WorldWideScience

Sample records for satellite microwave infrared

  1. Evaluation of a physically-based snow model with infrared and microwave satellite-derived estimates

    Science.gov (United States)

    Wang, L.

    2013-05-01

    Snow (with high albedo, as well as low roughness and thermal conductivity) has significant influence on the land-atmosphere interactions in the cold climate and regions of high elevation. The spatial and temporal variability of the snow distribution on a basin scale greatly determines the timing and magnitude of spring snowmelt runoff. For improved water resources management, a physically-based distributed snow model has been developed and applied to the upper Yellow River Basin to provide the outputs of snow variables as well as streamflows from 2001 to 2005. Remotely-sensed infrared information from MODIS satellites has been used to evaluate the model's outputs of spatially-distributed snow cover extent (SCE) and land surface temperature (LST); while the simulated snow depth (SD) and snow water equivalent (SWE) have been compared with the microwave information from SSM/I and AMSR-E satellites. In general, the simulated streamflows (including spring snowmelt) agree fairly well with the gauge-based observations; while the modeled snow variables show acceptable accuracies through comparing to various satellite-derived estimates from infrared or microwave information.;

  2. Assimilation of microwave, infrared, and radio occultation satellite observations with a weather research and forecasting model for heavy rainfall forecasting

    Science.gov (United States)

    Boonyuen, Pakornpop; Wu, Falin; Phunthirawuth, Parwapath; Zhao, Yan

    2016-10-01

    In this research, satellite observation data were assimilated into Weather Research and Forecasting Model (WRF) by using Three-dimensional Variational Data Assimilation System (3DVAR) to analyze its impacts on heavy rainfall forecasts. The weather case for this research was during 13-18 September 2015. Tropical cyclone VAMCO, forming in South China Sea near with Vietnam, moved on west direction to the Northeast of Thailand. After passed through Vietnam, the tropical cyclone was become to depression and there was heavy rainfall throughout the area of Thailand. Observation data, used in this research, included microwave radiance observations from the Advanced Microwave Sounding Unit-A (AMSU-A), infrared radiance observations from Infrared Atmospheric Sounding Interferometer (IASI), and GPS radio occultation (RO) from the COSMIC and CHAMP missions. The experiments were designed in five cases, namely, 1) without data assimilation (CTRL); 2) with only RO data (RO); 3) with only AMSU-A data (AMSUA); 4) with only IASI data (IASI); and 5) with all of RO, AMSU-A and IASI data assimilation (ALL). Then all experiment results would be compared with both NCEP FNL (Final) Operational Global Analysis and the observation data from Thai Meteorological Department weather stations. The experiments result demonstrated that with microwave (AMSU-A), infrared (IASI) and GPS radio occultation (RO) data assimilation can produce the positive impact on analyses and forecast. All of satellite data assimilations have corresponding positive effects in term of temperature and humidity forecasting, and the GPS-RO assimilation produces the best of temperature and humidity forecast biases. The satellite data assimilation has a good impact on temperature and humidity in lower troposphere and vertical distribution that very helpful for heavy rainfall forecast improvement.

  3. Hoar crystal development and disappearance at Dome C, Antarctica: observation by near-infrared photography and passive microwave satellite

    Directory of Open Access Journals (Sweden)

    N. Champollion

    2013-08-01

    Full Text Available Hoar crystals episodically cover the snow surface in Antarctica and affect the roughness and reflective properties of the air–snow interface. However, little is known about their evolution and the processes responsible for their development and disappearance despite a probable influence on the surface mass balance and energy budget. To investigate hoar evolution, we use continuous observations of the surface by in situ near-infrared photography and by passive microwave remote sensing at Dome C in Antarctica. From the photography data, we retrieved a daily indicator of the presence/absence of hoar crystals using a texture analysis algorithm. The analysis of this 2 yr long time series shows that Dome C surface is covered almost half of the time by hoar. The development of hoar crystals takes a few days and seems to occur whatever the meteorological conditions. In contrast, the disappearance of hoar is rapid (a few hours and coincident with either strong winds or with moderate winds associated with a change in wind direction from southwest (the prevailing direction to southeast. From the microwave satellite data, we computed the polarisation ratio (i.e. horizontal over vertical polarised brightness temperatures, an indicator known to be sensitive to hoar in Greenland. Photography data and microwave polarisation ratio are correlated, i.e. high values of polarisation ratio which theoretically correspond to low snow density values near the surface are associated with the presence of hoar crystals in the photography data. Satellite data over nearly ten years (2002–2011 confirm that a strong decrease of the polarisation ratio (i.e. signature of hoar disappearance is associated with an increase of wind speed or a change in wind direction from the prevailing direction. The photography data provides, in addition, evidence of interactions between hoar and snowfall. Further adding the combined influence of wind speed and wind direction results in a

  4. Investigating the error budget of tropical rainfall accumulations derived from combined passive microwave and infrared satellite measurements

    Science.gov (United States)

    Roca, R.; Chambon, P.; jobard, I.; Viltard, N.

    2012-04-01

    Measuring rainfall requires a high density of observations, which, over the whole tropical elt, can only be provided from space. For several decades, the availability of satellite observations has greatly increased; thanks to newly implemented missions like the Megha-Tropiques mission and the forthcoming GPM constellation, measurements from space become available from a set of observing systems. In this work, we focus on rainfall error estimations at the 1 °/1-day accumulated scale, key scale of meteorological and hydrological studies. A novel methodology for quantitative precipitation estimation is introduced; its name is TAPEER (Tropical Amount of Precipitation with an Estimate of ERrors) and it aims to provide 1 °/1-day rain accumulations and associated errors over the whole Tropical belt. This approach is based on a combination of infrared imagery from a fleet of geostationary satellites and passive microwave derived rain rates from a constellation of low earth orbiting satellites. A three-stage disaggregation of error into sampling, algorithmic and calibration errors is performed; the magnitudes of the three terms are then estimated separately. A dedicated error model is used to evaluate sampling errors and a forward error propagation approach is used for an estimation of algorithmic and calibration errors. One of the main findings in this study is the large contribution of the sampling errors and the algorithmic errors of BRAIN on medium rain rates (2 mm h-1 to 10 mm h-1) in the total error budget.

  5. A method for combining passive microwave and infrared rainfall observations

    Science.gov (United States)

    Kummerow, Christian; Giglio, Louis

    1995-01-01

    Because passive microwave instruments are confined to polar-orbiting satellites, rainfall estimates must interpolate across long time periods, during which no measurements are available. In this paper the authors discuss a technique that allows one to partially overcome the sampling limitations by using frequent infrared observations from geosynchronous platforms. To accomplish this, the technique compares all coincident microwave and infrared observations. From each coincident pair, the infrared temperature threshold is selected that corresponds to an area equal to the raining area observed in the microwave image. The mean conditional rainfall rate as determined from the microwave image is then assigned to pixels in the infrared image that are colder than the selected threshold. The calibration is also applied to a fixed threshold of 235 K for comparison with established infrared techniques. Once a calibration is determined, it is applied to all infrared images. Monthly accumulations for both methods are then obtained by summing rainfall from all available infrared images. Two examples are used to evaluate the performance of the technique. The first consists of a one-month period (February 1988) over Darwin, Australia, where good validation data are available from radar and rain gauges. For this case it was found that the technique approximately doubled the rain inferred by the microwave method alone and produced exceptional agreement with the validation data. The second example involved comparisons with atoll rain gauges in the western Pacific for June 1989. Results here are overshadowed by the fact that the hourly infrared estimates from established techniques, by themselves, produced very good correlations with the rain gauges. The calibration technique was not able to improve upon these results.

  6. Satellite microwave observations of a storm complex: A comparative analysis

    Science.gov (United States)

    Martin, D. W.

    1985-01-01

    The hypothesis that cold events correspond to a particular stage in a class of thunderstorms was tested. That class is a storms class which updrafts are: (1) strong, broad and moist, and (2) extend well above the freezing level. Condition (1) implies strong mesoscale forcing. Condition (2) implies a tall updraft or a relatively low freezing level. Such storms should have big, intense radar echoes and cold, fast-growing anvils. The thunderstorm events were analyzed by radar, rain gauge and GOES infrared observations. Radar was the starting point for detection and definition of the hypothesized thunderstorms. The radar signature is compared to the signature of the storm in rain gauge observations, satellite infrared images and satellite microwave images.

  7. Multi-Decadal Variability of Polynya Characteristics and Ice Production in the North Water Polynya by Means of Passive Microwave and Thermal Infrared Satellite Imagery

    Directory of Open Access Journals (Sweden)

    Andreas Preußer

    2015-11-01

    Full Text Available The North Water (NOW Polynya is a regularly-forming area of open-water and thin-ice, located between northwestern Greenland and Ellesmere Island (Canada at the northern tip of Baffin Bay. Due to its large spatial extent, it is of high importance for a variety of physical and biological processes, especially in wintertime. Here, we present a long-term remote sensing study for the winter seasons 1978/1979 to 2014/2015. Polynya characteristics are inferred from (1 sea ice concentrations and brightness temperatures from passive microwave satellite sensors (Advanced Microwave Scanning Radiometer (AMSR-E and AMSR2, Scanning Multichannel Microwave Radiometer (SMMR, Special Sensor Microwave Imager/Sounder (SSM/I-SSMIS and (2 thin-ice thickness distributions, which are calculated using MODIS ice-surface temperatures and European Center for Medium-Range Weather Forecasts (ECMWF atmospheric reanalysis data in a 1D thermodynamic energy-balance model. Daily ice production rates are retrieved for each winter season from 2002/2003 to 2014/2015, assuming that all heat loss at the ice surface is balanced by ice growth. Two different cloud-cover correction schemes are applied on daily polynya area and ice production values to account for cloud gaps in the MODIS composites. Our results indicate that the NOW polynya experienced significant seasonal changes over the last three decades considering the overall frequency of polynya occurrences, as well as their spatial extent. In the 1980s, there were prolonged periods of a more or less closed ice cover in northern Baffin Bay in winter. This changed towards an average opening on more than 85% of the days between November and March during the last decade. Noticeably, the sea ice cover in the NOW polynya region shows signs of a later-appearing fall freeze-up, starting in the late 1990s. Different methods to obtain daily polynya area using passive microwave AMSR-E/AMSR2 data and SSM/I-SSMIS data were applied. A comparison

  8. Estimating Soil Moisture from Satellite Microwave Observations

    Science.gov (United States)

    Owe, M.; VandeGriend, A. A.; deJeu, R.; deVries, J.; Seyhan, E.

    1998-01-01

    Cooperative research in microwave remote sensing between the Hydrological Sciences Branch of the NASA Goddard Space Flight Center and the Earth Sciences Faculty of the Vrije Universiteit Amsterdam began with the Botswana Water and Energy Balance Experiment and has continued through a series of highly successful International Research Programs. The collaboration between these two research institutions has resulted in significant scientific achievements, most notably in the area of satellite-based microwave remote sensing of soil moisture. The Botswana Program was the first joint research initiative between these two institutions, and provided a unique data base which included historical data sets of Scanning Multifrequency Microwave Radiometer (SN4NM) data, climate information, and extensive soil moisture measurements over several large experimental sites in southeast Botswana. These data were the basis for the development of new approaches in physically-based inverse modelling of soil moisture from satellite microwave observations. Among the results from this study were quantitative estimates of vegetation transmission properties at microwave frequencies. A single polarization modelling approach which used horizontally polarized microwave observations combined with monthly composites of Normalized Difference Vegetation Index was developed, and yielded good results. After more precise field experimentation with a ground-based radiometer system, a dual-polarization approach was subsequently developed. This new approach realized significant improvements in soil moisture estimation by satellite. Results from the Botswana study were subsequently applied to a desertification monitoring study for the country of Spain within the framework of the European Community science research programs EFEDA and RESMEDES. A dual frequency approach with only microwave data was used for this application. The Microwave Polarization Difference Index (MPDI) was calculated from 37 GHz data

  9. Satellite and lunar laser ranging in infrared

    Science.gov (United States)

    Courde, Clement; Torre, Jean-Marie; Samain, Etienne; Martinot-Lagarde, Gregoire; Aimar, Mourad; Albanese, Dominique; Maurice, Nicolas; Mariey, Hervé; Viot, Hervé; Exertier, Pierre; Fienga, Agnes; Viswanathan, Vishnu

    2017-05-01

    We report on the implementation of a new infrared detection at the Grasse lunar laser ranging station and describe how infrared telemetry improves the situation. We present our first results on the lunar reflectors and show that infrared detection permits us to densify the observations and allows measurements during the new and the full moon periods. We also present the benefit obtained on the ranging of Global Navigation Satellite System (GNSS) satellites and on RadioAstron which have a very elliptic orbit.

  10. An ensemble Kalman filter dual assimilation of thermal infrared and microwave satellite observations of soil moisture into the Noah land surface model

    Science.gov (United States)

    Hain, Christopher R.; Crow, Wade T.; Anderson, Martha C.; Mecikalski, John R.

    2012-11-01

    Studies that have assimilated remotely sensed soil moisture (SM) into land surface models (LSMs) have generally focused on retrievals from microwave (MW) sensors. However, retrievals from thermal infrared (TIR) sensors have also been shown to add unique information, especially where MW sensors are not able to provide accurate retrievals (due to, e.g., dense vegetation). In this study, we examine the assimilation of a TIR product based on surface evaporative flux estimates from the Atmosphere Land Exchange Inverse (ALEXI) model and the MW-based VU Amsterdam NASA surface SM product generated with the Land Parameter Retrieval Model (LPRM). A set of data assimilation experiments using an ensemble Kalman filter are performed over the contiguous United States to assess the impact of assimilating ALEXI and LPRM SM retrievals in isolation and together in a dual-assimilation case. The relative skill of each assimilation case is assessed through a data denial approach where a LSM is forced with an inferior precipitation data set. The ability of each assimilation case to correct for precipitation errors is quantified by comparing with a simulation forced with a higher-quality precipitation data set. All three assimilation cases (ALEXI, LPRM, and Dual assimilation) show relative improvements versus the open loop (i.e., reduced RMSD) for surface and root zone SM. In the surface zone, the dual assimilation case provides the largest improvements, followed by the LPRM case. However, the ALEXI case performs best in the root zone. Results from the data denial experiment are supported by comparisons between assimilation results and ground-based SM observations from the Soil Climate Analysis Network.

  11. Correcting Errors in Catchment-Scale Satellite Rainfall Accumulation Using Microwave Satellite Soil Moisture Products

    Science.gov (United States)

    Ryu, D.; Crow, W. T.

    2011-12-01

    Streamflow forecasting in the poorly gauged or ungauged catchments is very difficult mainly due to the absence of the input forcing data for forecasting models. This challenge poses a threat to human safety and industry in the areas where proper warning system is not provided. Currently, a number of studies are in progress to calibrate streamflow models without relying on ground observations as an effort to construct a streamflow forecasting systems in the ungauged catchments. Also, recent advances in satellite altimetry and innovative application of the optical has enabled mapping streamflow rate and flood extent in the remote areas. In addition, remotely sensed hydrological variables such as the real-time satellite precipitation data, microwave soil moisture retrievals, and surface thermal infrared observations have the great potential to be used as a direct input or signature information to run the forecasting models. In this work, we evaluate a real-time satellite precipitation product, TRMM 3B42RT, and correct errors of the product using the microwave satellite soil moisture products over 240 catchments in Australia. The error correction is made by analyzing the difference between output soil moisture of a simple model forced by the TRMM product and the satellite retrievals of soil moisture. The real-time satellite precipitation products before and after the error correction are compared with the daily gauge-interpolated precipitation data produced by the Australian Bureau of Meteorology. The error correction improves overall accuracy of the catchment-scale satellite precipitation, especially the root mean squared error (RMSE), correlation, and the false alarm ratio (FAR), however, only a marginal improvement is observed in the probability of detection (POD). It is shown that the efficiency of the error correction is affected by the surface vegetation density and the annual precipitation of the catchments.

  12. Development of visible/infrared/microwave agriculture classification and biomass estimation algorithms. [Guyton, Oklahoma and Dalhart, Texas

    Science.gov (United States)

    Rosenthal, W. D.; Mcfarland, M. J.; Theis, S. W.; Jones, C. L. (Principal Investigator)

    1982-01-01

    Agricultural crop classification models using two or more spectral regions (visible through microwave) are considered in an effort to estimate biomass at Guymon, Oklahoma Dalhart, Texas. Both grounds truth and aerial data were used. Results indicate that inclusion of C, L, and P band active microwave data, from look angles greater than 35 deg from nadir, with visible and infrared data improve crop discrimination and biomass estimates compared to results using only visible and infrared data. The microwave frequencies were sensitive to different biomass levels. The K and C band were sensitive to differences at low biomass levels, while P band was sensitive to differences at high biomass levels. Two indices, one using only active microwave data and the other using data from the middle and near infrared bands, were well correlated to total biomass. It is implied that inclusion of active microwave sensors with visible and infrared sensors on future satellites could aid in crop discrimination and biomass estimation.

  13. The Infrared Astronomical Satellite (IRAS) mission

    Science.gov (United States)

    Neugebauer, G.; Habing, H. J.; Van Duinen, R.; Aumann, H. H.; Beichman, C. A.; Baud, B.; Beintema, D. A.; Boggess, N.; Clegg, P. E.; De Jong, T.

    1984-01-01

    The Infrared Astronomical Satellite (IRAS) consists of a spacecraft and a liquid helium cryostat that contains a cooled IR telescope. The telescope's focal plane assembly is cooled to less than 3 K, and contains 62 IR detectors in the survey array which are arranged so that every source crossing the field of view can be seen by at least two detectors in each of four wavelength bands. The satellite was launched into a 900 km-altitude near-polar orbit, and its cryogenic helium supply was exhausted on November 22, 1983. By mission's end, 72 percent of the sky had been observed with three or more hours-confirming scans, and 95 percent with two or more hours-confirming scans. About 2000 stars detected at 12 and 25 microns early in the mission, and identified in the SAO (1966) catalog, have a positional uncertainty ellipse whose axes are 45 x 9 arcsec for an hours-confirmed source.

  14. Global relation between microwave satellite vegetation products and vegetation productivity

    Science.gov (United States)

    Teubner, Irene E.; Forkel, Matthias; Jung, Martin; Miralles, Diego G.; Dorigo, Wouter A.

    2017-04-01

    The occurrence of unfavourable environmental conditions like droughts commonly reduces the photosynthetic activity of ecosystems and, hence, their potential to take up carbon from the atmosphere. Ecosystem photosynthetic activity is commonly determined using remote sensing observations in the optical domain, which however have limitations particularly in regions of frequent cloud cover, e.g. the tropics. In this study, we explore the potential of vegetation optical depth (VOD) from microwave satellite observations as an alternative source for assessing vegetation productivity. VOD serves as an estimate for vegetation density and water content, which has an impact on plant physiological processes and hence should potentially provide a link to gross primary production (GPP). However, to date, it is unclear how microwave-retrieved VOD data and GPP data are related. We compare seasonal dynamics and anomalies of VOD retrievals from different satellite sensors and microwave frequencies with site level and global GPP estimates. We use VOD observations from active (ASCAT) and passive microwave sensors (AMSR-E, SMOS). We include eddy covariance measurements from the FLUXNET2015 dataset to assess the VOD products at site level. For a global scale analysis, we use the solar-induced chlorophyll fluorescence (SIF) observations from GOME-2 as a proxy for GPP and the FLUXCOM GPP product, which presents an upscaling of site measurements based on remote sensing data. Our results demonstrate that in general a good agreement between VOD and GPP or SIF exists. However, the strength of these relations depends on the microwave frequency, land cover type, and the time within the growing season. Correlations between anomalies of VOD and GPP or SIF support the assumption that microwave-derived VOD can be used to monitor vegetation productivity dynamics. The study is performed as part of the EOWAVE project funded by the Vienna University of Technology (http://eowave.geo.tuwien.ac.at/) and

  15. High resolution spectroscopy in the microwave and far infrared

    Science.gov (United States)

    Pickett, Herbert M.

    1990-01-01

    High resolution rotational spectroscopy has long been central to remote sensing techniques in atmospheric sciences and astronomy. As such, laboratory measurements must supply the required data to make direct interpretation of data for instruments which sense atmospheres using rotational spectra. Spectral measurements in the microwave and far infrared regions are also very powerful tools when combined with infrared measurements for characterizing the rotational structure of vibrational spectra. In the past decade new techniques were developed which have pushed high resolution spectroscopy into the wavelength region between 25 micrometers and 2 mm. Techniques to be described include: (1) harmonic generation of microwave sources, (2) infrared laser difference frequency generation, (3) laser sideband generation, and (4) ultrahigh resolution interferometers.

  16. Matching Performance among Visible and near Infrared Coating, Low Infrared Emitting Coating and Microwave Absorbing Coating

    Institute of Scientific and Technical Information of China (English)

    XIE Guohua; ZHANG Zuoguang; WU Ruibin

    2005-01-01

    The matching performance among the visible and near infrared conting, the low infrared emitting coating and the microwave absorbing coating was investigated. Experimental results shaw that the resulting material is characteristic of wideband effect ranging from the visible, near infrared and 3-5μm, 8- 14 μm infrared portion of the spectrum, as well as the radar region from 8 to 18 GHz when these three materials form a layerstructure material system. The microwave absorbing ability of material is hardly changed. The resonance peak moves towards lower frequency as the thickness of the visible, near infrared coating and the low infrared emitting coating increases. This problem can be resolved by controlling the thickness of the material. On the other hand,the infrared emissivity ε of the material system increases as the thickness of the visible, near infrared coating increases. This can be resolved by increasing infrared transparency of the visible and near infrared topcoating or controlling its thickness. The experimental resulting material system has spectral reflection characteristics in visible and near infrared regions that are similar to those of the natural bnckground.

  17. Investigating Satellite Microwave observations of Precipitation in Different Climate Regimes

    Science.gov (United States)

    Wang, N.; Ferraro, R. R.

    2013-12-01

    Microwave satellite remote sensing of precipitation over land is a challenging problem due to the highly variable land surface emissivity, which, if not properly accounted for, can be much greater than the precipitation signal itself, especially in light rain/snow conditions. Additionally, surfaces such as arid land, deserts and snow cover have brightness temperature characteristics similar to precipitation Ongoing work by GPM microwave radiometer team is constructing databases through a variety of means, however, there is much uncertainty as to what is the optimal information needed for the wide array of sensors in the GPM constellation, including examination of regional conditions. The original data sets will focus on stratification by emissivity class, surface temperature and total perceptible water. We'll perform sensitivity studies to determine the potential role of ancillary data (e.g., land surface temperature, snow cover/water equivalent, etc.) to improve precipitation estimation over land in different climate regimes, including rain and snow. In other words, what information outside of the radiances can help describe the background and subsequent departures from it that are active precipitating regions? It is likely that this information will be a function of the various precipitation regimes. Statistical methods such as Principal Component Analysis (PCA) will be utilized in this task. Databases from a variety of sources are being constructed. They include existing satellite microwave measurements of precipitating and non-precipitating conditions, ground radar precipitation rate estimates, surface emissivity climatology from satellites, surface temperature and TPW from NWP reanalysis. Results from the analysis of these databases with respect to the microwave precipitation sensitivity to the variety of environmental conditions in different climate regimes will be discussed.

  18. Investigation of dielectric properties of different cake formulations during microwave and infrared-microwave combination baking.

    Science.gov (United States)

    Sakiyan, Ozge; Sumnu, Gulum; Sahin, Serpil; Meda, Venkatesh

    2007-05-01

    Dielectric properties can be used to understand the behavior of food materials during microwave processing. Dielectric properties influence the level of interaction between food and high frequency electromagnetic energy. Dielectric properties are, therefore, important in the design of foods intended for microwave preparation. In this study, it was aimed to determine the variation of dielectric properties of different cake formulations during baking in microwave and infrared-microwave combination oven. In addition, the effects of formulation and temperature on dielectric properties of cake batter were examined. Dielectric constant and loss factor of cake samples were shown to be dependent on formulation, baking time, and temperature. The increase in baking time and temperature decreased dielectric constant and loss factor of all formulations. Fat content was shown to increase dielectric constant and loss factor of cakes.

  19. Impact of Missing Passive Microwave Sensors on Multi-Satellite Precipitation Retrieval Algorithm

    Directory of Open Access Journals (Sweden)

    Bin Yong

    2015-01-01

    Full Text Available The impact of one or two missing passive microwave (PMW input sensors on the end product of multi-satellite precipitation products is an interesting but obscure issue for both algorithm developers and data users. On 28 January 2013, the Version-7 TRMM Multi-satellite Precipitation Analysis (TMPA products were reproduced and re-released by National Aeronautics and Space Administration (NASA Goddard Space Flight Center because the Advanced Microwave Sounding Unit-B (AMSU-B and the Special Sensor Microwave Imager-Sounder-F16 (SSMIS-F16 input data were unintentionally disregarded in the prior retrieval. Thus, this study investigates the sensitivity of TMPA algorithm results to missing PMW sensors by intercomparing the “early” and “late” Version-7 TMPA real-time (TMPA-RT precipitation estimates (i.e., without and with AMSU-B, SSMIS-F16 sensors with an independent high-density gauge network of 200 tipping-bucket rain gauges over the Chinese Jinghe river basin (45,421 km2. The retrieval counts and retrieval frequency of various PMW and Infrared (IR sensors incorporated into the TMPA system were also analyzed to identify and diagnose the impacts of sensor availability on the TMPA-RT retrieval accuracy. Results show that the incorporation of AMSU-B and SSMIS-F16 has substantially reduced systematic errors. The improvement exhibits rather strong seasonal and topographic dependencies. Our analyses suggest that one or two single PMW sensors might play a key role in affecting the end product of current combined microwave-infrared precipitation estimates. This finding supports algorithm developers’ current endeavor in spatiotemporally incorporating as many PMW sensors as possible in the multi-satellite precipitation retrieval system called Integrated Multi-satellitE Retrievals for Global Precipitation Measurement mission (IMERG. This study also recommends users of satellite precipitation products to switch to the newest Version-7 TMPA datasets and

  20. The microwave limb sounder for the Upper Atmosphere Research Satellite

    Science.gov (United States)

    Waters, J. W.; Peckham, G. E.; Suttie, R. A.; Curtis, P. D.; Maddison, B. J.; Harwood, R. S.

    1988-01-01

    The Microwave Limb Sounder was designed to map the concentrations of trace gases from the stratosphere to the lower thermosphere, to improve understanding of the photochemical reactions which take place in this part of the atmosphere. The instrument will measure the intensity of thermal radiation from molecules in the atmosphere at frequencies corresponding to rotational absorption bands of chlorine monoxide, ozone, and water vapor. Molecular concentration profiles will be determined over a height range of 15 to 80 km (20 to 45 km for C10). The 57 deg inclination orbit proposed for the Upper Atmosphere Research Satellite will allow global coverage.

  1. Antartic sea ice, 1973 - 1976: Satellite passive-microwave observations

    Science.gov (United States)

    Zwally, H. J.; Comiso, J. C.; Parkinson, C. L.; Campbell, W. J.; Carsey, F. D.; Gloersen, P.

    1983-01-01

    Data from the Electrically Scanning Microwave Radiometer (ESMR) on the Nimbus 5 satellite are used to determine the extent and distribution of Antarctic sea ice. The characteristics of the southern ocean, the mathematical formulas used to obtain quantitative sea ice concentrations, the general characteristics of the seasonal sea ice growth/decay cycle and regional differences, and the observed seasonal growth/decay cycle for individual years and interannual variations of the ice cover are discussed. The sea ice data from the ESMR are presented in the form of color-coded maps of the Antarctic and the southern oceans. The maps show brightness temperatures and concentrations of pack ice averaged for each month, 4-year monthly averages, and month-to-month changes. Graphs summarizing the results, such as areas of sea ice as a function of time in the various sectors of the southern ocean are included. The images demonstrate that satellite microwave data provide unique information on large-scale sea ice conditions for determining climatic conditions in polar regions and possible global climatic changes.

  2. The Upper Atmosphere Research Satellite microwave limb sounder instrument

    Science.gov (United States)

    Barath, F. T.; Chavez, M. C.; Cofield, R. E.; Flower, D. A.; Frerking, M. A.; Gram, M. B.; Harris, W. M.; Holden, J. R.; Jarnot, R. F.; Kloezeman, W. G.

    1993-01-01

    The microwave limb sounder (MLS) on the Upper Atmosphere Research Satellite (UARS) is the first satellite experiment using limb sounding techniques at microwave frequencies. Primary measurement objectives are stratospheric ClO, O3, H2O, temperature, and pressure. Measurements are of thermal emission: all are performed simultaneously and continuously and are not degraded by ice clouds or volcanic aerosols. The instrument has a 1.6-m mechanically scanning antenna system and contains heterodyne radiometers in spectral bands centred near 63, 183, and 205 GHz. The radiometers operate at ambient temperature and use Schottky-diode mixers with local oscillators derived from phase-locked Gunn oscillators. Frequency tripling by varactor multipliers generates the 183- and 205-GHz local oscillators, and quasi-optical techniques inject these into the mixers. Six 15-channel filter banks spectrally resolve stratospheric thermal emission lines and produce an output spectrum every 2 s. Thermal stability is sufficient for 'total power' measurements which do not require fast chopping. Radiometric calibration, consisting of measurements of cold space and an internal target, is performed every 65-s limb scan. Instrument in-orbit performance has been excellent, and all objectives are being met.

  3. Anisotropic metamaterials for microwave antennas and infrared nanostructured thin films

    Science.gov (United States)

    Jian, Zhihao

    Wave-matter interactions have long been investigated to discover unknown physical phenomena and exploited to achieve improved device performance throughout the electromagnetic spectrum ranging from quasi-static limit to microwave frequencies, and even at infrared and optical wavelengths. As a nascent but fast growing field, metamaterial technology, which relies on clusters of artificially engineered subwavelength structures, has been demonstrated to provide a wide variety of exotic electromagnetic properties unattainable in natural materials. This dissertation presents the research on novel anisotropic metamaterials for tailoring microwave radiation and infrared scattering of nanostructured thin films. First, a new inversion algorithm is proposed for retrieving the anisotropic effective medium parameters of a slab of metamaterial. Secondly, low-loss anisotropic metamaterial lenses and coatings are introduced for improving the gain and/or bandwidth for a variety of antennas. In particular, a quad-beam high-gain lens for a quarter-wave monopole, a low-profile grounded leaky metamaterial coating for slot antenna, and an ultra-thin anisotropic metamaterial bandwidth-enhancing coating for a quarter-wave monopole are experimentally demonstrated. In the infrared regime, novel nanostructured metamaterial free-standing thin-films, which are inherently anisotropic, are introduced for achieving exotic index properties and further for practical photonic devices. In particular, a low-loss near-infrared fishnet zero-index metamaterial, a dispersionengineered optically-thin, low-loss broadband metamaterial filter with a suppressed group delay fluctuation in the mid-infrared, and a conformal dual-band near-perfectly absorbing coating in the mid-infrared are experimentally demonstrated. These explorations show the great promise anisotropic metamaterials hold for the flexible manipulation of electromagnetic waves and their broad applicability in a wide spectrum range.

  4. De-noising of microwave satellite soil moisture time series

    Science.gov (United States)

    Su, Chun-Hsu; Ryu, Dongryeol; Western, Andrew; Wagner, Wolfgang

    2013-04-01

    The use of satellite soil moisture data for scientific and operational hydrologic, meteorological and climatological applications is advancing rapidly due to increasing capability and temporal coverage of current and future missions. However evaluation studies of various existing remotely-sensed soil moisture products from these space-borne microwave sensors, which include AMSR-E (Advanced Microwave Scanning Radiometer) on Aqua satellite, SMOS (Soil Moisture and Ocean Salinity) mission and ASCAT (Advanced Scatterometer) on MetOp-A satellite, found them to be significantly different from in-situ observations, showing large biases and different dynamic ranges and temporal patterns (e.g., Albergel et al., 2012; Su et al., 2012). Moreover they can have different error profiles in terms of bias, variance and correlations and their performance varies with land surface characteristics (Su et al., 2012). These severely impede the effort to use soil moisture retrievals from multiple sensors concurrently in land surface modelling, cross-validation and multi-satellite blending. The issue of systematic errors present in data sets should be addressed prior to renormalisation of the data for blending and data assimilation. Triple collocation estimation technique has successfully yielded realistic error estimates (Scipal et al., 2008), but this method relies on availability of large number of coincident data from multiple independent satellite data sets. In this work, we propose, i) a conceptual framework for distinguishing systematic periodic errors in the form of false spectral resonances from non-systematic errors (stochastic noise) in remotely-sensed soil moisture data in the frequency domain; and ii) the use of digital filters to reduce the variance- and correlation-related errors in satellite data. In this work, we focus on the VUA-NASA (Vrije Universiteit Amsterdam with NASA) AMSR-E, CATDS (Centre National d'Etudes Spatiales, CNES) SMOS and TUWIEN (Vienna University of

  5. Infrared Spectral Radiance Intercomparisons With Satellite and Aircraft Sensors

    Science.gov (United States)

    Larar, Allen M.; Zhou, Daniel K.; Liu, Xu; Smith, William L.

    2014-01-01

    Measurement system validation is critical for advanced satellite sounders to reach their full potential of improving observations of the Earth's atmosphere, clouds, and surface for enabling enhancements in weather prediction, climate monitoring capability, and environmental change detection. Experimental field campaigns, focusing on satellite under-flights with well-calibrated FTS sensors aboard high-altitude aircraft, are an essential part of the validation task. Airborne FTS systems can enable an independent, SI-traceable measurement system validation by directly measuring the same level-1 parameters spatially and temporally coincident with the satellite sensor of interest. Continuation of aircraft under-flights for multiple satellites during multiple field campaigns enables long-term monitoring of system performance and inter-satellite cross-validation. The NASA / NPOESS Airborne Sounder Testbed - Interferometer (NAST-I) has been a significant contributor in this area by providing coincident high spectral/spatial resolution observations of infrared spectral radiances along with independently-retrieved geophysical products for comparison with like products from satellite sensors being validated. This presentation gives an overview of benefits achieved using airborne sensors such as NAST-I utilizing examples from recent field campaigns. The methodology implemented is not only beneficial to new sensors such as the Cross-track Infrared Sounder (CrIS) flying aboard the Suomi NPP and future JPSS satellites but also of significant benefit to sensors of longer flight heritage such as the Atmospheric InfraRed Sounder (AIRS) and the Infrared Atmospheric Sounding Interferometer (IASI) on the AQUA and METOP-A platforms, respectively, to ensure data quality continuity important for climate and other applications. Infrared spectral radiance inter-comparisons are discussed with a particular focus on usage of NAST-I data for enabling inter-platform cross-validation.

  6. Extracting cosmic microwave background polarisation from satellite astrophysical maps

    CERN Document Server

    Baccigalupi, C; De Zotti, G; Smoot, G F; Burigana, C; Maino, D; Bedini, L; Salerno, E

    2002-01-01

    We present the application of the Fast Independent Component Analysis technique for blind component separation to polarised astrophysical emission. We study how the Cosmic Microwave Background (CMB) polarised signal, consisting of $E$ and $B$ modes, can be extracted from maps affected by substantial contamination from diffuse Galactic foregrounds and instrumental noise. We perform the analysis of all sky maps simulated accordingly to the nominal performances of the Low Frequency Instrument (LFI) aboard the Planck satellite; the sky signal is modeled as a superposition of CMB, generated by a Gaussian, nearly scale invariant cosmological perturbation spectrum, and the existing simulated polarisation templates of Galactic synchrotron. Our results indicate that the angular power spectrum of CMB $E$ modes can be recovered on all scales up to $\\ell\\simeq 1000$, corresponding to the fourth acoustic oscillation, while $B$ modes can be detected, up to their turnover at $\\ell\\simeq 100$ if cosmological tensor amplitude...

  7. Advances in Satellite Microwave Precipitation Retrieval Algorithms Over Land

    Science.gov (United States)

    Wang, N. Y.; You, Y.; Ferraro, R. R.

    2015-12-01

    Precipitation plays a key role in the earth's climate system, particularly in the aspect of its water and energy balance. Satellite microwave (MW) observations of precipitation provide a viable mean to achieve global measurement of precipitation with sufficient sampling density and accuracy. However, accurate precipitation information over land from satellite MW is a challenging problem. The Goddard Profiling Algorithm (GPROF) algorithm for the Global Precipitation Measurement (GPM) is built around the Bayesian formulation (Evans et al., 1995; Kummerow et al., 1996). GPROF uses the likelihood function and the prior probability distribution function to calculate the expected value of precipitation rate, given the observed brightness temperatures. It is particularly convenient to draw samples from a prior PDF from a predefined database of observations or models. GPROF algorithm does not search all database entries but only the subset thought to correspond to the actual observation. The GPM GPROF V1 database focuses on stratification by surface emissivity class, land surface temperature and total precipitable water. However, there is much uncertainty as to what is the optimal information needed to subset the database for different conditions. To this end, we conduct a database stratification study of using National Mosaic and Multi-Sensor Quantitative Precipitation Estimation, Special Sensor Microwave Imager/Sounder (SSMIS) and Advanced Technology Microwave Sounder (ATMS) and reanalysis data from Modern-Era Retrospective Analysis for Research and Applications (MERRA). Our database study (You et al., 2015) shows that environmental factors such as surface elevation, relative humidity, and storm vertical structure and height, and ice thickness can help in stratifying a single large database to smaller and more homogeneous subsets, in which the surface condition and precipitation vertical profiles are similar. It is found that the probability of detection (POD) increases

  8. Low-Cost Satellite Infrared Imager Study

    Science.gov (United States)

    2007-11-02

    2,297.00 10 MATLAB , Simulink , Symbolic Math Toolbox (2 ea @ £894) £1,788.00 11 MATLAB Image Processing Toolbox (2 ea at £192) £384.00 12 MATLAB ...Figure 1: MWIR and TIR satellite imagery. On the left is a BIRD image of forest fires on the Portuguese/ Spanish border3 and the image on right is...space-borne MWIR and TIR imagers, instrument engineers are continually evaluating advances in the miniaturization of detector technology. One

  9. Cloud and Thermodynamic Parameters Retrieved from Satellite Ultraspectral Infrared Measurements

    Science.gov (United States)

    Zhou, Daniel K.; Smith, William L.; Larar, Allen M.; Liu, Xu; Taylor, Jonathan P.; Schluessel, Peter; Strow, L. Larrabee; Mango, Stephen A.

    2008-01-01

    Atmospheric-thermodynamic parameters and surface properties are basic meteorological parameters for weather forecasting. A physical geophysical parameter retrieval scheme dealing with cloudy and cloud-free radiance observed with satellite ultraspectral infrared sounders has been developed and applied to the Infrared Atmospheric Sounding Interferometer (IASI) and the Atmospheric InfraRed Sounder (AIRS). The retrieved parameters presented herein are from radiance data gathered during the Joint Airborne IASI Validation Experiment (JAIVEx). JAIVEx provided intensive aircraft observations obtained from airborne Fourier Transform Spectrometer (FTS) systems, in-situ measurements, and dedicated dropsonde and radiosonde measurements for the validation of the IASI products. Here, IASI atmospheric profile retrievals are compared with those obtained from dedicated dropsondes, radiosondes, and the airborne FTS system. The IASI examples presented here demonstrate the ability to retrieve fine-scale horizontal features with high vertical resolution from satellite ultraspectral sounder radiance spectra.

  10. Development of the first infrared satellite observatory

    Science.gov (United States)

    Smith, G. M.; Squibb, G. F.

    1984-01-01

    A development history is given for the Infrared Astronomical Satelite (IRAS), whose primary mission objective is an unbiased, all-sky survey in the 8-120 micron wavelength range. A point source catalog of more than 200,000 IR sources, to be published later this year, represents the accomplishment of this objective. IRAS has also conducted 10,000 pointed observations of specific objects. Attention is given to the cost increases and schedule slips which resulted from the substantial technical challenges of IRAS hardware and software development, and to the management techniques which had to be employed in this major international project.

  11. Orbital performance of communication satellite microwave power amplifiers (MPAs)

    Science.gov (United States)

    Strauss, R.

    1993-01-01

    This paper presents background data on the performance of microwave power amplifiers (MPAs) used as transmitters in currently operating commercial communication satellites. Specifically aspects of two competing MPA types are discussed. These are well known TWTA (travelling wave tube amplifier) and the SSPA (solid state power amplifier). Extensive in-orbit data has been collected from over 2000 MPAs in 1991 and 1993. The study in 1991 invovlved 75 S/C (spacecraft) covering 463 S/C years. The 1993 'second-look' study encompassed a slightly different population of 72 S/C with 497 S/C years of operation. A surprising result of both studies was that SSPAs, although quite reliable, did not achieve the reliability of TWTAs were one-third more reliable in the 1993 study. This was at C-band with comparable power amplifiers, e.g. 6-16W of RF output power and similar gains. Data at K(sub u)-band is for TWTAs only since there are no SSPAs in the current S/C inventory. The other complementary result was that the projected failure rates used as S/C payload design guidelines were, on average, somewhat higher for TWTAs than the actual failure rates uncovered by this study. SSPA rates were as projected.

  12. Spacecraft design project: High temperature superconducting infrared imaging satellite

    Science.gov (United States)

    1991-01-01

    The High Temperature Superconductor Infrared Imaging Satellite (HTSCIRIS) is designed to perform the space based infrared imaging and surveillance mission. The design of the satellite follows the black box approach. The payload is a stand alone unit, with the spacecraft bus designed to meet the requirements of the payload as listed in the statement of work. Specifications influencing the design of the spacecraft bus were originated by the Naval Research Lab. A description of the following systems is included: spacecraft configuration, orbital dynamics, radio frequency communication subsystem, electrical power system, propulsion, attitude control system, thermal control, and structural design. The issues of testing and cost analysis are also addressed. This design project was part of the course Advanced Spacecraft Design taught at the Naval Postgraduate School.

  13. Effect of Microwave Heating on Infrared Radiation Properties of Cordierite-Ferrites Based Composite Ceramics

    Institute of Scientific and Technical Information of China (English)

    LU; Lei; FAN; Xi’an; HU; Xiaoming; ZHANG; Jianyi

    2015-01-01

    The cordierite-ferrites based infrared radiation composite materials were synthesized with Fe2O3, Mn O2, Cu O, Co2O3, and Mg2Al4Si5O18 powders as raw materials via microwave heating. The cordierite-ferrites based composite ceramics could be obtained via microwave heating at 1173 K for 1 h or 1473 K for 10 min, respectively. The lower synthesis temperature or the shorter heating time results in the smaller grain size of the composite ceramics obtained by microwave heating. The interplanar distance of cordierite becomes greater after microwave heating, indicating that the doping effect of transitional metal oxides on the cordierite is more efficient in microwave heating. The infrared radiation composite ceramics synthesized by microwave heating at 1473 K for 1 h exhibit the maximum emissivity of 0.9 in the band range of 6-8 μm at 1073 K.

  14. Tactical Approaches for Making a Successful Satellite Passive Microwave ESDR

    Science.gov (United States)

    Hardman, M.; Brodzik, M. J.; Gotberg, J.; Long, D. G.; Paget, A. C.

    2014-12-01

    Our NASA MEaSUREs project is producing a new, enhanced resolution gridded Earth System Data Record for the entire satellite passive microwave (SMMR, SSM/I-SSMIS and AMSR-E) time series. Our project goals are twofold: to produce a well-documented, consistently processed, high-quality historical record at higher spatial resolutions than have previously been available, and to transition the production software to the NSIDC DAAC for ongoing processing after our project completion. In support of these goals, our distributed team at BYU and NSIDC faces project coordination challenges to produce a high-quality data set that our user community will accept as a replacement for the currently available historical versions of these data. We work closely with our DAAC liaison on format specifications, data and metadata plans, and project progress. In order for the user community to understand and support our project, we have solicited a team of Early Adopters who are reviewing and evaluating a prototype version of the data. Early Adopter feedback will be critical input to our final data content and format decisions. For algorithm transparency and accountability, we have released an Algorithm Theoretical Basis Document (ATBD) and detailed supporting technical documentation, with rationale for all algorithm implementation decisions. For distributed team management, we are using collaborative tools for software revision control and issue tracking. For reliably transitioning a research-quality image reconstruction software system to production-quality software suitable for use at the DAAC, we have adopted continuous integration methods for running automated regression testing. Our presentation will summarize bothadvantages and challenges of each of these tactics in ensuring production of a successful ESDR and an enduring production software system.

  15. Mission design for the infrared astronomical satellite /IRAS/

    Science.gov (United States)

    Lundy, S. A.; Mclaughlin, W. I.; Pouw, A.

    1979-01-01

    IRAS, a joint United States, Netherlands, United Kingdom astronomical satellite, is scheduled to be launched early in 1981 with the purpose of completing an all-sky survey in the infrared wavelengths from 8 to 120 microns and to observe objects of special interest. The mission design is driven by thermal constraints primarily determined by the Sun and Earth; the orbit and survey strategy must be chosen so as to satisfy the mission requirements before the cryogenic system is depleted of its liquid helium. Computer graphics help the designer choose valid survey strategies and evaluate resulting sky coverage.

  16. Infrared and microwave properties of polypyrrole/multi-walled carbon nanotube composites

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Qi; Wang, Yongsheng, E-mail: yshwang@bjtu.edu.cn; He, Dawei, E-mail: dwhe@bjtu.edu.cn; Gao, Lei; Zhou, Yikang; Fu, Ming

    2014-08-01

    This study analyses the formation of polypyrrole/multi-walled carbon nanotube (PPy/MWCNT) composite materials using chemical oxidation with varying amounts of MWCNTs added. The samples are characterized by scanning electron microscopy, Fourier transform infrared emission spectroscopy, a four-probe method, and infrared thermal imaging using electromagnetic parameters. According to the test results, it is seen that the formation of PPy with the addition of MWCNTs can affect the material’s infrared properties and increase the material’s microwave return losses (up to −19 dB). This production procedure can also make the peak frequency of the microwave return losses adjustable, and the composite’s infrared and microwave performance becomes compatible and adjustable. - Highlights: • A one step in-situ synthesis method of PPy/MWCNT polymerization is proposed. • The composites were used for infrared camouflage and for their microwave properties. • The microwave return losses and infrared emissivity of the composites are adjustable. • The mechanism relies on changes in the composites’ conductivity.

  17. The infrared astronomical satellite AKARI: overview, highlights of the mission

    Science.gov (United States)

    Murakami, Hiroshi; Matsuhara, Hideo

    2008-07-01

    The AKARI, Japanese infrared astronomical satellite, is a 68.5 cm cooled telescope with two focal-plane instruments providing continuous sky scan at six wavelength bands in mid- and far-infrared. The instruments also have capabilities of imaging and spectroscopy in the wavelength range 2-180 μm in the pointing observations occasionally inserted into the continuous survey. AKARI was launched on 21st Feb. 2006, and has performed the all-sky survey as well as 5380 pointing observations until the liquid helium exhaustion on 26th Aug. 2007. The all sky survey covers more than 90 percent of the entire sky with higher spatial resolutions and sensitivities than the IRAS. First version of the infrared source catalogue will be released in 2009. Here we report the overview of the mission, highlights on the scientific results as well as the performance of the focal-plane instruments. We also present the observation plan with the near infrared camera during the post-helium mission phase started in June 2008.

  18. Environmental assessment for the Satellite Power System (SPS) Concept Development and Evaluation Program (CDEP). [Microwave and non-microwave health and ecological assessment

    Energy Technology Data Exchange (ETDEWEB)

    Valentino, A.R.

    1980-08-01

    In the satellite power system (SPS), satellites in geosynchronous earth orbit would collect solar energy in space, convert it to microwaves, and transmit the microwaves to receiving antennas (rectennas) on earth. At the rectennas, the microwave energy would be converted to electricity. This SPS environmental assessment considers the microwave and nonmicrowave effects on the terrestrial environment and human health, atmospheric effects, and effects on electromagnetic systems. No environmental problem has been identified that would preclude the continued study of SPS technology. To increase the certainty of the assessment, some research has been initiated and long-term research is being planned.

  19. Optimal Use of Space-Borne Advanced Infrared and Microwave Soundings for Regional Numerical Weather Prediction

    Directory of Open Access Journals (Sweden)

    Chian-Yi Liu

    2016-09-01

    Full Text Available Satellite observations can either be assimilated as radiances or as retrieved physical parameters to reduce error in the initial conditions used by the Numerical Weather Prediction (NWP model. Assimilation of radiances requires a radiative transfer model to convert atmospheric state in model space to that in radiance space, thus requiring a lot of computational resources especially for hyperspectral instruments with thousands of channels. On the other hand, assimilating the retrieved physical parameters is computationally more efficient as they are already in thermodynamic states, which can be compared with NWP model outputs through the objective analysis scheme. A microwave (MW sounder and an infrared (IR sounder have their respective observational limitation due to the characteristics of adopted spectra. The MW sounder observes at much larger field-of-view (FOV compared to an IR sounder. On the other hand, MW has the capability to reveal the atmospheric sounding when the clouds are presented, but IR observations are highly sensitive to clouds, The advanced IR sounder is able to reduce uncertainties in the retrieved atmospheric temperature and moisture profiles due to its higher spectral-resolution than the MW sounder which has much broader spectra bands. This study tries to quantify the optimal use of soundings retrieved from the microwave sounder AMSU and infrared sounder AIRS onboard the AQUA satellite in the regional Weather and Research Forecasting (WRF model through three-dimensional variational (3D-var data assimilation scheme. Four experiments are conducted by assimilating soundings from: (1 clear AIRS single field-of-view (SFOV; (2 retrieved from using clear AMSU and AIRS observations at AMSU field-of-view (SUP; (3 all SFOV soundings within AMSU FOVs must be clear; and (4 SUP soundings which must have all clear SFOV soundings within the AMSU FOV. A baseline experiment assimilating only conventional data is generated for comparison

  20. Development of visible/infrared/microwave agriculture classification and biomass estimation algorithms

    Science.gov (United States)

    Rosenthal, W. D.; Blanchard, B. J.; Blanchard, A. J.

    1983-01-01

    This paper describes the results of a study to determine if crop acreage and biomass estimates could be improved by using visible IR and microwave data. The objectives were to (1) develop and test agricultural crop classification models using two or more spectral regions (visible through microwave), and (2) estimate biomass by including microwave with visible and infrared data. Aircraft multispectral data collected during the study included visible and infrared data (multiband data from 0.5 m - 12 m), and active microwave data K band (2 cm), C band (6 cm), L band (20 cm), and P band (75 cm) HH and HV polarizations. Ground truth data from each field consisted of soil moisture and biomass measurements. Results indicated that C, L, and P band active microwave data combined with visible and infrared data improved crop discrimination and biomass estimates compared to results using only visible and infrared data. The active microwave frequencies were sensitive to different biomass levels; K and C being sensitive to differences at low biomass levels, while P band was sensitive to differences at high biomass levels.

  1. A microwave satellite water vapour column retrieval for polar winter conditions

    Science.gov (United States)

    Perro, Christopher; Lesins, Glen; Duck, Thomas J.; Cadeddu, Maria

    2016-05-01

    A new microwave satellite water vapour retrieval for the polar winter atmosphere is presented. The retrieval builds on the work of Miao et al. (2001) and Melsheimer and Heygster (2008), employing auxiliary information for atmospheric conditions and numerical optimization. It was tested using simulated and actual measurements from the Microwave Humidity Sounder (MHS) satellite instruments. Ground truth was provided by the G-band vapour radiometer (GVR) at Barrow, Alaska. For water vapour columns less than 6 kg m-2, comparisons between the retrieval and GVR result in a root mean square (RMS) deviation of 0.39 kg m-2 and a systematic bias of 0.08 kg m-2. These results are compared with RMS deviations and biases at Barrow for the retrieval of Melsheimer and Heygster (2008), the AIRS and MIRS satellite data products, and the ERA-Interim, NCEP, JRA-55, and ASR reanalyses. When applied to MHS measurements, the new retrieval produces a smaller RMS deviation and bias than for the earlier retrieval and satellite data products. The RMS deviations for the new retrieval were comparable to those for the ERA-Interim, JRA-55, and ASR reanalyses; however, the MHS retrievals have much finer horizontal resolution (15 km at nadir) and reveal more structure. The new retrieval can be used to obtain pan-Arctic maps of water vapour columns of unprecedented quality. It may also be applied to measurements from the Special Sensor Microwave/Temperature 2 (SSM/T2), Advanced Microwave Sounding Unit B (AMSU-B), Special Sensor Microwave Imager/Sounder (SSMIS), Advanced Technology Microwave Sounder (ATMS), and Chinese MicroWave Humidity Sounder (MWHS) instruments.

  2. A low cost thermal infrared hyperspectral imager for small satellites

    Science.gov (United States)

    Crites, S. T.; Lucey, P. G.; Wright, R.; Garbeil, H.; Horton, K. A.

    2011-06-01

    The traditional model for space-based earth observations involves long mission times, high cost, and long development time. Because of the significant time and monetary investment required, riskier instrument development missions or those with very specific scientific goals are unlikely to successfully obtain funding. However, a niche for earth observations exploiting new technologies in focused, short lifetime missions is opening with the growth of the small satellite market and launch opportunities for these satellites. These low-cost, short-lived missions provide an experimental platform for testing new sensor technologies that may transition to larger, more long-lived platforms. The low costs and short lifetimes also increase acceptable risk to sensors, enabling large decreases in cost using commercial off the shelf (COTS) parts and allowing early-career scientists and engineers to gain experience with these projects. We are building a low-cost long-wave infrared spectral sensor, funded by the NASA Experimental Project to Stimulate Competitive Research program (EPSCOR), to demonstrate the ways in which a university's scientific and instrument development programs can fit into this niche. The sensor is a low-mass, power efficient thermal hyperspectral imager with electronics contained in a pressure vessel to enable the use of COTS electronics, and will be compatible with small satellite platforms. The sensor, called Thermal Hyperspectral Imager (THI), is based on a Sagnac interferometer and uses an uncooled 320x256 microbolometer array. The sensor will collect calibrated radiance data at long-wave infrared (LWIR, 8-14 microns) wavelengths in 230-meter pixels with 20 wavenumber spectral resolution from a 400-km orbit.

  3. A low cost thermal infrared hyperspectral imager for small satellites

    Science.gov (United States)

    Crites, S. T.; Lucey, P. G.; Wright, R.; Garbeil, H.; Horton, K. A.; Wood, M.

    2012-06-01

    The growth of the small satellite market and launch opportunities for these satellites is creating a new niche for earth observations that contrasts with the long mission durations, high costs, and long development times associated with traditional space-based earth observations. Low-cost, short-lived missions made possible by this new approach provide an experimental platform for testing new sensor technologies that may transition to larger, more long-lived platforms. The low costs and short lifetimes also increase acceptable risk to sensors, enabling large decreases in cost using commercial off-the-shelf (COTS) parts and allowing early-career scientists and engineers to gain experience with these projects. We are building a low-cost long-wave infrared spectral sensor, funded by the NASA Experimental Project to Stimulate Competitive Research program (EPSCoR), to demonstrate ways in which a university's scientific and instrument development programs can fit into this niche. The sensor is a low-mass, power-efficient thermal hyperspectral imager with electronics contained in a pressure vessel to enable use of COTS electronics and will be compatible with small satellite platforms. The sensor, called Thermal Hyperspectral Imager (THI), is based on a Sagnac interferometer and uses an uncooled 320x256 microbolometer array. The sensor will collect calibrated radiance data at long-wave infrared (LWIR, 8-14 microns) wavelengths in 230 meter pixels with 20 wavenumber spectral resolution from a 400 km orbit. We are currently in the laboratory and airborne testing stage in order to demonstrate the spectro-radiometric quality of data that the instrument provides.

  4. Estimating the Retrievability of Temperature Profiles from Satellite Infrared Measurements

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A method is developed to assess retrievability, namely the retrieval potential for atmospheric temperature profiles, from satellite infrared measurements in clear-sky conditions. This technique is based upon generalized linear inverse theory and empirical orthogonal function analysis. Utilizing the NCEP global temperature reanalysis data in January and July from 1999 to 2003, the retrievabilities obtained with the Atmospheric Infrared Sounder (AIRS) and the High Resolution Infrared Radiation Sounder/3 (HIRS/3)sounding channel data are derived respectively for each standard pressure level on a global scale. As an incidental result of this study, the optimum truncation number in the method of generalized linear inverse is deduced too. The results show that the retrievabilities of temperature obtained with the two datasets are similar in spatial distribution and seasonal change characteristics. As for the vertical distribution, the retrievabilities are low in the upper and lower atmosphere, and high between 400 hPa and 850 hPa. For the geographical distribution, the retrievabilities are low in the low-latitude oceanic regions and in some regions in Antarctica, and relatively high in mid-high latitudes and continental regions. Compared with the HIRS/3 data, the retrievability obtained with the AIRS data can be improved by an amount between 0.15 and 0.40.

  5. Status of the microwave power transmission components for the solar power satellite

    Science.gov (United States)

    Brown, W. C.

    1981-01-01

    During the 1970-1980 time period a substantial advance has been made in developing all portions of a microwave power transmission system for the solar power satellite (SPS). The most recent advances pertain to the transmitting portion of the system in the satellite and are based upon experimental observations of the use of the magnetron combined with a passive directional device to convert it into a highly efficient directional amplifier with excellent low-noise properties and potentially very long life. The ability of its microwave output to track a phase reference makes it possible to combine it with many other radiating units to provide a highly coherent microwave beam. The ability of its output to track an amplitude reference while operating from a dc power source with varying voltage makes it possible to eliminate most of the power conditioning equipment that would otherwise be necessary.

  6. Developing an improved soil moisture dataset by blending passive and active microwave satellite-based retrievals

    Directory of Open Access Journals (Sweden)

    Y. Y. Liu

    2010-09-01

    Full Text Available Combining information derived from satellite-based passive and active microwave sensors has the potential to offer improved retrievals of surface soil moisture variations at global scales. Here we propose a technique to take advantage of retrieval characteristics of passive (AMSR-E and active (ASCAT microwave satellite estimates over sparse-to-moderately vegetated areas to obtain an improved soil moisture product. To do this, absolute soil moisture values from AMSR-E and relative soil moisture derived from ASCAT are rescaled against a reference land surface model date set using a cumulative distribution function (CDF matching approach. While this technique imposes the bias of the reference to the rescaled satellite products, it adjusts both satellite products to the same range and almost preserves the correlation between satellite products and in situ measurements. Comparisons with in situ data demonstrated that over the regions where the correlation coefficient between rescaled AMSR-E and ASCAT is above 0.65 (hereafter referred to as transitional regions, merging the different satellite products together increases the number of observations while minimally changing the accuracy of soil moisture retrievals. These transitional regions also delineate the boundary between sparsely and moderately vegetated regions where rescaled AMSR-E and ASCAT are respectively used in the merged product. Thus the merged product carries the advantages of better spatial coverage overall and increased number of observations particularly for the transitional regions. The combination approach developed in this study has the potential to be applied to existing microwave satellites as well as to new microwave missions. Accordingly, a long-term global soil moisture dataset can be developed and extended, enhancing basic understanding of the role of soil moisture in the water, energy and carbon cycles.

  7. Determination of Cloud Ice Water Content and Geometrical Thickness Using Microwave and Infrared Radiometric Measurements.

    Science.gov (United States)

    Wu, Man-Li C.

    1987-08-01

    Cloud ice water content and cloud geometrical thickness have been determined using a combination of near-infrared, thermal infrared and thermal microwave radiometric measurements. The radiometric measurements are from a Multispectral Cloud Radiometer, which has seven channels ranging from visible to thermal infrared, and an Advanced Microwave Moisture Sounder, which has four channels ranging from 90 to 183 GHz. Studies indicate that the microwave brightness temperatures depend not only on the amount of ice water content but also on the vertical distribution of ice water content. Studies also show that the low brightness temperature at 92 GHz for large ice water content is due to cloud reflection which reflects most of the irradiance incident at the cloud base downward. Therefore the 92 GHz channel detects a low brightness temperature at the cloud top.

  8. Satellite Microwave Communication Signal Degradation Due To Hall Thruster Plasma Plumes

    Science.gov (United States)

    Wiley, J. C.; Hallock, G. A.; Spencer, E. A.; Meyer, J. W.; Loane, J. T.

    2001-10-01

    We have developed a geometric optics vector ray-tracing code, BeamServer, for analyzing the effects of Hall thruster plasma plumes on satellite microwave communication signals. The possible effects include main beam attenuation and squinting, side lobe degradation, and induced cross-polarization. We report on a study of Hall current thruster (HCT) mounting positions on a realistic satellite configuration and a study with a highly shaped reflector. Results indicate HCT signal degradation can occur and should be considered in the satellite design process. Initial results of antenna pattern perturbations due to low frequency plume oscillations driven by thruster instabilities are also given.

  9. A Comparative Analysis of the Far Infrared Spectra of Saturn's Rings and Icy Satellites with Cassini CIRS

    Science.gov (United States)

    Brooks, Shawn M.; Spilker, Linda; Edgington, Scott G.

    2016-10-01

    We will report on a campaign to observe Saturn's main rings and major icy satellites with the Composite Infrared Spectrometer onboard Cassini. CIRS' three infrared detectors cover a combined spectral range of 10 to 1400 cm-1 (1 mm down to 7 microns). We focus on data from Focal Plane 1, which covers the 10 to 600 cm-1 range (1 mm to 16 microns). The apodized spectral resolution of the instrument can be varied from 15 cm-1 to 0.5 cm-1 (Flasar et al. 2004).The spectral behavior of Saturn's main rings and icy satellites in the far infrared has been the subject of previous studies with CIRS FP1 data (Spilker at al. 2005, Carvano et al. 2007, Morishima et al. 2012). These studies have shown that the infrared spectra of these icy rings and bodies are remarkably flat between about 40 to 200 microns. Longward of this, CIRS observations, as well as older spacecraft data, show a gradual decrease in ring emissivity. This roll-off in emissivity may be due to varying optical constants of water ice, which dominates the rings' composition, as one moves towards microwave wavelengths. Carvano et al. (2007), who analyzed spectra of the icy satellites Phoebe, Iapetus, Enceladus, Tethys and Hyperion, investigated the absence of emissivity features in spectra of those satellites. This absence is intriguing, as water ice, which dominates their surface composition, contains absorption features in the FP1 spectral range. They conclude that high porosity in these satellites' regoliths may explain this lack of spectral variability.To better characterize the far infrared spectra of the rings and satellites, we have implemented a series of dedicated observations. The goal is to obtain thousands of infrared spectra at 3 cm-1 resolution of each individual ring region and as many satellites as possible. We will have more spectra than Spilker et al. had for their work at a higher spectral resolution than in the analyses of Carvano et al. and Morishima et al. A preliminary analysis of these

  10. Microwave retrievals of terrestrial precipitation over snow-covered surfaces: A lesson from the GPM satellite

    Science.gov (United States)

    Ebtehaj, A. M.; Kummerow, C. D.

    2017-06-01

    Satellites are playing an ever-increasing role in estimating precipitation over remote areas. Improving satellite retrievals of precipitation requires increased understanding of its passive microwave signatures over different land surfaces. Snow-covered surfaces are notoriously difficult to interpret because they exhibit both emission from the land below and scattering from the ice crystals. Using data from the Global Precipitation Measurement (GPM) satellite, we demonstrate that microwave brightness temperatures of rain and snowfall transition from a scattering to an emission regime from summer to winter, due to expansion of less emissive snow cover. Evidence suggests that the combination of low- (10-19 GHz) and high-frequency (89-166 GHz) channels provides the maximum amount of information for snowfall detection. The results demonstrate that, using a multifrequency matching method, the probability of snowfall detection can even be higher than rainfall—chiefly because of the information content of the low-frequency channels that respond to the (near) surface temperature.

  11. Insights into correlation between satellite infrared information and fault activities

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Tectonic activities are accompanied with material movement and energy transfer, which definitely change the state of thermal radiation on the ground. Thus it is possible to infer present-day tectonic activities based on variations of the thermal radiation state on the ground. The received satellite infrared information is, however, likely influenced by many kinds of factors. Therefore, the first problem that needs to be solved is to extract information on tectonic activities and eliminate effects of external (non-tectonic) factors. In this study, we firstly make a review of the current studies on this subject, and then present the technical approach and our research goal.Using the data of 20 years from the infrared band of the satellite of National Oceanic and Atmospheric Administration (NOAA) and the method we have developed, we investigate fault activities in western China. The results show that the areas with high residual values of land surface brightness temperature (LSBT), which is presumably related to faultings in space, accord usually with the locations of followed major earthquakes. The times of their value growing are also roughly consistent with the beginning of active periods of earthquakes.The low frequency component fields of the LSBT, acquired from wavelet analysis, exhibit well the spatial distributions of active faults.The "heat penetrability index" (HPI) related with enhancement of subsurface thermal information has been expressed well for the backgrounds of accelerated tectonic motions, and some correlations exist between HPI and the local faulting and seismicity. This study provides a new approach to study temporal-spatial evolution of recent activities of faults and their interactions.

  12. TIRCIS: thermal infrared compact imaging spectrometer for small satellite applications

    Science.gov (United States)

    Wright, Robert; Lucey, Paul; Crites, Sarah; Garbeil, Harold; Wood, Mark; Pilger, Eric; Gabrieli, Andrea; Honniball, Casey

    2016-10-01

    Measurements of reflectance or emittance in tens of narrow, contiguous wavebands, allow for the derivation of laboratory quality spectra remotely, from which the chemical composition and physical properties of targets can be determined. Although spaceborne (e.g. EO-1 Hyperion) hyperspectral data in the 0.4-2.5 micron (VSWIR) region are available, the provision of equivalent data in the log-wave infrared has lagged behind, there being no currently operational high spatial resolution LWIR imaging spectrometer on orbit. TIRCIS (Thermal Infra-Red Compact Imaging Spectrometer), uses a Fabry-Perot interferometer, an uncooled microbolometer array, and push-broom scanning to acquire hyperspectral image data. Radiometric calibration is provided by blackbody targets while spectral calibration is achieved using monochromatic light sources. The instrument has a mass of <15 kg and dimensions of 53 cm × 25 cm ♢ 22 cm, and has been designed to be compatible with integration into a micro-satellite platform. (A precursor to this instrument was launched onboard a 55 kg microsatellite in October 2015). The optical design yields a 120 m ground sample size given an orbit of 500 km. Over the wavelength interval of 7.5 to 14 microns up to 50 spectral samples are possible. Measured signal-to-noise ratios range from peak values of 500:1 to 1500:1, for source temperature of 10 to 100°C.

  13. Polar low climatology over the Nordic and Barents seas based on satellite passive microwave data

    OpenAIRE

    Smirnova, Julia E.; Golubkin, Pavel A.; Bobylev, Leonid P.; Zabolotskikh, Elizaveta; Chapron, Bertrand

    2015-01-01

    A new climatology of polar lows over the Nordic and Barents seas for 14 seasons (1995/1996-2008/2009) is presented. For the first time in climatological studies of polar lows an approach based on satellite passive microwave data was adopted for polar low identification. A total of 637 polar lows were found in 14 extended winter seasons by combining total atmospheric water vapor content and sea surface wind speed fields retrieved from Special Sensor Microwave/Imager data. As derived, the polar...

  14. Applicability of solid state microwave technology to solar power satellites

    Science.gov (United States)

    Nalos, E. J.; Fitzsimmons, G. W.; Sperber, B. R.

