WorldWideScience

Sample records for satellite mediated station

  1. 47 CFR 80.333 - Stations in the maritime mobile-satellite service.

    Science.gov (United States)

    2010-10-01

    ... SPECIAL RADIO SERVICES STATIONS IN THE MARITIME SERVICES Safety Watch Requirements and Procedures Distress, Alarm, Urgency and Safety Procedures § 80.333 Stations in the maritime mobile-satellite service. The... 47 Telecommunication 5 2010-10-01 2010-10-01 false Stations in the maritime mobile-satellite...

  2. 47 CFR 25.140 - Qualifications of fixed-satellite space station licensees.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Qualifications of fixed-satellite space station licensees. 25.140 Section 25.140 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Applications and Licenses Space Stations § 25.140 Qualifications...

  3. Techniques for predicting environment electromagnetic radiation at satellite ground station

    International Nuclear Information System (INIS)

    Xu Peiji

    1987-01-01

    The measurement theories, techniques, and calculation methods on public exposure level of electromagnetic radiation at satellite ground station are described for the purpose of enviroment protection and research of EM compatibility. According to the results of the measurement and calculation, it is possible to predict the effects of electromagnetic radiation to environment at satellite ground station

  4. Vibration monitoring of large vertical pumps via a remote satellite station

    International Nuclear Information System (INIS)

    Cook, S.A.; Crowe, R.D.; Roblyer, S.P.; Toffer, H.

    1985-01-01

    The Hanford N Reactor is operated by UNC Nuclear Industries for the Department of Energy for the production of special isotopes and electric energy. The reactor has a unique design in which the equipment such as pumps, turbines, generators and diesel engines are located in separate buildings. This equipment arrangement has led to the conclusion that the most cost-effective implementation of a dedicated vibration monitoring system would be to install a computerized network system in lieu of a single analyzing station. In this approach, semi-autonomous micro processor based data collection stations referred to as satellite stations are located near each concentration of machinery to be monitored. The satellite stations provide near continuous monitoring of the machinery. They are linked to a minicomputer using voice grade telephone circuits and hardware and software specifically designed for network communications. The communications link between the satellite stations and the minicomputer permits data and programs to be transmitted between the units. This paper will describe the satellite station associated with large vertical pumps vibration monitoring. The reactor has four of these pumps to supply tertiary cooling to reactor systems. 4 figs

  5. East–West GEO Satellite Station-Keeping with Degraded Thruster Response

    Directory of Open Access Journals (Sweden)

    Stoian Borissov

    2015-09-01

    Full Text Available The higher harmonic terms of Earth’s gravitational potential slowly modify the nominal longitude of geostationary Earth orbit (GEO satellites, while the third-body presence (Moon and Sun mainly affects their latitude. For this reason, GEO satellites periodically need to perform station-keeping maneuvers, namely, east–west and north–south maneuvers to compensate for longitudinal and latitudinal variations, respectively. During the operational lifetime of GEO satellites, the thrusters’ response when commanded to perform these maneuvers slowly departs from the original nominal impulsive behavior. This paper addresses the practical problem of how to perform reliable east–west station-keeping maneuvers when thruster response is degraded. The need for contingency intervention from ground-based satellite operators is reduced by breaking apart the scheduled automatic station-keeping maneuvers into smaller maneuvers. Orbital alignment and attitude are tracked on-board during and in between sub-maneuvers, and any off nominal variations are corrected for with subsequent maneuvers. These corrections are particularly important near the end of the lifetime of GEO satellites, where thruster response is farthest from nominal performance.

  6. Definition of technology development missions for early space station satellite servicing, volume 1

    Science.gov (United States)

    1983-01-01

    The testbed role of an early manned space station in the context of a satellite servicing evolutionary development and flight demonstration technology plan which results in a satellite servicing operational capability is defined. A satellite servicing technology development mission (a set of missions) to be performed on an early manned space station is conceptually defined.

  7. 76 FR 53883 - Proposed Information Collection; Comment Request; NOAA Satellite Ground Station Customer...

    Science.gov (United States)

    2011-08-30

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration Proposed Information Collection; Comment Request; NOAA Satellite Ground Station Customer Questionnaire AGENCY: National Oceanic... asks people who operate ground receiving stations that receive data from NOAA satellites to complete a...

