithm is designed by adapting different equations from those used for the GOES satellites. The capability of the algorithm is compared with that of existing algorithm applied to the GOES's INR system. The algorithm developed in this paper improves pointing accuracy by 40%, and efficiently compensates the depointings of the imager aiming direction.

  16. Handbook of satellite applications

    CERN Document Server

    Madry, Scott; Camacho-Lara, Sergio

    2013-01-01

    Top space experts from around the world have collaborated to produce this comprehensive, authoritative, and clearly illustrated reference guide to the fast growing, multi-billion dollar field of satellite applications and space communications. This handbook, done under the auspices of the International Space University based in France, addresses not only system technologies but also examines market dynamics, technical standards and regulatory constraints. The handbook is a completely multi-disciplinary reference book that covers, in an in-depth fashion, the fields of satellite telecommunications, Earth observation, remote sensing, satellite navigation, geographical information systems, and geosynchronous meteorological systems. It covers current practices and designs as well as advanced concepts and future systems. It provides a comparative analysis of the common technologies and design elements for satellite application bus structures, thermal controls, power systems, stabilization techniques, telemetry, com...

  17. PRIVATE GRAPHS – ACCESS RIGHTS ON GRAPHS FOR SEAMLESS NAVIGATION

    Directory of Open Access Journals (Sweden)

    W. Dorner

    2016-06-01

    Full Text Available After the success of GNSS (Global Navigational Satellite Systems and navigation services for public streets, indoor seems to be the next big development in navigational services, relying on RTLS – Real Time Locating Services (e.g. WIFI and allowing seamless navigation. In contrast to navigation and routing services on public streets, seamless navigation will cause an additional challenge: how to make routing data accessible to defined users or restrict access rights for defined areas or only to parts of the graph to a defined user group? The paper will present case studies and data from literature, where seamless and especially indoor navigation solutions are presented (hospitals, industrial complexes, building sites, but the problem of restricted access rights was only touched from a real world, but not a technical perspective. The analysis of case studies will show, that the objective of navigation and the different target groups for navigation solutions will demand well defined access rights and require solutions, how to make only parts of a graph to a user or application available to solve a navigational task. The paper will therefore introduce the concept of private graphs, which is defined as a graph for navigational purposes covering the street, road or floor network of an area behind a public street and suggest different approaches how to make graph data for navigational purposes available considering access rights and data protection, privacy and security issues as well.

  18. ACCURACY EVALUATION OF THE OBJECT LOCATION VISUALIZATION FOR GEO-INFORMATION AND DISPLAY SYSTEMS OF MANNED AIRCRAFTS NAVIGATION COMPLEXES

    Directory of Open Access Journals (Sweden)

    M. O. Kostishin

    2014-01-01

    Full Text Available The paper deals with the issue of accuracy estimating for the object location display in the geographic information systems and display systems of manned aircrafts navigation complexes. Application features of liquid crystal screens with a different number of vertical and horizontal pixels are considered at displaying of geographic information data on different scales. Estimation display of navigation parameters values on board the aircraft is done in two ways: a numeric value is directly displayed on the screen of multi-color indicator, and a silhouette of the object is formed on the screen on a substrate background, which is a graphical representation of area map in the flight zone. Various scales of area digital map display currently used in the aviation industry have been considered. Calculation results of one pixel scale interval, depending on the specifications of liquid crystal screen and zoom of the map display area on the multifunction digital display, are given. The paper contains experimental results of the accuracy evaluation for area position display of the aircraft based on the data from the satellite navigation system and inertial navigation system, obtained during the flight program run of the real object. On the basis of these calculations a family of graphs was created for precision error display of the object reference point position using the onboard indicators with liquid crystal screen with different screen resolutions (6 "×8", 7.2 "×9.6", 9"×12" for two map display scales (1:0 , 25 km, 1-2 km. These dependency graphs can be used both to assess the error value of object area position display in existing navigation systems and to calculate the error value in upgrading facilities.

  19. Towards Safe Navigation by Formalizing Navigation Rules

    Directory of Open Access Journals (Sweden)

    Arne Kreutzmann

    2013-06-01

    Full Text Available One crucial aspect of safe navigation is to obey all navigation regulations applicable, in particular the collision regulations issued by the International Maritime Organization (IMO Colregs. Therefore, decision support systems for navigation need to respect Colregs and this feature should be verifiably correct. We tackle compliancy of navigation regulations from a perspective of software verification. One common approach is to use formal logic, but it requires to bridge a wide gap between navigation concepts and simple logic. We introduce a novel domain specification language based on a spatio-temporal logic that allows us to overcome this gap. We are able to capture complex navigation concepts in an easily comprehensible representation that can direcly be utilized by various bridge systems and that allows for software verification.

  20. The Impact of Eclipsing GNSS Satellites on the Precise Point Positioning

    Directory of Open Access Journals (Sweden)

    Xinyun Cao

    2018-01-01

    Full Text Available When satellites enter into the noon maneuver or the shadow crossing regimes, the actual attitudes will depart from their nominal values. If improper attitude models are used, the induced-errors due to the wind-up effect and satellite antenna PCO (Phase Center Offset will deteriorate the positioning accuracy. Because different generations of satellites adopt different attitude control models, the influences on the positioning performances deserve further study. Consequently, the impact of three eclipsing strategies on the single-system and multi-GNSS (Global Navigation Satellite System Precise Point Positioning (PPP are analyzed. According to the results of the eclipsing monitor, 65 globally distributed MGEX (Multi-GNSS EXperiment stations for 31-day period in July 2017 are selected to perform G/R/E/C/GR/GREC PPP in both static and kinematic modes. The results show that the influences of non-nominal attitudes are related to the magnitude of the PCO values, maximum yaw angle differences, the duration of maneuver, the value of the sun angle and the satellite geometric strength. For single-system, using modeled attitudes rather than the nominal ones will greatly improve the positioning accuracy of GLONASS-only and BDS-only PPP while slightly contributions to the GPS-only and GALILEO-only PPP. Deleting the eclipsing satellites may sometimes induce a longer convergence time and a worse solution due to the poor satellite geometry, especially for GLONASS kinematic PPP when stations are located in the low latitude and BDS kinematic PPP. When multi-GNSS data are available, especially four navigation systems, the accuracy improvements of using the modeled attitudes or deleting eclipsing satellites are non-significant.

  1. A procedure for the significance testing of unmodeled errors in GNSS observations

    Science.gov (United States)

    Li, Bofeng; Zhang, Zhetao; Shen, Yunzhong; Yang, Ling

    2018-01-01

    It is a crucial task to establish a precise mathematical model for global navigation satellite system (GNSS) observations in precise positioning. Due to the spatiotemporal complexity of, and limited knowledge on, systematic errors in GNSS observations, some residual systematic errors would inevitably remain even after corrected with empirical model and parameterization. These residual systematic errors are referred to as unmodeled errors. However, most of the existing studies mainly focus on handling the systematic errors that can be properly modeled and then simply ignore the unmodeled errors that may actually exist. To further improve the accuracy and reliability of GNSS applications, such unmodeled errors must be handled especially when they are significant. Therefore, a very first question is how to statistically validate the significance of unmodeled errors. In this research, we will propose a procedure to examine the significance of these unmodeled errors by the combined use of the hypothesis tests. With this testing procedure, three components of unmodeled errors, i.e., the nonstationary signal, stationary signal and white noise, are identified. The procedure is tested by using simulated data and real BeiDou datasets with varying error sources. The results show that the unmodeled errors can be discriminated by our procedure with approximately 90% confidence. The efficiency of the proposed procedure is further reassured by applying the time-domain Allan variance analysis and frequency-domain fast Fourier transform. In summary, the spatiotemporally correlated unmodeled errors are commonly existent in GNSS observations and mainly governed by the residual atmospheric biases and multipath. Their patterns may also be impacted by the receiver.

  2. Image Navigation and Registration Performance Assessment Tool Set for the GOES-R Advanced Baseline Imager and Geostationary Lightning Mapper

    Science.gov (United States)

    De Luccia, Frank J.; Houchin, Scott; Porter, Brian C.; Graybill, Justin; Haas, Evan; Johnson, Patrick D.; Isaacson, Peter J.; Reth, Alan D.

    2016-01-01

    The GOES-R Flight Project has developed an Image Navigation and Registration (INR) Performance Assessment Tool Set (IPATS) for measuring Advanced Baseline Imager (ABI) and Geostationary Lightning Mapper (GLM) INR performance metrics in the post-launch period for performance evaluation and long term monitoring. For ABI, these metrics are the 3-sigma errors in navigation (NAV), channel-to-channel registration (CCR), frame-to-frame registration (FFR), swath-to-swath registration (SSR), and within frame registration (WIFR) for the Level 1B image products. For GLM, the single metric of interest is the 3-sigma error in the navigation of background images (GLM NAV) used by the system to navigate lightning strikes. 3-sigma errors are estimates of the 99.73rd percentile of the errors accumulated over a 24-hour data collection period. IPATS utilizes a modular algorithmic design to allow user selection of data processing sequences optimized for generation of each INR metric. This novel modular approach minimizes duplication of common processing elements, thereby maximizing code efficiency and speed. Fast processing is essential given the large number of sub-image registrations required to generate INR metrics for the many images produced over a 24-hour evaluation period. Another aspect of the IPATS design that vastly reduces execution time is the off-line propagation of Landsat based truth images to the fixed grid coordinates system for each of the three GOES-R satellite locations, operational East and West and initial checkout locations. This paper describes the algorithmic design and implementation of IPATS and provides preliminary test results.

  3. Navigation Architecture for a Space Mobile Network

    Science.gov (United States)

    Valdez, Jennifer E.; Ashman, Benjamin; Gramling, Cheryl; Heckler, Gregory W.; Carpenter, Russell

    2016-01-01

    The Tracking and Data Relay Satellite System (TDRSS) Augmentation Service for Satellites (TASS) is a proposed beacon service to provide a global, space based GPS augmentation service based on the NASA Global Differential GPS (GDGPS) System. The TASS signal will be tied to the GPS time system and usable as an additional ranging and Doppler radiometric source. Additionally, it will provide data vital to autonomous navigation in the near Earth regime, including space weather information, TDRS ephemerides, Earth Orientation Parameters (EOP), and forward commanding capability. TASS benefits include enhancing situational awareness, enabling increased autonomy, and providing near real-time command access for user platforms. As NASA Headquarters' Space Communication and Navigation Office (SCaN) begins to move away from a centralized network architecture and towards a Space Mobile Network (SMN) that allows for user initiated services, autonomous navigation will be a key part of such a system. This paper explores how a TASS beacon service enables the Space Mobile Networking paradigm, what a typical user platform would require, and provides an in-depth analysis of several navigation scenarios and operations concepts. This paper provides an overview of the TASS beacon and its role within the SMN and user community. Supporting navigation analysis is presented for two user mission scenarios: an Earth observing spacecraft in low earth orbit (LEO), and a highly elliptical spacecraft in a lunar resonance orbit. These diverse flight scenarios indicate the breadth of applicability of the TASS beacon for upcoming users within the current network architecture and in the SMN.

  4. FLIGHT DEVELOPMENT OF A DISTRIBUTED INERTIAL SATELLITE MICRONAVIGATTION SYSTEM FOR SYNTHETIC - APERTURE RADAR

    Directory of Open Access Journals (Sweden)

    Alexander Vladimirovich Chernodarov

    2017-01-01

    Full Text Available The current state of the onboard systems is characterized by the integration of aviation and radio-electronic equipment systems for solving problems of navigation and control. These problems include micro-navigation of the anten- na phase center (APC of the radar during the review of the Earth's surface from aboard the aircraft. Increasing of the reso- lution of the radar station (RLS by hardware increasing the antenna size is not always possible due to restrictions on the aircraft onboard equipment weight and dimensions. Therefore the implementation of analytic extension of the radiation pattern by "gluing" the images, obtained by RLS on the aircraft motion trajectory is embodied. The estimations are con- verted into amendments to the signals of RLS with synthetic aperture RSA to compensate instabilities. The purpose of the research is building a theoretical basis and a practical implementation of procedures for evaluating the trajectory APS in- stabilities using a distributed system of inertial-satellite micro-navigation (DSMN taking into account the RSA flight oper- ations actual conditions. The technology of evaluation and compensation of RSA trajectory instabilities via DSMN is con- sidered. The implementation of this technology is based on the mutual support of inertial, satellite and radar systems. Syn- chronization procedures of inertial and satellite measurements in the evaluation of DSMN errors are proposed. The given results of DSMN flight testing justify the possibility and expediency to apply the proposed technology in order to improve the resolution of RSA. The compensation of aircraft trajectory instabilities in RSA signals can be provided by inertial- satellite micro-navigation system, taking into account the actual conditions of the RSA flight operations. The researches show that in order to achieve the required resolution of RSA it seems to be appropriate to define the rational balance be- tween accuracy DSMN characteristics

  5. CONTROL OF AIRCRAFT TRAJECTORIES IN THE CONDITIONS OF THE NAVIGATION SESSION OPTIMIZATION AT AUTOMATIC DEPENDENT SURVEILLANCE

    Directory of Open Access Journals (Sweden)

    V. V. Erokhin

    2015-01-01

    Full Text Available Algorithms of determination of coordinates of the aircraft in the integrated system of navigation and optimum control of a trajectory are considered. Results of researches of parameters of a navigation session and precision characteristics of an assessment of location showed that application of optimum control of a trajectory allowув to increase the accuracy of navigation definitions in case of incomplete constellation of navigation satellites.

  6. Error Patterns

    NARCIS (Netherlands)

    Hoede, C.; Li, Z.

    2001-01-01

    In coding theory the problem of decoding focuses on error vectors. In the simplest situation code words are $(0,1)$-vectors, as are the received messages and the error vectors. Comparison of a received word with the code words yields a set of error vectors. In deciding on the original code word,

  7. Performance Evaluation and Requirements Assessment for Gravity Gradient Referenced Navigation

    Directory of Open Access Journals (Sweden)

    Jisun Lee

    2015-07-01

    Full Text Available In this study, simulation tests for gravity gradient referenced navigation (GGRN are conducted to verify the effects of various factors such as database (DB and sensor errors, flight altitude, DB resolution, initial errors, and measurement update rates on the navigation performance. Based on the simulation results, requirements for GGRN are established for position determination with certain target accuracies. It is found that DB and sensor errors and flight altitude have strong effects on the navigation performance. In particular, a DB and sensor with accuracies of 0.1 E and 0.01 E, respectively, are required to determine the position more accurately than or at a level similar to the navigation performance of terrain referenced navigation (TRN. In most cases, the horizontal position error of GGRN is less than 100 m. However, the navigation performance of GGRN is similar to or worse than that of a pure inertial navigation system when the DB and sensor errors are 3 E or 5 E each and the flight altitude is 3000 m. Considering that the accuracy of currently available gradiometers is about 3 E or 5 E, GGRN does not show much advantage over TRN at present. However, GGRN is expected to exhibit much better performance in the near future when accurate DBs and gravity gradiometer are available.

  8. Multi-GNSS signal-in-space range error assessment - Methodology and results

    Science.gov (United States)

    Montenbruck, Oliver; Steigenberger, Peter; Hauschild, André

    2018-06-01

    The positioning accuracy of global and regional navigation satellite systems (GNSS/RNSS) depends on a variety of influence factors. For constellation-specific performance analyses it has become common practice to separate a geometry-related quality factor (the dilution of precision, DOP) from the measurement and modeling errors of the individual ranging measurements (known as user equivalent range error, UERE). The latter is further divided into user equipment errors and contributions related to the space and control segment. The present study reviews the fundamental concepts and underlying assumptions of signal-in-space range error (SISRE) analyses and presents a harmonized framework for multi-GNSS performance monitoring based on the comparison of broadcast and precise ephemerides. The implications of inconsistent geometric reference points, non-common time systems, and signal-specific range biases are analyzed, and strategies for coping with these issues in the definition and computation of SIS range errors are developed. The presented concepts are, furthermore, applied to current navigation satellite systems, and representative results are presented along with a discussion of constellation-specific problems in their determination. Based on data for the January to December 2017 time frame, representative global average root-mean-square (RMS) SISRE values of 0.2 m, 0.6 m, 1 m, and 2 m are obtained for Galileo, GPS, BeiDou-2, and GLONASS, respectively. Roughly two times larger values apply for the corresponding 95th-percentile values. Overall, the study contributes to a better understanding and harmonization of multi-GNSS SISRE analyses and their use as key performance indicators for the various constellations.

  9. Augmented GNSS Differential Corrections Minimum Mean Square Error Estimation Sensitivity to Spatial Correlation Modeling Errors

    Directory of Open Access Journals (Sweden)

    Nazelie Kassabian

    2014-06-01

    Full Text Available Railway signaling is a safety system that has evolved over the last couple of centuries towards autonomous functionality. Recently, great effort is being devoted in this field, towards the use and exploitation of Global Navigation Satellite System (GNSS signals and GNSS augmentation systems in view of lower railway track equipments and maintenance costs, that is a priority to sustain the investments for modernizing the local and regional lines most of which lack automatic train protection systems and are still manually operated. The objective of this paper is to assess the sensitivity of the Linear Minimum Mean Square Error (LMMSE algorithm to modeling errors in the spatial correlation function that characterizes true pseudorange Differential Corrections (DCs. This study is inspired by the railway application; however, it applies to all transportation systems, including the road sector, that need to be complemented by an augmentation system in order to deliver accurate and reliable positioning with integrity specifications. A vector of noisy pseudorange DC measurements are simulated, assuming a Gauss-Markov model with a decay rate parameter inversely proportional to the correlation distance that exists between two points of a certain environment. The LMMSE algorithm is applied on this vector to estimate the true DC, and the estimation error is compared to the noise added during simulation. The results show that for large enough correlation distance to Reference Stations (RSs distance separation ratio values, the LMMSE brings considerable advantage in terms of estimation error accuracy and precision. Conversely, the LMMSE algorithm may deteriorate the quality of the DC measurements whenever the ratio falls below a certain threshold.

  10. Operator errors

    International Nuclear Information System (INIS)

    Knuefer; Lindauer

    1980-01-01

    Besides that at spectacular events a combination of component failure and human error is often found. Especially the Rasmussen-Report and the German Risk Assessment Study show for pressurised water reactors that human error must not be underestimated. Although operator errors as a form of human error can never be eliminated entirely, they can be minimized and their effects kept within acceptable limits if a thorough training of personnel is combined with an adequate design of the plant against accidents. Contrary to the investigation of engineering errors, the investigation of human errors has so far been carried out with relatively small budgets. Intensified investigations in this field appear to be a worthwhile effort. (orig.)

  11. Evaluation of Navigation System Accuracy Indexes for Deviation Reading from Average Range

    Directory of Open Access Journals (Sweden)

    Alexey Boykov

    2017-12-01

    Full Text Available The method for estimating the mean of square error, kurtosis and error correlation coefficient for deviations from the average range of three navigation parameter indications from the outputs of three information sensors is substantiated and developed.

  12. Cibola flight experiment satellite

    Science.gov (United States)

    Davies, P.; Liddle, Doug; Paffett, John; Sweeting, Martin; Curiel, A.; Sun, Wei; Eves, Stuart

    2004-11-01

    In order to achieve an "economy of scale" with respect to payload capacity the major trend in telecommunications satellites is for larger and larger platforms. With these large platforms the level of integration between platform and payload is increasing leading to longer delivery schedules. The typical lifecycle for procurement of these large telecommunications satellites is now 3-6 years depending on the level of non-recurring engineering needed. Surrey Satellite Technology Ltd (SSTL) has designed a low-cost platform aimed at telecommunications and navigation applications. SSTL's Geostationary Minisatellite Platform (GMP) is a new entrant addressing the lower end of the market with payloads up to 250kg requiring less than 1.5 kW power. The British National Space Centre through the MOSAIC Small Satellite Initiative supported the development of GMP. The main design goals for GMP are low-cost for the complete mission including launch and operations and a platform allowing flexible payload accommodation. GMP is specifically designed to allow rapid development and deployment with schedules typically between 1 and 2 years from contract signature to flight readiness. GMP achieves these aims by a modular design where the level of integration between the platform and payload is low. The modular design decomposes the satellite into three major components - the propulsion bay, the avionics bay and the payload module. Both the propulsion and avionics bays are reusable, largely unchanged, and independent of the payload configuration. Such a design means that SSTL or a 3rd party manufacturer can manufacture the payload in parallel to the platform with integration taking place quite late in the schedule. In July 2003 SSTL signed a contract for ESA's first Galileo navigation satellite known as GSTBV2/A. The satellite is based on GMP and ESA plan to launch it into a MEO orbit late in 2005. The second flight of GMP is likely to be in 2006 carrying a geostationary payload

  13. An Effective Terrain Aided Navigation for Low-Cost Autonomous Underwater Vehicles.

    Science.gov (United States)

    Zhou, Ling; Cheng, Xianghong; Zhu, Yixian; Dai, Chenxi; Fu, Jinbo

    2017-03-25

    Terrain-aided navigation is a potentially powerful solution for obtaining submerged position fixes for autonomous underwater vehicles. The application of terrain-aided navigation with high-accuracy inertial navigation systems has demonstrated meter-level navigation accuracy in sea trials. However, available sensors may be limited depending on the type of the mission. Such limitations, especially for low-grade navigation sensors, not only degrade the accuracy of traditional navigation systems, but further impact the ability to successfully employ terrain-aided navigation. To address this problem, a tightly-coupled navigation is presented to successfully estimate the critical sensor errors by incorporating raw sensor data directly into an augmented navigation system. Furthermore, three-dimensional distance errors are calculated, providing measurement updates through the particle filter for absolute and bounded position error. The development of the terrain aided navigation system is elaborated for a vehicle equipped with a non-inertial-grade strapdown inertial navigation system, a 4-beam Doppler Velocity Log range sensor and a sonar altimeter. Using experimental data for navigation performance evaluation in areas with different terrain characteristics, the experiment results further show that the proposed method can be successfully applied to the low-cost AUVs and significantly improves navigation performance.

  14. Ego-motion based on EM for bionic navigation

    Science.gov (United States)

    Yue, Xiaofeng; Wang, L. J.; Liu, J. G.

    2015-12-01

    Researches have proved that flying insects such as bees can achieve efficient and robust flight control, and biologists have explored some biomimetic principles regarding how they control flight. Based on those basic studies and principles acquired from the flying insects, this paper proposes a different solution of recovering ego-motion for low level navigation. Firstly, a new type of entropy flow is provided to calculate the motion parameters. Secondly, EKF, which has been used for navigation for some years to correct accumulated error, and estimation-Maximization, which is always used to estimate parameters, are put together to determine the ego-motion estimation of aerial vehicles. Numerical simulation on MATLAB has proved that this navigation system provides more accurate position and smaller mean absolute error than pure optical flow navigation. This paper has done pioneering work in bionic mechanism to space navigation.

  15. Visual navigation using edge curve matching for pinpoint planetary landing

    Science.gov (United States)

    Cui, Pingyuan; Gao, Xizhen; Zhu, Shengying; Shao, Wei

    2018-05-01

    Pinpoint landing is challenging for future Mars and asteroid exploration missions. Vision-based navigation scheme based on feature detection and matching is practical and can achieve the required precision. However, existing algorithms are computationally prohibitive and utilize poor-performance measurements, which pose great challenges for the application of visual navigation. This paper proposes an innovative visual navigation scheme using crater edge curves during descent and landing phase. In the algorithm, the edge curves of the craters tracked from two sequential images are utilized to determine the relative attitude and position of the lander through a normalized method. Then, considering error accumulation of relative navigation, a method is developed. That is to integrate the crater-based relative navigation method with crater-based absolute navigation method that identifies craters using a georeferenced database for continuous estimation of absolute states. In addition, expressions of the relative state estimate bias are derived. Novel necessary and sufficient observability criteria based on error analysis are provided to improve the navigation performance, which hold true for similar navigation systems. Simulation results demonstrate the effectiveness and high accuracy of the proposed navigation method.

  16. A Multiple-Model Particle Filter Fusion Algorithm for GNSS/DR Slide Error Detection and Compensation

    Directory of Open Access Journals (Sweden)

    Rafael Toledo-Moreo

    2018-03-01

    Full Text Available Continuous accurate positioning is a key element for the deployment of many advanced driver assistance systems (ADAS and autonomous vehicle navigation. To achieve the necessary performance, global navigation satellite systems (GNSS must be combined with other technologies. A common onboard sensor-set that allows keeping the cost low, features the GNSS unit, odometry, and inertial sensors, such as a gyro. Odometry and inertial sensors compensate for GNSS flaws in many situations and, in normal conditions, their errors can be easily characterized, thus making the whole solution not only more accurate but also with more integrity. However, odometers do not behave properly when friction conditions make the tires slide. If not properly considered, the positioning perception will not be sound. This article introduces a hybridization approach that takes into consideration the sliding situations by means of a multiple model particle filter (MMPF. Tests with real datasets show the goodness of the proposal.

  17. Indoor wayfinding and navigation

    CERN Document Server

    2015-01-01

    Due to the widespread use of navigation systems for wayfinding and navigation in the outdoors, researchers have devoted their efforts in recent years to designing navigation systems that can be used indoors. This book is a comprehensive guide to designing and building indoor wayfinding and navigation systems. It covers all types of feasible sensors (for example, Wi-Fi, A-GPS), discussing the level of accuracy, the types of map data needed, the data sources, and the techniques for providing routes and directions within structures.

  18. IMPLEMENTATION OF AERONAUTICAL LOCAL SATELLITE AUGMENTATION SYSTEM

    Directory of Open Access Journals (Sweden)

    Stojce Ilcev

    2011-03-01

    Full Text Available Abstract. This paper introduces development and implementation of new Local Satellite AugmentationSystem as an integration component of the Regional Satellite Augmentation System (RSAS employingcurrent and new Satellite Communications, Navigation and Surveillance (CNS for improvement of the AirTraffic Control (ATC and Air Traffic Management (ATM and for enhancement safety systems includingtransport security and control of flights in all stages, airport approaching, landing, departures and allmovements over airport surface areas. The current first generation of the Global Navigation Satellite SystemGNSS-1 applications are represented by fundamental military solutions for Position, Velocity and Time ofthe satellite navigation and determination systems such as the US GPS and Russian GLONASS (Former-USSR requirements, respectively. The establishment of Aeronautical CNS is also discussed as a part ofGlobal Satellite Augmentation Systems of GPS and GLONASS systems integrated with existing and futureRSAS and LSAS in airports areas. Specific influence and factors related to the Comparison of the Currentand New Aeronautical CNS System including the Integration of RSAS and GNSS solutions are discussedand packet of facts is determined to maximize the new satellite Automatic Dependent Surveillance System(ADSS and Special Effects of the RSAS Networks. The possible future integration of RSAS and GNSS andthe common proposal of the satellite Surface Movement Guidance and Control are presented in thechangeless ways as of importance for future enfacements of ATC and ATM for any hypothetical airportinfrastructure.Keywords: ADSS, ATC, ATM, CNS, GSAS, LRAS, RSAS, SMGC, Special Effects of RSAS.

  19. Navigation GPS/GLONASS in the Arctic and aurora

    Directory of Open Access Journals (Sweden)

    Chernouss S. A.

    2016-12-01

    Full Text Available The correspondence of the time-spatial distribution of the radiances of the aurora oval and time-spatial changes in the parameters of the navigation satellites' signal has been shown. For this aim the experimental data on the regional and local heterogeneities of the Total Electron Content (or TEC and the data on the signal delays in the polar ionosphere have been analyzed. Using the data concerning aurora as the indicator of disturbances in the work of the GPS/GLONASS systems can give the opportunity to increase considerably the accuracy of positioning in the Arctic with the help of satellite navigation systems (SNS.

  20. Einstein's error

    International Nuclear Information System (INIS)

    Winterflood, A.H.

    1980-01-01

    In discussing Einstein's Special Relativity theory it is claimed that it violates the principle of relativity itself and that an anomalous sign in the mathematics is found in the factor which transforms one inertial observer's measurements into those of another inertial observer. The apparent source of this error is discussed. Having corrected the error a new theory, called Observational Kinematics, is introduced to replace Einstein's Special Relativity. (U.K.)

  1. External Aiding Methods for IMU-Based Navigation

    Science.gov (United States)

    2016-11-26

    Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3.2.1 Startup Bias...Figure Page 1 Three Distributions Implemented for Error Parameters in SAIMUN . . . . . . . . . . . . 5 2 Accelerometer Output Corrupted by Startup ...external aiding, simulate the error sources encountered in the acquisition of measurement data, emulate the navigation software, and perform a range of

  2. Image Navigation and Registration (INR) Performance Assessment Tool Set (IPATS) for the GOES-R Advanced Baseline Imager and Geostationary Lightning Mapper

    Science.gov (United States)

    DeLuccia, Frank J.; Houchin, Scott; Porter, Brian C.; Graybill, Justin; Haas, Evan; Johnson, Patrick D.; Isaacson, Peter J.; Reth, Alan D.

    2016-01-01

    The GOES-R Flight Project has developed an Image Navigation and Registration (INR) Performance Assessment Tool Set (IPATS) for measuring Advanced Baseline Imager (ABI) and Geostationary Lightning Mapper (GLM) INR performance metrics in the post-launch period for performance evaluation and long term monitoring. For ABI, these metrics are the 3-sigma errors in navigation (NAV), channel-to-channel registration (CCR), frame-to-frame registration (FFR), swath-to-swath registration (SSR), and within frame registration (WIFR) for the Level 1B image products. For GLM, the single metric of interest is the 3-sigma error in the navigation of background images (GLM NAV) used by the system to navigate lightning strikes. 3-sigma errors are estimates of the 99.73rd percentile of the errors accumulated over a 24 hour data collection period. IPATS utilizes a modular algorithmic design to allow user selection of data processing sequences optimized for generation of each INR metric. This novel modular approach minimizes duplication of common processing elements, thereby maximizing code efficiency and speed. Fast processing is essential given the large number of sub-image registrations required to generate INR metrics for the many images produced over a 24 hour evaluation period. Another aspect of the IPATS design that vastly reduces execution time is the off-line propagation of Landsat based truth images to the fixed grid coordinates system for each of the three GOES-R satellite locations, operational East and West and initial checkout locations. This paper describes the algorithmic design and implementation of IPATS and provides preliminary test results.

  3. A navigator-based rigid body motion correction for magnetic resonance imaging

    International Nuclear Information System (INIS)

    Ullisch, Marcus Goerge

    2012-01-01

    A novel three-dimensional navigator k-space trajectory for rigid body motion detection for Magnetic Resonance Imaging (MRI) - the Lissajous navigator - was developed and quantitatively compared to the existing spherical navigator trajectory [1]. The spherical navigator cannot sample the complete spherical surface due to slew rate limitations of the scanner hardware. By utilizing a two dimensional Lissajous figure which is projected onto the spherical surface, the Lissajous navigator overcomes this limitation. The complete sampling of the sphere consequently leads to rotation estimates with higher and more isotropic accuracy. Simulations and phantom measurements were performed for both navigators. Both simulations and measurements show a significantly higher overall accuracy of the Lissajous navigator and a higher isotropy of the rotation estimates. Measured under identical conditions with identical postprocessing, the measured mean absolute error of the rotation estimates for the Lissajous navigator was 38% lower (0.3 ) than for the spherical navigator (0.5 ). The maximum error of the Lissajous navigator was reduced by 48% relative to the spherical navigator. The Lissajous navigator delivers higher accuracy of rotation estimation and a higher degree of isotropy than the spherical navigator with no evident drawbacks; these are two decisive advantages, especially for high-resolution anatomical imaging.

  4. A navigator-based rigid body motion correction for magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ullisch, Marcus Goerge

    2012-01-24

    A novel three-dimensional navigator k-space trajectory for rigid body motion detection for Magnetic Resonance Imaging (MRI) - the Lissajous navigator - was developed and quantitatively compared to the existing spherical navigator trajectory [1]. The spherical navigator cannot sample the complete spherical surface due to slew rate limitations of the scanner hardware. By utilizing a two dimensional Lissajous figure which is projected onto the spherical surface, the Lissajous navigator overcomes this limitation. The complete sampling of the sphere consequently leads to rotation estimates with higher and more isotropic accuracy. Simulations and phantom measurements were performed for both navigators. Both simulations and measurements show a significantly higher overall accuracy of the Lissajous navigator and a higher isotropy of the rotation estimates. Measured under identical conditions with identical postprocessing, the measured mean absolute error of the rotation estimates for the Lissajous navigator was 38% lower (0.3 ) than for the spherical navigator (0.5 ). The maximum error of the Lissajous navigator was reduced by 48% relative to the spherical navigator. The Lissajous navigator delivers higher accuracy of rotation estimation and a higher degree of isotropy than the spherical navigator with no evident drawbacks; these are two decisive advantages, especially for high-resolution anatomical imaging.

  5. Error analysis for mesospheric temperature profiling by absorptive occultation sensors

    Directory of Open Access Journals (Sweden)

    M. J. Rieder

    unprecedented accuracy and vertical resolution. A major part of the error analysis also applies to refractive (e.g., Global Navigation Satellite System based occultations as well as to any temperature profile retrieval based on air density or major species density measurements (e.g., from Rayleigh lidar or falling sphere techniques.

    Key words. Atmospheric composition and structure (pressure, density, and temperature; instruments and techniques – Radio science (remote sensing

  6. Error analysis for mesospheric temperature profiling by absorptive occultation sensors

    Directory of Open Access Journals (Sweden)

    M. J. Rieder

    2001-01-01

    unprecedented accuracy and vertical resolution. A major part of the error analysis also applies to refractive (e.g., Global Navigation Satellite System based occultations as well as to any temperature profile retrieval based on air density or major species density measurements (e.g., from Rayleigh lidar or falling sphere techniques.Key words. Atmospheric composition and structure (pressure, density, and temperature; instruments and techniques – Radio science (remote sensing

  7. Restricted Navigation Areas - USACE IENC

    Data.gov (United States)

    Department of Homeland Security — These inland electronic Navigational charts (IENCs) were developed from available data used in maintenance of Navigation channels. Users of these IENCs should be...

  8. Neurosurgical robotic arm drilling navigation system.

    Science.gov (United States)

    Lin, Chung-Chih; Lin, Hsin-Cheng; Lee, Wen-Yo; Lee, Shih-Tseng; Wu, Chieh-Tsai

    2017-09-01

    The aim of this work was to develop a neurosurgical robotic arm drilling navigation system that provides assistance throughout the complete bone drilling process. The system comprised neurosurgical robotic arm navigation combining robotic and surgical navigation, 3D medical imaging based surgical planning that could identify lesion location and plan the surgical path on 3D images, and automatic bone drilling control that would stop drilling when the bone was to be drilled-through. Three kinds of experiment were designed. The average positioning error deduced from 3D images of the robotic arm was 0.502 ± 0.069 mm. The correlation between automatically and manually planned paths was 0.975. The average distance error between automatically planned paths and risky zones was 0.279 ± 0.401 mm. The drilling auto-stopping algorithm had 0.00% unstopped cases (26.32% in control group 1) and 70.53% non-drilled-through cases (8.42% and 4.21% in control groups 1 and 2). The system may be useful for neurosurgical robotic arm drilling navigation. Copyright © 2016 John Wiley & Sons, Ltd.

  9. Jig-Time and Navigational Support in the Control of Road Transport

    Directory of Open Access Journals (Sweden)

    Nataliya Grigorievna Kuftinova

    2015-05-01

    Full Text Available In this article the question of the direction of use of jig-time and navigation providing the motor transport in the field of steering of transportation process is considered. The solution of transport tasks demand existence of jig-time and navigation providing (JTNP based on use of the global navigation satellite systems (GNSS, geographical information systems (GIS, means and technologies of telematics.

  10. Error Analysis of Determining Airplane Location by Global Positioning System

    OpenAIRE

    Hajiyev, Chingiz; Burat, Alper

    1999-01-01

    This paper studies the error analysis of determining airplane location by global positioning system (GPS) using statistical testing method. The Newton Rhapson method positions the airplane at the intersection point of four spheres. Absolute errors, relative errors and standard deviation have been calculated The results show that the positioning error of the airplane varies with the coordinates of GPS satellite and the airplane.

  11. Getting Lost Through Navigation

    DEFF Research Database (Denmark)

    Debus, Michael S.

    2017-01-01

    In this presentation, I argued two things. First, that it is navigation that lies at the core of contemporary (3D-) videogames and that its analysis is of utmost importance. Second, that this analysis needs a more rigorous differentiation between specific acts of navigation. Considering the Oxford...... in videogames is a configurational rather than an interpretational one (Eskelinen 2001). Especially in the case of game spaces, navigation appears to be of importance (Wolf 2009; Flynn 2008). Further, it does not only play a crucial role for the games themselves, but also for the experience of the player...

  12. Inertial navigation without accelerometers

    Science.gov (United States)

    Boehm, M.

    The Kennedy-Thorndike (1932) experiment points to the feasibility of fiber-optic inertial velocimeters, to which state-of-the-art technology could furnish substantial sensitivity and accuracy improvements. Velocimeters of this type would obviate the use of both gyros and accelerometers, and allow inertial navigation to be conducted together with vehicle attitude control, through the derivation of rotation rates from the ratios of the three possible velocimeter pairs. An inertial navigator and reference system based on this approach would probably have both fewer components and simpler algorithms, due to the obviation of the first level of integration in classic inertial navigators.

