WorldWideScience

Sample records for satellite microwave imagery

  1. Extending a field-based Sonoran desert vegetation classification to a regional scale using optical and microwave satellite imagery

    Science.gov (United States)

    Shupe, Scott Marshall

    2000-10-01

    Vegetation mapping in and regions facilitates ecological studies, land management, and provides a record to which future land changes can be compared. Accurate and representative mapping of desert vegetation requires a sound field sampling program and a methodology to transform the data collected into a representative classification system. Time and cost constraints require that a remote sensing approach be used if such a classification system is to be applied on a regional scale. However, desert vegetation may be sparse and thus difficult to sense at typical satellite resolutions, especially given the problem of soil reflectance. This study was designed to address these concerns by conducting vegetation mapping research using field and satellite data from the US Army Yuma Proving Ground (USYPG) in Southwest Arizona. Line and belt transect data from the Army's Land Condition Trend Analysis (LCTA) Program were transformed into relative cover and relative density classification schemes using cluster analysis. Ordination analysis of the same data produced two and three-dimensional graphs on which the homogeneity of each vegetation class could be examined. It was found that the use of correspondence analysis (CA), detrended correspondence analysis (DCA), and non-metric multidimensional scaling (NMS) ordination methods was superior to the use of any single ordination method for helping to clarify between-class and within-class relationships in vegetation composition. Analysis of these between-class and within-class relationships were of key importance in examining how well relative cover and relative density schemes characterize the USYPG vegetation. Using these two classification schemes as reference data, maximum likelihood and artificial neural net classifications were then performed on a coregistered dataset consisting of a summer Landsat Thematic Mapper (TM) image, one spring and one summer ERS-1 microwave image, and elevation, slope, and aspect layers

  2. Normalization of satellite imagery

    Science.gov (United States)

    Kim, Hongsuk H.; Elman, Gregory C.

    1990-01-01

    Sets of Thematic Mapper (TM) imagery taken over the Washington, DC metropolitan area during the months of November, March and May were converted into a form of ground reflectance imagery. This conversion was accomplished by adjusting the incident sunlight and view angles and by applying a pixel-by-pixel correction for atmospheric effects. Seasonal color changes of the area can be better observed when such normalization is applied to space imagery taken in time series. In normalized imagery, the grey scale depicts variations in surface reflectance and tonal signature of multi-band color imagery can be directly interpreted for quantitative information of the target.

  3. Thematic mapping from satellite imagery

    CERN Document Server

    Denègre, J

    2013-01-01

    Thematic Mapping from Satellite Imagery: A Guidebook discusses methods in producing maps using satellite images. The book is comprised of five chapters; each chapter covers one stage of the process. Chapter 1 tackles the satellite remote sensing imaging and its cartographic significance. Chapter 2 discusses the production processes for extracting information from satellite data. The next chapter covers the methods for combining satellite-derived information with that obtained from conventional sources. Chapter 4 deals with design and semiology for cartographic representation, and Chapter 5 pre

  4. Hurricane Satellite (HURSAT) Microwave (MW)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Hurricane Satellite (HURSAT) from Microwave (MW) observations of tropical cyclones worldwide data consist of raw satellite observations. The data derive from the...

  5. Current Operational Use of and Future Needs for Microwave Imagery at NOAA

    Science.gov (United States)

    Goldberg, M.; McWilliams, G.; Chang, P.

    2017-12-01

    There are many applications of microwave imagery served by NOAA's operational products and services. They include the use of microwave imagery and derived products for monitoring precipitation, tropical cyclones, sea surface temperature under all weather conditions, wind speed, snow and ice cover, and even soil moisture. All of NOAA's line offices including the National Weather Service, National Ocean Service, National Marine Fisheries Service, and Office of Oceanic and Atmospheric Research rely on microwave imagery. Currently microwave imagery products used by NOAA come from a constellation of satellites that includes Air Force's Special Sensor Microwave Imager Sounder (SSMIS), the Japanese Advanced Microwave Scanning Radiometer (AMSR), the Navy's WindSat, and NASA's Global Precipitation Monitoring (GPM) Microwave Imager (GMI). Follow-on missions for SSMIS are very uncertain, JAXA approval for a follow-on to AMSR2 is still pending, and GMI is a research satellite (lacking high-latitude coverage) with no commitment for operational continuity. Operational continuity refers to a series of satellites, so when one satellite reaches its design life a new satellite is launched. EUMETSAT has made a commitment to fly a microwave imager in the mid-morning orbit. China and Russia have demonstrated on-orbit microwave imagers. Of utmost importance to NOAA, however, is the quality, access, and latency of the data This presentation will focus on NOAA's current requirements for microwave imagery data which, for the most part, are being fulfilled by AMSR2, SSMIS, and WindSat. It will include examples of products and applications of microwave imagery at NOAA. We will also discuss future needs, especially for improved temporal resolution which hopefully can be met by an international constellation of microwave imagers. Finally, we will discuss what we are doing to address the potential gap in imagery.

  6. User Validation of VIIRS Satellite Imagery

    Directory of Open Access Journals (Sweden)

    Don Hillger

    2015-12-01

    Full Text Available Visible/Infrared Imaging Radiometer Suite (VIIRS Imagery from the Suomi National Polar-orbiting Partnership (S-NPP satellite is the finest spatial resolution (375 m multi-spectral imagery of any operational meteorological satellite to date. The Imagery environmental data record (EDR has been designated as a Key Performance Parameter (KPP for VIIRS, meaning that its performance is vital to the success of a series of Joint Polar Satellite System (JPSS satellites that will carry this instrument. Because VIIRS covers the high-latitude and Polar Regions especially well via overlapping swaths from adjacent orbits, the Alaska theatre in particular benefits from VIIRS more than lower-latitude regions. While there are no requirements that specifically address the quality of the EDR Imagery aside from the VIIRS SDR performance requirements, the value of VIIRS Imagery to operational users is an important consideration in the Cal/Val process. As such, engaging a wide diversity of users constitutes a vital part of the Imagery validation strategy. The best possible image quality is of utmost importance. This paper summarizes the Imagery Cal/Val Team’s quality assessment in this context. Since users are a vital component to the validation of VIIRS Imagery, specific examples of VIIRS imagery applied to operational needs are presented as an integral part of the post-checkout Imagery validation.

  7. Satellite imagery in safeguards: progress and prospects

    International Nuclear Information System (INIS)

    Niemeyer, I.; Listner, C.

    2013-01-01

    The use of satellite imagery has become very important for the verification of the safeguards implementation under the Nuclear Non-Proliferation Treaty (NPT). The main applications of satellite imagery are to verify the correctness and completeness of the member states' declarations, and to provide preparatory information for inspections, complimentary access and other technical visits. If the area of interest is not accessible, remote sensing sensors provide one of the few opportunities of gathering data for nuclear monitoring, as for example in Iraq between 1998 and 2002 or currently in North Korea. Satellite data of all available sensor types contains a considerable amount of safeguard-relevant information. Very high-resolution optical satellite imagery provides the most detailed spatial information on nuclear sites and activities up to 0.41 m resolution, together with up to 8 spectral bands from the visible light and near infrared. Thermal infrared (TIR) images can indicate the operational status of nuclear facilities and help to identify undeclared activities. Hyper-spectral imagery allows a quantitative estimation of geophysical, geochemical and biochemical characteristics of the earth's surface and is therefore useful for assessing, for example, surface cover changes due to drilling, mining and milling activities. Synthetic Aperture Radar (SAR) image data up to 1 m spatial resolution provides an all-weather, day and night monitoring capability. However, the absence (or existence) of nuclear activities can never be confirmed completely based on satellite imagery. (A.C.)

  8. Satellite imagery in a nuclear age

    International Nuclear Information System (INIS)

    Baines, P.J.

    1998-01-01

    Increasingly, high resolution satellite imaging systems are becoming available from multiple and diverse sources with capabilities useful for answering security questions. With increased supply, data availability and data authenticity may be assured. In a commercial market a supplier can ill afford the loss in market share that would result from any falsification of data. Similarly rising competitors willing to sell imagery of national security sites will decrease the tendency to endure self-imposed restrictions on sales of those sites. International organizations operating in the security interests of all nations might also gain preferential access. Costa for imagery will also fall to the point were individuals can afford purchases of satellite images. International organizations will find utility in exploiting imagery for solving international security problems. Housed within international organizations possessing competent staff, procedures, and 'shared destiny' stakes in resolving compliance discrepancies, the use of satellite imagery may provide a degree of stability in a world in which individuals, non-governmental organizations and governments may choose to exploit the available information for political gain. The use of satellite imagery outside these international organizations might not necessarily be aimed at seeking mutually beneficial solutions for international problems

  9. 7 CFR 611.22 - Availability of satellite imagery.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Availability of satellite imagery. 611.22 Section 611... § 611.22 Availability of satellite imagery. Cloud-free maps of the United States based on imagery received from a satellite are prepared and released to the pubic by NRCS. The maps offer the first image of...

  10. Satellite imagery and the Department of Safeguards

    International Nuclear Information System (INIS)

    Chitumbo, K.; Bunney, J.; Leve, G.; Robb, S.

    2001-01-01

    Full text: The presentation examines some of the challenges the Satellite Imagery and Analysis Laboratory (SIAL) is facing in supporting Strengthened Safeguards. It focuses on the analytical process, starting with specifying initial tasking and continuing through to end products that are a direct result of in-house analysis. In addition it also evaluates the advantages and disadvantages of SIAL's mission and introduces external forces that the agency must consider, but cannot itself, predict or control. Although SIAL's contribution to tasks relating to Article 2a(iii) of the Additional Protocol are known and are presently of great benefit to operations areas, this is only one aspect of its work. SIAL's ability to identify and analyze historical satellite imagery data has the advantage of permitting operations to take a more in depth view of a particular area of interest's (AOI) development, and thus may permit operations to confirm or refute specific assertions relating to the AOI's function or abilities. These assertions may originate in-house or may be open source reports the agency feels it is obligated to explore. SIAL's mission is unique in the world of imagery analysis. Its aim is to support all operations areas equally and in doing so it must maintain global focus. The task is tremendous, but the resultant coverage and concentration of unique expertise will allow SIAL to develop and provide operations with datasets that can be exploited in standalone mode or be incorporated into new cutting edge tools to be developed in SGIT. At present SIAL relies on two remote sensors, IKONOS-2 and EROS-AI, for present high- resolution imagery data and is using numerous sources for historical, pre 1999, data. A multiplicity of sources for high-resolution data is very important to SIAL, but is something that it cannot influence. It is hoped that the planned launch of two new sensors by Summer 2002 will be successful and will offer greater flexibility for image collection

  11. Essential climatic variables estimation with satellite imagery

    Science.gov (United States)

    Kolotii, A.; Kussul, N.; Shelestov, A.; Lavreniuk, M. S.

    2016-12-01

    According to Sendai Framework for Disaster Risk Reduction 2015 - 2030 Leaf Area Index (LAI) is considered as one of essential climatic variables. This variable represents the amount of leaf material in ecosystems and controls the links between biosphere and atmosphere through various processes and enables monitoring and quantitative assessment of vegetation state. LAI has added value for such important global resources monitoring tasks as drought mapping and crop yield forecasting with use of data from different sources [1-2]. Remote sensing data from space can be used to estimate such biophysical parameter at regional and national scale. High temporal satellite imagery is usually required to capture main parameters of crop growth [3]. Sentinel-2 mission launched in 2015 be ESA is a source of high spatial and temporal resolution satellite imagery for mapping biophysical parameters. Products created with use of automated Sen2-Agri system deployed during Sen2-Agri country level demonstration project for Ukraine will be compared with our independent results of biophysical parameters mapping. References Shelestov, A., Kolotii, A., Camacho, F., Skakun, S., Kussul, O., Lavreniuk, M., & Kostetsky, O. (2015, July). Mapping of biophysical parameters based on high resolution EO imagery for JECAM test site in Ukraine. In 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 1733-1736 Kolotii, A., Kussul, N., Shelestov, A., Skakun, S., Yailymov, B., Basarab, R., ... & Ostapenko, V. (2015). Comparison of biophysical and satellite predictors for wheat yield forecasting in Ukraine. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 40(7), 39-44. Kussul, N., Lemoine, G., Gallego, F. J., Skakun, S. V., Lavreniuk, M., & Shelestov, A. Y. Parcel-Based Crop Classification in Ukraine Using Landsat-8 Data and Sentinel-1A Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing , 9 (6), 2500-2508.

  12. ACCURACY COMPARISON OF VHR SYSTEMATIC-ORTHO SATELLITE IMAGERIES AGAINST VHR ORTHORECTIFIED IMAGERIES USING GCP

    Directory of Open Access Journals (Sweden)

    E. Widyaningrum

    2016-06-01

    Full Text Available The Very High Resolution (VHR satellite imageries such us Pleiades, WorldView-2, GeoEye-1 used for precise mapping purpose must be corrected from any distortion to achieve the expected accuracy. Orthorectification is performed to eliminate geometric errors of the VHR satellite imageries. Orthorectification requires main input data such as Digital Elevation Model (DEM and Ground Control Point (GCP. The VHR systematic-ortho imageries were generated using SRTM 30m DEM without using any GCP data. The accuracy value differences of VHR systematic-ortho imageries and VHR orthorectified imageries using GCP currently is not exactly defined. This study aimed to identified the accuracy comparison of VHR systematic-ortho imageries against orthorectified imageries using GCP. Orthorectified imageries using GCP created by using Rigorous model. Accuracy evaluation is calculated by using several independent check points.

  13. The Looming Potential Gap in Microwave Imagery - How did we get here and what can we do about it?

    Science.gov (United States)

    Wilson, W. S.; Gallaher, D. W.

    2017-12-01

    The Air Force's Special Sensor Microwave Imager (SSMI), the Japanese Advanced Microwave Scanning Radiometer (AMSR), and the Navy's Windsat have provided a steady and reliable stream of microwave imagery that has served the Earth science community very well. Derived products include sea ice cover, snow cover on land, all-weather sea surface temperature, columnar water vapor, rain rate, and cloud liquid water. Such products are used both in operational weather forecasting, as well as in establishing and maintaining climate data records. When these sources of microwave imagery each reach the end of their life, there is the potential for a gap in coverage to occur prior to the launch of new Air Force, European and Japanese sources. Additionally, the Chinese and Russians have been flying microwave imagers that might be useful in spanning this potential gap, but users in the U.S. have not assessed the reliability and quality of their data. This presentation will set the stage for the session and provide a context for the individual papers. Two papers will address the needs and associated requirements for microwave imagery, as well as how derived products are currently being used - both for maintaining climate records and for operational use. One or two will address the performance of existing systems that are currently contributing imagery. A half-dozen will address the projected performance of future satellite systems that represent potential sources of imagery. One will address the challenges associated with the use of microwave imagery from different satellites in the maintenance of climate data records. Finally, we will plan to have some remaining time available for a general discussion about how we might work together in the future to minimize prospects for such a potential gap in to recur in the future.

  14. Generative Street Addresses from Satellite Imagery

    Directory of Open Access Journals (Sweden)

    İlke Demir

    2018-03-01

    Full Text Available We describe our automatic generative algorithm to create street addresses from satellite images by learning and labeling roads, regions, and address cells. Currently, 75% of the world’s roads lack adequate street addressing systems. Recent geocoding initiatives tend to convert pure latitude and longitude information into a memorable form for unknown areas. However, settlements are identified by streets, and such addressing schemes are not coherent with the road topology. Instead, we propose a generative address design that maps the globe in accordance with streets. Our algorithm starts with extracting roads from satellite imagery by utilizing deep learning. Then, it uniquely labels the regions, roads, and structures using some graph- and proximity-based algorithms. We also extend our addressing scheme to (i cover inaccessible areas following similar design principles; (ii be inclusive and flexible for changes on the ground; and (iii lead as a pioneer for a unified street-based global geodatabase. We present our results on an example of a developed city and multiple undeveloped cities. We also compare productivity on the basis of current ad hoc and new complete addresses. We conclude by contrasting our generative addresses to current industrial and open solutions.

  15. Commercial Satellite Imagery Analysis for Countering Nuclear Proliferation

    Science.gov (United States)

    Albright, David; Burkhard, Sarah; Lach, Allison

    2018-05-01

    High-resolution commercial satellite imagery from a growing number of private satellite companies allows nongovernmental analysts to better understand secret or opaque nuclear programs of countries in unstable or tense regions, called proliferant states. They include North Korea, Iran, India, Pakistan, and Israel. By using imagery to make these countries’ aims and capabilities more transparent, nongovernmental groups like the Institute for Science and International Security have affected the policies of governments and the course of public debate. Satellite imagery work has also strengthened the efforts of the International Atomic Energy Agency, thereby helping this key international agency build its case to mount inspections of suspect sites and activities. This work has improved assessments of the nuclear capabilities of proliferant states. Several case studies provide insight into the use of commercial satellite imagery as a key tool to educate policy makers and affect policy.

  16. Feature Detection Systems Enhance Satellite Imagery

    Science.gov (United States)

    2009-01-01

    In 1963, during the ninth orbit of the Faith 7 capsule, astronaut Gordon Cooper skipped his nap and took some photos of the Earth below using a Hasselblad camera. The sole flier on the Mercury-Atlas 9 mission, Cooper took 24 photos - never-before-seen images including the Tibetan plateau, the crinkled heights of the Himalayas, and the jagged coast of Burma. From his lofty perch over 100 miles above the Earth, Cooper noted villages, roads, rivers, and even, on occasion, individual houses. In 1965, encouraged by the effectiveness of NASA s orbital photography experiments during the Mercury and subsequent Gemini manned space flight missions, U.S. Geological Survey (USGS) director William Pecora put forward a plan for a remote sensing satellite program that would collect information about the planet never before attainable. By 1972, NASA had built and launched Landsat 1, the first in a series of Landsat sensors that have combined to provide the longest continuous collection of space-based Earth imagery. The archived Landsat data - 37 years worth and counting - has provided a vast library of information allowing not only the extensive mapping of Earth s surface but also the study of its environmental changes, from receding glaciers and tropical deforestation to urban growth and crop harvests. Developed and launched by NASA with data collection operated at various times by the Agency, the National Oceanic and Atmospheric Administration (NOAA), Earth Observation Satellite Company (EOSAT, a private sector partnership that became Space Imaging Corporation in 1996), and USGS, Landsat sensors have recorded flooding from Hurricane Katrina, the building boom in Dubai, and the extinction of the Aral Sea, offering scientists invaluable insights into the natural and manmade changes that shape the world. Of the seven Landsat sensors launched since 1972, Landsat 5 and Landsat 7 are still operational. Though both are in use well beyond their intended lifespans, the mid

  17. Detection of pear thrips damage using satellite imagery data

    Science.gov (United States)

    James E. Vogelmann; Barrett N. Rock

    1991-01-01

    This study evaluates the potential of measuring, mapping and monitoring sugar maple damage caused by pear thrips in southern Vermont and northwestern Massachusetts using satellite imagery data. Landsat Thematic Mapper (TM) data were obtained during a major thrips infestation in June 1988, and were compared with satellite data acquired during June 1984 (before pear...

  18. High resolution satellite imagery : from spies to pipeline management

    Energy Technology Data Exchange (ETDEWEB)

    Adam, S. [Canadian Geomatic Solutions Ltd., Calgary, AB (Canada); Farrell, M. [TransCanada Transmission, Calgary, AB (Canada)

    2000-07-01

    The launch of Space Imaging's IKONOS satellite in September 1999 has opened the door for corridor applications. The technology has been successfully implemented by TransCanada PipeLines in mapping over 1500 km of their mainline. IKONOS is the world's first commercial high resolution satellite which collects data at 1-meter black/white and 4-meter multi-spectral. Its use is regulated by the U.S. government. It is the best source of high resolution satellite image data. Other sources include the Indian Space Agency's IRS-1 C/D satellite and the Russian SPIN-2 which provides less reliable coverage. In addition, two more high resolution satellites may be launched this year to provide imagery every day of the year. IKONOS scenes as narrow as 5 km can be purchased. TransCanada conducted a pilot study to determine if high resolution satellite imagery is as effective as ortho-photos for identifying population structures within a buffer of TransCanada's east line right-of-way. The study examined three unique segments where residential, commercial, industrial and public features were compared. It was determined that IKONOS imagery is as good as digital ortho-photos for updating structures from low to very high density areas. The satellite imagery was also logistically easier than ortho-photos to acquire. This will be even more evident when the IKONOS image archives begins to grow. 4 tabs., 3 figs.

  19. Photogrammetric Processing Using ZY-3 Satellite Imagery

    Science.gov (United States)

    Kornus, W.; Magariños, A.; Pla, M.; Soler, E.; Perez, F.

    2015-03-01

    This paper evaluates the stereoscopic capacities of the Chinese sensor ZiYuan-3 (ZY-3) for the generation of photogrammetric products. The satellite was launched on January 9, 2012 and carries three high-resolution panchromatic cameras viewing in forward (22º), nadir (0º) and backward direction (-22º) and an infrared multi-spectral scanner (IRMSS), which is slightly looking forward (6º). The ground sampling distance (GSD) is 2.1m for the nadir image, 3.5m for the two oblique stereo images and 5.8m for the multispectral image. The evaluated ZY-3 imagery consists of a full set of threefold-stereo and a multi-spectral image covering an area of ca. 50km x 50km north-west of Barcelona, Spain. The complete photogrammetric processing chain was executed including image orientation, the generation of a digital surface model (DSM), radiometric image correction, pansharpening, orthoimage generation and digital stereo plotting. All 4 images are oriented by estimating affine transformation parameters between observed and nominal RPC (rational polynomial coefficients) image positions of 17 ground control points (GCP) and a subsequent calculation of refined RPC. From 10 independent check points RMS errors of 2.2m, 2.0m and 2.7m in X, Y and H are obtained. Subsequently, a DSM of 5m grid spacing is generated fully automatically. A comparison with the Lidar data results in an overall DSM accuracy of approximately 3m. In moderate and flat terrain higher accuracies in the order of 2.5m and better are achieved. In a next step orthoimages from the high resolution nadir image and the multispectral image are generated using the refined RPC geometry and the DSM. After radiometric corrections a fused high resolution colour orthoimage with 2.1m pixel size is created using an adaptive HSL method. The pansharpen process is performed after the individual geocorrection due to the different viewing angles between the two images. In a detailed analysis of the colour orthoimage artifacts are

  20. Biomass burning - Combustion emissions, satellite imagery, and biogenic emissions

    Science.gov (United States)

    Levine, Joel S.; Cofer, Wesley R., III; Winstead, Edward L.; Rhinehart, Robert P.; Cahoon, Donald R., Jr.; Sebacher, Daniel I.; Sebacher, Shirley; Stocks, Brian J.

    1991-01-01

    After detailing a technique for the estimation of the instantaneous emission of trace gases produced by biomass burning, using satellite imagery, attention is given to the recent discovery that burning results in significant enhancement of biogenic emissions of N2O, NO, and CH4. Biomass burning accordingly has an immediate and long-term impact on the production of atmospheric trace gases. It is presently demonstrated that satellite imagery of fires may be used to estimate combustion emissions, and could be used to estimate long-term postburn biogenic emission of trace gases to the atmosphere.

  1. Burn severity mapping using simulation modeling and satellite imagery

    Science.gov (United States)

    Eva C. Karau; Robert E. Keane

    2010-01-01

    Although burn severity maps derived from satellite imagery provide a landscape view of fire impacts, fire effects simulation models can provide spatial fire severity estimates and add a biotic context in which to interpret severity. In this project, we evaluated two methods of mapping burn severity in the context of rapid post-fire assessment for four wildfires in...

  2. Application of INSAT Satellite Cloud-Imagery Data for Site ...

    Indian Academy of Sciences (India)

    tribpo

    Application of INSAT Satellite Cloud-Imagery Data for Site Evaluation. Work of ... sources like Cyg X-3 and AM-Her binary systems (Bhat et al. 1986; Bhat et al. ... one is dealing with in the very high energy (VHE) and ultra high energy (UHE) .... shows the monthly distribution of 'spectroscopic' hours averaged over the 5-year.

  3. A Commercial Architecture for Satellite Imagery

    National Research Council Canada - National Science Library

    Didier, Christopher J

    2006-01-01

    .... This study focuses on the concept of the U.S. government purchasing proven and successful commercial satellites with minimal non-recurring engineering costs to help augment current national systems...

  4. Satellite Imagery Analysis for Automated Global Food Security Forecasting

    Science.gov (United States)

    Moody, D.; Brumby, S. P.; Chartrand, R.; Keisler, R.; Mathis, M.; Beneke, C. M.; Nicholaeff, D.; Skillman, S.; Warren, M. S.; Poehnelt, J.

    2017-12-01

    The recent computing performance revolution has driven improvements in sensor, communication, and storage technology. Multi-decadal remote sensing datasets at the petabyte scale are now available in commercial clouds, with new satellite constellations generating petabytes/year of daily high-resolution global coverage imagery. Cloud computing and storage, combined with recent advances in machine learning, are enabling understanding of the world at a scale and at a level of detail never before feasible. We present results from an ongoing effort to develop satellite imagery analysis tools that aggregate temporal, spatial, and spectral information and that can scale with the high-rate and dimensionality of imagery being collected. We focus on the problem of monitoring food crop productivity across the Middle East and North Africa, and show how an analysis-ready, multi-sensor data platform enables quick prototyping of satellite imagery analysis algorithms, from land use/land cover classification and natural resource mapping, to yearly and monthly vegetative health change trends at the structural field level.

  5. Environmental levels of microwave radiation around a satellite earth station

    International Nuclear Information System (INIS)

    Joyner, K.H.; Bangay, M.J.

    1986-01-01

    This paper discusses the background to claims of possible adverse health effects arising from exposure to environmental levels of microwave radiation around satellite earth stations. Results of a recent survey of the environmental levels of microwave radiation around two 32 metre diameter satellite communications antennas owned and operated by the Overseas Telecommunications Commission (OTC) of Australia are presented. From the measurements obtained in this survey it can be concluded that the environmental levels of microwave radiation around the OTC and similar satellite facilities do not pose a health risk to persons in the vicinity

  6. Monitoring Areal Snow Cover Using NASA Satellite Imagery

    Science.gov (United States)

    Harshburger, Brian J.; Blandford, Troy; Moore, Brandon

    2011-01-01

    The objective of this project is to develop products and tools to assist in the hydrologic modeling process, including tools to help prepare inputs for hydrologic models and improved methods for the visualization of streamflow forecasts. In addition, this project will facilitate the use of NASA satellite imagery (primarily snow cover imagery) by other federal and state agencies with operational streamflow forecasting responsibilities. A GIS software toolkit for monitoring areal snow cover extent and producing streamflow forecasts is being developed. This toolkit will be packaged as multiple extensions for ArcGIS 9.x and an opensource GIS software package. The toolkit will provide users with a means for ingesting NASA EOS satellite imagery (snow cover analysis), preparing hydrologic model inputs, and visualizing streamflow forecasts. Primary products include a software tool for predicting the presence of snow under clouds in satellite images; a software tool for producing gridded temperature and precipitation forecasts; and a suite of tools for visualizing hydrologic model forecasting results. The toolkit will be an expert system designed for operational users that need to generate accurate streamflow forecasts in a timely manner. The Remote Sensing of Snow Cover Toolbar will ingest snow cover imagery from multiple sources, including the MODIS Operational Snowcover Data and convert them to gridded datasets that can be readily used. Statistical techniques will then be applied to the gridded snow cover data to predict the presence of snow under cloud cover. The toolbar has the ability to ingest both binary and fractional snow cover data. Binary mapping techniques use a set of thresholds to determine whether a pixel contains snow or no snow. Fractional mapping techniques provide information regarding the percentage of each pixel that is covered with snow. After the imagery has been ingested, physiographic data is attached to each cell in the snow cover image. This data

  7. Biomass burning: Combustion emissions, satellite imagery, and biogenic emissions

    International Nuclear Information System (INIS)

    Levine, J.S.; Cofer, W.R III; Rhinehart, R.P.; Cahoon, D.R. J.; Winstead, E.L.; Sebacher, S.; Sebacher, D.I.; Stocks, B.J.

    1991-01-01

    This chapter deals with two different, but related, aspects of biomass burning. The first part of the chapter deals with a technique to estimate the instantaneous emissions of trace gases produced by biomass burning using satellite imagery. The second part of the chapter concerns the recent discovery that burning results in significantly enhanced biogenic emissions of N 2 O, NO, and CH 4 . Hence, biomass burning has both an immediate and long-term impact on the production of trace gases to the atmosphere. The objective of this research is to better assess and quantify the role of this research is to better assess and quantify the role and impact of biomass as a driver for global change. It will be demonstrated that satellite imagery of fires may be used to estimate combustion emissions and may in the future be used to estimate the long-term postburn biogenic emissions of trace gases to the atmosphere

  8. Automatic Mosaicking of Satellite Imagery Considering the Clouds

    Science.gov (United States)

    Kang, Yifei; Pan, Li; Chen, Qi; Zhang, Tong; Zhang, Shasha; Liu, Zhang

    2016-06-01

    With the rapid development of high resolution remote sensing for earth observation technology, satellite imagery is widely used in the fields of resource investigation, environment protection, and agricultural research. Image mosaicking is an important part of satellite imagery production. However, the existence of clouds leads to lots of disadvantages for automatic image mosaicking, mainly in two aspects: 1) Image blurring may be caused during the process of image dodging, 2) Cloudy areas may be passed through by automatically generated seamlines. To address these problems, an automatic mosaicking method is proposed for cloudy satellite imagery in this paper. Firstly, modified Otsu thresholding and morphological processing are employed to extract cloudy areas and obtain the percentage of cloud cover. Then, cloud detection results are used to optimize the process of dodging and mosaicking. Thus, the mosaic image can be combined with more clear-sky areas instead of cloudy areas. Besides, clear-sky areas will be clear and distortionless. The Chinese GF-1 wide-field-of-view orthoimages are employed as experimental data. The performance of the proposed approach is evaluated in four aspects: the effect of cloud detection, the sharpness of clear-sky areas, the rationality of seamlines and efficiency. The evaluation results demonstrated that the mosaic image obtained by our method has fewer clouds, better internal color consistency and better visual clarity compared with that obtained by traditional method. The time consumed by the proposed method for 17 scenes of GF-1 orthoimages is within 4 hours on a desktop computer. The efficiency can meet the general production requirements for massive satellite imagery.

  9. IAEA Safeguards: Cost/benefit analysis of commercial satellite imagery

    International Nuclear Information System (INIS)

    Andersson, Christer

    1999-03-01

    A major milestone in the efforts to strengthen the Safeguards System was reached in May 1997 when the Board of Governors approved a 'Model Protocol Additional to Safeguards Agreements'. The Protocol provides the legal basis necessary to enhance the Agency's ability to detect undeclared nuclear material and activities by using information available from open sources to complement the declarations made by Member States. Commercially available high-resolution satellite data has emerged as one potential complementary open information source to support the traditional and extended Safeguard activities of IAEA. This document constitutes a first report from SSC Satellitbild giving the Agency tentative and initial estimates of the potential cost and time-savings possible with the new proposed technology. The initial cost/benefit simulation will be further finalised in the following 'Implementation Blueprint' study. The general foundation and starting point for the cost/benefit calculation is to simulate a new efficient and relatively small 'imagery unit' within the IAEA, capable of performing advanced image processing as a tool for various safeguards tasks. The image processing capacity is suggested to be task- and interpretation-oriented. The study was performed over a period of 1,5 weeks in late 1998, and is based upon interviews of IAEA staff, reviews of existing IAEA documentation as well as from SSC Satellitbild's long-standing experience of satellite imagery and field missions. The cost/benefit analysis is based on a spreadsheet simulation of five potential applications of commercial satellite imagery: Reference information; Confirmation of Agency acquired and Member State supplied data; Change detection and on-going monitoring; Assessing open source information available to the Agency; Detecting undeclared activities and undeclared sites. The study confirms that the proposed concept of a relatively small 'imagery unit' using high-resolution data will be a sound and

  10. IAEA Safeguards: Cost/benefit analysis of commercial satellite imagery

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Christer [SSC Satellitbild AB, Kiruna (Sweden)

    1999-03-01

    A major milestone in the efforts to strengthen the Safeguards System was reached in May 1997 when the Board of Governors approved a `Model Protocol Additional to Safeguards Agreements`. The Protocol provides the legal basis necessary to enhance the Agency`s ability to detect undeclared nuclear material and activities by using information available from open sources to complement the declarations made by Member States. Commercially available high-resolution satellite data has emerged as one potential complementary open information source to support the traditional and extended Safeguard activities of IAEA. This document constitutes a first report from SSC Satellitbild giving the Agency tentative and initial estimates of the potential cost and time-savings possible with the new proposed technology. The initial cost/benefit simulation will be further finalised in the following `Implementation Blueprint` study. The general foundation and starting point for the cost/benefit calculation is to simulate a new efficient and relatively small `imagery unit` within the IAEA, capable of performing advanced image processing as a tool for various safeguards tasks. The image processing capacity is suggested to be task- and interpretation-oriented. The study was performed over a period of 1,5 weeks in late 1998, and is based upon interviews of IAEA staff, reviews of existing IAEA documentation as well as from SSC Satellitbild`s long-standing experience of satellite imagery and field missions. The cost/benefit analysis is based on a spreadsheet simulation of five potential applications of commercial satellite imagery: Reference information; Confirmation of Agency acquired and Member State supplied data; Change detection and on-going monitoring; Assessing open source information available to the Agency; Detecting undeclared activities and undeclared sites. The study confirms that the proposed concept of a relatively small `imagery unit` using high-resolution data will be a sound and

  11. VHR satellite imagery for humanitarian crisis management: a case study

    Science.gov (United States)

    Bitelli, Gabriele; Eleias, Magdalena; Franci, Francesca; Mandanici, Emanuele

    2017-09-01

    During the last years, remote sensing data along with GIS have been largely employed for supporting emergency management activities. In this context, the use of satellite images and derived map products has become more common also in the different phases of humanitarian crisis response. In this work very high resolution satellite imagery was processed to assess the evolution of Za'atari Refugee Camp, built in Jordan in 2012 by the UN Refugee Agency to host Syrian refugees. Multispectral satellite scenes of the Za'atari area were processed by means of object-based classifications. The main aim of the present work is the development of a semiautomated procedure for multi-temporal camp monitoring with particular reference to the dwellings detection. Whilst in the emergency mapping domain automation of feature extraction is widely investigated, in the field of humanitarian missions the information is often extracted by means of photointerpretation of the satellite data. This approach requires time for the interpretation; moreover, it is not reliable enough in complex situations, where features of interest are often small, heterogeneous and inconsistent. Therefore, the present paper discusses a methodology to obtain information for assisting humanitarian crisis management, using a semi-automatic classification approach applied to satellite imagery.

  12. Satellite Imagery Assisted Road-Based Visual Navigation System

    Science.gov (United States)

    Volkova, A.; Gibbens, P. W.

    2016-06-01

    There is a growing demand for unmanned aerial systems as autonomous surveillance, exploration and remote sensing solutions. Among the key concerns for robust operation of these systems is the need to reliably navigate the environment without reliance on global navigation satellite system (GNSS). This is of particular concern in Defence circles, but is also a major safety issue for commercial operations. In these circumstances, the aircraft needs to navigate relying only on information from on-board passive sensors such as digital cameras. An autonomous feature-based visual system presented in this work offers a novel integral approach to the modelling and registration of visual features that responds to the specific needs of the navigation system. It detects visual features from Google Earth* build a feature database. The same algorithm then detects features in an on-board cameras video stream. On one level this serves to localise the vehicle relative to the environment using Simultaneous Localisation and Mapping (SLAM). On a second level it correlates them with the database to localise the vehicle with respect to the inertial frame. The performance of the presented visual navigation system was compared using the satellite imagery from different years. Based on comparison results, an analysis of the effects of seasonal, structural and qualitative changes of the imagery source on the performance of the navigation algorithm is presented. * The algorithm is independent of the source of satellite imagery and another provider can be used

  13. Landslide detection using very high-resolution satellite imageries

    Science.gov (United States)

    Suga, Yuzo; Konishi, Tomohisa

    2012-10-01

    The heavy rain induced by the 12th typhoon caused landslide disaster at Kii Peninsula in the middle part of Japan. We propose a quick response method for landslide disaster mapping using very high resolution (VHR) satellite imageries. Especially, Synthetic Aperture Radar (SAR) is effective because it has the capability of all weather and day/night observation. In this study, multi-temporal COSMO-SkyMed imageries were used to detect the landslide areas. It was difficult to detect the landslide areas using only backscatter change pattern derived from pre- and post-disaster COSMOSkyMed imageries. Thus, the authors adopted a correlation analysis which the moving window was selected for the correlation coefficient calculation. Low value of the correlation coefficient reflects land cover change between pre- and post-disaster imageries. This analysis is effective for the detection of landslides using SAR data. The detected landslide areas were compared with the area detected by EROS-B high resolution optical image. In addition, we have developed 3D viewing system for geospatial visualizing of the damaged area using these satellite image data with digital elevation model. The 3D viewing system has the performance of geographic measurement with respect to elevation height, area and volume calculation, and cross section drawing including landscape viewing and image layer construction using a mobile personal computer with interactive operation. As the result, it was verified that a quick response for the detection of landslide disaster at the initial stage could be effectively performed using optical and SAR very high resolution satellite data by means of 3D viewing system.

  14. Processing Satellite Imagery To Detect Waste Tire Piles

    Science.gov (United States)

    Skiles, Joseph; Schmidt, Cynthia; Wuinlan, Becky; Huybrechts, Catherine

    2007-01-01

    A methodology for processing commercially available satellite spectral imagery has been developed to enable identification and mapping of waste tire piles in California. The California Integrated Waste Management Board initiated the project and provided funding for the method s development. The methodology includes the use of a combination of previously commercially available image-processing and georeferencing software used to develop a model that specifically distinguishes between tire piles and other objects. The methodology reduces the time that must be spent to initially survey a region for tire sites, thereby increasing inspectors and managers time available for remediation of the sites. Remediation is needed because millions of used tires are discarded every year, waste tire piles pose fire hazards, and mosquitoes often breed in water trapped in tires. It should be possible to adapt the methodology to regions outside California by modifying some of the algorithms implemented in the software to account for geographic differences in spectral characteristics associated with terrain and climate. The task of identifying tire piles in satellite imagery is uniquely challenging because of their low reflectance levels: Tires tend to be spectrally confused with shadows and deep water, both of which reflect little light to satellite-borne imaging systems. In this methodology, the challenge is met, in part, by use of software that implements the Tire Identification from Reflectance (TIRe) model. The development of the TIRe model included incorporation of lessons learned in previous research on the detection and mapping of tire piles by use of manual/ visual and/or computational analysis of aerial and satellite imagery. The TIRe model is a computational model for identifying tire piles and discriminating between tire piles and other objects. The input to the TIRe model is the georeferenced but otherwise raw satellite spectral images of a geographic region to be surveyed

  15. Volumetric Forest Change Detection Through Vhr Satellite Imagery

    Science.gov (United States)

    Akca, Devrim; Stylianidis, Efstratios; Smagas, Konstantinos; Hofer, Martin; Poli, Daniela; Gruen, Armin; Sanchez Martin, Victor; Altan, Orhan; Walli, Andreas; Jimeno, Elisa; Garcia, Alejandro

    2016-06-01

    Quick and economical ways of detecting of planimetric and volumetric changes of forest areas are in high demand. A research platform, called FORSAT (A satellite processing platform for high resolution forest assessment), was developed for the extraction of 3D geometric information from VHR (very-high resolution) imagery from satellite optical sensors and automatic change detection. This 3D forest information solution was developed during a Eurostars project. FORSAT includes two main units. The first one is dedicated to the geometric and radiometric processing of satellite optical imagery and 2D/3D information extraction. This includes: image radiometric pre-processing, image and ground point measurement, improvement of geometric sensor orientation, quasiepipolar image generation for stereo measurements, digital surface model (DSM) extraction by using a precise and robust image matching approach specially designed for VHR satellite imagery, generation of orthoimages, and 3D measurements in single images using mono-plotting and in stereo images as well as triplets. FORSAT supports most of the VHR optically imagery commonly used for civil applications: IKONOS, OrbView - 3, SPOT - 5 HRS, SPOT - 5 HRG, QuickBird, GeoEye-1, WorldView-1/2, Pléiades 1A/1B, SPOT 6/7, and sensors of similar type to be expected in the future. The second unit of FORSAT is dedicated to 3D surface comparison for change detection. It allows users to import digital elevation models (DEMs), align them using an advanced 3D surface matching approach and calculate the 3D differences and volume changes between epochs. To this end our 3D surface matching method LS3D is being used. FORSAT is a single source and flexible forest information solution with a very competitive price/quality ratio, allowing expert and non-expert remote sensing users to monitor forests in three and four dimensions from VHR optical imagery for many forest information needs. The capacity and benefits of FORSAT have been tested in

  16. Strengthening IAEA safeguards using high-resolution commercial satellite imagery

    International Nuclear Information System (INIS)

    Zhang Hui

    2001-01-01

    Full text: In May 1997, the IAEA Board of Governors adopted the Additional Safeguards Protocol to improve its ability to detect the undeclared production of fissile material. This new strengthened safeguards system has opened the door for the IAEA to use of all types of information, including the potential use of commercial satellite imagery. We have therefore been investigating the feasibility of strengthening IAEA safeguards using commercial satellite imagery. Based on our analysis on a number of one-meter resolution IKONOS satellite images of military nuclear production facilities at nuclear states including Russia, China, India, Pakistan and Israel, we found that the new high-resolution commercial satellite imagery would play a new and valuable role in strengthening IAEA safeguards. Since 1999, images with a resolution of one meter have been available commercially from Space Imaging's IKONOS satellite. One-meter images from other companies are expected to enter the market soon. Although still an order of magnitude less capable than military imaging satellites, the capabilities of these new high-resolution commercial satellites are good enough to detect and identify the major visible characteristics of nuclear production facilities and sites. Unlike the classified spy satellite photos limited to few countries, the commercial satellite imagery is commercially available to anyone who wants to purchase it. Therefore, the new commercial satellite open a new chance that each state, international organizations, and non-governmental groups could use the commercial images to play a more proactive role in monitoring the nuclear activities in related countries and verifying the compliance of non-proliferation agreements. This could help galvanize support for intensified efforts to slow the pace of nuclear proliferation. To produce fissile materials (plutonium and highly enriched uranium) for weapons, a country would operate dedicated plutonium-production reactors and the

  17. Satellite Imagery Production and Processing Using Apache Hadoop

    Science.gov (United States)

    Hill, D. V.; Werpy, J.

    2011-12-01

    The United States Geological Survey's (USGS) Earth Resources Observation and Science (EROS) Center Land Science Research and Development (LSRD) project has devised a method to fulfill its processing needs for Essential Climate Variable (ECV) production from the Landsat archive using Apache Hadoop. Apache Hadoop is the distributed processing technology at the heart of many large-scale, processing solutions implemented at well-known companies such as Yahoo, Amazon, and Facebook. It is a proven framework and can be used to process petabytes of data on thousands of processors concurrently. It is a natural fit for producing satellite imagery and requires only a few simple modifications to serve the needs of science data processing. This presentation provides an invaluable learning opportunity and should be heard by anyone doing large scale image processing today. The session will cover a description of the problem space, evaluation of alternatives, feature set overview, configuration of Hadoop for satellite image processing, real-world performance results, tuning recommendations and finally challenges and ongoing activities. It will also present how the LSRD project built a 102 core processing cluster with no financial hardware investment and achieved ten times the initial daily throughput requirements with a full time staff of only one engineer. Satellite Imagery Production and Processing Using Apache Hadoop is presented by David V. Hill, Principal Software Architect for USGS LSRD.

  18. Real-time new satellite product demonstration from microwave sensors and GOES-16 at NRL TC web

    Science.gov (United States)

    Cossuth, J.; Richardson, K.; Surratt, M. L.; Bankert, R.

    2017-12-01

    The Naval Research Laboratory (NRL) Tropical Cyclone (TC) satellite webpage (https://www.nrlmry.navy.mil/TC.html) provides demonstration analyses of storm imagery to benefit operational TC forecast centers around the world. With the availability of new spectral information provided by GOES-16 satellite data and recent research into improved visualization methods of microwave data, experimental imagery was operationally tested to visualize the structural changes of TCs during the 2017 hurricane season. This presentation provides an introduction into these innovative satellite analysis methods, NRL's next generation satellite analysis system (the Geolocated Information Processing System, GeoIPSTM), and demonstration the added value of additional spectral frequencies when monitoring storms in near-realtime.

  19. NASA's Land, Atmosphere Near real-time Capability for EOS (LANCE): Changing patterns in the use of NRT satellite imagery

    Science.gov (United States)

    Davies, D.; Michael, K.; Schmaltz, J. E.; Harrison, S.; Ding, F.; Durbin, P. B.; Boller, R. A.; Cechini, M. F.; Rinsland, P. L.; Ye, G.; Mauoka, E.

    2015-12-01

    NASA's Land, Atmosphere Near real-time Capability for EOS (Earth Observing System) (LANCE) provides data and imagery approximately 3 hours from satellite observation, to monitor natural events globally and to meet the needs of the near real-time (NRT) applications community. This article describes LANCE, and how the use of NRT data and imagery has evolved. Since 2010 there has been a four-fold increase in both the volume of data and the number of files downloaded. Over the last year there has been a marked shift in the way in which users are accessing NRT imagery; users are gravitating towards Worldview and the Global Imagery Browse Services (GIBS) and away from MODIS Rapid Response, in part due to the increased exposure through social media. In turn this is leading to a broader range of users viewing NASA NRT imagery. This article also describes new, and planned, product enhancements to LANCE. Over the last year, LANCE has expanded to support NRT products from the Advanced Microwave Scanning Radiometer 2 (AMSR2), and the Multi-angle Imaging SpectroRadiometer (MISR). LANCE elements are also planning to ingest and process NRT data from the Visible Infrared Imager Radiometer Suite (VIIRS), and the advanced Ozone Mapping and Profiler Suite (OMPS) instruments onboard the Suomi National Polar-orbiting Partnership (S-NPP) satellite in the near future.

  20. Towards a climatology of tropical cyclone morphometric structures using a newly standardized passive microwave satellite dataset

    Science.gov (United States)

    Cossuth, J.; Hart, R. E.

    2013-12-01

    storm's rainband and eyewall organization. Ultimately, this project develops a consistent climatology of TC structures using a new database of research-quality historical TC satellite microwave observations. Not only can such data sets more accurately study TC structural evolution, but they may facilitate automated TC intensity estimates and provide methods to enhance current operational and research products, such as at the NRL TC webpage (http://www.nrlmry.navy.mil/TC.html). The process of developing the dataset and possible objective definitions of TC structures using passive microwave imagery will be described, with preliminary results suggesting new methods to identify TC structures that may interrogate and expand upon physical and dynamical theories. Structural metrics such as threshold analysis of the outlines of the TC shape as well as methods to diagnose the inner-core size, completion, and magnitude will be introduced.

  1. VERTICAL ACCURACY COMPARISON OF DIGITAL ELEVATION MODEL FROM LIDAR AND MULTITEMPORAL SATELLITE IMAGERY

    Directory of Open Access Journals (Sweden)

    J. Octariady

    2017-05-01

    Full Text Available Digital elevation model serves to illustrate the appearance of the earth's surface. DEM can be produced from a wide variety of data sources including from radar data, LiDAR data, and stereo satellite imagery. Making the LiDAR DEM conducted using point cloud data from LiDAR sensor. Making a DEM from stereo satellite imagery can be done using same temporal or multitemporal stereo satellite imagery. How much the accuracy of DEM generated from multitemporal stereo stellite imagery and LiDAR data is not known with certainty. The study was conducted using LiDAR DEM data and multitemporal stereo satellite imagery DEM. Multitemporal stereo satellite imagery generated semi-automatically by using 3 scene stereo satellite imagery with acquisition 2013–2014. The high value given each of DEM serve as the basis for calculating high accuracy DEM respectively. The results showed the high value differences in the fraction of the meter between LiDAR DEM and multitemporal stereo satellite imagery DEM.

  2. Rain detection over land surfaces using passive microwave satellite data

    NARCIS (Netherlands)

    Bauer, P.; Burose, D.; Schulz, J.

    2002-01-01

    An algorithm is presented for the detection of surface rainfall using passive microwave measurements by satellite radiometers. The technique consists of a two-stage approach to distinguish precipitation signatures from other effects: (1) Contributions from slowly varying parameters (surface type and

  3. Users, uses, and value of Landsat satellite imagery: results from the 2012 survey of users

    Science.gov (United States)

    Miller, Holly M.; Richardson, Leslie A.; Koontz, Stephen R.; Loomis, John; Koontz, Lynne

    2013-01-01

    Landsat satellites have been operating since 1972, providing a continuous global record of the Earth’s land surface. The imagery is currently available at no cost through the U.S. Geological Survey (USGS). Social scientists at the USGS Fort Collins Science Center conducted an extensive survey in early 2012 to explore who uses Landsat imagery, how they use the imagery, and what the value of the imagery is to them. The survey was sent to all users registered with USGS who had accessed Landsat imagery in the year prior to the survey and over 11,000 current Landsat imagery users responded. The results of the survey revealed that respondents from many sectors use Landsat imagery in myriad project locations and scales, as well as application areas. The value of Landsat imagery to these users was demonstrated by the high importance of and dependence on the imagery, the numerous environmental and societal benefits observed from projects using Landsat imagery, the potential negative impacts on users’ work if Landsat imagery was no longer available, and the substantial aggregated annual economic benefit from the imagery. These results represent only the value of Landsat to users registered with USGS; further research would help to determine what the value of the imagery is to a greater segment of the population, such as downstream users of the imagery and imagery-derived products.

  4. Surface Characteristics of Green Island Wakes from Satellite Imagery

    Science.gov (United States)

    Cheng, Kai-Ho; Hsu, Po-Chun; Ho, Chung-Ru

    2017-04-01

    Characteristics of an island wake induced by the Kuroshio Current flows pass by Green Island, a small island 40 km off southeast of Taiwan is investigated by the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite imagery. The MODIS sea surface temperature (SST) and chlorophyll-a (chl-a) imagery is produced at 250-meter resolution from 2014 to 2015 using the SeaDAS software package which is developed by the National Aeronautics and Space Administration. The wake occurrence is 59% observed from SST images during the data span. The average cooling area is 190 km2, but the area is significantly changed with wind directions. The wake area is increased during southerly winds and is reduced during northerly winds. Besides, the average cooling SST was about 2.1 oC between the front and rear island. Comparing the temperature difference between the wake and its left side, the difference is 1.96 oC. In addition, the wakes have 1 3 times higher than normal in chlorophyll concentration. The results indicate the island mass effect makes the surface water of Green island wake colder and chl-a higher.

  5. Upper atmospheric gravity wave details revealed in nightglow satellite imagery

    Science.gov (United States)

    Miller, Steven D.; Straka, William C.; Yue, Jia; Smith, Steven M.; Alexander, M. Joan; Hoffmann, Lars; Setvák, Martin; Partain, Philip T.

    2015-01-01

    Gravity waves (disturbances to the density structure of the atmosphere whose restoring forces are gravity and buoyancy) comprise the principal form of energy exchange between the lower and upper atmosphere. Wave breaking drives the mean upper atmospheric circulation, determining boundary conditions to stratospheric processes, which in turn influence tropospheric weather and climate patterns on various spatial and temporal scales. Despite their recognized importance, very little is known about upper-level gravity wave characteristics. The knowledge gap is mainly due to lack of global, high-resolution observations from currently available satellite observing systems. Consequently, representations of wave-related processes in global models are crude, highly parameterized, and poorly constrained, limiting the description of various processes influenced by them. Here we highlight, through a series of examples, the unanticipated ability of the Day/Night Band (DNB) on the NOAA/NASA Suomi National Polar-orbiting Partnership environmental satellite to resolve gravity structures near the mesopause via nightglow emissions at unprecedented subkilometric detail. On moonless nights, the Day/Night Band observations provide all-weather viewing of waves as they modulate the nightglow layer located near the mesopause (∼90 km above mean sea level). These waves are launched by a variety of physical mechanisms, ranging from orography to convection, intensifying fronts, and even seismic and volcanic events. Cross-referencing the Day/Night Band imagery with conventional thermal infrared imagery also available helps to discern nightglow structures and in some cases to attribute their sources. The capability stands to advance our basic understanding of a critical yet poorly constrained driver of the atmospheric circulation. PMID:26630004

  6. Earth mapping - aerial or satellite imagery comparative analysis

    Science.gov (United States)

    Fotev, Svetlin; Jordanov, Dimitar; Lukarski, Hristo

    Nowadays, solving the tasks for revision of existing map products and creation of new maps requires making a choice of the land cover image source. The issue of the effectiveness and cost of the usage of aerial mapping systems versus the efficiency and cost of very-high resolution satellite imagery is topical [1, 2, 3, 4]. The price of any remotely sensed image depends on the product (panchromatic or multispectral), resolution, processing level, scale, urgency of task and on whether the needed image is available in the archive or has to be requested. The purpose of the present work is: to make a comparative analysis between the two approaches for mapping the Earth having in mind two parameters: quality and cost. To suggest an approach for selection of the map information sources - airplane-based or spacecraft-based imaging systems with very-high spatial resolution. Two cases are considered: area that equals approximately one satellite scene and area that equals approximately the territory of Bulgaria.

  7. Bias correction for rainrate retrievals from satellite passive microwave sensors

    Science.gov (United States)

    Short, David A.

    1990-01-01

    Rainrates retrieved from past and present satellite-borne microwave sensors are affected by a fundamental remote sensing problem. Sensor fields-of-view are typically large enough to encompass substantial rainrate variability, whereas the retrieval algorithms, based on radiative transfer calculations, show a non-linear relationship between rainrate and microwave brightness temperature. Retrieved rainrates are systematically too low. A statistical model of the bias problem shows that bias correction factors depend on the probability distribution of instantaneous rainrate and on the average thickness of the rain layer.

  8. TESTFIELD TRENTO: GEOMETRIC EVALUATION OF VERY HIGH RESOLUTION SATELLITE IMAGERY

    Directory of Open Access Journals (Sweden)

    G. Agugiaro

    2012-07-01

    Full Text Available Today the use of spaceborne Very High Spatial Resolution (VHSR optical sensors for automatic 3D information extraction is increasing in the scientific and civil communities. The 3D Optical Metrology (3DOM Unit of the Bruno Kessler Foundation (FBK in Trento (Italy has collected stereo VHSR satellite imagery, as well as aerial and terrestrial data over Trento, with the aim to create a complete data collection with state-of-the-art datasets for investigations on image analysis, automatic digital surface model (DSM generation, 2D/3D feature extraction, city modelling and data fusion. The testfield region covers the city of Trento, characterised by very dense urban (historical centre, residential and industrial areas, and the surrounding hills and steep mountains (approximate height range 200-2100 m with cultivations, forests and bare soil. This paper reports the analysis conducted in FBK on the VHSR spaceborne imagery of Trento testfield for 3D information extraction. The data include two stereo-pairs acquired by WorldView-2 in August 2010 and by GeoEye-1 in September 2011 in panchromatic and multispectral mode, together with their original Rational Polynomial Coefficients (RPC, and the position and description of well distributed ground points. For reference and validation, a DSM from airborne LiDAR acquisition is used. The paper gives details on the project and the dataset characteristics. The results achieved by 3DOM on DSM extraction from WorldView-2 and GeoEye-1 stereo-pairs are shown and commented.

  9. Summer Arctic sea ice character from satellite microwave data

    Science.gov (United States)

    Carsey, F. D.

    1985-01-01

    It is pointed out that Arctic sea ice and its environment undergo a number of changes during the summer period. Some of these changes affect the ice cover properties and, in turn, their response to thermal and mechanical forcing throughout the year. The main objective of this investigation is related to the development of a method for estimating the areal coverage of exposed ice, melt ponds, and leads, which are the basic surface variables determining the local surface albedo. The study is based on data obtained in a field investigation conducted from Mould Bay (NWT), Nimbus 5 satellite data, and Seasat data. The investigation demonstrates that microwave data from satellites, especially microwave brightness temperature, provide good data for estimating important characteristics of summer sea ice cover.

  10. Nearshore Benthic Habitats of Timor-Leste Derived from WorldView-2 Satellite Imagery

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Benthic habitat classes were derived for nearshore waters (< 20 m depths) around Timor-Leste from DigitalGlobe WorldView-2 satellite imagery, acquired from Jan 26...

  11. Landsat 7 ETM/1G satellite imagery - Hawaiian Islands cloud-free mosaics

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Cloud-free Landsat satellite imagery mosaics of the islands of the main 8 Hawaiian Islands (Hawaii, Maui, Kahoolawe, Lanai, Molokai, Oahu, Kauai and Niihau). Landsat...

  12. Estimated Depth Maps of the Northwestern Hawaiian Islands Derived from High Resolution IKONOS Satellite Imagery (Draft)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Estimated shallow-water, depth maps were produced using rule-based, semi-automated image analysis of high-resolution satellite imagery for nine locations in the...

  13. The development of a land use inventory for regional planning using satellite imagery

    Science.gov (United States)

    Hessling, A. H.; Mara, T. G.

    1975-01-01

    Water quality planning in Ohio, Kentucky, and Indiana is reviewed in terms of use of land use data and satellite imagery. A land use inventory applicable to water quality planning and developed through computer processing of LANDSAT-1 imagery is described.

  14. Integrating satellite imagery with simulation modeling to improve burn severity mapping

    Science.gov (United States)

    Eva C. Karau; Pamela G. Sikkink; Robert E. Keane; Gregory K. Dillon

    2014-01-01

    Both satellite imagery and spatial fire effects models are valuable tools for generating burn severity maps that are useful to fire scientists and resource managers. The purpose of this study was to test a new mapping approach that integrates imagery and modeling to create more accurate burn severity maps. We developed and assessed a statistical model that combines the...

  15. A Study on the Use of Commercial Satellite Imagery for Monitoring of Yongbyon Nuclear Activities

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung Hyun; Kim, Min Soo [Korea Institute of Nuclear Nonproliferation and Control Daejeon (Korea, Republic of)

    2014-10-15

    It is particularly useful for the areas that are hard to access, such as the DPRK. On April 2009, North Korea expelled IAEA inspectors and USA disabling team at Yongbyon. Since then, there is not much left except for satellite imagery analysis. In this paper, we focused on the growing role and importance of commercial satellite imagery analysis for detecting and identifying nuclear activities at Yongbyon. For this, we examined monitoring capability of commercial satellite imagery status of commercial satellite imagery analysis to monitor the Yongbyon nuclear site. And we suggested several recommendations for enhancing the monitoring and analyzing capability. Current commercial satellite imagery has proven effective in monitoring for Yongbyon nuclear activities, especially change detection including the new construction activities. But identification and technical analysis of the operation status is still limited. In case of North Korea, operation status of 5 MWe reactor should be clearly identified to assess its plutonium production capability and to set up the negotiation strategy. To enhance the monitoring capability, we need much more thermal infrared imagery and radar imagery.

  16. Vessel and oil spill early detection using COSMO satellite imagery

    Science.gov (United States)

    Revollo, Natalia V.; Delrieux, Claudio A.

    2017-10-01

    Oil spillage is one of the most common sources of environmental damage in places where coastal wild life is found in natural reservoirs. This is especially the case in the Patagonian coast, with a littoral more than 5000 km long and a surface above a million and half square km. In addition, furtive fishery activities in Argentine waters are depleting the food supplies of several species, altering the ecological equilibrium. For this reason, early oil spills and vessel detection is an imperative surveillance task for environmental and governmental authorities. However, given the huge geographical extension, human assisted monitoring is unfeasible, and therefore real time remote sensing technologies are the only operative and economically feasible solution. In this work we describe the theoretical foundations and implementation details of a system specifically designed to take advantage of the SAR imagery delivered by two satellite constellations (the SAOCOM mission, developed by the Argentine Space Agency, and the COSMO mission, developed by the Italian Space Agency), to provide real-time detection of vessels and oil spills. The core of the system is based on pattern recognition over a statistical characterization of the texture patterns arising in the positive and negative conditions (i.e., vessel, oil, or plain sea surfaces). Training patterns were collected from a large number of previously reported contacts tagged by experts in the National Commission on Space Activities (CONAE). The resulting system performs well above the sensitivity and specificity of other avalilable systems.

  17. Predicting Near Real-Time Inundation Occurrence from Complimentary Satellite Microwave Brightness Temperature Observations

    Science.gov (United States)

    Fisher, C. K.; Pan, M.; Wood, E. F.

    2017-12-01

    Throughout the world, there is an increasing need for new methods and data that can aid decision makers, emergency responders and scientists in the monitoring of flood events as they happen. In many regions, it is possible to examine the extent of historical and real-time inundation occurrence from visible and infrared imagery provided by sensors such as MODIS or the Landsat TM; however, this is not possible in regions that are densely vegetated or are under persistent cloud cover. In addition, there is often a temporal mismatch between the sampling of a particular sensor and a given flood event, leading to limited observations in near real-time. As a result, there is a need for alternative methods that take full advantage of complimentary remotely sensed data sources, such as available microwave brightness temperature observations (e.g., SMAP, SMOS, AMSR2, AMSR-E, and GMI), to aid in the estimation of global flooding. The objective of this work was to develop a high-resolution mapping of inundated areas derived from multiple satellite microwave sensor observations with a daily temporal resolution. This system consists of first retrieving water fractions from complimentary microwave sensors (AMSR-2 and SMAP) which may spatially and temporally overlap in the region of interest. Using additional information in a Random Forest classifier, including high resolution topography and multiple datasets of inundated area (both historical and empirical), the resulting retrievals are spatially downscaled to derive estimates of the extent of inundation at a scale relevant to management and flood response activities ( 90m or better) instead of the relatively coarse resolution water fractions, which are limited by the microwave sensor footprints ( 5-50km). Here we present the training and validation of this method for the 2015 floods that occurred in Houston, Texas. Comparing the predicted inundation against historical occurrence maps derived from the Landsat TM record and MODIS

  18. Creating soil moisture maps based on radar satellite imagery

    Science.gov (United States)

    Hnatushenko, Volodymyr; Garkusha, Igor; Vasyliev, Volodymyr

    2017-10-01

    The presented work is related to a study of mapping soil moisture basing on radar data from Sentinel-1 and a test of adequacy of the models constructed on the basis of data obtained from alternative sources. Radar signals are reflected from the ground differently, depending on its properties. In radar images obtained, for example, in the C band of the electromagnetic spectrum, soils saturated with moisture usually appear in dark tones. Although, at first glance, the problem of constructing moisture maps basing on radar data seems intuitively clear, its implementation on the basis of the Sentinel-1 data on an industrial scale and in the public domain is not yet available. In the process of mapping, for verification of the results, measurements of soil moisture obtained from logs of the network of climate stations NOAA US Climate Reference Network (USCRN) were used. This network covers almost the entire territory of the United States. The passive microwave radiometers of Aqua and SMAP satellites data are used for comparing processing. In addition, other supplementary cartographic materials were used, such as maps of soil types and ready moisture maps. The paper presents a comparison of the effect of the use of certain methods of roughening the quality of radar data on the result of mapping moisture. Regression models were constructed showing dependence of backscatter coefficient values Sigma0 for calibrated radar data of different spatial resolution obtained at different times on soil moisture values. The obtained soil moisture maps of the territories of research, as well as the conceptual solutions about automation of operations of constructing such digital maps, are presented. The comparative assessment of the time required for processing a given set of radar scenes with the developed tools and with the ESA SNAP product was carried out.

  19. The microwave limb sounder for the Upper Atmosphere Research Satellite

    Science.gov (United States)

    Waters, J. W.; Peckham, G. E.; Suttie, R. A.; Curtis, P. D.; Maddison, B. J.; Harwood, R. S.

    1988-01-01

    The Microwave Limb Sounder was designed to map the concentrations of trace gases from the stratosphere to the lower thermosphere, to improve understanding of the photochemical reactions which take place in this part of the atmosphere. The instrument will measure the intensity of thermal radiation from molecules in the atmosphere at frequencies corresponding to rotational absorption bands of chlorine monoxide, ozone, and water vapor. Molecular concentration profiles will be determined over a height range of 15 to 80 km (20 to 45 km for C10). The 57 deg inclination orbit proposed for the Upper Atmosphere Research Satellite will allow global coverage.

  20. High-resolution satellite imagery is an important yet underutilized resource in conservation biology.

    Science.gov (United States)

    Boyle, Sarah A; Kennedy, Christina M; Torres, Julio; Colman, Karen; Pérez-Estigarribia, Pastor E; de la Sancha, Noé U

    2014-01-01

    Technological advances and increasing availability of high-resolution satellite imagery offer the potential for more accurate land cover classifications and pattern analyses, which could greatly improve the detection and quantification of land cover change for conservation. Such remotely-sensed products, however, are often expensive and difficult to acquire, which prohibits or reduces their use. We tested whether imagery of high spatial resolution (≤5 m) differs from lower-resolution imagery (≥30 m) in performance and extent of use for conservation applications. To assess performance, we classified land cover in a heterogeneous region of Interior Atlantic Forest in Paraguay, which has undergone recent and dramatic human-induced habitat loss and fragmentation. We used 4 m multispectral IKONOS and 30 m multispectral Landsat imagery and determined the extent to which resolution influenced the delineation of land cover classes and patch-level metrics. Higher-resolution imagery more accurately delineated cover classes, identified smaller patches, retained patch shape, and detected narrower, linear patches. To assess extent of use, we surveyed three conservation journals (Biological Conservation, Biotropica, Conservation Biology) and found limited application of high-resolution imagery in research, with only 26.8% of land cover studies analyzing satellite imagery, and of these studies only 10.4% used imagery ≤5 m resolution. Our results suggest that high-resolution imagery is warranted yet under-utilized in conservation research, but is needed to adequately monitor and evaluate forest loss and conversion, and to delineate potentially important stepping-stone fragments that may serve as corridors in a human-modified landscape. Greater access to low-cost, multiband, high-resolution satellite imagery would therefore greatly facilitate conservation management and decision-making.

  1. Visualizing Cloud Properties and Satellite Imagery: A Tool for Visualization and Information Integration

    Science.gov (United States)

    Chee, T.; Nguyen, L.; Smith, W. L., Jr.; Spangenberg, D.; Palikonda, R.; Bedka, K. M.; Minnis, P.; Thieman, M. M.; Nordeen, M.

    2017-12-01

    Providing public access to research products including cloud macro and microphysical properties and satellite imagery are a key concern for the NASA Langley Research Center Cloud and Radiation Group. This work describes a web based visualization tool and API that allows end users to easily create customized cloud product and satellite imagery, ground site data and satellite ground track information that is generated dynamically. The tool has two uses, one to visualize the dynamically created imagery and the other to provide access to the dynamically generated imagery directly at a later time. Internally, we leverage our practical experience with large, scalable application practices to develop a system that has the largest potential for scalability as well as the ability to be deployed on the cloud to accommodate scalability issues. We build upon NASA Langley Cloud and Radiation Group's experience with making real-time and historical satellite cloud product information, satellite imagery, ground site data and satellite track information accessible and easily searchable. This tool is the culmination of our prior experience with dynamic imagery generation and provides a way to build a "mash-up" of dynamically generated imagery and related kinds of information that are visualized together to add value to disparate but related information. In support of NASA strategic goals, our group aims to make as much scientific knowledge, observations and products available to the citizen science, research and interested communities as well as for automated systems to acquire the same information for data mining or other analytic purposes. This tool and the underlying API's provide a valuable research tool to a wide audience both as a standalone research tool and also as an easily accessed data source that can easily be mined or used with existing tools.

  2. Antartic sea ice, 1973 - 1976: Satellite passive-microwave observations

    Science.gov (United States)

    Zwally, H. J.; Comiso, J. C.; Parkinson, C. L.; Campbell, W. J.; Carsey, F. D.; Gloersen, P.

    1983-01-01

    Data from the Electrically Scanning Microwave Radiometer (ESMR) on the Nimbus 5 satellite are used to determine the extent and distribution of Antarctic sea ice. The characteristics of the southern ocean, the mathematical formulas used to obtain quantitative sea ice concentrations, the general characteristics of the seasonal sea ice growth/decay cycle and regional differences, and the observed seasonal growth/decay cycle for individual years and interannual variations of the ice cover are discussed. The sea ice data from the ESMR are presented in the form of color-coded maps of the Antarctic and the southern oceans. The maps show brightness temperatures and concentrations of pack ice averaged for each month, 4-year monthly averages, and month-to-month changes. Graphs summarizing the results, such as areas of sea ice as a function of time in the various sectors of the southern ocean are included. The images demonstrate that satellite microwave data provide unique information on large-scale sea ice conditions for determining climatic conditions in polar regions and possible global climatic changes.

  3. Identification of High-Variation Fields based on Open Satellite Imagery

    DEFF Research Database (Denmark)

    Jeppesen, Jacob Høxbroe; Jacobsen, Rune Hylsberg; Nyholm Jørgensen, Rasmus

    2017-01-01

    . The categorization is based on vegetation indices derived from Sentinel-2 satellite imagery. A case study on 7678 winter wheat fields is presented, which employs open data and open source software to analyze the satellite imagery. Furthermore, the method can be automated to deliver categorizations at every update......This paper proposes a simple method for categorizing fields on a regional level, with respect to intra-field variations. It aims to identify fields where the potential benefits of applying precision agricultural practices are highest from an economic and environmental perspective...

  4. Classification of Clouds in Satellite Imagery Using Adaptive Fuzzy Sparse Representation

    Directory of Open Access Journals (Sweden)

    Wei Jin

    2016-12-01

    Full Text Available Automatic cloud detection and classification using satellite cloud imagery have various meteorological applications such as weather forecasting and climate monitoring. Cloud pattern analysis is one of the research hotspots recently. Since satellites sense the clouds remotely from space, and different cloud types often overlap and convert into each other, there must be some fuzziness and uncertainty in satellite cloud imagery. Satellite observation is susceptible to noises, while traditional cloud classification methods are sensitive to noises and outliers; it is hard for traditional cloud classification methods to achieve reliable results. To deal with these problems, a satellite cloud classification method using adaptive fuzzy sparse representation-based classification (AFSRC is proposed. Firstly, by defining adaptive parameters related to attenuation rate and critical membership, an improved fuzzy membership is introduced to accommodate the fuzziness and uncertainty of satellite cloud imagery; secondly, by effective combination of the improved fuzzy membership function and sparse representation-based classification (SRC, atoms in training dictionary are optimized; finally, an adaptive fuzzy sparse representation classifier for cloud classification is proposed. Experiment results on FY-2G satellite cloud image show that, the proposed method not only improves the accuracy of cloud classification, but also has strong stability and adaptability with high computational efficiency.

  5. Classification of Clouds in Satellite Imagery Using Adaptive Fuzzy Sparse Representation

    Science.gov (United States)

    Jin, Wei; Gong, Fei; Zeng, Xingbin; Fu, Randi

    2016-01-01

    Automatic cloud detection and classification using satellite cloud imagery have various meteorological applications such as weather forecasting and climate monitoring. Cloud pattern analysis is one of the research hotspots recently. Since satellites sense the clouds remotely from space, and different cloud types often overlap and convert into each other, there must be some fuzziness and uncertainty in satellite cloud imagery. Satellite observation is susceptible to noises, while traditional cloud classification methods are sensitive to noises and outliers; it is hard for traditional cloud classification methods to achieve reliable results. To deal with these problems, a satellite cloud classification method using adaptive fuzzy sparse representation-based classification (AFSRC) is proposed. Firstly, by defining adaptive parameters related to attenuation rate and critical membership, an improved fuzzy membership is introduced to accommodate the fuzziness and uncertainty of satellite cloud imagery; secondly, by effective combination of the improved fuzzy membership function and sparse representation-based classification (SRC), atoms in training dictionary are optimized; finally, an adaptive fuzzy sparse representation classifier for cloud classification is proposed. Experiment results on FY-2G satellite cloud image show that, the proposed method not only improves the accuracy of cloud classification, but also has strong stability and adaptability with high computational efficiency. PMID:27999261

  6. The Potential Uses of Commercial Satellite Imagery in the Middle East

    Energy Technology Data Exchange (ETDEWEB)

    Vannoni, M.G.