  8. Definition of technology development missions for early Space Station satellite servicing. Volume 1: Executive summary

    Science.gov (United States)

    1984-01-01

    The Executive Summary volume 1, includes an overview of both phases of the Definition of Technology Development Missions for Early Space Station Satellite Servicing. The primary purpose of Phase 1 of the Marshall Space Flight Center (MSFC) Satellite Servicing Phase 1 study was to establish requirements for demonstrating the capability of performing satellite servicing activities on a permanently manned Space Station in the early 1990s. The scope of Phase 1 included TDM definition, outlining of servicing objectives, derivation of initial Space Station servicing support requirements, and generation of the associated programmatic schedules and cost. The purpose of phase 2 of the satellite servicing study was to expand and refine the overall understanding of how best to use the manned space station as a test bed for demonstration of satellite servicing capabilities.

  9. Programmable Ultra-Lightweight System Adaptable Radio Satellite Base Station

    Science.gov (United States)

    Varnavas, Kosta; Sims, Herb

    2015-01-01

    With the explosion of the CubeSat, small sat, and nanosat markets, the need for a robust, highly capable, yet affordable satellite base station, capable of telemetry capture and relay, is significant. The Programmable Ultra-Lightweight System Adaptable Radio (PULSAR) is NASA Marshall Space Flight Center's (MSFC's) software-defined digital radio, developed with previous Technology Investment Programs and Technology Transfer Office resources. The current PULSAR will have achieved a Technology Readiness Level-6 by the end of FY 2014. The extensibility of the PULSAR will allow it to be adapted to perform the tasks of a mobile base station capable of commanding, receiving, and processing satellite, rover, or planetary probe data streams with an appropriate antenna.

  10. Space Station needs, attributes and architectural options. Volume 2, book 1, part 3: Manned Space Station relevance to commercial telecommunications satellites

    Science.gov (United States)

    1983-01-01

    A document containing a forecast of satellite traffic and revelant technology trends to the year 2000 was prepared which includes those space station capabilities and characteristics that should be provided to make the station useful to commercial satellite owners. The document was circulated to key representative organizations within the commercial telecommunications satellite and related communities of interest, including spacecraft manufacturers, commercial satellite owners, communications carriers, networks and risk insurers. The prospectus document is presented as well as the transmittal letter and the mailing list of the people and companies that were asked to review it. Key commercial telecommunications comments are summarized the actual response letters from the industry are included.

  11. Economic benefits of the Space Station to commercial communication satellite operators

    Science.gov (United States)

    Price, Kent M.; Dixson, John E.; Weyandt, Charles J.

    1987-01-01

    The economic and financial aspects of newly defined space-based activities, procedures, and operations (APOs) and associated satellite system designs are presented that have the potential to improve economic performance of future geostationary communications satellites. Launch insurance, launch costs, and the economics of APOs are examined. Retrieval missions and various Space Station scenarios are addressed. The potential benefits of the new APOs to the commercial communications satellite system operator are quantified.

  12. Optimization and Feasibility Analysis of Satellite Earth Station Power System Using Homer

    Directory of Open Access Journals (Sweden)

    Hassen T. Dorrah

    2012-06-01

    Full Text Available Satellite earth stations which located in remote areas are one of many applications powered by the renewable energy sources. Ground system consists of ground station and control centers working together to support the spacecraft and the data user. Earth station consists of major subsystems, transmitter, receiver, antenna, tracking equipment, terrestrial interface equipment and power supply. Power subsystem is an important part that required for supplying the earth station with electrical power to continue communicating with its remote sensing satellite. This paper deals with simulation and optimal sizing of earth station power system using HOMER software. A combination of two energy sources (solar, and wind to provide a continuous electric power production is used to determine the optimum system operation. Three system configurations are compared with respect to the total net present cost (NPC and levelized cost of energy (COE. Also, economical study will be analyzed for energy demand and sensitivity analysis will be performed.

  13. Environmental levels of microwave radiation around a satellite earth station

    International Nuclear Information System (INIS)

    Joyner, K.H.; Bangay, M.J.