    1979-01-01

    A potential SPS design using antenna mounted GaAs FET's as the basic dc-RF converter is described, together with the rationale of why such a design may represent a viable cost effective complement to current SPS designs using tube type dc-RF converters such as klystrons or crossed field amplifiers. An initial description of a microwave antenna array module is given, together with a concept of how such a module is to be integrated into the SPS overall design. A comparison is made of several such designs using either antenna mounted or solar cell mounted dc-RF converters.

  15. Towards a climatology of tropical cyclone morphometric structures using a newly standardized passive microwave satellite dataset

    Science.gov (United States)

    Cossuth, J.; Hart, R. E.

    2013-12-01

    The structure of a tropical cyclone (TC) is a spatial representation of its organizational pattern and distribution of energy acquisition and release. Physical processes that react to both the external environment and its own internal dynamics manifest themselves in the TC shape. This structure depicts a specific phase in the TC's meteorological lifecycle, reflecting its past and potentially constraining its future development. For a number of reasons, a thorough objective definition of TC structures and an intercomparison of their varieties have been neglected. This lack of knowledge may be a key reason why TC intensity forecasts, despite numerical model improvements and theoretical advances, have been stagnant in recent years relative to track forecasts. Satellite microwave imagers provide multiple benefits in discerning TC structure, but compiling a research quality data set has been problematic due to several inherent technical and logistical issues. While there are multiple satellite sensors that incorporate microwave frequencies, inter-comparison between such sensors is limited by the different available channels, spatial resolutions, and calibration metrics between satellites, all of which provide inconsistencies in resolving TC structural features. To remedy these difficulties, a global archive of TCs as measured by all available US satellite microwave sensors is compiled and standardized. Using global historical best track data, TC microwave data is retrieved from the Defense Meteorological Satellite Program (DMSP) series (including all SSM/I and SSMIS), TMI, AMSR-E, and WindSat sensors. Standardization between sensors for each TC overpass are performed, including: 1) Recalibration of data from the 'ice scattering' channels to a common frequency (89GHz); 2) Resampling the DMSP series to a higher resolution using the Backus-Gilbert technique; and 3) Re-centering the TC center more precisely using the ARCHER technique (Wimmers and Velden 2010) to analyze the

  16. A comparative study of infrared and microwave heating for microbial decontamination of paprika powder

    Directory of Open Access Journals (Sweden)

    Lovisa eEliasson

    2015-09-01

    Full Text Available There is currently a need in developing new decontamination technologies for spices due to limitations of existing technologies, mainly regarding their effects on spices’ sensory quality. In the search of new decontamination solutions, it is of interest to compare different technologies, to provide the industry with knowledge for taking decisions concerning appropriate decontamination technologies for spices. The present study compares infrared and microwave decontamination of naturally contaminated paprika powder after adjustment of water activity to 0.88. Infrared respectively microwave heating was applied to quickly heat up paprika powder to 98°C, after which the paprika sample was transferred to a conventional oven set at 98°C to keep the temperature constant during a holding time up to 20 min. In the present experimental set-up microwave treatment at 98°C for 20 min resulted in a reduction of 4.8 log units of the total number of mesophilic bacteria, while the infrared treatment showed a 1 log unit lower reduction for the corresponding temperature and treatment time. Microwave and infrared heating created different temperature profiles and moisture distribution within the paprika sample during the heating up part of the process, which is likely to have influenced the decontamination efficiency. The results of this study are used to discuss the difficulties in comparing two thermal technologies on equal conditions due to differences in their heating mechanisms.

  17. Evidence for gravitational lensing of the cosmic microwave background polarization from cross-correlation with the cosmic infrared background.

    Science.gov (United States)

    Ade, P A R; Akiba, Y; Anthony, A E; Arnold, K; Atlas, M; Barron, D; Boettger, D; Borrill, J; Borys, C; Chapman, S; Chinone, Y; Dobbs, M; Elleflot, T; Errard, J; Fabbian, G; Feng, C; Flanigan, D; Gilbert, A; Grainger, W; Halverson, N W; Hasegawa, M; Hattori, K; Hazumi, M; Holzapfel, W L; Hori, Y; Howard, J; Hyland, P; Inoue, Y; Jaehnig, G C; Jaffe, A; Keating, B; Kermish, Z; Keskitalo, R; Kisner, T; Le Jeune, M; Lee, A T; Leitch, E M; Linder, E; Lungu, M; Matsuda, F; Matsumura, T; Meng, X; Miller, N J; Morii, H; Moyerman, S; Myers, M J; Navaroli, M; Nishino, H; Paar, H; Peloton, J; Poletti, D; Quealy, E; Rebeiz, G; Reichardt, C L; Richards, P L; Ross, C; Rotermund, K; Schanning, I; Schenck, D E; Sherwin, B D; Shimizu, A; Shimmin, C; Shimon, M; Siritanasak, P; Smecher, G; Spieler, H; Stebor, N; Steinbach, B; Stompor, R; Suzuki, A; Takakura, S; Tikhomirov, A; Tomaru, T; Wilson, B; Yadav, A; Zahn, O

    2014-04-04

    We reconstruct the gravitational lensing convergence signal from cosmic microwave background (CMB) polarization data taken by the Polarbear experiment and cross-correlate it with cosmic infrared background maps from the Herschel satellite. From the cross spectra, we obtain evidence for gravitational lensing of the CMB polarization at a statistical significance of 4.0σ and indication of the presence of a lensing B-mode signal at a significance of 2.3σ. We demonstrate that our results are not biased by instrumental and astrophysical systematic errors by performing null tests, checks with simulated and real data, and analytical calculations. This measurement of polarization lensing, made via the robust cross-correlation channel, not only reinforces POLARBEAR auto-correlation measurements, but also represents one of the early steps towards establishing CMB polarization lensing as a powerful new probe of cosmology and astrophysics.

  18. Evidence for Gravitational Lensing of the Cosmic Microwave Background Polarization from Cross-correlation with the Cosmic Infrared Background

    CERN Document Server

    Ade, P A R; Anthony, A E; Arnold, K; Barron, D; Boettger, D; Borrill, J; Borys, C; Chapman, S; Chinone, Y; Dobbs, M; Elleflot, T; Errard, J; Fabbian, G; Feng, C; Flanigan, D; Gilbert, A; Grainger, W; Halverson, N W; Hasegawa, M; Hattori, K; Hazumi, M; Holzapfel, W L; Hori, Y; Howard, J; Hyland, P; Inoue, Y; Jaehnig, G C; Jaffe, A; Keating, B; Kermish, Z; Keskitalo, R; Kisner, T; Jeune, M Le; Lee, A T; Linder, E; Lungu, M; Matsuda, F; Matsumura, T; Meng, X; Miller, N J; Morii, H; Moyerman, S; Myers, M J; Navaroli, M; Nishino, H; Paar, H; Peloton, J; Quealy, E; Rebeiz, G; Reichardt, C L; Richards, P L; Ross, C; Rotermund, K; Schanning, I; Schenck, D E; Sherwin, B D; Shimizu, A; Shimmin, C; Shimon, M; Siritanasak, P; Smecher, G; Spieler, H; Stebor, N; Steinbach, B; Stompor, R; Suzuki, A; Takakura, S; Tikhomirov, A; Tomaru, T; Wilson, B; Yadav, A; Zahn, O

    2013-01-01

    We reconstruct the gravitational lensing convergence signal from Cosmic Microwave Background (CMB) polarization data taken by the POLARBEAR experiment and cross-correlate it with Cosmic Infrared Background (CIB) maps from the Herschel satellite. From the cross-spectra, we obtain evidence for gravitational lensing of the CMB polarization at a statistical significance of 4.0$\\sigma$ and evidence for the presence of a lensing $B$-mode signal at a significance of 2.3$\\sigma$. We demonstrate that our results are not biased by instrumental and astrophysical systematic errors by performing null-tests, checks with simulated and real data, and analytical calculations. This measurement of polarization lensing, made via the robust cross-correlation channel, not only reinforces POLARBEAR auto-correlation measurements, but also represents one of the early steps towards establishing CMB polarization lensing as a powerful new probe of cosmology and astrophysics.

  19. Ocean Wind Fields from Satellite Active Microwave Sensors

    OpenAIRE

    Zecchetto, S.

    2010-01-01

    Scatterometer QuikSCAT data have been downloaded from the Physical Oceanography Distributed Active Archive Center (PODAAC) of the Jet Propulsion Laboratory, Pasadena, USA. The ASCAT data have been obtained from the Koninklijk Nederlands Meteorologisch Instituut (Dutch Meteorological Service KNMI, www.knmi.nl) operating in the framework of the Ocean & Sea Ice Satellite Application Facility (www.osi-saf.org) of EUMETSAT. The Envisat ASAR Wide Swath image has been downloaded from the ESA web ser...

  20. Development of visible/infrared/microwave agriculture classification and biomass estimation algorithms, volume 2. [Oklahoma and Texas

    Science.gov (United States)

    Rosenthal, W. D.; Mcfarland, M. J.; Theis, S. W.; Jones, C. L. (Principal Investigator)

    1982-01-01

    Agricultural crop classification models using two or more spectral regions (visible through microwave) were developed and tested and biomass was estimated by including microwave with visible and infrared data. The study was conducted at Guymon, Oklahoma and Dalhart, Texas utilizing aircraft multispectral data and ground truth soil moisture and biomass information. Results indicate that inclusion of C, L, and P band active microwave data from look angles greater than 35 deg from nadir with visible and infrared data improved crop discrimination and biomass estimates compared to results using only visible and infrared data. The active microwave frequencies were sensitive to different biomass levels. In addition, two indices, one using only active microwave data and the other using data from the middle and near infrared bands, were well correlated to total biomass.

  1. Developing an improved soil moisture dataset by blending passive and active microwave satellite-based retrievals

    Directory of Open Access Journals (Sweden)

    Y. Y. Liu

    2011-02-01

    Full Text Available Combining information derived from satellite-based passive and active microwave sensors has the potential to offer improved estimates of surface soil moisture at global scale. We develop and evaluate a methodology that takes advantage of the retrieval characteristics of passive (AMSR-E and active (ASCAT microwave satellite estimates to produce an improved soil moisture product. First, volumetric soil water content (m3 m−3 from AMSR-E and degree of saturation (% from ASCAT are rescaled against a reference land surface model data set using a cumulative distribution function matching approach. While this imposes any bias of the reference on the rescaled satellite products, it adjusts them to the same range and preserves the dynamics of original satellite-based products. Comparison with in situ measurements demonstrates that where the correlation coefficient between rescaled AMSR-E and ASCAT is greater than 0.65 ("transitional regions", merging the different satellite products increases the number of observations while minimally changing the accuracy of soil moisture retrievals. These transitional regions also delineate the boundary between sparsely and moderately vegetated regions where rescaled AMSR-E and ASCAT, respectively, are used for the merged product. Therefore the merged product carries the advantages of better spatial coverage overall and increased number of observations, particularly for the transitional regions. The combination method developed has the potential to be applied to existing microwave satellites as well as to new missions. Accordingly, a long-term global soil moisture dataset can be developed and extended, enhancing basic understanding of the role of soil moisture in the water, energy and carbon cycles.

  2. Global Terrestrial Evapotranspiration from Optical and Microwave Satellite Observations

    Science.gov (United States)

    Jia, Li; Zhang, Chaolei; Hu, Guangcheng; Zhou, Jie; Cui, Yaokui; Lu, Jing; Wang, Kun; Liu, Qinhuo; Menenti, Massimo

    2016-08-01

    Terrestrial actual evapotranspiration (ET) is an important component of the terrestrial water cycle and links the hydrological, energy, and carbon cycles. Considering the diverse landscapes and multi-climatic features, a hybrid remotely sensed ET estimation model named ETMonitor was developed to estimate the daily actual evapotranspiration globally at a spatial resolution of 1 km. The ETMonitor model uses a variety of biophysical parameters derived from microwave and optical remote sensing observations as input data to estimate the daily ET for all sky conditions. This dataset provides important support to the large-scale evaluation of the environment, and some preliminary applications were conducted for regional- to global-scale mapping and monitoring of water consumption and drought severity.

  3. Choice of antenna geometry for microwave power transmission from solar power satellites

    Science.gov (United States)

    Potter, Seth D.

    1992-01-01

    A comparison is made between square and circular transmitting antennas for solar power satellite microwave power transmission. It is seen that the exclusion zone around the rectenna needed to protect populations from microwaves is smaller for a circular antenna operating at 2.45 GHz than it is for a square antenna at that frequency. If the frequency is increased, the exclusion zone size remains the same for a square antenna, but becomes even smaller for a circular antenna. Peak beam intensity is the same for both antennas if the frequency and antenna area are equal. The circular antenna puts a somewhat greater amount of power in the main lobe and somewhat less in the side lobes. Since rain attenuation and atmospheric heating remain problems above 10 GHz, it is recommended that future solar power satellite work concentrate on circular transmitting antennas at frequencies of roughly 10 GHz.

  4. Atmospheric influences on infrared-laser signals used for occultation measurements between Low Earth Orbit satellites

    Directory of Open Access Journals (Sweden)

    S. Schweitzer

    2011-10-01

    Full Text Available LEO-LEO infrared-laser occultation (LIO is a new occultation technique between Low Earth Orbit (LEO satellites, which applies signals in the short wave infrared spectral range (SWIR within 2 μm to 2.5 μm. It is part of the LEO-LEO microwave and infrared-laser occultation (LMIO method that enables to retrieve thermodynamic profiles (pressure, temperature, humidity and altitude levels from microwave signals and profiles of greenhouse gases and further variables such as line-of-sight wind speed from simultaneously measured LIO signals. Due to the novelty of the LMIO method, detailed knowledge of atmospheric influences on LIO signals and of their suitability for accurate trace species retrieval did not yet exist. Here we discuss these influences, assessing effects from refraction, trace species absorption, aerosol extinction and Rayleigh scattering in detail, and addressing clouds, turbulence, wind, scattered solar radiation and terrestrial thermal radiation as well. We show that the influence of refractive defocusing, foreign species absorption, aerosols and turbulence is observable, but can be rendered small to negligible by use of the differential transmission principle with a close frequency spacing of LIO absorption and reference signals within 0.5%. The influences of Rayleigh scattering and terrestrial thermal radiation are found negligible. Cloud-scattered solar radiation can be observable under bright-day conditions, but this influence can be made negligible by a close time spacing (within 5 ms of interleaved laser-pulse and background signals. Cloud extinction loss generally blocks SWIR signals, except very thin or sub-visible cirrus clouds, which can be addressed by retrieving a cloud layering profile and exploiting it in the trace species retrieval. Wind can have a small influence on the trace species absorption, which can be made negligible by using a simultaneously retrieved or a moderately accurate background wind speed profile. We

  5. Developing a dual assimilation approach for thermal infrared and passive microwave soil moisture retrievals

    Science.gov (United States)

    Hain, Christopher Ryan

    Soil moisture plays a vital role in the partitioning of sensible and latent heat fluxes in the surface energy budget and the lack of a dense spatial and temporal network of ground-based observations provides a challenge to the initialization of the true soil moisture state in numerical weather prediction simulations. The retrieval of soil moisture using observations from both satellite-based thermal-infrared (TIR) and passive microwave (PM) sensors has been developed (Anderson et al., 2007; Hain et al., 2009; Jackson, 1993; Njoku et al., 2003). The ability of the TIR and microwave observations to diagnose soil moisture conditions within different layers of the soil profile provides an opportunity to use each in a synergistic data assimilation approach towards the goal of diagnosing the true soil moisture state from surface to root-zone. TIR and PM retrievals of soil moisture are compared to soil moisture estimates provided by a retrospective Land Information System (LIS) simulation using the NOAH LSM during the time period of 2003--2008. The TIR-based soil moisture product is provided by a retrieval of soil moisture associated with surface flux estimates from the Atmosphere-Land-Exchange-Inversion (ALEXI) model (Anderson et al., 1997; Mecikalski et al., 1999; Hain et al., 2009). The PM soil moisture retrieval is provided by the Vrijie Universiteit Amsterdam (VUA)-NASA surface soil moisture product. The VUA retrieval is based on the findings of Owe et al. (2001; 2008) using the Land Surface Parameter model (LPRM), which uses one dual polarized channel (6.925 or 10.65 GHz) for a dual-retrieval of surface soil moisture and vegetation water content. In addition, retrievals of ALEXI (TIR) and AMSR-E (PM) soil moisture are assimilated within the Land Information System using the NOAH LSM. A series of data assimilation experiments is completed with the following configuration: (a) no assimilation, (b) only ALEXI soil moisture, (c) only AMSR-E soil moisture, and (d) ALEXI

  6. Infrared-microwave double resonance: signal dependence on microwave radiation strength

    NARCIS (Netherlands)

    Vreede, J.P.M. de; Dijkerman, H.A.

    1980-01-01

    The influence of MW radiation on the magnitude of double resonance signals is studied in the case of steady-state 3-level IR-MW double resonance, using IR or MW radiation as probe field. The measurements reveal a strong signal dependence on the microwave power level. Changes in the absorption factor

  7. Infrared and Microwave Image Fusion for Rainfall Detection over Northern Algeria

    Directory of Open Access Journals (Sweden)

    Fethi Ouallouche

    2014-05-01

    Full Text Available Rain areas delineation proposed in this paper is based on the image fusion from geostationary Meteosat Second Generation (MSG satellite, with the low-earth orbiting passive Tropical Rainfall Measuring Mission (TRMM satellite. The fusion technique described in this work used an artificial neural network (ANN. It's has been developed to detect instantaneous rainfall by using information from the IR images of MSG satellite and from TRMM Microwave Imager (TMI. The study is carried out over north of Algeria. Seven spectral parameters are used as input data of ANN to identify raining or non - raining pixels. Corresponding data of raining /non-raining pixels are taken from a PR (precipitation radar issued from TRMM. Results from the developed scheme are compared with the results of SI method (Scattering Index taken as reference method. The results show that the developed model performs very well and overcomes the deficiencies of use a single satellite.

  8. Spatial Scaling of Snow Observations and Microwave Emission Modeling During CLPX and Appropriate Satellite Sensor Resolution

    Science.gov (United States)

    Kim, Edward J.; Tedesco, Marco

    2005-01-01

    Accurate estimates of snow water equivalent and other properties play an important role in weather, natural hazard, and hydrological forecasting and climate modeling over a range of scales in space and time. Remote sensing-derived estimates have traditionally been of the "snapshot" type, but techniques involving models with assimilation are also being explored. In both cases, forward emission models are useful to understand the observed passive microwave signatures and developing retrieval algorithms. However, mismatches between passive microwave sensor resolutions and the scales of processes controlling subpixel heterogeneity can affect the accuracy of the estimates. Improving the spatial resolution of new passive microwave satellite sensors is a major desire in order to (literally) resolve such subpixel heterogeneity, but limited spacecraft and mission resources impose severe constraints and tradeoffs. In order to maximize science return while mitigating risk for a satellite concept, it is essential to understand the scaling behavior of snow in terms of what the sensor sees (brightness temperature) as well as in terms of the actual variability of snow. NASA's Cold Land Processes Experiment-1 (CLPX-1: Colorado, 2002 and 2003) was designed to provide data to measure these scaling behaviors for varying snow conditions in areas with forested, alpine, and meadow/pasture land cover. We will use observations from CLPX-1 ground, airborne, and satellite passive microwave sensors to examine and evaluate the scaling behavior of observed and modeled brightness temperatures and observed and retrieved snow parameters across scales from meters to 10's of kilometers. The conclusions will provide direct examples of the appropriate spatial sampling scales of new sensors for snow remote sensing. The analyses will also illustrate the effects and spatial scales of the underlying phenomena (e.g., land cover) that control subpixel heterogeneity.

  9. The microwave noise environment at a geostationary satellite caused by the brightness of the earth

    Science.gov (United States)

    Smith, E. K.; Njoku, E. G.

    1985-01-01

    The microwave antenna temperature due to the earth in the satellite antenna beam has been computed for a series of longitudes for a satellite in geostationary orbit and for frequencies of 1 to 50 GHz. An earth-coverage beam is assumed for simplicity, but the technique is applicable to arbitrary beam shapes. Detailed calculations have been performed to account for varying land-ocean fractions within the field of view. Emission characteristics of the earth's atmosphere and surface are used with an accurate radiation transfer program to compute observed brightness temperatures. The value of 290 K commonly used for antenna temperature in satellite communication noise calculations is overly conservative, with more realistic values lying in the 60 to 240 K range.

  10. Signals of Opportunity Earth Reflectometry (SoOp-ER): Enabling new microwave observations from small satellites

    Science.gov (United States)

    Garrison, J. L.; Piepmeier, J. R.; Shah, R.; Lin, Y. C.; Du Toit, C. F.; Vega, M. A.; Knuble, J. J.

    2016-12-01

    Several recent experiments have demonstrated remote sensing by reutilizing communication satellite transmissions as sources in a bistatic radar configuration. This technique, referred to as "Signals of Opportunity Earth Reflectometry" (SoOp-ER), combines aspects of passive radiometry, active scatterometry and radar altimetry, but is essentially a new and alternative approach to microwave remote sensing. Reflectometry was first demonstrated with Global Navigation Satellite System (GNSS) signals, enabled by their use of pseudorandom noise (PRN) codes for ranging. Two decades of research in GNSS reflectometry has culminated in the upcoming launches of several satellite missions within the next few years (TechDemoSat-1, CYGNSS, and GEROS-ISS). GNSS signals, however, have low power and are confined to a few L-band frequencies allocated to radionavigation. Communication satellites, in contrast, transmit in nearly all bands penetrating the Earth's atmosphere at very high radiated powers to assure a low bit-error-rate. High transmission power and a forward scatter geometry result in a very high signal to noise ratio at the receiver. Surface resolution is determined by the signal bandwidth, not the antenna beam. In many applications, this will allow small, low gain antennas to be used to make scientifically useful measurements. These features indicate that SoOp-ER instruments would be an ideal technology for microwave remote sensing from small platforms. SoOp-ER observations are referenced at the specular point and a constellation of small satellites, evenly spaced in the same orbit, would provide global coverage through parallel specular point ground tracks. This presentation will summarize the current instrument development work by the authors on three different application of SoOp-ER: P-band (230-270 MHz) sensing of root-zone soil moisture (RZSM), S-band sensing of ocean winds and Ku/Ka-band altimetry. Potential mission scenarios using small satellite constellations

  11. Greenhouse gas profiling by infrared-laser and microwave occultation: retrieval algorithm and demonstration results from end-to-end simulations

    Directory of Open Access Journals (Sweden)

    V. Proschek

    2011-04-01

    Full Text Available Measuring greenhouse gas (GHG profiles with global coverage and high accuracy and vertical resolution in the upper troposphere and lower stratosphere (UTLS is key for improved monitoring of GHG concentrations in the free atmosphere. In this respect a new satellite mission concept adding an infrared-laser part to the already well studied microwave occultation technique exploits the joint propagation of infrared-laser and microwave signals between Low Earth Orbit (LEO satellites. This synergetic combination, referred to as LEO-LEO microwave and infrared-laser occultation (LMIO method, enables to retrieve thermodynamic profiles (pressure, temperature, humidity and accurate altitude levels from the microwave signals and GHG profiles from the simultaneously measured infrared-laser signals. However, due to the novelty of the LMIO method, a retrieval algorithm for GHG profiling did not yet exist. Here we introduce such an algorithm for retrieving GHGs from LEO-LEO infrared-laser occultation (LIO data, applied as a second step after retrieving thermodynamic profiles from LEO-LEO microwave occultation (LMO data as recently introduced in detail by Schweitzer et al. (2011b. We thoroughly describe the LIO retrieval algorithm and unveil the synergy with the LMO-retrieved pressure, temperature, and altitude information. We furthermore demonstrate the effective independence of the GHG retrieval results from background (a priori information in discussing demonstration results from LMIO end-to-end simulations for a representative set of GHG profiles, including carbon dioxide (CO2, water vapor (H2O, methane (CH4, and ozone (O3. The GHGs except for ozone are well retrieved throughout the UTLS, while ozone is well retrieved from 10 km to 15 km upwards, since the ozone layer resides in the lower stratosphere. The GHG retrieval errors are generally smaller than 1% to 3% r.m.s., at a vertical resolution of about 1 km. The

  12. Greenhouse gas profiling by infrared-laser and microwave occultation: retrieval algorithm and demonstration results from end-to-end simulations

    Directory of Open Access Journals (Sweden)

    V. Proschek

    2011-10-01

    Full Text Available Measuring greenhouse gas (GHG profiles with global coverage and high accuracy and vertical resolution in the upper troposphere and lower stratosphere (UTLS is key for improved monitoring of GHG concentrations in the free atmosphere. In this respect a new satellite mission concept adding an infrared-laser part to the already well studied microwave occultation technique exploits the joint propagation of infrared-laser and microwave signals between Low Earth Orbit (LEO satellites. This synergetic combination, referred to as LEO-LEO microwave and infrared-laser occultation (LMIO method, enables to retrieve thermodynamic profiles (pressure, temperature, humidity and accurate altitude levels from the microwave signals and GHG profiles from the simultaneously measured infrared-laser signals. However, due to the novelty of the LMIO method, a retrieval algorithm for GHG profiling is not yet available. Here we introduce such an algorithm for retrieving GHGs from LEO-LEO infrared-laser occultation (LIO data, applied as a second step after retrieving thermodynamic profiles from LEO-LEO microwave occultation (LMO data. We thoroughly describe the LIO retrieval algorithm and unveil the synergy with the LMO-retrieved pressure, temperature, and altitude information. We furthermore demonstrate the effective independence of the GHG retrieval results from background (a priori information in discussing demonstration results from LMIO end-to-end simulations for a representative set of GHG profiles, including carbon dioxide (CO2, water vapor (H2O, methane (CH4, and ozone (O3. The GHGs except for ozone are well retrieved throughout the UTLS, while ozone is well retrieved from about 10 km to 15 km upwards, since the ozone layer resides in the lower stratosphere. The GHG retrieval errors are generally smaller than 1% to 3% r.m.s., at a vertical resolution of about 1 km. The retrieved profiles also appear unbiased, which points

  13. Monitoring the frozen duration of Qinshai Lake using satellite passive microwave remote sensing low frequency data

    Institute of Scientific and Technical Information of China (English)

    CHE Tao; LI Xin; JIN Rui

    2009-01-01

    The Qinghai Lake is the largest inland lake in China.The significant difference of dielectric properties between water and ice suggests that a simple method of monitoring the Qinghai lake freeze-up and break-up dates using satellite passive microwave remote sensing data could be used.The freeze-up and break-up dates from the Qinghai Lake hydrological station and the MODIS L1B reflectance data were used to validate the passive microwave remote sensing results.The validation shows that passive microwave remote sensing data can accurately monitor the lake ice.Some uncertainty comes mainly from the revisit frequency of satellite overpass.The data from 1978 to 2006 show that lake ice duration is reduced by about 14-15 days.The freeze-up dates are about 4 days later and break-up dates about 10 days earlier.The regression analyses show that,at the 0.05 significance level,the correlations are 0.83,0.66 and 0.89 between monthly mean air temperature (MMAT) and lake ice duration days,freeze-up dates,break-up dates,respectively.Therefore,inter-annual variations of the Qinghai Lake ice duration days can significantly reflect the regional climate variation.

  14. Infrared and microwave study of angular-radial coupling effects in Ar-HCN

    Science.gov (United States)

    Fraser, G. T.; Pine, A. S.

    1989-09-01

    Microwave and infrared spectra of Ar-HCN have been obtained using an electric-resonance optothermal spectrometer. The microwave measurements extend to higher J the previous results of Leopold et al. and Klots et al., allowing the determination of higher-order centrifugal distortion constants for this quasilinear, highly nonrigid complex. A Padé approximant fit to the microwave data indicates a significant rotation-induced asymptotic increase in the zero-point center-of-mass separation between the Ar and the HCN, above that expected from pure radial distortion. This results from the large coupling between the angular and radial degrees in the intermolecular potential forcing the centrifugal alignment of the HCN. Infrared spectra are reported for the C-H streching fundamental ν1 and the combination band ν1+ν15, where ν5 is the van der Waals bending vibration. The band-origin difference between these two bands gives ν5=7.8 cm-1, in rough agreement with the 10 cm-1 harmonic value predicted from the microwave-determined nuclear quadrupole coupling constant. The complexation-induced red shift of the C-H stretching vibration is 2.69 cm-1 and the vibrational predissociation linewidths Γ are <10 MHz (FWHM). The vibrationally excited complex predissociates before striking the bolometer detector, implying that the predissociation lifetime τ<1 ms.

  15. Combining Satellite Microwave Radiometer and Radar Observations to Estimate Atmospheric Latent Heating Profiles

    Science.gov (United States)

    Grecu, Mircea; Olson, William S.; Shie, Chung-Lin; L'Ecuyer, Tristan S.; Tao, Wei-Kuo

    2009-01-01

    In this study, satellite passive microwave sensor observations from the TRMM Microwave Imager (TMI) are utilized to make estimates of latent + eddy sensible heating rates (Q1-QR) in regions of precipitation. The TMI heating algorithm (TRAIN) is calibrated, or "trained" using relatively accurate estimates of heating based upon spaceborne Precipitation Radar (PR) observations collocated with the TMI observations over a one-month period. The heating estimation technique is based upon a previously described Bayesian methodology, but with improvements in supporting cloud-resolving model simulations, an adjustment of precipitation echo tops to compensate for model biases, and a separate scaling of convective and stratiform heating components that leads to an approximate balance between estimated vertically-integrated condensation and surface precipitation. Estimates of Q1-QR from TMI compare favorably with the PR training estimates and show only modest sensitivity to the cloud-resolving model simulations of heating used to construct the training data. Moreover, the net condensation in the corresponding annual mean satellite latent heating profile is within a few percent of the annual mean surface precipitation rate over the tropical and subtropical oceans where the algorithm is applied. Comparisons of Q1 produced by combining TMI Q1-QR with independently derived estimates of QR show reasonable agreement with rawinsonde-based analyses of Q1 from two field campaigns, although the satellite estimates exhibit heating profile structure with sharper and more intense heating peaks than the rawinsonde estimates. 2

  16. Comparison of microwave satellite humidity data and radiosonde profiles: a survey of European stations

    Directory of Open Access Journals (Sweden)

    V. O. John

    2005-03-01

    Full Text Available A method to compare upper tropospheric humidity (UTH from satellite and radiosonde data has been applied to the European radiosonde stations. The method uses microwave data as a benchmark for monitoring the performance of the stations. The present study utilizes three years (2002–2003 of data from channel 18 (183.31±1.00 GHz of the Advanced Microwave Sounding Unit-B (AMSU-B aboard the satellites NOAA-15 and NOAA-16. The comparison is done in the radiance space, the radiosonde data were transformed to the channel radiances using a radiative transfer model. The comparison results confirm that there is a dry bias in the UTH measured by the radiosondes. This bias is highly variable among the stations and the years. This variability is attributed mainly to the differences in the radiosonde humidity measurements. The results also hint at a systematic difference between the two satellites, the channel 18 brightness temperature of NOAA-15 is on average 1.0 K higher than that of NOAA-16. The difference of 1 K corresponds to approximately 7% relative error in UTH which is significant for climatological applications.

  17. Passive microwave (SSM/I) satellite predictions of valley glacier hydrology, Matanuska Glacier, Alaska

    Science.gov (United States)

    Kopczynski, S.E.; Ramage, J.; Lawson, D.; Goetz, S.; Evenson, E.; Denner, J.; Larson, G.

    2008-01-01

    We advance an approach to use satellite passive microwave observations to track valley glacier snowmelt and predict timing of spring snowmelt-induced floods at the terminus. Using 37 V GHz brightness temperatures (Tb) from the Special Sensor Microwave hnager (SSM/I), we monitor snowmelt onset when both Tb and the difference between the ascending and descending overpasses exceed fixed thresholds established for Matanuska Glacier. Melt is confirmed by ground-measured air temperature and snow-wetness, while glacier hydrologic responses are monitored by a stream gauge, suspended-sediment sensors and terminus ice velocity measurements. Accumulation area snowmelt timing is correlated (R2 = 0.61) to timing of the annual snowmelt flood peak and can be predicted within ??5 days. Copyright 2008 by the American Geophysical Union.

  18. A Combined Infrared and Microwave Technique for Studying the Diurnal Variation of Rainfall Over Amazonia

    Science.gov (United States)

    Negri, Andrew J.; Xu, L.; Adler, R. F.; Anagnostou, E.; Rickenbach, T. M.

    1999-01-01

    In this paper we present results from the application of a satellite infrared (IR) technique for estimating rainfall over northern South America. Our main objectives are to examine the diurnal variability of rainfall and to investigate the relative contributions from the convective and stratiform components. Additional information is contained in the original.

  19. Compilation and assessment of microwave bioeffects. Final report. A selective review of the literature on biological effects of microwaves in relation to the Satellite Power System (SPS)

    Energy Technology Data Exchange (ETDEWEB)

    Justesen, D.R.; Ragan, H.A.; Rogers, L.E.; Guy, A.W.; Hjeresen, D.L.; Hinds, W.T.; Phillips, R.D.

    1978-05-01

    One of many alternate sources of electrical energy that are being considered by the Department of Energy is a microwave-mediated Satellite Power System (SPS). Once inserted into geosynchronous orbit at an altitude of more than 40,000 kilometers, a satellite would collect then convert the sun's energy to 2450-MHz microwaves, which would be beamed to the Earth's surface, where a rectifying antenna (rectenna) would convert the microwaves to electrical current suitable for industrial and domestic use. The expanse of each rectenna (about 10 by 13 kilometers), the power density of the continuous-wave microwave beam (approx. 23 mW/cm/sup 2/ at center, with fall off to 1 mW/cm/sup 2/ or less at the periphery of the rectenna), and the possibility that 20 or more satellite systems will eventually be operating, creates two sets of interrelated problems for biological/ecological assessment. These are 1) the effects of microwave fields of higher intensity on airborne biota (including human beings in aircraft) that may traffic the area above the rectenna and 2) the effects of virtually perpetual fields of much lower intensity on all forms of life at and beyond the rectennae's zone of exclusion. In this review, the scientific literature is examined, not only for biological effects that are pertinent to assessment of SPS, but for hiatuses of knowledge that will have to be filled before SPS can be vouched for operational safety.

  20. Pre-Launch Radiometric Performance Characterization of the Advanced Technology Microwave Sounder on the Joint Polar Satellite System-1 Satellite

    Science.gov (United States)

    Smith, Craig K.; Kim, Edward; Leslie, R. Vincent; Lyu, Joseph; McCormick, Lisa M.; Anderson, Kent

    2017-01-01

    The Advanced Technology Microwave Sounder (ATMS) is a space-based, cross-track radiometer for operational atmospheric temperature and humidity sounding, utilizing 22 channels over a frequency range from 23 to 183 gigahertz. The ATMS for the Joint Polar Satellite System-1 has undergone two rounds of re-work in 2014-2015 and 2016, following performance issues discovered during and following thermal vacuum chamber (TVAC) testing at the instrument and observatory level. Final shelf-level testing, including measurement of pass band characteristics and spectral response functions, was completed in December 2016. Final instrument-level TVAC testing and calibration occurred during February 2017. Here we will describe the instrument-level TVAC calibration process, and illustrate with results from the final TVAC calibration effort.

  1. Satellite Microwave Remote Sensing for Environmental Modeling of Mosquito Population Dynamics

    Science.gov (United States)

    Chuang, Ting-Wu; Henebry, Geoffrey M.; Kimball, John S.; VanRoekel-Patton, Denise L.; Hildreth, Michael B.; Wimberly, Michael C.

    2012-01-01

    Environmental variability has important influences on mosquito life cycles and understanding the spatial and temporal patterns of mosquito populations is critical for mosquito control and vector-borne disease prevention. Meteorological data used for model-based predictions of mosquito abundance and life cycle dynamics are typically acquired from ground-based weather stations; however, data availability and completeness are often limited by sparse networks and resource availability. In contrast, environmental measurements from satellite remote sensing are more spatially continuous and can be retrieved automatically. This study compared environmental measurements from the NASA Advanced Microwave Scanning Radiometer on EOS (AMSR-E) and in situ weather station data to examine their ability to predict the abundance of two important mosquito species (Aedes vexans and Culex tarsalis) in Sioux Falls, South Dakota, USA from 2005 to 2010. The AMSR-E land parameters included daily surface water inundation fraction, surface air temperature, soil moisture, and microwave vegetation opacity. The AMSR-E derived models had better fits and higher forecasting accuracy than models based on weather station data despite the relatively coarse (25-km) spatial resolution of the satellite data. In the AMSR-E models, air temperature and surface water fraction were the best predictors of Aedes vexans, whereas air temperature and vegetation opacity were the best predictors of Cx. tarsalis abundance. The models were used to extrapolate spatial, seasonal, and interannual patterns of climatic suitability for mosquitoes across eastern South Dakota. Our findings demonstrate that environmental metrics derived from satellite passive microwave radiometry are suitable for predicting mosquito population dynamics and can potentially improve the effectiveness of mosquito-borne disease early warning systems. PMID:23049143

  2. Reprocessing the Historical Satellite Passive Microwave Record at Enhanced Spatial Resolutions using Image Reconstruction

    Science.gov (United States)

    Hardman, M.; Brodzik, M. J.; Long, D. G.; Paget, A. C.; Armstrong, R. L.

    2015-12-01

    Beginning in 1978, the satellite passive microwave data record has been a mainstay of remote sensing of the cryosphere, providing twice-daily, near-global spatial coverage for monitoring changes in hydrologic and cryospheric parameters that include precipitation, soil moisture, surface water, vegetation, snow water equivalent, sea ice concentration and sea ice motion. Currently available global gridded passive microwave data sets serve a diverse community of hundreds of data users, but do not meet many requirements of modern Earth System Data Records (ESDRs) or Climate Data Records (CDRs), most notably in the areas of intersensor calibration, quality-control, provenance and consistent processing methods. The original gridding techniques were relatively primitive and were produced on 25 km grids using the original EASE-Grid definition that is not easily accommodated in modern software packages. Further, since the first Level 3 data sets were produced, the Level 2 passive microwave data on which they were based have been reprocessed as Fundamental CDRs (FCDRs) with improved calibration and documentation. We are funded by NASA MEaSUREs to reprocess the historical gridded data sets as EASE-Grid 2.0 ESDRs, using the most mature available Level 2 satellite passive microwave (SMMR, SSM/I-SSMIS, AMSR-E) records from 1978 to the present. We have produced prototype data from SSM/I and AMSR-E for the year 2003, for review and feedback from our Early Adopter user community. The prototype data set includes conventional, low-resolution ("drop-in-the-bucket" 25 km) grids and enhanced-resolution grids derived from the two candidate image reconstruction techniques we are evaluating: 1) Backus-Gilbert (BG) interpolation and 2) a radiometer version of Scatterometer Image Reconstruction (SIR). We summarize our temporal subsetting technique, algorithm tuning parameters and computational costs, and include sample SSM/I images at enhanced resolutions of up to 3 km. We are actively

  3. Compilation and assessment of microwave bioeffects. Final report. A selective review of the literature on biological effects of microwaves in relation to the satellite power system

    Energy Technology Data Exchange (ETDEWEB)

    Justesen, D. R.; Ragan, H. A.; Rogers, L. E.; Guy, A. W.; Hjeresen, D. L.; Hinds, W. T.

    1978-05-01

    Potential biological and ecological problems are the focus of a review of the world's scientific literature on biological effects of microwave radiation. The emphasis is on recently reported data and on the 2450-MHz continuous-wave (CW) radiation that is envisioned for a Satellite Power System (SPS).

  4. Study of LEO-SAT microwave link for broad-band mobile satellite communication system

    Science.gov (United States)

    Fujise, Masayuki; Chujo, Wataru; Chiba, Isamu; Furuhama, Yoji; Kawabata, Kazuaki; Konishi, Yoshihiko

    1993-01-01

    In the field of mobile satellite communications, a system based on low-earth-orbit satellites (LEO-SAT's) such as the Iridium system has been proposed. The LEO-SAT system is able to offer mobile telecommunication services in high-latitude areas. Rain degradation, fading and shadowing are also expected to be decreased when the system is operated at a high elevation angle. Furthermore, the propagation delay generated in the LEO-SAT system is less pronounced than that in the geostationary orbit satellite (GEO-SAT) system and, in voice services, the effect of the delay is almost negligible. We proposed a concept of a broad-band mobile satellite communication system with LEO-SAT's and Optical ISL. In that system, a fixed L-band (1.6/1.5 GHz) multibeam is used to offer narrow band service to the mobile terminals in the entire area covered by a LEO-SAT and steerable Ka-band (30/20 GHz) spot beams are used for the wide band service. In this paper, we present results of a study of LEO-SAT microwave link between a satellite and a mobile terminal for a broad-band mobile satellite communication system. First, the results of link budget calculations are presented and the antennas mounted on satellites are shown. For a future mobile antenna technology, we also show digital beamforming (DBF) techniques. DBF, together with modulation and/or demodulation, is becoming a key technique for mobile antennas with advanced functions such as antenna pattern calibration, correction, and radio interference suppression. In this paper, efficient DBF techniques for transmitting and receiving are presented. Furthermore, an adaptive array antenna system suitable for this LEO-SAT is presented.

  5. Superconductivity applications for infrared and microwave devices II; Proceedings of the Meeting, Orlando, FL, Apr. 4, 5, 1991

    Science.gov (United States)

    Heinen, Vernon O. (Editor); Bhasin, Kul B. (Editor)

    1991-01-01

    Topics discussed include thin-film technology, microwave transmission lines and resonators, microwave devices and circuits, infrared detectors and bolometers, and superconducting junctions. Papers are presented on possible enhancement in bolometric response using free-standing film of YBa2Cu3O(x), aging and surface instability in high-Tc superconductors, epitaxial Tl2Ba2CaCu2O8 thin films on LaAlO3 and their microwave device properties, the performance of stripline resonators using sputtered YBCO films, and a coplanar waveguide microwave filter of YBa2Cu3O7. Attention is also given to the performance characteristics of Y-Ba-Cu-O microwave superconducting detectors, high-Tc bolometer developments for planetary missions, infrared detectors from YBaCuO thin films, high-temperature superconductor junction technology, and submillimeter receiver components using superconducting tunnel junctions.

  6. Validating Microwave-Based Satellite Rain Rate Retrievals Over TRMM Ground Validation Sites

    Science.gov (United States)

    Fisher, B. L.; Wolff, D. B.

    2008-12-01

    Multi-channel, passive microwave instruments are commonly used today to probe the structure of rain systems and to estimate surface rainfall from space. Until the advent of meteorological satellites and the development of remote sensing techniques for measuring precipitation from space, there was no observational system capable of providing accurate estimates of surface precipitation on global scales. Since the early 1970s, microwave measurements from satellites have provided quantitative estimates of surface rainfall by observing the emission and scattering processes due to the existence of clouds and precipitation in the atmosphere. This study assesses the relative performance of microwave precipitation estimates from seven polar-orbiting satellites and the TRMM TMI using four years (2003-2006) of instantaneous radar rain estimates obtained from Tropical Rainfall Measuring Mission (TRMM) Ground Validation (GV) sites at Kwajalein, Republic of the Marshall Islands (KWAJ) and Melbourne, Florida (MELB). The seven polar orbiters include three different sensor types: SSM/I (F13, F14 and F15), AMSU-B (N15, N16 and N17), and AMSR-E. The TMI aboard the TRMM satellite flies in a sun asynchronous orbit between 35 S and 35 N latitudes. The rain information from these satellites are combined and used to generate several multi-satellite rain products, namely the Goddard TRMM Multi-satellite Precipitation Analysis (TMPA), NOAA's CPC Morphing Technique (CMORPH) and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN). Instantaneous rain rates derived from each sensor were matched to the GV estimates in time and space at a resolution of 0.25 degrees. The study evaluates the measurement and error characteristics of the various satellite estimates through inter-comparisons with GV radar estimates. The GV rain observations provided an empirical ground-based reference for assessing the relative performance of each sensor and sensor

  7. Estimating soil moisture from satellite microwave observations: Past and ongoing projects, and relevance to GCIP

    Science.gov (United States)

    Owe, M.; Van de Griend, A. A.; de Jeu, R.; de Vries, J. J.; Seyhan, E.; Engman, E. T.

    1999-08-01

    On the basis of a series of studies conducted in Botswana and preliminary results from an ongoing study in Spain, developments in microwave remote sensing by satellite, which can be used to monitor near-real-time surface moisture and also study long-term soil moisture climatology, are described. A progression of methodologies beginning with single-polarization studies and leading to both dual polarization and multiple frequency techniques are described. Continuing analysis of a 9 year data set of satellite-derived surface moisture in Spain is ongoing. Preliminary results from this study appear to provide some evidence of long-term desertification in certain parts of this region. The methodologies developed during these investigations can be applied easily to other regions such as the GCIP area and could provide useful databases for simulation and validation studies. Additionally, they have strong potential for global applications such as climate change studies.

  8. Satellite microwave estimates of soil moisture and applications for desertification studies

    Science.gov (United States)

    Owe, Manfred; Van de Griend, Adriaan A.; de Jeu, Richard A.; de Vries, Jorrit; Seyhan, E.

    1998-12-01

    Based on a series of studies conducted in Botswana and preliminary results from an ongoing study in Spain, developments in microwave remote sensing by satellite which can be used to monitor near real-time surface moisture and also study long term soil moisture climatology are described. A progression of methodologies beginning with single polarization studies and leading to both dual polarization and multiple frequency techniques are described. Continuing analysis of a nine year data set of satellite-derived surface moisture in Spain is ongoing. Preliminary results from this study appear to provide some evidence of long term decertification in certain parts of this region. The methodologies developed during these investigations can be applied to other regions, and have the potential for providing modelers with extended data sets of independently derived surface moisture for simulation and validation studies, and climate change studies at the global scale.

  9. Portable Microwave Frequency Dissemination in Free Space and Implications on Ground-Satellite Synchronization

    CERN Document Server

    Wang, Bo; Bai, Yu; Yuan, Yibo; Gao, Chao; Wang, Lijun

    2015-01-01

    Frequency dissemination and synchronization in free space plays an important role in global navigation satellite system (GNSS), radio astronomy and synthetic aperture radar (SAR). In this paper, we demonstrate a portable radio frequency (RF) dissemination scheme via free space using microwave antennas. The setup has a good environment adaptability and high dissemination stability. The frequency signal is disseminated at different distances ranging from 10 to 640 m with a fixed 10 Hz locking bandwidth, and the scaling law of dissemination stability on distance and averaging time is discussed. The preliminary extrapolation shows that the dissemination stability may reach $1\\times10^{-12}/s$ in ground-to-satellite synchronization, which far exceeds all present methods, and is worthy for further study.

  10. Monitoring soil wetness variations by means of satellite passive microwave observations: the HYDROPTIMET study cases

    Directory of Open Access Journals (Sweden)

    T. Lacava

    2005-01-01

    Full Text Available Soil moisture is an important component of the hydrological cycle. In the framework of modern flood warning systems, the knowledge of soil moisture is crucial, due to the influence on the soil response in terms of infiltration-runoff. Precipitation-runoff processes, in fact, are related to catchment's hydrological conditions before the precipitation. Thus, an estimation of these conditions is of significant importance to improve the reliability of flood warning systems. Combining such information with other weather-related satellite products (i.e. rain rate estimation might represent a useful exercise in order to improve our capability to handle (and possibly mitigate or prevent hydro-geological hazards. Remote sensing, in the last few years, has supported several techniques for soil moisture/wetness monitoring. Most of the satellite-based techniques use microwave data, thanks to the all-weather and all-time capability of these data, as well as to their high sensitivity to water content in the soil. On the other hand, microwave data are unfortunately highly affected by the presence of surface roughness or vegetation coverage within the instantaneous satellite field of view (IFOV. Those problems, consequently, strongly limit the efficiency and the reliability of traditional satellite techniques. Recently, using data coming from AMSU (Advanced Microwave Sounding Unit, flying aboard NOAA (National Oceanic and Atmospheric Administration satellites, a new methodology for soil wetness estimation has been proposed. The proposed index, called Soil Wetness Variation Index (SWVI, developed by a multi-temporal analysis of AMSU records, seems able to reduce the problems related to vegetation and/or roughness effects. Such an approach has been tested, with promising results, on the analysis of some flooding events which occurred in Europe in the past. In this study, results achieved for the HYDROPTIMET test cases will be analysed and discussed in detail

  11. Environmental assessment for the satellite power system-concept development and evaluation program-microwave health and ecological effects

    Science.gov (United States)

    1980-01-01

    Potential health and ecological effects of the microwave beam from the microwave power transmission system (MPTS) of the satellite power system (SPS) are discussed. A detailed critical review of selected scientific articles from the published literature on the biological effects of nonionizing electromagnetic radiation is provided followed by an assessment of the possible effects of the SPS, based on exposure values for the reference system.

  12. Environmental assessment for the satellite power system-concept development and evaluation program-microwave health and ecological effects

    Energy Technology Data Exchange (ETDEWEB)

    1980-11-01

    This report is concerned with the potential health and ecological effects of the microwave beam from the microwave power transmission system (MPTS) of the satellite power system (SPS). The report is written in the form of a detailed critical review of selected scientific articles from the published literature on the biological effects of nonionizing electromagnetic radiation, followed by an assessment of the possible effects of the SPS, based on exposure values for the reference system (US DOE and NASA, 1978).

  13. Study of imaging radar using ultra-wideband microwave-modulated infrared laser

    Science.gov (United States)

    Mase, Atsushi; Kogi, Yuichiro; Ikezi, Hiroyuki; Inutake, Masaaki; Wang, Xiaolong

    2016-09-01

    In this paper, we present an ultra-wideband microwave-modulated laser radar which is designed and fabricated for improvement of the spatial resolution both in the range direction and the azimuth direction. The amplitude modulation in a range of 0.01-18 GHz is applied to an infrared laser source of 1550 nm wavelength. The frequency and the bandwidth are assigned by the Administration of Radio under the Ministry of Internal Affairs and Communications in Japan. However, there is no bandwidth limitation in the infrared region. Considering the influence of radiation pattern for microwave antennas case, there is no side lobe in laser beam transmission. Ambiguous signal and interferences which are returned from the ground can be suppressed. A prototype of laser-radar system with a fiber collimator for both transmitting and receiving optics has been fabricated. A vector network analyzer is used to obtain S21 signal between the microwave modulation input and that of received signal. The system is, at first, applied to the measurement of the distance (position) of an object. It is proved that the spatial resolution is less than 1 cm during 5-10 m. As an initial experiment, we have succeeded to obtain 3D image of object by scanning a laser beam in two dimensions.

  14. Atmospheric influences on infrared-laser signals used for occultation measurements between Low Earth Orbit satellites

    Directory of Open Access Journals (Sweden)

    S. Schweitzer

    2011-05-01

    Full Text Available LEO-LEO infrared-laser occultation (LIO is a new occultation technique between Low Earth Orbit (LEO satellites, which applies signals in the short wave infrared spectral range (SWIR within 2 μm to 2.5 μm. It is part of the LEO-LEO microwave and infrared-laser occultation (LMIO method, recently introduced by Kirchengast and Schweitzer (2011, that enables to retrieve thermodynamic profiles (pressure, temperature, humidity and accurate altitude levels from microwave signals and profiles of greenhouse gases and further variables such as line-of-sight wind speed from simultaneously measured LIO signals. For enabling trace species retrieval based on differential transmission, the LIO signals are spectrally located as pairs, one in the centre of a suitable absorption line of a target species (absorption signal and one close by but outside of any absorption lines (reference signal. Due to the novelty of the LMIO method, detailed knowledge of atmospheric influences on LIO signals and of their suitability for accurate trace species retrieval did not yet exist. Here we discuss the atmospheric influences on the transmission and differential transmission of LIO signals. Refraction effects, trace species absorption (by target species, and cross-sensitivity to foreign species, aerosol extinction and Rayleigh scattering are studied in detail. The influences of clouds, turbulence, wind, scattered solar radiation and terrestrial thermal radiation are discussed as well. We show that the influence of defocusing, foreign species absorption, aerosols and turbulence is observable, but can be rendered small to negligible by use of the differential transmission principle and by a design with close frequency spacing of absorption and reference signals within 0.5 %. The influences of Rayleigh scattering and thermal radiation on the received signal intensities are found negligible. Cloud-scattered solar radiation can be observable under bright-day conditions but this

  15. Optimized Fast-FISH with a-satellite probes: acceleration by microwave activation

    Directory of Open Access Journals (Sweden)

    Durm M.

    1997-01-01

    Full Text Available It has been shown for several DNA probes that the recently introduced Fast-FISH (fluorescence in situ hybridization technique is well suited for quantitative microscopy. For highly repetitive DNA probes the hybridization (renaturation time and the number of subsequent washing steps were reduced considerably by omitting denaturing chemical agents (e.g., formamide. The appropriate hybridization temperature and time allow a clear discrimination between major and minor binding sites by quantitative fluorescence microscopy. The well-defined physical conditions for hybridization permit automatization of the procedure, e.g., by a programmable thermal cycler. Here, we present optimized conditions for a commercially available X-specific a-satellite probe. Highly fluorescent major binding sites were obtained for 74oC hybridization temperature and 60 min hybridization time. They were clearly discriminated from some low fluorescent minor binding sites on metaphase chromosomes as well as in interphase cell nuclei. On average, a total of 3.43 ± 1.59 binding sites were measured in metaphase spreads, and 2.69 ± 1.00 in interphase nuclei. Microwave activation for denaturation and hybridization was tested to accelerate the procedure. The slides with the target material and the hybridization buffer were placed in a standard microwave oven. After denaturation for 20 s at 900 W, hybridization was performed for 4 min at 90 W. The suitability of a microwave oven for Fast-FISH was confirmed by the application to a chromosome 1-specific a-satellite probe. In this case, denaturation was performed at 630 W for 60 s and hybridization at 90 W for 5 min. In all cases, the results were analyzed quantitatively and compared to the results obtained by Fast-FISH. The major binding sites were clearly discriminated by their brightness

  16. An Evaluation of Antarctica as a Calibration Target for Passive Microwave Satellite Missions

    Science.gov (United States)

    Kim, Edward

    2012-01-01

    Passive microwave remote sensing at L-band (1.4 GHz) is sensitive to soil moisture and sea surface salinity, both important climate variables. Science studies involving these variables can now take advantage of new satellite L-band observations. The first mission with regular global passive microwave observations at L-band is the European Space Agency's Soil Moisture and Ocean Salinity (SMOS), launched November, 2009. A second mission, NASA's Aquarius, was launched June, 201l. A third mission, NASA's Soil Moisture Active Passive (SMAP) is scheduled to launch in 2014. Together, these three missions may provide a decade-long data record -- provided that they are intercalibrated. The intercalibration is best performed at the radiance (brightness temperature) level, and Antarctica is proving to be a key calibration target. However, Antarctica has thus far not been fully characterized as a potential target. This paper will present evaluations of Antarctica as a microwave calibration target for the above satellite missions. Preliminary analyses have identified likely target areas, such as the vicinity of Dome-C and larger areas within East Antarctica. Physical sources of temporal and spatial variability of polar firn are key to assessing calibration uncertainty. These sources include spatial variability of accumulation rate, compaction, surface characteristics (dunes, micro-topography), wind patterns, and vertical profiles of density and temperature. Using primarily SMOS data, variability is being empirically characterized and attempts are being made to attribute observed variability to physical sources. One expected outcome of these studies is the potential discovery of techniques for remotely sensing--over all of Antarctica--parameters such as surface temperature.

  17. Application of satellite microwave remote sensed brightness temperature in the regional soil moisture simulation

    Directory of Open Access Journals (Sweden)

    X. K. Shi

    2009-02-01

    Full Text Available As the satellite microwave remote sensed brightness temperature is sensitive to land surface soil moisture (SM and SM is a basic output variable in model simulation, it is of great significance to use the brightness temperature data to improve SM numerical simulation. In this paper, the theory developed by Yan et al. (2004 about the relationship between satellite microwave remote sensing polarization index and SM was used to estimate the land surface SM from AMSR-E (Advanced Microwave Scanning Radiometer – Earth Observing System brightness temperature data. With consideration of land surface soil texture, surface roughness, vegetation optical thickness, and the AMSR-E monthly SM products, the regional daily land surface SM was estimated over the eastern part of the Qinghai-Tibet Plateau. The results show that the estimated SM is lower than the ground measurements and the NCEP (American National Centers for Environmental Prediction reanalysis data at the Maqu Station (33.85° N, 102.57° E and the Tanglha Station (33.07° N, 91.94° E, but its regional distribution is reasonable and somewhat better than that from the daily AMSR-E SM product, and its temporal variation shows a quick response to the ground daily precipitations. Furthermore, in order to improve the simulating ability of the WRF (Weather Research and Forecasting model to land surface SM, the estimated SM was assimilated into the Noah land surface model by the Newtonian relaxation (NR method. The results indicate that, by fine tuning of the quality factor in NR method, the simulated SM values are improved most in desert area, followed by grassland, shrub and grass mixed zone. At temporal scale, Root Mean Square Error (RMSE values between simulated and observed SM are decreased 0.03 and 0.07 m3/m3 by using the NR method in the Maqu Station and the Tanglha Station, respectively.

  18. A Blended Global Snow Product using Visible, Passive Microwave and Scatterometer Satellite Data

    Science.gov (United States)

    Foster, James L.; Hall, Dorothy K.; Eylander, John B.; Riggs, George A.; Nghiem, Son V.; Tedesco, Marco; Kim, Edward; Montesano, Paul M.; Kelly, Richard E. J.; Casey, Kimberly A.; hide

    2009-01-01

    A joint U.S. Air Force/NASA blended, global snow product that utilizes Earth Observation System (EOS) Moderate Resolution Imaging Spectroradiometer (MODIS), Advanced Microwave Scanning Radiometer for EOS (AMSR-E) and QuikSCAT (Quick Scatterometer) (QSCAT) data has been developed. Existing snow products derived from these sensors have been blended into a single, global, daily, user-friendly product by employing a newly-developed Air Force Weather Agency (AFWA)/National Aeronautics and Space Administration (NASA) Snow Algorithm (ANSA). This initial blended-snow product uses minimal modeling to expeditiously yield improved snow products, which include snow cover extent, fractional snow cover, snow water equivalent (SWE), onset of snowmelt, and identification of actively melting snow cover. The blended snow products are currently 25-km resolution. These products are validated with data from the lower Great Lakes region of the U.S., from Colorado during the Cold Lands Processes Experiment (CLPX), and from Finland. The AMSR-E product is especially useful in detecting snow through clouds; however, passive microwave data miss snow in those regions where the snow cover is thin, along the margins of the continental snowline, and on the lee side of the Rocky Mountains, for instance. In these regions, the MODIS product can map shallow snow cover under cloud-free conditions. The confidence for mapping snow cover extent is greater with the MODIS product than with the microwave product when cloud-free MODIS observations are available. Therefore, the MODIS product is used as the default for detecting snow cover. The passive microwave product is used as the default only in those areas where MODIS data are not applicable due to the presence of clouds and darkness. The AMSR-E snow product is used in association with the difference between ascending and descending satellite passes or Diurnal Amplitude Variations (DAV) to detect the onset of melt, and a QSCAT product will be used to

  19. A Global Record of Daily Landscape Freeze-Thaw Status from Satellite Microwave Remote Sensing

    Science.gov (United States)

    Kimball, J. S.; Kim, Y.; Colliander, A.; McDonald, K. C.

    2011-12-01

    The freeze-thaw (FT) parameter from satellite microwave remote sensing quantifies the predominant landscape frozen or thawed state and is closely linked to surface energy budget and hydrologic activity, seasonal vegetation growth dynamics and terrestrial carbon budgets. A global Earth System Data Record (ESDR) of daily landscape FT status (FT-ESDR) was developed using a temporal change classification of 37 GHz brightness temperature (Tb) series from the Scanning Multichannel Microwave Radiometer (SMMR) and Special Sensor Microwave Imager (SSM/I), and encompassing land areas where seasonal frozen temperatures influence ecosystem processes. A consistent, long-term (>30 yr) FT record was created by ensuring cross-sensor consistency through pixel-wise adjustment of the SMMR Tb record based on empirical analyses of overlapping SMMR and SSM/I measurements. The product is designed to determine the FT status of the composite landscape vegetation-snow-soil medium with sufficient accuracy to characterize frozen temperature constraints to surface water mobility, vegetation productivity and land-atmosphere CO2 fluxes. A multi-tier product validation is applied using in situ temperature and tower carbon flux measurements, and other satellite FT retrievals. The FT-ESDR record shows mean annual spatial classification accuracies of 91 (+/-8.6) and 84 (+/-9.3) percent for PM and AM overpass retrievals relative to surface air temperature measurements from global weather stations. Other comparisons against spatially dense temperature observations from an Alaska ecological transect reveal satellite sensor frequency dependence and variable FT sensitivity to surface air, vegetation, soil and snow properties. Other satellite sensor retrievals, including AMSR-E and SMOS show similar FT classification accuracies, but variable sensitivity to different landscape elements. Sensor FT classification differences reflect differences in microwave frequency, footprint resolution and satellite

  20. Validating a Satellite Microwave Remote Sensing Based Global Record of Daily Landscape Freeze-Thaw Dynamics

    Science.gov (United States)

    Kimball, J. S.; Kim, Y.; McDonald, K. C.

    2012-12-01

    The freeze-thaw (FT) parameter from satellite microwave remote sensing quantifies the predominant landscape frozen or thawed state and is closely linked to surface energy budget and hydrologic activity, vegetation growth, terrestrial carbon budgets and land-atmosphere trace gas exchange. A global Earth System Data Record of daily landscape FT status (FT-ESDR) was developed using a temporal change classification of overlapping 37 GHz brightness temperature (Tb) series from the Scanning Multichannel Microwave Radiometer (SMMR) and Special Sensor Microwave Imager (SSM/I), and encompassing land areas where seasonal frozen temperatures influence ecosystem processes. A temporally consistent, long-term (>30 yr) FT record was created by ensuring cross-sensor consistency through pixel-wise adjustment of the SMMR Tb record based on empirical analyses of overlapping SMMR and SSM/I measurements. The FT-ESDR is designed to determine the FT status of the composite landscape vegetation-snow-soil medium with sufficient accuracy to characterize frozen temperature constraints to surface water mobility, vegetation productivity and land-atmosphere CO2 fluxes. A multi-tier validation scheme was applied using in situ temperature measurements, other satellite FT retrievals and synergistic biophysical data. These results are incorporated into the product metadata structure, including mean daily spatial classification accuracies and annual quality assessment (QA) maps accounting for landscape heterogeneity, algorithm limitations and sensor retrieval gaps. The resulting FT-ESDR shows mean annual spatial classification accuracies of 91 (+/-8.6) and 84 (+/-9.3) percent for PM and AM overpass retrievals. Accuracy is reduced during seasonal transition periods when FT heterogeneity is maximized within the relatively coarse (~25-km) satellite footprint. The QA rankings range from low (estimated accuracy 90%) categories; mean annual QA results for the 1979-2011 period show relative proportions of

  1. Seasonally Frozen Soil Monitoring Using Passive Microwave Satellite Data and Simulation Modeling

    Science.gov (United States)

    Toll, D. L.; Owe, M.; Levine, E.

    1998-01-01

    Satellite data and simulation modeling were used to assess seasonally frozen soils in the central US - Canada borders area (46-53 degrees N and 96-108 degrees). We used Scanning Multichannel Microwave Radiometer (SMMR) satellite data to delineate the top layer of frozen soils. SMMR is a passive microwave sensor having five channels (6.6, 10, 18, 21 and 37 GHz) with a horizontal and vertical polarization. SMRR data are available between 1978-1987 with noon and midnight overpass and footprint sizes between 25 km and 150 km. SMMR data were processed from resampled 1/4 degree grid cells during fall freeze-up and spring thaw (fall 1985 - spring 1987). The dielectric properties of a target may directly affect the satellite signal. The dielectric value is an order of magnitude smaller for frozen soil water. There are other significant changes to the emitted microwave signal from changes to the surface physical temperature, attenuation of the soil signal from plant water and soil moisture. We further characterized the temporal and spatial dynamic of frozen soils using the FroST (Frozen Soil Temperature) simulation model. The FroST model was used to further predict soil water and ice content, and soil temperature. SMMR results were compared versus 5-cm soil temperature data from available weather stations (14 in Canada and 11 for available months in the US). SMMR data were analyzed as a function of frequency, polarization, polarization difference, and "frequency gradient". In addition, vegetation density, physical temperature and snow depth were also considered. Preliminary analysis of SMMR derived frozen soil/thaw classification using a simple threshold classification indicates a mean overall classification accuracy by season of 85 percent. A sensitivity analysis for different soils with varying amounts of snow was conducted with FroST, which showed that the amount of snow, and the time of snow fall and melt affected the ice and water content, and depth of thaw. These

  2. The effect of lunarlike satellites on the orbital infrared light curves of Earth-analog planets.

    Science.gov (United States)

    Moskovitz, Nicholas A; Gaidos, Eric; Williams, Darren M

    2009-04-01

    We have investigated the influence of lunarlike satellites on the infrared orbital light curves of Earth-analog extrasolar planets. Such light curves will be obtained by NASA's Terrestrial Planet Finder (TPF) and ESA's Darwin missions as a consequence of repeat observations to confirm the companion status of a putative planet and determine its orbit. We used an energy balance model to calculate disk-averaged infrared (bolometric) fluxes from planet-satellite systems over a full orbital period (one year). The satellites are assumed to lack an atmosphere, have a low thermal inertia like that of the Moon, and span a range of plausible radii. The planets are assumed to have thermal and orbital properties that mimic those of Earth, while their obliquities and orbital longitudes of inferior conjunction remain free parameters. Even if the gross thermal properties of the planet can be independently constrained (e.g., via spectroscopy or visible-wavelength detection of specular glint from a surface ocean), only the largest (approximately Mars-sized) lunarlike satellites can be detected by light curve data from a TPF-like instrument (i.e., one that achieves a photometric signal-to-noise ratio of 10 to 20 at infrared wavelengths). Nondetection of a lunarlike satellite can obfuscate the interpretation of a given system's infrared light curve so that it may resemble a single planet with high obliquity, different orbital longitude of vernal equinox relative to inferior conjunction, and in some cases drastically different thermal characteristics. If the thermal properties of the planet are not independently established, then the presence of a lunarlike satellite cannot be inferred from infrared data, which would thus demonstrate that photometric light curves alone can only be used for preliminary study, and the addition of spectroscopic data will be necessary.

  3. Effects of atmospheric turbulence on microwave and millimeter wave satellite communications systems. [attenuation statistics and antenna design

    Science.gov (United States)

    Devasirvatham, D. M. J.; Hodge, D. B.

    1981-01-01

    A model of the microwave and millimeter wave link in the presence of atmospheric turbulence is presented with emphasis on satellite communications systems. The analysis is based on standard methods of statistical theory. The results are directly usable by the design engineer.