    1999-06-08

    It became clear during the workshop that the applicability of commercial satellite imagery to the verification of future regional arms control agreements is limited at this time. Non-traditional security topics such as environmental protection, natural resource management, and the development of infrastructure offer the more promising applications for commercial satellite imagery in the short-term. Many problems and opportunities in these topics are regional, or at least multilateral, in nature. A further advantage is that, unlike arms control and nonproliferation applications, cooperative use of imagery in these topics can be done independently of the formal Middle East Peace Process. The value of commercial satellite imagery to regional arms control and nonproliferation, however, will increase during the next three years as new, more capable satellite systems are launched. Aerial imagery, such as that used in the Open Skies Treaty, can also make significant contributions to both traditional and non-traditional security applications but has the disadvantage of requiring access to national airspace and potentially higher cost. There was general consensus that commercial satellite imagery is under-utilized in the Middle East and resources for remote sensing, both human and institutional, are limited. This relative scarcity, however, provides a natural motivation for collaboration in non-traditional security topics. Collaborations between scientists, businesses, universities, and non-governmental organizations can work at the grass-roots level and yield contributions to confidence building as well as scientific and economic results. Joint analysis projects would benefit the region as well as establish precedents for cooperation.

  7. The employment of weather satellite imagery in an effort to identify and locate the forest-tundra ecotone in Canada

    Science.gov (United States)

    Aldrich, S. A.; Aldrich, F. T.; Rudd, R. D.

    1969-01-01

    Weather satellite imagery provides the only routinely available orbital imagery depicting the high latitudes. Although resolution is low on this imagery, it is believed that a major natural feature, notably linear in expression, should be mappable on it. The transition zone from forest to tundra, the ecotone, is such a feature. Locational correlation is herein established between a linear signature on the imagery and several ground truth positions of the ecotone in Canada.

  8. "Data Day" and "Data Night" Definitions - Towards Producing Seamless Global Satellite Imagery

    Science.gov (United States)

    Schmaltz, J. E.

    2017-12-01

    For centuries, the art and science of cartography has struggled with the challenge of mapping the round earth on to a flat page, or a flat computer monitor. Earth observing satellites with continuous monitoring of our planet have added the additional complexity of the time dimension to this procedure. The most common current practice is to segment this data by 24-hour Coordinated Universal Time (UTC) day and then split the day into sun side "Data Day" and shadow side "Data Night" global imagery that spans from dateline to dateline. Due to the nature of satellite orbits, simply binning the data by UTC date produces significant discontinuities at the dateline for day images and at Greenwich for night images. Instead, imagery could be generated in a fashion that follows the spatial and temporal progression of the satellite which would produce seamless imagery everywhere on the globe for all times. This presentation will explore approaches to produce such imagery but will also address some of the practical and logistical difficulties in implementing such changes. Topics will include composites versus granule/orbit based imagery, day/night versus ascending/descending definitions, and polar versus global projections.

  9. Vegetation extraction from high-resolution satellite imagery using the Normalized Difference Vegetation Index (NDVI)

    Science.gov (United States)

    AlShamsi, Meera R.

    2016-10-01

    Over the past years, there has been various urban development all over the UAE. Dubai is one of the cities that experienced rapid growth in both development and population. That growth can have a negative effect on the surrounding environment. Hence, there has been a necessity to protect the environment from these fast pace changes. One of the major impacts this growth can have is on vegetation. As technology is evolving day by day, there is a possibility to monitor changes that are happening on different areas in the world using satellite imagery. The data from these imageries can be utilized to identify vegetation in different areas of an image through a process called vegetation detection. Being able to detect and monitor vegetation is very beneficial for municipal planning and management, and environment authorities. Through this, analysts can monitor vegetation growth in various areas and analyze these changes. By utilizing satellite imagery with the necessary data, different types of vegetation can be studied and analyzed, such as parks, farms, and artificial grass in sports fields. In this paper, vegetation features are detected and extracted through SAFIY system (i.e. the Smart Application for Feature extraction and 3D modeling using high resolution satellite ImagerY) by using high-resolution satellite imagery from DubaiSat-2 and DEIMOS-2 satellites, which provide panchromatic images of 1m resolution and spectral bands (red, green, blue and near infrared) of 4m resolution. SAFIY system is a joint collaboration between MBRSC and DEIMOS Space UK. It uses image-processing algorithms to extract different features (roads, water, vegetation, and buildings) to generate vector maps data. The process to extract green areas (vegetation) utilize spectral information (such as, the red and near infrared bands) from the satellite images. These detected vegetation features will be extracted as vector data in SAFIY system and can be updated and edited by end-users, such as

  10. Satellite passive microwave rain measurement techniques for land and ocean

    Science.gov (United States)

    Spencer, R. W.

    1985-01-01

    Multiseasonal rainfall was found to be measurable over land with satellite passive microwave data, based upon comparisons between Nimbus 7 Scanning Multichannel Microwave Radiometer (SMME) brightness temperatures (T sub B) and operational WSR-57 radar rain rates. All of the SMMR channels (bipolarized 37, 21, 18, 10.7, and 6.6. GHz T sub B) were compared to radar reflectivities for 25 SMMR passes and 234 radar scans over the U.S. during the spring, summer, and fall of 1979. It was found that the radar rain rates were closely related to the difference between 37 and 21 GHz T sub B. This result is due to the volume scattering effects of precipitation which cause emissivity decreases with frequency, as opposed to emissive surfaces (e.g., water) whose emissivities increase with frequency. Two frequencies also act to reduce the effects of thermometric temperature variations on T sub B to a miminum. During summer and fall, multiple correlation coefficients of 0.80 and 0.75 were obtained. These approach the limit of correlation that can be expected to exist between two very different data sources, especially in light of the errors attributable to manual digitization of PPI photographs of variable quality from various operational weather radar not calibrated for research purposes. During the spring, a significantly lower (0.63) correlation was found. This poorer performance was traced to cases of wet, unvegetated soil being sensed at the lower frequencies through light rain, partly negating the rain scattering signal.

  11. High resolution radar satellite imagery analysis for safeguards applications

    Energy Technology Data Exchange (ETDEWEB)

    Minet, Christian; Eineder, Michael [German Aerospace Center, Remote Sensing Technology Institute, Department of SAR Signal Processing, Wessling, (Germany); Rezniczek, Arnold [UBA GmbH, Herzogenrath, (Germany); Niemeyer, Irmgard [Forschungszentrum Juelich, Institue of Energy and Climate Research, IEK-6: Nuclear Waste Management and Reactor Safety, Juelich, (Germany)

    2011-12-15

    For monitoring nuclear sites, the use of Synthetic Aperture Radar (SAR) imagery shows essential promises. Unlike optical remote sensing instruments, radar sensors operate under almost all weather conditions and independently of the sunlight, i.e. time of the day. Such technical specifications are required both for continuous and for ad-hoc, timed surveillance tasks. With Cosmo-Skymed, TerraSARX and Radarsat-2, high-resolution SAR imagery with a spatial resolution up to 1m has recently become available. Our work therefore aims to investigate the potential of high-resolution TerraSAR data for nuclear monitoring. This paper focuses on exploiting amplitude of a single acquisition, assessing amplitude changes and phase differences between two acquisitions, and PS-InSAR processing of an image stack.

  12. Using satellite imagery to assess the influence of urban development on the impacts of extreme rainfall

    DEFF Research Database (Denmark)

    Kaspersen, Per Skougaard; Drews, Martin; Madsen, Henrik

    We investigate the applicability of medium resolution Landsat satellite imagery for mapping temporal changes in urban land cover for direct use in urban flood models. The overarching aim is to provide accurate and cost- and resource-efficient quantification of temporal changes in risk towards...

  13. Improved wetland classification using eight-band high-resolution satellite imagery and a hybrid approach

    Science.gov (United States)

    Although remote sensing technology has long been used in wetland inventory and monitoring, the accuracy and detail level of derived wetland maps were limited or often unsatisfactory largely due to the relatively coarse spatial resolution of conventional satellite imagery. This re...

  14. A data mining approach for sharpening satellite thermal imagery over land

    Science.gov (United States)

    Thermal infrared (TIR) imagery is normally acquired at coarser pixel resolution than that of shortwave sensors on the same satellite platform and often the TIR resolution is not suitable for monitoring crop conditions of individual fields or the impacts of land cover changes which are at significant...

  15. Phase 2 Final Report. IAEA Safeguards: Implementation blueprint of commercial satellite imagery

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Christer [SSC Satellitbild AB, Solna (Sweden)

    2000-01-01

    This document - IAEA Safeguards: Implementation Blueprint of Commercial Satellite Imagery - constitutes the second report from SSC Satellitbild giving a structured view and solid guidelines on how to proceed with a conceivable implementation of satellite imagery to support Safeguards activities of the Agency. This Phase 2 report presents a large number of concrete recommendations regarding suggested management issues, work organisation, imagery purchasing and team building. The study has also resulted in several lists of actions and preliminary project plans with GANT schedules concerning training, hardware and software, as well as for the initial pilot studies. In both the Phase 1 and Phase 2 studies it is confirmed that the proposed concept of a relatively small Imagery Unit using high-resolution data will be a sound and feasible undertaking. Such a unit capable of performing advanced image processing as a tool for various safeguard tasks will give the Agency an effective instrument for reference, monitoring, verification, and detection of declared and undeclared activities. The total cost for implementing commercial satellite imagery at the Department for Safeguards, as simulated in these studies, is approximately MUSD 1,5 per year. This cost is founded on an activity scenario with a staff of 4 experts working in an IAEA Imagery Unit with a workload of three dossiers or issues per week. The imagery unit is built around an advanced PC image processing system capable of handling several hundreds of pre-processed images per year. Alternatively a Reduced Scenario with a staff of 3 would need a budget of approximately MUSD 0,9 per year, whereas an Enhanced Imagery Unit including 5 experts and a considerably enlarged capacity would cost MUSD 1,7 per year. The Imagery Unit should be organised so it clearly reflects the objectives and role as set by the Member States and the management of the Agency. We recommend the Imagery Unit to be organised into four main work

  16. Phase 2 Final Report. IAEA Safeguards: Implementation blueprint of commercial satellite imagery

    International Nuclear Information System (INIS)

    Andersson, Christer

    2000-01-01

    This document - IAEA Safeguards: Implementation Blueprint of Commercial Satellite Imagery - constitutes the second report from SSC Satellitbild giving a structured view and solid guidelines on how to proceed with a conceivable implementation of satellite imagery to support Safeguards activities of the Agency. This Phase 2 report presents a large number of concrete recommendations regarding suggested management issues, work organisation, imagery purchasing and team building. The study has also resulted in several lists of actions and preliminary project plans with GANT schedules concerning training, hardware and software, as well as for the initial pilot studies. In both the Phase 1 and Phase 2 studies it is confirmed that the proposed concept of a relatively small Imagery Unit using high-resolution data will be a sound and feasible undertaking. Such a unit capable of performing advanced image processing as a tool for various safeguard tasks will give the Agency an effective instrument for reference, monitoring, verification, and detection of declared and undeclared activities. The total cost for implementing commercial satellite imagery at the Department for Safeguards, as simulated in these studies, is approximately MUSD 1,5 per year. This cost is founded on an activity scenario with a staff of 4 experts working in an IAEA Imagery Unit with a workload of three dossiers or issues per week. The imagery unit is built around an advanced PC image processing system capable of handling several hundreds of pre-processed images per year. Alternatively a Reduced Scenario with a staff of 3 would need a budget of approximately MUSD 0,9 per year, whereas an Enhanced Imagery Unit including 5 experts and a considerably enlarged capacity would cost MUSD 1,7 per year. The Imagery Unit should be organised so it clearly reflects the objectives and role as set by the Member States and the management of the Agency. We recommend the Imagery Unit to be organised into four main work

  17. Transmission media appropriate laser-microwave solar power satellite system

    Science.gov (United States)

    Schäfer, C. A.; Gray, D.

    2012-10-01

    As a solution to the most critical problems with Solar power Satellite (SPS) development, a system is proposed which uses laser power transmission in space to a receiver high in the atmosphere that relays the power to Earth by either cable or microwave power transmission. It has been shown in the past that such hybrid systems have the advantages of a reduction in the mass of equipment required in geostationary orbit and avoidance of radio frequency interference with other satellites and terrestrial communications systems. The advantage over a purely laser power beam SPS is that atmospheric absorption is avoided and outages due to clouds and precipitation will not occur, allowing for deployment in the equatorial zone and guaranteeing year round operation. This proposal is supported by brief literature surveys and theoretical calculations to estimate crucial parameters in this paper. In relation to this concept, we build on a recently proposed method to collect solar energy by a tethered balloon at high altitude because it enables a low-cost start for bringing the first Watt of power to Earth giving some quick return on investment, which is desperately missing in the traditional SPS concept. To tackle the significant problem of GW-class SPSs of high launch cost per kg mass brought to space, this paper introduces a concept which aims to achieve a superior power over mass ratio compared to traditional satellite designs by the use of thin-film solar cells combined with optical fibres for power delivery. To minimise the aperture sizes and cost of the transmitting and receiving components of the satellite and high altitude receiver, closed-loop laser beam pointing and target tracking is crucial for pointing a laser beam onto a target area that is of similar size to the beam's diameter. A recently developed technique based on optical phase conjugation is introduced and its applicability for maintaining power transmission between the satellite and high altitude receiver is

  18. An evaluation of the use of ERTS-1 satellite imagery for grizzly bear habitat analysis

    Science.gov (United States)

    Varney, J. R.; Craighead, J. J.; Sumner, J.

    1973-01-01

    Multispectral scanner images taken by the ERTS-1 satellite in August and October, 1972, were examined to determine if they would be useful in identifying and mapping favorable habitat for grizzly bears. It was possible to identify areas having a suitable mixture of alpine meadow and timber, and to eliminate those which did not meet the isolation requirements of grizzlies because of farming or grazing activity. High altitude timbered areas mapped from satellite imagery agreed reasonably well with the distribution of whitebark pine, an important food species. Analysis of satellite imagery appears to be a valuable supplement to present ground observation methods, since it allows the most important areas to be identified for intensive study and many others to be eliminated from consideration. A sampling plan can be developed from such data which will minimize field effort and overall program cost.

  19. Modelling avian biodiversity using raw, unclassified satellite imagery.

    Science.gov (United States)

    St-Louis, Véronique; Pidgeon, Anna M; Kuemmerle, Tobias; Sonnenschein, Ruth; Radeloff, Volker C; Clayton, Murray K; Locke, Brian A; Bash, Dallas; Hostert, Patrick

    2014-01-01

    Applications of remote sensing for biodiversity conservation typically rely on image classifications that do not capture variability within coarse land cover classes. Here, we compare two measures derived from unclassified remotely sensed data, a measure of habitat heterogeneity and a measure of habitat composition, for explaining bird species richness and the spatial distribution of 10 species in a semi-arid landscape of New Mexico. We surveyed bird abundance from 1996 to 1998 at 42 plots located in the McGregor Range of Fort Bliss Army Reserve. Normalized Difference Vegetation Index values of two May 1997 Landsat scenes were the basis for among-pixel habitat heterogeneity (image texture), and we used the raw imagery to decompose each pixel into different habitat components (spectral mixture analysis). We used model averaging to relate measures of avian biodiversity to measures of image texture and spectral mixture analysis fractions. Measures of habitat heterogeneity, particularly angular second moment and standard deviation, provide higher explanatory power for bird species richness and the abundance of most species than measures of habitat composition. Using image texture, alone or in combination with other classified imagery-based approaches, for monitoring statuses and trends in biological diversity can greatly improve conservation efforts and habitat management.

  20. Study of the Nevada Test Site using Landsat satellite imagery

    International Nuclear Information System (INIS)

    Zimmerman, P.D.

    1993-07-01

    In the period covered by the purchase order CSIS has obtained one Landsat image and determined that two images previously supplied to the principal investigator under a subcontract with George Washington University were inherently defective. We have negotiated with EOSAT over the reprocessing of those scenes and anticipate final delivery within the next few weeks. A critical early purchase during the subcontract period was of an EXABYTE tape drive, Adaptec SCSI interface, and the appropriate software with which to read Landsat images at CSIS. This gives us the capability of reading and manipulating imagery in house without reliance on outside services which have not proven satisfactory. In addition to obtaining imagery for the study, we have also performed considerable analytic work on the newly and previously purchased images. A technique developed under an earlier subcontract for identifying underground nuclear tests at Pahute Mesa has been significantly refined, and similar techniques were applied to the summit of Rainier Mesa and to the Yucca Flats area. An entirely new technique for enhancing the spectral signatures of different regions of NTS was recently developed, and appears to have great promise of success

  1. Automated detection of slum area change in Hyderabad, India using multitemporal satellite imagery

    Science.gov (United States)

    Kit, Oleksandr; Lüdeke, Matthias

    2013-09-01

    This paper presents an approach to automated identification of slum area change patterns in Hyderabad, India, using multi-year and multi-sensor very high resolution satellite imagery. It relies upon a lacunarity-based slum detection algorithm, combined with Canny- and LSD-based imagery pre-processing routines. This method outputs plausible and spatially explicit slum locations for the whole urban agglomeration of Hyderabad in years 2003 and 2010. The results indicate a considerable growth of area occupied by slums between these years and allow identification of trends in slum development in this urban agglomeration.

  2. Evidence of transport of hazy air masses from satellite imagery

    International Nuclear Information System (INIS)

    Lyons, W.A.

    1980-01-01

    Some observations of major aerosol events in the atmosphere by meteorological satellites are reviewed. The events included a massive plume of smoke from a Hawaiian volcanic eruption, dust plumes originating from the Sahara Desert and the central U.S., smoke from a small forest fire, and sulfate aerosol hazes. It is concluded that the routine detection and tracking of synoptic-scale pollution episodes, along with quantitative measurements of their intensity, are entirely feasible with existing spacecraft and data analysis systems

  3. Diurnal changes in ocean color sensed in satellite imagery

    Science.gov (United States)

    Arnone, Robert; Vandermuelen, Ryan; Soto, Inia; Ladner, Sherwin; Ondrusek, Michael; Yang, Haoping

    2017-07-01

    Measurements of diurnal changes in ocean color in turbid coastal regions in the Gulf of Mexico were characterized using above water spectral radiometry from a National Aeronautics and Space Administration (aerosol robotic network-WaveCIS CSI-06) site that can provide 8 to 10 observations per day. Satellite capability to detect diurnal changes in ocean color was characterized using hourly overlapping afternoon orbits of the visual infrared imaging radiometer suite (VIIRS) Suomi National Polar-orbiting Partnership ocean color sensor and validated with in situ observations. The monthly cycle of diurnal changes was investigated for different water masses using VIIRS overlaps. Results showed the capability of satellite observations to monitor hourly color changes in coastal regions that can be impacted by vertical movement of optical layers, in response to tides, resuspension, and river plume dispersion. The spatial variability of VIIRS diurnal changes showed the occurrence and displacement of phytoplankton blooming and decaying processes. The diurnal change in ocean color was above 20%, which represents a 30% change in chlorophyll-a. Seasonal changes in diurnal ocean color for different water masses suggest differences in summer and winter responses to surface processes. The diurnal changes observed using satellite ocean color can be used to define the following: surface processes associated with biological activity, vertical changes in optical depth, and advection of water masses.

  4. Modelling tick abundance using machine learning techniques and satellite imagery

    DEFF Research Database (Denmark)

    Kjær, Lene Jung; Korslund, L.; Kjelland, V.

    satellite images to run Boosted Regression Tree machine learning algorithms to predict overall distribution (presence/absence of ticks) and relative tick abundance of nymphs and larvae in southern Scandinavia. For nymphs, the predicted abundance had a positive correlation with observed abundance...... the predicted distribution of larvae was mostly even throughout Denmark, it was primarily around the coastlines in Norway and Sweden. Abundance was fairly low overall except in some fragmented patches corresponding to forested habitats in the region. Machine learning techniques allow us to predict for larger...... the collected ticks for pathogens and using the same machine learning techniques to develop prevalence maps of the ScandTick region....

  5. Compressing interpreted satellite imagery for geographic information systems applications over extensive regions

    Science.gov (United States)

    Miller, Stephan W.

    1981-01-01

    Image processing systems (IPS) and techniques effectively transform satellite imagery into data for input into a spatial database. Geographic information systems (GIS), consisting of graphic input and spatial database management subsystems, are capable of processing digital map and map overlay data to build and manipulate a spatial database. These systems can be successfully integrated to create a successful spatial data handling capability provided certain obstacle are understood and overcome.

  6. Geospatial Information from Satellite Imagery for Geovisualisation of Smart Cities in India

    Science.gov (United States)

    Mohan, M.

    2016-06-01

    In the recent past, there have been large emphasis on extraction of geospatial information from satellite imagery. The Geospatial information are being processed through geospatial technologies which are playing important roles in developing of smart cities, particularly in developing countries of the world like India. The study is based on the latest geospatial satellite imagery available for the multi-date, multi-stage, multi-sensor, and multi-resolution. In addition to this, the latest geospatial technologies have been used for digital image processing of remote sensing satellite imagery and the latest geographic information systems as 3-D GeoVisualisation, geospatial digital mapping and geospatial analysis for developing of smart cities in India. The Geospatial information obtained from RS and GPS systems have complex structure involving space, time and presentation. Such information helps in 3-Dimensional digital modelling for smart cities which involves of spatial and non-spatial information integration for geographic visualisation of smart cites in context to the real world. In other words, the geospatial database provides platform for the information visualisation which is also known as geovisualisation. So, as a result there have been an increasing research interest which are being directed to geospatial analysis, digital mapping, geovisualisation, monitoring and developing of smart cities using geospatial technologies. However, the present research has made an attempt for development of cities in real world scenario particulary to help local, regional and state level planners and policy makers to better understand and address issues attributed to cities using the geospatial information from satellite imagery for geovisualisation of Smart Cities in emerging and developing country, India.

  7. GEOSPATIAL INFORMATION FROM SATELLITE IMAGERY FOR GEOVISUALISATION OF SMART CITIES IN INDIA

    Directory of Open Access Journals (Sweden)

    M. Mohan

    2016-06-01

    Full Text Available In the recent past, there have been large emphasis on extraction of geospatial information from satellite imagery. The Geospatial information are being processed through geospatial technologies which are playing important roles in developing of smart cities, particularly in developing countries of the world like India. The study is based on the latest geospatial satellite imagery available for the multi-date, multi-stage, multi-sensor, and multi-resolution. In addition to this, the latest geospatial technologies have been used for digital image processing of remote sensing satellite imagery and the latest geographic information systems as 3-D GeoVisualisation, geospatial digital mapping and geospatial analysis for developing of smart cities in India. The Geospatial information obtained from RS and GPS systems have complex structure involving space, time and presentation. Such information helps in 3-Dimensional digital modelling for smart cities which involves of spatial and non-spatial information integration for geographic visualisation of smart cites in context to the real world. In other words, the geospatial database provides platform for the information visualisation which is also known as geovisualisation. So, as a result there have been an increasing research interest which are being directed to geospatial analysis, digital mapping, geovisualisation, monitoring and developing of smart cities using geospatial technologies. However, the present research has made an attempt for development of cities in real world scenario particulary to help local, regional and state level planners and policy makers to better understand and address issues attributed to cities using the geospatial information from satellite imagery for geovisualisation of Smart Cities in emerging and developing country, India.

  8. Evaluation of Future Internet Technologies for Processing and Distribution of Satellite Imagery

    Science.gov (United States)

    Becedas, J.; Perez, R.; Gonzalez, G.; Alvarez, J.; Garcia, F.; Maldonado, F.; Sucari, A.; Garcia, J.

    2015-04-01

    Satellite imagery data centres are designed to operate a defined number of satellites. For instance, difficulties when new satellites have to be incorporated in the system appear. This occurs because traditional infrastructures are neither flexible nor scalable. With the appearance of Future Internet technologies new solutions can be provided to manage large and variable amounts of data on demand. These technologies optimize resources and facilitate the appearance of new applications and services in the traditional Earth Observation (EO) market. The use of Future Internet technologies for the EO sector were validated with the GEO-Cloud experiment, part of the Fed4FIRE FP7 European project. This work presents the final results of the project, in which a constellation of satellites records the whole Earth surface on a daily basis. The satellite imagery is downloaded into a distributed network of ground stations and ingested in a cloud infrastructure, where the data is processed, stored, archived and distributed to the end users. The processing and transfer times inside the cloud, workload of the processors, automatic cataloguing and accessibility through the Internet are evaluated to validate if Future Internet technologies present advantages over traditional methods. Applicability of these technologies is evaluated to provide high added value services. Finally, the advantages of using federated testbeds to carry out large scale, industry driven experiments are analysed evaluating the feasibility of an experiment developed in the European infrastructure Fed4FIRE and its migration to a commercial cloud: SoftLayer, an IBM Company.

  9. Polar bears from space: Assessing satellite imagery as a tool to track Arctic wildlife

    Science.gov (United States)

    Stapleton, Seth P.; LaRue, Michelle A.; Lecomte, Nicolas; Atkinson, Stephen N.; Garshelis, David L.; Porter, Claire; Atwood, Todd C.

    2014-01-01

    Development of efficient techniques for monitoring wildlife is a priority in the Arctic, where the impacts of climate change are acute and remoteness and logistical constraints hinder access. We evaluated high resolution satellite imagery as a tool to track the distribution and abundance of polar bears. We examined satellite images of a small island in Foxe Basin, Canada, occupied by a high density of bears during the summer ice-free season. Bears were distinguished from other light-colored spots by comparing images collected on different dates. A sample of ground-truthed points demonstrated that we accurately classified bears. Independent observers reviewed images and a population estimate was obtained using mark- recapture models. This estimate (N: 94; 95% Confidence Interval: 92-105) was remarkably similar to an abundance estimate derived from a line transect aerial survey conducted a few days earlier (N: 102; 95% CI: 69-152). Our findings suggest that satellite imagery is a promising tool for monitoring polar bears on land, with implications for use with other Arctic wildlife. Large scale applications may require development of automated detection processes to expedite review and analysis. Future research should assess the utility of multi-spectral imagery and examine sites with different environmental characteristics.

  10. Satellite Imagery and In-situ Data Overlay Approach for Fishery Zonation

    Directory of Open Access Journals (Sweden)

    Fardhi Adria

    2010-12-01

    Full Text Available Remote sensing technology can be used to better understand the earth’s characteristics. SeaWiFS (sea-viewing wide field-of-view sensor is one of remote sensors used to observe global ocean phenomena. Previous studies showed that the distribution of chlorophyll-a in the ocean indicates the presence of fish. However, only a few studies tried to directly relate the chlorophyll-a distribution obtained through interpretation of satellite imagery to in-situ data of fish distribution. This paper investigates the relation between chlorophyll-a distribution and fish-capturing points in Aceh Province sea waters using overlay image analysis. The results are then used to identify the potential fishing ground in Aceh. The profile of chlorophyll-a concentration is derived from SeaWIFS satellite imagery. Fish-capturing points data is obtained from the fisherman communities of Banda Aceh, starting from June to November 2008. The results showed that the chlorophyll-a profile derived from satellite imagery has a positive relationship to fish-capturing point data. The most potential fish-capturing zone in Aceh sea waters is identified at 5-8º north latitude (N and 96-99º east longitude (E.

  11. Polar bears from space: assessing satellite imagery as a tool to track Arctic wildlife.

    Directory of Open Access Journals (Sweden)

    Seth Stapleton

    Full Text Available Development of efficient techniques for monitoring wildlife is a priority in the Arctic, where the impacts of climate change are acute and remoteness and logistical constraints hinder access. We evaluated high resolution satellite imagery as a tool to track the distribution and abundance of polar bears. We examined satellite images of a small island in Foxe Basin, Canada, occupied by a high density of bears during the summer ice-free season. Bears were distinguished from other light-colored spots by comparing images collected on different dates. A sample of ground-truthed points demonstrated that we accurately classified bears. Independent observers reviewed images and a population estimate was obtained using mark-recapture models. This estimate (N: 94; 95% Confidence Interval: 92-105 was remarkably similar to an abundance estimate derived from a line transect aerial survey conducted a few days earlier (N: 102; 95% CI: 69-152. Our findings suggest that satellite imagery is a promising tool for monitoring polar bears on land, with implications for use with other Arctic wildlife. Large scale applications may require development of automated detection processes to expedite review and analysis. Future research should assess the utility of multi-spectral imagery and examine sites with different environmental characteristics.

  12. Polar bears from space: assessing satellite imagery as a tool to track Arctic wildlife.

    Science.gov (United States)

    Stapleton, Seth; LaRue, Michelle; Lecomte, Nicolas; Atkinson, Stephen; Garshelis, David; Porter, Claire; Atwood, Todd

    2014-01-01

    Development of efficient techniques for monitoring wildlife is a priority in the Arctic, where the impacts of climate change are acute and remoteness and logistical constraints hinder access. We evaluated high resolution satellite imagery as a tool to track the distribution and abundance of polar bears. We examined satellite images of a small island in Foxe Basin, Canada, occupied by a high density of bears during the summer ice-free season. Bears were distinguished from other light-colored spots by comparing images collected on different dates. A sample of ground-truthed points demonstrated that we accurately classified bears. Independent observers reviewed images and a population estimate was obtained using mark-recapture models. This estimate (N: 94; 95% Confidence Interval: 92-105) was remarkably similar to an abundance estimate derived from a line transect aerial survey conducted a few days earlier (N: 102; 95% CI: 69-152). Our findings suggest that satellite imagery is a promising tool for monitoring polar bears on land, with implications for use with other Arctic wildlife. Large scale applications may require development of automated detection processes to expedite review and analysis. Future research should assess the utility of multi-spectral imagery and examine sites with different environmental characteristics.

  13. PLASTIC AND GLASS GREENHOUSES DETECTION AND DELINEATION FROM WORLDVIEW-2 SATELLITE IMAGERY

    Directory of Open Access Journals (Sweden)

    D. Koc-San

    2016-06-01

    Full Text Available Greenhouse detection using remote sensing technologies is an important research area for yield estimation, sustainable development, urban and rural planning and management. An approach was developed in this study for the detection and delineation of greenhouse areas from high resolution satellite imagery. Initially, the candidate greenhouse patches were detected using supervised classification techniques. For this purpose, Maximum Likelihood (ML, Random Forest (RF, and Support Vector Machines (SVM classification techniques were applied and compared. Then, sieve filter and morphological operations were performed for improving the classification results. Finally, the obtained candidate plastic and glass greenhouse areas were delineated using boundary tracing and Douglas Peucker line simplification algorithms. The proposed approach was implemented in the Kumluca district of Antalya, Turkey utilizing pan-sharpened WorldView-2 satellite imageries. Kumluca is the prominent district of Antalya with greenhouse cultivation and includes both plastic and glass greenhouses intensively. When the greenhouse classification results were analysed, it can be stated that the SVM classification provides most accurate results and RF classification follows this. The SVM classification overall accuracy was obtained as 90.28%. When the greenhouse boundary delineation results were considered, the plastic greenhouses were delineated with 92.11% accuracy, while glass greenhouses were delineated with 80.67% accuracy. The obtained results indicate that, generally plastic and glass greenhouses can be detected and delineated successfully from WorldView-2 satellite imagery.

  14. Mapping daily evapotranspiration at field to continental scales using geostationary and polar orbiting satellite imagery

    Directory of Open Access Journals (Sweden)

    M. C. Anderson

    2011-01-01

    Full Text Available Thermal infrared (TIR remote sensing of land-surface temperature (LST provides valuable information about the sub-surface moisture status required for estimating evapotranspiration (ET and detecting the onset and severity of drought. While empirical indices measuring anomalies in LST and vegetation amount (e.g., as quantified by the Normalized Difference Vegetation Index; NDVI have demonstrated utility in monitoring ET and drought conditions over large areas, they may provide ambiguous results when other factors (e.g., air temperature, advection are affecting plant functioning. A more physically based interpretation of LST and NDVI and their relationship to sub-surface moisture conditions can be obtained with a surface energy balance model driven by TIR remote sensing. The Atmosphere-Land Exchange Inverse (ALEXI model is a multi-sensor TIR approach to ET mapping, coupling a two-source (soil + canopy land-surface model with an atmospheric boundary layer model in time-differencing mode to routinely and robustly map daily fluxes at continental scales and 5 to 10-km resolution using thermal band imagery and insolation estimates from geostationary satellites. A related algorithm (DisALEXI spatially disaggregates ALEXI fluxes down to finer spatial scales using moderate resolution TIR imagery from polar orbiting satellites. An overview of this modeling approach is presented, along with strategies for fusing information from multiple satellite platforms and wavebands to map daily ET down to resolutions on the order of 10 m. The ALEXI/DisALEXI model has potential for global applications by integrating data from multiple geostationary meteorological satellite systems, such as the US Geostationary Operational Environmental Satellites, the European Meteosat satellites, the Chinese Fen-yung 2B series, and the Japanese Geostationary Meteorological Satellites. Work is underway to further evaluate multi-scale ALEXI implementations over the US, Europe, Africa

  15. Merging thermal and microwave satellite observations for a high-resolution soil moisture data product

    Science.gov (United States)

    Many societal applications of soil moisture data products require high spatial resolution and numerical accuracy. Current thermal geostationary satellite sensors (GOES Imager and GOES-R ABI) could produce 2-16km resolution soil moisture proxy data. Passive microwave satellite radiometers (e.g. AMSR...

  16. Optical and Physical Methods for Mapping Flooding with Satellite Imagery

    Science.gov (United States)

    Fayne, Jessica Fayne; Bolten, John; Lakshmi, Venkat; Ahamed, Aakash

    2016-01-01

    Flood and surface water mapping is becoming increasingly necessary, as extreme flooding events worldwide can damage crop yields and contribute to billions of dollars economic damages as well as social effects including fatalities and destroyed communities (Xaio et al. 2004; Kwak et al. 2015; Mueller et al. 2016).Utilizing earth observing satellite data to map standing water from space is indispensable to flood mapping for disaster response, mitigation, prevention, and warning (McFeeters 1996; Brakenridge and Anderson 2006). Since the early 1970s(Landsat, USGS 2013), researchers have been able to remotely sense surface processes such as extreme flood events to help offset some of these problems. Researchers have demonstrated countless methods and modifications of those methods to help increase knowledge of areas at risk and areas that are flooded using remote sensing data from optical and radar systems, as well as free publically available and costly commercial datasets.

  17. ASSESSMENT OF ATMOSPHERIC CORRECTION METHODS FOR OPTIMIZING HAZY SATELLITE IMAGERIES

    Directory of Open Access Journals (Sweden)

    Umara Firman Rizidansyah

    2015-04-01

    Full Text Available The purpose of this research is to examine suitability of three types of haze correction methods toward distinctness of surface objects in land cover. Considering the formation of haze therefore the main research are divided into both region namely rural assumed as vegetation and urban assumed as non vegetation area. Region of interest for rural selected Balaraja and urban selected Penjaringan. Haze imagery reduction utilized techniques such as Dark Object Substration, Virtual Cloud Point and Histogram Match. By applying an equation of Haze Optimized Transformation HOT = DNbluesin(∂-DNredcos(∂, the main result of this research includes: in the case of AVNIR-Rural, VCP has good results on Band 1 while the HM has good results on band 2, 3 and 4, therefore in the case of Avnir-Rural can be applied to HM. in the case of AVNIR-Urban, DOS has good result on band 1, 2 and 3 meanwhile HM has good results on band 4, therefore in the case of AVNIR-Urban can be applied to DOS. In the case of Landsat-Rural, DOS has good result on band 1, 2 and 6 meanwhile VCP has good results on band 4 and 5 and the smallest average value of HOT is 106.547 by VCP, therefore in the case of Lansat-Rural can be applied to DOS and VCP. In the case of Landsat-Urban, DOS has good result on band 1, 2 and 6 meanwhile VCP has good results on band 3, 4 and 5, therefore in the case of Landsat-Urban can be applied to VCP.   Tujuan penelitian ini untuk menguji kesesuaian tiga jenis metode koreksi haze terhadap kejelasan obyek permukaan di wilayah tutupan vegetasi dan non vegetasi, berkenaan menghilangkan haze di wilayah citra satelit optis yang memiliki karakteristik tertentu dan diduga proses pembentukan partikel hazenya berbeda. Sehingga daerah penelitian dibagi menjadi wilayah rural yang diasumsikan sebagai daerah vegetasi dan urban sebagai non vegetasi. Pedesaan terpilih kecamatan Balaraja dan Perkotaan terpilih kecamatan Penjaringan. Tiap lokasi menggunakan Avnir-2 dan Landsat

  18. Automated Generation of the Alaska Coastline Using High-Resolution Satellite Imagery

    Science.gov (United States)

    Roth, G.; Porter, C. C.; Cloutier, M. D.; Clementz, M. E.; Reim, C.; Morin, P. J.

    2015-12-01

    Previous campaigns to map Alaska's coast at high resolution have relied on airborne, marine, or ground-based surveying and manual digitization. The coarse temporal resolution, inability to scale geographically, and high cost of field data acquisition in these campaigns is inadequate for the scale and speed of recent coastal change in Alaska. Here, we leverage the Polar Geospatial Center (PGC) archive of DigitalGlobe, Inc. satellite imagery to produce a state-wide coastline at 2 meter resolution. We first select multispectral imagery based on time and quality criteria. We then extract the near-infrared (NIR) band from each processed image, and classify each pixel as water or land with a pre-determined NIR threshold value. Processing continues with vectorizing the water-land boundary, removing extraneous data, and attaching metadata. Final coastline raster and vector products maintain the original accuracy of the orthorectified satellite data, which is often within the local tidal range. The repeat frequency of coastline production can range from 1 month to 3 years, depending on factors such as satellite capacity, cloud cover, and floating ice. Shadows from trees or structures complicate the output and merit further data cleaning. The PGC's imagery archive, unique expertise, and computing resources enabled us to map the Alaskan coastline in a few months. The DigitalGlobe archive allows us to update this coastline as new imagery is acquired, and facilitates baseline data for studies of coastal change and improvement of topographic datasets. Our results are not simply a one-time coastline, but rather a system for producing multi-temporal, automated coastlines. Workflows and tools produced with this project can be freely distributed and utilized globally. Researchers and government agencies must now consider how they can incorporate and quality-control this high-frequency, high-resolution data to meet their mapping standards and research objectives.

  19. Mid-Season High-Resolution Satellite Imagery for Forecasting Site-Specific Corn Yield

    Directory of Open Access Journals (Sweden)

    Nahuel R. Peralta

    2016-10-01

    Full Text Available A timely and accurate crop yield forecast is crucial to make better decisions on crop management, marketing, and storage by assessing ahead and implementing based on expected crop performance. The objective of this study was to investigate the potential of high-resolution satellite imagery data collected at mid-growing season for identification of within-field variability and to forecast corn yield at different sites within a field. A test was conducted on yield monitor data and RapidEye satellite imagery obtained for 22 cornfields located in five different counties (Clay, Dickinson, Rice, Saline, and Washington of Kansas (total of 457 ha. Three basic tests were conducted on the data: (1 spatial dependence on each of the yield and vegetation indices (VIs using Moran’s I test; (2 model selection for the relationship between imagery data and actual yield using ordinary least square regression (OLS and spatial econometric (SPL models; and (3 model validation for yield forecasting purposes. Spatial autocorrelation analysis (Moran’s I test for both yield and VIs (red edge NDVI = NDVIre, normalized difference vegetation index = NDVIr, SRre = red-edge simple ratio, near infrared = NIR and green-NDVI = NDVIG was tested positive and statistically significant for most of the fields (p < 0.05, except for one. Inclusion of spatial adjustment to model improved the model fit on most fields as compared to OLS models, with the spatial adjustment coefficient significant for half of the fields studied. When selected models were used for prediction to validate dataset, a striking similarity (RMSE = 0.02 was obtained between predicted and observed yield within a field. Yield maps could assist implementing more effective site-specific management tools and could be utilized as a proxy of yield monitor data. In summary, high-resolution satellite imagery data can be reasonably used to forecast yield via utilization of models that include spatial adjustment to

  20. Environmental monitoring of El Hierro Island submarine volcano, by combining low and high resolution satellite imagery

    Science.gov (United States)

    Eugenio, F.; Martin, J.; Marcello, J.; Fraile-Nuez, E.

    2014-06-01

    El Hierro Island, located at the Canary Islands Archipelago in the Atlantic coast of North Africa, has been rocked by thousands of tremors and earthquakes since July 2011. Finally, an underwater volcanic eruption started 300 m below sea level on October 10, 2011. Since then, regular multidisciplinary monitoring has been carried out in order to quantify the environmental impacts caused by the submarine eruption. Thanks to this natural tracer release, multisensorial satellite imagery obtained from MODIS and MERIS sensors have been processed to monitor the volcano activity and to provide information on the concentration of biological, chemical and physical marine parameters. Specifically, low resolution satellite estimations of optimal diffuse attenuation coefficient (Kd) and chlorophyll-a (Chl-a) concentration under these abnormal conditions have been assessed. These remote sensing data have played a fundamental role during field campaigns guiding the oceanographic vessel to the appropriate sampling areas. In addition, to analyze El Hierro submarine volcano area, WorldView-2 high resolution satellite spectral bands were atmospherically and deglinted processed prior to obtain a high-resolution optimal diffuse attenuation coefficient model. This novel algorithm was developed using a matchup data set with MERIS and MODIS data, in situ transmittances measurements and a seawater radiative transfer model. Multisensor and multitemporal imagery processed from satellite remote sensing sensors have demonstrated to be a powerful tool for monitoring the submarine volcanic activities, such as discolored seawater, floating material and volcanic plume, having shown the capabilities to improve the understanding of submarine volcanic processes.

  1. Analysis on the Utility of Satellite Imagery for Detection of Agricultural Facility

    Science.gov (United States)

    Kang, J.-M.; Baek, S.-H.; Jung, K.-Y.

    2012-07-01

    Now that the agricultural facilities are being increase owing to development of technology and diversification of agriculture and the ratio of garden crops that are imported a lot and the crops cultivated in facilities are raised in Korea, the number of vinyl greenhouses is tending upward. So, it is important to grasp the distribution of vinyl greenhouses as much as that of rice fields, dry fields and orchards, but it is difficult to collect the information of wide areas economically and correctly. Remote sensing using satellite imagery is able to obtain data of wide area at the same time, quickly and cost-effectively collect, monitor and analyze information from every object on earth. In this study, in order to analyze the utilization of satellite imagery at detection of agricultural facility, image classification was performed about the agricultural facility, vinyl greenhouse using Formosat-2 satellite imagery. The training set of sea, vegetation, building, bare ground and vinyl greenhouse was set to monitor the agricultural facilities of the object area and the training set for the vinyl greenhouses that are main monitoring object was classified and set again into 3 types according the spectral characteristics. The image classification using 4 kinds of supervise classification methods applied by the same training set were carried out to grasp the image classification method which is effective for monitoring agricultural facilities. And, in order to minimize the misclassification appeared in the classification using the spectral information, the accuracy of classification was intended to be raised by adding texture information. The results of classification were analyzed regarding the accuracy comparing with that of naked-eyed detection. As the results of classification, the method of Mahalanobis distance was shown as more efficient than other methods and the accuracy of classification was higher when adding texture information. Hence the more effective

  2. ANALYSIS ON THE UTILITY OF SATELLITE IMAGERY FOR DETECTION OF AGRICULTURAL FACILITY

    Directory of Open Access Journals (Sweden)

    J.-M. Kang

    2012-07-01

    Full Text Available Now that the agricultural facilities are being increase owing to development of technology and diversification of agriculture and the ratio of garden crops that are imported a lot and the crops cultivated in facilities are raised in Korea, the number of vinyl greenhouses is tending upward. So, it is important to grasp the distribution of vinyl greenhouses as much as that of rice fields, dry fields and orchards, but it is difficult to collect the information of wide areas economically and correctly. Remote sensing using satellite imagery is able to obtain data of wide area at the same time, quickly and cost-effectively collect, monitor and analyze information from every object on earth. In this study, in order to analyze the utilization of satellite imagery at detection of agricultural facility, image classification was performed about the agricultural facility, vinyl greenhouse using Formosat-2 satellite imagery. The training set of sea, vegetation, building, bare ground and vinyl greenhouse was set to monitor the agricultural facilities of the object area and the training set for the vinyl greenhouses that are main monitoring object was classified and set again into 3 types according the spectral characteristics. The image classification using 4 kinds of supervise classification methods applied by the same training set were carried out to grasp the image classification method which is effective for monitoring agricultural facilities. And, in order to minimize the misclassification appeared in the classification using the spectral information, the accuracy of classification was intended to be raised by adding texture information. The results of classification were analyzed regarding the accuracy comparing with that of naked-eyed detection. As the results of classification, the method of Mahalanobis distance was shown as more efficient than other methods and the accuracy of classification was higher when adding texture information. Hence the more

  3. AN EVOLUTIONARY ALGORITHM FOR FAST INTENSITY BASED IMAGE MATCHING BETWEEN OPTICAL AND SAR SATELLITE IMAGERY

    Directory of Open Access Journals (Sweden)

    P. Fischer

    2018-04-01

    Full Text Available This paper presents a hybrid evolutionary algorithm for fast intensity based matching between satellite imagery from SAR and very high-resolution (VHR optical sensor systems. The precise and accurate co-registration of image time series and images of different sensors is a key task in multi-sensor image processing scenarios. The necessary preprocessing step of image matching and tie-point detection is divided into a search problem and a similarity measurement. Within this paper we evaluate the use of an evolutionary search strategy for establishing the spatial correspondence between satellite imagery of optical and radar sensors. The aim of the proposed algorithm is to decrease the computational costs during the search process by formulating the search as an optimization problem. Based upon the canonical evolutionary algorithm, the proposed algorithm is adapted for SAR/optical imagery intensity based matching. Extensions are drawn using techniques like hybridization (e.g. local search and others to lower the number of objective function calls and refine the result. The algorithm significantely decreases the computational costs whilst finding the optimal solution in a reliable way.

  4. Testing methods for using high-resolution satellite imagery to monitor polar bear abundance and distribution

    Science.gov (United States)

    LaRue, Michelle A.; Stapleton, Seth P.; Porter, Claire; Atkinson, Stephen N.; Atwood, Todd C.; Dyck, Markus; Lecomte, Nicolas

    2015-01-01

    High-resolution satellite imagery is a promising tool for providing coarse information about polar species abundance and distribution, but current applications are limited. With polar bears (Ursus maritimus), the technique has only proven effective on landscapes with little topographic relief that are devoid of snow and ice, and time-consuming manual review of imagery is required to identify bears. Here, we evaluated mechanisms to further develop methods for satellite imagery by examining data from Rowley Island, Canada. We attempted to automate and expedite detection via a supervised spectral classification and image differencing to expedite image review. We also assessed what proportion of a region should be sampled to obtain reliable estimates of density and abundance. Although the spectral signature of polar bears differed from nontarget objects, these differences were insufficient to yield useful results via a supervised classification process. Conversely, automated image differencing—or subtracting one image from another—correctly identified nearly 90% of polar bear locations. This technique, however, also yielded false positives, suggesting that manual review will still be required to confirm polar bear locations. On Rowley Island, bear distribution approximated a Poisson distribution across a range of plot sizes, and resampling suggests that sampling >50% of the site facilitates reliable estimation of density (CV in certain areas, but large-scale applications remain limited because of the challenges in automation and the limited environments in which the method can be effectively applied. Improvements in resolution may expand opportunities for its future uses.

  5. Testing methods for using high-resolution satellite imagery to monitor polar bear abundance and distribution

    Science.gov (United States)

    LaRue, Michelle A.; Stapleton, Seth P.; Porter, Claire; Atkinson, Stephen N.; Atwood, Todd C.; Dyck, Markus; Lecomte, Nicolas

    2015-01-01

    High-resolution satellite imagery is a promising tool for providing coarse information about polar species abundance and distribution, but current applications are limited. With polar bears (Ursus maritimus), the technique has only proven effective on landscapes with little topographic relief that are devoid of snow and ice, and time-consuming manual review of imagery is required to identify bears. Here, we evaluated mechanisms to further develop methods for satellite imagery by examining data from Rowley Island, Canada. We attempted to automate and expedite detection via a supervised spectral classification and image differencing to expedite image review. We also assessed what proportion of a region should be sampled to obtain reliable estimates of density and abundance. Although the spectral signature of polar bears differed from nontarget objects, these differences were insufficient to yield useful results via a supervised classification process. Conversely, automated image differencing—or subtracting one image from another—correctly identified nearly 90% of polar bear locations. This technique, however, also yielded false positives, suggesting that manual review will still be required to confirm polar bear locations. On Rowley Island, bear distribution approximated a Poisson distribution across a range of plot sizes, and resampling suggests that sampling >50% of the site facilitates reliable estimation of density (CV large-scale applications remain limited because of the challenges in automation and the limited environments in which the method can be effectively applied. Improvements in resolution may expand opportunities for its future uses.

  6. Cloud cover typing from environmental satellite imagery. Discriminating cloud structure with Fast Fourier Transforms (FFT)

    Science.gov (United States)

    Logan, T. L.; Huning, J. R.; Glackin, D. L.

    1983-01-01

    The use of two dimensional Fast Fourier Transforms (FFTs) subjected to pattern recognition technology for the identification and classification of low altitude stratus cloud structure from Geostationary Operational Environmental Satellite (GOES) imagery was examined. The development of a scene independent pattern recognition methodology, unconstrained by conventional cloud morphological classifications was emphasized. A technique for extracting cloud shape, direction, and size attributes from GOES visual imagery was developed. These attributes were combined with two statistical attributes (cloud mean brightness, cloud standard deviation), and interrogated using unsupervised clustering amd maximum likelihood classification techniques. Results indicate that: (1) the key cloud discrimination attributes are mean brightness, direction, shape, and minimum size; (2) cloud structure can be differentiated at given pixel scales; (3) cloud type may be identifiable at coarser scales; (4) there are positive indications of scene independence which would permit development of a cloud signature bank; (5) edge enhancement of GOES imagery does not appreciably improve cloud classification over the use of raw data; and (6) the GOES imagery must be apodized before generation of FFTs.

  7. Assessing Field-Specific Risk of Soybean Sudden Death Syndrome Using Satellite Imagery in Iowa.

    Science.gov (United States)

    Yang, S; Li, X; Chen, C; Kyveryga, P; Yang, X B

    2016-08-01

    Moderate resolution imaging spectroradiometer (MODIS) satellite imagery from 2004 to 2013 were used to assess the field-specific risks of soybean sudden death syndrome (SDS) caused by Fusarium virguliforme in Iowa. Fields with a high frequency of significant decrease (>10%) of the normalized difference vegetation index (NDVI) observed in late July to middle August on historical imagery were hypothetically considered as high SDS risk. These high-risk fields had higher slopes and shorter distances to flowlines, e.g., creeks and drainages, particularly in the Des Moines lobe. Field data in 2014 showed a significantly higher SDS level in the high-risk fields than fields selected without considering NDVI information. On average, low-risk fields had 10 times lower F. virguliforme soil density, determined by quantitative polymerase chain reaction, compared with other surveyed fields. Ordinal logistic regression identified positive correlations between SDS and slope, June NDVI, and May maximum temperature, but high June maximum temperature hindered SDS. A modeled SDS risk map showed a clear trend of potential disease occurrences across Iowa. Landsat imagery was analyzed similarly, to discuss the ability to utilize higher spatial resolution data. The results demonstrated the great potential of both MODIS and Landsat imagery for SDS field-specific risk assessment.

  8. Mapping Urban Tree Canopy Cover Using Fused Airborne LIDAR and Satellite Imagery Data

    Science.gov (United States)

    Parmehr, Ebadat G.; Amati, Marco; Fraser, Clive S.

    2016-06-01

    Urban green spaces, particularly urban trees, play a key role in enhancing the liveability of cities. The availability of accurate and up-to-date maps of tree canopy cover is important for sustainable development of urban green spaces. LiDAR point clouds are widely used for the mapping of buildings and trees, and several LiDAR point cloud classification techniques have been proposed for automatic mapping. However, the effectiveness of point cloud classification techniques for automated tree extraction from LiDAR data can be impacted to the point of failure by the complexity of tree canopy shapes in urban areas. Multispectral imagery, which provides complementary information to LiDAR data, can improve point cloud classification quality. This paper proposes a reliable method for the extraction of tree canopy cover from fused LiDAR point cloud and multispectral satellite imagery data. The proposed method initially associates each LiDAR point with spectral information from the co-registered satellite imagery data. It calculates the normalised difference vegetation index (NDVI) value for each LiDAR point and corrects tree points which have been misclassified as buildings. Then, region growing of tree points, taking the NDVI value into account, is applied. Finally, the LiDAR points classified as tree points are utilised to generate a canopy cover map. The performance of the proposed tree canopy cover mapping method is experimentally evaluated on a data set of airborne LiDAR and WorldView 2 imagery covering a suburb in Melbourne, Australia.

  9. Decision Fusion Based on Hyperspectral and Multispectral Satellite Imagery for Accurate Forest Species Mapping

    Directory of Open Access Journals (Sweden)

    Dimitris G. Stavrakoudis

    2014-07-01

    Full Text Available This study investigates the effectiveness of combining multispectral very high resolution (VHR and hyperspectral satellite imagery through a decision fusion approach, for accurate forest species mapping. Initially, two fuzzy classifications are conducted, one for each satellite image, using a fuzzy output support vector machine (SVM. The classification result from the hyperspectral image is then resampled to the multispectral’s spatial resolution and the two sources are combined using a simple yet efficient fusion operator. Thus, the complementary information provided from the two sources is effectively exploited, without having to resort to computationally demanding and time-consuming typical data fusion or vector stacking approaches. The effectiveness of the proposed methodology is validated in a complex Mediterranean forest landscape, comprising spectrally similar and spatially intermingled species. The decision fusion scheme resulted in an accuracy increase of 8% compared to the classification using only the multispectral imagery, whereas the increase was even higher compared to the classification using only the hyperspectral satellite image. Perhaps most importantly, its accuracy was significantly higher than alternative multisource fusion approaches, although the latter are characterized by much higher computation, storage, and time requirements.

  10. On land-use modeling: A treatise of satellite imagery data and misclassification error

    Science.gov (United States)

    Sandler, Austin M.

    Recent availability of satellite-based land-use data sets, including data sets with contiguous spatial coverage over large areas, relatively long temporal coverage, and fine-scale land cover classifications, is providing new opportunities for land-use research. However, care must be used when working with these datasets due to misclassification error, which causes inconsistent parameter estimates in the discrete choice models typically used to model land-use. I therefore adapt the empirical correction methods developed for other contexts (e.g., epidemiology) so that they can be applied to land-use modeling. I then use a Monte Carlo simulation, and an empirical application using actual satellite imagery data from the Northern Great Plains, to compare the results of a traditional model ignoring misclassification to those from models accounting for misclassification. Results from both the simulation and application indicate that ignoring misclassification will lead to biased results. Even seemingly insignificant levels of misclassification error (e.g., 1%) result in biased parameter estimates, which alter marginal effects enough to affect policy inference. At the levels of misclassification typical in current satellite imagery datasets (e.g., as high as 35%), ignoring misclassification can lead to systematically erroneous land-use probabilities and substantially biased marginal effects. The correction methods I propose, however, generate consistent parameter estimates and therefore consistent estimates of marginal effects and predicted land-use probabilities.

  11. Wide area change detection with satellite imagery for locating underground nuclear testing

    International Nuclear Information System (INIS)

    Canty, M.J.; Jasani, B.; Schlittenhardt, J.

    2001-01-01

    With the advent of high resolution optical imagery from commercial earth observation satellites, the use of remote sensing data for verification of nuclear non-proliferation agreements is becoming increasingly attractive. Non-governmental organizations are routinely publishing high-quality imagery of sensitive nuclear installations round the world, and international verification authorities, such as the International Atomic Energy Agency (IAEA) or the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), will also want to make use, directly or indirectly, of this additional open source of information. Exact location of the sites of underground nuclear explosions is a task eminently suited to satellite imagery. Here both moderate resolutions for detecting signals in very large testing ranges as well as high resolution images for exact interpretation play important roles. We describe in our paper a particularly sensitive change detection procedure for bitemporal, multispectral satellite imagery which can be used to locate the spall zone of underground nuclear explosions with commercial satellite imagery. The method is based on the multivariate alteration detection (MAD) technique of Nielsen et al. Linear combinations of the spectral channels in two images of the same scene are chosen so as to minimize their positive correlation. This leads to a series of difference images - the so-called MAD components - which are mutually orthogonal (uncorrelated) and ordered according to decreasing variance in their pixel intensities. Since interesting changes in man-made structures may contribute minimally to the overall variance (as the latter may be dominated for instance by seasonal vegetation differences) it is often the case that such changes turn up in a higher order MAD component. This is because they will be uncorrelated with seasonal vegetation changes, stochastic image noise or other major contributions to the overall change signal. This in fact is one of the

  12. Environmental assessment for the Satellite Power System (SPS) Concept Development and Evaluation Program (CDEP). [Microwave and non-microwave health and ecological assessment

    Energy Technology Data Exchange (ETDEWEB)

    Valentino, A.R.

    1980-08-01

    In the satellite power system (SPS), satellites in geosynchronous earth orbit would collect solar energy in space, convert it to microwaves, and transmit the microwaves to receiving antennas (rectennas) on earth. At the rectennas, the microwave energy would be converted to electricity. This SPS environmental assessment considers the microwave and nonmicrowave effects on the terrestrial environment and human health, atmospheric effects, and effects on electromagnetic systems. No environmental problem has been identified that would preclude the continued study of SPS technology. To increase the certainty of the assessment, some research has been initiated and long-term research is being planned.

  13. A Data Mining Approach for Sharpening Thermal Satellite Imagery over Land

    Directory of Open Access Journals (Sweden)

    Feng Gao

    2012-10-01

    Full Text Available Thermal infrared (TIR imagery is normally acquired at coarser pixel resolution than that of shortwave sensors on the same satellite platform and often the TIR resolution is not suitable for monitoring crop conditions of individual fields or the impacts of land cover changes that are at significantly finer spatial scales. Consequently, thermal sharpening techniques have been developed to sharpen TIR imagery to shortwave band pixel resolutions, which are often fine enough for field-scale applications. A classic thermal sharpening technique, TsHARP, uses a relationship between land surface temperature (LST and Normalized Difference Vegetation Index (NDVI developed empirically at the TIR pixel resolution and applied at the NDVI pixel resolution. However, recent studies show that unique relationships between temperature and NDVI may only exist for a limited class of landscapes, with mostly green vegetation and homogeneous air and soil conditions. To extend application of thermal sharpening to more complex conditions, a new data mining sharpener (DMS technique is developed. The DMS approach builds regression trees between TIR band brightness temperatures and shortwave spectral reflectances based on intrinsic sample characteristics. A comparison of sharpening techniques applied over a rainfed agricultural area in central Iowa, an irrigated agricultural region in the Texas High Plains, and a heterogeneous naturally vegetated landscape in Alaska indicates that the DMS outperformed TsHARP in all cases. The artificial box-like patterns in LST generated by the TsHARP approach are greatly reduced using the DMS scheme, especially for areas containing irrigated crops, water bodies, thin clouds or terrain. While the DMS technique can provide fine resolution TIR imagery, there are limits to the sharpening ratios that can be reasonably implemented. Consequently, sharpening techniques cannot replace actual thermal band imagery at fine resolutions or missions that

  14. Monitoring Nuclear Facilities Using Satellite Imagery and Associated Remote Sensing Techniques

    International Nuclear Information System (INIS)

    Lafitte, Marc; Robin, Jean‑Philippe

    2015-01-01

    The mission of the European Union Satellite Centre (SatCen) is “to support the decision making and actions of the European Union in the field of the CFSP and in particular the CSDP, including European Union crisis management missions and operations, by providing, at the request of the Council or the European Union High Representative, products and services resulting from the exploitation of relevant space assets and collateral data, including satellite and aerial imagery, and related services”. The SatCen Non‑Proliferation Team, part of the SatCen Operations Division, is responsible for the analysis of installations that are involved, or could be involved, in the preparation or acquisition of capabilities intended to divert the production of nuclear material for military purposes and, in particular, regarding the spread of Weapons of Mass destruction and their means of delivery. For the last four decades, satellite imagery and associated remote sensing and geospatial techniques have increasingly expanded their capabilities. The unprecedented Very High Resolution (VHR) data currently available, the improved spectral capabilities, the increasing number of sensors and ever increasing computing capacity, has opened up a wide range of new perspectives for remote sensing applications. Concurrently, the availability of open source information (OSINF), has increased exponentially through the medium of the internet. This range of new capabilities for sensors and associated remote sensing techniques have strengthened the SatCen analysis capabilities for the monitoring of suspected proliferation installations for the detection of undeclared nuclear facilities, processes and activities. The combination of these remote sensing techniques, imagery analysis, open source investigation and their integration into Geographic Information Systems (GIS), undoubtedly improve the efficiency and comprehensive analysis capability provided by the SatCen to the EU stake‑holders. The

  15. Effectiveness evaluation of double-layered satellite network with laser and microwave hybrid links based on fuzzy analytic hierarchy process

    Science.gov (United States)

    Zhang, Wei; Rao, Qiaomeng

    2018-01-01

    In order to solve the problem of high speed, large capacity and limited spectrum resources of satellite communication network, a double-layered satellite network with global seamless coverage based on laser and microwave hybrid links is proposed in this paper. By analyzing the characteristics of the double-layered satellite network with laser and microwave hybrid links, an effectiveness evaluation index system for the network is established. And then, the fuzzy analytic hierarchy process, which combines the analytic hierarchy process and the fuzzy comprehensive evaluation theory, is used to evaluate the effectiveness of the double-layered satellite network with laser and microwave hybrid links. Furthermore, the evaluation result of the proposed hybrid link network is obtained by simulation. The effectiveness evaluation process of the proposed double-layered satellite network with laser and microwave hybrid links can help to optimize the design of hybrid link double-layered satellite network and improve the operating efficiency of the satellite system.

  16. Environmental waste site characterization utilizing aerial photographs and satellite imagery: Three sites in New Mexico, USA

    International Nuclear Information System (INIS)

    Van Eeckhout, E.; Pope, P.; Becker, N.; Wells, B.; Lewis, A.; David, N.

    1996-01-01

    The proper handling and characterization of past hazardous waste sites is becoming more and more important as world population extends into areas previously deemed undesirable. Historical photographs, past records, current aerial satellite imagery can play an important role in characterizing these sites. These data provide clear insight into defining problem areas which can be surface samples for further detail. Three such areas are discussed in this paper: (1) nuclear wastes buried in trenches at Los Alamos National Laboratory, (2) surface dumping at one site at Los Alamos National Laboratory, and (3) the historical development of a municipal landfill near Las Cruces, New Mexico

  17. Algorithmic Foundation of Spectral Rarefaction for Measuring Satellite Imagery Heterogeneity at Multiple Spatial Scales

    Science.gov (United States)

    Rocchini, Duccio

    2009-01-01

    Measuring heterogeneity in satellite imagery is an important task to deal with. Most measures of spectral diversity have been based on Shannon Information theory. However, this approach does not inherently address different scales, ranging from local (hereafter referred to alpha diversity) to global scales (gamma diversity). The aim of this paper is to propose a method for measuring spectral heterogeneity at multiple scales based on rarefaction curves. An algorithmic solution of rarefaction applied to image pixel values (Digital Numbers, DNs) is provided and discussed. PMID:22389600

  18. Building Damage Estimation by Integration of Seismic Intensity Information and Satellite L-band SAR Imagery

    Directory of Open Access Journals (Sweden)

    Nobuoto Nojima

    2010-09-01

    Full Text Available For a quick and stable estimation of earthquake damaged buildings worldwide, using Phased Array type L-band Synthetic Aperture Radar (PALSAR loaded on the Advanced Land Observing Satellite (ALOS satellite, a model combining the usage of satellite synthetic aperture radar (SAR imagery and Japan Meteorological Agency (JMA-scale seismic intensity is proposed. In order to expand the existing C-band SAR based damage estimation model into L-band SAR, this paper rebuilds a likelihood function for severe damage ratio, on the basis of dataset from Japanese Earth Resource Satellite-1 (JERS-1/SAR (L-band SAR images observed during the 1995 Kobe earthquake and its detailed ground truth data. The model which integrates the fragility functions of building damage in terms of seismic intensity and the proposed likelihood function is then applied to PALSAR images taken over the areas affected by the 2007 earthquake in Pisco, Peru. The accuracy of the proposed damage estimation model is examined by comparing the results of the analyses with field investigations and/or interpretation of high-resolution satellite images.

  19. Application of Object Based Classification and High Resolution Satellite Imagery for Savanna Ecosystem Analysis

    Directory of Open Access Journals (Sweden)

    Jane Southworth

    2010-12-01

    Full Text Available Savanna ecosystems are an important component of dryland regions and yet are exceedingly difficult to study using satellite imagery. Savannas are composed are varying amounts of trees, shrubs and grasses and typically traditional classification schemes or vegetation indices cannot differentiate across class type. This research utilizes object based classification (OBC for a region in Namibia, using IKONOS imagery, to help differentiate tree canopies and therefore woodland savanna, from shrub or grasslands. The methodology involved the identification and isolation of tree canopies within the imagery and the creation of tree polygon layers had an overall accuracy of 84%. In addition, the results were scaled up to a corresponding Landsat image of the same region, and the OBC results compared to corresponding pixel values of NDVI. The results were not compelling, indicating once more the problems of these traditional image analysis techniques for savanna ecosystems. Overall, the use of the OBC holds great promise for this ecosystem and could be utilized more frequently in studies of vegetation structure.

  20. Detection and Prediction of Hail Storms in Satellite Imagery using Deep Learning

    Science.gov (United States)

    Pullman, M.; Gurung, I.; Ramachandran, R.; Maskey, M.

    2017-12-01

    Natural hazards, such as damaging hail storms, dramatically disrupt both industry and agriculture, having significant socio-economic impacts in the United States. In 2016, hail was responsible for 3.5 billion and 23 million dollars in damage to property and crops, respectively, making it the second costliest 2016 weather phenomenon in the United States. The destructive nature and high cost of hail storms has driven research into the development of more accurate hail-prediction algorithms in an effort to mitigate societal impacts. Recently, weather forecasting efforts have turned to deep learning neural networks because neural networks can more effectively model complex, nonlinear, dynamical phenomenon that exist in large datasets through multiple stages of transformation and representation. In an effort to improve hail-prediction techniques, we propose a deep learning technique that leverages satellite imagery to detect and predict the occurrence of hail storms. The technique is applied to satellite imagery from 2006 to 2016 for the contiguous United States and incorporates hail reports obtained from the National Center for Environmental Information Storm Events Database for training and validation purposes. In this presentation, we describe a novel approach to predicting hail via a neural network model that creates a large labeled dataset of hail storms, the accuracy and results of the model, and its applications for improving hail forecasting.

  1. Ship detection in satellite imagery using rank-order greyscale hit-or-miss transforms

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, Neal R [Los Alamos National Laboratory; Porter, Reid B [Los Alamos National Laboratory; Theiler, James [Los Alamos National Laboratory

    2010-01-01

    Ship detection from satellite imagery is something that has great utility in various communities. Knowing where ships are and their types provides useful intelligence information. However, detecting and recognizing ships is a difficult problem. Existing techniques suffer from too many false-alarms. We describe approaches we have taken in trying to build ship detection algorithms that have reduced false alarms. Our approach uses a version of the grayscale morphological Hit-or-Miss transform. While this is well known and used in its standard form, we use a version in which we use a rank-order selection for the dilation and erosion parts of the transform, instead of the standard maximum and minimum operators. This provides some slack in the fitting that the algorithm employs and provides a method for tuning the algorithm's performance for particular detection problems. We describe our algorithms, show the effect of the rank-order parameter on the algorithm's performance and illustrate the use of this approach for real ship detection problems with panchromatic satellite imagery.

  2. Assessment of spatial distribution of soil heavy metals using ANN-GA, MSLR and satellite imagery.

    Science.gov (United States)

    Naderi, Arman; Delavar, Mohammad Amir; Kaboudin, Babak; Askari, Mohammad Sadegh

    2017-05-01

    This study aims to assess and compare heavy metal distribution models developed using stepwise multiple linear regression (MSLR) and neural network-genetic algorithm model (ANN-GA) based on satellite imagery. The source identification of heavy metals was also explored using local Moran index. Soil samples (n = 300) were collected based on a grid and pH, organic matter, clay, iron oxide contents cadmium (Cd), lead (Pb) and zinc (Zn) concentrations were determined for each sample. Visible/near-infrared reflectance (VNIR) within the electromagnetic ranges of satellite imagery was applied to estimate heavy metal concentrations in the soil using MSLR and ANN-GA models. The models were evaluated and ANN-GA model demonstrated higher accuracy, and the autocorrelation results showed higher significant clusters of heavy metals around the industrial zone. The higher concentration of Cd, Pb and Zn was noted under industrial lands and irrigation farming in comparison to barren and dryland farming. Accumulation of industrial wastes in roads and streams was identified as main sources of pollution, and the concentration of soil heavy metals was reduced by increasing the distance from these sources. In comparison to MLSR, ANN-GA provided a more accurate indirect assessment of heavy metal concentrations in highly polluted soils. The clustering analysis provided reliable information about the spatial distribution of soil heavy metals and their sources.

  3. Using Low Resolution Satellite Imagery for Yield Prediction and Yield Anomaly Detection

    Directory of Open Access Journals (Sweden)

    Oscar Rojas

    2013-04-01

    Full Text Available Low resolution satellite imagery has been extensively used for crop monitoring and yield forecasting for over 30 years and plays an important role in a growing number of operational systems. The combination of their high temporal frequency with their extended geographical coverage generally associated with low costs per area unit makes these images a convenient choice at both national and regional scales. Several qualitative and quantitative approaches can be clearly distinguished, going from the use of low resolution satellite imagery as the main predictor of final crop yield to complex crop growth models where remote sensing-derived indicators play different roles, depending on the nature of the model and on the availability of data measured on the ground. Vegetation performance anomaly detection with low resolution images continues to be a fundamental component of early warning and drought monitoring systems at the regional scale. For applications at more detailed scales, the limitations created by the mixed nature of low resolution pixels are being progressively reduced by the higher resolution offered by new sensors, while the continuity of existing systems remains crucial for ensuring the availability of long time series as needed by the majority of the yield prediction methods used today.