    1986-01-01

    This paper discusses the background to claims of possible adverse health effects arising from exposure to environmental levels of microwave radiation around satellite earth stations. Results of a recent survey of the environmental levels of microwave radiation around two 32 metre diameter satellite communications antennas owned and operated by the Overseas Telecommunications Commission (OTC) of Australia are presented. From the measurements obtained in this survey it can be concluded that the environmental levels of microwave radiation around the OTC and similar satellite facilities do not pose a health risk to persons in the vicinity

  14. Bit Error Rate Due to Misalignment of Earth Station Antenna Pointing to Satellite

    Directory of Open Access Journals (Sweden)

    Wahyu Pamungkas

    2010-04-01

    Full Text Available One problem causing reduction of energy in satellite communications system is the misalignment of earth station antenna pointing to satellite. Error in pointing would affect the quality of information signal to energy bit in earth station. In this research, error in pointing angle occurred only at receiver (Rx antenna, while the transmitter (Tx antennas precisely point to satellite. The research was conducted towards two satellites, namely TELKOM-1 and TELKOM-2. At first, measurement was made by directing Tx antenna precisely to satellite, resulting in an antenna pattern shown by spectrum analyzer. The output from spectrum analyzers is drawn with the right scale to describe swift of azimuth and elevation pointing angle towards satellite. Due to drifting from the precise pointing, it influenced the received link budget indicated by pattern antenna. This antenna pattern shows reduction of power level received as a result of pointing misalignment. As a conclusion, the increasing misalignment of pointing to satellite would affect in the reduction of received signal parameters link budget of down-link traffic.

  15. Analysis of transmission speed of AX.25 Protocol implemented in satellital earth station UPTC

    Directory of Open Access Journals (Sweden)

    Oscar Fernando Vera Cely

    2015-11-01

    Full Text Available One of the important parameters for the proper functioning of satellital ground station projected on Pedagogical and Technological University of Colombia (UPTC is the efficiency in transmission speed on communications protocol. This paper shows the results of analysis of the transmission speed of the AX.25 protocol implemented in the communication system of the satellital ground station UPTC. It begins with a brief description of the implemented hardware; the behavior of the transmission rate is evaluated using a theoretical analysis based on equations to estimate this parameter in the operation of the protocol, then tests are performed using the hardware that the satellital ground station UPTC has and finally, the conclusions are presented. Based on comparison of the theoretical analysis results obtained experimentally, it became apparent that AX.25 protocol efficiency is higher when increasing the number of frames.

  16. 78 FR 19172 - Earth Stations Aboard Aircraft Communicating with Fixed-Satellite Service Geostationary-Orbit...

    Science.gov (United States)

    2013-03-29

    ... FEDERAL COMMUNICATIONS COMMISSION 47 CFR Parts 2 and 25 [IB Docket No. 12-376; FCC 12-161] Earth Stations Aboard Aircraft Communicating with Fixed-Satellite Service Geostationary-Orbit Space Stations... the Federal Register of March 8, 2013. The document proposed rules for Earth Stations Aboard Aircraft...

  17. Definition of technology development missions for early space station satellite servicing, volume 2

    Science.gov (United States)

    1983-01-01

    The results of all aspects of the early space station satellite servicing study tasks are presented. These results include identification of servicing tasks (and locations), identification of servicing mission system and detailed objectives, functional/operational requirements analyses of multiple servicing scenarios, assessment of critical servicing technology capabilities and development of an evolutionary capability plan, design and validation of selected servicing technology development missions (TDMs), identification of space station satellite servicing accommodation needs, and the cost and schedule implications of acquiring both required technology capability development and conducting the selected TDMs.

  18. Paving the Way for Small Satellite Access to Orbit: Cyclops' Deployment of SpinSat, the Largest Satellite Ever Deployed from the International Space Station

    Science.gov (United States)

    Hershey, Matthew P.; Newswander, Daniel R.; Smith, James P.; Lamb, Craig R.; Ballard, Perry G.

    2015-01-01

    The Space Station Integrated Kinetic Launcher for Orbital Payload Systems (SSIKLOPS), known as "Cyclops" to the International Space Station (ISS) community, successfully deployed the largest satellite ever (SpinSat) from the ISS on November 28, 2014. Cyclops, a collaboration between the NASA ISS Program, NASA Johnson Space Center Engineering, and Department of Defense Space Test Program (DoD STP) communities, is a dedicated 10-100 kg class ISS small satellite deployment system. This paper will showcase the successful deployment of SpinSat from the ISS. It will also outline the concept of operations, interfaces, requirements, and processes for satellites to utilize the Cyclops satellite deployment system.