  13. Development and Analysis of Image Registration Program for the Communication, Ocean, Meteorological Satellite (COMS

    Directory of Open Access Journals (Sweden)

    Un-Seob Lee

    2007-09-01

    Full Text Available We developed a software for simulations and analyses of the Image Navigation and Registration (INR system, and compares the characteristics of Image Motion Compensation (IMC algorithms for the INR system. According to the orbit errors and attitude errors, the capabilities of the image distortions are analyzed. The distortions of images can be compensated by GOES IMC algorithm and Modified IMC (MIMC algorithm. The capabilities of each IMC algorithm are confirmed based on compensated images. The MIMC yields better results than GOES IMC although both the algorithms well compensate distorted images. The results of this research can be used as valuable asset to design of INR system for the Communication, Ocean, Meteorological Satellite (COMS.

  14. Saturn satellites

    International Nuclear Information System (INIS)

    Ruskol, E.L.

    1981-01-01

    The characteristics of the Saturn satellites are discussed. The satellites close to Saturn - Janus, Mimas, Enceladus, Tethys, Dione and Rhea - rotate along the circular orbits. High reflectivity is attributed to them, and the density of the satellites is 1 g/cm 3 . Titan is one of the biggest Saturn satellites. Titan has atmosphere many times more powerful than that of Mars. The Titan atmosphere is a peculiar medium with a unique methane and hydrogen distribution in the whole Solar system. The external satellites - Hyperion, Japetus and Phoebe - are poorly investigated. Neither satellite substance density, nor their composition are known. The experimental data on the Saturn rings obtained on the ''Pioneer-11'' and ''Voyager-1'' satellites are presented [ru

  15. X-Ray Detection and Processing Models for Spacecraft Navigation and Timing

    Science.gov (United States)

    Sheikh, Suneel; Hanson, John

    2013-01-01

    The current primary method of deepspace navigation is the NASA Deep Space Network (DSN). High-performance navigation is achieved using Delta Differential One-Way Range techniques that utilize simultaneous observations from multiple DSN sites, and incorporate observations of quasars near the line-of-sight to a spacecraft in order to improve the range and angle measurement accuracies. Over the past four decades, x-ray astronomers have identified a number of xray pulsars with pulsed emissions having stabilities comparable to atomic clocks. The x-ray pulsar-based navigation and time determination (XNAV) system uses phase measurements from these sources to establish autonomously the position of the detector, and thus the spacecraft, relative to a known reference frame, much as the Global Positioning System (GPS) uses phase measurements from radio signals from several satellites to establish the position of the user relative to an Earth-centered fixed frame of reference. While a GPS receiver uses an antenna to detect the radio signals, XNAV uses a detector array to capture the individual xray photons from the x-ray pulsars. The navigation solution relies on detailed xray source models, signal processing, navigation and timing algorithms, and analytical tools that form the basis of an autonomous XNAV system. Through previous XNAV development efforts, some techniques have been established to utilize a pulsar pulse time-of-arrival (TOA) measurement to correct a position estimate. One well-studied approach, based upon Kalman filter methods, optimally adjusts a dynamic orbit propagation solution based upon the offset in measured and predicted pulse TOA. In this delta position estimator scheme, previously estimated values of spacecraft position and velocity are utilized from an onboard orbit propagator. Using these estimated values, the detected arrival times at the spacecraft of pulses from a pulsar are compared to the predicted arrival times defined by the pulsar s pulse

  16. Semiotic resources for navigation

    DEFF Research Database (Denmark)

    Due, Brian Lystgaard; Lange, Simon Bierring

    2018-01-01

    This paper describes two typical semiotic resources blind people use when navigating in urban areas. Everyone makes use of a variety of interpretive semiotic resources and senses when navigating. For sighted individuals, this especially involves sight. Blind people, however, must rely on everything...... else than sight, thereby substituting sight with other modalities and distributing the navigational work to other semiotic resources. Based on a large corpus of fieldwork among blind people in Denmark, undertaking observations, interviews, and video recordings of their naturally occurring practices...... of walking and navigating, this paper shows how two prototypical types of semiotic resources function as helpful cognitive extensions: the guide dog and the white cane. This paper takes its theoretical and methodological perspective from EMCA multimodal interaction analysis....

  17. USACE Navigation Channels 2012

    Data.gov (United States)

    California Natural Resource Agency — This dataset represents both San Francisco and Los Angeles District navigation channel lines. All San Francisco District channel lines were digitized from CAD files...

  18. Visual Guided Navigation

    National Research Council Canada - National Science Library

    Banks, Martin

    1999-01-01

    .... Similarly, the problem of visual navigation is the recovery of an observer's self-motion with respect to the environment from the moving pattern of light reaching the eyes and the complex of extra...

  19. Tinnitus Patient Navigator

    Science.gov (United States)

    ... Cure About Us Initiatives News & Events Professional Resources Tinnitus Patient Navigator Want to get started on the ... unique and may require a different treatment workflow. Tinnitus Health-Care Providers If you, or someone you ...

  20. 'Outsmarting Traffic, Together': Driving as Social Navigation

    Directory of Open Access Journals (Sweden)

    Sam Hind

    2014-04-01

    Full Text Available The automotive world is evolving. Ten years ago Nigel Thrift (2004: 41 made the claim that the experience of driving was slipping into our 'technological unconscious'. Only recently the New York Times suggested that with the rise of automated driving, standalone navigation tools as we know them would cease to exist, instead being 'fully absorbed into the machine' (Fisher, 2013. But in order to bridge the gap between past and future driving worlds, another technological evolution is emerging. This short, critical piece charts the rise of what has been called 'social navigation' in the industry; the development of digital mapping platforms designed to foster automotive sociality. It makes two provisional points. Firstly, that 'ludic' conceptualisations can shed light on the ongoing reconfiguration of drivers, vehicles, roads and technological aids such as touch-screen satellite navigation platforms. And secondly, that as a result of this, there is a coming-into-being of a new kind of driving politics; a 'casual politicking' centred on an engagement with digital interfaces. We explicate both by turning our attention towards Waze; a social navigation application that encourages users to interact with various driving dynamics.

  1. Tightly coupled low cost 3D RISS/GPS integration using a mixture particle filter for vehicular navigation.

    Science.gov (United States)

    Georgy, Jacques; Noureldin, Aboelmagd

    2011-01-01

    Satellite navigation systems such as the global positioning system (GPS) are currently the most common technique used for land vehicle positioning. However, in GPS-denied environments, there is an interruption in the positioning information. Low-cost micro-electro mechanical system (MEMS)-based inertial sensors can be integrated with GPS and enhance the performance in denied GPS environments. The traditional technique for this integration problem is Kalman filtering (KF). Due to the inherent errors of low-cost MEMS inertial sensors and their large stochastic drifts, KF, with its linearized models, has limited capabilities in providing accurate positioning. Particle filtering (PF) was recently suggested as a nonlinear filtering technique to accommodate for arbitrary inertial sensor characteristics, motion dynamics and noise distributions. An enhanced version of PF called the Mixture PF is utilized in this study to perform tightly coupled integration of a three dimensional (3D) reduced inertial sensors system (RISS) with GPS. In this work, the RISS consists of one single-axis gyroscope and a two-axis accelerometer used together with the vehicle's odometer to obtain 3D navigation states. These sensors are then integrated with GPS in a tightly coupled scheme. In loosely-coupled integration, at least four satellites are needed to provide acceptable GPS position and velocity updates for the integration filter. The advantage of the tightly-coupled integration is that it can provide GPS measurement update(s) even when the number of visible satellites is three or lower, thereby improving the operation of the navigation system in environments with partial blockages by providing continuous aiding to the inertial sensors even during limited GPS satellite availability. To effectively exploit the capabilities of PF, advanced modeling for the stochastic drift of the vertically aligned gyroscope is used. In order to benefit from measurement updates for such drift, which are

  2. Tightly Coupled Low Cost 3D RISS/GPS Integration Using a Mixture Particle Filter for Vehicular Navigation

    Directory of Open Access Journals (Sweden)

    Jacques Georgy

    2011-04-01

    Full Text Available Satellite navigation systems such as the global positioning system (GPS are currently the most common technique used for land vehicle positioning. However, in GPS-denied environments, there is an interruption in the positioning information. Low-cost micro-electro mechanical system (MEMS-based inertial sensors can be integrated with GPS and enhance the performance in denied GPS environments. The traditional technique for this integration problem is Kalman filtering (KF. Due to the inherent errors of low-cost MEMS inertial sensors and their large stochastic drifts, KF, with its linearized models, has limited capabilities in providing accurate positioning. Particle filtering (PF was recently suggested as a nonlinear filtering technique to accommodate for arbitrary inertial sensor characteristics, motion dynamics and noise distributions. An enhanced version of PF called the Mixture PF is utilized in this study to perform tightly coupled integration of a three dimensional (3D reduced inertial sensors system (RISS with GPS. In this work, the RISS consists of one single-axis gyroscope and a two-axis accelerometer used together with the vehicle’s odometer to obtain 3D navigation states. These sensors are then integrated with GPS in a tightly coupled scheme. In loosely-coupled integration, at least four satellites are needed to provide acceptable GPS position and velocity updates for the integration filter. The advantage of the tightly-coupled integration is that it can provide GPS measurement update(s even when the number of visible satellites is three or lower, thereby improving the operation of the navigation system in environments with partial blockages by providing continuous aiding to the inertial sensors even during limited GPS satellite availability. To effectively exploit the capabilities of PF, advanced modeling for the stochastic drift of the vertically aligned gyroscope is used. In order to benefit from measurement updates for such drift

  3. Integrated INS/GPS Navigation from a Popular Perspective

    Science.gov (United States)

    Omerbashich, Mensur

    2002-01-01

    Inertial navigation, blended with other navigation aids, Global Positioning System (GPS) in particular, has gained significance due to enhanced navigation and inertial reference performance and dissimilarity for fault tolerance and anti-jamming. Relatively new concepts based upon using Differential GPS (DGPS) blended with Inertial (and visual) Navigation Sensors (INS) offer the possibility of low cost, autonomous aircraft landing. The FAA has decided to implement the system in a sophisticated form as a new standard navigation tool during this decade. There have been a number of new inertial sensor concepts in the recent past that emphasize increased accuracy of INS/GPS versus INS and reliability of navigation, as well as lower size and weight, and higher power, fault tolerance, and long life. The principles of GPS are not discussed; rather the attention is directed towards general concepts and comparative advantages. A short introduction to the problems faced in kinematics is presented. The intention is to relate the basic principles of kinematics to probably the most used navigation method in the future-INS/GPS. An example of the airborne INS is presented, with emphasis on how it works. The discussion of the error types and sources in navigation, and of the role of filters in optimal estimation of the errors then follows. The main question this paper is trying to answer is 'What are the benefits of the integration of INS and GPS and how is this, navigation concept of the future achieved in reality?' The main goal is to communicate the idea about what stands behind a modern navigation method.

  4. Centriolar satellites

    DEFF Research Database (Denmark)

    Tollenaere, Maxim A X; Mailand, Niels; Bekker-Jensen, Simon

    2015-01-01

    Centriolar satellites are small, microscopically visible granules that cluster around centrosomes. These structures, which contain numerous proteins directly involved in centrosome maintenance, ciliogenesis, and neurogenesis, have traditionally been viewed as vehicles for protein trafficking...... highlight newly discovered regulatory mechanisms targeting centriolar satellites and their functional status, and we discuss how defects in centriolar satellite components are intimately linked to a wide spectrum of human diseases....

  5. Mobile satellite communications in the 1990's

    Science.gov (United States)

    Singh, Jai

    1992-07-01

    The evolution of Inmarsat global services from a single market and single service of the 1980's to all of the key mobile markets and a wide range of new terminals and services in the 1990's is described. An overview of existing mobile satellite services, as well as new services under implementation for introduction in the near and longer term, including a handheld satellite phone (Inmarsat-P), is provided. The initiative taken by Inmarsat in the integration of its global mobile satellite services with global navigation capability derived from GPS (Global Positioning System) and the GLONASS (Russian GPS) navigation satellite systems and the provision of an international civil overlay for GPS/GLONASS integrity and augmentation is highlighted. To complete the overview of the development of mobile satellite services in the 1990's, the known national and regional mobile satellite system plans and the various recent proposals for both orbiting and geostationary satellite systems for proving handheld satellite phone and/or data messaging services are described.

  6. Data Integration from GPS and Inertial Navigation Systems for Pedestrians in Urban Area

    Directory of Open Access Journals (Sweden)

    Krzysztof Bikonis

    2013-09-01

    Full Text Available The GPS system is widely used in navigation and the GPS receiver can offer long-term stable absolute positioning information. The overall system performance depends largely on the signal environments. The position obtained from GPS is often degraded due to obstruction and multipath effect caused by buildings, city infrastructure and vegetation, whereas, the current performance achieved by inertial navigation systems (INS is still relatively poor due to the large inertial sensor errors. The complementary features of GPS and INS are the main reasons why integrated GPS/INS systems are becoming increasingly popular. GPS/INS systems offer a high data rate, high accuracy position and orientation that can work in all environments, particularly those where satellite availability is restricted. In the paper integration algorithm of GPS and INS systems data for pedestrians in urban area is presented. For data integration an Extended Kalman Filter (EKF algorithm is proposed. Complementary characteristics of GPS and INS with EKF can overcome the problem of huge INS drifts, GPS outages, dense multipath effect and other individual problems associated with these sensors.

  7. Validation of Navigation Ultrasound for Clavicular Length Measurement

    DEFF Research Database (Denmark)

    Høj, Anders Thorsmark; Villa, Chiara; Christensen, Ole M.

    2017-01-01

    interval): approximately ± 7.5 mm, Pearson's correlation R: 0.948-0.974). Navigation ultrasound can measure clavicular length with an intra-rater reliability matching that of 3-D rendered computed tomography scans and with high validity. Its use could spread to other fields requiring accurate...... of 52.5 (range: 21-78 y) were included. Navigation ultrasound exhibited high reliability (intra-class correlation coefficient: 0.942-0.997, standard error of the mean: 0.7-2.9 mm, minimal detectable change: 2.3-8.1 mm) and validity (measurement error: 1.3%-1.8%, limits of agreement (95% confidence...

  8. GPS surveying method applied to terminal area navigation flight experiments

    Energy Technology Data Exchange (ETDEWEB)

    Murata, M; Shingu, H; Satsushima, K; Tsuji, T; Ishikawa, K; Miyazawa, Y; Uchida, T [National Aerospace Laboratory, Tokyo (Japan)

    1993-03-01

    With an objective of evaluating accuracy of new landing and navigation systems such as microwave landing guidance system and global positioning satellite (GPS) system, flight experiments are being carried out using experimental aircraft. This aircraft mounts a GPS and evaluates its accuracy by comparing the standard orbits spotted by a Kalman filter from the laser tracing data on the aircraft with the navigation results. The GPS outputs position and speed information from an earth-centered-earth-fixed system called the World Geodetic System, 1984 (WGS84). However, in order to compare the navigation results with output from a reference orbit sensor or other navigation sensor, it is necessary to structure a high-precision reference coordinates system based on the WGS84. A method that applies the GPS phase interference measurement for this problem was proposed, and used actually in analyzing a flight experiment data. As referred to a case of the method having been applied to evaluating an independent navigation accuracy, the method was verified sufficiently effective and reliable not only in navigation method analysis, but also in the aspect of navigational operations. 12 refs., 10 figs., 5 tabs.

  9. Satellite communications: possibilities and problems

    International Nuclear Information System (INIS)

    Hine, M.

    1986-01-01

    Communication links via satellites are becoming available in Europe, both as part of the development of the telephone system and as special services aimed at data traffic. They offer the possibility of speeds between 50 kb/s and 2 Mb/s, without the problems and long term commitments of long distance land lines. Such links are provided by the PTT's as circuits which can be booked for variable periods, and have error rates which can be very low and well controlled. Problems in networking can arise from the satellite delay, particularly if errors occur in the local connections, and from the leased circuit and tariff philosophies of the PTT's. (Auth.)

  10. Some design considerations for planetary relay communications satellites.

    Science.gov (United States)

    Barber, T. A.; Bourke, R. D.

    1966-01-01

    Items affecting information transmitted from payload landed on remote planet to Earth via communications satellite including orbit, transmission policy and orbit injection error effect on communication capability

  11. Satellite Communications

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Satellite Communications. Arthur C Clarke wrote a seminal paper in 1945 in wireless world. Use three satellites in geo-synchronous orbit to enable intercontinental communications. System could be realised in '50 to 100 years'

  12. Advanced satellite servicing facility studies

    Science.gov (United States)

    Qualls, Garry D.; Ferebee, Melvin J., Jr.

    1988-01-01

    A NASA-sponsored systems analysis designed to identify and recommend advanced subsystems and technologies specifically for a manned Sun-synchronous platform for satellite management is discussed. An overview of system design, manned and unmanned servicing facilities, and representative mission scenarios are given. Mission areas discussed include facility based satellite assembly, checkout, deployment, refueling, repair, and systems upgrade. The ferrying of materials and consumables to and from manufacturing platforms, deorbit, removal, repositioning, or salvage of satellites and debris, and crew rescue of any other manned vehicles are also examined. Impacted subsytems discussed include guidance navigation and control, propulsion, data management, power, thermal control, structures, life support, and radiation management. In addition, technology issues which would have significant impacts on the system design are discussed.

  13. Enabling Autonomous Navigation for Affordable Scooters

    Directory of Open Access Journals (Sweden)

    Kaikai Liu

    2018-06-01

    Full Text Available Despite the technical success of existing assistive technologies, for example, electric wheelchairs and scooters, they are still far from effective enough in helping those in need navigate to their destinations in a hassle-free manner. In this paper, we propose to improve the safety and autonomy of navigation by designing a cutting-edge autonomous scooter, thus allowing people with mobility challenges to ambulate independently and safely in possibly unfamiliar surroundings. We focus on indoor navigation scenarios for the autonomous scooter where the current location, maps, and nearby obstacles are unknown. To achieve semi-LiDAR functionality, we leverage the gyros-based pose data to compensate the laser motion in real time and create synthetic mapping of simple environments with regular shapes and deep hallways. Laser range finders are suitable for long ranges with limited resolution. Stereo vision, on the other hand, provides 3D structural data of nearby complex objects. To achieve simultaneous fine-grained resolution and long range coverage in the mapping of cluttered and complex environments, we dynamically fuse the measurements from the stereo vision camera system, the synthetic laser scanner, and the LiDAR. We propose solutions to self-correct errors in data fusion and create a hybrid map to assist the scooter in achieving collision-free navigation in an indoor environment.

  14. Enabling Autonomous Navigation for Affordable Scooters.

    Science.gov (United States)

    Liu, Kaikai; Mulky, Rajathswaroop

    2018-06-05

    Despite the technical success of existing assistive technologies, for example, electric wheelchairs and scooters, they are still far from effective enough in helping those in need navigate to their destinations in a hassle-free manner. In this paper, we propose to improve the safety and autonomy of navigation by designing a cutting-edge autonomous scooter, thus allowing people with mobility challenges to ambulate independently and safely in possibly unfamiliar surroundings. We focus on indoor navigation scenarios for the autonomous scooter where the current location, maps, and nearby obstacles are unknown. To achieve semi-LiDAR functionality, we leverage the gyros-based pose data to compensate the laser motion in real time and create synthetic mapping of simple environments with regular shapes and deep hallways. Laser range finders are suitable for long ranges with limited resolution. Stereo vision, on the other hand, provides 3D structural data of nearby complex objects. To achieve simultaneous fine-grained resolution and long range coverage in the mapping of cluttered and complex environments, we dynamically fuse the measurements from the stereo vision camera system, the synthetic laser scanner, and the LiDAR. We propose solutions to self-correct errors in data fusion and create a hybrid map to assist the scooter in achieving collision-free navigation in an indoor environment.

  15. Medication Errors - A Review

    OpenAIRE

    Vinay BC; Nikhitha MK; Patel Sunil B

    2015-01-01

    In this present review article, regarding medication errors its definition, medication error problem, types of medication errors, common causes of medication errors, monitoring medication errors, consequences of medication errors, prevention of medication error and managing medication errors have been explained neatly and legibly with proper tables which is easy to understand.

  16. The attack navigator

    DEFF Research Database (Denmark)

    Probst, Christian W.; Willemson, Jan; Pieters, Wolter

    2016-01-01

    The need to assess security and take protection decisions is at least as old as our civilisation. However, the complexity and development speed of our interconnected technical systems have surpassed our capacity to imagine and evaluate risk scenarios. This holds in particular for risks...... that are caused by the strategic behaviour of adversaries. Therefore, technology-supported methods are needed to help us identify and manage these risks. In this paper, we describe the attack navigator: a graph-based approach to security risk assessment inspired by navigation systems. Based on maps of a socio...

  17. Navigating in higher education

    DEFF Research Database (Denmark)

    Thingholm, Hanne Balsby; Reimer, David; Keiding, Tina Bering

    Denne rapport er skrevet på baggrund af spørgeskemaundersøgelsen – Navigating in Higher Education (NiHE) – der rummer besvarelser fra 1410 bachelorstuderende og 283 undervisere fordelt på ni uddannelser fra Aarhus Universitet: Uddannelsesvidenskab, Historie, Nordisk sprog og litteratur, Informati......Denne rapport er skrevet på baggrund af spørgeskemaundersøgelsen – Navigating in Higher Education (NiHE) – der rummer besvarelser fra 1410 bachelorstuderende og 283 undervisere fordelt på ni uddannelser fra Aarhus Universitet: Uddannelsesvidenskab, Historie, Nordisk sprog og litteratur...

  18. Navigating ‘riskscapes’

    DEFF Research Database (Denmark)

    Gee, Stephanie; Skovdal, Morten

    2017-01-01

    This paper draws on interview data to examine how international health care workers navigated risk during the unprecedented Ebola outbreak in West Africa. It identifies the importance of place in risk perception, including how different spatial localities give rise to different feelings of threat...... or safety, some from the construction of physical boundaries, and others mediated through aspects of social relations, such as trust, communication and team dynamics. Referring to these spatial localities as ‘riskscapes’, the paper calls for greater recognition of the role of place in understanding risk...... perception, and how people navigate risk....

  19. An access alternative for mobile satellite networks

    Science.gov (United States)

    Wu, W. W.

    1988-01-01

    Conceptually, this paper discusses strategies of digital satellite communication networks for a very large number of low density traffic stations. These stations can be either aeronautical, land mobile, or maritime. The techniques can be applied to international, domestic, regional, and special purpose satellite networks. The applications can be commercial, scientific, military, emergency, navigational or educational. The key strategy is the use of a non-orthogonal access method, which tolerates overlapping signals. With n being either time or frequency partitions, and with a single overlapping signal allowed, a low cost mobile satellite system can be designed with n squared (n squared + n + 1) number of terminals.

  20. Integrating Communication and Navigation: Next Generation Broadcast Service (NGBS)

    Science.gov (United States)

    Donaldson, Jennifer

    2017-01-01

    NASA Goddard has been investing in technology demonstrations of a beacon service, now called Next Generation Broadcast Services (NGBS). NGBS is a global, space-based, communications and navigation service for users of Global Navigation Satellite Systems (GNSS) and the Tracking and Data Relay Satellite System (TDRSS). NGBS will provide an S-band beacon messaging source and radio navigation available to users at orbital altitudes 1400 km and below, increasing the autonomy and resiliency of onboard communication and navigation. NGBS will deliver both one-way radiometric (Doppler and pseudorange) and fast forward data transport services to users. Portions of the overall forward data volume will be allocated for fixed message types while the remaining data volume will be left for user forward command data. The NGBS signal will reside within the 2106.43 MHz spectrum currently allocated for the Space Networks multiple access forward (MAF) service and a live service demonstration is currently being planned via the 2nd and 3rd generation TDRS satellites.

  1. Multi-Flight-Phase GPS Navigation Filter Applications to Terrestrial Vehicle Navigation and Positioning

    Science.gov (United States)

    Park, Young W.; Montez, Moises N.

    1994-01-01

    A candidate onboard space navigation filter demonstrated excellent performance (less than 8 meter level RMS semi-major axis accuracy) in performing orbit determination of a low-Earth orbit Explorer satellite using single-frequency real GPS data. This performance is significantly better than predicted by other simulation studies using dual-frequency GPS data. The study results revealed the significance of two new modeling approaches evaluated in the work. One approach introduces a single-frequency ionospheric correction through pseudo-range and phase range averaging implementation. The other approach demonstrates a precise axis-dependent characterization of dynamic sample space uncertainty to compute a more accurate Kalman filter gain. Additionally, this navigation filter demonstrates a flexibility to accommodate both perturbational dynamic and observational biases required for multi-flight phase and inhomogeneous application environments. This paper reviews the potential application of these methods and the filter structure to terrestrial vehicle and positioning applications. Both the single-frequency ionospheric correction method and the axis-dependent state noise modeling approach offer valuable contributions in cost and accuracy improvements for terrestrial GPS receivers. With a modular design approach to either 'plug-in' or 'unplug' various force models, this multi-flight phase navigation filter design structure also provides a versatile GPS navigation software engine for both atmospheric and exo-atmospheric navigation or positioning use, thereby streamlining the flight phase or application-dependent software requirements. Thus, a standardized GPS navigation software engine that can reduce the development and maintenance cost of commercial GPS receivers is now possible.

  2. Navigating on handheld displays: Dynamic versus Static Keyhole Navigation

    NARCIS (Netherlands)

    Mehra, S.; Werkhoven, P.; Worring, M.

    2006-01-01

    Handheld displays leave little space for the visualization and navigation of spatial layouts representing rich information spaces. The most common navigation method for handheld displays is static peephole navigation: The peephole is static and we move the spatial layout behind it (scrolling). A

  3. Improving Canada's Marine Navigation System through e-Navigation

    Directory of Open Access Journals (Sweden)

    Daniel Breton

    2016-06-01

    The conclusion proposed is that on-going work with key partners and stakeholders can be used as the primary mechanism to identify e-Navigation related innovation and needs, and to prioritize next steps. Moving forward in Canada, implementation of new e-navigation services will continue to be stakeholder driven, and used to drive improvements to Canada's marine navigation system.

  4. Gigabit Satellite Network for NASA's Advanced Communication Technology Satellite (ACTS)

    Science.gov (United States)

    Hoder, Douglas; Bergamo, Marcos

    1996-01-01

    The advanced communication technology satellite (ACTS) gigabit satellite network provides long-haul point-to-point and point-to-multipoint full-duplex SONET services over NASA's ACTS. at rates up to 622 Mbit/s (SONET OC-12), with signal quality comparable to that obtained with terrestrial fiber networks. Data multiplexing over the satellite is accomplished using time-division multiple access (TDMA) techniques coordinated with the switching and beam hopping facilities provided by ACTS. Transmissions through the satellite are protected with Reed-Solomon encoding. providing virtually error-free transmission under most weather conditions. Unique to the system are a TDMA frame structure and satellite synchronization mechanism that allow: (a) very efficient utilization of the satellite capacity: (b) over-the-satellite dosed-loop synchronization of the network in configurations with up to 64 ground stations: and (c) ground station initial acquisition without collisions with existing signalling or data traffic. The user interfaces are compatible with SONET standards, performing the function of conventional SONET multiplexers and. as such. can be: readily integrated with standard SONET fiber-based terrestrial networks. Management of the network is based upon the simple network management protocol (SNMP). and includes an over-the-satellite signalling network and backup terrestrial internet (IP-based) connectivity. A description of the ground stations is also included.

  5. SINS/CNS Nonlinear Integrated Navigation Algorithm for Hypersonic Vehicle

    Directory of Open Access Journals (Sweden)

    Yong-jun Yu

    2015-01-01

    Full Text Available Celestial Navigation System (CNS has characteristics of accurate orientation and strong autonomy and has been widely used in Hypersonic Vehicle. Since the CNS location and orientation mainly depend upon the inertial reference that contains errors caused by gyro drifts and other error factors, traditional Strap-down Inertial Navigation System (SINS/CNS positioning algorithm setting the position error between SINS and CNS as measurement is not effective. The model of altitude azimuth, platform error angles, and horizontal position is designed, and the SINS/CNS tightly integrated algorithm is designed, in which CNS altitude azimuth is set as measurement information. GPF (Gaussian particle filter is introduced to solve the problem of nonlinear filtering. The results of simulation show that the precision of SINS/CNS algorithm which reaches 130 m using three stars is improved effectively.

  6. Integrated orbit and attitude hardware-in-the-loop simulations for autonomous satellite formation flying

    Science.gov (United States)

    Park, Han-Earl; Park, Sang-Young; Kim, Sung-Woo; Park, Chandeok

    2013-12-01

    Development and experiment of an integrated orbit and attitude hardware-in-the-loop (HIL) simulator for autonomous satellite formation flying are presented. The integrated simulator system consists of an orbit HIL simulator for orbit determination and control, and an attitude HIL simulator for attitude determination and control. The integrated simulator involves four processes (orbit determination, orbit control, attitude determination, and attitude control), which interact with each other in the same way as actual flight processes do. Orbit determination is conducted by a relative navigation algorithm using double-difference GPS measurements based on the extended Kalman filter (EKF). Orbit control is performed by a state-dependent Riccati equation (SDRE) technique that is utilized as a nonlinear controller for the formation control problem. Attitude is determined from an attitude heading reference system (AHRS) sensor, and a proportional-derivative (PD) feedback controller is used to control the attitude HIL simulator using three momentum wheel assemblies. Integrated orbit and attitude simulations are performed for a formation reconfiguration scenario. By performing the four processes adequately, the desired formation reconfiguration from a baseline of 500-1000 m was achieved with meter-level position error and millimeter-level relative position navigation. This HIL simulation demonstrates the performance of the integrated HIL simulator and the feasibility of the applied algorithms in a real-time environment. Furthermore, the integrated HIL simulator system developed in the current study can be used as a ground-based testing environment to reproduce possible actual satellite formation operations.

  7. Satellite Communications

    CERN Document Server

    Pelton, Joseph N

    2012-01-01

    The field of satellite communications represents the world's largest space industry. Those who are interested in space need to understand the fundamentals of satellite communications, its technology, operation, business, economic, and regulatory aspects. This book explains all this along with key insights into the field's future growth trends and current strategic challenges. Fundamentals of Satellite Communications is a concise book that gives all of the key facts and figures as well as a strategic view of where this dynamic industry is going. Author Joseph N. Pelton, PhD, former Dean of the International Space University and former Director of Strategic Policy at Intelstat, presents a r

  8. Error Budgeting

    Energy Technology Data Exchange (ETDEWEB)

    Vinyard, Natalia Sergeevna [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Perry, Theodore Sonne [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Usov, Igor Olegovich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-04

    We calculate opacity from k (hn)=-ln[T(hv)]/pL, where T(hv) is the transmission for photon energy hv, p is sample density, and L is path length through the sample. The density and path length are measured together by Rutherford backscatter. Δk = $\\partial k$\\ $\\partial T$ ΔT + $\\partial k$\\ $\\partial (pL)$. We can re-write this in terms of fractional error as Δk/k = Δ1n(T)/T + Δ(pL)/(pL). Transmission itself is calculated from T=(U-E)/(V-E)=B/B0, where B is transmitted backlighter (BL) signal and B0 is unattenuated backlighter signal. Then ΔT/T=Δln(T)=ΔB/B+ΔB0/B0, and consequently Δk/k = 1/T (ΔB/B + ΔB$_0$/B$_0$ + Δ(pL)/(pL). Transmission is measured in the range of 0.2

  9. Research-related intercultural higher education in satellite geodesy

    Science.gov (United States)

    Mayer, M.; Heck, B.; Krueger, C. P.

    2009-04-01

    In order to improve the education of young researchers (master degree, PhD, PostDocs) a cooperation between the Department of Geomatics (DGEOM), Federal University of Paraná (UFPR), Curitiba (Brazil) and the Geodetic Institute (GIK), University Karlsruhe (TH), Karlsruhe (Germany) was established which now exists since more than five years. The joint venture is actually called "PROBRAL: Precise positioning and height determination by means of GPS: Modeling of errors and transformation into physical heights" and focuses on research and education within the field of satellite geodesy. PROBRAL is funded by the Brazilian academic exchange service CAPES and the German academic exchange service DAAD. The geodetic aim of the research project is to validate and improve the quality of 3d positions derived from observations related to satellite navigation systems like GPS. In order to fulfill this ambitious goal sustainably, research has to be carried out in close cooperation. At the same time, e.g. to guarantee continuous success, a coordinated education has to be ensured. Besides technical education aspects key competences (e.g. language, capacity for teamwork, project management skills) are trained. Within the presentation the lessons which were learned from this project are discussed in detail.

  10. A relative navigation sensor for CubeSats based on LED fiducial markers

    Science.gov (United States)

    Sansone, Francesco; Branz, Francesco; Francesconi, Alessandro

    2018-05-01

    Small satellite platforms are becoming very appealing both for scientific and commercial applications, thanks to their low cost, short development times and availability of standard components and subsystems. The main disadvantage with such vehicles is the limitation of available resources to perform mission tasks. To overcome this drawback, mission concepts are under study that foresee cooperation between autonomous small satellites to accomplish complex tasks; among these, on-orbit servicing and on-orbit assembly of large structures are of particular interest and the global scientific community is putting a significant effort in the miniaturization of critical technologies that are required for such innovative mission scenarios. In this work, the development and the laboratory testing of an accurate relative navigation package for nanosatellites compliant to the CubeSat standard is presented. The system features a small camera and two sets of LED fiducial markers, and is conceived as a standard package that allows small spacecraft to perform mutual tracking during rendezvous and docking maneuvers. The hardware is based on off-the-shelf components assembled in a compact configuration that is compatible with the CubeSat standard. The image processing and pose estimation software was custom developed. The experimental evaluation of the system allowed to determine both the static and dynamic performances. The system is capable to determine the close range relative position and attitude faster than 10 S/s, with errors always below 10 mm and 2 deg.

  11. Nautical Navigation Aids (NAVAID) Locations

    Data.gov (United States)

    Department of Homeland Security — Structures intended to assist a navigator to determine position or safe course, or to warn of dangers or obstructions to navigation. This dataset includes lights,...

  12. Inland Electronic Navigational Charts (IENC)

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — These Inland Electronic Navigational Charts (IENCs) were developed from available data used in maintenance of Navigation channels. Users of these IENCs should be...

  13. Navigating ECA-Zones

    DEFF Research Database (Denmark)

    Hansen, Carsten Ørts; Grønsedt, Peter; Hendriksen, Christian

    This report examines the effect that ECA-zone regulation has on the optimal vessel fuel strategies for compliance. The findings of this report are trifold, and this report is coupled with a calculation tool which is released to assist ship-owners in the ECA decision making. The first key insight...... much time their operated vessels navigate the ECA in the future....

  14. THE DEVELOPMENT OF NAVIGATION SYSTEMS IN CIVIL AVIATION

    Directory of Open Access Journals (Sweden)

    Anastasiya Sergeyevna Stepanenko

    2017-01-01

    Full Text Available The article describes the history of navigation systems formation, such as "Cicada" system, which at that time could compete with the US "Transit", European, Chinese Beidou navigation system and the Japanese Quasi-Zenit.The detailed information about improving the American GPS system, launched in 1978 and working till now is provided. The characteristics of GPS-III counterpart "Transit", which became the platform for creating such modern globalnavigation systems as GLONASS and GPS. The process of implementation of the GLONASS system in civil aviation, itssegments, functions and features are considered. The stages of GLONASS satellite system orbital grouping formation are analyzed. The author draws the analogy with the American GPS system, the GALILEO system, which has a number of additional advantages, are given. The author remarks the features of the European counterpart of the GALILEO global nav- igation system. One of the goals of this system is to provide a high-precision positioning system, which Europe can rely on regardless of the Russian GLONASS system, the US - GPS and the Chinese Beidou. GALILEO offers a unique global search and rescue function called SAR, with an important feedback function. The peculiarities of Chinese scientists’ navi- gation system, the Beidou satellite system, and the Japanese global Quasi-Zenith Satellite System are described.Global navigation systems development tendencies are considered. The author dwells upon the path to world satel- lite systems globalization, a good example of which is the trend towards GLONASS and Beidou unification. Most attention was paid to the latest development of Russian scientists’ autonomous navigation system SINS 2015, which is a strap-down inertial navigation system and allows you to navigate the aircraft without being connected to a global satellite system. The ways of navigation systems further development in Russia are determined. The two naturally opposite directions are

  15. Street navigation using visual information on mobile phones

    DEFF Research Database (Denmark)

    Nguyen, Phuong Giang; Andersen, Hans Jørgen; Høilund, Carsten

    2010-01-01

    Applications with street navigation have been recently introduced on mobile phone devices. A major part of existing systems use integrated GPS as input for indicating the location. However, these systems often fail or make abrupt shifts in urban environment due to occlusion of satellites....... Furthermore, they only give the position of a person and not the object of his attention, which is just as important for localization based services. In this paper we introduce a system using mobile phones built-in cameras for navigation and localization using visual information in accordance with the way we...