  4. New model for colour kinetics of plum under infrared vacuum condition and microwave drying

    Directory of Open Access Journals (Sweden)

    Reza Amiri Chayjan

    2016-06-01

    Full Text Available Background. Quality of dried foods is affected by the drying method and physiochemical changes in tissue. The drying method affects properties such as colour. The colour of processed food is one of the most impor- tant quality indices and plays a determinant role in consumer acceptability of food materials and the process- ing method. The colour of food materials can be used as an indirect factor to determine changes in quality, since it is simpler and faster than chemical methods. Material and methods. The study focused on the kinetics of colour changes of plum slices, under infrared vacuum and microwave conditions. Drying the samples was implemented at the absolute pressures of 20 and 60 kPa, drying temperatures of 50 and 60°C and microwave power of 90, 270, 450 and 630 W. Colour changes were quantified by the tri-stimulus L* (whiteness/darkness, a* (redness/greenness and b* (yellow- ness/blueness model, which is an international standard for color measurement developed by the Commis- sion Internationale d’Eclairage (CIE. These values were also used to calculate total colour change (∆E, chroma, hue angle, and browning index (BI. A new model was used for mathematical modelling of colour change kinetics. Results. The drying process changed the colour parameters of L*, a*, and b*, causing a colour shift toward the darker region. The values of L* and hue angle decreased, whereas the values of a*, b*, ∆E, chroma and browning index increased during exposure to infrared vacuum conditions and microwave drying. Comparing the results obtained using the new model with two conventional models of zero-order and first-order kinet- ics indicated that the new model presented more compatibility with the data of colour kinetics for all colour parameters and drying conditions. Conclusion. All kinetic changes in colour parameters can be explained by the new model presented in this study. The hybrid drying system included infrared vacuum conditions and

  5. Application of satellite infrared measurements to mapping sea ice

    Science.gov (United States)

    Barnes, J. C.

    1972-01-01

    The application of the ITOS-SR (scanning radiometer) infrared measurements for mapping sea ice was examined. The work included detailed mapping of ice features visible in the ITOS nighttime DRSR (direct readout scanning radiometer) pictorial data and in Nimbus summertime film strip data. Analyses of digital temperature values from computer printouts of ITOS stored data and from Nimbus data listings were also undertaken, and densitometric measurements of both ITOS and Nimbus data were initiated.

  6. Identifying clouds over the Pierre Auger Observatory using infrared satellite data

    NARCIS (Netherlands)

    Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muniz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Anticic, T.; Aramo, C.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Badescu, A. M.; Barber, K. B.; Barbosa, A. F.; Bardenet, R.; Baughman, B.; Baeuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Belletoile, A.; Bellidol, J. A.; BenZvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Bluemer, H.; Bohacova, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buroker, L.; Burton, R. E.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chirinos, J.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Collica, L.; Coluccia, M. R.; Conceicao, R.; Contreras, F.; Cook, H.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Criss, A.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; De La Vega, G.; de Mello, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Diaz, J. C.; Diaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; San Luis, P. Facal; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipcic, A.; Fliescher, S.; Fox, B. D.; Fracchiolla, C. E.; Fraenkel, E. D.; Fratu, O.; Froehlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; Garcia, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gemmeke, H.; Ghia, P. L.; Giller, M.; Gitto, J.; Glaser, C.; Glass, H.; Golup, G.; Gomez Albarracin, F.; Gomez Berisso, M.; Gomez Vitale, P. F.; Goncalves, P.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holmes, V. C.; Homola, P.; Horandel, J. R.; Horvath, P.; Hrabovsky, M.; Huber, D.; Huege, T.; Insolia, A.; Jansen, S.; Jarne, C.; Jiraskova, S.; Josebachuili, M.; Kadija, K.; Kampert, K. H.; Karhan, P.; Kasper, P.; Katkov, I.; Kegl, B.; Keilhauer, B.; Keivani, A.; Kelley, J. L.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Krause, R.; Krohm, N.; Kroemer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kulbartz, J. K.; Kunka, N.; La Rosa, G.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leao, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lopez, R.; Lopez Agueera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Macolino, C.; Malacari, M.; Maldera, S.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, J.; Marin, V.; Maris, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martinez, H.; Martinez Bravo, O.; Martraire, D.; Masias Meza, J. J.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Messina, S.; Meyhandan, R.; Micanovic, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Mirarrionti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Ragaigne, D. Monnier; Montanet, F.; Morales, B.; Morello, C.; Moreno, J. C.; Mostafa, M.; Moura, C. A.; Muller, M. A.; Mueller, G.; Muenchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, T. J.; Nhung, P. T.; Niechciol, M.; Niemietz, L.; Nierstenhoefer, N.; Niggemann, T.; Nitz, D.; Nosek, D.; Nozka, L.; Oehlschlaeger, J.; Olinto, A.; Oliveira, M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; Pekala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrolini, A.; Petrov, Y.; Pfendner, C.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Ponce, V. H.; Pontz, M.; Porcelli, A.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez Cabo, I.; Fernandez, G. Rodriguez; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodriguez-Frias, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouille-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Ruehle, C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Greus, F. Salesa; Salina, G.; Sanchez, F.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovancova, J.; Schovanek, P.; Schroeder, F. G.; Schulz, J.; Schuster, D.; Sciutto, Si.; Scuderi, M.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Smialkowski, A.; Smida, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Srivastava, Y. N.; Stanic, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Straub, M.; Stutz, A.; Suarez, F.; Suomijaervi, T.; Supanitsky, A. D.; Susa, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Tapia, A.; Tartare, M.; Tascau, O.; Tcaciuc, R.; Thao, N. T.; Thomas, D.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tome, B.; Tonachini, A.; Torralba Elipe, G.; Machado, D. Torres; Travnicek, P.; Tridapalli, D. B.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdes Galicia, J. F.; Valino, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cardenas, B.; Varner, G.; Vazquez, J. R.; Vazquez, R. A.; Veberic, D.; Verzi, V.; Vicha, J.; Videla, M.; Villasenor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Westerhoff, S.; Whelan, B. J.; Widom, A.; Wieczorek, G.; Wiencke, L.; Wilczynska, B.; Wilczynski, H.; Will, M.; Williams, C.; Winchen, T.; Wundheiler, B.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano Garcia, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Martin, L.

    2013-01-01

    We describe a new method of identifying night-time clouds over the Pierre Auger Observatory using infrared data from the Imager instruments on the GOES-12 and GOES-13 satellites. We compare cloud. identifications resulting from our method to those obtained by the Central Laser Facility of the Auger

  7. A preliminary measurement of the cosmic microwave background spectrum by the Cosmic Background Explorer (COBE) satellite

    Energy Technology Data Exchange (ETDEWEB)

    Mather, J.C.; Cheng, E.S.; Shafer, R.A.; Bennett, C.L.; Boggess, N.W.; Dwek, E.; Hauser, M.G.; Kelsall, T.; Moseley, S.H. Jr.; Silverberg, R.F. (NASA, Goddard Space Flight Center, Greenbelt, MD (USA))

    1990-05-01

    A preliminary spectrum is presented of the background radiation between 1 and 20/cm from regions near the north Galactic pole, as observed by the FIRAS instrument on the COBE satellite. The spectral resolution is 1/cm. The spectrum is well fitted by a blackbody with a temperature of 2.735 + or - 0.06 K, and the deviation from a blackbody is less than 1 percent of the peak intensity over the range 1-20/cm. These new data show no evidence for the submillimeter excess previously reported by Matsumoto et al. (1988) in the cosmic microwave background. Further analysis and additional data are expected to improve the sensitivity to deviations from a blackbody spectrum by an order of magnitude. 31 refs.

  8. A preliminary measurement of the cosmic microwave background spectrum by the Cosmic Background Explorer (COBE) satellite

    Science.gov (United States)

    Mather, J. C.; Cheng, E. S.; Shafer, R. A.; Bennett, C. L.; Boggess, N. W.; Dwek, E.; Hauser, M. G.; Kelsall, T.; Moseley, S. H., Jr.; Silverberg, R. F.

    1990-01-01

    A preliminary spectrum is presented of the background radiation between 1 and 20/cm from regions near the north Galactic pole, as observed by the FIRAS instrument on the COBE satellite. The spectral resolution is 1/cm. The spectrum is well fitted by a blackbody with a temperature of 2.735 + or - 0.06 K, and the deviation from a blackbody is less than 1 percent of the peak intensity over the range 1-20/cm. These new data show no evidence for the submillimeter excess previously reported by Matsumoto et al. (1988) in the cosmic microwave background. Further analysis and additional data are expected to improve the sensitivity to deviations from a blackbody spectrum by an order of magnitude.

  9. A preliminary measurement of the cosmic microwave background spectrum by the Cosmic Background Explorer (COBE) satellite

    Science.gov (United States)

    Mather, J. C.; Cheng, E. S.; Shafer, R. A.; Bennett, C. L.; Boggess, N. W.; Dwek, E.; Hauser, M. G.; Kelsall, T.; Moseley, S. H., Jr.; Silverberg, R. F.

    1990-01-01

    A preliminary spectrum is presented of the background radiation between 1 and 20/cm from regions near the north Galactic pole, as observed by the FIRAS instrument on the COBE satellite. The spectral resolution is 1/cm. The spectrum is well fitted by a blackbody with a temperature of 2.735 + or - 0.06 K, and the deviation from a blackbody is less than 1 percent of the peak intensity over the range 1-20/cm. These new data show no evidence for the submillimeter excess previously reported by Matsumoto et al. (1988) in the cosmic microwave background. Further analysis and additional data are expected to improve the sensitivity to deviations from a blackbody spectrum by an order of magnitude.

  10. Calibration of the Microwave Limb Sounder on the Upper Atmosphere Research Satellite

    Science.gov (United States)

    Jarnot, R. F.; Cofield, R. E.; Waters, J. W.; Flower, D. A.; Peckham, G. E.

    1996-01-01

    The Microwave Limb Sounder (MLS) is a three-radiometer, passive, limb emission instrument onboard the Upper Atmosphere Research Satellite (UARS). Radiometric, spectral and field-of-view calibrations of the MLS instrument are described in this paper. In-orbit noise performance, gain stability, spectral baseline and dynamic range are described, as well as use of in-flight data for validation and refinement of prelaunch calibrations. Estimated systematic scaling uncertainties (3 sigma) on calibrated limb radiances from prelaunch calibrations are 2.6% in bands 1 through 3, 3.4% in band 4, and 6% in band 5. The observed systematic errors in band 6 are about 15%, consistent with prelaunch calibration uncertainties. Random uncertainties on individual limb radiance measurements are very close to the levels predicted from measured radiometer noise temperature, with negligible contribution from noise and drifts on the regular in-flight gain calibration measurements.

  11. Microwave maps of the polar ice of the earth. [from Nimbus-5 satellite

    Science.gov (United States)

    Gloersen, P.; Wilheit, T. T.; Chang, T. C.; Nordberg, W.; Campbell, W. J.

    1973-01-01

    Synoptic views of the entire polar regions of earth were obtained free of the usual persistent cloud cover using a scanning microwave radiometer operating at a wavelength of 1.55 cm on board the Nimbus-5 satellite. Three different views at each pole are presented utilizing data obtained at approximately one-month intervals during the winter of 1972-1973. The major discoveries resulting from an analysis of these data are as follows: (1) Large discrepancies exist between the climatic norm ice cover depicted in various atlases and the actual extent of the canopies. (2) The distribution of multiyear ice in the north polar region is markedly different from that predicted by existing ice dynamics models. (3) Irregularities in the edge of the Antarctic sea ice pack occur that have neither been observed previously nor anticipated. (4) The brightness temperatures of the Greenland and Antarctica glaciers show interesting contours probably related to the ice and snow morphologic structure.

  12. Mediterranean hurricanes: large-scale environment and convective and precipitating areas from satellite microwave observations

    Directory of Open Access Journals (Sweden)

    C. Claud

    2010-10-01

    Full Text Available Subsynoptic scale vortices that have been likened to tropical cyclones or polar lows (medicanes are occasionally observed over the Mediterranean Sea. Generated over the sea, they are usually associated with strong winds and heavy precipitation and thus can be highly destructive in islands and costal areas. Only an accurate forecasting of such systems could mitigate these effects. However, at the moment, the predictability of these systems remains limited.

    Due to the scarcity of conventional observations, use is made of NOAA/MetOp satellite observations, for which advantage can be taken of the time coverage differences between the platforms that carry it, to give a very complete temporal description of the disturbances. A combination of AMSU-B (Advanced Microwave Sounding Unit-B/MHS (Microwave Humidity Sounder observations permit to investigate precipitation associated with these systems while coincident AMSU-A (Advanced Microwave Sounding Unit-A observations give insights into the larger synoptic-scale environment in which they occur.

    Three different cases (in terms of intensity, location, trajectory, duration, and periods of the year – May, September and December, respectively were investigated. Throughout these time periods, AMSU-A observations show that the persisting deep outflow of cold air over the sea together with an upper-level trough upstream constituted a favourable environment for the development of medicanes. AMSU-B/MHS based diagnostics show that convection and precipitation areas are large in the early stage of the low, but significantly reduced afterwards. Convection is maximum just after the upper-level trough, located upstream of cold mid-tropospheric air, reached its maximum intensity and acquired a cyclonic orientation.

  13. Satellite microwave assessment of Northern Hemisphere lake ice phenology from 2002 to 2015

    Science.gov (United States)

    Du, Jinyang; Kimball, John S.; Duguay, Claude; Kim, Youngwook; Watts, Jennifer D.

    2017-01-01

    A new automated method enabling consistent satellite assessment of seasonal lake ice phenology at 5 km resolution was developed for all lake pixels (water coverage ≥ 90 %) in the Northern Hemisphere using 36.5 GHz H-polarized brightness temperature (Tb) observations from the Advanced Microwave Scanning Radiometer for EOS and Advanced Microwave Scanning Radiometer 2 (AMSR-E/2) sensors. The lake phenology metrics include seasonal timing and duration of annual ice cover. A moving t test (MTT) algorithm allows for automated lake ice retrievals with daily temporal fidelity and 5 km resolution gridding. The resulting ice phenology record shows strong agreement with available ground-based observations from the Global Lake and River Ice Phenology Database (95.4 % temporal agreement) and favorable correlations (R) with alternative ice phenology records from the Interactive Multisensor Snow and Ice Mapping System (R = 0.84 for water clear of ice (WCI) dates; R = 0.41 for complete freeze over (CFO) dates) and Canadian Ice Service (R = 0.86 for WCI dates; R = 0.69 for CFO dates). Analysis of the resulting 12-year (2002-2015) AMSR-E/2 ice record indicates increasingly shorter ice cover duration for 43 out of 71 (60.6 %) Northern Hemisphere lakes examined, with significant (p regional trends toward earlier ice melting for only five lakes. Higher-latitude lakes reveal more widespread and larger trends toward shorter ice cover duration than lower-latitude lakes, consistent with enhanced polar warming. This study documents a new satellite-based approach for rapid assessment and regional monitoring of seasonal ice cover changes over large lakes, with resulting accuracy suitable for global change studies.

  14. Preliminary study on direct assimilation of cloud-affected satellite microwave brightness temperatures

    Science.gov (United States)

    Zhang, Sibo; Guan, Li

    2017-02-01

    Direct assimilation of cloud-affected microwave brightness temperatures from AMSU-A into the GSI three-dimensional variational (3D-Var) assimilation system is preliminarily studied in this paper. A combination of cloud microphysics parameters retrieved by the 1D-Var algorithm (including vertical profiles of cloud liquid water content, ice water content, and rain water content) and atmospheric state parameters from objective analysis fields of an NWP model are used as background fields. Three cloud microphysics parameters (cloud liquid water content, ice water content, and rain water content) are applied to the control variable. Typhoon Halong (2014) is selected as an example. The results show that direct assimilation of cloud-affected AMSU-A observations can effectively adjust the structure of large-scale temperature, humidity and wind analysis fields due to the assimilation of more AMSU-A observations in typhoon cloudy areas, especially typhoon spiral cloud belts. These adjustments, with temperatures increasing and humidities decreasing in the movement direction of the typhoon, bring the forecasted typhoon moving direction closer to its real path. The assimilation of cloud-affected satellite microwave brightness temperatures can provide better analysis fields that are more similar to the actual situation. Furthermore, typhoon prediction accuracy is improved using these assimilation analysis fields as the initial forecast fields in NWP models.

  15. Advances in satellite oceanography

    Science.gov (United States)

    Brown, O. B.; Cheney, R. E.

    1983-01-01

    Technical advances and recent applications of active and passive satellite remote sensing techniques to the study of oceanic processes are summarized. The general themes include infrared and visible radiometry, active and passive microwave sensors, and buoy location systems. The surface parameters of sea surface temperature, windstream, sea state, altimetry, color, and ice are treated as applicable under each of the general methods.

  16. Estimation of volcanic ash refractive index from satellite infrared sounder data

    Science.gov (United States)

    Ishimoto, H.; Masuda, K.

    2014-12-01

    The properties of volcanic ash clouds (cloud height, optical depth, and effective radius of the particles) are planned to estimate from the data of the next Japanese geostationary meteorological satellite, Himawari 8/9. The volcanic ash algorithms, such as those proposed by NOAA/NESDIS and by EUMETSAT, are based on the infrared absorption properties of the ash particles, and the refractive index of a typical volcanic rock (i.e. andesite) has been used in the forward radiative transfer calculations. Because of a variety of the absorption properties for real volcanic ash particles at infrared wavelengths (9-13 micron), a large retrieval error may occur if the refractive index of the observed ash particles was different from that assumed in the retrieval algorithm. Satellite infrared sounder provides spectral information for the volcanic ash clouds. If we can estimate the refractive index of the ash particles from the infrared sounder data, a dataset of the optical properties for similar rock type of the volcanic ash can be prepared for the ash retrieval algorithms of geostationary/polar-orbiting satellites in advance. Furthermore, the estimated refractive index can be used for a diagnostic and a correction of the ash particle model in the retrieval algorithm within a period of the volcanic activities. In this work, optimal estimation of the volcanic ash parameters was conducted through the radiative transfer calculations for the window channels of the atmospheric infrared sounder (AIRS). The estimated refractive indices are proposed for the volcanic ash particles of some eruption events.

  17. Science operations management. [with Infrared Astronomy Satellite project

    Science.gov (United States)

    Squibb, G. F.

    1984-01-01

    The operation teams engaged in the IR Astronomical Satellite (IRAS) project included scientists from the IRAS International Science Team. The detailed involvement of these scientists in the design, testing, validation, and operations phases of the IRAS mission contributed to the success of this project. The Project Management Group spent a substantial amount of time discussing science-related issues, because science team coleaders were members from the outset. A single scientific point-of-contact for the Management Group enhanced the depth and continuity of agreement reached in decision-making.

  18. Statistical Analysis of the Correlation between Microwave Emission Anomalies and Seismic Activity Based on AMSR-E Satellite Data

    Science.gov (United States)

    qin, kai; Wu, Lixin; De Santis, Angelo; Zhang, Bin

    2016-04-01

    Pre-seismic thermal IR anomalies and ionosphere disturbances have been widely reported by using the Earth observation system (EOS). To investigate the possible physical mechanisms, a series of detecting experiments on rock loaded to fracturing were conducted. Some experiments studies have demonstrated that microwave radiation energy will increase under the loaded rock in specific frequency and the feature of radiation property can reflect the deformation process of rock fracture. This experimental result indicates the possibility that microwaves are emitted before earthquakes. Such microwaves signals are recently found to be detectable before some earthquake cases from the brightness temperature data obtained by the microwave-radiometer Advanced Microwave-Scanning Radiometer for the EOS (AMSR-E) aboard the satellite Aqua. This suggested that AMSR-E with vertical- and horizontal-polarization capability for six frequency bands (6.925, 10.65, 18.7, 23.8, 36.5, and 89.0 GHz) would be feasible to detect an earthquake which is associated with rock crash or plate slip. However, the statistical analysis of the correlation between satellite-observed microwave emission anomalies and seismic activity are firstly required. Here, we focus on the Kamchatka peninsula to carry out a statistical study, considering its high seismicity activity and the dense orbits covering of AMSR-E in high latitudes. 8-years (2003-2010) AMSR-E microwave brightness temperature data were used to reveal the spatio-temporal association between microwave emission anomalies and 17 earthquake events (M>5). Firstly, obvious spatial difference of microwave brightness temperatures between the seismic zone at the eastern side and the non-seismic zone the western side within the Kamchatka peninsula are found. Secondly, using both vertical- and horizontal-polarization to extract the temporal association, it is found that abnormal changes of microwave brightness temperatures appear generally 2 months before the

  19. Methodology of satellite microwave diagnostics of latitudinal-zonal and seasonal variations of frozen soil and sea ice

    Directory of Open Access Journals (Sweden)

    V. V. Melentiev

    2013-01-01

    Full Text Available In the frame of the work we have had investigated the utility of 6.9GHz dual polarization passive microwave data from the sensor AMSR-E for quantitative assessment of spatial and temporal variations of permafrost, seasonally frozen grounds and sea ice properties along the transect 70° E in 2005–2008 years. Analysis of the factors which could be detected with using study of the spatial-temporal variations of the microwave emissivity (brightness temperatures of the system «Earth-atmosphere» was carried out with using in situ data obtained from meteorological stations situated along the investigated transect of the Western Siberia and geocryologic station Marre-Sale (Yamal Peninsula. A new method of visualization of the brightness temperatures in spatial-temporal dimensions was suggested and practical applied. Eight latitudinal zones with intrinsic peculiarities of the spatial and seasonal variability of the brightness temperatures were revealed and investigated in many details. Comparison of the location of these zones with geographic distribution of biomes in Western Siberia was provided and it shows that satellite passive microwave information can be used for classification of the territories inside biomes. In frame of this study the annual brightness temperatures course for tundra zone area has been strictly divided into four periods (seasons characterized by different types of microwave emissivity variations. For boreal needle-leaved forest zone these seasons are manifested weaker. Comprehensive analysis of the satellite microwave survey data and corresponding the in situ data has shown satisfactory correlation between the brightness temperatures of the tundra areas on the Yamal Peninsula and their thermodynamic ground-trough temperatures at the square of geocryologic station Marre-Sale during winter period of stable frozen conditions and vegetation period. In these periods one-channel satellite microwave survey could be applied for the

  20. Evaluation of microphysics and precipitation-type frequencies in long-term three-dimensional cloud-resolving model simulations using passive and active microwave sensors from the TRMM satellite

    Science.gov (United States)

    Matsui, T.; Zeng, X.; Tao, W.; Lang, S.; Zhang, M.; Masunaga, H.

    2007-12-01

    With significant improvements in computational power over the last decades, cloud-resolving model (CRM) simulations can now be conducted on larger scales for longer time periods to better understand cloud- precipitation systems. However, even after the decadal development of CRMs, there are many uncertainties in cloud microphysics processes and cloud-precipitation structures due to the lack of routine observations. Therefore, we need to establish a practical CRM evaluation framework using frequent observations from satellites. This evaluation framework consists of i) multi-satellite simulators and ii) the construction of statistical composites that can be used to effectively evaluate cloud-precipitation systems. First, simulated cloud- precipitation structures and microphysics processes are converted to satellite-consistent radar reflectivity and microwave brightness temperature using microwave and radar simulators in the Satellite Data Simulator Unit (SDSU). Second, the CRM-computed and satellite-observed radar reflectivities and microwave brightness temperatures are used to construct two statistical composites. One combines TRMM (Tropical Rainfall Measuring Mission) PR (precipitation radar) 13.8-GHz radar echo-top heights and TRMM VIRS (visible/infrared scanner) 10.8-micron brightness temperatures. This composite categorizes precipitating clouds into shallow warm, cumulus congestus, deep stratiform, and deep convective clouds. The other composite combines multi- frequency TMI (TRMM microwave imager) brightness temperatures. The combination of low- and high-frequency channels reveals the performance of the model cloud microphysics in terms of liquid and ice precipitation amounts. In this study, long-term CRM simulations are performed using the Goddard Cumulus Ensemble (GCE) model for three cases: ARM TWP-ICE (Tropical Warm Pool International Cloud Experiment), SCSMEX (South China Sea Monsoon Experiment), and KWAJEX (Kwajalein Experiment). Results from the proposed

  1. Current Sounding Capability From Satellite Meteorological Observation With Ultraspectral Infrared Instruments

    Science.gov (United States)

    Zhou, Daniel K.; Liu, Xu; Larar, Allen M.

    2008-01-01

    Ultraspectral resolution infrared spectral radiance obtained from near nadir observations provide atmospheric, surface, and cloud property information. The intent of the measurement of tropospheric thermodynamic state and trace abundances is the initialization of climate models and the monitoring of air quality. The NPOESS Airborne Sounder Testbed-Interferometer (NAST-I), designed to support the development of future satellite temperature and moisture sounders, aboard high altitude aircraft has been collecting data throughout many field campaigns. An advanced retrieval algorithm developed with NAST-I is now applied to satellite data collected with the Atmospheric InfraRed Sounder (AIRS) on the Aqua satellite launched on 4 May 2002 and the Infrared Atmospheric Sounding Interferometer (IASI) on the MetOp satellite launched on October 19, 2006. These instruments possess an ultra-spectral resolution, for example, both IASI and NAST-I have 0.25 cm-1 and a spectral coverage from 645 to 2760 cm-1. The retrieval algorithm with a fast radiative transfer model, including cloud effects, is used for atmospheric profile and cloud parameter retrieval. The physical inversion scheme has been developed, dealing with cloudy as well as cloud-free radiance observed with ultraspectral infrared sounders, to simultaneously retrieve surface, atmospheric thermodynamic, and cloud microphysical parameters. A fast radiative transfer model, which applies to the clouded atmosphere, is used for atmospheric profile and cloud parameter retrieval. A one-dimensional (1-d) variational multi-variable inversion solution is used to improve an iterative background state defined by an eigenvector-regression-retrieval. The solution is iterated in order to account for non-linearity in the 1-d variational solution. It is shown that relatively accurate temperature and moisture retrievals can be achieved below optically thin clouds. For optically thick clouds, accurate temperature and moisture profiles down to

  2. Satellite Map of Port-au-Prince, Haiti-2010-Infrared

    Science.gov (United States)

    Cole, Christopher J.; Sloan, Jeff

    2010-01-01

    The U.S. Geological Survey produced 1:24,000-scale post-earthquake image base maps incorporating high- and medium-resolution remotely sensed imagery following the 7.0 magnitude earthquake near the capital city of Port au Prince, Haiti, on January 12, 2010. Commercial 2.4-meter multispectral QuickBird imagery was acquired by DigitalGlobe on January 15, 2010, following the initial earthquake. Ten-meter multispectral ALOS AVNIR-2 imagery was collected by the Japanese Space Agency (JAXA) on January 12, 2010. These data were acquired under the Remote Sensing International Charter, a global team of space and satellite agencies that provide timely imagery in support of emergency response efforts worldwide. The images shown on this map were employed to support earthquake response efforts, specifically for use in determining ground deformation, damage assessment, and emergency management decisions. The raw, unprocessed imagery was geo-corrected, mosaicked, and reproduced onto a cartographic 1:24,000-scale base map. These maps are intended to provide a temporally current representation of post-earthquake ground conditions, which may be of use to decision makers and to the general public.

  3. Symmetric Absorber-Coupled Far-Infrared Microwave Kinetic Inductance Detector

    Science.gov (United States)

    U-yen, Kongpop (Inventor); Wollack, Edward J. (Inventor); Brown, Ari D. (Inventor); Stevenson, Thomas R. (Inventor); Patel, Amil A. (Inventor)

    2016-01-01

    The present invention relates to a symmetric absorber-coupled far-infrared microwave kinetic inductance detector including: a membrane having an absorber disposed thereon in a symmetric cross bar pattern; and a microstrip including a plurality of conductor microstrip lines disposed along all edges of the membrane, and separated from a ground plane by the membrane. The conducting microstrip lines are made from niobium, and the pattern is made from a superconducting material with a transition temperature below niobium, including one of aluminum, titanium nitride, or molybdenum nitride. The pattern is disposed on both a top and a bottom of the membrane, and creates a parallel-plate coupled transmission line on the membrane that acts as a half-wavelength resonator at readout frequencies. The parallel-plate coupled transmission line and the conductor microstrip lines form a stepped impedance resonator. The pattern provides identical power absorption for both horizontal and vertical polarization signals.

  4. Microwave, High-Resolution Infrared, and Quantum Chemical Investigations of CHBrF2

    DEFF Research Database (Denmark)

    Cazzoli, Gabriele; Cludi, Lino; Puzzarini, Cristina

    2011-01-01

    analysis by high-level quantum chemical calculations at the coupled-cluster level. In this context, the importance of relativistic effects, which are of the order of 6.5% and included in the present work using second-order direct perturbation theory, needs to be emphasized for accurate predictions......A combined microwave, infrared, and computational investigation of CHBrF2 is reported. For the vibrational ground state, measurements in the millimeter- and sub-millimeter-wave regions for (CHBrF2)-Br-79 and (CHBrF2)-Br-81 provided rotational and centrifugal-distortion constants up to the sextic...... terms as well as the hyperfine parameters (quadrupole-coupling and spin-rotation interaction constants) of the bromine nucleus. The determination of the latter was made possible by recording of spectra at sub-Doppler resolution, achieved by means of the Lamb-dip technique, and supporting the spectra...

  5. GHRSST Level 2P Global Subskin Sea Surface Temperature from the Advanced Microwave Scanning Radiometer 2 on the GCOM-W satellite (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Advanced Microwave Scanning Radiometer 2 (AMSR2) was launched on 18 May 2012, onboard the Global Change Observation Mission - Water (GCOM-W) satellite developed...

  6. Remote Sensing of Tropical Cyclones: Applications from Microwave Radiometry and Global Navigation Satellite System Reflectometry

    Science.gov (United States)

    Morris, Mary

    Tropical cyclones (TCs) are important to observe, especially over the course of their lifetimes, most of which is spent over the ocean. Very few in situ observations are available. Remote sensing has afforded researchers and forecasters the ability to observe and understand TCs better. Every remote sensing platform used to observe TCs has benefits and disadvantages. Some remote sensing instruments are more sensitive to clouds, precipitation, and other atmospheric constituents. Some remote sensing instruments are insensitive to the atmosphere, which allows for unobstructed observations of the ocean surface. Observations of the ocean surface, either of surface roughness or emission can be used to estimate ocean surface wind speed. Estimates of surface wind speed can help determine the intensity, structure, and destructive potential of TCs. While there are many methods by which TCs are observed, this thesis focuses on two main types of remote sensing techniques: passive microwave radiometry and Global Navigation Satellite System reflectometry (GNSS-R). First, we develop and apply a rain rate and ocean surface wind speed retrieval algorithm for the Hurricane Imaging Radiometer (HIRAD). HIRAD, an airborne passive microwave radiometer, operates at C-band frequencies, and is sensitive to rain absorption and emission, as well as ocean surface emission. Motivated by the unique observing geometry and high gradient rain scenes that HIRAD typically observes, a more robust rain rate and wind speed retrieval algorithm is developed. HIRAD's observing geometry must be accounted for in the forward model and retrieval algorithm, if high rain gradients are to be estimated from HIRAD's observations, with the ultimate goal of improving surface wind speed estimation. Lastly, TC science data products are developed for the Cyclone Global Navigation Satellite System (CYGNSS). The CYGNSS constellation employs GNSS-R techniques to estimate ocean surface wind speed in all precipitating

  7. An Assessment of the Capabilities of the ERS Satellites' Active Microwave Instruments for Monitoring Soil Moisture Change

    Directory of Open Access Journals (Sweden)

    K. Blyth

    1997-01-01

    Full Text Available The launch of the European Remote sensing Satellite (ERS-1 in July 1991 represented an important turning point in the development of Earth observation as it was the first of a series of satellites which would carry high resolution active microwave (radar sensors which could operate through the thickest cloudeover and provide continuity of data for at least a decade. This was of particular relevance to hydrological applications, such as soil moisture monitoring, which generally require frequent satellite observations to monitor changes in state. ERS-1 and its successor ERS-2 carry the active microwave instrument (AMI which operates in 3 modes (synthetic aperture radar, wind scatterometer and wave seatterometer together with the radar altimeter which may all be useful for the observation of soil moisture. This paper assesses the utility of these sensors through a comprehensive review of work in this field. Two approaches to soil moisture retrieval are identified: 1 inversion modelling, where the physical effects of vegetation and soil roughness on radar backscatter are quantified through the use of multi-frequency and/or multi-polarization sensors and 2 change detection where these effects are normalized through frequent satellite observation, the residual effects being attributed to short-term changes in soil moisture. Both approaches will be better supported by the future European Envisat-l satellite which will provide both multi-polarization SAR and low resolution products which should facilitate more frequent temporal observation.

  8. Particle contamination from Martin Optical Black. [in design of barrel baffle of Infrared Astronomical Satellite

    Science.gov (United States)

    Young, P. J.; Noll, R.; Andreozzi, L.; Hope, J.

    1981-01-01

    The design of the barrel baffle of the Infrared Astronomical Satellite (IRAS) Optical Subsystem to minimize production of particulate contamination is described. The configuration of the 50-inch long, 28.5-inch diameter baffle required pop-rivet assembly after coating with Martin Optical Black for stray light suppression. An experiment to determine the contamination produced at assembly led to the modification of the baffle construction to preclude such damage to the coated surfaces.

  9. Laboratory microwave, millimeter wave and far-infrared spectra of dimethyl sulfide

    Science.gov (United States)

    Jabri, A.; Van, V.; Nguyen, H. V. L.; Mouhib, H.; Kwabia Tchana, F.; Manceron, L.; Stahl, W.; Kleiner, I.

    2016-05-01

    Context. Dimethyl sulfide, CH3SCH3 (DMS), is a nonrigid, sulfur-containing molecule whose astronomical detection is considered to be possible in the interstellar medium. Very accurate spectroscopic constants were obtained by a laboratory analysis of rotational microwave and millimeter wave spectra, as well as rotation-torsional far-infrared (FIR) spectra, which can be used to predict transition frequencies for a detection in interstellar sources. Aims: This work aims at the experimental study and theoretical analysis of the ground torsional state and ground torsional band ν15 of DMS in a large spectral range for astrophysical use. Methods: The microwave spectrum was measured in the frequency range 2-40 GHz using two Molecular Beam Fourier Transform MicroWave (MB-FTMW) spectrometers in Aachen, Germany. The millimeter spectrum was recorded in the 50-110 GHz range. The FIR spectrum was measured for the first time at high resolution using the FT spectrometer and the newly built cryogenic cell at the French synchrotron SOLEIL. Results: DMS has two equivalent methyl internal rotors with a barrier height of about 730 cm-1. We performed a fit, using the XIAM and BELGI-Cs-2Tops codes, that contained the new measurements and previous transitions reported in the literature for the ground torsional state νt = 0 (including the four torsional species AA, AE, EA and EE) and for the ground torsional band ν15 = 1 ← 0 (including only the AA species). In the microwave region, we analyzed 584 transitions with J ≤ 30 of the ground torsional state νt = 0 and 18 transitions with J ≤ 5 of the first excited torsional state νt = 1. In the FIR range, 578 transitions belonging to the torsional band ν15 = 1 ← 0 with J ≤ 27 were assigned. Totally, 1180 transitions were included in a global fit with 21 accurately determined parameters. These parameters can be used to produce a reliable line-list for an astrophysical detection of DMS. Full Tables B.1 and C.1, and Table E.1 are

  10. Title: Rice Crop Monitoring by Fusing Microwave and Optical Satellite Data

    Science.gov (United States)

    Oyoshi, K.; Takeuchi, W.; LE Toan, T.; Sobue, S.

    2015-12-01

    Rapid population and economic growth, and the increase in extreme weather events, are destabilizing global food security. In Asia, rice is a staple cereal crop, and the continent accounts for about 90% of global rice production and consumption. The Group on Earth Observations (GEO) Global Agricultural Monitoring (GLAM) was launched in 2011 to utilize remote sensing tools to enhance crop production projections in order to promote food security and foster sustainable economic growth. Asia---‒Rice Crop Estimation & Monitoring (Asia---‒RiCE) is a component of GEOGLAM, and aims to use remote sensing tools to develop rice---‒related information such as maps of paddy fields, rice growing conditions, yield, and production. However, in some regions in Southeast Asia, rice is planted and harvested more than twice a year, and the crop calendar is quite complicated. In addition, rice is mainly cultivated in the rainy season, and the high density of cloud cover during that season limits the observations that can be made from space using only optical sensors. In contrast, Synthetic Aperture Radar (SAR) is a robust tool because it penetrates cloud cover; however, the revisit frequency of a single SAR satellite is limited, making it difficult to capture the complicated rice crop calendar in Asia. In this research, time---‒series SAR data were fused with optical data to monitor rice crops in Southeast Asia with complicated crop calendars. In addition, a microwave radiometer that also penetrates clouds and has a high revisit frequency but a coarse spatial resolution (greater than several kilometers), was used. The integrated use of a large variety of satellite data enables us to periodically monitor surface conditions such as water inundation, transplanting, and rice crop growth and harvesting, which in turn enables us to examine rice planted areas, rice crop calendars, and rice growing conditions in order to estimate rice production.

  11. Optimization of infrared and magnetic shielding of superconducting TiN and Al coplanar microwave resonators

    Science.gov (United States)

    Kreikebaum, J. M.; Dove, A.; Livingston, W.; Kim, E.; Siddiqi, I.

    2016-10-01

    We present a systematic study of the effects of shielding on the internal quality factors ({Q}{{i}}) of Al and TiN microwave resonators designed for use in quantum coherent circuits. Measurements were performed in an adiabatic demagnetization refrigerator, where typical magnetic fields of 200 μT are present at the unshielded sample stage. Radiation shielding consisted of 100 and 500 mK Cu cans coated with infrared absorbing epoxy. Magnetic shields consisted of Cryoperm 10 and Sn plating of the Cu cans. A 2.7 K radiation can and coaxial thermalization filters were present in all measurements. TiN samples with {Q}{{i}}=1.3 × {10}6 at 100 mK exhibited no significant variation in quality factor when tested with limited shielding. In contrast, Al resonators showed improved {Q}{{i}} with successive shielding, with the largest gains obtained from the addition of the first radiation and magnetic shields and saturating before the addition of Sn plating infrared absorbing epoxy.

  12. Optimization of infrared and magnetic shielding of superconducting TiN and Al coplanar microwave resonators

    CERN Document Server

    Kreikebaum, John Mark; Livingston, William; Kim, Eunseong; Siddiqi, Irfan

    2016-01-01

    We present a systematic study of the effects of shielding on the internal quality factors (Qi) of Al and TiN microwave resonators designed for use in quantum coherent circuits. Measurements were performed in an adiabatic demagnetization refrigerator, where typical magnetic fields of 200 {\\mu}T are present at the unshielded sample stage. Radiation shielding consisted of 100 mK and 500 mK Cu cans coated with infrared absorbing epoxy. Magnetic shields consisted of Cryoperm 10 and Sn plating of the Cu cans. A 2.7 K radiation can and coaxial thermalization filters were present in all measurements. TiN samples with Qi = $1.3*10^6$ at 100 mK exhibited no significant variation in quality factor when tested with limited shielding. In contrast, Al resonators showed improved Qi with successive shielding, with the largest gains obtained from the addition of the first radiation and magnetic shields and saturating before the addition of Sn plating infrared absorbing epoxy.

  13. Investigation of multipactor breakdown in communication satellite microwave co-axial systems

    Indian Academy of Sciences (India)

    S K Nagesh; D Revannasiddiah; S V K Shastry

    2005-01-01

    Multipactor breakdown or multipactor discharge is a form of high frequency discharge that may occur in microwave components operating at very low pressures. Some RF components of multi-channel communication satellites have co-axial geometry and handle high RF power under near-vacuum conditions. The breakdown occurs due to secondary electron resonance, wherein electrons move back and forth in synchronism with the RF voltage across the gap between the inner and outer conductors of the co-axial structure. If the yield of secondary electrons from the walls of the co-axial structure is greater than unity, then the electron density increases with time and eventually leads to the breakdown. In this paper, the current due to the oscillating electrons in the co-axial geometry has been treated as a radially oriented Hertzian dipole. The electric field, due to this dipole, at any point in the coaxial structure, may then be determined by employing the dyadic Green’s function technique. This field has been compared with the field that would exist in the absence of multipactor.

  14. Optical frequency comb based multi-band microwave frequency conversion for satellite applications.

    Science.gov (United States)

    Yang, Xinwu; Xu, Kun; Yin, Jie; Dai, Yitang; Yin, Feifei; Li, Jianqiang; Lu, Hua; Liu, Tao; Ji, Yuefeng

    2014-01-13

    Based on optical frequency combs (OFC), we propose an efficient and flexible multi-band frequency conversion scheme for satellite repeater applications. The underlying principle is to mix dual coherent OFCs with one of which carrying the input signal. By optically channelizing the mixed OFCs, the converted signal in different bands can be obtained in different channels. Alternatively, the scheme can be configured to generate multi-band local oscillators (LO) for widely distribution. Moreover, the scheme realizes simultaneous inter- and intra-band frequency conversion just in a single structure and needs only three frequency-fixed microwave sources. We carry out a proof of concept experiment in which multiple LOs with 2 GHz, 10 GHz, 18 GHz, and 26 GHz are generated. A C-band signal of 6.1 GHz input to the proposed scheme is successfully converted to 4.1 GHz (C band), 3.9 GHz (C band) and 11.9 GHz (X band), etc. Compared with the back-to-back (B2B) case measured at 0 dBm input power, the proposed scheme shows a 9.3% error vector magnitude (EVM) degradation at each output channel. Furthermore, all channels satisfy the EVM limit in a very wide input power range.

  15. Cloud mask via cumulative discriminant analysis applied to satellite infrared observations: scientific basis and initial evaluation

    Directory of Open Access Journals (Sweden)

    U. Amato

    2014-06-01

    Full Text Available We introduce a classification method (Cumulative Discriminant Analysis of the Discriminant Analysis type to discriminate between cloudy and clear sky satellite observations in the thermal infrared. The tool is intended for the high spectral resolution infrared sounder (IRS planned for the geostationary METEOSAT (Meteorological Satellite Third Generation platform and uses IASI (Infrared Atmospheric Sounding Interferometer data as a proxy. The Cumulative Discriminant Analysis does not introduce biases intrinsic with the approximation of the probability density functions and is flexible enough to adapt to different strategies to optimize the cloud mask. The methodology is based on nine statistics computed from IASI spectral radiances, which exploit the high spectral resolution of the instrument and which effectively summarize information contained within the IASI spectrum. A Principal Component Analysis prior step is also introduced which makes the problem more consistent with the statistical assumptions of the methodology. An initial assessment of the scheme is performed based on global and regional IASI real data sets and cloud masks obtained from AVHRR (Advanced Very High Resolution Radiometer and SEVIRI (Spinning Enhanced Visible and Infrared Imager imagers. The agreement with these independent cloud masks is generally well above 80%, except at high latitudes in their winter seasons.

  16. Cloud mask via cumulative discriminant analysis applied to satellite infrared observations: scientific basis and initial evaluation

    Science.gov (United States)

    Amato, U.; Lavanant, L.; Liuzzi, G.; Masiello, G.; Serio, C.; Stuhlmann, R.; Tjemkes, S. A.

    2014-10-01

    We introduce a classification method (cumulative discriminant analysis) of the discriminant analysis type to discriminate between cloudy and clear-sky satellite observations in the thermal infrared. The tool is intended for the high-spectral-resolution infrared sounder (IRS) planned for the geostationary METEOSAT (Meteorological Satellite) Third Generation platform and uses IASI (Infrared Atmospheric Sounding Interferometer) data as a proxy. The cumulative discriminant analysis does not introduce biases intrinsic with the approximation of the probability density functions and is flexible enough to adapt to different strategies to optimize the cloud mask. The methodology is based on nine statistics computed from IASI spectral radiances, which exploit the high spectral resolution of the instrument and which effectively summarize information contained within the IASI spectrum. A principal component analysis prior step is also introduced, which makes the problem more consistent with the statistical assumptions of the methodology. An initial assessment of the scheme is performed based on global and regional IASI real data sets and cloud masks obtained from AVHRR (Advanced Very High Resolution Radiometer) and SEVIRI (Spinning Enhanced Visible and Infrared Imager) imagers. The agreement with these independent cloud masks is generally well above 80 %, except at high latitudes in the winter seasons.

  17. CMORPH 8 Km: A Method that Produces Global Precipitation Estimates from Passive Microwave and Infrared Data at High Spatial and Temporal Resolution

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A new technique is presented in which half-hourly global precipitation estimates derived from passive microwave satellite scans are propagated by motion vectors...

  18. Bayesian Estimation of Precipitation from Satellite Passive Microwave Observations Using Combined Radar-Radiometer Retrievals

    Science.gov (United States)

    Grecu, Mircea; Olson, William S.

    2006-01-01

    Precipitation estimation from satellite passive microwave radiometer observations is a problem that does not have a unique solution that is insensitive to errors in the input data. Traditionally, to make this problem well posed, a priori information derived from physical models or independent, high-quality observations is incorporated into the solution. In the present study, a database of precipitation profiles and associated brightness temperatures is constructed to serve as a priori information in a passive microwave radiometer algorithm. The precipitation profiles are derived from a Tropical Rainfall Measuring Mission (TRMM) combined radar radiometer algorithm, and the brightness temperatures are TRMM Microwave Imager (TMI) observed. Because the observed brightness temperatures are consistent with those derived from a radiative transfer model embedded in the combined algorithm, the precipitation brightness temperature database is considered to be physically consistent. The database examined here is derived from the analysis of a month-long record of TRMM data that yields more than a million profiles of precipitation and associated brightness temperatures. These profiles are clustered into a tractable number of classes based on the local sea surface temperature, a radiometer-based estimate of the echo-top height (the height beyond which the reflectivity drops below 17 dBZ), and brightness temperature principal components. For each class, the mean precipitation profile, brightness temperature principal components, and probability of occurrence are determined. The precipitation brightness temperature database supports a radiometer-only algorithm that incorporates a Bayesian estimation methodology. In the Bayesian framework, precipitation estimates are weighted averages of the mean precipitation values corresponding to the classes in the database, with the weights being determined according to the similarity between the observed brightness temperature principal

  19. Program on application of communications satellites to educational development: Design of a 12 channel FM microwave receiver. [color television from communication satellites

    Science.gov (United States)

    Risch, C. O.; Rosenbaum, F. J.; Gregory, R. O.

    1974-01-01

    The design, fabrication, and performance of elements of a low cost FM microwave satellite ground station receiver is described. It is capable of accepting 12 contiguous color television equivalent bandwidth channels in the 11.72 to 12.2 GHz band. Each channel is 40 MHz wide and incorporates a 4 MHz guard band. The modulation format is wideband FM and the channels are frequency division multiplexed. Twelve independent CATV compatible baseband outputs are provided. The overall system specifications are first discussed, then consideration is given to the receiver subsystems and the signal branching network.

  20. The Satellite Passive-Microwave Record of Sea Ice in the Ross Sea Since Late 1978

    Science.gov (United States)

    Parkinson, Claire L.

    2009-01-01

    Satellites have provided us with a remarkable ability to monitor many aspects of the globe day-in and day-out and sea ice is one of numerous variables that by now have quite substantial satellite records. Passive-microwave data have been particularly valuable in sea ice monitoring, with a record that extends back to August 1987 on daily basis (for most of the period), to November 1970 on a less complete basis (again for most of the period), and to December 1972 on a less complete basis. For the period since November 1970, Ross Sea sea ice imagery is available at spatial resolution of approximately 25 km. This allows good depictions of the seasonal advance and retreat of the ice cover each year, along with its marked interannual variability. The Ross Sea ice extent typically reaches a minimum of approximately 0.7 x 10(exp 6) square kilometers in February, rising to a maximum of approximately 4.0 x 10(exp 6) square kilometers in September, with much variability among years for both those numbers. The Ross Sea images show clearly the day-by-day activity greatly from year to year. Animations of the data help to highlight the dynamic nature of the Ross Sea ice cover. The satellite data also allow calculation of trends in the ice cover over the period of the satellite record. Using linear least-squares fits, the Ross Sea ice extent increased at an average rate of 12,600 plus or minus 1,800 square kilometers per year between November 1978 and December 2007, with every month exhibiting increased ice extent and the rates of increase ranging from a low of 7,500 plus or minus 5,000 square kilometers per year for the February ice extents to a high of 20,300 plus or minus 6,100 kilometers per year for the October ice extents. On a yearly average basis, for 1979-2007 the Ross Sea ice extent increased at a rate of 4.8 plus or minus 1.6 % per decade. Placing the Ross Sea in the context of the Southern Ocean as a whole, over the November 1978-December 2007 period the Ross Sea had

  1. Search for astronomical sites suitable for infrared observations using GOES satellite images

    Science.gov (United States)

    Ducati, Jorge R.; Feijo, Eleandro S.

    2003-04-01

    Images from GOES satellite were used to develop a method to search for sites suitable to astronomical observations in the infrared. An area of study located in the Peruvian Andes was chosen, with altitudes above 2500 m. Forty-three images from the GOES meteorological satellite in channels 3, 4 and 5 were used. The GOES images, spanning an 11-day period, in each channel, were combined to produced images expressing the surface visibility in each channel. Atmospheric turbulence could be estimated from the variation of visibility over six-hour periods, with one image per hour. As criteria to classify sites on the Andes, we combined information on altitude, visibility of the surface in the infrared, the amount of water vapor in the atmosphere, and atmospheric turbulence. Results of this new method showed that the region of Moquegua, in South Peru, is to be preferred in surveys for astronomical sites. Comparisons with results from other investigators, which used other approaches, indicated that this methodology can produce valid results and can be applied to studies covering larger periods. The general results of this study indicate that the method is valid and can effectively be used as an important resource in surveys for infrared astronomical sites.

  2. Search for astronomical sites suitable for infrared observations using goes satellite images release

    Science.gov (United States)

    Ducati, J. R.; Feijó, E.

    2003-08-01

    Astronomical sites are traditionally found after studies performed over many years, including preliminary selection of places based in general information on climate, clear skies and logistical adequacy. It follows extensive "in situ" monitoring of seeing and cloudiness. Theses procedures are long and expensive, and alternatives can be looked for. In this study, images from GOES meteorological satellite were used to develop a method to search for sites suitable to astronomical observations in the infrared. An area of study located in the Peruvian Andes was chosen, with altitudes above 2500 m. 43 images from the GOES meteorological satellite in chanels 3, 4 and 5 were used. The GOES images, spanning a 11-day period, in each channel, were combined to produced images expressing the surface visibility in each channel. Atmospheric turbulence could be estimated from the variation of visibility over six-hour periods, with one image per hour. As criteria to classify sites on the Andes, we combined information on altitude, visibility of the surface in the infrared, the amount of water vapor in the atmosphere, and atmospheric turbulence. Results of this new method showed that the region of Moquegua, in South Peru, is to be preferred in surveys for astronomical sites. Comparisons with results from other investigators, which used other approaches, indicated that this methodology produces valid results and can be used to studies spanning larger periods. The general results of this study indicate that the method can efectively be used as an important resource in surveys for infrared astronomical sites

  3. A learning tool for optical and microwave satellite image processing and analysis

    Science.gov (United States)

    Dashondhi, Gaurav K.; Mohanty, Jyotirmoy; Eeti, Laxmi N.; Bhattacharya, Avik; De, Shaunak; Buddhiraju, Krishna M.

    2016-04-01

    This paper presents a self-learning tool, which contains a number of virtual experiments for processing and analysis of Optical/Infrared and Synthetic Aperture Radar (SAR) images. The tool is named Virtual Satellite Image Processing and Analysis Lab (v-SIPLAB) Experiments that are included in Learning Tool are related to: Optical/Infrared - Image and Edge enhancement, smoothing, PCT, vegetation indices, Mathematical Morphology, Accuracy Assessment, Supervised/Unsupervised classification etc.; Basic SAR - Parameter extraction and range spectrum estimation, Range compression, Doppler centroid estimation, Azimuth reference function generation and compression, Multilooking, image enhancement, texture analysis, edge and detection. etc.; SAR Interferometry - BaseLine Calculation, Extraction of single look SAR images, Registration, Resampling, and Interferogram generation; SAR Polarimetry - Conversion of AirSAR or Radarsat data to S2/C3/T3 matrix, Speckle Filtering, Power/Intensity image generation, Decomposition of S2/C3/T3, Classification of S2/C3/T3 using Wishart Classifier [3]. A professional quality polarimetric SAR software can be found at [8], a part of whose functionality can be found in our system. The learning tool also contains other modules, besides executable software experiments, such as aim, theory, procedure, interpretation, quizzes, link to additional reading material and user feedback. Students can have understanding of Optical and SAR remotely sensed images through discussion of basic principles and supported by structured procedure for running and interpreting the experiments. Quizzes for self-assessment and a provision for online feedback are also being provided to make this Learning tool self-contained. One can download results after performing experiments.

  4. Infrared/microwave (IR/MW) micromirror array beam combiner design and analysis.

    Science.gov (United States)

    Tian, Yi; Lv, Lijun; Jiang, Liwei; Wang, Xin; Li, Yanhong; Yu, Haiming; Feng, Xiaochen; Li, Qi; Zhang, Li; Li, Zhuo

    2013-08-01

    We investigated the design method of an infrared (IR)/microwave (MW) micromirror array type of beam combiner. The size of micromirror is in microscopic levels and comparable to MW wavelengths, so that the MW will not react in these dimensions, whereas the much shorter optical wavelengths will be reflected by them. Hence, the MW multilayered substrate was simplified and designed using transmission line theory. The beam combiner used an IR wavefront-division imaging technique to reflect the IR radiation image to the unit under test (UUT)'s pupil in a parallel light path. In addition, the boresight error detected by phase monopulse radar was analyzed using a moment-of method (MoM) and multilevel fast multipole method (MLFMM) acceleration technique. The boresight error introduced by the finite size of the beam combiner was less than 1°. Finally, in order to verify the wavefront-division imaging technique, a prototype of a micromirror array was fabricated, and IR images were tested. The IR images obtained by the thermal imager verified the correctness of the wavefront-division imaging technique.

  5. Astrometry and Near-Infrared Photometry of Neptune's Inner Satellites and Ring Arcs

    Science.gov (United States)

    Dumas, Christophe; Terrile, Richard J.; Smith, Bradford A.; Schneider, Glenn

    2002-03-01

    We report 1.87 μm photometry and astrometry of the inner satellites (Proteus, Larissa, Galatea, and Despina) and ring arcs of Neptune, obtained with the Hubble Space Telescope and its near-infrared camera NICMOS. From comparison with the Voyager data obtained at visible wavelengths, the small bodies orbiting within the ring region of Neptune have a near-infrared albedo consistently low, but higher than at visible wavelengths for most of the satellites, ranging from p1.87μm=0.058 (Despina) to p1.87μm=0.094 (Proteus). The ring arcs display a reddish spectral response similar to the satellites' in the 0.5-1.9 μm wavelength range. If we consider an earlier photometric measurement of Proteus obtained at K band, the satellite's albedo shows a depression at 2.2 μm that could be the first spectral evidence for the presence of CH or CN bearing material on its surface. Although astrometry of the inner moons of Neptune yields positions consistent with the predictions derived from Voyager images, the long time base between the Voyager and NICMOS observations allows us to refine our knowledge of their mean motions and semimajor axes, and to decrease the errors associated with these measurements. In addition, we confirm a mismatch between the mean semimajor axis of the ring arcs and the location of the 42:43 corotation inclined resonance due to Galatea. This result calls into question the ability of this resonance to confine the arcs azimuthally.

  6. The Expected Impacts of NPOESS Microwave and Infrared Sounder Radiances on Operational Numerical Weather Prediction and Data Assimilation Systems

    Science.gov (United States)

    Swadley, S. D.; Baker, N.; Derber, J.; Collard, A.; Hilton, F.; Ruston, B.; Bell, W.; Candy, B.; Kleespies, T. J.

    2009-12-01

    The NPOESS atmospheric sounding functionality will be accomplished using two separate sensor suites, the combined infrared (IR) and microwave (MW) sensor suite (CrIMSS), and the Microwave Imager/Sounder (MIS) instrument. CrIMSS consists of the Cross Track Infrared Sounder (CrIS) and the cross track Advanced Technology Microwave Sounder (ATMS), and is scheduled to fly on the NPOESS Preparatory Project (NPP), and NPOESS operational flight units C1 and C3. The MIS is a conical scanning polarimetric imager and sounder patterned after the heritage WindSat, and DMSP Special Sensor Microwave Imagers and Sounders (SSMI and SSMIS), and is scheduled for flight units C2, C3 and C4. ATMS combines the current operational Advanced Microwave Sounding Unit (AMSU) and the Microwave Humidity Sounder (MHS), but with an additional channel in the 51.76 GHz oxygen absorption region and 3 additional channels in the 165.5 and 183 GHz water vapor absorption band. CrIS is a Fourier Transform Spectrometer and will provide 159 shortwave IR channels, 433 mid-range IR channels, and 713 longwave IR channels. The heritage sensors for CrIS are the NASA Advanced Infrared Sounder (AIRS) and the MetOp-A Infrared Atmospheric Sounding Interferometer (IASI). Both AIRS and IASI are high quality, high spectral resolution sounders which represent a significant improvement in the effective vertical resolution over previous IR sounders. This presentation will give an overview of preparations underway for day-1 monitoring of NPP/NPOESS radiances, and subsequent operational radiance assimilation. These preparations capitalize on experience gained during the pre-launch preparations, sensor calibration/validation and operational assimilation for the heritage sensors. One important step is to use pre-flight sensor channel specifications, noise estimates and knowledge of the antenna patterns, to generate and test proxy NPP/NPOESS sensor observations in existing assimilation systems. Other critical factors for

  7. Digital Meteorological Radar Data Compared with Digital Infrared Data from a Geostationary Meteorological Satellite.

    Science.gov (United States)

    1979-05-01

    datai uwere tab~ulaited for compariso;cn with the infrared satellite data) j 20 CIIA1iLTR Ml GEOSTAT] ONAPY ME LW)L- C , TIL LF K Meteorolccj isa I sate...8217):U S f 3 ’ 1 t ’ Iv . e , :]~L ’ bI 1 T-4 THY:-, L,’AClvT!P 3 AND IMVIC]l C t101 KRV~;It Tb 3 ( ji~u>:2;cat L ii 2 ’GD ~Of the L~r [2 u : ~~ I~ rtu ~j

  8. Identifying clouds over the Pierre Auger Observatory using infrared satellite data

    Science.gov (United States)

    Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Antičić, T.; Aramo, C.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Badescu, A. M.; Barber, K. B.; Barbosa, A. F.; Bardenet, R.; Baughman, B.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellétoile, A.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buroker, L.; Burton, R. E.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chirinos, J.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cook, H.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Criss, A.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; De La Vega, G.; de Mello, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Diaz, J. C.; Díaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fliescher, S.; Fox, B. D.; Fracchiolla, C. E.; Fraenkel, E. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gemmeke, H.; Ghia, P. L.; Giller, M.; Gitto, J.; Glaser, C.; Glass, H.; Golup, G.; Gomez Albarracin, F.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holmes, V. C.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Jansen, S.; Jarne, C.; Jiraskova, S.; Josebachuili, M.; Kadija, K.; Kampert, K. H.; Karhan, P.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kelley, J. L.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Krause, R.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kulbartz, J. K.; Kunka, N.; La Rosa, G.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Macolino, C.; Malacari, M.; Maldera, S.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, J.; Marin, V.; Mariş, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Messina, S.; Meyhandan, R.; Mićanović, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, J. C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nhung, P. T.; Niechciol, M.; Niemietz, L.; Nierstenhoefer, N.; Niggemann, T.; Nitz, D.; Nosek, D.; Nožka, L.; Oehlschläger, J.; Olinto, A.; Oliveira, M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; Peķala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrolini, A.; Petrov, Y.; Pfendner, C.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Ponce, V. H.; Pontz, M.; Porcelli, A.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez Cabo, I.; Rodriguez Fernandez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouillé-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Rühle, C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovancova, J.; Schovánek, P.; Schröder, F. G.; Schulz, J.; Schuster, D.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Srivastava, Y. N.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Straub, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Šuša, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Tapia, A.; Tartare, M.; Taşcău, O.; Tcaciuc, R.; Thao, N. T.; Thomas, D.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Tridapalli, D. B.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Westerhoff, S.; Whelan, B. J.; Widom, A.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wundheiler, B.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano Garcia, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.

    2013-12-01

    We describe a new method of identifying night-time clouds over the Pierre Auger Observatory using infrared data from the Imager instruments on the GOES-12 and GOES-13 satellites. We compare cloud identifications resulting from our method to those obtained by the Central Laser Facility of the Auger Observatory. Using our new method we can now develop cloud probability maps for the 3000 km2 of the Pierre Auger Observatory twice per hour with a spatial resolution of ˜2.4 km by ˜5.5 km. Our method could also be applied to monitor cloud cover for other ground-based observatories and for space-based observatories.

  9. Identifying clouds over the Pierre Auger Observatory using infrared satellite data

    Energy Technology Data Exchange (ETDEWEB)

    Abreu, Pedro; et al.,

    2013-12-01

    We describe a new method of identifying night-time clouds over the Pierre Auger Observatory using infrared data from the Imager instruments on the GOES-12 and GOES-13 satellites. We compare cloud identifications resulting from our method to those obtained by the Central Laser Facility of the Auger Observatory. Using our new method we can now develop cloud probability maps for the 3000 km^2 of the Pierre Auger Observatory twice per hour with a spatial resolution of ~2.4 km by ~5.5 km. Our method could also be applied to monitor cloud cover for other ground-based observatories and for space-based observatories.

  10. NOAA Climate Data Record (CDR) of Gridded Satellite Data from ISCCP B1 (GridSat-B1) Infrared Channel Brightness Temperature, Version 2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Gridded Satellite (GridSat-B1) data provides a uniform set of quality controlled geostationary satellite observations for the visible, infrared window and...

  11. Daily Area of Snow Melt Onset on Arctic Sea Ice from Passive Microwave Satellite Observations 1979–2012

    OpenAIRE

    Angela C. Bliss; Anderson, Mark R

    2014-01-01

    Variability in snow melt onset (MO) on Arctic sea ice since 1979 is examined by determining the area of sea ice experiencing the onset of melting during the melt season on a daily basis. The daily MO area of the snow and ice surface is determined from passive microwave satellite-derived MO dates for the Arctic Ocean and sub-regions. Annual accumulations of MO area are determined by summing the time series of daily MO area through the melt season. Daily areas and annual accumulations of MO are...

  12. The Cosmic Background Explorer Satellite

    Science.gov (United States)

    Mather, J.; Kelsall, T.

    1980-01-01

    The Cosmic Background Explorer (COBE) satellite, planned for launch in 1985, will measure the diffuse infrared and microwave radiation of the universe over the entire wavelength range from a few microns to 1.3 cm. It will include three instruments: a set of microwave isotropy radiometers at 23, 31, 53, and 90 GHz, an interferometer spectrometer from 1 to 100/cm, and a filter photometer from 1 to 300 microns. The COBE satellite is designed to reach the sensitivity limits set by foreground sources such as the interstellar and interplanetary dust, starlight, and galactic synchrotron radiation, so that a diffuse residual radiation may be interpreted unambiguously as extragalactic

  13. Near-Infrared Photometry of Irregular Satellites of Jupiter and Saturn

    CERN Document Server

    Grav, T; Grav, Tommy; Holman, Matthew J.

    2003-01-01

    We present JHKs photometry of 10 Jovian and 4 Saturnian irregular satellites, taken with the Near-InfraRed Imager (NIRI) at the 8-m Gemini North Observatory on Mauna Kea, Hawaii. The observed objects have near-infrared colors consistent with C, P and D-type asteroids, although J XII Ananke and S IX Phoebe show weak indications of possible water features in the H filter. The four members of the Himalia-family have similar near-infrared colors, as do the two members of the Gallic family, S XX Paaliaq and S XXIX Siarnaq. From low resolution normalized reflectance spectra based on the broadband colors and covering 0.4 to 2.2 microns, the irregular satellites are identified as C-type (J VII Pasiphae, J VI Himalia and S IX Phoebe), P-type (J XII Ananke and J XVIII Themisto) and D-type (J IX Carme and J X Sinope), showing a diversity of origins of these objects.

  14. Assessing the Relative Performance of Microwave-Based Satellite Rain Rate Retrievals Using TRMM Ground Validation Data

    Science.gov (United States)

    Wolff, David B.; Fisher, Brad L.

    2011-01-01

    Space-borne microwave sensors provide critical rain information used in several global multi-satellite rain products, which in turn are used for a variety of important studies, including landslide forecasting, flash flood warning, data assimilation, climate studies, and validation of model forecasts of precipitation. This study employs four years (2003-2006) of satellite data to assess the relative performance and skill of SSM/I (F13, F14 and F15), AMSU-B (N15, N16 and N17), AMSR-E (Aqua) and the TRMM Microwave Imager (TMI) in estimating surface rainfall based on direct instantaneous comparisons with ground-based rain estimates from Tropical Rainfall Measuring Mission (TRMM) Ground Validation (GV) sites at Kwajalein, Republic of the Marshall Islands (KWAJ) and Melbourne, Florida (MELB). The relative performance of each of these satellite estimates is examined via comparisons with space- and time-coincident GV radar-based rain rate estimates. Because underlying surface terrain is known to affect the relative performance of the satellite algorithms, the data for MELB was further stratified into ocean, land and coast categories using a 0.25deg terrain mask. Of all the satellite estimates compared in this study, TMI and AMSR-E exhibited considerably higher correlations and skills in estimating/observing surface precipitation. While SSM/I and AMSU-B exhibited lower correlations and skills for each of the different terrain categories, the SSM/I absolute biases trended slightly lower than AMSR-E over ocean, where the observations from both emission and scattering channels were used in the retrievals. AMSU-B exhibited the least skill relative to GV in all of the relevant statistical categories, and an anomalous spike was observed in the probability distribution functions near 1.0 mm/hr. This statistical artifact appears to be related to attempts by algorithm developers to include some lighter rain rates, not easily detectable by its scatter-only frequencies. AMSU

  15. Near-infrared photometry and astrometry of Neptune's inner satellites and ring-arcs

    Science.gov (United States)

    Dumas, C.; Terrile, R. J.; Smith, B. A.; Schneider, G.; Becklin, E. E.

    2000-10-01

    Until recently, the system of Neptune's inner satellites and ring-arcs had only been observed in direct imaging from the Voyager 2 spacecraft, limiting our knowledge of this system to visible wavelengths data. Nearly ten years after the Voyager fly-by, HST/NICMOS observed the close vicinity of Neptune at 1.87μ m, a wavelength that corresponds to a strong methane absorption in the atmosphere of Neptune and allows the attenuation of the scattered light produced by the planet. We derived the near-infrared geometric albedo of the ring-arcs and small moons Proteus, Larissa, Galatea and Despina, and compared their orbital positions with the predictions from the 1989 Voyager observations. The surfaces of the inner satellites of Neptune appear to be coated with dark, neutral material, with albedoes ranging from 0.077 (Proteus) to 0.033 (Despina) and their orbital position was found to be within the prediction errors of the Voyager measurements. The material located inside the ring-arcs of Neptune also displays a low-neutral reflectance (p{1.87 μm } ~ 0.055) and the HST/NICMOS measurement of the mean orbital motion of the ring-arcs shows that their confinement cannot be entirely explained by resonances produced by the nearby satellite Galatea (Nature, 400, 733-735). This work was performed at the Jet Propulsion Laboratory, Caltech, under contract with the National Aeronautics and Space Administration, and is supported by NASA grant NAG5-3042.