  19. Definition of satellite servicing technology development missions for early space stations. Volume 2: Technical

    Science.gov (United States)

    1983-01-01

    Early space station accommodation, build-up of space station manipulator capability, on-orbit spacecraft assembly test and launch, large antenna structure deployment, service/refurbish satellite, and servicing of free-flying materials processing platform are discussed.

  20. North/south Station Keeping of Geostationary Satellite Using Mft

    Directory of Open Access Journals (Sweden)

    Woong-Young Ahn

    1997-06-01

    Full Text Available A precise determination of the fuel efficiency is important because North/South station keeping ,which controls the inclination of the geostationary orbit, consumes most of the satellite fuel. We estimate the amount of fuel required during the lifetime of the KOREASAT when MFT(Minimum Fuel Target technique is adopted, and the result is compared to those when MCT(Maximum Compensation Target and TBCT(Track-Back Chord Target technique are applied. From this computation, we find that if MFT technique is adopted, the lifetime of the satellite can be extended at least 45 and 15 days, respectively, compared to those consumed with MCT and TBCT technique.

  1. 47 CFR 25.210 - Technical requirements for space stations in the Fixed-Satellite Service.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Technical requirements for space stations in the Fixed-Satellite Service. 25.210 Section 25.210 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Standards § 25.210 Technical...

  2. 47 CFR 25.215 - Technical requirements for space stations in the Direct Broadcast Satellite Service.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Technical requirements for space stations in the Direct Broadcast Satellite Service. 25.215 Section 25.215 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Standards § 25.215...

  3. 47 CFR 25.214 - Technical requirements for space stations in the satellite digital audio radio service and...

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Technical requirements for space stations in the satellite digital audio radio service and associated terrestrial repeaters. 25.214 Section 25.214 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS...

  4. Ground receiving station (GRS) of UMS - receiving and processing the electromagnetic wave data from satellite

    International Nuclear Information System (INIS)

    Mohammad Syahmi Nordin; Fauziah Abdul Aziz

    2007-01-01

    The low resolution Automatic Picture Transmission (APT) data from the National Oceanic and Atmospheric Administration (NOAA) polar-orbiting satellites Advanced Very High Resolution Radiometer (AVHRR) is being received and recorded in real-time mode at ground receiving station in School of Science and Technology, Universiti Malaysia Sabah. The system is suitable for the developing and undeveloped countries in south and Southeast Asia and is said to be acceptable for engineering, agricultural, climatological and environmental applications. The system comprises a personal computer attached with a small APT receiver. The data transmission between the ground receiving station and NOAA satellites is using the electromagnetic wave. The relation for receiving and processing the electromagnetic wave in the transmission will be discussed. (Author)

  5. 37 CFR 258.3 - Royalty fee for secondary transmission of analog signals of broadcast stations by satellite...

    Science.gov (United States)

    2010-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2010-07-01 2010-07-01 false Royalty fee for secondary... AND PROCEDURES ADJUSTMENT OF ROYALTY FEE FOR SECONDARY TRANSMISSIONS BY SATELLITE CARRIERS § 258.3 Royalty fee for secondary transmission of analog signals of broadcast stations by satellite carriers. (a...

  6. 37 CFR 258.4 - Royalty fee for secondary transmission of digital signals of broadcast stations by satellite...

    Science.gov (United States)

    2010-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2010-07-01 2010-07-01 false Royalty fee for secondary... AND PROCEDURES ADJUSTMENT OF ROYALTY FEE FOR SECONDARY TRANSMISSIONS BY SATELLITE CARRIERS § 258.4 Royalty fee for secondary transmission of digital signals of broadcast stations by satellite carriers. (a...