  16. Geomagnetic storm effects on GPS based navigation

    Directory of Open Access Journals (Sweden)

    P. V. S. Rama Rao

    2009-05-01

    Full Text Available The energetic events on the sun, solar wind and subsequent effects on the Earth's geomagnetic field and upper atmosphere (ionosphere comprise space weather. Modern navigation systems that use radio-wave signals, reflecting from or propagating through the ionosphere as a means of determining range or distance, are vulnerable to a variety of effects that can degrade the performance of the navigational systems. In particular, the Global Positioning System (GPS that uses a constellation of earth orbiting satellites are affected due to the space weather phenomena.

    Studies made during two successive geomagnetic storms that occurred during the period from 8 to 12 November 2004, have clearly revealed the adverse affects on the GPS range delay as inferred from the Total Electron Content (TEC measurements made from a chain of seven dual frequency GPS receivers installed in the Indian sector. Significant increases in TEC at the Equatorial Ionization anomaly crest region are observed, resulting in increased range delay during the periods of the storm activity. Further, the storm time rapid changes occurring in TEC resulted in a number of phase slips in the GPS signal compared to those on quiet days. These phase slips often result in the loss of lock of the GPS receivers, similar to those that occur during strong(>10 dB L-band scintillation events, adversely affecting the GPS based navigation.

  17. Topological mapping and navigation in indoor environment with invisible barcode

    International Nuclear Information System (INIS)

    Huh, Jin Wook; Chung, Woong Sik; Chung, Wan Kyun

    2006-01-01

    This paper addresses the localization and navigation problem using invisible two dimensional barcodes on the floor. Compared with other methods using natural/artificial landmark, the proposed localization method has great advantages in cost and appearance, since the location of the robot is perfectly known using the barcode information after the mapping is finished. We also propose a navigation algorithm which uses the topological structure. For the topological information, we define nodes and edges which are suitable for indoor navigation, especially for large area having multiple rooms, many walls and many static obstacles. The proposed algorithm also has an advantage that errors occurred in each node are mutually independent and can be compensated exactly after some navigation using barcode. Simulation and experimental results were performed to verify the algorithm in the barcode environment, and the result showed an excellent performance. After mapping, it is also possible to solve the kidnapped case and generate paths using topological information

  18. Bio-robots automatic navigation with electrical reward stimulation.

    Science.gov (United States)

    Sun, Chao; Zhang, Xinlu; Zheng, Nenggan; Chen, Weidong; Zheng, Xiaoxiang

    2012-01-01

    Bio-robots that controlled by outer stimulation through brain computer interface (BCI) suffer from the dependence on realtime guidance of human operators. Current automatic navigation methods for bio-robots focus on the controlling rules to force animals to obey man-made commands, with animals' intelligence ignored. This paper proposes a new method to realize the automatic navigation for bio-robots with electrical micro-stimulation as real-time rewards. Due to the reward-seeking instinct and trial-and-error capability, bio-robot can be steered to keep walking along the right route with rewards and correct its direction spontaneously when rewards are deprived. In navigation experiments, rat-robots learn the controlling methods in short time. The results show that our method simplifies the controlling logic and realizes the automatic navigation for rat-robots successfully. Our work might have significant implication for the further development of bio-robots with hybrid intelligence.

  19. Satellite myths

    Science.gov (United States)

    Easton, Roger L.; Hall, David

    2008-01-01

    Richard Corfield's article “Sputnik's legacy” (October 2007 pp23-27) states that the satellite on board the US Vanguard rocket, which exploded during launch on 6 December 1957 two months after Sputnik's successful take-off, was “a hastily put together contraption of wires and circuitry designed only to send a radio signal back to Earth”. In fact, the Vanguard satellite was developed over a period of several years and put together carefully using the best techniques and equipment available at the time - such as transistors from Bell Laboratories/Western Electric. The satellite contained not one but two transmitters, in which the crystal-controlled oscillators had been designed to measure both the temperature of the satellite shell and of the internal package.

  20. Satellite Geomagnetism

    DEFF Research Database (Denmark)

    Olsen, Nils; Stolle, Claudia

    2012-01-01

    Observations of Earth’s magnetic field from space began more than 50 years ago. A continuous monitoring of the field using low Earth orbit (LEO) satellites, however, started only in 1999, and three satellites have taken highprecision measurements of the geomagnetic field during the past decade....... The unprecedented time-space coverage of their data opened revolutionary new possibilities for monitoring, understanding, and exploring Earth’s magnetic field. In the near future, the three-satellite constellation Swarm will ensure continuity of such measurement and provide enhanced possibilities to improve our...... ability to characterize and understand the many sources that contribute to Earth’s magnetic field. In this review, we summarize investigations of Earth’s interior and environment that have been possible through the analysis of high-precision magnetic field observations taken by LEO satellites....

  1. Hybrid Transverse Polar Navigation for High-Precision and Long-Term INSs.

    Science.gov (United States)

    Wu, Ruonan; Wu, Qiuping; Han, Fengtian; Zhang, Rong; Hu, Peida; Li, Haixia

    2018-05-12

    Transverse navigation has been proposed to help inertial navigation systems (INSs) fill the gap of polar navigation ability. However, as the transverse system does not have the ability of navigate globally, a complicated switch between the transverse and the traditional algorithms is necessary when the system moves across the polar circles. To maintain the inner continuity and consistency of the core algorithm, a hybrid transverse polar navigation is proposed in this research based on a combination of Earth-fixed-frame mechanization and transverse-frame outputs. Furthermore, a thorough analysis of kinematic error characteristics, proper damping technology and corresponding long-term contributions of main error sources is conducted for the high-precision INSs. According to the analytical expressions of the long-term navigation errors in polar areas, the 24-h period symmetrical oscillation with a slowly divergent amplitude dominates the transverse horizontal position errors, and the first-order drift dominates the transverse azimuth error, which results from the gyro drift coefficients that occur in corresponding directions. Simulations are conducted to validate the theoretical analysis and the deduced analytical expressions. The results show that the proposed hybrid transverse navigation can ensure the same accuracy and oscillation characteristics in polar areas as the traditional algorithm in low and mid latitude regions.

  2. Boomerang Satellites

    Science.gov (United States)

    Hesselbrock, Andrew; Minton, David A.

    2017-10-01

    We recently reported that the orbital architecture of the Martian environment allows for material in orbit around the planet to ``cycle'' between orbiting the planet as a ring, or as coherent satellites. Here we generalize our previous analysis to examine several factors that determine whether satellites accreting at the edge of planetary rings will cycle. In order for the orbiting material to cycle, tidal evolution must decrease the semi-major axis of any accreting satellites. In some systems, the density of the ring/satellite material, the surface mass density of the ring, the tidal parameters of the system, and the rotation rate of the primary body contribute to a competition between resonant ring torques and tidal dissipation that prevent this from occurring, either permanently or temporarily. Analyzing these criteria, we examine various bodies in our solar system (such as Saturn, Uranus, and Eris) to identify systems where cycling may occur. We find that a ring-satellite cycle may give rise to the current Uranian ring-satellite system, and suggest that Miranda may have formed from an early, more massive Uranian ring.

  3. Intelligent personal navigator supported by knowledge-based systems for estimating dead reckoning navigation parameters

    Science.gov (United States)

    Moafipoor, Shahram

    two-stage Kalman Filter approach. The performance comparison of the algorithm based on different field and simulated datasets, with varying levels of sensor errors, showed that 90 per cent success rate was achieved in detection of outliers for SL and 80 per cent for SD. The SL is predicted for both KBS-based ANN and FL approaches with an average accumulated error of 2 per cent, observed for the total distance traveled, which is generally an improvement over most of the existing pedometry systems. The target accuracy of the system is +/-(3-5)m CEP50 (circular error, probable 50%). This dissertation provides a performance analysis in the outdoor and indoor environments for different operators. Another objective of this dissertation is to test the system's navigation limitation in DR mode in terms of time and trajectory length in order to determine the upper limit of indoor operations. It was determined that for more than four indoor loops, where the user walked 261m in about 6.5 minutes, the DR performance met the required accuracy specifications. However, these results are only relevant to the existing data. Future studies should consider more comprehensive performance analysis for longer trajectories in challenging environments and possible extension to image-based navigation to expand the indoor capability of the system.

  4. GNSS-SLR satellite co-location for the estimate of local ties

    Science.gov (United States)

    Bruni, Sara; Zerbini, Susanna; Errico, Maddalena; Santi, Efisio

    2013-04-01

    The current realization of the International Terrestrial Reference Frame (ITRF) is based on four different space-geodetic techniques, so that the benefits brought by each observing system to the definition of the frame can compensate for the drawbacks of the others and technique-specific systematic errors might be identified. The strategy used to combine the observations from the different techniques is then of prominent importance for the realization of a precise and stable reference frame. This study concentrates, in particular, on the combination of Satellite Laser Ranging (SLR) and Global Navigation Satellite System (GNSS) observations by exploiting satellite co-locations. This innovative approach is based on the fact that laser tracking of GNSS satellites, carrying on board laser reflector arrays, allows for the combination of optical and microwave signals in the determination of the spacecraft orbit. Besides, the use of satellite co-locations differs quite significantly from the traditional combination method in which each single technique solution is carried out autonomously and is interrelated in a second step. One of the benefits of the approach adopted in this study is that it allows for an independent validation of the local tie, i.e. of the vector connecting the SLR and GNSS reference points in a multi-techniques station. Typically, local ties are expressed by a single value, measured with ground-based geodetic techniques and taken as constant. In principle, however, local ties might show time variations likely caused by the different monumentation characteristics of the GNSS antennas with respect to those of a SLR system. This study evaluates the possibility of using the satellite co-location approach to generate local-ties time series by means of observations available for a selected network of ILRS stations. The data analyzed in this study were acquired as part of the NASA's Earth Science Data Systems and are archived and distributed by the Crustal

  5. Reward positivity: Reward prediction error or salience prediction error?

    Science.gov (United States)

    Heydari, Sepideh; Holroyd, Clay B

    2016-08-01

    The reward positivity is a component of the human ERP elicited by feedback stimuli in trial-and-error learning and guessing tasks. A prominent theory holds that the reward positivity reflects a reward prediction error signal that is sensitive to outcome valence, being larger for unexpected positive events relative to unexpected negative events (Holroyd & Coles, 2002). Although the theory has found substantial empirical support, most of these studies have utilized either monetary or performance feedback to test the hypothesis. However, in apparent contradiction to the theory, a recent study found that unexpected physical punishments also elicit the reward positivity (Talmi, Atkinson, & El-Deredy, 2013). The authors of this report argued that the reward positivity reflects a salience prediction error rather than a reward prediction error. To investigate this finding further, in the present study participants navigated a virtual T maze and received feedback on each trial under two conditions. In a reward condition, the feedback indicated that they would either receive a monetary reward or not and in a punishment condition the feedback indicated that they would receive a small shock or not. We found that the feedback stimuli elicited a typical reward positivity in the reward condition and an apparently delayed reward positivity in the punishment condition. Importantly, this signal was more positive to the stimuli that predicted the omission of a possible punishment relative to stimuli that predicted a forthcoming punishment, which is inconsistent with the salience hypothesis. © 2016 Society for Psychophysiological Research.

  6. A new systematic calibration method of ring laser gyroscope inertial navigation system

    Science.gov (United States)

    Wei, Guo; Gao, Chunfeng; Wang, Qi; Wang, Qun; Xiong, Zhenyu; Long, Xingwu

    2016-10-01

    Inertial navigation system has been the core component of both military and civil navigation systems. Before the INS is put into application, it is supposed to be calibrated in the laboratory in order to compensate repeatability error caused by manufacturing. Discrete calibration method cannot fulfill requirements of high-accurate calibration of the mechanically dithered ring laser gyroscope navigation system with shock absorbers. This paper has analyzed theories of error inspiration and separation in detail and presented a new systematic calibration method for ring laser gyroscope inertial navigation system. Error models and equations of calibrated Inertial Measurement Unit are given. Then proper rotation arrangement orders are depicted in order to establish the linear relationships between the change of velocity errors and calibrated parameter errors. Experiments have been set up to compare the systematic errors calculated by filtering calibration result with those obtained by discrete calibration result. The largest position error and velocity error of filtering calibration result are only 0.18 miles and 0.26m/s compared with 2 miles and 1.46m/s of discrete calibration result. These results have validated the new systematic calibration method and proved its importance for optimal design and accuracy improvement of calibration of mechanically dithered ring laser gyroscope inertial navigation system.

  7. Control algorithms for autonomous robot navigation

    International Nuclear Information System (INIS)

    Jorgensen, C.C.

    1985-01-01

    This paper examines control algorithm requirements for autonomous robot navigation outside laboratory environments. Three aspects of navigation are considered: navigation control in explored terrain, environment interactions with robot sensors, and navigation control in unanticipated situations. Major navigation methods are presented and relevance of traditional human learning theory is discussed. A new navigation technique linking graph theory and incidental learning is introduced

  8. An Enhanced Non-Coherent Pre-Filter Design for Tracking Error Estimation in GNSS Receivers.

    Science.gov (United States)

    Luo, Zhibin; Ding, Jicheng; Zhao, Lin; Wu, Mouyan

    2017-11-18

    Tracking error estimation is of great importance in global navigation satellite system (GNSS) receivers. Any inaccurate estimation for tracking error will decrease the signal tracking ability of signal tracking loops and the accuracies of position fixing, velocity determination, and timing. Tracking error estimation can be done by traditional discriminator, or Kalman filter-based pre-filter. The pre-filter can be divided into two categories: coherent and non-coherent. This paper focuses on the performance improvements of non-coherent pre-filter. Firstly, the signal characteristics of coherent and non-coherent integration-which are the basis of tracking error estimation-are analyzed in detail. After that, the probability distribution of estimation noise of four-quadrant arctangent (ATAN2) discriminator is derived according to the mathematical model of coherent integration. Secondly, the statistical property of observation noise of non-coherent pre-filter is studied through Monte Carlo simulation to set the observation noise variance matrix correctly. Thirdly, a simple fault detection and exclusion (FDE) structure is introduced to the non-coherent pre-filter design, and thus its effective working range for carrier phase error estimation extends from (-0.25 cycle, 0.25 cycle) to (-0.5 cycle, 0.5 cycle). Finally, the estimation accuracies of discriminator, coherent pre-filter, and the enhanced non-coherent pre-filter are evaluated comprehensively through the carefully designed experiment scenario. The pre-filter outperforms traditional discriminator in estimation accuracy. In a highly dynamic scenario, the enhanced non-coherent pre-filter provides accuracy improvements of 41.6%, 46.4%, and 50.36% for carrier phase error, carrier frequency error, and code phase error estimation, respectively, when compared with coherent pre-filter. The enhanced non-coherent pre-filter outperforms the coherent pre-filter in code phase error estimation when carrier-to-noise density ratio

  9. Models for map building and navigation

    International Nuclear Information System (INIS)

    Penna, M.A.; Jian Wu

    1993-01-01

    In this paper the authors present several models for solving map building and navigation problems. These models are motivated by biological processes, and presented in the context of artificial neural networks. Since the nodes, weights, and threshold functions of the models all have physical meanings, they can easily predict network topologies and avoid traditional trial-and-error training. On one hand, this makes their models useful in constructing solutions to engineering problems (problems such as those that occur in robotics, for example). On the other hand, this might also contribute to the ability of their models to explain some biological processes, few of which are completely understood at this time

  10. Mobile Robot Navigation

    DEFF Research Database (Denmark)

    Andersen, Jens Christian

    2007-01-01

    the current position to a desired destination. This thesis presents and experimentally validates solutions for road classification, obstacle avoidance and mission execution. The road classification is based on laser scanner measurements and supported at longer ranges by vision. The road classification...... is sufficiently sensitive to separate the road from flat roadsides, and to distinguish asphalt roads from gravelled roads. The vision-based road detection uses a combination of chromaticity and edge detection to outline the traversable part of the road based on a laser scanner classified sample area....... The perception of these two sensors are utilised by a path planner to allow a number of drive modes, and especially the ability to follow road edges are investigated. The navigation mission is controlled by a script language. The navigation script controls route sequencing, junction detection, junction crossing...

  11. Performance Improvement of Inertial Navigation System by Using Magnetometer with Vehicle Dynamic Constraints

    Directory of Open Access Journals (Sweden)

    Daehee Won

    2015-01-01

    Full Text Available A navigation algorithm is proposed to increase the inertial navigation performance of a ground vehicle using magnetic measurements and dynamic constraints. The navigation solutions are estimated based on inertial measurements such as acceleration and angular velocity measurements. To improve the inertial navigation performance, a three-axis magnetometer is used to provide the heading angle, and nonholonomic constraints (NHCs are introduced to increase the correlation between the velocity and the attitude equation. The NHCs provide a velocity feedback to the attitude, which makes the navigation solution more robust. Additionally, an acceleration-based roll and pitch estimation is applied to decrease the drift when the acceleration is within certain boundaries. The magnetometer and NHCs are combined with an extended Kalman filter. An experimental test was conducted to verify the proposed method, and a comprehensive analysis of the performance in terms of the position, velocity, and attitude showed that the navigation performance could be improved by using the magnetometer and NHCs. Moreover, the proposed method could improve the estimation performance for the position, velocity, and attitude without any additional hardware except an inertial sensor and magnetometer. Therefore, this method would be effective for ground vehicles, indoor navigation, mobile robots, vehicle navigation in urban canyons, or navigation in any global navigation satellite system-denied environment.

  12. Navigational efficiency in a biased and correlated random walk model of individual animal movement.

    Science.gov (United States)

    Bailey, Joseph D; Wallis, Jamie; Codling, Edward A

    2018-01-01

    Understanding how an individual animal is able to navigate through its environment is a key question in movement ecology that can give insight into observed movement patterns and the mechanisms behind them. Efficiency of navigation is important for behavioral processes at a range of different spatio-temporal scales, including foraging and migration. Random walk models provide a standard framework for modeling individual animal movement and navigation. Here we consider a vector-weighted biased and correlated random walk (BCRW) model for directed movement (taxis), where external navigation cues are balanced with forward persistence. We derive a mathematical approximation of the expected navigational efficiency for any BCRW of this form and confirm the model predictions using simulations. We demonstrate how the navigational efficiency is related to the weighting given to forward persistence and external navigation cues, and highlight the counter-intuitive result that for low (but realistic) levels of error on forward persistence, a higher navigational efficiency is achieved by giving more weighting to this indirect navigation cue rather than direct navigational cues. We discuss and interpret the relevance of these results for understanding animal movement and navigation strategies. © 2017 by the Ecological Society of America.

  13. A Self-Tuning Kalman Filter for Autonomous Navigation using the Global Positioning System (GPS)

    Science.gov (United States)

    Truong, S. H.

    1999-01-01

    Most navigation systems currently operated by NASA are ground-based, and require extensive support to produce accurate results. Recently developed systems that use Kalman filter and GPS data for orbit determination greatly reduce dependency on ground support, and have potential to provide significant economies for NASA spacecraft navigation. These systems, however, still rely on manual tuning from analysts. A sophisticated neuro-fuzzy component fully integrated with the flight navigation system can perform the self-tuning capability for the Kalman filter and help the navigation system recover from estimation errors in real time.

  14. A Novel Augmented Reality Navigation System for Endoscopic Sinus and Skull Base Surgery: A Feasibility Study.

    Directory of Open Access Journals (Sweden)

    Liang Li

    Full Text Available To verify the reliability and clinical feasibility of a self-developed navigation system based on an augmented reality technique for endoscopic sinus and skull base surgery.In this study we performed a head phantom and cadaver experiment to determine the display effect and accuracy of our navigational system. We compared cadaver head-based simulated operations, the target registration error, operation time, and National Aeronautics and Space Administration Task Load Index scores of our navigation system to conventional navigation systems.The navigation system developed in this study has a novel display mode capable of fusing endoscopic images to three-dimensional (3-D virtual images. In the cadaver head experiment, the target registration error was 1.28 ± 0.45 mm, which met the accepted standards of a navigation system used for nasal endoscopic surgery. Compared with conventional navigation systems, the new system was more effective in terms of operation time and the mental workload of surgeons, which is especially important for less experienced surgeons.The self-developed augmented reality navigation system for endoscopic sinus and skull base surgery appears to have advantages that outweigh those of conventional navigation systems. We conclude that this navigational system will provide rhinologists with more intuitive and more detailed imaging information, thus reducing the judgment time and mental workload of surgeons when performing complex sinus and skull base surgeries. Ultimately, this new navigational system has potential to increase the quality of surgeries. In addition, the augmented reality navigational system could be of interest to junior doctors being trained in endoscopic techniques because it could speed up their learning. However, it should be noted that the navigation system serves as an adjunct to a surgeon's skills and knowledge, not as a substitute.

  15. A Novel Augmented Reality Navigation System for Endoscopic Sinus and Skull Base Surgery: A Feasibility Study

    Science.gov (United States)

    Li, Liang; Yang, Jian; Chu, Yakui; Wu, Wenbo; Xue, Jin; Liang, Ping; Chen, Lei

    2016-01-01

    Objective To verify the reliability and clinical feasibility of a self-developed navigation system based on an augmented reality technique for endoscopic sinus and skull base surgery. Materials and Methods In this study we performed a head phantom and cadaver experiment to determine the display effect and accuracy of our navigational system. We compared cadaver head-based simulated operations, the target registration error, operation time, and National Aeronautics and Space Administration Task Load Index scores of our navigation system to conventional navigation systems. Results The navigation system developed in this study has a novel display mode capable of fusing endoscopic images to three-dimensional (3-D) virtual images. In the cadaver head experiment, the target registration error was 1.28 ± 0.45 mm, which met the accepted standards of a navigation system used for nasal endoscopic surgery. Compared with conventional navigation systems, the new system was more effective in terms of operation time and the mental workload of surgeons, which is especially important for less experienced surgeons. Conclusion The self-developed augmented reality navigation system for endoscopic sinus and skull base surgery appears to have advantages that outweigh those of conventional navigation systems. We conclude that this navigational system will provide rhinologists with more intuitive and more detailed imaging information, thus reducing the judgment time and mental workload of surgeons when performing complex sinus and skull base surgeries. Ultimately, this new navigational system has potential to increase the quality of surgeries. In addition, the augmented reality navigational system could be of interest to junior doctors being trained in endoscopic techniques because it could speed up their learning. However, it should be noted that the navigation system serves as an adjunct to a surgeon’s skills and knowledge, not as a substitute. PMID:26757365

  16. 33 CFR 2.36 - Navigable waters of the United States, navigable waters, and territorial waters.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Navigable waters of the United States, navigable waters, and territorial waters. 2.36 Section 2.36 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY GENERAL JURISDICTION Jurisdictional Terms § 2.36 Navigable waters...

  17. Application Of Kalman Filter In Navigation Process Of Automated Guided Vehicles

    Directory of Open Access Journals (Sweden)

    Śmieszek Mirosław

    2015-09-01

    Full Text Available In the paper an example of application of the Kalman filtering in the navigation process of automatically guided vehicles was presented. The basis for determining the position of automatically guided vehicles is odometry – the navigation calculation. This method of determining the position of a vehicle is affected by many errors. In order to eliminate these errors, in modern vehicles additional systems to increase accuracy in determining the position of a vehicle are used. In the latest navigation systems during route and position adjustments the probabilistic methods are used. The most frequently applied are Kalman filters.

  18. The PPP Precision Analysis Based on BDS Regional Navigation System

    Directory of Open Access Journals (Sweden)

    ZHU Yongxing

    2015-04-01

    Full Text Available BeiDou navigation satellite system(BDS has opened service in most of the Asia-Pacific region, it offers the possibility to break the technological monopoly of GPS in the field of high-precision applications, so its performance of precise point positioning (PPP has been a great concern. Firstly, the constellation of BeiDou regional navigation system and BDS/GPS tracking network is introduced. Secondly, the precise ephemeris and clock offset accuracy of BeiDou satellite based on domestic tracking network is analyzed. Finally, the static and kinematic PPP accuracy is studied, and compared with the GPS. The actual measured numerical example shows that the static and kinematic PPP based on BDS can achieve centimeter-level and decimeter-level respectively, reaching the current level of GPS precise point positioning.

  19. 3D Reconfigurable MPSoC for Unmanned Spacecraft Navigation

    Science.gov (United States)

    Dekoulis, George

    2016-07-01

    This paper describes the design of a new lightweight spacecraft navigation system for unmanned space missions. The system addresses the demands for more efficient autonomous navigation in the near-Earth environment or deep space. The proposed instrumentation is directly suitable for unmanned systems operation and testing of new airborne prototypes for remote sensing applications. The system features a new sensor technology and significant improvements over existing solutions. Fluxgate type sensors have been traditionally used in unmanned defense systems such as target drones, guided missiles, rockets and satellites, however, the guidance sensors' configurations exhibit lower specifications than the presented solution. The current implementation is based on a recently developed material in a reengineered optimum sensor configuration for unprecedented low-power consumption. The new sensor's performance characteristics qualify it for spacecraft navigation applications. A major advantage of the system is the efficiency in redundancy reduction achieved in terms of both hardware and software requirements.

  20. Navigation studies based on the ubiquitous positioning technologies

    Science.gov (United States)

    Ye, Lei; Mi, Weijie; Wang, Defeng

    2007-11-01

    This paper summarized the nowadays positioning technologies, such as absolute positioning methods and relative positioning methods, indoor positioning and outdoor positioning, active positioning and passive positioning. Global Navigation Satellite System (GNSS) technologies were introduced as the omnipresent out-door positioning technologies, including GPS, GLONASS, Galileo and BD-1/2. After analysis of the shortcomings of GNSS, indoor positioning technologies were discussed and compared, including A-GPS, Cellular network, Infrared, Electromagnetism, Computer Vision Cognition, Embedded Pressure Sensor, Ultrasonic, RFID (Radio Frequency IDentification), Bluetooth, WLAN etc.. Then the concept and characteristics of Ubiquitous Positioning was proposed. After the ubiquitous positioning technologies contrast and selection followed by system engineering methodology, a navigation system model based on Incorporate Indoor-Outdoor Positioning Solution was proposed. And this model was simulated in the Galileo Demonstration for World Expo Shanghai project. In the conclusion, the prospects of ubiquitous positioning based navigation were shown, especially to satisfy the public location information acquiring requirement.

  1. Systems and Methods for Determining Inertial Navigation System Faults

    Science.gov (United States)

    Bharadwaj, Raj Mohan (Inventor); Bageshwar, Vibhor L. (Inventor); Kim, Kyusung (Inventor)

    2017-01-01

    An inertial navigation system (INS) includes a primary inertial navigation system (INS) unit configured to receive accelerometer measurements from an accelerometer and angular velocity measurements from a gyroscope. The primary INS unit is further configured to receive global navigation satellite system (GNSS) signals from a GNSS sensor and to determine a first set of kinematic state vectors based on the accelerometer measurements, the angular velocity measurements, and the GNSS signals. The INS further includes a secondary INS unit configured to receive the accelerometer measurements and the angular velocity measurements and to determine a second set of kinematic state vectors of the vehicle based on the accelerometer measurements and the angular velocity measurements. A health management system is configured to compare the first set of kinematic state vectors and the second set of kinematic state vectors to determine faults associated with the accelerometer or the gyroscope based on the comparison.

  2. Satellite Application for Disaster Management Information Systems

    Science.gov (United States)

    Okpanachi, George

    Abstract Satellites are becoming increasingly vital to modern day disaster management activities. Earth observation (EO) satellites provide images at various wavelengths that assist rapid-mapping in all phases of the disaster management cycle: mitigation of potential risks in a given area, preparedness for eventual disasters, immediate response to a disaster event, and the recovery/reconstruction efforts follo wing it. Global navigation satellite systems (GNSS) such as the Global Positioning System (GPS) assist all the phases by providing precise location and navigation data, helping manage land and infrastructures, and aiding rescue crews coordinate their search efforts. Effective disaster management is a complex problem, because it involves many parameters, which are usually not easy to measure and even identify: Analysis of current situation, planning, optimum resource management, coordination, controlling and monitoring current activities and making quick and correct decisions are only some of these parameters, whose complete list is very long. Disaster management information systems (DMIS) assist disaster management to analyse the situation better, make decisions and suggest further actions following the emergency plans. This requires not only fast and thorough processing and optimization abilities, but also real-time data provided to the DMIS. The need of DMIS for disaster’s real-time data can be satisfied by small satellites data utilization. Small satellites can provide up-to-data, plus a better media to transfer data. This paper suggests a rationale and a framework for utilization of small Satellite data by DMIS. DMIS should be used ‘’before’’, ‘’during’’ and ‘’after’’ the disasters. Data provided by the Small Satellites are almost crucial in any period of the disasters, because early warning can save lives, and satellite data may help to identify disasters before they occur. The paper also presents’ ‘when’’,

  3. Velocity navigator for motion compensated thermometry.

    Science.gov (United States)

    Maier, Florian; Krafft, Axel J; Yung, Joshua P; Stafford, R Jason; Elliott, Andrew; Dillmann, Rüdiger; Semmler, Wolfhard; Bock, Michael

    2012-02-01

    Proton resonance frequency shift thermometry is sensitive to breathing motion that leads to incorrect phase differences. In this work, a novel velocity-sensitive navigator technique for triggering MR thermometry image acquisition is presented. A segmented echo planar imaging pulse sequence was modified for velocity-triggered temperature mapping. Trigger events were generated when the estimated velocity value was less than 0.2 cm/s during the slowdown phase in parallel to the velocity-encoding direction. To remove remaining high-frequency spikes from pulsation in real time, a Kalman filter was applied to the velocity navigator data. A phantom experiment with heating and an initial volunteer experiment without heating were performed to show the applicability of this technique. Additionally, a breath-hold experiment was conducted for comparison. A temperature rise of ΔT = +37.3°C was seen in the phantom experiment, and a root mean square error (RMSE) outside the heated region of 2.3°C could be obtained for periodic motion. In the volunteer experiment, a RMSE of 2.7°C/2.9°C (triggered vs. breath hold) was measured. A novel velocity navigator with Kalman filter postprocessing in real time significantly improves the temperature accuracy over non-triggered acquisitions and suggests being comparable to a breath-held acquisition. The proposed technique might be clinically applied for monitoring of thermal ablations in abdominal organs.

  4. A self-calibration method in single-axis rotational inertial navigation system with rotating mechanism

    Science.gov (United States)

    Chen, Yuanpei; Wang, Lingcao; Li, Kui

    2017-10-01

    Rotary inertial navigation modulation mechanism can greatly improve the inertial navigation system (INS) accuracy through the rotation. Based on the single-axis rotational inertial navigation system (RINS), a self-calibration method is put forward. The whole system is applied with the rotation modulation technique so that whole inertial measurement unit (IMU) of system can rotate around the motor shaft without any external input. In the process of modulation, some important errors can be decoupled. Coupled with the initial position information and attitude information of the system as the reference, the velocity errors and attitude errors in the rotation are used as measurement to perform Kalman filtering to estimate part of important errors of the system after which the errors can be compensated into the system. The simulation results show that the method can complete the self-calibration of the single-axis RINS in 15 minutes and estimate gyro drifts of three-axis, the installation error angle of the IMU and the scale factor error of the gyro on z-axis. The calibration accuracy of optic gyro drifts could be about 0.003°/h (1σ) as well as the scale factor error could be about 1 parts per million (1σ). The errors estimate reaches the system requirements which can effectively improve the longtime navigation accuracy of the vehicle or the boat.

  5. Satellite Radio

    Indian Academy of Sciences (India)

    Satellites have been a highly effective platform for multi- form broadcasts. This has led to a ... diversity offormats, languages, genre, and a universal reach that cannot be met by .... programs can be delivered to whom it is intended. In the case of.

  6. Modeling coherent errors in quantum error correction

    Science.gov (United States)

    Greenbaum, Daniel; Dutton, Zachary

    2018-01-01

    Analysis of quantum error correcting codes is typically done using a stochastic, Pauli channel error model for describing the noise on physical qubits. However, it was recently found that coherent errors (systematic rotations) on physical data qubits result in both physical and logical error rates that differ significantly from those predicted by a Pauli model. Here we examine the accuracy of the Pauli approximation for noise containing coherent errors (characterized by a rotation angle ɛ) under the repetition code. We derive an analytic expression for the logical error channel as a function of arbitrary code distance d and concatenation level n, in the small error limit. We find that coherent physical errors result in logical errors that are partially coherent and therefore non-Pauli. However, the coherent part of the logical error is negligible at fewer than {ε }-({dn-1)} error correction cycles when the decoder is optimized for independent Pauli errors, thus providing a regime of validity for the Pauli approximation. Above this number of correction cycles, the persistent coherent logical error will cause logical failure more quickly than the Pauli model would predict, and this may need to be combated with coherent suppression methods at the physical level or larger codes.

  7. Navigation Solution for a Multiple Satellite and Multiple Ground Architecture

    Science.gov (United States)

    2014-09-14

    fuel case. Specific to the application at hand, Ng, Brietfeller and Ledebuhr [34] derive a cost function that harnesses the multi-objective nature of...differential correction algorithm. 3.4 Coordinate System Throughout this research the coordinate system used is the Geocentric Inertial Coordinate...achieving a successful fly-by for a minimum fuel cost . Further information from the TMN differential correction algorithm can be gleaned from Figure 4.4

  8. Indoor navigation by image recognition

    Science.gov (United States)

    Choi, Io Teng; Leong, Chi Chong; Hong, Ka Wo; Pun, Chi-Man

    2017-07-01

    With the progress of smartphones hardware, it is simple on smartphone using image recognition technique such as face detection. In addition, indoor navigation system development is much slower than outdoor navigation system. Hence, this research proves a usage of image recognition technique for navigation in indoor environment. In this paper, we introduced an indoor navigation application that uses the indoor environment features to locate user's location and a route calculating algorithm to generate an appropriate path for user. The application is implemented on Android smartphone rather than iPhone. Yet, the application design can also be applied on iOS because the design is implemented without using special features only for Android. We found that digital navigation system provides better and clearer location information than paper map. Also, the indoor environment is ideal for Image recognition processing. Hence, the results motivate us to design an indoor navigation system using image recognition.

  9. A Navigation/Positioning Service Based on Pseudolites Installed on Stratospheric Airships

    OpenAIRE

    辻井, 利昭; TSUJII, Toshiaki; 張替, 正敏; HARIGAE, Masatoshi

    2002-01-01

    Transmitters of GPS-like signals, called pseudolites (PL) or "pseudo-satellites" have been widely investigated as an additional ranging source for performance enhancement of GPS. Ground-based GPS augmentation systems using pseudolites have been investigated for several applications such as vehicle navigation in downtown urban canyons, positioning in deep open-cut pits and mines and precision landing of aircraft. The concept of an innovative GPS navigation/ positioning system augmented by airs...

  10. Flexible navigation response in common cuckoos Cuculus canorus displaced experimentally during migration

    DEFF Research Database (Denmark)

    Willemoes, Mikkel; Blas, Julio; Wikelski, Martin

    2015-01-01

    Migrating birds follow innate species-specific migration programs capable of guiding them along complex spatio-temporal routes, which may include several separate staging areas. Indeed, migration routes of common cuckoos Cuculus canorus show little variation between individuals; yet, satellite...... tracks of 11 experimentally displaced adults revealed an unexpected flexibility in individual navigation responses. The birds compensated for the translocation to unfamiliar areas by travelling toward population-specific staging areas, demonstrating true navigation capabilities. Individual responses...

  11. Gigantic Circular Shock Acoustic Waves in the Ionosphere Triggered by the Launch of FORMOSAT-5 Satellite

    Science.gov (United States)

    Chou, Min-Yang; Shen, Ming-Hsueh; Lin, Charles C. H.; Yue, Jia; Chen, Chia-Hung; Liu, Jann-Yenq; Lin, Jia-Ting

    2018-02-01

    The launch of SpaceX Falcon 9 rocket delivered Taiwan's FORMOSAT-5 satellite to orbit from Vandenberg Air Force Base in California at 18:51:00 UT on 24 August 2017. To facilitate the delivery of FORMOSAT-5 to its mission orbit altitude of 720 km, the Falcon 9 made a steep initial ascent. During the launch, the supersonic rocket induced gigantic circular shock acoustic waves (SAWs) in total electron content (TEC) over the western United States beginning approximately 5 min after the liftoff. The circular SAWs emanated outward with 20 min duration, horizontal phase velocities of 629-726 m/s, horizontal wavelengths of 390-450 km, and period of 10.28 ± 1 min. This is the largest rocket-induced circular SAWs on record, extending approximately 114-128°W in longitude and 26-39°N in latitude ( 1,500 km in diameter), and was due to the unique, nearly vertical attitude of the rocket during orbit insertion. The rocket-exhaust plume subsequently created a large-scale ionospheric plasma hole ( 900 km in diameter) with 10-70% TEC depletions in comparison with the reference days. While the circular SAWs, with a relatively small amplitude of TEC fluctuations, likely did not introduce range errors into the Global Navigation Satellite Systems navigation and positioning system, the subsequent ionospheric plasma hole, on the other hand, could have caused spatial gradients in the ionospheric plasma potentially leading to a range error of 1 m.

  12. MARAD maritime experiments using the NASA ATS-6 satellite

    Science.gov (United States)

    Brandel, D. L.; Kaminsky, Y.

    1975-01-01

    The objectives of the MARAD maritime experiments (conducted in the L-band fan beam mode) using the ATS-6 satellite are detailed. They include the following: (1) to evaluate the economic benefits of fleet operators through the use of satellite communications, (2) to evaluate performance criteria for shipboard terminal equipment needed to establish various grades of fleet operations services using commercial satellite systems, (3) to determine the effects of signal propagation, ship radio frequency noise, and ship antenna pointing on the maritime communications and navigation channel, and (4) to evaluate various modems for the transmission and reception of voice, data and position location signals via satellite systems.