  16. Detecting snowfall over land by satellite high-frequency microwave observations: The lack of scattering signature and a statistical approach

    Science.gov (United States)

    Liu, Guosheng; Seo, Eun-Kyoung

    2013-02-01

    has been long believed that the dominant microwave signature of snowfall over land is the brightness temperature decrease caused by ice scattering. However, our analysis of multiyear satellite data revealed that on most of occasions, brightness temperatures are rather higher under snowfall than nonsnowfall conditions, likely due to the emission by cloud liquid water. This brightness temperature increase masks the scattering signature and complicates the snowfall detection problem. In this study, we propose a statistical method for snowfall detection, which is developed by using CloudSat radar to train high-frequency passive microwave observations. To capture the major variations of the brightness temperatures and reduce the dimensionality of independent variables, the detection algorithm is designed to use the information contained in the first three principal components resulted from Empirical Orthogonal Function (EOF) analysis, which capture ~99% of the total variances of brightness temperatures. Given a multichannel microwave observation, the algorithm first transforms the brightness temperature vector into EOF space and then retrieves a probability of snowfall by using the CloudSat radar-trained look-up table. Validation has been carried out by case studies and averaged horizontal snowfall fraction maps. The result indicated that the algorithm has clear skills in identifying snowfall areas even over mountainous regions.

  17. The influence of snow depth and surface air temperature on satellite-derived microwave brightness temperature. [central Russian steppes, and high plains of Montana, North Dakota, and Canada

    Science.gov (United States)

    Foster, J. L.; Hall, D. K.; Chang, A. T. C.; Rango, A.; Allison, L. J.; Diesen, B. C., III

    1980-01-01

    Areas of the steppes of central Russia, the high plains of Montana and North Dakota, and the high plains of Canada were studied in an effort to determine the relationship between passive microwave satellite brightness temperature, surface air temperature, and snow depth. Significant regression relationships were developed in each of these homogeneous areas. Results show that sq R values obtained for air temperature versus snow depth and the ratio of microwave brightness temperature and air temperature versus snow depth were not as the sq R values obtained by simply plotting microwave brightness temperature versus snow depth. Multiple regression analysis provided only marginal improvement over the results obtained by using simple linear regression.

  18. An Evaluation of Antarctica as a Calibration Target for Passive Microwave Satellite Missions with Climate Data Record Applications

    Science.gov (United States)

    Kim, E. J.

    2011-12-01

    surface salinity, both important climate variables. Science studies involving these variables can now take advantage of new satellite L-band observations. The first mission with regular global passive microwave observations at L-band is the European Space Agency's Soil Moisture and Ocean Salinity (SMOS), launched November, 2009. A second mission, NASA's Aquarius, was launched June, 2011. A third mission, NASA's Soil Moisture Active Passive (SMAP) is scheduled to launch in 2014. Together, these three missions may provide a decade-long data record-provided that they are intercalibrated. The intercalibration is best performed at the radiance (brightness temperature) level, and Antarctica is proving to be a key calibration target. However, Antarctica has thus far not been fully characterized as a potential target. This paper will present evaluations of Antarctica as a microwave calibration target for the above satellite missions. Preliminary analyses have identified likely target areas, such as the vicinity of Dome-C and larger areas within East Antarctica. Physical sources of temporal and spatial variability of polar firn are key to assessing calibration uncertainty. These sources include spatial variability of accumulation rate, compaction, surface characteristics (dunes, micro-topography), wind patterns, and vertical profiles of density and temperature. Using primarily SMOS data, variability is being empirically characterized and attempts are being made to attribute observed variability to physical sources. One expected outcome of these studies is the potential discovery of techniques for remotely sensing--over all of Antarctica-parameters such as surface temperature.

  19. The use of near-infrared and microwave resonance sensing to monitor a continuous roller compaction process.

    Science.gov (United States)

    Austin, John; Gupta, Anshu; McDonnell, Ryan; Reklaitis, Gintaras V; Harris, Michael T

    2013-06-01

    Roller compaction is commonly used in the pharmaceutical and nutraceutical industries to increase and narrow the size distribution of a particulate material, making it easier to process. Both the moisture content of the material and the density of the roller compacted ribbon affect the uniformity and physical properties of the resultant granules. Without process analytical technologies, these parameters cannot be determined on-line or in real time. In this study, the more commonly used near-infrared (NIR) spectroscopy was compared and contrasted with microwave resonance for the determination of roller-compacted ribbons' envelope density and moisture content. Results indicate that microwave resonance can offer improved accuracy, robustness, and ease-of-use compared with NIR spectroscopy for these property measurements. Copyright © 2013 Wiley Periodicals, Inc.

  20. Infrared blocking, microwave and terahertz low-loss transmission AlN films grown on flexible polymeric substrates

    Science.gov (United States)

    Rudenko, E.; Tsybrii, Z.; Sizov, F.; Korotash, I.; Polotskiy, D.; Skoryk, M.; Vuichyk, M.; Svezhentsova, K.

    2017-04-01

    Aluminum nitride (AlN) film coatings on flexible substrates (polymeric Teflon, Mylar) have been obtained using a hybrid helicon-arc ion-plasma deposition technique with high adhesion of coatings. Studies of optical, morphological, and structural properties of AlN films have been carried out. It was found that AlN coatings on Teflon and Mylar thin-film substrates substantially suppress transmission of infrared (IR) radiation within the spectral range λ ˜ 5-20 μm at certain technological parameters and thickness of AlN. Transmission in THz regions by using quasioptics attains T ≈ 79%-95%, and losses measured in the channels within the microwave region 2 to 36 GHz are <0.06 dB. The obtained composite structures (AlN coatings on Teflon and Mylar thin-film substrates), due to a high thermal conductivity of AlN, could be used as efficient blocking structures in the infrared spectral range ("infrared stealth") withdrawing the heat from filters warmed by IR radiation. At the same time, they can be used as the transparent ones in the microwave and THz regions, which can be important for low-temperature detector components of navigation, positioning, and telecommunication systems due to reducing the background noise.

  1. Rainfall measurements from cellular networks microwave links : an alternative ground reference for satellite validation and hydrology in Africa .

    Science.gov (United States)

    Gosset, Marielle; cazenave, frederic; Zougmore, françois; Doumounia, Ali; kacou, Modeste

    2015-04-01

    In many part of the Tropics the ground based gauge networks are sparse, often degrading and accessing this data for monitoring rainfall or for validating satellite products is sometime difficult. Here, an alternative rainfall measuring technique is proposed and tested in West Africa. It is based on using commercial microwave links from cellular telephone networks to detect and quantify rainfall. Rainfall monitoring based on commercial terrestrial microwave links has been tested for the first time in Burkina Faso, in Sahel. The rainfall regime is characterized by intense rainfall intensities brought by mesoscale Convective systems (MCS), generated by deep organized convection. The region is subjected to drought as well as dramatic floods associated with the intense rainfall provided by a few MCSs. The hydrometeorological risk is increasing and need to be monitored. In collaboration with the national cellular phone operator, Telecel Faso, the attenuation on 29 km long microwave links operating at 7 GHz was monitored at 1s time rate for the monsoon season 2012. The time series of attenuation is transformed into rain rates and compared with rain gauge data. The method is successful in quantifying rainfall: 95% of the rainy days are detected. The correlation with the daily raingauge series is 0.8 and the season bias is 5%. The correlation at the 5 min time step within each event is also high. We will present the quantitative results, discuss the uncertainties and compare the time series and the 2D maps with those derived from a polarimetric radar. The results demonstrate the potential interest of exploiting national and regional wireless telecommunication networks to provide rainfall maps for various applications : urban hydrology, agro-hydrological risk monitoring, satellite validation and development of combined rainfall products. We will also present the outcome of the first international Rain Cell Africa workshop held in Ouagadougou early 2015.

  2. An Evaluation of Antarctica as a Calibration Target for Passive Microwave Satellite Missions with Climate Data Record Applications

    Science.gov (United States)

    Kim, Edward

    2011-01-01

    Passive microwave remote sensing at L-band (1.4 GHz) is sensitive to soil moisture and sea surface salinity, both important climate variables. Science studies involving these variables can now take advantage of new satellite L-band observations. The first mission with regular global passive microwave observations at L-band is the European Space Agency's Soil Moisture and Ocean Salinity (SMOS), launched November, 2009. A second mission, NASA's Aquarius, was launched June, 201 I. A third mission, NASA's Soil Moisture Active Passive (SMAP) is scheduled to launch in 2014. Together, these three missions may provide a decade-long data record-provided that they are intercalibrated. The intercalibration is best performed at the radiance (brightness temperature) level, and Antarctica is proving to be a key calibration target. However, Antarctica has thus far not been fully characterized as a potential target. This paper will present evaluations of Antarctica as a microwave calibration target for the above satellite missions. Preliminary analyses have identified likely target areas, such as the vicinity of Dome-C and larger areas within East Antarctica. Physical sources of temporal and spatial variability of polar firn are key to assessing calibration uncertainty. These sources include spatial variability of accumulation rate, compaction, surface characteristics (dunes, micro-topography), wind patterns, and vertical profiles of density and temperature. Using primarily SMOS data, variability is being empirically characterized and attempts are being made to attribute observed variability to physical sources. One expected outcome of these studies is the potential discovery of techniques for remotely sensing--over all of Antarctica-parameters such as surface temperature.

  3. Synthesis of Cycloveratrylene Macrocycles and Benzyl Oligomers Catalysed by Bentonite under Microwave/Infrared and Solvent-Free Conditions

    Directory of Open Access Journals (Sweden)

    Manuel Salmón

    2013-10-01

    Full Text Available Tonsil Actisil FF, which is a commercial bentonitic clay, promotes the formation of cycloveratrylene macrocycles and benzyl oligomers from the corresponding benzyl alcohols in good yields under microwave heating and infrared irradiation in the absence of solvent in both cases. The catalytic reaction is sensitive to the type of substituent on the aromatic ring. Thus, when benzyl alcohol was substituted with a methylenedioxy, two methoxy or three methoxy groups, a cyclooligomerisation process was induced. Unsubstituted, methyl and methoxy benzyl alcohols yielded linear oligomers. In addition, computational chemistry calculations were performed to establish a validated mechanistic pathway to explain the growth of the obtained linear oligomers.

  4. Optimizing available water capacity using microwave satellite data for improving irrigation management

    Science.gov (United States)

    Gupta, Manika; Bolten, John; Lakshmi, Venkat

    2015-04-01

    This work addresses the improvement of available water capacity by developing a technique for estimating soil hydraulic parameters through the utilization of satellite-retrieved near surface soil moisture. The prototype involves the usage of Monte Carlo analysis to assimilate historical remote sensing soil moisture data available from the Advanced Microwave Scanning Radiometer (AMSR-E) within the hydrological model. The main hypothesis used in this study is that near-surface soil moisture data contain useful information that can describe the effective hydrological conditions of the basin such that when appropriately In the method followed in this study the hydraulic parameters are derived directly from information on the soil moisture state at the AMSR-E footprint scale and the available water capacity is derived for the root zone by coupling of AMSR-E soil moisture with the physically-based hydrological model. The available capacity water, which refers to difference between the field capacity and wilting point of the soil and represent the soil moisture content at 0.33 bar and 15 bar respectively is estimated from the soil hydraulic parameters using the van Genuchten equation. The initial ranges of soil hydraulic parameters are taken in correspondence with the values available from the literature based on Soil Survey Geographic (SSURGO) database within the particular AMSR-E footprint. Using the Monte Carlo simulation, the ranges are narrowed in the region where simulation shows a good match between predicted and near-surface soil moisture from AMSR-E. In this study, the uncertainties in accurately determining the parameters of the nonlinear soil water retention function for large-scale hydrological modeling is the focus of the development of the Bayesian framework. Thus, the model forecasting has been combined with the observational information to optimize the model state and the soil hydraulic parameters simultaneously. The optimization process is divided into

  5. Probable satellite thermal infrared anomaly before the Zhangbei MS=6.2 earthquake on January 10, 1998

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This paper used the thermal infrared data of the satellite NOAA-AAVHRR of the north part of North China (113°~119° E, 38°~42° N), and processed the remote sensing data through radiation adjustment, geometric adjustment and so on by the software "The Monitoring and Fast Process System of Earthquake Precursor Thermal Infrared Anomaly", inversed the earth surface temperature. Some disturbances effect had been excluded, and thermal infrared temperature anomaly had been extracted by the picture difference method. The Zhangbei MS=6.2 earthquake is used as the example in the paper, so that in the paper thermal infrared characteristics on time-space before earthquake and the relationship between the anomaly and the earthquake prediction have been summarized.Within more than ten days before the Zhangbei earthquake, the thermal infrared anomaly had emerged widely along Zhangjiakou-Bohai seismic belt, and the anomalous region seemed like a belt and it is also consistent with the tectonic background there; the anomaly expanded from the outside toward the earthquake focus, but the focus lay at the edge of the thermal infrared region. So it is possible to explore a new anomaly observation method for earthquake prediction by observing and studying the satellite thermal infrared anomaly before big earthquakes happen.

  6. Report of the Joint Scientific Mission Definition Team for an infrared astronomical satellite

    Science.gov (United States)

    1976-01-01

    The joint effort is reported of scientists and engineers from the Netherlands, the United Kingdom, and the United States working as a team for the purpose of exploring the possibility of a cooperative venture. The proposed mission builds upon experience gained from the successful Astronomical Netherlands Satellite (ANS). This satellite will be in a polar orbit at an altitude of 900 km. It will carry an 0.6 m diameter telescope cooled with helium to a temperature near 10K. An array of approximately 100 detectors will be used to measure the infrared flux in four wavelength bands centered at 10, 20, 50, and 100 microns. Sources will be located on the sky with positional accuracy of 1/2 arcminute. The instrument should be able to investigate the structure of extended sources with angular scales up to 1.0 deg. The entire sky will be surveyed and the full lifetime of the mission of about one year will be necessary to complete the survey. Special observational programs will also be incorporated into the mission.

  7. Infrared fiber optic temperature monitoring of biological tissues heated in a microwave oven

    Science.gov (United States)

    Belotserkovsky, Edward; Ashkenasy, Y.; Shenfeld, Ofer; Drizlikh, S.; Zur, Albert; Katzir, Abraham

    1993-05-01

    The heating of tissue by microwave radiation has attained a place of importance in various medical fields such as the treatment of malignancies, urinary retention and hypothermia. Accurate temperature measurements in these treated tissues is important for treatment planning and for the control of the heating process. It is also important to be able to measure spacial temperature distribution in the tissues because they are heated in a non uniform way by the microwave radiation. Fiber optic radiometry makes possible accurate temperature measurement in the presence of microwave radiation and does not require contact with the tissue. Using a IR silver halide fiber optic radiometric temperature sensor we obtained accurate temperature measurements of tissues heated by microwave, enabling us to control the heating process in all regions of the tissue. We also performed temperature mapping of the heated tissues and demonstrated the non-uniform temperature distributions in them.

  8. Oceanography from satellites

    Science.gov (United States)

    Wilson, W. S.

    1981-01-01

    It is pointed out that oceanographers have benefited from the space program mainly through the increased efficiency it has brought to ship operations. For example, the Transit navigation system has enabled oceanographers to compile detailed maps of sea-floor properties and to more accurately locate moored subsurface instrumentation. General descriptions are given of instruments used in satellite observations (altimeter, color scanner, infrared radiometer, microwave radiometer, scatterometer, synthetic aperture radar). It is pointed out that because of the large volume of data that satellite instruments generate, the development of algorithms for converting the data into a form expressed in geophysical units has become especially important.

  9. PROBING THE EPOCH OF PRE-REIONIZATION BY CROSS-CORRELATING COSMIC MICROWAVE AND INFRARED BACKGROUND ANISOTROPIES

    Energy Technology Data Exchange (ETDEWEB)

    Atrio-Barandela, F. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Kashlinsky, A., E-mail: atrio@usal.es, E-mail: Alexander.Kashlinsky@nasa.gov [Observational Cosmology Lab, NASA Goddard Space Flight Center, Code 665, Greenbelt, MD 20771 (United States)

    2014-12-20

    The epoch of first star formation and the state of the intergalactic medium (IGM) at that time are not directly observable with current telescopes. The radiation from those early sources is now part of the cosmic infrared background (CIB) and, as these sources ionize the gas around them, the IGM plasma would produce faint temperature anisotropies in the cosmic microwave background (CMB) via the thermal Sunyaev-Zeldovich (TSZ) effect. While these TSZ anisotropies are too faint to be detected, we show that the cross-correlation of maps of source-subtracted CIB fluctuations from Euclid, with suitably constructed microwave maps at different frequencies, can probe the physical state of the gas during reionization and test/constrain models of the early CIB sources. We identify the frequency-combined, CMB-subtracted microwave maps from space- and ground-based instruments to show that they can be cross-correlated with the forthcoming all-sky Euclid CIB maps to detect the cross-power at scales ∼5'-60' with signal-to-noise ratios (S/Ns) of up to S/N ∼ 4-8 depending on the contribution to the Thomson optical depth during those pre-reionization epochs (Δτ ≅ 0.05) and the temperature of the IGM (up to ∼10{sup 4} K). Such a measurement would offer a new window to explore the emergence and physical properties of these first light sources.

  10. Probing the epoch of pre-reionization by cross-correlating cosmic microwave and infrared background anisotropies

    CERN Document Server

    Atrio-Barandela, Fernando

    2014-01-01

    The epoch of first star formation and the state of the intergalactic medium (IGM) at that time are not directly observable with current telescopes. The radiation from those early sources is now part of the Cosmic Infrared Background (CIB) and, as these sources ionize the gas around them, the IGM plasma would produce faint temperature anisotropies in the Cosmic Microwave Background (CMB) via the thermal Sunyaev-Zeldovich (TSZ) effect. While these TSZ anisotropies are too faint to be detected, we show that the cross-correlation of maps of source-subtracted CIB fluctuations from {\\it Euclid}, with suitably constructed microwave maps at different frequencies can probe the physical state of the gas during reionization and test/constrain models of the early CIB sources. We identify the frequency-combined CMB-subtracted microwave maps from space and ground-based instruments to show that they can be cross-correlated with the forthcoming all-sky {\\it Euclid} CIB maps to detect the cross-power at scales $\\sim 5'-60'$ w...

  11. The 4-Day Wave as Obvserved from the Upper Atmosphere Research Satellite Microwave Limb Sounder

    Science.gov (United States)

    Allen, D. R.; Stanford, J. L.

    1996-01-01

    The 4-day wave is an eastward moving quasi-nondispersive feature with period near 4 days occurring near the winter polar stratopause. This paper presents evidence of the 4-day feature in Microwave Limb Sounder (MLS) temperature, geopotential height and ozone data from the late Southern winters of 1992 and 1993.

  12. Optimization of formulation of soy-cakes baked in infrared-microwave combination oven by response surface methodology.

    Science.gov (United States)

    Şakıyan, Özge

    2015-05-01

    The aim of present work is to optimize the formulation of a functional cake (soy-cake) to be baked in infrared-microwave combination oven. For this optimization process response surface methodology was utilized. It was also aimed to optimize the processing conditions of the combination baking. The independent variables were the baking time (8, 9, 10 min), the soy flour concentration (30, 40, 50 %) and the DATEM (diacetyltartaric acid esters of monoglycerides) concentration (0.4, 0.6 and 0.8 %). The quality parameters that were examined in the study were specific volume, weight loss, total color change and firmness of the cake samples. The results were analyzed by multiple regression; and the significant linear, quadratic, and interaction terms were used in the second order mathematical model. The optimum baking time, soy-flour concentration and DATEM concentration were found as 9.5 min, 30 and 0.72 %, respectively. The corresponding responses of the optimum points were almost comparable with those of conventionally baked soy-cakes. So it may be declared that it is possible to produce high quality soy cakes in a very short time by using infrared-microwave combination oven.

  13. Frequency and distribution of winter melt events from passive microwave satellite data in the pan-Arctic, 1988-2013

    Science.gov (United States)

    Wang, Libo; Toose, Peter; Brown, Ross; Derksen, Chris

    2016-11-01

    This study presents an algorithm for detecting winter melt events in seasonal snow cover based on temporal variations in the brightness temperature difference between 19 and 37 GHz from satellite passive microwave measurements. An advantage of the passive microwave approach is that it is based on the physical presence of liquid water in the snowpack, which may not be the case with melt events inferred from surface air temperature data. The algorithm is validated using in situ observations from weather stations, snow pit measurements, and a surface-based passive microwave radiometer. The validation results indicate the algorithm has a high success rate for melt durations lasting multiple hours/days and where the melt event is preceded by warm air temperatures. The algorithm does not reliably identify short-duration events or events that occur immediately after or before periods with extremely cold air temperatures due to the thermal inertia of the snowpack and/or overpass and resolution limitations of the satellite data. The results of running the algorithm over the pan-Arctic region (north of 50° N) for the 1988-2013 period show that winter melt events are relatively rare, totaling less than 1 week per winter over most areas, with higher numbers of melt days (around two weeks per winter) occurring in more temperate regions of the Arctic (e.g., central Québec and Labrador, southern Alaska and Scandinavia). The observed spatial pattern is similar to winter melt events inferred with surface air temperatures from the ERA-Interim (ERA-I) and Modern Era-Retrospective Analysis for Research and Applications (MERRA) reanalysis datasets. There was little evidence of trends in winter melt event frequency over 1988-2013 with the exception of negative trends over northern Europe attributed to a shortening of the duration of the winter period. The frequency of winter melt events is shown to be strongly correlated to the duration of winter period. This must be taken into

  14. An Autonomous System to Take Angular Thermal-Infrared Measurements for Validating Satellite Products

    Directory of Open Access Journals (Sweden)

    Raquel Niclòs

    2015-11-01

    Full Text Available An autonomous system for field land surface temperature (LST measurements taken at different observation angles was developed to be deployed easily at any conventional meteorological tower station. The system permits ground-truth data to be acquired on a continuous basis, and angularly scans land and sky hemispheres with a single thermal-infrared (TIR radiometer. This paper describes the autonomous angular system and the methodology to assess ground-truth LST and relative-to-nadir emissivity data from system measurements. Ground-truth LSTs were used to validate satellite-retrieved LST products at two experimental sites (rice crop and shrubland areas. The relative-to-nadir emissivity values were used to analyze the anisotropy of surface emissive properties over thermally-homogeneous covers. The EOS-MODIS MOD11_L2/MYD11_L2 LST product was evaluated and shown to work within expected uncertainties (<2.0 K when tested against the system data. A slight underestimation of around −0.15 K was observed, which became greater for the off-nadir observation angles at the shrubland site. The system took angular measurements for the different seasonal homogeneous covers at the rice crop site. These measurements showed emissivity angular anisotropies, which were in good agreement with previously published data. The dual-view ENVISAT-AATSR data reproduced them, and revealed that the system data collected for thermally-homogeneous surfaces could be used to test future satellite TIR sensors with multi-angular or bi-angular capabilities, like the forthcoming SLSTR on board Copernicus Sentinel-3A.

  15. Comparison of Two Methodologies for Calibrating Satellite Instruments in the Visible and Near-Infrared

    Science.gov (United States)

    Barnes, Robert A.; Brown, Steven W.; Lykke, Keith R.; Guenther, Bruce; Butler, James J.; Schwarting, Thomas; Turpie, Kevin; Moyer, David; DeLuccia, Frank; Moeller, Christopher

    2015-01-01

    Traditionally, satellite instruments that measure Earth-reflected solar radiation in the visible and near infrared wavelength regions have been calibrated for radiance responsivity in a two-step method. In the first step, the relative spectral response (RSR) of the instrument is determined using a nearly monochromatic light source such as a lamp-illuminated monochromator. These sources do not typically fill the field-of-view of the instrument nor act as calibrated sources of light. Consequently, they only provide a relative (not absolute) spectral response for the instrument. In the second step, the instrument views a calibrated source of broadband light, such as a lamp-illuminated integrating sphere. The RSR and the sphere absolute spectral radiance are combined to determine the absolute spectral radiance responsivity (ASR) of the instrument. More recently, a full-aperture absolute calibration approach using widely tunable monochromatic lasers has been developed. Using these sources, the ASR of an instrument can be determined in a single step on a wavelength-by-wavelength basis. From these monochromatic ASRs, the responses of the instrument bands to broadband radiance sources can be calculated directly, eliminating the need for calibrated broadband light sources such as lamp-illuminated integrating spheres. In this work, the traditional broadband source-based calibration of the Suomi National Preparatory Project (SNPP) Visible Infrared Imaging Radiometer Suite (VIIRS) sensor is compared with the laser-based calibration of the sensor. Finally, the impact of the new full-aperture laser-based calibration approach on the on-orbit performance of the sensor is considered.

  16. Application of satellite infrared data for mapping of thermal plume contamination in coastal ecosystem of Korea.

    Science.gov (United States)

    Ahn, Yu-Hwan; Shanmugam, Palanisamy; Lee, Jae-Hak; Kang, Yong Q

    2006-03-01

    The 5900 MW Younggwang nuclear power station on the west coast of Korea discharges warm water affecting coastal ecology [KORDI report (2003). Wide area observation of the impact of the operation of Younggwang nuclear power plant 5 and 6, No. BSPI 319-00-1426-3, KORDI, Seoul, Korea]. Here the spatial and temporal characteristics of the thermal plume signature of warm water are reported from a time series (1985-2003) of space-borne, thermal infrared data from Landsat and National Oceanic and Atmospheric Administration (NOAA) satellites. Sea surface temperature (SST) were characterized using advanced very high resolution radiometer data from the NOAA satellites. These data demonstrated the general pattern and extension of the thermal plume signature in the Younggwang coastal areas. In contrast, the analysis of SST from thematic mapper data using the Landsat-5 and 7 satellites provided enhanced information about the plume shape, dimension and direction of dispersion in these waters. The thermal plume signature was detected from 70 to 100 km to the south of the discharge during the summer monsoon and 50 to 70 km to the northwest during the winter monsoon. The mean detected plume temperature was 28 degrees C in summer and 12 degrees C in winter. The DeltaT varied from 2 to 4 degrees C in winter and 2 degrees C in summer. These values are lower than the re-circulating water temperature (6-9 degrees C). In addition the temperature difference between tidal flats and offshore (SSTtidal flats - SSToffsore) was found to vary from 5.4 to 8.5 degrees C during the flood tides and 3.5 degrees C during the ebb tide. The data also suggest that water heated by direct solar radiation on the tidal flats during the flood tides might have been transported offshore during the ebb tide. Based on these results we suggest that there is an urgent need to protect the health of Younggwang coastal marine ecosystem from the severe thermal impact by the large quantity of warm water discharged from

  17. Estimation of high-resolution near-surface freeze/thaw state by the integration of microwave and thermal infrared remote sensing data on the Tibetan Plateau

    Science.gov (United States)

    Zhao, Tianjie; Shi, Jiancheng; Hu, Tongxi; Zhao, Lin; Zou, Defu; Wang, Tianxing; Ji, Dabin; Li, Rui; Wang, Pingkai

    2017-08-01

    The objective of this study is to investigate how the complementarity between microwave and thermal infrared remote sensing can be exploited for a high-resolution near-surface freeze/thaw state estimation. The basic idea is to establish a feasible relationship between the microwave-derived freeze/thaw state and thermal infrared observations. A quantitative freeze/thaw index from microwave observations at 18.7 and 36.5 GHz is innovatively defined and is assumed to be linearly correlated with land surface temperature from thermal infrared observations. Thus, a linear regression method is proposed and verified to be effective over a multiscale network of Naqu of the Tibetan Plateau. In order to demonstrate the potentiality of the proposed method, it is implemented in the entire Tibetan Plateau. It is found that the linear relationship is quite reliable for most areas and can obtain a high-resolution near-surface soil freeze/thaw state with integrated information from microwave and thermal infrared remote sensing. The validation of the high-resolution freeze/thaw state against soil temperature measured at active layer monitoring sites along the Qinghai-Tibet Highway illustrates a moderate accuracy over a decade scale. This study provides new insights for high-resolution freeze/thaw mapping beyond the Soil Moisture Active Passive mission.

  18. Error sources in passive and active microwave satellite soil moisture over Australia

    Science.gov (United States)

    Development of a long-term climate record of soil moisture (SM) involves combining historic and present satellite-retrieved SM data sets. This in turn requires a consistent characterization and deep understanding of the systematic differences and errors in the individual data sets, which vary due to...

  19. Stand-alone error characterisation of microwave satellite soil moisture using a Fourier method

    Science.gov (United States)

    Error characterisation of satellite-retrieved soil moisture (SM) is crucial for maximizing their utility in research and applications in hydro-meteorology and climatology. Error characteristics can provide insights for retrieval development and validation, and inform suitable strategies for data fus...

  20. Solid-state retrodirective phased array concepts for microwave power transmission from Solar Power Satellite

    Science.gov (United States)

    Schroeder, K. G.; Petroff, I. K.

    1980-01-01

    Two prototype solid-state phased array systems concepts for potential use in the Solar Power Satellite are described. In both concepts, the beam is centered on the rectenna by means of phase conjugation of a pilot signal emanating from the ground. Also discussed is on-going solid-state amplifier development.

  1. Ozone Profile Retrieval from Satellite Observation Using High Spectral Resolution Infrared Sounding Instrument

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper presents a preliminary result on the retrieval of atmospheric ozone profiles using an im proved regression technique and utilizing the data from the Atmospheric InfraRed Sounder (AIRS), a hyper-spectral instrument expected to be flown on the EOS-AQUA platform in 2002. Simulated AIRS spectra were used to study the sensitivity of AIRS radiance on the tropospheric and stratospheric ozone changes, and to study the impact of various channel combinations on the ozone profile retrieval. Sensitivity study results indicate that the AIRS high resolution spectral channels between the wavenumber 650- 800 cm-1 provide very useful information to accurately retrieve tropospheric and stratospheric ozone pro files. Eigenvector decomposition of AIRS spectra indicate that no more than 100 eigenvectors are needed to retrieve very accurate ozone profiles. The accuracy of the retrieved atmospheric ozone profile from the pres ent technique and utilizing the AIRS data was compared with the accuracy obtained from current Advanced TIROS Operational Vertical Sounder (ATOVS) data aboard National Oceanic and Atmospheric Admini stration (NOAA) satellites. As expected, a comparison of retrieval results confirms that the ozone profile re trieved with the AIRS data is superior to that of ATOVS.

  2. Use of Real Time Satellite Infrared and Ocean Color to Produce Ocean Products

    Science.gov (United States)

    Roffer, M. A.; Muller-Karger, F. E.; Westhaver, D.; Gawlikowski, G.; Upton, M.; Hall, C.

    2014-12-01

    Real-time data products derived from infrared and ocean color satellites are useful for several types of users around the world. Highly relevant applications include recreational and commercial fisheries, commercial towing vessel and other maritime and navigation operations, and other scientific and applied marine research. Uses of the data include developing sampling strategies for research programs, tracking of water masses and ocean fronts, optimizing ship routes, evaluating water quality conditions (coastal, estuarine, oceanic), and developing fisheries and essential fish habitat indices. Important considerations for users are data access and delivery mechanisms, and data formats. At this time, the data are being generated in formats increasingly available on mobile computing platforms, and are delivered through popular interfaces including social media (Facebook, Linkedin, Twitter and others), Google Earth and other online Geographical Information Systems, or are simply distributed via subscription by email. We review 30 years of applications and describe how we develop customized products and delivery mechanisms working directly with users. We review benefits and issues of access to government databases (NOAA, NASA, ESA), standard data products, and the conversion to tailored products for our users. We discuss advantages of different product formats and of the platforms used to display and to manipulate the data.

  3. A method for retrieving clouds with satellite infrared radiances using the particle filter

    Science.gov (United States)

    Xu, Dongmei; Auligné, Thomas; Descombes, Gaël; Snyder, Chris

    2016-11-01

    Ensemble-based techniques have been widely utilized in estimating uncertainties in various problems of interest in geophysical applications. A new cloud retrieval method is proposed based on the particle filter (PF) by using ensembles of cloud information in the framework of Gridpoint Statistical Interpolation (GSI) system. The PF cloud retrieval method is compared with the Multivariate Minimum Residual (MMR) method that was previously established and verified. Cloud retrieval experiments involving a variety of cloudy types are conducted with the PF and MMR methods with measurements of infrared radiances on multi-sensors onboard both geostationary and polar satellites, respectively. It is found that the retrieved cloud masks with both methods are consistent with other independent cloud products. MMR is prone to producing ambiguous small-fraction clouds, while PF detects clearer cloud signals, yielding closer heights of cloud top and cloud base to other references. More collections of small-fraction particles are able to effectively estimate the semi-transparent high clouds. It is found that radiances with high spectral resolutions contribute to quantitative cloud top and cloud base retrievals. In addition, a different way of resolving the filtering problem over each model grid is tested to better aggregate the weights with all available sensors considered, which is proven to be less constrained by the ordering of sensors. Compared to the MMR method, the PF method is overall more computationally efficient, and the cost of the model grid-based PF method scales more directly with the number of computing nodes.

  4. The Critical Need for Future Mid-Resolution Thermal Infrared Satellite Sensors

    Science.gov (United States)

    Vincent, R. K.

    2006-12-01

    Eight future applications of data from mid-resolution thermal infrared satellite sensors are suggested, from least to most significant as follows: 8. Map thin ice unsafe for ice-fishing in the Great Lakes as a warning to winter fishermen; 7. Map ammonia plumes to locate large ammonia stockpiles (Homeland Security) and to monitor concentrated animal feeding operations (CAFOs); 6. Map types of surface algae in ocean, lakes, and rivers, especially those containing surface diatoms; 5. Monitor urban heat islands to determine the cooling affects of painting visibly dark surfaces with bright paints or coatings; 4. Map rock-types and soil-types of non- vegetated regions world-wide, a task which ASTER cannot complete in its current lifetime; 3. Detect surface warming of rocks under increased stress and pressure as an earthquake precursor; 2. Map pollutant gases, especially sulfur dioxide, which is important both for smokestack monitoring and volcanic eruption precursors; 1. Map methane escape into the atmosphere from methane clathrate destabilization as a key warning of imminent and drastic temperature rises in the troposphere. Each of these applications will be briefly discussed and past examples will be given for most of them.

  5. Snow cover variability across central Canada (1978-2002) derived from satellite passive microwave data

    Energy Technology Data Exchange (ETDEWEB)

    Wulder, M.A.; Seemann, D. [Canadian Forest Service (Pacific Forestry Centre), Natural Resources Canada, Victoria, V8Z 1M5, British Columbia (Canada); Nelson, T.A. [Department of Geography, University of Victoria, Victoria, V8W 3P5, British Columbia (Canada); Derksen, C. [Climate Research Division, Climate Processes Section, Environment Canada, Downsview, M3H 5T4, Ontario (Canada)

    2007-05-15

    Twenty-four winter seasons (1978-2002) of mean February snow water equivalent (SWE) values were analyzed in an exploration of the spatial pattern of temporal variability in snow cover across the non-mountainous interior of Canada. The SWE data were derived from space-borne passive microwave brightness temperatures processed with a land cover-sensitive suite of algorithms. Spatial patterns in the frequency and amount of variability were investigated on an annual basis through comparisons with average trends over all 24 years. Changes in temporal variability through time were also investigated by comparing three eight year time periods to general trends. Analyses were synthesized at the ecozone scale in order to link results both to potential land cover influences on algorithm performance and climatological variability in SWE. Prairie and northern ecozones were typically found to be the most variable in terms of SWE magnitude. Analyses indicate that non-treed land cover classes are generally more variable than treed classes. The results also indicate that extreme weather events appear to be occurring with increasing consistency in the Prairie and Arctic regions. Discerning climatologically significant variability in the time series, compared to algorithm-related issues can be a challenge, but in an era of eroding surface observing networks the passive microwave time series represents an important resource for monitoring and detecting trends and variability in terrestrial snow cover.

  6. Conformers of β-aminoisobutyric acid probed by jet-cooled microwave and matrix isolation infrared spectroscopic techniques

    Science.gov (United States)

    Kuş, N.; Sharma, A.; Peña, I.; Bermúdez, M. C.; Cabezas, C.; Alonso, J. L.; Fausto, R.

    2013-04-01

    β-aminoisobutyric acid (BAIBA) has been studied in isolation conditions: in the gas phase and trapped into a cryogenic N2 matrix. A solid sample of the compound was vaporized by laser ablation and investigated through their rotational spectra in a supersonic expansion using two different spectroscopic techniques: broadband chirped pulse Fourier transform microwave spectroscopy and conventional molecular beam Fourier transform microwave spectroscopy. Four conformers with structures of two types could be successfully identified by comparison of the experimental rotational and 14N nuclear quadruple coupling constants with those predicted theoretically: type A, bearing an OH⋯N intramolecular hydrogen bond and its carboxylic group in the trans geometry (H-O-C=O dihedral ˜180°), and type B, having an NH⋯O bond and the cis arrangement of the carboxylic group. These two types of conformers could also be trapped from the gas phase into a cryogenic N2 matrix and probed by Fourier transform infrared (IR) spectroscopy. In situ irradiation of BAIBA isolated in N2 matrix of type B conformers using near-IR radiation tuned at the frequency of the O-H stretching 1st overtone (˜6930 cm-1) of these forms allowed to selectively convert them into type A conformers and into a new type of conformers of higher energy (type D) bearing an NH⋯O=C bond and a O-H "free" trans carboxylic group.

  7. A kilo-pixel imaging system for future space based far-infrared observatories using microwave kinetic inductance detectors

    CERN Document Server

    Baselmans, J J A; Yates, S J C; Yurduseven, O; Llombart, N; Karatsu, K; Baryshev, A M; Ferrari, L; Endo, A; Thoen, D J; de Visser, P J; Janssen, R M J; Murugesan, V; Driessen, E F C; Coiffard, G; Martin-Pintado, J; Hargrave, P; Griffin, M

    2016-01-01

    Future astrophysics and cosmic microwave background space missions operating in the far-infrared to millimetre part of the spectrum will require very large arrays of ultra-sensitive detectors in combination with high multiplexing factors and efficient low- noise and low-power readout systems. We have developed a demonstrator system suitable for such applications. The system combines a 961 pixel imaging array based upon Microwave Kinetic Inductance Detectors (MKIDs) with a readout system capable of reading out all pixels simultaneously with only one readout cable pair and a single cryogenic amplifier. We evaluate, in a representative environment, the system performance in terms of sensitivity, dynamic range, optical efficiency, cosmic ray rejection, pixel-pixel crosstalk and overall yield at an observation frequency of 850 GHz. The overall system has an excellent sensitivity, with an average detector sensitivity NEP=2.8 +- 0.8 x 10^-19 W/rt(Hz) measured using a thermal calibration source. The dynamic range wou...

  8. Infrared

    Science.gov (United States)

    Vollmer, M.

    2013-11-01

    'Infrared' is a very wide field in physics and the natural sciences which has evolved enormously in recent decades. It all started in 1800 with Friedrich Wilhelm Herschel's discovery of infrared (IR) radiation within the spectrum of the Sun. Thereafter a few important milestones towards widespread use of IR were the quantitative description of the laws of blackbody radiation by Max Planck in 1900; the application of quantum mechanics to understand the rotational-vibrational spectra of molecules starting in the first half of the 20th century; and the revolution in source and detector technologies due to micro-technological breakthroughs towards the end of the 20th century. This has led to much high-quality and sophisticated equipment in terms of detectors, sources and instruments in the IR spectral range, with a multitude of different applications in science and technology. This special issue tries to focus on a few aspects of the astonishing variety of different disciplines, techniques and applications concerning the general topic of infrared radiation. Part of the content is based upon an interdisciplinary international conference on the topic held in 2012 in Bad Honnef, Germany. It is hoped that the information provided here may be useful for teaching the general topic of electromagnetic radiation in the IR spectral range in advanced university courses for postgraduate students. In the most general terms, the infrared spectral range is defined to extend from wavelengths of 780 nm (upper range of the VIS spectral range) up to wavelengths of 1 mm (lower end of the microwave range). Various definitions of near, middle and far infrared or thermal infrared, and lately terahertz frequencies, are used, which all fall in this range. These special definitions often depend on the scientific field of research. Unfortunately, many of these fields seem to have developed independently from neighbouring disciplines, although they deal with very similar topics in respect of the

  9. Upper Atmosphere Research Satellite (UARS) Microwave Limb Sounder (MLS) mapping - Validation, early results and applications

    Science.gov (United States)

    Elson, Lee S.; Froidevaux, Lucien; Waters, Joe

    1992-01-01

    The results of limitation studies performed with the UARS MLS are presented. A consistent set of algorithms allows the extraction of the spectral coefficients in time and longitude from asynoptically sampled satellite data and the subsequent reconstruction of synoptic maps from that spectral information. In addition to providing synoptic maps, the asynoptic technique allows the use of standard spectral analysis tools such as autocorrelation and cross correlation.

  10. Tunable Microwave Components for Ku- and K-Band Satellite Communications

    Science.gov (United States)

    Miranada, F. A.; VanKeuls, F. W.; Romanofsky, R. R.; Subramanyam, G.

    1998-01-01

    The use of conductor/ferroelectric/dielectric thin film multilayer structures for frequency and phase agile components at frequencies at and above the Ku-band will be discussed. Among these components are edge coupled filters, microstripline ring resonators, and phase shifters. These structures were implemented using SrTiO3 (STO) ferroelectric thin films, with gold or YBa2Cu3O7-d (YBCO) high temperature superconducting (HTS) microstrip fines deposited by laser ablation on LaAlO3 (LAO) substrates. The performance of these structures in terms of tunability, operating temperature, frequency, and dc bias will be presented. Because of their small size, light weight, and low loss, these tunable microwave components are being studied very intensely at NASA as well as the commercial communication industry. An assessment of the progress made so far, and the issues yet to be solved for the successful integration of these components into the aforementioned communication systems will be presented.

  11. Snow melt on sea ice surfaces as determined from passive microwave satellite data

    Science.gov (United States)

    Anderson, Mark R.

    1987-01-01

    SMMR data for the year 1979, 1980 and 1984 have been analyzed to determine the variability in the onset of melt for the Arctic seasonal sea ice zone. The results show melt commencing in either the Kara/Barents Seas or Chukchi Sea and progressing zonally towards the central Asian coast (Laptev Sea). Individual regions had interannual variations in melt onset in the 10-20 day range. To determine whether daily changes occur in the sea ice surface melt, the SMMR 18 and 37 GHz brightness temperature data are analyzed at day/night/twilight periods. Brightness temperatures illustrate diurnal variations in most regions during melt. In the East Siberian Sea, however, daily variations are observed in 1979, throughout the analysis period, well before any melt would usually have commenced. Understanding microwave responses to changing surface conditions during melt will perhaps give additional information about energy budgets during the winter to summer transition of sea ice.

  12. Inter-Calibration of Satellite Passive Microwave Land Observations from AMSR-E and AMSR2 Using Overlapping FY3B-MWRI Sensor Measurements

    Directory of Open Access Journals (Sweden)

    Jinyang Du

    2014-09-01

    Full Text Available The development and continuity of consistent long-term data records from similar overlapping satellite observations is critical for global monitoring and environmental change assessments. We developed an empirical approach for inter-calibration of satellite microwave brightness temperature (Tb records over land from the Advanced Microwave Scanning Radiometer for EOS (AMSR-E and Microwave Scanning Radiometer 2 (AMSR2 using overlapping Tb observations from the Microwave Radiation Imager (MWRI. Double Differencing (DD calculations revealed significant AMSR2 and MWRI biases relative to AMSR-E. Pixel-wise linear relationships were established from overlapping Tb records and used for calibrating MWRI and AMSR2 records to the AMSR-E baseline. The integrated multi-sensor Tb record was largely consistent over the major global vegetation and climate zones; sensor biases were generally well calibrated, though residual Tb differences inherent to different sensor configurations were still present. Daily surface air temperature estimates from the calibrated AMSR2 Tb inputs also showed favorable accuracy against independent measurements from 142 global weather stations (R2 ≥ 0.75, RMSE ≤ 3.64 °C, but with slightly lower accuracy than the AMSR-E baseline (R2 ≥ 0.78, RMSE ≤ 3.46 °C. The proposed method is promising for generating consistent, uninterrupted global land parameter records spanning the AMSR-E and continuing AMSR2 missions.

  13. GARLIC - A general purpose atmospheric radiative transfer line-by-line infrared-microwave code: Implementation and evaluation

    Science.gov (United States)

    Schreier, Franz; Gimeno García, Sebastián; Hedelt, Pascal; Hess, Michael; Mendrok, Jana; Vasquez, Mayte; Xu, Jian

    2014-04-01

    A suite of programs for high resolution infrared-microwave atmospheric radiative transfer modeling has been developed with emphasis on efficient and reliable numerical algorithms and a modular approach appropriate for simulation and/or retrieval in a variety of applications. The Generic Atmospheric Radiation Line-by-line Infrared Code - GARLIC - is suitable for arbitrary observation geometry, instrumental field-of-view, and line shape. The core of GARLIC's subroutines constitutes the basis of forward models used to implement inversion codes to retrieve atmospheric state parameters from limb and nadir sounding instruments. This paper briefly introduces the physical and mathematical basics of GARLIC and its descendants and continues with an in-depth presentation of various implementation aspects: An optimized Voigt function algorithm combined with a two-grid approach is used to accelerate the line-by-line modeling of molecular cross sections; various quadrature methods are implemented to evaluate the Schwarzschild and Beer integrals; and Jacobians, i.e. derivatives with respect to the unknowns of the atmospheric inverse problem, are implemented by means of automatic differentiation. For an assessment of GARLIC's performance, a comparison of the quadrature methods for solution of the path integral is provided. Verification and validation are demonstrated using intercomparisons with other line-by-line codes and comparisons of synthetic spectra with spectra observed on Earth and from Venus.

  14. Maximizing the Use of Satellite Thermal Infrared Data for Advancing Land Surface Temperature Analysis

    Science.gov (United States)

    Weng, Q.; Fu, P.; Gao, F.

    2014-12-01

    Land surface temperature (LST) is a crucial parameter in investigating environmental, ecological processes and climate change at various scales, and is also valuable in the studies of evapotranspiration, soil moisture conditions, surface energy balance, and urban heat islands. These studies require thermal infrared (TIR) images at both high temporal and spatial resolution to retrieve LST. However, currently, no single satellite sensors can deliver TIR data at both high temporal and spatial resolution. Thus, various algorithms/models have been developed to enhance the spatial or the temporal resolution of TIR data, but rare of those can enhance both spatial and temporal details. This paper presents a new data fusion algorithm for producing Landsat-like LST data by blending daily MODIS and periodic Landsat TM datasets. The original Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) was improved and modified for predicting thermal radiance and LST data by considering annual temperature cycle (ATC) and urban thermal landscape heterogeneity. The technique of linear spectral mixture analysis was employed to relate the Landsat radiance with the MODIS one, so that the temporal changes in radiance can be incorporated in the fusion model. This paper details the theoretical basis and the implementation procedures of the proposed data fusion algorithm, Spatio-temporal Adaptive Data Fusion Algorithm for Temperature mapping (SADFAT). A case study was conducted that predicted LSTs of five dates in 2005 from July to October in Los Angeles County, California. The results indicate that the prediction accuracy for the whole study area ranged from 1.3 K to 2 K. Like existing spatio-temporal data fusion models, the SADFAT method has a limitation in predicting LST changes that were not recorded in the MODIS and/or Landsat pixels due to the model assumption.

  15. Microwave, infrared and Raman spectra, r0 structural parameters, ab initio calculations and vibrational assignment of 1-fluoro-1-silacyclopentane.

    Science.gov (United States)

    Durig, James R; Panikar, Savitha S; Obenchain, Daniel A; Bills, Brandon J; Lohan, Patrick M; Peebles, Rebecca A; Peebles, Sean A; Groner, Peter; Guirgis, Gamil A; Johnston, Michael D

    2012-01-28

    The microwave spectrum (6500-18 ,500 MHz) of 1-fluoro-1-silacyclopentane, c-C(4)H(8)SiHF has been recorded and 87 transitions for the (28)Si, (29)Si, (30)Si, and (13)C isotopomers have been assigned for a single conformer. Infrared spectra (3050-350 cm(-1)) of the gas and solid and Raman spectrum (3100-40 cm(-1)) of the liquid have also been recorded. The vibrational data indicate the presence of a single conformer with no symmetry which is consistent with the twist form. Ab initio calculations with a variety of basis sets up to MP2(full)/aug-cc-pVTZ predict the envelope-axial and envelope-equatorial conformers to be saddle points with nearly the same energies but much lower energy than the planar conformer. By utilizing the microwave rotational constants for seven isotopomers ((28)Si, (29)Si, (30)Si, and four (13)C) combined with the structural parameters predicted from the MP2(full)/6-311+G(d,p) calculations, adjusted r(0) structural parameters have been obtained for the twist conformer. The heavy atom distances in Å are: r(0)(SiC(2)) = 1.875(3); r(0)(SiC(3)) = 1.872(3); r(0)(C(2)C(4)) = 1.549(3); r(0)(C(3)C(5)) = 1.547(3); r(0)(C(4)C(5)) = 1.542(3); r(0)(SiF) = 1.598(3) and the angles in degrees are: [angle]CSiC = 96.7(5); [angle]SiC(2)C(4) = 103.6(5); [angle]SiC(3)C(5) = 102.9(5); [angle]C(2)C(4)C(5) = 108.4(5); [angle]C(3)C(5)C(4) = 108.1(5); [angle]F(6)Si(1)C(2) = 110.7(5); [angle]F(6)Si(1)C(3) = 111.6(5). The heavy atom ring parameters are compared to the corresponding r(s) parameters. Normal coordinate calculations with scaled force constants from MP2(full)/6-31G(d) calculations were carried out to predict the fundamental vibrational frequencies, infrared intensities, Raman activities, depolarization values, and infrared band contours. These experimental and theoretical results are compared to the corresponding quantities of some other five-membered rings.

  16. All sky imaging observations in visible and infrared waveband for validation of satellite cloud and aerosol products

    Science.gov (United States)

    Lu, Daren; Huo, Juan; Zhang, W.; Liu, J.

    A series of satellite sensors in visible and infrared wavelengths have been successfully operated on board a number of research satellites, e.g. NOAA/AVHRR, the MODIS onboard Terra and Aqua, etc. A number of cloud and aerosol products are produced and released in recent years. However, the validation of the product quality and accuracy are still a challenge to the atmospheric remote sensing community. In this paper, we suggest a ground based validation scheme for satellite-derived cloud and aerosol products by using combined visible and thermal infrared all sky imaging observations as well as surface meteorological observations. In the scheme, a visible digital camera with a fish-eye lens is used to continuously monitor the all sky with the view angle greater than 180 deg. The digital camera system is calibrated for both its geometry and radiance (broad blue, green, and red band) so as to a retrieval method can be used to detect the clear and cloudy sky spatial distribution and their temporal variations. A calibrated scanning thermal infrared thermometer is used to monitor the all sky brightness temperature distribution. An algorithm is developed to detect the clear and cloudy sky as well as cloud base height by using sky brightness distribution and surface temperature and humidity as input. Based on these composite retrieval of clear and cloudy sky distribution, it can be used to validate the satellite retrievals in the sense of real-simultaneous comparison and statistics, respectively. What will be presented in this talk include the results of the field observations and comparisons completed in Beijing (40 deg N, 116.5 deg E) in year 2003 and 2004. This work is supported by NSFC grant No. 4002700, and MOST grant No 2001CCA02200

  17. Detection of supercooled liquid water-topped mixed-phase clouds >from shortwave-infrared satellite observations

    Science.gov (United States)

    NOH, Y. J.; Miller, S. D.; Heidinger, A. K.

    2015-12-01

    Many studies have demonstrated the utility of multispectral information from satellite passive radiometers for detecting and retrieving the properties of cloud globally, which conventionally utilizes shortwave- and thermal-infrared bands. However, the satellite-derived cloud information comes mainly from cloud top or represents a vertically integrated property. This can produce a large bias in determining cloud phase characteristics, in particular for mixed-phase clouds which are often observed to have supercooled liquid water at cloud top but a predominantly ice phase residing below. The current satellite retrieval algorithms may report these clouds simply as supercooled liquid without any further information regarding the presence of a sub-cloud-top ice phase. More accurate characterization of these clouds is very important for climate models and aviation applications. In this study, we present a physical basis and preliminary results for the algorithm development of supercooled liquid-topped mixed-phase cloud detection using satellite radiometer observations. The detection algorithm is based on differential absorption properties between liquid and ice particles in the shortwave-infrared bands. Solar reflectance data in narrow bands at 1.6 μm and 2.25 μm are used to optically probe below clouds for distinction between supercooled liquid-topped clouds with and without an underlying mixed phase component. Varying solar/sensor geometry and cloud optical properties are also considered. The spectral band combination utilized for the algorithm is currently available on Suomi NPP Visible/Infrared Imaging Radiometer Suite (VIIRS), Himawari-8 Advanced Himawari Imager (AHI), and the future GOES-R Advance Baseline Imager (ABI). When tested on simulated cloud fields from WRF model and synthetic ABI data, favorable results were shown with reasonable threat scores (0.6-0.8) and false alarm rates (0.1-0.2). An ARM/NSA case study applied to VIIRS data also indicated promising

  18. Comparison of stratospheric temperature profiles from a ground-based microwave radiometer with lidar, radiosonde and satellite data

    Science.gov (United States)

    Navas-Guzmán, Francisco; Kämpfer, Niklaus; Haefele, Alexander; Keckhut, Philippe; Hauchecorne, Alain

    2015-04-01

    The importance of the knowledge of the temperature structure in the atmosphere has been widely recognized. Temperature is a key parameter for dynamical, chemical and radiative processes in the atmosphere. The cooling of the stratosphere is an indicator for climate change as it provides evidence of natural and anthropogenic climate forcing just like surface warming ( [1] and references therein). However, our understanding of the observed stratospheric temperature trend and our ability to test simulations of the stratospheric response to emissions of greenhouse gases and ozone depleting substances remains limited. Stratospheric long-term datasets are sparse and obtained trends differ from one another [1]. Therefore it is important that in the future such datasets are generated. Different techniques allow to measure stratospheric temperature profiles as radiosonde, lidar or satellite. The main advantage of microwave radiometers against these other instruments is a high temporal resolution with a reasonable good spatial resolution. Moreover, the measurement at a fixed location allows to observe local atmospheric dynamics over a long time period, which is crucial for climate research. TEMPERA (TEMPERature RAdiometer) is a newly developed ground-based microwave radiometer designed, built and operated at the University of Bern. The instrument and the retrieval of temperature profiles has been described in detail in [2]. TEMPERA is measuring a pressure broadened oxygen line at 53.1 GHz in order to determine stratospheric temperature profiles. The retrieved profiles of TEMPERA cover an altitude range of approximately 20 to 45 km with a vertical resolution in the order of 15 km. The lower limit is given by the instrumental baseline and the bandwidth of the measured spectrum. The upper limit is given by the fact that above 50 km the oxygen lines are splitted by the Zeeman effect in the terrestrial magnetic field. In this study we present a comparison of stratospheric

  19. Airborne test flight of HY-2A satellite microwave scatterometer and data analysis

    Science.gov (United States)

    Zou, Juhong; Guo, Maohua; Cui, Songxue; Zhou, Wu

    2017-01-01

    This paper introduces the background, aim, experimental design, configuration and data processing for an airborne test flight of the HY-2 Microwave scatterometer (HSCAT). The aim was to evaluate HSCAT performance and a developed data processing algorithm for the HSCAT before launch. There were three test flights of the scatterometer, on January 15, 18 and 22, 2010, over the South China Sea near Lingshui, Hainan. The test flights successfully generated simultaneous airborne scatterometer normalized radar cross section (NRCS), ASCAT wind, and ship-borne-measured wind datasets, which were used to analyze HSCAT performance. Azimuthal dependence of the NRCS relative to the wind direction was nearly cos(2w), with NRCS minima at crosswind directions, and maxima near upwind and downwind. The NRCS also showed a small difference between upwind and downwind directions, with upwind crosssections generally larger than those downwind. The dependence of airborne scatterometer NRCS on wind direction and speed showed favorable consistency with the NASA scatterometer geophysical model function (NSCAT GMF), indicating satisfactory HSCAT performance.

  20. The 4-Day Wave as Observed from the Upper Atmosphere Research Satellite Microwave Limb Sounder

    Science.gov (United States)

    Allen, D. R.; Stanford, J. L.; Elson, L. S.; Fishbein, E. F.; Froidevaux, L.; Waters, J. W.

    1997-01-01

    The "4-day wave" is an eastward moving quasi-nondispersive feature with period near 4 days occurring near the winter polar stratopause. This paper presents evidence of the 4-day feature in Microwave Limb Sounder (MLS) temperature, geopotential height, and ozone data from the late southern winters of 1992 and 1993. Space-time spectral analyses reveal a double-peaked temperature structure consisting of one peak near the stratopause and another in the lower mesosphere, with an out-of-phase relationship between the two peaks. This double- peaked structure is reminiscent of recent three-dimensional barotropic/baroclinic instability model predictions and is observed here for the first time. The height variation of the 4-day ozone signal is shown to compare well with a linear advective-photochemical tracer model. Negative regions of quasigeostrophic potential vorticity (PV) gradient and positive Eliassen-Palm flux divergence are shown to occur, consistent with instability dynamics playing a role in wave forcing. Spectral analyses of PV derived from MLS geopotential height fields reveal a 4-day signal peaking near the polar stratopause. The three-dimensional structure of the 4-day wave resembles the potential vorticity "charge" concept, wherein a PV anomaly in the atmosphere (analogous to an electrical charge in a dielectric material) induces a geopotential field, a vertically oriented temperature dipole, and circulation about the vertical axis.

  1. Combined evaluation of optical and microwave satellite dataset for soil moisture deficit estimation

    Science.gov (United States)

    Srivastava, Prashant K.; Han, Dawei; Islam, Tanvir; Singh, Sudhir Kumar; Gupta, Manika; Gupta, Dileep Kumar; Kumar, Pradeep

    2016-04-01

    Soil moisture is a key variable responsible for water and energy exchanges from land surface to the atmosphere (Srivastava et al., 2014). On the other hand, Soil Moisture Deficit (or SMD) can help regulating the proper use of water at specified time to avoid any agricultural losses (Srivastava et al., 2013b) and could help in preventing natural disasters, e.g. flood and drought (Srivastava et al., 2013a). In this study, evaluation of Moderate Resolution Imaging Spectroradiometer (MODIS) Land Surface Temperature (LST) and soil moisture from Soil Moisture and Ocean Salinity (SMOS) satellites are attempted for prediction of Soil Moisture Deficit (SMD). Sophisticated algorithm like Adaptive Neuro Fuzzy Inference System (ANFIS) is used for prediction of SMD using the MODIS and SMOS dataset. The benchmark SMD estimated from Probability Distributed Model (PDM) over the Brue catchment, Southwest of England, U.K. is used for all the validation. The performances are assessed in terms of Nash Sutcliffe Efficiency, Root Mean Square Error and the percentage of bias between ANFIS simulated SMD and the benchmark. The performance statistics revealed a good agreement between benchmark and the ANFIS estimated SMD using the MODIS dataset. The assessment of the products with respect to this peculiar evidence is an important step for successful development of hydro-meteorological model and forecasting system. The analysis of the satellite products (viz. SMOS soil moisture and MODIS LST) towards SMD prediction is a crucial step for successful hydrological modelling, agriculture and water resource management, and can provide important assistance in policy and decision making. Keywords: Land Surface Temperature, MODIS, SMOS, Soil Moisture Deficit, Fuzzy Logic System References: Srivastava, P.K., Han, D., Ramirez, M.A., Islam, T., 2013a. Appraisal of SMOS soil moisture at a catchment scale in a temperate maritime climate. Journal of Hydrology 498, 292-304. Srivastava, P.K., Han, D., Rico

  2. Some observations on hyperuniform disordered photonic bandgap materials, from microwave scale study to infrared scale study

    Science.gov (United States)

    Tsitrin, Sam; Nahal, Geev; Florescu, Marian; Man, Weining; San Francisco State University Team; University of Surrey Team

    2015-03-01

    A novel class of disordered photonic materials, hyperuniform disordered solids (HUDS), attracted more attention. Recently they have been experimentally proven to provide complete photonic band gap (PBG) when made with Alumina or Si; as well as single-polarization PBG when made with plastic with refract index of 1.6. These PBGs were shown to be real energy gaps with zero density of photonic states, instead of mobility gaps of low transmission due to scattering, etc. Using cm-scale samples and microwave experiments, we reveal the nature of photonic modes existing in these disordered materials by analyzing phase delay and mapping field distribution profile inside them. We also show how to extend the proof-of-concept microwave studies of these materials to proof-of-scale studies for real applications, by designing and fabricating these disordered photonic materials at submicron-scale with functional devices for 1.55 micron wavelength. The intrinsic isotropy of the disordered structure is an inherent advantage associated with the absence of limitations of orientational order, which is shown to provide valuable freedom in defect architecture design impossible in periodical structures. NSF Award DMR-1308084, the University of Surrey's FRSF and Santander awards.

  3. A kilo-pixel imaging system for future space based far-infrared observatories using microwave kinetic inductance detectors

    Science.gov (United States)

    Baselmans, J. J. A.; Bueno, J.; Yates, S. J. C.; Yurduseven, O.; Llombart, N.; Karatsu, K.; Baryshev, A. M.; Ferrari, L.; Endo, A.; Thoen, D. J.; de Visser, P. J.; Janssen, R. M. J.; Murugesan, V.; Driessen, E. F. C.; Coiffard, G.; Martin-Pintado, J.; Hargrave, P.; Griffin, M.

    2017-05-01

    Aims: Future astrophysics and cosmic microwave background space missions operating in the far-infrared to millimetre part of the spectrum will require very large arrays of ultra-sensitive detectors in combination with high multiplexing factors and efficient low-noise and low-power readout systems. We have developed a demonstrator system suitable for such applications. Methods: The system combines a 961 pixel imaging array based upon Microwave Kinetic Inductance Detectors (MKIDs) with a readout system capable of reading out all pixels simultaneously with only one readout cable pair and a single cryogenic amplifier. We evaluate, in a representative environment, the system performance in terms of sensitivity, dynamic range, optical efficiency, cosmic ray rejection, pixel-pixel crosstalk and overall yield at an observation centre frequency of 850 GHz and 20% fractional bandwidth. Results: The overall system has an excellent sensitivity, with an average detector sensitivity =3×10-19 WHz measured using a thermal calibration source. At a loading power per pixel of 50 fW we demonstrate white, photon noise limited detector noise down to 300 mHz. The dynamic range would allow the detection of 1 Jy bright sources within the field of view without tuning the readout of the detectors. The expected dead time due to cosmic ray interactions, when operated in an L2 or a similar far-Earth orbit, is found to be <4%. Additionally, the achieved pixel yield is 83% and the crosstalk between the pixels is <-30 dB. Conclusions: This demonstrates that MKID technology can provide multiplexing ratios on the order of a 1000 with state-of-the-art single pixel performance, and that the technology is now mature enough to be considered for future space based observatories and experiments.

  4. A universal design to realize a tunable perfect absorber from infrared to microwaves

    Science.gov (United States)

    Smaali, Rafik; Omeis, Fatima; Moreau, Antoine; Taliercio, Thierry; Centeno, Emmanuel

    2016-01-01

    We propose a design for an universal absorber, characterized by a resonance frequency that can be tuned from visible to microwave frequencies independently of the choice of the metal and the dielectrics involved. An almost perfect absorption up to 99.8% is demonstrated at resonance for all polarization states of light and for a very wide angular aperture. These properties originate from a magnetic Fabry-Perot mode that is confined in a dielectric spacer of λ/100 thickness by a metamaterial layer and a mirror. An extraordinary large funneling through nano-slits explains how light can be trapped in the structure. Simple scaling laws can be used as a recipe to design ultra-thin perfect absorbers whatever the materials and the desired resonance wavelength, making our design truly universal. PMID:27599634

  5. A universal design to realize a tunable perfect absorber from infrared to microwaves.

    Science.gov (United States)

    Smaali, Rafik; Omeis, Fatima; Moreau, Antoine; Taliercio, Thierry; Centeno, Emmanuel

    2016-09-07

    We propose a design for an universal absorber, characterized by a resonance frequency that can be tuned from visible to microwave frequencies independently of the choice of the metal and the dielectrics involved. An almost perfect absorption up to 99.8% is demonstrated at resonance for all polarization states of light and for a very wide angular aperture. These properties originate from a magnetic Fabry-Perot mode that is confined in a dielectric spacer of λ/100 thickness by a metamaterial layer and a mirror. An extraordinary large funneling through nano-slits explains how light can be trapped in the structure. Simple scaling laws can be used as a recipe to design ultra-thin perfect absorbers whatever the materials and the desired resonance wavelength, making our design truly universal.

  6. Thermal infrared and microwave absorbing properties of SrTiO{sub 3}/SrFe{sub 12}O{sub 19}/polyaniline nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini, Seyed Hossein, E-mail: shhosseini@iiau.ac.ir [Department of Chemistry, Faculty of Science, Islamshahr Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Zamani, Parisa [Department of Applied Chemistry, Faculty of Pharmaceutical Chemistry, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Mousavi, S.Y. [Faculty of Passive Defense, Imam Hossein University, Tehran (Iran, Islamic Republic of)

    2015-09-25

    Graphical abstract: We have developed a new perspective of applications and properties of conducting polymers. The combination of absorption ability prepared nanocomposites in the present of PANI display a great potential in organization of shielding structures into thermal IR and microwave. Further investigations using other conducting polymers to demonstrate their capability for advance thermal IR and microwave shielding devices is under way. The application of these samples may improve the IR thermographic detection, catalysis, sensors, magnetic data storage, electromagnetic resonance wave absorption, photonic crystals, and microelectronic devices and military aspects. - Highlights: • The SrTiO{sub 3}/SrFe{sub 12}O{sub 19}/PANI exhibited electric and electromagnetic properties. • The SrTiO{sub 3}/SrFe{sub 12}O{sub 19}/PANI has shielding structures into thermal IR and microwave. • Increasing weight ratios and thicknesses will increase thermal IR ability. • Increasing weight ratios and thicknesses will increase microwave absorption ability. - Abstract: Polyaniline (PANI) as a unique polymer that also has electromagnetic absorption used as the substrate. In this research, SrTiO{sub 3} was synthesized as IR absorbent and core and then SrFe{sub 12}O{sub 19} as microwave absorbent was prepared on SrTiO{sub 3} via co-precipitation method as the first shell. As the next step, PANI was coated on SrTiO{sub 3}/SrFe{sub 12}O{sub 19} nanoparticles via in situ polymerization by multi core–shell structures (SrTiO{sub 3}/SrFe{sub 12}O{sub 19}/PANI). Nanometer size and structures of samples were measured by TEM, XRD and FTIR. Morphology of nanocomposite was showed by SEM images. The magnetic and electric properties were also performed by VSM and four probe techniques. Thermal infrared (IR) absorption and microwave reflection loss of nanocomposites were investigated at 10–40 μm and 8–12 GHz, IR and microwave frequencies, respectively. The results showed that the Sr

  7. Satellite Thermal Infrared Earthquake Precursor to the Wenchuan Ms 8.0 Earthquake in Sichuan, China, and its Analysis on Geo-dynamics

    Institute of Scientific and Technical Information of China (English)

    WEI Lejun; GUO Jianfeng; LIU Jianhua; LU Zhenquan; LI Haibing; CAI Hui

    2009-01-01

    Based on an interpretation and study of the satellite remote-sensing images of FY-2C thermal infrared 1st wave band (10.3-11.3 μm) designed in China, the authors found that there existed obvious and isolated satellite thermal infrared anomalies before the 5.12 Wenchuan Ms 8.0 Earthquake. These anomalies had the following characteristics: (1) The precursor appeared rather early: on March 18, 2008, I.e., 55 days before the earthquake, thermal infrared anomalies began to occur; (2) The anomalies experienced quite many and complex evolutionary stages: the satellite thermal infrared anomalies might be divided into five stages, whose manifestations were somewhat different from each other. The existence of so many anomaly stages was probably observed for the first time in numerous cases of satellite thermal infrared research on earthquakes; (3) Each stage lasted quite a long time, with the longest one spanning 13 days; (4) An evident geothermal anomaly gradient was distributed along the Longmen seismic fracture zone, and such a phenomenon might also be discovered for the first time in satellite thermal infrared earthquake research. This discovery is therefore of great guiding and instructive significance in the study of the earthquake occurrence itself and the trend of the post-earthquake phenomena.