  4. Satellite imagery-based monitoring of archaeological site damage in the Syrian civil war.

    Science.gov (United States)

    Casana, Jesse; Laugier, Elise Jakoby

    2017-01-01

    Since the start of the Syrian civil war in 2011, the rich archaeological heritage of Syria and northern Iraq has faced severe threats, including looting, combat-related damage, and intentional demolition of monuments. However, the inaccessibility of the conflict zone to archaeologists or cultural heritage specialists has made it difficult to produce accurate damage assessments, impeding efforts to develop mitigation strategies and policies. This paper presents results of a project, undertaken in collaboration with the American Schools of Oriental Research (ASOR) and the US Department of State, to monitor damage to archaeological sites in Syria, northern Iraq, and southern Turkey using recent, high-resolution satellite imagery. Leveraging a large database of archaeological and heritage sites throughout the region, as well as access to continually updated satellite imagery from DigitalGlobe, this project has developed a flexible and efficient methodology to log observations of damage in a manner that facilitates spatial and temporal queries. With nearly 5000 sites carefully evaluated, analysis reveals unexpected patterns in the timing, severity, and location of damage, helping us to better understand the evolving cultural heritage crisis in Syria and Iraq. Results also offer a model for future remote sensing-based archaeological and heritage monitoring efforts in the Middle East and beyond.

  5. Satellite imagery-based monitoring of archaeological site damage in the Syrian civil war.

    Directory of Open Access Journals (Sweden)

    Jesse Casana

    Full Text Available Since the start of the Syrian civil war in 2011, the rich archaeological heritage of Syria and northern Iraq has faced severe threats, including looting, combat-related damage, and intentional demolition of monuments. However, the inaccessibility of the conflict zone to archaeologists or cultural heritage specialists has made it difficult to produce accurate damage assessments, impeding efforts to develop mitigation strategies and policies. This paper presents results of a project, undertaken in collaboration with the American Schools of Oriental Research (ASOR and the US Department of State, to monitor damage to archaeological sites in Syria, northern Iraq, and southern Turkey using recent, high-resolution satellite imagery. Leveraging a large database of archaeological and heritage sites throughout the region, as well as access to continually updated satellite imagery from DigitalGlobe, this project has developed a flexible and efficient methodology to log observations of damage in a manner that facilitates spatial and temporal queries. With nearly 5000 sites carefully evaluated, analysis reveals unexpected patterns in the timing, severity, and location of damage, helping us to better understand the evolving cultural heritage crisis in Syria and Iraq. Results also offer a model for future remote sensing-based archaeological and heritage monitoring efforts in the Middle East and beyond.

  6. Validity and feasibility of a satellite imagery-based method for rapid estimation of displaced populations.

    Science.gov (United States)

    Checchi, Francesco; Stewart, Barclay T; Palmer, Jennifer J; Grundy, Chris

    2013-01-23

    Estimating the size of forcibly displaced populations is key to documenting their plight and allocating sufficient resources to their assistance, but is often not done, particularly during the acute phase of displacement, due to methodological challenges and inaccessibility. In this study, we explored the potential use of very high resolution satellite imagery to remotely estimate forcibly displaced populations. Our method consisted of multiplying (i) manual counts of assumed residential structures on a satellite image and (ii) estimates of the mean number of people per structure (structure occupancy) obtained from publicly available reports. We computed population estimates for 11 sites in Bangladesh, Chad, Democratic Republic of Congo, Ethiopia, Haiti, Kenya and Mozambique (six refugee camps, three internally displaced persons' camps and two urban neighbourhoods with a mixture of residents and displaced) ranging in population from 1,969 to 90,547, and compared these to "gold standard" reference population figures from census or other robust methods. Structure counts by independent analysts were reasonably consistent. Between one and 11 occupancy reports were available per site and most of these reported people per household rather than per structure. The imagery-based method had a precision relative to reference population figures of layout. For each site, estimates were produced in 2-5 working person-days. In settings with clearly distinguishable individual structures, the remote, imagery-based method had reasonable accuracy for the purposes of rapid estimation, was simple and quick to implement, and would likely perform better in more current application. However, it may have insurmountable limitations in settings featuring connected buildings or shelters, a complex pattern of roofs and multi-level buildings. Based on these results, we discuss possible ways forward for the method's development.

  7. Using Online Citizen Science to Assess Giant Kelp Abundances Across the Globe with Satellite Imagery

    Science.gov (United States)

    Byrnes, J.; Cavanaugh, K. C.; Haupt, A. J.; Trouille, L.; Rosenthal, I.; Bell, T. W.; Rassweiler, A.; Pérez-Matus, A.; Assis, J.

    2017-12-01

    Global scale long-term data sets that document the patterns and variability of human impacts on marine ecosystems are rare. This lack is particularly glaring for underwater species - even moreso for ecologically important ones. Here we demonstrate how online Citizen Science combined with Landsat satellite imagery can help build a picture of change in the dynamics of giant kelp, an important coastal foundation species around the globe, from the 1984 to the present. Giant kelp canopy is visible from Landsat images, but these images defy easy machine classification. To get useful data, images must be processed by hand. While academic researchers have applied this method successfully at sub-regional scales, unlocking the value of the full global dataset has not been possible until given the massive effort required. Here we present Floating Forests (http://floatingforests.org), an international collaboration between kelp forest researchers and the citizen science organization Zooniverse. Floating Forests provides an interface that allows citizen scientists to identify canopy cover of giant kelp on Landsat images, enabling us to scale up the dataset to the globe. We discuss lessons learned from the initial version of the project launched in 2014, a prototype of an image processing pipeline to bring Landsat imagery to citizen science platforms, methods of assessing accuracy of citizen scientists, and preliminary data from our relaunch of the project. Through this project we have developed generalizable tools to facilitate citizen science-based analysis of Landsat and other satellite and aerial imagery. We hope that this create a powerful dataset to unlock our understanding of how global change has altered these critically important species in the sea.

  8. Super-Resolution for “Jilin-1” Satellite Video Imagery via a Convolutional Network

    Directory of Open Access Journals (Sweden)

    Aoran Xiao

    2018-04-01

    Full Text Available Super-resolution for satellite video attaches much significance to earth observation accuracy, and the special imaging and transmission conditions on the video satellite pose great challenges to this task. The existing deep convolutional neural-network-based methods require pre-processing or post-processing to be adapted to a high-resolution size or pixel format, leading to reduced performance and extra complexity. To this end, this paper proposes a five-layer end-to-end network structure without any pre-processing and post-processing, but imposes a reshape or deconvolution layer at the end of the network to retain the distribution of ground objects within the image. Meanwhile, we formulate a joint loss function by combining the output and high-dimensional features of a non-linear mapping network to precisely learn the desirable mapping relationship between low-resolution images and their high-resolution counterparts. Also, we use satellite video data itself as a training set, which favors consistency between training and testing images and promotes the method’s practicality. Experimental results on “Jilin-1” satellite video imagery show that this method demonstrates a superior performance in terms of both visual effects and measure metrics over competing methods.

  9. Super-Resolution for "Jilin-1" Satellite Video Imagery via a Convolutional Network.

    Science.gov (United States)

    Xiao, Aoran; Wang, Zhongyuan; Wang, Lei; Ren, Yexian

    2018-04-13

    Super-resolution for satellite video attaches much significance to earth observation accuracy, and the special imaging and transmission conditions on the video satellite pose great challenges to this task. The existing deep convolutional neural-network-based methods require pre-processing or post-processing to be adapted to a high-resolution size or pixel format, leading to reduced performance and extra complexity. To this end, this paper proposes a five-layer end-to-end network structure without any pre-processing and post-processing, but imposes a reshape or deconvolution layer at the end of the network to retain the distribution of ground objects within the image. Meanwhile, we formulate a joint loss function by combining the output and high-dimensional features of a non-linear mapping network to precisely learn the desirable mapping relationship between low-resolution images and their high-resolution counterparts. Also, we use satellite video data itself as a training set, which favors consistency between training and testing images and promotes the method's practicality. Experimental results on "Jilin-1" satellite video imagery show that this method demonstrates a superior performance in terms of both visual effects and measure metrics over competing methods.

  10. Multi-decadal record of ice dynamics on Daugaard Jensen Gletscher, East Greenland, from satellite imagery and terrestrial measurements

    DEFF Research Database (Denmark)

    Stearns, L.A.; Hamilton, G.S.; Reeh, Niels

    2005-01-01

    The history of ice velocity and calving front position of Daugaard Jensen Gletscher, a large outlet glacier in East Greenland, is reconstructed from field measurements, aerial photography and satellite imagery for the period 1950-2001. The calving terminus of the glacier has remained in approxima......The history of ice velocity and calving front position of Daugaard Jensen Gletscher, a large outlet glacier in East Greenland, is reconstructed from field measurements, aerial photography and satellite imagery for the period 1950-2001. The calving terminus of the glacier has remained...

  11. Application of satellite imagery to monitoring human rights abuse of vulnerable communities, with minimal risk to relief staff

    Energy Technology Data Exchange (ETDEWEB)

    Lavers, C; Bishop, C; Hawkins, O; Grealey, E; Cox, C; Thomas, D; Trimel, S, E-mail: brnc-radarcomms1@nrta.mod.u [Sensors Team, Plymouth University at Britannia Royal Naval College, Dartmouth (United Kingdom); DMC International Imaging, Tycho House, Surrey Research Park, Guildford (United Kingdom); Qinetiq, Cody Technology Park, Cody Building, Ively Road, Farnborough (United Kingdom); Humanitarian Aid Relief Trust (HART), 3 Arnellan House, Kingsbury, London (United Kingdom); Amnesty International USA, 5 Penn Plaza, New York (United States)

    2009-07-01

    Space imagery offers remote surveillance of ethnic people groups at risk of human rights abuse. We highlight work in alleged violations in Burma and Sudan, using satellite imagery for verification with Amnesty International. We consider how imaging may effectively support small to medium-sized Non Governmental Organisations and charities, e.g. HART, working in dangerous zones on the ground. Satellite based sensing applications are now at a sufficiently mature stage for moderate Governmental funding levels to help prevent human rights abuse, rather than the greater cost of rebuilding communities and healing sectarian divisions after abuse has taken place.

  12. Application of satellite imagery to monitoring human rights abuse of vulnerable communities, with minimal risk to relief staff

    International Nuclear Information System (INIS)

    Lavers, C; Bishop, C; Hawkins, O; Grealey, E; Cox, C; Thomas, D; Trimel, S

    2009-01-01

    Space imagery offers remote surveillance of ethnic people groups at risk of human rights abuse. We highlight work in alleged violations in Burma and Sudan, using satellite imagery for verification with Amnesty International. We consider how imaging may effectively support small to medium-sized Non Governmental Organisations and charities, e.g. HART, working in dangerous zones on the ground. Satellite based sensing applications are now at a sufficiently mature stage for moderate Governmental funding levels to help prevent human rights abuse, rather than the greater cost of rebuilding communities and healing sectarian divisions after abuse has taken place.

  13. Microwave and theoretical studies for Cosmic Background Explorer satellite

    International Nuclear Information System (INIS)

    Wilkinson, D.T.

    1983-07-01

    The Cosmic Background Explorer (COBE) satellite, its instruments, and its scientific mission are discussed. The COBE radiometer is considered, and measurement of galactic radio emission with masers is reviewed. Extragalactic radiation and zodiacal dust are mentioned briefly

  14. The Role of Satellite Imagery to Improve Pastureland Estimates in South America

    Science.gov (United States)

    Graesser, J.

    2015-12-01

    Agriculture has changed substantially across the globe over the past half century. While much work has been done to improve spatial-temporal estimates of agricultural changes, we still know more about the extent of row-crop agriculture than livestock-grazed land. The gap between cropland and pastureland estimates exists largely because it is challenging to characterize natural versus grazed grasslands from a remote sensing perspective. However, the impasse of pastureland estimates is set to break, with an increasing number of spaceborne sensors and freely available satellite data. The Landsat satellite archive in particular provides researchers with immense amounts of data to improve pastureland information. Here we focus on South America, where pastureland expansion has been scrutinized for the past few decades. We explore the challenges of estimating pastureland using temporal Landsat imagery and focus on key agricultural countries, regions, and ecosystems. We focus on the suggested shift of pastureland from the Argentine Pampas to northern Argentina, and the mixing of small-scale and large-scale ranching in eastern Paraguay and how it could impact the Chaco forest to the west. Further, the Beni Savannahs of northern Bolivia and the Colombian Llanos—both grassland and savannah regions historically used for livestock grazing—have been hinted at as future areas for cropland expansion. There are certainly environmental concerns with pastureland expansion into forests; but what are the environmental implications when well-managed pasture systems are converted to intensive soybean or palm oil plantation? Tropical, grazed grasslands are important habitats for biodiversity, and pasturelands can mitigate soil erosion when well managed. Thus, we must improve estimates of grazed land before we can make informed policy and conservation decisions. This talk presents insights into pastureland estimates in South America and discusses the feasibility to improve current

  15. Nonlinear bias analysis and correction of microwave temperature sounder observations for FY-3C meteorological satellite

    Science.gov (United States)

    Hu, Taiyang; Lv, Rongchuan; Jin, Xu; Li, Hao; Chen, Wenxin

    2018-01-01

    The nonlinear bias analysis and correction of receiving channels in Chinese FY-3C meteorological satellite Microwave Temperature Sounder (MWTS) is a key technology of data assimilation for satellite radiance data. The thermal-vacuum chamber calibration data acquired from the MWTS can be analyzed to evaluate the instrument performance, including radiometric temperature sensitivity, channel nonlinearity and calibration accuracy. Especially, the nonlinearity parameters due to imperfect square-law detectors will be calculated from calibration data and further used to correct the nonlinear bias contributions of microwave receiving channels. Based upon the operational principles and thermalvacuum chamber calibration procedures of MWTS, this paper mainly focuses on the nonlinear bias analysis and correction methods for improving the calibration accuracy of the important instrument onboard FY-3C meteorological satellite, from the perspective of theoretical and experimental studies. Furthermore, a series of original results are presented to demonstrate the feasibility and significance of the methods.

  16. The Satellite Passive-Microwave Record of Sea Ice in the Ross Sea Since Late 1978

    Science.gov (United States)

    Parkinson, Claire L.

    2009-01-01

    Satellites have provided us with a remarkable ability to monitor many aspects of the globe day-in and day-out and sea ice is one of numerous variables that by now have quite substantial satellite records. Passive-microwave data have been particularly valuable in sea ice monitoring, with a record that extends back to August 1987 on daily basis (for most of the period), to November 1970 on a less complete basis (again for most of the period), and to December 1972 on a less complete basis. For the period since November 1970, Ross Sea sea ice imagery is available at spatial resolution of approximately 25 km. This allows good depictions of the seasonal advance and retreat of the ice cover each year, along with its marked interannual variability. The Ross Sea ice extent typically reaches a minimum of approximately 0.7 x 10(exp 6) square kilometers in February, rising to a maximum of approximately 4.0 x 10(exp 6) square kilometers in September, with much variability among years for both those numbers. The Ross Sea images show clearly the day-by-day activity greatly from year to year. Animations of the data help to highlight the dynamic nature of the Ross Sea ice cover. The satellite data also allow calculation of trends in the ice cover over the period of the satellite record. Using linear least-squares fits, the Ross Sea ice extent increased at an average rate of 12,600 plus or minus 1,800 square kilometers per year between November 1978 and December 2007, with every month exhibiting increased ice extent and the rates of increase ranging from a low of 7,500 plus or minus 5,000 square kilometers per year for the February ice extents to a high of 20,300 plus or minus 6,100 kilometers per year for the October ice extents. On a yearly average basis, for 1979-2007 the Ross Sea ice extent increased at a rate of 4.8 plus or minus 1.6 % per decade. Placing the Ross Sea in the context of the Southern Ocean as a whole, over the November 1978-December 2007 period the Ross Sea had

  17. Accuracy assessment of high resolution satellite imagery orientation by leave-one-out method

    Science.gov (United States)

    Brovelli, Maria Antonia; Crespi, Mattia; Fratarcangeli, Francesca; Giannone, Francesca; Realini, Eugenio

    Interest in high-resolution satellite imagery (HRSI) is spreading in several application fields, at both scientific and commercial levels. Fundamental and critical goals for the geometric use of this kind of imagery are their orientation and orthorectification, processes able to georeference the imagery and correct the geometric deformations they undergo during acquisition. In order to exploit the actual potentialities of orthorectified imagery in Geomatics applications, the definition of a methodology to assess the spatial accuracy achievable from oriented imagery is a crucial topic. In this paper we want to propose a new method for accuracy assessment based on the Leave-One-Out Cross-Validation (LOOCV), a model validation method already applied in different fields such as machine learning, bioinformatics and generally in any other field requiring an evaluation of the performance of a learning algorithm (e.g. in geostatistics), but never applied to HRSI orientation accuracy assessment. The proposed method exhibits interesting features which are able to overcome the most remarkable drawbacks involved by the commonly used method (Hold-Out Validation — HOV), based on the partitioning of the known ground points in two sets: the first is used in the orientation-orthorectification model (GCPs — Ground Control Points) and the second is used to validate the model itself (CPs — Check Points). In fact the HOV is generally not reliable and it is not applicable when a low number of ground points is available. To test the proposed method we implemented a new routine that performs the LOOCV in the software SISAR, developed by the Geodesy and Geomatics Team at the Sapienza University of Rome to perform the rigorous orientation of HRSI; this routine was tested on some EROS-A and QuickBird images. Moreover, these images were also oriented using the world recognized commercial software OrthoEngine v. 10 (included in the Geomatica suite by PCI), manually performing the LOOCV

  18. The potential of satellite spectro-imagery for monitoring CO2 emissions from large cities

    Directory of Open Access Journals (Sweden)

    G. Broquet

    2018-02-01

    Full Text Available This study assesses the potential of 2 to 10 km resolution imagery of CO2 concentrations retrieved from the shortwave infrared measurements of a space-borne passive spectrometer for monitoring the spatially integrated emissions from the Paris area. Such imagery could be provided by missions similar to CarbonSat, which was studied as a candidate Earth Explorer 8 mission by the European Space Agency (ESA. This assessment is based on observing system simulation experiments (OSSEs with an atmospheric inversion approach at city scale. The inversion system solves for hourly city CO2 emissions and natural fluxes, or for these fluxes per main anthropogenic sector or ecosystem, during the 6 h before a given satellite overpass. These 6 h correspond to the period during which emissions produce CO2 plumes that can be identified on the image from this overpass. The statistical framework of the inversion accounts for the existence of some prior knowledge with 50 % uncertainty on the hourly or sectorial emissions, and with ∼ 25 % uncertainty on the 6 h mean emissions, from an inventory based on energy use and carbon fuel consumption statistics. The link between the hourly or sectorial emissions and the vertically integrated column of CO2 observed by the satellite is simulated using a coupled flux and atmospheric transport model. This coupled model is built with the information on the spatial and temporal distribution of emissions from the emission inventory produced by the local air-quality agency (Airparif and a 2 km horizontal resolution atmospheric transport model. Tests are conducted for different realistic simulations of the spatial coverage, resolution, precision and accuracy of the imagery from sun-synchronous polar-orbiting missions, corresponding to the specifications of CarbonSat and Sentinel-5 or extrapolated from these specifications. First, OSSEs are conducted with a rather optimistic configuration in which the inversion system

  19. The potential of satellite spectro-imagery for monitoring CO2 emissions from large cities

    Science.gov (United States)

    Broquet, Grégoire; Bréon, François-Marie; Renault, Emmanuel; Buchwitz, Michael; Reuter, Maximilian; Bovensmann, Heinrich; Chevallier, Frédéric; Wu, Lin; Ciais, Philippe

    2018-02-01

    This study assesses the potential of 2 to 10 km resolution imagery of CO2 concentrations retrieved from the shortwave infrared measurements of a space-borne passive spectrometer for monitoring the spatially integrated emissions from the Paris area. Such imagery could be provided by missions similar to CarbonSat, which was studied as a candidate Earth Explorer 8 mission by the European Space Agency (ESA). This assessment is based on observing system simulation experiments (OSSEs) with an atmospheric inversion approach at city scale. The inversion system solves for hourly city CO2 emissions and natural fluxes, or for these fluxes per main anthropogenic sector or ecosystem, during the 6 h before a given satellite overpass. These 6 h correspond to the period during which emissions produce CO2 plumes that can be identified on the image from this overpass. The statistical framework of the inversion accounts for the existence of some prior knowledge with 50 % uncertainty on the hourly or sectorial emissions, and with ˜ 25 % uncertainty on the 6 h mean emissions, from an inventory based on energy use and carbon fuel consumption statistics. The link between the hourly or sectorial emissions and the vertically integrated column of CO2 observed by the satellite is simulated using a coupled flux and atmospheric transport model. This coupled model is built with the information on the spatial and temporal distribution of emissions from the emission inventory produced by the local air-quality agency (Airparif) and a 2 km horizontal resolution atmospheric transport model. Tests are conducted for different realistic simulations of the spatial coverage, resolution, precision and accuracy of the imagery from sun-synchronous polar-orbiting missions, corresponding to the specifications of CarbonSat and Sentinel-5 or extrapolated from these specifications. First, OSSEs are conducted with a rather optimistic configuration in which the inversion system is perfectly informed about the

  20. [Extraction of buildings three-dimensional information from high-resolution satellite imagery based on Barista software].

    Science.gov (United States)

    Zhang, Pei-feng; Hu, Yuan-man; He, Hong-shi

    2010-05-01

    The demand for accurate and up-to-date spatial information of urban buildings is becoming more and more important for urban planning, environmental protection, and other vocations. Today's commercial high-resolution satellite imagery offers the potential to extract the three-dimensional information of urban buildings. This paper extracted the three-dimensional information of urban buildings from QuickBird imagery, and validated the precision of the extraction based on Barista software. It was shown that the extraction of three-dimensional information of the buildings from high-resolution satellite imagery based on Barista software had the advantages of low professional level demand, powerful universality, simple operation, and high precision. One pixel level of point positioning and height determination accuracy could be achieved if the digital elevation model (DEM) and sensor orientation model had higher precision and the off-Nadir View Angle was relatively perfect.

  1. Assessing the population coverage of a health demographic surveillance system using satellite imagery and crowd-sourcing

    NARCIS (Netherlands)

    Pasquale, Di Aurelio; Mc Cann, Robert; Maire, Nicolas

    2017-01-01

    Remotely sensed data can serve as an independent source of information about the location of residential structures in areas under demographic and health surveillance. We report on results obtained combining satellite imagery, imported from Bing, with location data routinely collected using the

  2. Assessing the accuracy of hyperspectral and multispectral satellite imagery for categorical and quantitative mapping of salinity stress in sugarcane fields

    NARCIS (Netherlands)

    Hamzeh, Saied; Naseri, Abd Ali; Alavipanah, Seyed Kazem; Bartholomeus, Harm; Herold, Martin

    2016-01-01

    This study evaluates the feasibility of hyperspectral and multispectral satellite imagery for categorical and quantitative mapping of salinity stress in sugarcane fields located in the southwest of Iran. For this purpose a Hyperion image acquired on September 2, 2010 and a Landsat7 ETM+ image

  3. Selecting Appropriate Spatial Scale for Mapping Plastic-Mulched Farmland with Satellite Remote Sensing Imagery

    Directory of Open Access Journals (Sweden)

    Hasituya

    2017-03-01

    Full Text Available In recent years, the area of plastic-mulched farmland (PMF has undergone rapid growth and raised remarkable environmental problems. Therefore, mapping the PMF plays a crucial role in agricultural production, environmental protection and resource management. However, appropriate data selection criteria are currently lacking. Thus, this study was carried out in two main plastic-mulching practice regions, Jizhou and Guyuan, to look for an appropriate spatial scale for mapping PMF with remote sensing. The average local variance (ALV function was used to obtain the appropriate spatial scale for mapping PMF based on the GaoFen-1 (GF-1 satellite imagery. Afterwards, in order to validate the effectiveness of the selected method and to interpret the relationship between the appropriate spatial scale derived from the ALV and the spatial scale with the highest classification accuracy, we classified the imagery with varying spatial resolution by the Support Vector Machine (SVM algorithm using the spectral features, textural features and the combined spectral and textural features respectively. The results indicated that the appropriate spatial scales from the ALV lie between 8 m and 20 m for mapping the PMF both in Jizhou and Guyuan. However, there is a proportional relation: the spatial scale with the highest classification accuracy is at the 1/2 location of the appropriate spatial scale generated from the ALV in Jizhou and at the 2/3 location of the appropriate spatial scale generated from the ALV in Guyuan. Therefore, the ALV method for quantitatively selecting the appropriate spatial scale for mapping PMF with remote sensing imagery has theoretical and practical significance.

  4. Location of irrigated land classified from satellite imagery - High Plains Area, nominal date 1992

    Science.gov (United States)

    Qi, Sharon L.; Konduris, Alexandria; Litke, David W.; Dupree, Jean

    2002-01-01

    Satellite imagery from the Landsat Thematic Mapper (nominal date 1992) was used to classify and map the location of irrigated land overlying the High Plains aquifer. The High Plains aquifer underlies 174,000 square miles in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. The U.S. Geological Survey is conducting a water-quality study of the High Plains aquifer as part of the National Water-Quality Assessment Program. To help interpret data and select sites for the study, it is helpful to know the location of irrigated land within the study area. To date, the only information available for the entire area is 20 years old. To update the data on irrigated land, 40 summer and 40 spring images (nominal date 1992) were acquired from the National Land Cover Data set and processed using a band-ratio method (Landsat Thematic Mapper band 4 divided by band 3) to enhance the vegetation signatures. The study area was divided into nine subregions with similar environmental characteristics, and a band-ratio threshold was selected from imagery in each subregion that differentiated the cutoff between irrigated and nonirrigated land. The classified images for each subregion were mosaicked to produce an irrigated-land map for the study area. The total amount of irrigated land classified from the 1992 imagery was 13.1 million acres, or about 12 percent of the total land in the High Plains. This estimate is approximately 1.5 percent greater than the amount of irrigated land reported in the 1992 Census of Agriculture (12.8 millions acres).

  5. Wind class sampling of satellite SAR imagery for offshore wind resource mapping

    DEFF Research Database (Denmark)

    Badger, Merete; Badger, Jake; Nielsen, Morten

    2010-01-01

    developed for mesoscale modeling of wind resources. Its performance in connection with sampling of SAR scenes is tested against two sets of random SAR samples and meteorological observations at three sites in the North Sea during 2005–08. Predictions of the mean wind speed and the Weibull scale parameter......High-resolution wind fields retrieved from satellite synthetic aperture radar (SAR) imagery are combined for mapping of wind resources offshore where site measurements are costly and sparse. A new sampling strategy for the SAR scenes is introduced, based on a method for statistical......-dynamical downscaling of large-scale wind conditions using a set of wind classes that describe representative wind situations. One or more SAR scenes are then selected to represent each wind class and the classes are weighted according to their frequency of occurrence. The wind class methodology was originally...

  6. Estimation Of The Spatial Distribution Of Crop Coefficient (Kc) From Landsat Satellite Imagery

    International Nuclear Information System (INIS)

    Abou EI-Magd, I.H.

    2009-01-01

    Single crop coefficient factor (K c ) is an essential component for crop water allocation for efficient irrigation scheduling and irrigation water management. Kc is basically defined as the ratio of actual evapotranspiration and grass/alfalfa reference evapotranspiration and always measured by lysimeter in localized area in the field, which then generalized on the whole irrigated land. The lack of precise information about the crop coefficient particularly in our country together with both small sized fields and heterogeneity of agricultural crops calls for developing a new methodology for computing a real time crop coefficient from remotely sensed data. This paper discusses the methodology developed for obtaining a real time single crop coefficient from Landsat Satellite ETM + 7 imageries. The methodology was applied and optimized on one irrigation field with two different dates and crop cover in the northern Delta of Egypt

  7. Coastal erosion and accretion in Pak Phanang, Thailand by GIS analysis of maps and satellite imagery

    Directory of Open Access Journals (Sweden)

    Sayedur Rahman Chowdhury

    2013-12-01

    Full Text Available Coastal erosion and accretion in Pak Phanang of southern Thailand between 1973 and 2003 was measured using multi-temporal topographic maps and Landsat satellite imageries. Within a GIS environment landward and seaward movements of shoreline was estimated by a transect-based analysis, and amounts of land accretion and erosion were estimated by a parcel-based geoprocessing. The whole longitudinal extent of the 58 kilometer coast was classified based on the erosion and accretion trends during this period using agglomerative hierarchical clustering approach. Erosion and accretion were found variable over time and space, and periodic reversal of status was also noticed in many places. Estimates of erosion were evaluated against field-survey based data, and found reasonably accurate where the rates were relatively great. Smoothing of shoreline datasets was found desirable as its impacts on the estimates remained within tolerable limits.

  8. Monitoring Termite-Mediated Ecosystem Processes Using Moderate and High Resolution Satellite Imagery

    Science.gov (United States)

    Lind, B. M.; Hanan, N. P.

    2016-12-01

    Termites are considered dominant decomposers and prominent ecosystem engineers in the global tropics and they build some of the largest and architecturally most complex non-human-made structures in the world. Termite mounds significantly alter soil texture, structure, and nutrients, and have major implications for local hydrological dynamics, vegetation characteristics, and biological diversity. An understanding of how these processes change across large scales has been limited by our ability to detect termite mounds at high spatial resolutions. Our research develops methods to detect large termite mounds in savannas across extensive geographic areas using moderate and high resolution satellite imagery. We also investigate the effect of termite mounds on vegetation productivity using Landsat-8 maximum composite NDVI data as a proxy for production. Large termite mounds in arid and semi-arid Senegal generate highly reflective `mound scars' with diameters ranging from 10 m at minimum to greater than 30 m. As Sentinel-2 has several bands with 10 m resolution and Landsat-8 has improved calibration, higher radiometric resolution, 15 m spatial resolution (pansharpened), and improved contrast between vegetated and bare surfaces compared to previous Landsat missions, we found that the largest and most influential mounds in the landscape can be detected. Because mounds as small as 4 m in diameter are easily detected in high resolution imagery we used these data to validate detection results and quantify omission errors for smaller mounds.

  9. Monitoring of oil pollution in the Arabian Gulf based on medium resolution satellite imagery

    Science.gov (United States)

    Zhao, J.; Ghedira, H.

    2013-12-01

    A large number of inland and offshore oil fields are located in the Arabian Gulf where about 25% of the world's oil is produced by the countries surrounding the Arabian Gulf region. Almost all of this oil production is shipped by sea worldwide through the Strait of Hormuz making the region vulnerable to environmental and ecological threats that might arise from accidental or intentional oil spills. Remote sensing technologies have the unique capability to detect and monitor oil pollutions over large temporal and spatial scales. Synoptic satellite imaging can date back to 1972 when Landsat-1 was launched. Landsat satellite missions provide long time series of imagery with a spatial resolution of 30 m. MODIS sensors onboard NASA's Terra and Aqua satellites provide a wide and frequent coverage at medium spatial resolution, i.e. 250 m and 500, twice a day. In this study, the capability of medium resolution MODIS and Landsat data in detecting and monitoring oil pollutions in the Arabian Gulf was tested. Oil spills and slicks show negative or positive contrasts in satellite derived RGB images compared with surrounding clean waters depending on the solar/viewing geometry, oil thickness and evolution, etc. Oil-contaminated areas show different spectral characteristics compared with surrounding waters. Rayleigh-corrected reflectance at the seven medium resolution bands of MODIS is lower in oil affected areas. This is caused by high light absorption of oil slicks. 30-m Landsat image indicated the occurrence of oil spill on May 26 2000 in the Arabian Gulf. The oil spill showed positive contrast and lower temperature than surrounding areas. Floating algae index (FAI) images are also used to detect oil pollution. Oil-contaminated areas were found to have lower FAI values. To track the movement of oil slicks found on October 21 2007, ocean circulations from a HYCOM model were examined and demonstrated that the oil slicks were advected toward the coastal areas of United Arab

  10. Cloud detection method for Chinese moderate high resolution satellite imagery (Conference Presentation)

    Science.gov (United States)

    Zhong, Bo; Chen, Wuhan; Wu, Shanlong; Liu, Qinhuo

    2016-10-01

    Cloud detection of satellite imagery is very important for quantitative remote sensing research and remote sensing applications. However, many satellite sensors don't have enough bands for a quick, accurate, and simple detection of clouds. Particularly, the newly launched moderate to high spatial resolution satellite sensors of China, such as the charge-coupled device on-board the Chinese Huan Jing 1 (HJ-1/CCD) and the wide field of view (WFV) sensor on-board the Gao Fen 1 (GF-1), only have four available bands including blue, green, red, and near infrared bands, which are far from the requirements of most could detection methods. In order to solve this problem, an improved and automated cloud detection method for Chinese satellite sensors called OCM (Object oriented Cloud and cloud-shadow Matching method) is presented in this paper. It firstly modified the Automatic Cloud Cover Assessment (ACCA) method, which was developed for Landsat-7 data, to get an initial cloud map. The modified ACCA method is mainly based on threshold and different threshold setting produces different cloud map. Subsequently, a strict threshold is used to produce a cloud map with high confidence and large amount of cloud omission and a loose threshold is used to produce a cloud map with low confidence and large amount of commission. Secondly, a corresponding cloud-shadow map is also produced using the threshold of near-infrared band. Thirdly, the cloud maps and cloud-shadow map are transferred to cloud objects and cloud-shadow objects. Cloud and cloud-shadow are usually in pairs; consequently, the final cloud and cloud-shadow maps are made based on the relationship between cloud and cloud-shadow objects. OCM method was tested using almost 200 HJ-1/CCD images across China and the overall accuracy of cloud detection is close to 90%.

  11. Using Satellite Imagery to Identify Tornado Damage Tracks and Recovery from the April 27, 2011 Severe Weather Outbreak

    Science.gov (United States)

    Cole, Tony A.; Molthan, Andrew L.; Bell, Jordan R.

    2014-01-01

    Emergency response to natural disasters requires coordination between multiple local, state, and federal agencies. Single, relatively weak tornado events may require comparatively simple response efforts; but larger "outbreak" events with multiple strong, long-track tornadoes can benefit from additional tools to help expedite these efforts. Meteorologists from NOAA's National Weather Service conduct field surveys to map tornado tracks, assess damage, and determine the tornado intensity following each event. Moderate and high resolution satellite imagery can support these surveys by providing a high-level view of the affected areas. Satellite imagery could then be used to target areas for immediate survey or to corroborate the results of the survey after it is completed. In this study, the feasibility of using satellite imagery to identify tornado damage tracks was determined by comparing the characteristics of tracks observed from low-earth orbit to tracks assessed during the official NWS storm survey process. Of the 68 NWS confirmed centerlines, 24 tracks (35.3%) could be distinguished from other surface features using satellite imagery. Within each EF category, 0% of EF-0, 3% of EF-1, 50% of EF-2, 77.7% of EF-3, 87.5% of EF-4 and 100% of EF-5 tornadoes were detected. It was shown that satellite data can be used to identify tornado damage tracks in MODIS and ASTER NDVI imagery, where damage to vegetation creates a sharp drop in values though the minimum EF-category which can be detected is dependent upon the type of sensor used and underlying vegetation. Near-real time data from moderate resolution sensors compare favorably to field surveys after the event and suggest that the data can provide some value in the assessment process.

  12. Classification of irrigated land using satellite imagery, the High Plains aquifer, nominal date 1992

    Science.gov (United States)

    Qi, Sharon L.; Konduris, Alexandria; Litke, David W.; Dupree, Jean

    2002-01-01

    Satellite imagery from the Landsat Thematic Mapper (nominal date 1992) was used to classify and map the location of irrigated land across the High Plains aquifer. The High Plains aquifer underlies 174,000 square miles in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. The U.S. Geological Survey is conducting a waterquality study of the High Plains aquifer as part of the National Water-Quality Assessment Program. To help interpret data and select sites for the study, it is helpful to know the location of irrigated land within the study area. To date, the only information available for the entire area is 20 years old. To update the data on irrigated land, 40 summer and 40 spring images (nominal date 1992) were acquired from the National Land Cover Data set and processed using a band-ratio method (Landsat Thematic Mapper band 4 divided by band 3) to enhance the vegetation signatures. The study area was divided into nine subregions with similar environmental characteristics, and a band-ratio threshold was selected from imagery in each subregion that differentiated the cutoff between irrigated and nonirrigated land. The classified images for each subregion were mosaicked to produce an irrigated land map for the study area. The total amount of irrigated land classified from the 1992 imagery was 13.1 million acres, or about 12 percent of the total land in the High Plains. This estimate is approximately 1.5 percent greater than the amount of irrigated land reported in the 1992 Census of Agriculture (12.8 millions acres). This information was also compared to a similar data set based on 1980 imagery. The 1980 data classified 13.7 million acres as irrigated. Although the change in the amount of irrigated land between the two times was not substantial, the location of the irrigated land did shift from areas where there were large ground-water-level declines to other areas where ground-water levels were static or rising.

  13. Use of AMSR-E microwave satellite data for land surface characteristics and snow cover variation

    Directory of Open Access Journals (Sweden)

    Mukesh Singh Boori

    2016-12-01

    Full Text Available This data article contains data related to the research article entitled “Global land cover classification based on microwave polarization and gradient ratio (MPGR” [1] and “Microwave polarization and gradient ratio (MPGR for global land surface phenology” [2]. This data article presents land surface characteristics and snow cover variation information from sensors like EOS Advanced Microwave Scanning Radiometer (AMSR-E. This data article use the HDF Explorer, Matlab, and ArcGIS software to process the pixel latitude, longitude, snow water equivalent (SWE, digital elevation model (DEM and Brightness Temperature (BT information from AMSR-E satellite data to provide land surface characteristics and snow cover variation data in all-weather condition at any time. This data information is useful to discriminate different land surface cover types and snow cover variation, which is turn, will help to improve monitoring of weather, climate and natural disasters.

  14. The Planck Satellite LFI and the Microwave Background: Importance of the 4 K Reference Targets

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2010-07-01

    Full Text Available Armed with 4 K reference targets, the Planck satellite low frequency instrument (LFI is intended to map the microwave anisotropies of the sky from the second Lagrange point, L2. Recently, the complete design and pre-flight testing of these 4 K targets has been published (Valenziano L. et al., JINST 4, 2009, T12006. The receiver chain of the LFI is based on a pseudo-correlation architecture. Consequently, the presence of a 3 K microwave background signal at L2 can be established, if the 4 K reference targets function as intended. Conversely, demonstration that the targets are unable to provide the desired emission implies that the 3 K signal cannot exist, at this location. Careful study reveals that only the second scenario can be valid. This analysis thereby provides firm evidence that the monopole of the microwave background, as initially detected by Penzias and Wilson, is being produced by the Earth itself.

  15. The Planck Satellite LFI and the Microwave Background: Importance of the 4K Reference Targets

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2010-04-01

    Full Text Available Armed with ~4K reference targets, the Planck satellite low frequency instrument (LFI is intended to map the microwave anisotropies of the sky from the second Lagrange point, L2. Recently, the complete design and pre-flight testing of these ~4K targets has been published (Valenziano L. et al., JINST 4, 2009, T12006. The receiver chain of the LFI is based on a pseudo-correlation architecture. Consequently, the presence of a ~3K microwave background signal at L2 can be established, if the ~4K reference targets function as intended. Conversely, demonstration that the targets are unable to provide the desired emission implies that the ~3K signal cannot exist, at this location. Careful study reveals that only the second scenario can be valid. This analysis thereby provides firm evidence that the monopole of the microwave background, as initially detected by Penzias and Wilson, is being produced by the Earth itself.

  16. Enhanced hemispheric-scale snow mapping through the blending of optical and microwave satellite data

    Science.gov (United States)

    Armstrong, R. L.; Brodzik, M. J.; Savoie, M.; Knowles, K.

    2003-04-01

    Snow cover is an important variable for climate and hydrologic models due to its effects on energy and moisture budgets. Seasonal snow can cover more than 50% of the Northern Hemisphere land surface during the winter resulting in snow cover being the land surface characteristic responsible for the largest annual and interannual differences in albedo. Passive microwave satellite remote sensing can augment measurements based on visible satellite data alone because of the ability to acquire data through most clouds or during darkness as well as to provide a measure of snow depth or water equivalent. Global snow cover fluctuation can now be monitored over a 24 year period using passive microwave data (Scanning Multichannel Microwave Radiometer (SMMR) 1978-1987 and Special Sensor Microwave/Imager (SSM/I), 1987-present). Evaluation of snow extent derived from passive microwave algorithms is presented through comparison with the NOAA Northern Hemisphere weekly snow extent data. For the period 1978 to 2002, both passive microwave and visible data sets show a similar pattern of inter-annual variability, although the maximum snow extents derived from the microwave data are consistently less than those provided by the visible satellite data and the visible data typically show higher monthly variability. Decadal trends and their significance are compared for the two data types. During shallow snow conditions of the early winter season microwave data consistently indicate less snow-covered area than the visible data. This underestimate of snow extent results from the fact that shallow snow cover (less than about 5.0 cm) does not provide a scattering signal of sufficient strength to be detected by the algorithms. As the snow cover continues to build during the months of January through March, as well as throughout the melt season, agreement between the two data types continually improves. This occurs because as the snow becomes deeper and the layered structure more complex, the

  17. Enhanced processing of SPOT multispectral satellite imagery for environmental monitoring and modelling

    Energy Technology Data Exchange (ETDEWEB)

    Clark, B.

    2010-07-01

    The Taita Hills in southeastern Kenya form the northernmost part of Africa's Eastern Arc Mountains, which have been identified by Conservation International as one of the top ten biodiversity hotspots on Earth. As with many areas of the developing world, over recent decades the Taita Hills have experienced significant population growth leading to associated major changes in land use and land cover (LULC), as well as escalating land degradation, particularly soil erosion. Multi-temporal medium resolution multispectral optical satellite data, such as imagery from the SPOT HRV, HRVIR, and HRG sensors, provides a valuable source of information for environmental monitoring and modelling at a landscape level at local and regional scales. However, utilization of multi-temporal SPOT data in quantitative remote sensing studies requires the removal of atmospheric effects and the derivation of surface reflectance factor (rho{sub s}). Furthermore, for areas of rugged terrain, such as the Taita Hills, topographic correction is necessary to derive comparable (rho{sub s}) throughout a SPOT scene. Reliable monitoring of LULC change over time and modelling of land degradation and human population distribution and abundance are of crucial importance to sustainable development, natural resource management, biodiversity conservation, and understanding and mitigating climate change and its impacts. The main purpose of this thesis was to develop and validate enhanced processing of SPOT satellite imagery for use in environmental monitoring and modelling at a landscape level, in regions of the developing world with limited ancillary data availability. The Taita Hills formed the application study site, whilst the Helsinki metropolitan region was used as a control site for validation and assessment of the applied atmospheric correction techniques, where multiangular (rho{sub s}) field measurements were taken and where horizontal visibility meteorological data concurrent with image

  18. Choice of antenna geometry for microwave power transmission from solar power satellites

    Science.gov (United States)

    Potter, Seth D.

    1992-01-01

    A comparison is made between square and circular transmitting antennas for solar power satellite microwave power transmission. It is seen that the exclusion zone around the rectenna needed to protect populations from microwaves is smaller for a circular antenna operating at 2.45 GHz than it is for a square antenna at that frequency. If the frequency is increased, the exclusion zone size remains the same for a square antenna, but becomes even smaller for a circular antenna. Peak beam intensity is the same for both antennas if the frequency and antenna area are equal. The circular antenna puts a somewhat greater amount of power in the main lobe and somewhat less in the side lobes. Since rain attenuation and atmospheric heating remain problems above 10 GHz, it is recommended that future solar power satellite work concentrate on circular transmitting antennas at frequencies of roughly 10 GHz.

  19. Assessment on spatiotemporal relationship between rainfall and cloud top temperature from new generation weather satellite imagery

    Science.gov (United States)

    Wei, Chiang; Yeh, Hui-Chung; Chen, Yen-Chang

    2017-04-01

    This study addressed the relationship between rainfall and cloud top temperature (CCT) from new generation satellite Himawari-8 imagery at different spatiotemporal scale. This satellite provides higher band, more bits for data format, spatial and temporal resolution compared with previous GMS series. The multi-infrared channels with 10-minute and 1-2 km resolution make it possible for rainfall estimating/forecasting in small/medium watershed. The preliminary result investigated at Chenyulan watershed (443.6 square kilometer) of Central Taiwan in 2016 Typhoon Megi shows the regression coefficient fitted by negative exponential equation of largest rainfall vs. CCT (B8 band) at pixel scale increases as time scales enlarges and reach 0.462 for 120-minute accumulative rainfall; the value (CTT of B15 band) decreases from 0.635 for 10-minute to 0.423 for 120-minute accumulative rainfall at basin-wide scale. More rainfall events for different regime are yet to evaluate to get solid results.

  20. Geometric Positioning Accuracy Improvement of ZY-3 Satellite Imagery Based on Statistical Learning Theory

    Directory of Open Access Journals (Sweden)

    Niangang Jiao

    2018-05-01

    Full Text Available With the increasing demand for high-resolution remote sensing images for mapping and monitoring the Earth’s environment, geometric positioning accuracy improvement plays a significant role in the image preprocessing step. Based on the statistical learning theory, we propose a new method to improve the geometric positioning accuracy without ground control points (GCPs. Multi-temporal images from the ZY-3 satellite are tested and the bias-compensated rational function model (RFM is applied as the block adjustment model in our experiment. An easy and stable weight strategy and the fast iterative shrinkage-thresholding (FIST algorithm which is widely used in the field of compressive sensing are improved and utilized to define the normal equation matrix and solve it. Then, the residual errors after traditional block adjustment are acquired and tested with the newly proposed inherent error compensation model based on statistical learning theory. The final results indicate that the geometric positioning accuracy of ZY-3 satellite imagery can be improved greatly with our proposed method.

  1. Does the Data Resolution/origin Matter? Satellite, Airborne and Uav Imagery to Tackle Plant Invasions

    Science.gov (United States)

    Müllerová, Jana; Brůna, Josef; Dvořák, Petr; Bartaloš, Tomáš; Vítková, Michaela

    2016-06-01

    Invasive plant species represent a serious threat to biodiversity and landscape as well as human health and socio-economy. To successfully fight plant invasions, new methods enabling fast and efficient monitoring, such as remote sensing, are needed. In an ongoing project, optical remote sensing (RS) data of different origin (satellite, aerial and UAV), spectral (panchromatic, multispectral and color), spatial (very high to medium) and temporal resolution, and various technical approaches (object-, pixelbased and combined) are tested to choose the best strategies for monitoring of four invasive plant species (giant hogweed, black locust, tree of heaven and exotic knotweeds). In our study, we address trade-offs between spectral, spatial and temporal resolutions required for balance between the precision of detection and economic feasibility. For the best results, it is necessary to choose best combination of spatial and spectral resolution and phenological stage of the plant in focus. For species forming distinct inflorescences such as giant hogweed iterative semi-automated object-oriented approach was successfully applied even for low spectral resolution data (if pixel size was sufficient) whereas for lower spatial resolution satellite imagery or less distinct species with complicated architecture such as knotweed, combination of pixel and object based approaches was used. High accuracies achieved for very high resolution data indicate the possible application of described methodology for monitoring invasions and their long-term dynamics elsewhere, making management measures comparably precise, fast and efficient. This knowledge serves as a basis for prediction, monitoring and prioritization of management targets.

  2. Comparing land surface phenology derived from satellite and GPS network microwave remote sensing.

    Science.gov (United States)

    Jones, Matthew O; Kimball, John S; Small, Eric E; Larson, Kristine M

    2014-08-01

    The land surface phenology (LSP) start of season (SOS) metric signals the seasonal onset of vegetation activity, including canopy growth and associated increases in land-atmosphere water, energy and carbon (CO2) exchanges influencing weather and climate variability. The vegetation optical depth (VOD) parameter determined from satellite passive microwave remote sensing provides for global LSP monitoring that is sensitive to changes in vegetation canopy water content and biomass, and insensitive to atmosphere and solar illumination constraints. Direct field measures of canopy water content and biomass changes desired for LSP validation are generally lacking due to the prohibitive costs of maintaining regional monitoring networks. Alternatively, a normalized microwave reflectance index (NMRI) derived from GPS base station measurements is sensitive to daily vegetation water content changes and may provide for effective microwave LSP validation. We compared multiyear (2007-2011) NMRI and satellite VOD records at over 300 GPS sites in North America, and their derived SOS metrics for a subset of 24 homogenous land cover sites to investigate VOD and NMRI correspondence, and potential NMRI utility for LSP validation. Significant correlations (P<0.05) were found at 276 of 305 sites (90.5 %), with generally favorable correspondence in the resulting SOS metrics (r (2)=0.73, P<0.001, RMSE=36.8 days). This study is the first attempt to compare satellite microwave LSP metrics to a GPS network derived reflectance index and highlights both the utility and limitations of the NMRI data for LSP validation, including spatial scale discrepancies between local NMRI measurements and relatively coarse satellite VOD retrievals.

  3. Sherlock Holmes' or Don Quixote`s certainty? Interpretations of cropmarks on satellite imageries in archaeological investigation

    Science.gov (United States)

    Wilgocka, Aleksandra; RÄ czkowski, Włodzimierz; Kostyrko, Mikołaj; Ruciński, Dominik

    2016-08-01

    Years of experience in air-photo interpretations provide us to conclusion that we know what we are looking at, we know why we can see cropmarks, we even can estimate, when are the best opportunities to observe them. But even today cropmarks may be a subject of misinterpretation or wishful thinking. The same problems appear when working with aerial photographs, satellite imageries, ALS, geophysics, etc. In the paper we present several case studies based on data acquired for and within ArchEO - archaeological applications of Earth Observation techniques project to discuss complexity and consequences of archaeological interpretations. While testing usefulness of satellite imagery in Poland on various types of sites, cropmarks were the most frequent indicators of past landscapes as well as archaeological and natural features. Hence, new archaeological sites have been discovered mainly thanks to cropmarks. This situation has given us an opportunity to test not only satellite imageries as a source of data but also confront them with results of other non-invasive methods of data acquisition. When working with variety of data we have met several issues which raised problems of interpretation. Consequently, questions related to the cognitive value of remote sensing data appear and should be discussed. What do the data represent? To what extent the imageries, cropmarks or other visualizations represent the past? How should we deal with ambiguity of data? What can we learn from pitfalls in the interpretation of cropmarks, soilmarks etc. to share more Sherlock's methodology rather than run around Don Quixote's delusions?

  4. Nonlinear bias compensation of ZiYuan-3 satellite imagery with cubic splines

    Science.gov (United States)

    Cao, Jinshan; Fu, Jianhong; Yuan, Xiuxiao; Gong, Jianya

    2017-11-01

    Like many high-resolution satellites such as the ALOS, MOMS-2P, QuickBird, and ZiYuan1-02C satellites, the ZiYuan-3 satellite suffers from different levels of attitude oscillations. As a result of such oscillations, the rational polynomial coefficients (RPCs) obtained using a terrain-independent scenario often have nonlinear biases. In the sensor orientation of ZiYuan-3 imagery based on a rational function model (RFM), these nonlinear biases cannot be effectively compensated by an affine transformation. The sensor orientation accuracy is thereby worse than expected. In order to eliminate the influence of attitude oscillations on the RFM-based sensor orientation, a feasible nonlinear bias compensation approach for ZiYuan-3 imagery with cubic splines is proposed. In this approach, no actual ground control points (GCPs) are required to determine the cubic splines. First, the RPCs are calculated using a three-dimensional virtual control grid generated based on a physical sensor model. Second, one cubic spline is used to model the residual errors of the virtual control points in the row direction and another cubic spline is used to model the residual errors in the column direction. Then, the estimated cubic splines are used to compensate the nonlinear biases in the RPCs. Finally, the affine transformation parameters are used to compensate the residual biases in the RPCs. Three ZiYuan-3 images were tested. The experimental results showed that before the nonlinear bias compensation, the residual errors of the independent check points were nonlinearly biased. Even if the number of GCPs used to determine the affine transformation parameters was increased from 4 to 16, these nonlinear biases could not be effectively compensated. After the nonlinear bias compensation with the estimated cubic splines, the influence of the attitude oscillations could be eliminated. The RFM-based sensor orientation accuracies of the three ZiYuan-3 images reached 0.981 pixels, 0.890 pixels, and 1

  5. gProcess and ESIP Platforms for Satellite Imagery Processing over the Grid

    Science.gov (United States)

    Bacu, Victor; Gorgan, Dorian; Rodila, Denisa; Pop, Florin; Neagu, Gabriel; Petcu, Dana

    2010-05-01

    The Environment oriented Satellite Data Processing Platform (ESIP) is developed through the SEE-GRID-SCI (SEE-GRID eInfrastructure for regional eScience) co-funded by the European Commission through FP7 [1]. The gProcess Platform [2] is a set of tools and services supporting the development and the execution over the Grid of the workflow based processing, and particularly the satelite imagery processing. The ESIP [3], [4] is build on top of the gProcess platform by adding a set of satellite image processing software modules and meteorological algorithms. The satellite images can reveal and supply important information on earth surface parameters, climate data, pollution level, weather conditions that can be used in different research areas. Generally, the processing algorithms of the satellite images can be decomposed in a set of modules that forms a graph representation of the processing workflow. Two types of workflows can be defined in the gProcess platform: abstract workflow (PDG - Process Description Graph), in which the user defines conceptually the algorithm, and instantiated workflow (iPDG - instantiated PDG), which is the mapping of the PDG pattern on particular satellite image and meteorological data [5]. The gProcess platform allows the definition of complex workflows by combining data resources, operators, services and sub-graphs. The gProcess platform is developed for the gLite middleware that is available in EGEE and SEE-GRID infrastructures [6]. gProcess exposes the specific functionality through web services [7]. The Editor Web Service retrieves information on available resources that are used to develop complex workflows (available operators, sub-graphs, services, supported resources, etc.). The Manager Web Service deals with resources management (uploading new resources such as workflows, operators, services, data, etc.) and in addition retrieves information on workflows. The Executor Web Service manages the execution of the instantiated workflows

  6. Seeing is believing I: The use of thermal sensing from satellite imagery to predict crop yield

    International Nuclear Information System (INIS)

    Potgieter A B; Rodriguez D; Power B; Mclean J; Davis P

    2014-01-01

    Volatility in crop production has been part of the Australian environment since cropping began with the arrival of the first European settlers. Climate variability is the main factor affecting crop production at national, state and local scales. At field level spatial patterns on yield production are also determined by spatially changing soil properties in interaction with seasonal climate conditions and weather patterns at critical stages in the crop development. Here we used a combination of field level weather records, canopy characteristics, and satellite information to determine the spatial performance of a large field of wheat. The main objective of this research is to determine the ability of remote sensing technologies to capture yield losses due to water stress at the canopy level. The yield, canopy characteristics (i.e. canopy temperature and ground cover) and seasonal conditions of a field of wheat (∼1400ha) (-29.402° South and 149.508°, New South Wales, Australia) were continuously monitored during the winter of 2011. Weather and crop variables were continuously monitored by installing three automatic weather stations in a transect covering different positions and soils in the landscape. Weather variables included rainfall, minimum and maximum temperatures and relative humidity, and crop characteristics included ground cover and canopy temperature. Satellite imagery Landsat TM 5 and 7 was collected at five different stages in the crop cycle. Weather variables and crop characteristics were used to calculate a crop stress index (CSI) at point and field scale (39 fields). Field data was used to validate a spatial satellite image derived index. Spatial yield data was downloaded from the harvester at the different locations in the field. We used the thermal band (land surface temperature, LST) and enhanced vegetation index (EVI) bands from the MODIS (250 m for visible bands and 1km for thermal band) and a derived EVI from Landsat TM 7 (25 m for visible

  7. Multi-band microwave photonic satellite repeater scheme employing intensity Mach-Zehnder modulators

    Institute of Scientific and Technical Information of China (English)

    Yin Jie; Dong Tao; Zhang Bin; Hao Yan; Cao Guixing; Cheng Zijing; Xu Kun; Zhou Yue; Dai Jian

    2017-01-01

    To solve the satellite repeater's flexible and wideband frequency conversion problem,we propose a novel microwave photonic repeater system,which can convert the upload signal's carrier to six different frequencies.The scheme employs one 20 GHz bandwidth dual-drive Mach-Zehnder modulator (MZM) and two 10 GHz bandwidth MZMs.The basic principle of this scheme is filtering out two optical sidebands after the optical carrier suppression (OCS) modulation and combining two sidebands modulated by the input radio frequency (RF) signal.This structure can realize simultaneous multi-band frequency conversion with only one frequency-fixed microwave source and prevent generating harmful interference sidebands by using two corresponding optical filters after optical modulation.In the simulation,one C-band signal of 6 GHz carrier can be successfully converted to 12 GHz (Ku-band),28 GHz,34 GHz,40 GHz,46 GHz (Ka-band) and 52 GHz (V-band),which can be an attractive method to realize multi-band microwave photonic satellite repeater.Alternatively,the scheme can be configured to generate multi-band local oscillators (LOs) for widely satellite onboard clock distribution when the input RF signal is replaced by the internal clock source.

  8. Visual attention based detection of signs of anthropogenic activities in satellite imagery

    Energy Technology Data Exchange (ETDEWEB)

    Skurikhin, Alexei N [Los Alamos National Laboratory

    2010-10-13

    With increasing deployment of satellite imaging systems, only a small fraction of collected data can be subject to expert scrutiny. We present and evaluate a two-tier approach to broad area search for signs of anthropogenic activities in high-resolution commercial satellite imagery. The method filters image information using semantically oriented interest points by combining Harris corner detection and spatial pyramid matching. The idea is that anthropogenic structures, such as rooftop outlines, fence corners, road junctions, are locally arranged in specific angular relations to each other. They are often oriented at approximately right angles to each other (which is known as rectilinearity relation). Detecting the rectilinearity provides an opportunity to highlight regions most likely to contain anthropogenic activity. This is followed by supervised classification of regions surrounding the detected corner points as man-made vs. natural scenes. We consider, in particular, a search for anthropogenic activities in uncluttered areas. In this paper, we proposed and evaluated a two-tier approach to broad area search for signs of anthropogenic activities. Results from experiments on high-resolution ({approx}0.6m) commercial satellite image data showed the potential applicability of this approach and its ability of achieving both high precision and recall rates. The main advantage of combining corner-based cueing with general object recognition is that the incorporation of domain specific knowledge even in its more general form, such as presence of comers, provides a useful cue to narrow the focus of search for signs of anthropogenic activities. Combination of comer based cueing with spatial pyramid matching addressed the issue of comer categorization. An important practical issue for further research is optimizing the balance between false positive and false negative rates. While the results presented in the paper are encouraging, the problem of an automated broad area

  9. Limitations and potential of satellite imagery to monitor environmental response to coastal flooding

    Science.gov (United States)

    Ramsey, Elijah W.; Werle, Dirk; Suzuoki, Yukihiro; Rangoonwala, Amina; Lu, Zhong

    2012-01-01

    Storm-surge flooding and marsh response throughout the coastal wetlands of Louisiana were mapped using several types of remote sensing data collected before and after Hurricanes Gustav and Ike in 2008. These included synthetic aperture radar (SAR) data obtained from the (1) C-band advance SAR (ASAR) aboard the Environmental Satellite, (2) phased-array type L-band SAR (PALSAR) aboard the Advanced Land Observing Satellite, and (3) optical data obtained from Thematic Mapper (TM) sensor aboard the Land Satellite (Landsat). In estuarine marshes, L-band SAR and C-band ASAR provided accurate flood extent information when depths averaged at least 80 cm, but only L-band SAR provided consistent subcanopy detection when depths averaged 50 cm or less. Low performance of inundation mapping based on C-band ASAR was attributed to an apparent inundation detection limit (>30 cm deep) in tall Spartina alterniflora marshes, a possible canopy collapse of shoreline fresh marsh exposed to repeated storm-surge inundations, wind-roughened water surfaces where water levels reached marsh canopy heights, and relatively high backscatter in the near-range portion of the SAR imagery. A TM-based vegetation index of live biomass indicated that the severity of marsh dieback was linked to differences in dominant species. The severest impacts were not necessarily caused by longer inundation but rather could be caused by repeated exposure of the palustrine marsh to elevated salinity floodwaters. Differential impacts occurred in estuarine marshes. The more brackish marshes on average suffered higher impacts than the more saline marshes, particularly the nearshore coastal marshes occupied by S. alterniflora.

  10. Using Satellite Imagery to Quantify Water Quality Impacts and Recovery from Hurricane Harvey

    Science.gov (United States)

    Sobel, R. S.; Kiaghadi, A.; Rifai, H. S.

    2017-12-01

    Record rainfall during Hurricane Harvey in the Houston-Galveston region generated record flows containing suspended sediment that was likely contaminated. Conventional water quality monitoring requires resource intensive field campaigns, and produces sparse datasets. In this study, satellite data were used to quantify suspended sediment (TSS) concentrations and mass within the region's estuary system and to estimate sediment deposition and transport. A conservative two band, red-green empirical regression was developed from the Sentinel 2 satellite to calculate TSS concentrations and masses. The regression was calibrated with an R2 = 0.73 (n=28) and validated with an R2 = 0.75 (n=12) using 2016 & 2017 imagery. TSS concentrations four days, 14 days, and 44 days post-storm were compared with a reference condition three days before storm arrival. Results indicated that TSS concentrations were an average of 100% higher four days post-storm, and 150% higher after 14 days, however, the average concentration on day 144 was only seven percent higher than the reference condition, suggesting the estuary system is approaching recovery to pre-storm conditions. Sediment masses were determined from the regressed concentrations and water volumes estimated from a bottom elevation grid combined with water surface elevations observed coincidently with the satellite image. While water volumes were only 13% higher on both day four and day 14 post-storm; sediment masses were 195% and 227% higher than the reference condition, respectively. By day 44, estuary sediment mass returned to just 2.9% above the reference load. From a mechanistic standpoint, the elevated TSS concentrations on day four indicated an advection-based regime due to stormwater runoff draining through the estuarine system. Sometime, however, between days 14 and 44, transport conditions switched from advection-dominated to deposition-driven as indicated by the near normal TSS concentrations on day 44.

  11. Mapping global precipitation with satellite borne microwave radiometer and infrared radiometer using Kalman filter

    International Nuclear Information System (INIS)

    Noda, S.; Sasashige, K.; Katagami, D.; Ushio, T.; Kubota, T.; Okamoto, K.; Iida, Y.; Kida, S.; Shige, S.; Shimomura, S.; Aonashi, K.; Inoue, T.; Morimoto, T.; Kawasaki, Z.

    2007-01-01

    Estimates of precipitation at a high time and space resolution are required for many important applications. In this paper, a new global precipitation map with high spatial (0.1 degree) and temporal (1 hour) resolution using Kalman filter technique is presented and evaluated. Infrared radiometer data, which are available globally nearly everywhere and nearly all the time from geostationary orbit, are used with the several microwave radiometers aboard the LEO satellites. IR data is used as a means to move the precipitation estimates from microwave observation during periods when microwave data are not available at a given location. Moving vector is produced by computing correlations on successive images of IR data. When precipitation is moved, the Kalman filter is applied for improving the moving technique in this research. The new approach showed a better score than the technique without Kalman filter. The correlation coefficient was 0.1 better than without the Kalman filter about 6 hours after the last microwave overpasses, and the RMS error was improved about 0.1 mm/h with the Kalman filter technique. This approach is unique in that 1) the precipitation estimates from the microwave radiometer is mainly used, 2) the IR temperature in every hour is also used for the precipitation estimates based on the Kalman filter theory

  12. Monitoring the effect of restoration measures in Indonesian peatlands by radar satellite imagery.

    Science.gov (United States)

    Jaenicke, J; Englhart, S; Siegert, F

    2011-03-01

    In the context of the ongoing climate change discussions the importance of peatlands as carbon stores is increasingly recognised in the public. Drainage, deforestation and peat fires are the main reasons for the release of huge amounts of carbon from peatlands. Successful restoration of degraded tropical peatlands is of high interest due to their huge carbon store and sequestration potential. The blocking of drainage canals by dam building has become one of the most important measures to restore the hydrology and the ecological function of the peat domes. This study investigates the capability of using multitemporal radar remote sensing imagery for monitoring the hydrological effects of these measures. The study area is the former Mega Rice Project area in Central Kalimantan, Indonesia, where peat drainage and forest degradation is especially intense. Restoration measures started in July 2004 by building 30 large dams until June 2008. We applied change detection analysis with more than 80 ENVISAT ASAR and ALOS PALSAR images, acquired between 2004 and 2009. Radar signal increases of up to 1.36 dB show that high frequency multitemporal radar satellite imagery can be used to detect an increase in peat soil moisture after dam construction, especially in deforested areas with a high density of dams. Furthermore, a strong correlation between cross-polarised radar backscatter coefficients and groundwater levels above -50 cm was found. Monitoring peatland rewetting and quantifying groundwater level variations is important information for vegetation re-establishment, fire hazard warning and making carbon emission mitigation tradable under the voluntary carbon market or REDD (Reducing Emissions from Deforestation and Degradation) mechanism. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Improving the Quality of Satellite Imagery Based on Ground-Truth Data from Rain Gauge Stations

    Directory of Open Access Journals (Sweden)

    Ana F. Militino

    2018-03-01

    Full Text Available Multitemporal imagery is by and large geometrically and radiometrically accurate, but the residual noise arising from removal clouds and other atmospheric and electronic effects can produce outliers that must be mitigated to properly exploit the remote sensing information. In this study, we show how ground-truth data from rain gauge stations can improve the quality of satellite imagery. To this end, a simulation study is conducted wherein different sizes of outlier outbreaks are spread and randomly introduced in the normalized difference vegetation index (NDVI and the day and night land surface temperature (LST of composite images from Navarre (Spain between 2011 and 2015. To remove outliers, a new method called thin-plate splines with covariates (TpsWc is proposed. This method consists of smoothing the median anomalies with a thin-plate spline model, whereby transformed ground-truth data are the external covariates of the model. The performance of the proposed method is measured with the square root of the mean square error (RMSE, calculated as the root of the pixel-by-pixel mean square differences between the original data and the predicted data with the TpsWc model and with a state-space model with and without covariates. The study shows that the use of ground-truth data reduces the RMSE in both the TpsWc model and the state-space model used for comparison purposes. The new method successfully removes the abnormal data while preserving the phenology of the raw data. The RMSE reduction percentage varies according to the derived variables (NDVI or LST, but reductions of up to 20% are achieved with the new proposal.

  14. Multi-Temporal Satellite Imagery for Urban Expansion Assessment at Sharjah City /UAE

    International Nuclear Information System (INIS)

    Al-Ruzouq, R; Shanableh, A

    2014-01-01

    Change detection is the process of identifying differences in land cover over time. As human and natural forces continue to alter the landscape, it is important to develop monitoring methods to assess and quantify these changes. Recent advances in satellite imagery, in terms of improved spatial and temporal resolutions, are allowing for efficient identification of change patterns and the prediction of areas of growth. Sharjah is the third largest and most populous city in the United Arab Emirates (UAE). It is located along the northern coast of the Persian Gulf on the Arabian Peninsula. After the discovery of oil and its export in the last four decades at UAE, it has experienced very rapid growth in industry, economy and population. The main purpose of this study is to detect urban development in Sharjah city by detecting and registering linear features in multi-temporal Landsat images. This paper used linear features for image registration that were chosen since they can be reliably extracted from imagery with significantly different geometric and radiometric properties. Derived edges from the registered images are used as the basis for change detection. Image registration and pixel-pixel subtraction has been implement using multi- temporal Landsat images for Sharjah City. Straight-line segments have been used for accurate co-registration as well as main element for a reliable change detection procedure. Results illustrate that highest range of growth that represented by linear features (building and roads) have been accrued during 1976 – 1987 and stand for 36.24% of the total urban features inside Sharjah city. Moreover, result shows that since 1976 to 2010, the cumulative urban expansion inside Sharjah city is 71.9%

  15. Satellite microwave remote sensing of North Eurasian inundation dynamics: development of coarse-resolution products and comparison with high-resolution synthetic aperture radar data

    International Nuclear Information System (INIS)

    Schroeder, R; Rawlins, M A; McDonald, K C; Podest, E; Zimmermann, R; Kueppers, M

    2010-01-01

    Wetlands are not only primary producers of atmospheric greenhouse gases but also possess unique features that are favourable for application of satellite microwave remote sensing to monitoring their status and trend. In this study we apply combined passive and active microwave remote sensing data sets from the NASA sensors AMSR-E and QuikSCAT to map surface water dynamics over Northern Eurasia. We demonstrate our method on the evolution of large wetland complexes for two consecutive years from January 2006 to December 2007. We apply river discharge measurements from the Ob River along with land surface runoff simulations derived from the Pan-Arctic Water Balance Model during and after snowmelt in 2006 and 2007 to interpret the abundance of widespread flooding along the River Ob in early summer of 2007 observed in the remote sensing products. The coarse-resolution, 25 km, surface water product is compared to a high-resolution, 30 m, inundation map derived from ALOS PALSAR (Advanced Land Observation Satellite phased array L-band synthetic aperture radar) imagery acquired for 11 July 2006, and extending along a transect in the central Western Siberian Plain. We found that the surface water fraction derived from the combined AMSR-E/QuikSCAT data sets closely tracks the inundation mapped using higher-resolution ALOS PALSAR data.

  16. Monitoring vegetation change in Abu Dhabi Emirate from 1996 to 2000 and 2004 using Landsat Satellite Imagery

    International Nuclear Information System (INIS)

    Starbuck, M.J.; Tamayo, J.

    2007-01-01

    In the fall of 2001, a study was initiated to investigate vegetation changes in the Abu Dhabi Emirates. The vast majority of vegetation present in the region is irrigated and analysis of vegetation change will support groundwater investigations in the region by indicating areas of increased water use. Satellite-based imaging systems provide a good source of data for such an analysis. The recent analysis was completed between February and November 2002 using Landsat 5 Thematic Mapper satellite imagery acquired in 1996 and Landsat 7 Enhanced Thematic Mapper Plus imagery acquired in 2000. These assessments were augmented in 2004with the study of Landsat 7 imagery acquired in early 2004. The total area of vegetation for each of seven study areas was calculated using the Normalized Difference Vegetation Index (NDVI) technique. Multiband image classification was used to differentiate general vegetation types. Change analysis consisted of simple NDVI image differencing and post-classification change matrices. Measurements of total vegetation are for the Abu Dhabi Emirate indicate an increase from 77,200 hectares in 1996 to 162,700 hectares in 2000 (110% increase). Based on comparison with manual interpretation of satellite imagery, the amount of under-reporting of irrigated land is estimated at about 15% of the actual area. From the assessment of 2004 Landset imagery, it was found that the growth of irrigated vegetation in most areas of Emirate had stabilized and had actually slightly decreased in some cases. The decreases are probably due to variability in the measurement technique and not due to actual decreases in area of vegetation. (author)

  17. Fusion of Pixel-based and Object-based Features for Road Centerline Extraction from High-resolution Satellite Imagery

    Directory of Open Access Journals (Sweden)

    CAO Yungang

    2016-10-01

    Full Text Available A novel approach for road centerline extraction from high spatial resolution satellite imagery is proposed by fusing both pixel-based and object-based features. Firstly, texture and shape features are extracted at the pixel level, and spectral features are extracted at the object level based on multi-scale image segmentation maps. Then, extracted multiple features are utilized in the fusion framework of Dempster-Shafer evidence theory to roughly identify the road network regions. Finally, an automatic noise removing algorithm combined with the tensor voting strategy is presented to accurately extract the road centerline. Experimental results using high-resolution satellite imageries with different scenes and spatial resolutions showed that the proposed approach compared favorably with the traditional methods, particularly in the aspect of eliminating the salt noise and conglutination phenomenon.

  18. Using Satellite Imagery to Monitor the Major Lakes; Case Study Lake Hamun

    Science.gov (United States)

    Norouzi, H.; Islam, R.; Bah, A.; AghaKouchak, A.