  13. Servo-Drive Amplifier for Micro-Satellite Superconductor-Levitated Flywheels, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A new servo-drive technology is available to support energy storage and navigation for micro-satellites. Exploiting the ?pinning? effect of high-temperature...

  14. Surgical navigation in urology: European perspective.

    Science.gov (United States)

    Rassweiler, Jens; Rassweiler, Marie-Claire; Müller, Michael; Kenngott, Hannes; Meinzer, Hans-Peter; Teber, Dogu

    2014-01-01

    Use of virtual reality to navigate open and endoscopic surgery has significantly evolved during the last decade. Current status of seven most interesting projects inside the European Association of Urology section of uro-technology is summarized with review of literature. Marker-based endoscopic tracking during laparoscopic radical prostatectomy using high-definition technology reduces positive margins. Marker-based endoscopic tracking during laparoscopic partial nephrectomy by mechanical overlay of three-dimensional-segmented virtual anatomy is helpful during planning of trocar placement and dissection of renal hilum. Marker-based, iPAD-assisted puncture of renal collecting system shows more benefit for trainees with reduction of radiation exposure. Three-dimensional laser-assisted puncture of renal collecting system using Uro-Dyna-CT realized in an ex-vivo model enables minimal radiation time. Electromagnetic tracking for puncture of renal collecting system using a sensor at the tip of ureteral catheter worked in an in-vivo model of porcine ureter and kidney. Attitude tracking for ultrasound-guided puncture of renal tumours by accelerometer reduces the puncture error from 4.7 to 1.8 mm. Feasibility of electromagnetic and optical tracking with the da Vinci telemanipulator was shown in vitro as well as using in-vivo model of oesophagectomy. Target registration error was 11.2 mm because of soft-tissue deformation. Intraoperative navigation is helpful during percutaneous puncture collecting system and biopsy of renal tumour using various tracking techniques. Early clinical studies demonstrate advantages of marker-based navigation during laparoscopic radical prostatectomy and partial nephrectomy. Combination of different tracking techniques may further improve this interesting addition to video-assisted surgery.

  15. Isolated core vs. superficial cooling effects on virtual maze navigation.

    Science.gov (United States)

    Payne, Jennifer; Cheung, Stephen S

    2007-07-01

    Cold impairs cognitive performance and is a common occurrence in many survival situations. Altered behavior patterns due to impaired navigation abilities in cold environments are potential problems in lost-person situations. We investigated the separate effects of low core temperature and superficial cooling on a spatially demanding virtual navigation task. There were 12 healthy men who were passively cooled via 15 degrees C water immersion to a core temperature of 36.0 degrees C, then transferred to a warm (40 degrees C) water bath to eliminate superficial shivering while completing a series of 20 virtual computer mazes. In a control condition, subjects rested in a thermoneutral (approximately 35 degrees C) bath for a time-matched period before being transferred to a warm bath for testing. Superficial cooling and distraction were achieved by whole-body immersion in 35 degree water for a time-matched period, followed by lower leg immersion in 10 degree C water for the duration of the navigational tests. Mean completion time and mean error scores for the mazes were not significantly different (p > 0.05) across the core cooling (16.59 +/- 11.54 s, 0.91 +/- 1.86 errors), control (15.40 +/- 8.85 s, 0.82 +/- 1.76 errors), and superficial cooling (15.19 +/- 7.80 s, 0.77 +/- 1.40 errors) conditions. Separately reducing core temperature or increasing cold sensation in the lower extremities did not influence performance on virtual computer mazes, suggesting that navigation is more resistive to cooling than other, simpler cognitive tasks. Further research is warranted to explore navigational ability at progressively lower core and skin temperatures, and in different populations.

  16. Multitarget Approaches to Robust Navigation

    Data.gov (United States)

    National Aeronautics and Space Administration — The performance, stability, and statistical consistency of a vehicle's navigation algorithm are vitally important to the success and safety of its mission....

  17. Advancements in Optical Navigation Capabilities

    Data.gov (United States)

    National Aeronautics and Space Administration — The Goddard Image Analysis and Navigation Tool (GIANT) is a tool that was developed for the Origins, Spectral Interpretation, Resource Identification,...

  18. Letting in-vehicle navigation lead the way: Older drivers' perceptions of and ability to follow a GPS navigation system.

    Science.gov (United States)

    Stinchcombe, Arne; Gagnon, Sylvain; Kateb, Matthew; Curtis, Meredith; Porter, Michelle M; Polgar, Jan; Bédard, Michel

    2017-09-01

    In-vehicle navigation systems have the potential to simplify the driving task by reducing the drivers' need to engage in wayfinding, especially in unfamiliar environments. This study sought to characterize older drivers' overall assessment of using in-vehicle GPS technology as part of a research study and to explore whether the use of this technology has an impact on participants' driving behaviour. Forty-seven older drivers completed an on-road evaluation where directions were provided by an in-vehicle GPS navigation system and their behaviour was recorded using video technology. They later completed a questionnaire to assess their perception of the navigation system. After the study, participants were grouped based on whether they were able to accurately follow the instructions provided by the navigation system. The results indicated that most drivers were satisfied with the navigation technology and found the directions it provided to be clear. There were no statistically significant differences in the number of on-road errors committed by drivers who did not follow the directions from the navigation system in comparison to drivers who did follow the directions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Establishment of high-precision navigation system in the Republic of Armenia

    Directory of Open Access Journals (Sweden)

    Manukyan Larisa Vladimirovna

    2015-04-01

    Full Text Available Medium-Earth orbit satellite systems make it possible to provide services on time coordination and navigation support for a wide range of consumers. At present, there are global navigation satellite systems GLONASS (Russia and GPS (USA. Users of these systems have an opportunity to determine their location accurately with the given characteristics of their navigation devices. In all developed countries the progress of geodesy and cartography is closely related to the implementation of advanced new technologies in both scientific and industrial areas. The introduction of new technologies and equipment in production is essential for the development of geodesy and cartography, bringing the existing geodetic networks and cartographic materials to modern condition. In the Republic of Armenia there are also plans on introduction of the systems for monitoring and management of vehicles for various purposes, as well as it is proposed to establish and implement an effective satellite navigation system to monitor and control traffic on the basis of advanced satellite technology. The article describes the basic steps to create the network of reference stations, GPS, aerial photography of much of the territory of Armenia, the creation of digital terrain model and the new maps by orthophotoplans. The analysis of the materials were carried out, on the basis of which in the Republic in 2015 a high-precision navigation system will be created. Due to the hard work of surveyors, cartographers and topographers the Republic was brought to European states level.

  20. Learning for Autonomous Navigation

    Science.gov (United States)

    Angelova, Anelia; Howard, Andrew; Matthies, Larry; Tang, Benyang; Turmon, Michael; Mjolsness, Eric

    2005-01-01

    Robotic ground vehicles for outdoor applications have achieved some remarkable successes, notably in autonomous highway following (Dickmanns, 1987), planetary exploration (1), and off-road navigation on Earth (1). Nevertheless, major challenges remain to enable reliable, high-speed, autonomous navigation in a wide variety of complex, off-road terrain. 3-D perception of terrain geometry with imaging range sensors is the mainstay of off-road driving systems. However, the stopping distance at high speed exceeds the effective lookahead distance of existing range sensors. Prospects for extending the range of 3-D sensors is strongly limited by sensor physics, eye safety of lasers, and related issues. Range sensor limitations also allow vehicles to enter large cul-de-sacs even at low speed, leading to long detours. Moreover, sensing only terrain geometry fails to reveal mechanical properties of terrain that are critical to assessing its traversability, such as potential for slippage, sinkage, and the degree of compliance of potential obstacles. Rovers in the Mars Exploration Rover (MER) mission have got stuck in sand dunes and experienced significant downhill slippage in the vicinity of large rock hazards. Earth-based off-road robots today have very limited ability to discriminate traversable vegetation from non-traversable vegetation or rough ground. It is impossible today to preprogram a system with knowledge of these properties for all types of terrain and weather conditions that might be encountered.

  1. Navigation of the autonomous vehicle reverse movement

    Science.gov (United States)

    Rachkov, M.; Petukhov, S.

    2018-02-01

    The paper presents a mathematical formulation of the vehicle reverse motion along a multi-link polygonal trajectory consisting of rectilinear segments interconnected by nodal points. Relevance of the problem is caused by the need to solve a number of tasks: to save the vehicle in the event of а communication break by returning along the trajectory already passed, to avoid a turn on the ground in constrained obstacles or dangerous conditions, or a partial return stroke for the subsequent bypass of the obstacle and continuation of the forward movement. The method of navigation with direct movement assumes that the reverse path is elaborated by using landmarks. To measure landmarks on board, a block of cameras is placed on a vehicle controlled by the operator through the radio channel. Errors in estimating deviation from the nominal trajectory of motion are determined using the multidimensional correlation analysis apparatus based on the dynamics of a lateral deviation error and a vehicle speed error. The result of the experiment showed a relatively high accuracy in determining the state vector that provides the vehicle reverse motion relative to the reference trajectory with a practically acceptable error while returning to the start point.

  2. Scientific Satellites

    Science.gov (United States)

    1967-01-01

    noise signal level exceeds 10 times the normal background. EXPERIMENTS FOR SATELLITE ASTRONOMY 615 ANTENNA MONOPOLE -., PREAMPLFE = BANDPASS-FILTER...OUTPUT TO AND DETECTOR TELEMETRYCHANNELS (18) CALIBRATION NOISE MATRIX CLOCK NOISE SOURCE ’ON’ SOURCE COMMAND F ROM PROGRAMERP ANTENNA MONOPOLE FIGURE 13...Animal Tempera- ture Sensing for Studying the Effect of Prolonged Orbital Flight on the Circadian Rhythms of Pocket Mice . Unmanned Spacecraft Meeting

  3. Posture estimation for autonomous weeding robots navigation in nursery tree plantations

    DEFF Research Database (Denmark)

    Khot, Law Ramchandra; Tang, Lie; Blackmore, Simon

    2005-01-01

    errors of the system, in x and y direction for all the four lines. Further, it could also be stated that the errors were observed more in the direction of travel of the robot. When robot was navigated through the poles, the positioning accuracy of the system increased after filtering. The accuracy...

  4. Rotational error in path integration: encoding and execution errors in angle reproduction.

    Science.gov (United States)

    Chrastil, Elizabeth R; Warren, William H

    2017-06-01

    Path integration is fundamental to human navigation. When a navigator leaves home on a complex outbound path, they are able to keep track of their approximate position and orientation and return to their starting location on a direct homebound path. However, there are several sources of error during path integration. Previous research has focused almost exclusively on encoding error-the error in registering the outbound path in memory. Here, we also consider execution error-the error in the response, such as turning and walking a homebound trajectory. In two experiments conducted in ambulatory virtual environments, we examined the contribution of execution error to the rotational component of path integration using angle reproduction tasks. In the reproduction tasks, participants rotated once and then rotated again to face the original direction, either reproducing the initial turn or turning through the supplementary angle. One outstanding difficulty in disentangling encoding and execution error during a typical angle reproduction task is that as the encoding angle increases, so does the required response angle. In Experiment 1, we dissociated these two variables by asking participants to report each encoding angle using two different responses: by turning to walk on a path parallel to the initial facing direction in the same (reproduction) or opposite (supplementary angle) direction. In Experiment 2, participants reported the encoding angle by turning both rightward and leftward onto a path parallel to the initial facing direction, over a larger range of angles. The results suggest that execution error, not encoding error, is the predominant source of error in angular path integration. These findings also imply that the path integrator uses an intrinsic (action-scaled) rather than an extrinsic (objective) metric.

  5. Solar satellites

    Energy Technology Data Exchange (ETDEWEB)

    Poher, C.

    1982-01-01

    A reference system design, projected costs, and the functional concepts of a satellite solar power system (SSPS) for converting sunlight falling on solar panels of a satellite in GEO to a multi-GW beam which could be received by a rectenna on earth are outlined. Electricity transmission by microwaves has been demonstrated, and a reference design system for supplying 5 GW dc to earth was devised. The system will use either monocrystalline Si or concentrator GaAs solar cells for energy collection in GEO. Development is still needed to improve the lifespan of the cells. Currently, the cell performance degrades 50 percent in efficiency after 7-8 yr in space. Each SSPS satellite would weigh either 34,000 tons (Si) or 51,000 tons (GaAs), thereby requiring the fabrication of a heavy lift launch vehicle or a single-stage-to-orbit transport in order to minimize launch costs. Costs for the solar panels have been estimated at $500/kW using the GaAs technology, with transport costs for materials to GEO being $40/kg.

  6. Solar satellites

    Science.gov (United States)

    Poher, C.

    A reference system design, projected costs, and the functional concepts of a satellite solar power system (SSPS) for converting sunlight falling on solar panels of a satellite in GEO to a multi-GW beam which could be received by a rectenna on earth are outlined. Electricity transmission by microwaves has been demonstrated, and a reference design system for supplying 5 GW dc to earth was devised. The system will use either monocrystalline Si or concentrator GaAs solar cells for energy collection in GEO. Development is still needed to improve the lifespan of the cells. Currently, the cell performance degrades 50 percent in efficiency after 7-8 yr in space. Each SSPS satellite would weigh either 34,000 tons (Si) or 51,000 tons (GaAs), thereby requiring the fabrication of a heavy lift launch vehicle or a single-stage-to-orbit transport in order to minimize launch costs. Costs for the solar panels have been estimated at $500/kW using the GaAs technology, with transport costs for materials to GEO being $40/kg.

  7. Laser Guidestar Satellite for Ground-based Adaptive Optics Imaging of Geosynchronous Satellites and Astronomical Targets

    Science.gov (United States)

    Marlow, W. A.; Cahoy, K.; Males, J.; Carlton, A.; Yoon, H.

    2015-12-01

    Real-time observation and monitoring of geostationary (GEO) satellites with ground-based imaging systems would be an attractive alternative to fielding high cost, long lead, space-based imagers, but ground-based observations are inherently limited by atmospheric turbulence. Adaptive optics (AO) systems are used to help ground telescopes achieve diffraction-limited seeing. AO systems have historically relied on the use of bright natural guide stars or laser guide stars projected on a layer of the upper atmosphere by ground laser systems. There are several challenges with this approach such as the sidereal motion of GEO objects relative to natural guide stars and limitations of ground-based laser guide stars; they cannot be used to correct tip-tilt, they are not point sources, and have finite angular sizes when detected at the receiver. There is a difference between the wavefront error measured using the guide star compared with the target due to cone effect, which also makes it difficult to use a distributed aperture system with a larger baseline to improve resolution. Inspired by previous concepts proposed by A.H. Greenaway, we present using a space-based laser guide starprojected from a satellite orbiting the Earth. We show that a nanosatellite-based guide star system meets the needs for imaging GEO objects using a low power laser even from 36,000 km altitude. Satellite guide star (SGS) systemswould be well above atmospheric turbulence and could provide a small angular size reference source. CubeSatsoffer inexpensive, frequent access to space at a fraction of the cost of traditional systems, and are now being deployed to geostationary orbits and on interplanetary trajectories. The fundamental CubeSat bus unit of 10 cm cubed can be combined in multiple units and offers a common form factor allowing for easy integration as secondary payloads on traditional launches and rapid testing of new technologies on-orbit. We describe a 6U CubeSat SGS measuring 10 cm x 20 cm x

  8. Regional positioning using a low Earth orbit satellite constellation

    Science.gov (United States)

    Shtark, Tomer; Gurfil, Pini

    2018-02-01

    Global and regional satellite navigation systems are constellations orbiting the Earth and transmitting radio signals for determining position and velocity of users around the globe. The state-of-the-art navigation satellite systems are located in medium Earth orbits and geosynchronous Earth orbits and are characterized by high launching, building and maintenance costs. For applications that require only regional coverage, the continuous and global coverage that existing systems provide may be unnecessary. Thus, a nano-satellites-based regional navigation satellite system in Low Earth Orbit (LEO), with significantly reduced launching, building and maintenance costs, can be considered. Thus, this paper is aimed at developing a LEO constellation optimization and design method, using genetic algorithms and gradient-based optimization. The preliminary results of this study include 268 LEO constellations, aimed at regional navigation in an approximately 1000 km × 1000 km area centered at the geographic coordinates [30, 30] degrees. The constellations performance is examined using simulations, and the figures of merit include total coverage time, revisit time, and geometric dilution of precision (GDOP) percentiles. The GDOP is a quantity that determines the positioning solution accuracy and solely depends on the spatial geometry of the satellites. Whereas the optimization method takes into account only the Earth's second zonal harmonic coefficient, the simulations include the Earth's gravitational field with zonal and tesseral harmonics up to degree 10 and order 10, Solar radiation pressure, drag, and the lunisolar gravitational perturbation.

  9. Utilization of modernized global navigation satellite systems for aircraft-based navigation integrity

    Science.gov (United States)

    Ene, Alexandru

    The objective of this dissertation is to assess whether or not two particular biocomposite materials, made from hemp fabric and cellulose acetate or polyhydroxybutyrate matrices, are capable of being used for structural and/or construction purposes within in the construction and building industry. The objective of this dissertation was addressed by conducting research to meet the following three goals: (1) to measure the basic mechanical properties of hemp/cellulose acetate and hemp/PHB biocomposites and evaluate if they suitable for use in construction applications, (2) to determine how quickly moisture diffuses into the biocomposite materials and how the moisture affects the mechanical behavior, and (3) to determine how well simple models can predict behavior of structural scale laminates in tension and flexure using biocomposite ply behavior. Compression molding was used to manufacturing the biocomposites from hemp fabric and the themoplastic matrices: cellulose acetate and polyhydroxybutyrate. Four methods for determining the fiber volume fraction were evaluated, and the dissolution method, using different solvents for each matrix type, was used to determine the fiber volume fraction for each composite plate manufactured. Both types of biocomposite were tested in tension, compression, shear, and flexure and the measured properties were compared to wood and engineered wood products to assess whether the biocomposite properties are suitable for use in the construction industry. The biocomposites were conditioned in a humid environment to determine the rate of moisture diffusion into the materials. Then saturated specimens and specimens that were saturated and then dried were tested in tension to evaluate how moisture absorption affects the mechanical behavior of the biocomposites. Finally, simple models of laminate behavior based on laminate plate theory were evaluated to determine if ply level behavior could be used to predict structural scale laminate behavior. While the biocomposite strengths in flexure, compression, and shear were comparable to the strengths of wood and wood-based products parallel to grain, the biocomposite strengths exceeded the strengths perpendicular to the wood grain, as would be expected with fabric reinforcement. The biocomposite moduli of elasticity were between 35% and 75% of the wood moduli parallel to grain. While structural shape of the biocomposites could be manipulated to achieve a comparable structural stiffness to replace wood and short fiber FRPs, the biocomposites have comparable stiffness to the engineered wood-products. Thus, in terms of mechanical properties, the biocomposites can be used in place of engineered-wood products. Yet, the higher densities of the biocomposites as compared to wood and engineered-wood products may limit their implementation in construction. The diffusion coefficients for both biocomposites were comparable to wood and higher than the coefficients for synthetic composites as expected due to the hydrophilicity of the natural fibers. Significantly greater moisture absorption of the hemp/cellulose acetate composite as compared to the hemp/PHB composite was attributed to the cellulose acetate itself being hydrophilic whereas PHB is hydrophobic. The rate of diffusion for both materials was found to increase with increasing temperature. Moisture absorption negatively affected the biocomposites as shown through lower initial stiffnesses and higher strains at failure of saturated specimens. The hemp/cellulose acetate composites were much more affected by moisture absorption than the hemp/PHB composites likely because the moisture plasticized the cellulose acetate and also weakened the interfacial fiber-matrix bond. Moisture was assumed to cause permanent damage because the stress-strain behavior did not return to the unconditioned behavior upon drying of the saturated specimens. The degradation of mechanical properties upon introduction to humid environments limits the potential applications of these biocomposites. For these biocomposites to be used widely within the construction industry, they must therefore be protected from moisture for example through sealants and/or fiber treatments. Classical laminate plate theory was shown to be effective in predicting the initial linear behavior of all of the laminates in tension and flexure, but did not capture stiffness degradation or the full nonlinear stress-strain response of the biocomposites because the model was for linear elastic materials. Use of this model would be appropriate for design of deflection-limited applications within certain stress ranges. The modified nonlinear laminate plate theory predicted the initial stress-strain response well, but at higher strains overestimated the strength and stiffness. The overestimation was attributed to the constitutive model assuming uncoupled stress-strain behavior for each strain component and, additionally in flexure, to the use of tensile behavior as the constitutive behavior in compression. While the simple models provided an adequate prediction of laminate behavior at low strains, to predict behavior at higher strains, it is recommended instead to evaluate the use of finite element analysis to predict response using experimental stress-strain as models for orthotropic materials and non-linear behavior are well-established. (Abstract shortened by UMI.)

  10. Learning from prescribing errors

    OpenAIRE

    Dean, B

    2002-01-01

    

 The importance of learning from medical error has recently received increasing emphasis. This paper focuses on prescribing errors and argues that, while learning from prescribing errors is a laudable goal, there are currently barriers that can prevent this occurring. Learning from errors can take place on an individual level, at a team level, and across an organisation. Barriers to learning from prescribing errors include the non-discovery of many prescribing errors, lack of feedback to th...

  11. Ground Stereo Vision-Based Navigation for Autonomous Take-off and Landing of UAVs: A Chan-Vese Model Approach

    Directory of Open Access Journals (Sweden)

    Dengqing Tang

    2016-04-01

    Full Text Available This article aims at flying target detection and localization of a fixed-wing unmanned aerial vehicle (UAV autonomous take-off and landing within Global Navigation Satellite System (GNSS-denied environments. A Chan-Vese model–based approach is proposed and developed for ground stereo vision detection. Extended Kalman Filter (EKF is fused into state estimation to reduce the localization inaccuracy caused by measurement errors of object detection and Pan-Tilt unit (PTU attitudes. Furthermore, the region-of-interest (ROI setting up is conducted to improve the real-time capability. The present work contributes to real-time, accurate and robust features, compared with our previous works. Both offline and online experimental results validate the effectiveness and better performances of the proposed method against the traditional triangulation-based localization algorithm.

  12. Maximum Correntropy Unscented Kalman Filter for Ballistic Missile Navigation System based on SINS/CNS Deeply Integrated Mode.

    Science.gov (United States)

    Hou, Bowen; He, Zhangming; Li, Dong; Zhou, Haiyin; Wang, Jiongqi

    2018-05-27

    Strap-down inertial navigation system/celestial navigation system ( SINS/CNS) integrated navigation is a high precision navigation technique for ballistic missiles. The traditional navigation method has a divergence in the position error. A deeply integrated mode for SINS/CNS navigation system is proposed to improve the navigation accuracy of ballistic missile. The deeply integrated navigation principle is described and the observability of the navigation system is analyzed. The nonlinearity, as well as the large outliers and the Gaussian mixture noises, often exists during the actual navigation process, leading to the divergence phenomenon of the navigation filter. The new nonlinear Kalman filter on the basis of the maximum correntropy theory and unscented transformation, named the maximum correntropy unscented Kalman filter, is deduced, and the computational complexity is analyzed. The unscented transformation is used for restricting the nonlinearity of the system equation, and the maximum correntropy theory is used to deal with the non-Gaussian noises. Finally, numerical simulation illustrates the superiority of the proposed filter compared with the traditional unscented Kalman filter. The comparison results show that the large outliers and the influence of non-Gaussian noises for SINS/CNS deeply integrated navigation is significantly reduced through the proposed filter.

  13. Maximum Correntropy Unscented Kalman Filter for Ballistic Missile Navigation System based on SINS/CNS Deeply Integrated Mode

    Directory of Open Access Journals (Sweden)

    Bowen Hou

    2018-05-01

    Full Text Available Strap-down inertial navigation system/celestial navigation system ( SINS/CNS integrated navigation is a high precision navigation technique for ballistic missiles. The traditional navigation method has a divergence in the position error. A deeply integrated mode for SINS/CNS navigation system is proposed to improve the navigation accuracy of ballistic missile. The deeply integrated navigation principle is described and the observability of the navigation system is analyzed. The nonlinearity, as well as the large outliers and the Gaussian mixture noises, often exists during the actual navigation process, leading to the divergence phenomenon of the navigation filter. The new nonlinear Kalman filter on the basis of the maximum correntropy theory and unscented transformation, named the maximum correntropy unscented Kalman filter, is deduced, and the computational complexity is analyzed. The unscented transformation is used for restricting the nonlinearity of the system equation, and the maximum correntropy theory is used to deal with the non-Gaussian noises. Finally, numerical simulation illustrates the superiority of the proposed filter compared with the traditional unscented Kalman filter. The comparison results show that the large outliers and the influence of non-Gaussian noises for SINS/CNS deeply integrated navigation is significantly reduced through the proposed filter.

  14. Cyber security with radio frequency interferences mitigation study for satellite systems

    Science.gov (United States)

    Wang, Gang; Wei, Sixiao; Chen, Genshe; Tian, Xin; Shen, Dan; Pham, Khanh; Nguyen, Tien M.; Blasch, Erik

    2016-05-01

    Satellite systems including the Global Navigation Satellite System (GNSS) and the satellite communications (SATCOM) system provide great convenience and utility to human life including emergency response, wide area efficient communications, and effective transportation. Elements of satellite systems incorporate technologies such as navigation with the global positioning system (GPS), satellite digital video broadcasting, and information transmission with a very small aperture terminal (VSAT), etc. The satellite systems importance is growing in prominence with end users' requirement for globally high data rate transmissions; the cost reduction of launching satellites; development of smaller sized satellites including cubesat, nanosat, picosat, and femtosat; and integrating internet services with satellite networks. However, with the promising benefits, challenges remain to fully develop secure and robust satellite systems with pervasive computing and communications. In this paper, we investigate both cyber security and radio frequency (RF) interferences mitigation for satellite systems, and demonstrate that they are not isolated. The action space for both cyber security and RF interferences are firstly summarized for satellite systems, based on which the mitigation schemes for both cyber security and RF interferences are given. A multi-layered satellite systems structure is provided with cross-layer design considering multi-path routing and channel coding, to provide great security and diversity gains for secure and robust satellite systems.

  15. Dynamic Transportation Navigation

    Science.gov (United States)

    Meng, Xiaofeng; Chen, Jidong

    Miniaturization of computing devices, and advances in wireless communication and sensor technology are some of the forces that are propagating computing from the stationary desktop to the mobile outdoors. Some important classes of new applications that will be enabled by this revolutionary development include intelligent traffic management, location-based services, tourist services, mobile electronic commerce, and digital battlefield. Some existing application classes that will benefit from the development include transportation and air traffic control, weather forecasting, emergency response, mobile resource management, and mobile workforce. Location management, i.e., the management of transient location information, is an enabling technology for all these applications. In this chapter, we present the applications of moving objects management and their functionalities, in particular, the application of dynamic traffic navigation, which is a challenge due to the highly variable traffic state and the requirement of fast, on-line computations.

  16. Sensory bases of navigation.

    Science.gov (United States)

    Gould, J L

    1998-10-08

    Navigating animals need to know both the bearing of their goal (the 'map' step), and how to determine that direction (the 'compass' step). Compasses are typically arranged in hierarchies, with magnetic backup as a last resort when celestial information is unavailable. Magnetic information is often essential to calibrating celestial cues, though, and repeated recalibration between celestial and magnetic compasses is important in many species. Most magnetic compasses are based on magnetite crystals, but others make use of induction or paramagnetic interactions between short-wavelength light and visual pigments. Though odors may be used in some cases, most if not all long-range maps probably depend on magnetite. Magnetitebased map senses are used to measure only latitude in some species, but provide the distance and direction of the goal in others.

  17. Comprehension of Navigation Directions

    Science.gov (United States)

    Schneider, Vivian I.; Healy, Alice F.

    2000-01-01

    In an experiment simulating communication between air traffic controllers and pilots, subjects were given navigation instructions varying in length telling them to move in a space represented by grids on a computer screen. The subjects followed the instructions by clicking on the grids in the locations specified. Half of the subjects read the instructions, and half heard them. Half of the subjects in each modality condition repeated back the instructions before following them,and half did not. Performance was worse for the visual than for the auditory modality on the longer messages. Repetition of the instructions generally depressed performance, especially with the longer messages, which required more output than did the shorter messages, and especially with the visual modality, in which phonological recoding from the visual input to the spoken output was necessary. These results are explained in terms of the degrading effects of output interference on memory for instructions.

  18. Navigation System of Marks Areas - USACE IENC

    Data.gov (United States)

    Department of Homeland Security — These inland electronic Navigational charts (IENCs) were developed from available data used in maintenance of Navigation channels. Users of these IENCs should be...

  19. Moderating Argos location errors in animal tracking data

    Science.gov (United States)

    Douglas, David C.; Weinziert, Rolf; Davidson, Sarah C.; Kays, Roland; Wikelski, Martin; Bohrer, Gil

    2012-01-01

    1. The Argos System is used worldwide to satellite-track free-ranging animals, but location errors can range from tens of metres to hundreds of kilometres. Low-quality locations (Argos classes A, 0, B and Z) dominate animal tracking data. Standard-quality animal tracking locations (Argos classes 3, 2 and 1) have larger errors than those reported in Argos manuals.

  20. Two-dimensional errors

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    This chapter addresses the extension of previous work in one-dimensional (linear) error theory to two-dimensional error analysis. The topics of the chapter include the definition of two-dimensional error, the probability ellipse, the probability circle, elliptical (circular) error evaluation, the application to position accuracy, and the use of control systems (points) in measurements

  1. Part two: Error propagation

    International Nuclear Information System (INIS)

    Picard, R.R.

    1989-01-01

    Topics covered in this chapter include a discussion of exact results as related to nuclear materials management and accounting in nuclear facilities; propagation of error for a single measured value; propagation of error for several measured values; error propagation for materials balances; and an application of error propagation to an example of uranium hexafluoride conversion process

  2. Learning from Errors

    OpenAIRE

    Martínez-Legaz, Juan Enrique; Soubeyran, Antoine

    2003-01-01

    We present a model of learning in which agents learn from errors. If an action turns out to be an error, the agent rejects not only that action but also neighboring actions. We find that, keeping memory of his errors, under mild assumptions an acceptable solution is asymptotically reached. Moreover, one can take advantage of big errors for a faster learning.

  3. Guidance and navigation for rendezvous with an uncooperative target

    Science.gov (United States)

    Telaar, J.; Schlaile, C.; Sommer, J.

    2018-06-01

    This paper presents a guidance strategy for a rendezvous with an uncooperative target. In the applied design reference mission, a spiral approach is commanded ensuring a collision-free relative orbit due to e/i-vector separation. The dimensions of the relative orbit are successively reduced by Δv commands which at the same time improve the observability of the relative state. The navigation is based on line-of-sight measurements. The relative state is estimated by an extended Kalman filter (EKF). The performance of this guidance and navigation strategy is demonstrated by extensive Monte Carlo simulations taking into account all major uncertainties like measurement errors, Δv execution errors, and differential drag.

  4. AUTOMATIC RECOGNITION OF INDOOR NAVIGATION ELEMENTS FROM KINECT POINT CLOUDS

    Directory of Open Access Journals (Sweden)

    L. Zeng

    2017-09-01

    Full Text Available This paper realizes automatically the navigating elements defined by indoorGML data standard – door, stairway and wall. The data used is indoor 3D point cloud collected by Kinect v2 launched in 2011 through the means of ORB-SLAM. By contrast, it is cheaper and more convenient than lidar, but the point clouds also have the problem of noise, registration error and large data volume. Hence, we adopt a shape descriptor – histogram of distances between two randomly chosen points, proposed by Osada and merges with other descriptor – in conjunction with random forest classifier to recognize the navigation elements (door, stairway and wall from Kinect point clouds. This research acquires navigation elements and their 3-d location information from each single data frame through segmentation of point clouds, boundary extraction, feature calculation and classification. Finally, this paper utilizes the acquired navigation elements and their information to generate the state data of the indoor navigation module automatically. The experimental results demonstrate a high recognition accuracy of the proposed method.

  5. Automatic Recognition of Indoor Navigation Elements from Kinect Point Clouds

    Science.gov (United States)

    Zeng, L.; Kang, Z.

    2017-09-01

    This paper realizes automatically the navigating elements defined by indoorGML data standard - door, stairway and wall. The data used is indoor 3D point cloud collected by Kinect v2 launched in 2011 through the means of ORB-SLAM. By contrast, it is cheaper and more convenient than lidar, but the point clouds also have the problem of noise, registration error and large data volume. Hence, we adopt a shape descriptor - histogram of distances between two randomly chosen points, proposed by Osada and merges with other descriptor - in conjunction with random forest classifier to recognize the navigation elements (door, stairway and wall) from Kinect point clouds. This research acquires navigation elements and their 3-d location information from each single data frame through segmentation of point clouds, boundary extraction, feature calculation and classification. Finally, this paper utilizes the acquired navigation elements and their information to generate the state data of the indoor navigation module automatically. The experimental results demonstrate a high recognition accuracy of the proposed method.

  6. Advanced Navigation Aids System based on Augmented Reality

    Directory of Open Access Journals (Sweden)

    Jaeyong OH

    2016-12-01

    Full Text Available Many maritime accidents have been caused by human-error including such things as inadequate watch keeping and/or mistakes in ship handling. Also, new navigational equipment has been developed using Information Technology (IT technology to provide various kinds of information for safe navigation. Despite these efforts, the reduction of maritime accidents has not occurred to the degree expected because, navigational equipment provides too much information, and this information is not well organized, such that users feel it to be complicated rather than helpful. In this point of view, the method of representation of navigational information is more important than the quantity of that information and research is required on the representation of information to make that information more easily understood and to allow decisions to be made correctly and promptly. In this paper, we adopt Augmented Reality (AR technologies for the representation of information. AR is a 3D computer graphics technology that blends virtual reality and the real world. Recently, this technology has been widely applied in our daily lives because it can provide information more effectively to users. Therefore, we propose a new concept, a navigational system based on AR technology; we review experimental results from a ship-handling simulator and from an open sea test to verify the efficiency of the proposed system.

  7. Comparison of three filters in asteroid-based autonomous navigation

    International Nuclear Information System (INIS)

    Cui Wen; Zhu Kai-Jian

    2014-01-01

    At present, optical autonomous navigation has become a key technology in deep space exploration programs. Recent studies focus on the problem of orbit determination using autonomous navigation, and the choice of filter is one of the main issues. To prepare for a possible exploration mission to Mars, the primary emphasis of this paper is to evaluate the capability of three filters, the extended Kalman filter (EKF), unscented Kalman filter (UKF) and weighted least-squares (WLS) algorithm, which have different initial states during the cruise phase. One initial state is assumed to have high accuracy with the support of ground tracking when autonomous navigation is operating; for the other state, errors are set to be large without this support. In addition, the method of selecting asteroids that can be used for navigation from known lists of asteroids to form a sequence is also presented in this study. The simulation results show that WLS and UKF should be the first choice for optical autonomous navigation during the cruise phase to Mars

  8. Neural-network-based depth computation for blind navigation

    Science.gov (United States)

    Wong, Farrah; Nagarajan, Ramachandran R.; Yaacob, Sazali

    2004-12-01

    A research undertaken to help blind people to navigate autonomously or with minimum assistance is termed as "Blind Navigation". In this research, an aid that could help blind people in their navigation is proposed. Distance serves as an important clue during our navigation. A stereovision navigation aid implemented with two digital video cameras that are spaced apart and fixed on a headgear to obtain the distance information is presented. In this paper, a neural network methodology is used to obtain the required parameters of the camera which is known as camera calibration. These parameters are not known but obtained by adjusting the weights in the network. The inputs to the network consist of the matching features in the stereo pair images. A back propagation network with 16-input neurons, 3 hidden neurons and 1 output neuron, which gives depth, is created. The distance information is incorporated into the final processed image as four gray levels such as white, light gray, dark gray and black. Preliminary results have shown that the percentage errors fall below 10%. It is envisaged that the distance provided by neural network shall enable blind individuals to go near and pick up an object of interest.

  9. Generalized Gaussian Error Calculus

    CERN Document Server

    Grabe, Michael

    2010-01-01

    For the first time in 200 years Generalized Gaussian Error Calculus addresses a rigorous, complete and self-consistent revision of the Gaussian error calculus. Since experimentalists realized that measurements in general are burdened by unknown systematic errors, the classical, widespread used evaluation procedures scrutinizing the consequences of random errors alone turned out to be obsolete. As a matter of course, the error calculus to-be, treating random and unknown systematic errors side by side, should ensure the consistency and traceability of physical units, physical constants and physical quantities at large. The generalized Gaussian error calculus considers unknown systematic errors to spawn biased estimators. Beyond, random errors are asked to conform to the idea of what the author calls well-defined measuring conditions. The approach features the properties of a building kit: any overall uncertainty turns out to be the sum of a contribution due to random errors, to be taken from a confidence inter...