  8. Detection and Inspection of Steel Bars in Reinforced Concrete Structures Using Active Infrared Thermography with Microwave Excitation and Eddy Current Sensors

    Directory of Open Access Journals (Sweden)

    Barbara Szymanik

    2016-02-01

    Full Text Available The purpose of this paper is to present a multi-sensor approach to the detection and inspection of steel bars in reinforced concrete structures. In connection with our past experience related to non-destructive testing of different materials, we propose using two potentially effective methods: active infrared thermography with microwave excitation and the eddy current technique. In this article active infrared thermography with microwave excitation is analyzed both by numerical modeling and experiments. This method, based on thermal imaging, due to its characteriatics should be considered as a preliminary method for the assessment of relatively shallowly located steel bar reinforcements. The eddy current technique, on the other hand, allows for more detailed evaluation and detection of deeply located rebars. In this paper a series of measurement results, together with the initial identification of certain features of steel reinforcement bars will be presented.

  9. Detection and Inspection of Steel Bars in Reinforced Concrete Structures Using Active Infrared Thermography with Microwave Excitation and Eddy Current Sensors.

    Science.gov (United States)

    Szymanik, Barbara; Frankowski, Paweł Karol; Chady, Tomasz; John Chelliah, Cyril Robinson Azariah

    2016-02-16

    The purpose of this paper is to present a multi-sensor approach to the detection and inspection of steel bars in reinforced concrete structures. In connection with our past experience related to non-destructive testing of different materials, we propose using two potentially effective methods: active infrared thermography with microwave excitation and the eddy current technique. In this article active infrared thermography with microwave excitation is analyzed both by numerical modeling and experiments. This method, based on thermal imaging, due to its characteriatics should be considered as a preliminary method for the assessment of relatively shallowly located steel bar reinforcements. The eddy current technique, on the other hand, allows for more detailed evaluation and detection of deeply located rebars. In this paper a series of measurement results, together with the initial identification of certain features of steel reinforcement bars will be presented.

  10. Advancing satellite-based solar power forecasting through integration of infrared channels for automatic detection of coastal marine inversion layer

    Energy Technology Data Exchange (ETDEWEB)

    Kostylev, Vladimir; Kostylev, Andrey; Carter, Chris; Mahoney, Chad; Pavlovski, Alexandre; Daye, Tony [Green Power Labs Inc., Dartmouth, NS (Canada); Cormier, Dallas Eugene; Fotland, Lena [San Diego Gas and Electric Co., San Diego, CA (United States)

    2012-07-01

    The marine atmospheric boundary layer is a layer or cool, moist maritime air with the thickness of a few thousand feet immediately below a temperature inversion. In coastal areas as moist air rises from the ocean surface, it becomes trapped and is often compressed into fog above which a layer of stratus clouds often forms. This phenomenon is common for satellite-based solar radiation monitoring and forecasting. Hour ahead satellite-based solar radiation forecasts are commonly using visible spectrum satellite images, from which it is difficult to automatically differentiate low stratus clouds and fog from high altitude clouds. This provides a challenge for cloud motion tyracking and cloud cover forecasting. San Diego Gas and Electric {sup registered} (SDG and E {sup registered}) Marine Layer Project was undertaken to obtain information for integration with PV forecasts, and to develop a detailed understanding of long-term benefits from forecasting Marine Layer (ML) events and their effects on PV production. In order to establish climatological ML patterns, spatial extent and distribution of marine layer, we analyzed visible and IR spectrum satellite images (GOES WEST) archive for the period of eleven years (2000 - 2010). Historical boundaries of marine layers impact were established based on the cross-classification of visible spectrum (VIS) and infrared (IR) images. This approach is successfully used by us and elsewhere for evaluating cloud albedo in common satellite-based techniques for solar radiation monitoring and forecasting. The approach allows differentiation of cloud cover and helps distinguish low laying fog which is the main consequence of marine layer formation. ML occurrence probability and maximum extent inland was established for each hour and day of the analyzed period and seasonal/patterns were described. SDG and E service area is the most affected region by ML events with highest extent and probability of ML occurrence. Influence of ML was the

  11. Patterns of Precipitation and Convection Occurrence over the Mediterranean Basin Derived from a Decade of Microwave Satellite Observations

    Directory of Open Access Journals (Sweden)

    Bahjat Alhammoud

    2014-05-01

    Full Text Available The Mediterranean region is characterized by its vulnerability to changes in the water cycle, with the impact of global warming on the water resources being one of the major concerns in social, economical and scientific ambits. Even if precipitation is the best-known term of the Mediterranean water budget, large uncertainties remain due to the lack of suitable offshore observational data. In this study, we use the data provided by the Advanced Microwave Sounding Unit-B (AMSU-B on board NOAA satellites to detect and analyze precipitating and convective events over the last decade at spatial resolution of 0.2° latitude × 0.2° longitude. AMSU-B observation shows that rain occurrence is widespread over the Mediterranean in wintertime while reduced in the eastern part of the basin in summer. Both precipitation and convection occurrences display a weak diurnal cycle over sea. In addition, convection occurrences, which are essentially located over land during summertime, shift to mostly over the sea during autumn with maxima in the Ionian sub-basin and the Adriatic Sea. Precipitation occurrence is also inferred over the sea from two other widely used climatological datasets, HOAPS (Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data and the European Centre for Medium-Range Weather Forecasts (ECMWF reanalysis interim (ERA-Interim. There is generally a rather fair agreement between these climatologies for describing the large-scale patterns such as the strong latitudinal gradient of rain and eastward rain signal propagation. Furthermore, the higher spatial resolution of AMSU-B measurements (16 km at nadir gives access to mesoscale details in the region (e.g., coastal areas. AMSU-B measurements show less rain occurrences than HOAPS during wintertime, thereby suggesting that some of the thresholds used in our method might be too stringent during this season. We also observed that convection occurrences in ERA-Interim are systematically

  12. Design of a nano-satellite demonstrator of an infrared imaging space interferometer: the HyperCube

    Science.gov (United States)

    Dohlen, Kjetil; Vives, Sébastien; Rakotonimbahy, Eddy; Sarkar, Tanmoy; Tasnim Ava, Tanzila; Baccichet, Nicola; Savini, Giorgio; Swinyard, Bruce

    2014-07-01

    The construction of a kilometer-baseline far infrared imaging interferometer is one of the big instrumental challenges for astronomical instrumentation in the coming decades. Recent proposals such as FIRI, SPIRIT, and PFI illustrate both science cases, from exo-planetary science to study of interstellar media and cosmology, and ideas for construction of such instruments, both in space and on the ground. An interesting option for an imaging multi-aperture interferometer with km baseline is the space-based hyper telescope (HT) where a giant, sparsely populated primary mirror is constituted of several free-flying satellites each carrying a mirror segment. All the segments point the same object and direct their part of the pupil towards a common focus where another satellite, containing recombiner optics and a detector unit, is located. In Labeyrie's [1] original HT concept, perfect phasing of all the segments was assumed, allowing snap-shot imaging within a reduced field of view and coronagraphic extinction of the star. However, for a general purpose observatory, image reconstruction using closure phase a posteriori image reconstruction is possible as long as the pupil is fully non-redundant. Such reconstruction allows for much reduced alignment tolerances, since optical path length control is only required to within several tens of wavelengths, rather than within a fraction of a wavelength. In this paper we present preliminary studies for such an instrument and plans for building a miniature version to be flown on a nano satellite. A design for recombiner optics is proposed, including a scheme for exit pupil re-organization, is proposed, indicating the focal plane satellite in the case of a km-baseline interferometer could be contained within a 1m3 unit. Different options for realization of a miniature version are presented, including instruments for solar observations in the visible and the thermal infrared and giant planet observations in the visible, and an

  13. Drying characteristics of zucchini slices under periodic infrared-microwave vacuum conditions

    Science.gov (United States)

    Chayjan, Reza Amiri; Dibagar, Nesa; Alaei, Behnam

    2017-06-01

    The purpose of the presented study was to describe the effects of various drying conditions on the drying behavior of zucchini slices as well as specifications of diffusivity, activation energy, shrinkage, and color. Zucchini samples, as the richest fount of macronutrient and micronutrient, were subjected to periodic microwave vacuum drying (at 450 W) at three levels of temperature (40, 50 and 60 °C), absolute pressure (20, 40 and 60 kPa) and exposure time (20-3, 30-4.5 and 40-6 s-min). An increase in the drying temperature and exposure time along with a decrease in absolute pressure caused a reduction in total drying time, however, greater heat damages and adversely texture and color effects were observed in this case. The effective moisture diffusivity of zucchini varied between 5.41×10-10 and 1.75×10-9, indicating that under circumstances of high temperature, long exposure time and low absolute pressure water was able to rapidly diffuse out of the tissue in the experimental domain. Lowering the absolute pressure of vacuum flask and increasing the exposure time led to the reduction in the activation energy of samples. The shrinkage coefficient was within the range of 79.91 to 84.92%. As such, the greatest total color difference was calculated between the color of raw and dried samples for those experiments with the largest increase in temperature, exposure time and a decrease in absolute pressure.

  14. A compact thermal infrared imaging radiometer with high spatial resolution and wide swath for a small satellite using a large format uncooled infrared focal plane array

    Science.gov (United States)

    Tatsumi, Kenji; Sakuma, Fumihiro; Kikuchi, Masakuni; Tanii, Jun; Kawanishi, Toneo; Ueno, Shinichi; Kuga, Hideki

    2014-10-01

    In this paper, we present a feasibility study for the potential of a high spatial resolution and wide swath thermal infrared (TIR) imaging radiometer for a small satellite using a large format uncooled infrared focal plane array (IR-FPA). The preliminary TIR imaging radiometer designs were performed. One is a panchromatic (mono-band) imaging radiometer (8-12μm) with a large format 2000 x 1000 pixels uncooled IR-FPA with a pixel pitch of 15 μm. The other is a multiband imaging radiometer (8.8μm, 10.8μm, 11.4μm). This radiometer is employed separate optics and detectors for each wave band. It is based on the use of a 640 x 480 pixels uncooled IR-FPA with a pixel pitch of 25 μm. The thermal time constant of an uncooled IR-FPA is approximately 10-16ms, and introduces a constraint to the satellite operation to achieve better signal-to-noise ratio, MTF and linearity performances. The study addressed both on-ground time-delayintegration binning and staring imaging solutions, although a staring imaging was preferred after trade-off. The staring imaging requires that the line of sight of the TIR imaging radiometer gazes at a target area during the acquisition time of the image, which can be obtained by rotating the satellite or a steering mirror around the pitch axis. The single band radiometer has been designed to yield a 30m ground sample distance over a 30km swath width from a satellite altitude of 500km. The radiometric performance, enhanced with staring imaging, is expected to yield a NETD less than 0.5K for a 300K ground scene. The multi-band radiometer has three spectral bands with spatial resolution of 50m and swath width of 24km. The radiometric performance is expected to yield a NETD less than 0.85K. We also showed some preliminary simulation results on volcano, desert/urban scenes, and wildfire.

  15. Lessons Learned from the Deployment and Integration of a Microwave Sounder Based Tropical Cyclone Intensity and Surface Wind Estimation Algorithm into NOAA/NESDIS Satellite Product Operations

    Science.gov (United States)

    Longmore, S. P.; Knaff, J. A.; Schumacher, A.; Dostalek, J.; DeMaria, R.; Chirokova, G.; Demaria, M.; Powell, D. C.; Sigmund, A.; Yu, W.

    2014-12-01

    The Colorado State University (CSU) Cooperative Institute for Research in the Atmosphere (CIRA) has recently deployed a tropical cyclone (TC) intensity and surface wind radii estimation algorithm that utilizes Suomi National Polar-orbiting Partnership (S-NPP) satellite Advanced Technology Microwave Sounder (ATMS) and Advanced Microwave Sounding Unit (AMSU) from the NOAA18, NOAA19 and METOPA polar orbiting satellites for testing, integration and operations for the Product System Development and Implementation (PSDI) projects at NOAA's National Environmental Satellite, Data, and Information Service (NESDIS). This presentation discusses the evolution of the CIRA NPP/AMSU TC algorithms internally at CIRA and its migration and integration into the NOAA Data Exploitation (NDE) development and testing frameworks. The discussion will focus on 1) the development cycle of internal NPP/AMSU TC algorithms components by scientists and software engineers, 2) the exchange of these components into the NPP/AMSU TC software systems using the subversion version control system and other exchange methods, 3) testing, debugging and integration of the NPP/AMSU TC systems both at CIRA/NESDIS and 4) the update cycle of new releases through continuous integration. Lastly, a discussion of the methods that were effective and those that need revision will be detailed for the next iteration of the NPP/AMSU TC system.

  16. Probing the High-Redshift Universe Using Fluctuations in the Cosmic Microwave and Infrared Backgrounds

    Science.gov (United States)

    Smidt, Joseph Michael

    Background (CIB) continues to be one of the best probes of physics at the early stages of the universe. If the CMB were a purely Gaussian field, all statistical information would be contained in the power spectrum or two-point correlation function. However, non-Gaussianities ensure that new physics may be extracted from higher n-point correlation functions including the bispectrum and trispectrum of the CMB. In this thesis discuss new estimators we have formulated to probe primordial non-Gaussianity in the bispectrum and trispectrum of CMB data and the constraints we have made using WMAP data while discussing implications for inflationary models. I discuss how these same methods may be used to probe CMB Lensing. Finally, I discuss how upcoming measurements of near and far-infrared CIB fluctuations may be used to constrain the redshift of reionization and clustering of various populations of galaxies. Some preliminary results involving CANDELS, Spitzer SDWFS, CIBER and Herschel datasets is presented.

  17. Far-Infrared Study of BaTi4O9 Microwave Dielectric Ceramics

    Science.gov (United States)

    Huang, Xianli; Wang, Fuping; Song, Ying

    2006-02-01

    In this work, lattice vibrations in BaTi4O9 ceramic were investigated using far-infrared spectra (FIRS), which were transformed by Kramers-Kronig relations into the real and imaginary parts of permittivity spectra. Curve fitting of reflectance spectra shows that 32 vibration modes were observed, among which transverse vibrations at lower frequencies (stretching and bending vibration modes involving A-site cations and TiO6 octahedra) account for most dielectric loss. An evaluation of dielectric constants and quality factors using an extrapolation method was accomplished. The calculated dielectric constants agree well with the measured ones, while the calculated dielectric losses are about half the measured ones, indicating that noneigen elements such as defects and pores exist and play an important role in BaTi4O9 ceramics. A multimode behavior of vibration modes involving Ba-sites was proposed as the origin of dielectric loss.

  18. THE APPLICATION OF HOMEMADE FY-2 SATELLITE INFRARED DATA TO MM5

    Institute of Scientific and Technical Information of China (English)

    LIU Qing; SHEN Tong-li

    2006-01-01

    @@ 1 INTRODUCTION In the end of 1980's, an operational system for 3-D variation and assimilation of meteorological data was set up in the U.S.A that supplemented data assimilation,retrieval of satellite data and numerical prediction each other. NWP was thus improved. Towards the end of 1990's, satellite observations were extensively used in NWP at ECMWF to upgrade the quality of analysis and forecasting.

  19. Meteorological Satellites (METSAT) and Earth Observing System (EOS) Advanced Microwave Sounding Unit-A (AMSU-A) Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL)

    Science.gov (United States)

    1996-01-01

    This Failure Modes and Effects Analysis (FMEA) is for the Advanced Microwave Sounding Unit-A (AMSU-A) instruments that are being designed and manufactured for the Meteorological Satellites Project (METSAT) and the Earth Observing System (EOS) integrated programs. The FMEA analyzes the design of the METSAT and EOS instruments as they currently exist. This FMEA is intended to identify METSAT and EOS failure modes and their effect on spacecraft-instrument and instrument-component interfaces. The prime objective of this FMEA is to identify potential catastrophic and critical failures so that susceptibility to the failures and their effects can be eliminated from the METSAT/EOS instruments.

  20. TIRCIS: Hyperspectral Thermal Infrared Imaging Using a Small-Satellite Compliant Fourier-Transform Imaging Spectrometer, for Natural Hazard Applications

    Science.gov (United States)

    Wright, R.; Lucey, P. G.; Crites, S.; Garbeil, H.; Wood, M.

    2015-12-01

    Many natural hazards, including wildfires, volcanic eruptions, and, from the perspective of climate-related hazards, urban heat islands, could be better quantified via the routine availability of hyperspectral thermal infrared remote sensing data from orbit. However, no sensors are currently in operation that provide such data at high-to-moderate spatial resolution (e.g. Landsat-class resolution). In this presentation we will describe a prototype instrument, developed using funding provided by NASA's Instrument Incubator Program, that can make these important measurements. Significantly, the instrument has been designed such that its size, mass, power, and cost are consistent with its integration into small satellite platforms, or deployment as part of small satellite constellations. The instrument, TIRCIS (Thermal Infra-Red Compact Imaging Spectrometer), uses a Fabry-Perot interferometer, an uncooled microbolometer array, and push-broom scanning to acquire hyperspectral image data cubes. Radiometric calibration is provided by blackbody targets while spectral calibration is achieved using monochromatic light sources. Neither the focal plane nor the optics need to be cooled, and the instrument has a mass of <10 kg and dimensions of 53 cm × 25 cm × 22 cm. Although the prototype has four moving parts, this can easily be reduced to one. The current optical design yields a 120 m ground sample size given an orbit of 500 km. Over the wavelength interval of 7.5 to 14 microns up to 90 spectral samples are possible, by varying the physical design of the interferometer. Our performance model indicates signal-to-noise ratios of the order of about 200 to 300:1. In this presentation we will provide an overview of the instrument design, fabrication, results from our initial laboratory characterization, and some of the application areas in which small-satellite-ready instruments such as TIRCIS could make a valuable contribution to the study of natural hazards.

  1. Identification of dust outbreaks on infrared MSG-SEVIRI data by using a Robust Satellite Technique (RST)

    Science.gov (United States)

    Sannazzaro, Filomena; Filizzola, Carolina; Marchese, Francesco; Corrado, Rosita; Paciello, Rossana; Mazzeo, Giuseppe; Pergola, Nicola; Tramutoli, Valerio

    2014-01-01

    Dust storms are meteorological phenomena of great interest for scientific community because of their potential impact on climate changes, for the risk that may pose to human health and due to other issues as desertification processes and reduction of the agricultural production. Satellite remote sensing, thanks to global coverage, high frequency of observation and low cost data, may highly contribute in monitoring these phenomena, provided that proper detection methods are used. In this work, the known Robust Satellite Techniques (RST) multitemporal approach, used for studying and monitoring several natural/environmental hazards, is tested on some important dust events affecting Mediterranean region in May 2004 and Arabian Peninsula in February 2008. To perform this study, data provided by the Spinning Enhanced Visible and Infrared Imager (SEVIRI) have been processed, comparing the generated dust maps to some independent satellite-based aerosol products. Outcomes of this work show that the RST technique can be profitably used for detecting dust outbreaks from space, providing information also about areas characterized by a different probability of dust presence. They encourage further improvements of this technique in view of its possible implementation in the framework of operational warning systems.

  2. Provisional maps of thermal areas in Yellowstone National Park, based on satellite thermal infrared imaging and field observations

    Science.gov (United States)

    Vaughan, R. Greg; Heasler, Henry; Jaworowski, Cheryl; Lowenstern, Jacob B.; Keszthelyi, Laszlo P.

    2014-01-01

    Maps that define the current distribution of geothermally heated ground are useful toward setting a baseline for thermal activity to better detect and understand future anomalous hydrothermal and (or) volcanic activity. Monitoring changes in the dynamic thermal areas also supports decisions regarding the development of Yellowstone National Park infrastructure, preservation and protection of park resources, and ensuring visitor safety. Because of the challenges associated with field-based monitoring of a large, complex geothermal system that is spread out over a large and remote area, satellite-based thermal infrared images from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) were used to map the location and spatial extent of active thermal areas, to generate thermal anomaly maps, and to quantify the radiative component of the total geothermal heat flux. ASTER thermal infrared data acquired during winter nights were used to minimize the contribution of solar heating of the surface. The ASTER thermal infrared mapping results were compared to maps of thermal areas based on field investigations and high-resolution aerial photos. Field validation of the ASTER thermal mapping is an ongoing task. The purpose of this report is to make available ASTER-based maps of Yellowstone’s thermal areas. We include an appendix containing the names and characteristics of Yellowstone’s thermal areas, georeferenced TIFF files containing ASTER thermal imagery, and several spatial data sets in Esri shapefile format.

  3. Near-infrared spectrophotometry of the satellites and rings of Uranus

    Science.gov (United States)

    Soifer, B. T.; Neugebauer, G.; Matthews, K.

    1981-01-01

    New spectrophotometry from 1.5 to 2.5 microns is reported for the Uranian satellites Titania, Oberon, and Umbriel. A spectrum of the rings of Uranus from 2.0 to 2.4 microns is also reported. No evidence is found for frost covering the surface of the ring material, consistent with the low albedo of the rings previously reported by Nicholson and Jones (1980). The surfaces of the satellites are found to be covered by dirty water frost. Assuming albedos of the frost and gray components covering the Uranian satellites to be the same as the light and dark faces of Iapetus, radii are derived that are roughly twice those inferred from the assumption of a visual albedo of 0.5.

  4. An intercomparison of available soil moisture estimates from thermal infrared and passive microwave remote sensing and land surface modeling

    Science.gov (United States)

    Hain, Christopher R.; Crow, Wade T.; Mecikalski, John R.; Anderson, Martha C.; Holmes, Thomas

    2011-08-01

    Remotely sensed soil moisture studies have mainly focused on retrievals using active and passive microwave (MW) sensors, which provide measurements that are directly related to soil moisture (SM). MW sensors have obvious advantages such as the ability to retrieve through nonprecipitating cloud cover which provides shorter repeat cycles. However, MW sensors offer coarse spatial resolution and suffer from reduced retrieval skill over moderate to dense vegetation. A unique avenue for filling these information gaps is to exploit the retrieval of SM from thermal infrared (TIR) observations, which can provide SM information under vegetation cover and at significantly higher resolutions than MW. Previously, an intercomparison of TIR-based and MW-based SM has not been investigated in the literature. Here a series of analyses are proposed to study relationships between SM products during a multiyear period (2003-2008) from a passive MW retrieval (AMSR-E), a TIR based model (ALEXI), and a land surface model (Noah) over the continental United States. The three analyses used in this study include (1) a spatial anomaly correlation analysis, (2) a temporal correlation analysis, and (3) a triple collocation error estimation technique. In general, the intercomparison shows that the TIR and MW methods provide complementary information about the current SM state. TIR can provide SM information over moderate to dense vegetation, a large information gap in current MW methods, while serving as an additional independent source of SM information over low to moderate vegetation. The complementary nature of SM information from MW and TIR sensors implies a potential for integration within an advanced SM data assimilation system.

  5. Microwave and infrared spectra, adjusted r0 structural parameters, conformational stabilities, vibrational assignments, and theoretical calculations of cyclobutylcarboxylic acid chloride.

    Science.gov (United States)

    Klaassen, Joshua J; Darkhalil, Ikhlas D; Deodhar, Bhushan S; Gounev, Todor K; Gurusinghe, Ranil M; Tubergen, Michael J; Groner, Peter; Durig, James R

    2013-08-01

    The FT-microwave spectrum of cyclobutylcarboxylic acid chloride, c-C4H7C(O)Cl, has been recorded and 153 transitions for the (35)Cl and (37)Cl isotopologues have been assigned for the gauche-equatorial (g-Eq) conformation. The ground state rotational constants were determined for (35)Cl [(37)Cl]: A = 4349.8429(25) [4322.0555(56)] MHz, B = 1414.8032(25) [1384.5058(25)] MHz, and C = 1148.2411(25) [1126.3546(25)] MHz. From these rotational constants and ab initio predicted parameters, adjusted r0 parameters are reported with distances (Å) rCα-C = 1.491(4), rC═O = 1.193(3), rCα-Cβ = 1.553(4), rCα-Cβ' = 1.540(4), rCγ-Cβ = 1.547(4), rCγ-Cβ' = 1.546(4), rC-Cl = 1.801(3) and angles (deg) τCγCβCβ'Cα = 30.9(5). Variable temperature (-70 to -100 °C) infrared spectra (4000 to 400 cm(-1)) were recorded in liquid xenon and the g-Eq conformer was determined the most stable form, with enthalpy differences of 91 ± 9 cm(-1) (1.09 ± 0.11 kJ/mol) for the gauche-axial (g-Ax) form and 173 ± 17 cm(-1) (2.07 ± 0.20 kJ/mol) for the trans-equatorial (t-Eq) conformer. The relative amounts at ambient temperature are 54% g-Eq, 35 ± 1% g-Ax, and 12 ± 1% t-Eq forms. Vibrational assignments have been provided for the three conformers and theoretical calculations were carried out. The results are discussed and compared to corresponding properties of related molecules.

  6. USING OF THE MULTITEMPORAL THERMAL INFRARED SATELLITE IMAGERY FOR NATURAL AREAS MAPPING (CASE OF MENDELEEV VOLCANO

    Directory of Open Access Journals (Sweden)

    M. Y. Grishchenko

    2014-01-01

    Full Text Available In the paper authors examine the mountain group of Mendeleev volcano situated on the Kunashir island, Kuril archipelago, Russia. Ground observations were led to examine the vegetation cover of the area as well as its typical landscapes. The other type of used data is Landsat imagery. Images were combined into multitemporal thermal infrared and multispectral pictures, which were classified to reveal the heterogeneity of the study area. Ground observations and comparison of the classification results with landscape map derive that the multitemporal thermal infrared image classification result describes better the vegetation cover structure of the area and particularity of its typical landscapes distribution. It leads to the proposition that miltitemporal thermal infrared imagery can be used to refine landscape and vegetation cover contours. 

  7. Development and Assessment of the Sand Dust Prediction Model by Utilizing Microwave-Based Satellite Soil Moisture and Reanalysis Datasets in East Asian Desert Areas

    Directory of Open Access Journals (Sweden)

    Hyunglok Kim

    2017-01-01

    Full Text Available For several decades, satellite-based microwave sensors have provided valuable soil moisture monitoring in various surface conditions. We have first developed a modeled aerosol optical depth (AOD dataset by utilizing Soil Moisture and Ocean Salinity (SMOS, Advanced Microwave Scanning Radiometer 2 (AMSR2, and the Global Land Data Assimilation System (GLDAS soil moisture datasets in order to estimate dust outbreaks over desert areas of East Asia. Moderate Resolution Imaging Spectroradiometer- (MODIS- based AOD products were used as reference datasets to validate the modeled AOD (MA. The SMOS-based MA (SMOS-MA dataset showed good correspondence with observed AOD (R-value: 0.56 compared to AMSR2- and GLDAS-based MA datasets, and it overestimated AOD compared to observed AOD. The AMSR2-based MA dataset was found to underestimate AOD, and it showed a relatively low R-value (0.35 with respect to observed AOD. Furthermore, SMOS-MA products were able to simulate the short-term AOD trends, having a high R-value (0.65. The results of this study may allow us to acknowledge the utilization of microwave-based soil moisture datasets for investigation of near-real time dust outbreak predictions and short-term dust outbreak trend analysis.

  8. Controls on ERS altimeter measurements over ice sheets: Footprint-scale topography, backscatter fluctuations, and the dependence of microwave penetration depth on satellite orientation

    Science.gov (United States)

    Arthern, R. J.; Wingham, D. J.; Ridout, A. L.

    2001-12-01

    We consider the reliability of radar altimeter measurements of ice sheet elevation and snowpack properties in the presence of surface undulations. We demonstrate that over ice sheets the common practice of averaging echoes by aligning the first return from the surface at the origin can result in a redistribution of power to later times in the average echo, mimicking the effects of microwave penetration into the snowpack. Algorithms that assume the topography affects the radar echo shape in the same way that waves affect altimeter echoes over the ocean will therefore lead to biased estimates of elevation. This assumption will also cause errors in the retrieval of echoshape parameters intended to quantify the penetration of the microwave pulse into the snowpack. Using numerical simulations, we estimate the errors in retrievals of extinction coefficient, surface backscatter, and volume backscatter for various undulating topographies. In the flatter portions of the Antarctic plateau, useful estimates of these parameters may be recovered by averaging altimeter echoes recorded by the European Remote Sensing satellite (ERS-1). By numerical deconvolution of the average echoes we resolve the depths in the snowpack at which temporal changes and satellite travel-direction effects occur, both of which have the potential to corrupt measurements of ice sheet elevation change. The temporal changes are isolated in the surface-backscatter cross section, while directional effects are confined to the extinction coefficient and are stable from year to year. This allows the removal of the directional effect from measurement of ice-sheet elevation change.

  9. Crystal microstructure, infrared absorption, and microwave electromagnetic properties of (La1-xDyx)2/3Sr1/3MnO3

    Institute of Scientific and Technical Information of China (English)

    LIU Jian; YUN Guohong; SU Meiling

    2009-01-01

    The manganite perovskite polycrystal samples of (La1-xDyx)Sr1/3MnO3 (x = 0, 0.1, 0.2, 0.35, and 0.5) doped with Dy were prepared by solid state reaction in atmosphere to measure their X-ray diffraction (XRD) patterns, scanning electric microscope (SEM) images, infrared absorption spectra, and microwave electromagnetic properties. The displacement of the XRD peaks of the samples was found, and the 20 in-creases from 0.05° to 0.5°. The grains of undoped La2/3Sr1/3MnO3 not only have the greatest size, but also the most regular shape. The size of the grains decreases as the Dy doping content increases from 0 to 0.5. The infrared absorption spectra of all samples were measured at roomtemperature. An absorption peak corresponding to the stretching vibration mode of Mn--O bonds appears within the range of 591-629 cm-1.The absorption peak shifts from a higher frequency to a lower one with the decrease of the average ionic radius of A-site. The frequency dependence of microwave-absorbing properties, imaginary components of the complex magnetic permeability μ" and dielectric permeability ε", for all samples was measured at room temperature from 8 to 13 GHz. The results show that the loss of microwave absorption can be attributed to both the magnetic and electric losses. The increase of Dy content not only enhances the microwave absorption but also causes the displacement of the absorption peaks.

  10. Reconstruction of an infrared band of meteorological satellite imagery with abductive networks

    Science.gov (United States)

    Singer, Harvey A.; Cockayne, John E.; Versteegen, Peter L.

    1995-01-01

    As the current fleet of meteorological satellites age, the accuracy of the imagery sensed on a spectral channel of the image scanning system is continually and progressively degraded by noise. In time, that data may even become unusable. We describe a novel approach to the reconstruction of the noisy satellite imagery according to empirical functional relationships that tie the spectral channels together. Abductive networks are applied to automatically learn the empirical functional relationships between the data sensed on the other spectral channels to calculate the data that should have been sensed on the corrupted channel. Using imagery unaffected by noise, it is demonstrated that abductive networks correctly predict the noise-free observed data.

  11. Data Fusion Between Microwave and Thermal Infrared Radiometer Data and Its Application to Skin Sea Surface Temperature, Wind Speed and Salinity Retrievals

    Directory of Open Access Journals (Sweden)

    Kohei Arai

    2013-03-01

    Full Text Available Method for data fusion between Microwave Scanning Radiometer: MSR and Thermal Infrared Radiometer: TIR derived skin sea surface temperature: SSST, wind speed: WS and salinity is proposed. SSST can be estimated with MSR and TIR radiometer data. Although the contribution ocean depth to MSR and TIR radiometer data are different each other, SSST estimation can be refined through comparisons between MSR and TIR derived SSST. Also WS and salinity can be estimated with MSR data under the condition of the refined SSST. Simulation study results support the idea of the proposed data fusion method.

  12. Satellite-based forest monitoring: spatial and temporal forecast of growing index and short-wave infrared band.

    Science.gov (United States)

    Bayr, Caroline; Gallaun, Heinz; Kleb, Ulrike; Kornberger, Birgit; Steinegger, Martin; Winter, Martin

    2016-04-18

    For detecting anomalies or interventions in the field of forest monitoring we propose an approach based on the spatial and temporal forecast of satellite time series data. For each pixel of the satellite image three different types of forecasts are provided, namely spatial, temporal and combined spatio-temporal forecast. Spatial forecast means that a clustering algorithm is used to group the time series data based on the features normalised difference vegetation index (NDVI) and the short-wave infrared band (SWIR). For estimation of the typical temporal trajectory of the NDVI and SWIR during the vegetation period of each spatial cluster, we apply several methods of functional data analysis including functional principal component analysis, and a novel form of random regression forests with online learning (streaming) capability. The temporal forecast is carried out by means of functional time series analysis and an autoregressive integrated moving average model. The combination of the temporal forecasts, which is based on the past of the considered pixel, and spatial forecasts, which is based on highly correlated pixels within one cluster and their past, is performed by functional data analysis, and a variant of random regression forests adapted to online learning capabilities. For evaluation of the methods, the approaches are applied to a study area in Germany for monitoring forest damages caused by wind-storm, and to a study area in Spain for monitoring forest fires.

  13. An Autonomous System to Take Angular Thermal-Infrared Measurements for Validating Satellite Products

    OpenAIRE

    Raquel Niclòs; José A. Valiente; Maria J. Barberà; César Coll

    2015-01-01

    An autonomous system for field land surface temperature (LST) measurements taken at different observation angles was developed to be deployed easily at any conventional meteorological tower station. The system permits ground-truth data to be acquired on a continuous basis, and angularly scans land and sky hemispheres with a single thermal-infrared (TIR) radiometer. This paper describes the autonomous angular system and the methodology to assess ground-truth LST and relative-to-nadir emissivit...

  14. Specification for an Infrared Satellite Surveillance System for the Detection of Aircraft

    Science.gov (United States)

    1987-11-01

    In the monolithic IRCCD, the infrared sensitive substrate is either e narrow bandgap semiconductor or an extrinsic semiconductor with appropriate...thermally generated to bring the potential well into thermal equilibrium. Clock Feedt.hrough This noise is due to capacitance coupling Noise from the...Noise This noise is associated with a MOSFET of a given transconductance. Detector This noise is variations across the video Uniformity Noise output

  15. Long-Term Record of Arctic and Antarctic Sea and Ice Surface Temperatures from Thermal Infrared Satellite Sensors

    Science.gov (United States)

    Luis, Cristina; Dybkjær, Gorm; Eastwood, Steinar; Tonboe, Rasmus; Høyer, Jacob

    2015-04-01

    Surface temperature is among the most important variables in the surface energy balance equation and it significantly affects the atmospheric boundary layer structure, the turbulent heat exchange and, over ice, the ice growth rate. Here we measure the surface temperature using thermal infrared sensors from 10-12 µm wavelength, a method whose primary limitation over sea ice is the detection of clouds. However, in the Arctic and around Antarctica there are very few conventional observations of surface temperature from buoys, and it is sometimes difficult to determine if the temperature is measured at the surface or within the snowpack, the latter of which often results in a warm bias. To reduce this bias, much interest is being paid to alternative remote sensing methods for monitoring high latitude surface temperature. We used Advanced Very High Resolution Radiometer (AVHRR) global area coverage (GAC) data to produce a high latitude sea surface temperature (SST), ice surface temperature (IST) and ice cap skin temperature dataset spanning 27 years (1982-2009). This long-term climate record is the first of its kind for IST. In this project we used brightness temperatures from the infrared channels of AVHRR sensors aboard NOAA and Metop polar-orbiting satellites. Surface temperatures were calculated using separate split window algorithms for day SST, night SST, and IST. The snow surface emissivity across all angles of the swath were simulated specifically for all sensors using an emission model. Additionally, all algorithms were tuned to the Arctic using simulated brightness temperatures from a radiative transfer model with atmospheric profiles and skin temperatures from European Centre for Medium-Range Forecasts (ECMWF) re-analysis data (ERA-Interim). Here we present the results of product quality as compared to in situ measurements from buoys and infrared radiometers, as well as a preliminary analysis of climate trends revealed by the record.

  16. Lava discharge rate estimates from thermal infrared satellite data for Pacaya Volcano during 2004-2010

    Science.gov (United States)

    Morgan, Hilary A.; Harris, Andrew J. L.; Gurioli, Lucia

    2013-08-01

    Pacaya is one of the most active volcanoes in Central America and has produced lava flows frequently since 1961. All effusive activity between 1961 and 2009 was confined by an arcuate collapse scarp surrounding the northern and eastern flanks. However, the recent breaching of this topographic barrier, and the eruption of a large lava flow outside of the main center of activity, have allowed lava to extend into nearby populated areas, indicating the need for assessment and monitoring of lava flow hazards. We investigated whether a commonly used satellite-based model could produce accurate lava discharge rates for the purpose of near-real-time assessment of hazards during future eruptions and to assess the dynamics of this persistently degassing system. The model assumes a linear relationship between active lava flow area and time-averaged discharge rate (TADR) via a simple conversion factor. We calculated the conversion factor via two methods: (1) best-fitting of satellite-derived flow areas to ground-based estimates of lava flow volume, and (2) theoretically via a parameterized model that takes into account the physical properties of the lava. To apply the latter method, we sampled four lava flows and measured density, vesicularity, crystal content, and major element composition. We found the best agreement of conversion factors in the eruption with the most complete satellite coverage, and used data for these flows to define the linear relationship between area and discharge rate. The physical properties of the sampled flows were essentially identical, so that any discrepancy between the two methods of calculating conversion factors must be due to modeling errors or environmental factors unaccounted for by the parameterized model. However, our best-fitting method provides a new means to set the conversion appropriately, and to obtain self-consistent TADRs. We identified two distinct types of effusive activity at Pacaya: Type 1 activity characterized by initially

  17. Geostationary Satellite (GOES) Images

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Visible and Infrared satellite imagery taken from radiometer instruments on SMS (ATS) and GOES satellites in geostationary orbit. These satellites produced...

  18. Time-resolved visible/near-infrared spectrometric observations of the Galaxy 11 geostationary satellite

    Science.gov (United States)

    Bédard, Donald; Wade, Gregg A.

    2017-01-01

    Time-resolved spectrometric measurements of the Galaxy 11 geostationary satellite were collected on three consecutive nights in July 2014 with the 1.6-m telescope at the Observatoire du Mont-Mégantic in Québec, Canada. Approximately 300 low-resolution spectra (R ≈ 700 , where R = λ / Δλ) of the satellite were collected each night, covering a spectral range between 425 and 850 nm. The two objectives of the experiment were to conduct material-type identification from the spectra and to study how the spectral energy distribution inferred from these measurements varied as the illumination and observation geometry changed on nightly timescales. We present results that indicate the presence of a highly reflective aluminized surface corresponding to the solar concentrator arrays of the Galaxy 11 spacecraft. Although other material types could not be identified using the spectra, the results showed that the spectral energy distribution of the reflected sunlight from the Galaxy 11 spacecraft varied significantly, in a systematic manner, over each night of observation. The variations were quantified using colour indices calculated from the time-resolved spectrometric measurements.

  19. Analytical Morse/long-range model potential and predicted infrared and microwave spectra for a symmetric top-atom dimer: a case study of CH₃F-He.

    Science.gov (United States)

    Ma, Yong-Tao; Zeng, Tao; Li, Hui

    2014-06-07

    Four-dimensional ab initio intermolecular potential energy surfaces (PESs) for CH3F-He that explicitly incorporates dependence on the Q3 stretching normal mode of the CH3F molecule and are parametrically dependent on the other averaged intramolecular coordinates have been calculated. Analytical three-dimensional PESs for v3(CH3F) = 0 and 1 are obtained by least-squares fitting the vibrationally averaged potentials to the Morse/Long-Range potential function form. With the 3D PESs, we employ Lanczos algorithm to calculate rovibrational levels of the dimer system. Following some re-assignments, the predicted transition frequencies are in good agreement with experimental microwave data for ortho-CH3F, with the root-mean-square deviation of 0.042 cm(-1). We then provide the first prediction of the infrared and microwave spectra for the para-CH3F-He dimer. The calculated infrared band origin shifts associated with the ν3 fundamental of CH3F are 0.039 and 0.069 cm(-1) for para-CH3F-He and ortho-CH3F-He, respectively.

  20. Far-infrared photometric observations of the outer planets and satellites with Herschel-PACS

    CERN Document Server

    Müller, T G; Nielbock, M; Moreno, R; Klaas, U; Moór, A; Linz, H; Feuchtgruber, H

    2016-01-01

    We present all Herschel PACS photometer observations of Mars, Saturn, Uranus, Neptune, Callisto, Ganymede, and Titan. All measurements were carefully inspected for quality problems, were reduced in a (semi-)standard way, and were calibrated. The derived flux densities are tied to the standard PACS photometer response calibration, which is based on repeated measurements of five fiducial stars. The overall absolute flux uncertainty is dominated by the estimated 5% model uncertainty of the stellar models in the PACS wavelength range between 60 and 210 micron. A comparison with the corresponding planet and satellite models shows excellent agreement for Uranus, Neptune, and Titan, well within the specified 5%. Callisto is brighter than our model predictions by about 4-8%, Ganymede by about 14-21%. We discuss possible reasons for the model offsets. The measurements of these very bright point-like sources, together with observations of stars and asteroids, show the high reliability of the PACS photometer observation...

  1. Near real-time routine for volcano monitoring using infrared satellite data

    Directory of Open Access Journals (Sweden)

    Claudia Spinetti

    2011-12-01

    Full Text Available An Advanced Very-High-Resolution Radiometer (AVHRR routine for hot-spot detection and effusion rate estimation (AVHotRR using AVHRR infrared space-borne images is presented here for the monitoring of active lava flow. AVHotRR uses directly broadcast National Oceanic and Atmospheric Administration (NOAA-AVHRR remotely sensed data. The 2006 summit eruption of Mount Etna provided the opportunity to test the products generated by AVHotRR for monitoring purposes. Low spatial and high temporal resolution products can also be used as inputs of flow models to drive numerical simulations of lava-flow paths and thus to provide quantitative hazard assessment and volcanic risk mitigation.

  2. Research on water ice content in Cabeus crater using the data from the microwave radiometer onboard Chang’e-1 satellite

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The existence, formation and content of water ice in the lunar permanently shaded region is one of the important questions for the current Moon study. On October 9, 2009, the LCROSS mission spacecraft impacted the Moon, and the initial result verified the existence of water on the Moon. But the study on formation and content of water ice is still under debate. The existence of water ice can change the dielectric constants of the lunar regolith, and a microwave radiometer is most sensitive to the dielectric parameters. Based on this, in this paper, the radiation transfer model is improved according to the simulation results in high frequency. Then the mixture dielectric constant models, including Odelevsky model, Wagner and landau-Lifshitz model, Clau-sius model, Gruggeman-Hanai model, etc., are analyzed and compared. The analyzing results indicate that the biggest difference occurs between Lichtenecker model and the improved Dobson model. The values estimated by refractive model are the second biggest in all the models. And the results from Odelevsky model, strong fluctuation model, Wagner and Landau –Lifshitz model, Clausius model and Bruggeman-Hanai model are very near to each other. Thereafter, the relation between volume water ice content and microwave brightness temperature is constructed with Odelevsky mixing dielectric model and the improved radiative transfer simulation, and the volume water ice content in Cabeus crater is retrieved with the data from microwave radiometer onboard Chang’e-1 satellite. The results present that the improved radiative transfer model is proper for the brightness temperature simulation of the one infinite regolith layer in high frequency. The brightness temperature in Cabeus crater is 69.93 K (37 GHz), and the corresponding volume water ice content is about 2.8%.

  3. Online Visualization and Analysis of Merged Global Geostationary Satellite Infrared Dataset

    Science.gov (United States)

    Liu, Z.; Ostrenga, D.; Leptoukh, G.; Mehta, A.

    2008-12-01

    The NASA Goddard Earth Sciences Data Information Services Center (GES DISC) is home of Tropical Rainfall Measuring Mission (TRMM) data archive. The global merged IR product, also known as, the NCEP/CPC 4-km Global (60°N - 60°S) IR Dataset, is one of TRMM ancillary datasets. They are globally-merged (60°N-60°S) pixel-resolution (4 km) IR brightness temperature data (equivalent blackbody temperatures), merged from all available geostationary satellites (GOES-8/10, METEOSAT-7/5 & GMS). The availability of data from METEOSAT-5, which is located at 63E at the present time, yields a unique opportunity for total global (60°N-60°S) coverage. The GES DISC has collected over 8 years of the data beginning from February of 2000. This high temporal resolution dataset can not only provide additional background information to TRMM and other satellite missions, but also allow observing a wide range of meteorological phenomena from space, such as, mesoscale convection system, tropical cyclones, hurricanes, etc. The dataset can also be used to verify model simulations. Despite that the data can be downloaded via ftp, however, its large volume poses a challenge for many users. A single file occupies about 70 MB disk space and there is a total of ~73,000 files (~4.5 TB) for the past 8 years. Because there is a lack of data subsetting service, one has to download the entire file, which could be time consuming and require a lot of disk space. In order to facilitate data access, we have developed a web prototype, the Global Image ViewER (GIVER), to allow users to conduct online visualization and analysis of this dataset. With a web browser and few mouse clicks, users can have a full access to over 8 year and over 4.5 TB data and generate black and white IR imagery and animation without downloading any software and data. Basic functions include selection of area of interest, single imagery or animation, a time skip capability for different temporal resolution and image size. Users

  4. Preparation of thermal infrared and microwave absorber using SrTiO{sub 3}/BaFe{sub 12}O{sub 19}/polyaniline nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini, Seyed Hossein, E-mail: shhosseini@iiau.ac.ir [Department of Chemistry, Faculty of Science, Islamshahr Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Zamani, Parisa [Department of Applied Chemistry, Faculty of Pharmaceutical Chemistry, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of)

    2016-01-01

    In this research, first, SrTiO{sub 3} was synthesized as thermal infrared (TIR) absorbent and core and then BaFe{sub 12}O{sub 19} as microwave absorbent was prepared on SrTiO{sub 3} via co-precipitation method as first shell. Second, polyaniline (PANI) was coated on SrTiO{sub 3}/BaFe{sub 12}O{sub 19} NPs (NPs) via in situ polymerization by multi core–shell structures (SrTiO{sub 3}/BaFe{sub 12}O{sub 19}/PANI). Nanometer size and structures of samples were measured by TEM, XRD and FTIR. Morphology of nanocomposite was showed by SEM images. The magnetic and electric properties were also performed by VSM and four probe methods. The TIR absorption and microwave reflection loss of nanocomposites were investigated at 10–40 µm and 8–12 GHz, TIR and microwave frequencies, respectively. The results showed that the SrTiO{sub 3}/BaFe{sub 12}O{sub 19}/PANI nanocomposites have good compatible electric and magnetic properties and hence the microwave absorbency show wide bandwidth properties. The infrared thermal image testing showed that the ability of infrared thermal imaging was increased by increasing SrTiO{sub 3}/BaFe{sub 12}O{sub 19} as core and independent to increasing PANI as final shell. - Graphical abstract: The light reflectivity times of samples on human body are higher than metallic disks. So, they are suitable for TIR as absorbers. The light reflectivity times of samples were increased by increasing weight ratio and thickness. Human temperature could not transmit to samples by increasing weight ratio of core. Therefore weight ratio (SrTiO{sub 3}/BaFe{sub 12}O{sub 19} as core) above 40% and 1 mm diameter are the best result as TIR absorber. The SrTiO{sub 3}/BaFe{sub 12}O{sub 19}/PANI enhanced broad band IR light absorption was observed in the wavelength range of 10–40 µm. A minimum RL of −19 dB was observed at 9.2 GHz for a 1.5-mm thickness nanocomposite. The application of these samples may improve the IR thermographic detection, catalysis, sensors

  5. Global Cloud Detection and Distribution with Night Time using Satellite Infrared Data

    Science.gov (United States)

    Kadosaki, G.; Yamanouchi, T.; Hirasawa, N.

    2007-12-01

    Knowledge of the current climate system is necessary to clearly estimate large-scale global warming and abnormal weather in the future. Net radiation is one of the main factors that influence a climate system. The earth, which is covered by cloud of dozens of surface giving it a high albedo, reflects a large part of solar radiation. In addition, during nights, when the earth's radiation increases, the earth acts as a radiator. There is no doubt that clouds are closely related to the radiation balance. Satellite data analysis is the most useful method to understand cloud climatology. The targets are to establish an algorithm to detect clouds for night term of the earth, and to get to know more about global cloud distribution with night term. Brightness temperature difference of split window channels is used in this method. We decided three thresholds which have some slopes are used in the case of over land, open sea, and snow or ice surface including sea ice, respectively. We examined on some sensors which has difference response function in itself plat home, GLI/ADEOS2, AVHRR/NOAA, MODIS/Terra and Aqua.

  6. Superconductivity applications for infrared and microwave devices; Proceedings of the Meeting, Orlando, FL, Apr. 19, 20, 1990

    Science.gov (United States)

    Bhasin, Kul B. (Editor); Heinen, Vernon O. (Editor)

    1990-01-01

    Various papers on superconductivity applications for IR and microwave devices are presented. The individual topics addressed include: pulsed laser deposition of Tl-Ca-Ba-Cu-O films, patterning of high-Tc superconducting thin films on Si substrates, IR spectra and the energy gap in thin film YBa2Cu3O(7-delta), high-temperature superconducting thin film microwave circuits, novel filter implementation utilizing HTS materials, high-temperature superconductor antenna investigations, high-Tc superconducting IR detectors, high-Tc superconducting IR detectors from Y-Ba-Cu-O thin films, Y-Ba-Cu0-O thin films as high-speed IR detectors, fabrication of a high-Tc superconducting bolometer, transition-edge microbolometer, photoresponse of YBa2Cu3O(7-delta) granular and epitaxial superconducting thin films, fast IR response of YBCO thin films, kinetic inductance effects in high-Tc microstrip circuits at microwave frequencies.

  7. Microwave emissivity of fresh water ice--Lake ice and Antarctic ice pack--Radiative transfer simulations versus satellite radiances

    CERN Document Server

    Mills, Peter

    2012-01-01

    Microwave emissivity models of sea ice are poorly validated empirically. Typical validation studies involve using averaged or stereotyped profiles of ice parameters against averaged radiance measurements. Measurement sites are rarely matched and even less often point-by-point. Because of saline content, complex permittivity of sea ice is highly variable and difficult to predict. Therefore, to check the validity of a typical, plane-parallel, radiative-transfer-based ice emissivity model, we apply it to fresh water ice instead of salt-water ice. Radiance simulations for lake ice are compared with measurements over Lake Superior from the Advanced Microwave Scanning Radiometer on EOS (AMSR-E). AMSR-E measurements are also collected over Antarctic icepack. For each pixel, a thermodynamic model is driven by four years of European Center for Medium Range Weather Forecasts (ECMWF) reanalysis data and the resulting temperature profiles used to drive the emissivity model. The results suggest that the relatively simple ...

  8. Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds

    Science.gov (United States)

    Schlegel, David J.; Finkbeiner, Douglas P.; Davis, Marc

    1998-06-01

    We present a full-sky 100 μm map that is a reprocessed composite of the COBE/DIRBE and IRAS/ISSA maps, with the zodiacal foreground and confirmed point sources removed. Before using the ISSA maps, we remove the remaining artifacts from the IRAS scan pattern. Using the DIRBE 100 and 240 μm data, we have constructed a map of the dust temperature so that the 100 μm map may be converted to a map proportional to dust column density. The dust temperature varies from 17 to 21 K, which is modest but does modify the estimate of the dust column by a factor of 5. The result of these manipulations is a map with DIRBE quality calibration and IRAS resolution. A wealth of filamentary detail is apparent on many different scales at all Galactic latitudes. In high-latitude regions, the dust map correlates well with maps of H I emission, but deviations are coherent in the sky and are especially conspicuous in regions of saturation of H I emission toward denser clouds and of formation of H2 in molecular clouds. In contrast, high-velocity H I clouds are deficient in dust emission, as expected. To generate the full-sky dust maps, we must first remove zodiacal light contamination, as well as a possible cosmic infrared background (CIB). This is done via a regression analysis of the 100 μm DIRBE map against the Leiden-Dwingeloo map of H I emission, with corrections for the zodiacal light via a suitable expansion of the DIRBE 25 μm flux. This procedure removes virtually all traces of the zodiacal foreground. For the 100 μm map no significant CIB is detected. At longer wavelengths, where the zodiacal contamination is weaker, we detect the CIB at surprisingly high flux levels of 32 +/- 13 nW m-2 sr-1 at 140 μm and of 17 +/- 4 nW m-2 sr-1 at 240 μm (95% confidence). This integrated flux ~2 times that extrapolated from optical galaxies in the Hubble Deep Field. The primary use of these maps is likely to be as a new estimator of Galactic extinction. To calibrate our maps, we assume a

  9. Estimation of soil moisture-thermal infrared emissivity relation in arid and semi-arid environments using satellite observations

    Science.gov (United States)

    Grazia Blasi, Maria; Masiello, Guido; Serio, Carmine; Venafra, Sara; Liuzzi, Giuliano; Dini, Luigi

    2016-04-01

    The retrieval of surface parameters is very important for various aspects concerning the climatological and meteorological context. At this purpose surface emissivity represents one of the most important parameters useful for different applications such as the estimation of climate changes and land cover features. It is known that thermal infrared (TIR) emissivity is affected by soil moisture, but there are very few works in literature on this issue. This study is aimed to analyze and find a relation between satellite soil moisture data and TIR emissivity focusing on arid and semi-arid environments. These two parameters, together with the land surface temperature, are fundamental for a better understanding of the physical phenomena implied in the soil-atmosphere interactions and the surface energy balance. They are also important in several fields of study, such as climatology, meteorology, hydrology and agriculture. In particular, there are several studies stating a correlation between soil moisture and the emissivity at 8-9 μm in desertic soils, which corresponds to the quartz Reststrahlen, a feature which is typical of sandy soils. We investigated several areas characterized by arid or semi-arid environments, focusing our attention on the Dahra desert (Senegal), and on the Negev desert (Israel). For the Dahra desert we considered both in situ, provided by the International Soil Moisture Network, and satellite soil moisture data, from ASCAT and AMSR-E sensors, for the whole year 2011. In the case of the Negev desert soil moisture data are derived from ASCAT observations and we computed a soil moisture index from a temporal series of SAR data acquired by the Cosmo-SkyMed constellation covering a period of six months, from June 2015 to November 2015. For both cases soil moisture data were related to the retrieved TIR emissivity from the geostationary satellite SEVIRI in three different spectral channels, at 8.7 μm, 10.8 μm and 12 μm. A Kalman filter physical

  10. Quantification of the Beauce's Groundwater contribution to the Loire River discharge using satellite infrared imagery

    Directory of Open Access Journals (Sweden)

    E. Lalot

    2015-02-01

    Full Text Available Seven Landsat Thermal InfraRed (TIR images, taken over the period 2000–2010, were used to establish longitudinal temperature profiles of the middle Loire River, where it flows above the Beauce aquifer. Results showed that 75% of the temperature differences, between in situ observations and TIR image based estimations, remained within the ±1 °C interval. The groundwater discharge along the River course was quantified for each identified groundwater catchment areas using a heat budget based on the Loire River temperature variations, estimated from the TIR images. The main discharge area of the Beauce aquifer into the Loire River was located between river kilometers 630 and 650. This result confirms what was obtained using a groundwater budget and spatially locates groundwater input within the Middle sector of the Loire River. According to the heat budgets, groundwater discharge is higher during winter period (13.5 m3 s−1 than during summer (5.3 m3 s−1. Groundwater input is also higher during the flow recession periods of the Loire River.

  11. An extended global Earth system data record on daily landscape freeze-thaw status determined from satellite passive microwave remote sensing

    Science.gov (United States)

    Kim, Youngwook; Kimball, John S.; Glassy, Joseph; Du, Jinyang

    2017-02-01

    The landscape freeze-thaw (FT) signal determined from satellite microwave brightness temperature (Tb) observations has been widely used to define frozen temperature controls on land surface water mobility and ecological processes. Calibrated 37 GHz Tb retrievals from the Scanning Multichannel Microwave Radiometer (SMMR), Special Sensor Microwave Imager (SSM/I), and SSM/I Sounder (SSMIS) were used to produce a consistent and continuous global daily data record of landscape FT status at 25 km grid cell resolution. The resulting FT Earth system data record (FT-ESDR) is derived from a refined classification algorithm and extends over a larger domain and longer period (1979-2014) than prior FT-ESDR releases. The global domain encompasses all land areas affected by seasonal frozen temperatures, including urban, snow- and ice-dominant and barren land, which were not represented by prior FT-ESDR versions. The FT retrieval is obtained using a modified seasonal threshold algorithm (MSTA) that classifies daily Tb variations in relation to grid-cell-wise FT thresholds calibrated using surface air temperature data from model reanalysis. The resulting FT record shows respective mean annual spatial classification accuracies of 90.3 and 84.3 % for evening (PM) and morning (AM) overpass retrievals relative to global weather station measurements. Detailed data quality metrics are derived characterizing the effects of sub-grid-scale open water and terrain heterogeneity, as well as algorithm uncertainties on FT classification accuracy. The FT-ESDR results are also verified against other independent cryospheric data, including in situ lake and river ice phenology, and satellite observations of Greenland surface melt. The expanded FT-ESDR enables new investigations encompassing snow- and ice-dominant land areas, while the longer record and favorable accuracy allow for refined global change assessments that can better distinguish transient weather extremes, landscape phenological shifts

  12. Utilization of downscaled microwave satellite data and GRACE Total Water Storage anomalies for improving streamflow prediction in the Lower Mekong Basin

    Science.gov (United States)

    Lakshmi, V.; Gupta, M.; Bolten, J. D.

    2016-12-01

    The Mekong river is the world's eighth largest in discharge with draining an area of 795,000 km² from the Eastern watershed of the Tibetan Plateau to the Mekong Delta including, Myanmar, Laos PDR, Thailand, Cambodia, Vietnam and three provinces of China. The populations in these countries are highly dependent on the Mekong River and they are vulnerable to the availability and quality of the water resources within the Mekong River Basin. Soil moisture is one of the most important hydrological cycle variables and is available from passive microwave satellite sensors (such as AMSR-E, SMOS and SMAP), but their spatial resolution is frequently too coarse for effective use by land managers and decision makers. The merging of satellite observations with numerical models has led to improved land surface predictions. Although performance of the models have been continuously improving, the laboratory methods for determining key hydraulic parameters are time consuming and expensive. The present study assesses a method to determine the effective soil hydraulic parameters using a downscaled microwave remote sensing soil moisture product based on the NASA Advanced Microwave Scanning Radiometer (AMSR-E). The soil moisture downscaling algorithm is based on a regression relationship between 1-km MODIS land surface temperature and 1-km Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) to produce an enhanced spatial resolution ASMR-E-based soil moisture product. Since the optimized parameters are based on the near surface soil moisture information, further constraints are applied during the numerical simulation through the assimilation of GRACE Total Water Storage (TWS) within the land surface model. This work improves the hydrological fluxes and the state variables are optimized and the optimal parameter values are then transferred for retrieving hydrological fluxes. To evaluate the performance of the system in helping improve

  13. Global Transients in ultraviolet and red-infrared ranges from data of the "Universitetsky-Tatiana-2" satellite

    CERN Document Server

    Garipov, G K; Klimov, P A; Klimenko, V V; Mareev, E A; Martines, O; Morozenko, V S; Panasyuk, M I; Park, I H; Ponce, E; Salazar, H; Tulupov, V I; Vedenkin, N N; Yashin, I V

    2011-01-01

    Detectors of fast flashes (duration of 1-128 ms) in near ultraviolet (240-400 nm) and red-infrared (>610 nm) ranges on board the "Universitetsky-Tatiana-2" satellite have measured transient luminous events global distribution. Events with number of photons 10^20-5{\\cdot}10^21 radiated in the atmosphere are uniformly distributed over latitudes and longitudes. Events with number of photons more than 5{\\cdot}10^21 are concentrated near the equator above continents. Measured ratio of photons number radiated in red-IR range to photons number radiated in UV related to excitation of nitrogen molecular indicates a high altitude (>50 km) of the atmospheric electric discharges responsible for the observed transients. Series of every minute transients (from 3 to 16 transients in the series) were observed. The detection of transients out of thunderstorm area, in cloudless region- sometimes thousands km away of thunderstorms is remarkable. The obtained data allow us to assume that transient events are not only consequence...

  14. Application of NASA's modern era retrospective-analysis in Global Wetlands Mappings Derived from Coarse-Resolution Satellite Microwave Remote Sensing

    Science.gov (United States)

    Schröder, R.; McDonald, K. C.; Podest, E.; Jones, L. A.; Kimball, J. S.; Pinto, N.; Zimmermann, R.; Küppers, M.

    2011-12-01

    The sensitivity of Earth's wetlands to observed shifts in global precipitation and temperature patterns and their ability to produce large quantities of methane gas are key global change questions. Global methane emissions are typically estimated via process-based models calibrated to individual wetland sites. Regardless of the complexity of these process-based models, accurate geographical distribution and seasonality of recent global wetland extent are typically not accounted for in such an approach, which may explain the large variations in estimated global methane emissions as well as the significant interannual variations in the observed atmospheric growth rate of methane. Spatially comprehensive ground observation networks of large-scale inundation patterns are very sparse because they require large fiscal, technological and human resources. Satellite remote sensing of global inundation dynamics thus can support the ability for a complete synoptic view of past and current inundation dynamics over large areas that otherwise could not be assessed. Coarse-resolution (~25km) satellite data from passive and active microwave instruments are well suited for the global observation of large-scale inundation patterns because they are primarily sensitive to the associated dielectric properties of the landscape and cover large areas within a relatively short amount of time (up to daily repeat in high latitudes). This study summarizes a new remote sensing technique for quantifying global daily surface water fractions based on combined passive-active microwave remote sensing data sets from the AMSR-E and QuikSCAT instruments over a 7 year period (July 2002 - July 2009). We apply these data with ancillary land cover maps from MODIS to: 1) define the potential global domain of surface water impacted land; 2) establish land cover driven predictive equations for implementing a dynamic mixture model adjusted to total column water vapor obtained from NASA's modern era

  15. Preflight Assessment of the Cross-track Infrared Sounder (CrIS) Performance

    OpenAIRE

    Zavyalov, Vladimir V.; Fish, Chad S.; Bingham, Gail E.; Esplin, Mark; Greenman, Mark; Scott, Deron; Han, Yong

    2011-01-01

    The Cross-track Infrared Sounder (CrIS) is a part of the Crosstrack Infrared and Microwave Sounding Suite (CrIMSS) that will be used to produce accurate temperature, water vapor, and pressure profiles on the NPOESS Preparatory Project (NPP) and upcoming Joint Polar Satellite System (JPSS) operational missions. The NPP CrIS flight model has completed sensor qualification, characterization, and calibration and is now integrated with the NPP spacecraft in preparation for the launch. This paper r...

  16. Features of Changing Microwave Radiation from Loaded Rock in Elastic Phase

    Science.gov (United States)

    Wu, Lixin; Mao, Wenfei; Huang, Jianwei; Liu, Shanjun; Xu, Zhongying

    2017-04-01

    Since the discovery of satellite infrared anomaly occurred before some earthquake by Russian geo-scientists in 1980's, both satellite remote sensing on seismic activities and experimental infrared detection on rock physics in process of rock loading were undertaken in many counties including China, Japan, Europe nations and United States. Infrared imager and spectrum instruments were applied to detect the changed infrared radiation from loaded rock to fracturing, which lead to the development of Remote Sensing Rock Mechanics. However, the change of microwave radiation from loaded rock was not so much studied, even if abnormal changes of microwave brightness temperature (MBT) preceding some large earthquakes were observed by satellite sensors such as AMSR-E on boarded Aqua. To monitor rock hazards, seismic activities, and to make earthquake precautions by via of microwave detection or microwave remote sensing, it is fairly demanded to explore the laws of microwave radiation variation with changed stress and to uncover the rock physics. We developed a large scale rock loading system with capability of 500 tons and 10 tons of load, respectively, at two horizontal loading head, and designed a group of microwave detectors in C, K, and Ka bands. To investigate the changed microwave radiation from loaded granite and sandstone in its elastics deformation phase, the first horizontal stress was circularly applied on rock samples of size 10×30×60cm3 at a constant second horizontal stress, and the changes microwave radiation was detected by the detectors hanged overhead the rock sample. The experiments were conducted outdoor at nighttime to keep off environmental radiation and to simulate the satellite observation conditions in background of cool sky. The first horizontal stress and the microwave radiations were synchronically detected and recorded. After reducing the random noise of detected microwave signals with wavelet method, we found the MBT increase with stress rising

  17. Progress for Spaceborne Microwave Remote Sensing in China

    Institute of Scientific and Technical Information of China (English)

    JIANG Jingshan; LIU Heguang; DONG Xiaolong

    2008-01-01

    In this paper, technological progress for China's microwave remote sensing is introduced. New developments of the microwave remote sensing instruments for meteorological satellite FY-3, ocean dynamic measurement satellite (HY-2), environment small SAR satellite (HJ-1C) and China's lunar exploration satellite (Chang'E-1), geostationary orbit meteorological satellite FY-4M,are reported.

  18. Microwave-Assisted Synthesis of Glutathione-Capped CdTe/CdSe Near-Infrared Quantum Dots for Cell Imaging.

    Science.gov (United States)

    Chen, Xiaogang; Li, Liang; Lai, Yongxian; Yan, Jianna; Tang, Yichen; Wang, Xiuli

    2015-05-19

    These glutathione (GSH)-conjugated CdTe/CdSe core/shell quantum dot (QD) nanoparticles in aqueous solution were synthesized using a microwave-assisted approach. The prepared type II core/shell QD nanoparticles were characterized by UV-Vis absorption, photoluminescence (PL) spectroscopy, X-ray powder diffraction (XRD) and high-resolution transmission electron microscopy (HR-TEM). Results revealed that the QD nanoparticles exhibited good dispersity, a uniform size distribution and tunable fluorescence emission in the near-infrared (NIR) region. In addition, these nanoparticles exhibited good biocompatibility and photoluminescence in cell imaging. In particular, this type of core/shell NIR QDs may have potential applications in molecular imaging.