  7. Low-Thrust Out-of-Plane Orbital Station-Keeping Maneuvers for Satellites

    Directory of Open Access Journals (Sweden)

    Vivian M. Gomes

    2012-01-01

    Full Text Available This paper considers the problem of out of plane orbital maneuvers for station keeping of satellites. The main idea is to consider that a satellite is in an orbit around the Earth and that it has its orbit is disturbed by one or more forces. Then, it is necessary to perform a small amplitude orbital correction to return the satellite to its original orbit, to keep it performing its mission. A low thrust propulsion is used to complete this task. It is important to search for solutions that minimize the fuel consumption to increase the lifetime of the satellite. To solve this problem a hybrid optimal control approach is used. The accuracy of the satisfaction of the constraints is considered, in order to try to decrease the fuel expenditure by taking advantage of this freedom. This type of problem presents numerical difficulties and it is necessary to adjust parameters, as well as details of the algorithm, to get convergence. In this versions of the algorithm that works well for planar maneuvers are usually not adequate for the out of plane orbital corrections. In order to illustrate the method, some numerical results are presented.

  8. Prediction of Communication Outage Period between Satellite and Earth station Due to Sun Interference

    Directory of Open Access Journals (Sweden)

    Yongjun Song

    2010-03-01

    Full Text Available We developed a computer program to predict solar interference period. To calculate Sun‘s position, we used DE406 ephemerides and Earth ellipsoid model. The Sun‘s position error is smaller than 10arcsec. For the verification of the calculation, we used TU media ground station on Seongsu-dong, and MBSAT geostationary communication satellite. We analysis errors, due to satellite perturbation and antenna align. The time error due to antenna align has -35 to +16 seconds at 0.1 degree, and -27 to +41 seconds at 0.25 degree. The time errors derived by satellite perturbation has 30 to 60 seconds.

  9. Transportable IOT measurement station for direct-broadcast satellites

    Science.gov (United States)

    Ulbricht, Michael

    A transportable 11.7-12.5-GHz flux-density measurement facility for use in the in-orbit testing (IOT) of the FRG TV-Sat direct-broadcast satellites is described. Major components include a 1.2-m-diameter antenna, the fluxmeter, a radiometer to determine atmospheric attenuation, a weather station, and a control and data-processing computer; all of the components are mounted on a 5.10 x 2.35 x 2.70-m trailer. IOT performance parameters include gain/temperature ratio 15.9 dB/K, measurement range -97 to -117 dBW/sq m, measurement accuracy less than 0.5 dB rms, and measurement rate 250-650 msec. Photographs and a block diagram are provided.

  10. The Design and Application of Data Storage System in Miyun Satellite Ground Station

    Science.gov (United States)

    Xue, Xiping; Su, Yan; Zhang, Hongbo; Liu, Bin; Yao, Meijuan; Zhao, Shu

    2015-04-01

    China has launched Chang'E-3 satellite in 2013, firstly achieved soft landing on moon for China's lunar probe. Miyun satellite ground station firstly used SAN storage network system based-on Stornext sharing software in Chang'E-3 mission. System performance fully meets the application requirements of Miyun ground station data storage.The Stornext file system is a sharing file system with high performance, supports multiple servers to access the file system using different operating system at the same time, and supports access to data on a variety of topologies, such as SAN and LAN. Stornext focused on data protection and big data management. It is announced that Quantum province has sold more than 70,000 licenses of Stornext file system worldwide, and its customer base is growing, which marks its leading position in the big data management.The responsibilities of Miyun satellite ground station are the reception of Chang'E-3 satellite downlink data and management of local data storage. The station mainly completes exploration mission management, receiving and management of observation data, and provides a comprehensive, centralized monitoring and control functions on data receiving equipment. The ground station applied SAN storage network system based on Stornext shared software for receiving and managing data reliable.The computer system in Miyun ground station is composed by business running servers, application workstations and other storage equipments. So storage systems need a shared file system which supports heterogeneous multi-operating system. In practical applications, 10 nodes simultaneously write data to the file system through 16 channels, and the maximum data transfer rate of each channel is up to 15MB/s. Thus the network throughput of file system is not less than 240MB/s. At the same time, the maximum capacity of each data file is up to 810GB. The storage system planned requires that 10 nodes simultaneously write data to the file system through 16

  11. Schedule Optimization of Imaging Missions for Multiple Satellites and Ground Stations Using Genetic Algorithm

    Science.gov (United States)