    2015-12-01

    Proper lakes function can ease the impact of floods and drought especially in arid and semi-arid regions. They are important environmentally and can directly affect human lives. Better understanding of the effect of climate change and human-driven changes on lakes would provide invaluable information for policy-makers and local people. As part of a comprehensive study, we aim to monitor the land-cover/ land-use changes in the world's major lakes using satellite observations. As a case study, Hamun Lake which is a pluvial Lake, also known as shallow Lake, located on the south-east of Iran and adjacent to Afghanistan, and Pakistan borders is investigated. The Lake is the main source of resources (agriculture, fishing and hunting) for the people around it and politically important in the region since it is shared among three different countries. The purpose of the research is to find the Lake's area from 1972 to 2015 and to see if any drought or water resources management has affected the lake. Analyzing satellites imagery from Landsat shows that the area of the Lake changes seasonally and intra-annually. Significant seasonal effects are found in 1975,1977, 1987, 1993, 1996, 1998, 2000, 2009 and 2011, as well as, substantial amount of shallow water is found throughout the years. The precipitation records as well as drought historical records are studied for the lake's basin. Meteorological studies suggest that the drought, decrease of rainfalls in the province and the improper management of the Lake have caused environmental, economic and geographical consequences. The results reveal that lake has experienced at least two prolong dryings since 1972 which drought cannot solely be blamed as main forcing factor.Proper lakes function can ease the impact of floods and drought especially in arid and semi-arid regions. They are important environmentally and can directly affect human lives. Better understanding of the effect of climate change and human-driven changes on lakes

  19. Detailed Maps Depicting the Shallow-Water Benthic Habitats of the Northwestern Hawaiian Islands Derived from High Resolution IKONOS Satellite Imagery

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Detailed, shallow-water coral reef ecosystem maps were generated by rule-based, semi-automated image analysis of high-resolution satellite imagery for nine locations...

  20. Detailed Maps Depicting the Shallow-Water Benthic Habitats of the Northwestern Hawaiian Islands Derived from High Resolution IKONOS Satellite Imagery (Draft)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Detailed, shallow-water coral reef ecosystem maps were generated by rule-based, semi-automated image analysis of high-resolution satellite imagery for nine locations...

  1. Spatiotemporal estimation of air temperature patterns at the street level using high resolution satellite imagery.

    Science.gov (United States)

    Pelta, Ran; Chudnovsky, Alexandra A

    2017-02-01

    Although meteorological monitoring stations provide accurate measurements of Air Temperature (AT), their spatial coverage within a given region is limited and thus is often insufficient for exposure and epidemiological studies. In many applications, satellite imagery measures energy flux, which is spatially continuous, and calculates Brightness Temperature (BT) that used as an input parameter. Although both quantities (AT-BT) are physically related, the correlation between them is not straightforward, and varies daily due to parameters such as meteorological conditions, surface moisture, land use, satellite-surface geometry and others. In this paper we first investigate the relationship between AT and BT as measured by 39 meteorological stations in Israel during 1984-2015. Thereafter, we apply mixed regression models with daily random slopes to calibrate Landsat BT data with monitored AT measurements for the period 1984-2015. Results show that AT can be predicted with high accuracy by using BT with high spatial resolution. The model shows relatively high accuracy estimation of AT (R 2 =0.92, RMSE=1.58°C, slope=0.90). Incorporating meteorological parameters into the model generates better accuracy (R 2 =0.935) than the AT-BT model (R 2 =0.92). Furthermore, based on the relatively high model accuracy, we investigated the spatial patterns of AT within the study domain. In the latter we focused on July-August, as these two months are characterized by relativity stable synoptic conditions in the study area. In addition, a temporal change in AT during the last 30years was estimated and verified using available meteorological stations and two additional remote sensing platforms. Finally, the impact of different land coverage on AT were estimated, as an example of future application of the presented approach. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Monitoring of Conservation Tillage and Tillage Intensity by Ground and Satellite Imagery

    Directory of Open Access Journals (Sweden)

    M.A Rostami

    2014-09-01

    Full Text Available Local information about tillage intensity and ground residue coverage is useful for policies in agricultural extension, tillage implement design and upgrading management methods. The current methods for assessing crop residue coverage and tillage intensity such as residue weighing methods, line-transect and photo comparison methods are tedious and time-consuming. The present study was devoted to investigate accurate methods for monitoring residue management and tillage practices. The satellite imagery technique was used as a rapid and spatially explicit method for delineating crop residue coverage and as an estimator of conservation tillage adoption and intensity. The potential of multispectral high-spatial resolution WorldView-2 local data was evaluated using the total of eleven satellite spectral indices and Linear Spectral Unmixing Analysis (LSUA. The total of ninety locations was selected for this study and for each location the residue coverage was measured by the image processing method and recorded as ground control. The output of indices and LSUA method were individually correlated to the control and the relevant R2 was calculated. Results indicated that crop residue cover was related to IPVI, RVI1, RVI2 and GNDVI spectral indices and satisfactory correlations were established (0.74 - 0.81. The crop residue coverage estimated from the LSUA approach was found to be correlated with the ground residue data (0.75. Two effective indices named as Infrared Percentage Vegetation Index (IPVI and Ratio Vegetation Index (RVI with maximum R2 were considered for classification of tillage intensity. Results indicated that the classification accuracy with IPVI and RVI indices in different conditions varied from 78-100 percent and therefore in good agreement with ground measurement, observations and field records.

  3. Assimilation of Feng-Yun-3B satellite microwave humidity sounder data over land

    Science.gov (United States)

    Chen, Keyi; Bormann, Niels; English, Stephen; Zhu, Jiang

    2018-03-01

    The ECMWF has been assimilating Feng-Yun-3B (FY-3B) satellite microwave humidity sounder (MWHS) data over ocean in an operational forecasting system since 24 September 2014. It is more difficult, however, to assimilate microwave observations over land and sea ice than over the open ocean due to higher uncertainties in land surface temperature, surface emissivity and less effective cloud screening. We compare approaches in which the emissivity is retrieved dynamically from MWHS channel 1 [150 GHz (vertical polarization)] with the use of an evolving emissivity atlas from 89 GHz observations from the MWHS onboard NOAA and EUMETSAT satellites. The assimilation of the additional data over land improves the fit of short-range forecasts to other observations, notably ATMS (Advanced Technology Microwave Sounder) humidity channels, and the forecast impacts are mainly neutral to slightly positive over the first five days. The forecast impacts are better in boreal summer and the Southern Hemisphere. These results suggest that the techniques tested allow for effective assimilation of MWHS/FY-3B data over land.

  4. Calculating Viewing Angles Pixel by Pixel in Optical Remote Sensing Satellite Imagery Using the Rational Function Model

    OpenAIRE

    Kai Xu; Guo Zhang; Qingjun Zhang; Deren Li

    2018-01-01

    In studies involving the extraction of surface physical parameters using optical remote sensing satellite imagery, sun-sensor geometry must be known, especially for sensor viewing angles. However, while pixel-by-pixel acquisitions of sensor viewing angles are of critical importance to many studies, currently available algorithms for calculating sensor-viewing angles focus only on the center-point pixel or are complicated and are not well known. Thus, this study aims to provide a simple and ge...

  5. Seasonally-managed wetland footprint delineation using Landsat ETM+ satellite imagery

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, Nigel W. T. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Epshtein, Olga [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Arizona State Univ., Tempe, AZ (United States). School of Sustainable Engineering and the Built Environment

    2014-01-09

    One major challenge in water resource management is the estimation of evapotranspiration losses from seasonally managed wetlands. Quantifying these losses is complicated by the dynamic nature of the wetlands' areal footprint during the periods of flood-up and drawdown. In this paper, we present a data-lean solution to this problem using an example application in the San Joaquin Basin, California. Through analysis of high-resolution Landsat Enhanced Thematic Mapper Plus (ETM+) satellite imagery, we develop a metric to better capture the extent of total flooded wetland area. The procedure is validated using year-long, continuously-logged field datasets for two wetlands within the study area. The proposed classification which uses a Landsat ETM + Band 5 (mid-IR wavelength) to Band 2 (visible green wavelength) ratio improves estimates by 30–50% relative to previous wetland delineation studies. Finally, requiring modest ancillary data, the study results provide a practical and efficient option for wetland management in data-sparse regions or un-gauged watersheds.

  6. FULLY AUTOMATED GENERATION OF ACCURATE DIGITAL SURFACE MODELS WITH SUB-METER RESOLUTION FROM SATELLITE IMAGERY

    Directory of Open Access Journals (Sweden)

    J. Wohlfeil

    2012-07-01

    Full Text Available Modern pixel-wise image matching algorithms like Semi-Global Matching (SGM are able to compute high resolution digital surface models from airborne and spaceborne stereo imagery. Although image matching itself can be performed automatically, there are prerequisites, like high geometric accuracy, which are essential for ensuring the high quality of resulting surface models. Especially for line cameras, these prerequisites currently require laborious manual interaction using standard tools, which is a growing problem due to continually increasing demand for such surface models. The tedious work includes partly or fully manual selection of tie- and/or ground control points for ensuring the required accuracy of the relative orientation of images for stereo matching. It also includes masking of large water areas that seriously reduce the quality of the results. Furthermore, a good estimate of the depth range is required, since accurate estimates can seriously reduce the processing time for stereo matching. In this paper an approach is presented that allows performing all these steps fully automated. It includes very robust and precise tie point selection, enabling the accurate calculation of the images’ relative orientation via bundle adjustment. It is also shown how water masking and elevation range estimation can be performed automatically on the base of freely available SRTM data. Extensive tests with a large number of different satellite images from QuickBird and WorldView are presented as proof of the robustness and reliability of the proposed method.

  7. Urban thermal environment and its biophysical parameters derived from satellite remote sensing imagery

    Science.gov (United States)

    Zoran, Maria A.; Savastru, Roxana S.; Savastru, Dan M.; Tautan, Marina N.; Baschir, Laurentiu V.

    2013-10-01

    In frame of global warming, the field of urbanization and urban thermal environment are important issues among scientists all over the world. This paper investigated the influences of urbanization on urban thermal environment as well as the relationships of thermal characteristics to other biophysical variables in Bucharest metropolitan area of Romania based on satellite remote sensing imagery Landsat TM/ETM+, time series MODIS Terra/Aqua data and IKONOS acquired during 1990 - 2012 period. Vegetation abundances and percent impervious surfaces were derived by means of linear spectral mixture model, and a method for effectively enhancing impervious surface has been developed to accurately examine the urban growth. The land surface temperature (Ts), a key parameter for urban thermal characteristics analysis, was also retrieved from thermal infrared band of Landsat TM/ETM+, from MODIS Terra/Aqua datasets. Based on these parameters, the urban growth, urban heat island effect (UHI) and the relationships of Ts to other biophysical parameters have been analyzed. Results indicated that the metropolitan area ratio of impervious surface in Bucharest increased significantly during two decades investigated period, the intensity of urban heat island and heat wave events being most significant. The correlation analyses revealed that, at the pixel-scale, Ts possessed a strong positive correlation with percent impervious surfaces and negative correlation with vegetation abundances at the regional scale, respectively. This analysis provided an integrated research scheme and the findings can be very useful for urban ecosystem modeling.

  8. A General Approach to Enhance Short Wave Satellite Imagery by Removing Background Atmospheric Effects

    Directory of Open Access Journals (Sweden)

    Ronald Scheirer

    2018-04-01

    Full Text Available Atmospheric interaction distorts the surface signal received by a space-borne instrument. Images derived from visible channels appear often too bright and with reduced contrast. This hampers the use of RGB imagery otherwise useful in ocean color applications and in forecasting or operational disaster monitoring, for example forest fires. In order to correct for the dominant source of atmospheric noise, a simple, fast and flexible algorithm has been developed. The algorithm is implemented in Python and freely available in PySpectral which is part of the PyTroll family of open source packages, allowing easy access to powerful real-time image-processing tools. Pre-calculated look-up tables of top of atmosphere reflectance are derived by off-line calculations with RTM DISORT as part of the LibRadtran package. The approach is independent of platform and sensor bands, and allows it to be applied to any band in the visible spectral range. Due to the use of standard atmospheric profiles and standard aerosol loads, it is possible just to reduce the background disturbance. Thus signals from excess aerosols become more discernible. Examples of uncorrected and corrected satellite images demonstrate that this flexible real-time algorithm is a useful tool for atmospheric correction.

  9. Crop area estimation using high and medium resolution satellite imagery in areas with complex topography

    Science.gov (United States)

    Husak, G. J.; Marshall, M. T.; Michaelsen, J.; Pedreros, D.; Funk, C.; Galu, G.

    2008-07-01

    Reliable estimates of cropped area (CA) in developing countries with chronic food shortages are essential for emergency relief and the design of appropriate market-based food security programs. Satellite interpretation of CA is an effective alternative to extensive and costly field surveys, which fail to represent the spatial heterogeneity at the country-level. Bias-corrected, texture based classifications show little deviation from actual crop inventories, when estimates derived from aerial photographs or field measurements are used to remove systematic errors in medium resolution estimates. In this paper, we demonstrate a hybrid high-medium resolution technique for Central Ethiopia that combines spatially limited unbiased estimates from IKONOS images, with spatially extensive Landsat ETM+ interpretations, land-cover, and SRTM-based topography. Logistic regression is used to derive the probability of a location being crop. These individual points are then aggregated to produce regional estimates of CA. District-level analysis of Landsat based estimates showed CA totals which supported the estimates of the Bureau of Agriculture and Rural Development. Continued work will evaluate the technique in other parts of Africa, while segmentation algorithms will be evaluated, in order to automate classification of medium resolution imagery for routine CA estimation in the future.

  10. Effective System for Automatic Bundle Block Adjustment and Ortho Image Generation from Multi Sensor Satellite Imagery

    Science.gov (United States)

    Akilan, A.; Nagasubramanian, V.; Chaudhry, A.; Reddy, D. Rajesh; Sudheer Reddy, D.; Usha Devi, R.; Tirupati, T.; Radhadevi, P. V.; Varadan, G.

    2014-11-01

    Block Adjustment is a technique for large area mapping for images obtained from different remote sensingsatellites.The challenge in this process is to handle huge number of satellite imageries from different sources with different resolution and accuracies at the system level. This paper explains a system with various tools and techniques to effectively handle the end-to-end chain in large area mapping and production with good level of automation and the provisions for intuitive analysis of final results in 3D and 2D environment. In addition, the interface for using open source ortho and DEM references viz., ETM, SRTM etc. and displaying ESRI shapes for the image foot-prints are explained. Rigorous theory, mathematical modelling, workflow automation and sophisticated software engineering tools are included to ensure high photogrammetric accuracy and productivity. Major building blocks like Georeferencing, Geo-capturing and Geo-Modelling tools included in the block adjustment solution are explained in this paper. To provide optimal bundle block adjustment solution with high precision results, the system has been optimized in many stages to exploit the full utilization of hardware resources. The robustness of the system is ensured by handling failure in automatic procedure and saving the process state in every stage for subsequent restoration from the point of interruption. The results obtained from various stages of the system are presented in the paper.

  11. A FUZZY AUTOMATIC CAR DETECTION METHOD BASED ON HIGH RESOLUTION SATELLITE IMAGERY AND GEODESIC MORPHOLOGY

    Directory of Open Access Journals (Sweden)

    N. Zarrinpanjeh

    2017-09-01

    Full Text Available Automatic car detection and recognition from aerial and satellite images is mostly practiced for the purpose of easy and fast traffic monitoring in cities and rural areas where direct approaches are proved to be costly and inefficient. Towards the goal of automatic car detection and in parallel with many other published solutions, in this paper, morphological operators and specifically Geodesic dilation are studied and applied on GeoEye-1 images to extract car items in accordance with available vector maps. The results of Geodesic dilation are then segmented and labeled to generate primitive car items to be introduced to a fuzzy decision making system, to be verified. The verification is performed inspecting major and minor axes of each region and the orientations of the cars with respect to the road direction. The proposed method is implemented and tested using GeoEye-1 pansharpen imagery. Generating the results it is observed that the proposed method is successful according to overall accuracy of 83%. It is also concluded that the results are sensitive to the quality of available vector map and to overcome the shortcomings of this method, it is recommended to consider spectral information in the process of hypothesis verification.

  12. a Fuzzy Automatic CAR Detection Method Based on High Resolution Satellite Imagery and Geodesic Morphology

    Science.gov (United States)

    Zarrinpanjeh, N.; Dadrassjavan, F.

    2017-09-01

    Automatic car detection and recognition from aerial and satellite images is mostly practiced for the purpose of easy and fast traffic monitoring in cities and rural areas where direct approaches are proved to be costly and inefficient. Towards the goal of automatic car detection and in parallel with many other published solutions, in this paper, morphological operators and specifically Geodesic dilation are studied and applied on GeoEye-1 images to extract car items in accordance with available vector maps. The results of Geodesic dilation are then segmented and labeled to generate primitive car items to be introduced to a fuzzy decision making system, to be verified. The verification is performed inspecting major and minor axes of each region and the orientations of the cars with respect to the road direction. The proposed method is implemented and tested using GeoEye-1 pansharpen imagery. Generating the results it is observed that the proposed method is successful according to overall accuracy of 83%. It is also concluded that the results are sensitive to the quality of available vector map and to overcome the shortcomings of this method, it is recommended to consider spectral information in the process of hypothesis verification.

  13. Assessment of Mining Extent and Expansion in Myanmar Based on Freely-Available Satellite Imagery

    Directory of Open Access Journals (Sweden)

    Katherine J. LaJeunesse Connette

    2016-11-01

    Full Text Available Using freely-available data and open-source software, we developed a remote sensing methodology to identify mining areas and assess recent mining expansion in Myanmar. Our country-wide analysis used Landsat 8 satellite data from a select number of mining areas to create a raster layer of potential mining areas. We used this layer to guide a systematic scan of freely-available fine-resolution imagery, such as Google Earth, in order to digitize likely mining areas. During this process, each mining area was assigned a ranking indicating our certainty in correct identification of the mining land use. Finally, we identified areas of recent mining expansion based on the change in albedo, or brightness, between Landsat images from 2002 and 2015. We identified 90,041 ha of potential mining areas in Myanmar, of which 58% (52,312 ha was assigned high certainty, 29% (26,251 ha medium certainty, and 13% (11,478 ha low certainty. Of the high-certainty mining areas, 62% of bare ground was disturbed (had a large increase in albedo since 2002. This four-month project provides the first publicly-available database of mining areas in Myanmar, and it demonstrates an approach for large-scale assessment of mining extent and expansion based on freely-available data.

  14. Coastline changes in North Bengkalis Island, Indonesia: satellite imagery analysis and observation

    Directory of Open Access Journals (Sweden)

    M Mubarak

    2018-01-01

    Full Text Available Coastal area activity on human exploitation greatly affected aquatic ecosystems. Land changes disturbed the level of soil stability, soil will be easily eroded by the flow of water, the surface tide ran off to the sea. North waters of the island of Bengkalis is a place boiling down to several rivers, including the river Jangkang and river Liung. The rivers have affected the concentration of total suspended solid (TSS in the strait waters of North Bengkalis Island. This research demonstrated water sampling by using sampling point determined by purposive sampling method mixing the layer of water depth ratio. The results based on satellite imagery data showed that TSS was quite high in the West season period until the transition period I (West to East with a large concentration value of 200 mg / L. For the lowest TSS concentration occurred in the East season i.e., between 0 - 200 mg/L. TSS concentrations that dominated in the East season ranged from 51 to 75 mg/L This value was higher than the TSS concentration of field data analysis, i.e., between 23 - 39 mg/L. Changes of coastal coastline of North Bengkalis during the last 20 years continue to change the size of the land area, with a land area of 131 ha lost.

  15. Feature extraction and classification of clouds in high resolution panchromatic satellite imagery

    Science.gov (United States)

    Sharghi, Elan

    The development of sophisticated remote sensing sensors is rapidly increasing, and the vast amount of satellite imagery collected is too much to be analyzed manually by a human image analyst. It has become necessary for a tool to be developed to automate the job of an image analyst. This tool would need to intelligently detect and classify objects of interest through computer vision algorithms. Existing software called the Rapid Image Exploitation Resource (RAPIER®) was designed by engineers at Space and Naval Warfare Systems Center Pacific (SSC PAC) to perform exactly this function. This software automatically searches for anomalies in the ocean and reports the detections as a possible ship object. However, if the image contains a high percentage of cloud coverage, a high number of false positives are triggered by the clouds. The focus of this thesis is to explore various feature extraction and classification methods to accurately distinguish clouds from ship objects. An examination of a texture analysis method, line detection using the Hough transform, and edge detection using wavelets are explored as possible feature extraction methods. The features are then supplied to a K-Nearest Neighbors (KNN) or Support Vector Machine (SVM) classifier. Parameter options for these classifiers are explored and the optimal parameters are determined.

  16. Space chamber experiments of ohmic heating by high power microwave from the solar power satellite

    Energy Technology Data Exchange (ETDEWEB)

    Kaya, N.; Matsumoto, H.

    1981-12-01

    It is quantitatively predicted that a high power microwave from the Solar Power Satellite (SPS) nonlinearly interacts with the ionospheric plasma. The possible nonlinear interactions are ohmic heating, self-focusing and parametric instabilities. A rocket experiment called MINIX (Microwave-Ionosphere Nonlinear Interaction Experiment) has been attempted to examine these effects, but is note reported here. In parallel to the rocket experiment, a laboratory experiment in a space plasma simulation chamber has been carried out in order to examine ohmic heating in detail and to develop a system of the rocket experiment. Interesting results were observed and these results were utilized to revise the system of the rocket experiments. A significant microwave heating of plasma up to 150% temperature increase was observed with little electron density decrease. It was shown that the temperature increase is not due to the RF breakdown but to the ohmic heating in the simulated ionospheric plasma. These microwave effects have to be taken into account in the SPS Project in the future.

  17. Rigorous Line-Based Transformation Model Using the Generalized Point Strategy for the Rectification of High Resolution Satellite Imagery

    Directory of Open Access Journals (Sweden)

    Kun Hu

    2016-09-01

    Full Text Available High precision geometric rectification of High Resolution Satellite Imagery (HRSI is the basis of digital mapping and Three-Dimensional (3D modeling. Taking advantage of line features as basic geometric control conditions instead of control points, the Line-Based Transformation Model (LBTM provides a practical and efficient way of image rectification. It is competent to build the mathematical relationship between image space and the corresponding object space accurately, while it reduces the workloads of ground control and feature recognition dramatically. Based on generalization and the analysis of existing LBTMs, a novel rigorous LBTM is proposed in this paper, which can further eliminate the geometric deformation caused by sensor inclination and terrain variation. This improved nonlinear LBTM is constructed based on a generalized point strategy and resolved by least squares overall adjustment. Geo-positioning accuracy experiments with IKONOS, GeoEye-1 and ZiYuan-3 satellite imagery are performed to compare rigorous LBTM with other relevant line-based and point-based transformation models. Both theoretic analysis and experimental results demonstrate that the rigorous LBTM is more accurate and reliable without adding extra ground control. The geo-positioning accuracy of satellite imagery rectified by rigorous LBTM can reach about one pixel with eight control lines and can be further improved by optimizing the horizontal and vertical distribution of control lines.

  18. Impact of Missing Passive Microwave Sensors on Multi-Satellite Precipitation Retrieval Algorithm

    Directory of Open Access Journals (Sweden)

    Bin Yong

    2015-01-01

    Full Text Available The impact of one or two missing passive microwave (PMW input sensors on the end product of multi-satellite precipitation products is an interesting but obscure issue for both algorithm developers and data users. On 28 January 2013, the Version-7 TRMM Multi-satellite Precipitation Analysis (TMPA products were reproduced and re-released by National Aeronautics and Space Administration (NASA Goddard Space Flight Center because the Advanced Microwave Sounding Unit-B (AMSU-B and the Special Sensor Microwave Imager-Sounder-F16 (SSMIS-F16 input data were unintentionally disregarded in the prior retrieval. Thus, this study investigates the sensitivity of TMPA algorithm results to missing PMW sensors by intercomparing the “early” and “late” Version-7 TMPA real-time (TMPA-RT precipitation estimates (i.e., without and with AMSU-B, SSMIS-F16 sensors with an independent high-density gauge network of 200 tipping-bucket rain gauges over the Chinese Jinghe river basin (45,421 km2. The retrieval counts and retrieval frequency of various PMW and Infrared (IR sensors incorporated into the TMPA system were also analyzed to identify and diagnose the impacts of sensor availability on the TMPA-RT retrieval accuracy. Results show that the incorporation of AMSU-B and SSMIS-F16 has substantially reduced systematic errors. The improvement exhibits rather strong seasonal and topographic dependencies. Our analyses suggest that one or two single PMW sensors might play a key role in affecting the end product of current combined microwave-infrared precipitation estimates. This finding supports algorithm developers’ current endeavor in spatiotemporally incorporating as many PMW sensors as possible in the multi-satellite precipitation retrieval system called Integrated Multi-satellitE Retrievals for Global Precipitation Measurement mission (IMERG. This study also recommends users of satellite precipitation products to switch to the newest Version-7 TMPA datasets and

  19. Correcting bias in the rational polynomial coefficients of satellite imagery using thin-plate smoothing splines

    Science.gov (United States)

    Shen, Xiang; Liu, Bin; Li, Qing-Quan

    2017-03-01

    The Rational Function Model (RFM) has proven to be a viable alternative to the rigorous sensor models used for geo-processing of high-resolution satellite imagery. Because of various errors in the satellite ephemeris and instrument calibration, the Rational Polynomial Coefficients (RPCs) supplied by image vendors are often not sufficiently accurate, and there is therefore a clear need to correct the systematic biases in order to meet the requirements of high-precision topographic mapping. In this paper, we propose a new RPC bias-correction method using the thin-plate spline modeling technique. Benefiting from its excellent performance and high flexibility in data fitting, the thin-plate spline model has the potential to remove complex distortions in vendor-provided RPCs, such as the errors caused by short-period orbital perturbations. The performance of the new method was evaluated by using Ziyuan-3 satellite images and was compared against the recently developed least-squares collocation approach, as well as the classical affine-transformation and quadratic-polynomial based methods. The results show that the accuracies of the thin-plate spline and the least-squares collocation approaches were better than the other two methods, which indicates that strong non-rigid deformations exist in the test data because they cannot be adequately modeled by simple polynomial-based methods. The performance of the thin-plate spline method was close to that of the least-squares collocation approach when only a few Ground Control Points (GCPs) were used, and it improved more rapidly with an increase in the number of redundant observations. In the test scenario using 21 GCPs (some of them located at the four corners of the scene), the correction residuals of the thin-plate spline method were about 36%, 37%, and 19% smaller than those of the affine transformation method, the quadratic polynomial method, and the least-squares collocation algorithm, respectively, which demonstrates

  20. Compilation and assessment of microwave bioeffects. Final report. A selective review of the literature on biological effects of microwaves in relation to the Satellite Power System (SPS)

    Energy Technology Data Exchange (ETDEWEB)

    Justesen, D.R.; Ragan, H.A.; Rogers, L.E.; Guy, A.W.; Hjeresen, D.L.; Hinds, W.T.; Phillips, R.D.

    1978-05-01

    One of many alternate sources of electrical energy that are being considered by the Department of Energy is a microwave-mediated Satellite Power System (SPS). Once inserted into geosynchronous orbit at an altitude of more than 40,000 kilometers, a satellite would collect then convert the sun's energy to 2450-MHz microwaves, which would be beamed to the Earth's surface, where a rectifying antenna (rectenna) would convert the microwaves to electrical current suitable for industrial and domestic use. The expanse of each rectenna (about 10 by 13 kilometers), the power density of the continuous-wave microwave beam (approx. 23 mW/cm/sup 2/ at center, with fall off to 1 mW/cm/sup 2/ or less at the periphery of the rectenna), and the possibility that 20 or more satellite systems will eventually be operating, creates two sets of interrelated problems for biological/ecological assessment. These are 1) the effects of microwave fields of higher intensity on airborne biota (including human beings in aircraft) that may traffic the area above the rectenna and 2) the effects of virtually perpetual fields of much lower intensity on all forms of life at and beyond the rectennae's zone of exclusion. In this review, the scientific literature is examined, not only for biological effects that are pertinent to assessment of SPS, but for hiatuses of knowledge that will have to be filled before SPS can be vouched for operational safety.

  1. DustPedia: Multiwavelength photometry and imagery of 875 nearby galaxies in 42 ultraviolet-microwave bands

    Science.gov (United States)

    Clark, C. J. R.; Verstocken, S.; Bianchi, S.; Fritz, J.; Viaene, S.; Smith, M. W. L.; Baes, M.; Casasola, V.; Cassara, L. P.; Davies, J. I.; De Looze, I.; De Vis, P.; Evans, R.; Galametz, M.; Jones, A. P.; Lianou, S.; Madden, S.; Mosenkov, A. V.; Xilouris, M.

    2018-01-01

    Aims: The DustPedia project is capitalising on the legacy of the Herschel Space Observatory, using cutting-edge modelling techniques to study dust in the 875 DustPedia galaxies - representing the vast majority of extended galaxies within 3000 km s-1 that were observed by Herschel. This work requires a database of multiwavelength imagery and photometry that greatly exceeds the scope (in terms of wavelength coverage and number of galaxies) of any previous local-Universe survey. Methods: We constructed a database containing our own custom Herschel reductions, along with standardised archival observations from GALEX, SDSS, DSS, 2MASS, WISE, Spitzer, and Planck. Using these data, we performed consistent aperture-matched photometry, which we combined with external supplementary photometry from IRAS and Planck. Results: We present our multiwavelength imagery and photometry across 42 UV-microwave bands for the 875 DustPedia galaxies. Our aperture-matched photometry, combined with the external supplementary photometry, represents a total of 21 857 photometric measurements. A typical DustPedia galaxy has multiwavelength photometry spanning 25 bands. We also present the Comprehensive & Adaptable Aperture Photometry Routine (CAAPR), the pipeline we developed to carry out our aperture-matched photometry. CAAPR is designed to produce consistent photometry for the enormous range of galaxy and observation types in our data. In particular, CAAPR is able to determine robust cross-compatible uncertainties, thanks to a novel method for reliably extrapolating the aperture noise for observations that cover a very limited amount of background. Our rich database of imagery and photometry is being made available to the community. Photometry data tables are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/609/A37

  2. Reprocessing the Historical Satellite Passive Microwave Record at Enhanced Spatial Resolutions using Image Reconstruction

    Science.gov (United States)

    Hardman, M.; Brodzik, M. J.; Long, D. G.; Paget, A. C.; Armstrong, R. L.

    2015-12-01

    Beginning in 1978, the satellite passive microwave data record has been a mainstay of remote sensing of the cryosphere, providing twice-daily, near-global spatial coverage for monitoring changes in hydrologic and cryospheric parameters that include precipitation, soil moisture, surface water, vegetation, snow water equivalent, sea ice concentration and sea ice motion. Currently available global gridded passive microwave data sets serve a diverse community of hundreds of data users, but do not meet many requirements of modern Earth System Data Records (ESDRs) or Climate Data Records (CDRs), most notably in the areas of intersensor calibration, quality-control, provenance and consistent processing methods. The original gridding techniques were relatively primitive and were produced on 25 km grids using the original EASE-Grid definition that is not easily accommodated in modern software packages. Further, since the first Level 3 data sets were produced, the Level 2 passive microwave data on which they were based have been reprocessed as Fundamental CDRs (FCDRs) with improved calibration and documentation. We are funded by NASA MEaSUREs to reprocess the historical gridded data sets as EASE-Grid 2.0 ESDRs, using the most mature available Level 2 satellite passive microwave (SMMR, SSM/I-SSMIS, AMSR-E) records from 1978 to the present. We have produced prototype data from SSM/I and AMSR-E for the year 2003, for review and feedback from our Early Adopter user community. The prototype data set includes conventional, low-resolution ("drop-in-the-bucket" 25 km) grids and enhanced-resolution grids derived from the two candidate image reconstruction techniques we are evaluating: 1) Backus-Gilbert (BG) interpolation and 2) a radiometer version of Scatterometer Image Reconstruction (SIR). We summarize our temporal subsetting technique, algorithm tuning parameters and computational costs, and include sample SSM/I images at enhanced resolutions of up to 3 km. We are actively

  3. Compilation and assessment of microwave bioeffects. Final report. A selective review of the literature on biological effects of microwaves in relation to the satellite power system

    Energy Technology Data Exchange (ETDEWEB)

    Justesen, D. R.; Ragan, H. A.; Rogers, L. E.; Guy, A. W.; Hjeresen, D. L.; Hinds, W. T.

    1978-05-01

    Potential biological and ecological problems are the focus of a review of the world's scientific literature on biological effects of microwave radiation. The emphasis is on recently reported data and on the 2450-MHz continuous-wave (CW) radiation that is envisioned for a Satellite Power System (SPS).

  4. Quantifying the Value of Satellite Imagery in Agriculture and other Sectors

    Science.gov (United States)

    Brown, M. E.; Abbott, P. C.; Escobar, V. M.

    2013-12-01

    This study focused on quantifying the commercial value of satellite remote sensing for agriculture. Commercial value from satellite imagery arises when improved information leads to better economic decisions. We identified five areas of application of remote sensing to agriculture where there is this potential: crop management (precision agriculture), insurance, real estate assessment, crop forecasting, and environmental monitoring. These applications can be divided between public information (crop forecasting) and those that may generate private commercial value (crop management), with both public and private information dimensions in some categories. Public information applications of remote sensing have been more successful in the past, and are likely to generate more economic value in the future. It was found that several issues have limited realization of the potential to generate private value from remote sensing in agriculture. The scale of use is small to the high cost of acquiring and interpreting large images has limited the cost effectiveness to individual farmers. Insurance, environmental monitoring, and crop management services by cooperatives or consultants may be cases overcoming this limitation. The greatest opportunities for potential commercial value from agriculture are probably in the crop forecasting area, especially where agricultural statistics services are not as well developed, since public market information benefits a broad range of economic actors, not limited to countries where forecasts are made. We estimate here the value from components of USDA's World Agricultural Supply and Demand Estimates (WASDE) forecasts for corn, indicating potential value increasing in the range of 60 to 240 million if improved satellite based information enhances those forecasts. The research was conducted by agricultural economists at Purdue University, and will be the basis for further evaluation of the use of satellite data within the NASA Carbon

  5. Classification of sea ice types with single-band (33.6 GHz) airborne passive microwave imagery

    Science.gov (United States)

    Eppler, Duane T.; Farmer, L. Dennis; Lohanick, Alan W.; Hoover, Mervyn

    1986-09-01

    During March 1983 extensive high-quality airborne passive Ka band (33.6 GHz) microwave imagery and coincident high-resolution aerial photography were obtained of ice along a 378-km flight line in the Beaufort Sea. Analysis of these data suggests that four classes of winter surfaces can be distinguished solely on the basis of 33.6-GHz brightness temperature: open water, frazil, old ice, and young/first-year ice. New ice (excluding frazil) and nilas display brightness temperatures that overlap the range of temperatures characteristic of old ice and, to a lesser extent, young/first-year ice. Scenes in which a new ice or nilas are present in appreciable amounts are subject to substantial errors in classification if static measures of Ka band radiometric brightness temperature alone are considered. Textural characteristics of nilas and new ice, however, differ significantly from textural features characteristic of other ice types and probably can be used with brightness temperature data to classify ice type in high-resolution single-band microwave images. In any case, open water is radiometrically the coldest surface observed in any scene. Lack of overlap between brightness temperatures characteristic of other surfaces indicates that estimates of the areal extent of open water based on only 33.6-GHz brightness temperatures are accurate.

  6. Study of LEO-SAT microwave link for broad-band mobile satellite communication system

    Science.gov (United States)

    Fujise, Masayuki; Chujo, Wataru; Chiba, Isamu; Furuhama, Yoji; Kawabata, Kazuaki; Konishi, Yoshihiko

    1993-01-01

    In the field of mobile satellite communications, a system based on low-earth-orbit satellites (LEO-SAT's) such as the Iridium system has been proposed. The LEO-SAT system is able to offer mobile telecommunication services in high-latitude areas. Rain degradation, fading and shadowing are also expected to be decreased when the system is operated at a high elevation angle. Furthermore, the propagation delay generated in the LEO-SAT system is less pronounced than that in the geostationary orbit satellite (GEO-SAT) system and, in voice services, the effect of the delay is almost negligible. We proposed a concept of a broad-band mobile satellite communication system with LEO-SAT's and Optical ISL. In that system, a fixed L-band (1.6/1.5 GHz) multibeam is used to offer narrow band service to the mobile terminals in the entire area covered by a LEO-SAT and steerable Ka-band (30/20 GHz) spot beams are used for the wide band service. In this paper, we present results of a study of LEO-SAT microwave link between a satellite and a mobile terminal for a broad-band mobile satellite communication system. First, the results of link budget calculations are presented and the antennas mounted on satellites are shown. For a future mobile antenna technology, we also show digital beamforming (DBF) techniques. DBF, together with modulation and/or demodulation, is becoming a key technique for mobile antennas with advanced functions such as antenna pattern calibration, correction, and radio interference suppression. In this paper, efficient DBF techniques for transmitting and receiving are presented. Furthermore, an adaptive array antenna system suitable for this LEO-SAT is presented.

  7. Monitoring soil wetness variations by means of satellite passive microwave observations: the HYDROPTIMET study cases

    Directory of Open Access Journals (Sweden)

    T. Lacava

    2005-01-01

    Full Text Available Soil moisture is an important component of the hydrological cycle. In the framework of modern flood warning systems, the knowledge of soil moisture is crucial, due to the influence on the soil response in terms of infiltration-runoff. Precipitation-runoff processes, in fact, are related to catchment's hydrological conditions before the precipitation. Thus, an estimation of these conditions is of significant importance to improve the reliability of flood warning systems. Combining such information with other weather-related satellite products (i.e. rain rate estimation might represent a useful exercise in order to improve our capability to handle (and possibly mitigate or prevent hydro-geological hazards. Remote sensing, in the last few years, has supported several techniques for soil moisture/wetness monitoring. Most of the satellite-based techniques use microwave data, thanks to the all-weather and all-time capability of these data, as well as to their high sensitivity to water content in the soil. On the other hand, microwave data are unfortunately highly affected by the presence of surface roughness or vegetation coverage within the instantaneous satellite field of view (IFOV. Those problems, consequently, strongly limit the efficiency and the reliability of traditional satellite techniques. Recently, using data coming from AMSU (Advanced Microwave Sounding Unit, flying aboard NOAA (National Oceanic and Atmospheric Administration satellites, a new methodology for soil wetness estimation has been proposed. The proposed index, called Soil Wetness Variation Index (SWVI, developed by a multi-temporal analysis of AMSU records, seems able to reduce the problems related to vegetation and/or roughness effects. Such an approach has been tested, with promising results, on the analysis of some flooding events which occurred in Europe in the past. In this study, results achieved for the HYDROPTIMET test cases will be analysed and discussed in detail

  8. Environmental assessment for the satellite power system-concept development and evaluation program-microwave health and ecological effects

    Energy Technology Data Exchange (ETDEWEB)

    1980-11-01

    This report is concerned with the potential health and ecological effects of the microwave beam from the microwave power transmission system (MPTS) of the satellite power system (SPS). The report is written in the form of a detailed critical review of selected scientific articles from the published literature on the biological effects of nonionizing electromagnetic radiation, followed by an assessment of the possible effects of the SPS, based on exposure values for the reference system (US DOE and NASA, 1978).

  9. Extracting Urban Morphology for Atmospheric Modeling from Multispectral and SAR Satellite Imagery

    Science.gov (United States)

    Wittke, S.; Karila, K.; Puttonen, E.; Hellsten, A.; Auvinen, M.; Karjalainen, M.

    2017-05-01

    This paper presents an approach designed to derive an urban morphology map from satellite data while aiming to minimize the cost of data and user interference. The approach will help to provide updates to the current morphological databases around the world. The proposed urban morphology maps consist of two layers: 1) Digital Elevation Model (DEM) and 2) land cover map. Sentinel-2 data was used to create a land cover map, which was realized through image classification using optical range indices calculated from image data. For the purpose of atmospheric modeling, the most important classes are water and vegetation areas. The rest of the area includes bare soil and built-up areas among others, and they were merged into one class in the end. The classification result was validated with ground truth data collected both from field measurements and aerial imagery. The overall classification accuracy for the three classes is 91 %. TanDEM-X data was processed into two DEMs with different grid sizes using interferometric SAR processing. The resulting DEM has a RMSE of 3.2 meters compared to a high resolution DEM, which was estimated through 20 control points in flat areas. Comparing the derived DEM with the ground truth DEM from airborne LIDAR data, it can be seen that the street canyons, that are of high importance for urban atmospheric modeling are not detectable in the TanDEM-X DEM. However, the derived DEM is suitable for a class of urban atmospheric models. Based on the numerical modeling needs for regional atmospheric pollutant dispersion studies, the generated files enable the extraction of relevant parametrizations, such as Urban Canopy Parameters (UCP).

  10. Improved Wetland Classification Using Eight-Band High Resolution Satellite Imagery and a Hybrid Approach

    Directory of Open Access Journals (Sweden)

    Charles R. Lane

    2014-12-01

    Full Text Available Although remote sensing technology has long been used in wetland inventory and monitoring, the accuracy and detail level of wetland maps derived with moderate resolution imagery and traditional techniques have been limited and often unsatisfactory. We explored and evaluated the utility of a newly launched high-resolution, eight-band satellite system (Worldview-2; WV2 for identifying and classifying freshwater deltaic wetland vegetation and aquatic habitats in the Selenga River Delta of Lake Baikal, Russia, using a hybrid approach and a novel application of Indicator Species Analysis (ISA. We achieved an overall classification accuracy of 86.5% (Kappa coefficient: 0.85 for 22 classes of aquatic and wetland habitats and found that additional metrics, such as the Normalized Difference Vegetation Index and image texture, were valuable for improving the overall classification accuracy and particularly for discriminating among certain habitat classes. Our analysis demonstrated that including WV2’s four spectral bands from parts of the spectrum less commonly used in remote sensing analyses, along with the more traditional bandwidths, contributed to the increase in the overall classification accuracy by ~4% overall, but with considerable increases in our ability to discriminate certain communities. The coastal band improved differentiating open water and aquatic (i.e., vegetated habitats, and the yellow, red-edge, and near-infrared 2 bands improved discrimination among different vegetated aquatic and terrestrial habitats. The use of ISA provided statistical rigor in developing associations between spectral classes and field-based data. Our analyses demonstrated the utility of a hybrid approach and the benefit of additional bands and metrics in providing the first spatially explicit mapping of a large and heterogeneous wetland system.

  11. EXTRACTING URBAN MORPHOLOGY FOR ATMOSPHERIC MODELING FROM MULTISPECTRAL AND SAR SATELLITE IMAGERY

    Directory of Open Access Journals (Sweden)

    S. Wittke

    2017-05-01

    Full Text Available This paper presents an approach designed to derive an urban morphology map from satellite data while aiming to minimize the cost of data and user interference. The approach will help to provide updates to the current morphological databases around the world. The proposed urban morphology maps consist of two layers: 1 Digital Elevation Model (DEM and 2 land cover map. Sentinel-2 data was used to create a land cover map, which was realized through image classification using optical range indices calculated from image data. For the purpose of atmospheric modeling, the most important classes are water and vegetation areas. The rest of the area includes bare soil and built-up areas among others, and they were merged into one class in the end. The classification result was validated with ground truth data collected both from field measurements and aerial imagery. The overall classification accuracy for the three classes is 91 %. TanDEM-X data was processed into two DEMs with different grid sizes using interferometric SAR processing. The resulting DEM has a RMSE of 3.2 meters compared to a high resolution DEM, which was estimated through 20 control points in flat areas. Comparing the derived DEM with the ground truth DEM from airborne LIDAR data, it can be seen that the street canyons, that are of high importance for urban atmospheric modeling are not detectable in the TanDEM-X DEM. However, the derived DEM is suitable for a class of urban atmospheric models. Based on the numerical modeling needs for regional atmospheric pollutant dispersion studies, the generated files enable the extraction of relevant parametrizations, such as Urban Canopy Parameters (UCP.

  12. Satellite-based emergency mapping using optical imagery: experience and reflections from the 2015 Nepal earthquakes

    Science.gov (United States)

    Williams, Jack G.; Rosser, Nick J.; Kincey, Mark E.; Benjamin, Jessica; Oven, Katie J.; Densmore, Alexander L.; Milledge, David G.; Robinson, Tom R.; Jordan, Colm A.; Dijkstra, Tom A.

    2018-01-01

    Landslides triggered by large earthquakes in mountainous regions contribute significantly to overall earthquake losses and pose a major secondary hazard that can persist for months or years. While scientific investigations of coseismic landsliding are increasingly common, there is no protocol for rapid (hours-to-days) humanitarian-facing landslide assessment and no published recognition of what is possible and what is useful to compile immediately after the event. Drawing on the 2015 Mw 7.8 Gorkha earthquake in Nepal, we consider how quickly a landslide assessment based upon manual satellite-based emergency mapping (SEM) can be realistically achieved and review the decisions taken by analysts to ascertain the timeliness and type of useful information that can be generated. We find that, at present, many forms of landslide assessment are too slow to generate relative to the speed of a humanitarian response, despite increasingly rapid access to high-quality imagery. Importantly, the value of information on landslides evolves rapidly as a disaster response develops, so identifying the purpose, timescales, and end users of a post-earthquake landslide assessment is essential to inform the approach taken. It is clear that discussions are needed on the form and timing of landslide assessments, and how best to present and share this information, before rather than after an earthquake strikes. In this paper, we share the lessons learned from the Gorkha earthquake, with the aim of informing the approach taken by scientists to understand the evolving landslide hazard in future events and the expectations of the humanitarian community involved in disaster response.

  13. Algorithm and Application of Gcp-Independent Block Adjustment for Super Large-Scale Domestic High Resolution Optical Satellite Imagery

    Science.gov (United States)

    Sun, Y. S.; Zhang, L.; Xu, B.; Zhang, Y.

    2018-04-01

    The accurate positioning of optical satellite image without control is the precondition for remote sensing application and small/medium scale mapping in large abroad areas or with large-scale images. In this paper, aiming at the geometric features of optical satellite image, based on a widely used optimization method of constraint problem which is called Alternating Direction Method of Multipliers (ADMM) and RFM least-squares block adjustment, we propose a GCP independent block adjustment method for the large-scale domestic high resolution optical satellite image - GISIBA (GCP-Independent Satellite Imagery Block Adjustment), which is easy to parallelize and highly efficient. In this method, the virtual "average" control points are built to solve the rank defect problem and qualitative and quantitative analysis in block adjustment without control. The test results prove that the horizontal and vertical accuracy of multi-covered and multi-temporal satellite images are better than 10 m and 6 m. Meanwhile the mosaic problem of the adjacent areas in large area DOM production can be solved if the public geographic information data is introduced as horizontal and vertical constraints in the block adjustment process. Finally, through the experiments by using GF-1 and ZY-3 satellite images over several typical test areas, the reliability, accuracy and performance of our developed procedure will be presented and studied in this paper.

  14. An Evaluation of Antarctica as a Calibration Target for Passive Microwave Satellite Missions

    Science.gov (United States)

    Kim, Edward

    2012-01-01

    Passive microwave remote sensing at L-band (1.4 GHz) is sensitive to soil moisture and sea surface salinity, both important climate variables. Science studies involving these variables can now take advantage of new satellite L-band observations. The first mission with regular global passive microwave observations at L-band is the European Space Agency's Soil Moisture and Ocean Salinity (SMOS), launched November, 2009. A second mission, NASA's Aquarius, was launched June, 201l. A third mission, NASA's Soil Moisture Active Passive (SMAP) is scheduled to launch in 2014. Together, these three missions may provide a decade-long data record -- provided that they are intercalibrated. The intercalibration is best performed at the radiance (brightness temperature) level, and Antarctica is proving to be a key calibration target. However, Antarctica has thus far not been fully characterized as a potential target. This paper will present evaluations of Antarctica as a microwave calibration target for the above satellite missions. Preliminary analyses have identified likely target areas, such as the vicinity of Dome-C and larger areas within East Antarctica. Physical sources of temporal and spatial variability of polar firn are key to assessing calibration uncertainty. These sources include spatial variability of accumulation rate, compaction, surface characteristics (dunes, micro-topography), wind patterns, and vertical profiles of density and temperature. Using primarily SMOS data, variability is being empirically characterized and attempts are being made to attribute observed variability to physical sources. One expected outcome of these studies is the potential discovery of techniques for remotely sensing--over all of Antarctica--parameters such as surface temperature.

  15. Optimized Fast-FISH with a-satellite probes: acceleration by microwave activation

    Directory of Open Access Journals (Sweden)

    Durm M.

    1997-01-01

    Full Text Available It has been shown for several DNA probes that the recently introduced Fast-FISH (fluorescence in situ hybridization technique is well suited for quantitative microscopy. For highly repetitive DNA probes the hybridization (renaturation time and the number of subsequent washing steps were reduced considerably by omitting denaturing chemical agents (e.g., formamide. The appropriate hybridization temperature and time allow a clear discrimination between major and minor binding sites by quantitative fluorescence microscopy. The well-defined physical conditions for hybridization permit automatization of the procedure, e.g., by a programmable thermal cycler. Here, we present optimized conditions for a commercially available X-specific a-satellite probe. Highly fluorescent major binding sites were obtained for 74oC hybridization temperature and 60 min hybridization time. They were clearly discriminated from some low fluorescent minor binding sites on metaphase chromosomes as well as in interphase cell nuclei. On average, a total of 3.43 ± 1.59 binding sites were measured in metaphase spreads, and 2.69 ± 1.00 in interphase nuclei. Microwave activation for denaturation and hybridization was tested to accelerate the procedure. The slides with the target material and the hybridization buffer were placed in a standard microwave oven. After denaturation for 20 s at 900 W, hybridization was performed for 4 min at 90 W. The suitability of a microwave oven for Fast-FISH was confirmed by the application to a chromosome 1-specific a-satellite probe. In this case, denaturation was performed at 630 W for 60 s and hybridization at 90 W for 5 min. In all cases, the results were analyzed quantitatively and compared to the results obtained by Fast-FISH. The major binding sites were clearly discriminated by their brightness

  16. Land cover mapping and change detection in urban watersheds using QuickBird high spatial resolution satellite imagery

    Science.gov (United States)

    Hester, David Barry

    The objective of this research was to develop methods for urban land cover analysis using QuickBird high spatial resolution satellite imagery. Such imagery has emerged as a rich commercially available remote sensing data source and has enjoyed high-profile broadcast news media and Internet applications, but methods of quantitative analysis have not been thoroughly explored. The research described here consists of three studies focused on the use of pan-sharpened 61-cm spatial resolution QuickBird imagery, the spatial resolution of which is the highest of any commercial satellite. In the first study, a per-pixel land cover classification method is developed for use with this imagery. This method utilizes a per-pixel classification approach to generate an accurate six-category high spatial resolution land cover map of a developing suburban area. The primary objective of the second study was to develop an accurate land cover change detection method for use with QuickBird land cover products. This work presents an efficient fuzzy framework for transforming map uncertainty into accurate and meaningful high spatial resolution land cover change analysis. The third study described here is an urban planning application of the high spatial resolution QuickBird-based land cover product developed in the first study. This work both meaningfully connects this exciting new data source to urban watershed management and makes an important empirical contribution to the study of suburban watersheds. Its analysis of residential roads and driveways as well as retail parking lots sheds valuable light on the impact of transportation-related land use on the suburban landscape. Broadly, these studies provide new methods for using state-of-the-art remote sensing data to inform land cover analysis and urban planning. These methods are widely adaptable and produce land cover products that are both meaningful and accurate. As additional high spatial resolution satellites are launched and the

  17. Estimating Global Ecosystem Isohydry/Anisohydry Using Active and Passive Microwave Satellite Data

    Science.gov (United States)

    Li, Yan; Guan, Kaiyu; Gentine, Pierre; Konings, Alexandra G.; Meinzer, Frederick C.; Kimball, John S.; Xu, Xiangtao; Anderegg, William R. L.; McDowell, Nate G.; Martinez-Vilalta, Jordi; Long, David G.; Good, Stephen P.

    2017-12-01

    The concept of isohydry/anisohydry describes the degree to which plants regulate their water status, operating from isohydric with strict regulation to anisohydric with less regulation. Though some species level measures of isohydry/anisohydry exist at a few locations, ecosystem-scale information is still largely unavailable. In this study, we use diurnal observations from active (Ku-Band backscatter from QuikSCAT) and passive (X-band vegetation optical depth (VOD) from Advanced Microwave Scanning Radiometer on EOS Aqua) microwave satellite data to estimate global ecosystem isohydry/anisohydry. Here diurnal observations from both satellites approximate predawn and midday plant canopy water contents, which are used to estimate isohydry/anisohydry. The two independent estimates from radar backscatter and VOD show reasonable agreement at low and middle latitudes but diverge at high latitudes. Grasslands, croplands, wetlands, and open shrublands are more anisohydric, whereas evergreen broadleaf and deciduous broadleaf forests are more isohydric. The direct validation with upscaled in situ species isohydry/anisohydry estimates indicates that the VOD-based estimates have much better agreement than the backscatter-based estimates. The indirect validation with prior knowledge suggests that both estimates are generally consistent in that vegetation water status of anisohydric ecosystems more closely tracks environmental fluctuations of water availability and demand than their isohydric counterparts. However, uncertainties still exist in the isohydry/anisohydry estimate, primarily arising from the remote sensing data and, to a lesser extent, from the methodology. The comprehensive assessment in this study can help us better understand the robustness, limitation, and uncertainties of the satellite-derived isohydry/anisohydry estimates. The ecosystem isohydry/anisohydry has the potential to reveal new insights into spatiotemporal ecosystem response to droughts.

  18. Snow Cover Mapping at the Continental to Global Scale Using Combined Visible and Passive Microwave Satellite Data

    Science.gov (United States)

    Armstrong, R. L.; Brodzik, M.; Savoie, M. H.

    2007-12-01

    Over the past several decades both visible and passive microwave satellite data have been utilized for snow mapping at the continental to global scale. Snow mapping using visible data has been based primarily on the magnitude of the surface reflectance, and in more recent cases on specific spectral signatures, while microwave data can be used to identify snow cover because the microwave energy emitted by the underlying soil is scattered by the snow grains resulting in a sharp decrease in brightness temperature and a characteristic negative spectral gradient. Both passive microwave and visible data sets indicate a similar pattern of inter-annual variability, although the maximum snow extents derived from the microwave data are consistently less than those provided by the visible satellite data and the visible data typically show higher monthly variability. We describe the respective problems as well as the advantages and disadvantages of these two types of satellite data for snow cover mapping and demonstrate how a multi-sensor approach is optimal. For the period 1978 to present we combine data from the NOAA weekly snow charts with snow cover derived from the SMMR and SSM/I brightness temperature data. For the period since 2002 we blend NASA EOS MODIS and AMSR-E data sets. Our current product incorporates MODIS data from the Climate Modelers Grid (CMG) at approximately 5 km (0.05 deg.) with microwave-derived snow water equivalent (SWE) at 25 km, resulting in a blended product that includes percent snow cover in the larger grid cell whenever the microwave SWE signal is absent. Validation of AMSR-E at the brightness temperature level is provided through the comparison with data from the well-calibrated heritage SSM/I sensor over large homogeneous snow-covered surfaces (e.g. Dome C region, Antarctica). We also describe how the application of the higher frequency microwave channels (85 and 89 GHz)enhances accurate mapping of shallow and intermittent snow cover.

  19. An estimation model of population in China using time series DMSP night-time satellite imagery from 2002-2010

    Science.gov (United States)

    Zhang, Xiaoyong; Zhang, Zhijie; Chang, Yuguang; Chen, Zhengchao

    2015-12-01

    Accurate data on the spatial distribution and potential growth estimation of human population are playing pivotal role in addressing and mitigating heavy lose caused by earthquake. Traditional demographic data is limited in its spatial resolution and is extremely hard to update. With the accessibility of massive DMSP/OLS night time imagery, it is possible to model population distribution at the county level across China. In order to compare and improve the continuity and consistency of time-series DMSP night-time satellite imagery obtained by different satellites in same year or different years by the same satellite from 2002-2010, normalized method was deployed for the inter-correction among imageries. And we referred to the reference F162007 Jixi city, whose social-economic has been relatively stable. Through binomial model, with average R2 0.90, then derived the correction factor of each year. The normalization obviously improved consistency comparing to previous data, which enhanced the correspondent accuracy of model. Then conducted the model of population density between average night-time light intensity in eight-economic districts. According to the two parameters variation law of consecutive years, established the prediction model of next following years with R2of slope and constant typically 0.85 to 0.95 in different regions. To validate the model, taking the year of 2005 as example, retrieved quantitatively population distribution in per square kilometer based on the model, then compared the results to the statistical data based on census, the difference of the result is acceptable. In summary, the estimation model facilitates the quick estimation and prediction in relieving the damage to people, which is significant in decision-making.

  20. CLASSIFIER FUSION OF HIGH-RESOLUTION OPTICAL AND SYNTHETIC APERTURE RADAR (SAR SATELLITE IMAGERY FOR CLASSIFICATION IN URBAN AREA

    Directory of Open Access Journals (Sweden)

    T. Alipour Fard

    2014-10-01

    Full Text Available This study concerned with fusion of synthetic aperture radar and optical satellite imagery. Due to the difference in the underlying sensor technology, data from synthetic aperture radar (SAR and optical sensors refer to different properties of the observed scene and it is believed that when they are fused together, they complement each other to improve the performance of a particular application. In this paper, two category of features are generate and six classifier fusion operators implemented and evaluated. Implementation results show significant improvement in the classification accuracy.

  1. Vectorized Shoreline of Guam, Derived from IKONOS Satellite Imagery, 2000 through 2003

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — IKONOS imagery was purchased to support the Pacific Islands Geographic Information System (GIS) project and the National Ocean Service's (NOS) coral mapping...

  2. Semi-automatic building extraction in informal settlements from high-resolution satellite imagery

    Science.gov (United States)

    Mayunga, Selassie David

    The extraction of man-made features from digital remotely sensed images is considered as an important step underpinning management of human settlements in any country. Man-made features and buildings in particular are required for varieties of applications such as urban planning, creation of geographical information systems (GIS) databases and Urban City models. The traditional man-made feature extraction methods are very expensive in terms of equipment, labour intensive, need well-trained personnel and cannot cope with changing environments, particularly in dense urban settlement areas. This research presents an approach for extracting buildings in dense informal settlement areas using high-resolution satellite imagery. The proposed system uses a novel strategy of extracting building by measuring a single point at the approximate centre of the building. The fine measurement of the building outlines is then effected using a modified snake model. The original snake model on which this framework is based, incorporates an external constraint energy term which is tailored to preserving the convergence properties of the snake model; its use to unstructured objects will negatively affect their actual shapes. The external constrained energy term was removed from the original snake model formulation, thereby, giving ability to cope with high variability of building shapes in informal settlement areas. The proposed building extraction system was tested on two areas, which have different situations. The first area was Tungi in Dar Es Salaam, Tanzania where three sites were tested. This area is characterized by informal settlements, which are illegally formulated within the city boundaries. The second area was Oromocto in New Brunswick, Canada where two sites were tested. Oromocto area is mostly flat and the buildings are constructed using similar materials. Qualitative and quantitative measures were employed to evaluate the accuracy of the results as well as the performance

  3. The Use of Orthogonal Polarizations in Microwave Imagery of Isolated Canine Kidney

    Science.gov (United States)

    Larsen, L. E.; Jacobi, J. H.

    1980-06-01

    A method of imaging biological targets using microwave radiation at a frequency of 4 GHz is presented. Linearly polarized radiation is transmitted through an isolated canine kidney and received with co-polarized and cross-polarized antennas. Images are displayed as the spatial variation of the magnitude of the transmission scattering parameter S21 for each mode of polarization. The relationship between the spatial variation of the magnitude of S21 and canine renal anatomy is discussed. It is shown that within the kidney the cross-polarized image tends to emphasize linear or piecewise linear structures, whereas the co-polarized image balances renal cortical lobulations.

  4. 3D high resolution tracking of ice flow using mutli-temporal stereo satellite imagery, Franz Josef Glacier, New Zealand

    Science.gov (United States)

    Leprince, S.; Lin, J.; Ayoub, F.; Herman, F.; Avouac, J.

    2013-12-01

    We present the latest capabilities added to the Co-Registration of Optically Sensed Images and Correlation (COSI-Corr) software, which aim at analyzing time-series of stereoscopic imagery to document 3D variations of the ground surface. We review the processing chain and present the new and improved modules for satellite pushbroom imagery, in particular the N-image bundle block adjustment to jointly optimize the viewing geometry of multiple acquisitions, the improved multi-scale image matching based on Semi-Global Matching (SGM) to extract high resolution topography, and the triangulation of multi-temporal disparity maps to derive 3D ground motion. In particular, processes are optimized to run on a cluster computing environment. This new suite of algorithms is applied to the study of Worldview stereo imagery above the Franz Josef, Fox, and Tasman Glaciers, New Zealand, acquired on 01/30/2013, 02/09/2013, and 02/28/2013. We derive high resolution (1m post-spacing) maps of ice flow in three dimensions, where ice velocities of up to 4 m/day are recorded. Images were collected in early summer during a dry and sunny period, which followed two weeks of unsettled weather with several heavy rainfall events across the Southern Alps. The 3D tracking of ice flow highlights the surface response of the glaciers to changes in effective pressure at the ice-bedrock interface due to heavy rainfall, at an unprecedented spatial resolution.

  5. Employing high resolution satellite imagery to document a rapid glacier surge in the Karakoram - risks and opportunities for hazard assessment

    Science.gov (United States)

    Steiner, J. F.; Kraaijenbrink, P. D. A.; Jiduc, S. G.; Immerzeel, W. W.

    2017-12-01

    Glacier surges occur regularly in the Karakoram but their driving mechanisms, recurrence and its relation to climatic change remain unclear. Since many glacier tongues in the region reach to very low elevations, local populations are often exposed to glacial hazards. While the scientific interpretation of hazard is one challenge, adequately communicating results to possibly affected stakeholders poses a different set of hurdles. Using DEMs as well as Landsat imagery in combination with high-resolution Planet imagery we quantify surface elevation changes and flow velocities to document a glacier surge of the Khurdopin glacier, located in a remote valley in Pakistan, in the first half of 2017. Results reveal that an accumulation of ice mass leads to a rapid surge in peaking with velocities above 5000 m a-1 or 0.5 m h-1 during a few days. Velocities increase steadily during a four-year build-up phase prior to the actual surge, while the remaining 15 years of the recurring cycle the glacier is quiescent. It is hypothesized that the surge is mainly initiated as a result of increased pressure melting caused by ice accumulation. However, surface observations show increased crevassing and disappearance of supra glacial ponds, which could have led to increased lubrication of the glacier bed. As a consequence of the surging tongue blocking the main valley a lake has formed and grown continuously in size over two months at a rate of up to 3000 m2 per day. Using satellite imagery with a frequent overpass rate we are able to (a) characterize the nature of glacier surges in the region with greater detail and (b) monitor the surge as well as the formation of the lake as it develops. Having developed a connection to local stakeholders we were able to provide rapid hazard assessments to affected communities, which can be employed to define possible actions. We show the potential of satellite imagery - freely available Landsat in combination with commercial Planet imagery -, which

  6. Mediterranean hurricanes: large-scale environment and convective and precipitating areas from satellite microwave observations

    Directory of Open Access Journals (Sweden)

    C. Claud

    2010-10-01

    Full Text Available Subsynoptic scale vortices that have been likened to tropical cyclones or polar lows (medicanes are occasionally observed over the Mediterranean Sea. Generated over the sea, they are usually associated with strong winds and heavy precipitation and thus can be highly destructive in islands and costal areas. Only an accurate forecasting of such systems could mitigate these effects. However, at the moment, the predictability of these systems remains limited.

    Due to the scarcity of conventional observations, use is made of NOAA/MetOp satellite observations, for which advantage can be taken of the time coverage differences between the platforms that carry it, to give a very complete temporal description of the disturbances. A combination of AMSU-B (Advanced Microwave Sounding Unit-B/MHS (Microwave Humidity Sounder observations permit to investigate precipitation associated with these systems while coincident AMSU-A (Advanced Microwave Sounding Unit-A observations give insights into the larger synoptic-scale environment in which they occur.

    Three different cases (in terms of intensity, location, trajectory, duration, and periods of the year – May, September and December, respectively were investigated. Throughout these time periods, AMSU-A observations show that the persisting deep outflow of cold air over the sea together with an upper-level trough upstream constituted a favourable environment for the development of medicanes. AMSU-B/MHS based diagnostics show that convection and precipitation areas are large in the early stage of the low, but significantly reduced afterwards. Convection is maximum just after the upper-level trough, located upstream of cold mid-tropospheric air, reached its maximum intensity and acquired a cyclonic orientation.

  7. Relationship between satellite microwave radiometric data, antecedent precipitation index, and regional soil moisture

    International Nuclear Information System (INIS)

    Teng, W.L.; Wang, J.R.; Doraiswamy, P.C.

    1993-01-01

    Satellite microwave brightness temperatures (TB 'S) have been shown, in previous studies for semi-arid environments, to correlate well with the antecedent precipitation index (API), a soil moisture indicator. The current study, using the Special Sensor Microwave/Imager (SSM/I), continued this work for parts of the U.S. Corn and Wheat Belts, which included areas with a more humid climate, a denser natural vegetation cover, and a different mix of agricultural crop types. Four years (1987-1990) of SSM/I data at 19 and 37GHz, daily precipitation and temperature data from weather stations, and API calculated from the weather data were processed, geo-referenced, and averaged to equation pending latitude-longitude grid quadrants. Correlation results between TB at 19 GHz and API were highly dependent on geographical location. Correlation coefficients (r values) ranged from —0-6 to —0-85 for the semi-arid parts of the study area and from —03 to —0-7 for the more humid and more densely vegetated parts. R values were also higher for the very dry and very wet years (—0-5 to —085) than for the 'normal’ year (—0-3 to —0-65). Similar to previous results, the Microwave Polarization Difference Index (MPDI), based on the 37 GHz data, was found to correspond to variations in vegetation cover. The MPDI was used to develop a linear regression model to estimate API from TB . Correlation between estimated and calculated APIs was also geographically and time dependent. Comparison of API with some field soil moisture measurements showed a similar trend, which provided some degree of confidence in using API as an indicator of soil moisture

  8. Snowmelt on the Greenland Ice Sheet as Derived From Passive Microwave Satellite Data

    Science.gov (United States)

    Abdalati, Waleed; Steffen, Konrad

    1997-01-01

    The melt extent of the snow on the Greenland ice sheet is of considerable importance to the ice sheet's mass and energy balance, as well as Arctic and global climates. By comparing passive microwave satellite data to field observations, variations in melt extent have been detected by establishing melt thresholds in the cross-polarized gradient ratio (XPGR). The XPGR, defined as the normalized difference between the 19-GHz horizontal channel and the 37-GHz vertical channel of the Special Sensor Microwave/Imager (SSM/I), exploits the different effects of snow wetness on different frequencies and polarizations and establishes a distinct melt signal. Using this XPGR melt signal, seasonal and interannual variations in snowmelt extent of the ice sheet are studied. The melt is found to be most extensive on the western side of the ice sheet and peaks in late July. Moreover, there is a notable increasing trend in melt area between the years 1979 and 1991 of 4.4% per year, which came to an abrupt halt in 1992 after the eruption of Mt. Pinatubo. A similar trend is observed in the temperatures at six coastal stations. The relationship between the warming trend and increasing melt trend between 1979 and 1991 suggests that a 1 C temperature rise corresponds to an increase in melt area of 73000 sq km, which in general exceeds one standard deviation of the natural melt area variability.

  9. The SPARC water vapor assessment II: intercomparison of satellite and ground-based microwave measurements

    Science.gov (United States)

    Nedoluha, Gerald E.; Kiefer, Michael; Lossow, Stefan; Gomez, R. Michael; Kämpfer, Niklaus; Lainer, Martin; Forkman, Peter; Christensen, Ole Martin; Oh, Jung Jin; Hartogh, Paul; Anderson, John; Bramstedt, Klaus; Dinelli, Bianca M.; Garcia-Comas, Maya; Hervig, Mark; Murtagh, Donal; Raspollini, Piera; Read, William G.; Rosenlof, Karen; Stiller, Gabriele P.; Walker, Kaley A.

    2017-12-01

    As part of the second SPARC (Stratosphere-troposphere Processes And their Role in Climate) water vapor assessment (WAVAS-II), we present measurements taken from or coincident with seven sites from which ground-based microwave instruments measure water vapor in the middle atmosphere. Six of the ground-based instruments are part of the Network for the Detection of Atmospheric Composition Change (NDACC) and provide datasets that can be used for drift and trend assessment. We compare measurements from these ground-based instruments with satellite datasets that have provided retrievals of water vapor in the lower mesosphere over extended periods since 1996. We first compare biases between the satellite and ground-based instruments from the upper stratosphere to the upper mesosphere. We then show a number of time series comparisons at 0.46 hPa, a level that is sensitive to changes in H2O and CH4 entering the stratosphere but, because almost all CH4 has been oxidized, is relatively insensitive to dynamical variations. Interannual variations and drifts are investigated with respect to both the Aura Microwave Limb Sounder (MLS; from 2004 onwards) and each instrument's climatological mean. We find that the variation in the interannual difference in the mean H2O measured by any two instruments is typically ˜ 1%. Most of the datasets start in or after 2004 and show annual increases in H2O of 0-1 % yr-1. In particular, MLS shows a trend of between 0.5 % yr-1 and 0.7 % yr-1 at the comparison sites. However, the two longest measurement datasets used here, with measurements back to 1996, show much smaller trends of +0.1 % yr-1 (at Mauna Loa, Hawaii) and -0.1 % yr-1 (at Lauder, New Zealand).

  10. The SPARC water vapor assessment II: intercomparison of satellite and ground-based microwave measurements

    Directory of Open Access Journals (Sweden)

    G. E. Nedoluha

    2017-12-01

    Full Text Available As part of the second SPARC (Stratosphere–troposphere Processes And their Role in Climate water vapor assessment (WAVAS-II, we present measurements taken from or coincident with seven sites from which ground-based microwave instruments measure water vapor in the middle atmosphere. Six of the ground-based instruments are part of the Network for the Detection of Atmospheric Composition Change (NDACC and provide datasets that can be used for drift and trend assessment. We compare measurements from these ground-based instruments with satellite datasets that have provided retrievals of water vapor in the lower mesosphere over extended periods since 1996. We first compare biases between the satellite and ground-based instruments from the upper stratosphere to the upper mesosphere. We then show a number of time series comparisons at 0.46 hPa, a level that is sensitive to changes in H2O and CH4 entering the stratosphere but, because almost all CH4 has been oxidized, is relatively insensitive to dynamical variations. Interannual variations and drifts are investigated with respect to both the Aura Microwave Limb Sounder (MLS; from 2004 onwards and each instrument's climatological mean. We find that the variation in the interannual difference in the mean H2O measured by any two instruments is typically  ∼  1%. Most of the datasets start in or after 2004 and show annual increases in H2O of 0–1 % yr−1. In particular, MLS shows a trend of between 0.5 % yr−1 and 0.7 % yr−1 at the comparison sites. However, the two longest measurement datasets used here, with measurements back to 1996, show much smaller trends of +0.1 % yr−1 (at Mauna Loa, Hawaii and −0.1 % yr−1 (at Lauder, New Zealand.