  19. Analysis of the microwave, terahertz, and far infrared spectra of monodeuterated methanol CH{sub 2}DOH up to J = 26, K = 11, and o{sub 1}

    Energy Technology Data Exchange (ETDEWEB)

    Coudert, L. H., E-mail: laurent.coudert@lisa.u-pec.fr [Laboratoire Inter-universitaire des Systèmes Atmosphériques, UMR 7583 du CNRS, Universités Paris Est Créteil et Paris Diderot, 61 Avenue du Général de Gaulle, 94010 Créteil Cedex (France); Zemouli, M. [Laboratoire d' Études Physico-Chimiques, Université Dr. T. Moulay de Saïda, Saïda 20000 (Algeria); Motiyenko, R. A.; Margulès, L. [Laboratoire de Physique des Lasers, Atomes et Molécules, UMR 8523 CNRS - Université Lille I, Bât. P5, 59655 Villeneuve d' Ascq Cedex (France); Klee, S. [Physikalisch-Chemisches Institut, Justus-Liebig-Universität Gießen, 35392 Gießen (Germany)

    2014-02-14

    The first theoretical approach aimed at accounting for the energy levels of a non-rigid molecule displaying asymmetric-top asymmetric-frame internal rotation is developed. It is applied to a line position analysis of the high-resolution spectrum of the non-rigid CH{sub 2}DOH molecule and allows us to carry out a global analysis of a data set consisting of already available data and of microwave and far infrared transitions measured in this work. The analysis is restricted to the three lowest lying torsional levels (e{sub 0}, e{sub 1}, and o{sub 1}), to K ⩽ 11, and to J ⩽ 26. For the 8211 fitted lines, the unitless standard deviation is 2.4 and 103 parameters are determined including kinetic energy, hindering potential, and distortion effects parameters.

  20. Effect of different flours on quality of legume cakes to be baked in microwave-infrared combination oven and conventional oven.

    Science.gov (United States)

    Ozkahraman, Betul Canan; Sumnu, Gulum; Sahin, Serpil

    2016-03-01

    The objective of this study was to compare the quality of legume cakes baked in microwave-infrared combination (MW-IR) oven with conventional oven. Legume cake formulations were developed by replacing 10 % wheat flour by lentil, chickpea and pea flour. As a control, wheat flour containing cakes were used. Weight loss, specific volume, texture, color, gelatinization degree, macro and micro-structure of cakes were investigated. MW-IR baked cakes had higher specific volume, weight loss and crust color change and lower hardness values than conventionally baked cakes. Larger pores were observed in MW-IR baked cakes according to scanning electron microscope (SEM) images. Pea flour giving the hardest structure, lowest specific volume and gelatinization degree was determined to be the least acceptable legume flour. On the other hand, lentil and chickpea flour containing cakes had the softest structure and highest specific volume showing that lentil and chickpea flour can be used to produce functional cakes.

  1. Microwave-Assisted Synthesis of Glutathione-Capped CdTe/CdSe Near-Infrared Quantum Dots for Cell Imaging

    Directory of Open Access Journals (Sweden)

    Xiaogang Chen

    2015-05-01

    Full Text Available These glutathione (GSH-conjugated CdTe/CdSe core/shell quantum dot (QD nanoparticles in aqueous solution were synthesized using a microwave-assisted approach. The prepared type II core/shell QD nanoparticles were characterized by UV–Vis absorption, photoluminescence (PL spectroscopy, X-ray powder diffraction (XRD and high-resolution transmission electron microscopy (HR-TEM. Results revealed that the QD nanoparticles exhibited good dispersity, a uniform size distribution and tunable fluorescence emission in the near-infrared (NIR region. In addition, these nanoparticles exhibited good biocompatibility and photoluminescence in cell imaging. In particular, this type of core/shell NIR QDs may have potential applications in molecular imaging.

  2. Satellite observation of lowermost tropospheric ozone by multispectral synergism of IASI thermal infrared and GOME-2 ultraviolet measurements over Europe

    Science.gov (United States)

    Cuesta, J.; Eremenko, M.; Liu, X.; Dufour, G.; Cai, Z.; Hoepfner, M.; von Clarmann, T.; Sellitto, P.; Foret, G.; Gaubert, B.; Beekmann, M.; Orphal, J. J.; Chance, K.; Spurr, R. J.; Flaud, J.

    2013-12-01

    Lowermost tropospheric ozone is a major factor determining air quality, which directly affects human health in megacities and causes damages to ecosystems. Monitoring tropospheric ozone is a key societal issue which can be addressed at the regional scale by spaceborne observation. However, current satellite retrievals of tropospheric ozone using uncoupled either ultraviolet (UV) or thermal infrared (TIR) observations show limited sensitivity to ozone at the lowermost troposphere (LMT, up to 3 km asl of altitude above sea level), which is the major concern for air quality. In this framework, we have developed a new multispectral approach for observing lowermost tropospheric ozone from space by synergism of atmospheric TIR radiances observed by IASI and earth UV reflectances measured by GOME-2. Both instruments are onboard the series of MetOp satellites (in orbit since 2006 and expected until 2022) and their scanning capabilities offer global coverage every day, with a relatively fine ground pixel resolution (12-km-diameter pixels spaced by 25 km for IASI at nadir). Our technique uses altitude-dependent Tikhonov-Phillips-type constraints, which optimize sensitivity to lower tropospheric ozone. It integrates the VLIDORT and KOPRA radiative transfer codes for simulating UV reflectance and TIR radiance, respectively. We have used our method to analyze real observations over Europe during an ozone pollution episode in the summer of 2009. The results show that the multispectral synergism of IASI (TIR) and GOME-2 (UV) enables the observation of the spatial distribution of ozone plumes in the LMT, in good agreement with the CHIMERE regional chemistry-transport model. In this case study, when high ozone concentrations extend vertically above 3 km asl, they are similarly observed over land by both the multispectral and IASI retrievals. On the other hand, ozone plumes located below 3 km asl are only clearly depicted by the multispectral retrieval (both over land and over ocean

  3. Characterization of the 3D distribution of ozone and coarse aerosols in the Troposphere using IASI thermal infrared satellite observations

    Science.gov (United States)

    Cuesta, J.; Eremenko, M.; Dufour, G.; Hoepfner, M.; Orphal, J.

    2012-04-01

    Both tropospheric ozone and aerosols significantly affect air quality in megacities during pollution events. Moreover, living conditions may be seriously aggravated when such agglomerations are affected by wildfires (e.g. Russian fires over Moscow in 2010), which produce smoke and pollutant precursors, or even during dense desert dust outbreaks (e.g. recurrently over Beijing or Cairo). Moreover, since aerosols diffuse and absorb solar radiation, they have a direct impact on the photochemical production of tropospheric ozone. These interactions during extreme events of high aerosol loads are nowadays poorly known, even though they may significantly affect the tropospheric photochemical equilibrium. In order to address these issues, we have developed a new retrieval technique to jointly characterize the 3D distribution of both tropospheric ozone and coarse aerosols, using spaceborne observations of the infrared spectrometer IASI onboard MetOp-A satellite. Our methodology is based on the inversion of Earth radiance spectra in the atmospheric window from 8 to 12 μm measured by IASI and a «Tikhonov-Philipps»-type regularisation with constraints varying in altitude (as in [Eremenko et al., 2008, GRL; Dufour et al., 2010 ACP]) to simultaneously retrieve ozone profiles, aerosol optical depths at 10 μm and aerosol layer effective heights. Such joint retrieval prevents biases in the ozone profile retrieval during high aerosol load conditions. Aerosol retrievals using thermal infrared radiances mainly account for desert dust and the coarse fraction of biomass burning aerosols. We use radiances from 15 micro-windows within the 8-12 μm atmospheric window, which were carefully chosen (following [Worden et al., 2006 JGR]) for extracting the maximum information on aerosols and ozone and minimizing contamination by other species. We use the radiative transfer code KOPRA, including line-by-line calculations of gas absorption and single scattering for aerosols [Hoepfner et al

  4. Retrieval of SO2 from thermal infrared satellite measurements: correction procedures for the effects of volcanic ash

    Directory of Open Access Journals (Sweden)

    S. Corradini

    2009-05-01

    Full Text Available The simultaneous presence of SO2 and ash in a volcanic plume can lead to a significant error in the SO2 column abundance retrieval when multispectral Thermal InfraRed (TIR data are used. The ash particles within the plume with effective radii from 1 to 10 μm reduce the Top Of Atmosphere (TOA radiance in the entire TIR spectral range, including the channels used for SO2 retrieval. The net effect is a significant SO2 overestimation. In this work the interference of ash is discussed and two correction procedures for satellite SO2 volcanic plume retrieval in the TIR spectral range are developed to achieve an higher computational speed and a better accuracy. The ash correction can be applied when the sensor spectral range includes the 7.3 and/or 8.7 μm SO2 absorption bands, and the split window bands centered around 11 and 12 μm required for ash retrieval. This allows the possibility of simultaneous estimation of both volcanic SO2 and ash in the same data set. The proposed ash correction procedures have been applied to the Moderate Resolution Imaging Spectroradiometer (MODIS and the Spin Enhanced Visible and Infrared Imager (SEVIRI measurements. Data collected during the 24 November 2006 Mt. Etna eruption have been used to illustrate the technique. The SO2 and ash estimation is carried out by using a best weighted least squares fit method and the Brightness Temperature Difference (BTD procedures, respectively. The simulated TOA radiance Look-Up Table (LUT needed for the SO2 column abundance and the ash retrievals have been computed using the MODTRAN 4 Radiative Transfer Model. The results show the importance of the ash correction on SO2 retrievals at 8.7 μm, where the corrected SO2 column abundance values are less than 50% of the uncorrected values. The ash correction on SO2 retrieval at 7.3 μm is much less important and only significant for low SO2 column abundances. Results also show that the simplified and faster correction procedure

  5. Retrieval of SO2 from thermal infrared satellite measurements: correction procedures for the effects of volcanic ash

    Directory of Open Access Journals (Sweden)

    A. J. Prata

    2009-02-01

    Full Text Available The simultaneous presence of SO2 and ash in a volcanic plume can lead to a significant error in the SO2 columnar abundance retrieval when multispectral Thermal InfraRed (TIR data are used. The ash particles within the plume with effective radii (from 1 to 10 μm reduce the Top Of Atmosphere (TOA radiance in the entire TIR spectral range, including the channels used for SO2 retrieval. The net effect is a significant SO2 overestimation. In this work the interference of ash is discussed and two correction procedures for satellite SO2 volcanic plume retrieval in the TIR spectral range are developed to achieve an higher computation speed and a better accuracy. The ash correction can be applied when the sensor spectral range includes the 7.3 and/or 8.7 μm SO2 absorption bands, and the split window bands centered around 11 and 12 μm required for ash retrieval. This allows the possibility of a simultaneous estimation of both volcanic SO2 and ash in the same data set. The proposed ash correction procedures have been applied to the Moderate Resolution Imaging Spectroradiometer (MODIS and the Spin Enhanced Visible and Infrared Imager (SEVIRI measurements. Data collected during the 24 November 2006 Mt. Etna eruption have been used to illustrate the technique. The SO2 and ash estimations are carried out by using a least squares fit method and the Brightness Temperature Difference (BTD procedures, respectively. The simulated TOA radiance Look-Up Table (LUT needed for the SO2 columnar abundance and the ash retrievals have been computed using the MODTRAN 4 Radiative Transfer Model. The results show the importance of the ash correction on SO2 retrieval at 8.7 μm – the SO2 columnar abundance corrected by the ash influence is less than one half of the values retrieved without the correction. The ash correction on SO2 retrieval at 7.3 μm is much less important and only significant for low SO2 columnar abundances. Results also show that the simplified and

  6. Technology Progress Report for Microwave Remote Sensing

    Institute of Scientific and Technical Information of China (English)

    JIANG Jingshan; DONG Xiaolong; LIU Heguang

    2004-01-01

    In this presentation, technological progress for China's microwave remote sensing is introduced. New developments of the microwave remote sensing instruments for China's lunar exploration satellite (Chang'E-1), meteorological satellite FY-3 and ocean dynamic measurement satellite (HY-2) are reported.

  7. NOAA Interest in Small Satellite Solutions for Mitigation of Data Gaps

    Science.gov (United States)

    Caulfield, M.; Tewey, K.; John, P.

    2016-12-01

    The National Oceanic and Atmospheric Administration (NOAA) is undertaking a strategy to achieve satellite constellation robustness by 2023 to maintain continuity of polar satellite observations, which are central to NOAA's weather forecast capability. NOAA's plans include mitigation activities in the event of a loss of polar observations. In 2017, NOAA will begin development of the Earth Observing Nanosatellite - Microwave (EON-MW). EON-MW is a miniature microwave sounder that approximates the atmospheric profiling capabilities of the Advanced Technology Microwave Sounder (ATMS) instrument on the NOAA Joint Polar Satellite System (JPSS). NOAA is collaborating with the Massachusetts Institute of Technology's Lincoln Laboratory (MIT / LL) on EON-MW, which includes 2 years of risk reduction efforts to further define the EON-MW mission and identify and manage key technical risks. These studies will refine designs and evaluate system trades for operational earth observations from a U-class satellite platform, as well as examine microwave sensor concepts and investigated payload architecture to support microwave frequencies for atmospheric remote sensing. Similar to EON-MW, NOAA is also investigating the potential to mitigate against the loss of the JPSS Cross Track Infrared Sounder (CrIS) data with a CubeSat based mid-wave Infrared sounder. NOAA is collaborating with the Jet Propulsion Laboratory (JPL) to design the Earth Observation Nanosatellite-Infrared (EON-IR). EON-IR will leverage the NASA-JPL CubSat based infrared sounder CubSat Infrared Atmospheric Sounder (CIRAS) mission. In FY 2015 NOAA funded a study to analyze the feasibility of meeting the essential requirements of the CrIS from a CubeSat platform and began exploring the basic design of the EON-IR payload and bus. NOAA will continue to study EON-IR in 2016 by examining ways to modify the CIRAS design to better meet NOAA's observational and operational needs. These modifications will aim to increase mission

  8. Recommended satellite imagery capabilities for disaster management

    Science.gov (United States)

    Richards, P. B.; Robinove, C. J.; Wiesnet, D. R.; Salomonson, V. V.; Maxwell, M. S.

    1982-01-01

    This study explores the role that satellite imaging systems might play in obtaining information needed in the management of natural and manmade disasters. Information requirements which might conceivably be met by satellite were identified for over twenty disasters. These requirements covered pre-disaster mitigation and preparedness activities, disaster response activities, and post-disaster recovery activities. The essential imaging satellite characteristics needed to meet most of the information requirements are 30 meter (or finer) spatial resolution, frequency of observations of one week or less, data delivery times of one day or less, and stereo, synoptic all-weather coverage of large areas in the visible, near infrared, thermal infrared and microwave bands. Of the current and planned satellite systems investigated for possible application to disaster management, Landsat-D and SPOT appear to have the greatest potential during disaster mitigation and preparedness activities, but all satellites studied have serious deficiencies during response and recovery activities. Several strawman concepts are presented for a satellite system optimized to support all disaster management activities.

  9. JPSS Preparations at the Satellite Proving Ground for Marine, Precipitation, and Satellite Analysis

    Science.gov (United States)

    Folmer, M. J.; Berndt, E.; Clark, J.; Orrison, A.; Kibler, J.; Sienkiewicz, J. M.; Nelson, J. A., Jr.; Goldberg, M.

    2016-12-01

    The National Oceanic and Atmospheric Administration (NOAA) Satellite Proving Ground (PG) for Marine, Precipitation, and Satellite Analysis (MPS) has been demonstrating and evaluating Suomi National Polar-orbiting Partnership (S-NPP) products along with other polar-orbiting satellite platforms in preparation for the Joint Polar Satellite System - 1 (JPSS-1) launch in March 2017. The first S-NPP imagery was made available to the MPS PG during the evolution of Hurricane Sandy in October 2012 and has since been popular in operations. Since this event the MPS PG Satellite Liaison has been working with forecasters on ways to integrate single-channel and multispectral imagery from the Visible Infrared Imaging Radiometer Suite (VIIRS), the Moderate Resolution Imaging Spectroradiometer (MODIS), and the Advanced Very High Resolution Radiometer (AVHRR)into operations to complement numerical weather prediction and geostationary satellite savvy National Weather Service (NWS) National Centers. Additional unique products have been introduced to operations to address specific forecast challenges, including the Cooperative Institute for Research in the Atmosphere (CIRA) Layered Precipitable Water, the National Environmental Satellite, Data, and Information Service (NESDIS) Snowfall Rate product, NOAA Unique Combined Atmospheric Processing System (NUCAPS) Soundings, ozone products from the Atmospheric Infrared Sounder (AIRS), Cross-track Infrared Sounder/Advanced Technology Microwave Sounder (CrIS/ATMS), and Infrared Atmospheric Sounding Interferometer (IASI). In addition, new satellite domains have been created to provide forecasters at the NWS Ocean Prediction Center and Weather Prediction Center with better quality imagery at high latitudes. This has led to research projects that are addressing forecast challenges such as tropical to extratropical transition and explosive cyclogenesis. This presentation will provide examples of how the MPS PG has been introducing and integrating

  10. The Status and Prospects of Atmospheric Microwave Sounding by Geostationary Meteorological Satellite%静止轨道微波大气探测的技术现状与发展展望

    Institute of Scientific and Technical Information of China (English)

    卢乃锰; 谷松岩

    2016-01-01

    分析了静止轨道微波大气探测的重要性,介绍了发展静止轨道微波大气探测的国内外技术现状和所面临的技术挑战。在论述新型干涉式综合孔径技术体制优势的基础上,提出将传统真实孔径与新型干涉式综合孔径技术体制相结合,发展我国静止轨道微波大气探测的设想。%The importance of atmospheric microwave sounding onboard the geostationary meteorological satellite is analyzed, and the technical challenge being faced with the development of the microwave instrument is introduced. After discussing the advantage of a new type of microwave interference synthesis aperture radiometer, a hybrid system, combing the traditional real aperture and the synthesis aperture together, is proposed. This hybrid system could be valuable to the development of Fengyun geostationary microwave satellite.

  11. Synergistic use of optical and microwave data in agrometeorological applications

    Science.gov (United States)

    Myneni, R. B.; Choudhury, B. J.

    1993-05-01

    Remotely sensed optical and microwave data can be synergistically used to infer land surface properties. Optical data can be used to estimate surface albedo, radiation absorption by vegetation canopies and their photosynthetic efficiencies. Vegetation canopy reflectance at red and near-infrared wavelengths can be used to correct for vegetation effect on microwave emissivities at low frequencies for estimating soil moisture. Optical data can also provide information about surface and air temperatures, precipitable water vapor, cloud top temperature and its water content. This information can be utilized to correct microwave data for atmospheric effects. These points are illustrated with theoretical analyses and by application to satellite data. The basic physical mechanisms operative at the various wavelengths are also discussed.

  12. Planck intermediate results: XVII. Emission of dust in the diffuse interstellar medium from the far-infrared to microwave frequencies

    DEFF Research Database (Denmark)

    Bartlett, J.G.; Cardoso, J.-F.; Delabrouille, J.

    2014-01-01

    from 23 to 353 GHz, which separate dust and anomalous microwave emission (AME). We show that the flattening of the dust SED can be accounted for with an additional component with a blackbody spectrum. This additional component, which accounts for (26 ± 6)% of the dust emission at 100GHz, could...... of the dust-Hi correlation. We identify a Galactic contribution to these residuals, which we model with variations of the dust emissivity on angular scales smaller than that of our correlation analysis. This model of the residuals is used to quantify uncertainties of the CIB power spectrum in a companion...

  13. Atmospheric Influences Analysis on the Satellite Passive Microwave Remote Sensing%大气对星载被动微波影响分析研究

    Institute of Scientific and Technical Information of China (English)

    邱玉宝; 石利娟; 施建成; 赵少杰

    2016-01-01

    Passive microwave remote sensing offers its all-weather work capabilities ,but atmospheric influences on satellite microwave brightness temperature were different under different atmospheric conditions and environments .In order to clarify atmospheric influences on Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) ,atmospheric radia-tion were simulated based on AMSR-E configuration under clear sky and cloudy conditions ,by using radiative transfer model and atmospheric conditions data .Results showed that atmospheric water vapor was the major factor for atmospheric radiation under clear sky condition .Atmospheric transmittances were almost above 0.98 at AMSR-E's low frequencies (<18.7 GHz) and the microwave brightness temperature changes caused by atmosphere can be ignored in clear sky condition .Atmospheric transmit-tances at 36.5 and 89 GHz were 0.896 and 0.756 respectively .The effects of atmospheric water vapor needed to be corrected when using microwave high-frequency channels to inverse land surface parameters in clear sky condition .But under cloud cover or cloudy conditions ,cloud liquid water was the key factor to cause atmospheric radiation .When sky was covered by typical stra-tus cloud ,atmospheric transmittances at 10.7 ,18.7 and 36.5 GHz were 0.942 ,0.828 and 0.605 respectively .Comparing with the clear sky condition ,the down-welling atmospheric radiation caused by cloud liquid water increased up to 75.365 K at 36.5 GHz .It showed that the atmospheric correction under different clouds covered condition was the primary work to improve the accuracy of land surface parameters inversion of passive microwave remote sensing .The results also provided the basis for micro-wave atmospheric correction algorithm development .Finally ,the atmospheric sounding data was utilized to calculate the atmos-pheric transmittance of Hailaer Region ,Inner Mongolia province ,in July 2013 .The results indicated that atmospheric transmit-tances were close

  14. Evaluation of three different data fusion approaches that uses satellite soil moisture from different passive microwave sensors to construct one consistent climate record

    Science.gov (United States)

    van der Schalie, Robin; de Jeu, Richard; Kerr, Yann; Wigneron, Jean-Pierre; Rodríguez-Fernández, Nemesio; Al-Yaari, Amen; Drusch, Matthias; Mecklenburg, Susanne; Dolman, Han

    2016-04-01

    Datasets that are derived from satellite observations are becoming increasingly important for measuring key parameters of the Earth's climate and are therefore crucial in research on climate change, giving the opportunity to researchers to detect anomalies and long-term trends globally. One of these key parameters is soil moisture (SM), which has a large impact on water, energy and biogeochemical cycles worldwide. A long-term SM data record from active and passive microwave satellite observations was developed as part of ESA's Climate Change Initiative (ESA-CCI-SM, http://www.esa-soilmoisture-cci.org/). Currently the dataset covers a period from 1978 to 2014 and is updated regularly, observations from a several microwave satellites including: ERS-1, ERS-2, METOP-A, Nimbus 7 SMMR, DMSP SSM/I, TRMM TMI, Aqua AMSRE, Coriolis WindSat, and GCOM-W1 AMSR2. In 2009, ESA launched the Soil Moisture and Ocean Salinity (SMOS, Kerr et al., 2010) mission, carrying onboard a unique L-band radiometer, but its SM retrievals are not yet part of this dataset. Due to the different radiometric characteristics of SMOS, integrating SMOS into the ESA-CCI-SM dataset is not straight forward. Therefore several approaches have been tested to fuse soil moisture retrievals from SMOS and AMSRE, which currently forms the basis of the passive microwave part within ESA-CCI-SM project. These approaches are: 1. A Neural Network Fusion approach (Rodríguez-Fernández et al., 2015), 2. A regression approach (Wigneron et al., 2004; Al-Yaari et al., 2015) and 3. A radiative transfer based approach, using the Land Parameter Retrieval Model (Van der Schalie et al., 2016). This study evaluates the three different approaches and tests their skills against multiple datasets, including MERRA-Land, ERA-Interim/Land, the current ESA-CCI-SM v2.2 and in situ measurements from the International Soil Moisture Network and present a recommendation for the potential integration of SMOS soil moisture into the ESA

  15. GHRSST Level 2P Global Subskin Sea Surface Temperature from TRMM Microwave Imager (TMI) onboard Tropical Rainfall Measurement Mission (TRMM) satellite (GDS versions 1 and 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — GDS2 Version -The Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) is a well calibrated passive microwave radiometer, similar to the Special Sensor...

  16. Introducing multisensor satellite radiance-based evaluation for regional Earth System modeling

    Science.gov (United States)

    Matsui, T.; Santanello, J.; Shi, J. J.; Tao, W.-K.; Wu, D.; Peters-Lidard, C.; Kemp, E.; Chin, M.; Starr, D.; Sekiguchi, M.; Aires, F.

    2014-07-01

    Earth System modeling has become more complex, and its evaluation using satellite data has also become more difficult due to model and data diversity. Therefore, the fundamental methodology of using satellite direct measurements with instrumental simulators should be addressed especially for modeling community members lacking a solid background of radiative transfer and scattering theory. This manuscript introduces principles of multisatellite, multisensor radiance-based evaluation methods for a fully coupled regional Earth System model: NASA-Unified Weather Research and Forecasting (NU-WRF) model. We use a NU-WRF case study simulation over West Africa as an example of evaluating aerosol-cloud-precipitation-land processes with various satellite observations. NU-WRF-simulated geophysical parameters are converted to the satellite-observable raw radiance and backscatter under nearly consistent physics assumptions via the multisensor satellite simulator, the Goddard Satellite Data Simulator Unit. We present varied examples of simple yet robust methods that characterize forecast errors and model physics biases through the spatial and statistical interpretation of various satellite raw signals: infrared brightness temperature (Tb) for surface skin temperature and cloud top temperature, microwave Tb for precipitation ice and surface flooding, and radar and lidar backscatter for aerosol-cloud profiling simultaneously. Because raw satellite signals integrate many sources of geophysical information, we demonstrate user-defined thresholds and a simple statistical process to facilitate evaluations, including the infrared-microwave-based cloud types and lidar/radar-based profile classifications.

  17. Introducing Multisensor Satellite Radiance-Based Evaluation for Regional Earth System Modeling

    Science.gov (United States)

    Matsui, T.; Santanello, J.; Shi, J. J.; Tao, W.-K.; Wu, D.; Peters-Lidard, C.; Kemp, E.; Chin, M.; Starr, D.; Sekiguchi, M.; hide

    2014-01-01

    Earth System modeling has become more complex, and its evaluation using satellite data has also become more difficult due to model and data diversity. Therefore, the fundamental methodology of using satellite direct measurements with instrumental simulators should be addressed especially for modeling community members lacking a solid background of radiative transfer and scattering theory. This manuscript introduces principles of multisatellite, multisensor radiance-based evaluation methods for a fully coupled regional Earth System model: NASA-Unified Weather Research and Forecasting (NU-WRF) model. We use a NU-WRF case study simulation over West Africa as an example of evaluating aerosol-cloud-precipitation-land processes with various satellite observations. NU-WRF-simulated geophysical parameters are converted to the satellite-observable raw radiance and backscatter under nearly consistent physics assumptions via the multisensor satellite simulator, the Goddard Satellite Data Simulator Unit. We present varied examples of simple yet robust methods that characterize forecast errors and model physics biases through the spatial and statistical interpretation of various satellite raw signals: infrared brightness temperature (Tb) for surface skin temperature and cloud top temperature, microwave Tb for precipitation ice and surface flooding, and radar and lidar backscatter for aerosol-cloud profiling simultaneously. Because raw satellite signals integrate many sources of geophysical information, we demonstrate user-defined thresholds and a simple statistical process to facilitate evaluations, including the infrared-microwave-based cloud types and lidar/radar-based profile classifications.

  18. Atmospheric inertia-gravity waves retrieved from level-2 data of the satellite microwave limb sounder Aura/MLS

    Science.gov (United States)

    Hocke, Klemens; Lainer, Martin; Moreira, Lorena; Hagen, Jonas; Fernandez Vidal, Susana; Schranz, Franziska

    2016-09-01

    The temperature profiles of the satellite experiment Aura/MLS are horizontally spaced by 1.5° or 165 km along the satellite orbit. These level-2 data contain valuable information about horizontal fluctuations in temperature, which are mainly induced by inertia-gravity waves. Wave periods of 2-12 h, horizontal wavelengths of 200-1500 km, and vertical wavelengths of 6-30 km efficiently contribute to the standard deviation of the horizontal temperature fluctuations. The study retrieves and discusses the global distributions of inertia-gravity waves in the stratosphere and mesosphere during July 2015 and January 2016. We find many patterns that were previously present in data of TIMED/SABER, Aura/HIRDLS, and ECMWF analysis. However, it seems that Aura/MLS achieves a higher vertical resolution in the gravity wave maps since the maps are derived from the analysis of horizontal fluctuations along the orbit of the sounding volume. The zonal mean of the inertia-gravity wave distribution shows vertical modulations with scales of 10-20 km. Enhanced wave amplitudes occur in regions of increased zonal wind or in the vicinity of strong wind gradients. Further, we find a banana-like shape of enhanced inertia-gravity waves above the Andes in the winter mesosphere. We find areas of enhanced inertia-gravity wave activity above tropical deep convection zones at 100 hPa (z ˜ 13 km). Finally, we study the temporal evolution of inertia-gravity wave activity at 100 hPa in the African longitude sector from December 2015 to February 2016.

  19. Investigation of Adaptive-threshold Approaches for Determining Area-Time Integrals from Satellite Infrared Data to Estimate Convective Rain Volumes

    Science.gov (United States)

    Smith, Paul L.; VonderHaar, Thomas H.

    1996-01-01

    The principal goal of this project is to establish relationships that would allow application of area-time integral (ATI) calculations based upon satellite data to estimate rainfall volumes. The research is being carried out as a collaborative effort between the two participating organizations, with the satellite data analysis to determine values for the ATIs being done primarily by the STC-METSAT scientists and the associated radar data analysis to determine the 'ground-truth' rainfall estimates being done primarily at the South Dakota School of Mines and Technology (SDSM&T). Synthesis of the two separate kinds of data and investigation of the resulting rainfall-versus-ATI relationships is then carried out jointly. The research has been pursued using two different approaches, which for convenience can be designated as the 'fixed-threshold approach' and the 'adaptive-threshold approach'. In the former, an attempt is made to determine a single temperature threshold in the satellite infrared data that would yield ATI values for identifiable cloud clusters which are closely related to the corresponding rainfall amounts as determined by radar. Work on the second, or 'adaptive-threshold', approach for determining the satellite ATI values has explored two avenues: (1) attempt involved choosing IR thresholds to match the satellite ATI values with ones separately calculated from the radar data on a case basis; and (2) an attempt involved a striaghtforward screening analysis to determine the (fixed) offset that would lead to the strongest correlation and lowest standard error of estimate in the relationship between the satellite ATI values and the corresponding rainfall volumes.

  20. The interpretation of SIR-B imagery of surface waves and other oceanographic features using in-situ, meteorological satellite, and infrared satellite data

    Science.gov (United States)

    Allan, T.; Guymer, T.; Muller, P.

    1984-01-01

    The overall aim is to interpret Shuttle Imaging Radar-B imagery of selected ocean areas near the United Kingdom using available data from ships and buoys, with particular emphasis on understanding the mechanisms involved in the backscattering of microwaves from the sea surface and their relationship to surface gravity waves. The secondary objective is to use a multispectral approach to study sea-surface expressions such as slicks, internal waves, and eddies. Data acquisition, handling, and analysis approaches and expected results are discussed.

  1. Analysis of the sensitivity of thermal infrared nadir satellite observations to the chemical and micro-physical properties of upper tropospheric-lower stratospheric sulphate aerosols

    Science.gov (United States)

    Sellitto, Pasquale; Sèze, Geneviève; Legras, Bernard

    2015-04-01

    Secondary sulphate aerosols are the predominant typology of aerosols in the upper troposphere/lower stratosphere (UTLS), and can have an important impact on radiative transfer and climate, cirrus formation and chemistry in the UTLS. Despite their importance, the satellite observation at the regional scale of sulphate aerosols in the UTLS is limited. In this work, we address the sensitivity of the thermal infrared satellite observations to secondary sulphate aerosols in the UTLS. The absorption properties of sulphuric acid/water droplets, for different sulphuric acid mixing ratios and temperatures, are systematically analysed. The absorption coefficients are derived by means of a Mie code, using refractive indexes taken from the GEISA (Gestion et Etude des Informations Spectroscopiques Atmosphériques : Management and Study of Spectroscopic Information) spectroscopic database and log-normal size distributions with different effective radii and number concentrations. IASI (Infrared Atmospheric Sounding Interferometer) and SEVIRI (Spinning Enhanced Visible and Infrared Imager) pseudo-observations are generated using forward radiative transfer calculations performed with the 4A (Automatized Atmospheric Absorption Atlas) radiative transfer model, to estimate the impact of the absorption of idealized aerosol layers, at typical UTLS conditions, on the radiance spectra observed by these simulated satellite instruments. We found a marked spectral signature of these aerosol layers between 700 and 1200 cm-1, due to the absorption bands of the sulphate and bi-sulphate ions and the undissociated sulphuric acid, with absorption peaks at 1170 and 905 cm-1. Micro-windows with a sensitivity to chemical and micro-physical properties of the sulphate aerosol layer are identified, and the role of interfering species, and temperature and water vapour profile is discussed.

  2. Technology Progress Report for Spaceborne Microwave Remote Sensing

    Institute of Scientific and Technical Information of China (English)

    JHANG Jingshan; LIU Heguang; DONG Xiaolong

    2006-01-01

    In this presentation, technological progress for China's microwave remote sensing is introduced. New developments of the microwave remote sensing instruments formeteorological satellite FY-3, ocean dynamic measurement satellite (HY-2), environment small SAR satellite (H J-1C) and China's lunar exploration satellite (Chang'E-1), are reported.

  3. Relating C-band Microwave and Optical Satellite Observations as A Function of Snow Thickness on First-Year Sea Ice during the Winter to Summer Transition

    Science.gov (United States)

    Zheng, J.; Yackel, J.

    2015-12-01

    The Arctic sea ice and its snow cover have a direct impact on both the Arctic and global climate system through their ability to moderate heat exchange across the ocean-sea ice-atmosphere (OSA) interface. Snow cover plays a key role in the OSA interface radiation and energy exchange, as it controls the growth and decay of first-year sea ice (FYI). However, meteoric accumulation and redistribution of snow on FYI is highly stochastic over space and time, which makes it poorly understood. Previous studies have estimated local-scale snow thickness distributions using in-situ technique and modelling but it is spatially limited and challenging due to logistic difficulties. Moreover, snow albedo is also critical for determining the surface energy balance of the OSA during the critical summer ablation season. Even then, due to persistent and widespread cloud cover in the Arctic at various spatio-temporal scales, it is difficult and unreliable to remotely measure albedo of snow cover on FYI in the optical spectrum. Previous studies demonstrate that only large-scale sea ice albedo was successfully estimated using optical-satellite sensors. However, space-borne microwave sensors, with their capability of all-weather and 24-hour imaging, can provide enhanced information about snow cover on FYI. Daily spaceborne C-band scatterometer data (ASCAT) and MODIS data are used to investigate the the seasonal co-evolution of the microwave backscatter coefficient and optical albedo as a function of snow thickness on smooth FYI. The research focuses on snow-covered FYI near Cambridge Bay, Nunavut (Fig.1) during the winter to advanced-melt period (April-June, 2014). The ACSAT time series (Fig.2) show distinct increase in scattering at melt onset indicating the first occurrence of melt water in the snow cover. The corresponding albedo exhibits no decrease at this stage. We show how the standard deviation of ASCAT backscatter on FYI during winter can be used as a proxy for surface roughness

  4. Use of Fourier transforms for asynoptic mapping: Applications to the Upper Atmosphere Research Satellite microwave limb sounder

    Science.gov (United States)

    Elson, Lee S.; Froidevaux, Lucien

    1993-01-01

    Fourier analysis has been applied to data obtained from limb viewing instruments on the Upper Atmosphere Research Satellite. A coordinate system rotation facilitates the efficient computation of Fourier transforms in the temporal and longitudinal domains. Fields such as ozone (O3), chlorine monoxide (ClO), temperature, and water vapor have been transformed by this process. The transforms have been inverted to provide maps of these quantities at selected times, providing a method of accurate time interpolation. Maps obtained by this process show evidence of both horizontal and vertical transport of important trace species such as O3 and ClO. An examination of the polar regions indicates that large-scale planetary variations are likely to play a significant role in transporting midstratospheric O3 into the polar regions. There is also evidence that downward transport occurs, providing a means of moving O3 into the polar vortex at lower altitudes. The transforms themselves show the structure and propagation characteristics of wave variations.

  5. Synopsis of current satellite snow mapping techniques, with emphasis on the application of near-infrared data

    Science.gov (United States)

    Barnes, J. C.; Smallwood, M. D.

    1975-01-01

    The Skylab EREP S192 Multispectral Scanner data have provided for the first time an opportunity to examine the reflectance characteristics of snowcover in several spectral bands extending from the visible into the near-infrared spectral region. The analysis of the S192 imagery and digital tape data indicates a sharp drop in reflectance of snow in the near-infrared, with snow becoming essentially nonreflective in Bands 11 (1.55-1.75 micron) and 12 (2.10-2.35 micron). Two potential applications to snow mapping of measurements in the near-infrared spectral region are possible: (1) the use of a near-infrared band in conjunction with a visible band to distinguish automatically between snow and water droplet clouds; and (2) the use of one or more near-infrared bands to detect areas of melting snow.

  6. Microwave system engineering principles

    CERN Document Server

    Raff, Samuel J

    1977-01-01

    Microwave System Engineering Principles focuses on the calculus, differential equations, and transforms of microwave systems. This book discusses the basic nature and principles that can be derived from thermal noise; statistical concepts and binomial distribution; incoherent signal processing; basic properties of antennas; and beam widths and useful approximations. The fundamentals of propagation; LaPlace's Equation and Transmission Line (TEM) waves; interfaces between homogeneous media; modulation, bandwidth, and noise; and communications satellites are also deliberated in this text. This bo

  7. Melt onset dates for Arctic regions derived from satellite passive microwave data for 1979-2010; a comparison between the operational CDR and research level ESDR data sets

    Science.gov (United States)

    Anderson, M. R.; Bliss, A. C.

    2012-12-01

    The rapid nature and extent of the sea ice loss during recent summers have shown the importance of monitoring melt during the spring and summer transition. Using remotely sensed brightness temperatures, snow overlying sea ice can be identified. The purpose of this presentation is to show the usefulness of the new NOAA CDR for melt onset dates and the new NASA MEaSURES ESDR for melt onset dates records. The NOAA CDR melt onset algorithm is designed as an operational algorithm and uses the daily brightness temperature differences between the 37H and 19H Ghz channels from the special sensor microwave imager (SSMI) and special sensor microwave imager and sounder (SSMIS) on board the Defense Meteorology Satellite Program (DMSP) platform for the years 1987-2007 to determine the melt onset date. The melt onset dates are archived as part of the NOAA CDR for sea ice. The NASA MEaSURES ESDR melt onset date algorithm uses the same brightness temperature differences between the 37H and 19H Ghz channels, however, a ten day window and different thresholds are used to determine melt onset dates. The ESDR melt onset dates are also calculated for the scanning multi-channel microwave sensor (SMMR) on board the NASA Nimbus-7 platform. Therefore ESDR melt onset dates are calculated from 1979-2010. Comparisons are made between the NOAA CDR melt onset date data and the NASA MEaSURES ESDR melt onset date data. For the most part, the two data sets are comparable, indicating melt occurring at roughly the same time during spring. However, there are instances when the two algorithms differ, producing different melt onset dates. The main difference occurs during the earlier part of spring when spurious brightness temperatures are observed. For example, there may be low level clouds containing liquid water passing over the area, affecting the brightness temperature data for a single day, however, there is no change in the snow crystals which the algorithm should identify as melt. To account

  8. Cosmic microwave background theory.

    Science.gov (United States)

    Bond, J R

    1998-01-06

    A long-standing goal of theorists has been to constrain cosmological parameters that define the structure formation theory from cosmic microwave background (CMB) anisotropy experiments and large-scale structure (LSS) observations. The status and future promise of this enterprise is described. Current band-powers in -space are consistent with a DeltaT flat in frequency and broadly follow inflation-based expectations. That the levels are approximately (10(-5))2 provides strong support for the gravitational instability theory, while the Far Infrared Absolute Spectrophotometer (FIRAS) constraints on energy injection rule out cosmic explosions as a dominant source of LSS. Band-powers at 100 suggest that the universe could not have re-ionized too early. To get the LSS of Cosmic Background Explorer (COBE)-normalized fluctuations right provides encouraging support that the initial fluctuation spectrum was not far off the scale invariant form that inflation models prefer: e.g., for tilted Lambda cold dark matter sequences of fixed 13-Gyr age (with the Hubble constant H0 marginalized), ns = 1.17 +/- 0.3 for Differential Microwave Radiometer (DMR) only; 1.15 +/- 0.08 for DMR plus the SK95 experiment; 1.00 +/- 0.04 for DMR plus all smaller angle experiments; 1.00 +/- 0.05 when LSS constraints are included as well. The CMB alone currently gives weak constraints on Lambda and moderate constraints on Omegatot, but theoretical forecasts of future long duration balloon and satellite experiments are shown which predict percent-level accuracy among a large fraction of the 10+ parameters characterizing the cosmic structure formation theory, at least if it is an inflation variant.

  9. Global changes in dryland vegetation dynamics (1988–2008 assessed by satellite remote sensing: combining a new passive microwave vegetation density record with reflective greenness data

    Directory of Open Access Journals (Sweden)

    N. Andela

    2013-05-01

    Full Text Available Drylands, covering nearly 30% of the global land surface, are characterized by high climate variability and sensitivity to land management. Here, two satellite observed vegetation products were used to study the long-term (1988–2008 vegetation changes of global drylands: the widely used reflective-based Normalized Difference Vegetation Index (NDVI and the recently developed passive-microwave-based Vegetation Optical Depth (VOD. The NDVI is sensitive to the chlorophyll concentrations in the canopy and the canopy cover fraction, while the VOD is sensitive to vegetation water content of both leafy and woody components. Therefore it can be expected that using both products helps to better characterize vegetation dynamics, particularly over regions with mixed herbaceous and woody vegetation. Linear regression analysis was performed between antecedent precipitation and observed NDVI and VOD independently to distinguish the contribution of climatic and non-climatic drivers in vegetation variations. Where possible, the contributions of fire, grazing, agriculture and CO2 level to vegetation trends were assessed. The results suggest that NDVI is more sensitive to fluctuations in herbaceous vegetation, which primarily use shallow soil water whereas VOD is more sensitive to woody vegetation, which additionally can exploit deeper water stores. Globally, evidence is found for woody encroachment over drylands. In the arid drylands, woody encroachment seems to be at the expense of herbaceous vegetation and a global driver is interpreted. Trends in semi-arid drylands vary widely between regions, suggesting that local rather than global drivers caused most of the vegetation response. In savannas, besides precipitation, fire regime plays an important role in shaping trends. Our results demonstrate that NDVI and VOD provide complementary information, bringing new insights on vegetation dynamics.

  10. Global changes in dryland vegetation dynamics (1988–2008 assessed by satellite remote sensing: comparing a new passive microwave vegetation density record with reflective greenness data

    Directory of Open Access Journals (Sweden)

    N. Andela

    2013-10-01

    Full Text Available Drylands, covering nearly 30% of the global land surface, are characterized by high climate variability and sensitivity to land management. Here, two satellite-observed vegetation products were used to study the long-term (1988–2008 vegetation changes of global drylands: the widely used reflective-based Normalized Difference Vegetation Index (NDVI and the recently developed passive-microwave-based Vegetation Optical Depth (VOD. The NDVI is sensitive to the chlorophyll concentrations in the canopy and the canopy cover fraction, while the VOD is sensitive to vegetation water content of both leafy and woody components. Therefore it can be expected that using both products helps to better characterize vegetation dynamics, particularly over regions with mixed herbaceous and woody vegetation. Linear regression analysis was performed between antecedent precipitation and observed NDVI and VOD independently to distinguish the contribution of climatic and non-climatic drivers in vegetation variations. Where possible, the contributions of fire, grazing, agriculture and CO2 level to vegetation trends were assessed. The results suggest that NDVI is more sensitive to fluctuations in herbaceous vegetation, which primarily uses shallow soil water, whereas VOD is more sensitive to woody vegetation, which additionally can exploit deeper water stores. Globally, evidence is found for woody encroachment over drylands. In the arid drylands, woody encroachment appears to be at the expense of herbaceous vegetation and a global driver is interpreted. Trends in semi-arid drylands vary widely between regions, suggesting that local rather than global drivers caused most of the vegetation response. In savannas, besides precipitation, fire regime plays an important role in shaping trends. Our results demonstrate that NDVI and VOD provide complementary information and allow new insights into dryland vegetation dynamics.

  11. Satellites of Xe transitions induced by infrared active vibrational modes of CF4 and C2F6 molecules.

    Science.gov (United States)

    Alekseev, Vadim A; Schwentner, Nikolaus

    2011-07-28

    Absorption and luminescence excitation spectra of Xe/CF(4) mixtures were studied in the vacuum UV region at high resolution using tunable synchrotron radiation. Pressure-broadened resonance bands and bands associated with dipole-forbidden states of the Xe atom due to collision-induced breakdown of the optical selection rules are reported. The spectra display in addition numerous satellite bands corresponding to transitions to vibrationally excited states of a Xe-CF(4) collisional complex. These satellites are located at energies of Xe atom transition increased by one quantum energy in the IR active v(3) vibrational mode of CF(4) (v(3) = 1281 cm(-1)). Satellites of both resonance and dipole-forbidden transitions were observed. Satellites of low lying resonance states are spectrally broad bands closely resembling in shape their parent pressure-broadened resonance bands. In contrast, satellites of dipole-forbidden states and of high lying resonance states are spectrally narrow bands (FWHM ∼10 cm(-1)). The satellites of dipole-forbidden states are orders of magnitude stronger than transitions to their parent states due to collision-induced breakdown of the optical selection rules. These satellites are attributed to a coupling of dipole-forbidden and resonance states induced by the electric field of the transient CF(4) (v(3) = 0 ↔ v(3) = 1) dipole. Similar satellites are present in spectra of Xe/C(2)F(6) mixtures where these bands are induced by the IR active v(10) mode of C(2)F(6). Transitions to vibrationally excited states of Xe-CF(4)(C(2)F(6)) collision pairs were also observed in two-photon LIF spectra.

  12. 基于光载波抑制调制的星间微波光子下变频研究%Research on inter-satellite microwave photonic frequency down conversion based on optical carrier suppression modulation

    Institute of Scientific and Technical Information of China (English)

    李轩; 赵尚弘; 张薇; 朱子行; 韩磊; 赵静

    2013-01-01

    To solve the problem of optical handling of microwave signal in satellite communication,the inter-satellite microwave photonic frequency down conversion system is modeled,two parallel dual-electrode Mach-Zehnder modulators based on optical carrier suppression modulation are utilized to modulate the uplink microwave signal received by satellite and the local oscillator signal produced in satellite,respectively,and the microwave signal is optically amplified,transmitted and frequency-down converted in the inter-satellite optical link.The output signal and noise of system are analyzed with Bessel expansion,the local oscillator signal power is optimized,and the effects of modulator bias phase drift,phase shifter error and emission optical power on the system performance are simulated.The results show that the deterioration of output carrier to noise ratio (CNR) is under 0.05 dB while the modulator bias phase drift is less than 5 ℃,the output CNR deterioration is under 0.02 dB while the phase shifter error is less than 5 ℃,and the frequency down conversion system has high stability.When the emission optical power is 10.48 dB,the system output CNR is 31.33 dB,which can meet the practical requirement.The inter-satellite microwave photonic frequency down conversion system can be applied to the optical handling of microwave signal in the future satellite optical communications.%针对卫星通信中微波信号光学处理问题,建立了星间微波光子下变频系统模型,采用两个双电极马赫-曾德尔调制器(DE-MZM)并联形式,以光载波抑制(DCS)方式实现了星间微波信号的光域放大、传输和下变频.利用贝塞尔函数展开分析了下变频系统中信号和各噪声分量,对射频本振信号功率进行了优化,仿真研究了调制器直流偏置漂移、移相器相移误差和发射光功率对系统性能的影响.结果表明,调制器直流偏置相位漂移小于5℃时输出载噪比(CNR)恶化小于0.05 dB

  13. Investigation on the monthly variation of cirrus optical properties over the Indian subcontinent using cloud-aerosol lidar and infrared pathfinder satellite observation (Calipso)

    Science.gov (United States)

    Dhaman, Reji K.; Satyanarayana, Malladi; Jayeshlal, G. S.; Mahadevan Pillai, V. P.; Krishnakumar, V.

    2016-05-01

    Cirrus clouds have been identified as one of the atmospheric component which influence the radiative processes in the atmosphere and plays a key role in the Earth Radiation Budget. CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) is a joint NASA-CNES satellite mission designed to provide insight in understanding of the role of aerosols and clouds in the climate system. This paper reports the study on the variation of cirrus cloud optical properties of over the Indian sub - continent for a period of two years from January 2009 to December 2010, using cloud-aerosol lidar and infrared pathfinder satellite observations (Calipso). Indian Ocean and Indian continent is one of the regions where cirrus occurrence is maximum particularly during the monsoon periods. It is found that during the south-west monsoon periods there is a large cirrus cloud distribution over the southern Indian land masses. Also it is observed that the north-east monsoon periods had optical thick clouds hugging the coast line. The summer had large cloud formation in the Arabian Sea. It is also found that the land masses near to the sea had large cirrus presence. These cirrus clouds were of high altitude and optical depth. The dependence of cirrus cloud properties on cirrus cloud mid-cloud temperature and geometrical thickness are generally similar to the results derived from the ground-based lidar. However, the difference in macrophysical parameter variability shows the limits of space-borne-lidar and dissimilarities in regional climate variability and the nature and source of cloud nuclei in different geographical regions.

  14. A Satellite Time Slots Climatology of the Urban Heat Island of Guadalajara Megacity in Mexico from NOAA ¡/AVHRR THERMAL Infrared Monitoring (TIR)

    Science.gov (United States)

    Galindo, I.

    2009-04-01

    The urban heat island (UHI) of the metropolitan area of the second megacity of Mexico, named Guadalajara in Mexico is studied using thermal infrared data (TIR) (10 £ l £ 12 mm) obtained from the Advanced Very High Resolution Radiometer (AVHRR) on board the NOAA polar orbitters whose signals are received on real time at our ground station for the period 1996-2006. The TIR data are selected by means of a software, since they depend on natural causes (e.g., atmospheric transparency, surface temperature, spectral emissivity and topography) and observational (time and incidence angle of the satellite pass, season of the year, etc.). The above conditions have a variable contribution to the measurements which it can be so high that they simulate the temporal-space fluctuations considered as thermal anomalies. Using a Geographic Information System and spatial analysis techniques temperatures are obtained for diofferent times of the day (satellite slots) and dropped into a grid with a 2.5 km distance between points (latitude, longitude). The temperatures obtained for each satellite pass slot (four per day) are monthly averaged and the temperature anomalies are represented in thermal isolines for the study area. The temperature difference usually is larger at night than during the day, reaching a thermal gradient of 9 °C.

  15. Microwave, infrared, and Raman spectra, structural parameters, vibrational assignments and theoretical calculations of 1,1,3,3-tetrafluoro-1,3-disilacyclopentane

    Energy Technology Data Exchange (ETDEWEB)

    Pate, Brooks H.; Seifert, Nathan A. [Department of Chemistry, University of Virginia, Charlottesville, VA 22904 (United States); Guirgis, Gamil A. [Department of Chemistry and Biochemistry, College of Charleston, Charleston, SC 29424 (United States); Deodhar, Bhushan S.; Klaassen, Joshua J.; Darkhalil, Ikhlas D. [Department of Chemistry, University of Missouri-Kansas City, Kansas City, MO 64110 (United States); Crow, Joseph A. [Department of Physics, University of Missouri-Kansas City, Kansas City, MO 64110 (United States); Wyatt, Justin K.; Dukes, Horace W. [Department of Chemistry and Biochemistry, College of Charleston, Charleston, SC 29424 (United States); Durig, James R., E-mail: durigj@umkc.edu [Department of Chemistry, University of Missouri-Kansas City, Kansas City, MO 64110 (United States)

    2013-04-18

    Highlights: • Structural parameters have been determined for the stable twist conformer. • Rotational constants for the six isotopologues for the twist conformer were determined from the microwave spectra. • Vibrational assignments are given for the molecule. • Ab intio and density functional theory calculations have been carried out for all possible conformers. - Abstract: The FT-microwave spectrum of 1,1,3,3-tetrafluoro-1,3-disilacyclopentane (c-C{sub 3}H{sub 6}Si{sub 2}F{sub 4}) has been recorded and 339 transitions for 6 isotopologues have been assigned for the twist conformation. The ground state rotational constants were determined with values for the normal species: A = 2102.74026(68), B = 751.34319(32), C = 736.51478(31). Adjusted r{sub 0} parameters are reported with distances (Å): rC{sub α}–Si = 1.859(2), rSi–C{sub β} = 1.864(2), rSi–F{sub 1} = 1.583(3), rSi–F{sub 2} = 1.578(3), and rC{sub β}–C{sub β} = 1.559(3), and angles (°): ∠SiC{sub α}Si = 102.8(3), ∠C{sub α}SiC{sub β} = 104.3(3), ∠SiC{sub β}C{sub β′} = 106.6(3), τC{sub β}SiC{sub α}Si = 10.7(3), and τ SiC{sub β}C{sub β′}Si = 40.8(3). The conformational stabilities have been predicted from ab initio calculations utilizing several various basis sets. Vibrational assignments have been provided for the observed bands for the twist conformer which are supported by ab initio calculations to predict harmonic force constants, vibrational wavenumbers, infrared intensities, Raman activities and depolarization ratios. The results are discussed and compared to the corresponding properties of some related molecules.

  16. Infrared spectroscopic and modeling studies of H{sub 2}/CH{sub 4} microwave plasma gas phase from low to high pressure and power

    Energy Technology Data Exchange (ETDEWEB)

    Rond, C., E-mail: rond@lspm.cnrs.fr; Lombardi, G.; Gicquel, A. [LSPM CNRS UPR 3407 Université Paris 13, 99 Avenue J.-B. Clément, 93430 Villetaneuse (France); Hamann, S.; Röpcke, J. [INP Greifswald, Felix-Hausdorff-Str. 2, 17489 Greifswald (Germany); Wartel, M. [GREMI UMR 7344, CNRS/Université d' Orléans, site de Bourges, rue G. Berger, 18000 Bourges (France)

    2014-09-07

    InfraRed Tunable Diode Laser Absorption Spectroscopy technique has been implemented in a H{sub 2}/CH{sub 4} Micro-Wave (MW frequency f = 2.45 GHz) plasma reactor dedicated to diamond deposition under high pressure and high power conditions. Parametric studies such as a function of MW power, pressure, and admixtures of methane have been carried out on a wide range of experimental conditions: the pressure up to 270 mbar and the MW power up to 4 kW. These conditions allow high purity Chemical Vapor Deposition diamond deposition at high growth rates. Line integrated absorption measurements have been performed in order to monitor hydrocarbon species, i.e., CH{sub 3}, CH{sub 4}, C{sub 2}H{sub 2}, C{sub 2}H{sub 4}, and C{sub 2}H{sub 6}. The densities of the stable detected species were found to vary in the range of 10{sup 12}–10{sup 17} molecules cm{sup −3}, while the methyl radical CH{sub 3} (precursor of diamond growth under these conditions) measured into the plasma bulk was found up to 10{sup 14} molecules cm{sup −3}. The experimental densities have been compared to those provided by 1D-radial thermochemical model for low power and low pressure conditions (up to 100 mbar/2 kW). These densities have been axially integrated. Experimental measurements under high pressure and power conditions confirm a strong increase of the degree of dissociation of the precursor, CH{sub 4}, associated to an increase of the C{sub 2}H{sub 2} density, the most abundant reaction product in the plasma.

  17. Synergistic Utilization of Microwave Satellite Data and GRACE-Total Water Storage Anomaly for Improving Available Water Capacity Prediction in Lower Mekong Basin

    Science.gov (United States)

    Gupta, M.; Bolten, J. D.; Lakshmi, V.

    2015-12-01

    The Mekong River is the longest river in Southeast Asia and the world's eighth largest in discharge with draining an area of 795,000 km² from the eastern watershed of the Tibetan Plateau to the Mekong Delta including three provinces of China, Myanmar, Lao PDR, Thailand, Cambodia and Viet Nam. This makes the life of people highly vulnerable to availability of the water resources as soil moisture is one of the major fundamental variables in global hydrological cycles. The day-to-day variability in soil moisture on field to global scales is an important quantity for early warning systems for events like flooding and drought. In addition to the extreme situations the accurate soil moisture retrieval are important for agricultural irrigation scheduling and water resource management. The present study proposes a method to determine the effective soil hydraulic parameters directly from information available for the soil moisture state from the recently launched SMAP (L-band) microwave remote sensing observations. Since the optimized parameters are based on the near surface soil moisture information, further constraints are applied during the numerical simulation through the assimilation of GRACE Total Water Storage (TWS) within the physically based land surface model. This work addresses the improvement of available water capacity as the soil hydraulic parameters are optimized through the utilization of satellite-retrieved near surface soil moisture. The initial ranges of soil hydraulic parameters are taken in correspondence with the values available from the literature based on FAO. The optimization process is divided into two steps: the state variable are optimized and the optimal parameter values are then transferred for retrieving soil moisture and streamflow. A homogeneous soil system is considered as the soil moisture from sensors such as AMSR-E/SMAP can only be retrieved for the top few centimeters of soil. To evaluate the performance of the system in helping

  18. Present status and future plans of the Japanese earth observation satellite program

    Science.gov (United States)

    Tsuchiya, Kiyoshi; Arai, Kohei; Igarashi, Tamotsu

    Japan is now operating 3 earth observation satellites, i. e. MOS-1 (Marine Observation Satellite-1, Momo-1 in Japanese), EGS (Experimental Geodetic Satellite, Ajisai in Japanese) and GMS (Geostationary Meteorological Satellite, Himawari in Japanese). MOS-1 has 3 different sensors, MESSR (Multispectral Electronic Self Scanning Radiometer), VTIR (Visible and Thermal Infrared Radiometer) and MSR (Microwave Scanning Radiometer) in addition to DCS (Data Collection System). GMS has two sensors, VISSR (Visible and IR Spin Scan Radiometer) and SEM (Solar Environmental Monitor). EGS is equipped with reflecting mirrors of the sun light and laser reflecters. For the future earth observation satellites, ERS-1 (Earth Resources Satellite-1), MOS-1b, ADEOS (Advanced Earth Observing Satellite) are under development. Two sensors, AMSR (Advanced Microwave Scanning Radiometer) and ITIR (Intermediate Thermal IR Radiometer) for NASA's polar platform are initial stage of development. Study and planning are made for future earth observation satellites including Japanese polor platform, TRMM, etc.). The study for the second generation GMS has been made by the Committee on the Function of Future GMS under the request of Japan Meteorological Agency in FY 1987.

  19. Constraining the origin of TeV photons from gamma-ray bursts with delayed MeV-GeV emission formed by interaction with cosmic infrared/microwave background photons

    CERN Document Server

    Wang, X Y; Dai, Z G; Lu, T

    2004-01-01

    It has been suggested that electromagnetic cascade of very high energy gamma-rays from gamma-ray bursts (GRBs) in the infrared/microwave background can produce delayed MeV-GeV photons. This delay could be caused by the angular spreading effect of the scattered microwave photons or deflection of the secondly pairs due to intergalactic magnetic field. Very high energy TeV photons of GRBs could be produced by a few mechanisms including the proton-synchrotron radiation and electron inverse Compton emission from GRB internal shocks as well as external shocks. We suggest that the information provided by the delayed emission could give constraints on models for TeV gamma-rays. A more accurate calculation of the delayed time caused by the angular spreading effect is presented by considering recent observations of the extragalactic infrared background and the theoretic high-redshift infrared background. We also suggest that the dependence of the maximum time delay of scattered photons on their energies, if determined ...

  20. Comparability of red/near-infrared reflectance and NDVI based on the spectral response function between MODIS and 30 other satellite sensors using rice canopy spectra.

    Science.gov (United States)

    Huang, Weijiao; Huang, Jingfeng; Wang, Xiuzhen; Wang, Fumin; Shi, Jingjing

    2013-11-26

    Long-term monitoring of regional and global environment changes often depends on the combined use of multi-source sensor data. The most widely used vegetation index is the normalized difference vegetation index (NDVI), which is a function of the red and near-infrared (NIR) spectral bands. The reflectance and NDVI data sets derived from different satellite sensor systems will not be directly comparable due to different spectral response functions (SRF), which has been recognized as one of the most important sources of uncertainty in the multi-sensor data analysis. This study quantified the influence of SRFs on the red and NIR reflectances and NDVI derived from 31 Earth observation satellite sensors. For this purpose, spectroradiometric measurements were performed for paddy rice grown under varied nitrogen levels and at different growth stages. The rice canopy reflectances were convoluted with the spectral response functions of various satellite instruments to simulate sensor-specific reflectances in the red and NIR channels. NDVI values were then calculated using the simulated red and NIR reflectances. The results showed that as compared to the Terra MODIS, the mean relative percentage difference (RPD) ranged from -12.67% to 36.30% for the red reflectance, -8.52% to -0.23% for the NIR reflectance, and -9.32% to 3.10% for the NDVI. The mean absolute percentage difference (APD) compared to the Terra MODIS ranged from 1.28% to 36.30% for the red reflectance, 0.84% to 8.71% for the NIR reflectance, and 0.59% to 9.32% for the NDVI. The lowest APD between MODIS and the other 30 satellite sensors was observed for Landsat5 TM for the red reflectance, CBERS02B CCD for the NIR reflectance and Landsat4 TM for the NDVI. In addition, the largest APD between MODIS and the other 30 satellite sensors was observed for IKONOS for the red reflectance, AVHRR1 onboard NOAA8 for the NIR reflectance and IKONOS for the NDVI. The results also indicated that AVHRRs onboard NOAA7-17 showed

  1. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Nuristan mineral district in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Cagney, Laura E.; Arko, Scott A.; Harbin, Michelle L.; Davis, Philip A.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Nuristan mineral district, which has gem, lithium, and cesium deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2008,2009), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS

  2. Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.

    2012-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This DS consists of the locally enhanced ALOS image mosaics for each of the 24 mineral project areas (referred to herein as areas of interest), whose locality names, locations, and main mineral occurrences are shown on the index map of Afghanistan (fig. 1). ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420-500 nanometer, nm), green (520-600 nm), red (610-690 nm), and near-infrared (760-890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520-770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency, but the image processing has altered the original pixel structure and all image values of the JAXA

  3. Frequency based detection and monitoring of small scale explosive activity by comparing satellite and ground based infrared observations at Stromboli Volcano, Italy

    Science.gov (United States)

    Worden, Anna; Dehn, Jonathan; Ripepe, Maurizio; Donne, Dario Delle

    2014-08-01

    Thermal activity is a common precursor to explosive volcanic activity. The ability to use these thermal precursors to monitor the volcano and obtain early warning about upcoming activity is beneficial for both human safety and infrastructure security. By using a very reliably active volcano, Stromboli Volcano in Italy, a method has been developed and tested to look at changes in the frequency of small scale explosive activity and how this activity changes prior to larger, ash producing explosive events. Thermal camera footage was used to designate parameters for typical explosions at Stromboli (size of spatter field, cooling rate, frequency of explosions) and this information was applied to characterize explosions in satellite imagery. Satellite data from The National Aeronautics and Space Administration's Moderate Resolution Imaging Spectroradiometer (MODIS) and US/Japan designed Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) for numerous periods in 2002 to 2009 were analyzed for thermal features which were used to calculate an estimate of the level of activity during the given time period. The results at Stromboli showed a high level of small scale explosions which stop completely prior to large paroxysmal eruptive episodes. This activity also corresponds well to seismic and infrasonic records at Stromboli, indicating that this thermal infrared monitoring method may be used in conjunction with other detection methods where available, and also indicates that it may be a useful method for volcano monitoring when other methods (e.g. seismic instrumentation, infrasound arrays, etc.) are not available.

  4. The Relativistic Effect of the Deviation between the CMB Temperatures Obtained by the COBE Satellite

    Directory of Open Access Journals (Sweden)

    Rabounski D.

    2007-01-01

    Full Text Available The Far-Infrared Absolute Spectrophotometer (FIRAS on the COBE satellite, gives different temperatures of the Cosmic Microwave Background. This deviation has a theoretical explanation in the Doppler effect on the dipole (weak component of the radiation, the true microwave background of the Universe that moves at 365 km/sec, if the monopole (strong component of the radiation is due to the Earth. Owing to the Doppler effect, the dipole radiation temperature (determined by the 1st derivative of the monopole is lower than the monopole radiation temperature, with a value equal to the observed deviation. By this theory, the WMAP and PLANCK satellites, targeting the L2 point in the Sun-Earth-Moon system, should be insensitive to the monopole radiation. In contrast to the launched WMAP satellite, the PLANCK satellite will have on board absolute instruments which will not be able to detect the measured temperature of the Cosmic Microwave Background. That the monopole (strong component of the observed Cosmic Microwave Background is generated by the Earth is given a complete theoretical proof herein.

  5. Volcanic eruption source parameters from active and passive microwave sensors

    Science.gov (United States)

    Montopoli, Mario; Marzano, Frank S.; Cimini, Domenico; Mereu, Luigi

    2016-04-01

    appealing for estimates close to the volcano emission source. Near the source the cloud optical thickness is expected to be large enough to induce saturation effects at the infrared sensor receiver thus vanishing the brightness temperature difference methods for the ash cloud identification. In the light of the introduction above, some case studies at Eyjafjallajökull 2010 (Iceland), Etna (Italy) and Calbuco (Cile), on 5-10 May 2010, 23rd Nov., 2013 and 23 Apr., 2015, respectively, are analysed in terms of source parameter estimates (manly the cloud top and mass flax rate) from ground based microwave weather radar (9.6 GHz) and satellite Low Earth Orbit microwave radiometers (50 - 183 GH). A special highlight will be given to the advantages and limitations of microwave-related products with respect to more conventional tools.

  6. Microwave engineering

    CERN Document Server

    Pozar, David M

    2012-01-01

    The 4th edition of this classic text provides a thorough coverage of RF and microwave engineering concepts, starting from fundamental principles of electrical engineering, with applications to microwave circuits and devices of practical importance.  Coverage includes microwave network analysis, impedance matching, directional couplers and hybrids, microwave filters, ferrite devices, noise, nonlinear effects, and the design of microwave oscillators, amplifiers, and mixers. Material on microwave and RF systems includes wireless communications, radar, radiometry, and radiation hazards. A large

  7. Retrieval algorithm for CO2 and CH4 column abundances from short-wavelength infrared spectral observations by the Greenhouse Gases Observing Satellite

    Directory of Open Access Journals (Sweden)

    I. Morino

    2010-11-01

    Full Text Available The Greenhouse gases Observing SATellite (GOSAT was launched on 23 January 2009 to monitor the global distributions of carbon dioxide and methane from space. It has operated continuously since then. Here we describe a retrieval algorithm for column abundances of these gases from the short-wavelength infrared spectra obtained by the Thermal And Near infrared Sensor for carbon Observation-Fourier Transform Spectrometer (TANSO-FTS. The algorithm consists of three steps. First, cloud-free observational scenes are selected by several cloud-detection methods. Then, column abundances of carbon dioxide and methane are retrieved based on the optimal estimation method. Finally, the retrieval quality is examined to exclude low-quality and/or aerosol-contaminated results. Most of the retrieval random errors come from the instrumental noise. The interferences by auxiliary parameters retrieved simultaneously with gas abundances are small. The evaluated precisions of the retrieved column abundances for single observations are less than 1% in most cases. The interhemispherical differences and the temporal variation patterns of the retrieved column abundances agree well with the current state of knowledge.