    Lee, Junghyun; Kim, Heewon; Chung, Hyun; Kim, Haedong; Choi, Sujin; Jung, Okchul; Chung, Daewon; Ko, Kwanghee

    2018-04-01

    In this paper, we propose a method that uses a genetic algorithm for the dynamic schedule optimization of imaging missions for multiple satellites and ground systems. In particular, the visibility conflicts of communication and mission operation using satellite resources (electric power and onboard memory) are integrated in sequence. Resource consumption and restoration are considered in the optimization process. Image acquisition is an essential part of satellite missions and is performed via a series of subtasks such as command uplink, image capturing, image storing, and image downlink. An objective function for optimization is designed to maximize the usability by considering the following components: user-assigned priority, resource consumption, and image-acquisition time. For the simulation, a series of hypothetical imaging missions are allocated to a multi-satellite control system comprising five satellites and three ground stations having S- and X-band antennas. To demonstrate the performance of the proposed method, simulations are performed via three operation modes: general, commercial, and tactical.

  12. EUPOS - Satellite multifunctional system of reference stations in Central and Eastern Europe

    Science.gov (United States)

    Sledzinski, J.

    2003-04-01

    The European project EUPOS (European Position Determination System) of establishment of a system of multifunctional satellite reference stations in Central and Eastern Europe is described in the paper. Fifteen countries intend to participate in the project: Bulgaria, Croatia, Czech Republic, Estonia, Germany, Hungary, Latvia, Lithuania, Macedonia, Poland, Romania, Russia, Serbia, Slovak Republic and Slovenia. One common project will be prepared for all countries, however it will include the existing or developed infrastructure in particular countries. The experiences of establishing and operating of the German network SAPOS as well as experiences gained by other countries will be used. The European network of stations will be compatible with the system SAPOS and future European system Galileo. The network of reference stations will provide signal for both positioning of the geodetic control points and for land, air and marine navigation. Several levels of positioning accuracy will be delivered.

  13. Sphingosine-1-phosphate mediates epidermal growth factor-induced muscle satellite cell activation

    Energy Technology Data Exchange (ETDEWEB)

    Nagata, Yosuke, E-mail: cynagata@mail.ecc.u-tokyo.ac.jp; Ohashi, Kazuya; Wada, Eiji; Yuasa, Yuki; Shiozuka, Masataka; Nonomura, Yoshiaki; Matsuda, Ryoichi

    2014-08-01

    Skeletal muscle can regenerate repeatedly due to the presence of resident stem cells, called satellite cells. Because satellite cells are usually quiescent, they must be activated before participating in muscle regeneration in response to stimuli such as injury, overloading, and stretch. Although satellite cell activation is a crucial step in muscle regeneration, little is known of the molecular mechanisms controlling this process. Recent work showed that the bioactive lipid sphingosine-1-phosphate (S1P) plays crucial roles in the activation, proliferation, and differentiation of muscle satellite cells. We investigated the role of growth factors in S1P-mediated satellite cell activation. We found that epidermal growth factor (EGF) in combination with insulin induced proliferation of quiescent undifferentiated mouse myoblast C2C12 cells, which are also known as reserve cells, in serum-free conditions. Sphingosine kinase activity increased when reserve cells were stimulated with EGF. Treatment of reserve cells with the D-erythro-N,N-dimethylsphingosine, Sphingosine Kinase Inhibitor, or siRNA duplexes specific for sphingosine kinase 1, suppressed EGF-induced C2C12 activation. We also present the evidence showing the S1P receptor S1P2 is involved in EGF-induced reserve cell activation. Moreover, we demonstrated a combination of insulin and EGF promoted activation of satellite cells on single myofibers in a manner dependent on SPHK and S1P2. Taken together, our observations show that EGF-induced satellite cell activation is mediated by S1P and its receptor. - Highlights: • EGF in combination with insulin induces proliferation of quiescent C2C12 cells. • Sphingosine kinase activity increases when reserve cells are stimulated with EGF. • EGF-induced activation of reserve cells is dependent on sphingosine kinase and ERK. • The S1P receptor S1P2 is involved in EGF-induced reserve cell activation. • EGF-induced reserve cell activation is mediated by S1P and its

  14. Sphingosine-1-phosphate mediates epidermal growth factor-induced muscle satellite cell activation

    International Nuclear Information System (INIS)