  10. Analysis of Multipath Mitigation Techniques with Land Mobile Satellite Channel Model

    Directory of Open Access Journals (Sweden)

    M. Z. H. Bhuiyan J. Zhang

    2012-12-01

    Full Text Available Multipath is undesirable for Global Navigation Satellite System (GNSS receivers, since the reception of multipath can create a significant distortion to the shape of the correlation function leading to an error in the receivers’ position estimate. Many multipath mitigation techniques exist in the literature to deal with the multipath propagation problem in the context of GNSS. The multipath studies in the literature are often based on optimistic assumptions, for example, assuming a static two-path channel or a fading channel with a Rayleigh or a Nakagami distribution. But, in reality, there are a lot of channel modeling issues, for example, satellite-to-user geometry, variable number of paths, variable path delays and gains, Non Line-Of-Sight (NLOS path condition, receiver movements, etc. that are kept out of consideration when analyzing the performance of these techniques. Therefore, this is of utmost importance to analyze the performance of different multipath mitigation techniques in some realistic measurement-based channel models, for example, the Land Multipath is undesirable for Global Navigation Satellite System (GNSS receivers, since the reception of multipath can create a significant distortion to the shape of the correlation function leading to an error in the receivers’ position estimate. Many multipath mitigation techniques exist in the literature to deal with the multipath propagation problem in the context of GNSS. The multipath studies in the literature are often based on optimistic assumptions, for example, assuming a static two-path channel or a fading channel with a Rayleigh or a Nakagami distribution. But, in reality, there are a lot of channel modeling issues, for example, satellite-to-user geometry, variable number of paths, variable path delays and gains, Non Line-Of-Sight (NLOS path condition, receiver movements, etc. that are kept out of consideration when analyzing the performance of these techniques. Therefore, this

  11. GNSS satellite transmit power and its impact on orbit determination

    Science.gov (United States)

    Steigenberger, Peter; Thoelert, Steffen; Montenbruck, Oliver

    2018-06-01

    Antenna thrust is a small acceleration acting on Global Navigation Satellite System satellites caused by the transmission of radio navigation signals. Knowledge about the transmit power and the mass of the satellites is required for the computation of this effect. The actual transmit power can be obtained from measurements with a high-gain antenna and knowledge about the properties of the transmit and receive antennas as well as losses along the propagation path. Transmit power measurements for different types of GPS, GLONASS, Galileo, and BeiDou-2 satellites were taken with a 30-m dish antenna of the German Aerospace Center (DLR) located at its ground station in Weilheim. For GPS, total L-band transmit power levels of 50-240 W were obtained, 20-135 W for GLONASS, 95-265 W for Galileo, and 130-185 W for BeiDou-2. The transmit power differs usually only slightly for individual spacecraft within one satellite block. An exception are the GLONASS-M satellites where six subgroups with different transmit power levels could be identified. Considering the antenna thrust in precise orbit determination of GNSS satellites decreases the orbital radius by 1-27 mm depending on the transmit power, the satellite mass, and the orbital period.

  12. Medication errors: prescribing faults and prescription errors.

    Science.gov (United States)

    Velo, Giampaolo P; Minuz, Pietro

    2009-06-01

    1. Medication errors are common in general practice and in hospitals. Both errors in the act of writing (prescription errors) and prescribing faults due to erroneous medical decisions can result in harm to patients. 2. Any step in the prescribing process can generate errors. Slips, lapses, or mistakes are sources of errors, as in unintended omissions in the transcription of drugs. Faults in dose selection, omitted transcription, and poor handwriting are common. 3. Inadequate knowledge or competence and incomplete information about clinical characteristics and previous treatment of individual patients can result in prescribing faults, including the use of potentially inappropriate medications. 4. An unsafe working environment, complex or undefined procedures, and inadequate communication among health-care personnel, particularly between doctors and nurses, have been identified as important underlying factors that contribute to prescription errors and prescribing faults. 5. Active interventions aimed at reducing prescription errors and prescribing faults are strongly recommended. These should be focused on the education and training of prescribers and the use of on-line aids. The complexity of the prescribing procedure should be reduced by introducing automated systems or uniform prescribing charts, in order to avoid transcription and omission errors. Feedback control systems and immediate review of prescriptions, which can be performed with the assistance of a hospital pharmacist, are also helpful. Audits should be performed periodically.

  13. International Satellite Law

    Science.gov (United States)

    von der Dunk, Frans

    2017-07-01

    there are the major categories of space applications—as these have started to impact everyday life on earth: the involvement of satellites in communications infrastructures and services, the most commercialized area of space applications yet; the special issue of space serving to mitigate disasters and their consequences on earth; the use of satellites for remote sensing purposes ranging from weather and climate monitoring to spying; and the use of satellites for positioning, navigation, and timing.

  14. Vision Based Navigation for Autonomous Cooperative Docking of CubeSats

    Science.gov (United States)

    Pirat, Camille; Ankersen, Finn; Walker, Roger; Gass, Volker

    2018-05-01

    A realistic rendezvous and docking navigation solution applicable to CubeSats is investigated. The scalability analysis of the ESA Autonomous Transfer Vehicle Guidance, Navigation & Control (GNC) performances and the Russian docking system, shows that the docking of two CubeSats would require a lateral control performance of the order of 1 cm. Line of sight constraints and multipath effects affecting Global Navigation Satellite System (GNSS) measurements in close proximity prevent the use of this sensor for the final approach. This consideration and the high control accuracy requirement led to the use of vision sensors for the final 10 m of the rendezvous and docking sequence. A single monocular camera on the chaser satellite and various sets of Light-Emitting Diodes (LEDs) on the target vehicle ensure the observability of the system throughout the approach trajectory. The simple and novel formulation of the measurement equations allows differentiating unambiguously rotations from translations between the target and chaser docking port and allows a navigation performance better than 1 mm at docking. Furthermore, the non-linear measurement equations can be solved in order to provide an analytic navigation solution. This solution can be used to monitor the navigation filter solution and ensure its stability, adding an extra layer of robustness for autonomous rendezvous and docking. The navigation filter initialization is addressed in detail. The proposed method is able to differentiate LEDs signals from Sun reflections as demonstrated by experimental data. The navigation filter uses a comprehensive linearised coupled rotation/translation dynamics, describing the chaser to target docking port motion. The handover, between GNSS and vision sensor measurements, is assessed. The performances of the navigation function along the approach trajectory is discussed.

  15. A clinical study of navigation accuracy during surgery

    International Nuclear Information System (INIS)

    Hirabayashi, Hidehiro; Uchiyama, Yoshitomo; Hoshida, Toru; Nakase, Hiroyuki; Morimoto, Tetsuya; Sakaki, Toshisuke

    2000-01-01

    It is essential to implement image-guided surgery or neuronavigation technologies that can be applied during functional surgery to localize targets accurately in the surgical field. Various navigation systems have been developed, such as the optical system and mechanical-arm-based system, to localize targets in the operative field. However, either the reference system, in optical systems, or the arm joint, in mechanical-arm-based systems, can sometimes interfere with surgical maneuvers. Therefore, we used the magnetic-force-based Computed Assisted Neurosurgery system (CANS system, Shimadzu, Co. Ltd., Kyoto, Japan) for neuronavigation. The purpose of this study was to evaluate the accuracy of the CANS navigation system. Ten patients with medically refractory epilepsy underwent implantation of subdural electrode grids to detect the epilepsy focus, and then lobectomy or multiple subpial transection was performed after informed consent was obtained. The male/female ratio was 6:4 and the mean age was 30.7 years. The CANS navigator system consists mainly of a magnetic source, a localizer probe with magnetic sensor, a three-dimensional locating measuring instrument (digitizer), an image scanner, and a personal computer. To determine the localization accuracy, the probe was moved on the subdural electrode grid which typically consists of 64 or 16 platinum-iridium electrode contacts (3 mm in the diameter) embedded in a Silastic sheet. The array of electrodes was 8 x 8 cm or 2 x 8 cm and the center-to-center inter-electrode distance was 10 mm. We evaluated the inter-electrode distances and spatial relationships among the electrodes to quantitate the precision of the probe tip localization and assumed the nasion origin reference system to assess the distribution of target coordinates. The measurement errors of each component derived from different planes for the same targets were evaluated in ten patients. The error in X-dimension ranged from 0.38 mm to 7.8 mm, the error in Y

  16. Correction of Navigational Information Supplied to Biomimetic Autonomous Underwater Vehicle

    Directory of Open Access Journals (Sweden)

    Praczyk Tomasz

    2018-03-01

    Full Text Available In order to autonomously transfer from one point of the environment to the other, Autonomous Underwater Vehicles (AUV need a navigational system. While navigating underwater the vehicles usually use a dead reckoning method which calculates vehicle movement on the basis of the information about velocity (sometimes also acceleration and course (heading provided by on-board devicesl ike Doppler Velocity Logs and Fibre Optical Gyroscopes. Due to inaccuracies of the devices and the influence of environmental forces, the position generated by the dead reckoning navigational system (DRNS is not free from errors, moreover the errors grow exponentially in time. The problem becomes even more serious when we deal with small AUVs which do not have any speedometer on board and whose course measurement device is inaccurate. To improve indications of the DRNS the vehicle can emerge onto the surface from time to time, record its GPS position, and measure position error which can be further used to estimate environmental influence and inaccuracies caused by mechanisms of the vehicle. This paper reports simulation tests which were performed to determine the most effective method for correction of DRNS designed for a real Biomimetic AUV.

  17. New Channel Coding Methods for Satellite Communication

    Directory of Open Access Journals (Sweden)

    J. Sebesta

    2010-04-01

    Full Text Available This paper deals with the new progressive channel coding methods for short message transmission via satellite transponder using predetermined length of frame. The key benefits of this contribution are modification and implementation of a new turbo code and utilization of unique features with applications of methods for bit error rate estimation and algorithm for output message reconstruction. The mentioned methods allow an error free communication with very low Eb/N0 ratio and they have been adopted for satellite communication, however they can be applied for other systems working with very low Eb/N0 ratio.

  18. Integrated navigation of aerial robot for GPS and GPS-denied environment

    International Nuclear Information System (INIS)

    Suzuki, Satoshi; Min, Hongkyu; Nonami, Kenzo; Wada, Tetsuya

    2016-01-01

    In this study, novel robust navigation system for aerial robot in GPS and GPS- denied environments is proposed. Generally, the aerial robot uses position and velocity information from Global Positioning System (GPS) for guidance and control. However, GPS could not be used in several environments, for example, GPS has huge error near buildings and trees, indoor, and so on. In such GPS-denied environment, Laser Detection and Ranging (LIDER) sensor based navigation system have generally been used. However, LIDER sensor also has an weakness, and it could not be used in the open outdoor environment where GPS could be used. Therefore, it is desired to develop the integrated navigation system which is seamlessly applied to GPS and GPS-denied environments. In this paper, the integrated navigation system for aerial robot using GPS and LIDER is developed. The navigation system is designed based on Extended Kalman Filter, and the effectiveness of the developed system is verified by numerical simulation and experiment. (paper)

  19. Data Integration from GPS and Inertial Navigation Systems for Pedestrians in Urban Area

    OpenAIRE

    Krzysztof Bikonis; Jerzy Demkowicz

    2013-01-01

    The GPS system is widely used in navigation and the GPS receiver can offer long-term stable absolute positioning information. The overall system performance depends largely on the signal environments. The position obtained from GPS is often degraded due to obstruction and multipath effect caused by buildings, city infrastructure and vegetation, whereas, the current performance achieved by inertial navigation systems (INS) is still relatively poor due to the large inertial sensor errors. The c...

  20. Monitoring Completed Navigation Projects Program

    National Research Council Canada - National Science Library

    Bottin, Jr., Robert R

    2001-01-01

    ... (MCNP) Program. The program was formerly known as the Monitoring Completed Coastal Projects Program, but was modified in the late 1990s to include all navigation projects, inland as well as coastal...

  1. NOAA Electronic Navigational Charts (ENC)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Office of Coast Survey (OCS) has been involved in the development of a NOAA Electronic Navigational Chart (NOAA ENC) suite to support the marine transportation...

  2. Juvenile Osprey Navigation during Trans-Oceanic Migration.

    Directory of Open Access Journals (Sweden)

    Travis W Horton

    Full Text Available To compensate for drift, an animal migrating through air or sea must be able to navigate. Although some species of bird, fish, insect, mammal, and reptile are capable of drift compensation, our understanding of the spatial reference frame, and associated coordinate space, in which these navigational behaviors occur remains limited. Using high resolution satellite-monitored GPS track data, we show that juvenile ospreys (Pandion haliaetus are capable of non-stop constant course movements over open ocean spanning distances in excess of 1500 km despite the perturbing effects of winds and the lack of obvious landmarks. These results are best explained by extreme navigational precision in an exogenous spatio-temporal reference frame, such as positional orientation relative to Earth's magnetic field and pacing relative to an exogenous mechanism of keeping time. Given the age (<1 year-old of these birds and knowledge of their hatching site locations, we were able to transform Enhanced Magnetic Model coordinate locations such that the origin of the magnetic coordinate space corresponded with each bird's nest. Our analyses show that trans-oceanic juvenile osprey movements are consistent with bicoordinate positional orientation in transformed magnetic coordinate or geographic space. Through integration of movement and meteorological data, we propose a new theoretical framework, chord and clock navigation, capable of explaining the precise spatial orientation and temporal pacing performed by juvenile ospreys during their long-distance migrations over open ocean.

  3. Switching from reaching to navigation: differential cognitive strategies for spatial memory in children and adults.

    Science.gov (United States)

    Belmonti, Vittorio; Cioni, Giovanni; Berthoz, Alain

    2015-07-01

    Navigational and reaching spaces are known to involve different cognitive strategies and brain networks, whose development in humans is still debated. In fact, high-level spatial processing, including allocentric location encoding, is already available to very young children, but navigational strategies are not mature until late childhood. The Magic Carpet (MC) is a new electronic device translating the traditional Corsi Block-tapping Test (CBT) to navigational space. In this study, the MC and the CBT were used to assess spatial memory for navigation and for reaching, respectively. Our hypothesis was that school-age children would not treat MC stimuli as navigational paths, assimilating them to reaching sequences. Ninety-one healthy children aged 6 to 11 years and 18 adults were enrolled. Overall short-term memory performance (span) on both tests, effects of sequence geometry, and error patterns according to a new classification were studied. Span increased with age on both tests, but relatively more in navigational than in reaching space, particularly in males. Sequence geometry specifically influenced navigation, not reaching. The number of body rotations along the path affected MC performance in children more than in adults, and in women more than in men. Error patterns indicated that navigational sequences were increasingly retained as global paths across development, in contrast to separately stored reaching locations. A sequence of spatial locations can be coded as a navigational path only if a cognitive switch from a reaching mode to a navigation mode occurs. This implies the integration of egocentric and allocentric reference frames, of visual and idiothetic cues, and access to long-term memory. This switch is not yet fulfilled at school age due to immature executive functions. © 2014 John Wiley & Sons Ltd.

  4. Hidden Markov Model-based Pedestrian Navigation System using MEMS Inertial Sensors

    Directory of Open Access Journals (Sweden)

    Zhang Yingjun

    2015-02-01

    Full Text Available In this paper, a foot-mounted pedestrian navigation system using MEMS inertial sensors is implemented, where the zero-velocity detection is abstracted into a hidden Markov model with 4 states and 15 observations. Moreover, an observations extraction algorithm has been developed to extract observations from sensor outputs; sample sets are used to train and optimize the model parameters by the Baum-Welch algorithm. Finally, a navigation system is developed, and the performance of the pedestrian navigation system is evaluated using indoor and outdoor field tests, and the results show that position error is less than 3% of total distance travelled.

  5. Geostationary Satellite (GOES) Images

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Visible and Infrared satellite imagery taken from radiometer instruments on SMS (ATS) and GOES satellites in geostationary orbit. These satellites produced...

  6. SU-F-P-42: “To Navigate, Or Not to Navigate: HDR BT in Recurrent Spine Lesions”

    Energy Technology Data Exchange (ETDEWEB)

    Voros, L; Cohen, G; Zaider, M; Yamada, Y [Memorial Sloan-Kettering Cancer Center, New York, NY (United States)

    2016-06-15

    Purpose: We compare the accuracy of HDR catheter placement for paraspinal lesions using O-arm CBCT imaging combined with StealthStation navigation and traditional fluoroscopically guided catheter placement. Methods: CT and MRI scans were acquired pre-treatment to outline the lesions and design treatment plans (pre-plans) to meet dosimetric constrains. The pre-planned catheter trajectories were transferred into the StealthStation Navigation system prior to the surgery. The StealthStation is an infra red (IR) optical navigation system used for guidance of surgical instruments. An intraoperative CBCT scan (O-arm) was acquired with reference IR optical fiducials anchored onto the patient and registered with the preplan image study to guide surgical instruments in relation to the patients’ anatomy and to place the brachytherapy catheters along the pre-planned trajectories. The final treatment plan was generated based on a 2nd intraoperative CBCT scan reflecting achieved implant geometry. The 2nd CBCT was later registered with the initial CT scan to compare the preplanned dwell positions with actual dwell positions (catheter placements). Similar workflow was used in placement of 8 catheters (1 patient) without navigation, but under fluoroscopy guidance in an interventional radiology suite. Results: A total of 18 catheters (3 patients) were placed using navigation assisted surgery. Average displacement of 0.66 cm (STD=0.37cm) was observed between the pre-plan source positions and actual source positions in the 3 dimensional space. This translates into an average 0.38 cm positioning error in one direction including registration errors, digitization errors, and the surgeons ability to follow the planned trajectory. In comparison, average displacement of non-navigated catheters was 0.50 cm (STD=0.22cm). Conclusion: Spinal lesion HDR brachytherapy planning is a difficult task. Catheter placement has a direct impact on target coverage and dose to critical structures. While

  7. Field error lottery

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, C.J.; McVey, B. (Los Alamos National Lab., NM (USA)); Quimby, D.C. (Spectra Technology, Inc., Bellevue, WA (USA))

    1990-01-01

    The level of field errors in an FEL is an important determinant of its performance. We have computed 3D performance of a large laser subsystem subjected to field errors of various types. These calculations have been guided by simple models such as SWOOP. The technique of choice is utilization of the FELEX free electron laser code that now possesses extensive engineering capabilities. Modeling includes the ability to establish tolerances of various types: fast and slow scale field bowing, field error level, beam position monitor error level, gap errors, defocusing errors, energy slew, displacement and pointing errors. Many effects of these errors on relative gain and relative power extraction are displayed and are the essential elements of determining an error budget. The random errors also depend on the particular random number seed used in the calculation. The simultaneous display of the performance versus error level of cases with multiple seeds illustrates the variations attributable to stochasticity of this model. All these errors are evaluated numerically for comprehensive engineering of the system. In particular, gap errors are found to place requirements beyond mechanical tolerances of {plus minus}25{mu}m, and amelioration of these may occur by a procedure utilizing direct measurement of the magnetic fields at assembly time. 4 refs., 12 figs.

  8. Navigating "Assisted Dying".

    Science.gov (United States)

    Schipper, Harvey

    2016-02-01

    Carter is a bellwether decision, an adjudication on a narrow point of law whose implications are vast across society, and whose impact may not be realized for years. Coupled with Quebec's Act Respecting End-of-life Care it has sharply changed the legal landscape with respect to actively ending a person's life. "Medically assisted dying" will be permitted under circumstances, and through processes, which have yet to be operationally defined. This decision carries with it moral assumptions, which mean that it will be difficult to reach a unifying consensus. For some, the decision and Act reflect a modern acknowledgement of individual autonomy. For others, allowing such acts is morally unspeakable. Having opened the Pandora's Box, the question becomes one of navigating a tolerable societal path. I believe it is possible to achieve a workable solution based on the core principle that "medically assisted dying" should be a very rarely employed last option, subject to transparent ongoing review, specifically as to why it was deemed necessary. My analysis is based on 1. The societal conditions in which have fostered demand for "assisted dying", 2. Actions in other jurisdictions, 3. Carter and Quebec Bill 52, 4. Political considerations, 5. Current medical practice. Leading to a series of recommendations regarding. 1. Legislation and regulation, 2. The role of professional regulatory agencies, 3. Medical professions education and practice, 4. Public education, 5. Health care delivery and palliative care. Given the burden of public opinion, and the legal steps already taken, a process for assisted-dying is required. However, those legal and regulatory steps should only be considered a necessary and defensive first step in a two stage process. The larger goal, the second step, is to drive the improvement of care, and thus minimize assisted-dying.

  9. Software errors and complexity: An empirical investigation

    Science.gov (United States)

    Basili, Victor R.; Perricone, Berry T.

    1983-01-01

    The distributions and relationships derived from the change data collected during the development of a medium scale satellite software project show that meaningful results can be obtained which allow an insight into software traits and the environment in which it is developed. Modified and new modules were shown to behave similarly. An abstract classification scheme for errors which allows a better understanding of the overall traits of a software project is also shown. Finally, various size and complexity metrics are examined with respect to errors detected within the software yielding some interesting results.

  10. MULTI-GNSS RECEIVER FOR AEROSPACE NAVIGATION AND POSITIONING APPLICATIONS

    Directory of Open Access Journals (Sweden)

    T. R. Peres

    2014-03-01

    Full Text Available The upcoming Galileo system opens a wide range of new opportunities in the Global Navigation Satellite System (GNSS market. However, the characteristics of the future GNSS signals require the development of new GNSS receivers. In the frame of the REAGE project, DEIMOS and ISEL have developed a GNSS receiver targeted for aerospace applications, supporting current and future GPS L1 and Galileo E1 signals, based on commercial (or, in the furthest extent, industrial grade components. Although the REAGE project aimed at space applications, the REAGE receiver is also applicable to many terrestrial applications (ground or airborne, such as Georeferencing and Unmanned Aerial Vehicle (UAV navigation. This paper presents the architecture and features of the REAGE receiver, as well as some results of the validation campaign with GPS L1 and Galileo E1 signals.

  11. High accuracy autonomous navigation using the global positioning system (GPS)

    Science.gov (United States)

    Truong, Son H.; Hart, Roger C.; Shoan, Wendy C.; Wood, Terri; Long, Anne C.; Oza, Dipak H.; Lee, Taesul

    1997-01-01

    The application of global positioning system (GPS) technology to the improvement of the accuracy and economy of spacecraft navigation, is reported. High-accuracy autonomous navigation algorithms are currently being qualified in conjunction with the GPS attitude determination flyer (GADFLY) experiment for the small satellite technology initiative Lewis spacecraft. Preflight performance assessments indicated that these algorithms are able to provide a real time total position accuracy of better than 10 m and a velocity accuracy of better than 0.01 m/s, with selective availability at typical levels. It is expected that the position accuracy will be increased to 2 m if corrections are provided by the GPS wide area augmentation system.

  12. Bandwidth-Efficient Communication through 225 MHz Ka-band Relay Satellite Channel

    Science.gov (United States)

    Downey, Joseph; Downey, James; Reinhart, Richard C.; Evans, Michael Alan; Mortensen, Dale John

    2016-01-01

    The communications and navigation space infrastructure of the National Aeronautics and Space Administration (NASA) consists of a constellation of relay satellites (called Tracking and Data Relay Satellites (TDRS)) and a global set of ground stations to receive and deliver data to researchers around the world from mission spacecraft throughout the solar system. Planning is underway to enhance and transform the infrastructure over the coming decade. Key to the upgrade will be the simultaneous and efficient use of relay transponders to minimize cost and operations while supporting science and exploration spacecraft. Efficient use of transponders necessitates bandwidth efficient communications to best use and maximize data throughput within the allocated spectrum. Experiments conducted with NASA's Space Communication and Navigation (SCaN) Testbed on the International Space Station provides a unique opportunity to evaluate advanced communication techniques, such as bandwidth-efficient modulations, in an operational flight system. Demonstrations of these new techniques in realistic flight conditions provides critical experience and reduces the risk of using these techniques in future missions. Efficient use of spectrum is enabled by using high-order modulations coupled with efficient forward error correction codes. This paper presents a high-rate, bandwidth-efficient waveform operating over the 225 MHz Ka-band service of the TDRS System (TDRSS). The testing explores the application of Gaussian Minimum Shift Keying (GMSK), 248-phase shift keying (PSK) and 1632- amplitude PSK (APSK) providing over three bits-per-second-per-Hertz (3 bsHz) modulation combined with various LDPC encoding rates to maximize throughput. With a symbol rate of 200 Mbaud, coded data rates of 1000 Mbps were tested in the laboratory and up to 800 Mbps over the TDRS 225 MHz channel. This paper will present on the high-rate waveform design, channel characteristics, performance results, compensation

  13. Bandwidth-Efficient Communication through 225 MHz Ka-band Relay Satellite Channel

    Science.gov (United States)

    Downey, Joseph A.; Downey, James M.; Reinhart, Richard C.; Evans, Michael A.; Mortensen, Dale J.

    2016-01-01

    The communications and navigation space infrastructure of the National Aeronautics and Space Administration (NASA) consists of a constellation of relay satellites (called Tracking and Data Relay Satellites (TDRS)) and a global set of ground stations to receive and deliver data to researchers around the world from mission spacecraft throughout the solar system. Planning is underway to enhance and transform the infrastructure over the coming decade. Key to the upgrade will be the simultaneous and efficient use of relay transponders to minimize cost and operations while supporting science and exploration spacecraft. Efficient use of transponders necessitates bandwidth efficient communications to best use and maximize data throughput within the allocated spectrum. Experiments conducted with NASA's Space Communication and Navigation (SCaN) Testbed on the International Space Station provides a unique opportunity to evaluate advanced communication techniques, such as bandwidth-efficient modulations, in an operational flight system. Demonstrations of these new techniques in realistic flight conditions provides critical experience and reduces the risk of using these techniques in future missions. Efficient use of spectrum is enabled by using high-order modulations coupled with efficient forward error correction codes. This paper presents a high-rate, bandwidth-efficient waveform operating over the 225 MHz Ka-band service of the TDRS System (TDRSS). The testing explores the application of Gaussian Minimum Shift Keying (GMSK), 2/4/8-phase shift keying (PSK) and 16/32- amplitude PSK (APSK) providing over three bits-per-second-per-Hertz (3 b/s/Hz) modulation combined with various LDPC encoding rates to maximize through- put. With a symbol rate of 200 M-band, coded data rates of 1000 Mbps were tested in the laboratory and up to 800 Mbps over the TDRS 225 MHz channel. This paper will present on the high-rate waveform design, channel characteristics, performance results

  14. Prescription Errors in Psychiatry

    African Journals Online (AJOL)

    Arun Kumar Agnihotri

    clinical pharmacists in detecting errors before they have a (sometimes serious) clinical impact should not be underestimated. Research on medication error in mental health care is limited. .... participation in ward rounds and adverse drug.

  15. Results from Navigator GPS Flight Testing for the Magnetospheric MultiScale Mission

    Science.gov (United States)

    Lulich, Tyler D.; Bamford, William A.; Wintermitz, Luke M. B.; Price, Samuel R.

    2012-01-01

    The recent delivery of the first Goddard Space Flight Center (GSFC) Navigator Global Positioning System (GPS) receivers to the Magnetospheric MultiScale (MMS) mission spacecraft is a high water mark crowning a decade of research and development in high-altitude space-based GPS. Preceding MMS delivery, the engineering team had developed receivers to support multiple missions and mission studies, such as Low Earth Orbit (LEO) navigation for the Global Precipitation Mission (GPM), above the constellation navigation for the Geostationary Operational Environmental Satellite (GOES) proof-of-concept studies, cis-Lunar navigation with rapid re-acquisition during re-entry for the Orion Project and an orbital demonstration on the Space Shuttle during the Hubble Servicing Mission (HSM-4).

  16. Design and testing of a multi-sensor pedestrian location and navigation platform.

    Science.gov (United States)

    Morrison, Aiden; Renaudin, Valérie; Bancroft, Jared B; Lachapelle, Gérard

    2012-01-01

    Navigation and location technologies are continually advancing, allowing ever higher accuracies and operation under ever more challenging conditions. The development of such technologies requires the rapid evaluation of a large number of sensors and related utilization strategies. The integration of Global Navigation Satellite Systems (GNSSs) such as the Global Positioning System (GPS) with accelerometers, gyros, barometers, magnetometers and other sensors is allowing for novel applications, but is hindered by the difficulties to test and compare integrated solutions using multiple sensor sets. In order to achieve compatibility and flexibility in terms of multiple sensors, an advanced adaptable platform is required. This paper describes the design and testing of the NavCube, a multi-sensor navigation, location and timing platform. The system provides a research tool for pedestrian navigation, location and body motion analysis in an unobtrusive form factor that enables in situ data collections with minimal gait and posture impact. Testing and examples of applications of the NavCube are provided.

  17. An adaptive deep-coupled GNSS/INS navigation system with hybrid pre-filter processing

    Science.gov (United States)

    Wu, Mouyan; Ding, Jicheng; Zhao, Lin; Kang, Yingyao; Luo, Zhibin

    2018-02-01

    The deep-coupling of a global navigation satellite system (GNSS) with an inertial navigation system (INS) can provide accurate and reliable navigation information. There are several kinds of deeply-coupled structures. These can be divided mainly into coherent and non-coherent pre-filter based structures, which have their own strong advantages and disadvantages, especially in accuracy and robustness. In this paper, the existing pre-filters of the deeply-coupled structures are analyzed and modified to improve them firstly. Then, an adaptive GNSS/INS deeply-coupled algorithm with hybrid pre-filters processing is proposed to combine the advantages of coherent and non-coherent structures. An adaptive hysteresis controller is designed to implement the hybrid pre-filters processing strategy. The simulation and vehicle test results show that the adaptive deeply-coupled algorithm with hybrid pre-filters processing can effectively improve navigation accuracy and robustness, especially in a GNSS-challenged environment.

  18. Triple-Error-Correcting Codec ASIC

    Science.gov (United States)

    Jones, Robert E.; Segallis, Greg P.; Boyd, Robert

    1994-01-01

    Coder/decoder constructed on single integrated-circuit chip. Handles data in variety of formats at rates up to 300 Mbps, correcting up to 3 errors per data block of 256 to 512 bits. Helps reduce cost of transmitting data. Useful in many high-data-rate, bandwidth-limited communication systems such as; personal communication networks, cellular telephone networks, satellite communication systems, high-speed computing networks, broadcasting, and high-reliability data-communication links.

  19. The use of x-ray pulsar-based navigation method for interplanetary flight

    Science.gov (United States)

    Yang, Bo; Guo, Xingcan; Yang, Yong

    2009-07-01

    As interplanetary missions are increasingly complex, the existing unique mature interplanetary navigation method mainly based on radiometric tracking techniques of Deep Space Network can not meet the rising demands of autonomous real-time navigation. This paper studied the applications for interplanetary flights of a new navigation technology under rapid development-the X-ray pulsar-based navigation for spacecraft (XPNAV), and valued its performance with a computer simulation. The XPNAV is an excellent autonomous real-time navigation method, and can provide comprehensive navigation information, including position, velocity, attitude, attitude rate and time. In the paper the fundamental principles and time transformation of the XPNAV were analyzed, and then the Delta-correction XPNAV blending the vehicles' trajectory dynamics with the pulse time-of-arrival differences at nominal and estimated spacecraft locations within an Unscented Kalman Filter (UKF) was discussed with a background mission of Mars Pathfinder during the heliocentric transferring orbit. The XPNAV has an intractable problem of integer pulse phase cycle ambiguities similar to the GPS carrier phase navigation. This article innovatively proposed the non-ambiguity assumption approach based on an analysis of the search space array method to resolve pulse phase cycle ambiguities between the nominal position and estimated position of the spacecraft. The simulation results show that the search space array method are computationally intensive and require long processing time when the position errors are large, and the non-ambiguity assumption method can solve ambiguity problem quickly and reliably. It is deemed that autonomous real-time integrated navigation system of the XPNAV blending with DSN, celestial navigation, inertial navigation and so on will be the development direction of interplanetary flight navigation system in the future.

  20. Soft tissue navigation for laparoscopic prostatectomy: evaluation of camera pose estimation for enhanced visualization

    Science.gov (United States)

    Baumhauer, M.; Simpfendörfer, T.; Schwarz, R.; Seitel, M.; Müller-Stich, B. P.; Gutt, C. N.; Rassweiler, J.; Meinzer, H.-P.; Wolf, I.

    2007-03-01

    We introduce a novel navigation system to support minimally invasive prostate surgery. The system utilizes transrectal ultrasonography (TRUS) and needle-shaped navigation aids to visualize hidden structures via Augmented Reality. During the intervention, the navigation aids are segmented once from a 3D TRUS dataset and subsequently tracked by the endoscope camera. Camera Pose Estimation methods directly determine position and orientation of the camera in relation to the navigation aids. Accordingly, our system does not require any external tracking device for registration of endoscope camera and ultrasonography probe. In addition to a preoperative planning step in which the navigation targets are defined, the procedure consists of two main steps which are carried out during the intervention: First, the preoperatively prepared planning data is registered with an intraoperatively acquired 3D TRUS dataset and the segmented navigation aids. Second, the navigation aids are continuously tracked by the endoscope camera. The camera's pose can thereby be derived and relevant medical structures can be superimposed on the video image. This paper focuses on the latter step. We have implemented several promising real-time algorithms and incorporated them into the Open Source Toolkit MITK (www.mitk.org). Furthermore, we have evaluated them for minimally invasive surgery (MIS) navigation scenarios. For this purpose, a virtual evaluation environment has been developed, which allows for the simulation of navigation targets and navigation aids, including their measurement errors. Besides evaluating the accuracy of the computed pose, we have analyzed the impact of an inaccurate pose and the resulting displacement of navigation targets in Augmented Reality.

  1. Errors in otology.

    Science.gov (United States)

    Kartush, J M

    1996-11-01

    Practicing medicine successfully requires that errors in diagnosis and treatment be minimized. Malpractice laws encourage litigators to ascribe all medical errors to incompetence and negligence. There are, however, many other causes of unintended outcomes. This article describes common causes of errors and suggests ways to minimize mistakes in otologic practice. Widespread dissemination of knowledge about common errors and their precursors can reduce the incidence of their occurrence. Consequently, laws should be passed to allow for a system of non-punitive, confidential reporting of errors and "near misses" that can be shared by physicians nationwide.

  2. Architectural elements of hybrid navigation systems for future space transportation

    Science.gov (United States)

    Trigo, Guilherme F.; Theil, Stephan

    2017-12-01

    The fundamental limitations of inertial navigation, currently employed by most launchers, have raised interest for GNSS-aided solutions. Combination of inertial measurements and GNSS outputs allows inertial calibration online, solving the issue of inertial drift. However, many challenges and design options unfold. In this work we analyse several architectural elements and design aspects of a hybrid GNSS/INS navigation system conceived for space transportation. The most fundamental architectural features such as coupling depth, modularity between filter and inertial propagation, and open-/closed-loop nature of the configuration, are discussed in the light of the envisaged application. Importance of the inertial propagation algorithm and sensor class in the overall system are investigated, being the handling of sensor errors and uncertainties that arise with lower grade sensory also considered. In terms of GNSS outputs we consider receiver solutions (position and velocity) and raw measurements (pseudorange, pseudorange-rate and time-difference carrier phase). Receiver clock error handling options and atmospheric error correction schemes for these measurements are analysed under flight conditions. System performance with different GNSS measurements is estimated through covariance analysis, being the differences between loose and tight coupling emphasized through partial outage simulation. Finally, we discuss options for filter algorithm robustness against non-linearities and system/measurement errors. A possible scheme for fault detection, isolation and recovery is also proposed.

  3. Architectural elements of hybrid navigation systems for future space transportation

    Science.gov (United States)

    Trigo, Guilherme F.; Theil, Stephan

    2018-06-01

    The fundamental limitations of inertial navigation, currently employed by most launchers, have raised interest for GNSS-aided solutions. Combination of inertial measurements and GNSS outputs allows inertial calibration online, solving the issue of inertial drift. However, many challenges and design options unfold. In this work we analyse several architectural elements and design aspects of a hybrid GNSS/INS navigation system conceived for space transportation. The most fundamental architectural features such as coupling depth, modularity between filter and inertial propagation, and open-/closed-loop nature of the configuration, are discussed in the light of the envisaged application. Importance of the inertial propagation algorithm and sensor class in the overall system are investigated, being the handling of sensor errors and uncertainties that arise with lower grade sensory also considered. In terms of GNSS outputs we consider receiver solutions (position and velocity) and raw measurements (pseudorange, pseudorange-rate and time-difference carrier phase). Receiver clock error handling options and atmospheric error correction schemes for these measurements are analysed under flight conditions. System performance with different GNSS measurements is estimated through covariance analysis, being the differences between loose and tight coupling emphasized through partial outage simulation. Finally, we discuss options for filter algorithm robustness against non-linearities and system/measurement errors. A possible scheme for fault detection, isolation and recovery is also proposed.

  4. High accuracy satellite drag model (HASDM)

    Science.gov (United States)

    Storz, Mark F.; Bowman, Bruce R.; Branson, Major James I.; Casali, Stephen J.; Tobiska, W. Kent

    The dominant error source in force models used to predict low-perigee satellite trajectories is atmospheric drag. Errors in operational thermospheric density models cause significant errors in predicted satellite positions, since these models do not account for dynamic changes in atmospheric drag for orbit predictions. The Air Force Space Battlelab's High Accuracy Satellite Drag Model (HASDM) estimates and predicts (out three days) a dynamically varying global density field. HASDM includes the Dynamic Calibration Atmosphere (DCA) algorithm that solves for the phases and amplitudes of the diurnal and semidiurnal variations of thermospheric density near real-time from the observed drag effects on a set of Low Earth Orbit (LEO) calibration satellites. The density correction is expressed as a function of latitude, local solar time and altitude. In HASDM, a time series prediction filter relates the extreme ultraviolet (EUV) energy index E10.7 and the geomagnetic storm index ap, to the DCA density correction parameters. The E10.7 index is generated by the SOLAR2000 model, the first full spectrum model of solar irradiance. The estimated and predicted density fields will be used operationally to significantly improve the accuracy of predicted trajectories for all low-perigee satellites.