  8. Retrieval algorithm for CO2 and CH4 column abundances from short-wavelength infrared spectral observations by the Greenhouse gases observing satellite

    Directory of Open Access Journals (Sweden)

    I. Morino

    2011-04-01

    Full Text Available The Greenhouse gases Observing SATellite (GOSAT was launched on 23 January 2009 to monitor the global distributions of carbon dioxide and methane from space. It has operated continuously since then. Here, we describe a retrieval algorithm for column abundances of these gases from the short-wavelength infrared spectra obtained by the Thermal And Near infrared Sensor for carbon Observation-Fourier Transform Spectrometer (TANSO-FTS. The algorithm consists of three steps. First, cloud-free observational scenes are selected by several cloud-detection methods. Then, column abundances of carbon dioxide and methane are retrieved based on the optimal estimation method. Finally, the retrieval quality is examined to exclude low-quality and/or aerosol-contaminated results. Most of the retrieval random errors come from instrumental noise. The interferences due to auxiliary parameters retrieved simultaneously with gas abundances are small. The evaluated precisions of the retrieved column abundances for single observations are less than 1% in most cases. The interhemispherical differences and temporal variation patterns of the retrieved column abundances show features similar to those of an atmospheric transport model.

  9. Application of ATOVS Microwave Radiance Assimilation to Rainfall Prediction in Summer 2004

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Experiments are performed in this paper to understand the influence of satellite radiance data on the initial field of a numerical prediction system and rainfall prediction. First, Advanced Microwave Sounder Unit A (AMSU-A) and Unit B (AMSU-B) radiance data are directly used by three-dimensional variational data assimilation to improve the background field of the numerical model. Then, the detailed effect of the radiance data on the background field is analyzed. Secondly, the background field, which is formed by application of Advanced Television and Infrared Observation Satellite Operational Vertical Sounder (ATOVS) microwave radiance assimilation, is employed to simulate some heavy rainfall cases.The experiment results show that the assimilation of AMSU-A (B) microwave radiance data has a certain impact on the geopotential height, temperature, relative humidity and flow fields. And the impacts on the background field are mostly similar in the different months in summer. The heavy rainfall experiments reveal that the application of AMSU-A (B) microwave radiance data can improve the rainfall prediction significantly. In particular, the AMSU-A radiance data can significantly enhance the prediction of rainfall above 10 mm within 48 h, and the AMSU-B radiance data can improve the prediction of rainfall above 50 mm within 24 h. The present study confirms that the direct assimilation of satellite radiance data is an effective way to improve the prediction of heavy rainfall in the summer in China.

  10. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Ahankashan mineral district in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Davis, Philip A.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Ahankashan mineral district, which has copper and gold deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2007,2008, 2009, 2010),but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this

  11. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the South Bamyan mineral district in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Davis, Philip A.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the South Bamyan mineral district, which has areas with a spectral reflectance anomaly that require field investigation. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2006,2007, 2008),but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that

  12. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the North Bamyan mineral district in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Davis, Philip A.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the North Bamyan mineral district, which has copper deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2006,2007, 2008), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such

  13. Polar-Orbiting Satellite (POES) Images

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Visible and Infrared satellite imagery taken from camera systems or radiometer instruments on satellites in orbit around the poles. Satellite campaigns include...

  14. Defense Meteorological Satellite Program (DMSP)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Defense Meteorological Satellite Program (DMSP) satellites collect visible and infrared cloud imagery as well as monitoring the atmospheric, oceanographic,...

  15. Suggestion of EFS-small satellite system for impending earthquake forecast

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In the IAF Congress '92 a multiple small satellite Earth observation system was put forward with sensors of visible and infrared spectrums. The system could shorten the revisiting period so that any place on the world could be observed twice a day. Now we extend the idea to the microwave remote sensing satellite system. The main purpose of the system is the impending forecast of earthquakes. According to the theory and long-time concrete practice of Qiang Zuji through the observation of temperature increase of the low layer of atmosphere and its moving trend caused by some sorts of radiation and gases released from Earth interior, an impending strong earthquake could be predicted in time. As the temperature increase is detected by thermo-infrared spectrum sensors on the meteorological satellites, the observation may be sometimes obstructed by cloud or rain. In the suggested system, mm-wave radiometers are used and those obstructions could be generally overcome.

  16. Microwave Ovens

    Science.gov (United States)

    ... ovens heat food using microwaves, a form of electromagnetic radiation similar to radio waves. Microwaves have three characteristics ... that their microwave oven products meet the strict radiation safety standard ... if your microwave oven has damage to its door hinges, latches, or seals, or ...

  17. Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.

    2012-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This DS consists of the locally enhanced ALOS image mosaics for each of the 24 mineral project areas (referred to herein as areas of interest), whose locality names, locations, and main mineral occurrences are shown on the index map of Afghanistan (fig. 1). ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420-500 nanometer, nm), green (520-600 nm), red (610-690 nm), and near-infrared (760-890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520-770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency, but the image processing has altered the original pixel structure and all image values of the JAXA

  18. Verification of ensemble forecasts of Mediterranean high-impact weather events against satellite observations

    Directory of Open Access Journals (Sweden)

    J.-P. Chaboureau

    2012-08-01

    Full Text Available Ensemble forecasts at kilometre scale of two severe storms over the Mediterranean region are verified against satellite observations. In complement to assessing the forecasts against ground-based measurements, brightness temperature (BT images are computed from forecast fields and directly compared to BTs observed from satellite. The so-called model-to-satellite approach is very effective in identifying systematic errors in the prediction of cloud cover for BTs in the infrared window and in verifying the forecasted convective activity with BTs in the microwave range. This approach is combined with the calculation of meteorological scores for an objective evaluation of ensemble forecasts. The application of the approach is shown in the context of two Mediterranean case studies, a tropical-like storm and a heavy precipitating event. Assessment of cloud cover and convective activity using satellite observations in the infrared (10.8 μm and microwave regions (183–191 GHz provides results consistent with other traditional methods using rainfall measurements. In addition, for the tropical-like storm, differences among forecasts occur much earlier in terms of cloud cover and deep convective activity than they do in terms of deepening and track. Further, the underdispersion of the ensemble forecasts of the two high-impact weather events is easily identified with satellite diagnostics. This suggests that such an approach could be a useful method for verifying ensemble forecasts, particularly in data-sparse regions.

  19. On-board Data Processing to Lower Bandwidth Requirements on an Infrared Astronomy Satellite: Case of Herschel-PACS Camera

    Directory of Open Access Journals (Sweden)

    Christian Reimers

    2005-09-01

    Full Text Available This paper presents a new data compression concept, “on-board processing,” for infrared astronomy, where space observatories have limited processing resources. The proposed approach has been developed and tested for the PACS camera from the European Space Agency (ESA mission, Herschel. Using lossy and lossless compression, the presented method offers high compression ratio with a minimal loss of potentially useful scientific data. It also provides higher signal-to-noise ratio than that for standard compression techniques. Furthermore, the proposed approach presents low algorithmic complexity such that it is implementable on the resource-limited hardware. The various modules of the data compression concept are discussed in detail.

  20. Tropical Storm Beryl as Observed by NASA's Spaceborne Atmospheric Infrared Sounder (AIRS)

    Science.gov (United States)

    2006-01-01

    [figure removed for brevity, see original site] Figure 1: AIRS Microwave Image This is an infrared image of Tropical Storm Beryl in the western Atlantic, from the Atmospheric Infrared Sounder (AIRS) on NASA's Aqua satellite on July 20, 2006, 1:30 am local time. This AIRS image shows the temperature of the cloud tops or the surface of the Earth in cloud-free regions. The lowest temperatures (in purple) are associated with high, cold cloud tops that make up the top of the hurricane. The infrared signal does not penetrate through clouds. Where there are no clouds the AIRS instrument reads the infrared signal from the surface of the Earth, revealing warmer temperatures (red). This infrared image shows three large regions of strong convection surrounding the core of the storm. The largest, on the northern edge of the core, also appears in the companion microwave image to contain intense precipitation. The image in figure 1 is created from microwave radiation emitted by Earth's atmosphere and received by the instrument. It shows where the heaviest rainfall is taking place (in blue) in the storm. Blue areas outside of the tropical storm, where there are either some clouds or no clouds indicate where the sea surface shines through. The Atmospheric Infrared Sounder Experiment, with its visible, infrared, and microwave detectors, provides a three-dimensional look at Earth's weather. Working in tandem, the three instruments can make simultaneous observations all the way down to the Earth's surface, even in the presence of heavy clouds. With more than 2,000 channels sensing different regions of the atmosphere, the system creates a global, 3-D map of atmospheric temperature and humidity and provides information on clouds, greenhouse gases, and many other atmospheric phenomena. The AIRS Infrared Sounder Experiment flies onboard NASA's Aqua spacecraft and is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., under contract to NASA. JPL is a division of the California

  1. Microwave imaging

    CERN Document Server

    Pastorino, Matteo

    2010-01-01

    An introduction to the most relevant theoretical and algorithmic aspects of modern microwave imaging approaches Microwave imaging-a technique used in sensing a given scene by means of interrogating microwaves-has recently proven its usefulness in providing excellent diagnostic capabilities in several areas, including civil and industrial engineering, nondestructive testing and evaluation, geophysical prospecting, and biomedical engineering. Microwave Imaging offers comprehensive descriptions of the most important techniques so far proposed for short-range microwave imaging-in

  2. 美军SBIRS GEO-1预警卫星探测预警能力分析%Analysis on infrared detecting and early warning capabilities of America's SBIRS GEO-1 satellite

    Institute of Scientific and Technical Information of China (English)

    李小将; 金山; 廖海玲; 王建华

    2013-01-01

    For effectively responding to the threats of ballistic missiles and protecting the US's national and allies' interests, the US army continually develops and consummates the space-based infrared early warning system. The paper introduces the status and development of US's space-based infrared system,explores the coverage characteristic of the first space-based infrared geosynchronous orbit satellite,builds the GEO-1 satellite's infrared detecting model and early warning model, analyzes the detecting and early warning efficiencies of SBIRS GEO-1 satellite.%为有效应对弹道导弹威胁,维护本土与盟国利益,美军不断发展完善其天基红外预警系统.介绍了美军天基红外系统的发展现状,分析了首颗天基红外系统静止轨道(SBIRS GEO-1)卫星的覆盖范围,建立了SBIRS GEO-1卫星的红外探测模型和弹道预警模型,对其在轨探测预警能力进行了初步仿真分析.

  3. Infrared and microwave spectra of the acetylene-ammonia and carbonyl sulfide-ammonia complexes: a comparative study of a weak C-H···N hydrogen bond and an S···N bond.

    Science.gov (United States)

    Liu, Xunchen; Xu, Yunjie

    2011-08-21

    We report a combined high resolution infrared and microwave spectroscopic investigation of the acetylene-ammonia and carbonyl sulfide-ammonia complexes using a pulsed slit-nozzle multipass absorption spectrometer based on a quantum cascade laser and a pulsed nozzle beam Fourier transform microwave spectrometer, respectively. The ro-vibrational transitions of the acetylene-ammonia complex have been measured at 6 μm in the vicinity of the ν(4) band of ammonia for the first time. The previously reported pure rotational transitions have been extended to higher J and K values with (14)N nuclear quadrupole hyperfine components detected and analyzed. The spectral analysis reveals that acetylene binds to ammonia through a C-H···N weak hydrogen bond to form a C(3v) symmetric top, consistent with the previous microwave [Fraser et al., J. Chem. Phys., 1984, 80, 1423] and infrared spectroscopic study at 3 μm [Hilpert et al., J. Chem. Phys., 1996, 105, 6183]. A parallel study has also been carried out for the carbonyl sulfide-ammonia complex whose pure rotational and ro-vibrational spectra at 6 μm have been detected and analyzed for the first time. The spectral and the subsequent structural analyses, in conjunction with the corresponding ab initio calculation, indicate that the OCS-NH(3) complex assumes C(3v) symmetry with S pointing to N of NH(3), in contrast to the T-shaped geometries obtained for the isoelectronic N(2)O-NH(3) and CO(2)-NH(3) complexes.

  4. MISTiC Winds, a Micro-Satellite Constellation Approach to High Resolution Observations of the Atmosphere using Infrared Sounding and 3D Winds Measurements

    Science.gov (United States)

    Maschhoff, K. R.; Polizotti, J. J.; Susskind, J.; Aumann, H. H.

    2015-12-01

    MISTiCTM Winds is an approach to improve short-term weather forecasting based on a miniature high resolution, wide field, thermal emission spectrometry instrument that will provide global tropospheric vertical profiles of atmospheric temperature and humidity at high (3-4 km) horizontal and vertical ( 1 km) spatial resolution. MISTiC's extraordinarily small size, payload mass of less than 15 kg, and minimal cooling requirements can be accommodated aboard a 27U-class CubeSat or an ESPA-Class micro-satellite. Low fabrication and launch costs enable a LEO sun-synchronous sounding constellation that would collectively provide frequent IR vertical profiles and vertically resolved atmospheric motion vector wind observations in the troposphere. These observations are highly complementary to present and emerging environmental observing systems, and would provide a combination of high vertical and horizontal resolution not provided by any other environmental observing system currently in operation. The spectral measurements that would be provided by MISTiC Winds are similar to those of NASA's Atmospheric Infrared Sounder that was built by BAE Systems and operates aboard the AQUA satellite. These new observations, when assimilated into high resolution numerical weather models, would revolutionize short-term and severe weather forecasting, save lives, and support key economic decisions in the energy, air transport, and agriculture arenas-at much lower cost than providing these observations from geostationary orbit. In addition, this observation capability would be a critical tool for the study of transport processes for water vapor, clouds, pollution, and aerosols. Key technical risks are being reduced through laboratory and airborne testing under NASA's Instrument Incubator Program.

  5. Satellite Data Assimilation of Upper-Level Sounding Channels in HWRF with Two Diff erent Model Tops

    Institute of Scientific and Technical Information of China (English)

    邹晓蕾; 翁富忠; 林琳; 张邦林; 吴陈锋; 秦正坤

    2015-01-01

    The Advanced Microwave Sounding Unit-A (AMSU-A) onboard the NOAA satellites NOAA-18 and NOAA-19 and the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) MetOp-A, the hyperspectral Atmospheric Infrared Sounder (AIRS) onboard Aqua, the High resolution In-fraRed Sounder (HIRS) onboard NOAA-19 and MetOp-A, and the Advanced Technology Microwave Sounder (ATMS) onboard Suomi National Polar-orbiting Partnership (NPP) satellite provide upper-level sounding channels in tropical cyclone environments. Assimilation of these upper-level sounding channels data in the Hurricane Weather Research and Forecasting (HWRF) system with two diff erent model tops is investigated for the tropical storms Debby and Beryl and hurricanes Sandy and Isaac that occurred in 2012. It is shown that the HWRF system with a higher model top allows more upper-level microwave and infrared sounding channels data to be assimilated into HWRF due to a more accurate upper-level background profi le. The track and intensity forecasts produced by the HWRF data assimilation and forecast system with a higher model top are more accurate than those with a lower model top.

  6. Near-infrared brightness of the Galilean satellites eclipsed in Jovian shadow: A new technique to investigate Jovian upper atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Tsumura, K. [Frontier Research Institute for Interdisciplinary Science, Tohoku University, Sendai, Miyagi 980-8578 (Japan); Arimatsu, K.; Matsuura, S.; Shirahata, M.; Wada, T. [Department of Space Astronomy and Astrophysics, Institute of Space and Astronoutical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa 252-5210 (Japan); Egami, E. [Department of Astronomy, Arizona University, Tucson, AZ 85721 (United States); Hayano, Y.; Minowa, Y. [Hawaii Observatory, National Astronomical Observatory of Japan, Hilo, HI 96720 (United States); Honda, C. [Research Center for Advanced Information Science and Technology, Aizu Research Cluster for Space Science, The University of Aizu, Aizu-Wakamatsu, Fukushima 965-8589 (Japan); Kimura, J. [Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo 152-8550 (Japan); Kuramoto, K.; Takahashi, Y. [Department of Cosmosciences, Graduate School of Science, Hokkaido University, Sapporo, Hokkaido 060-0810 (Japan); Nakajima, K. [Department of Earth and Planetary Sciences, Kyushu University, Fukuoka 812-8581 (Japan); Nakamoto, T. [Department of Earth and Planetary Sciences, Graduate School of Science and Engineering, Tokyo Institute of Technology, Tokyo 152-8551 (Japan); Surace, J., E-mail: tsumura@astr.tohoku.ac.jp [Spitzer Science Center, California Institute of Technology, Pasadena, CA 91125 (United States)

    2014-07-10

    Based on observations from the Hubble Space Telescope and the Subaru Telescope, we have discovered that Europa, Ganymede, and Callisto are bright around 1.5 μm even when not directly lit by sunlight. The observations were conducted with non-sidereal tracking on Jupiter outside of the field of view to reduce the stray light subtraction uncertainty due to the close proximity of Jupiter. Their eclipsed luminosity was 10{sup –6}-10{sup –7} of their uneclipsed brightness, which is low enough that this phenomenon has been undiscovered until now. In addition, Europa in eclipse was <1/10 of the others at 1.5 μm, a potential clue to the origin of the source of luminosity. Likewise, Ganymede observations were attempted at 3.6 μm by the Spitzer Space Telescope, but it was not detected, suggesting a significant wavelength dependence. It is still unknown why they are luminous even when in the Jovian shadow, but forward-scattered sunlight by hazes in the Jovian upper atmosphere is proposed as the most plausible candidate. If this is the case, observations of these Galilean satellites while eclipsed by the Jovian shadow provide us with a new technique to investigate the Jovian atmospheric composition. Investigating the transmission spectrum of Jupiter by this method is important for investigating the atmosphere of extrasolar giant planets by transit spectroscopy.

  7. Spatial variability in tropospheric peroxyacetyl nitrate in the tropics from infrared satellite observations in 2005 and 2006

    Science.gov (United States)

    Payne, Vivienne H.; Fischer, Emily V.; Worden, John R.; Jiang, Zhe; Zhu, Liye; Kurosu, Thomas P.; Kulawik, Susan S.

    2017-05-01

    Peroxyacetyl nitrate (PAN) plays a fundamental role in the global ozone budget and is the primary reservoir of tropospheric reactive nitrogen over much of the globe. However, large uncertainties exist in how surface emissions, transport and lightning affect the global distribution, particularly in the tropics. We present new satellite observations of free-tropospheric PAN in the tropics from the Aura Tropospheric Emission Spectrometer. This dataset allows us to test expected spatiotemporal distributions that have been predicted by models but previously not well observed. We compare here with the GEOS-Chem model with updates specifically for PAN. We observe an austral springtime maximum over the tropical Atlantic, a feature that model predictions attribute primarily to lightning. Over northern central Africa in December, observations show strong interannual variability, despite low variation in fire emissions, that we attribute to the combined effects of changes in biogenic emissions and lightning. We observe small enhancements in free-tropospheric PAN corresponding to the extreme burning event over Indonesia associated with the 2006 El Niño.

  8. Modeling microwave/electron-cloud interaction

    CERN Document Server

    Mattes, M; Zimmermann, F

    2013-01-01

    Starting from the separate codes BI-RME and ECLOUD or PyECLOUD, we are developing a novel joint simulation tool, which models the combined effect of a charged particle beam and of microwaves on an electron cloud. Possible applications include the degradation of microwave transmission in tele-communication satellites by electron clouds; the microwave-transmission tecchniques being used in particle accelerators for the purpose of electroncloud diagnostics; the microwave emission by the electron cloud itself in the presence of a magnetic field; and the possible suppression of electron-cloud formation in an accelerator by injecting microwaves of suitable amplitude and frequency. A few early simulation results are presented.

  9. Four hot DOGs in the microwave

    CERN Document Server

    Frey, S; Gabányi, K É; An, T

    2016-01-01

    Hot dust-obscured galaxies (hot DOGs) are a rare class of hyperluminous infrared galaxies identified with the Wide-field Infrared Survey Explorer (WISE) satellite. The majority of them is at high redshifts (z~2-3), at the peak epoch of star formation in the Universe. Infrared, optical, radio, and X-ray data suggest that hot DOGs contain heavily obscured, extremely luminous active galactic nuclei (AGN). This class may represent a short phase in the life of the galaxies, signifying the transition from starburst- to AGN-dominated phases. Hot DOGs are typically radio-quiet, but some of them show mJy-level emission in the radio (microwave) band. We observed four hot DOGs using the technique of very long baseline interferometry (VLBI). The 1.7-GHz observations with the European VLBI Network (EVN) revealed weak radio features in all sources. The radio is free from dust obscuration and, at such high redshifts, VLBI is sensitive only to compact structures that are characteristic of AGN activity. In two cases (WISE J07...

  10. Máscara de espalhamento e precipitação para os canais microondas do satélite NOAA Scattering and rainfall mask for microwave channels of NOAA satellite

    Directory of Open Access Journals (Sweden)

    João C. Carvalho

    2005-12-01

    Full Text Available Propõe-se, com o presente trabalho, avaliar uma metodologia para identificação de pixels contaminados por precipitação e/ou espalhamento utilizando-se dados dos canais do Advanced Microwave Sensor Unit (AMSU. A aplicação de metodologias desse tipo é útil para a inferência de perfis verticais de temperatura e umidade no Brasil, em situações de céu coberto. A validação dos resultados foi feita com base em um estudo de caso, em que se aplicou uma análise subjetiva, tomando-se como modelo a comparação com imagens das bandas infravermelho, visível e microondas. Os resultados mostraram excelente concordância entre os topos de nuvens com temperaturas de brilho baixas, afetadas pelo efeito de espalhamento devido à presença de chuva e gelo, e as áreas identificadas pelo algoritmo como sendo contaminadas por este efeito. O algoritmo conseguiu identificar adequadamente os locais sob influência de precipitação e/ou espalhamento.This work presents a methodology to identify precipitation and/or scattering pixels in the Advanced Microwave Sensor Unit (AMSU channels. This procedure is useful for applications in atmospheric temperature and moisture retrievals over Brazil under cloudy sky conditions. A subjective analysis based on a case study involving comparisons with infrared, visible and microwave images was applied for validation purpose. The results show an excellent relationship of cloud tops with low brightness temperature affected by scattering due to water drops and ice and the areas identified by the algorithm as being influenced by precipitation and/or scattering effect.

  11. Planck 2013 results. XVIII. Gravitational lensing-infrared background correlation

    CERN Document Server

    Ade, P.A.R.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartlett, J.G.; Basak, S.; Battaner, E.; Benabed, K.; Benoit, A.; Benoit-Levy, A.; Bernard, J.P.; Bersanelli, M.; Bethermin, M.; Bielewicz, P.; Bobin, J.; Bock, J.J.; Bonaldi, A.; Bond, J.R.; Borrill, J.; Bouchet, F.R.; Boulanger, F.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R.C.; Cardoso, J.F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, L.Y.; Chiang, H.C.; Christensen, P.R.; Church, S.; Clements, D.L.; Colombi, S.; Colombo, L.P.L.; Couchot, F.; Coulais, A.; Crill, B.P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R.D.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.M.; Desert, F.X.; Diego, J.M.; Dole, H.; Donzelli, S.; Dore, O.; Douspis, M.; Dupac, X.; Efstathiou, G.; Ensslin, T.A.; Eriksen, H.K.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Heraud, Y.; Gonzalez-Nuevo, J.; Gorski, K.M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J.E.; Hansen, F.K.; Hanson, D.; Harrison, D.; Henrot-Versille, S.; Hernandez-Monteagudo, C.; Herranz, D.; Hildebrandt, S.R.; Hivon, E.; Hobson, M.; Holmes, W.A.; Hornstrup, A.; Hovest, W.; Huffenberger, K.M.; Jaffe, T.R.; Jaffe, A.H.; Jones, W.C.; Juvela, M.; Keihanen, E.; Keskitalo, R.; Kisner, T.S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lacasa, F.; Lagache, G.; Lahteenmaki, A.; Lamarre, J.M.; Lasenby, A.; Laureijs, R.J.; Lawrence, C.R.; Leonardi, R.; Leon-Tavares, J.; Lesgourgues, J.; Liguori, M.; Lilje, P.B.; Linden-Vornle, M.; Lopez-Caniego, M.; Lubin, P.M.; Macias-Perez, J.F.; Maffei, B.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall, D.J.; Martin, P.G.; Martinez-Gonzalez, E.; Masi, S.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschenes, M.A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C.B.; Norgaard-Nielsen, H.U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Oxborrow, C.A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G.W.; Prezeau, G.; Prunet, S.; Puget, J.L.; Rachen, J.P.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M.D.; Serra, P.; Shellard, E.P.S.; Spencer, L.D.; Starck, J.L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.S.; Sygnet, J.F.; Tauber, J.A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L.A.; Wandelt, B.D.; White, S.D.M.; Yvon, D.; Zacchei, A.; Zonca, A.

    2014-01-01

    The multi-frequency capability of the Planck satellite provides information both on the integrated history of star formation (via the cosmic infrared background, or CIB) and on the distribution of dark matter (via the lensing effect on the cosmic microwave background, or CMB). The conjunction of these two unique probes allows us to measure directly the connection between dark and luminous matter in the high redshift (1 1. We measure directly the SFR density with around 2 sigma significance for three redshift bins between z=1 and 7, thus opening a new window into the study of the formation of stars at early times.

  12. ASTER Urgent Response to the 2006 Eruption of Augustine Volcano, Alaska: Science and Decision Support Gained From Frequent High-resolution, Satellite Thermal Infrared Imaging of Volcanic Events

    Science.gov (United States)

    Wessels, R. L.; Ramsey, M. S.; Schneider, D. S.; Coombs, M.; Dehn, J.; Realmuto, V. J.

    2006-12-01

    Augustine Volcano, Alaska explosively erupted on January 11, 2006 after nearly eight months of increasing seismicity, deformation, gas emission, and small phreatic explosions. The volcano produced a total of 13 explosive eruptions during the last three weeks of January 2006. A new summit lava dome and two short, blocky lava flows grew during February and March 2006. A series of 7 daytime and 15 nighttime Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) scenes were acquired in response to this new activity. This response was facilitated by a new ASTER Urgent Request Protocol system. The ASTER data provided several significant observations as a part of a much larger suite of real-time or near-real-time data from other satellite (AVHRR, MODIS), airborne (FLIR, visual, gas), and ground-based (seismometers, radiometers) sensors used at the Alaska Volcano Observatory (AVO). ASTER is well-suited to volcanic observations because of its 15-m to 90-m spatial resolution, its ability to be scheduled and point off-nadir, and its ability to collect visible-near infrared (VNIR) to thermal infrared (TIR) data during both the day and night. Aided by the volcano's high latitude (59.4°N) ASTER was able to provide frequent repeat imaging as short as one day between scenes with an average 6-day repeat during the height of activity. These data provided a time series of high-resolution VNIR, shortwave infrared (SWIR - detects temperatures from about 200°C to > 600°C averaged over a 30-m pixel), and TIR (detects temperatures up to about 100°C averaged over a 90-m pixel) data of the volcano and its eruptive products. Frequent satellite imaging of volcanoes is necessary to record rapid changes in activity and to avoid recurring cloud cover. Of the 22 ASTER scenes acquired between October 30, 2005 and May 30, 2006, the volcano was clear to partly cloudy in 13 scenes. The most useful pre-eruption ASTER Urgent Request image was acquired on December 20. These data

  13. Satellite radiometric remote sensing of rainfall fields: multi-sensor retrieval techniques at geostationary scale

    Directory of Open Access Journals (Sweden)

    F. S. Marzano

    2005-01-01

    Full Text Available The Microwave Infrared Combined Rainfall Algorithm (MICRA consists in a statistical integration method using the satellite microwave-based rain-rate estimates, assumed to be accurate enough, to calibrate spaceborne infrared measurements on limited sub-regions and time windows. Rainfall retrieval is pursued at the space-time scale of typical geostationary observations, that is at a spatial resolution of few kilometers and a repetition period of few tens of minutes. The actual implementation is explained, although the basic concepts of MICRA are very general and the method is easy to be extended for considering innovative statistical techniques or measurements from additional space-borne platforms. In order to demonstrate the potentiality of MICRA, case studies over central Italy are also discussed. Finally, preliminary results of MICRA validation by ground based remote and in situ measurements are shown and a comparison with a Neural Network (NN based technique is briefly illustrated.

  14. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Kunduz mineral district in Afghanistan: Chapter S in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Arko, Scott A.; Harbin, Michelle L.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Kunduz mineral district, which has celestite deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2007,2008,2009), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such, the

  15. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Haji-Gak mineral district in Afghanistan: Chapter C in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Cagney, Laura E.; Arko, Scott A.; Harbin, Michelle L.

    2012-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Haji-Gak mineral district, which has iron ore deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420-500 nanometer, nm), green (520-600 nm), red (610-690 nm), and near-infrared (760-890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520-770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency ((c)JAXA,2006,2007), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such, the DS products

  16. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Kharnak-Kanjar mineral district in Afghanistan: Chapter K in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Arko, Scott A.; Harbin, Michelle L.

    2012-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Kharnak-Kanjar mineral district, which has mercury deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2007,2008,2010), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such

  17. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Dudkash mineral district in Afghanistan: Chapter R in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Arko, Scott A.; Harbin, Michelle L.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Dudkash mineral district, which has industrial mineral deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2006,2007,2008,2009), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS

  18. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Ghunday-Achin mineral district in Afghanistan, in Davis, P.A, compiler, Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Arko, Scott A.; Harbin, Michelle L.; Davis, Philip A.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Ghunday-Achin mineral district, which has magnesite and talc deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2008,2009), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As

  19. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Dusar-Shaida mineral district in Afghanistan: Chapter I in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Arko, Scott A.; Harbin, Michelle L.

    2012-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Dusar-Shaida mineral district, which has copper and tin deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2008), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such, the

  20. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Herat mineral district in Afghanistan: Chapter T in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Arko, Scott A.; Harbin, Michelle L.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Herat mineral district, which has barium and limestone deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2007,2008,2009), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As

  1. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Tourmaline mineral district in Afghanistan: Chapter J in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Cagney, Laura E.; Arko, Scott A.; Harbin, Michelle L.

    2012-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Tourmaline mineral district, which has tin deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2008), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such, the DS products

  2. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Aynak mineral district in Afghanistan: Chapter E in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Cagney, Laura E.; Arko, Scott A.; Harbin, Michelle L.

    2012-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Aynak mineral district, which has copper deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency ((c)JAXA,2008,2010), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such, the DS

  3. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Badakhshan mineral district in Afghanistan: Chapter F in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Arko, Scott A.; Harbin, Michelle L.

    2012-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Badakhshan mineral district, which has gold deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420-500 nanometer, nm), green (520-600 nm), red (610-690 nm), and near-infrared (760-890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520-770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency ((c)JAXA,2007,2008), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such, the DS products

  4. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Kundalyan mineral district in Afghanistan: Chapter H in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Cagney, Laura E.; Arko, Scott A.; Harbin, Michelle L.

    2012-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Kundalyan mineral district, which has porphyry copper and gold deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2008), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As

  5. Microwave Photonics

    OpenAIRE

    Seeds, A.J.; Liu, C. P.; T. Ismail; Fice, M. J.; Pozzi, F; Steed, R. J.; Rouvalis, E.; Renaud, C.C.

    2010-01-01

    Microwave photonics is the use of photonic techniques for the generation, transmission, processing and reception of signals having spectral components at microwave frequencies. This tutorial reviews the technologies used and gives applications examples.

  6. Global Characterization of CO2 Column Retrievals from Shortwave-Infrared Satellite Observations of the Orbiting Carbon Observatory-2 Mission

    Directory of Open Access Journals (Sweden)

    Charles Miller

    2011-02-01

    Full Text Available The global characteristics of retrievals of the column-averaged CO2 dry air mole fraction, XCO2, from shortwave infrared observations has been studied using the expected measurement performance of the NASA Orbiting Carbon Observatory-2 (OCO-2 mission. This study focuses on XCO2 retrieval precision and averaging kernels and their sensitivity to key parameters such as solar zenith angle (SZA, surface pressure, surface type and aerosol optical depth (AOD, for both nadir and sunglint observing modes. Realistic simulations have been carried out and the single sounding retrieval errors for XCO2 have been derived from the formal retrieval error covariance matrix under the assumption that the retrieval has converged to the correct answer and that the forward model can adequately describe the measurement. Thus, the retrieval errors presented in this study represent an estimate of the retrieval precision. For nadir observations, we find single-sounding retrieval errors with values typically less than 1 part per million (ppm over most land surfaces for SZAs less than 70° and up to 2.5 ppm for larger SZAs. Larger errors are found over snow/ice and ocean surfaces due to their low albedo in the spectral regions of the CO2 absorption bands and, for ocean, also in the O2 A band. For sunglint observations, errors over the ocean are significantly smaller than in nadir mode with values in the range of 0.3 to 0.6 ppm for small SZAs which can decrease to values as small as 0.15 for the largest SZAs. The vertical sensitivity of the retrieval that is represented by the column averaging kernel peaks near the surface and exhibits values near unity throughout most of the troposphere for most anticipated scenes. Nadir observations over dark ocean or snow/ice surfaces and observations with large AOD and large SZA show a decreased sensitivity to near-surface CO2. All simulations are carried out for a mid-latitude summer atmospheric profile, a given aerosol type and

  7. Heavy precipitation retrieval from combined satellite observations and ground-based lightning measurements

    Science.gov (United States)

    Mugnai, A.; Dietrich, S.; Casella, D.; di Paola, F.; Formenton, M.; Sanò, P.

    2010-09-01

    We have developed a series of algorithms for the retrieval of precipitation (especially, heavy precipitation) over the Mediterranean area using satellite observations from the available microwave (MW) radiometers onboard low Earth orbit (LEO) satellites and from the visible-infrared (VIS-IR) SEVIRI radiometer onboard the European geosynchronous (GEO) satellite Meteosat Second Generation (MSG), in conjunction with lightning data from ground-based networks - such as ZEUS and LINET. These are: • A new approach for precipitation retrieval from space (which we call the Cloud Dynamics and Radiation Database approach, CDRD) that incorporates lightning and environmental/dynamical information in addition to the upwelling microwave brightness temperatures (TB’s) so as to reduce the retrieval uncertainty and improve the retrieval performance; • A new combined MW-IR technique for producing frequent precipitation retrievals from space (which we call PM-GCD technique), that uses passive-microwave (PM) retrievals in conjunction with lightning information and the Global Convection Detection (GCD) technique to discriminate deep convective clouds within the GEO observations; • A new morphing approach (which we call the Lightning-based Precipitation Evolving Technique, L-PET) that uses the available lightning measurements for propagating the rainfall estimates from satellite-borne MW radiometers to a much higher time resolution than the MW observations. We will present and discuss our combined MW/IR/lightning precipitation algorithms and analyses with special reference to some case studies over the western Mediterranean.

  8. Aircraft microwave observations and simulations of deep convection from 18 to 183 GHz. I - Observations

    Science.gov (United States)

    Adler, Robert F.; Mack, Robert A.; Prasad, N.; Hakkarinen, Ida M.; Yeh, H.-Y. M.

    1990-01-01

    Aircraft passive microwave observations of deep atmospheric convection at frequencies between 18 and 183 GHz are presented in conjunction with visible and infrared satellite and aircraft observations and ground-based radar observations. Deep convective cores are indicated in the microwave data by negative brightness temperature, T/(B) deviations from the land background (270 K) to extreme T(B) values below 100 K at 37, 92, and 183 GHz and below 200 K at 18 GHz. These T(B) minima, due to scattering by ice held aloft by the intense updrafts, are well correlated with areas of high radar reflectivity. For this land background case, T(B) is inversely correlated with rain rate at all frequencies due to T(B)-ice-rain correlations. Mean Delta-T between vertically polarized and horizontally polarized radiance in precipitation areas is approximately 6 K at both 18 GHz and 37 GHz, indicating nonspherical precipitation-size ice particles with a preferred horizontal orientation. Convective cores not observed in the visible and infrared data are clearly defined in the microwave observations, and borders of convective rain areas are well defined using the high-frequency (90 GHz and greater) microwave observations.

  9. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Kandahar mineral district in Afghanistan: Chapter Z in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Kandahar mineral district, which has bauxite deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420-500 nanometer, nm), green (520-600 nm), red (610-690 nm), and near-infrared (760-890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520-770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency ((c)JAXA,2006,2007,2008), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such, the DS

  10. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Katawas mineral district in Afghanistan: Chapter N in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Cagney, Laura E.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Katawas mineral district, which has gold deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420-500 nanometer, nm), green (520-600 nm), red (610-690 nm), and near-infrared (760-890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520-770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©AXA, 2008), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such, the DS products match JAXA

  11. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the North Takhar mineral district in Afghanistan: Chapter D in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Cagney, Laura E.

    2012-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the North Takhar mineral district, which has placer gold deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2006,2008), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such

  12. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Uruzgan mineral district in Afghanistan: Chapter V in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Uruzgan mineral district, which has tin and tungsten deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA, 2008, 2009), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such

  13. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Ghazni1 mineral district in Afghanistan: Chapter DD in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.

    2014-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Ghazni1 mineral district, which has spectral reflectance anomalies indicative of clay, aluminum, gold, silver, mercury, and sulfur deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420-500 nanometer, nm), green (520-600 nm), red (610-690 nm), and near-infrared (760-890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520-770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency ((c)JAXA, 2008, 2009), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such

  14. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Ghazni2 mineral district in Afghanistan: Chapter EE in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.

    2014-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Ghazni2 mineral district, which has spectral reflectance anomalies indicative of gold, mercury, and sulfur deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420-500 nanometer, nm), green (520-600 nm), red (610-690 nm), and near-infrared (760-890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520-770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency ((c)JAXA, 2008, 2009), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image

  15. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Panjsher Valley mineral district in Afghanistan: Chapter M in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Cagney, Laura E.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Panjsher Valley mineral district, which has emerald and silver-iron deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA, 2009, 2010), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from

  16. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Balkhab mineral district in Afghanistan: Chapter B in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Cagney, Laura E.

    2012-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Balkhab mineral district, which has copper deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420-500 nanometer, nm), green (520-600 nm), red (610-690 nm), and near-infrared (760-890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520-770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2007,2008), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such, the DS products match

  17. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Bakhud mineral district in Afghanistan: Chapter U in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Cagney, Laura E.; Davis, Philip A.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Bakhud mineral district, which has industrial fluorite deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2006,2007, 2008), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As

  18. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Zarkashan mineral district in Afghanistan: Chapter G in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Cagney, Laura E.

    2012-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Zarkashan mineral district, which has copper and gold deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2006,2007, 2008), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As

  19. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Takhar mineral district in Afghanistan: Chapter Q in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Cagney, Laura E.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Takhar mineral district, which has industrial evaporite deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA, 2008), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such

  20. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Farah mineral district in Afghanistan: Chapter FF in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.

    2014-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Farah mineral district, which has spectral reflectance anomalies indicative of copper, zinc, lead, silver, and gold deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420-500 nanometer, nm), green (520-600 nm), red (610-690 nm), and near-infrared (760-890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520-770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency ((c)JAXA, 2007, 2008, 2010), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that

  1. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Khanneshin mineral district in Afghanistan: Chapter A in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Cagney, Laura E.; Arko, Scott A.; Harbin, Michelle L.

    2012-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Khanneshin mineral district, which has uranium, thorium, rare-earth-element, and apatite deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420-500 nanometer, nm), green (520-600 nm), red (610-690 nm), and near-infrared (760-890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520-770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2007,2008,2010), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be

  2. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the South Helmand mineral district in Afghanistan: Chapter O in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Cagney, Laura E.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the South Helmand mineral district, which has travertine deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA, 2008, 2010), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such

  3. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Nalbandon mineral district in Afghanistan: Chapter L in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Cagney, Laura E.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Nalbandon mineral district, which has lead and zinc deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA, 2007, 2008, 2010), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As

  4. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Baghlan mineral district in Afghanistan: Chapter P in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Cagney, Laura E.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Baghlan mineral district, which has industrial clay and gypsum deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA, 2006, 2007, 2008), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from

  5. Variability of the infrared complex refractive index of African mineral dust: experimental estimation and implications for radiative transfer and satellite remote sensing

    Directory of Open Access Journals (Sweden)

    C. Di Biagio

    2014-04-01

    Full Text Available Experimental estimations of the infrared refractive index of African mineral dust have been retrieved from laboratory measurements of particle transmission spectra in the wavelength range 2.5–25 μm. Five dust samples collected at Banizoumbou (Niger and Tamanrasset (Algeria during dust events originated from different Western Saharan and Sahelian areas have been investigated. The obtained real (n and imaginary (k parts of the refractive index for the different dust cases vary in the range 1.1–2.7 and 0.05–1.0, respectively, and appear to be strongly sensitive to the mineralogical composition of the particles, especially in the 8–12 μm and 17–25 μm spectral intervals. Dust absorption is controlled mainly by clays, and, in minor fraction, by quartz and Ca-rich minerals. Size distribution, and the coarse fraction in particular, plays also a role in determining the refractive index. Significant differences are obtained when comparing our results with existing experimental estimations available in the literature, and with the values of the OPAC (Optical Properties of Aerosols and Clouds database. The different datasets appear comparable in magnitude, with our values of n and k falling in the range of variability of past studies. However, literature data fail in accurately reproducing the spectral signatures of main minerals, in particular clays, and they significantly overestimate the contribution of quartz. We also found that the real and the imaginary parts of the refractive index from part of literature studies do not verify Kramers–Kronig relations, thus resulting theoretically incorrect. The comparison between our results, from Western Africa, and literature data, from different locations in Europe, Africa, and the Caribbean, nonetheless, confirms the expected large variability of the infrared refractive index of dust, thus highlighting the necessity for an extended systematic investigation. Aerosol intensive optical properties

  6. Element analysis and characteristic identification of non-fumigated and sulfur-fumigated Fritillaria thunbergii Miq. using microwave digestion-inductively coupled plasma atomic emission spectrometry combined with Fourier transform infrared spectrometry

    Directory of Open Access Journals (Sweden)

    Yajing Lou

    2014-01-01

    Full Text Available Background: Sulfur-fumigation may induce chemical transformation of traditional Chinese medicines leading to harmful effects following patient ingestion. For quality control, it is urgently needed to develop a reliable and efficient method for sulfur-fumigation identification. Materials and Methods: The spectrochemical identification of non-fumigated and sulfur-fumigated Fritillaria thunbergii Miq. was carried out to evaluate inorganic elements and organic components. The concentrations of 12 elements, including Zn, Mn, Cu, Fe, Li, Mg, Sr, Pb, As, Cd, Hg, and S of samples were determined by microwave digestion - inductively coupled plasma atomic emission spectrometry (ICP-AES. Meanwhile, Fourier transform infrared spectrometry (FTIR was used for the study of chemical group characteristic reactions after sulfur-fumigation. Results: The concentrations of Fe, Mg, Hg, and S elements showed significant differences between non-fumigated and sulfur-fumigated Fritillaria thunbergii Miq. The characteristic stretching vibrations of some groups in FTIR spectra, such as -OH, -S = O and -S-O, provided the identification basis for the discrimination of non-fumigated and sulfur-fumigated Fritillaria thunbergii Miq. Conclusion: The application of microwave digestion - ICP-AES was successfully used in combination with FTIR to authenticate and evaluate the quality of medicinal Fritillaria thunbergii Miq. Further applications of this technique should be explored.

  7. Element analysis and characteristic identification of non-fumigated and sulfur-fumigated Fritillaria thunbergii Miq. using microwave digestion-inductively coupled plasma atomic emission spectrometry combined with Fourier transform infrared spectrometry

    Science.gov (United States)

    Lou, Yajing; Cai, Hao; Liu, Xiao; Tu, Sicong; Pei, Ke; Zhao, Yingying; Cao, Gang; Li, Songlin; Qin, Kunming; Cai, Baochang

    2014-01-01

    Background: Sulfur-fumigation may induce chemical transformation of traditional Chinese medicines leading to harmful effects following patient ingestion. For quality control, it is urgently needed to develop a reliable and efficient method for sulfur-fumigation identification. Materials and Methods: The spectrochemical identification of non-fumigated and sulfur-fumigated Fritillaria thunbergii Miq. was carried out to evaluate inorganic elements and organic components. The concentrations of 12 elements, including Zn, Mn, Cu, Fe, Li, Mg, Sr, Pb, As, Cd, Hg, and S of samples were determined by microwave digestion - inductively coupled plasma atomic emission spectrometry (ICP-AES). Meanwhile, Fourier transform infrared spectrometry (FTIR) was used for the study of chemical group characteristic reactions after sulfur-fumigation. Results: The concentrations of Fe, Mg, Hg, and S elements showed significant differences between non-fumigated and sulfur-fumigated Fritillaria thunbergii Miq. The characteristic stretching vibrations of some groups in FTIR spectra, such as -OH, -S = O and -S-O, provided the identification basis for the discrimination of non-fumigated and sulfur-fumigated Fritillaria thunbergii Miq. Conclusion: The application of microwave digestion - ICP-AES was successfully used in combination with FTIR to authenticate and evaluate the quality of medicinal Fritillaria thunbergii Miq. Further applications of this technique should be explored. PMID:24914306

  8. Dielectric spectroscopy of Ba(B1/2scriptB1/2script)O3 complex perovskite ceramics: Correlations between ionic parameters and microwave dielectric properties. I. Infrared reflectivity study (1012-1014 Hz)

    Science.gov (United States)

    Zurmühlen, Rudolf; Petzelt, Jan; Kamba, Stanislav; Voitsekhovskii, Valentin V.; Colla, Enrico; Setter, Nava

    1995-05-01

    An attempt has been undertaken to find a correlation between ionic parameters of ceramic materials and their complex permittivity at microwave frequencies. Ten Ba(B1/2'B1/2`)O3 complex perovskite compounds (B'=Y3+, In3+, Nd3+, Gd3+; B`=Nb5+, Ta5+ and B'=Mg2+, Cd2+, B`=W6+) are compared in order to study the effect of ionic radii, mass, and valence state on dielectric properties. Fourier transform infrared reflectivity spectra in the 30-4000 cm-1 range were measured and evaluated by means of Kramers-Kronig analysis and classical oscillator fit. The data were extrapolated below the measured frequency range to estimate the intrinsic microwave losses. The correlations between loss, permittivity, ionic size, mass, and effective charge and polar-phonon mode parameters were investigated. Ionic size was revealed to be the most important parameter, determining the tolerance factor of the structure packing and through this controlling the phonon frequencies and dampings as well as the extrapolated low-frequency intrinsic permittivity and loss. Nb5+ ions showed systematically higher dampings and greater tendencies towards disorder in comparison with Ta5+ compounds with the same tolerance factor. A steep increase in extrapolated loss with increasing permittivity was observed.

  9. Early On-Orbit Performance of the Visible Infrared Imaging Radiometer Suite Onboard the Suomi National Polar-Orbiting Partnership (S-NPP) Satellite

    Science.gov (United States)

    Cao, Changyong; DeLuccia, Frank J.; Xiong, Xiaoxiong; Wolfe, Robert; Weng, Fuzhong

    2014-01-01

    The Visible Infrared Imaging Radiometer Suite (VIIRS) is one of the key environmental remote-sensing instruments onboard the Suomi National Polar-Orbiting Partnership spacecraft, which was successfully launched on October 28, 2011 from the Vandenberg Air Force Base, California. Following a series of spacecraft and sensor activation operations, the VIIRS nadir door was opened on November 21, 2011. The first VIIRS image acquired signifies a new generation of operational moderate resolution-imaging capabilities following the legacy of the advanced very high-resolution radiometer series on NOAA satellites and Terra and Aqua Moderate-Resolution Imaging Spectroradiometer for NASA's Earth Observing system. VIIRS provides significant enhancements to the operational environmental monitoring and numerical weather forecasting, with 22 imaging and radiometric bands covering wavelengths from 0.41 to 12.5 microns, providing the sensor data records for 23 environmental data records including aerosol, cloud properties, fire, albedo, snow and ice, vegetation, sea surface temperature, ocean color, and nigh-time visible-light-related applications. Preliminary results from the on-orbit verification in the postlaunch check-out and intensive calibration and validation have shown that VIIRS is performing well and producing high-quality images. This paper provides an overview of the onorbit performance of VIIRS, the calibration/validation (cal/val) activities and methodologies used. It presents an assessment of the sensor initial on-orbit calibration and performance based on the efforts from the VIIRS-SDR team. Known anomalies, issues, and future calibration efforts, including the long-term monitoring, and intercalibration are also discussed.

  10. Organic Synthesis Using Microwaves and Supported Reagents

    Science.gov (United States)

    In the electromagnetic radiation region, microwaves (0.3GHz-300GHz) lie between radiowave (Rf) and infrared (IR) frequencies with relatively large wavelengths (1 mm-1 m). Microwaves, non-ionizing radiation incapable of breaking bonds, are a form of energy that manifest as heat t...

  11. Organic Synthesis Using Microwaves and Supported Reagents

    Science.gov (United States)

    In the electromagnetic radiation region, microwaves (0.3GHz-300GHz) lie between radiowave (Rf) and infrared (IR) frequencies with relatively large wavelengths (1 mm-1 m). Microwaves, non-ionizing radiation incapable of breaking bonds, are a form of energy that manifest as heat t...

  12. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Parwan mineral district in Afghanistan: Chapter CC in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Parwan mineral district, which has gold and copper deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2006, 2007), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such

  13. 海洋二号卫星微波辐射计的动平衡设计仿真与试验%Dynamic balancing design simulation and test for HY-2A satellite microwave radiometer

    Institute of Scientific and Technical Information of China (English)

    王朋朋; 牛宝华; 艾永强; 王三民

    2016-01-01

    In order to realize high precision attitude control of a satellite,the dynamic balancing design simulation and test for large rotating payload of microwave radiometer should be conducted.Combining with the research and development of HY-2A satellite,the dynamic balancing design and simulation of its microwave radiometer was performed to provide the basis for its structural optimization and layout design.The effects of air resistant force on the radiometer's dynamic balancing were analyzed.The influences of gravity,thermal expansion and variation of bearing radial clearance on the radiometer's dynamic balancing were also considered.Finally,the radiometer's dynamic balancing test was performed in vacuum environment and its dynamic balance target was achieved with very small added weights.%为了实现卫星的高精度姿态控制,需要对以辐射计为代表的大型回转载荷进行严格的动平衡设计仿真与试验。结合海洋二号卫星研制需求,在产品设计初期开展了针对微波辐射计的动平衡设计仿真,以提供优化产品结构和布局的依据。为了评估空气环境对动平衡配平的影响,进行了辐射计动平衡配平的风阻影响分析。考虑了重力因素、在轨热变形和无重力下轴承径向游隙变化对辐射计动平衡的影响。最终在真空环境下开展了针对辐射计的动平衡试验,以很小的配重质量,实现了微波辐射计的配平。

  14. Microwave Microscope

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Makes ultra-high-resolution field measurements. The Microwave Microscope (MWM) has been used in support of several NRL experimental programs involving sea...

  15. Special Sensor Microwave Imager/Sounder (SSMIS) Sensor Data Record (SDR) in netCDF

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Special Sensor Microwave Imager/Sounder (SSMIS) is a series of passive microwave conically scanning imagers and sounders onboard the DMSP satellites beginning...

  16. Special Sensor Microwave Imager/Sounder (SSMIS) Temperature Data Record (TDR) in netCDF

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Special Sensor Microwave Imager/Sounder (SSMIS) is a series of passive microwave conically scanning imagers and sounders onboard the DMSP satellites beginning...

  17. Satellite Gravimetry Applied to Drought Monitoring

    Science.gov (United States)

    Rodell, Matthew

    2010-01-01

    Near-surface wetness conditions change rapidly with the weather, which limits their usefulness as drought indicators. Deeper stores of water, including root-zone soil wetness and groundwater, portend longer-term weather trends and climate variations, thus they are well suited for quantifying droughts. However, the existing in situ networks for monitoring these variables suffer from significant discontinuities (short records and spatial undersampling), as well as the inherent human and mechanical errors associated with the soil moisture and groundwater observation. Remote sensing is a promising alternative, but standard remote sensors, which measure various wavelengths of light emitted or reflected from Earth's surface and atmosphere, can only directly detect wetness conditions within the first few centimeters of the land s surface. Such sensors include the Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E) C-band passive microwave measurement system on the National Aeronautic and Space Administration's (NASA) Aqua satellite, and the combined active and passive L-band microwave system currently under development for NASA's planned Soil Moisture Active Passive (SMAP) satellite mission. These instruments are sensitive to water as deep as the top 2 cm and 5 cm of the soil column, respectively, with the specific depth depending on vegetation cover. Thermal infrared (TIR) imaging has been used to infer water stored in the full root zone, with limitations: auxiliary information including soil grain size is required, the TIR temperature versus soil water content curve becomes flat as wetness increases, and dense vegetation and cloud cover impede measurement. Numerical models of land surface hydrology are another potential solution, but the quality of output from such models is limited by errors in the input data and tradeoffs between model realism and computational efficiency. This chapter is divided into eight sections, the next of which describes

  18. 天基红外卫星协同预警临空高速目标配置优化%Optimization of space-based infrared satellites deployment for near-space hypersonic target warning

    Institute of Scientific and Technical Information of China (English)

    谢鑫; 李为民; 黄仁全

    2015-01-01

    围绕天基红外卫星协同预警临空高速目标配置问题,考虑临空高速目标预警的任务需求和不同轨道卫星的覆盖特性,建立了 GEO、HEO 和 LEO 红外预警卫星的配置优化模型。在给定的威胁想定和传感器参数设置下,经仿真求解,构型为“5GEO +3HEO +24/4/2LEO”的天基红外预警卫星星座可满足临空高速目标防御对天基预警系统的预警需求。%Aiming at the problem of space-based infrared satellites deployment for near-space hypersonic target warning, the optimization models for the deployments of GEO,HEO and LEO infrared satellites are established respectively,ac-cording to the requirements of near-space hypersonic target warning and the coverage characteristics of satellites on dif-ferent orbits.Under the conditions of the fixed threat assumption and the sensors parameter setting,the models were sim-ulated and analyzed.The simulation results show that the space-based infrared warning system with the construction of‘5GEO +3HEO +24/4/2LEO’can satisfy the warning requirements for near-space hypersonic target defense.

  19. MIKON 94. International Microwave Conference. Invited papers, volume 3

    Science.gov (United States)

    Dufrene, Roman

    The following topics are discussed: (1) New trends and ideas in the fields of microwave technology; (2) Development of dual-reflector feed for the arecibo radio telescope, an overview; (3) Advanced microwave technology in modern communication satellites; (4) Differential methods of signal selection in microwave polarimetry; (5) Anticollision car radar in the mm-wave range with pseudo-noise code modulation and digital angle evaluation; (6) Industrial microwave sensors; Theory and applications of polarimetry in radar; (7) Basic theory of radar polarimetry-an engineering approach; (8) Microwave research in agriculture; (9) Wave approach to CAD noise analysis, modeling and measurement of microwave networks; (10) Advances in technology of microwave submicrometer devices and integrated circuits; (11) Recent advances in power amplifier design methodologies; (12) Chiral media: theory and applications for microwaves; (13) State and trends in time domain electromagnetic modelling using the TLM method; and (14) Microwave remote sensing of road surface during winter time.

  20. Evaluation of satellite rainfall products through hydrologic simulation in a fully distributed hydrologic model

    Science.gov (United States)

    Bitew, Menberu M.; Gebremichael, Mekonnen

    2011-06-01

    The goal of this study is to evaluate the accuracy of four global high-resolution satellite rainfall products (CMORPH, TMPA 3B42RT, TMPA 3B42, and PERSIANN) through the hydrologic simulation of a 1656 km2 mountainous watershed in the fully distributed MIKE SHE hydrologic model. This study shows that there are significant biases in the satellite rainfall estimates and large variations in rainfall amounts, leading to large variations in hydrologic simulations. The rainfall algorithms that use primarily microwave data (CMORPH and TMPA 3B42RT) show consistent and better performance in streamflow simulation (bias in the order of -53% to -3%, Nash-Sutcliffe efficiency (NSE) from 0.34 to 0.65); the rainfall algorithm that uses primarily infrared data (PERSIANN) shows lower performance (bias from -82% to -3%, Nash-Sutcliffe efficiency from -0.39 to 0.43); and the rainfall algorithm that merges the satellite data with rain gage data (TMPA 3B42) shows inconsistencies and the lowest performance (bias from -86% to 0.43%, Nash-Sutcliffe efficiency from -0.50 to 0.27). A dilemma between calibrating the hydrologic model with rain gage data and calibrating it with the corresponding satellite rainfall data is presented. Calibrating the model with corresponding satellite rainfall data increases the performance of satellite streamflow simulation compared to the model calibrated with rain gage data, but decreases the performance of satellite evapotranspiration simulation.

  1. Rapid high-performance sample digestion of base metal ores using high-intensity infrared radiation with determination by nitrogen-based microwave plasma optical spectrometry

    Directory of Open Access Journals (Sweden)

    Yong Wang

    2016-03-01

    Full Text Available Infrared sample digestion technology has been rapidly developed in recent years and its application and digestion performance on a variety of ores of base metals was assessed in this study, using a 6-channel infrared digester. Digestion times of 10 min or less were achieved for all base metal ores investigated, including oxides, sulfides, and silicates of Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Sb, Ti, W, and Zn. Performance criteria for all samples were excellent, reflected in z values of less than 2 in all cases. Various acid digestion methods were developed for the selected ore samples under high intensity infrared radiation and delivered virtually complete recoveries of all of the elements of interest. Chromite, the notoriously refractory chromium ore was digested within 10 min and gave 100% recovery of chromium. These digestions were accomplished without resorting to perchloric acid and, for most sample types, without hydrofluoric acid, significantly improving the workplace safety for analysts. Between-channel variation of the analyte recoveries from the 6-channel unit were generally below 2%, suggesting that the digestion methods developed with this platform provide reproducible results to meet various sample preparation demands. The high speed and analyte recovery of these digestions makes this methodology especially attractive for prospectors and developers who demand rapid and reliable results from exploration samples.

  2. An Overview of the Joint Polar Satellite System (JPSS Science Data Product Calibration and Validation

    Directory of Open Access Journals (Sweden)

    Lihang Zhou

    2016-02-01

    Full Text Available The Joint Polar Satellite System (JPSS will launch its first JPSS-1 satellite in early 2017. The JPSS-1 and follow-on satellites will carry aboard an array of instruments including the Visible Infrared Imaging Radiometer Suite (VIIRS, the Cross-track Infrared Sounder (CrIS, the Advanced Technology Microwave Sounder (ATMS, and the Ozone Mapping and Profiler Suite (OMPS. These instruments are similar to the instruments currently operating on the Suomi National Polar-orbiting Partnership (S-NPP satellite. In preparation for the JPSS-1 launch, the JPSS program at the Center for Satellite Applications and Research (JSTAR Calibration/Validation (Cal/Val teams, have laid out the Cal/Val plans to oversee JPSS-1 science products’ algorithm development efforts, verification and characterization of these algorithms during the pre-launch period, calibration and validation of the products during post-launch, and long-term science maintenance (LTSM. In addition, the team has developed the necessary schedules, deliverables and infrastructure for routing JPSS-1 science product algorithms for operational implementation. This paper presents an overview of these efforts. In addition, this paper will provide insight into the processes of both adapting S-NPP science products for JPSS-1 and performing upgrades for enterprise solutions, and will discuss Cal/Val processes and quality assurance procedures.

  3. Digital microwave communication engineering point-to-point microwave systems

    CERN Document Server

    Kizer, George

    2013-01-01

    The first book to cover all engineering aspects of microwave communication path design for the digital age Fixed point-to-point microwave systems provide moderate-capacity digital transmission between well-defined locations. Most popular in situations where fiber optics or satellite communication is impractical, it is commonly used for cellular or PCS site interconnectivity where digital connectivity is needed but not economically available from other sources, and in private networks where reliability is most important. Until now, no book has adequately treated all en

  4. Transitioning from CRD to CDRD in Bayesian retrieval of rainfall from satellite passive microwave measurements: Part 3 - Identification of optimal meteorological tags

    Science.gov (United States)

    Smith, E. A.; Leung, H. W.-Y.; Elsner, J. B.; Mehta, A. V.; Tripoli, G. J.; Casella, D.; Dietrich, S.; Mugnai, A.; Panegrossi, G.; Sanò, P.

    2013-05-01

    In the first two parts of this study we have presented a performance analysis of our new Cloud Dynamics and Radiation Database (CDRD) satellite precipitation retrieval algorithm on various convective and stratiform rainfall case studies verified with precision radar ground truth data, and an exposition of the algorithm's detailed design in conjunction with a proof-of-concept analysis vis-à-vis its theoretical underpinnings. In this third part of the study, we present the underlying analysis used to identify what we refer to as the optimal metrological and geophysical tags, which are the optimally effective atmospheric and geographic parameters that are used to refine the selection of candidate microphysical profiles used for the Bayesian retrieval. These tags enable extending beyond the conventional Cloud Radiation Database (CRD) algorithm by invoking meteorological-geophysical guidance, drawn from a simulated database, which affect and are in congruence with the observed precipitation states. This is guidance beyond the restrictive control provided by only simulated radiative transfer equation (RTE) model-derived database brightness temperature (TB) vector proximity information in seeking to relate physically consistent precipitation profile solutions to individual satellite-observed TB vectors. The first two parts of the study have rigorously demonstrated that the optimal tags effectively mitigate against solution ambiguity, where use of only a CRD framework (TB guidance only) leads to pervasive non-uniqueness problems in finding rainfall solutions. Alternatively, a CDRD framework (TB + tag guidance) mitigates against non-uniqueness problems through improved constraints. It remains to show how these optimal tags are identified. By use of three statistical analysis procedures applied to a database from 120 North American atmospheric simulations of precipitating storms (independent of the 60 simulations for the European-Mediterranean basin region used in the Parts

  5. Peculiarities of stochastic regime of Arctic ice cover time evolution over 1987-2014 from microwave satellite sounding on the basis of NASA team 2 algorithm

    Science.gov (United States)

    Raev, M. D.; Sharkov, E. A.; Tikhonov, V. V.; Repina, I. A.; Komarova, N. Yu.

    2015-12-01

    The GLOBAL-RT database (DB) is composed of long-term radio heat multichannel observation data received from DMSP F08-F17 satellites; it is permanently supplemented with new data on the Earth's exploration from the space department of the Space Research Institute, Russian Academy of Sciences. Arctic ice-cover areas for regions higher than 60° N latitude were calculated using the DB polar version and NASA Team 2 algorithm, which is widely used in foreign scientific literature. According to the analysis of variability of Arctic ice cover during 1987-2014, 2 months were selected when the Arctic ice cover was maximal (February) and minimal (September), and the average ice cover area was calculated for these months. Confidence intervals of the average values are in the 95-98% limits. Several approximations are derived for the time dependences of the ice-cover maximum and minimum over the period under study. Regression dependences were calculated for polynomials from the first degree (linear) to sextic. It was ascertained that the minimal root-mean-square error of deviation from the approximated curve sharply decreased for the biquadratic polynomial and then varied insignificantly: from 0.5593 for the polynomial of third degree to 0.4560 for the biquadratic polynomial. Hence, the commonly used strictly linear regression with a negative time gradient for the September Arctic ice cover minimum over 30 years should be considered incorrect.

  6. Four hot DOGs in the microwave

    Science.gov (United States)

    Frey, Sándor; Paragi, Zsolt; Gabányi, Krisztina Éva; An, Tao

    2016-01-01

    Hot dust-obscured galaxies (hot DOGs) are a rare class of hyperluminous infrared galaxies identified with the Wide-field Infrared Survey Explorer (WISE) satellite. The majority of them are at high redshifts (z ˜ 2-3), at the peak epoch of star formation in the Universe. Infrared, optical, radio, and X-ray data suggest that hot DOGs contain heavily obscured, extremely luminous active galactic nuclei (AGN). This class may represent a short phase in the life of the galaxies, signifying the transition from starburst- to AGN-dominated phases. Hot DOGs are typically radio-quiet, but some of them show mJy-level emission in the radio (microwave) band. We observed four hot DOGs using the technique of very long baseline interferometry (VLBI). The 1.7 GHz observations with the European VLBI Network (EVN) revealed weak radio features in all sources. The radio is free from dust obscuration and, at such high redshifts, VLBI is sensitive only to compact structures that are characteristic of AGN activity. In two cases (WISE J0757+5113, WISE J1603+2745), the flux density of the VLBI-detected components is much smaller than the total flux density, suggesting that ˜70-90 per cent of the radio emission, while still dominated by AGN, originates from angular scales larger than that probed by the EVN. The source WISE J1146+4129 appears a candidate compact symmetric object, and WISE J1814+3412 shows a 5.1 kpc double structure, reminiscent of hotspots in a medium-sized symmetric object. Our observations support that AGN residing in hot DOGs may be genuine young radio sources where starburst and AGN activities coexist.

  7. Microwave Measurements

    CERN Document Server

    Skinner, A D

    2007-01-01

    The IET has organised training courses on microwave measurements since 1983, at which experts have lectured on modern developments. Their lecture notes were first published in book form in 1985 and then again in 1989, and they have proved popular for many years with a readership beyond those who attended the courses. The purpose of this third edition of the lecture notes is to bring the latest techniques in microwave measurements to this wider audience. The book begins with a survey of the theory of current microwave circuits and continues with a description of the techniques for the measureme

  8. Microwave photonics

    CERN Document Server

    Lee, Chi H

    2006-01-01

    Wireless, optical, and electronic networks continue to converge, prompting heavy research into the interface between microwave electronics, ultrafast optics, and photonic technologies. New developments arrive nearly as fast as the photons under investigation, and their commercial impact depends on the ability to stay abreast of new findings, techniques, and technologies. Presenting a broad yet in-depth survey, Microwave Photonics examines the major advances that are affecting new applications in this rapidly expanding field.This book reviews important achievements made in microwave photonics o

  9. Current and Future Applications of Multispectral (RGB) Satellite Imagery for Weather Analysis and Forecasting Applications

    Science.gov (United States)

    Molthan, Andrew L.; Fuell, Kevin K.; LaFontaine, Frank; McGrath, Kevin; Smith, Matt

    2013-01-01

    Current and future satellite sensors provide remotely sensed quantities from a variety of wavelengths ranging from the visible to the passive microwave, from both geostationary and low ]Earth orbits. The NASA Short ]term Prediction Research and Transition (SPoRT) Center has a long history of providing multispectral imagery from the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA fs Terra and Aqua satellites in support of NWS forecast office activities. Products from MODIS have recently been extended to include a broader suite of multispectral imagery similar to those developed by EUMETSAT, based upon the spectral channels available from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) aboard METEOSAT ]9. This broader suite includes products that discriminate between air mass types associated with synoptic ]scale features, assists in the identification of dust, and improves upon paired channel difference detection of fog and low cloud events. Future instruments will continue the availability of these products and also expand upon current capabilities. The Advanced Baseline Imager (ABI) on GOES ]R will improve the spectral, spatial, and temporal resolution of our current geostationary capabilities, and the recent launch of the Suomi National Polar ]Orbiting Partnership (S ]NPP) carries instruments such as the Visible Infrared Imager Radiometer Suite (VIIRS), the Cross ]track Infrared Sounder (CrIS), and the Advanced Technology Microwave Sounder (ATMS), which have unrivaled spectral and spatial resolution, as precursors to the JPSS era (i.e., the next generation of polar orbiting satellites. New applications from VIIRS extend multispectral composites available from MODIS and SEVIRI while adding new capabilities through incorporation of additional CrIS channels or information from the Near Constant Contrast or gDay ]Night Band h, which provides moonlit reflectance from clouds and detection of fires or city lights. This presentation will

  10. GHRSST Level 2P Global 1 meter Sea Surface Temperature from the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi NPP satellite (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A global Group for High Resolution Sea Surface Temperature (GHRSST) Level 2P dataset based on retrievals from the Visible Infrared Imaging Radiometer Suite (VIIRS)....