    Nagata, Yosuke; Ohashi, Kazuya; Wada, Eiji; Yuasa, Yuki; Shiozuka, Masataka; Nonomura, Yoshiaki; Matsuda, Ryoichi

    2014-01-01

    Skeletal muscle can regenerate repeatedly due to the presence of resident stem cells, called satellite cells. Because satellite cells are usually quiescent, they must be activated before participating in muscle regeneration in response to stimuli such as injury, overloading, and stretch. Although satellite cell activation is a crucial step in muscle regeneration, little is known of the molecular mechanisms controlling this process. Recent work showed that the bioactive lipid sphingosine-1-phosphate (S1P) plays crucial roles in the activation, proliferation, and differentiation of muscle satellite cells. We investigated the role of growth factors in S1P-mediated satellite cell activation. We found that epidermal growth factor (EGF) in combination with insulin induced proliferation of quiescent undifferentiated mouse myoblast C2C12 cells, which are also known as reserve cells, in serum-free conditions. Sphingosine kinase activity increased when reserve cells were stimulated with EGF. Treatment of reserve cells with the D-erythro-N,N-dimethylsphingosine, Sphingosine Kinase Inhibitor, or siRNA duplexes specific for sphingosine kinase 1, suppressed EGF-induced C2C12 activation. We also present the evidence showing the S1P receptor S1P2 is involved in EGF-induced reserve cell activation. Moreover, we demonstrated a combination of insulin and EGF promoted activation of satellite cells on single myofibers in a manner dependent on SPHK and S1P2. Taken together, our observations show that EGF-induced satellite cell activation is mediated by S1P and its receptor. - Highlights: • EGF in combination with insulin induces proliferation of quiescent C2C12 cells. • Sphingosine kinase activity increases when reserve cells are stimulated with EGF. • EGF-induced activation of reserve cells is dependent on sphingosine kinase and ERK. • The S1P receptor S1P2 is involved in EGF-induced reserve cell activation. • EGF-induced reserve cell activation is mediated by S1P and its

  15. 78 FR 14920 - Earth Stations Aboard Aircraft Communicating With Fixed-Satellite Service Geostationary-Orbit...

    Science.gov (United States)

    2013-03-08

    ... Consumer and Governmental Affairs Bureau, Reference Information Center shall send a copy of this Report and... ground, ESAAs shall not be authorized for transmission at angles less than 5[deg] measured from the plane..., in the plane of the geostationary satellite orbit (GSO) as it appears at the particular earth station...

  16. Definition of technology development missions for early Space Station satellite servicing. Volume 2: Technical

    Science.gov (United States)

    Cable, D. A.; Diewald, C. A.; Hills, T. C.; Parmentier, T. J.; Spencer, R. A.; Stone, G. E.

    1984-01-01

    Volume 2 contains the Technical Report of the approach and results of the Phase 2 study. The phase 2 servicing study was initiated in June 1983, and is being reported in this document. The scope of the contract was to: (1) define in detail five selected technology development missions (TDM); (2) conduct a design requirement analysis to refine definitions of satellite servicing requirements at the space station; and (3) develop a technology plan that would identify and schedule prerequisite precursor technology development, associated. STS flight experiments and space station experiments needed to provide onorbit validation of the evolving technology.

  17. Gigabit Satellite Network for NASA's Advanced Communication Technology Satellite (ACTS)

    Science.gov (United States)

    Hoder, Douglas; Bergamo, Marcos

    1996-01-01

    The advanced communication technology satellite (ACTS) gigabit satellite network provides long-haul point-to-point and point-to-multipoint full-duplex SONET services over NASA's ACTS. at rates up to 622 Mbit/s (SONET OC-12), with signal quality comparable to that obtained with terrestrial fiber networks. Data multiplexing over the satellite is accomplished using time-division multiple access (TDMA) techniques coordinated with the switching and beam hopping facilities provided by ACTS. Transmissions through the satellite are protected with Reed-Solomon encoding. providing virtually error-free transmission under most weather conditions. Unique to the system are a TDMA frame structure and satellite synchronization mechanism that allow: (a) very efficient utilization of the satellite capacity: (b) over-the-satellite dosed-loop synchronization of the network in configurations with up to 64 ground stations: and (c) ground station initial acquisition without collisions with existing signalling or data traffic. The user interfaces are compatible with SONET standards, performing the function of conventional SONET multiplexers and. as such. can be: readily integrated with standard SONET fiber-based terrestrial networks. Management of the network is based upon the simple network management protocol (SNMP). and includes an over-the-satellite signalling network and backup terrestrial internet (IP-based) connectivity. A description of the ground stations is also included.