  5. Iodine Satellite

    Science.gov (United States)

    Kamhawi, Hani; Dankanich, John; Martinez, Andres; Petro, Andrew

    2015-01-01

    The Iodine Satellite (iSat) spacecraft will be the first CubeSat to demonstrate high change in velocity from a primary propulsion system by using Hall thruster technology and iodine as a propellant. The mission will demonstrate CubeSat maneuverability, including plane change, altitude change and change in its closest approach to Earth to ensure atmospheric reentry in less than 90 days. The mission is planned for launch in fall 2017. Hall thruster technology is a type of electric propulsion. Electric propulsion uses electricity, typically from solar panels, to accelerate the propellant. Electric propulsion can accelerate propellant to 10 times higher velocities than traditional chemical propulsion systems, which significantly increases fuel efficiency. To enable the success of the propulsion subsystem, iSat will also demonstrate power management and thermal control capabilities well beyond the current state-of-the-art for spacecraft of its size. This technology is a viable primary propulsion system that can be used on small satellites ranging from about 22 pounds (10 kilograms) to more than 1,000 pounds (450 kilograms). iSat's fuel efficiency is ten times greater and its propulsion per volume is 100 times greater than current cold-gas systems and three times better than the same system operating on xenon. iSat's iodine propulsion system consists of a 200 watt (W) Hall thruster, a cathode, a tank to store solid iodine, a power processing unit (PPU) and the feed system to supply the iodine. This propulsion system is based on a 200 W Hall thruster developed by Busek Co. Inc., which was previously flown using xenon as the propellant. Several improvements have been made to the original system to include a compact PPU, targeting greater than 80 percent reduction in mass and volume of conventional PPU designs. The cathode technology is planned to enable heaterless cathode conditioning, significantly increasing total system efficiency. The feed system has been designed to

  6. 33 CFR 401.54 - Interference with navigation aids.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Interference with navigation aids. 401.54 Section 401.54 Navigation and Navigable Waters SAINT LAWRENCE SEAWAY DEVELOPMENT CORPORATION... with navigation aids. (a) Aids to navigation shall not be interfered with or used as moorings. (b) No...

  7. Enabling Persistent Autonomy for Underwater Gliders with Ocean Model Predictions and Terrain Based Navigation

    Directory of Open Access Journals (Sweden)

    Andrew eStuntz

    2016-04-01

    Full Text Available Effective study of ocean processes requires sampling over the duration of long (weeks to months oscillation patterns. Such sampling requires persistent, autonomous underwater vehicles, that have a similarly long deployment duration. The spatiotemporal dynamics of the ocean environment, coupled with limited communication capabilities, make navigation and localization difficult, especially in coastal regions where the majority of interesting phenomena occur. In this paper, we consider the combination of two methods for reducing navigation and localization error; a predictive approach based on ocean model predictions and a prior information approach derived from terrain-based navigation. The motivation for this work is not only for real-time state estimation, but also for accurately reconstructing the actual path that the vehicle traversed to contextualize the gathered data, with respect to the science question at hand. We present an application for the practical use of priors and predictions for large-scale ocean sampling. This combined approach builds upon previous works by the authors, and accurately localizes the traversed path of an underwater glider over long-duration, ocean deployments. The proposed method takes advantage of the reliable, short-term predictions of an ocean model, and the utility of priors used in terrain-based navigation over areas of significant bathymetric relief to bound uncertainty error in dead-reckoning navigation. This method improves upon our previously published works by 1 demonstrating the utility of our terrain-based navigation method with multiple field trials, and 2 presenting a hybrid algorithm that combines both approaches to bound navigational error and uncertainty for long-term deployments of underwater vehicles. We demonstrate the approach by examining data from actual field trials with autonomous underwater gliders, and demonstrate an ability to estimate geographical location of an underwater glider to 2

  8. Optimal motion planning using navigation measure

    Science.gov (United States)

    Vaidya, Umesh

    2018-05-01

    We introduce navigation measure as a new tool to solve the motion planning problem in the presence of static obstacles. Existence of navigation measure guarantees collision-free convergence at the final destination set beginning with almost every initial condition with respect to the Lebesgue measure. Navigation measure can be viewed as a dual to the navigation function. While the navigation function has its minimum at the final destination set and peaks at the obstacle set, navigation measure takes the maximum value at the destination set and is zero at the obstacle set. A linear programming formalism is proposed for the construction of navigation measure. Set-oriented numerical methods are utilised to obtain finite dimensional approximation of this navigation measure. Application of the proposed navigation measure-based theoretical and computational framework is demonstrated for a motion planning problem in a complex fluid flow.

  9. New Navigation Post-Processing Tools for Oceanographic Submersibles

    Science.gov (United States)

    Kinsey, J. C.; Whitcomb, L. L.; Yoerger, D. R.; Howland, J. C.; Ferrini, V. L.; Hegrenas, O.

    2006-12-01

    We report the development of Navproc, a new set of software tools for post-processing oceanographic submersible navigation data that exploits previously reported improvements in navigation sensing and estimation (e.g. Eos Trans. AGU, 84(46), Fall Meet. Suppl., Abstract OS32A- 0225, 2003). The development of these tools is motivated by the need to have post-processing software that allows users to compensate for errors in vehicle navigation, recompute the vehicle position, and then save the results for use with quantitative science data (e.g. bathymetric sonar data) obtained during the mission. Navproc does not provide real-time navigation or display of data nor is it capable of high-resolution, three dimensional (3D) data display. Navproc supports the ASCII data formats employed by the vehicles of the National Deep Submergence Facility (NDSF) operated by the Woods Hole Oceanographic Institution (WHOI). Post-processing of navigation data with Navproc is comprised of three tasks. First, data is converted from the logged ASCII file to a binary Matlab file. When loaded into Matlab, each sensor has a data structure containing the time stamped data sampled at the native update rate of the sensor. An additional structure contains the real-time vehicle navigation data. Second, the data can be displayed using a Graphical User Interface (GUI), allowing users to visually inspect the quality of the data and graphically extract portions of the data. Third, users can compensate for errors in the real-time vehicle navigation. Corrections include: (i) manual filtering and median filtering of long baseline (LBL) ranges; (ii) estimation of the Doppler/gyro alignment using previously reported methodologies; and (iii) sound velocity, tide, and LBL transponder corrections. Using these corrections, the Doppler and LBL positions can be recomputed to provide improved estimates of the vehicle position compared to those computed in real-time. The data can be saved in either binary or ASCII

  10. Digital, Satellite-Based Aeronautical Communication

    Science.gov (United States)

    Davarian, F.

    1989-01-01

    Satellite system relays communication between aircraft and stations on ground. System offers better coverage with direct communication between air and ground, costs less and makes possible new communication services. Carries both voice and data. Because many data exchanged between aircraft and ground contain safety-related information, probability of bit errors essential.

  11. Feasibility of Using Synthetic Aperture Radar to Aid UAV Navigation.

    Science.gov (United States)

    Nitti, Davide O; Bovenga, Fabio; Chiaradia, Maria T; Greco, Mario; Pinelli, Gianpaolo

    2015-07-28

    This study explores the potential of Synthetic Aperture Radar (SAR) to aid Unmanned Aerial Vehicle (UAV) navigation when Inertial Navigation System (INS) measurements are not accurate enough to eliminate drifts from a planned trajectory. This problem can affect medium-altitude long-endurance (MALE) UAV class, which permits heavy and wide payloads (as required by SAR) and flights for thousands of kilometres accumulating large drifts. The basic idea is to infer position and attitude of an aerial platform by inspecting both amplitude and phase of SAR images acquired onboard. For the amplitude-based approach, the system navigation corrections are obtained by matching the actual coordinates of ground landmarks with those automatically extracted from the SAR image. When the use of SAR amplitude is unfeasible, the phase content can be exploited through SAR interferometry by using a reference Digital Terrain Model (DTM). A feasibility analysis was carried out to derive system requirements by exploring both radiometric and geometric parameters of the acquisition setting. We showed that MALE UAV, specific commercial navigation sensors and SAR systems, typical landmark position accuracy and classes, and available DTMs lead to estimated UAV coordinates with errors bounded within ±12 m, thus making feasible the proposed SAR-based backup system.

  12. Feasibility of Using Synthetic Aperture Radar to Aid UAV Navigation

    Directory of Open Access Journals (Sweden)

    Davide O. Nitti

    2015-07-01

    Full Text Available This study explores the potential of Synthetic Aperture Radar (SAR to aid Unmanned Aerial Vehicle (UAV navigation when Inertial Navigation System (INS measurements are not accurate enough to eliminate drifts from a planned trajectory. This problem can affect medium-altitude long-endurance (MALE UAV class, which permits heavy and wide payloads (as required by SAR and flights for thousands of kilometres accumulating large drifts. The basic idea is to infer position and attitude of an aerial platform by inspecting both amplitude and phase of SAR images acquired onboard. For the amplitude-based approach, the system navigation corrections are obtained by matching the actual coordinates of ground landmarks with those automatically extracted from the SAR image. When the use of SAR amplitude is unfeasible, the phase content can be exploited through SAR interferometry by using a reference Digital Terrain Model (DTM. A feasibility analysis was carried out to derive system requirements by exploring both radiometric and geometric parameters of the acquisition setting. We showed that MALE UAV, specific commercial navigation sensors and SAR systems, typical landmark position accuracy and classes, and available DTMs lead to estimated UAV coordinates with errors bounded within ±12 m, thus making feasible the proposed SAR-based backup system.

  13. 33 CFR 66.05-100 - Designation of navigable waters as State waters for private aids to navigation.

    Science.gov (United States)

    2010-07-01

    ... as State waters for private aids to navigation. 66.05-100 Section 66.05-100 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION PRIVATE AIDS TO NAVIGATION State Aids to Navigation § 66.05-100 Designation of navigable waters as State waters for private aids to...

  14. Determination of UAV position using high accuracy navigation platform

    Directory of Open Access Journals (Sweden)

    Ireneusz Kubicki

    2016-07-01

    Full Text Available The choice of navigation system for mini UAV is very important because of its application and exploitation, particularly when the installed on it a synthetic aperture radar requires highly precise information about an object’s position. The presented exemplary solution of such a system draws attention to the possible problems associated with the use of appropriate technology, sensors, and devices or with a complete navigation system. The position and spatial orientation errors of the measurement platform influence on the obtained SAR imaging. Both, turbulences and maneuvers performed during flight cause the changes in the position of the airborne object resulting in deterioration or lack of images from SAR. Consequently, it is necessary to perform operations for reducing or eliminating the impact of the sensors’ errors on the UAV position accuracy. You need to look for compromise solutions between newer better technologies and in the field of software. Keywords: navigation systems, unmanned aerial vehicles, sensors integration

  15. Induction studies with satellite data

    DEFF Research Database (Denmark)

    Olsen, Nils

    1999-01-01

    The natural variations of the Earth's magnetic field of periods spanning from milliseconds to decades can be used to infer the conductivity-depth profile of the Earth's interior. Satellites provide a good spatial coverage of magnetic measurements, and forthcoming missions will probably allow...... for observations lasting several years, which helps to reduce the statistical error of the estimated response functions. Two methods are used to study the electrical conductivity of the Earth's mantle in the period range from hours to months. In the first, known as the potential method, a spherical harmonic...... days, this difference probably is not caused purely by differences in mantle conductivity (for which one would expect less difference for the longer periods). Further studies with data from recently launched and future satellites are needed....

  16. Asteroid Satellites

    Science.gov (United States)

    Merline, W. J.

    2001-11-01

    Discovery and study of small satellites of asteroids or double asteroids can yield valuable information about the intrinsic properties of asteroids themselves and about their history and evolution. Determination of the orbits of these moons can provide precise masses of the primaries, and hence reliable estimates of the fundamental property of bulk density. This reveals much about the composition and structure of the primary and will allow us to make comparisons between, for example, asteroid taxonomic type and our inventory of meteorites. The nature and prevalence of these systems will also give clues as to the collisional environment in which they formed, and have further implications for the role of collisions in shaping our solar system. A decade ago, binary asteroids were more of a theoretical curiosity. In 1993, the Galileo spacecraft allowed the first undeniable detection of an asteroid moon, with the discovery of Dactyl, a small moon of Ida. Since that time, and particularly in the last year, the number of known binaries has risen dramatically. Previously odd-shaped and lobate near-Earth asteroids, observed by radar, have given way to signatures indicating, almost certainly, that at least four NEAs are binary systems. The tell-tale lightcurves of several other NEAs reveal a high likelihood of being double. Indications are that among the NEAs, there may be a binary frequency of several tens of percent. Among the main-belt asteroids, we now know of 6 confirmed binary systems, although their overall frequency is likely to be low, perhaps a few percent. The detections have largely come about because of significant advances in adaptive optics systems on large telescopes, which can now reduce the blurring of the Earth's atmosphere to compete with the spatial resolution of space-based imaging (which itself, via HST, is now contributing valuable observations). Most of these binary systems have similarities, but there are important exceptions. Searches among other

  17. SPACE-BORNE LASER ALTIMETER GEOLOCATION ERROR ANALYSIS

    Directory of Open Access Journals (Sweden)

    Y. Wang

    2018-05-01

    Full Text Available This paper reviews the development of space-borne laser altimetry technology over the past 40 years. Taking the ICESAT satellite as an example, a rigorous space-borne laser altimeter geolocation model is studied, and an error propagation equation is derived. The influence of the main error sources, such as the platform positioning error, attitude measurement error, pointing angle measurement error and range measurement error, on the geolocation accuracy of the laser spot are analysed by simulated experiments. The reasons for the different influences on geolocation accuracy in different directions are discussed, and to satisfy the accuracy of the laser control point, a design index for each error source is put forward.

  18. Trends in communications satellites

    CERN Document Server

    Curtin, Denis J

    1979-01-01

    Trends in Communications Satellites offers a comprehensive look at trends and advances in satellite communications, including experimental ones such as NASA satellites and those jointly developed by France and Germany. The economic aspects of communications satellites are also examined. This book consists of 16 chapters and begins with a discussion on the fundamentals of electrical communications and their application to space communications, including spacecraft, earth stations, and orbit and wavelength utilization. The next section demonstrates how successful commercial satellite communicati

  19. The error in total error reduction.

    Science.gov (United States)

    Witnauer, James E; Urcelay, Gonzalo P; Miller, Ralph R

    2014-02-01

    Most models of human and animal learning assume that learning is proportional to the discrepancy between a delivered outcome and the outcome predicted by all cues present during that trial (i.e., total error across a stimulus compound). This total error reduction (TER) view has been implemented in connectionist and artificial neural network models to describe the conditions under which weights between units change. Electrophysiological work has revealed that the activity of dopamine neurons is correlated with the total error signal in models of reward learning. Similar neural mechanisms presumably support fear conditioning, human contingency learning, and other types of learning. Using a computational modeling approach, we compared several TER models of associative learning to an alternative model that rejects the TER assumption in favor of local error reduction (LER), which assumes that learning about each cue is proportional to the discrepancy between the delivered outcome and the outcome predicted by that specific cue on that trial. The LER model provided a better fit to the reviewed data than the TER models. Given the superiority of the LER model with the present data sets, acceptance of TER should be tempered. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Overcoming urban GPS navigation challenges through the use of MEMS inertial sensors and proper verification of navigation system performance

    Science.gov (United States)

    Vinande, Eric T.

    This research proposes several means to overcome challenges in the urban environment to ground vehicle global positioning system (GPS) receiver navigation performance through the integration of external sensor information. The effects of narrowband radio frequency interference and signal attenuation, both common in the urban environment, are examined with respect to receiver signal tracking processes. Low-cost microelectromechanical systems (MEMS) inertial sensors, suitable for the consumer market, are the focus of receiver augmentation as they provide an independent measure of motion and are independent of vehicle systems. A method for estimating the mounting angles of an inertial sensor cluster utilizing typical urban driving maneuvers is developed and is able to provide angular measurements within two degrees of truth. The integration of GPS and MEMS inertial sensors is developed utilizing a full state navigation filter. Appropriate statistical methods are developed to evaluate the urban environment navigation improvement due to the addition of MEMS inertial sensors. A receiver evaluation metric that combines accuracy, availability, and maximum error measurements is presented and evaluated over several drive tests. Following a description of proper drive test techniques, record and playback systems are evaluated as the optimal way of testing multiple receivers and/or integrated navigation systems in the urban environment as they simplify vehicle testing requirements.

  1. Current state of art of satellite altimetry

    Directory of Open Access Journals (Sweden)

    Łyszkowicz Adam Bolesław

    2017-12-01

    Full Text Available One of the fundamental problems of modern geodesy is precise defi nition of the gravitational fi eld and its changes in time. This is essential in positioning and navigation, geophysics, geodynamics, oceanography and other sciences related to the climate and Earth’s environment. One of the major sources of gravity data is satellite altimetry that provides gravity data with almost 75% surface of the Earth. Satellite altimetry also provides data to study local, regional and global geophysical processes, the geoid model in the areas of oceans and seas. This technique can be successfully used to study the ocean mean dynamic topography. The results of the investigations and possible products of altimetry will provide a good material for the GGOS (Global Geodetic Observing System and institutions of IAS (International Altimetry Service. This paper presents the achievements in satellite altimetry in all the above disciplines obtained in the last years. First very shorly basic concept of satellite altimetry is given. In order to obtain the highest accuracy on range measurements over the ocean improved of altimetry waveforms performed on the ground is described. Next, signifi cant improvements of sea and ocean gravity anomalies models developed presently is shown. Study of sea level and its extremes examined, around European and Australian coasts using tide gauges data and satellite altimetry measurements were described. Then investigations of the phenomenon of the ocean tides, calibration of altimeters, studies of rivers and ice-sheets in the last years are given.

  2. Current state of art of satellite altimetry

    Science.gov (United States)

    Łyszkowicz, Adam Bolesław; Bernatowicz, Anna

    2017-12-01

    One of the fundamental problems of modern geodesy is precise defi nition of the gravitational fi eld and its changes in time. This is essential in positioning and navigation, geophysics, geodynamics, oceanography and other sciences related to the climate and Earth's environment. One of the major sources of gravity data is satellite altimetry that provides gravity data with almost 75% surface of the Earth. Satellite altimetry also provides data to study local, regional and global geophysical processes, the geoid model in the areas of oceans and seas. This technique can be successfully used to study the ocean mean dynamic topography. The results of the investigations and possible products of altimetry will provide a good material for the GGOS (Global Geodetic Observing System) and institutions of IAS (International Altimetry Service). This paper presents the achievements in satellite altimetry in all the above disciplines obtained in the last years. First very shorly basic concept of satellite altimetry is given. In order to obtain the highest accuracy on range measurements over the ocean improved of altimetry waveforms performed on the ground is described. Next, signifi cant improvements of sea and ocean gravity anomalies models developed presently is shown. Study of sea level and its extremes examined, around European and Australian coasts using tide gauges data and satellite altimetry measurements were described. Then investigations of the phenomenon of the ocean tides, calibration of altimeters, studies of rivers and ice-sheets in the last years are given.

  3. Errors in Neonatology

    OpenAIRE

    Antonio Boldrini; Rosa T. Scaramuzzo; Armando Cuttano

    2013-01-01

    Introduction: Danger and errors are inherent in human activities. In medical practice errors can lean to adverse events for patients. Mass media echo the whole scenario. Methods: We reviewed recent published papers in PubMed database to focus on the evidence and management of errors in medical practice in general and in Neonatology in particular. We compared the results of the literature with our specific experience in Nina Simulation Centre (Pisa, Italy). Results: In Neonatology the main err...

  4. GPS Navigation for the Magnetospheric Multi-Scale Mission

    Science.gov (United States)

    Bamford, William; Mitchell, Jason; Southward, Michael; Baldwin, Philip; Winternitz, Luke; Heckler, Gregory; Kurichh, Rishi; Sirotzky, Steve

    2009-01-01

    In 2014. NASA is scheduled to launch the Magnetospheric Multiscale Mission (MMS), a four-satellite formation designed to monitor fluctuations in the Earth's magnetosphere. This mission has two planned phases with different orbits (1? x 12Re and 1.2 x 25Re) to allow for varying science regions of interest. To minimize ground resources and to mitigate the probability of collisions between formation members, an on-board orbit determination system consisting of a Global Positioning System (GPS) receiver and crosslink transceiver was desired. Candidate sensors would be required to acquire GPS signals both below and above the constellation while spinning at three revolutions-per-minute (RPM) and exchanging state and science information among the constellation. The Intersatellite Ranging and Alarm System (IRAS), developed by Goddard Space Flight Center (GSFC) was selected to meet this challenge. IRAS leverages the eight years of development GSFC has invested in the Navigator GPS receiver and its spacecraft communication expertise, culminating in a sensor capable of absolute and relative navigation as well as intersatellite communication. The Navigator is a state-of-the-art receiver designed to acquire and track weak GPS signals down to -147dBm. This innovation allows the receiver to track both the main lobe and the much weaker side lobe signals. The Navigator's four antenna inputs and 24 tracking channels, together with customized hardware and software, allow it to seamlessly maintain visibility while rotating. Additionally, an extended Kalman filter provides autonomous, near real-time, absolute state and time estimates. The Navigator made its maiden voyage on the Space Shuttle during the Hubble Servicing Mission, and is scheduled to fly on MMS as well as the Global Precipitation Measurement Mission (GPM). Additionally, Navigator's acquisition engine will be featured in the receiver being developed for the Orion vehicle. The crosslink transceiver is a 1/4 Watt transmitter

  5. Systematic Procedural Error

    National Research Council Canada - National Science Library

    Byrne, Michael D

    2006-01-01

    .... This problem has received surprisingly little attention from cognitive psychologists. The research summarized here examines such errors in some detail both empirically and through computational cognitive modeling...

  6. Human errors and mistakes

    International Nuclear Information System (INIS)

    Wahlstroem, B.

    1993-01-01

    Human errors have a major contribution to the risks for industrial accidents. Accidents have provided important lesson making it possible to build safer systems. In avoiding human errors it is necessary to adapt the systems to their operators. The complexity of modern industrial systems is however increasing the danger of system accidents. Models of the human operator have been proposed, but the models are not able to give accurate predictions of human performance. Human errors can never be eliminated, but their frequency can be decreased by systematic efforts. The paper gives a brief summary of research in human error and it concludes with suggestions for further work. (orig.)

  7. A novel navigation system for maxillary positioning in orthognathic surgery: Preclinical evaluation.

    Science.gov (United States)

    Lutz, Jean-Christophe; Nicolau, Stéphane; Agnus, Vincent; Bodin, Frédéric; Wilk, Astrid; Bruant-Rodier, Catherine; Rémond, Yves; Soler, Luc

    2015-11-01

    Appropriate positioning of the maxilla is critical in orthognathic surgery. As opposed to splint-based positioning, navigation systems are versatile and appropriate in assessing the vertical dimension. Bulk and disruption to the line of sight are drawbacks of optical navigation systems. Our aim was to develop and assess a novel navigation system based on electromagnetic tracking of the maxilla, including real-time registration of head movements. Since the software interface has proved to greatly influence the accuracy of the procedure, we purposely designed and evaluated an original, user-friendly interface. A sample of 12 surgeons had to navigate the phantom osteotomized maxilla to eight given target positions using the software we have developed. Time and accuracy (translational error and angular error) were compared between a conventional and a navigated session. A questionnaire provided qualitative evaluation. Our system definitely allows a reduction in variability of time and accuracy among different operators. Accuracy was improved in all surgeons (mean terror difference = 1.11 mm, mean aerror difference = 1.32°). Operative time was decreased in trainees. Therefore, they would benefit from such a system that could also serve for educational purposes. The majority of surgeons who strongly agreed that such a navigation system would prove very helpful in complex deformities, also stated that it would be helpful in everyday orthognathic procedures. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  8. Group navigation and the "many-wrongs principle" in models of animal movement.

    Science.gov (United States)

    Codling, E A; Pitchford, J W; Simpson, S D

    2007-07-01

    Traditional studies of animal navigation over both long and short distances have usually considered the orientation ability of the individual only, without reference to the implications of group membership. However, recent work has suggested that being in a group can significantly improve the ability of an individual to align toward and reach a target direction or point, even when all group members have limited navigational ability and there are no leaders. This effect is known as the "many-wrongs principle" since the large number of individual navigational errors across the group are suppressed by interactions and group cohesion. In this paper, we simulate the many-wrongs principle using a simple individual-based model of movement based on a biased random walk that includes group interactions. We study the ability of the group as a whole to reach a target given different levels of individual navigation error, group size, interaction radius, and environmental turbulence. In scenarios with low levels of environmental turbulence, simulation results demonstrate a navigational benefit from group membership, particularly for small group sizes. In contrast, when movement takes place in a highly turbulent environment, simulation results suggest that the best strategy is to navigate as individuals rather than as a group.

  9. DVL Velocity Aiding in the HUGIN 1000 Integrated Inertial Navigation System

    Directory of Open Access Journals (Sweden)

    Bjørn Jalving

    2004-10-01

    Full Text Available The RDI WHN-600 Doppler Velocity Log (DVL is a key navigation sensor for the HUG1N 1000 Autonomous Underwater Vehicle (AUV. HUGIN 1000 is designed for autonomous submerged operation for long periods of time. This is facilitated by a low drift velocity aided Inertial Navigation System (INS. Major factors determining the position error growth are the IMU and DVL error characteristics and the mission plan pattern_ For instance, low frequency DVL errors cause an approximately linear drift in a straight-line trajectory, while these errors tend to be cancelled out by a lawn mower pattern_ The paper focuses on the accuracy offered by the DVL. HUGIN 1000 is a permanent organic mine countermeasure (MCM capacity on the Royal Norwegian Navy MCM vessel KNM Karmoy. HUGIN 1000 will be part of the NATO force MCMFORNORTH in fall 2004.

  10. A Bionic Polarization Navigation Sensor and Its Calibration Method.

    Science.gov (United States)

    Zhao, Huijie; Xu, Wujian

    2016-08-03

    The polarization patterns of skylight which arise due to the scattering of sunlight in the atmosphere can be used by many insects for deriving compass information. Inspired by insects' polarized light compass, scientists have developed a new kind of navigation method. One of the key techniques in this method is the polarimetric sensor which is used to acquire direction information from skylight. In this paper, a polarization navigation sensor is proposed which imitates the working principles of the polarization vision systems of insects. We introduce the optical design and mathematical model of the sensor. In addition, a calibration method based on variable substitution and non-linear curve fitting is proposed. The results obtained from the outdoor experiments provide support for the feasibility and precision of the sensor. The sensor's signal processing can be well described using our mathematical model. A relatively high degree of accuracy in polarization measurement can be obtained without any error compensation.

  11. Autonomous vision-based navigation for proximity operations around binary asteroids

    Science.gov (United States)

    Gil-Fernandez, Jesus; Ortega-Hernando, Guillermo

    2018-06-01

    Future missions to small bodies demand higher level of autonomy in the Guidance, Navigation and Control system for higher scientific return and lower operational costs. Different navigation strategies have been assessed for ESA's asteroid impact mission (AIM). The main objective of AIM is the detailed characterization of binary asteroid Didymos. The trajectories for the proximity operations shall be intrinsically safe, i.e., no collision in presence of failures (e.g., spacecraft entering safe mode), perturbations (e.g., non-spherical gravity field), and errors (e.g., maneuver execution error). Hyperbolic arcs with sufficient hyperbolic excess velocity are designed to fulfil the safety, scientific, and operational requirements. The trajectory relative to the asteroid is determined using visual camera images. The ground-based trajectory prediction error at some points is comparable to the camera Field Of View (FOV). Therefore, some images do not contain the entire asteroid. Autonomous navigation can update the state of the spacecraft relative to the asteroid at higher frequency. The objective of the autonomous navigation is to improve the on-board knowledge compared to the ground prediction. The algorithms shall fit in off-the-shelf, space-qualified avionics. This note presents suitable image processing and relative-state filter algorithms for autonomous navigation in proximity operations around binary asteroids.

  12. Navigation in Cross-cultural business relationships

    DEFF Research Database (Denmark)

    Andersen, Poul Houman

    2001-01-01

    Cross-cultural business navigation concerns the process of handling the complexity of several interacting cultural spheres of influence......Cross-cultural business navigation concerns the process of handling the complexity of several interacting cultural spheres of influence...

  13. An Integrated Approach to Electronic Navigation

    National Research Council Canada - National Science Library

    Shaw, Peter; Pettus, Bill

    2001-01-01

    While the Global Positioning System (GPS) is and will continue to be an excellent navigation system, it is neither flawless nor is it the only system employed in the navigation of today's seagoing warfighters...

  14. Global Positioning System Navigation Algorithms

    Science.gov (United States)

    1977-05-01

    Historical Remarks on Navigation In Greek mythology , Odysseus sailed safely by the Sirens only to encounter the monsters Scylla and Charybdis...TNED 000 00 1(.7 BIBLIOGRAPHY 1. Pinsent, John. Greek Mythology . Paul Hamlyn, London, 1969. 2. Kline, Morris. Mathematical Thought from Ancient to

  15. Conceptual Grounds of Navigation Safety

    Directory of Open Access Journals (Sweden)

    Vladimir Torskiy

    2016-04-01

    Full Text Available The most important global problem being solved by the whole world community nowadays is to provide sustainable mankind development. Recent research in the field of sustainable development states that civilization safety is impossible without transfer sustainable development. At the same time, sustainable development (i.e. preservation of human culture and biosphere is impossible as a system that serves to meet economical, cultural, scientific, recreational and other human needs without safety. Safety plays an important role in sustainable development goals achievement. An essential condition of effective navigation functioning is to provide its safety. The “prescriptive” approach to the navigation safety, which is currently used in the world maritime field, is based on long-term experience and ship accidents investigation results. Thus this approach acted as an the great fact in reduction of number of accidents at sea. Having adopted the International Safety Management Code all the activities connected with navigation safety problems solution were transferred to the higher qualitative level. Search and development of new approaches and methods of ship accidents prevention during their operation have obtained greater importance. However, the maritime safety concept (i.e. the different points on ways, means and methods that should be used to achieve this goal hasn't been formed and described yet. The article contains a brief review of the main provisions of Navigation Safety Conceptions, which contribute to the number of accidents and incidents at sea reduction.

  16. Surgical navigation with QR codes

    Directory of Open Access Journals (Sweden)

    Katanacho Manuel

    2016-09-01

    Full Text Available The presented work is an alternative to established measurement systems in surgical navigation. The system is based on camera based tracking of QR code markers. The application uses a single video camera, integrated in a surgical lamp, that captures the QR markers attached to surgical instruments and to the patient.

  17. Satellite-Based Precipitation Datasets

    Science.gov (United States)

    Munchak, S. J.; Huffman, G. J.

    2017-12-01

    Of the possible sources of precipitation data, those based on satellites provide the greatest spatial coverage. There is a wide selection of datasets, algorithms, and versions from which to choose, which can be confusing to non-specialists wishing to use the data. The International Precipitation Working Group (IPWG) maintains tables of the major publicly available, long-term, quasi-global precipitation data sets (http://www.isac.cnr.it/ ipwg/data/datasets.html), and this talk briefly reviews the various categories. As examples, NASA provides two sets of quasi-global precipitation data sets: the older Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) and current Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (GPM) mission (IMERG). Both provide near-real-time and post-real-time products that are uniformly gridded in space and time. The TMPA products are 3-hourly 0.25°x0.25° on the latitude band 50°N-S for about 16 years, while the IMERG products are half-hourly 0.1°x0.1° on 60°N-S for over 3 years (with plans to go to 16+ years in Spring 2018). In addition to the precipitation estimates, each data set provides fields of other variables, such as the satellite sensor providing estimates and estimated random error. The discussion concludes with advice about determining suitability for use, the necessity of being clear about product names and versions, and the need for continued support for satellite- and surface-based observation.

  18. Satellite-aided coastal zone monitoring and vessel traffic system

    Science.gov (United States)

    Baker, J. L.

    1981-01-01

    The development and demonstration of a coastal zone monitoring and vessel traffic system is described. This technique uses a LORAN-C navigational system and relays signals via the ATS-3 satellite to a computer driven color video display for real time control. Multi-use applications of the system to search and rescue operations, coastal zone management and marine safety are described. It is emphasized that among the advantages of the system are: its unlimited range; compatibility with existing navigation systems; and relatively inexpensive cost.

  19. Microwave systems applications in deep space telecommunications and navigation - Space Exploration Initiative architectures

    Science.gov (United States)

    Hall, Justin R.; Hastrup, Rolf C.; Bell, David J.

    1992-06-01

    The general support requirements of a typical SEI mission set, along with the mission operations objectives and related telecommunications, navigation, and information management (TNIM) support infrastructure options are described. Responsive system architectures and designs are proposed, including a Mars orbiting communications relay satellite system and a Mars-centered navigation capability for servicing all Mars missions. With the TNIM architecture as a basis, key elements of the microwave link design are proposed. The needed new technologies which enable these designs are identified, and current maturity is assessed.

  20. Optical Fiber Connection Navigation System Using Visible Light Communication in Central Office with Economic Evaluation

    Science.gov (United States)

    Waki, Masaki; Uruno, Shigenori; Ohashi, Hiroyuki; Manabe, Tetsuya; Azuma, Yuji

    We propose an optical fiber connection navigation system that uses visible light communication for an integrated distribution module in a central office. The system realizes an accurate database, requires less skilled work to operate and eliminates human error. This system can achieve a working time reduction of up to 88.0% compared with the conventional work without human error for the connection/removal of optical fiber cords, and is economical as regards installation and operation.

  1. Navigation system for interstitial brachytherapy

    International Nuclear Information System (INIS)

    Strassmann, G.; Kolotas, C.; Heyd, R.

    2000-01-01

    The purpose of the stud was to develop a computed tomography (CT) based electromagnetic navigation system for interstitial brachytherapy. This is especially designed for situations when needles have to be positioned adjacent to or within critical anatomical structures. In such instances interactive 3D visualisation of the needle positions is essential. The material consisted of a Polhemus electromagnetic 3D digitizer, a Pentium 200 MHz laptop and a voice recognition for continuous speech. In addition, we developed an external reference system constructed of Perspex which could be positioned above the tumour region and attached to the patient using a non-invasive fixation method. A specially designed needle holder and patient bed were also developed. Measurements were made on a series of phantoms in order to study the efficacy and accuracy of the navigation system. The mean navigation accuracy of positioning the 20.0 cm length metallic needles within the phantoms was in the range 2.0-4.1 mm with a maximum of 5.4 mm. This is an improvement on the accuracy of a CT-guided technique which was in the range 6.1-11.3 mm with a maximum of 19.4 mm. The mean reconstruction accuracy of the implant geometry was 3.2 mm within a non-ferromagnetic environment. We found that although the needles were metallic this did not have a significant influence. We also found for our experimental setups that the CT table and operation table non-ferromagnetic parts had no significant influence on the navigation accuracy. This navigation system will be a very useful clinical tool for interstitial brachytherapy applications, particularly when critical structures have to be avoided. It also should provide a significant improvement on our existing technique

  2. Fully autonomous navigation for the NASA cargo transfer vehicle

    Science.gov (United States)

    Wertz, James R.; Skulsky, E. David

    1991-01-01

    A great deal of attention has been paid to navigation during the close approach (less than or equal to 1 km) phase of spacecraft rendezvous. However, most spacecraft also require a navigation system which provides the necessary accuracy for placing both satellites within the range of the docking sensors. The Microcosm Autonomous Navigation System (MANS) is an on-board system which uses Earth-referenced attitude sensing hardware to provide precision orbit and attitude determination. The system is capable of functioning from LEO to GEO and beyond. Performance depends on the number of available sensors as well as mission geometry; however, extensive simulations have shown that MANS will provide 100 m to 400 m (3(sigma)) position accuracy and 0.03 to 0.07 deg (3(sigma)) attitude accuracy in low Earth orbit. The system is independent of any external source, including GPS. MANS is expected to have a significant impact on ground operations costs, mission definition and design, survivability, and the potential development of very low-cost, fully autonomous spacecraft.