  11. Detection of Coccolithophore Blooms in Ocean Color Satellite Imagery: a Generalized Approach for Use with Multiple Sensors

    Science.gov (United States)

    Moore, Timothy; Dowell, Mark; Franz, Bryan A.

    2012-01-01

    A generalized coccolithophore bloom classifier has been developed for use with ocean color imagery. The bloom classifier was developed using extracted satellite reflectance data from SeaWiFS images screened by the default bloom detection mask. In the current application, we extend the optical water type (OWT) classification scheme by adding a new coccolithophore bloom class formed from these extracted reflectances. Based on an in situ coccolithophore data set from the North Atlantic, the detection levels with the new scheme were between 1,500 and 1,800 coccolithophore cellsmL and 43,000 and 78,000 lithsmL. The detected bloom area using the OWT method was an average of 1.75 times greater than the default bloom detector based on a collection of SeaWiFS 1 km imagery. The versatility of the scheme is shown with SeaWiFS, MODIS Aqua, CZCS and MERIS imagery at the 1 km scale. The OWT scheme was applied to the daily global SeaWiFS imagery mission data set (years 19972010). Based on our results, average annual coccolithophore bloom area was more than two times greater in the southern hemisphere compared to the northern hemi- sphere with values of 2.00 106 km2 and 0.75 106 km2, respectively. The new algorithm detects larger bloom areas in the Southern Ocean compared to the default algorithm, and our revised global annual average of 2.75106 km2 is dominated by contributions from the Southern Ocean.

  12. Estimation of daily global solar irradiation by coupling ground measurements of bright sunshine hours to satellite imagery

    International Nuclear Information System (INIS)

    Ener Rusen, Selmin; Hammer, Annette; Akinoglu, Bulent G.

    2013-01-01

    In this work, the current version of the satellite-based HELIOSAT method and ground-based linear Ångström–Prescott type relations are used in combination. The first approach is based on the use of a correlation between daily bright sunshine hours (s) and cloud index (n). In the second approach a new correlation is proposed between daily solar irradiation and daily data of s and n which is based on a physical parameterization. The performances of the proposed two combined models are tested against conventional methods. We test the use of obtained correlation coefficients for nearby locations. Our results show that the use of sunshine duration together with the cloud index is quite satisfactory in the estimation of daily horizontal global solar irradiation. We propose to use the new approaches to estimate daily global irradiation when the bright sunshine hours data is available for the location of interest, provided that some regression coefficients are determined using the data of a nearby station. In addition, if surface data for a close location does not exist then it is recommended to use satellite models like HELIOSAT or the new approaches instead the Ångström type models. - Highlights: • Satellite imagery together with surface measurements in solar radiation estimation. • The new coupled and conventional models (satellite and ground-based) are analyzed. • New models result in highly accurate estimation of daily global solar irradiation

  13. Improved land use classification from Landsat and Seasat satellite imagery registered to a common map base

    Science.gov (United States)

    Clark, J.

    1981-01-01

    In the case of Landsat Multispectral Scanner System (MSS) data, ambiguities in spectral signature can arise in urban areas. A study was initiated in the belief that Seasat digital SAR could help provide the spectral separability needed for a more accurate urban land use classification. A description is presented of the results of land use classifications performed on Landsat and preprocessed Seasat imagery that were registered to a common map base. The process of registering imagery and training site boundary coordinates to a common map has been reported by Clark (1980). It is found that preprocessed Seasat imagery provides signatures for urban land uses which are spectrally separable from Landsat signatures. This development appears to significantly improve land use classifications in an urban setting for class 12 (Commercial and Services), class 13 (Industrial), and class 14 (Transportation, Communications, and Utilities).

  14. Precipitation and Latent Heating Distributions from Satellite Passive Microwave Radiometry. Part 1; Improved Method and Uncertainties

    Science.gov (United States)

    Olson, William S.; Kummerow, Christian D.; Yang, Song; Petty, Grant W.; Tao, Wei-Kuo; Bell, Thomas L.; Braun, Scott A.; Wang, Yansen; Lang, Stephen E.; Johnson, Daniel E.; hide

    2006-01-01

    A revised Bayesian algorithm for estimating surface rain rate, convective rain proportion, and latent heating profiles from satellite-borne passive microwave radiometer observations over ocean backgrounds is described. The algorithm searches a large database of cloud-radiative model simulations to find cloud profiles that are radiatively consistent with a given set of microwave radiance measurements. The properties of these radiatively consistent profiles are then composited to obtain best estimates of the observed properties. The revised algorithm is supported by an expanded and more physically consistent database of cloud-radiative model simulations. The algorithm also features a better quantification of the convective and nonconvective contributions to total rainfall, a new geographic database, and an improved representation of background radiances in rain-free regions. Bias and random error estimates are derived from applications of the algorithm to synthetic radiance data, based upon a subset of cloud-resolving model simulations, and from the Bayesian formulation itself. Synthetic rain-rate and latent heating estimates exhibit a trend of high (low) bias for low (high) retrieved values. The Bayesian estimates of random error are propagated to represent errors at coarser time and space resolutions, based upon applications of the algorithm to TRMM Microwave Imager (TMI) data. Errors in TMI instantaneous rain-rate estimates at 0.5 -resolution range from approximately 50% at 1 mm/h to 20% at 14 mm/h. Errors in collocated spaceborne radar rain-rate estimates are roughly 50%-80% of the TMI errors at this resolution. The estimated algorithm random error in TMI rain rates at monthly, 2.5deg resolution is relatively small (less than 6% at 5 mm day.1) in comparison with the random error resulting from infrequent satellite temporal sampling (8%-35% at the same rain rate). Percentage errors resulting from sampling decrease with increasing rain rate, and sampling errors in

  15. Mapping and Visualization of The Deepwater Horizon Oil Spill Using Satellite Imagery

    Science.gov (United States)

    Ferreira Pichardo, E.

    2017-12-01

    Satellites are man-made objects hovering around the Earth's orbit and are essential for Earth observation, i.e. the monitoring and gathering of data about the Earth's vital systems. Environmental Satellites are used for atmospheric research, weather forecasting, and warning as well as monitoring extreme weather events. These satellites are categorized into Geosynchronous and Low Earth (Polar) orbiting satellites. Visualizing satellite data is critical to understand the Earth's systems and changes to our environment. The objective of this research is to examine satellite-based remotely sensed data that needs to be processed and rendered in the form of maps or other forms of visualization to understand and interpret the satellites' observations to monitor the status, changes and evolution of the mega-disaster Deepwater Horizon Spill that occurred on April 20, 2010 in the Gulf of Mexico. In this project, we will use an array of tools and programs such as Python, CSPP and Linux. Also, we will use data from the National Oceanic and Atmospheric Administration (NOAA): Polar-Orbiting Satellites Terra Earth Observing System AM-1 (EOS AM-1), and Aqua EOS PM-1 to investigate the mega-disaster. Each of these satellites carry a variety of instruments, and we will use the data obtained from the remote sensor Moderate-Resolution Imaging Spectroradiometer (MODIS). Ultimately, this study shows the importance of mapping and visualizing data such as satellite data (MODIS) to understand the extents of environmental impacts disasters such as the Deepwater Horizon Oil spill.

  16. Methodology of satellite microwave diagnostics of latitudinal-zonal and seasonal variations of frozen soil and sea ice

    Directory of Open Access Journals (Sweden)

    V. V. Melentiev

    2013-01-01

    Full Text Available In the frame of the work we have had investigated the utility of 6.9GHz dual polarization passive microwave data from the sensor AMSR-E for quantitative assessment of spatial and temporal variations of permafrost, seasonally frozen grounds and sea ice properties along the transect 70° E in 2005–2008 years. Analysis of the factors which could be detected with using study of the spatial-temporal variations of the microwave emissivity (brightness temperatures of the system «Earth-atmosphere» was carried out with using in situ data obtained from meteorological stations situated along the investigated transect of the Western Siberia and geocryologic station Marre-Sale (Yamal Peninsula. A new method of visualization of the brightness temperatures in spatial-temporal dimensions was suggested and practical applied. Eight latitudinal zones with intrinsic peculiarities of the spatial and seasonal variability of the brightness temperatures were revealed and investigated in many details. Comparison of the location of these zones with geographic distribution of biomes in Western Siberia was provided and it shows that satellite passive microwave information can be used for classification of the territories inside biomes. In frame of this study the annual brightness temperatures course for tundra zone area has been strictly divided into four periods (seasons characterized by different types of microwave emissivity variations. For boreal needle-leaved forest zone these seasons are manifested weaker. Comprehensive analysis of the satellite microwave survey data and corresponding the in situ data has shown satisfactory correlation between the brightness temperatures of the tundra areas on the Yamal Peninsula and their thermodynamic ground-trough temperatures at the square of geocryologic station Marre-Sale during winter period of stable frozen conditions and vegetation period. In these periods one-channel satellite microwave survey could be applied for the

  17. Using the spatial and spectral precision of satellite imagery to predict wildlife occurrence patterns.

    Science.gov (United States)

    Edward J. Laurent; Haijin Shi; Demetrios Gatziolis; Joseph P. LeBouton; Michael B. Walters; Jianguo Liu

    2005-01-01

    We investigated the potential of using unclassified spectral data for predicting the distribution of three bird species over a -400,000 ha region of Michigan's Upper Peninsula using Landsat ETM+ imagery and 433 locations sampled for birds through point count surveys. These species, Black-throated Green Warbler, Nashville Warbler, and Ovenbird. were known to be...

  18. Building damage assessment after the earthquake in Haiti using two postevent satellite stereo imagery and DSMs

    DEFF Research Database (Denmark)

    Tian, Jiaojiao; Nielsen, Allan Aasbjerg; Reinartz, Peter

    2015-01-01

    In this article, a novel after-disaster building damage monitoring method is presented. This method combines the multispectral imagery and digital surface models (DSMs) from stereo matching of two dates to obtain three kinds of changes: collapsed buildings, newly built buildings and temporary she...... changes after the 2010 Haiti earthquake, and the obtained results are further evaluated both visually and numerically....

  19. Automatic Radiometric Normalization of Multitemporal Satellite Imagery with the Iteratively Re-weighted MAD Transformation

    DEFF Research Database (Denmark)

    Canty, Morton John; Nielsen, Allan Aasbjerg

    2008-01-01

    A recently proposed method for automatic radiometric normalization of multi- and hyper-spectral imagery based on the invariance property of the Multivariate Alteration Detection (MAD) transformation and orthogonal linear regression is extended by using an iterative re-weighting scheme involving no...

  20. The Matsu Wheel: A Cloud-Based Framework for Efficient Analysis and Reanalysis of Earth Satellite Imagery

    Science.gov (United States)

    Patterson, Maria T.; Anderson, Nicholas; Bennett, Collin; Bruggemann, Jacob; Grossman, Robert L.; Handy, Matthew; Ly, Vuong; Mandl, Daniel J.; Pederson, Shane; Pivarski, James; hide

    2016-01-01

    Project Matsu is a collaboration between the Open Commons Consortium and NASA focused on developing open source technology for cloud-based processing of Earth satellite imagery with practical applications to aid in natural disaster detection and relief. Project Matsu has developed an open source cloud-based infrastructure to process, analyze, and reanalyze large collections of hyperspectral satellite image data using OpenStack, Hadoop, MapReduce and related technologies. We describe a framework for efficient analysis of large amounts of data called the Matsu "Wheel." The Matsu Wheel is currently used to process incoming hyperspectral satellite data produced daily by NASA's Earth Observing-1 (EO-1) satellite. The framework allows batches of analytics, scanning for new data, to be applied to data as it flows in. In the Matsu Wheel, the data only need to be accessed and preprocessed once, regardless of the number or types of analytics, which can easily be slotted into the existing framework. The Matsu Wheel system provides a significantly more efficient use of computational resources over alternative methods when the data are large, have high-volume throughput, may require heavy preprocessing, and are typically used for many types of analysis. We also describe our preliminary Wheel analytics, including an anomaly detector for rare spectral signatures or thermal anomalies in hyperspectral data and a land cover classifier that can be used for water and flood detection. Each of these analytics can generate visual reports accessible via the web for the public and interested decision makers. The result products of the analytics are also made accessible through an Open Geospatial Compliant (OGC)-compliant Web Map Service (WMS) for further distribution. The Matsu Wheel allows many shared data services to be performed together to efficiently use resources for processing hyperspectral satellite image data and other, e.g., large environmental datasets that may be analyzed for

  1. The users, uses, and value of Landsat and other moderate-resolution satellite imagery in the United States-Executive report

    Science.gov (United States)

    Miller, Holly M.; Sexton, Natalie R.; Koontz, Lynne; Loomis, John; Koontz, Stephen R.; Hermans, Caroline

    2011-01-01

    Moderate-resolution imagery (MRI), such as that provided by the Landsat satellites, provides unique spatial information for use by many people both within and outside of the United States (U.S.). However, exactly who these users are, how they use the imagery, and the value and benefits derived from the information are, to a large extent, unknown. To explore these issues, social scientists at the USGS Fort Collins Science Center conducted a study of U.S.-based MRI users from 2008 through 2010 in two parts: 1) a user identification and 2) a user survey. The objectives for this study were to: 1) identify and classify U.S.-based users of this imagery; 2) better understand how and why MRI, and specifically Landsat, is being used; and 3) qualitatively and quantitatively measure the value and societal benefits of MRI (focusing on Landsat specifically). The results of the survey revealed that respondents from multiple sectors use Landsat imagery in many different ways, as demonstrated by the breadth of project locations and scales, as well as application areas. The value of Landsat imagery to these users was demonstrated by the high importance placed on the imagery, the numerous benefits received from projects using Landsat imagery, the negative impacts if Landsat imagery was no longer available, and the substantial willingness to pay for replacement imagery in the event of a data gap. The survey collected information from users who are both part of and apart from the known user community. The diversity of the sample delivered results that provide a baseline of knowledge about the users, uses, and value of Landsat imagery. While the results supply a wealth of information on their own, they can also be built upon through further research to generate a more complete picture of the population of Landsat users as a whole.

  2. Using Worldview Satellite Imagery to Map Yield in Avocado (Persea americana: A Case Study in Bundaberg, Australia

    Directory of Open Access Journals (Sweden)

    Andrew Robson

    2017-11-01

    Full Text Available Accurate pre-harvest estimation of avocado (Persea americana cv. Haas yield offers a range of benefits to industry and growers. Currently there is no commercial yield monitor available for avocado tree crops and the manual count method used for yield forecasting can be highly inaccurate. Remote sensing using satellite imagery offers a potential means to achieve accurate pre-harvest yield forecasting. This study evaluated the accuracies of high resolution WorldView (WV 2 and 3 satellite imagery and targeted field sampling for the pre-harvest prediction of total fruit weight (kg·tree−1 and average fruit size (g and for mapping the spatial distribution of these yield parameters across the orchard block. WV 2 satellite imagery was acquired over two avocado orchards during 2014, and WV3 imagery was acquired in 2016 and 2017 over these same two orchards plus an additional three orchards. Sample trees representing high, medium and low vigour zones were selected from normalised difference vegetation index (NDVI derived from the WV images and sampled for total fruit weight (kg·tree−1 and average fruit size (g per tree. For each sample tree, spectral reflectance data was extracted from the eight band multispectral WV imagery and 18 vegetation indices (VIs derived. Principal component analysis (PCA and non-linear regression analysis was applied to each of the derived VIs to determine the index with the strongest relationship to the measured total fruit weight and average fruit size. For all trees measured over the three year period (2014, 2016, and 2017 a consistent positive relationship was identified between the VI using near infrared band one and the red edge band (RENDVI1 to both total fruit weight (kg·tree−1 (R2 = 0.45, 0.28, and 0.29 respectively and average fruit size (g (R2 = 0.56, 0.37, and 0.29 respectively across all orchard blocks. Separate analysis of each orchard block produced higher R2 values as well as identifying different

  3. USING OF THE MULTITEMPORAL THERMAL INFRARED SATELLITE IMAGERY FOR NATURAL AREAS MAPPING (CASE OF MENDELEEV VOLCANO

    Directory of Open Access Journals (Sweden)

    M. Y. Grishchenko

    2014-01-01

    Full Text Available In the paper authors examine the mountain group of Mendeleev volcano situated on the Kunashir island, Kuril archipelago, Russia. Ground observations were led to examine the vegetation cover of the area as well as its typical landscapes. The other type of used data is Landsat imagery. Images were combined into multitemporal thermal infrared and multispectral pictures, which were classified to reveal the heterogeneity of the study area. Ground observations and comparison of the classification results with landscape map derive that the multitemporal thermal infrared image classification result describes better the vegetation cover structure of the area and particularity of its typical landscapes distribution. It leads to the proposition that miltitemporal thermal infrared imagery can be used to refine landscape and vegetation cover contours. 

  4. An evaluation of the use of ERTS-1 satellite imagery for grizzly bear habitat analysis. [Montana

    Science.gov (United States)

    Varney, J. R.; Craighead, J. J.; Sumner, J. S.

    1974-01-01

    Improved classification and mapping of grizzly habitat will permit better estimates of population density and distribution, and allow accurate evaluation of the potential effects of changes in land use, hunting regulation, and management policies on existing populations. Methods of identifying favorable habitat from ERTS-1 multispectral scanner imagery were investigated and described. This technique could reduce the time and effort required to classify large wilderness areas in the Western United States.

  5. Comparison of satellite reflectance algorithms for estimating chlorophyll-a in a temperate reservoir using coincident hyperspectral aircraft imagery and dense coincident surface observations

    Science.gov (United States)

    We analyzed 10 established and 4 new satellite reflectance algorithms for estimating chlorophyll-a (Chl-a) in a temperate reservoir in southwest Ohio using coincident hyperspectral aircraft imagery and dense water truth collected within one hour of image acquisition to develop si...

  6. Stormwater Runoff Plumes in Southern California Detected with Satellite SAR and MODIS Imagery - Areas of Increased Contamination Risk

    Science.gov (United States)

    Trinh, R. C.; Holt, B.; Gierach, M.

    2016-12-01

    Coastal pollution poses both a major health and environmental hazard, not only for beachgoers and coastal communities, but for marine organisms as well. Stormwater runoff is the largest source of pollution in the coastal waters of the Southern California Bight (SCB). The SCB is the final destination of four major urban watersheds and associated rivers, Ballona Creek, the Los Angeles River, the San Gabriel River, and the Santa Ana River, which act as channels for runoff and pollution during and after episodic rainstorms. Previous studies of SCB water quality have made use of both fine resolution Synthetic Aperture Radar (SAR) imagery and wide-swath medium resolution optical "ocean color" imagery from SeaWiFS and MODIS. In this study, we expand on previous SAR efforts, compiling a more extensive collection of multi-sensor SAR data, spanning from 1992 to 2014, analyzing the surface slick component of stormwater plumes. We demonstrate the use of SAR data in early detection of coastal stormwater plumes, relating plume extent to cumulative river discharge, and shoreline fecal bacteria loads. Intensity maps of the primary extent and direction of plumes were created, identifying coastal areas that may be subject to the greatest risk of environmental contamination. Additionally, we illustrate the differences in the detection of SAR surface plumes with the sediment-related discharge plumes derived from MODIS ocean color imagery. Finally, we provide a concept for satellite monitoring of stormwater plumes, combining both optical and radar sensors, to be used to guide the collection of in situ water quality data and enhance the assessment of related beach closures.

  7. Wind Atlas for the Gulf of Suez Satellite Imagery and Analyses

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay

    (SAR) data derived from the European Remote Sensing Satellite (ERS) have been used to make wind speed maps for the Gulf of Suez. 2. “Land cover from Landsat TM imagery”. Landsat Thematic Mapper(TM) data have been used to establish true- and false-colour land cover maps, as well as land cover...... classification maps. 3. “Reporting on satellite information for the Wind Atlas for Egypt”. Along-Track Scanning Radiometer (ATSR) data from the European Remote Sensing Satellite (ERS) have been used to map the sea- and land-surface temperatures and albedos....

  8. GHRSST Level 2P Global Subskin Sea Surface Temperature from the Advanced Microwave Scanning Radiometer 2 on the GCOM-W satellite (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Advanced Microwave Scanning Radiometer 2 (AMSR2) was launched on 18 May 2012, onboard the Global Change Observation Mission - Water (GCOM-W) satellite developed...

  9. Comparison of four machine learning methods for object-oriented change detection in high-resolution satellite imagery

    Science.gov (United States)

    Bai, Ting; Sun, Kaimin; Deng, Shiquan; Chen, Yan

    2018-03-01

    High resolution image change detection is one of the key technologies of remote sensing application, which is of great significance for resource survey, environmental monitoring, fine agriculture, military mapping and battlefield environment detection. In this paper, for high-resolution satellite imagery, Random Forest (RF), Support Vector Machine (SVM), Deep belief network (DBN), and Adaboost models were established to verify the possibility of different machine learning applications in change detection. In order to compare detection accuracy of four machine learning Method, we applied these four machine learning methods for two high-resolution images. The results shows that SVM has higher overall accuracy at small samples compared to RF, Adaboost, and DBN for binary and from-to change detection. With the increase in the number of samples, RF has higher overall accuracy compared to Adaboost, SVM and DBN.

  10. Tracking an Oil Tanker Collision and Spilled Oils in the East China Sea Using Multisensor Day and Night Satellite Imagery

    Science.gov (United States)

    Sun, Shaojie; Lu, Yingcheng; Liu, Yongxue; Wang, Mengqiu; Hu, Chuanmin

    2018-04-01

    Satellite remote sensing is well known to play a critical role in monitoring marine accidents such as oil spills, yet the recent SANCHI oil tanker collision event in January 2018 in the East China Sea indicates that traditional techniques using synthetic aperture radar or daytime optical imagery could not provide timely and adequate coverage. In this study, we show the unprecedented value of Visible Infrared Imaging Radiometer Suite (VIIRS) Nightfire product and Day/Night Band data in tracking the oil tanker's drifting pathway and locations when all other means are not as effective for the same purpose. Such pathway and locations can also be reproduced with a numerical model, with root-mean-square error of days of the tanker's sinking reveals much larger oil spill area (>350 km2) than previous reports, the impact of the spilled condensate oil on the marine environment requires further research.

  11. Automatic urban debris zone extraction from post-hurricane very high-resolution satellite and aerial imagery

    Directory of Open Access Journals (Sweden)

    Shasha Jiang

    2016-05-01

    Full Text Available Automated remote sensing methods have not gained widespread usage for damage assessment after hurricane events, especially for low-rise buildings, such as individual houses and small businesses. Hurricane wind, storm surge with waves, and inland flooding have unique damage signatures, further complicating the development of robust automated assessment methodologies. As a step toward realizing automated damage assessment for multi-hazard hurricane events, this paper presents a mono-temporal image classification methodology that quickly and accurately differentiates urban debris from non-debris areas using post-event images. Three classification approaches are presented: spectral, textural, and combined spectral–textural. The methodology is demonstrated for Gulfport, Mississippi, using IKONOS panchromatic satellite and NOAA aerial colour imagery collected after 2005 Hurricane Katrina. The results show that multivariate texture information significantly improves debris class detection performance by decreasing the confusion between debris and other land cover types, and the extracted debris zone accurately captures debris distribution. Additionally, the extracted debris boundary is approximately equivalent regardless of imagery type, demonstrating the flexibility and robustness of the debris mapping methodology. While the test case presents results for hurricane hazards, the proposed methodology is generally developed and expected to be effective in delineating debris zones for other natural hazards, including tsunamis, tornadoes, and earthquakes.

  12. Use of multispectral satellite imagery and hyperspectral endmember libraries for urban land cover mapping at the metropolitan scale

    Science.gov (United States)

    Priem, Frederik; Okujeni, Akpona; van der Linden, Sebastian; Canters, Frank

    2016-10-01

    The value of characteristic reflectance features for mapping urban materials has been demonstrated in many experiments with airborne imaging spectrometry. Analysis of larger areas requires satellite-based multispectral imagery, which typically lacks the spatial and spectral detail of airborne data. Consequently the need arises to develop mapping methods that exploit the complementary strengths of both data sources. In this paper a workflow for sub-pixel quantification of Vegetation-Impervious-Soil urban land cover is presented, using medium resolution multispectral satellite imagery, hyperspectral endmember libraries and Support Vector Regression. A Landsat 8 Operational Land Imager surface reflectance image covering the greater metropolitan area of Brussels is selected for mapping. Two spectral libraries developed for the cities of Brussels and Berlin based on airborne hyperspectral APEX and HyMap data are used. First the combined endmember library is resampled to match the spectral response of the Landsat sensor. The library is then optimized to avoid spectral redundancy and confusion. Subsequently the spectra of the endmember library are synthetically mixed to produce training data for unmixing. Mapping is carried out using Support Vector Regression models trained with spectra selected through stratified sampling of the mixed library. Validation on building block level (mean size = 46.8 Landsat pixels) yields an overall good fit between reference data and estimation with Mean Absolute Errors of 0.06, 0.06 and 0.08 for vegetation, impervious and soil respectively. Findings of this work may contribute to the use of universal spectral libraries for regional scale land cover fraction mapping using regression approaches.

  13. Image Fusion Applied to Satellite Imagery for the Improved Mapping and Monitoring of Coral Reefs: a Proposal

    Science.gov (United States)

    Gholoum, M.; Bruce, D.; Hazeam, S. Al

    2012-07-01

    A coral reef ecosystem, one of the most complex marine environmental systems on the planet, is defined as biologically diverse and immense. It plays an important role in maintaining a vast biological diversity for future generations and functions as an essential spawning, nursery, breeding and feeding ground for many kinds of marine species. In addition, coral reef ecosystems provide valuable benefits such as fisheries, ecological goods and services and recreational activities to many communities. However, this valuable resource is highly threatened by a number of environmental changes and anthropogenic impacts that can lead to reduced coral growth and production, mass coral mortality and loss of coral diversity. With the growth of these threats on coral reef ecosystems, there is a strong management need for mapping and monitoring of coral reef ecosystems. Remote sensing technology can be a valuable tool for mapping and monitoring of these ecosystems. However, the diversity and complexity of coral reef ecosystems, the resolution capabilities of satellite sensors and the low reflectivity of shallow water increases the difficulties to identify and classify its features. This paper reviews the methods used in mapping and monitoring coral reef ecosystems. In addition, this paper proposes improved methods for mapping and monitoring coral reef ecosystems based on image fusion techniques. This image fusion techniques will be applied to satellite images exhibiting high spatial and low to medium spectral resolution with images exhibiting low spatial and high spectral resolution. Furthermore, a new method will be developed to fuse hyperspectral imagery with multispectral imagery. The fused image will have a large number of spectral bands and it will have all pairs of corresponding spatial objects. This will potentially help to accurately classify the image data. Accuracy assessment use ground truth will be performed for the selected methods to determine the quality of the

  14. IMAGE FUSION APPLIED TO SATELLITE IMAGERY FOR THE IMPROVED MAPPING AND MONITORING OF CORAL REEFS: A PROPOSAL

    Directory of Open Access Journals (Sweden)

    M. Gholoum

    2012-07-01

    Full Text Available A coral reef ecosystem, one of the most complex marine environmental systems on the planet, is defined as biologically diverse and immense. It plays an important role in maintaining a vast biological diversity for future generations and functions as an essential spawning, nursery, breeding and feeding ground for many kinds of marine species. In addition, coral reef ecosystems provide valuable benefits such as fisheries, ecological goods and services and recreational activities to many communities. However, this valuable resource is highly threatened by a number of environmental changes and anthropogenic impacts that can lead to reduced coral growth and production, mass coral mortality and loss of coral diversity. With the growth of these threats on coral reef ecosystems, there is a strong management need for mapping and monitoring of coral reef ecosystems. Remote sensing technology can be a valuable tool for mapping and monitoring of these ecosystems. However, the diversity and complexity of coral reef ecosystems, the resolution capabilities of satellite sensors and the low reflectivity of shallow water increases the difficulties to identify and classify its features. This paper reviews the methods used in mapping and monitoring coral reef ecosystems. In addition, this paper proposes improved methods for mapping and monitoring coral reef ecosystems based on image fusion techniques. This image fusion techniques will be applied to satellite images exhibiting high spatial and low to medium spectral resolution with images exhibiting low spatial and high spectral resolution. Furthermore, a new method will be developed to fuse hyperspectral imagery with multispectral imagery. The fused image will have a large number of spectral bands and it will have all pairs of corresponding spatial objects. This will potentially help to accurately classify the image data. Accuracy assessment use ground truth will be performed for the selected methods to determine

  15. An Image Matching Algorithm Integrating Global SRTM and Image Segmentation for Multi-Source Satellite Imagery

    Directory of Open Access Journals (Sweden)

    Xiao Ling

    2016-08-01

    Full Text Available This paper presents a novel image matching method for multi-source satellite images, which integrates global Shuttle Radar Topography Mission (SRTM data and image segmentation to achieve robust and numerous correspondences. This method first generates the epipolar lines as a geometric constraint assisted by global SRTM data, after which the seed points are selected and matched. To produce more reliable matching results, a region segmentation-based matching propagation is proposed in this paper, whereby the region segmentations are extracted by image segmentation and are considered to be a spatial constraint. Moreover, a similarity measure integrating Distance, Angle and Normalized Cross-Correlation (DANCC, which considers geometric similarity and radiometric similarity, is introduced to find the optimal correspondences. Experiments using typical satellite images acquired from Resources Satellite-3 (ZY-3, Mapping Satellite-1, SPOT-5 and Google Earth demonstrated that the proposed method is able to produce reliable and accurate matching results.

  16. Assessing the population coverage of a health demographic surveillance system using satellite imagery and crowd-sourcing.

    Directory of Open Access Journals (Sweden)

    Aurelio Di Pasquale

    Full Text Available Remotely sensed data can serve as an independent source of information about the location of residential structures in areas under demographic and health surveillance. We report on results obtained combining satellite imagery, imported from Bing, with location data routinely collected using the built-in GPS sensors of tablet computers, to assess completeness of population coverage in a Health and Demographic Surveillance System in Malawi. The Majete Malaria Project Health and Demographic Surveillance System, in Malawi, started in 2014 to support a project with the aim of studying the reduction of malaria using an integrated control approach by rolling out insecticide treated nets and improved case management supplemented with house improvement and larval source management. In order to support the monitoring of the trial a Health and Demographic Surveillance System was established in the area that surrounds the Majete Wildlife Reserve (1600 km2, using the OpenHDS data system. We compared house locations obtained using GPS recordings on mobile devices during the demographic surveillance census round with those acquired from satellite imagery. Volunteers were recruited through the crowdcrafting.org platform to identify building structures on the images, which enabled the compilation of a database with coordinates of potential residences. For every building identified on these satellite images by the volunteers (11,046 buildings identified of which 3424 (ca. 30% were part of the censused area, we calculated the distance to the nearest house enumerated on the ground by fieldworkers during the census round of the HDSS. A random sample of buildings (85 structures identified on satellite images without a nearby location enrolled in the census were visited by a fieldworker to determine how many were missed during the baseline census survey, if any were missed. The findings from this ground-truthing effort suggest that a high population coverage was

  17. An Assessment of the Capabilities of the ERS Satellites' Active Microwave Instruments for Monitoring Soil Moisture Change

    Directory of Open Access Journals (Sweden)

    K. Blyth

    1997-01-01

    Full Text Available The launch of the European Remote sensing Satellite (ERS-1 in July 1991 represented an important turning point in the development of Earth observation as it was the first of a series of satellites which would carry high resolution active microwave (radar sensors which could operate through the thickest cloudeover and provide continuity of data for at least a decade. This was of particular relevance to hydrological applications, such as soil moisture monitoring, which generally require frequent satellite observations to monitor changes in state. ERS-1 and its successor ERS-2 carry the active microwave instrument (AMI which operates in 3 modes (synthetic aperture radar, wind scatterometer and wave seatterometer together with the radar altimeter which may all be useful for the observation of soil moisture. This paper assesses the utility of these sensors through a comprehensive review of work in this field. Two approaches to soil moisture retrieval are identified: 1 inversion modelling, where the physical effects of vegetation and soil roughness on radar backscatter are quantified through the use of multi-frequency and/or multi-polarization sensors and 2 change detection where these effects are normalized through frequent satellite observation, the residual effects being attributed to short-term changes in soil moisture. Both approaches will be better supported by the future European Envisat-l satellite which will provide both multi-polarization SAR and low resolution products which should facilitate more frequent temporal observation.

  18. Variations in global land surface phenology: a comparison of satellite optical and passive microwave data

    Science.gov (United States)

    Tong, X.; Tian, F.; Brandt, M.; Zhang, W.; Liu, Y.; Fensholt, R.

    2017-12-01

    Changes in vegetation phenological events are among the most sensitive biological responses to climate change. In last decades, facilitating by satellite remote sensing techniques, land surface phenology (LSP) have been monitored at global scale using proxy approaches as tracking the temporal change of a satellite-derived vegetation index. However, the existing global assessments of changes in LSP are all established on the basis of leaf phenology using NDVI derived from optical sensors, being responsive to vegetation canopy cover and greenness. Instead, the vegetation optical depth (VOD) parameter from passive microwave sensors, which is sensitive to the aboveground vegetation water content by including as well the woody components in the observations, provides an alternative, independent and comprehensive means for global vegetation phenology monitoring. We used the unique long-term global VOD record available for the period 1992-2012 to monitoring the dynamics of LSP metrics (length of season, start of season and end of season) in comparison with the dynamics of LSP metrics derived from the latest GIMMS NDVI3G V1. We evaluated the differences in the linear trends of LSP metrics between two datasets. Currently, our results suggest that the level of seasonality variation of vegetation water content is less than the vegetation greenness. We found significant phenological changes in vegetation water content in African woodlands, where has been reported with little leaf phenological change regardless of the delays in rainfall onset. Therefore, VOD might allow us to detect temporal shifts in the timing difference of vegetation water storage vs. leaf emergence and to see if some ecophysiological thresholds seem to be reached, that could cause species turnover as climate change-driven alterations to the African monsoon proceed.

  19. Using limnological and optical knowledge to detect discharges from nuclear facilities - Potential application of satellite imagery for international safeguards

    International Nuclear Information System (INIS)

    Borstad, G.; Truong, Q.S. Bob; Keeffe, R.; Baines, P.; Staenz, K.; Neville, R.

    2001-01-01

    Previous work carried out under the Canadian Safeguards Support Program, has shown that thermal imagery from the American Landsat satellites could be used to detect the cooling water discharges, and could therefore be used to verify the operational status of nuclear facilities. In some images, thermal plumes could be easily detected in single band imagery with no mathematical manipulation and little image enhancement because there was a very strong thermal contrast between the effluent and the receiving water. However, for certain situations such as discharges into well mixed conditions (cold water and violent tides) the thermal plume may be more subtle. We show here that the visible bands of Landsat and IKONOS images often contain additional information, and that the thermal signature of a discharge from a nuclear facility is not the only signal available to describe its operation. This paper introduces some important hydrological phenomena that govern the biological and physical organization of water bodies, and discusses some basic concepts of marine and aquatic optics that are relevant to the safeguards problem. Using image analysis techniques that have been used widely in ocean optics work and in applications in the mapping and monitoring of water quality, we have re-analyzed data that were obtained under a joint project between various Canadian government departments. We present a preliminary examination of imagery from both satellite multispectral and aircraft hyperspectral sensors, and discuss methods to extract information that could be useful in the detection and verification of declared or undeclared nuclear activities. In one example of an IKONOS image of the Canadian Bruce Nuclear Generating Facility, simple enhancement techniques failed to find any plume other than a small jet visible in the surface wave field. With knowledge of limnology, oceanography and aquatic optics, we have been able to separate and remove the surface reflection, and detect a

  20. Investigation of multipactor breakdown in communication satellite microwave co-axial systems

    Science.gov (United States)

    Nagesh, S. K.; Revannasiddiah, D.; Shastry, S. V. K.

    2005-01-01

    Multipactor breakdown or multipactor discharge is a form of high frequency discharge that may occur in microwave components operating at very low pressures. Some RF components of multi-channel communication satellites have co-axial geometry and handle high RF power under near-vacuum conditions. The breakdown occurs due to secondary electron resonance, wherein electrons move back and forth in synchronism with the RF voltage across the gap between the inner and outer conductors of the co-axial structure. If the yield of secondary electrons from the walls of the co-axial structure is greater than unity, then the electron density increases with time and eventually leads to the breakdown. In this paper, the current due to the oscillating electrons in the co-axial geometry has been treated as a radially oriented Hertzian dipole. The electric field, due to this dipole, at any point in the coaxial structure, may then be determined by employing the dyadic Green's function technique. This field has been compared with the field that would exist in the absence of multipactor.

  1. Digital processing of satellite imagery application to jungle areas of Peru

    Science.gov (United States)

    Pomalaza, J. C. (Principal Investigator); Pomalaza, C. A.; Espinoza, J.

    1976-01-01

    The author has identified the following significant results. The use of clustering methods permits the development of relatively fast classification algorithms that could be implemented in an inexpensive computer system with limited amount of memory. Analysis of CCTs using these techniques can provide a great deal of detail permitting the use of the maximum resolution of LANDSAT imagery. Potential cases were detected in which the use of other techniques for classification using a Gaussian approximation for the distribution functions can be used with advantage. For jungle areas, channels 5 and 7 can provide enough information to delineate drainage patterns, swamp and wet areas, and make a reasonable broad classification of forest types.

  2. The UNOSAT-GRID Project: Access to Satellite Imagery through the Grid Environment

    CERN Document Server

    Méndez-Lorenzo, P; Lamanna, M; Meyer, X; Lazeyras, M; Bjorgo, E; Retiere, A; Falzone, A; Venuti, N; Maccarone, S; Ugolotti, B

    2007-01-01

    UNOSAT is a United Nations activity to provide access to satellite images and geographic system services for humanitarian operations for rescue or aid activities. UNOSAT is implemented by the UN Institute for Training and Research (UNITAR) and managed by the UN Office for Project Services (UNOPS). In addition, partners from different organizations constitute the UNOSAT consortium. Among these partners, CERN participates actively providing the required computational and storage resources. The critical part of the UNOSAT activity is the storage and processing of large quantities of satellite images. The fast and secure access to these images from any part of the world is mandatory during these activities. Based on two successful CERN-GRID/UNOSAT pilot projects (data storage/compression/download and image access through mobile phone), the GRIDUNOSAT project has consolidated the considerable work undertaken so far in the present activity. The main use case already demonstrated is the delivery of satellite images ...

  3. Land surface temperature distribution and development for green open space in Medan city using imagery-based satellite Landsat 8

    Science.gov (United States)

    Sulistiyono, N.; Basyuni, M.; Slamet, B.

    2018-03-01

    Green open space (GOS) is one of the requirements where a city is comfortable to stay. GOS might reduce land surface temperature (LST) and air pollution. Medan is one of the biggest towns in Indonesia that experienced rapid development. However, the early development tends to neglect the GOS existence for the city. The objective of the study is to determine the distribution of land surface temperature and the relationship between the normalized difference vegetation index (NDVI) and the priority of GOS development in Medan City using imagery-based satellite Landsat 8. The method approached to correlate the distribution of land surface temperature derived from the value of digital number band 10 with the NDVI which was from the ratio of groups five and four on satellite images of Landsat 8. The results showed that the distribution of land surface temperature in the Medan City in 2016 ranged 20.57 - 33.83 °C. The relationship between the distribution of LST distribution with NDVI was reversed with a negative correlation of -0.543 (sig 0,000). The direction of GOS in Medan City is therefore developed on the allocation of LST and divided into three priority classes namely first priority class had 5,119.71 ha, the second priority consisted of 16,935.76 ha, and third priority of 6,118.50 ha.

  4. Mapping urban impervious surface using object-based image analysis with WorldView-3 satellite imagery

    Science.gov (United States)

    Iabchoon, Sanwit; Wongsai, Sangdao; Chankon, Kanoksuk

    2017-10-01

    Land use and land cover (LULC) data are important to monitor and assess environmental change. LULC classification using satellite images is a method widely used on a global and local scale. Especially, urban areas that have various LULC types are important components of the urban landscape and ecosystem. This study aims to classify urban LULC using WorldView-3 (WV-3) very high-spatial resolution satellite imagery and the object-based image analysis method. A decision rules set was applied to classify the WV-3 images in Kathu subdistrict, Phuket province, Thailand. The main steps were as follows: (1) the image was ortho-rectified with ground control points and using the digital elevation model, (2) multiscale image segmentation was applied to divide the image pixel level into image object level, (3) development of the decision ruleset for LULC classification using spectral bands, spectral indices, spatial and contextual information, and (4) accuracy assessment was computed using testing data, which sampled by statistical random sampling. The results show that seven LULC classes (water, vegetation, open space, road, residential, building, and bare soil) were successfully classified with overall classification accuracy of 94.14% and a kappa coefficient of 92.91%.

  5. Mapping Sub-Antarctic Cushion Plants Using Random Forests to Combine Very High Resolution Satellite Imagery and Terrain Modelling

    Science.gov (United States)

    Bricher, Phillippa K.; Lucieer, Arko; Shaw, Justine; Terauds, Aleks; Bergstrom, Dana M.

    2013-01-01

    Monitoring changes in the distribution and density of plant species often requires accurate and high-resolution baseline maps of those species. Detecting such change at the landscape scale is often problematic, particularly in remote areas. We examine a new technique to improve accuracy and objectivity in mapping vegetation, combining species distribution modelling and satellite image classification on a remote sub-Antarctic island. In this study, we combine spectral data from very high resolution WorldView-2 satellite imagery and terrain variables from a high resolution digital elevation model to improve mapping accuracy, in both pixel- and object-based classifications. Random forest classification was used to explore the effectiveness of these approaches on mapping the distribution of the critically endangered cushion plant Azorella macquariensis Orchard (Apiaceae) on sub-Antarctic Macquarie Island. Both pixel- and object-based classifications of the distribution of Azorella achieved very high overall validation accuracies (91.6–96.3%, κ = 0.849–0.924). Both two-class and three-class classifications were able to accurately and consistently identify the areas where Azorella was absent, indicating that these maps provide a suitable baseline for monitoring expected change in the distribution of the cushion plants. Detecting such change is critical given the threats this species is currently facing under altering environmental conditions. The method presented here has applications to monitoring a range of species, particularly in remote and isolated environments. PMID:23940805

  6. Using satellite imagery for qualitative evaluation of plume transport in modeling the effects of the Kuwait oil fire smoke plumes

    International Nuclear Information System (INIS)

    Bass, A.; Janota, P.

    1992-01-01

    To forecast the behavior of the Kuwait oil fire smoke plumes and their possible acute or chronic health effects over the Arabian Gulf region, TASC created a comprehensive health and environmental impacts modeling system. A specially-adapted Lagrangian puff transport model was used to create (a) short-term (multiday) forecasts of plume transport and ground-level concentrations of soot and SO 2 ; and (b) long-term (seasonal and longer) estimates of average surface concentrations and depositions. EPA-approved algorithms were used to transform exposures to SO 2 and soot (as PAH/BaP) into morbidity, mortality and crop damage risks. Absent any ground truth, satellite imagery from the NOAA Polar Orbiter and the ESA Geostationary Meteosat offered the only opportunity for timely qualitative evaluation of the long-range plume transport and diffusion predictions. This paper shows the use of actual satellite images (including animated loops of hourly Meteosat images) to evaluate plume forecasts in near-real-time, and to sanity-check the meso- and long-range plume transport projections for the long-term estimates. Example modeled concentrations, depositions and health effects are shown

  7. High Resolution Topography of Polar Regions from Commercial Satellite Imagery, Petascale Computing and Open Source Software

    Science.gov (United States)

    Morin, Paul; Porter, Claire; Cloutier, Michael; Howat, Ian; Noh, Myoung-Jong; Willis, Michael; Kramer, WIlliam; Bauer, Greg; Bates, Brian; Williamson, Cathleen

    2017-04-01

    Surface topography is among the most fundamental data sets for geosciences, essential for disciplines ranging from glaciology to geodynamics. Two new projects are using sub-meter, commercial imagery licensed by the National Geospatial-Intelligence Agency and open source photogrammetry software to produce a time-tagged 2m posting elevation model of the Arctic and an 8m posting reference elevation model for the Antarctic. When complete, this publically available data will be at higher resolution than any elevation models that cover the entirety of the Western United States. These two polar projects are made possible due to three equally important factors: 1) open-source photogrammetry software, 2) petascale computing, and 3) sub-meter imagery licensed to the United States Government. Our talk will detail the technical challenges of using automated photogrammetry software; the rapid workflow evolution to allow DEM production; the task of deploying the workflow on one of the world's largest supercomputers; the trials of moving massive amounts of data, and the management strategies the team needed to solve in order to meet deadlines. Finally, we will discuss the implications of this type of collaboration for future multi-team use of leadership-class systems such as Blue Waters, and for further elevation mapping.

  8. Advances In very high resolution satellite imagery analysis for Monitoring human settlements

    Energy Technology Data Exchange (ETDEWEB)

    Vatsavai, Raju [ORNL; Cheriyadat, Anil M [ORNL; Bhaduri, Budhendra L [ORNL

    2014-01-01

    The high rate of urbanization, political conflicts and ensuing internal displacement of population, and increased poverty in the 20th century has resulted in rapid increase of informal settlements. These unplanned, unauthorized, and/or unstructured homes, known as informal settlements, shantytowns, barrios, or slums, pose several challenges to the nations, as these settlements are often located in most hazardous regions and lack basic services. Though several World Bank and United Nations sponsored studies stress the importance of poverty maps in designing better policies and interventions, mapping slums of the world is a daunting and challenging task. In this paper, we summarize our ongoing research on settlement mapping through the utilization of Very high resolution (VHR) remote sensing imagery. Most existing approaches used to classify VHR images are single instance (or pixel-based) learning algorithms, which are inadequate for analyzing VHR imagery, as single pixels do not contain sufficient contextual information (see Figure 1). However, much needed spatial contextual information can be captured via feature extraction and/or through newer machine learning algorithms in order to extract complex spatial patterns that distinguish informal settlements from formal ones. In recent years, we made significant progress in advancing the state of art in both directions. This paper summarizes these results.

  9. Using high-resolution satellite imagery and double sampling as a ...

    African Journals Online (AJOL)

    QuickBird satellite images were used to extract auxiliary variables (image data), such as photogrammetric crown diameter and number of stems, using visual interpretation and measuring tools offered by Erdas 8.7 geographic imaging software. Field inventory data (terrestric data) collected in 2002 were used to obtain the ...

  10. Harmonizing estimates of forest land area from national-level forest inventory and satellite imagery

    Science.gov (United States)

    Bonnie Ruefenacht; Mark D. Nelson; Mark Finco

    2009-01-01

    Estimates of forest land area are derived both from national-level forest inventories and satellite image-based map products. These estimates can differ substantially within subregional extents (e.g., states or provinces) primarily due to differences in definitions of forest land between inventory- and image-based approaches. We present a geospatial modeling approach...

  11. Identifying and Allocating Geodetic Systems to historical oil gas wells by using high-resolution satellite imagery

    Science.gov (United States)

    Alvarez, Gabriel O.

    2018-05-01

    Hydrocarbon exploration in Argentina started long before the IGM created a single, high-precision geodetic reference network for the whole country. Several geodetic surveys were conducted in every producing basin, which have ever since then supported well placement. Currently, every basin has a huge amount of information referenced to the so-called "local" geodetic systems, such as Chos Malal - Quiñi Huao in the Neuquén Basin, and Pampa del Castillo in the San Jorge Basin, which differ to a greater or lesser extent from the national Campo Inchauspe datum established by the IGM in 1969 as the official geodetic network. However, technology development over the last few years and the expansion of satellite positioning systems such as GPS resulted in a new world geodetic order. Argentina rapidly joined this new geodetic order through the implementation of a new national geodetic system by the IGM: POSGAR network, which replaced the old national Campo Inchauspe system. However, this only helped to worsen the data georeferencing issue for oil companies, as a third reference system was added to each basin. Now every basin has a local system, the national system until 1997 (Campo Inchauspe), and finally the newly created POSGAR network national satellite system, which is geocentric unlike the former two planimetric datums. The purpose of this paper is to identify and allocate geodetic systems of coordinates to historical wells, whose geodetic system is missing or has been erroneously allocated, by using currently available technological resources such as geographic information systems and high-resolution satellite imagery.

  12. SNOW DEPTH ESTIMATION USING TIME SERIES PASSIVE MICROWAVE IMAGERY VIA GENETICALLY SUPPORT VECTOR REGRESSION (CASE STUDY URMIA LAKE BASIN

    Directory of Open Access Journals (Sweden)

    N. Zahir

    2015-12-01

    Full Text Available Lake Urmia is one of the most important ecosystems of the country which is on the verge of elimination. Many factors contribute to this crisis among them is the precipitation, paly important roll. Precipitation has many forms one of them is in the form of snow. The snow on Sahand Mountain is one of the main and important sources of the Lake Urmia’s water. Snow Depth (SD is vital parameters for estimating water balance for future year. In this regards, this study is focused on SD parameter using Special Sensor Microwave/Imager (SSM/I instruments on board the Defence Meteorological Satellite Program (DMSP F16. The usual statistical methods for retrieving SD include linear and non-linear ones. These methods used least square procedure to estimate SD model. Recently, kernel base methods widely used for modelling statistical problem. From these methods, the support vector regression (SVR is achieved the high performance for modelling the statistical problem. Examination of the obtained data shows the existence of outlier in them. For omitting these outliers, wavelet denoising method is applied. After the omission of the outliers it is needed to select the optimum bands and parameters for SVR. To overcome these issues, feature selection methods have shown a direct effect on improving the regression performance. We used genetic algorithm (GA for selecting suitable features of the SSMI bands in order to estimate SD model. The results for the training and testing data in Sahand mountain is [R²_TEST=0.9049 and RMSE= 6.9654] that show the high SVR performance.

  13. Geographic object-based delineation of neighborhoods of Accra, Ghana using QuickBird satellite imagery.

    Science.gov (United States)

    Stow, Douglas A; Lippitt, Christopher D; Weeks, John R

    2010-08-01

    The objective was to test GEographic Object-based Image Analysis (GEOBIA) techniques for delineating neighborhoods of Accra, Ghana using QuickBird multispectral imagery. Two approaches to aggregating census enumeration areas (EAs) based on image-derived measures of vegetation objects were tested: (1) merging adjacent EAs according to vegetation measures and (2) image segmentation. Both approaches exploit readily available functions within commercial GEOBIA software. Image-derived neighborhood maps were compared to a reference map derived by spatial clustering of slum index values (from census data), to provide a relative assessment of potential map utility. A size-constrained iterative segmentation approach to aggregation was more successful than standard image segmentation or feature merge techniques. The segmentation approaches account for size and shape characteristics, enabling more realistic neighborhood boundaries to be delineated. The percentage of vegetation patches within each EA yielded more realistic delineation of potential neighborhoods than mean vegetation patch size per EA.

  14. The theory precision analyse of RFM localization of satellite remote sensing imagery

    Science.gov (United States)

    Zhang, Jianqing; Xv, Biao

    2009-11-01

    The tradition method of detecting precision of Rational Function Model(RFM) is to make use of a great deal check points, and it calculates mean square error through comparing calculational coordinate with known coordinate. This method is from theory of probability, through a large number of samples to statistic estimate value of mean square error, we can think its estimate value approaches in its true when samples are well enough. This paper is from angle of survey adjustment, take law of propagation of error as the theory basis, and it calculates theory precision of RFM localization. Then take the SPOT5 three array imagery as experiment data, and the result of traditional method and narrated method in the paper are compared, while has confirmed tradition method feasible, and answered its theory precision question from the angle of survey adjustment.

  15. Program on application of communications satellites to educational development: Design of a 12 channel FM microwave receiver. [color television from communication satellites

    Science.gov (United States)

    Risch, C. O.; Rosenbaum, F. J.; Gregory, R. O.

    1974-01-01

    The design, fabrication, and performance of elements of a low cost FM microwave satellite ground station receiver is described. It is capable of accepting 12 contiguous color television equivalent bandwidth channels in the 11.72 to 12.2 GHz band. Each channel is 40 MHz wide and incorporates a 4 MHz guard band. The modulation format is wideband FM and the channels are frequency division multiplexed. Twelve independent CATV compatible baseband outputs are provided. The overall system specifications are first discussed, then consideration is given to the receiver subsystems and the signal branching network.

  16. Do clouds save the great barrier reef? satellite imagery elucidates the cloud-SST relationship at the local scale.

    Directory of Open Access Journals (Sweden)

    Susannah M Leahy

    Full Text Available Evidence of global climate change and rising sea surface temperatures (SSTs is now well documented in the scientific literature. With corals already living close to their thermal maxima, increases in SSTs are of great concern for the survival of coral reefs. Cloud feedback processes may have the potential to constrain SSTs, serving to enforce an "ocean thermostat" and promoting the survival of coral reefs. In this study, it was hypothesized that cloud cover can affect summer SSTs in the tropics. Detailed direct and lagged relationships between cloud cover and SST across the central Great Barrier Reef (GBR shelf were investigated using data from satellite imagery and in situ temperature and light loggers during two relatively hot summers (2005 and 2006 and two relatively cool summers (2007 and 2008. Across all study summers and shelf positions, SSTs exhibited distinct drops during periods of high cloud cover, and conversely, SST increases during periods of low cloud cover, with a three-day temporal lag between a change in cloud cover and a subsequent change in SST. Cloud cover alone was responsible for up to 32.1% of the variation in SSTs three days later. The relationship was strongest in both El Niño (2005 and La Niña (2008 study summers and at the inner-shelf position in those summers. SST effects on subsequent cloud cover were weaker and more variable among study summers, with rising SSTs explaining up to 21.6% of the increase in cloud cover three days later. This work quantifies the often observed cloud cooling effect on coral reefs. It highlights the importance of incorporating local-scale processes into bleaching forecasting models, and encourages the use of remote sensing imagery to value-add to coral bleaching field studies and to more accurately predict risks to coral reefs.

  17. UNOSAT at CERN – 15 years of satellite imagery support to the humanitarian and development community

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    Abstract: UNOSAT is part of the United Nations Institute for Training and Research (UNITAR) and has been hosted at CERN since 2001. This partnership allows UNOSAT to benefit from CERN's IT infrastructure whenever the situation requires, allowing the UN to be at the forefront of satellite-analysis technology. Specialists in geographic information systems (GIS) and in the analysis of satellite data, supported by IT engineers and policy experts, ensure a dedicated service to the international humanitarian and development communities 24 hours a day, seven days a week. The presentation will give an overview of the variety of activities carried out by UNOSAT over the last 15 years including support to humanitarian assistance and protection of cultural heritage, sustainable water management in Chad and training & capacity development in East Africa and Asia. The talk will be followed at 12:00 by the inauguration of the UNOSAT exhibition, in front of the Users' office. Speaker: Einar Bjor...

  18. Becoming Bombs: 3D Animated Satellite Imagery and the Weaponization of the Civic Eye

    Directory of Open Access Journals (Sweden)

    Roger Stahl

    2010-02-01

    Full Text Available This essay traces the recent history of 3D satellite animation from its military origins to its visibility in the civic sphere. Specifically, technologies unveiled in 2004 as Google Earth first received widespread public visibility in the television coverage of the 2003 U.S. invasion of Iraq. The essay first maps the political economy of the “military-media-geotech” complex, focusing mainly on the coverage of the Iraq War as an nexus of interests. Second, the essay analyzes the aesthetic uses of 3D satellite animation on the news during this period, including how these imaging practices meshed with existing discourses such as the clean war, the weaponization of the civic gaze, and others. The essay concludes with thoughts regarding what these practices mean for the efficacy of the deliberative citizen, public life, and the meaning of war.

  19. Use of satellite imagery to assess the trophic state of Miyun Reservoir, Beijing, China

    International Nuclear Information System (INIS)

    Wang Zhengjun; Hong Jianming; Du Guisen

    2008-01-01

    The objective of this research is to explore an appropriate way of monitoring and assessing water quality by satellite remote sensing techniques in the Miyun reservoir of Beijing, China. Two scene Thematic Mapper images in May and October of 2003 were acquired and simultaneous in situ measurements, sampling and analysis were conducted. Statistical analysis indicates that satellite-based normalized ratio vegetation index (NRVI) and in situ measured water chlorophyll a (Chl-a) concentration have very high correlation. Two linear regression models with high determination coefficients were constructed for NRVI and Chl-a of sample points. According to the modified trophic state index map, water quality in the western section of Miyun reservoir was consistently higher than in the eastern section during the two months tested. The trophic grade of the eastern reservoir remained mesotrophic with a tendency for eutrophication. - Remote sensing techniques can effectively monitor the change of water quality with time and space

  20. Land use change detection based on multi-date imagery from different satellite sensor systems

    Science.gov (United States)

    Stow, Douglas A.; Collins, Doretta; Mckinsey, David

    1990-01-01

    An empirical study is conducted to assess the accuracy of land use change detection using satellite image data acquired ten years apart by sensors with differing spatial resolutions. The primary goals of the investigation were to (1) compare standard change detection methods applied to image data of varying spatial resolution, (2) assess whether to transform the raster grid of the higher resolution image data to that of the lower resolution raster grid or vice versa in the registration process, (3) determine if Landsat/Thermatic Mapper or SPOT/High Resolution Visible multispectral data provide more accurate detection of land use changes when registered to historical Landsat/MSS data. It is concluded that image ratioing of multisensor, multidate satellite data produced higher change detection accuracies than did principal components analysis, and that it is useful as a land use change enhancement method.

  1. Computational Research on Mobile Pastoralism Using Agent-Based Modeling and Satellite Imagery.

    Directory of Open Access Journals (Sweden)

    Takuto Sakamoto

    Full Text Available Dryland pastoralism has long attracted considerable attention from researchers in diverse fields. However, rigorous formal study is made difficult by the high level of mobility of pastoralists as well as by the sizable spatio-temporal variability of their environment. This article presents a new computational approach for studying mobile pastoralism that overcomes these issues. Combining multi-temporal satellite images and agent-based modeling allows a comprehensive examination of pastoral resource access over a realistic dryland landscape with unpredictable ecological dynamics. The article demonstrates the analytical potential of this approach through its application to mobile pastoralism in northeast Nigeria. Employing more than 100 satellite images of the area, extensive simulations are conducted under a wide array of circumstances, including different land-use constraints. The simulation results reveal complex dependencies of pastoral resource access on these circumstances along with persistent patterns of seasonal land use observed at the macro level.

  2. OVERVIEW OF MODERN RESEARCH OF LANDSLIDES ACCORDING TO AERIAL AND SATELLITE IMAGERY

    Directory of Open Access Journals (Sweden)

    K. M. Lyapishev

    2015-01-01

    Full Text Available This article is an overview of researches of landslides using remote sensing methods such as aerial photography, satellite images, radar interferometry, and their combination with the use of GIS technology. Modern methods of investigation of landslides are very diverse. The authors propose different approaches to the identification, classification and monitoring of landslides. Data analysis techniques can help in creating more sophisticated approach to the analysis of landslides.

  3. A fast radiative transfer method for the simulation of visible satellite imagery

    Science.gov (United States)

    Scheck, Leonhard; Frèrebeau, Pascal; Buras-Schnell, Robert; Mayer, Bernhard

    2016-05-01

    A computationally efficient radiative transfer method for the simulation of visible satellite images is presented. The top of atmosphere reflectance is approximated by a function depending on vertically integrated optical depths and effective particle sizes for water and ice clouds, the surface albedo, the sun and satellite zenith angles and the scattering angle. A look-up table (LUT) for this reflectance function is generated by means of the discrete ordinate method (DISORT). For a constant scattering angle the reflectance is a relatively smooth and symmetric function of the two zenith angles, which can be well approximated by the lowest-order terms of a 2D Fourier series. By storing only the lowest Fourier coefficients and adopting a non-equidistant grid for the scattering angle, the LUT is reduced to a size of 21 MB per satellite channel. The computation of the top of atmosphere reflectance requires only the calculation of the cloud parameters from the model state and the evaluation and interpolation of the reflectance function using the compressed LUT and is thus orders of magnitude faster than DISORT. The accuracy of the method is tested by generating synthetic satellite images for the 0.6 μm and 0.8 μm channels of the SEVIRI instrument for operational COSMO-DE model forecasts from the German Weather Service (DWD) and comparing them to DISORT results. For a test period in June the root mean squared absolute reflectance error is about 10-2 and the mean relative reflectance error is less than 2% for both channels. For scattering angles larger than 170 ° the rapid variation of reflectance with the particle size related to the backscatter glory reduces the accuracy and the errors increase by a factor of 3-4. Speed and accuracy of the new method are sufficient for operational data assimilation and high-resolution model verification applications.

  4. Cloud detection, classification and motion estimation using geostationary satellite imagery for cloud cover forecast

    International Nuclear Information System (INIS)

    Escrig, H.; Batlles, F.J.; Alonso, J.; Baena, F.M.; Bosch, J.L.; Salbidegoitia, I.B.; Burgaleta, J.I.

    2013-01-01

    Considering that clouds are the greatest causes to solar radiation blocking, short term cloud forecasting can help power plant operation and therefore improve benefits. Cloud detection, classification and motion vector determination are key to forecasting sun obstruction by clouds. Geostationary satellites provide cloud information covering wide areas, allowing cloud forecast to be performed for several hours in advance. Herein, the methodology developed and tested in this study is based on multispectral tests and binary cross correlations followed by coherence and quality control tests over resulting motion vectors. Monthly synthetic surface albedo image and a method to reject erroneous correlation vectors were developed. Cloud classification in terms of opacity and height of cloud top is also performed. A whole-sky camera has been used for validation, showing over 85% of agreement between the camera and the satellite derived cloud cover, whereas error in motion vectors is below 15%. - Highlights: ► A methodology for detection, classification and movement of clouds is presented. ► METEOSAT satellite images are used to obtain a cloud mask. ► The prediction of cloudiness is estimated with 90% in overcast conditions. ► Results for partially covered sky conditions showed a 75% accuracy. ► Motion vectors are estimated from the clouds with a success probability of 86%

  5. An Algorithm to Generate Deep-Layer Temperatures from Microwave Satellite Observations for the Purpose of Monitoring Climate Change. Revised

    Science.gov (United States)

    Goldberg, Mitchell D.; Fleming, Henry E.

    1994-01-01

    An algorithm for generating deep-layer mean temperatures from satellite-observed microwave observations is presented. Unlike traditional temperature retrieval methods, this algorithm does not require a first guess temperature of the ambient atmosphere. By eliminating the first guess a potentially systematic source of error has been removed. The algorithm is expected to yield long-term records that are suitable for detecting small changes in climate. The atmospheric contribution to the deep-layer mean temperature is given by the averaging kernel. The algorithm computes the coefficients that will best approximate a desired averaging kernel from a linear combination of the satellite radiometer's weighting functions. The coefficients are then applied to the measurements to yield the deep-layer mean temperature. Three constraints were used in deriving the algorithm: (1) the sum of the coefficients must be one, (2) the noise of the product is minimized, and (3) the shape of the approximated averaging kernel is well-behaved. Note that a trade-off between constraints 2 and 3 is unavoidable. The algorithm can also be used to combine measurements from a future sensor (i.e., the 20-channel Advanced Microwave Sounding Unit (AMSU)) to yield the same averaging kernel as that based on an earlier sensor (i.e., the 4-channel Microwave Sounding Unit (MSU)). This will allow a time series of deep-layer mean temperatures based on MSU measurements to be continued with AMSU measurements. The AMSU is expected to replace the MSU in 1996.

  6. Estimating ecosystem iso/anisohydry using microwave satellite data and its applications in ecohydrology

    Science.gov (United States)

    Li, Y.; Guan, K.; Gentine, P.; Konings, A. G.; Bhattacharya, A.; Meinzer, F. C.; Kimball, J. S.; Xu, X.; Anderegg, W.; McDowell, N. G.; Martínez-Vilalta, J.; Long, D. G.; Good, S. P.

    2017-12-01

    The concept of iso/anisohydry describes the degree to which plants regulate their water status, operating from isohydric with strict stomatal closure to anisohydric with greater stomatal conductance under drying conditions. Though some species-level measures of iso/anisohydry exist at limited locations, ecosystem scale information is still largely unavailable. In this study, we use diurnal observations from active (Ku-Band backscatter from QuikSCAT) and passive (X-band Vegetation Optical Depth [VOD] from AMSR-E) microwave satellite data to estimate global ecosystem iso/anisohydry. The two independent estimates from radar backscatter and VOD show good agreement at low and mid-latitudes but diverge at high latitudes. Grasslands, croplands, wetlands, and open shrublands are more anisohydric, whereas evergreen broadleaf and deciduous broadleaf forests are more isohydric. The direct validation with upscaled in-situ species iso/anisohydry estimates indicates that the VOD estimates have much better agreement than the backscatter in terms of their iso/anisohydry metrics. The indirect validation suggests that both estimates are consistent with prior knowledge that vegetation water status of anisohydric ecosystems more closely tracks environmental fluctuations of water availability and demand than their isohydric counterparts. The ecosystem level iso/anisohydry can be applied to reveal new insights into spatio-temporal ecosystem response to droughts. We conducted a case study to demonstrate the potential application of iso/anisohydry. We find that during the 2011 drought in US, over the drought affected region in the southern US, isohydric ecosystems experienced larger decline in productivity (NDVI and GPP) than anisohydric ones. However, during the 2012 drought in central US, both isohydric and anisohydric ecosystems exhibited similar decline in productivity.

  7. Use of open source information and commercial satellite imagery for nuclear nonproliferation regime compliance verification by a community of academics

    Science.gov (United States)

    Solodov, Alexander

    The proliferation of nuclear weapons is a great threat to world peace and stability. The question of strengthening the nonproliferation regime has been open for a long period of time. In 1997 the International Atomic Energy Agency (IAEA) Board of Governors (BOG) adopted the Additional Safeguards Protocol. The purpose of the protocol is to enhance the IAEA's ability to detect undeclared production of fissile materials in member states. However, the IAEA does not always have sufficient human and financial resources to accomplish this task. Developed here is a concept for making use of human and technical resources available in academia that could be used to enhance the IAEA's mission. The objective of this research was to study the feasibility of an academic community using commercially or publicly available sources of information and products for the purpose of detecting covert facilities and activities intended for the unlawful acquisition of fissile materials or production of nuclear weapons. In this study, the availability and use of commercial satellite imagery systems, commercial computer codes for satellite imagery analysis, Comprehensive Test Ban Treaty (CTBT) verification International Monitoring System (IMS), publicly available information sources such as watchdog groups and press reports, and Customs Services information were explored. A system for integrating these data sources to form conclusions was also developed. The results proved that publicly and commercially available sources of information and data analysis can be a powerful tool in tracking violations in the international nuclear nonproliferation regime and a framework for implementing these tools in academic community was developed. As a result of this study a formation of an International Nonproliferation Monitoring Academic Community (INMAC) is proposed. This would be an independent organization consisting of academics (faculty, staff and students) from both nuclear weapon states (NWS) and

  8. FOREST TREE SPECIES DISTRIBUTION MAPPING USING LANDSAT SATELLITE IMAGERY AND TOPOGRAPHIC VARIABLES WITH THE MAXIMUM ENTROPY METHOD IN MONGOLIA

    Directory of Open Access Journals (Sweden)

    S. H. Chiang

    2016-06-01

    Full Text Available Forest is a very important ecosystem and natural resource for living things. Based on forest inventories, government is able to make decisions to converse, improve and manage forests in a sustainable way. Field work for forestry investigation is difficult and time consuming, because it needs intensive physical labor and the costs are high, especially surveying in remote mountainous regions. A reliable forest inventory can give us a more accurate and timely information to develop new and efficient approaches of forest management. The remote sensing technology has been recently used for forest investigation at a large scale. To produce an informative forest inventory, forest attributes, including tree species are unavoidably required to be considered. In this study the aim is to classify forest tree species in Erdenebulgan County, Huwsgul province in Mongolia, using Maximum Entropy method. The study area is covered by a dense forest which is almost 70% of total territorial extension of Erdenebulgan County and is located in a high mountain region in northern Mongolia. For this study, Landsat satellite imagery and a Digital Elevation Model (DEM were acquired to perform tree species mapping. The forest tree species inventory map was collected from the Forest Division of the Mongolian Ministry of Nature and Environment as training data and also used as ground truth to perform the accuracy assessment of the tree species classification. Landsat images and DEM were processed for maximum entropy modeling, and this study applied the model with two experiments. The first one is to use Landsat surface reflectance for tree species classification; and the second experiment incorporates terrain variables in addition to the Landsat surface reflectance to perform the tree species classification. All experimental results were compared with the tree species inventory to assess the classification accuracy. Results show that the second one which uses Landsat surface

  9. A general framework of TOPSIS method for integration of airborne geophysics, satellite imagery, geochemical and geological data

    Science.gov (United States)

    Abedi, Maysam; Norouzi, Gholam-Hossain

    2016-04-01

    This work presents the promising application of three variants of TOPSIS method (namely the conventional, adjusted and modified versions) as a straightforward knowledge-driven technique in multi criteria decision making processes for data fusion of a broad exploratory geo-dataset in mineral potential/prospectivity mapping. The method is implemented to airborne geophysical data (e.g. potassium radiometry, aeromagnetic and frequency domain electromagnetic data), surface geological layers (fault and host rock zones), extracted alteration layers from remote sensing satellite imagery data, and five evidential attributes from stream sediment geochemical data. The central Iranian volcanic-sedimentary belt in Kerman province at the SE of Iran that is embedded in the Urumieh-Dokhtar Magmatic Assemblage arc (UDMA) is chosen to integrate broad evidential layers in the region of prospect. The studied area has high potential of ore mineral occurrences especially porphyry copper/molybdenum and the generated mineral potential maps aim to outline new prospect zones for further investigation in future. Two evidential layers of the downward continued aeromagnetic data and its analytic signal filter are prepared to be incorporated in fusion process as geophysical plausible footprints of the porphyry type mineralization. The low values of the apparent resistivity layer calculated from the airborne frequency domain electromagnetic data are also used as an electrical criterion in this investigation. Four remote sensing evidential layers of argillic, phyllic, propylitic and hydroxyl alterations were extracted from ASTER images in order to map the altered areas associated with porphyry type deposits, whilst the ETM+ satellite imagery data were used as well to map iron oxide layer. Since potassium alteration is generally the mainstay of porphyry ore mineralization, the airborne potassium radiometry data was used. The geochemical layers of Cu/B/Pb/Zn elements and the first component of PCA

  10. Forest Tree Species Distribution Mapping Using Landsat Satellite Imagery and Topographic Variables with the Maximum Entropy Method in Mongolia

    Science.gov (United States)

    Hao Chiang, Shou; Valdez, Miguel; Chen, Chi-Farn

    2016-06-01

    Forest is a very important ecosystem and natural resource for living things. Based on forest inventories, government is able to make decisions to converse, improve and manage forests in a sustainable way. Field work for forestry investigation is difficult and time consuming, because it needs intensive physical labor and the costs are high, especially surveying in remote mountainous regions. A reliable forest inventory can give us a more accurate and timely information to develop new and efficient approaches of forest management. The remote sensing technology has been recently used for forest investigation at a large scale. To produce an informative forest inventory, forest attributes, including tree species are unavoidably required to be considered. In this study the aim is to classify forest tree species in Erdenebulgan County, Huwsgul province in Mongolia, using Maximum Entropy method. The study area is covered by a dense forest which is almost 70% of total territorial extension of Erdenebulgan County and is located in a high mountain region in northern Mongolia. For this study, Landsat satellite imagery and a Digital Elevation Model (DEM) were acquired to perform tree species mapping. The forest tree species inventory map was collected from the Forest Division of the Mongolian Ministry of Nature and Environment as training data and also used as ground truth to perform the accuracy assessment of the tree species classification. Landsat images and DEM were processed for maximum entropy modeling, and this study applied the model with two experiments. The first one is to use Landsat surface reflectance for tree species classification; and the second experiment incorporates terrain variables in addition to the Landsat surface reflectance to perform the tree species classification. All experimental results were compared with the tree species inventory to assess the classification accuracy. Results show that the second one which uses Landsat surface reflectance coupled

  11. Assessment of the Impact of Reservoirs in the Upper Mekong River Using Satellite Radar Altimetry and Remote Sensing Imageries

    Directory of Open Access Journals (Sweden)

    Kuan-Ting Liu

    2016-04-01

    Full Text Available Water level (WL and water volume (WV of surface-water bodies are among the most crucial variables used in water-resources assessment and management. They fluctuate as a result of climatic forcing, and they are considered as indicators of climatic impacts on water resources. Quantifying riverine WL and WV, however, usually requires the availability of timely and continuous in situ data, which could be a challenge for rivers in remote regions, including the Mekong River basin. As one of the most developed rivers in the world, with more than 20 dams built or under construction, Mekong River is in need of a monitoring system that could facilitate basin-scale management of water resources facing future climate change. This study used spaceborne sensors to investigate two dams in the upper Mekong River, Xiaowan and Jinghong Dams within China, to examine river flow dynamics after these dams became operational. We integrated multi-mission satellite radar altimetry (RA, Envisat and Jason-2 and Landsat-5/-7/-8 Thematic Mapper (TM/Enhanced Thematic Mapper plus (ETM+/Operational  Land Imager (OLI optical remote sensing (RS imageries to construct composite WL time series with enhanced spatial resolutions and substantially extended WL data records. An empirical relationship between WL variation and water extent was first established for each dam, and then the combined long-term WL time series from Landsat images are reconstructed for the dams. The R2 between altimetry WL and Landsat water area measurements is >0.95. Next, the Tropical Rainfall Measuring Mission (TRMM data were used to diagnose and determine water variation caused by the precipitation anomaly within the basin. Finally, the impact of hydrologic dynamics caused by the impoundment of the dams is assessed. The discrepancy between satellite-derived WL and available in situ gauge data, in term of root-mean-square error (RMSE is at 2–5 m level. The estimated WV variations derived from combined RA

  12. A Satellite Imagery Approach to Monitor Turbidity and Total Suspended Sediments in Green Bay, WI

    Science.gov (United States)

    Khazaei, B.; Hamidi, S.; Hosseiny, S. M. H.; Ekhtari, N.