  11. PRISM (Polarized Radiation Imaging and Spectroscopy Mission): A White Paper on the Ultimate Polarimetric Spectro-Imaging of the Microwave and Far-Infrared Sky

    CERN Document Server

    Andre, Philippe; Barbosa, Domingos; Bartlett, James; Bartolo, Nicola; Battistelli, Elia; Battye, Richard; Bendo, George; Bernard, Jean-Philippe; Bersanelli, Marco; Bethermin, Matthieu; Bielewicz, Pawel; Bonaldi, Anna; Bouchet, Francois; Boulanger, Francois; Brand, Jan; Bucher, Martin; Burigana, Carlo; Cai, Zhen-Yi; Casasola, Viviana; Castex, Guillaume; Challinor, Anthony; Chluba, Jens; Colafrancesco, Sergio; Cuttaia, Francesco; D'Alessandro, Giuseppe; Davis, Richard; de Avillez, Miguel; de Bernardis, Paolo; de Petris, Marco; de Rosa, Adriano; de Zotti, Gianfranco; Delabrouille, Jacques; Dickinson, Clive; Diego, Jose Maria; Falgarone, Edith; Ferreira, Pedro; Ferriere, Katia; Finelli, Fabio; Fletcher, Andrew; Fuller, Gary; Galli, Silvia; Ganga, Ken; Garcia-Bellido, Juan; Ghribi, Adnan; Gonzalez-Nuevo, Joaquin; Grainge, Keith; Gruppuso, Alessandro; Hall, Alex; Hernandez-Monteagudo, Carlos; Jackson, Mark; Jaffe, Andrew; Khatri, Rishi; Lamagna, Luca; Lattanzi, Massimiliano; Leahy, Paddy; Liguori, Michele; Liuzzo, Elisabetta; Lopez-Caniego, Marcos; Macias-Perez, Juan; Maffei, Bruno; Maino, Davide; Masi, Silvia; Mangilli, Anna; Massardi, Marcella; Matarrese, Sabino; Melchiorri, Alessandro; Melin, Jean-Baptiste; Mennella, Aniello; Mignano, Arturo; Miville-Deschenes, Marc-Antoine; Nati, Federico; Natoli, Paolo; Negrello, Mattia; Noviello, Fabio; Paci, Francesco; Paladino, Rosita; Paoletti, Daniela; Perrotta, Francesca; Piacentini, Francesco; Piat, Michel; Piccirillo, Lucio; Pisano, Giampaolo; Polenta, Gianluca; Ricciardi, Sara; Roman, Matthieu; Rubino-Martin, Jose-Alberto; Salatino, Maria; Schillaci, Alessandro; Shellard, Paul; Silk, Joseph; Stompor, Radek; Sunyaev, Rashid; Tartari, Andrea; Terenzi, Luca; Toffolatti, Luigi; Tomasi, Maurizio; Trombetti, Tiziana; Tucci, Marco; Van Tent, Bartjan; Verde, Licia; Wandelt, Ben; Withington, Stafford

    2013-01-01

    PRISM (Polarized Radiation Imaging and Spectroscopy Mission) was proposed to ESA in response to the Call for White Papers for the definition of the L2 and L3 Missions in the ESA Science Programme. PRISM would have two instruments: (1) an imager with a 3.5m mirror (cooled to 4K for high performance in the far-infrared---that is, in the Wien part of the CMB blackbody spectrum), and (2) an Fourier Transform Spectrometer (FTS) somewhat like the COBE FIRAS instrument but over three orders of magnitude more sensitive. Highlights of the new science (beyond the obvious target of B-modes from gravity waves generated during inflation) made possible by these two instruments working in tandem include: (1) the ultimate galaxy cluster survey gathering 10e6 clusters extending to large redshift and measuring their peculiar velocities and temperatures (through the kSZ effect and relativistic corrections to the classic y-distortion spectrum, respectively) (2) a detailed investigation into the nature of the cosmic infrared back...

  12. Planck 2013 results. XVIII. The gravitational lensing-infrared background correlation

    DEFF Research Database (Denmark)

    Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.

    2013-01-01

    The multi-frequency capability of the Planck satellite provides information both on the integrated history of star formation (via the cosmic infrared background, or CIB) and on the distribution of dark matter (via the lensing effect on the cosmic microwave background, or CMB). The conjunction...... of these two unique probes allows us to measure directly the connection between dark and luminous matter in the high redshift (1 = 1. We measure directly the SFR density with around 2 sigma significance for three redshift bins between z = 1 and 7, thus opening a new window into the study of the formation...

  13. Microwave generator

    Science.gov (United States)

    Kwan, T.J.T.; Snell, C.M.

    1987-03-31

    A microwave generator is provided for generating microwaves substantially from virtual cathode oscillation. Electrons are emitted from a cathode and accelerated to an anode which is spaced apart from the cathode. The anode has an annular slit there through effective to form the virtual cathode. The anode is at least one range thickness relative to electrons reflecting from the virtual cathode. A magnet is provided to produce an optimum magnetic field having the field strength effective to form an annular beam from the emitted electrons in substantial alignment with the annular anode slit. The magnetic field, however, does permit the reflected electrons to axially diverge from the annular beam. The reflected electrons are absorbed by the anode in returning to the real cathode, such that substantially no reflexing electrons occur. The resulting microwaves are produced with a single dominant mode and are substantially monochromatic relative to conventional virtual cathode microwave generators. 6 figs.

  14. Microwave photonics

    CERN Document Server

    Lee, Chi H

    2013-01-01

    Microwave photonics continues to see rapid growth. The integration of optical fiber and wireless networks has become a commercial reality and is becoming increasingly pervasive. Such hybrid technology will lead to many innovative applications, including backhaul solutions for mobile networks and ultrabroadband wireless networks that can provide users with very high bandwidth services. Microwave Photonics, Second Edition systematically introduces important technologies and applications in this emerging field. It also reviews recent advances in micro- and millimeter-wavelength and terahertz-freq

  15. Optimization of Optically Preamplified Inter-Satellite Microwave Photonics Links with Two Radio-Frequency Signals Input%两路输入前置光放大星间微波光子链路优化

    Institute of Scientific and Technical Information of China (English)

    朱子行; 赵尚弘; 赵辉; 李勇军; 楚兴春; 蒋炜; 侯睿; 王翔; 赵顾颢

    2013-01-01

    考虑到星间微波光子链路传输损耗大且多路微波信号之间交调干扰严重,利用前置光放大来提高链路的信号噪声失真比RSNDR.建立了两路输入前置光放大星间微波光子链路模型,推导出了RSNDR的解析表达式.通过优化马赫-曾德尔调制器的直流偏置相移,使得在给定输入射频信号功率条件下RSNDR最大,并进一步分析了前置光放大器参数对最优直流偏置相移和RSNDR的影响.仿真结果表明,前置光放大改变了影响RSNDR的主要因素,使信号放大的倍数大于噪声和三阶交调(IM3)放大的倍数,从而提高了链路的RSNDR.当前置光放大器增益为20 dB、噪声系数为3 dB时,最优的RSNDR比不加前置光放大器时提高24 dB.前置光放大器增益和噪声系数对最优的RSNDR影响很大,而对最优的直流偏置相移几乎无影响.%An optical preamplifier is utilized to improve the signal-to-noise and distortion ratio .RSNDR of inter-satellite microwave photonics links considering the large signal losses in distant propagation and serious deterioration caused by inter-modulation distortion. An optically preamplified inter-satellite microwave photonics links model with two radio-frequency (RF) signals input is established and an analytical expression of .RSNDR is derived. The direct current (DC) bias phase shift of modulator can be optimized so as to maximize the .RSNDR given the desired input RF signal power, and the effects of the optical preamplifier parameters on the optimum DC bias phase shift and .RSNDR are also examined. Simulation results show that the most limitative factors degrading the .RSNDR are changed, and the fundamental power is seen to increase more compared with the power of third-order intermodulation (IM3) plus noise due to optical preamplifier. Thus, .RSNDR can be improved with respect to the case of non-optical preamplifier. For the preamplifier gain of 20 dB and noise figure of 3 dB, an improvement of about

  16. Japanese Global Precipitation Measurement (GPM) mission status and application of satellite-based global rainfall map

    Science.gov (United States)

    Kachi, Misako; Shimizu, Shuji; Kubota, Takuji; Yoshida, Naofumi; Oki, Riko; Kojima, Masahiro; Iguchi, Toshio; Nakamura, Kenji

    2010-05-01

    . Collaboration with GCOM-W is not only limited to its participation to GPM constellation but also coordination in areas of algorithm development and validation in Japan. Generation of high-temporal and high-accurate global rainfall map is one of targets of the GPM mission. As a proto-type for GPM era, JAXA has developed and operates the Global Precipitation Map algorithm in near-real-time since October 2008, and hourly and 0.1-degree resolution binary data and images available at http://sharaku.eorc.jaxa.jp/GSMaP/ four hours after observation. The algorithms are based on outcomes from the Global Satellite Mapping for Precipitation (GSMaP) project, which was sponsored by the Japan Science and Technology Agency (JST) under the Core Research for Evolutional Science and Technology (CREST) framework between 2002 and 2007 (Okamoto et al., 2005; Aonashi et al., 2009; Ushio et al., 2009). Target of GSMaP project is to produce global rainfall maps that are highly accurate and in high temporal and spatial resolution through the development of rain rate retrieval algorithms based on reliable precipitation physical models by using several microwave radiometer data, and comprehensive use of precipitation radar and geostationary infrared imager data. Near-real-time GSMaP data is distributed via internet and utilized by end users. Purpose of data utilization by each user covers broad areas and in world wide; Science researches (model validation, data assimilation, typhoon study, etc.), weather forecast/service, flood warning and rain analysis over river basin, oceanographic condition forecast, agriculture, and education. Toward the GPM era, operational application should be further emphasized as well as science application. JAXA continues collaboration with hydrological communities to utilize satellite-based precipitation data as inputs to future flood prediction and warning system, as well as with meteorological agencies to proceed further data utilization in numerical weather prediction

  17. A global satellite-assisted precipitation climatology

    Science.gov (United States)

    Funk, C.; Verdin, A.; Michaelsen, J.; Peterson, P.; Pedreros, D.; Husak, G.

    2015-10-01

    Accurate representations of mean climate conditions, especially in areas of complex terrain, are an important part of environmental monitoring systems. As high-resolution satellite monitoring information accumulates with the passage of time, it can be increasingly useful in efforts to better characterize the earth's mean climatology. Current state-of-the-science products rely on complex and sometimes unreliable relationships between elevation and station-based precipitation records, which can result in poor performance in food and water insecure regions with sparse observation networks. These vulnerable areas (like Ethiopia, Afghanistan, or Haiti) are often the critical regions for humanitarian drought monitoring. Here, we show that long period of record geo-synchronous and polar-orbiting satellite observations provide a unique new resource for producing high-resolution (0.05°) global precipitation climatologies that perform reasonably well in data-sparse regions. Traditionally, global climatologies have been produced by combining station observations and physiographic predictors like latitude, longitude, elevation, and slope. While such approaches can work well, especially in areas with reasonably dense observation networks, the fundamental relationship between physiographic variables and the target climate variables can often be indirect and spatially complex. Infrared and microwave satellite observations, on the other hand, directly monitor the earth's energy emissions. These emissions often correspond physically with the location and intensity of precipitation. We show that these relationships provide a good basis for building global climatologies. We also introduce a new geospatial modeling approach based on moving window regressions and inverse distance weighting interpolation. This approach combines satellite fields, gridded physiographic indicators, and in situ climate normals. The resulting global 0.05° monthly precipitation climatology, the Climate

  18. A global satellite assisted precipitation climatology

    Directory of Open Access Journals (Sweden)

    C. Funk

    2015-05-01

    Full Text Available Accurate representations of mean climate conditions, especially in areas of complex terrain, are an important part of environmental monitoring systems. As high-resolution satellite monitoring information accumulates with the passage of time, it can be increasingly useful in efforts to better characterize the earth's mean climatology. Current state-of-the-science products rely on complex and sometimes unreliable relationships between elevation and station-based precipitation records, which can result in poor performance in food and water insecure regions with sparse observation networks. These vulnerable areas (like Ethiopia, Afghanistan, or Haiti are often the critical regions for humanitarian drought monitoring. Here, we show that long period of record geo-synchronous and polar-orbiting satellite observations provide a unique new resource for producing high resolution (0.05° global precipitation climatologies that perform reasonably well in data sparse regions. Traditionally, global climatologies have been produced by combining station observations and physiographic predictors like latitude, longitude, elevation, and slope. While such approaches can work well, especially in areas with reasonably dense observation networks, the fundamental relationship between physiographic variables and the target climate variables can often be indirect and spatially complex. Infrared and microwave satellite observations, on the other hand, directly monitor the earth's energy emissions. These emissions often correspond physically with the location and intensity of precipitation. We show that these relationships provide a good basis for building global climatologies. We also introduce a new geospatial modeling approach based on moving window regressions and inverse distance weighting interpolation. This approach combines satellite fields, gridded physiographic indicators, and in situ climate normals. The resulting global 0.05° monthly precipitation climatology

  19. A global satellite assisted precipitation climatology

    Science.gov (United States)

    Funk, Christopher C.; Verdin, Andrew P.; Michaelsen, Joel C.; Pedreros, Diego; Husak, Gregory J.; Peterson, P.

    2015-01-01

    Accurate representations of mean climate conditions, especially in areas of complex terrain, are an important part of environmental monitoring systems. As high-resolution satellite monitoring information accumulates with the passage of time, it can be increasingly useful in efforts to better characterize the earth's mean climatology. Current state-of-the-science products rely on complex and sometimes unreliable relationships between elevation and station-based precipitation records, which can result in poor performance in food and water insecure regions with sparse observation networks. These vulnerable areas (like Ethiopia, Afghanistan, or Haiti) are often the critical regions for humanitarian drought monitoring. Here, we show that long period of record geo-synchronous and polar-orbiting satellite observations provide a unique new resource for producing high resolution (0.05°) global precipitation climatologies that perform reasonably well in data sparse regions. Traditionally, global climatologies have been produced by combining station observations and physiographic predictors like latitude, longitude, elevation, and slope. While such approaches can work well, especially in areas with reasonably dense observation networks, the fundamental relationship between physiographic variables and the target climate variables can often be indirect and spatially complex. Infrared and microwave satellite observations, on the other hand, directly monitor the earth's energy emissions. These emissions often correspond physically with the location and intensity of precipitation. We show that these relationships provide a good basis for building global climatologies. We also introduce a new geospatial modeling approach based on moving window regressions and inverse distance weighting interpolation. This approach combines satellite fields, gridded physiographic indicators, and in situ climate normals. The resulting global 0.05° monthly precipitation climatology, the Climate

  20. Global near-realtime monitoring of Tropical Cyclones Using Weather Satellites

    Science.gov (United States)

    Lee, T.; Hawkins, J.; Turk, F.; Miller, S.; Sampson, C.; Kuciauskas, A.; Richardson, K.; Kent, J.

    2006-12-01

    The Naval Research Laboratory maintains a satellite web portal that monitors global tropical cyclones in every basin on a continuing basis. The portal is used routinely by agencies around the world in forecasting operations and the issuance of warnings. Products from this site are widely redistributed and published frequently in journal articles, seasonal storm summaries, and ongoing World Wide Web discussions. Traditionally, weather satellite reconnaissance of tropical cyclones has depended on the interpretation of visible and infrared imagery. But such methods have limitations. Visible images are not available during the nighttime, and both kinds of imagery often fail to detect important structure, including storm eyes, which are vital for determining the strength and location of tropical systems. Thus, the portal supplements visible and infrared coverage with products from satellite microwave sensors. These sensors penetrate higher clouds to reveal important detail about low-level cloud and precipitation features. The first part of the talk will discuss how these various products can be used together for improved analysis. The second part of talk will present information about tropical cyclone structure. Surface winds from aircraft will be compared to features seen in passive microwave images. We see that low brightness temperature features on 85 GHz images often corresponding to wind maxima near the sea surface. We shall make some inferences about how the observation of specific structures in satellite images can help characterize the wind field when no aircraft data are available. Special attention will be paid to multiple eye walls apparent on satellite images. These are associated with very intense storms which undergo an evolutionary process not observed in weaker systems.

  1. Design of a portable optical emission tomography system for microwave induced compact plasma for visible to near-infrared emission lines

    Science.gov (United States)

    Rathore, Kavita; Munshi, Prabhat; Bhattacharjee, Sudeep

    2016-03-01

    A new non-invasive diagnostic system is developed for Microwave Induced Plasma (MIP) to reconstruct tomographic images of a 2D emission profile. A compact MIP system has wide application in industry as well as research application such as thrusters for space propulsion, high current ion beams, and creation of negative ions for heating of fusion plasma. Emission profile depends on two crucial parameters, namely, the electron temperature and density (over the entire spatial extent) of the plasma system. Emission tomography provides basic understanding of plasmas and it is very useful to monitor internal structure of plasma phenomena without disturbing its actual processes. This paper presents development of a compact, modular, and versatile Optical Emission Tomography (OET) tool for a cylindrical, magnetically confined MIP system. It has eight slit-hole cameras and each consisting of a complementary metal-oxide-semiconductor linear image sensor for light detection. The optical noise is reduced by using aspheric lens and interference band-pass filters in each camera. The entire cylindrical plasma can be scanned with automated sliding ring mechanism arranged in fan-beam data collection geometry. The design of the camera includes a unique possibility to incorporate different filters to get the particular wavelength light from the plasma. This OET system includes selected band-pass filters for particular argon emission 750 nm, 772 nm, and 811 nm lines and hydrogen emission Hα (656 nm) and Hβ (486 nm) lines. Convolution back projection algorithm is used to obtain the tomographic images of plasma emission line. The paper mainly focuses on (a) design of OET system in detail and (b) study of emission profile for 750 nm argon emission lines to validate the system design.

  2. Saturn's satellites - Near-infrared spectrophotometry (0.65-2.5 microns) of the leading and trailing sides and compositional implications

    Science.gov (United States)

    Steele, A.; Clark, R. N.; Brown, R. H.; Owensby, P. D.

    1984-01-01

    Water ice absorptions at 2.0, 1.5, and 1.25 microns are noted in near-IR spectra of Tethys, Dione, Rhea, Iapetus, and Hyperion, and the weak 1.04-micron ice absorption, which is detected for Rhea and Dione, is studied to establish band depth upper limits. The leading-trailing side 1.04-micron ice band depth differences on Saturn's satellites are similar to those for the Galilean satellites, indicating possible surface modification by magnetospheric charged particle bombardment. Limits are obtained for the amounts of particulates, trapped gases, and ammonium hydroxide on the surface. With the exception of the dark side of Iapetus, the surfaces of all of Saturn's satellites are nearly pure ice water.

  3. Preliminary environmental assessment for the satellite power system (SPS). Revision 1. Volume 1. Executive summary

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    A preliminary assessment of the environmental impacts of the proposed satellite power system (SPS) is summarized here. In this system, satellites would collect solar energy in space, convert it to microwaves, and transmit the microwaves to receiving antennas (rectennas) on earth. At the rectennas, the microwaves would be converted to electricity. The assessment considers microwave and nonmicrowave effects on the terrestrial environment and human health, atmospheric effects, and disruption of communications and other electromagnetic systems.

  4. Satellite Remote Sensing in Offshore Wind Energy

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Badger, Merete; Astrup, Poul

    2013-01-01

    Satellite remote sensing of ocean surface winds are presented with focus on wind energy applications. The history on operational and research-based satellite ocean wind mapping is briefly described for passive microwave, scatterometer and synthetic aperture radar (SAR). Currently 6 GW installed...

  5. Bringing satellite winds to hub-height

    DEFF Research Database (Denmark)

    Badger, Merete; Pena Diaz, Alfredo; Bredesen, Rolv Erlend

    2012-01-01

    Satellite observations of the ocean surface can provide detailed information about the spatial wind variability over large areas. This is very valuable for the mapping of wind resources offshore where other measurements are costly and sparse. Satellite sensors operating at microwave frequencies m...

  6. Using the cosmic microwave background to discriminate among inflation models

    Energy Technology Data Exchange (ETDEWEB)

    Kinney, W.H.

    1997-12-23

    The upcoming satellite missions MAP and Planck will measure the spectrum of fluctuations in the Cosmic Microwave Background with unprecedented accuracy. I discuss the prospect of using these observations to distinguish among proposed models of inflationary cosmology.

  7. Ballistic missile tracking performance in boost phase based on dual infrared early warning satellites%红外预警双星弹道导弹主动段跟踪性能

    Institute of Scientific and Technical Information of China (English)

    钟宇; 吴晓燕; 黄树彩; 吴建峰; 李成景; 唐意东

    2015-01-01

    为研究反导作战中红外预警卫星系统对弹道导弹主动段弹道的跟踪性能,提出以后验克拉美-罗下界(Posterior Cramer-Rao Lower Bound, PCRLB)为衡量指标,结合8态重力转弯主动段运动模型和双星纯方位无源定位获取的量测量,系统分析了运动建模精度、量测精度、采样周期、测源不确定性下检测概率和虚警数目等因素对跟踪时效性和准确性的影响.仿真算例给出了上述因素对位置和速度跟踪性能的影响程度和规律,可为预警卫星反导作战、战技指标关联建模以及星载探测器优化设计等提供有意义的参考.%To study the ballistic missile tracking performance in boost phase based on infrared early warning satellites system, Posterior Cramer-Rao Lower Bound (PCRLB) was proposed as a measurement index. After modeling ballistic target motion by 8-state gravity turn model and locating target position by dual satellites' bearing-only passive localization, PCRLB was used to evaluate the effects of factors, including target motion model accuracy, measurement accuracy, sampling period, detection probability and false alarm number conditioned by measurement origin uncertainty, on tracking timeliness and accuracy. One simulation example showed the extent and rules of said factors on position and tracking performance of velocity. It can contribute to the anti-ballistic missile operation by early warning satellite, the relationship modeling between tactical and technical indices and the optimal design of satellite-based infrared detector.

  8. Continuous microwave flow synthesis of mesoporous hydroxyapatite

    Energy Technology Data Exchange (ETDEWEB)

    Akram, Muhammad; Alshemary, Ammar Z.; Goh, Yi-Fan; Wan Ibrahim, Wan Aini [Department of Chemistry, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Lintang, Hendrik O. [Centre for Sustainable Nanomaterials (CSNano), Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Hussain, Rafaqat, E-mail: rafaqat@kimia.fs.utm.my [Centre for Sustainable Nanomaterials (CSNano), Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia)

    2015-11-01

    We have successfully used continuous microwave flow synthesis (CMFS) technique for the template free synthesis of mesoporous hydroxyapatite. The continuous microwave flow reactor consisted of a modified 2.45 GHz household microwave, peristaltic pumps and a Teflon coil. This cost effective and efficient system was exploited to produce semi-crystalline phase pure nano-sized hydroxyapatite. Effect of microwave power, retention time and the concentration of reactants on the phase purity, degree of crystallinity and surface area of the final product was studied in detail. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) were used to study the phase purity and composition of the product, while transmission electron microscopy (TEM) was used to study the effect of process parameters on the morphology of hydroxyapatite. The TEM analysis confirmed the formation of spherical particles at low microwave power; however the morphology of the particles changed to mesoporous needle and rod-like structure upon exposing the reaction mixture to higher microwave power and longer retention time inside the microwave. The in-vitro ion dissolution behavior of the as synthesized hydroxyapatite was studied by determining the amount of Ca{sup 2+} ion released in SBF solution. - Highlights: • Continuous microwave flow synthesis method was used to prepare hydroxyapatite. • Increase in microwave power enhanced the degree of crystallinity. • TEM images confirmed the presence of mesopores on the surface of HA.

  9. Interstellar dust thermal emission at millimeter and microwave wavelengths

    Science.gov (United States)

    Liang, Zhuohan

    Interstellar dust grains are particles of size between a few to hundreds of nanometers, mostly made up of carbon and silicon, found in the vast space between stars within a galaxy. They are important because dust plays a major role in cycling matter and energy between stars and the interstellar medium. Models for interstellar dust thermal emission are fit to a set of 214-channel dust spectra at 60--3000 GHz. Data consist of a new and improved version of dust spectra derived from the measurements of the Far Infrared Absolute Spectrophotometer of the COsmic Background Explorer satellite, sky maps at 100 mum, 140 mum and 240 mum measured by the Diffuse Infrared Background Experiment, also onboard the CUBE satellite, and the 94 GHz dust map measured by the Wilkinson Microwave Anisotropy Probe satellite. A single-component model with its emissivity spectral index fixed at 1.7 is the best among all dust models tested. It fits 88% of the sky with a chi2dof ≤ 1.13 at 210 degrees of freedom. Within this sky region, temperatures of the dust grains are predicted to be between 16.4 K and 25.1 K, and optical depths are between 1.3 x 10 -6 and 5.1 x 10-4. The uncertainties of the dust temperature are FIRAS frequency coverage in sky regions where these two models are valid. Currently, uncertainties of the best-fit parameters are limited by FIRAS angular resolution and noise, and the angular resolution of the model inherits that of the FIRAS. When data of better quality become available, such as from the Planck mission, this one-component alpha = 1.7 (deltaTdust/ Tdust ≤ 10%) model can be used to check future dust models.

  10. Microwave communication. Citations from the NTIS data base

    Science.gov (United States)

    Reed, W. E.

    1980-06-01

    Research reports pertinent to the techniques, equipment, reliability, and utilization of microwave communications are cited. Studies on microwaves relays, links, data transmission, telemetry, satellite communications, multiplexing, and propagation are included. This updated bibliography contains 280 abstracts, 46 of which are new entries to the previous edition.

  11. Satellite Communication.

    Science.gov (United States)

    Technology Teacher, 1985

    1985-01-01

    Presents a discussion of communication satellites: explains the principles of satellite communication, describes examples of how governments and industries are currently applying communication satellites, analyzes issues confronting satellite communication, links mathematics and science to the study of satellite communication, and applies…

  12. STIR: Microwave Response of Carbon Nanotubes in Polymer Nanocomposite Welds

    Science.gov (United States)

    2016-01-28

    100 W) microwave radiation at 2.45 GHz in a controlled environment. We used a forward-looking infrared (FLIR) camera to image the temperature...sample can be monitored during microwave exposure by using the FLIR camera . The power was controlled by hand to ensure a consistent thermal history...the thermal conductivity of the nanocomposite would also change with temperature. 2. Can simulations of the coupled microwave field, dielectric

  13. 热控涂层红外发射率对GEO卫星蓄电池温度波动的影响%Effect of Thermal Control Battery Temperature Coatings Infrared Emittance on Variation in GEO Satellite

    Institute of Scientific and Technical Information of China (English)

    刘百麟; 周佐新

    2012-01-01

    Based on DFH-3 satellite platform, the simplified south satellite battery cabin is presen- ted as the thermal analysis model. According to the mechanism of battery temperature variation, five combination schemes, in which the thermal control coatings of white paint,aluminized kapton and graphite-epoxy facesheet are used for inner panel of service module board, are proposed and used to analyze the effect of thermal control coatings infrared emittance on battery temperature. The analysis results show that the range of battery temperature variation can be reduced effectively by decreasing the thermal control coatings infrared emittance of inner panel in battery cabin, especially decreasing the thermal control coatings infrared emittance of fixing panel in battery cabin. The range of battery temperature variation in optimization scheme is decreased by 50% than that in original design scheme.%在东方红一3卫星平台的基础上,将合理简化后的南蓄电池舱作为热分析模型。根据影响蓄电池温度波动的机理,提出服务舱舱板内表面常用热控涂层(白漆、镀铝膜、碳蒙皮)的5种组合方案,并量化分析了热控涂层红外发射率对蓄电池温度波动的影响。分析结果表明:降低蓄电池舱舱板内表面热控涂层红外发射率,尤其是降低蓄电池安装舱板表面的热控涂层红外发射率,可有效减小蓄电池温度波动幅度。与基准方案相比,最优组合方案能使蓄电池温度波动幅度降低50%。

  14. GHRSST Level 2P Regional Subskin Sea Surface Temperature from the Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E) on the NASA Aqua satellite for the Atlantic Ocean (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Advanced Microwave Scanning Radiometer (AMSR-E) was launched on 4 May 2002, aboard NASA's Aqua spacecraft. The National Space Development Agency of Japan (NASDA)...

  15. GHRSST Level 2P Gridded Global Subskin Sea Surface Temperature from the Advanced Scanning Microwave Radiometer - Earth Observing System (AMSR-E) on the NASA Aqua Satellite (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Advanced Microwave Scanning Radiometer (AMSR-E) was launched on 4 May 2002, aboard NASA's Aqua spacecraft. The National Space Development Agency of Japan (NASDA)...

  16. GHRSST Level 2P Global Subskin Sea Surface Temperature from the Advanced Scanning Microwave Radiometer - Earth Observing System (AMSR-E) on the NASA Aqua Satellite (GDS versions 1 and 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Advanced Microwave Scanning Radiometer (AMSR-E) was launched on 4 May 2002, aboard NASA's Aqua spacecraft. The National Space Development Agency of Japan (NASDA)...

  17. Micro-sized Microwave Atmospheric Satellite

    Science.gov (United States)

    2014-07-01

    because of their serious impacts on the health of the nation’s citizenry, agriculture, critical infrastructure, and communications . Essential for...and their students. One of the most complex pieces of this unit was the attitude determination and control subsystem ( ADCS ) that orients the...nanosatellite and keeps it reasonably level with Earth’s surface while it is spinning along the orbital path. The ADCS also had to be designed to

  18. Passive Microwave Measurements of Salinity: The Gulf Stream Experiment

    Science.gov (United States)

    LeVine, D. M.; Koblinsky, C.; Haken, M.; Howden, S.; Bingham, F.; Hildebrand, Peter H. (Technical Monitor)

    2001-01-01

    Passive microwave sensors at L-band (1.4 GHz) operating from aircraft have demonstrated that salinity can be measured with sufficient accuracy (I psu) to be scientifically meaningful in coastal waters. However, measuring salinity in the open ocean presents unresolved issues largely because of the much greater accuracy (approximately 0.2 psu) required of global maps to be scientifically viable. The development of a satellite microwave instrument to make global measurements of SSS (Sea Surface Salinity) is the focus of a joint JPL/GSFC/NASA ocean research program called Aquarius. In the summer of 1999 a series of measurements called, The Gulf Stream Experiment, were conducted as part of research at the Goddard Space Flight Center to test the potential for passive microwave remote sensing of salinity in the open ocean. The measurements consisted of airborne microwave instruments together with ships and drifters for surface truth. The study area was a 200 km by 100 km rectangle about 250 km east of Delaware Bay between the continental shelf waters and north wall of the Gulf Stream. The primary passive instruments were the ESTAR radiometer (L-band, H-pol) and the SLFMR radiometer (L-band, V-pol). In addition, the instruments on the aircraft included a C-band radiometer (ACMR), an ocean wave scatterometer (ROWS) and an infrared radiometer (for surface temperature). These instruments were mounted on the NASA P-3 Orion aircraft. Sea surface measurements consisted of thermosalinograph data provided by the R/V Cape Henlopen and the MN Oleander, and data from salinity and temperature sensors on three surface drifters deployed from the R/V Cape Henlopen. The primary experiment period was August 26-September 2, 1999. During this period the salinity field within the study area consisted of a gradient on the order of 2-3 psu in the vicinity of the shelf break and a warm core ring with a gradient of 1-2 psu. Detailed maps were made with the airborne sensors on August 28 and 29 and

  19. Probing the Universe's Tilt with the Cosmic Infrared Background Dipole

    CERN Document Server

    Fixsen, D J

    2011-01-01

    Conventional interpretation of the observed cosmic microwave background (CMB) dipole is that all of it is produced by local peculiar motions. Alternative explanations requiring part of the dipole to be primordial have received support from measurements of large-scale bulk flows. A test of the two hypothesis is whether other cosmic dipoles produced by collapsed structures later than last scattering coincide with the CMB dipole. One background is the cosmic infrared background (CIB) whose absolute spectrum was measured to ~30% by the COBE satellite. Over the 100 to 500 um wavelength range its spectral energy distribution can provide a probe of its alignment with CMB. This is tested with the COBE FIRAS dataset which is available for such a measurement because of its low noise and frequency resolution important for Galaxy subtraction. Although the FIRAS instrument noise is in principle low enough to determine the CIB dipole, the Galactic foreground is sufficiently close spectrally to keep the CIB dipole hidden. A...

  20. Anomalies of the Cosmic Microwave Background

    DEFF Research Database (Denmark)

    Hansen, Martin Anders Kirstejn

    The Cosmic Microwave Background (CMB) is the faint afterglow of the extreme conditions that existed shortly after Big Bang. The temperature of the CMB radiation across the sky is extremely uniform, yet tiny anisotropies are present, and have with recent satellite missions been mapped to very high...

  1. Passive Polarimetric Microwave Signatures Observed Over Antarctica

    Science.gov (United States)

    WindSat satellite-based fully polarimetric passive microwave observations, expressed in the form of the Stokes vector, were analyzed over the Antarctic ice sheet. The vertically and horizontally polarized brightness temperatures (first two Stokes components) from WindSat are shown to be consistent w...

  2. Improved infrared precipitation estimation approaches based on k-means clustering: Application to north Algeria using MSG-SEVIRI satellite data

    Science.gov (United States)

    Mokdad, Fatiha; Haddad, Boualem

    2017-06-01

    In this paper, two new infrared precipitation estimation approaches based on the concept of k-means clustering are first proposed, named the NAW-Kmeans and the GPI-Kmeans methods. Then, they are adapted to the southern Mediterranean basin, where the subtropical climate prevails. The infrared data (10.8 μm channel) acquired by MSG-SEVIRI sensor in winter and spring 2012 are used. Tests are carried out in eight areas distributed over northern Algeria: Sebra, El Bordj, Chlef, Blida, Bordj Menael, Sidi Aich, Beni Ourthilane, and Beni Aziz. The validation is performed by a comparison of the estimated rainfalls to rain gauges observations collected by the National Office of Meteorology in Dar El Beida (Algeria). Despite the complexity of the subtropical climate, the obtained results indicate that the NAW-Kmeans and the GPI-Kmeans approaches gave satisfactory results for the considered rain rates. Also, the proposed schemes lead to improvement in precipitation estimation performance when compared to the original algorithms NAW (Nagri, Adler, and Wetzel) and GPI (GOES Precipitation Index).

  3. Developing the Integrated Multi-Satellite Retrievals for GPM (IMERG)

    Science.gov (United States)

    Huffman, G. J.; Bolvin, D. T.; Braithwaite, D.; Hsu, K.; Joyce, R.; Kidd, C.; Sorooshian, S.; Xie, P.; Yoo, S.-H.

    2012-04-01

    The Integrated Multi-satellitE Retrievals for GPM (IMERG) will provide the Day-1 algorithm for computing combined precipitation estimates as part of GPM. The focus is assembling the best time series of (nearly) global precipitation from the international constellation of precipitation-relevant satellites and global surface precipitation gauge analyses. It is planned that the time series will encompass both the TRMM and GPM eras, and that the coverage will be extended to fully global as algorithms are developed that provide skill in the difficult high-latitude environment. IMERG is being developed as a unified U.S. algorithm that takes advantage of strengths in the three groups that are contributing expertise: 1) the TRMM Multi-satellite Precipitation Analysis (TMPA), which addresses inter-satellite calibration of precipitation estimates and monthly scale combination of satellite and gauge analyses; 2) the CPC Morphing algorithm with Kalman Filtering (K-CMORPH), which provides quality-weighted time interpolation of precipitation patterns following storm motion; and 3) the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks using a Cloud Classification System (PERSIANN-CCS), which provides a neural-network-based scheme for generating microwave-calibrated precipitation estimates from geosynchronous infrared brightness temperatures. In this talk we summarize the code-level integration on which IMERG is based, including the important issues that drive the design and implementation, plans for testing and starting to run the system, and current status. One concept being pioneered by the IMERG team is that combination datasets should be computed multiple times at different latencies to serve the needs of different groups of users. Although reprocessing all of the latency "runs" complicates the reprocessing scenario, experience demonstrates that it is essential for the users. Fortunately, the IMERG team has worked with the

  4. Trends of microwave dielectric materials for antenna application

    Science.gov (United States)

    Sulong, T. A. T.; Osman, R. A. M.; Idris, M. S.

    2016-07-01

    Rapid development of a modern microwave communication system requires a high quality microwave dielectric ceramic material to be used as mobile and satellite communication. High permittivity of dielectric ceramics leads to fabrication of compact device for electronic components. Dielectric ceramics which used for microwave applications required three important parameters such as high or appropriate permittivity (ɛr), high quality factor (Q f ≥ 5000GH z) and good temperature coefficient of resonant frequency (τf). This paper review of various dielectric ceramic materials used as microwave dielectric materials and related parameters for antenna applications.

  5. Trends of microwave dielectric materials for antenna application

    Energy Technology Data Exchange (ETDEWEB)

    Sulong, T. A. T., E-mail: tuanamirahtuansulong@gmail.com; Osman, R. A. M., E-mail: rozana@unimap.edu.my [School of Microelectronic Engineering, Universiti Malaysia Perlis, Pauh Putra Campus, 02600 Arau, Perlis (Malaysia); Idris, M. S., E-mail: sobri@unimap.edu.my [Sustainable Engineering Research Cluster, School of Material Engineering, Universiti Malaysia Perlis, Blok B, Taman Pertiwi Indah, Seriab, 01000 Kangar, Perlis (Malaysia)

    2016-07-19

    Rapid development of a modern microwave communication system requires a high quality microwave dielectric ceramic material to be used as mobile and satellite communication. High permittivity of dielectric ceramics leads to fabrication of compact device for electronic components. Dielectric ceramics which used for microwave applications required three important parameters such as high or appropriate permittivity (ε{sub r}), high quality factor (Q {sub f} ≥ 5000 GH z) and good temperature coefficient of resonant frequency (τ{sub f}). This paper review of various dielectric ceramic materials used as microwave dielectric materials and related parameters for antenna applications.

  6. Global Monitoring of Terrestrial Chlorophyll Fluorescence from Moderate-spectral-resolution Near-infrared Satellite Measurements: Methodology, Simulations, and Application to GOME-2

    Science.gov (United States)

    Joiner, J.; Gaunter, L.; Lindstrot, R.; Voigt, M.; Vasilkov, A. P.; Middleton, E. M.; Huemmrich, K. F.; Yoshida, Y.; Frankenberg, C.

    2013-01-01

    Globally mapped terrestrial chlorophyll fluorescence retrievals are of high interest because they can provide information on the functional status of vegetation including light-use efficiency and global primary productivity that can be used for global carbon cycle modeling and agricultural applications. Previous satellite retrievals of fluorescence have relied solely upon the filling-in of solar Fraunhofer lines that are not significantly affected by atmospheric absorption. Although these measurements provide near-global coverage on a monthly basis, they suffer from relatively low precision and sparse spatial sampling. Here, we describe a new methodology to retrieve global far-red fluorescence information; we use hyperspectral data with a simplified radiative transfer model to disentangle the spectral signatures of three basic components: atmospheric absorption, surface reflectance, and fluorescence radiance. An empirically based principal component analysis approach is employed, primarily using cloudy data over ocean, to model and solve for the atmospheric absorption. Through detailed simulations, we demonstrate the feasibility of the approach and show that moderate-spectral-resolution measurements with a relatively high signal-to-noise ratio can be used to retrieve far-red fluorescence information with good precision and accuracy. The method is then applied to data from the Global Ozone Monitoring Instrument 2 (GOME-2). The GOME-2 fluorescence retrievals display similar spatial structure as compared with those from a simpler technique applied to the Greenhouse gases Observing SATellite (GOSAT). GOME-2 enables global mapping of far-red fluorescence with higher precision over smaller spatial and temporal scales than is possible with GOSAT. Near-global coverage is provided within a few days. We are able to show clearly for the first time physically plausible variations in fluorescence over the course of a single month at a spatial resolution of 0.5 deg × 0.5 deg

  7. The Fertilizing Role of African Dust in the Amazon Rainforest. A First Multiyear Assessment Based on Data from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Hongbin [Univ. of Maryland, College Park, MD (United States); NASA Goddard Space Flight Center (GSFC), Greenbelt, MD (United States); Chin, Mian [NASA Goddard Space Flight Center (GSFC), Greenbelt, MD (United States); Yuan, Tianle [NASA Goddard Space Flight Center (GSFC), Greenbelt, MD (United States); Univ. of Maryland, Baltimore, MD (United States); Bian, Huisheng [NASA Goddard Space Flight Center (GSFC), Greenbelt, MD (United States); Univ. of Maryland, Baltimore, MD (United States); Remer, L. A. [Univ. of Maryland, Baltimore, MD (United States); Prospero, J. [Univ. of Miami, FL (United States); Omar, Ali [NASA Langley Research Center, Hampton, VA (United States); Winker, D. [NASA Langley Research Center, Hampton, VA (United States); Yang, Yuekui [NASA Goddard Space Flight Center (GSFC), Greenbelt, MD (United States); Universities Space Research Association, Columbia, MD (United States); Zhang, Yan [NASA Goddard Space Flight Center (GSFC), Greenbelt, MD (United States); Universities Space Research Association, Columbia, MD (United States); Zhang, Zhibo [Univ. of Maryland, Baltimore, MD (United States); Zhao, Chun [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-03-18

    The productivity of the Amazon rainforest is constrained by the availability of nutrients, in particular phosphorus (P). Deposition of long-range transported African dust is recognized as a potentially important but poorly quantified source of phosphorus. This study provides a first multiyear satellite-based estimate of dust deposition into the Amazon Basin using three dimensional (3D) aerosol measurements over 2007-2013 from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP). The 7-year average of dust deposition into the Amazon Basin is estimated to be 28 (8~48) Tg a-1 or 29 (8~50) kg ha-1 a-1. The dust deposition shows significant interannual variation that is negatively correlated with the prior-year rainfall in the Sahel. The CALIOP-based multi-year mean estimate of dust deposition matches better with estimates from in-situ measurements and model simulations than a previous satellite-based estimate does. The closer agreement benefits from a more realistic geographic definition of the Amazon Basin and inclusion of meridional dust transport calculation in addition to the 3D nature of CALIOP aerosol measurements. The imported dust could provide about 0.022 (0.006~0.037) Tg P of phosphorus per year, equivalent to 23 (7~39) g P ha-1 a-1 to fertilize the Amazon rainforest. This out-of-Basin P input is comparable to the hydrological loss of P from the Basin, suggesting an important role of African dust in preventing phosphorus depletion on time scales of decades to centuries.

  8. MISTiC Winds: A micro-satellite constellation approach to high resolution observations of the atmosphere using infrared sounding and 3D winds measurements

    Science.gov (United States)

    Maschhoff, K. R.; Polizotti, J. J.; Aumann, H. H.; Susskind, J.

    2016-09-01

    MISTiCTM Winds is an approach to improve short-term weather forecasting based on a miniature high resolution, wide field, thermal emission spectrometry instrument that will provide global tropospheric vertical profiles of atmospheric temperature and humidity at high (3-4 km) horizontal and vertical ( 1 km) spatial resolution. MISTiC's extraordinarily small size, payload mass of less than 15 kg, and minimal cooling requirements can be accommodated aboard a 27U-class CubeSat or an ESPA-Class micro-satellite. Low fabrication and launch costs enable a LEO sunsynchronous sounding constellation that would collectively provide frequent IR vertical profiles and vertically resolved atmospheric motion vector wind observations in the troposphere. These observations are highly complementary to present and emerging environmental observing systems, and would provide a combination of high vertical and horizontal resolution not provided by any other environmental observing system currently in operation. The spectral measurements that would be provided by MISTiC Winds are similar to those of NASA's AIRS that was built by BAE Systems and operates aboard the AQUA satellite. These new observations, when assimilated into high resolution numerical weather models, would revolutionize short-term and severe weather forecasting, save lives, and support key economic decisions in the energy, air transport, and agriculture arenas-at much lower cost than providing these observations from geostationary orbit. In addition, this observation capability would be a critical tool for the study of transport processes for water vapor, clouds, pollution, and aerosols. Key remaining technical risks are being reduced through laboratory and airborne testing under NASA's Instrument Incubator Program.

  9. Characterisation of Special Sensor Microwave Water Vapor Profiler (SSM/T-2) radiances using radiative transfer simulations from global atmospheric reanalyses

    Science.gov (United States)

    Kobayashi, Shinya; Poli, Paul; John, Viju O.

    2017-02-01

    The near-global and all-sky coverage of satellite observations from microwave humidity sounders operating in the 183 GHz band complement radiosonde and aircraft observations and satellite infrared clear-sky observations. The Special Sensor Microwave Water Vapor Profiler (SSM/T-2) of the Defense Meteorological Satellite Program began operations late 1991. It has been followed by several other microwave humidity sounders, continuing today. However, expertise and accrued knowledge regarding the SSM/T-2 data record is limited because it has remained underused for climate applications and reanalyses. In this study, SSM/T-2 radiances are characterised using several global atmospheric reanalyses. The European Centre for Medium-Range Weather Forecasts (ECMWF) Interim Reanalysis (ERA-Interim), the first ECMWF reanalysis of the 20th-century (ERA-20C), and the Japanese 55-year Reanalysis (JRA-55) are projected into SSM/T-2 radiance space using a fast radiative transfer model. The present study confirms earlier indications that the polarisation state of SSM/T-2 antenna is horizontal (not vertical) in the limit of nadir viewing. The study also formulates several recommendations to improve use of the SSM/T-2 measurement data in future fundamental climate data records or reanalyses. Recommendations are (1) to correct geolocation errors, especially for DMSP 14; (2) to blacklist poor quality data identified in the paper; (3) to correct for inter-satellite biases, estimated here on the order of 1 K, by applying an inter-satellite recalibration or, for reanalysis, an automated (e.g., variational) bias correction; and (4) to improve precipitating cloud filtering or, for reanalysis, consider an all-sky assimilation scheme where radiative transfer simulations account for the scattering effect of hydrometeors.

  10. Microwave power engineering applications

    CERN Document Server

    Okress, Ernest C

    2013-01-01

    Microwave Power Engineering, Volume 2: Applications introduces the electronics technology of microwave power and its applications. This technology emphasizes microwave electronics for direct power utilization and transmission purposes. This volume presents the accomplishments with respect to components, systems, and applications and their prevailing limitations in the light of knowledge of the microwave power technology. The applications discussed include the microwave heating and other processes of materials, which utilize the magnetron predominantly. Other applications include microwave ioni

  11. Advances in microwaves 8

    CERN Document Server

    Young, Leo

    2013-01-01

    Advances in Microwaves, Volume 8 covers the developments in the study of microwaves. The book discusses the circuit forms for microwave integrated circuits; the analysis of microstrip transmission lines; and the use of lumped elements in microwave integrated circuits. The text also describes the microwave properties of ferrimagnetic materials, as well as their interaction with electromagnetic waves propagating in bounded waveguiding structures. The integration techniques useful at high frequencies; material technology for microwave integrated circuits; specific requirements on technology for d

  12. MICROWAVE SENSOR DEVELOPMENT IN RECENT TWO YEARS IN CHINA

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The development of microwave sensors in recent two years in China are in troduced with an emphasis on spaceborne sensors without the applications in cluded. The microwave sensors as the main payloads to be boarded on the future operational satellites, such as FY-3 meteorological satellites and HY-2 marine satellite are introduced with much in detail. Besides these, four new sensors are outlined, i.e. the imaging radar altimeter,synthetic aperture radiometer, and polarimetric radiometer. Two recently conducted flight experiment campaigns are also introduced with results shown.

  13. Optimization of optically pre-amplified inter-satellite microwave photonic links%带前置光放大的星间微波光子链路性能优化

    Institute of Scientific and Technical Information of China (English)

    朱子行; 赵尚弘; 李勇军; 楚兴春; 张辉; 王翔; 赵顾颢

    2013-01-01

    The analytical expression of output signal-to-noise ratio (SNR) for inter-satellite microwave photonic links with an optical pre-amplifier is derived considering the signal fade caused by both transmitter's and receiver's pointing errors,and an optimized model for the average SNR is established. With the desired SNR and the pointing errors of transmitter and receiver,the direct current (DC) bias phase shift of Mach-Zehnder modulator (MZM) can be optimized so as to minimize the output power of laser diode (LD) ,and the effects of the optical pre-amplifier parameters on the minimum output power of LD and optimal DC bias phase shift are also examined. According to the numerical results,the pre-amplifier noise figure determines the minimum output power of LD needed to achieve the desired SNR. The required minimum output power of LD to maintain the SNR of 15. 56 dB increases by 6. 73 dB for an RMS pointing jitter of 0. 4 μrad when doubling the pre-amplifier noise figure. In contrast, the pre-amplifier noise figure has little influence on the optimal DC bias phase shift, doubling the pre-amplifier noise figure , resulting in no more than 0. 003π increase in the optimum DC bias phase shift.%考虑发射机和接收机对准误差引起的信号衰落,推导出带前置光放大的星间微波光子链路输出信噪比(SNR)的解析表达式,并建立了基于平均SNR原则的链路优化模型.在给定SNR要求及对准误差条件下,对Mach-Zehnder调制器(MZM)直流偏置相移进行了优化,使所需激光器(LD)输出功率最小,并进一步分析了前置放大器参数对最小LD输出功率和最优直流偏置相移的影响.数值仿真结果表明,与增益相比,前置放大器噪声系数决定了指定SNR所需的最小LD输出功率.当对准误差角标准差为0.4 μrad时,噪声系数加倍会使SNR达到15.56 dB时所需的最小LD输出功率增加6.73 dB.然而,前置放大器噪声系数对最优的直流偏置相移几乎无影响,噪声系

  14. 红外预警卫星弹道导弹主动段探测能力%Detection ability of infrared early warning satellite for ballistic missile in boost phase

    Institute of Scientific and Technical Information of China (English)

    钟宇; 吴晓燕; 黄树彩; 吴建峰; 李成景

    2015-01-01

    为研究反导作战背景下红外预警卫星对弹道导弹主动段弹道的探测能力,在作战需求驱动下,构建了预警卫星探测能力战术、技术和性能指标的关联结构,以技术指标为桥梁,通过建立视场、扫描周期、检测概率、虚警概率、信噪比及最大作用距离等计算模型,系统分析了战术、技术和性能指标之间的关联及其对探测能力的影响.结合典型的目标和背景辐射特性以及大气透过率,仿真分析了星载探测器性能指标的不同组合对预警卫星最大作用距离和预警时间的影响程度和规律.该研究可为评估预警卫星反导作战效能和优化设计星载红外探测系统提供有意义的参考.%To study the detection ability of infrared early warning satellite for ballistic missile in boost phase in the background of anti-missile operation, driven by the operational requirements, the tactical, technical and performance indices association structure of detection ability was built. The tactical and performance indices were interconnected by the technical indices, and furthermore, some key technical indices models were built including Field of View (FOV), revisit time, detection probability, false alarm rate, Signal to Noise Ratio (SNR) and maximum operating range. The tactical, technical and performance indices association and its effect on detection ability were analyzed. Based on the typical radiation characteristics of target and background and the atmospheric transmittance, simulation examples showed the impacts and rules of different performance indices combination on maximum operating range and early warning time. The work can provide reference for evaluating anti-missile operation effectiveness and designing optimum satellite-borne infrared detection system.

  15. Microwave brightness temperature and thermal inertia - towards synergistic method of high-resolution soil moisture retrieval

    Science.gov (United States)

    Lukowski, Mateusz; Usowicz, Boguslaw; Sagan, Joanna; Szlazak, Radoslaw; Gluba, Lukasz; Rojek, Edyta

    2017-04-01

    reasonable, as both variables, brightness temperature and thermal inertia, strongly depend on soil moisture. Despite the fact that the presented research focused on modelling in the small size, 4 ha test site, the method is promising for larger scales as well, due to similarities between ELBARA and SMOS and between pyrometer and satellite imaging spectrometers (Landsat, Sentinel etc.). The approach will merge advantages: high accuracy of passive microwave sensing with a good spatial resolution of thermal infrared methods. The work was partially funded under two ESA projects: 1) "ELBARA_PD (Penetration Depth)" No. 4000107897/13/NL/KML, funded by the Government of Poland through an ESA-PECS contract (Plan for European Cooperating States). 2) "Technical Support for the fabrication and deployment of the radiometer ELBARA-III in Bubnow, Poland" No. 4000113360/15/NL/FF/gp.

  16. Bringing satellite winds to hub-height

    DEFF Research Database (Denmark)

    Badger, Merete; Pena Diaz, Alfredo; Bredesen, Rolv Erlend

    2012-01-01

    Satellite observations of the ocean surface can provide detailed information about the spatial wind variability over large areas. This is very valuable for the mapping of wind resources offshore where other measurements are costly and sparse. Satellite sensors operating at microwave frequencies...... measure the amount of radar backscatter from the sea surface, which is a function of the instant wind speed, wind direction, and satellite viewing geometry. A major limitation related to wind retrievals from satellite observations is that existing empirical model functions relate the radar backscatter...

  17. Retrieval of HCFC-142b (CH3CClF2) from ground-based high-resolution infrared solar spectra: Atmospheric increase since 1989 and comparison with surface and satellite measurements

    Science.gov (United States)

    Mahieu, Emmanuel; Lejeune, Bernard; Bovy, Benoît; Servais, Christian; Toon, Geoffrey C.; Bernath, Peter F.; Boone, Christopher D.; Walker, Kaley A.; Reimann, Stefan; Vollmer, Martin K.; O'Doherty, Simon

    2017-01-01

    We have developed an approach for retrieving HCFC-142b (CH3CClF2) from ground-based high-resolution infrared solar spectra, using its ν7 band Q branch in the 900-906 cm-1 interval. Interferences by HNO3, CO2 and H2O have to be accounted for. Application of this approach to observations recorded within the framework of long-term monitoring activities carried out at the northern mid-latitude, high-altitude Jungfraujoch station in Switzerland (46.5°N, 8.0°E, 3580 m above sea level) has provided a total column times series spanning the 1989 to mid-2015 time period. A fit to the HCFC-142b daily mean total column time series shows a statistically-significant long-term trend of (1.23±0.08×1013 molec cm-2) per year from 2000 to 2010, at the 2-σ confidence level. This corresponds to a significant atmospheric accumulation of (0.94±0.06) ppt (1 ppt=1/1012) per year for the mean tropospheric mixing ratio, at the 2-σ confidence level. Over the subsequent time period (2010-2014), we note a significant slowing down in the HCFC-142b buildup. Our ground-based FTIR (Fourier Transform Infrared) results are compared with relevant data sets derived from surface in situ measurements at the Mace Head and Jungfraujoch sites of the AGAGE (Advanced Global Atmospheric Gases Experiment) network and from occultation measurements by the ACE-FTS (Atmospheric Chemistry Experiment-Fourier Transform Spectrometer) instrument on-board the SCISAT satellite.

  18. Current Usage and Future Prospects of Multispectral (RGB) Satellite Imagery in Support of NWS Forecast Offices and National Centers

    Science.gov (United States)

    Molthan, Andrew L.; Fuell, Kevin K.; Knaff, John; Lee, Thomas

    2012-01-01

    Current and future satellite sensors provide remotely sensed quantities from a variety of wavelengths ranging from the visible to the passive microwave, from both geostationary and low-Earth orbits. The NASA Short-term Prediction Research and Transition (SPoRT) Center has a long history of providing multispectral imagery from the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA s Terra and Aqua satellites in support of NWS forecast office activities. Products from MODIS have recently been extended to include a broader suite of multispectral imagery similar to those developed by EUMETSAT, based upon the spectral channel s available from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) aboard METEOSAT-9. This broader suite includes products that discriminate between air mass types associated with synoptic-scale features, assists in the identification of dust, and improves upon paired channel difference detection of fog and low cloud events. Similarly, researchers at NOAA/NESDIS and CIRA have developed air mass discrimination capabilities using channels available from the current GOES Sounders. Other applications of multispectral composites include combinations of high and low frequency, horizontal and vertically polarized passive microwave brightness temperatures to discriminate tropical cyclone structures and other synoptic-scale features. Many of these capabilities have been transitioned for evaluation and operational use at NWS Weather Forecast Offices and National Centers through collaborations with SPoRT and CIRA. Future instruments will continue the availability of these products and also expand upon current capabilities. The Advanced Baseline Imager (ABI) on GOES-R will improve the spectral, spatial, and temporal resolution of our current geostationary capabilities, and the recent launch of the Suomi National Polar-Orbiting Partnership (S-NPP) carries instruments such as the Visible Infrared Imager Radiometer Suite (VIIRS), the Cross

  19. Continuous microwave flow synthesis of mesoporous hydroxyapatite.

    Science.gov (United States)

    Akram, Muhammad; Alshemary, Ammar Z; Goh, Yi-Fan; Wan Ibrahim, Wan Aini; Lintang, Hendrik O; Hussain, Rafaqat

    2015-11-01

    We have successfully used continuous microwave flow synthesis (CMFS) technique for the template free synthesis of mesoporous hydroxyapatite. The continuous microwave flow reactor consisted of a modified 2.45GHz household microwave, peristaltic pumps and a Teflon coil. This cost effective and efficient system was exploited to produce semi-crystalline phase pure nano-sized hydroxyapatite. Effect of microwave power, retention time and the concentration of reactants on the phase purity, degree of crystallinity and surface area of the final product was studied in detail. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) were used to study the phase purity and composition of the product, while transmission electron microscopy (TEM) was used to study the effect of process parameters on the morphology of hydroxyapatite. The TEM analysis confirmed the formation of spherical particles at low microwave power; however the morphology of the particles changed to mesoporous needle and rod-like structure upon exposing the reaction mixture to higher microwave power and longer retention time inside the microwave. The in-vitro ion dissolution behavior of the as synthesized hydroxyapatite was studied by determining the amount of Ca(2+) ion released in SBF solution.

  20. PM-GCD - a combined IR-MW satellite technique for frequent retrieval of heavy precipitation

    Science.gov (United States)

    Casella, D.; Dietrich, S.; di Paola, F.; Formenton, M.; Mugnai, A.; Porcù, F.; Sanò, P.

    2012-01-01

    Precipitation retrievals based on measurements from microwave (MW) radiometers onboard low-Earth-orbit (LEO) satellites can reach high level of accuracy - especially regarding convective precipitation. At the present stage though, these observations cannot provide satisfactory coverage of the evolution of intense and rapid precipitating systems. As a result, the obtained precipitation retrievals are often of limited use for many important applications - especially in supporting authorities for flood alerts and weather warnings. To tackle this problem, over the past two decades several techniques have been developed combining accurate MW estimates with frequent infrared (IR) observations from geosynchronous (GEO) satellites, such as the European Meteosat Second Generation (MSG). In this framework, we have developed a new fast and simple precipitation retrieval technique which we call Passive Microwave - Global Convective Diagnostic, (PM-GCD). This method uses MW retrievals in conjunction with the Global Convective Diagnostic (GCD) technique which discriminates deep convective clouds based on the difference between the MSG water vapor (6.2 μm) and thermal-IR (10.8 μm) channels. Specifically, MSG observations and the GCD technique are used to identify deep convective areas. These areas are then calibrated using MW precipitation estimates based on observations from the Advanced Microwave Sounding Unit (AMSU) radiometers onboard operational NOAA and Eumetsat satellites, and then finally propagated in time with a simple tracking algorithm. In this paper, we describe the PM-GCD technique, analyzing its results for a case study that refers to a flood event that struck the island of Sicily in southern Italy on 1-2 October 2009.

  1. Offshore winds mapped from satellite remote sensing

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay

    2014-01-01

    the uncertainty on the model results on the offshore wind resource, it is necessary to compare model results with observations. Observations from ground-based wind lidar and satellite remote sensing are the two main technologies that can provide new types of offshore wind data at relatively low cost....... The advantages of microwave satellite remote sensing are 1) horizontal spatial coverage, 2) long data archives and 3) high spatial detail both in the coastal zone and of far-field wind farm wake. Passive microwave ocean wind speed data are available since 1987 with up to 6 observations per day with near...

  2. Monitoring the Impacts of Wildfires on Forest Ecosystems and Public Health in the Exo-Urban Environment Using High-Resolution Satellite Aerosol Products from the Visible Infrared Imaging Radiometer Suite (VIIRS).

    Science.gov (United States)

    Huff, Amy K; Kondragunta, Shobha; Zhang, Hai; Hoff, Raymond M

    2015-01-01

    Increasing development of exo-urban environments and the spread of urbanization into forested areas is making humans and forest ecosystems more susceptible to the risks associated with wildfires. Larger and more damaging wildfires are having a negative impact on forest ecosystem services, and smoke from wildfires adversely affects the public health of people living in exo-urban environments. Satellite aerosol measurements are valuable tools that can track the evolution of wildfires and monitor the transport of smoke plumes. Operational users, such as air quality forecasters and fire management officials, can use satellite observations to complement ground-based and aircraft measurements of wildfire activity. To date, wildfire applications of satellite aerosol products, such as aerosol optical depth (AOD), have been limited by the relatively coarse resolution of available AOD data. However, the new Visible Infrared Imaging Radiometer Suite (VIIRS) instrument on the Suomi National Polar-orbiting Partnership (S-NPP) satellite has high-resolution AOD that is ideally suited to monitoring wildfire impacts on the exo-urban scale. Two AOD products are available from VIIRS: the 750-m × 750-m nadir resolution Intermediate Product (IP) and the 6-km × 6-km resolution Environmental Data Record product, which is aggregated from IP measurements. True color (red, green, and blue [RGB]) imagery and a smoke mask at 750-m × 750-m resolution are also available from VIIRS as decision aids for wildfire applications; they serve as counterparts to AOD measurements by providing visible information about areas of smoke in the atmosphere. To meet the needs of operational users, who do not have time to process raw data files and need access to VIIRS products in near-real time (NRT), VIIRS AOD and RGB NRT imagery are available from the Infusing satellite Data into Environmental Applications (IDEA) web site. A key feature of IDEA is an interactive visualization tool that allows users to

  3. Investigating the value of passive microwave observations for monitoring volcanic eruption source parameters

    Science.gov (United States)

    Montopoli, Mario; Cimini, Domenico; Marzano, Frank

    2016-04-01

    Volcanic eruptions inject both gas and solid particles into the Atmosphere. Solid particles are made by mineral fragments of different sizes (from few microns to meters), generally referred as tephra. Tephra from volcanic eruptions has enormous impacts on social and economical activities through the effects on the environment, climate, public health, and air traffic. The size, density and shape of a particle determine its fall velocity and thus residence time in the Atmosphere. Larger particles tend to fall quickly in the proximity of the volcano, while smaller particles may remain suspended for several days and thus may be transported by winds for thousands of km. Thus, the impact of such hazards involves local as well as large scales effects. Local effects involve mostly the large sized particles, while large scale effects are caused by the transport of the finest ejected tephra (ash) through the atmosphere. Forecasts of ash paths in the atmosphere are routinely run after eruptions using dispersion models. These models make use of meteorological and volcanic source parameters. The former are usually available as output of numerical weather prediction models or large scale reanalysis. Source parameters characterize the volcanic eruption near the vent; these are mainly the ash mass concentration along the vertical column and the top altitude of the volcanic plume, which is strictly related to the flux of the mass ejected at the emission source. These parameters should be known accurately and continuously; otherwise, strong hypothesis are usually needed, leading to large uncertainty in the dispersion forecasts. However, direct observations during an eruption are typically dangerous and impractical. Thus, satellite remote sensing is often exploited to monitor volcanic emissions, using visible (VIS) and infrared (IR) channels available on both Low Earth Orbit (LEO) and Geostationary Earth Orbit (GEO) satellites. VIS and IR satellite imagery are very useful to monitor

  4. Measurement of the cosmic microwave background spectrum by the COBE FIRAS instrument

    Science.gov (United States)

    Mather, J. C.; Cheng, E. S.; Cottingham, D. A.; Eplee, R. E., Jr.; Fixsen, D. J.; Hewagama, T.; Isaacman, R. B.; Jensen, K. A.; Meyer, S. S.; Noerdlinger, P. D.

    1994-01-01

    The cosmic microwave background radiation (CMBR) has a blackbody spectrum within 3.4 x 10(exp -8) ergs/sq cm/s/sr cm over the frequency range from 2 to 20/cm (5-0.5 mm). These measurements, derived from the Far-Infrared Absolute Spectrophotomer (FIRAS) instrument on the Cosmic Background Explorer (COBE) satellite, imply stringent limits on energy release in the early universe after t approximately 1 year and redshift z approximately 3 x 10(exp 6). The deviations are less than 0.30% of the peak brightness, with an rms value of 0.01%, and the dimensionless cosmological distortion parameters are limited to the absolute value of y is less than 2.5 x 10(exp -5) and the absolute value of mu is less than 3.3 x 10(exp -4) (95% confidence level). The temperature of the CMBR is 2.726 +/- 0.010 K (95% confidence level systematic).

  5. Perception via satellite

    Science.gov (United States)

    Robinove, Charles J.

    1970-01-01

    The earth resources observation satellite (EROS) program in the Department of the Interior is intended to gather and use data from satellites and aircraft on natural and man-made features of the earth's surface. Earth resources technology satellite will provide the EROS program with data for use in dealing with natural resource problems and understanding the interaction between man and the environment. Applications will include studies of tectonic features, hydrologic problems, location of fish schools, determination of the conditions of range land, mapping land use for urban planning, studies of erosion and change along coastlines and major streams, and inventories of land use and land forms. In addition, the ERTS data may be used for detecting forest and crop diseases and inventorying crops. The ERTS satellite will be in a polar, sun-synchronous orbit so that each point on the earth's surface will be sensed every 17 to 20 days, at the same time of day. Multispectral photography is being investigated for its usefulness in hydrology. Side-looking airborne radar has not yet been widely used in hydrologic studies, although it is an excellent tool for all-weather, day or night, coverage of large areas. Other techniques being investigated include passive microwave radiometry, ultraviolet and visible stimulated luminescence, and absorption spectroscopy.

  6. Ocean surveillance satellites

    Science.gov (United States)

    Laurent, D.

    Soviet and U.S. programs involving satellites for surveillance of ships and submarines are discussed, considering differences in approaches. The Soviet program began with the Cosmos 198 in 1967 and the latest, the Cosmos 1400 series, 15 m long and weighing 5 tons, carry radar for monitoring ships and a nuclear reactor for a power supply. Other Soviet spacecraft carrying passive microwave sensors and ion drives powered by solar panels have recently been detonated in orbit for unknown reasons. It has also been observed that the Soviet satellites are controlled in pairs, with sequential orbital changes for one following the other, and both satellites then overflying the same points. In contrast, U.S. surveillance satellites have been placed in higher orbits, thus placing greater demands on the capabilities of the on-board radar and camera systems. Project White Cloud and the Clipper Bow program are described, noting the continued operation of the White Cloud spacecraft, which are equipped to intercept radio signals from surface ships. Currently, the integrated tactical surveillance system program has completed its study and a decision is expected soon.

  7. Behavioral observations and operant procedures using microwaves as a heat source for young chicks

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, W.D.; McMillan, I.; Bate, L.A.; Otten, L.; Pei, D.C.

    1986-08-01

    Four trials, using operant conditioning procedures, were conducted to study the response of chicks, housed at 16 C, to microwave or infrared heat. Microwave power density was 26 mW/cm2 in Trial 1, 13 mW/cm2 in Trial 2, and 10 mW/cm2 in Trials 3 and 4. Chicks voluntarily demanded between 28 and 63% as much heat (min heat/hr) from microwave source as from infrared source at all power densities. There was no correlation, however, between the ratio of he