  3. Navigational challenges in the oceanic migrations of leatherback sea turtles

    Science.gov (United States)

    Sale, Alessandro; Luschi, Paolo

    2009-01-01

    The open-sea movements of marine animals are affected by the drifting action of currents that, if not compensated for, can produce non-negligible deviations from the correct route towards a given target. Marine turtles are paradigmatic skilful oceanic navigators that are able to reach remote goals at the end of long-distance migrations, apparently overcoming current drift effects. Particularly relevant is the case of leatherback turtles (Dermochelys coriacea), which spend entire years in the ocean, wandering in search of planktonic prey. Recent analyses have revealed how the movements of satellite-tracked leatherbacks in the Indian, Atlantic and Pacific Oceans are strongly dependent on the oceanic currents, up to the point that turtles are often passively transported over long distances. However, leatherbacks are known to return to specific areas to breed every 2–3 years, thus finding their way back home after long periods in the oceanic environment. Here we examine the navigational consequences of the leatherbacks' close association with currents and discuss how the combined reliance on mechanisms of map-based navigation and local orientation cues close to the target may allow leatherbacks to accomplish the difficult task of returning to specific sites after years spent wandering in a moving medium. PMID:19625321

  4. Modelling of Influence of Hypersonic Conditions on Gyroscopic Inertial Navigation Sensor Suspension

    Directory of Open Access Journals (Sweden)

    Korobiichuk Igor

    2017-06-01

    Full Text Available The upcoming hypersonic technologies pose a difficult task for air navigation systems. The article presents a designed model of elastic interaction of penetrating acoustic radiation with flat isotropic suspension elements of an inertial navigation sensor in the operational conditions of hypersonic flight. It has been shown that the acoustic transparency effect in the form of a spatial-frequency resonance becomes possible with simultaneous manifestation of the wave coincidence condition in the acoustic field and equality of the natural oscillation frequency of a finite-size plate and a forced oscillation frequency of an infinite plate. The effect can lead to additional measurement errors of the navigation system. Using the model, the worst and best case suspension oscillation frequencies can be determined, which will help during the design of a navigation system.

  5. Development of navigational working memory: evidence from 6- to 10-year-old children.

    Science.gov (United States)

    Piccardi, Laura; Leonzi, Marina; D'Amico, Simonetta; Marano, Assunta; Guariglia, Cecilia

    2014-06-01

    The ability to learn complex environments may require the contribution of different types of working memory. Therefore, we investigated the development of different types of working memory (navigational, reaching, and verbal) in 129 typically developing children. We aimed to determine whether navigational working memory develops at the same rate as other types of working memory and whether the gender differences reported in adults are already present during development. We found that navigational working memory is less developed than both verbal and reaching working memory and that gender predicts performance only for navigational working memory. Our results are in line with reports that children made significantly more errors in far space than adults, showing that near space representation develops before far space representation. © 2014 The British Psychological Society.

  6. Quad-Rotor Helicopter Autonomous Navigation Based on Vanishing Point Algorithm

    Directory of Open Access Journals (Sweden)

    Jialiang Wang

    2014-01-01

    Full Text Available Quad-rotor helicopter is becoming popular increasingly as they can well implement many flight missions in more challenging environments, with lower risk of damaging itself and its surroundings. They are employed in many applications, from military operations to civilian tasks. Quad-rotor helicopter autonomous navigation based on the vanishing point fast estimation (VPFE algorithm using clustering principle is implemented in this paper. For images collected by the camera of quad-rotor helicopter, the system executes the process of preprocessing of image, deleting noise interference, edge extracting using Canny operator, and extracting straight lines by randomized hough transformation (RHT method. Then system obtains the position of vanishing point and regards it as destination point and finally controls the autonomous navigation of the quad-rotor helicopter by continuous modification according to the calculated navigation error. The experimental results show that the quad-rotor helicopter can implement the destination navigation well in the indoor environment.

  7. Learning from Errors

    Science.gov (United States)

    Metcalfe, Janet

    2017-01-01

    Although error avoidance during learning appears to be the rule in American classrooms, laboratory studies suggest that it may be a counterproductive strategy, at least for neurologically typical students. Experimental investigations indicate that errorful learning followed by corrective feedback is beneficial to learning. Interestingly, the…

  8. 77 FR 42637 - Navigation and Navigable Waters; Technical, Organizational, and Conforming Amendments; Corrections

    Science.gov (United States)

    2012-07-20

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Parts 84 and 115 [Docket No. USCG-2012-0306] RIN 1625-AB86 Navigation and Navigable Waters; Technical, Organizational, and Conforming Amendments...), the Coast Guard published a final rule entitled ``Navigation and Navigable Waters; Technical...

  9. L’ITSS “Majorana-Giorgi” di Genova in orbita con i sistemi di navigazione via satellite

    Directory of Open Access Journals (Sweden)

    Primo Bartoli

    2015-03-01

    GNSS satellites (GPS, GLONASS or Galileo, based on a commercial multi-constellation receiver and on a software program developed in National Instruments LabVIEW, with the dual aim to explore the techniques of satellite navigation and to provide an attractive teaching aid for universities and secondary level technical institutes.

  10. 32 CFR 644.3 - Navigation Projects.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Navigation Projects. 644.3 Section 644.3 National... HANDBOOK Project Planning Civil Works § 644.3 Navigation Projects. (a) Land to be acquired in fee. All... construction and borrow areas. (3) In navigation-only projects, the right to permanently flood should be...

  11. Satellite image collection optimization

    Science.gov (United States)

    Martin, William

    2002-09-01

    Imaging satellite systems represent a high capital cost. Optimizing the collection of images is critical for both satisfying customer orders and building a sustainable satellite operations business. We describe the functions of an operational, multivariable, time dynamic optimization system that maximizes the daily collection of satellite images. A graphical user interface allows the operator to quickly see the results of what if adjustments to an image collection plan. Used for both long range planning and daily collection scheduling of Space Imaging's IKONOS satellite, the satellite control and tasking (SCT) software allows collection commands to be altered up to 10 min before upload to the satellite.

  12. In-flight performance analysis of MEMS GPS receiver and its application to precise orbit determination of APOD-A satellite

    Science.gov (United States)

    Gu, Defeng; Liu, Ye; Yi, Bin; Cao, Jianfeng; Li, Xie

    2017-12-01

    An experimental satellite mission termed atmospheric density detection and precise orbit determination (APOD) was developed by China and launched on 20 September 2015. The micro-electro-mechanical system (MEMS) GPS receiver provides the basis for precise orbit determination (POD) within the range of a few decimetres. The in-flight performance of the MEMS GPS receiver was assessed. The average number of tracked GPS satellites is 10.7. However, only 5.1 GPS satellites are available for dual-frequency navigation because of the loss of many L2 observations at low elevations. The variations in the multipath error for C1 and P2 were estimated, and the maximum multipath error could reach up to 0.8 m. The average code noises are 0.28 m (C1) and 0.69 m (P2). Using the MEMS GPS receiver, the orbit of the APOD nanosatellite (APOD-A) was precisely determined. Two types of orbit solutions are proposed: a dual-frequency solution and a single-frequency solution. The antenna phase center variations (PCVs) and code residual variations (CRVs) were estimated, and the maximum value of the PCVs is 4.0 cm. After correcting the antenna PCVs and CRVs, the final orbit precision for the dual-frequency and single-frequency solutions were 7.71 cm and 12.91 cm, respectively, validated using the satellite laser ranging (SLR) data, which were significantly improved by 3.35 cm and 25.25 cm. The average RMS of the 6-h overlap differences in the dual-frequency solution between two consecutive days in three dimensions (3D) is 4.59 cm. The MEMS GPS receiver is the Chinese indigenous onboard receiver, which was successfully used in the POD of a nanosatellite. This study has important reference value for improving the MEMS GPS receiver and its application in other low Earth orbit (LEO) nanosatellites.

  13. Vision-aided inertial navigation system for robotic mobile mapping

    Science.gov (United States)

    Bayoud, Fadi; Skaloud, Jan

    2008-04-01

    A mapping system by vision-aided inertial navigation was developed for areas where GNSS signals are unreachable. In this framework, a methodology on the integration of vision and inertial sensors is presented, analysed and tested. The system employs the method of “SLAM: Simultaneous Localisation And Mapping” where the only external input available to the system at the beginning of the mapping mission is a number of features with known coordinates. SLAM is a term used in the robotics community to describe the problem of mapping the environment and at the same time using this map to determine the location of the mapping device. Differing from the robotics approach, the presented development stems from the frameworks of photogrammetry and kinematic geodesy that are merged in two filters that run in parallel: the Least-Squares Adjustment (LSA) for features coordinates determination and the Kalman filter (KF) for navigation correction. To test this approach, a mapping system-prototype comprising two CCD cameras and one Inertial Measurement Unit (IMU) is introduced. Conceptually, the outputs of the LSA photogrammetric resection are used as the external measurements for the KF that corrects the inertial navigation. The filtered position and orientation are subsequently employed in the photogrammetric intersection to map the surrounding features that are used as control points for the resection in the next epoch. We confirm empirically the dependency of navigation performance on the quality of the images and the number of tracked features, as well as on the geometry of the stereo-pair. Due to its autonomous nature, the SLAM's performance is further affected by the quality of IMU initialisation and the a-priory assumptions on error distribution. Using the example of the presented system we show that centimetre accuracy can be achieved in both navigation and mapping when the image geometry is optimal.

  14. Social networks improve leaderless group navigation by facilitating long-distance communication

    Directory of Open Access Journals (Sweden)

    Nikolai W. F. BODE, A. Jamie WOOD, Daniel W. FRANKS

    2012-04-01

    Full Text Available Group navigation is of great importance for many animals, such as migrating flocks of birds or shoals of fish. One theory states that group membership can improve navigational accuracy compared to limited or less accurate individual navigational ability in groups without leaders (“Many-wrongs principle”. Here, we simulate leaderless group navigation that includes social connections as preferential interactions between individuals. Our results suggest that underlying social networks can reduce navigational errors of groups and increase group cohesion. We use network summary statistics, in particular network motifs, to study which characteristics of networks lead to these improvements. It is networks in which preferences between individuals are not clustered, but spread evenly across the group that are advantageous in group navigation by effectively enhancing long-distance information exchange within groups. We suggest that our work predicts a base-line for the type of social structure we might expect to find in group-living animals that navigate without leaders [Current Zoology 58 (2: 329-341, 2012].

  15. A Microscopic Optically Tracking Navigation System That Uses High-resolution 3D Computer Graphics.

    Science.gov (United States)

    Yoshino, Masanori; Saito, Toki; Kin, Taichi; Nakagawa, Daichi; Nakatomi, Hirofumi; Oyama, Hiroshi; Saito, Nobuhito

    2015-01-01

    Three-dimensional (3D) computer graphics (CG) are useful for preoperative planning of neurosurgical operations. However, application of 3D CG to intraoperative navigation is not widespread because existing commercial operative navigation systems do not show 3D CG in sufficient detail. We have developed a microscopic optically tracking navigation system that uses high-resolution 3D CG. This article presents the technical details of our microscopic optically tracking navigation system. Our navigation system consists of three components: the operative microscope, registration, and the image display system. An optical tracker was attached to the microscope to monitor the position and attitude of the microscope in real time; point-pair registration was used to register the operation room coordinate system, and the image coordinate system; and the image display system showed the 3D CG image in the field-of-view of the microscope. Ten neurosurgeons (seven males, two females; mean age 32.9 years) participated in an experiment to assess the accuracy of this system using a phantom model. Accuracy of our system was compared with the commercial system. The 3D CG provided by the navigation system coincided well with the operative scene under the microscope. Target registration error for our system was 2.9 ± 1.9 mm. Our navigation system provides a clear image of the operation position and the surrounding structures. Systems like this may reduce intraoperative complications.

  16. Action errors, error management, and learning in organizations.

    Science.gov (United States)

    Frese, Michael; Keith, Nina

    2015-01-03

    Every organization is confronted with errors. Most errors are corrected easily, but some may lead to negative consequences. Organizations often focus on error prevention as a single strategy for dealing with errors. Our review suggests that error prevention needs to be supplemented by error management--an approach directed at effectively dealing with errors after they have occurred, with the goal of minimizing negative and maximizing positive error consequences (examples of the latter are learning and innovations). After defining errors and related concepts, we review research on error-related processes affected by error management (error detection, damage control). Empirical evidence on positive effects of error management in individuals and organizations is then discussed, along with emotional, motivational, cognitive, and behavioral pathways of these effects. Learning from errors is central, but like other positive consequences, learning occurs under certain circumstances--one being the development of a mind-set of acceptance of human error.

  17. Autonomous Navigation of USAF Spacecraft

    Science.gov (United States)

    1983-12-01

    ASSEMBLY 21.LACn. THERM AL RADEARTOR ASEML 21.5 in REFERENC BASE PLATE JELECTRONICS REFERENMODULE ASSEMBLY (4 PLACES) PORRO PRISM & BASE MIRROR -24.25...involved in active satellite-to- satellite cracking for 14 days following one day of ground tracking. Earth geopotential resonance terms are the largest...rotates a prism at 9 rps such that optical signals are injected into each telescope parallel to the reielved starlight. The angle between tne two lines

  18. Autonomous optical navigation using nanosatellite-class instruments: a Mars approach case study

    Science.gov (United States)

    Enright, John; Jovanovic, Ilija; Kazemi, Laila; Zhang, Harry; Dzamba, Tom

    2018-02-01

    This paper examines the effectiveness of small star trackers for orbital estimation. Autonomous optical navigation has been used for some time to provide local estimates of orbital parameters during close approach to celestial bodies. These techniques have been used extensively on spacecraft dating back to the Voyager missions, but often rely on long exposures and large instrument apertures. Using a hyperbolic Mars approach as a reference mission, we present an EKF-based navigation filter suitable for nanosatellite missions. Observations of Mars and its moons allow the estimator to correct initial errors in both position and velocity. Our results show that nanosatellite-class star trackers can produce good quality navigation solutions with low position (<300 {m}) and velocity (<0.15 {m/s}) errors as the spacecraft approaches periapse.

  19. Prediction of Communication Outage Period between Satellite and Earth station Due to Sun Interference

    Directory of Open Access Journals (Sweden)

    Yongjun Song

    2010-03-01

    Full Text Available We developed a computer program to predict solar interference period. To calculate Sun‘s position, we used DE406 ephemerides and Earth ellipsoid model. The Sun‘s position error is smaller than 10arcsec. For the verification of the calculation, we used TU media ground station on Seongsu-dong, and MBSAT geostationary communication satellite. We analysis errors, due to satellite perturbation and antenna align. The time error due to antenna align has -35 to +16 seconds at 0.1 degree, and -27 to +41 seconds at 0.25 degree. The time errors derived by satellite perturbation has 30 to 60 seconds.

  20. Decrease in Accuracy of a Rotational SINS Caused by its Rotary Table's Errors

    Directory of Open Access Journals (Sweden)

    Pin Lv

    2014-05-01

    Full Text Available We call a strapdown inertial navigation system (SINS that uses the rotation auto-compensation technique (which is a common method to reduce the effect of the bias errors of inertial components a ‘rotational SINS’. In a rotational SINS, the rotary table is an important component, rotating the inertial sensor assembly back and forth in azimuth to accomplish error modulation. As a consequence of the manufacturing process, errors may exist in rotary tables which decrease the navigation accuracy of rotational SINSs. In this study, the errors of rotary tables are considered in terms of installation error, wobble error and angular error, and the models of these errors are established for the rotational SINS. Next, the propagation characteristics of these errors in the rotational SINS are analysed and their effects on navigation results are discussed. Finally, the theoretical conclusions are tested by numerical simulation. This paper supplies a good reference for the development of low-cost rotational SINSs, which usually have low accuracy rotary tables and which may be used in robots, intelligent vehicles and unmanned aerial vehicles (UAVs.

  1. Improving BeiDou precise orbit determination using observations of onboard MEO satellite receivers

    Science.gov (United States)

    Ge, Haibo; Li, Bofeng; Ge, Maorong; Shen, Yunzhong; Schuh, Harald

    2017-12-01

    In recent years, the precise orbit determination (POD) of the regional Chinese BeiDou Navigation Satellite System (BDS) has been a hot spot because of its special constellation consisting of five geostationary earth orbit (GEO) satellites and five inclined geosynchronous satellite orbit (IGSO) satellites besides four medium earth orbit (MEO) satellites since the end of 2012. GEO and IGSO satellites play an important role in regional BDS applications. However, this brings a great challenge to the POD, especially for the GEO satellites due to their geostationary orbiting. Though a number of studies have been carried out to improve the POD performance of GEO satellites, the result is still much worse than that of IGSO and MEO, particularly in the along-track direction. The major reason is that the geostationary characteristic of a GEO satellite results in a bad geometry with respect to the ground tracking network. In order to improve the tracking geometry of the GEO satellites, a possible strategy is to mount global navigation satellite system (GNSS) receivers on MEO satellites to collect the signals from GEO/IGSO GNSS satellites so as that these observations can be used to improve GEO/IGSO POD. We extended our POD software package to simulate all the related observations and to assimilate the MEO-onboard GNSS observations in orbit determination. Based on GPS and BDS constellations, simulated studies are undertaken for various tracking scenarios. The impact of the onboard GNSS observations is investigated carefully and presented in detail. The results show that MEO-onboard observations can significantly improve the orbit precision of GEO satellites from metres to decimetres, especially in the along-track direction. The POD results of IGSO satellites also benefit from the MEO-onboard data and the precision can be improved by more than 50% in 3D direction.

  2. Joint estimation of vertical total electron content (VTEC) and satellite differential code biases (SDCBs) using low-cost receivers

    Science.gov (United States)

    Zhang, Baocheng; Teunissen, Peter J. G.; Yuan, Yunbin; Zhang, Hongxing; Li, Min

    2018-04-01

    Vertical total electron content (VTEC) parameters estimated using global navigation satellite system (GNSS) data are of great interest for ionosphere sensing. Satellite differential code biases (SDCBs) account for one source of error which, if left uncorrected, can deteriorate performance of positioning, timing and other applications. The customary approach to estimate VTEC along with SDCBs from dual-frequency GNSS data, hereinafter referred to as DF approach, consists of two sequential steps. The first step seeks to retrieve ionospheric observables through the carrier-to-code leveling technique. This observable, related to the slant total electron content (STEC) along the satellite-receiver line-of-sight, is biased also by the SDCBs and the receiver differential code biases (RDCBs). By means of thin-layer ionospheric model, in the second step one is able to isolate the VTEC, the SDCBs and the RDCBs from the ionospheric observables. In this work, we present a single-frequency (SF) approach, enabling the joint estimation of VTEC and SDCBs using low-cost receivers; this approach is also based on two steps and it differs from the DF approach only in the first step, where we turn to the precise point positioning technique to retrieve from the single-frequency GNSS data the ionospheric observables, interpreted as the combination of the STEC, the SDCBs and the biased receiver clocks at the pivot epoch. Our numerical analyses clarify how SF approach performs when being applied to GPS L1 data collected by a single receiver under both calm and disturbed ionospheric conditions. The daily time series of zenith VTEC estimates has an accuracy ranging from a few tenths of a TEC unit (TECU) to approximately 2 TECU. For 73-96% of GPS satellites in view, the daily estimates of SDCBs do not deviate, in absolute value, more than 1 ns from their ground truth values published by the Centre for Orbit Determination in Europe.

  3. Current State of Art of Satellite Altimetry

    Directory of Open Access Journals (Sweden)

    Łyszkowicz Adam

    2017-12-01

    Full Text Available One of the fundamental problems of modern geodesy is precise definition of the gravitational field and its changes in time. This is essential in positioning and navigation, geo-physics, geodynamics, oceanography and other sciences related to the climate and Earth’s environment. One of the major sources of gravity data is satellite altimetry that provides gravity data with almost 75% surface of the Earth. Satellite altimetry also provides data to study local, regional and global geophysical processes, the geoid model in the areas of oceans and seas. This technique can be successfully used to study the ocean mean dynamic topography. The results of the investigations and possible products of altimetry will provide a good material for the GGOS (Global Geodetic Observing System and institutions of IAS (International Altimetry Service.

  4. Modulation/demodulation techniques for satellite communications. Part 1: Background

    Science.gov (United States)

    Omura, J. K.; Simon, M. K.

    1981-01-01

    Basic characteristics of digital data transmission systems described include the physical communication links, the notion of bandwidth, FCC regulations, and performance measurements such as bit rates, bit error probabilities, throughputs, and delays. The error probability performance and spectral characteristics of various modulation/demodulation techniques commonly used or proposed for use in radio and satellite communication links are summarized. Forward error correction with block or convolutional codes is also discussed along with the important coding parameter, channel cutoff rate.

  5. Ground Simulation of an Autonomous Satellite Rendezvous and Tracking System Using Dual Robotic Systems

    Science.gov (United States)

    Trube, Matthew J.; Hyslop, Andrew M.; Carignan, Craig R.; Easley, Joseph W.

    2012-01-01

    A hardware-in-the-loop ground system was developed for simulating a robotic servicer spacecraft tracking a target satellite at short range. A relative navigation sensor package "Argon" is mounted on the end-effector of a Fanuc 430 manipulator, which functions as the base platform of the robotic spacecraft servicer. Machine vision algorithms estimate the pose of the target spacecraft, mounted on a Rotopod R-2000 platform, relay the solution to a simulation of the servicer spacecraft running in "Freespace", which performs guidance, navigation and control functions, integrates dynamics, and issues motion commands to a Fanuc platform controller so that it tracks the simulated servicer spacecraft. Results will be reviewed for several satellite motion scenarios at different ranges. Key words: robotics, satellite, servicing, guidance, navigation, tracking, control, docking.

  6. Theoretical Limits of Lunar Vision Aided Navigation with Inertial Navigation System

    Science.gov (United States)

    2015-03-26

    THEORETICAL LIMITS OF LUNAR VISION AIDED NAVIGATION WITH INERTIAL NAVIGATION SYSTEM THESIS David W. Jones, Capt, USAF AFIT-ENG-MS-15-M-020 DEPARTMENT...Government and is not subject to copyright protection in the United States. AFIT-ENG-MS-15-M-020 THEORETICAL LIMITS OF LUNAR VISION AIDED NAVIGATION WITH...DISTRIBUTION UNLIMITED. AFIT-ENG-MS-15-M-020 THEORETICAL LIMITS OF LUNAR VISION AIDED NAVIGATION WITH INERTIAL NAVIGATION SYSTEM THESIS David W. Jones

  7. Inversion, error analysis, and validation of GPS/MET occultation data

    Directory of Open Access Journals (Sweden)

    A. K. Steiner

    Full Text Available The global positioning system meteorology (GPS/MET experiment was the first practical demonstration of global navigation satellite system (GNSS-based active limb sounding employing the radio occultation technique. This method measures, as principal observable and with millimetric accuracy, the excess phase path (relative to propagation in vacuum of GNSS-transmitted radio waves caused by refraction during passage through the Earth's neutral atmosphere and ionosphere in limb geometry. It shows great potential utility for weather and climate system studies in providing an unique combination of global coverage, high vertical resolution and accuracy, long-term stability, and all-weather capability. We first describe our GPS/MET data processing scheme from excess phases via bending angles to the neutral atmospheric parameters refractivity, density, pressure and temperature. Special emphasis is given to ionospheric correction methodology and the inversion of bending angles to refractivities, where we introduce a matrix inversion technique (instead of the usual integral inversion. The matrix technique is shown to lead to identical results as integral inversion but is more directly extendable to inversion by optimal estimation. The quality of GPS/MET-derived profiles is analyzed with an error estimation analysis employing a Monte Carlo technique. We consider statistical errors together with systematic errors due to upper-boundary initialization of the retrieval by a priori bending angles. Perfect initialization and properly smoothed statistical errors allow for better than 1 K temperature retrieval accuracy up to the stratopause. No initialization and statistical errors yield better than 1 K accuracy up to 30 km but less than 3 K accuracy above 40 km. Given imperfect initialization, biases >2 K propagate down to below 30 km height in unfavorable realistic cases. Furthermore, results of a statistical validation of GPS/MET profiles through comparison

  8. Uncorrected refractive errors.

    Science.gov (United States)

    Naidoo, Kovin S; Jaggernath, Jyoti

    2012-01-01

    Global estimates indicate that more than 2.3 billion people in the world suffer from poor vision due to refractive error; of which 670 million people are considered visually impaired because they do not have access to corrective treatment. Refractive errors, if uncorrected, results in an impaired quality of life for millions of people worldwide, irrespective of their age, sex and ethnicity. Over the past decade, a series of studies using a survey methodology, referred to as Refractive Error Study in Children (RESC), were performed in populations with different ethnic origins and cultural settings. These studies confirmed that the prevalence of uncorrected refractive errors is considerably high for children in low-and-middle-income countries. Furthermore, uncorrected refractive error has been noted to have extensive social and economic impacts, such as limiting educational and employment opportunities of economically active persons, healthy individuals and communities. The key public health challenges presented by uncorrected refractive errors, the leading cause of vision impairment across the world, require urgent attention. To address these issues, it is critical to focus on the development of human resources and sustainable methods of service delivery. This paper discusses three core pillars to addressing the challenges posed by uncorrected refractive errors: Human Resource (HR) Development, Service Development and Social Entrepreneurship.

  9. Uncorrected refractive errors

    Directory of Open Access Journals (Sweden)

    Kovin S Naidoo

    2012-01-01

    Full Text Available Global estimates indicate that more than 2.3 billion people in the world suffer from poor vision due to refractive error; of which 670 million people are considered visually impaired because they do not have access to corrective treatment. Refractive errors, if uncorrected, results in an impaired quality of life for millions of people worldwide, irrespective of their age, sex and ethnicity. Over the past decade, a series of studies using a survey methodology, referred to as Refractive Error Study in Children (RESC, were performed in populations with different ethnic origins and cultural settings. These studies confirmed that the prevalence of uncorrected refractive errors is considerably high for children in low-and-middle-income countries. Furthermore, uncorrected refractive error has been noted to have extensive social and economic impacts, such as limiting educational and employment opportunities of economically active persons, healthy individuals and communities. The key public health challenges presented by uncorrected refractive errors, the leading cause of vision impairment across the world, require urgent attention. To address these issues, it is critical to focus on the development of human resources and sustainable methods of service delivery. This paper discusses three core pillars to addressing the challenges posed by uncorrected refractive errors: Human Resource (HR Development, Service Development and Social Entrepreneurship.

  10. GPS Satellite Simulation Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The GPS satellite simulation facility consists of a GPS satellite simulator controlled by either a Silicon Graphics Origin 2000 or PC depending upon unit under test...

  11. Preventing Errors in Laterality

    OpenAIRE

    Landau, Elliot; Hirschorn, David; Koutras, Iakovos; Malek, Alexander; Demissie, Seleshie

    2014-01-01

    An error in laterality is the reporting of a finding that is present on the right side as on the left or vice versa. While different medical and surgical specialties have implemented protocols to help prevent such errors, very few studies have been published that describe these errors in radiology reports and ways to prevent them. We devised a system that allows the radiologist to view reports in a separate window, displayed in a simple font and with all terms of laterality highlighted in sep...

  12. Errors and violations

    International Nuclear Information System (INIS)

    Reason, J.

    1988-01-01

    This paper is in three parts. The first part summarizes the human failures responsible for the Chernobyl disaster and argues that, in considering the human contribution to power plant emergencies, it is necessary to distinguish between: errors and violations; and active and latent failures. The second part presents empirical evidence, drawn from driver behavior, which suggest that errors and violations have different psychological origins. The concluding part outlines a resident pathogen view of accident causation, and seeks to identify the various system pathways along which errors and violations may be propagated

  13. Wellbore inertial navigation system (WINS) software development and test results

    Energy Technology Data Exchange (ETDEWEB)

    Wardlaw, R. Jr.

    1982-09-01

    The structure and operation of the real-time software developed for the Wellbore Inertial Navigation System (WINS) application are described. The procedure and results of a field test held in a 7000-ft well in the Nevada Test Site are discussed. Calibration and instrumentation error compensation are outlined, as are design improvement areas requiring further test and development. Notes on Kalman filtering and complete program listings of the real-time software are included in the Appendices. Reference is made to a companion document which describes the downhole instrumentation package.

  14. GPS navigation algorithms for Autonomous Airborne Refueling of Unmanned Air Vehicles

    Science.gov (United States)

    Khanafseh, Samer Mahmoud

    Unmanned Air Vehicles (UAVs) have recently generated great interest because of their potential to perform hazardous missions without risking loss of life. If autonomous airborne refueling is possible for UAVs, mission range and endurance will be greatly enhanced. However, concerns about UAV-tanker proximity, dynamic mobility and safety demand that the relative navigation system meets stringent requirements on accuracy, integrity, and continuity. In response, this research focuses on developing high-performance GPS-based navigation architectures for Autonomous Airborne Refueling (AAR) of UAVs. The AAR mission is unique because of the potentially severe sky blockage introduced by the tanker. To address this issue, a high-fidelity dynamic sky blockage model was developed and experimentally validated. In addition, robust carrier phase differential GPS navigation algorithms were derived, including a new method for high-integrity reacquisition of carrier cycle ambiguities for recently-blocked satellites. In order to evaluate navigation performance, world-wide global availability and sensitivity covariance analyses were conducted. The new navigation algorithms were shown to be sufficient for turn-free scenarios, but improvement in performance was necessary to meet the difficult requirements for a general refueling mission with banked turns. Therefore, several innovative methods were pursued to enhance navigation performance. First, a new theoretical approach was developed to quantify the position-domain integrity risk in cycle ambiguity resolution problems. A mechanism to implement this method with partially-fixed cycle ambiguity vectors was derived, and it was used to define tight upper bounds on AAR navigation integrity risk. A second method, where a new algorithm for optimal fusion of measurements from multiple antennas was developed, was used to improve satellite coverage in poor visibility environments such as in AAR. Finally, methods for using data-link extracted

  15. Consensus of satellite cluster flight using an energy-matching optimal control method

    Science.gov (United States)

    Luo, Jianjun; Zhou, Liang; Zhang, Bo

    2017-11-01

    This paper presents an optimal control method for consensus of satellite cluster flight under a kind of energy matching condition. Firstly, the relation between energy matching and satellite periodically bounded relative motion is analyzed, and the satellite energy matching principle is applied to configure the initial conditions. Then, period-delayed errors are adopted as state variables to establish the period-delayed errors dynamics models of a single satellite and the cluster. Next a novel satellite cluster feedback control protocol with coupling gain is designed, so that the satellite cluster periodically bounded relative motion consensus problem (period-delayed errors state consensus problem) is transformed to the stability of a set of matrices with the same low dimension. Based on the consensus region theory in the research of multi-agent system consensus issues, the coupling gain can be obtained to satisfy the requirement of consensus region and decouple the satellite cluster information topology and the feedback control gain matrix, which can be determined by Linear quadratic regulator (LQR) optimal method. This method can realize the consensus of satellite cluster period-delayed errors, leading to the consistency of semi-major axes (SMA) and the energy-matching of satellite cluster. Then satellites can emerge the global coordinative cluster behavior. Finally the feasibility and effectiveness of the present energy-matching optimal consensus for satellite cluster flight is verified through numerical simulations.

  16. Satellite Attitude Control System Simulator

    Directory of Open Access Journals (Sweden)

    G.T. Conti

    2008-01-01

    Full Text Available Future space missions will involve satellites with great autonomy and stringent pointing precision, requiring of the Attitude Control Systems (ACS with better performance than before, which is function of the control algorithms implemented on board computers. The difficulties for developing experimental ACS test is to obtain zero gravity and torque free conditions similar to the SCA operate in space. However, prototypes for control algorithms experimental verification are fundamental for space mission success. This paper presents the parameters estimation such as inertia matrix and position of mass centre of a Satellite Attitude Control System Simulator (SACSS, using algorithms based on least square regression and least square recursive methods. Simulations have shown that both methods have estimated the system parameters with small error. However, the least square recursive methods have performance more adequate for the SACSS objectives. The SACSS platform model will be used to do experimental verification of fundamental aspects of the satellite attitude dynamics and design of different attitude control algorithm.

  17. Autonomous Robot Navigation based on Visual Landmarks

    DEFF Research Database (Denmark)

    Livatino, Salvatore

    2005-01-01

    The use of landmarks for robot navigation is a popular alternative to having a geometrical model of the environment through which to navigate and monitor self-localization. If the landmarks are defined as special visual structures already in the environment then we have the possibility of fully a...... automatically learn and store visual landmarks, and later recognize these landmarks from arbitrary positions and thus estimate robot position and heading.......The use of landmarks for robot navigation is a popular alternative to having a geometrical model of the environment through which to navigate and monitor self-localization. If the landmarks are defined as special visual structures already in the environment then we have the possibility of fully...... autonomous navigation and self-localization using automatically selected landmarks. The thesis investigates autonomous robot navigation and proposes a new method which benefits from the potential of the visual sensor to provide accuracy and reliability to the navigation process while relying on naturally...

  18. Relativistic Time Transfer for Inter-satellite Links

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yi, E-mail: yixie@nju.edu.cn [Department of Astronomy, School of Astronomy and Space Sciences, Nanjing University, Nanjing (China); Shanghai Key Laboratory of Space Navigation and Position Techniques, Shanghai (China); Key Laboratory of Modern Astronomy and Astrophysics, Nanjing University, Ministry of Education, Nanjing (China)

    2016-04-26

    Inter-Satellite links (ISLs) will be an important technique for a global navigation satellite system (GNSS) in the future. Based on the principles of general relativity, the time transfer in an ISL is modeled and the algorithm for onboard computation is described. It is found, in general, satellites with circular orbits and identical semi-major axes can benefit inter-satellite time transfer by canceling out terms associated with the transformations between the proper times and the Geocentric Coordinate Time. For a GPS-like GNSS, the Shapiro delay is as large as 0.1 ns when the ISL passes at the limb of the Earth. However, in more realistic cases, this value will decrease to about 50 ps.

  19. Target Detection Based on EBPSK Satellite Passive Radar

    Directory of Open Access Journals (Sweden)

    Lu Zeyuan

    2015-05-01

    Full Text Available Passive radar is a topic anti stealth technology with simple structure, and low cost. Radiation source model, signal transmission model, and target detection are the key points of passive radar technology research. The paper analyzes the characteristics of EBPSK signal modulation and target detection method aspect of spaceborne radiant source. By comparison with other satellite navigation and positioning system, the characteristics of EBPSK satellite passive radar system are analyzed. It is proved that the maximum detection range of EBPSK satellite signal can satisfy the needs of the proposed model. In the passive radar model, sparse representation is used to achieve high resolution DOA detection. The comparison with the real target track by simulation demonstrates that effective detection of airborne target using EBPSK satellite passive radar system based on sparse representation is efficient.

  20. Handbook of satellite orbits from Kepler to GPS

    CERN Document Server

    Capderou, Michel

    2014-01-01

    Fifty years after Sputnik, artificial satellites have become indispensable monitors in many areas, such as economics, meteorology, telecommunications, navigation and remote sensing. The specific orbits are important for the proper functioning of the satellites. This book discusses the great variety of satellite orbits, both in shape (circular to highly elliptical) and properties (geostationary, Sun-synchronous, etc.). This volume starts with an introduction into geodesy. This is followed by a presentation of the fundamental equations of mechanics to explain and demonstrate the properties for all types of orbits. Numerous examples are included, obtained through IXION software developed by the author. The book also includes an exposition of the historical background that is necessary to help the reader understand the main stages of scientific thought from Kepler to GPS. This book is intended for researchers, teachers and students working in the field of satellite technology. Engineers, geographers and all those...

  1. Flight evaluations of approach/landing navigation sensor systems. MLS to kohokei hiko jikken. ; 1990 nendo no jikken gaiyo

    Energy Technology Data Exchange (ETDEWEB)

    1992-07-01

    Flight test results of such navigation sensor systems as MLS (microwave landing system), GPS(global positioning system) and INS (inertial navigation system) on the Dornier-228 research aircraft in 1990 were reported, which tests have being promoted by National Aerospace Laboratory (NAL), Japan to develop unmanned approach/landing (A/L) navigation sensor systems for the future spaceplane HOPE. The measured data corresponding to a WGS84 (world geodetic system 1984) navigation coordinate system were evaluated, and the reference orbit was also prepared by laser tracker analysis. The navigation sensor systems such as MLS were evaluated on the basis of CMN (control motion noise) or PFE (path following error), and preliminary calculation was also conducted for a GPS-INS hybrid system. As experimental results, several data were gathered for each sensor system resulting in possible data comparison between the sensor systems, and the feasibility of the GPS-INS hybrid system was also confirmed. 35 refs., 49 figs., 22 tabs.

  2. Nonlinear unbiased minimum-variance filter for Mars entry autonomous navigation under large uncertainties and unknown measurement bias.

    Science.gov (United States)

    Xiao, Mengli; Zhang, Yongbo; Fu, Huimin; Wang, Zhihua

    2018-05-01

    High-precision navigation algorithm is essential for the future Mars pinpoint landing mission. The unknown inputs caused by large uncertainties of atmospheric density and aerodynamic coefficients as well as unknown measurement biases may cause large estimation errors of conventional Kalman filters. This paper proposes a derivative-free version of nonlinear unbiased minimum variance filter for Mars entry navigation. This filter has been designed to solve this problem by estimating the state and unknown measurement biases simultaneously with derivative-free character, leading to a high-precision algorithm for the Mars entry navigation. IMU/radio beacons integrated navigation is introduced in the simulation, and the result shows that with or without radio blackout, our proposed filter could achieve an accurate state estimation, much better than the conventional unscented Kalman filter, showing the ability of high-precision Mars entry navigation algorithm. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  3. Observability during planetary approach navigation

    Science.gov (United States)

    Bishop, Robert H.; Burkhart, P. Daniel; Thurman, Sam W.

    1993-01-01

    The objective of the research is to develop an analytic technique to predict the relative navigation capability of different Earth-based radio navigation measurements. In particular, the problem is to determine the relative ability of geocentric range and Doppler measurements to detect the effects of the target planet gravitational attraction on the spacecraft during the planetary approach and near-encounter mission phases. A complete solution to the two-dimensional problem has been developed. Relatively simple analytic formulas are obtained for range and Doppler measurements which describe the observability content of the measurement data along the approach trajectories. An observability measure is defined which is based on the observability matrix for nonlinear systems. The results show good agreement between the analytic observability analysis and the computational batch processing method.