    2017-12-01

    Fox River is a major source of land-based pollutants, nutrients, and sediment that flows into the southern Green Bay (GB). GB supplies one-third of the total nutrient loading to Lake Michigan. This can play a significant role in the biological functioning of the Bay and development of managerial scenarios. To name a few, it can degrade the quality of the aquatic life, add to the costs for treatment processes, and reduce coastal quality. Water quality evaluation is a time consuming and costly process. Spaceborne imagery data provides a cheap and valuable source of information as an alternative for field monitoring of the water resources. Sediment is an optically active variable; hence; remote sensing techniques can be utilized to estimate Total Suspended Sediments (TSS) and Turbidity (TU) of water. In this study, we developed relationships between remote sensing imagery data with daily in situ measurements of TSS and TU in the summers of 2011 to 2014. Surface reflectance (SR) values obtained from Band 1 of MYD09GQ dataset-a level 2 product of MODerate Resolution Imaging Spectroradiometer (MODIS). This band covers SR between 620 and 670nm, in which, the wavelength is sensitive to mineral suspended matters most. After elimination of days with cloud contamination, 118 pairs of data remained for analysis. Several possible functions were tested and exponential function was the best estimator of the SR-TSS and SR-TU relationships with R2 values of 0.8269 and 0.8688, respectively. We then used 2014 data to validate the proposed functions. The model was able to estimate TSS and TU with NRMSE values of 0.36 and 0.30. It indicates that the model can be well-applied to predict TSS and TU within a reasonable margin of error. Then, equations were used to map the spatiotemporal dynamics of sediment in GB. Area of the plume ranges between 12 to 180 km2 while 50% of the time the area of the turbid plume is more than 106 km2. Expectedly, the concentration of sediment is much higher

  13. Satellite infrared imagery for thermal plume contamination monitoring in coastal ecosystem of Cernavoda NPP

    Science.gov (United States)

    Zoran, M. A.; Zoran, Liviu Florin V.; Dida, Adrian I.

    2017-10-01

    Satellite remote sensing is an important tool for spatio-temporal analysis and surveillance of NPP environment, thermal heat waste of waters being a major concern in many coastal ecosystems involving nuclear power plants. As a test case the adopted methodology was applied for 700x2 MW Cernavoda nuclear power plant (NPP) located in the South-Eastern part of Romania, which discharges warm water affecting coastal ecology. The thermal plume signatures in the NPP hydrological system have been investigated based on TIR (Thermal Infrared) spectral bands of NOAA AVHRR, Landsat TM/ETM+/OLI, and MODIS Terra/Aqua time series satellite data during 1990-2016 period. If NOAA AVHRR data proved the general pattern and extension of the thermal plume signature in Danube river and Black Sea coastal areas, Landsat TM/ETM and MODIS data used for WST (Water Surface Temperature) change detection, mapping and monitoring provided enhanced information about the plume shape, dimension and direction of dispersion in these waters. Thermal discharge from two nuclear reactors cooling is dissipated as waste heat in Danube-Black -Sea Channel and Danube River. From time-series analysis of satellite data during period 1990-2016 was found that during the winter season thermal plume was localized to an area of a few km of NPP, and the mean temperature difference between the plume and non-plume areas was about 1.7 oC. During summer and fall, derived mean temperature difference between the plume and non-plume areas was of about 1.3°C and thermal plume area was extended up to 5- 10 km far along Danube Black Sea Channel.

  14. Monitoring Powdery Mildew of Winter Wheat by Using Moderate Resolution Multi-Temporal Satellite Imagery

    Science.gov (United States)

    Zhang, Jingcheng; Pu, Ruiliang; Yuan, Lin; Wang, Jihua; Huang, Wenjiang; Yang, Guijun

    2014-01-01

    Powdery mildew is one of the most serious diseases that have a significant impact on the production of winter wheat. As an effective alternative to traditional sampling methods, remote sensing can be a useful tool in disease detection. This study attempted to use multi-temporal moderate resolution satellite-based data of surface reflectances in blue (B), green (G), red (R) and near infrared (NIR) bands from HJ-CCD (CCD sensor on Huanjing satellite) to monitor disease at a regional scale. In a suburban area in Beijing, China, an extensive field campaign for disease intensity survey was conducted at key growth stages of winter wheat in 2010. Meanwhile, corresponding time series of HJ-CCD images were acquired over the study area. In this study, a number of single-stage and multi-stage spectral features, which were sensitive to powdery mildew, were selected by using an independent t-test. With the selected spectral features, four advanced methods: mahalanobis distance, maximum likelihood classifier, partial least square regression and mixture tuned matched filtering were tested and evaluated for their performances in disease mapping. The experimental results showed that all four algorithms could generate disease maps with a generally correct distribution pattern of powdery mildew at the grain filling stage (Zadoks 72). However, by comparing these disease maps with ground survey data (validation samples), all of the four algorithms also produced a variable degree of error in estimating the disease occurrence and severity. Further, we found that the integration of MTMF and PLSR algorithms could result in a significant accuracy improvement of identifying and determining the disease intensity (overall accuracy of 72% increased to 78% and kappa coefficient of 0.49 increased to 0.59). The experimental results also demonstrated that the multi-temporal satellite images have a great potential in crop diseases mapping at a regional scale. PMID:24691435

  15. Improvements to Lunar BRDF-Corrected Nighttime Satellite Imagery: Uses and Applications

    Science.gov (United States)

    Cole, Tony A.; Molthan, Andrew L.; Schultz, Lori A.; Roman, Miguel O.; Wanik, David W.

    2016-01-01

    Observations made by the VIIRS day/night band (DNB) provide daily, nighttime measurements to monitor Earth surface processes.However, these observations are impacted by variations in reflected solar radiation on the moon's surface. As the moon transitions from new to full phase, increasing radiance is reflected to the Earth's surface and contributes additional reflected moonlight from clouds and land surface, in addition to emissions from other light sources observed by the DNB. The introduction of a bi-directional reflectance distribution function (BRDF) algorithm serves to remove these lunar variations and normalize observed radiances. Provided by the Terrestrial Information Systems Laboratory at Goddard Space Flight Center, a 1 km gridded lunar BRDF-corrected DNB product and VIIRS cloud mask can be used for a multitude of nighttime applications without influence from the moon. Such applications include the detection of power outages following severe weather events using pre-and post-event DNB imagery, as well as the identification of boat features to curtail illegal fishing practices. This presentation will provide context on the importance of the lunar BRDF correction algorithm and explore the aforementioned uses of this improved DNB product for applied science applications.

  16. Improvements to Lunar BRDF-Corrected Nighttime Satellite Imagery: Uses and Applications

    Science.gov (United States)

    Cole, T.; Molthan, A.; Schultz, L. A.; Roman, M. O.; Wanik, D. W.

    2016-12-01

    Observations made by the VIIRS day/night band (DNB) provide daily, nighttime measurements to monitor Earth surface processes. However, these observations are impacted by variations in reflected solar radiation on the moon's surface. As the moon transitions from new to full phase, increasing radiance is reflected to the Earth's surface and contributes additional reflected moonlight from clouds and land surface, in addition to emissions from other light sources observed by the DNB. The introduction of a bi-directional reflectance distribution function (BRDF) algorithm serves to remove these lunar variations and normalize observed radiances. Provided by the Terrestrial Information Systems Laboratory at Goddard Space Flight Center, a 1 km gridded lunar BRDF-corrected DNB product and VIIRS cloud mask can be used for a multitude of nighttime applications without influence from the moon. Such applications include the detection of power outages following severe weather events using pre- and post-event DNB imagery, as well as the identification of boat features to curtail illegal fishing practices. This presentation will provide context on the importance of the lunar BRDF correction algorithm and explore the aforementioned uses of this improved DNB product for applied science applications.

  17. A Subpixel Classification of Multispectral Satellite Imagery for Interpetation of Tundra-Taiga Ecotone Vegetation (Case Study on Tuliok River Valley, Khibiny, Russia)

    Science.gov (United States)

    Mikheeva, A. I.; Tutubalina, O. V.; Zimin, M. V.; Golubeva, E. I.

    2017-12-01

    The tundra-taiga ecotone plays significant role in northern ecosystems. Due to global climatic changes, the vegetation of the ecotone is the key object of many remote-sensing studies. The interpretation of vegetation and nonvegetation objects of the tundra-taiga ecotone on satellite imageries of a moderate resolution is complicated by the difficulty of extracting these objects from the spectral and spatial mixtures within a pixel. This article describes a method for the subpixel classification of Terra ASTER satellite image for vegetation mapping of the tundra-taiga ecotone in the Tuliok River, Khibiny Mountains, Russia. It was demonstrated that this method allows to determine the position of the boundaries of ecotone objects and their abundance on the basis of quantitative criteria, which provides a more accurate characteristic of ecotone vegetation when compared to the per-pixel approach of automatic imagery interpretation.

  18. Preliminary hard and soft bottom seafloor substrate map derived from an supervised classification of bathymetry derived from multispectral World View-2 satellite imagery of Ni'ihau Island, Territory of Main Hawaiian Islands, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Preliminary hard and soft seafloor substrate map derived from a supervised classification from multispectral World View-2 satellite imagery of Ni'ihau Island,...

  19. Fine-scale mapping of vector habitats using very high resolution satellite imagery: a liver fluke case-study.

    Science.gov (United States)

    De Roeck, Els; Van Coillie, Frieke; De Wulf, Robert; Soenen, Karen; Charlier, Johannes; Vercruysse, Jozef; Hantson, Wouter; Ducheyne, Els; Hendrickx, Guy

    2014-12-01

    The visualization of vector occurrence in space and time is an important aspect of studying vector-borne diseases. Detailed maps of possible vector habitats provide valuable information for the prediction of infection risk zones but are currently lacking for most parts of the world. Nonetheless, monitoring vector habitats from the finest scales up to farm level is of key importance to refine currently existing broad-scale infection risk models. Using Fasciola hepatica, a parasite liver fluke, as a case in point, this study illustrates the potential of very high resolution (VHR) optical satellite imagery to efficiently and semi-automatically detect detailed vector habitats. A WorldView2 satellite image capable of transmitted by freshwater snails. The vector thrives in small water bodies (SWBs), such as ponds, ditches and other humid areas consisting of open water, aquatic vegetation and/or inundated grass. These water bodies can be as small as a few m2 and are most often not present on existing land cover maps because of their small size. We present a classification procedure based on object-based image analysis (OBIA) that proved valuable to detect SWBs at a fine scale in an operational and semi-automated way. The classification results were compared to field and other reference data such as existing broad-scale maps and expert knowledge. Overall, the SWB detection accuracy reached up to 87%. The resulting fine-scale SWB map can be used as input for spatial distribution modelling of the liver fluke snail vector to enable development of improved infection risk mapping and management advice adapted to specific, local farm situations.

  20. Spatial and temporal changes in household structure locations using high-resolution satellite imagery for population assessment: an analysis in southern Zambia, 2006-2011

    Directory of Open Access Journals (Sweden)

    Timothy Shields

    2016-05-01

    Full Text Available Satellite imagery is increasingly available at high spatial resolution and can be used for various purposes in public health research and programme implementation. Comparing a census generated from two satellite images of the same region in rural southern Zambia obtained four and a half years apart identified patterns of household locations and change over time. The length of time that a satellite image-based census is accurate determines its utility. Households were enumerated manually from satellite images obtained in 2006 and 2011 of the same area. Spatial statistics were used to describe clustering, cluster detection, and spatial variation in the location of households. A total of 3821 household locations were enumerated in 2006 and 4256 in 2011, a net change of 435 houses (11.4% increase. Comparison of the images indicated that 971 (25.4% structures were added and 536 (14.0% removed. Further analysis suggested similar household clustering in the two images and no substantial difference in concentration of households across the study area. Cluster detection analysis identified a small area where significantly more household structures were removed than expected; however, the amount of change was of limited practical significance. These findings suggest that random sampling of households for study participation would not induce geographic bias if based on a 4.5-year-old image in this region. Application of spatial statistical methods provides insights into the population distribution changes between two time periods and can be helpful in assessing the accuracy of satellite imagery.

  1. Ensemble classification of individual Pinus crowns from multispectral satellite imagery and airborne LiDAR

    Science.gov (United States)

    Kukunda, Collins B.; Duque-Lazo, Joaquín; González-Ferreiro, Eduardo; Thaden, Hauke; Kleinn, Christoph

    2018-03-01

    Distinguishing tree species is relevant in many contexts of remote sensing assisted forest inventory. Accurate tree species maps support management and conservation planning, pest and disease control and biomass estimation. This study evaluated the performance of applying ensemble techniques with the goal of automatically distinguishing Pinus sylvestris L. and Pinus uncinata Mill. Ex Mirb within a 1.3 km2 mountainous area in Barcelonnette (France). Three modelling schemes were examined, based on: (1) high-density LiDAR data (160 returns m-2), (2) Worldview-2 multispectral imagery, and (3) Worldview-2 and LiDAR in combination. Variables related to the crown structure and height of individual trees were extracted from the normalized LiDAR point cloud at individual-tree level, after performing individual tree crown (ITC) delineation. Vegetation indices and the Haralick texture indices were derived from Worldview-2 images and served as independent spectral variables. Selection of the best predictor subset was done after a comparison of three variable selection procedures: (1) Random Forests with cross validation (AUCRFcv), (2) Akaike Information Criterion (AIC) and (3) Bayesian Information Criterion (BIC). To classify the species, 9 regression techniques were combined using ensemble models. Predictions were evaluated using cross validation and an independent dataset. Integration of datasets and models improved individual tree species classification (True Skills Statistic, TSS; from 0.67 to 0.81) over individual techniques and maintained strong predictive power (Relative Operating Characteristic, ROC = 0.91). Assemblage of regression models and integration of the datasets provided more reliable species distribution maps and associated tree-scale mapping uncertainties. Our study highlights the potential of model and data assemblage at improving species classifications needed in present-day forest planning and management.

  2. Mapping Aquatic Vegetation in a Tropical Wetland Using High Spatial Resolution Multispectral Satellite Imagery

    Directory of Open Access Journals (Sweden)

    Timothy G. Whiteside

    2015-09-01

    Full Text Available Vegetation plays a key role in the environmental function of wetlands. The Ramsar-listed wetlands of the Magela Creek floodplain in Northern Australia are identified as being at risk from weeds, fire and climate change. In addition, the floodplain is a downstream receiving environment for the Ranger Uranium Mine. Accurate methods for mapping wetland vegetation are required to provide contemporary baselines of annual vegetation dynamics on the floodplain to assist with analysing any potential change during and after minesite rehabilitation. The aim of this study was to develop and test the applicability of geographic object-based image analysis including decision tree classification to classify WorldView-2 imagery and LiDAR-derived ancillary data to map the aquatic vegetation communities of the Magela Creek floodplain. Results of the decision tree classification were compared against a Random Forests classification. The resulting maps showed the 12 major vegetation communities that exist on the Magela Creek floodplain and their distribution for May 2010. The decision tree classification method provided an overall accuracy of 78% which was significantly higher than the overall accuracy of the Random Forests classification (67%. Most of the error in both classifications was associated with confusion between spectrally similar classes dominated by grasses, such as Hymenachne and Pseudoraphis. In addition, the extent of the sedge Eleocharis was under-estimated in both cases. This suggests the method could be useful for mapping wetlands where statistical-based supervised classifications have achieved less than satisfactory results. Based upon the results, the decision tree method will form part of an ongoing operational monitoring program.

  3. Winter Crop Mapping for Improving Crop Production Estimates in Argentina Using Moderation Resolution Satellite Imagery

    Science.gov (United States)

    Humber, M. L.; Copati, E.; Sanchez, A.; Sahajpal, R.; Puricelli, E.; Becker-Reshef, I.

    2017-12-01

    Accurate crop production data is fundamental for reducing uncertainly and volatility in the domestic and international agricultural markets. The Agricultural Estimates Department of the Buenos Aires Grain Exchange has worked since 2000 on the estimation of different crop production data. With this information, the Grain Exchange helps different actors of the agricultural chain, such as producers, traders, seed companies, market analyst, policy makers, into their day to day decision making. Since 2015/16 season, the Grain Exchange has worked on the development of a new earth observations-based method to identify winter crop planted area at a regional scale with the aim of improving crop production estimates. The objective of this new methodology is to create a reliable winter crop mask at moderate spatial resolution using Landsat-8 imagery by exploiting bi-temporal differences in the phenological stages of winter crops as compared to other landcover types. In collaboration with the University of Maryland, the map has been validated by photointerpretation of a stratified statistically random sample of independent ground truth data in the four largest producing provinces of Argentina: Buenos Aires, Cordoba, La Pampa, and Santa Fe. In situ measurements were also used to further investigate conditions in the Buenos Aires province. Preliminary results indicate that while there are some avenues for improvement, overall the classification accuracy of the cropland and non-cropland classes are sufficient to improve downstream production estimates. Continuing research will focus on improving the methodology for winter crop mapping exercises on a yearly basis as well as improving the sampling methodology to optimize collection of validation data in the future.

  4. Identification of the potential gap areas for the developing green infrastructure in the Urban area using High resolution satellite Imagery

    Science.gov (United States)

    Kanaparthi, M. B.

    2017-12-01

    In India urban population is growing day by day which is causing air pollution less air quality finally leading to climate change and global warming. To mitigate the effect of the climate change we need to plant more trees in the urban area. The objective of this study is develop a plan to improve the urban Green Infrastructure (GI) to fight against the climate change and global warming. Improving GI is a challenging and difficult task in the urban areas because land unavailability of land, to overcome the problem greenways is a good the solution. Greenway is a linear open space developed along the rivers, canals, roads in the urban areas to form a network of green spaces. Roads are the most common structures in the urban area. The idea is to develop the greenways alongside the road to connecting the different green spaces. Tree crowns will act as culverts to connect the green spaces. This will require the spatial structure of the green space, distribution of trees along the roads and the gap areas along the road where more trees can be planted. This can be achieved with help of high resolution Satellite Imagery and the object extraction techniques. This study was carried in the city Bhimavaram which is located in state Andhra Pradesh. The final outcome of this study is potential gap areas for planting trees in the city.

  5. Poverty assessment using DMSP/OLS night-time light satellite imagery at a provincial scale in China

    Science.gov (United States)

    Wang, Wen; Cheng, Hui; Zhang, Li

    2012-04-01

    All countries around the world and many international bodies, including the United Nations Development Program (UNDP), United Nations Food and Agricultural Organization (FAO), the International Fund for Agricultural Development (IFAD) and the International Labor Organization (ILO), have to eliminate rural poverty. Estimation of regional poverty level is a key issue for making strategies to eradicate poverty. Most of previous studies on regional poverty evaluations are based on statistics collected typically in administrative units. This paper has discussed the deficiencies of traditional studies, and attempted to research regional poverty evaluation issues using 3-year DMSP/OLS night-time light satellite imagery. In this study, we adopted 17 socio-economic indexes to establish an integrated poverty index (IPI) using principal component analysis (PCA), which was proven to provide a good descriptor of poverty levels in 31 regions at a provincial scale in China. We also explored the relationship between DMSP/OLS night-time average light index and the poverty index using regression analysis in SPSS and a good positive linear correlation was modelled, with R2 equal to 0.854. We then looked at provincial poverty problems in China based on this correlation. The research results indicated that the DMSP/OLS night-time light data can assist analysing provincial poverty evaluation issues.

  6. Automatic Classification of High Resolution Satellite Imagery - a Case Study for Urban Areas in the Kingdom of Saudi Arabia

    Science.gov (United States)

    Maas, A.; Alrajhi, M.; Alobeid, A.; Heipke, C.

    2017-05-01

    Updating topographic geospatial databases is often performed based on current remotely sensed images. To automatically extract the object information (labels) from the images, supervised classifiers are being employed. Decisions to be taken in this process concern the definition of the classes which should be recognised, the features to describe each class and the training data necessary in the learning part of classification. With a view to large scale topographic databases for fast developing urban areas in the Kingdom of Saudi Arabia we conducted a case study, which investigated the following two questions: (a) which set of features is best suitable for the classification?; (b) what is the added value of height information, e.g. derived from stereo imagery? Using stereoscopic GeoEye and Ikonos satellite data we investigate these two questions based on our research on label tolerant classification using logistic regression and partly incorrect training data. We show that in between five and ten features can be recommended to obtain a stable solution, that height information consistently yields an improved overall classification accuracy of about 5%, and that label noise can be successfully modelled and thus only marginally influences the classification results.

  7. Mapping invasive Phragmites australis in the coastal Great Lakes with ALOS PALSAR satellite imagery for decision support

    Science.gov (United States)

    Bourgeau-Chavez, Laura L.; Kowalski, Kurt P.; Carlson Mazur, Martha L.; Scarbrough, Kirk A.; Powell, Richard B.; Brooks, Colin N.; Huberty, Brian; Jenkins, Liza K.; Banda, Elizabeth C.; Galbraith, David M.; Laubach, Zachary M.; Riordan, Kevin

    2013-01-01

    The invasive variety of Phragmites australis (common reed) forms dense stands that can cause negative impacts on coastal Great Lakes wetlands including habitat degradation and reduced biological diversity. Early treatment is key to controlling Phragmites, therefore a map of the current distribution is needed. ALOS PALSAR imagery was used to produce the first basin-wide distribution map showing the extent of large, dense invasive Phragmites-dominated habitats in wetlands and other coastal ecosystems along the U.S. shore of the Great Lakes. PALSAR is a satellite imaging radar sensor that is sensitive to differences in plant biomass and inundation patterns, allowing for the detection and delineation of these tall (up to 5 m), high density, high biomass invasive Phragmites stands. Classification was based on multi-season ALOS PALSAR L-band (23 cm wavelength) HH and HV polarization data. Seasonal (spring, summer, and fall) datasets were used to improve discrimination of Phragmites by taking advantage of phenological changes in vegetation and inundation patterns over the seasons. Extensive field collections of training and randomly selected validation data were conducted in 2010–2011 to aid in mapping and for accuracy assessments. Overall basin-wide map accuracy was 87%, with 86% producer's accuracy and 43% user's accuracy for invasive Phragmites. The invasive Phragmites maps are being used to identify major environmental drivers of this invader's distribution, to assess areas vulnerable to new invasion, and to provide information to regional stakeholders through a decision support tool.

  8. Application of an optimization algorithm to satellite ocean color imagery: A case study in Southwest Florida coastal waters

    Science.gov (United States)

    Hu, Chuanmin; Lee, Zhongping; Muller-Karger, Frank E.; Carder, Kendall L.

    2003-05-01

    A spectra-matching optimization algorithm, designed for hyperspectral sensors, has been implemented to process SeaWiFS-derived multi-spectral water-leaving radiance data. The algorithm has been tested over Southwest Florida coastal waters. The total spectral absorption and backscattering coefficients can be well partitioned with the inversion algorithm, resulting in RMS errors generally less than 5% in the modeled spectra. For extremely turbid waters that come from either river runoff or sediment resuspension, the RMS error is in the range of 5-15%. The bio-optical parameters derived in this optically complex environment agree well with those obtained in situ. Further, the ability to separate backscattering (a proxy for turbidity) from the satellite signal makes it possible to trace water movement patterns, as indicated by the total absorption imagery. The derived patterns agree with those from concurrent surface drifters. For waters where CDOM overwhelmingly dominates the optical signal, however, the procedure tends to regard CDOM as the sole source of absorption, implying the need for better atmospheric correction and for adjustment of some model coefficients for this particular region.

  9. Phenology-based Spartina alterniflora mapping in coastal wetland of the Yangtze Estuary using time series of GaoFen satellite no. 1 wide field of view imagery

    Science.gov (United States)

    Ai, Jinquan; Gao, Wei; Gao, Zhiqiang; Shi, Runhe; Zhang, Chao

    2017-04-01

    Spartina alterniflora is an aggressive invasive plant species that replaces native species, changes the structure and function of the ecosystem across coastal wetlands in China, and is thus a major conservation concern. Mapping the spread of its invasion is a necessary first step for the implementation of effective ecological management strategies. The performance of a phenology-based approach for S. alterniflora mapping is explored in the coastal wetland of the Yangtze Estuary using a time series of GaoFen satellite no. 1 wide field of view camera (GF-1 WFV) imagery. First, a time series of the normalized difference vegetation index (NDVI) was constructed to evaluate the phenology of S. alterniflora. Two phenological stages (the senescence stage from November to mid-December and the green-up stage from late April to May) were determined as important for S. alterniflora detection in the study area based on NDVI temporal profiles, spectral reflectance curves of S. alterniflora and its coexistent species, and field surveys. Three phenology feature sets representing three major phenology-based detection strategies were then compared to map S. alterniflora: (1) the single-date imagery acquired within the optimal phenological window, (2) the multitemporal imagery, including four images from the two important phenological windows, and (3) the monthly NDVI time series imagery. Support vector machines and maximum likelihood classifiers were applied on each phenology feature set at different training sample sizes. For all phenology feature sets, the overall results were produced consistently with high mapping accuracies under sufficient training samples sizes, although significantly improved classification accuracies (10%) were obtained when the monthly NDVI time series imagery was employed. The optimal single-date imagery had the lowest accuracies of all detection strategies. The multitemporal analysis demonstrated little reduction in the overall accuracy compared with the

  10. A first map of tropical Africa's above-ground biomass derived from satellite imagery

    International Nuclear Information System (INIS)

    Baccini, A; Laporte, N; Goetz, S J; Sun, M; Dong, H

    2008-01-01

    Observations from the moderate resolution imaging spectroradiometer (MODIS) were used in combination with a large data set of field measurements to map woody above-ground biomass (AGB) across tropical Africa. We generated a best-quality cloud-free mosaic of MODIS satellite reflectance observations for the period 2000-2003 and used a regression tree model to predict AGB at 1 km resolution. Results based on a cross-validation approach show that the model explained 82% of the variance in AGB, with a root mean square error of 50.5 Mg ha -1 for a range of biomass between 0 and 454 Mg ha -1 . Analysis of lidar metrics from the Geoscience Laser Altimetry System (GLAS), which are sensitive to vegetation structure, indicate that the model successfully captured the regional distribution of AGB. The results showed a strong positive correlation (R 2 = 0.90) between the GLAS height metrics and predicted AGB.

  11. Automatic Blocked Roads Assessment after Earthquake Using High Resolution Satellite Imagery

    Science.gov (United States)

    Rastiveis, H.; Hosseini-Zirdoo, E.; Eslamizade, F.

    2015-12-01

    In 2010, an earthquake in the city of Port-au-Prince, Haiti, happened quite by chance an accident and killed over 300000 people. According to historical data such an earthquake has not occurred in the area. Unpredictability of earthquakes has necessitated the need for comprehensive mitigation efforts to minimize deaths and injuries. Blocked roads, caused by debris of destroyed buildings, may increase the difficulty of rescue activities. In this case, a damage map, which specifies blocked and unblocked roads, can be definitely helpful for a rescue team. In this paper, a novel method for providing destruction map based on pre-event vector map and high resolution world view II satellite images after earthquake, is presented. For this purpose, firstly in pre-processing step, image quality improvement and co-coordination of image and map are performed. Then, after extraction of texture descriptor from the image after quake and SVM classification, different terrains are detected in the image. Finally, considering the classification results, specifically objects belong to "debris" class, damage analysis are performed to estimate the damage percentage. In this case, in addition to the area objects in the "debris" class their shape should also be counted. The aforementioned process are performed on all the roads in the road layer.In this research, pre-event digital vector map and post-event high resolution satellite image, acquired by Worldview-2, of the city of Port-au-Prince, Haiti's capital, were used to evaluate the proposed method. The algorithm was executed on 1200×800 m2 of the data set, including 60 roads, and all the roads were labelled correctly. The visual examination have authenticated the abilities of this method for damage assessment of urban roads network after an earthquake.

  12. Modelling forest canopy height by integrating airborne LiDAR samples with satellite Radar and multispectral imagery

    Science.gov (United States)

    García, Mariano; Saatchi, Sassan; Ustin, Susan; Balzter, Heiko

    2018-04-01

    Spatially-explicit information on forest structure is paramount to estimating aboveground carbon stocks for designing sustainable forest management strategies and mitigating greenhouse gas emissions from deforestation and forest degradation. LiDAR measurements provide samples of forest structure that must be integrated with satellite imagery to predict and to map landscape scale variations of forest structure. Here we evaluate the capability of existing satellite synthetic aperture radar (SAR) with multispectral data to estimate forest canopy height over five study sites across two biomes in North America, namely temperate broadleaf and mixed forests and temperate coniferous forests. Pixel size affected the modelling results, with an improvement in model performance as pixel resolution coarsened from 25 m to 100 m. Likewise, the sample size was an important factor in the uncertainty of height prediction using the Support Vector Machine modelling approach. Larger sample size yielded better results but the improvement stabilised when the sample size reached approximately 10% of the study area. We also evaluated the impact of surface moisture (soil and vegetation moisture) on the modelling approach. Whereas the impact of surface moisture had a moderate effect on the proportion of the variance explained by the model (up to 14%), its impact was more evident in the bias of the models with bias reaching values up to 4 m. Averaging the incidence angle corrected radar backscatter coefficient (γ°) reduced the impact of surface moisture on the models and improved their performance at all study sites, with R2 ranging between 0.61 and 0.82, RMSE between 2.02 and 5.64 and bias between 0.02 and -0.06, respectively, at 100 m spatial resolution. An evaluation of the relative importance of the variables in the model performance showed that for the study sites located within the temperate broadleaf and mixed forests biome ALOS-PALSAR HV polarised backscatter was the most important

  13. Revisiting Past Earthquakes and Seismo-Volcanic Crises Using Declassified Optical Satellite Imagery (Invited)

    Science.gov (United States)

    Hollingsworth, J.; Leprince, S.; Ayoub, F.; Avouac, J.

    2009-12-01

    In this study we demonstrate that the recently declassified Corona KH-9 images can be used to measure ground deformation due to seismotectonic and volcanic events from optical sub-pixel correlation. We use high resolution (6-9 m) satellite images, available from the USGS for a relatively small cost ($30 per image, swath measuring 250 x 125 km). The images are processed with the user-friendly software package COSI-Corr, which allows for automatic and precise ortho-rectification, co-registration, and sub-pixel correlation of pushbroom satellite and aerial images. Knowledge of the camera calibration information is required to determine the interior and exterior orientation parameters of the camera, which are in turn needed to successfully orthorectify and co-register the images using COSI-Corr. Because the camera information still remains classified, we follow the approach of Surazakov, et al., (2009), who conclude the Hexagon KH9 camera system is similar to the NASA Large Format Camera (LFC) system. We successfully tested the approach on the 1999 Hector Mine, USA (Ms 7.4) and 1992 Landers, USA (Ms 7.5) earthquakes and then moved on to analyze a number of other large events. We have in particular been able to measure the surface deformation induced by the 1975-1984 Krafla rifting crisis in NE Iceland, by correlating a Hexagon image from 15th September 1977 with a SPOT5 image from 2002. During the period 1977-2002 we find an average E-W extension of 3±0.5 m across the rift, which extends NNE from Lake Myvatn in the south to Ásbyrgi canyon near the coast to the north (a distance of over 40 km) and were able to determine which faults were activated. We have also co-registered a number of Hexagon images to both SPOT and ASTER images (orthorectified using either SRTMv2 or ASTER GDEM topographic data) to determine the co-seismic rupture location and amount of displacement in various significant intraplate earthquakes for which InSAR or GPS data is unavailable: 1976

  14. Assessing the Relative Performance of Microwave-Based Satellite Rain Rate Retrievals Using TRMM Ground Validation Data

    Science.gov (United States)

    Wolff, David B.; Fisher, Brad L.

    2011-01-01

    Space-borne microwave sensors provide critical rain information used in several global multi-satellite rain products, which in turn are used for a variety of important studies, including landslide forecasting, flash flood warning, data assimilation, climate studies, and validation of model forecasts of precipitation. This study employs four years (2003-2006) of satellite data to assess the relative performance and skill of SSM/I (F13, F14 and F15), AMSU-B (N15, N16 and N17), AMSR-E (Aqua) and the TRMM Microwave Imager (TMI) in estimating surface rainfall based on direct instantaneous comparisons with ground-based rain estimates from Tropical Rainfall Measuring Mission (TRMM) Ground Validation (GV) sites at Kwajalein, Republic of the Marshall Islands (KWAJ) and Melbourne, Florida (MELB). The relative performance of each of these satellite estimates is examined via comparisons with space- and time-coincident GV radar-based rain rate estimates. Because underlying surface terrain is known to affect the relative performance of the satellite algorithms, the data for MELB was further stratified into ocean, land and coast categories using a 0.25deg terrain mask. Of all the satellite estimates compared in this study, TMI and AMSR-E exhibited considerably higher correlations and skills in estimating/observing surface precipitation. While SSM/I and AMSU-B exhibited lower correlations and skills for each of the different terrain categories, the SSM/I absolute biases trended slightly lower than AMSR-E over ocean, where the observations from both emission and scattering channels were used in the retrievals. AMSU-B exhibited the least skill relative to GV in all of the relevant statistical categories, and an anomalous spike was observed in the probability distribution functions near 1.0 mm/hr. This statistical artifact appears to be related to attempts by algorithm developers to include some lighter rain rates, not easily detectable by its scatter-only frequencies. AMSU

  15. Investigating Gravity Waves in Polar Mesospheric Clouds Using Tomographic Reconstructions of AIM Satellite Imagery

    Science.gov (United States)

    Hart, V. P.; Taylor, M. J.; Doyle, T. E.; Zhao, Y.; Pautet, P.-D.; Carruth, B. L.; Rusch, D. W.; Russell, J. M.

    2018-01-01

    This research presents the first application of tomographic techniques for investigating gravity wave structures in polar mesospheric clouds (PMCs) imaged by the Cloud Imaging and Particle Size instrument on the NASA AIM satellite. Albedo data comprising consecutive PMC scenes were used to tomographically reconstruct a 3-D layer using the Partially Constrained Algebraic Reconstruction Technique algorithm and a previously developed "fanning" technique. For this pilot study, a large region (760 × 148 km) of the PMC layer (altitude 83 km) was sampled with a 2 km horizontal resolution, and an intensity weighted centroid technique was developed to create novel 2-D surface maps, characterizing the individual gravity waves as well as their altitude variability. Spectral analysis of seven selected wave events observed during the Northern Hemisphere 2007 PMC season exhibited dominant horizontal wavelengths of 60-90 km, consistent with previous studies. These tomographic analyses have enabled a broad range of new investigations. For example, a clear spatial anticorrelation was observed between the PMC albedo and wave-induced altitude changes, with higher-albedo structures aligning well with wave troughs, while low-intensity regions aligned with wave crests. This result appears to be consistent with current theories of PMC development in the mesopause region. This new tomographic imaging technique also provides valuable wave amplitude information enabling further mesospheric gravity wave investigations, including quantitative analysis of their hemispheric and interannual characteristics and variations.

  16. Mid-term fire danger index based on satellite imagery and ancillary geographic data

    Science.gov (United States)

    Stefanidou, A.; Dragozi, E.; Tompoulidou, M.; Stepanidou, L.; Grigoriadis, D.; Katagis, T.; Stavrakoudis, D.; Gitas, I.

    2017-09-01

    Fire danger forecast constitutes one of the most important components of integrated fire management since it provides crucial information for efficient pre-fire planning, alertness and timely response to a possible fire event. The aim of this work is to develop an index that has the capability of predicting accurately fire danger on a mid-term basis. The methodology that is currently under development is based on an innovative approach that employs dry fuel spatial connectivity as well as biophysical and topological variables for the reliable prediction of fire danger. More specifically, the estimation of the dry fuel connectivity is based on a previously proposed automated procedure implemented in R software that uses Moderate Resolution Imaging Spectrometer (MODIS) time series data. Dry fuel connectivity estimates are then combined with other ancillary data such as fuel type and proximity to roads in order to result in the generation of the proposed mid-term fire danger index. The innovation of the proposed index—which will be evaluated by comparison to historical fire data—lies in the fact that its calculation is almost solely affected by the availability of satellite data. Finally, it should be noted that the index is developed within the framework of the National Observatory of Forest Fires (NOFFi) project.

  17. Forest mapping and change analysis, using satellite imagery in Zagros mountain Iran, Islamic Republic o

    International Nuclear Information System (INIS)

    Torahi, A.A.

    2013-01-01

    A methodology to map and monitor land cover change using multi temporal Landsat Thematic Mapper (TM) and ASTER data in Zagros mountains of Iran for 1990, 1998, and 2006 was developed. Land- use/cover mapping is achieved through interpretation of Landsat TM satellite images of 1990, 1998 and TERRA-ASTER image of 2006 using ENVI 4.3. Basedon the Anderson land-use/cover classification system, land-use and land-covers are classified as forest land, range land, water bodies, agricultural land and residential land.The unsupervised image classification method was carried out prior to field visit, in order to determine strata for ground truth. Fieldwork was carried out to collect data for training and validating land use/cover interpretation from satellite image of 2006, and for qualitative description of the characteristics of each land use/cover class. The land - use/cover maps of 1990,1998 and 2006 were produced by using supervised image classification technique based on the Maximum Likelihood Classifier (MLC) and 132 training samples. Error matrices as cross-tabulations of the mapped class vs. the reference class were used to assess classification accuracy. Overall accuracy, users and produce accuracies, and the Kappa statistic were then derived from the error matrices. A multi-date post-classification comparison change detection algorithm was used to determine changes in land cover in three intervals, 1990,1998, 1998, 2006 and 1990, 2006.To evaluate the maps change for the 1990 to 2006 interval, areas classified as change and no-change were randomly sampled and checked whether they were correctly classified. The maps showed that between 1990 and 2006 the amount of forest land decreased from 67% to 38.5% of the total area, while rangelands, agriculture, settlement and surface water increased from 30.8% to 45%, 1.2% to.0%, 0.3% to 7.5% and 0.6% to 1.8%, respectively.In 1990,1998 and 2006, the area was dominated by dense forest (35.9%, 28.9%, 29.3%), open forest and

  18. Online Access to Weather Satellite Imagery Through the World Wide Web

    Science.gov (United States)

    Emery, W.; Baldwin, D.

    1998-01-01

    Both global area coverage (GAC) and high-resolution picture transmission (HRTP) data from the Advanced Very High Resolution Radiometer (AVHRR) are made available to laternet users through an online data access system. Older GOES-7 data am also available. Created as a "testbed" data system for NASA's future Earth Observing System Data and Information System (EOSDIS), this testbed provides an opportunity to test both the technical requirements of an onune'd;ta system and the different ways in which the -general user, community would employ such a system. Initiated in December 1991, the basic data system experienced five major evolutionary changes In response to user requests and requirements. Features added with these changes were the addition of online browse, user subsetting, dynamic image Processing/navigation, a stand-alone data storage system, and movement,from an X-windows graphical user Interface (GUI) to a World Wide Web (WWW) interface. Over Its lifetime, the system has had as many as 2500 registered users. The system on the WWW has had over 2500 hits since October 1995. Many of these hits are by casual users that only take the GIF images directly from the interface screens and do not specifically order digital data. Still, there b a consistent stream of users ordering the navigated image data and related products (maps and so forth). We have recently added a real-time, seven- day, northwestern United States normalized difference vegetation index (NDVI) composite that has generated considerable Interest. Index Terms-Data system, earth science, online access, satellite data.

  19. Drought resistance across California ecosystems: Evaluating changes in carbon dynamics using satellite imagery

    Science.gov (United States)

    Malone, Sparkle; Tulbure, Mirela; Pérez-Luque, Antonio J.; Assal, Timothy J.; Bremer, Leah; Drucker, Debora; Hillis, Vicken; Varela, Sara; Goulden, Michael

    2016-01-01

    Drought is a global issue that is exacerbated by climate change and increasing anthropogenic water demands. The recent occurrence of drought in California provides an important opportunity to examine drought response across ecosystem classes (forests, shrublands, grasslands, and wetlands), which is essential to understand how climate influences ecosystem structure and function. We quantified ecosystem resistance to drought by comparing changes in satellite-derived estimates of water-use efficiency (WUE = net primary productivity [NPP]/evapotranspiration [ET]) under normal (i.e., baseline) and drought conditions (ΔWUE = WUE2014 − baseline WUE). With this method, areas with increasing WUE under drought conditions are considered more resilient than systems with declining WUE. Baseline WUE varied across California (0.08 to 3.85 g C/mm H2O) and WUE generally increased under severe drought conditions in 2014. Strong correlations between ΔWUE, precipitation, and leaf area index (LAI) indicate that ecosystems with a lower average LAI (i.e., grasslands) also had greater C-uptake rates when water was limiting and higher rates of carbon-uptake efficiency (CUE = NPP/LAI) under drought conditions. We also found that systems with a baseline WUE ≤ 0.4 exhibited a decline in WUE under drought conditions, suggesting that a baseline WUE ≤ 0.4 might be indicative of low drought resistance. Drought severity, precipitation, and WUE were identified as important drivers of shifts in ecosystem classes over the study period. These findings have important implications for understanding climate change effects on primary productivity and C sequestration across ecosystems and how this may influence ecosystem resistance in the future.

  20. Spatial and Temporal Analysis of Sea Surface Salinity Using Satellite Imagery in Gulf of Mexico

    Science.gov (United States)

    Rajabi, S.; Hasanlou, M.; Safari, A. R.

    2017-09-01

    The recent development of satellite sea surface salinity (SSS) observations has enabled us to analyse SSS variations with high spatiotemporal resolution. In this regards, The Level3-version4 data observed by Aquarius are used to examine the variability of SSS in Gulf of Mexico for the 2012-2014 time periods. The highest SSS value occurred in April 2013 with the value of 36.72 psu while the lowest value (35.91 psu) was observed in July 2014. Based on the monthly distribution maps which will be demonstrated in the literature, it was observed that east part of the region has lower salinity values than the west part for all months mainly because of the currents which originate from low saline waters of the Caribbean Sea and furthermore the eastward currents like loop current. Also the minimum amounts of salinity occur in coastal waters where the river runoffs make fresh the high saline waters. Our next goal here is to study the patterns of sea surface temperature (SST), chlorophyll-a (CHLa) and fresh water flux (FWF) and examine the contributions of them to SSS variations. So by computing correlation coefficients, the values obtained for SST, FWF and CHLa are 0.7, 0.22 and 0.01 respectively which indicated high correlation of SST on SSS variations. Also by considering the spatial distribution based on the annual means, it found that there is a relationship between the SSS, SST, CHLa and the latitude in the study region which can be interpreted by developing a mathematical model.

  1. Hoar crystal development and disappearance at Dome C, Antarctica: observation by near-infrared photography and passive microwave satellite

    Directory of Open Access Journals (Sweden)

    N. Champollion

    2013-08-01

    Full Text Available Hoar crystals episodically cover the snow surface in Antarctica and affect the roughness and reflective properties of the air–snow interface. However, little is known about their evolution and the processes responsible for their development and disappearance despite a probable influence on the surface mass balance and energy budget. To investigate hoar evolution, we use continuous observations of the surface by in situ near-infrared photography and by passive microwave remote sensing at Dome C in Antarctica. From the photography data, we retrieved a daily indicator of the presence/absence of hoar crystals using a texture analysis algorithm. The analysis of this 2 yr long time series shows that Dome C surface is covered almost half of the time by hoar. The development of hoar crystals takes a few days and seems to occur whatever the meteorological conditions. In contrast, the disappearance of hoar is rapid (a few hours and coincident with either strong winds or with moderate winds associated with a change in wind direction from southwest (the prevailing direction to southeast. From the microwave satellite data, we computed the polarisation ratio (i.e. horizontal over vertical polarised brightness temperatures, an indicator known to be sensitive to hoar in Greenland. Photography data and microwave polarisation ratio are correlated, i.e. high values of polarisation ratio which theoretically correspond to low snow density values near the surface are associated with the presence of hoar crystals in the photography data. Satellite data over nearly ten years (2002–2011 confirm that a strong decrease of the polarisation ratio (i.e. signature of hoar disappearance is associated with an increase of wind speed or a change in wind direction from the prevailing direction. The photography data provides, in addition, evidence of interactions between hoar and snowfall. Further adding the combined influence of wind speed and wind direction results in a

  2. An Evaluation of Antarctica as a Calibration Target for Passive Microwave Satellite Missions with Climate Data Record Applications

    Science.gov (United States)

    Kim, Edward

    2011-01-01

    Passive microwave remote sensing at L-band (1.4 GHz) is sensitive to soil moisture and sea surface salinity, both important climate variables. Science studies involving these variables can now take advantage of new satellite L-band observations. The first mission with regular global passive microwave observations at L-band is the European Space Agency's Soil Moisture and Ocean Salinity (SMOS), launched November, 2009. A second mission, NASA's Aquarius, was launched June, 201 I. A third mission, NASA's Soil Moisture Active Passive (SMAP) is scheduled to launch in 2014. Together, these three missions may provide a decade-long data record-provided that they are intercalibrated. The intercalibration is best performed at the radiance (brightness temperature) level, and Antarctica is proving to be a key calibration target. However, Antarctica has thus far not been fully characterized as a potential target. This paper will present evaluations of Antarctica as a microwave calibration target for the above satellite missions. Preliminary analyses have identified likely target areas, such as the vicinity of Dome-C and larger areas within East Antarctica. Physical sources of temporal and spatial variability of polar firn are key to assessing calibration uncertainty. These sources include spatial variability of accumulation rate, compaction, surface characteristics (dunes, micro-topography), wind patterns, and vertical profiles of density and temperature. Using primarily SMOS data, variability is being empirically characterized and attempts are being made to attribute observed variability to physical sources. One expected outcome of these studies is the potential discovery of techniques for remotely sensing--over all of Antarctica-parameters such as surface temperature.

  3. The 2006 July 17 Java (Indonesia) tsunami from satellite imagery and numerical modelling: a single or complex source?

    Science.gov (United States)

    Hébert, H.; Burg, P.-E.; Binet, R.; Lavigne, F.; Allgeyer, S.; Schindelé, F.

    2012-12-01

    The Mw 7.8 2006 July 17 earthquake off the southern coast of Java, Indonesia, has been responsible for a very large tsunami causing more than 700 casualties. The tsunami has been observed on at least 200 km of coastline in the region of Pangandaran (West Java), with run-up heights from 5 to more than 20 m. Such a large tsunami, with respect to the source magnitude, has been attributed to the slow character of the seismic rupture, defining the event as a so-called tsunami earthquake, but it has also been suggested that the largest run-up heights are actually the result of a second local landslide source. Here we test whether a single slow earthquake source can explain the tsunami run-up, using a combination of new detailed data in the region of the largest run-ups and comparison with modelled run-ups for a range of plausible earthquake source models. Using high-resolution satellite imagery (SPOT 5 and Quickbird), the coastal impact of the tsunami is refined in the surroundings of the high-security Permisan prison on Nusa Kambangan island, where 20 m run-up had been recorded directly after the event. These data confirm the extreme inundation lengths close to the prison, and extend the area of maximum impact further along the Nusa Kambangan island (about 20 km of shoreline), where inundation lengths reach several hundreds of metres, suggesting run-up as high as 10-15 m. Tsunami modelling has been conducted in detail for the high run-up Permisan area (Nusa Kambangan) and the PLTU power plant about 25 km eastwards, where run-up reached only 4-6 m and a video recording of the tsunami arrival is available. For the Permisan prison a high-resolution DEM was built from stereoscopic satellite imagery. The regular basin of the PLTU plant was designed using photographs and direct observations. For the earthquake's mechanism, both static (infinite) and finite (kinematic) ruptures are investigated using two published source models. The models account rather well for the sea level

  4. Detecting the changes in rural communities in Taiwan by applying multiphase segmentation on FORMOSA-2 satellite imagery

    Science.gov (United States)

    Huang, Yishuo

    2015-09-01

    regions containing roads, buildings, and other manmade construction works and the class with high values of NDVI indicates that those regions contain vegetation in good health. In order to verify the processed results, the regional boundaries were extracted and laid down on the given images to check whether the extracted boundaries were laid down on buildings, roads, or other artificial constructions. In addition to the proposed approach, another approach called statistical region merging was employed by grouping sets of pixels with homogeneous properties such that those sets are iteratively grown by combining smaller regions or pixels. In doing so, the segmented NDVI map can be generated. By comparing the areas of the merged classes in different years, the changes occurring in the rural communities of Taiwan can be detected. The satellite imagery of FORMOSA-2 with 2-m ground resolution is employed to evaluate the performance of the proposed approach. The satellite imagery of two rural communities (Jhumen and Taomi communities) is chosen to evaluate environmental changes between 2005 and 2010. The change maps of 2005-2010 show that a high density of green on a patch of land is increased by 19.62 ha in Jhumen community and conversely a similar patch of land is significantly decreased by 236.59 ha in Taomi community. Furthermore, the change maps created by another image segmentation method called statistical region merging generate similar processed results to multiphase segmentation.

  5. CDRD and PNPR satellite passive microwave precipitation retrieval algorithms: EuroTRMM/EURAINSAT origins and H-SAF operations

    Science.gov (United States)

    Mugnai, A.; Smith, E. A.; Tripoli, G. J.; Bizzarri, B.; Casella, D.; Dietrich, S.; Di Paola, F.; Panegrossi, G.; Sanò, P.

    2013-04-01

    Satellite Application Facility on Support to Operational Hydrology and Water Management (H-SAF) is a EUMETSAT (European Organisation for the Exploitation of Meteorological Satellites) program, designed to deliver satellite products of hydrological interest (precipitation, soil moisture and snow parameters) over the European and Mediterranean region to research and operations users worldwide. Six satellite precipitation algorithms and concomitant precipitation products are the responsibility of various agencies in Italy. Two of these algorithms have been designed for maximum accuracy by restricting their inputs to measurements from conical and cross-track scanning passive microwave (PMW) radiometers mounted on various low Earth orbiting satellites. They have been developed at the Italian National Research Council/Institute of Atmospheric Sciences and Climate in Rome (CNR/ISAC-Rome), and are providing operational retrievals of surface rain rate and its phase properties. Each of these algorithms is physically based, however, the first of these, referred to as the Cloud Dynamics and Radiation Database (CDRD) algorithm, uses a Bayesian-based solution solver, while the second, referred to as the PMW Neural-net Precipitation Retrieval (PNPR) algorithm, uses a neural network-based solution solver. Herein we first provide an overview of the two initial EU research and applications programs that motivated their initial development, EuroTRMM and EURAINSAT (European Satellite Rainfall Analysis and Monitoring at the Geostationary Scale), and the current H-SAF program that provides the framework for their operational use and continued development. We stress the relevance of the CDRD and PNPR algorithms and their precipitation products in helping secure the goals of H-SAF's scientific and operations agenda, the former helpful as a secondary calibration reference to other algorithms in H-SAF's complete mix of algorithms. Descriptions of the algorithms' designs are provided

  6. CDRD and PNPR satellite passive microwave precipitation retrieval algorithms: EuroTRMM/EURAINSAT origins and H-SAF operations

    Directory of Open Access Journals (Sweden)

    A. Mugnai

    2013-04-01

    Full Text Available Satellite Application Facility on Support to Operational Hydrology and Water Management (H-SAF is a EUMETSAT (European Organisation for the Exploitation of Meteorological Satellites program, designed to deliver satellite products of hydrological interest (precipitation, soil moisture and snow parameters over the European and Mediterranean region to research and operations users worldwide. Six satellite precipitation algorithms and concomitant precipitation products are the responsibility of various agencies in Italy. Two of these algorithms have been designed for maximum accuracy by restricting their inputs to measurements from conical and cross-track scanning passive microwave (PMW radiometers mounted on various low Earth orbiting satellites. They have been developed at the Italian National Research Council/Institute of Atmospheric Sciences and Climate in Rome (CNR/ISAC-Rome, and are providing operational retrievals of surface rain rate and its phase properties. Each of these algorithms is physically based, however, the first of these, referred to as the Cloud Dynamics and Radiation Database (CDRD algorithm, uses a Bayesian-based solution solver, while the second, referred to as the PMW Neural-net Precipitation Retrieval (PNPR algorithm, uses a neural network-based solution solver. Herein we first provide an overview of the two initial EU research and applications programs that motivated their initial development, EuroTRMM and EURAINSAT (European Satellite Rainfall Analysis and Monitoring at the Geostationary Scale, and the current H-SAF program that provides the framework for their operational use and continued development. We stress the relevance of the CDRD and PNPR algorithms and their precipitation products in helping secure the goals of H-SAF's scientific and operations agenda, the former helpful as a secondary calibration reference to other algorithms in H-SAF's complete mix of algorithms. Descriptions of the algorithms' designs are

  7. Multiscale assessment of progress of electrification in Indonesia based on brightness level derived from nighttime satellite imagery.

    Science.gov (United States)

    Ramdani, Fatwa; Setiani, Putri

    2017-06-01

    Availability of electricity can be used as an indicator to proximate parameters related to human well-being. Overall, the electrification process in Indonesia has been accelerating in the past two decades. Unfortunately, monitoring the country's progress on its effort to provide wider access to electricity poses challenges due to inconsistency of data provided by each national bureau, and limited availability of information. This study attempts to provide a reliable measure by employing nighttime satellite imagery to observe and to map the progress of electrification within a duration of 20 years, from 1993 to 2013. Brightness of 67,021 settlement-size points in 1993, 2003, and 2013 was assessed using data from DMSP/OLS instruments to study the electrification progress in the three service regions (Sumatera, Java-Bali, and East Indonesia) of the country's public electricity company, PLN. Observation of all service areas shows that the increase in brightness, which correspond with higher electricity development and consumption, has positive correlation with both population density (R 2  = 0.70) and urban change (R 2  = 0.79). Moreover, urban change has a stronger correlation with brightness, which is probably due to the high energy consumption in urban area per capita. This study also found that the brightness in Java-Bali region is very dominant, while the brightness in other areas has been lagging during the period of analysis. The slow development of electricity infrastructure, particularly in major parts of East Indonesia region, affects the low economic growth in some areas and formed vicious cycle.

  8. Mapping Sub-Saharan African Agriculture in High-Resolution Satellite Imagery with Computer Vision & Machine Learning

    Science.gov (United States)

    Debats, Stephanie Renee

    Smallholder farms dominate in many parts of the world, including Sub-Saharan Africa. These systems are characterized by small, heterogeneous, and often indistinct field patterns, requiring a specialized methodology to map agricultural landcover. In this thesis, we developed a benchmark labeled data set of high-resolution satellite imagery of agricultural fields in South Africa. We presented a new approach to mapping agricultural fields, based on efficient extraction of a vast set of simple, highly correlated, and interdependent features, followed by a random forest classifier. The algorithm achieved similar high performance across agricultural types, including spectrally indistinct smallholder fields, and demonstrated the ability to generalize across large geographic areas. In sensitivity analyses, we determined multi-temporal images provided greater performance gains than the addition of multi-spectral bands. We also demonstrated how active learning can be incorporated in the algorithm to create smaller, more efficient training data sets, which reduced computational resources, minimized the need for humans to hand-label data, and boosted performance. We designed a patch-based uncertainty metric to drive the active learning framework, based on the regular grid of a crowdsourcing platform, and demonstrated how subject matter experts can be replaced with fleets of crowdsourcing workers. Our active learning algorithm achieved similar performance as an algorithm trained with randomly selected data, but with 62% less data samples. This thesis furthers the goal of providing accurate agricultural landcover maps, at a scale that is relevant for the dominant smallholder class. Accurate maps are crucial for monitoring and promoting agricultural production. Furthermore, improved agricultural landcover maps will aid a host of other applications, including landcover change assessments, cadastral surveys to strengthen smallholder land rights, and constraints for crop modeling

  9. Mapping Urban Tree Canopy Coverage and Structure using Data Fusion of High Resolution Satellite Imagery and Aerial Lidar

    Science.gov (United States)

    Elmes, A.; Rogan, J.; Williams, C. A.; Martin, D. G.; Ratick, S.; Nowak, D.

    2015-12-01

    Urban tree canopy (UTC) coverage is a critical component of sustainable urban areas. Trees provide a number of important ecosystem services, including air pollution mitigation, water runoff control, and aesthetic and cultural values. Critically, urban trees also act to mitigate the urban heat island (UHI) effect by shading impervious surfaces and via evaporative cooling. The cooling effect of urban trees can be seen locally, with individual trees reducing home HVAC costs, and at a citywide scale, reducing the extent and magnitude of an urban areas UHI. In order to accurately model the ecosystem services of a given urban forest, it is essential to map in detail the condition and composition of these trees at a fine scale, capturing individual tree crowns and their vertical structure. This paper presents methods for delineating UTC and measuring canopy structure at fine spatial resolution (body of methods, relying on a data fusion method to combine the information contained in high resolution WorldView-3 satellite imagery and aerial lidar data using an object-based image classification approach. The study area, Worcester, MA, has recently undergone a large-scale tree removal and reforestation program, following a pest eradication effort. Therefore, the urban canopy in this location provides a wide mix of tree age class and functional type, ideal for illustrating the effectiveness of the proposed methods. Early results show that the object-based classifier is indeed capable of identifying individual tree crowns, while continued research will focus on extracting crown structural characteristics using lidar-derived metrics. Ultimately, the resulting fine resolution UTC map will be compared with previously created UTC maps of the same area but for earlier dates, producing a canopy change map corresponding to the Worcester area tree removal and replanting effort.

  10. Monitoring and modeling land-use change in the Pearl River Delta, China, using satellite imagery and socioeconomic data

    Science.gov (United States)

    Seto, Karen Ching-Yee

    Over the last two decades, rapid rates of economic growth in the People's Republic of China have converted large areas of natural ecosystems and agricultural lands to urban uses. The size and rate of these land-use changes may affect local and regional climate, biogeochemistry, and food supply. To assess these impacts, both the amount of land converted and its relation to socioeconomic drivers must be determined. This research combines satellite remote sensing, which is used to monitor land conversion, with socioeconomic data to model the economic and demographic drivers of land-use change in the Pearl River Delta of Southern China. This research modifies existing techniques and develops new methods to assess the type, amount, and timing of land-use change from annual Landsat Thematic Mapper (TM) images from 1988 to 1996. During this period, most of the land-use change is conversion of agricultural land to urban areas. Results indicate that urban areas, increased by over 300% between 1988 and 1996. Field assessments confirm these results and indicate that the land-use change map is highly accurate at 93.5%. To use these data as inputs to statistical models, the year of land conversion derived from satellite imagery must be unbiased. A new method that uses time series techniques identifies the date at which land-use changes occur from a sequential series of TM images. The accuracy and bias of the dates of change identified compare favorably to a more conventional remote sensing change detection technique and may have the additional advantages of reducing efforts required to assemble training data and to correct for atmospheric effects. Data on the quantity of land-use change and the timing of these changes are used in conjunction with socioeconomic data to estimate statistical models that identify and quantify the demographic and economic changes on two types of land conversion: urbanization of agricultural land and urbanization of natural vegetation. Results

  11. Inferring species richness and turnover by statistical multiresolution texture analysis of satellite imagery.

    Directory of Open Access Journals (Sweden)

    Matteo Convertino

    Full Text Available BACKGROUND: The quantification of species-richness and species-turnover is essential to effective monitoring of ecosystems. Wetland ecosystems are particularly in need of such monitoring due to their sensitivity to rainfall, water management and other external factors that affect hydrology, soil, and species patterns. A key challenge for environmental scientists is determining the linkage between natural and human stressors, and the effect of that linkage at the species level in space and time. We propose pixel intensity based Shannon entropy for estimating species-richness, and introduce a method based on statistical wavelet multiresolution texture analysis to quantitatively assess interseasonal and interannual species turnover. METHODOLOGY/PRINCIPAL FINDINGS: We model satellite images of regions of interest as textures. We define a texture in an image as a spatial domain where the variations in pixel intensity across the image are both stochastic and multiscale. To compare two textures quantitatively, we first obtain a multiresolution wavelet decomposition of each. Either an appropriate probability density function (pdf model for the coefficients at each subband is selected, and its parameters estimated, or, a non-parametric approach using histograms is adopted. We choose the former, where the wavelet coefficients of the multiresolution decomposition at each subband are modeled as samples from the generalized Gaussian pdf. We then obtain the joint pdf for the coefficients for all subbands, assuming independence across subbands; an approximation that simplifies the computational burden significantly without sacrificing the ability to statistically distinguish textures. We measure the difference between two textures' representative pdf's via the Kullback-Leibler divergence (KL. Species turnover, or [Formula: see text] diversity, is estimated using both this KL divergence and the difference in Shannon entropy. Additionally, we predict species

  12. Satellites

    International Nuclear Information System (INIS)

    Burns, J.A.; Matthews, M.S.

    1986-01-01

    The present work is based on a conference: Natural Satellites, Colloquium 77 of the IAU, held at Cornell University from July 5 to 9, 1983. Attention is given to the background and origins of satellites, protosatellite swarms, the tectonics of icy satellites, the physical characteristics of satellite surfaces, and the interactions of planetary magnetospheres with icy satellite surfaces. Other topics include the surface composition of natural satellites, the cratering of planetary satellites, the moon, Io, and Europa. Consideration is also given to Ganymede and Callisto, the satellites of Saturn, small satellites, satellites of Uranus and Neptune, and the Pluto-Charon system

  13. 75 FR 39701 - Revision of a Currently Approved Collection: Users, Uses, and Benefits of Landsat Satellite Imagery

    Science.gov (United States)

    2010-07-12

    ... information from this collection to understand if they are currently meeting the needs of their user community... (1028-0091) provided up-to-date information about the current users and uses of Landsat imagery, as well... provided general information from a broader population of moderate resolution imagery users. This revised...

  14. Optimizing available water capacity using microwave satellite data for improving irrigation management

    Science.gov (United States)

    Gupta, Manika; Bolten, John; Lakshmi, Venkat

    2015-04-01

    This work addresses the improvement of available water capacity by developing a technique for estimating soil hydraulic parameters through the utilization of satellite-retrieved near surface soil moisture. The prototype involves the usage of Monte Carlo analysis to assimilate historical remote sensing soil moisture data available from the Advanced Microwave Scanning Radiometer (AMSR-E) within the hydrological model. The main hypothesis used in this study is that near-surface soil moisture data contain useful information that can describe the effective hydrological conditions of the basin such that when appropriately In the method followed in this study the hydraulic parameters are derived directly from information on the soil moisture state at the AMSR-E footprint scale and the available water capacity is derived for the root zone by coupling of AMSR-E soil moisture with the physically-based hydrological model. The available capacity water, which refers to difference between the field capacity and wilting point of the soil and represent the soil moisture content at 0.33 bar and 15 bar respectively is estimated from the soil hydraulic parameters using the van Genuchten equation. The initial ranges of soil hydraulic parameters are taken in correspondence with the values available from the literature based on Soil Survey Geographic (SSURGO) database within the particular AMSR-E footprint. Using the Monte Carlo simulation, the ranges are narrowed in the region where simulation shows a good match between predicted and near-surface soil moisture from AMSR-E. In this study, the uncertainties in accurately determining the parameters of the nonlinear soil water retention function for large-scale hydrological modeling is the focus of the development of the Bayesian framework. Thus, the model forecasting has been combined with the observational information to optimize the model state and the soil hydraulic parameters simultaneously. The optimization process is divided into

  15. Monitoring forest areas from continental to territorial levels using a sample of medium spatial resolution satellite imagery

    Science.gov (United States)

    Eva, Hugh; Carboni, Silvia; Achard, Frédéric; Stach, Nicolas; Durieux, Laurent; Faure, Jean-François; Mollicone, Danilo

    A global systematic sampling scheme has been developed by the UN FAO and the EC TREES project to estimate rates of deforestation at global or continental levels at intervals of 5 to 10 years. This global scheme can be intensified to produce results at the national level. In this paper, using surrogate observations, we compare the deforestation estimates derived from these two levels of sampling intensities (one, the global, for the Brazilian Amazon the other, national, for French Guiana) to estimates derived from the official inventories. We also report the precisions that are achieved due to sampling errors and, in the case of French Guiana, compare such precision with the official inventory precision. We extract nine sample data sets from the official wall-to-wall deforestation map derived from satellite interpretations produced for the Brazilian Amazon for the year 2002 to 2003. This global sampling scheme estimate gives 2.81 million ha of deforestation (mean from nine simulated replicates) with a standard error of 0.10 million ha. This compares with the full population estimate from the wall-to-wall interpretations of 2.73 million ha deforested, which is within one standard error of our sampling test estimate. The relative difference between the mean estimate from sampling approach and the full population estimate is 3.1%, and the standard error represents 4.0% of the full population estimate. This global sampling is then intensified to a territorial level with a case study over French Guiana to estimate deforestation between the years 1990 and 2006. For the historical reference period, 1990, Landsat-5 Thematic Mapper data were used. A coverage of SPOT-HRV imagery at 20 m × 20 m resolution acquired at the Cayenne receiving station in French Guiana was used for year 2006. Our estimates from the intensified global sampling scheme over French Guiana are compared with those produced by the national authority to report on deforestation rates under the Kyoto

  16. Use of satellite imagery to identify vegetation cover changes following the Waldo Canyon Fire event, Colorado, 2012-2013

    Science.gov (United States)

    Cole, Christopher J.; Friesen, Beverly A.; Wilson, Earl M.

    2014-01-01

    The Waldo Canyon Fire of 2012 was one of the most destructive wildfire events in Colorado history. The fire burned a total of 18,247 acres, claimed 2 lives, and destroyed 347 homes. The Waldo Canyon Fire continues to pose challenges to nearby communities. In a preliminary emergency assessment conducted in 2012, the U.S. Geological Survey (USGS) concluded that drainage basins within and near the area affected by the Waldo Canyon Fire pose a risk for future debris flow events. Rainfall over burned, formerly vegetated surfaces resulted in multiple flood and debris flow events that affected the cities of Colorado Springs and Manitou Springs in 2013. One fatality resulted from a mudslide near Manitou Springs in August 2013. Federal, State, and local governments continue to monitor these hazards and other post-fire effects, along with the region’s ecological recovery. At the request of the Colorado Springs Office of Emergency Management, the USGS Special Applications Science Center developed a geospatial product to identify vegetation cover changes following the 2012 Waldo Canyon Fire event. Vegetation cover was derived from July 2012 WorldView-2 and September 2013 QuickBird multispectral imagery at a spatial resolution of two meters. The 2012 image was collected after the fire had reached its maximum extent. Per-pixel increases and decreases in vegetation cover were identified by measuring spectral changes that occurred between the 2012 and 2013 image dates. A Normalized Difference Vegetation Index (NDVI), and Green-Near Infrared Index (GRNIR) were computed from each image. These spectral indices are commonly used to characterize vegetation cover and health condition, due to their sensitivity to detect foliar chlorophyll content. Vector polygons identifying surface-cover feature boundaries were derived from the 2013 imagery using image segmentation software. This geographic software groups similar image pixels into vector objects based upon their spatial and spectral

  17. A Neutral-Network-Fusion Architecture for Automatic Extraction of Oceanographic Features from Satellite Remote Sensing Imagery

    National Research Council Canada - National Science Library

    Askari, Farid

    1999-01-01

    This report describes an approach for automatic feature detection from fusion of remote sensing imagery using a combination of neural network architecture and the Dempster-Shafer (DS) theory of evidence...

  18. Next-Generation NASA Earth-Orbiting Relay Satellites: Fusing Optical and Microwave Communications

    Science.gov (United States)

    Israel, David J.; Shaw, Harry

    2018-01-01

    NASA is currently considering architectures and concepts for the generation of relay satellites that will replace the Tracking and Data Relay Satellite (TDRS) constellation, which has been flying since 1983. TDRS-M, the last of the second TDRS generation, launched in August 2017, extending the life of the TDRS constellation beyond 2030. However, opportunities exist to re-engineer the concepts of geosynchronous Earth relay satellites. The needs of the relay satellite customers have changed dramatically over the last 34 years since the first TDRS launch. There is a demand for greater bandwidth as the availability of the traditional RF spectrum for space communications diminishes and the demand for ground station access grows. The next generation of NASA relay satellites will provide for operations that have factored in these new constraints. In this paper, we describe a heterogeneous constellation of geosynchronous relay satellites employing optical and RF communications. The new constellation will enable new optical communications services formed by user-to-space relay, space relay-to-space relay and space relay-to-ground links. It will build upon the experience from the Lunar Laser Communications Demonstration from 2013 and the Laser Communications Relay Demonstration to be launched in 2019.Simultaneous to establishment of the optical communications space segment, spacecraft in the TDRS constellation will be replaced with RF relay satellites with targeted subsets of the TDRS capabilities. This disaggregation of the TDRS service model will allow for flexibility in replenishing the needs of legacy users as well as addition of new capabilities for future users. It will also permit the U.S. government access to launch capabilities such as rideshare and to hosted payloads that were not previously available.In this paper, we also explore how the next generation of Earth relay satellites provides a significant boost in the opportunities for commercial providers to the

  19. Next-Generation NASA Earth-Orbiting Relay Satellites: Fusing Microwave and Optical Communications

    Science.gov (United States)

    Israel, David J.