  4. Navigating the Internet of Things

    DEFF Research Database (Denmark)

    Rassia, Stamatina; Steiner, Henriette

    2017-01-01

    Navigating the Internet of Things is an exploration of interconnected objects, functions, and situations in networks created to ease and manage our daily lives. The Internet of Things represents semi-automated interconnections of different objects in a network based on different information...... technologies. Some examples of this are presented here in order to better understand, explain, and discuss the elements that compose the Internet of Things. In this chapter, we provide a theoretical and practical perspective on both the micro- and macro-scales of ‘things’ (objects), small and large (e.......g. computers or interactive maps), that suggest new topographic relationships and challenge our understanding of users’ involvement with a given technology against the semi-automated workings of these systems. We navigate from a philosophical enquiry into the ‘thingness of things’ dating from the 1950s...

  5. Prediction of GNSS satellite clocks

    International Nuclear Information System (INIS)

    Broederbauer, V.

    2010-01-01

    This thesis deals with the characterisation and prediction of GNSS-satellite-clocks. A prerequisite to develop powerful algorithms for the prediction of clock-corrections is the thorough study of the behaviour of the different clock-types of the satellites. In this context the predicted part of the IGU-clock-corrections provided by the Analysis Centers (ACs) of the IGS was compared to the IGS-Rapid-clock solutions to determine reasonable estimates of the quality of already existing well performing predictions. For the shortest investigated interval (three hours) all ACs obtain almost the same accuracy of 0,1 to 0,4 ns. For longer intervals the individual predictions results start to diverge. Thus, for a 12-hours- interval the differences range from nearly 10 ns (GFZ, CODE) until up to some 'tens of ns'. Based on the estimated clock corrections provided via the IGS Rapid products a simple quadratic polynomial turns out to be sufficient to describe the time series of Rubidium-clocks. On the other hand Cesium-clocks show a periodical behaviour (revolution period) with an amplitude of up to 6 ns. A clear correlation between these amplitudes and the Sun elevation angle above the orbital planes can be demonstrated. The variability of the amplitudes is supposed to be caused by temperature-variations affecting the oscillator. To account for this periodical behaviour a quadratic polynomial with an additional sinus-term was finally chosen as prediction model both for the Cesium as well as for the Rubidium clocks. The three polynomial-parameters as well as amplitude and phase shift of the periodic term are estimated within a least-square-adjustment by means of program GNSS-VC/static. Input-data are time series of the observed part of the IGU clock corrections. With the estimated parameters clock-corrections are predicted for various durations. The mean error of the prediction of Rubidium-clock-corrections for an interval of six hours reaches up to 1,5 ns. For the 12-hours

  6. Help prevent hospital errors

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000618.htm Help prevent hospital errors To use the sharing features ... in the hospital. If You Are Having Surgery, Help Keep Yourself Safe Go to a hospital you ...

  7. Pedal Application Errors

    Science.gov (United States)

    2012-03-01

    This project examined the prevalence of pedal application errors and the driver, vehicle, roadway and/or environmental characteristics associated with pedal misapplication crashes based on a literature review, analysis of news media reports, a panel ...

  8. Rounding errors in weighing

    International Nuclear Information System (INIS)

    Jeach, J.L.

    1976-01-01

    When rounding error is large relative to weighing error, it cannot be ignored when estimating scale precision and bias from calibration data. Further, if the data grouping is coarse, rounding error is correlated with weighing error and may also have a mean quite different from zero. These facts are taken into account in a moment estimation method. A copy of the program listing for the MERDA program that provides moment estimates is available from the author. Experience suggests that if the data fall into four or more cells or groups, it is not necessary to apply the moment estimation method. Rather, the estimate given by equation (3) is valid in this instance. 5 tables

  9. Spotting software errors sooner

    International Nuclear Information System (INIS)

    Munro, D.

    1989-01-01

    Static analysis is helping to identify software errors at an earlier stage and more cheaply than conventional methods of testing. RTP Software's MALPAS system also has the ability to check that a code conforms to its original specification. (author)

  10. Errors in energy bills

    International Nuclear Information System (INIS)

    Kop, L.

    2001-01-01

    On request, the Dutch Association for Energy, Environment and Water (VEMW) checks the energy bills for her customers. It appeared that in the year 2000 many small, but also big errors were discovered in the bills of 42 businesses

  11. Medical Errors Reduction Initiative

    National Research Council Canada - National Science Library

    Mutter, Michael L

    2005-01-01

    The Valley Hospital of Ridgewood, New Jersey, is proposing to extend a limited but highly successful specimen management and medication administration medical errors reduction initiative on a hospital-wide basis...

  12. Navigation in diagnosis and therapy

    International Nuclear Information System (INIS)

    Vannier, Michael W.; Haller, John W.

    1999-01-01

    Image-guided navigation for surgery and other therapeutic interventions has grown in importance in recent years. During image-guided navigation a target is detected, localized and characterized for diagnosis and therapy. Thus, images are used to select, plan, guide and evaluate therapy, thereby reducing invasiveness and improving outcomes. A shift from traditional open surgery to less-invasive image-guided surgery will continue to impact the surgical marketplace. Increases in the speed and capacity of computers and computer networks have enabled image-guided interventions. Key elements in image navigation systems are pre-operative 3D imaging (or real-time image acquisition), a graphical display and interactive input devices, such as surgical instruments with light emitting diodes (LEDs). CT and MRI, 3D imaging devices, are commonplace today and 3D images are useful in complex interventions such as radiation oncology and surgery. For example, integrated surgical imaging workstations can be used for frameless stereotaxy during neurosurgical interventions. In addition, imaging systems are being expanded to include decision aids in diagnosis and treatment. Electronic atlases, such as Voxel Man or others derived from the Visible Human Project, combine a set of image data with non-image knowledge such as anatomic labels. Robot assistants and magnetic guidance technology are being developed for minimally invasive surgery and other therapeutic interventions. Major progress is expected at the interface between the disciplines of radiology and surgery where imaging, intervention and informatics converge

  13. The surveillance error grid.

    Science.gov (United States)

    Klonoff, David C; Lias, Courtney; Vigersky, Robert; Clarke, William; Parkes, Joan Lee; Sacks, David B; Kirkman, M Sue; Kovatchev, Boris

    2014-07-01

    Currently used error grids for assessing clinical accuracy of blood glucose monitors are based on out-of-date medical practices. Error grids have not been widely embraced by regulatory agencies for clearance of monitors, but this type of tool could be useful for surveillance of the performance of cleared products. Diabetes Technology Society together with representatives from the Food and Drug Administration, the American Diabetes Association, the Endocrine Society, and the Association for the Advancement of Medical Instrumentation, and representatives of academia, industry, and government, have developed a new error grid, called the surveillance error grid (SEG) as a tool to assess the degree of clinical risk from inaccurate blood glucose (BG) monitors. A total of 206 diabetes clinicians were surveyed about the clinical risk of errors of measured BG levels by a monitor. The impact of such errors on 4 patient scenarios was surveyed. Each monitor/reference data pair was scored and color-coded on a graph per its average risk rating. Using modeled data representative of the accuracy of contemporary meters, the relationships between clinical risk and monitor error were calculated for the Clarke error grid (CEG), Parkes error grid (PEG), and SEG. SEG action boundaries were consistent across scenarios, regardless of whether the patient was type 1 or type 2 or using insulin or not. No significant differences were noted between responses of adult/pediatric or 4 types of clinicians. Although small specific differences in risk boundaries between US and non-US clinicians were noted, the panel felt they did not justify separate grids for these 2 types of clinicians. The data points of the SEG were classified in 15 zones according to their assigned level of risk, which allowed for comparisons with the classic CEG and PEG. Modeled glucose monitor data with realistic self-monitoring of blood glucose errors derived from meter testing experiments plotted on the SEG when compared to

  14. Design for Error Tolerance

    DEFF Research Database (Denmark)

    Rasmussen, Jens

    1983-01-01

    An important aspect of the optimal design of computer-based operator support systems is the sensitivity of such systems to operator errors. The author discusses how a system might allow for human variability with the use of reversibility and observability.......An important aspect of the optimal design of computer-based operator support systems is the sensitivity of such systems to operator errors. The author discusses how a system might allow for human variability with the use of reversibility and observability....

  15. Apologies and Medical Error

    Science.gov (United States)

    2008-01-01

    One way in which physicians can respond to a medical error is to apologize. Apologies—statements that acknowledge an error and its consequences, take responsibility, and communicate regret for having caused harm—can decrease blame, decrease anger, increase trust, and improve relationships. Importantly, apologies also have the potential to decrease the risk of a medical malpractice lawsuit and can help settle claims by patients. Patients indicate they want and expect explanations and apologies after medical errors and physicians indicate they want to apologize. However, in practice, physicians tend to provide minimal information to patients after medical errors and infrequently offer complete apologies. Although fears about potential litigation are the most commonly cited barrier to apologizing after medical error, the link between litigation risk and the practice of disclosure and apology is tenuous. Other barriers might include the culture of medicine and the inherent psychological difficulties in facing one’s mistakes and apologizing for them. Despite these barriers, incorporating apology into conversations between physicians and patients can address the needs of both parties and can play a role in the effective resolution of disputes related to medical error. PMID:18972177

  16. Thermodynamics of Error Correction

    Directory of Open Access Journals (Sweden)

    Pablo Sartori

    2015-12-01

    Full Text Available Information processing at the molecular scale is limited by thermal fluctuations. This can cause undesired consequences in copying information since thermal noise can lead to errors that can compromise the functionality of the copy. For example, a high error rate during DNA duplication can lead to cell death. Given the importance of accurate copying at the molecular scale, it is fundamental to understand its thermodynamic features. In this paper, we derive a universal expression for the copy error as a function of entropy production and work dissipated by the system during wrong incorporations. Its derivation is based on the second law of thermodynamics; hence, its validity is independent of the details of the molecular machinery, be it any polymerase or artificial copying device. Using this expression, we find that information can be copied in three different regimes. In two of them, work is dissipated to either increase or decrease the error. In the third regime, the protocol extracts work while correcting errors, reminiscent of a Maxwell demon. As a case study, we apply our framework to study a copy protocol assisted by kinetic proofreading, and show that it can operate in any of these three regimes. We finally show that, for any effective proofreading scheme, error reduction is limited by the chemical driving of the proofreading reaction.

  17. Developments in Acoustic Navigation and Communication for High-Latitude Ocean Research

    Science.gov (United States)

    Gobat, J.; Lee, C.

    2006-12-01

    Developments in autonomous platforms (profiling floats, drifters, long-range gliders and propeller-driven vehicles) offer the possibility of unprecedented access to logistically difficult polar regions that challenge conventional techniques. Currently, however, navigation and telemetry for these platforms rely on satellite positioning and communications poorly suited for high-latitude applications where ice cover restricts access to the sea surface. A similar infrastructure offering basin-wide acoustic geolocation and telemetry would allow the community to employ autonomous platforms to address previously intractable problems in Arctic oceanography. Two recent efforts toward the development of such an infrastructure are reported here. As part of an observational array monitoring fluxes through Davis Strait, development of real-time RAFOS acoustic navigation for gliders has been ongoing since autumn 2004. To date, test deployments have been conducted in a 260 Hz field in the Pacific and 780 Hz fields off Norway and in Davis Strait. Real-time navigation accuracy of ~1~km is achievable. Autonomously navigating gliders will operate under ice cover beginning in autumn 2006. In addition to glider navigation development, the Davis Strait array moorings carry fixed RAFOS recorders to study propagation over a range of distances under seasonally varying ice cover. Results from the under-ice propagation and glider navigation experiments are presented. Motivated by the need to coordinate these types of development efforts, an international group of acousticians, autonomous platform developers, high-latitude oceanographers and marine mammal researchers gathered in Seattle, U.S.A. from 27 February -- 1 March 2006 for an NSF Office of Polar Programs sponsored Acoustic Navigation and Communication for High-latitude Ocean Research (ANCHOR) workshop. Workshop participants focused on summarizing the current state of knowledge concerning Arctic acoustics, navigation and communications

  18. Structural assurance testing for post-shipping satellite inspection

    Science.gov (United States)

    Reynolds, Whitney D.; Doyle, Derek; Arritt, Brandon

    2012-04-01

    Current satellite transportation sensors can provide a binary indication of the acceleration or shock that a satellite has experienced during the shipping process but do little to identify if significant structural change has occurred in the satellite and where it may be located. When a sensor indicates that the satellite has experienced shock during transit, an extensive testing process begins to evaluate the satellite functionality. If errors occur during the functional checkout, extensive physical inspection of the structure follows. In this work an alternate method for inspecting satellites for structural defects after shipping is presented. Electro- Mechanical Impedance measurements are used as an indication of the structural state. In partnership with the Air Force Research Laboratory University Nanosatellite Program, Cornell's CUSat mass model was instrumented with piezoelectric transducers and tested under several structural damage scenarios. A method for detecting and locating changes in the structure using EMI data is presented.

  19. Satellite systems for personal applications concepts and technology

    CERN Document Server

    Richharia, Madhavendra

    2010-01-01

    Presents the concepts, technology, and role of satellite systems in support of personal applications, such as mobile and broadband communications, navigation, television, radio and multimedia broadcasting, safety of life services, etc. This book presents a novel perspective on satellite systems, reflecting the modern personal technology context, and hence a focus on the individual as end-user. The book begins by outlining key generic concepts before discussing techniques adopted in particular application areas; next, it exemplifies these techniques through discussion of state-of-art c

  20. An airborne meteorological data collection system using satellite relay /ASDAR/

    Science.gov (United States)

    Bagwell, J. W.; Lindow, B. G.

    1978-01-01

    The paper describes the aircraft to satellite data relay (ASDAR) project which processes information collected by the navigation and data systems of widebody jet aircraft which cross data-sparse areas of the tropics and southern hemisphere. The ASDAR system consists of a data acquisition and control unit to acquire, store, and format latitude, longitude, altitude, wind speed, wind direction, and outside air temperature data; a transmitter to relay the formatted data via satellite to the ground; and a clock to time the data sampling and transmission periods.

  1. A Method for The Assessing of Reliability Characteristics Relevant to an Assumed Position-Fixing Accuracy in Navigational Positioning Systems

    Directory of Open Access Journals (Sweden)

    Specht Cezary

    2016-09-01

    Full Text Available This paper presents a method which makes it possible to determine reliability characteristics of navigational positioning systems, relevant to an assumed value of permissible error in position fixing. The method allows to calculate: availability , reliability as well as operation continuity of position fixing system for an assumed, determined on the basis of formal requirements - both worldwide and national, position-fixing accuracy. The proposed mathematical model allows to satisfy, by any navigational positioning system, not only requirements as to position-fixing accuracy of a given navigational application (for air , sea or land traffic but also the remaining characteristics associated with technical serviceability of a system.

  2. Radio Interferometric Research of Ionosphere by Signals of Space Satellites

    Directory of Open Access Journals (Sweden)

    Dugin N.

    2013-03-01

    Full Text Available Since 2012, the Radiophysical Research Institute and the Lobachevsky State University at Nizhny Novgorod, Russia and the Ventspils International Radio Astronomy Centre at Irbene, Latvia are making radio interferometric experiments on study of ionosphere parameters in a quiet (natural state of medium and research of artificial turbulence of the ionosphere, heated by the emission from the SURA facility. Remote diagnostics of the ionosphere is implemented using a method of radio sounding by signals of navigation satellites in combination with the Very Long Baseline Interferometry (VLBI method. As a result of spectral and correlation analysis, interferometric responses of the two-element (RRI–UNN and three-element (RRI–UNN–Irbene interferometers were received by observations of 12 satellites of the navigation systems GLONASS and GPS. Here the first results are reported.

  3. In-motion initial alignment and positioning with INS/CNS/ODO integrated navigation system for lunar rovers

    Science.gov (United States)

    Lu, Jiazhen; Lei, Chaohua; Yang, Yanqiang; Liu, Ming

    2017-06-01

    Many countries have been paying great attention to space exploration, especially about the Moon and the Mars. Autonomous and high-accuracy navigation systems are needed for probers and rovers to accomplish missions. Inertial navigation system (INS)/celestial navigation system (CNS) based navigation system has been used widely on the lunar rovers. Initialization is a particularly important step for navigation. This paper presents an in-motion alignment and positioning method for lunar rovers by INS/CNS/odometer integrated navigation. The method can estimate not only the position and attitude errors, but also the biases of the accelerometers and gyros using the standard Kalman filter. The differences between the platform star azimuth, elevation angles and the computed star azimuth, elevation angles, and the difference between the velocity measured by odometer and the velocity measured by inertial sensors are taken as measurements. The semi-physical experiments are implemented to demonstrate that the position error can reduce to 10 m and attitude error is within 2″ during 5 min. The experiment results prove that it is an effective and attractive initialization approach for lunar rovers.

  4. A Damping Grid Strapdown Inertial Navigation System Based on a Kalman Filter for Ships in Polar Regions.

    Science.gov (United States)

    Huang, Weiquan; Fang, Tao; Luo, Li; Zhao, Lin; Che, Fengzhu

    2017-07-03

    The grid strapdown inertial navigation system (SINS) used in polar navigation also includes three kinds of periodic oscillation errors as common SINS are based on a geographic coordinate system. Aiming ships which have the external information to conduct a system reset regularly, suppressing the Schuler periodic oscillation is an effective way to enhance navigation accuracy. The Kalman filter based on the grid SINS error model which applies to the ship is established in this paper. The errors of grid-level attitude angles can be accurately estimated when the external velocity contains constant error, and then correcting the errors of the grid-level attitude angles through feedback correction can effectively dampen the Schuler periodic oscillation. The simulation results show that with the aid of external reference velocity, the proposed external level damping algorithm based on the Kalman filter can suppress the Schuler periodic oscillation effectively. Compared with the traditional external level damping algorithm based on the damping network, the algorithm proposed in this paper can reduce the overshoot errors when the state of grid SINS is switched from the non-damping state to the damping state, and this effectively improves the navigation accuracy of the system.

  5. GLONASS satellite monitoring of nuclear transports

    International Nuclear Information System (INIS)

    Davydov, Yu.L.

    2012-01-01

    In 2011 Rosatom has made the decision to create the industry-wide automated system for monitoring of transports of radioactive substances (RS) and wastes (RAW), as well as hazardous loads by rail and automobile, based upon the same hardware as used by the GLONASS satellite navigation system - the so-called ASBT-GLONASS system. The new system will use the same technical infrastructure as the existing operational Automated System for Safe Transport of Nuclear Materials of Categories I and II (ASBT). The ASBT structure includes a network of control centres fitted with automation and communication hardware. In addition, ASBT includes technical complexes installed upon transport vehicles intended for nuclear material transport. In order to identify transport vehicle location, the GLONASS/GPS (GALS-P-ASBT) satellite navigational receiver device is used, it is developed especially for ASBT systems taking in account information security requirements. By now the basic software and hardware complex ASBT-GLONASS has been created (equipment to be carried on-board the transport vehicle loaded with RS and RAW, as well as the transport control stations) that supports transport monitoring and transmission of an emergency signal to control stations of companies which deal with RS and RAW transportation [ru

  6. Meteorological satellite systems

    CERN Document Server

    Tan, Su-Yin

    2014-01-01

    “Meteorological Satellite Systems” is a primer on weather satellites and their Earth applications. This book reviews historic developments and recent technological advancements in GEO and polar orbiting meteorological satellites. It explores the evolution of these remote sensing technologies and their capabilities to monitor short- and long-term changes in weather patterns in response to climate change. Satellites developed by various countries, such as U.S. meteorological satellites, EUMETSAT, and Russian, Chinese, Japanese and Indian satellite platforms are reviewed. This book also discusses international efforts to coordinate meteorological remote sensing data collection and sharing. This title provides a ready and quick reference for information about meteorological satellites. It serves as a useful tool for a broad audience that includes students, academics, private consultants, engineers, scientists, and teachers.

  7. Theory of geostationary satellites

    CERN Document Server

    Zee, Chong-Hung

    1989-01-01

    Geostationary or equatorial synchronous satellites are a daily reminder of our space efforts during the past two decades. The nightly television satellite weather picture, the intercontinental telecommunications of television transmissions and telephone conversations, and the establishrnent of educational programs in remote regions on Earth are constant reminders of the presence of these satellites. As used here, the term 'geo­ stationary' must be taken loosely because, in the long run, the satellites will not remain 'stationary' with respect to an Earth-fixed reference frame. This results from the fact that these satellites, as is true for all satellites, are incessantly subject to perturbations other than the central-body attraction of the Earth. Among the more predominant pertur­ bations are: the ellipticity of the Earth's equator, the Sun and Moon, and solar radiation pressure. Higher harmonics of the Earth's potential and tidal effects also influence satellite motion, but they are of second­ order whe...

  8. A Visual-Aided Inertial Navigation and Mapping System

    Directory of Open Access Journals (Sweden)

    Rodrigo Munguía

    2016-05-01

    Full Text Available State estimation is a fundamental necessity for any application involving autonomous robots. This paper describes a visual-aided inertial navigation and mapping system for application to autonomous robots. The system, which relies on Kalman filtering, is designed to fuse the measurements obtained from a monocular camera, an inertial measurement unit (IMU and a position sensor (GPS. The estimated state consists of the full state of the vehicle: the position, orientation, their first derivatives and the parameter errors of the inertial sensors (i.e., the bias of gyroscopes and accelerometers. The system also provides the spatial locations of the visual features observed by the camera. The proposed scheme was designed by considering the limited resources commonly available in small mobile robots, while it is intended to be applied to cluttered environments in order to perform fully vision-based navigation in periods where the position sensor is not available. Moreover, the estimated map of visual features would be suitable for multiple tasks: i terrain analysis; ii three-dimensional (3D scene reconstruction; iii localization, detection or perception of obstacles and generating trajectories to navigate around these obstacles; and iv autonomous exploration. In this work, simulations and experiments with real data are presented in order to validate and demonstrate the performance of the proposal.

  9. Fuzzy Adaptive Cubature Kalman Filter for Integrated Navigation Systems.

    Science.gov (United States)

    Tseng, Chien-Hao; Lin, Sheng-Fuu; Jwo, Dah-Jing

    2016-07-26

    This paper presents a sensor fusion method based on the combination of cubature Kalman filter (CKF) and fuzzy logic adaptive system (FLAS) for the integrated navigation systems, such as the GPS/INS (Global Positioning System/inertial navigation system) integration. The third-degree spherical-radial cubature rule applied in the CKF has been employed to avoid the numerically instability in the system model. In processing navigation integration, the performance of nonlinear filter based estimation of the position and velocity states may severely degrade caused by modeling errors due to dynamics uncertainties of the vehicle. In order to resolve the shortcoming for selecting the process noise covariance through personal experience or numerical simulation, a scheme called the fuzzy adaptive cubature Kalman filter (FACKF) is presented by introducing the FLAS to adjust the weighting factor of the process noise covariance matrix. The FLAS is incorporated into the CKF framework as a mechanism for timely implementing the tuning of process noise covariance matrix based on the information of degree of divergence (DOD) parameter. The proposed FACKF algorithm shows promising accuracy improvement as compared to the extended Kalman filter (EKF), unscented Kalman filter (UKF), and CKF approaches.

  10. Canoe: An Autonomous Infrastructure-Free Indoor Navigation System

    Directory of Open Access Journals (Sweden)

    Kai Dong

    2017-04-01

    Full Text Available The development of the Internet of Things (IoT has accelerated research in indoor navigation systems, a majority of which rely on adequate wireless signals and sources. Nonetheless, deploying such a system requires periodic site-survey, which is time consuming and labor intensive. To address this issue, in this paper we present Canoe, an indoor navigation system that considers shopping mall scenarios. In our system, we do not assume any prior knowledge, such as floor-plan or the shop locations, access point placement or power settings, historical RSS measurements or fingerprints, etc. Instead, Canoe requires only that the shop owners collect and publish RSS values at the entrances of their shops and can direct a consumer to any of these shops by comparing the observed RSS values. The locations of the consumers and the shops are estimated using maximum likelihood estimation. In doing this, the direction of the target shop relative to the current orientation of the consumer can be precisely computed, such that the direction that a consumer should move can be determined. We have conducted extensive simulations using a real-world dataset. Our experiments in a real shopping mall demonstrate that if 50% of the shops publish their RSS values, Canoe can precisely navigate a consumer within 30 s, with an error rate below 9%.

  11. Fuzzy Adaptive Cubature Kalman Filter for Integrated Navigation Systems

    Directory of Open Access Journals (Sweden)

    Chien-Hao Tseng

    2016-07-01

    Full Text Available This paper presents a sensor fusion method based on the combination of cubature Kalman filter (CKF and fuzzy logic adaptive system (FLAS for the integrated navigation systems, such as the GPS/INS (Global Positioning System/inertial navigation system integration. The third-degree spherical-radial cubature rule applied in the CKF has been employed to avoid the numerically instability in the system model. In processing navigation integration, the performance of nonlinear filter based estimation of the position and velocity states may severely degrade caused by modeling errors due to dynamics uncertainties of the vehicle. In order to resolve the shortcoming for selecting the process noise covariance through personal experience or numerical simulation, a scheme called the fuzzy adaptive cubature Kalman filter (FACKF is presented by introducing the FLAS to adjust the weighting factor of the process noise covariance matrix. The FLAS is incorporated into the CKF framework as a mechanism for timely implementing the tuning of process noise covariance matrix based on the information of degree of divergence (DOD parameter. The proposed FACKF algorithm shows promising accuracy improvement as compared to the extended Kalman filter (EKF, unscented Kalman filter (UKF, and CKF approaches.

  12. LiDAR Scan Matching Aided Inertial Navigation System in GNSS-Denied Environments.

    Science.gov (United States)

    Tang, Jian; Chen, Yuwei; Niu, Xiaoji; Wang, Li; Chen, Liang; Liu, Jingbin; Shi, Chuang; Hyyppä, Juha

    2015-07-10

    A new scan that matches an aided Inertial Navigation System (INS) with a low-cost LiDAR is proposed as an alternative to GNSS-based navigation systems in GNSS-degraded or -denied environments such as indoor areas, dense forests, or urban canyons. In these areas, INS-based Dead Reckoning (DR) and Simultaneous Localization and Mapping (SLAM) technologies are normally used to estimate positions as separate tools. However, there are critical implementation problems with each standalone system. The drift errors of velocity, position, and heading angles in an INS will accumulate over time, and on-line calibration is a must for sustaining positioning accuracy. SLAM performance is poor in featureless environments where the matching errors can significantly increase. Each standalone positioning method cannot offer a sustainable navigation solution with acceptable accuracy. This paper integrates two complementary technologies-INS and LiDAR SLAM-into one navigation frame with a loosely coupled Extended Kalman Filter (EKF) to use the advantages and overcome the drawbacks of each system to establish a stable long-term navigation process. Static and dynamic field tests were carried out with a self-developed Unmanned Ground Vehicle (UGV) platform-NAVIS. The results prove that the proposed approach can provide positioning accuracy at the centimetre level for long-term operations, even in a featureless indoor environment.

  13. LiDAR Scan Matching Aided Inertial Navigation System in GNSS-Denied Environments

    Directory of Open Access Journals (Sweden)

    Jian Tang

    2015-07-01

    Full Text Available A new scan that matches an aided Inertial Navigation System (INS with a low-cost LiDAR is proposed as an alternative to GNSS-based navigation systems in GNSS-degraded or -denied environments such as indoor areas, dense forests, or urban canyons. In these areas, INS-based Dead Reckoning (DR and Simultaneous Localization and Mapping (SLAM technologies are normally used to estimate positions as separate tools. However, there are critical implementation problems with each standalone system. The drift errors of velocity, position, and heading angles in an INS will accumulate over time, and on-line calibration is a must for sustaining positioning accuracy. SLAM performance is poor in featureless environments where the matching errors can significantly increase. Each standalone positioning method cannot offer a sustainable navigation solution with acceptable accuracy. This paper integrates two complementary technologies—INS and LiDAR SLAM—into one navigation frame with a loosely coupled Extended Kalman Filter (EKF to use the advantages and overcome the drawbacks of each system to establish a stable long-term navigation process. Static and dynamic field tests were carried out with a self-developed Unmanned Ground Vehicle (UGV platform—NAVIS. The results prove that the proposed approach can provide positioning accuracy at the centimetre level for long-term operations, even in a featureless indoor environment.

  14. An IMM-Aided ZUPT Methodology for an INS/DVL Integrated Navigation System.

    Science.gov (United States)

    Yao, Yiqing; Xu, Xiaosu; Xu, Xiang

    2017-09-05

    Inertial navigation system (INS)/Doppler velocity log (DVL) integration is the most common navigation solution for underwater vehicles. Due to the complex underwater environment, the velocity information provided by DVL always contains some errors. To improve navigation accuracy, zero velocity update (ZUPT) technology is considered, which is an effective algorithm for land vehicles to mitigate the navigation error during the pure INS mode. However, in contrast to ground vehicles, the ZUPT solution cannot be used directly for underwater vehicles because of the existence of the water current. In order to leverage the strengths of the ZUPT method and the INS/DVL solution, an interactive multiple model (IMM)-aided ZUPT methodology for the INS/DVL-integrated underwater navigation system is proposed. Both the INS/DVL and INS/ZUPT models are constructed and operated in parallel, with weights calculated according to their innovations and innovation covariance matrices. Simulations are conducted to evaluate the proposed algorithm. The results indicate that the IMM-aided ZUPT solution outperforms both the INS/DVL solution and the INS/ZUPT solution in the underwater environment, which can properly distinguish between the ZUPT and non-ZUPT conditions. In addition, during DVL outage, the effectiveness of the proposed algorithm is also verified.

  15. Learning from Errors

    Directory of Open Access Journals (Sweden)

    MA. Lendita Kryeziu

    2015-06-01

    Full Text Available “Errare humanum est”, a well known and widespread Latin proverb which states that: to err is human, and that people make mistakes all the time. However, what counts is that people must learn from mistakes. On these grounds Steve Jobs stated: “Sometimes when you innovate, you make mistakes. It is best to admit them quickly, and get on with improving your other innovations.” Similarly, in learning new language, learners make mistakes, thus it is important to accept them, learn from them, discover the reason why they make them, improve and move on. The significance of studying errors is described by Corder as: “There have always been two justifications proposed for the study of learners' errors: the pedagogical justification, namely that a good understanding of the nature of error is necessary before a systematic means of eradicating them could be found, and the theoretical justification, which claims that a study of learners' errors is part of the systematic study of the learners' language which is itself necessary to an understanding of the process of second language acquisition” (Corder, 1982; 1. Thus the importance and the aim of this paper is analyzing errors in the process of second language acquisition and the way we teachers can benefit from mistakes to help students improve themselves while giving the proper feedback.

  16. Compact disk error measurements

    Science.gov (United States)

    Howe, D.; Harriman, K.; Tehranchi, B.

    1993-01-01

    The objectives of this project are as follows: provide hardware and software that will perform simple, real-time, high resolution (single-byte) measurement of the error burst and good data gap statistics seen by a photoCD player read channel when recorded CD write-once discs of variable quality (i.e., condition) are being read; extend the above system to enable measurement of the hard decision (i.e., 1-bit error flags) and soft decision (i.e., 2-bit error flags) decoding information that is produced/used by the Cross Interleaved - Reed - Solomon - Code (CIRC) block decoder employed in the photoCD player read channel; construct a model that uses data obtained via the systems described above to produce meaningful estimates of output error rates (due to both uncorrected ECC words and misdecoded ECC words) when a CD disc having specific (measured) error statistics is read (completion date to be determined); and check the hypothesis that current adaptive CIRC block decoders are optimized for pressed (DAD/ROM) CD discs. If warranted, do a conceptual design of an adaptive CIRC decoder that is optimized for write-once CD discs.

  17. Global Warming Estimation from MSU: Correction for Drift and Calibration Errors

    Science.gov (United States)

    Prabhakara, C.; Iacovazzi, R., Jr.; Yoo, J.-M.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Microwave Sounding Unit (MSU) radiometer observations in Ch 2 (53.74 GHz), made in the nadir direction from sequential, sun-synchronous, polar-orbiting NOAA morning satellites (NOAA 6, 10 and 12 that have about 7am/7pm orbital geometry) and afternoon satellites (NOAA 7, 9, 11 and 14 that have about 2am/2pm orbital geometry) are analyzed in this study to derive global temperature trend from 1980 to 1998. In order to remove the discontinuities between the data of the successive satellites and to get a continuous time series, first we have used shortest possible time record of each satellite. In this way we get a preliminary estimate of the global temperature trend of 0.21 K/decade. However, this estimate is affected by systematic time-dependent errors. One such error is the instrument calibration error. This error can be inferred whenever there are overlapping measurements made by two satellites over an extended period of time. From the available successive satellite data we have taken the longest possible time record of each satellite to form the time series during the period 1980 to 1998 to this error. We find we can decrease the global temperature trend by about 0.07 K/decade. In addition there are systematic time dependent errors present in the data that are introduced by the drift in the satellite orbital geometry arises from the diurnal cycle in temperature which is the drift related change in the calibration of the MSU. In order to analyze the nature of these drift related errors the multi-satellite Ch 2 data set is partitioned into am and pm subsets to create two independent time series. The error can be assessed in the am and pm data of Ch 2 on land and can be eliminated. Observations made in the MSU Ch 1 (50.3 GHz) support this approach. The error is obvious only in the difference between the pm and am observations of Ch 2 over the ocean. We have followed two different paths to assess the impact of the errors on the global temperature trend. In one path the

  18. Effects of navigated TMS on object and action naming

    Directory of Open Access Journals (Sweden)

    Julio Cesar Hernandez-Pavon

    2014-09-01

    Full Text Available Transcranial magnetic stimulation (TMS has been used to induce speech disturbances and to affect speech performance during different naming tasks. Lately, repetitive navigated TMS (nTMS has been used for non-invasive mapping of cortical speech-related areas. Different naming tasks may give different information that can be useful for presurgical evaluation. We studied the sensitivity of object and action naming tasks to nTMS and compared the distributions of cortical sites where nTMS produced naming errors. Eight healthy subjects named pictures of objects and actions during repetitive nTMS delivered to semi-random left-hemispheric sites. Subject-validated image stacks were obtained in the baseline naming of all pictures before nTMS. Thereafter, nTMS pulse trains were delivered while the subjects were naming the images of objects or actions. The sessions were video-recorded for offline analysis. Naming during nTMS was compared with the baseline performance. The nTMS-induced naming errors were categorized by error type and location. nTMS produced no-response errors, phonological paraphasias, and semantic paraphasias. In seven out of eight subjects, nTMS produced more errors during object than action naming. Both intrasubject and intersubject analysis showed that object naming was significantly more sensitive to nTMS. When the number of errors was compared according to a given area, nTMS to postcentral gyrus induced more errors during object than action naming. Object naming is apparently more easily disrupted by TMS than action naming. Different stimulus types can be useful for locating different aspects of speech functions. This provides new possibilities in both basic and clinical research of cortical speech representations.

  19. Discrete-State-Based Vision Navigation Control Algorithm for One Bipedal Robot

    Directory of Open Access Journals (Sweden)

    Dunwen Wei

    2015-01-01

    Full Text Available Navigation with the specific objective can be defined by specifying desired timed trajectory. The concept of desired direction field is proposed to deal with such navigation problem. To lay down a principled discussion of the accuracy and efficiency of navigation algorithms, strictly quantitative definitions of tracking error, actuator effect, and time efficiency are established. In this paper, one vision navigation control method based on desired direction field is proposed. This proposed method uses discrete image sequences to form discrete state space, which is especially suitable for bipedal walking robots with single camera walking on a free-barrier plane surface to track the specific objective without overshoot. The shortest path method (SPM is proposed to design such direction field with the highest time efficiency. However, one improved control method called canonical piecewise-linear function (PLF is proposed. In order to restrain the noise disturbance from the camera sensor, the band width control method is presented to significantly decrease the error influence. The robustness and efficiency of the proposed algorithm are illustrated through a number of computer simulations considering the error from camera sensor. Simulation results show that the robustness and efficiency can be balanced by choosing the proper controlling value of band width.

  20. Navigation Strategies for Primitive Solar System Body Rendezvous and Proximity Operations

    Science.gov (United States)

    Getzandanner, Kenneth M.

    2011-01-01

    A wealth of scientific knowledge regarding the composition and evolution of the solar system can be gained through reconnaissance missions to primitive solar system bodies. This paper presents analysis of a baseline navigation strategy designed to address the unique challenges of primitive body navigation. Linear covariance and Monte Carlo error analysis was performed on a baseline navigation strategy using simulated data from a· design reference mission (DRM). The objective of the DRM is to approach, rendezvous, and maintain a stable orbit about the near-Earth asteroid 4660 Nereus. The outlined navigation strategy and resulting analyses, however, are not necessarily limited to this specific target asteroid as they may he applicable to a diverse range of mission scenarios. The baseline navigation strategy included simulated data from Deep Space Network (DSN) radiometric tracking and optical image processing (OpNav). Results from the linear covariance and Monte Carlo analyses suggest the DRM navigation strategy is sufficient to approach and perform proximity operations in the vicinity of the target asteroid with meter-level accuracy.