    2018-01-01

    NASA is currently considering architectures and concepts for the generation of relay satellites that will replace the Tracking and Data Relay Satellite (TDRS) constellation, which has been flying since 1983. TDRS-M, the last of the second TDRS generation, launched in August 2017, extending the life of the TDRS constellation beyond 2030. However, opportunities exist to re-engineer the concepts of geosynchronous Earth relay satellites. The needs of the relay satellite customers have changed dramatically over the last 34 years since the first TDRS launch. There is a demand for greater bandwidth as the availability of the traditional RF spectrum for space communications diminishes and the demand for ground station access grows. The next generation of NASA relay satellites will provide for operations that have factored in these new constraints. In this paper, we describe a heterogeneous constellation of geosynchronous relay satellites employing optical and RF communications. The new constellation will enable new optical communications services formed by user-to-space relay, space relay-to-space relay and space relay-to-ground links. It will build upon the experience from the Lunar Laser Communications Demonstration from 2013 and the Laser Communications Relay Demonstration to be launched in 2019.Simultaneous to establishment of the optical communications space segment, spacecraft in the TDRS constellation will be replaced with RF relay satellites with targeted subsets of the TDRS capabilities. This disaggregation of the TDRS service model will allow for flexibility in replenishing the needs of legacy users as well as addition of new capabilities for future users. It will also permit the U.S. government access to launch capabilities such as rideshare and to hosted payloads that were not previously available. In this paper, we also explore how the next generation of Earth relay satellites provides a significant boost in the opportunities for commercial providers to the

  20. Use of geostationary satellite imagery in optical and thermal bands for the estimation of soil moisture status and land evapotranspiration

    Science.gov (United States)

    Ghilain, N.; Arboleda, A.; Gellens-Meulenberghs, F.

    2009-04-01

    For water and agricultural management, there is an increasing demand to monitor the soil water status and the land evapotranspiration. In the framework of the LSA-SAF project (http://landsaf.meteo.pt), we are developing an energy balance model forced by remote sensing products, i.e. radiation components and vegetation parameters, to monitor in quasi real-time the evapotranspiration rate over land (Gellens-Meulenberghs et al, 2007; Ghilain et al, 2008). The model is applied over the full MSG disk, i.e. including Europe and Africa. Meteorological forcing, as well as the soil moisture status, is provided by the forecasts of the ECMWF model. Since soil moisture is computed by a forecast model not dedicated to the monitoring of the soil water status, inadequate soil moisture input can occur, and can cause large effects on evapotranspiration rates, especially over semi-arid or arid regions. In these regions, a remotely sensed-based method for the soil moisture retrieval can therefore be preferable, to avoid too strong dependency in ECMWF model estimates. Among different strategies, remote sensing offers the advantage of monitoring large areas. Empirical methods of soil moisture assessment exist using remotely sensed derived variables either from the microwave bands or from the thermal bands. Mainly polar orbiters are used for this purpose, and little attention has been paid to the new possibilities offered by geosynchronous satellites. In this contribution, images of the SEVIRI instrument on board of MSG geosynchronous satellites are used. Dedicated operational algorithms were developed for the LSA-SAF project and now deliver images of land surface temperature (LST) every 15-minutes (Trigo et al, 2008) and vegetations indices (leaf area index, LAI; fraction of vegetation cover, FVC; fraction of absorbed photosynthetically active radiation, FAPAR) every day (Garcia-Haro et al, 2005) over Africa and Europe. One advantage of using products derived from geostationary

  1. The 1988-2003 Greenland ice sheet melt extent using passive microwave satellite data and a regional climate model

    Energy Technology Data Exchange (ETDEWEB)

    Fettweis, Xavier; Ypersele, Jean-Pascal van [Universite Catholique de Louvain, Institut d' Astronomie et de Geophysique de G. Lemaitre, Louvain-La-Neuve (Belgium); Gallee, Hubert [CNRS, Laboratoire de Glaciologie et Geophysique de l' Environnement, Grenoble (France); Lefebre, Filip [Vito-IMS (Flemish Institute for Technological Research-Integral Environmental Studies), Mol (Belgium)

    2006-10-15

    Measurements from ETH-Camp and JAR1 AWS (West Greenland) as well as coupled atmosphere-snow regional climate simulations have highlighted flaws in the cross-polarized gradient ratio (XPGR) technique used to identify melt from passive microwave satellite data. It was found that dense clouds (causing notably rainfall) on the ice sheet severely perturb the XPGR melt signal. Therefore, the original XPGR melt detection algorithm has been adapted to better incorporate atmospheric variability over the ice sheet and an updated melt trend for the 1988-2003 period has been calculated. Compared to the original algorithm, the melt zone area increase is eight times higher (from 0.2 to 1.7% year{sup -1}). The increase is higher with the improved XPGR technique because rainfall also increased during this period. It is correlated to higher atmospheric temperatures. Finally, the model shows that the total ice sheet runoff is directly proportional to the melt extent surface detected by satellites. These results are important for the understanding of the effect of Greenland melting on the stability of the thermohaline circulation. (orig.)

  2. Built-Up Area and Land Cover Extraction Using High Resolution Pleiades Satellite Imagery for Midrand, in Gauteng Province, South Africa

    Science.gov (United States)

    Fundisi, E.; Musakwa, W.

    2017-09-01

    Urban areas, particularly in developing countries face immense challenges such as climate change, poverty, lack of resources poor land use management systems, and week environmental management practices. Mitigating against these challenges is often hampered by lack of data on urban expansion, urban footprint and land cover. To support the recently adopted new urban agenda 2030 there is need for the provision of information to support decision making in the urban areas. Earth observation has been identified as a tool to foster sustainable urban planning and smarter cities as recognized by the new urban agenda, because it is a solution to unavailability of data. Accordingly, this study uses high resolution EO data Pleiades satellite imagery to map and document land cover for the rapidly expanding area of Midrand in Johannesburg, South Africa. An unsupervised land cover classification of the Pleiades satellite imagery was carried out using ENVI software, whereas NDVI was derived using ArcGIS software. The land cover had an accuracy of 85% that is highly adequate to document the land cover in Midrand. The results are useful because it provides a highly accurate land cover and NDVI datasets at localised spatial scale that can be used to support land use management strategies within Midrand and the City of Johannesburg South Africa.

  3. BUILT-UP AREA AND LAND COVER EXTRACTION USING HIGH RESOLUTION PLEIADES SATELLITE IMAGERY FOR MIDRAND, IN GAUTENG PROVINCE, SOUTH AFRICA

    Directory of Open Access Journals (Sweden)

    E. Fundisi

    2017-09-01

    Full Text Available Urban areas, particularly in developing countries face immense challenges such as climate change, poverty, lack of resources poor land use management systems, and week environmental management practices. Mitigating against these challenges is often hampered by lack of data on urban expansion, urban footprint and land cover. To support the recently adopted new urban agenda 2030 there is need for the provision of information to support decision making in the urban areas. Earth observation has been identified as a tool to foster sustainable urban planning and smarter cities as recognized by the new urban agenda, because it is a solution to unavailability of data. Accordingly, this study uses high resolution EO data Pleiades satellite imagery to map and document land cover for the rapidly expanding area of Midrand in Johannesburg, South Africa. An unsupervised land cover classification of the Pleiades satellite imagery was carried out using ENVI software, whereas NDVI was derived using ArcGIS software. The land cover had an accuracy of 85% that is highly adequate to document the land cover in Midrand. The results are useful because it provides a highly accurate land cover and NDVI datasets at localised spatial scale that can be used to support land use management strategies within Midrand and the City of Johannesburg South Africa.

  4. Using High Resolution Commercial Satellite Imagery to Quantify Spatial Features of Urban Areas and their Relationship to Quality of Life Indicators in Accra, Ghana

    Science.gov (United States)

    Sandborn, A.; Engstrom, R.; Yu, Q.

    2014-12-01

    Mapping urban areas via satellite imagery is an important task for detecting and anticipating land cover and land use change at multiple scales. As developing countries experience substantial urban growth and expansion, remotely sensed based estimates of population and quality of life indicators can provide timely and spatially explicit information to researchers and planners working to determine how cities are changing. In this study, we use commercial high spatial resolution satellite imagery in combination with fine resolution census data to determine the ability of using remotely sensed data to reveal the spatial patterns of quality of life in Accra, Ghana. Traditionally, spectral characteristics are used on a per-pixel basis to determine land cover; however, in this study, we test a new methodology that quantifies spatial characteristics using a variety of spatial features observed in the imagery to determine the properties of an urban area. The spatial characteristics used in this study include histograms of oriented gradients, PanTex, Fourier transform, and line support regions. These spatial features focus on extracting structural and textural patterns of built-up areas, such as homogeneous building orientations and straight line indices. Information derived from aggregating the descriptive statistics of the spatial features at both the fine-resolution census unit and the larger neighborhood level are then compared to census derived quality of life indicators including information about housing, education, and population estimates. Preliminary results indicate that there are correlations between straight line indices and census data including available electricity and literacy rates. Results from this study will be used to determine if this methodology provides a new and improved way to measure a city structure in developing cities and differentiate between residential and commercial land use zones, as well as formal versus informal housing areas.

  5. Arctic multiyear ice classification and summer ice cover using passive microwave satellite data

    Science.gov (United States)

    Comiso, J. C.

    1990-08-01

    The ability to classify and monitor Arctic multiyear sea ice cover using multispectral passive microwave data is studied. Sea ice concentration maps during several summer minima have been analyzed to obtain estimates of ice surviving the summer. The results are compared with multiyear ice concentrations derived from data the following winter, using an algorithm that assumes a certain emissivity for multiyear ice. The multiyear ice cover inferred from the winter data is approximately 25 to 40% less than the summer ice cover minimum, suggesting that even during winter when the emissivity of sea ice is most stable, passive microwave data may account for only a fraction of the total multiyear ice cover. The difference of about 2×106 km2 is considerably more than estimates of advection through Fram Strait during the intervening period. It appears that as in the Antarctic, some multiyear ice floes in the Arctic, especially those near the summer marginal ice zone, have first-year ice or intermediate signatures in the subsequent winter. A likely mechanism for this is the intrusion of seawater into the snow-ice interface, which often occurs near the marginal ice zone or in areas where snow load is heavy. Spatial variations in melt and melt ponding effects also contribute to the complexity of the microwave emissivity of multiyear ice. Hence the multiyear ice data should be studied in conjunction with the previous summer ice data to obtain a more complete characterization of the state of the Arctic ice cover. The total extent and actual areas of the summertime Arctic pack ice were estimated to be 8.4×106 km2 and 6.2×106 km2, respectively, and exhibit small interannual variability during the years 1979 through 1985, suggesting a relatively stable ice cover.

  6. Satellite passive microwave rain rate measurement over croplands during spring, summer and fall

    International Nuclear Information System (INIS)

    Spencer, R.W.

    1984-01-01

    Rain rate algorithms for spring, summer and fall that have been developed from comparisons between the brightness temperatures measured by the Nimbus-7 Scanning Multichannel Microwave Radiometer (SMMR) and rain rates derived from operational WSR-57 radars over land are described. Data were utilized from a total of 25 SMMR passes and 234 radars, resulting in ∼12 000 observations of ∼1600 km 2 areas. Multiple correlation coefficients of 0.63, 0.80 and 0.75 are achieved for the spring, summer and fall algorithms, respectively. Most of this information is in the form of multifrequency contrast in brightness temperature, which is interpreted as a measurement of the degree to which the land-emitted radiation is attenuated by the rain systems. The SMMR 37 GHz channel has more information on rain rate than any other channel. By combining the lower frequency channels with the 37 GHz observations, variations in land and precipitation thermometric temperatures can be removed, leaving rain attenuation as the major effect on brightness temperature. Polarization screening at 37 GHz is found to be sufficient to screen out cases of wet ground, which is only important when the ground is relatively vegetation free. Heavy rain cases are found to be a significant part of the algorithms' success, because of the strong microwave signatures (low brightness temperatures) that result from the presence of precipitation-sized ice in the upper portions of heavily precipitating storms. If IR data are combined with the summer microwave data, an improved (0.85) correlation with radar rain rates is achieved

  7. An Uncertainty Data Set for Passive Microwave Satellite Observations of Warm Cloud Liquid Water Path

    Science.gov (United States)

    Greenwald, Thomas J.; Bennartz, Ralf; Lebsock, Matthew; Teixeira, João.

    2018-04-01

    The first extended comprehensive data set of the retrieval uncertainties in passive microwave observations of cloud liquid water path (CLWP) for warm oceanic clouds has been created for practical use in climate applications. Four major sources of systematic errors were considered over the 9-year record of the Advanced Microwave Scanning Radiometer-EOS (AMSR-E): clear-sky bias, cloud-rain partition (CRP) bias, cloud-fraction-dependent bias, and cloud temperature bias. Errors were estimated using a unique merged AMSR-E/Moderate resolution Imaging Spectroradiometer Level 2 data set as well as observations from the Cloud-Aerosol Lidar with Orthogonal Polarization and the CloudSat Cloud Profiling Radar. To quantify the CRP bias more accurately, a new parameterization was developed to improve the inference of CLWP in warm rain. The cloud-fraction-dependent bias was found to be a combination of the CRP bias, an in-cloud bias, and an adjacent precipitation bias. Globally, the mean net bias was 0.012 kg/m2, dominated by the CRP and in-cloud biases, but with considerable regional and seasonal variation. Good qualitative agreement between a bias-corrected AMSR-E CLWP climatology and ship observations in the Northeast Pacific suggests that the bias estimates are reasonable. However, a possible underestimation of the net bias in certain conditions may be due in part to the crude method used in classifying precipitation, underscoring the need for an independent method of detecting rain in warm clouds. This study demonstrates the importance of combining visible-infrared imager data and passive microwave CLWP observations for estimating uncertainties and improving the accuracy of these observations.

  8. The AMSR2 Satellite-based Microwave Snow Algorithm (SMSA) to estimate regional to global snow depth and snow water equivalent

    Science.gov (United States)

    Kelly, R. E. J.; Saberi, N.; Li, Q.

    2017-12-01

    With moderate to high spatial resolution (observation approaches yet to be fully scoped and developed, the long-term satellite passive microwave record remains an important tool for cryosphere-climate diagnostics. A new satellite microwave remote sensing approach is described for estimating snow depth (SD) and snow water equivalent (SWE). The algorithm, called the Satellite-based Microwave Snow Algorithm (SMSA), uses Advanced Microwave Scanning Radiometer - 2 (AMSR2) observations aboard the Global Change Observation Mission - Water mission launched by the Japan Aerospace Exploration Agency in 2012. The approach is unique since it leverages observed brightness temperatures (Tb) with static ancillary data to parameterize a physically-based retrieval without requiring parameter constraints from in situ snow depth observations or historical snow depth climatology. After screening snow from non-snow surface targets (water bodies [including freeze/thaw state], rainfall, high altitude plateau regions [e.g. Tibetan plateau]), moderate and shallow snow depths are estimated by minimizing the difference between Dense Media Radiative Transfer model estimates (Tsang et al., 2000; Picard et al., 2011) and AMSR2 Tb observations to retrieve SWE and SD. Parameterization of the model combines a parsimonious snow grain size and density approach originally developed by Kelly et al. (2003). Evaluation of the SMSA performance is achieved using in situ snow depth data from a variety of standard and experiment data sources. Results presented from winter seasons 2012-13 to 2016-17 illustrate the improved performance of the new approach in comparison with the baseline AMSR2 algorithm estimates and approach the performance of the model assimilation-based approach of GlobSnow. Given the variation in estimation power of SWE by different land surface/climate models and selected satellite-derived passive microwave approaches, SMSA provides SWE estimates that are independent of real or near real

  9. Stand-alone error characterisation of microwave satellite soil moisture using a Fourier method

    Science.gov (United States)

    Error characterisation of satellite-retrieved soil moisture (SM) is crucial for maximizing their utility in research and applications in hydro-meteorology and climatology. Error characteristics can provide insights for retrieval development and validation, and inform suitable strategies for data fus...

  10. Efficient Photometry In-Frame Calibration (EPIC) Gaussian Corrections for Automated Background Normalization of Rate-Tracked Satellite Imagery

    Science.gov (United States)

    Griesbach, J.; Wetterer, C.; Sydney, P.; Gerber, J.

    Photometric processing of non-resolved Electro-Optical (EO) images has commonly required the use of dark and flat calibration frames that are obtained to correct for charge coupled device (CCD) dark (thermal) noise and CCD quantum efficiency/optical path vignetting effects respectively. It is necessary to account/calibrate for these effects so that the brightness of objects of interest (e.g. stars or resident space objects (RSOs)) may be measured in a consistent manner across the CCD field of view. Detected objects typically require further calibration using aperture photometry to compensate for sky background (shot noise). For this, annuluses are measured around each detected object whose contained pixels are used to estimate an average background level that is subtracted from the detected pixel measurements. In a new photometric calibration software tool developed for AFRL/RD, called Efficient Photometry In-Frame Calibration (EPIC), an automated background normalization technique is proposed that eliminates the requirement to capture dark and flat calibration images. The proposed technique simultaneously corrects for dark noise, shot noise, and CCD quantum efficiency/optical path vignetting effects. With this, a constant detection threshold may be applied for constant false alarm rate (CFAR) object detection without the need for aperture photometry corrections. The detected pixels may be simply summed (without further correction) for an accurate instrumental magnitude estimate. The noise distribution associated with each pixel is assumed to be sampled from a Poisson distribution. Since Poisson distributed data closely resembles Gaussian data for parameterized means greater than 10, the data may be corrected by applying bias subtraction and standard-deviation division. EPIC performs automated background normalization on rate-tracked satellite images using the following technique. A deck of approximately 50-100 images is combined by performing an independent median

  11. Geostationary Satellite (GOES) Images

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Visible and Infrared satellite imagery taken from radiometer instruments on SMS (ATS) and GOES satellites in geostationary orbit. These satellites produced...

  12. Estimation of microwave source location in precipitating electron fluxes according to Viking satellite data

    International Nuclear Information System (INIS)

    Khrushchinskij, A.A.; Ostapenko, A.A.; Gustafsson, G.; Eliasson, L.; Sandal, I.

    1989-01-01

    According to the Viking satellite data on electron fluxes in the 0.1-300 keV energy range, the microburst source location is estimated. On the basis of experimental delays in detected peaks in different energy channels and theoretical calculations of these delays within the dipole field model (L∼ 4-5.5), it is shown that the most probable source location is the equatorial region with the centre, 5-10 0 shifted towards the ionosphere

  13. The performance of the new enhanced-resolution satellite passive microwave dataset applied for snow water equivalent estimation

    Science.gov (United States)

    Pan, J.; Durand, M. T.; Jiang, L.; Liu, D.

    2017-12-01

    The newly-processed NASA MEaSures Calibrated Enhanced-Resolution Brightness Temperature (CETB) reconstructed using antenna measurement response function (MRF) is considered to have significantly improved fine-resolution measurements with better georegistration for time-series observations and equivalent field of view (FOV) for frequencies with the same monomial spatial resolution. We are looking forward to its potential for the global snow observing purposes, and therefore aim to test its performance for characterizing snow properties, especially the snow water equivalent (SWE) in large areas. In this research, two candidate SWE algorithms will be tested in China for the years between 2005 to 2010 using the reprocessed TB from the Advanced Microwave Scanning Radiometer for EOS (AMSR-E), with the results to be evaluated using the daily snow depth measurements at over 700 national synoptic stations. One of the algorithms is the SWE retrieval algorithm used for the FengYun (FY) - 3 Microwave Radiation Imager. This algorithm uses the multi-channel TB to calculate SWE for three major snow regions in China, with the coefficients adapted for different land cover types. The second algorithm is the newly-established Bayesian Algorithm for SWE Estimation with Passive Microwave measurements (BASE-PM). This algorithm uses the physically-based snow radiative transfer model to find the histogram of most-likely snow property that matches the multi-frequency TB from 10.65 to 90 GHz. It provides a rough estimation of snow depth and grain size at the same time and showed a 30 mm SWE RMS error using the ground radiometer measurements at Sodankyla. This study will be the first attempt to test it spatially for satellite. The use of this algorithm benefits from the high resolution and the spatial consistency between frequencies embedded in the new dataset. This research will answer three questions. First, to what extent can CETB increase the heterogeneity in the mapped SWE? Second, will

  14. Precipitation and Latent Heating Distributions from Satellite Passive Microwave Radiometry. Part II: Evaluation of Estimates Using Independent Data

    Science.gov (United States)

    Yang, Song; Olson, William S.; Wang, Jian-Jian; Bell, Thomas L.; Smith, Eric A.; Kummerow, Christian D.

    2006-01-01

    Rainfall rate estimates from spaceborne microwave radiometers are generally accepted as reliable by a majority of the atmospheric science community. One of the Tropical Rainfall Measuring Mission (TRMM) facility rain-rate algorithms is based upon passive microwave observations from the TRMM Microwave Imager (TMI). In Part I of this series, improvements of the TMI algorithm that are required to introduce latent heating as an additional algorithm product are described. Here, estimates of surface rain rate, convective proportion, and latent heating are evaluated using independent ground-based estimates and satellite products. Instantaneous, 0.5 deg. -resolution estimates of surface rain rate over ocean from the improved TMI algorithm are well correlated with independent radar estimates (r approx. 0.88 over the Tropics), but bias reduction is the most significant improvement over earlier algorithms. The bias reduction is attributed to the greater breadth of cloud-resolving model simulations that support the improved algorithm and the more consistent and specific convective/stratiform rain separation method utilized. The bias of monthly 2.5 -resolution estimates is similarly reduced, with comparable correlations to radar estimates. Although the amount of independent latent heating data is limited, TMI-estimated latent heating profiles compare favorably with instantaneous estimates based upon dual-Doppler radar observations, and time series of surface rain-rate and heating profiles are generally consistent with those derived from rawinsonde analyses. Still, some biases in profile shape are evident, and these may be resolved with (a) additional contextual information brought to the estimation problem and/or (b) physically consistent and representative databases supporting the algorithm. A model of the random error in instantaneous 0.5 deg. -resolution rain-rate estimates appears to be consistent with the levels of error determined from TMI comparisons with collocated

  15. Enhanced-Resolution Satellite Microwave Brightness Temperature Records for Mapping Boreal-Arctic Landscape Freeze-Thaw Heterogeneity

    Science.gov (United States)

    Kim, Y.; Du, J.; Kimball, J. S.

    2017-12-01

    The landscape freeze-thaw (FT) status derived from satellite microwave remote sensing is closely linked to vegetation phenology and productivity, surface energy exchange, evapotranspiration, snow/ice melt dynamics, and trace gas fluxes over land areas affected by seasonally frozen temperatures. A long-term global satellite microwave Earth System Data Record of daily landscape freeze-thaw status (FT-ESDR) was developed using similar calibrated 37GHz, vertically-polarized (V-pol) brightness temperatures (Tb) from SMMR, SSM/I, and SSMIS sensors. The FT-ESDR shows mean annual spatial classification accuracies of 90.3 and 84.3 % for PM and AM overpass retrievals relative surface air temperature (SAT) measurement based FT estimates from global weather stations. However, the coarse FT-ESDR gridding (25-km) is insufficient to distinguish finer scale FT heterogeneity. In this study, we tested alternative finer scale FT estimates derived from two enhanced polar-grid (3.125-km and 6-km resolution), 36.5 GHz V-pol Tb records derived from calibrated AMSR-E and AMSR2 sensor observations. The daily FT estimates are derived using a modified seasonal threshold algorithm that classifies daily Tb variations in relation to grid cell-wise FT thresholds calibrated using ERA-Interim reanalysis based SAT, downscaled using a digital terrain map and estimated temperature lapse rates. The resulting polar-grid FT records for a selected study year (2004) show mean annual spatial classification accuracies of 90.1% (84.2%) and 93.1% (85.8%) for respective PM (AM) 3.125km and 6-km Tb retrievals relative to in situ SAT measurement based FT estimates from regional weather stations. Areas with enhanced FT accuracy include water-land boundaries and mountainous terrain. Differences in FT patterns and relative accuracy obtained from the enhanced grid Tb records were attributed to several factors, including different noise contributions from underlying Tb processing and spatial mismatches between Tb

  16. Valuing geospatial information: Using the contingent valuation method to estimate the economic benefits of Landsat satellite imagery

    Science.gov (United States)

    Loomis, John; Koontz, Steve; Miller, Holly M.; Richardson, Leslie A.

    2015-01-01

    While the U.S. government does not charge for downloading Landsat images, the images have value to users. This paper demonstrates a method that can value Landsat and other imagery to users. A survey of downloaders of Landsat images found: (a) established US users have a mean value of $912 USD per scene; (b) new US users and users returning when imagery became free have a mean value of $367 USD per scene. Total US user benefits for the 2.38 million scenes downloaded is $1.8 billion USD. While these benefits indicate a high willingness-to-pay among many Landsat downloaders, it would be economically inefficient for the US government to charge for Landsat imagery. Charging a price of $100 USD a scene would result in an efficiency loss of $37.5 million a year. This economic information should be useful to policy-makers who must decide about the future of this and similar remote sensing programs.

  17. Comparison of Gaussian and non-Gaussian Atmospheric Profile Retrievals from Satellite Microwave Data

    Science.gov (United States)

    Kliewer, A.; Forsythe, J. M.; Fletcher, S. J.; Jones, A. S.

    2017-12-01

    The Cooperative Institute for Research in the Atmosphere at Colorado State University has recently developed two different versions of a mixed-distribution (lognormal combined with a Gaussian) based microwave temperature and mixing ratio retrieval system as well as the original Gaussian-based approach. These retrieval systems are based upon 1DVAR theory but have been adapted to use different descriptive statistics of the lognormal distribution to minimize the background errors. The input radiance data is from the AMSU-A and MHS instruments on the NOAA series of spacecraft. To help illustrate how the three retrievals are affected by the change in the distribution we are in the process of creating a new website to show the output from the different retrievals. Here we present initial results from different dynamical situations to show how the tool could be used by forecasters as well as for educators. However, as the new retrieved values are from a non-Gaussian based 1DVAR then they will display non-Gaussian behaviors that need to pass a quality control measure that is consistent with this distribution, and these new measures are presented here along with initial results for checking the retrievals.

  18. Potential of High-Resolution Satellite Imagery for Mapping Distribution and Evaluating Ecological Characteristics of Tree Species at the Angkor Monument, Cambodia

    Directory of Open Access Journals (Sweden)

    Tomita Mizuki

    2015-01-01

    Full Text Available Large trees play several vital roles in the Angkor monuments landscape. They protect biodiversity, enhance the tourism experience, and provide various ecosystem services to local residents. A clear understanding of forest composition and distribution of individual species, as well as timely monitoring of changes, is necessary for conservation of these trees. using traditional field work, obtaining this sort of data is time-consuming and labour-intensive. This research investigates classification of very high resolution remote sensing data as a tool for efficient analyses. QuickBird satellite imagery was used to clarify the tree species community in and around Preah Khan temple, to elucidate differences in ecological traits among the three dominant species (Dipterocarpus alatus, Lagerstroemia calyculata and Tetrameles nudiflora, and to identify crowns of the dominant species.

  19. Digging up your dirt. High school students combine small-scale respiration and soil carbon measurements with satellite imagery in hands-on inquiry activities.

    Science.gov (United States)

    Kemper, K.; Throop, H.

    2015-12-01

    One of the greatest impacts on the global carbon cycle is changes in land use. Making this concept relevant and inquiry-based for high school students is challenging. Many are familiar with reconstructing paleo-climate from ice core data, but few have a connection to current climate research. Many students ask questions like 'What will our area be like in 20 years?' or 'How much does planting trees help?' while few have the scientific language to engage in a discussion to answer these questions. Our work connects students to climate change research in several ways: first, teacher Keska Kemper engaged in field research with Dr. Heather Throop creating a 'teacher in the field' perspective for students in the classroom. Dr. Throop met with Keska Kemper's students several times to develop an inquiry-based field study. Students predicted and then measured rates of respiration between different soil types in an urban park close to their school. Students then could compare their results from Portland, Oregon to Throop's work across a rain gradient in Australia. Discussions about percent tree cover and soil carbon helped students see connections between land use changes and changes in carbon cycling. Last, students examined satellite imagery to determine percent tree cover and numberss of trees to compare to soil carbon in the same region. Students were able to examine imagery over the last 30 years to visualize land use changes in the greater Portland area.

  20. Comparison of stratospheric temperature profiles from a ground-based microwave radiometer with lidar, radiosonde and satellite data

    Science.gov (United States)

    Navas-Guzmán, Francisco; Kämpfer, Niklaus; Haefele, Alexander; Keckhut, Philippe; Hauchecorne, Alain

    2015-04-01

    The importance of the knowledge of the temperature structure in the atmosphere has been widely recognized. Temperature is a key parameter for dynamical, chemical and radiative processes in the atmosphere. The cooling of the stratosphere is an indicator for climate change as it provides evidence of natural and anthropogenic climate forcing just like surface warming ( [1] and references therein). However, our understanding of the observed stratospheric temperature trend and our ability to test simulations of the stratospheric response to emissions of greenhouse gases and ozone depleting substances remains limited. Stratospheric long-term datasets are sparse and obtained trends differ from one another [1]. Therefore it is important that in the future such datasets are generated. Different techniques allow to measure stratospheric temperature profiles as radiosonde, lidar or satellite. The main advantage of microwave radiometers against these other instruments is a high temporal resolution with a reasonable good spatial resolution. Moreover, the measurement at a fixed location allows to observe local atmospheric dynamics over a long time period, which is crucial for climate research. TEMPERA (TEMPERature RAdiometer) is a newly developed ground-based microwave radiometer designed, built and operated at the University of Bern. The instrument and the retrieval of temperature profiles has been described in detail in [2]. TEMPERA is measuring a pressure broadened oxygen line at 53.1 GHz in order to determine stratospheric temperature profiles. The retrieved profiles of TEMPERA cover an altitude range of approximately 20 to 45 km with a vertical resolution in the order of 15 km. The lower limit is given by the instrumental baseline and the bandwidth of the measured spectrum. The upper limit is given by the fact that above 50 km the oxygen lines are splitted by the Zeeman effect in the terrestrial magnetic field. In this study we present a comparison of stratospheric

  1. Analysis of Satellite and Airborne Imagery for Detection of Water Hyacinth and Other Invasive Floating Macrophytes and Tracking of Aquatic Weed Control Efficacy

    Science.gov (United States)

    Potter, Christopher

    2016-01-01

    Waterways of the Sacramento San Joaquin Delta have recently become infested with invasive aquatic weeds such as floating water hyacinth (Eichhoria crassipes) and water primrose (Ludwigia peploides). These invasive plants cause many negative impacts, including, but not limited to: the blocking of waterways for commercial shipping and boating; clogging of irrigation screens, pumps and canals; and degradation of biological habitat through shading. Zhang et al. (1997, Ecological Applications, 7(3), 1039-1053) used NASA Landsat satellite imagery together with field calibration measurements to map physical and biological processes within marshlands of the San Francisco Bay. Live green biomass (LGB) and related variables were correlated with a simple vegetation index ratio of red and near infra-red bands from Landsat images. More recently, the percent (water area) cover of water hyacinth plotted against estimated LGB of emergent aquatic vegetation in the Delta from September 2014 Landsat imagery showed an 80 percent overall accuracy. For the past two years, we have partnered with the U. S. Department of Agriculture (USDA) and the Department of Plant Sciences, University of California at Davis to conduct new validation surveys of water hyacinth and water primrose coverage and LGB in Delta waterways. A plan is underway to transfer decision support tools developed at NASA's Ames Research Center based on Landsat satellite images to improve Delta-wide integrated management of floating aquatic weeds, while reducing chemical control costs. The main end-user for this application project will be the Division of Boating and Waterways (DBW) of the California Department of Parks and Recreation, who has the responsibility for chemical control of water hyacinth in the Delta.

  2. Mosaic of gridded multibeam bathymetry and bathymetry derived from multispectral IKONOS satellite imagery of Tutuila Island, American Samoa, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded multibeam bathymetry is integrated with bathymetry derived from multispectral IKONOS satellite data. Gridded (5 m cell size) multibeam bathymetry collected...

  3. Mosaic of gridded multibeam bathymetry and bathymetry derived from multispectral IKONOS satellite imagery of Rose Atoll, American Samoa, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded multibeam bathymetry is integrated with bathymetry derived from multispectral IKONOS satellite data. Gridded (5 m cell size) multibeam bathymetry were...

  4. Mosaic of bathymetry derived from multispectral World View-2 satellite imagery of Sarigan Island, Territory of Territory of Mariana, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathymetric data derived from a multipectral World View-2 satellite image mosaiced to provide near complete coverage of nearshore terrain around the islands....

  5. Mosaic of bathymetry derived from multispectral WV-2 satellite imagery of Agrihan Island, Territory of Mariana, USA (NODC Accession 0126914)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathymetric data derived from a multispectral World View-2 satellite image mosaiced to provide near complete coverage of nearshore terrain around the islands....

  6. Mosaic of bathymetry derived from multispectral WV-2 satellite imagery of Baker Island, Pacific Remote Island Areas, Central Pacific.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathymetric data derived from a multipectral World View-2 satellite image mosaiced to provide near complete coverage of nearshore terrain around the islands....

  7. Satellite passive microwaves for monitoring deforestation and drought-induced carbon losses in sub-Saharan Africa

    Science.gov (United States)

    Brandt, M.; Wigneron, J. P.; Chave, J.; Tagesson, T.; Penuelas, J.; Ciais, P.; Rasmussen, K.; Tian, F.; Mbow, C.; Al-Yaari, A.; Rodriguez-Fernandez, N.; Zhang, W.; Kerr, Y. H.; Tucker, C. J.; Mialon, A.; Verger, A.; Fensholt, R.

    2017-12-01

    The African continent is facing one of the driest periods in the past three decades and continuing deforestation. These disturbances threaten vegetation carbon (C) stocks and highlight the need for an operational tool for monitoring carbon stock dynamics. Knowledge of the amount, distribution, and turnover of carbon in African vegetation is crucial for understanding the effects of human pressure and climate change, but the shortcomings of optical and radar satellite products and the lack of systematic field inventories have led to considerable uncertainty in documenting patterns and dynamics of carbon stocks, in particular for drylands. Static carbon maps have been developed, but the temporal dynamics of carbon stocks cannot be derived from the benchmark maps, impeding timely, repeated, and reliable carbon assessments. The Soil Moisture and Ocean Salinity (SMOS) mission launched in 2009 was the first passive microwave-based satellite system operating at L-band (1.4 GHz) frequency. The low frequencies allow the satellite to sense deep within the canopy layer with less influence by the green non-woody plant components. The vegetation optical depth (VOD) derived from SMOS, henceforth L-VOD, is thus less sensitive to saturation effects, marking an important step forward in the monitoring of carbon as a natural resource. In this study, we apply for the first time L-VOD to quantify the inter-annual dynamics of aboveground carbon stocks for the period 2010-2016. We use this new technique to document patterns of carbon gains and losses in sub-Saharan Africa with a focus of dryland response to recent dry years. Results show that drylands lost carbon at a rate of -0.06 Pg C y-1 associated with drying trends, while humid areas lost only -0.02 Pg C y-1. These trends reflect a high inter-annual variability with a very wet (2011) and a very dry year (2016) associated with carbon gains and losses respectively. This study demonstrates, first, the operational applicability of L

  8. AgSat Imagery Collection Footprints

    Data.gov (United States)

    Farm Service Agency, Department of Agriculture — The AgSat Imagery Collection Footprints map shows the imagery footprints which have been collected under the USDA satellite blanket purchase agreement. Click on a...

  9. Monitoring of "all-weather" evapotranspiration using optical and passive microwave remote sensing imagery over the River Source Region in Southwest China

    Science.gov (United States)

    Ma, Y.; Liu, S.

    2017-12-01

    Accurate estimation of surface evapotranspiration (ET) with high quality is one of the biggest obstacles for routine applications of remote sensing in eco-hydrological studies and water resource management at basin scale. However, many aspects urgently need to deeply research, such as the applicability of the ET models, the parameterization schemes optimization at the regional scale, the temporal upscaling, the selecting and developing of the spatiotemporal data fusion method and ground-based validation over heterogeneous land surfaces. This project is based on the theoretically robust surface energy balance system (SEBS) model, which the model mechanism need further investigation, including the applicability and the influencing factors, such as local environment, and heterogeneity of the landscape, for improving estimation accuracy. Due to technical and budget limitations, so far, optical remote sensing data is missing due to frequent cloud contamination and other poor atmospheric conditions in Southwest China. Here, a multi-source remote sensing data fusion method (ESTARFM: Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model) method will be proposed through blending multi-source remote sensing data acquired by optical, and passive microwave remote sensors on board polar satellite platforms. The accurate "all-weather" ET estimation will be carried out for daily ET of the River Source Region in Southwest China, and then the remotely sensed ET results are overlapped with the footprint-weighted images of EC (eddy correlation) for ground-based validation.

  10. Building damage assessment after the earthquake in Haiti using two post-event satellite stereo imagery and DSMs

    DEFF Research Database (Denmark)

    Reinartz, Peter; Tian, Jiaojiao; Nielsen, Allan Aasbjerg

    2013-01-01

    In this paper, a novel disaster building damage monitoring method is presented. This method combines the multispectral imagery and DSMs from stereo matching to obtain three kinds of changes. The proposed method contains three basic steps. The first step is to segment the panchromatic images to ge...... (mainly temporary residential area, etc. tents). In the last step, a region based grey level co-occurrence matrix texture measurement is used to refine the third change class. The method is applied to building change detection after the Haiti earthquake....

  11. Precipitation and Latent Heating Distributions from Satellite Passive Microwave Radiometry. Part 2; Evaluation of Estimates Using Independent Data

    Science.gov (United States)

    Yang, Song; Olson, William S.; Wang, Jian-Jian; Bell, Thomas L.; Smith, Eric A.; Kummerow, Christian D.

    2004-01-01

    Rainfall rate estimates from space-borne k&ents are generally accepted as reliable by a majority of the atmospheric science commu&y. One-of the Tropical Rainfall Measuring Mission (TRh4M) facility rain rate algorithms is based upon passive microwave observations fiom the TRMM Microwave Imager (TMI). Part I of this study describes improvements in the TMI algorithm that are required to introduce cloud latent heating and drying as additional algorithm products. Here, estimates of surface rain rate, convective proportion, and latent heating are evaluated using independent ground-based estimates and satellite products. Instantaneous, OP5resolution estimates of surface rain rate over ocean fiom the improved TMI algorithm are well correlated with independent radar estimates (r approx. 0.88 over the Tropics), but bias reduction is the most significant improvement over forerunning algorithms. The bias reduction is attributed to the greater breadth of cloud-resolving model simulations that support the improved algorithm, and the more consistent and specific convective/stratiform rain separation method utilized. The bias of monthly, 2.5 deg. -resolution estimates is similarly reduced, with comparable correlations to radar estimates. Although the amount of independent latent heating data are limited, TMI estimated latent heating profiles compare favorably with instantaneous estimates based upon dual-Doppler radar observations, and time series of surface rain rate and heating profiles are generally consistent with those derived from rawinsonde analyses. Still, some biases in profile shape are evident, and these may be resolved with: (a) additional contextual information brought to the estimation problem, and/or; (b) physically-consistent and representative databases supporting the algorithm. A model of the random error in instantaneous, 0.5 deg-resolution rain rate estimates appears to be consistent with the levels of error determined from TMI comparisons to collocated radar

  12. User's guide to image processing applications of the NOAA satellite HRPT/AVHRR data. Part 1: Introduction to the satellite system and its applications. Part 2: Processing and analysis of AVHRR imagery

    Science.gov (United States)

    Huh, Oscar Karl; Leibowitz, Scott G.; Dirosa, Donald; Hill, John M.

    1986-01-01

    The use of NOAA Advanced Very High Resolution Radar/High Resolution Picture Transmission (AVHRR/HRPT) imagery for earth resource applications is provided for the applications scientist for use within the various Earth science, resource, and agricultural disciplines. A guide to processing NOAA AVHRR data using the hardware and software systems integrated for this NASA project is provided. The processing steps from raw data on computer compatible tapes (1B data format) through usable qualitative and quantitative products for applications are given. The manual is divided into two parts. The first section describes the NOAA satellite system, its sensors, and the theoretical basis for using these data for environmental applications. Part 2 is a hands-on description of how to use a specific image processing system, the International Imaging Systems, Inc. (I2S) Model 75 Array Processor and S575 software, to process these data.

  13. The Potential of Satellite Imagery to Estimate Chlorophyll-a and Water Clarity Data For the Assessment of Lake Water Quality

    Science.gov (United States)

    Shrift, M.; Weathers, K. C.; Norouzi, H.; Ewing, H. A.

    2017-12-01

    Lake water quality is declining nationwide and has become a tremendous point of interest. Remote sensing (RS) data have provided the ability to efficiently study oceans and terrestrial systems over space and time. However, fresh water systems, especially small, nutrient poor lakes have only recently been assessed using remote sensing technology. Prior research suggests that there is poor satellite sensitivity to lakes with low chlorophyll a (chl a) values. This study focuses on the potential to utilize Landsat 8 satellite imagery to predict chl a and Secchi disk transparency values from Lake Auburn, Maine, an oligo-mesotrophic lake that is the primary source of drinking water for the cities of Lewiston and Auburn and has had an increasing number of algal blooms. A total of 28 Landsat scenes from 2013-2017 within 4 days of in-lake measurements were collected for band value extraction and radiometric correction. Band combinations were explored and analyzed to obtain the most reliable prediction of in-lake chl a and Secchi disk values. A nonlinear combination of bands 5 and 4 for chl a, and bands 3 and 2 for Secchi disk transparency show the most promising algorithms, with correlations coefficients of 0.57 and 0.74, respectively. The resultant algorithms show promise for utilizing RS data to estimate water quality for a large array of low-nutrient lakes in northern North America, and thereby to gain a better understanding of water quality of our vital fresh water resources.

  14. Spatial estimation of air PM2.5 emissions using activity data, local emission factors and land cover derived from satellite imagery

    Science.gov (United States)

    Gibe, Hezron P.; Cayetano, Mylene G.

    2017-09-01

    Exposure to particulate matter (PM) is a serious environmental problem in many urban areas on Earth. In the Philippines, most existing studies and emission inventories have mainly focused on point and mobile sources, while research involving human exposures to particulate pollutants is rare. This paper presents a method for estimating the amount of fine particulate (PM2.5) emissions in a test study site in the city of Cabanatuan, Nueva Ecija, in the Philippines, by utilizing local emission factors, regionally procured data, and land cover/land use (activity data) interpreted from satellite imagery. Geographic information system (GIS) software was used to map the estimated emissions in the study area. The present results suggest that vehicular emissions from motorcycles and tricycles, as well as fuels used by households (charcoal) and burning of agricultural waste, largely contribute to PM2.5 emissions in Cabanatuan. Overall, the method used in this study can be applied in other small urbanizing cities, as long as on-site specific activity, emission factor, and satellite-imaged land cover data are available.

  15. Assessment of an Operational System for Crop Type Map Production Using High Temporal and Spatial Resolution Satellite Optical Imagery

    Directory of Open Access Journals (Sweden)

    Jordi Inglada

    2015-09-01

    Full Text Available Crop area extent estimates and crop type maps provide crucial information for agricultural monitoring and management. Remote sensing imagery in general and, more specifically, high temporal and high spatial resolution data as the ones which will be available with upcoming systems, such as Sentinel-2, constitute a major asset for this kind of application. The goal of this paper is to assess to what extent state-of-the-art supervised classification methods can be applied to high resolution multi-temporal optical imagery to produce accurate crop type maps at the global scale. Five concurrent strategies for automatic crop type map production have been selected and benchmarked using SPOT4 (Take5 and Landsat 8 data over 12 test sites spread all over the globe (four in Europe, four in Africa, two in America and two in Asia. This variety of tests sites allows one to draw conclusions applicable to a wide variety of landscapes and crop systems. The results show that a random forest classifier operating on linearly temporally gap-filled images can achieve overall accuracies above 80% for most sites. Only two sites showed low performances: Madagascar due to the presence of fields smaller than the pixel size and Burkina Faso due to a mix of trees and crops in the fields. The approach is based on supervised machine learning techniques, which need in situ data collection for the training step, but the map production is fully automatic.

  16. Recognition and characterization of networks of water bodies in the Arctic ice-wedge polygonal tundra using high-resolution satellite imagery

    Science.gov (United States)

    Skurikhin, A. N.; Gangodagamage, C.; Rowland, J. C.; Wilson, C. J.

    2013-12-01

    Arctic lowland landscapes underlain by permafrost are often characterized by polygon-like patterns such as ice-wedge polygons outlined by networks of ice wedges and complemented with polygon rims, troughs, shallow ponds and thermokarst lakes. Polygonal patterns and corresponding features are relatively easy to recognize in high spatial resolution satellite imagery by a human, but their automated recognition is challenging due to the variability in their spectral appearance, the irregularity of individual trough spacing and orientation within the patterns, and a lack of unique spectral response attributable to troughs with widths commonly between 1 m and 2 m. Accurate identification of fine scale elements of ice-wedge polygonal tundra is important as their imprecise recognition may bias estimates of water, heat and carbon fluxes in large-scale climate models. Our focus is on the problem of identification of Arctic polygonal tundra fine-scale landscape elements (as small as 1 m - 2 m width). The challenge of the considered problem is that while large water bodies (e.g. lakes and rivers) can be recognized based on spectral response, reliable recognition of troughs is more difficult. Troughs do not have unique spectral signature, their appearance is noisy (edges are not strong), their width is small, and they often form connected networks with ponds and lakes, and thus they have overlapping spectral response with other water bodies and surrounding non-water bodies. We present a semi-automated approach to identify and classify Arctic polygonal tundra landscape components across the range of spatial scales, such as troughs, ponds, river- and lake-like objects, using high spatial resolution satellite imagery. The novelty of the approach lies in: (1) the combined use of segmentation and shape-based classification to identify a broad range of water bodies, including troughs, and (2) the use of high-resolution WorldView-2 satellite imagery (with resolution of 0.6 m) for this

  17. A two-step nearest neighbors algorithm using satellite imagery for predicting forest structure within species composition classes

    Science.gov (United States)

    Ronald E. McRoberts

    2009-01-01

    Nearest neighbors techniques have been shown to be useful for predicting multiple forest attributes from forest inventory and Landsat satellite image data. However, in regions lacking good digital land cover information, nearest neighbors selected to predict continuous variables such as tree volume must be selected without regard to relevant categorical variables such...

  18. Volcanic and Tectonic Activity in the Red Sea Region (2004-2013): Insights from Satellite Radar Interferometry and Optical Imagery

    KAUST Repository

    Xu, Wenbin

    2015-01-01

    due to insufficient in-situ data and remoteness of some of the activity. In this dissertation, I have used satellite remote sensing to derive new information about several recent volcanic and tectonic events in the Red Sea region. I first report

  19. Novel method of drizzle formation observation at large horizontal scales using multi-wavelength satellite imagery simulation

    NARCIS (Netherlands)

    Stepanov, I.; Russchenberg, H.W.J.

    2014-01-01

    The observations of on-board satellite imaging radiometers are representative of a far-reaching two-dimensional cloud top properties, however with a cutback in the capacity of profiling the cloud vertically. A combination of simulated radiances calculated at the top of the cloud in the near-infrared

  20. Combining satellite imagery with forest inventory data to assess damage severity following a major blowdown event in northern Minnesota, USA

    Science.gov (United States)

    Mark D. Nelson; Sean P. Healey; W. Keith Moser; Mark H. Hansen

    2009-01-01

    Effects of a catastrophic blowdown event in northern Minnesota, USA were assessed using field inventory data, aerial sketch maps and satellite image data processed through the North American Forest Dynamics programme. Estimates were produced for forest area and net volume per unit area of live trees pre- and post-disturbance, and for changes in volume per unit area and...

  1. Instantaneous Shoreline Extraction Utilizing Integrated Spectrum and Shadow Analysis From LiDAR Data and High-resolution Satellite Imagery

    Science.gov (United States)

    Lee, I.-Chieh

    Shoreline delineation and shoreline change detection are expensive processes in data source acquisition and manual shoreline delineation. These costs confine the frequency and interval of shoreline mapping periods. In this dissertation, a new shoreline delineation approach was developed targeting on lowering the data source cost and reducing human labor. To lower the cost of data sources, we used the public domain LiDAR data sets and satellite images to delineate shorelines without the requirement of data sets being acquired simultaneously, which is a new concept in this field. To reduce the labor cost, we made improvements in classifying LiDAR points and satellite images. Analyzing shadow relations with topography to improve the satellite image classification performance is also a brand-new concept. The extracted shoreline of the proposed approach could achieve an accuracy of 1.495 m RMSE, or 4.452m at the 95% confidence level. Consequently, the proposed approach could successfully lower the cost and shorten the processing time, in other words, to increase the shoreline mapping frequency with a reasonable accuracy. However, the extracted shoreline may not compete with the shoreline extracted by aerial photogrammetric procedures in the aspect of accuracy. Hence, this is a trade-off between cost and accuracy. This approach consists of three phases, first, a shoreline extraction procedure based mainly on LiDAR point cloud data with multispectral information from satellite images. Second, an object oriented shoreline extraction procedure to delineate shoreline solely from satellite images; in this case WorldView-2 images were used. Third, a shoreline integration procedure combining these two shorelines based on actual shoreline changes and physical terrain properties. The actual data source cost would only be from the acquisition of satellite images. On the other hand, only two processes needed human attention. First, the shoreline within harbor areas needed to be

  2. Empirical water depth predictions in Dublin Bay based on satellite EO multispectral imagery and multibeam data using spatially weighted geographical analysis

    Science.gov (United States)

    Monteys, Xavier; Harris, Paul; Caloca, Silvia

    2014-05-01

    reliable and error controlled depths. Bathymetric extraction approaches involving satellite imagery data are regarded as a fast, successful and economically advantageous solution to automatic water depth calculation in shallow and complex environments.

  3. Land use maps of the Tanana and Purcell Mountain areas, Alaska, based on Earth Resources Technology Satellite imagery

    Science.gov (United States)

    Anderson, J. H. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. ERTS imagery in photographic format was used to make land use maps of two areas of special interest to native corporations under terms of the Alaska Native Claims Settlement Act. Land selections are to be made in these areas, and the maps should facilitate decisions because of their comprehensive presentation of resource distribution information. The ERTS images enabled mapping broadly-defined land use classes in large areas in a comparatively short time. Some aerial photography was used to identify colors and shades of gray on the various images. The 14 mapped land use categories are identified according to the classification system under development by the U.S. Geological Survey. These maps exemplify a series of about a dozen diverse Alaskan areas. The principal resource depicted is vegetation, and clearly shown are vegetation units of special importance, including stands possibly containing trees of commercial grade and stands constituting wildlife habitat.

  4. Analysis of High Resolution Satellite imagery to acsees Glacier Mass Balance and Lake Hazards in Sikkim Himalayas

    Science.gov (United States)

    Bhushan, S.; Shean, D. E.; Haritashya, U. K.; Arendt, A. A.; Syed, T. H.; Setiawan, L.

    2017-12-01

    Glacial lake outburst floods can impact downstream communities due to the sudden outflux of huge quantities of stored water. In this study, we develop a hazard assessment of the moraine dammed glacial lakes in Sikkim Himalayas by analyzing the morphometry of proglacial features, and the surface velocity and mass balance of glaciers. We generated high-resolution digital elevation models (DEMs) using the open-source NASA Ames Stereo Pipeline (ASP) and use other open-source tools to calculate surface velocity and patterns of glacier downwasting over time. Geodetic glacier mass balance is obtained for three periods using high-resolution WorldView/GeoEye stereo DEMs (8 m posting, 2014-2016), Cartosat-1 stereo DEMs (10 m, 2006-2008) and SRTM (30 m, 2000). Initial results reveal a region-wide mass balance of -0.31±0.13 m w.eq.a-1 for the 2007-2015 period, with some debris covered glaciers showing a very low mass loss rate. Additionally, 12 annual glacier velocity fields spanning from 1991 to 2017.derived from Landsat imagery are used to explore the relationship between glacier dynamics and changes in proglacial lakes. Multi-temporal glacial lake mapping is conducted using Landsat and Cartosat imagery. Avalanche and rockfall modeling are combined with morphometric analysis of the proglacial lake area to assess the likelihood of glacial lake dam failure. The above parameters are integrated into a decision tree approach enabling categorization of moraine-dammed lakes according to their potential for outburst events.

  5. Land cover and forest formation distributions for St. Kitts, Nevis, St. Eustatius, Grenada and Barbados from decision tree classification of cloud-cleared satellite imagery

    Science.gov (United States)

    Helmer, E.H.; Kennaway, T.A.; Pedreros, D.H.; Clark, M.L.; Marcano-Vega, H.; Tieszen, L.L.; Ruzycki, T.R.; Schill, S.R.; Carrington, C.M.S.

    2008-01-01

    Satellite image-based mapping of tropical forests is vital to conservation planning. Standard methods for automated image classification, however, limit classification detail in complex tropical landscapes. In this study, we test an approach to Landsat image interpretation on four islands of the Lesser Antilles, including Grenada and St. Kitts, Nevis and St. Eustatius, testing a more detailed classification than earlier work in the latter three islands. Secondly, we estimate the extents of land cover and protected forest by formation for five islands and ask how land cover has changed over the second half of the 20th century. The image interpretation approach combines image mosaics and ancillary geographic data, classifying the resulting set of raster data with decision tree software. Cloud-free image mosaics for one or two seasons were created by applying regression tree normalization to scene dates that could fill cloudy areas in a base scene. Such mosaics are also known as cloud-filled, cloud-minimized or cloud-cleared imagery, mosaics, or composites. The approach accurately distinguished several classes that more standard methods would confuse; the seamless mosaics aided reference data collection; and the multiseason imagery allowed us to separate drought deciduous forests and woodlands from semi-deciduous ones. Cultivated land areas declined 60 to 100 percent from about 1945 to 2000 on several islands. Meanwhile, forest cover has increased 50 to 950%. This trend will likely continue where sugar cane cultivation has dominated. Like the island of Puerto Rico, most higher-elevation forest formations are protected in formal or informal reserves. Also similarly, lowland forests, which are drier forest types on these islands, are not well represented in reserves. Former cultivated lands in lowland areas could provide lands for new reserves of drier forest types. The land-use history of these islands may provide insight for planners in countries currently considering

  6. Creating Orthographically Rectified Satellite Multi-Spectral Imagery with High Resolution Digital Elevation Model from LiDAR: A Tutorial

    Science.gov (United States)

    2014-08-15

    EGM96 refers to the equipotential gravity field depicting mean-sea-level across the Earth that is commonly called the geoid...raster and commercial satellite MSI data that are combined in the process of making orthoimages, where feature extraction for models of surface material...peaks along the waveform that show a strong returned laser signal reflected from a rela- tively solid terrain surface or subsurface for the entire

  7. Analysis and evaluation of WRF microphysical schemes for deep moist convection over south-eastern South America (SESA) using microwave satellite observations and radiative transfer simulations

    Science.gov (United States)

    Sol Galligani, Victoria; Wang, Die; Alvarez Imaz, Milagros; Salio, Paola; Prigent, Catherine

    2017-10-01

    In the present study, three meteorological events of extreme deep moist convection, characteristic of south-eastern South America, are considered to conduct a systematic evaluation of the microphysical parameterizations available in the Weather Research and Forecasting (WRF) model by undertaking a direct comparison between satellite-based simulated and observed microwave radiances. A research radiative transfer model, the Atmospheric Radiative Transfer Simulator (ARTS), is coupled with the WRF model under three different microphysical parameterizations (WSM6, WDM6 and Thompson schemes). Microwave radiometry has shown a promising ability in the characterization of frozen hydrometeors. At high microwave frequencies, however, frozen hydrometeors significantly scatter radiation, and the relationship between radiation and hydrometeor populations becomes very complex. The main difficulty in microwave remote sensing of frozen hydrometeor characterization is correctly characterizing this scattering signal due to the complex and variable nature of the size, composition and shape of frozen hydrometeors. The present study further aims at improving the understanding of frozen hydrometeor optical properties characteristic of deep moist convection events in south-eastern South America. In the present study, bulk optical properties are computed by integrating the single-scattering properties of the Liu(2008) discrete dipole approximation (DDA) single-scattering database across the particle size distributions parameterized by the different WRF schemes in a consistent manner, introducing the equal mass approach. The equal mass approach consists of describing the optical properties of the WRF snow and graupel hydrometeors with the optical properties of habits in the DDA database whose dimensions might be different (Dmax') but whose mass is conserved. The performance of the radiative transfer simulations is evaluated by comparing the simulations with the available coincident

  8. Critical Analysis of Forest Degradation in the Southern Eastern Ghats of India: Comparison of Satellite Imagery and Soil Quality Index

    Science.gov (United States)

    Ramachandran, Andimuthu; Radhapriya, Parthasarathy; Jayakumar, Shanmuganathan; Dhanya, Praveen; Geetha, Rajadurai

    2016-01-01

    India has one of the largest assemblages of tropical biodiversity, with its unique floristic composition of endemic species. However, current forest cover assessment is performed via satellite-based forest surveys, which have many limitations. The present study, which was performed in the Eastern Ghats, analysed the satellite-based inventory provided by forest surveys and inferred from the results that this process no longer provides adequate information for quantifying forest degradation in an empirical manner. The study analysed 21 soil properties and generated a forest soil quality index of the Eastern Ghats, using principal component analysis. Using matrix modules and geospatial technology, we compared the forest degradation status calculated from satellite-based forest surveys with the degradation status calculated from the forest soil quality index. The Forest Survey of India classified about 1.8% of the Eastern Ghats’ total area as degraded forests and the remainder (98.2%) as open, dense, and very dense forests, whereas the soil quality index results found that about 42.4% of the total area is degraded, with the remainder (57.6%) being non-degraded. Our ground truth verification analyses indicate that the forest soil quality index along with the forest cover density data from the Forest Survey of India are ideal tools for evaluating forest degradation. PMID:26812397

  9. Critical Analysis of Forest Degradation in the Southern Eastern Ghats of India: Comparison of Satellite Imagery and Soil Quality Index.

    Science.gov (United States)

    Ramachandran, Andimuthu; Radhapriya, Parthasarathy; Jayakumar, Shanmuganathan; Dhanya, Praveen; Geetha, Rajadurai

    2016-01-01

    India has one of the largest assemblages of tropical biodiversity, with its unique floristic composition of endemic species. However, current forest cover assessment is performed via satellite-based forest surveys, which have many limitations. The present study, which was performed in the Eastern Ghats, analysed the satellite-based inventory provided by forest surveys and inferred from the results that this process no longer provides adequate information for quantifying forest degradation in an empirical manner. The study analysed 21 soil properties and generated a forest soil quality index of the Eastern Ghats, using principal component analysis. Using matrix modules and geospatial technology, we compared the forest degradation status calculated from satellite-based forest surveys with the degradation status calculated from the forest soil quality index. The Forest Survey of India classified about 1.8% of the Eastern Ghats' total area as degraded forests and the remainder (98.2%) as open, dense, and very dense forests, whereas the soil quality index results found that about 42.4% of the total area is degraded, with the remainder (57.6%) being non-degraded. Our ground truth verification analyses indicate that the forest soil quality index along with the forest cover density data from the Forest Survey of India are ideal tools for evaluating forest degradation.

  10. Time series analysis of satellite multi-sensors imagery to study the recursive abnormal grow of floating macrophyte in the lake victoria (central Africa)

    Science.gov (United States)

    Fusilli, Lorenzo; Cavalli, Rosa Maria; Laneve, Giovanni; Pignatti, Stefano; Santilli, Giancarlo; Santini, Federico

    2010-05-01

    Remote sensing allows multi-temporal mapping and monitoring of large water bodies. The importance of remote sensing for wetland and inland water inventory and monitoring at all scales was emphasized several times by the Ramsar Convention on Wetlands and from EU projects like SALMON and ROSALMA, e.g. by (Finlayson et al., 1999) and (Lowry and Finlayson, 2004). This paper aims at assessing the capability of time series of satellite imagery to provide information suitable for enhancing the understanding of the temporal cycles shown by the macrophytes growing in order to support the monitor and management of the lake Victoria water resources. The lake Victoria coastal areas are facing a number of challenges related to water resource management which include growing population, water scarcity, climate variability and water resource degradation, invasive species, water pollution. The proliferation of invasive plants and aquatic weeds, is of growing concern. In particular, let us recall some of the problems caused by the aquatic weeds growing: Ø interference with human activities such as fishing, and boating; Ø inhibition or interference with a balanced fish population; Ø fish killing due to removal of too much oxygen from the water; Ø production of quiet water areas that are ideal for mosquito breeding. In this context, an integrated use of medium/high resolution images from sensors like MODIS, ASTER, LANDSAT/TM and whenever available CHRIS offers the possibility of creating a congruent time series allowing the analysis of the floating vegetation dynamic on an extended temporal basis. Although MODIS imagery is acquired daily, cloudiness and other sources of noise can greatly reduce the effective temporal resolution, further its spatial resolution can results not always adequate to map the extension of floating plants. Therefore, the integrated use of sensors with different spatial resolution, were used to map across seasons the evolution of the phenomena. The

  11. Satellite-based Tropical Cyclone Monitoring Capabilities

    Science.gov (United States)

    Hawkins, J.; Richardson, K.; Surratt, M.; Yang, S.; Lee, T. F.; Sampson, C. R.; Solbrig, J.; Kuciauskas, A. P.; Miller, S. D.; Kent, J.

    2012-12-01

    Satellite remote sensing capabilities to monitor tropical cyclone (TC) location, structure, and intensity have evolved by utilizing a combination of operational and research and development (R&D) sensors. The microwave imagers from the operational Defense Meteorological Satellite Program [Special Sensor Microwave/Imager (SSM/I) and the Special Sensor Microwave Imager Sounder (SSMIS)] form the "base" for structure observations due to their ability to view through upper-level clouds, modest size swaths and ability to capture most storm structure features. The NASA TRMM microwave imager and precipitation radar continue their 15+ yearlong missions in serving the TC warning and research communities. The cessation of NASA's QuikSCAT satellite after more than a decade of service is sorely missed, but India's OceanSat-2 scatterometer is now providing crucial ocean surface wind vectors in addition to the Navy's WindSat ocean surface wind vector retrievals. Another Advanced Scatterometer (ASCAT) onboard EUMETSAT's MetOp-2 satellite is slated for launch soon. Passive microwave imagery has received a much needed boost with the launch of the French/Indian Megha Tropiques imager in September 2011, basically greatly supplementing the very successful NASA TRMM pathfinder with a larger swath and more frequent temporal sampling. While initial data issues have delayed data utilization, current news indicates this data will be available in 2013. Future NASA Global Precipitation Mission (GPM) sensors starting in 2014 will provide enhanced capabilities. Also, the inclusion of the new microwave sounder data from the NPP ATMS (Oct 2011) will assist in mapping TC convective structures. The National Polar orbiting Partnership (NPP) program's VIIRS sensor includes a day night band (DNB) with the capability to view TC cloud structure at night when sufficient lunar illumination exits. Examples highlighting this new capability will be discussed in concert with additional data fusion efforts.

  12. Leveraging GeoTIFF Compatibility for Visualizing a New EASE-Grid 2.0 Global Satellite Passive Microwave Climate Record

    Science.gov (United States)

    Paget, A. C.; Brodzik, M. J.; Long, D. G.; Hardman, M.

    2016-02-01

    The historical record of satellite-derived passive microwave brightness temperatures comprises data from multiple imaging radiometers (SMMR, SSM/I-SSMIS, AMSR-E), spanning nearly 40 years of Earth observations from 1978 to the present. Passive microwave data are used to monitor time series of many climatological variables, including ocean wind speeds, cloud liquid water and sea ice concentrations and ice velocity. Gridded versions of passive microwave data have been produced using various map projections (polar stereographic, Lambert azimuthal equal-area, cylindrical equal-area, quarter-degree Platte-Carree) and data formats (flat binary, HDF). However, none of the currently available versions can be rendered in the common visualization standard, geoTIFF, without requiring cartographic reprojection. Furthermore, the reprojection details are complicated and often require expert knowledge of obscure software package options. We are producing a consistently calibrated, completely reprocessed data set of this valuable multi-sensor satellite record, using EASE-Grid 2.0, an improved equal-area projection definition that will require no reprojection for translation into geoTIFF. Our approach has been twofold: 1) define the projection ellipsoid to match the reference datum of the satellite data, and 2) include required file-level metadata for standard projection software to correctly render the data in the geoTIFF standard. The Calibrated, Enhanced Resolution Brightness Temperature (CETB) Earth System Data Record (ESDR), leverages image reconstruction techniques to enhance gridded spatial resolution to 3 km and uses newly available intersensor calibrations to improve the quality of derived geophysical products. We expect that our attention to easy geoTIFF compatibility will foster higher-quality analysis with the CETB product by enabling easy and correct intercomparison with other gridded and in situ data.

  13. Meteorological Satellites (METSAT) and Earth Observing System (EOS) Advanced Microwave Sounding Unit-A (AMSU-A) Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL)

    Science.gov (United States)

    1996-01-01

    This Failure Modes and Effects Analysis (FMEA) is for the Advanced Microwave Sounding Unit-A (AMSU-A) instruments that are being designed and manufactured for the Meteorological Satellites Project (METSAT) and the Earth Observing System (EOS) integrated programs. The FMEA analyzes the design of the METSAT and EOS instruments as they currently exist. This FMEA is intended to identify METSAT and EOS failure modes and their effect on spacecraft-instrument and instrument-component interfaces. The prime objective of this FMEA is to identify potential catastrophic and critical failures so that susceptibility to the failures and their effects can be eliminated from the METSAT/EOS instruments.

  14. Geo-Parcel Based Crop Identification by Integrating High Spatial-Temporal Resolution Imagery from Multi-Source Satellite Data

    Directory of Open Access Journals (Sweden)

    Yingpin Yang

    2017-12-01

    Full Text Available Geo-parcel based crop identification plays an important role in precision agriculture. It meets the needs of refined farmland management. This study presents an improved identification procedure for geo-parcel based crop identification by combining fine-resolution images and multi-source medium-resolution images. GF-2 images with fine spatial resolution of 0.8 m provided agricultural farming plot boundaries, and GF-1 (16 m and Landsat 8 OLI data were used to transform the geo-parcel based enhanced vegetation index (EVI time-series. In this study, we propose a piecewise EVI time-series smoothing method to fit irregular time profiles, especially for crop rotation situations. Global EVI time-series were divided into several temporal segments, from which phenological metrics could be derived. This method was applied to Lixian, where crop rotation was the common practice of growing different types of crops, in the same plot, in sequenced seasons. After collection of phenological features and multi-temporal spectral information, Random Forest (RF was performed to classify crop types, and the overall accuracy was 93.27%. Moreover, an analysis of feature significance showed that phenological features were of greater importance for distinguishing agricultural land cover compared to temporal spectral information. The identification results indicated that the integration of high spatial-temporal resolution imagery is promising for geo-parcel based crop identification and that the newly proposed smoothing method is effective.

  15. Digital herbarium archives as a spatially extensive, taxonomically discriminate phenological record; a comparison to MODIS satellite imagery

    Science.gov (United States)

    Park, Isaac W.

    2012-11-01

    This study demonstrates that phenological information included in digital herbarium archives can produce annual phenological estimates correlated to satellite-derived green wave phenology at a regional scale (R = 0.183, P = 0.03). Thus, such records may be utilized in a fashion similar to other annual phenological records and, due to their longer duration and ability to discriminate among the various components of the plant community, hold significant potential for use in future research to supplement the deficiencies of other data sources as well as address a wide array of important issues in ecology and bioclimatology that cannot be addressed easily using more traditional methods.

  16. Modelling risk of tick exposure in southern Scandinavia using machine learning techniques, satellite imagery, and human population density maps

    DEFF Research Database (Denmark)

    Kjær, Lene Jung; Korslund, L.; Kjelland, V.

    30 sites (forests and meadows) in each of Denmark, southern Norway and south-eastern Sweden. At each site we measured presence/absence of ticks, and used the data obtained along with environmental satellite images to run Boosted Regression Tree machine learning algorithms to predict overall spatial...... and Sweden), areas with high population densities tend to overlap with these zones.Machine learning techniques allow us to predict for larger areas without having to perform extensive sampling all over the region in question, and we were able to produce models and maps with high predictive value. The results...

  17. Discriminação de variedades de citros em imagens CCD/CBERS-2 Discrimination of citrus varieties using CCD/CBERS-2 satellite imagery

    Directory of Open Access Journals (Sweden)

    Ieda Del'Arco Sanches

    2008-02-01

    Full Text Available O presente trabalho teve o objetivo de avaliar as imagens CCD/CBERS-2 quanto à possibilidade de discriminarem variedades de citros. A área de estudo localiza-se em Itirapina (SP e, para este estudo, foram utilizadas imagens CCD de três datas (30/05/2004, 16/08/2004 e 11/09/2004. Um modelo que integra os elementos componentes da cena citrícola sensoriada é proposto com o objetivo de explicar a variabilidade das respostas das parcelas de citros em imagens orbitais do tipo CCD/CBERS-2. Foram feitas classificações pelos algoritmos Isoseg e Maxver e, de acordo com o índice kappa, concluiu-se que é possível obterem-se exatidões qualificadas como muito boas, sendo que as melhores classificações foram conseguidas com imagens da estação seca.This paper was aimed at evaluating the possibility of discriminating citrus varieties in CCD imageries from CBERS-2 satellite ("China-Brazil Earth Resouces Satellite". The study area is located in Itirapina, São Paulo State. For this study, three CCD images from 2004 were acquired (May 30, August 16, and September 11. In order to acquire a better understanding and for explaining the variability of the spectral behavior of the citrus areas in orbital images (like as the CCD/CBERS-2 images a model that integrates the elements of the citrus scene is proposed and discussed. The images were classified by Isoseg and MaxVer classifiers. According to kappa index, it was possible to obtain classifications qualified as 'very good'. The best results were obtained with the images from the dry season.

  18. ROOF TYPE SELECTION BASED ON PATCH-BASED CLASSIFICATION USING DEEP LEARNING FOR HIGH RESOLUTION SATELLITE IMAGERY

    Directory of Open Access Journals (Sweden)

    T. Partovi

    2017-05-01

    Full Text Available 3D building reconstruction from remote sensing image data from satellites is still an active research topic and very valuable for 3D city modelling. The roof model is the most important component to reconstruct the Level of Details 2 (LoD2 for a building in 3D modelling. While the general solution for roof modelling relies on the detailed cues (such as lines, corners and planes extracted from a Digital Surface Model (DSM, the correct detection of the roof type and its modelling can fail due to low quality of the DSM generated by dense stereo matching. To reduce dependencies of roof modelling on DSMs, the pansharpened satellite images as a rich resource of information are used in addition. In this paper, two strategies are employed for roof type classification. In the first one, building roof types are classified in a state-of-the-art supervised pre-trained convolutional neural network (CNN framework. In the second strategy, deep features from deep layers of different pre-trained CNN model are extracted and then an RBF kernel using SVM is employed to classify the building roof type. Based on roof complexity of the scene, a roof library including seven types of roofs is defined. A new semi-automatic method is proposed to generate training and test patches of each roof type in the library. Using the pre-trained CNN model does not only decrease the computation time for training significantly but also increases the classification accuracy.

  19. Estimating rural populations without access to electricity in developing countries through night-time light satellite imagery

    International Nuclear Information System (INIS)

    Doll, Christopher N.H.; Pachauri, Shonali

    2010-01-01

    A lack of access to energy and, in particular, electricity is a less obvious manifestation of poverty but arguably one of the most important. This paper investigates the extent to which electricity access can be investigated using night-time light satellite data and spatially explicit population datasets to compare electricity access between 1990 and 2000. We present here the first satellite derived estimates of rural population without access to electricity in developing countries to draw insights on issues surrounding the delivery of electricity to populations in rural areas. The paper provides additional evidence of the slow progress in expansion of energy access to households in Sub-Saharan Africa and shows how this might be ascribed in part due to the low population densities in rural areas. The fact that this is a continent with some of the lowest per-capita income levels aggravates the intrinsic difficulties associated with making the investments needed to supply electricity in areas with low population density and high dispersion. Clearly, these spatial dimensions of the distributions of the remaining unelectrified populations in the world have an impact on what options are considered the most appropriate in expanding access to these households and the relative attractiveness of decentralized options.

  20. Cloud Detection from Satellite Imagery: A Comparison of Expert-Generated and Automatically-Generated Decision Trees

    Science.gov (United States)

    Shiffman, Smadar

    2004-01-01

    Automated cloud detection and tracking is an important step in assessing global climate change via remote sensing. Cloud masks, which indicate whether individual pixels depict clouds, are included in many of the data products that are based on data acquired on- board earth satellites. Many cloud-mask algorithms have the form of decision trees, which employ sequential tests that scientists designed based on empirical astrophysics studies and astrophysics simulations. Limitations of existing cloud masks restrict our ability to accurately track changes in cloud patterns over time. In this study we explored the potential benefits of automatically-learned decision trees for detecting clouds from images acquired using the Advanced Very High Resolution Radiometer (AVHRR) instrument on board the NOAA-14 weather satellite of the National Oceanic and Atmospheric Administration. We constructed three decision trees for a sample of 8km-daily AVHRR data from 2000 using a decision-tree learning procedure provided within MATLAB(R), and compared the accuracy of the decision trees to the accuracy of the cloud mask. We used ground observations collected by the National Aeronautics and Space Administration Clouds and the Earth s Radiant Energy Systems S COOL project as the gold standard. For the sample data, the accuracy of automatically learned decision trees was greater than the accuracy of the cloud masks included in the AVHRR data product.

  1. Object-Based Greenhouse Horticultural Crop Identification from Multi-Temporal Satellite Imagery: A Case Study in Almeria, Spain

    Directory of Open Access Journals (Sweden)

    Manuel A. Aguilar

    2015-06-01

    Full Text Available Greenhouse detection and mapping via remote sensing is a complex task, which has already been addressed in numerous studies. In this research, the innovative goal relies on the identification of greenhouse horticultural crops that were growing under plastic coverings on 30 September 2013. To this end, object-based image analysis (OBIA and a decision tree classifier (DT were applied to a set consisting of eight Landsat 8 OLI images collected from May to November 2013. Moreover, a single WorldView-2 satellite image acquired on 30 September 2013, was also used as a data source. In this approach, basic spectral information, textural features and several vegetation indices (VIs derived from Landsat 8 and WorldView-2 multi-temporal satellite data were computed on previously segmented image objects in order to identify four of the most popular autumn crops cultivated under greenhouse in Almería, Spain (i.e., tomato, pepper, cucumber and aubergine. The best classification accuracy (81.3% overall accuracy was achieved by using the full set of Landsat 8 time series. These results were considered good in the case of tomato and pepper crops, being significantly worse for cucumber and aubergine. These results were hardly improved by adding the information of the WorldView-2 image. The most important information for correct classification of different crops under greenhouses was related to the greenhouse management practices and not the spectral properties of the crops themselves.

  2. Estimating the marine signal in the near infrared for atmospheric correction of satellite ocean-color imagery over turbid waters

    Science.gov (United States)

    Bourdet, Alice; Frouin, Robert J.

    2014-11-01

    The classic atmospheric correction algorithm, routinely applied to second-generation ocean-color sensors such as SeaWiFS, MODIS, and MERIS, consists of (i) estimating the aerosol reflectance in the red and near infrared (NIR) where the ocean is considered black (i.e., totally absorbing), and (ii) extrapolating the estimated aerosol reflectance to shorter wavelengths. The marine reflectance is then retrieved by subtraction. Variants and improvements have been made over the years to deal with non-null reflectance in the red and near infrared, a general situation in estuaries and the coastal zone, but the solutions proposed so far still suffer some limitations, due to uncertainties in marine reflectance modeling in the near infrared or difficulty to extrapolate the aerosol signal to the blue when using observations in the shortwave infrared (SWIR), a spectral range far from the ocean-color wavelengths. To estimate the marine signal (i.e., the product of marine reflectance and atmospheric transmittance) in the near infrared, the proposed approach is to decompose the aerosol reflectance in the near infrared to shortwave infrared into principal components. Since aerosol scattering is smooth spectrally, a few components are generally sufficient to represent the perturbing signal, i.e., the aerosol reflectance in the near infrared can be determined from measurements in the shortwave infrared where the ocean is black. This gives access to the marine signal in the near infrared, which can then be used in the classic atmospheric correction algorithm. The methodology is evaluated theoretically from simulations of the top-of-atmosphere reflectance for a wide range of geophysical conditions and angular geometries and applied to actual MODIS imagery acquired over the Gulf of Mexico. The number of discarded pixels is reduced by over 80% using the PC modeling to determine the marine signal in the near infrared prior to applying the classic atmospheric correction algorithm.

  3. Soil depth modelling using terrain analysis and satellite imagery: the case study of Qeshlaq mountainous watershed (Kurdistan, Iran

    Directory of Open Access Journals (Sweden)

    Salahudin Zahedi

    2017-09-01

    Full Text Available Soil depth is a major soil characteristic, which is commonly used in distributed hydrological modelling in order to present watershed subsurface attributes. This study aims at developing a statistical model for predicting the spatial pattern of soil depth over the mountainous watershed from environmental variables derived from a digital elevation model (DEM and remote sensing data. Among the explanatory variables used in the models, seven are derived from a 10 m resolution DEM, namely specific catchment area, wetness index, aspect, slope, plan curvature, elevation and sediment transport index. Three variables landuse, NDVI and pca1 are derived from Landsat8 imagery, and are used for predicting soil depth by the models. Soil attributes, soil moisture, topographic curvature, training samples for each landuse and major vegetation types are considered at 429 profiles within four subwatersheds. Random forests (RF, support vector machine (SVM and artificial neural network (ANN are used to predict soil depth using the explanatory variables. The models are run using 336 data points in the calibration dataset with all 31 explanatory variables, and soil depth as the response of the models. Mean decrease permutation accuracy is performed on Variable selection. Testing dataset is done with the model soil depth values at testing locations (93 points using different efficiency criteria. Prediction error is computed for both the calibration and testing datasets. Results show that the variables landuse, specific surface area, slope, pca1, NDVI and aspect are the most important explanatory variables in predicting soil depth. RF and SVM models are appropriate for the mountainous watershed areas that have been limited in the depth of the soil and ANN model is more suitable for watershed with the fields of agricultural and deep soil depth.

  4. Ten Years of Post-Fire Vegetation Recovery following the 2007 Zaca Fire using Landsat Satellite Imagery

    Science.gov (United States)

    Hallett, J. K. E.; Miller, D.; Roberts, D. A.

    2017-12-01

    Forest fires play a key role in shaping eco-systems. The risk to vegetation depends on the fire regime, fuel conditions (age and amount), fire temperature, and physiological characteristics such as bark thickness and stem diameter. The 2007 Zaca Fire (24 kilometers NE of Buellton, Santa Barbara County, California) burned 826.4 km2 over the course of 2 months. In this study, we used a time series of Landsat 5 Thematic Mapper and Landsat 8 Operational Land Imager imagery, to evaluate plant burn severity and post fire recovery as defined into classes of above average recovery, normal recovery, and below average recovery. We spectrally unmixed the images into green vegetation (GV), non-photosynthetic vegetation (NPV), soil surface (SOIL), and ash with a spectral library developed using Constrained Reference Endmember Selection (CRES). We delineated the fire perimeter using the differenced Normalized Burn Ratio (dNBR) and evaluated changes in this index and the Normalized Difference Vegetation Index through time. The results showed an immediate decline in GV and NPV fractions, with a rise in soil and ash fractions directly following the fire, with a slow recovery in GV fraction and a loss of bare soil cover. The was a sharp increase in the ash fraction following the fire and gradual decrease in the year after. Most areas have recovered as of 2017, with prominent recovery in the center of the burn scar and reduced recovery in areas to the south. These results indicate how post-fire vegetation varies based on initial burn severity and pre-fire GV and NPV fractions.

  5. Morphodynamics of nearshore rhythmic sandbars in a mixed-energy environment (SW France): I. Mapping beach changes using visible satellite imagery

    Science.gov (United States)

    Lafon, V.; De Melo Apoluceno, D.; Dupuis, H.; Michel, D.; Howa, H.; Froidefond, J. M.

    2004-10-01

    This paper presents a new method to analyze the morphology and migration of shallow water sandbanks based on the retrieval of maps from high-resolution Spot satellite imagery. This approach was applied to the study of intertidal ridge and runnel systems and subtidal crescents that border the southwest coast of France. Maps were obtained from 16 Spot images recorded between 1986 and 2000. Ridge and runnel shapes, with regard to a reference level, were delineated using a watercolor reflectance code parameterized and validated with field data. Crescent plan shapes, which appear on the images due to water transparency or breaking-induced foam, were directly extracted. The spatial maps show that, in conformity with field surveys, the mean alongshore spacing of intertidal systems and crescents range from 370 ± 146 m (variability is indicated by standard deviation) to 462 ± 188 m, and from 579 ± 200 to 818 ± 214 m, respectively. Several couples of images also show that ridge and runnel systems and crescents move in the longshore drift direction (southward) by about 2.4-3.1 and 1 m day -1, respectively. Alongshore migration rates of intertidal systems are confirmed by field surveys, whilst crescent dynamics cannot be validated because there is no in situ data available. To complete these measurements, an analysis of the influence of wave climate on both the shape and movements of these rhythmic sedimentary patterns is proposed in a companion paper.

  6. Relative abundance of 'Bacillus' spp., surfactant-associated bacterium present in a natural sea slick observed by satellite SAR imagery over the Gulf of Mexico

    Directory of Open Access Journals (Sweden)

    Kathryn Lynn Howe

    2018-01-01

    Full Text Available The damping of short gravity-capillary waves (Bragg waves due to surfactant accumulation under low wind speed conditions results in the formation of natural sea slicks. These slicks are detectable visually and in synthetic aperture radar satellite imagery. Surfactants are produced by natural life processes of many marine organisms, including bacteria, phytoplankton, seaweed, and zooplankton. In this work, samples were collected in the Gulf of Mexico during a research cruise on the R/V 'F.G. Walton Smith' to evaluate the relative abundance of 'Bacillus' spp., surfactant-associated bacteria, in the sea surface microlayer compared to the subsurface water at 0.2 m depth. A method to reduce potential contamination of microlayer samples during their collection on polycarbonate filters was implemented and advanced, including increasing the number of successive samples per location and changing sample storage procedures. By using DNA analysis (real-time polymerase chain reaction to target 'Bacillus' spp., we found that in the slick areas, these surfactant-associated bacteria tended to reside mostly in subsurface waters, lending support to the concept that the surfactants they may produce move to the surface where they accumulate under calm conditions and enrich the sea surface microlayer.

  7. Statistical Modeling of Sea Ice Concentration Using Satellite Imagery and Climate Reanalysis Data in the Barents and Kara Seas, 1979–2012

    Directory of Open Access Journals (Sweden)

    Jihye Ahn

    2014-06-01

    Full Text Available Extensive sea ice over Arctic regions is largely involved in heat, moisture, and momentum exchanges between the atmosphere and ocean. Some previous studies have been conducted to develop statistical models for the status of Arctic sea ice and showed considerable possibilities to explain the impacts of climate changes on the sea ice extent. However, the statistical models require improvements to achieve better predictions by incorporating techniques that can deal with temporal variation of the relationships between sea ice concentration and climate factors. In this paper, we describe the statistical approaches by ordinary least squares (OLS regression and a time-series method for modeling sea ice concentration using satellite imagery and climate reanalysis data for the Barents and Kara Seas during 1979–2012. The OLS regression model could summarize the overall climatological characteristics in the relationships between sea ice concentration and climate variables. We also introduced autoregressive integrated moving average (ARIMA models because the sea ice concentration is such a long-range dataset that the relationships may not be explained by a single equation of the OLS regression. Temporally varying relationships between sea ice concentration and the climate factors such as skin temperature, sea surface temperature, total column liquid water, total column water vapor, instantaneous moisture flux, and low cloud cover were modeled by the ARIMA method, which considerably improved the prediction accuracies. Our method may also be worth consideration when forecasting future sea ice concentration by using the climate data provided by general circulation models (GCM.

  8. Change detection and change monitoring of natural and man-made features in multispectral and hyperspectral satellite imagery

    Science.gov (United States)

    Moody, Daniela Irina

    2018-04-17

    An approach for land cover classification, seasonal and yearly change detection and monitoring, and identification of changes in man-made features may use a clustering of sparse approximations (CoSA) on sparse representations in learned dictionaries. A Hebbian learning rule may be used to build multispectral or hyperspectral, multiresolution dictionaries that are adapted to regional satellite image data. Sparse image representations of pixel patches over the learned dictionaries may be used to perform unsupervised k-means clustering into land cover categories. The clustering process behaves as a classifier in detecting real variability. This approach may combine spectral and spatial textural characteristics to detect geologic, vegetative, hydrologic, and man-made features, as well as changes in these features over time.

  9. Citizen science land cover classification based on ground and satellite imagery: Case study Day River in Vietnam

    Science.gov (United States)

    Nguyen, Son Tung; Minkman, Ellen; Rutten, Martine

    2016-04-01

    Citizen science is being increasingly used in the context of environmental research, thus there are needs to evaluate cognitive ability of humans in classifying environmental features. With the focus on land cover, this study explores the extent to which citizen science can be applied in sensing and measuring the environment that contribute to the creation and validation of land cover data. The Day Basin in Vietnam was selected to be the study area. Different methods to examine humans' ability to classify land cover were implemented using different information sources: ground based photos - satellite images - field observation and investigation. Most of the participants were solicited from local people and/or volunteers. Results show that across methods and sources of information, there are similar patterns of agreement and disagreement on land cover classes among participants. Understanding these patterns is critical to create a solid basis for implementing human sensors in earth observation. Keywords: Land cover, classification, citizen science, Landsat 8

  10. Analysis of the most important river plumes on the Atlantic and Mediterranean Iberian coast by means of satellite imagery

    Directory of Open Access Journals (Sweden)

    Diego Fernandez Novoa

    2014-06-01

    Full Text Available Rivers discharges cause the formation of buoyant plumes in the adjacent coastal area at their mouths, which are characterized by low-salinity water and controlled by outflow inertia, rotation (Coriolis effects, buoyancy, wind, and tide forcing. The turbid plumes influence the adjacent coastal area, since they control the patterns of nutrients, sediments and/or pollutants of fluvial origin on the coastal ocean and can promote strong physical and chemical changes on seawater. These changes affect the biological characteristics of the area, such as primary production, species composition, abundance and distribution of existing microorganism, which demonstrates its high ecological importance. The characterization of the most important river plumes along the Atlantic Iberian coast and the influence of the main forcing drivers (river discharge, wind and tide on them, was carried out through the analysis of plume mean-state images calculated using water leaving radiance data (nLw555 obtained from the MODIS (Moderate Resolution Imaging Spectroradiometer sensor onboard the Aqua satellite during 2003-2013. Satellite data are downloaded from Ocean Color web site (http://oceancolor.gsfc.nasa.gov. Daily high-resolution L1 files from MODIS-Aqua were processed through SeaDAS software. Composite images, interpolated to a regular pixel grid with an approximate resolution of 500m, were built for different synoptic conditions of river discharge, wind regimes and tide, in order to obtain a representative average plume image of each situation and river for the posterior analysis. Results showed that the river discharge is the main forcing factor in the river plume extension. Wind effect is noticeable under high river discharge and tide is important for the estuarine outflow regimes although with some remarkable similarities and differences between the Atlantic rivers due to their intrinsic characteristics.

  11. Resolving uncertainties in the urban air quality, climate, and vegetation nexus through citizen science, satellite imagery, and atmospheric modeling

    Science.gov (United States)

    Jenerette, D.; Wang, J.; Chandler, M.; Ripplinger, J.; Koutzoukis, S.; Ge, C.; Castro Garcia, L.; Kucera, D.; Liu, X.

    2017-12-01

    Large uncertainties remain in identifying the distribution of urban air quality and temperature risks across neighborhood to regional scales. Nevertheless, many cities are actively expanding vegetation with an expectation to moderate both climate and air quality risks. We address these uncertainties through an integrated analysis of satellite data, atmospheric modeling, and in-situ environmental sensor networks maintained by citizen scientists. During the summer of 2017 we deployed neighborhood-scale networks of air temperature and ozone sensors through three campaigns across urbanized southern California. During each five-week campaign we deployed six sensor nodes that included an EPA federal equivalent method ozone sensor and a suite of meteorological sensors. Each node was further embedded in a network of 100 air temperature sensors that combined a randomized design developed by the research team and a design co-created by citizen scientists. Between 20 and 60 citizen scientists were recruited for each campaign, with local partners supporting outreach and training to ensure consistent deployment and data gathering. We observed substantial variation in both temperature and ozone concentrations at scales less than 4km, whole city, and the broader southern California region. At the whole city scale the average spatial variation with our ozone sensor network just for city of Long Beach was 26% of the mean, while corresponding variation in air temperature was only 7% of the mean. These findings contrast with atmospheric model estimates of variation at the regional scale of 11% and 1%. Our results show the magnitude of fine-scale variation underestimated by current models and may also suggest scaling functions that can connect neighborhood and regional variation in both ozone and temperature risks in southern California. By engaging citizen science with high quality sensors, satellite data, and real-time forecasting, our results help identify magnitudes of climate and

  12. Development and Assessment of the Sand Dust Prediction Model by Utilizing Microwave-Based Satellite Soil Moisture and Reanalysis Datasets in East Asian Desert Areas

    Directory of Open Access Journals (Sweden)

    Hyunglok Kim

    2017-01-01

    Full Text Available For several decades, satellite-based microwave sensors have provided valuable soil moisture monitoring in various surface conditions. We have first developed a modeled aerosol optical depth (AOD dataset by utilizing Soil Moisture and Ocean Salinity (SMOS, Advanced Microwave Scanning Radiometer 2 (AMSR2, and the Global Land Data Assimilation System (GLDAS soil moisture datasets in order to estimate dust outbreaks over desert areas of East Asia. Moderate Resolution Imaging Spectroradiometer- (MODIS- based AOD products were used as reference datasets to validate the modeled AOD (MA. The SMOS-based MA (SMOS-MA dataset showed good correspondence with observed AOD (R-value: 0.56 compared to AMSR2- and GLDAS-based MA datasets, and it overestimated AOD compared to observed AOD. The AMSR2-based MA dataset was found to underestimate AOD, and it showed a relatively low R-value (0.35 with respect to observed AOD. Furthermore, SMOS-MA products were able to simulate the short-term AOD trends, having a high R-value (0.65. The results of this study may allow us to acknowledge the utilization of microwave-based soil moisture datasets for investigation of near-real time dust outbreak predictions and short-term dust outbreak trend analysis.

  13. Monitoring Changes in Croplands Due to Water Stress in the Krishna River Basin Using Temporal Satellite Imagery

    Directory of Open Access Journals (Sweden)

    Venkata Ramana Murthy Reddi

    2017-10-01

    Full Text Available Remote sensing-based assessments of large river basins such as the Krishna, which supplies water to many states in India, are useful for operationally monitoring agriculture, especially basins that are affected by abiotic stress. Moderate-Resolution Imaging Spectroradiometer (MODIS time series products can be used to understand cropland changes at the basin level due to abiotic stresses, especially water scarcity. Spectral matching techniques were used to identify land use/land cover (LULC areas for two crop years: 2013–2014, which was a normal year, and 2015–2016, which was a water stress year. Water stress-affected crop areas were categorized into three classes—severe, moderate and mild—based on the normalized difference vegetation index (NDVI and intensity of damage assessed through field sampling. Furthermore, ground survey data were used to assess the accuracy of MODIS-derived classification individual products. Water inflows into and outflows from the Krishna river basin during the study period were used as direct indicators of water scarcity/availability in the Krishna Basin. Furthermore, ground survey data were used to assess the accuracy of MODIS-derived LULC classification of individual year products. Rainfall data from the tropical rainfall monitoring mission (TRMM was used to support the water stress analysis. The nine LULC classes derived using the MODIS temporal imagery provided overall accuracies of 82% for the cropping year 2013–2014 and 85% for the year 2015–2016. Kappa values are 0.78 for 2013–2014 and 0.82 for 2015–2016. MODIS-derived cropland areas were compared with national statistics for the cropping year 2013–2014 with a R2 value of 0.87. Results show that both rainfed and irrigated areas in 2015–2016 saw significant changes that will have significant impacts on food security. It has been also observed that the farmers in the basin tend to use lower inputs and labour per ha during drought years. Among

  14. Volcanic and Tectonic Activity in the Red Sea Region (2004-2013): Insights from Satellite Radar Interferometry and Optical Imagery

    KAUST Repository

    Xu, Wenbin

    2015-04-01

    Studying recent volcanic and tectonic events in the Red Sea region is important for improving our knowledge of the Red Sea plate boundary and for regional geohazard assessments. However, limited information has been available about the past activity due to insufficient in-situ data and remoteness of some of the activity. In this dissertation, I have used satellite remote sensing to derive new information about several recent volcanic and tectonic events in the Red Sea region. I first report on three volcanic eruptions in the southern Red Sea, the 2007-8 Jebel at Tair eruption and the 2011-12 & 2013 Zubair eruptions, which resulted in formation of two new islands. Series of high- resolution optical images were used to map the extent of lava flows and to observe and analyze the growth and destructive processes of the new islands. I used Interferometric Synthetic Aperture Radar (InSAR) data to study the evolution of lava flows, to estimate their volumes, as well as to generate ground displacements maps, which were used to model the dikes that fed the eruptions. I then report on my work of the 2009 Harrat Lunayyir dike intrusion and the 2004 Tabuk earthquake sequence in western Saudi Arabia. I used InSAR observations and stress calculations to study the intruding dike at Harrat Lunayyir, while I combined InSAR data and Bayesian estimation to study the Tabuk earthquake activity. The key findings of the thesis are: 1) The recent volcanic eruptions in the southern Red Sea indicate that the area is magmatically more active than previously acknowledged and that a rifting episode has been taken place in the southern Red Sea; 2) Stress interactions between an ascending dike intrusion and normal faulting on graben-bounding faults above the dike can inhibit vertical propagation of magma towards the surface; 3) InSAR observations can improve locations of shallow earthquakes and fault model uncertainties are useful to associate earthquake activity with mapped faults; 4). The

  15. Cloud-based Web Services for Near-Real-Time Web access to NPP Satellite Imagery and other Data

    Science.gov (United States)

    Evans, J. D.; Valente, E. G.

    2010-12-01

    We are building a scalable, cloud computing-based infrastructure for Web access to near-real-time data products synthesized from the U.S. National Polar-Orbiting Environmental Satellite System (NPOESS) Preparatory Project (NPP) and other geospatial and meteorological data. Given recent and ongoing changes in the the NPP and NPOESS programs (now Joint Polar Satellite System), the need for timely delivery of NPP data is urgent. We propose an alternative to a traditional, centralized ground segment, using distributed Direct Broadcast facilities linked to industry-standard Web services by a streamlined processing chain running in a scalable cloud computing environment. Our processing chain, currently implemented on Amazon.com's Elastic Compute Cloud (EC2), retrieves raw data from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) and synthesizes data products such as Sea-Surface Temperature, Vegetation Indices, etc. The cloud computing approach lets us grow and shrink computing resources to meet large and rapid fluctuations (twice daily) in both end-user demand and data availability from polar-orbiting sensors. Early prototypes have delivered various data products to end-users with latencies between 6 and 32 minutes. We have begun to replicate machine instances in the cloud, so as to reduce latency and maintain near-real time data access regardless of increased data input rates or user demand -- all at quite moderate monthly costs. Our service-based approach (in which users invoke software processes on a Web-accessible server) facilitates access into datasets of arbitrary size and resolution, and allows users to request and receive tailored and composite (e.g., false-color multiband) products on demand. To facilitate broad impact and adoption of our technology, we have emphasized open, industry-standard software interfaces and open source software. Through our work, we envision the widespread establishment of similar, derived, or interoperable systems for

  16. JPSS Preparations at the Satellite Proving Ground for Marine, Precipitation, and Satellite Analysis

    Science.gov (United States)

    Folmer, M. J.; Berndt, E.; Clark, J.; Orrison, A.; Kibler, J.; Sienkiewicz, J. M.; Nelson, J. A., Jr.; Goldberg, M.

    2016-12-01

    The National Oceanic and Atmospheric Administration (NOAA) Satellite Proving Ground (PG) for Marine, Precipitation, and Satellite Analysis (MPS) has been demonstrating and evaluating Suomi National Polar-orbiting Partnership (S-NPP) products along with other polar-orbiting satellite platforms in preparation for the Joint Polar Satellite System - 1 (JPSS-1) launch in March 2017. The first S-NPP imagery was made available to the MPS PG during the evolution of Hurricane Sandy in October 2012 and has since been popular in operations. Since this event the MPS PG Satellite Liaison has been working with forecasters on ways to integrate single-channel and multispectral imagery from the Visible Infrared Imaging Radiometer Suite (VIIRS), the Moderate Resolution Imaging Spectroradiometer (MODIS), and the Advanced Very High Resolution Radiometer (AVHRR)into operations to complement numerical weather prediction and geostationary satellite savvy National Weather Service (NWS) National Centers. Additional unique products have been introduced to operations to address specific forecast challenges, including the Cooperative Institute for Research in the Atmosphere (CIRA) Layered Precipitable Water, the National Environmental Satellite, Data, and Information Service (NESDIS) Snowfall Rate product, NOAA Unique Combined Atmospheric Processing System (NUCAPS) Soundings, ozone products from the Atmospheric Infrared Sounder (AIRS), Cross-track Infrared Sounder/Advanced Technology Microwave Sounder (CrIS/ATMS), and Infrared Atmospheric Sounding Interferometer (IASI). In addition, new satellite domains have been created to provide forecasters at the NWS Ocean Prediction Center and Weather Prediction Center with better quality imagery at high latitudes. This has led to research projects that are addressing forecast challenges such as tropical to extratropical transition and explosive cyclogenesis. This presentation will provide examples of how the MPS PG has been introducing and integrating

  17. A history of the 2014 Minute 319 environmental pulse flow asdocumented by field measurements and satellite imagery

    Science.gov (United States)

    Nelson, Steven M.; Ramirez-Hernandez, Jorge; Rodriguez-Burgeueno, J. Eliana; Milliken, Jeff; Kennedy, Jeffrey R.; Zamora-Arroyo, Francisco; Schlatter, Karen; Santiago-Serrano, Edith; Carrera-Villa, Edgar

    2017-01-01

    As provided in Minute 319 of the U.S.-Mexico Water Treaty of 1944, a pulse flow of approximately 132 million cubic meters (mcm) was released to the riparian corridor of the Colorado River Delta over an eight-week period that began March 23, 2014 and ended May 18, 2014. Peak flows were released in the early part of the pulse to simulate a spring flood, with approximately 101.7 mcm released at Morelos Dam on the U.S.-Mexico border. The remainder of the pulse flow water was released to the riparian corridor via Mexicali Valley irrigation spillway canals, with 20.9 mcm released at Km 27 Spillway (41 km below Morelos Dam) and 9.3 mcm released at Km 18 Spillway (78 km below Morelos Dam). We used sequential satellite images, overflights, ground observations, water discharge measurements, and automated temperature, river stage and water quality loggers to document and describe the progression of pulse flow water through the study area. The rate of advance of the wetted front was slowed by infiltration and high channel roughness as the pulse flow crossed more than 40 km of dry channel which was disconnected from underlying groundwater and partially overgrown with salt cedar. High lag time and significant attenuation of flow resulted in a changing hydrograph as the pulse flow progressed to the downstream delivery points; two peak flows occurred in some lower reaches. The pulse flow advanced more than 120 km downstream from Morelos Dam to reach the Colorado River estuary at the northern end of the Gulf of California.

  18. Estimating the Impact of Urban Expansion on Land Subsidence Using Time Series of DMSP Night-Time Light Satellite Imagery

    Science.gov (United States)

    Jiao, S.; Yu, J.; Wang, Y.; Zhu, L.; Zhou, Q.

    2018-04-01

    In recent decades, urbanization has resulted a massive increase in the amount of infrastructure especially large buildings in large cities worldwide. There has been a noticeable expansion of entire cities both horizontally and vertically. One of the common consequences of urban expansion is the increase of ground loads, which may trigger land subsidence and can be a potential threat of public safety. Monitoring trends of urban expansion and land subsidence using remote sensing technology is needed to ensure safety along with urban planning and development. The Defense Meteorological Satellite Program Operational Line scan System (DMSP/OLS) Night-Time Light (NTL) images have been used to study urbanization at a regional scale, proving the capability of recognizing urban expansion patterns. In the current study, a normalized illuminated urban area dome volume (IUADV) based on inter-calibrated DMSP/OLS NTL images is shown as a practical approach for estimating urban expansion of Beijing at a single period in time and over subsequent years. To estimate the impact of urban expansion on land subsidence, IUADV was correlated with land subsidence rates obtained using the Stanford Method for Persistent Scatterers (StaMPS) approach within the Persistent Scatterers InSAR (PSInSAR) methodology. Moderate correlations are observed between the urban expansion based on the DMSP/OLS NTL images and land subsidence. The correlation coefficients between the urban expansion of each year and land subsidence tends to gradually decrease over time (Coefficient of determination R = 0.80 - 0.64 from year 2005 to year 2010), while the urban expansion of two sequential years exhibit an opposite trend (R = 0.29 - 0.57 from year 2005 to year 2010) except for the two sequential years between 2007 and 2008 (R = 0.14).

  19. Angular difference feature extraction for urban scene classification using ZY-3 multi-angle high-resolution satellite imagery

    Science.gov (United States)

    Huang, Xin; Chen, Huijun; Gong, Jianya

    2018-01-01

    Spaceborne multi-angle images with a high-resolution are capable of simultaneously providing spatial details and three-dimensional (3D) information to support detailed and accurate classification of complex urban scenes. In recent years, satellite-derived digital surface models (DSMs) have been increasingly utilized to provide height information to complement spectral properties for urban classification. However, in such a way, the multi-angle information is not effectively exploited, which is mainly due to the errors and difficulties of the multi-view image matching and the inaccuracy of the generated DSM over complex and dense urban scenes. Therefore, it is still a challenging task to effectively exploit the available angular information from high-resolution multi-angle images. In this paper, we investigate the potential for classifying urban scenes based on local angular properties characterized from high-resolution ZY-3 multi-view images. Specifically, three categories of angular difference features (ADFs) are proposed to describe the angular information at three levels (i.e., pixel, feature, and label levels): (1) ADF-pixel: the angular information is directly extrapolated by pixel comparison between the multi-angle images; (2) ADF-feature: the angular differences are described in the feature domains by comparing the differences between the multi-angle spatial features (e.g., morphological attribute profiles (APs)). (3) ADF-label: label-level angular features are proposed based on a group of urban primitives (e.g., buildings and shadows), in order to describe the specific angular information related to the types of primitive classes. In addition, we utilize spatial-contextual information to refine the multi-level ADF features using superpixel segmentation, for the purpose of alleviating the effects of salt-and-pepper noise and representing the main angular characteristics within a local area. The experiments on ZY-3 multi-angle images confirm that the proposed

  20. Object-based random forest classification of Landsat ETM+ and WorldView-2 satellite imagery for mapping lowland native grassland communities in Tasmania, Australia

    Science.gov (United States)

    Melville, Bethany; Lucieer, Arko; Aryal, Jagannath

    2018-04-01

    This paper presents a random forest classification approach for identifying and mapping three types of lowland native grassland communities found in the Tasmanian Midlands region. Due to the high conservation priority assigned to these communities, there has been an increasing need to identify appropriate datasets that can be used to derive accurate and frequently updateable maps of community extent. Therefore, this paper proposes a method employing repeat classification and statistical significance testing as a means of identifying the most appropriate dataset for mapping these communities. Two datasets were acquired and analysed; a Landsat ETM+ scene, and a WorldView-2 scene, both from 2010. Training and validation data were randomly subset using a k-fold (k = 50) approach from a pre-existing field dataset. Poa labillardierei, Themeda triandra and lowland native grassland complex communities were identified in addition to dry woodland and agriculture. For each subset of randomly allocated points, a random forest model was trained based on each dataset, and then used to classify the corresponding imagery. Validation was performed using the reciprocal points from the independent subset that had not been used to train the model. Final training and classification accuracies were reported as per class means for each satellite dataset. Analysis of Variance (ANOVA) was undertaken to determine whether classification accuracy differed between the two datasets, as well as between classifications. Results showed mean class accuracies between 54% and 87%. Class accuracy only differed significantly between datasets for the dry woodland and Themeda grassland classes, with the WorldView-2 dataset showing higher mean classification accuracies. The results of this study indicate that remote sensing is a viable method for the identification of lowland native grassland communities in the Tasmanian Midlands, and that repeat classification and statistical significant testing can be

  1. COMBINATION OF GENETIC ALGORITHM AND DEMPSTER-SHAFER THEORY OF EVIDENCE FOR LAND COVER CLASSIFICATION USING INTEGRATION OF SAR AND OPTICAL SATELLITE IMAGERY

    Directory of Open Access Journals (Sweden)

    H. T. Chu

    2012-07-01

    Full Text Available The integration of different kinds of remotely sensed data, in particular Synthetic Aperture Radar (SAR and optical satellite imagery, is considered a promising approach for land cover classification because of the complimentary properties of each data source. However, the challenges are: how to fully exploit the capabilities of these multiple data sources, which combined datasets should be used and which data processing and classification techniques are most appropriate in order to achieve the best results. In this paper an approach, in which synergistic use of a feature selection (FS methods with Genetic Algorithm (GA and multiple classifiers combination based on Dempster-Shafer Theory of Evidence, is proposed and evaluated for classifying land cover features in New South Wales, Australia. Multi-date SAR data, including ALOS/PALSAR, ENVISAT/ASAR and optical (Landsat 5 TM+ images, were used for this study. Textural information were also derived and integrated with the original images. Various combined datasets were generated for classification. Three classifiers, namely Artificial Neural Network (ANN, Support Vector Machines (SVMs and Self-Organizing Map (SOM were employed. Firstly, feature selection using GA was applied for each classifier and dataset to determine the optimal input features and parameters. Then the results of three classifiers on particular datasets were combined using the Dempster-Shafer theory of Evidence. Results of this study demonstrate the advantages of the proposed method for land cover mapping using complex datasets. It is revealed that the use of GA in conjunction with the Dempster-Shafer Theory of Evidence can significantly improve the classification accuracy. Furthermore, integration of SAR and optical data often outperform single-type datasets.

  2. Analysis of Decadal-Scale Shoreline Change along the Hamlet of Paulatuk (Canadian Arctic), using Landsat Satellite Imagery and GIS techniques from 1984 to 2014.

    Science.gov (United States)

    Sankar, R. D.; Murray, M. S.; Wells, P.

    2016-12-01

    Increased accuracy in estimating coastal change along localized segments of the Canadian Arctic coast is essential, in order to identify plausible adaptation initiatives to deal with the effects of climate change. This paper quantifies rates of shoreline movement along an 11 km segment of the Hamlet of Paulatuk (Northwest Territories, Canada), using an innovative modelling technique - Analyzing Moving Boundaries Using R (AMBUR). Approximately two dozen shorelines, obtained from high-resolution Landsat satellite imagery were analyzed. Shorelines were extracted using the band ratio method and compiled in ArcMapTM to determine decadal trends of coastal change. The unique geometry of Paulatuk facilitated an independent analysis of the western and eastern sections of the study area. Long-term (1984-2014) and short-term (1984-2003) erosion and accretion rates were calculated using the Linear Regression and End Point Rate methods respectively. Results reveal an elevated rate of erosion for the western section of the hamlet over the long-term (-1.1 m/yr), compared to the eastern portion (-0.92 m/yr). The study indicates a significant alongshore increase in the rates of erosion on both portions of the study area, over the short-term period 1984 to 2003. Mean annual erosion rates increased over the short-term along the western segment (-1.4 m/yr), while the eastern shoreline retreated at a rate of -1.3 m/yr over the same period. The analysis indicates that an amalgamation of factors may be responsible for the patterns of land loss experienced along Paulatuk. These include increased sea-surface temperature coupled with dwindling arctic ice and elevated storm hydrodynamics. The analysis further reveals that the coastline along the eastern portion of the hamlet, where the majority of the population reside, is vulnerable to a high rate of shoreline erosion.

  3. Mapping post-fire forest regeneration and vegetation recovery using a combination of very high spatial resolution and hyperspectral satellite imagery

    Science.gov (United States)

    Mitri, George H.; Gitas, Ioannis Z.

    2013-02-01

    Careful evaluation of forest regeneration and vegetation recovery after a fire event provides vital information useful in land management. The use of remotely sensed data is considered to be especially suitable for monitoring ecosystem dynamics after fire. The aim of this work was to map post-fire forest regeneration and vegetation recovery on the Mediterranean island of Thasos by using a combination of very high spatial (VHS) resolution (QuickBird) and hyperspectral (EO-1 Hyperion) imagery and by employing object-based image analysis. More specifically, the work focused on (1) the separation and mapping of three major post-fire classes (forest regeneration, other vegetation recovery, unburned vegetation) existing within the fire perimeter, and (2) the differentiation and mapping of the two main forest regeneration classes, namely, Pinus brutia regeneration, and Pinus nigra regeneration. The data used in this study consisted of satellite images and field observations of homogeneous regenerated and revegetated areas. The methodology followed two main steps: a three-level image segmentation, and, a classification of the segmented images. The process resulted in the separation of classes related to the aforementioned objectives. The overall accuracy assessment revealed very promising results (approximately 83.7% overall accuracy, with a Kappa Index of Agreement of 0.79). The achieved accuracy was 8% higher when compared to the results reported in a previous work in which only the EO-1 Hyperion image was employed in order to map the same classes. Some classification confusions involving the classes of P. brutia regeneration and P. nigra regeneration were observed. This could be attributed to the absence of large and dense homogeneous areas of regenerated pine trees in the study area.

  4. Predicting lake trophic state by relating Secchi-disk transparency measurements to Landsat-satellite imagery for Michigan inland lakes, 2003-05 and 2007-08

    Science.gov (United States)

    Fuller, L.M.; Jodoin, R.S.; Minnerick, R.J.

    2011-01-01

    Inland lakes are an important economic and environmental resource for Michigan. The U.S. Geological Survey and the Michigan Department of Natural Resources and Environment have been cooperatively monitoring the quality of selected lakes in Michigan through the Lake Water Quality Assessment program. Sampling for this program began in 2001; by 2010, 730 of Michigan’s 11,000 inland lakes are expected to have been sampled once. Volunteers coordinated by the Michigan Department of Natural Resources and Environment began sampling lakes in 1974 and continue to sample (in 2010) approximately 250 inland lakes each year through the Michigan Cooperative Lakes Monitoring Program. Despite these sampling efforts, it still is impossible to physically collect measurements for all Michigan inland lakes; however, Landsat-satellite imagery has been used successfully in Minnesota, Wisconsin, Michigan, and elsewhere to predict the trophic state of unsampled inland lakes greater than 20 acres by producing regression equations relating in-place Secchi-disk measurements to Landsat bands. This study tested three alternatives to methods previously used in Michigan to improve results for predicted statewide Trophic State Index (TSI) computed from Secchi-disk transparency (TSI (SDT)). The alternative methods were used on 14 Landsat-satellite scenes with statewide TSI (SDT) for two time periods (2003– 05 and 2007–08). Specifically, the methods were (1) satellitedata processing techniques to remove areas affected by clouds, cloud shadows, haze, shoreline, and dense vegetation for inland lakes greater than 20 acres in Michigan; (2) comparison of the previous method for producing a single open-water predicted TSI (SDT) value (which was based on an area of interest (AOI) and lake-average approach) to an alternative Gethist method for identifying open-water areas in inland lakes (which follows the initial satellite-data processing and targets the darkest pixels, representing the deepest water

  5. Interpretation of earthquake-induced landslides triggered by the 12 May 2008, M7.9 Wenchuan earthquake in the Beichuan area, Sichuan Province, China using satellite imagery and Google Earth

    Science.gov (United States)

    Sato, H.P.; Harp, E.L.

    2009-01-01

    The 12 May 2008 M7.9 Wenchuan earthquake in the People's Republic of China represented a unique opportunity for the international community to use commonly available GIS (Geographic Information System) tools, like Google Earth (GE), to rapidly evaluate and assess landslide hazards triggered by the destructive earthquake and its aftershocks. In order to map earthquake-triggered landslides, we provide details on the applicability and limitations of publicly available 3-day-post- and pre-earthquake imagery provided by GE from the FORMOSAT-2 (formerly ROCSAT-2; Republic of China Satellite 2). We interpreted landslides on the 8-m-resolution FORMOSAT-2 image by GE; as a result, 257 large landslides were mapped with the highest concentration along the Beichuan fault. An estimated density of 0.3 landslides/km2 represents a minimum bound on density given the resolution of available imagery; higher resolution data would have identified more landslides. This is a preliminary study, and further study is needed to understand the landslide characteristics in detail. Although it is best to obtain landslide locations and measurements from satellite imagery having high resolution, it was found that GE is an effective and rapid reconnaissance tool. ?? 2009 Springer-Verlag.

  6. A two year (2008-2009) analysis of severe convective storms in the Mediterranean basin as observed by satellite imagery

    Science.gov (United States)

    Gozzini, B.; Melani, S.; Pasi, F.; Ortolani, A.

    2010-09-01

    The increasing damages caused by natural disasters, a great part of them being direct or indirect effects of severe convective storms (SCS), seem to suggest that extreme events occur with greater frequency, also as a consequence of climate changes. A better comprehension of the genesis and evolution of SCS is then necessary to clarify if and what is changing in these extreme events. The major reason to go through the mechanisms driving such events is given by the growing need to have timely and precise predictions of severe weather events, especially in areas that show to be more and more sensitive to their occurrence. When dealing with severe weather events, either from a researcher or an operational point of view, it is necessary to know precisely the conditions under which these events take place to upgrade conceptual models or theories, and consequently to improve the quality of forecasts as well as to establish effective warning decision procedures. The Mediterranean basin is, in general terms, a sea of small areal extent, characterised by the presence of several islands; thus, a severe convection phenomenon originating over the sea, that lasts several hours, is very likely to make landfall during its lifetime. On the other hand, these storms are quasi-stationary or very slow moving so that, when convection happens close to the shoreline, it is normally very dangerous and in many cases can cause very severe weather, with flash floods or tornadoes. An example of these extreme events is one of the case study analysed in this work, regarding the flash flood occurred in Giampileri (Sicily, Italy) the evening of 1st October 2009, where 18 people died, other 79 injured and the historical centre of the village seriously damaged. Severe weather systems and strong convection occurring in the Mediterranean basin have been investigated for two years (2008-2009) using geostationary (MSG) and polar orbiting (AVHRR) satellite data, supported by ECMWF analyses and severe

  7. Earth Observing System/Meteorological Satellite (EOS/METSAT). Advanced Microwave Sounding Unit-A (AMSU-A) Contamination Control Plan

    Science.gov (United States)

    Fay, M.

    1998-01-01

    This Contamination Control Plan is submitted in response the Contract Document requirements List (CDRL) 007 under contract NAS5-32314 for the Earth Observing System (EOS) Advanced Microwave Sounding Unit A (AMSU-A). In response to the CDRL instructions, this document defines the level of cleanliness and methods/procedures to be followed to achieve adequate cleanliness/contamination control, and defines the required approach to maintain cleanliness/contamination control through shipping, observatory integration, test, and flight. This plan is also applicable to the Meteorological Satellite (METSAT) except where requirements are identified as EOS-specific. This plan is based on two key factors: a. The EOS/METSAT AMSU-A Instruments are not highly contamination sensitive. b. Potential contamination of other EOS Instruments is a key concern as addressed in Section 9/0 of the Performance Assurance Requirements for EOS/METSAT Integrated Programs AMSU-A Instrument (MR) (NASA Specification S-480-79).

  8. Advanced Analysis of the Influence of Clouds, Precipiation and Surface Emissivity on DMSP/NPOESS Satellite Microwave Channels

    National Research Council Canada - National Science Library

    Isaacs, R

    2002-01-01

    ...: development of databases of brightness temperatures from various satellite sensors; development databases of conventional analysis to verify the presence and amount of clouds and precipitation and for verification of retrieval results...

  9. Continuity of Climate Data Records derived from Microwave Observations

    Science.gov (United States)

    Mears, C. A.; Wentz, F. J.; Brewer, M.; Meissner, T.; Ricciardulli, L.

    2017-12-01

    Remote Sensing Systems (www.remss.com) has been producing and distributing microwave climate data products from microwave imagers (SSMI, TMI, AMSR, WindSat, GMI, Aquarius, SMAP) over the global oceans since the launch of the first SSMI in 1987. Interest in these data products has been significant as researchers around the world have downloaded the approximate equivalent of 1 million satellite years of processed data. Users, including NASA, NOAA, US National Laboratories, US Navy, UK Met, ECMWF, JAXA, JMA, CMC, the Australian Bureau of Meteorology, as well as many hundreds of other agencies and universities routinely access these microwave data products. The quality of these data records has increased as more observations have become available and inter-calibration techniques have improved. The impending end of missions for WindSat, AMSR-2, and the remaining SSMIs will have significant impact on the quality and continuity of long term microwave climate data records. In addition to the problem of reduced numbers of observations, there is a real danger of losing overlapping observations. Simultaneous operation of satellites, especially when the observations are at similar local crossing times, provides a significant benefit in the effort to inter-calibrate satellites to yield accurate and stable long-term records. The end of WindSat and AMSR-2 will leave us without microwave SSTs in cold water, as there will be no microwave imagers with C-band channels. Microwave SSTs have a crucial advantage over IR SSTs, which is not able to measure SST in clouds or if aerosols are present. The gap in ocean wind vectors will be somewhat mitigated as the European ASCAT C-band scatterometer mission on MetOp is continuing. Nonetheless, the anticipated cease of several microwave satellite radiometers retrieving ocean winds in the coming years will lead to a significant gap in temporal coverage. Atmospheric water vapor, cloud liquid water, and rain rate are all important climate

  10. Utilization of downscaled microwave satellite data and GRACE Total Water Storage anomalies for improving streamflow prediction in the Lower Mekong Basin

    Science.gov (United States)

    Lakshmi, V.; Gupta, M.; Bolten, J. D.

    2016-12-01

    The Mekong river is the world's eighth largest in discharge with draining an area of 795,000 km² from the Eastern watershed of the Tibetan Plateau to the Mekong Delta including, Myanmar, Laos PDR, Thailand, Cambodia, Vietnam and three provinces of China. The populations in these countries are highly dependent on the Mekong River and they are vulnerable to the availability and quality of the water resources within the Mekong River Basin. Soil moisture is one of the most important hydrological cycle variables and is available from passive microwave satellite sensors (such as AMSR-E, SMOS and SMAP), but their spatial resolution is frequently too coarse for effective use by land managers and decision makers. The merging of satellite observations with numerical models has led to improved land surface predictions. Although performance of the models have been continuously improving, the laboratory methods for determining key hydraulic parameters are time consuming and expensive. The present study assesses a method to determine the effective soil hydraulic parameters using a downscaled microwave remote sensing soil moisture product based on the NASA Advanced Microwave Scanning Radiometer (AMSR-E). The soil moisture downscaling algorithm is based on a regression relationship between 1-km MODIS land surface temperature and 1-km Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) to produce an enhanced spatial resolution ASMR-E-based soil moisture product. Since the optimized parameters are based on the near surface soil moisture information, further constraints are applied during the numerical simulation through the assimilation of GRACE Total Water Storage (TWS) within the land surface model. This work improves the hydrological fluxes and the state variables are optimized and the optimal parameter values are then transferred for retrieving hydrological fluxes. To evaluate the performance of the system in helping improve

  11. Quantifying the Spatio-temporal Impacts of Sea Level Rise on Carbon Storage Using Repeat Lidar Surveys and Multispectral Satellite Imagery

    Science.gov (United States)

    Smart, L.; Taillie, P. J.; Smith, J. W.; Meentemeyer, R. K.

    2017-12-01

    Sound coastal land-use policy and management decisions to mitigate or adapt to sea level rise impacts depend on understanding vegetation responses to sea level rise over large extents. Accurate methodologies to quantify these changes are necessary to understand the continued production of the ecosystem services upon which human health and well-being depend. This research quantifies spatio-temporal changes in aboveground biomass altered by sea level rise across North Carolina's coastal plain using a combination of repeat-acquisition lidar data and multi-temporal satellite imagery. Using field data from across the study area, we evaluated the reliability of multi-temporal lidar data with disparate densities and accuracies to detect changes along a coastal vegetation gradient from marsh to forested wetland. Despite an 18 fold increase in lidar point density between survey years (2001, 2014), the relationships between lidar-derived heights and field-measured heights were similar (adjusted r2; 0.6 -0.7). Random Forest, a machine learning algorithm, was used to separately predict above-ground biomass pools at the landscape-scale for the two time periods using the 98 field plots as reference data. Models performed well for both years (adjusted r2; 0.67-0.85). The 2001 model required the addition of Landsat spectral indices to meet the same adjusted r2 values as the 2014 model, which utilized lidar-derived metrics alone. Of the many potential lidar-derived predictor metrics, median and mean vegetation height were the best predictors in both time periods. To measure the spatial patterns of biomass change across the landscape, we subtracted the 2001 biomass model from the 2014 model and found significant spatial heterogeneity in biomass change across both the vegetation gradient and across the peninsula over the 12-year time period. In forested areas, we found a mean increase in aboveground biomass whereas in transition zones, marshes and freshwater emergent wetlands we

  12. Combining Landsat TM multispectral satellite imagery and different modelling approaches for mapping post-fire erosion changes in a Mediterranean site

    Science.gov (United States)

    Petropoulos, George P.; Kairis, Orestis; Karamesouti, Mina; Papanikolaou, Ioannis D.; Kosmas, Constantinos

    2013-04-01

    South European countries are naturally vulnerable to wildfires. Their natural resources such as soil, vegetation and water may be severely affected by wildfires, causing an imminent environmental deterioration due to the complex interdependence among biophysical components. Soil surface water erosion is a natural process essential for soil formation that is affected by such interdependences. Accelerated erosion due to wildfires, constitutes a major restrictive factor for ecosystem sustainability. In 2007, South European countries were severely affected by wildfires, with more than 500,000 hectares of land burnt in that year alone, well above the average of the last 30 years. The present work examines the changes in spatial variability of soil erosion rates as a result of a wildfire event that took place in Greece in 2007, one of the most devastating years in terms of wildfire hazards. Regional estimates of soil erosion rates before and after the fire outbreak were derived from the Revised Universal Soil Loss Equation (RUSLE, Renard et al. 1991) and the Pan-European Soil Erosion Risk Assessment model (PESERA, Kirkby, 1999; Kirkby et al., 2000). Inputs for both models included climatic, land-use, soil type, topography and land use management data. Where appropriate, both models were also fed with input data derived from the analysis of LANDSAT TM satellite imagery available in our study area, acquired before and shortly after the fire suppression. Our study was compiled and performed in a GIS environment. In overall, the loss of vegetation from the fire outbreak caused a substantial increase of soil erosion rates in the affected area, particularly towards the steep slopes. Both tested models were compared to each other and noticeable differences were observed in the soil erosion predictions before and after the fire event. These are attributed to the different parameterization requirements of the 2 models. This quantification of sediment supply through the river

  13. The Use of LiDAR Elevation Data and Satellite Imagery to Locate Critical Source Areas to Diffuse Pollution in Agricultural Watersheds

    Science.gov (United States)

    Drouin, Ariane; Michaud, Aubert; Thériault, Georges; Beaudin, Isabelle; Rodrigue, Jean-François; Denault, Jean-Thomas; Desjardins, Jacques; Côté, Noémi

    2013-04-01

    In Quebec / Canada, water quality improvement in rural areas greatly depends on the reduction of diffuse pollution. Indeed, point source pollution has been reduced significantly in Canada in recent years by creating circumscribed pits for manure and removing animals from stream. Diffuse pollution differs from point source pollution because it is spread over large areas. In agricultural areas, sediment loss by soil and riverbank erosion along with loss of nutrients (phosphorus, nitrogen, etc.) and pesticides from fields represent the main source of non-point source pollution. The factor mainly responsible for diffuse pollution in agricultural areas is surface runoff occurring in poorly drained areas in fields. The presence of these poorly drained areas is also one of the most limiting factors in crop productivity. Thus, a reconciliation of objectives at the farm (financial concern for farmers) and off-farm concerns (environmental concern) is possible. In short, drainage, runoff, erosion, water quality and crop production are all interconnected issues that need to be tackled together. Two complementary data sources are mainly used in the diagnosis of drainage, surface runoff and erosion : elevation data and multispectral satellite images. In this study of two watersheds located in Québec (Canada), LiDAR elevation data and satellite imagery (QuickBird, Spot and Landsat) were acquired. The studied territories have been partitioned in hydrologic response units (HRUs) according to sub-basins, soils, elevation (topographic index) and land use. These HRUs are afterwards used in a P index software (P-Edit) that calculates the quantities of sediments and phosphorus exported from each HRUs. These exports of sediments and phosphorus are validated with hydrometric and water quality data obtain in two sub-basins and are also compared to soil brightness index derived from multispectral images. This index is sensitive to soil moisture and thus highlights areas where the soil is

  14. Polar-Orbiting Satellite (POES) Images

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Visible and Infrared satellite imagery taken from camera systems or radiometer instruments on satellites in orbit around the poles. Satellite campaigns include...

  15. Defense Meteorological Satellite Program (DMSP)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Defense Meteorological Satellite Program (DMSP) satellites collect visible and infrared cloud imagery as well as monitoring the atmospheric, oceanographic,...

  16. The shared and unique values of optical, fluorescence, thermal and microwave satellite data for estimating large-scale crop yields

    Science.gov (United States)

    Large-scale crop monitoring and yield estimation are important for both scientific research and practical applications. Satellite remote sensing provides an effective means for regional and global cropland monitoring, particularly in data-sparse regions that lack reliable ground observations and rep...

  17. GHRSST Level 2P Global Subskin Sea Surface Temperature from TRMM Microwave Imager (TMI) onboard Tropical Rainfall Measurement Mission (TRMM) satellite (GDS versions 1 and 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — GDS2 Version -The Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) is a well calibrated passive microwave radiometer, similar to the Special Sensor...

  18. A statistical model for determining impact of wildland fires on Particulate Matter (PM2.5) in Central California aided by satellite imagery of smoke

    Science.gov (United States)

    Haiganoush K. Preisler; Donald Schweizer; Ricardo Cisneros; Trent Procter; Mark Ruminski; Leland Tarnay

    2015-01-01

    As the climate in California warms and wildfires become larger and more severe, satellite-based observational tools are frequently used for studying impact of those fires on air quality. However little objective work has been done to quantify the skill these satellite observations of smoke plumes have in predicting impacts to PM2.5 concentrations...

  19. Recent changes in spring snowmelt timing in the Yukon River basin detected by passive microwave satellite data

    Directory of Open Access Journals (Sweden)

    K. A. Semmens

    2013-06-01

    Full Text Available Spring melt is a significant feature of high latitude snowmelt dominated drainage basins influencing hydrological and ecological processes such as snowmelt runoff and green-up. Melt duration, defined as the transition period from snowmelt onset until the end of the melt refreeze, is characterized by high diurnal amplitude variations (DAV where the snowpack is melting during the day and refreezing at night, after which the snowpack melts constantly until depletion. Determining trends for this critical period is necessary for understanding how the Arctic is changing with rising temperatures and provides a baseline from which to assess future change. To study this dynamic period, brightness temperature (Tb data from the Special Sensor Microwave Imager (SSM/I 37 V-GHz frequency from 1988 to 2010 were used to assess snowmelt timing trends for the Yukon River basin, Alaska/Canada. Annual Tb and DAV for 1434 Equal-Area Scalable Earth (EASE-Grid pixels (25 km resolution were processed to determine melt onset and melt refreeze dates from Tb and DAV thresholds previously established in the region. Temporal and spatial trends in the timing of melt onset and melt refreeze, and the duration of melt were analyzed for the 13 sub-basins of the Yukon River basin with three different time interval approaches. Results show a lengthening of the melt period for the majority of the sub-basins with a significant trend toward later end of melt refreeze after which the snowpack melts day and night leading to snow clearance, peak discharge, and green-up. Earlier melt onset trends were also found in the higher elevations and northernmost sub-basins (Porcupine, Chandalar, and Koyukuk rivers. Latitude and elevation displayed the dominant controls on melt timing variability and spring solar flux was highly correlated with melt timing in middle (∼600–1600 m elevations.

  20. Relating C-band Microwave and Optical Satellite Observations as A Function of Snow Thickness on First-Year Sea Ice during the Winter to Summer Transition

    Science.gov (United States)

    Zheng, J.; Yackel, J.

    2015-12-01

    The Arctic sea ice and its snow cover have a direct impact on both the Arctic and global climate system through their ability to moderate heat exchange across the ocean-sea ice-atmosphere (OSA) interface. Snow cover plays a key role in the OSA interface radiation and energy exchange, as it controls the growth and decay of first-year sea ice (FYI). However, meteoric accumulation and redistribution of snow on FYI is highly stochastic over space and time, which makes it poorly understood. Previous studies have estimated local-scale snow thickness distributions using in-situ technique and modelling but it is spatially limited and challenging due to logistic difficulties. Moreover, snow albedo is also critical for determining the surface energy balance of the OSA during the critical summer ablation season. Even then, due to persistent and widespread cloud cover in the Arctic at various spatio-temporal scales, it is difficult and unreliable to remotely measure albedo of snow cover on FYI in the optical spectrum. Previous studies demonstrate that only large-scale sea ice albedo was successfully estimated using optical-satellite sensors. However, space-borne microwave sensors, with their capability of all-weather and 24-hour imaging, can provide enhanced information about snow cover on FYI. Daily spaceborne C-band scatterometer data (ASCAT) and MODIS data are used to investigate the the seasonal co-evolution of the microwave backscatter coefficient and optical albedo as a function of snow thickness on smooth FYI. The research focuses on snow-covered FYI near Cambridge Bay, Nunavut (Fig.1) during the winter to advanced-melt period (April-June, 2014). The ACSAT time series (Fig.2) show distinct increase in scattering at melt onset indicating the first occurrence of melt water in the snow cover. The corresponding albedo exhibits no decrease at this stage. We show how the standard deviation of ASCAT backscatter on FYI during winter can be used as a proxy for surface roughness

  1. Use of Fourier transforms for asynoptic mapping: Applications to the Upper Atmosphere Research Satellite microwave limb sounder

    Science.gov (United States)

    Elson, Lee S.; Froidevaux, Lucien

    1993-01-01

    Fourier analysis has been applied to data obtained from limb viewing instruments on the Upper Atmosphere Research Satellite. A coordinate system rotation facilitates the efficient computation of Fourier transforms in the temporal and longitudinal domains. Fields such as ozone (O3), chlorine monoxide (ClO), temperature, and water vapor have been transformed by this process. The transforms have been inverted to provide maps of these quantities at selected times, providing a method of accurate time interpolation. Maps obtained by this process show evidence of both horizontal and vertical transport of important trace species such as O3 and ClO. An examination of the polar regions indicates that large-scale planetary variations are likely to play a significant role in transporting midstratospheric O3 into the polar regions. There is also evidence that downward transport occurs, providing a means of moving O3 into the polar vortex at lower altitudes. The transforms themselves show the structure and propagation characteristics of wave variations.

  2. Imagery Data Base Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Imagery Data Base Facility supports AFRL and other government organizations by providing imagery interpretation and analysis to users for data selection, imagery...

  3. Mosaic of 10 m gridded multibeam bathymetry and bathymetry derived from multispectral IKONOS satellite imagery of Alamagan Island, Commonwealth of Northern Mariana Islands, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded multibeam bathymetry is integrated with bathymetry derived from multispectral IKONOS satellite data. Gridded (10 m cell size) multibeam bathymetry collected...

  4. Mosaic of gridded multibeam bathymetry and bathymetry derived from multispectral IKONOS satellite imagery of Palmyra Atoll, Pacific Remote Island Area, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded multibeam bathymetry is integrated with bathymetry derived from multispectral IKONOS satellite data. Gridded (5 m cell size) multibeam bathymetry collected...

  5. Mosaic of 10 m gridded multibeam bathymetry and bathymetry derived from multispectral IKONOS satellite imagery of Asuncion Island, Commonwealth of the Northern Marianas Islands, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded multibeam bathymetry is integrated with bathymetry derived from multpectral IKONOS satellite data. Gridded (10 m cell size) multibeam bathymetry collected...

  6. Mosaic of 5 m gridded multibeam bathymetry and bathymetry derived from multispectral IKONOS satellite imagery of Alamagan Island, Commonwealth of Northern Mariana Islands, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded multibeam bathymetry is integrated with bathymetry derived from multispectral IKONOS satellite data. Gridded (5 m cell size) multibeam bathymetry collected...

  7. Mosaic of 10 m gridded multibeam bathymetry and bathymetry derived from multispectral IKONOS satellite imagery of Maug Island, Commonwealth of the Northern Marianas Islands, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded multibeam bathymetry is integrated with bathymetry derived from multpectral IKONOS satellite data. Gridded (5m and 10 m cell size) multibeam bathymetry...

  8. Mosaic of 5 m gridded multibeam bathymetry and bathymetry derived from multispectral IKONOS satellite imagery of Asuncion Island, Commonwealth of the Northern Marianas Islands, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded multibeam bathymetry is integrated with bathymetry derived from multpectral IKONOS satellite data. Gridded (5 m cell size) multibeam bathymetry collected...

  9. Mosaic of gridded multibeam bathymetry and bathymetry derived from multispectral World View-2 satellite imagery of Sarigan Island, Territory of Mariana, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded multibeam bathymetry is integrated with bathymetry derived from multpectral World View-2 satellite data. Gridded (10 m cell size) multibeam bathymetry...

  10. Mosaic of 5 m gridded multibeam bathymetry and bathymetry derived from multispectral IKONOS satellite imagery of Maug Island, Commonwealth of the Northern Marianas Islands, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded multibeam bathymetry is integrated with bathymetry derived from multpectral IKONOS satellite data. Gridded (5m and 10 m cell size) multibeam bathymetry...

  11. Mosaic of 5m gridded multibeam bathymetry and bathymetry derived from multispectral World View-2 satellite imagery of Swains Island, Territory of American Samoa, South Pacific, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded multibeam bathymetry is integrated with bathymetry derived from multpectral World View-2 satellite data. Gridded (5 m cell size) multibeam bathymetry...

  12. Mosaic of gridded multibeam bathymetry and bathymetry derived from multispectral IKONOS satellite imagery of Ofu and Olosega Islands, Territory of American Samoa, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded multibeam bathymetry is integrated with bathymetry derived from multipectral IKONOS satellite data. Gridded (5 m cell size) multibeam bathymetry collected...

  13. Mosaic of bathymetry derived from multispectral World View-2 satellite imagery of Ni'ihau Island, Territory of the Main Hawaiian Islands, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathymetric data derived from a multipectral World View-2 satellite image mosaiced to provide near complete coverage of nearshore terrain around the islands....

  14. Mosaic of gridded multibeam bathymetry and bathymetry derived from multispectral World View-2 satellite imagery of Baker Island, Pacific Remote Island Areas, Central Pacific.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded multibeam bathymetry is integrated with bathymetry derived from multpectral World View-2 satellite data. Gridded (10 m cell size) multibeam bathymetry...

  15. Mosaic of gridded multibeam bathymetry and bathymetry derived from multispectral World View-2 satellite imagery of Rota Island, Territory of Mariana, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded multibeam bathymetry is integrated with bathymetry derived from multpectral World View-2 satellite data. Gridded (5 m cell size) multibeam bathymetry...

  16. Feature extraction from high resolution satellite imagery as an input to the development and rapid update of a METRANS geographic information system (GIS).

    Science.gov (United States)

    2011-06-01

    This report describes an accuracy assessment of extracted features derived from three : subsets of Quickbird pan-sharpened high resolution satellite image for the area of the : Port of Los Angeles, CA. Visual Learning Systems Feature Analyst and D...

  17. Mosaic of 2m bathymetry derived from multispectral IKONOS World View-2 satellite imagery of Swains Island, Territory of American Samoa, South Pacific, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathymetric data derived from a multipectral World View-2 satellite image mosaiced to provide near complete coverage of nearshore terrain around the islands....

  18. Mosaic of gridded multibeam bathymetry, gridded LiDAR bathymetry and bathymetry derived from multispectral IKONOS satellite imagery of Tinian Island, Commonwealth of the Northern Marianas Islands, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded multibeam bathymetry is integrated with gridded LiDAR bathymetry and bathymetry derived from multispectral IKONOS satellite data. Gridded (5 m cell size)...

  19. Microwave system engineering principles

    CERN Document Server

    Raff, Samuel J

    1977-01-01

    Microwave System Engineering Principles focuses on the calculus, differential equations, and transforms of microwave systems. This book discusses the basic nature and principles that can be derived from thermal noise; statistical concepts and binomial distribution; incoherent signal processing; basic properties of antennas; and beam widths and useful approximations. The fundamentals of propagation; LaPlace's Equation and Transmission Line (TEM) waves; interfaces between homogeneous media; modulation, bandwidth, and noise; and communications satellites are also deliberated in this text. This bo

  20. Operational satellites and the global monitoring of snow and ice

    Science.gov (United States)

    Walsh, John E.

    1991-01-01

    The altitudinal dependence of the global warming projected by global climate models is at least partially attributable to the albedo-temperature feedback involving snow and ice, which must be regarded as key variables in the monitoring for global change. Statistical analyses of data from IR and microwave sensors monitoring the areal coverage and extent of sea ice have led to mixed conclusions about recent trends of hemisphere sea ice coverage. Seasonal snow cover has been mapped for over 20 years by NOAA/NESDIS on the basis of imagery from a variety of satellite sensors. Multichannel passive microwave data show some promise for the routine monitoring of snow depth over unforested land areas.

  1. Global changes in dryland vegetation dynamics (1988–2008 assessed by satellite remote sensing: comparing a new passive microwave vegetation density record with reflective greenness data

    Directory of Open Access Journals (Sweden)

    N. Andela

    2013-10-01

    Full Text Available Drylands, covering nearly 30% of the global land surface, are characterized by high climate variability and sensitivity to land management. Here, two satellite-observed vegetation products were used to study the long-term (1988–2008 vegetation changes of global drylands: the widely used reflective-based Normalized Difference Vegetation Index (NDVI and the recently developed passive-microwave-based Vegetation Optical Depth (VOD. The NDVI is sensitive to the chlorophyll concentrations in the canopy and the canopy cover fraction, while the VOD is sensitive to vegetation water content of both leafy and woody components. Therefore it can be expected that using both products helps to better characterize vegetation dynamics, particularly over regions with mixed herbaceous and woody vegetation. Linear regression analysis was performed between antecedent precipitation and observed NDVI and VOD independently to distinguish the contribution of climatic and non-climatic drivers in vegetation variations. Where possible, the contributions of fire, grazing, agriculture and CO2 level to vegetation trends were assessed. The results suggest that NDVI is more sensitive to fluctuations in herbaceous vegetation, which primarily uses shallow soil water, whereas VOD is more sensitive to woody vegetation, which additionally can exploit deeper water stores. Globally, evidence is found for woody encroachment over drylands. In the arid drylands, woody encroachment appears to be at the expense of herbaceous vegetation and a global driver is interpreted. Trends in semi-arid drylands vary widely between regions, suggesting that local rather than global drivers caused most of the vegetation response. In savannas, besides precipitation, fire regime plays an important role in shaping trends. Our results demonstrate that NDVI and VOD provide complementary information and allow new insights into dryland vegetation dynamics.

  2. A statistical model for determining impact of wildland fires on Particulate Matter (PM2.5) in Central California aided by satellite imagery of smoke

    International Nuclear Information System (INIS)

    Preisler, Haiganoush K.; Schweizer, Donald; Cisneros, Ricardo; Procter, Trent; Ruminski, Mark; Tarnay, Leland

    2015-01-01

    As the climate in California warms and wildfires become larger and more severe, satellite-based observational tools are frequently used for studying impact of those fires on air quality. However little objective work has been done to quantify the skill these satellite observations of smoke plumes have in predicting impacts to PM 2.5 concentrations at ground level monitors, especially those monitors used to determine attainment values for air quality under the Clean Air Act. Using PM 2.5 monitoring data from a suite of monitors throughout the Central California area, we found a significant, but weak relationship between satellite-observed smoke plumes and PM 2.5 concentrations measured at the surface. However, when combined with an autoregressive statistical model that uses weather and seasonal factors to identify thresholds for flagging unusual events at these sites, we found that the presence of smoke plumes could reliably identify periods of wildfire influence with 95% accuracy. - Highlights: • Satellite observed smoke is useful for predicting wildfire impacts on Particulate Matter. • A metric was developed to flag ‘exceptional events’ days as defined by EPA. • We found significant impact of wildfires on PM 2.5 at various sites in Central California. • Fires in most years had no significant impact on compliance with EPA standards. - This work quantifies the skill of satellite observations of smoke plumes in predicting wildfire impacts on PM 2.5 concentrations at ground level monitors

  3. Proposed Use of the NASA Ames Nebula Cloud Computing Platform for Numerical Weather Prediction and the Distribution of High Resolution Satellite Imagery

    Science.gov (United States)

    Limaye, Ashutosh S.; Molthan, Andrew L.; Srikishen, Jayanthi

    2010-01-01

    The development of the Nebula Cloud Computing Platform at NASA Ames Research Center provides an open-source solution for the deployment of scalable computing and storage capabilities relevant to the execution of real-time weather forecasts and the distribution of high resolution satellite data to the operational weather community. Two projects at Marshall Space Flight Center may benefit from use of the Nebula system. The NASA Short-term Prediction Research and Transition (SPoRT) Center facilitates the use of unique NASA satellite data and research capabilities in the operational weather community by providing datasets relevant to numerical weather prediction, and satellite data sets useful in weather analysis. SERVIR provides satellite data products for decision support, emphasizing environmental threats such as wildfires, floods, landslides, and other hazards, with interests in numerical weather prediction in support of disaster response. The Weather Research and Forecast (WRF) model Environmental Modeling System (WRF-EMS) has been configured for Nebula cloud computing use via the creation of a disk image and deployment of repeated instances. Given the available infrastructure within Nebula and the "infrastructure as a service" concept, the system appears well-suited for the rapid deployment of additional forecast models over different domains, in response to real-time research applications or disaster response. Future investigations into Nebula capabilities will focus on the development of a web mapping server and