  18. A method for optical ground station reduce alignment error in satellite-ground quantum experiments

    Science.gov (United States)

    He, Dong; Wang, Qiang; Zhou, Jian-Wei; Song, Zhi-Jun; Zhong, Dai-Jun; Jiang, Yu; Liu, Wan-Sheng; Huang, Yong-Mei

    2018-03-01

    A satellite dedicated for quantum science experiments, has been developed and successfully launched from Jiuquan, China, on August 16, 2016. Two new optical ground stations (OGSs) were built to cooperate with the satellite to complete satellite-ground quantum experiments. OGS corrected its pointing direction by satellite trajectory error to coarse tracking system and uplink beacon sight, therefore fine tracking CCD and uplink beacon optical axis alignment accuracy was to ensure that beacon could cover the quantum satellite in all time when it passed the OGSs. Unfortunately, when we tested specifications of the OGSs, due to the coarse tracking optical system was commercial telescopes, the change of position of the target in the coarse CCD was up to 600μrad along with the change of elevation angle. In this paper, a method of reduce alignment error between beacon beam and fine tracking CCD is proposed. Firstly, OGS fitted the curve of target positions in coarse CCD along with the change of elevation angle. Secondly, OGS fitted the curve of hexapod secondary mirror positions along with the change of elevation angle. Thirdly, when tracking satellite, the fine tracking error unloaded on the real-time zero point position of coarse CCD which computed by the firstly calibration data. Simultaneously the positions of the hexapod secondary mirror were adjusted by the secondly calibration data. Finally the experiment result is proposed. Results show that the alignment error is less than 50μrad.

  19. Probability of satellite collision

    Science.gov (United States)

    Mccarter, J. W.

    1972-01-01

    A method is presented for computing the probability of a collision between a particular artificial earth satellite and any one of the total population of earth satellites. The collision hazard incurred by the proposed modular Space Station is assessed using the technique presented. The results of a parametric study to determine what type of satellite orbits produce the greatest contribution to the total collision probability are presented. Collision probability for the Space Station is given as a function of Space Station altitude and inclination. Collision probability was also parameterized over miss distance and mission duration.

  20. Studies of Geomagnetic Pulsations Using Magnetometer Data from the CHAMP Low-Earth-Orbit Satellite and Ground-Based Stations: a Review

    Directory of Open Access Journals (Sweden)

    P R Sutcliffe

    2011-06-01

    Full Text Available We review research on geomagnetic pulsations carried out using magnetic field measurements from the CHAMP low-Earth-orbit (LEO satellite and ground-based stations in South Africa and Hungary. The high quality magnetic field measurements from CHAMP made it possible to extract and clearly resolve Pi2 and Pc3 pulsations in LEO satellite data. Our analyses for nighttime Pi2 pulsations are indicative of a cavity mode resonance. However, observations of daytime Pi2 pulsation events identified in ground station data show no convincing evidence of their occurrence in CHAMP data. We also studied low-latitude Pc3 pulsations and found that different types of field line resonant structure occur, namely discrete frequencies driven by a narrow band source and L-dependent frequencies driven by a broad band source.

  1. Real-time clock and orbit calculation of the GPS satellite constellation based on observation data of RTIGS-station network

    International Nuclear Information System (INIS)

    Thaler, G.

    2011-01-01

    Due to the development of faster communication networks and improving computer technology beside postprocessing techniques real-time applications and services are more and more created and used in the eld of precise positioning and navigation using global navigation satellite systems (GNSS) like GPS. Data formats like RTCM (NTRIP) or RTIGS serve in this manner as basic tool to transmit real-time GNSS observation data to a eld of users. To handle this trend to real-time, the International GNSS Service (IGS) or more precisely the Real-Time Working Group (RTWG) of the IGS started to establish a global GNSS station network several years ago. These reference stations (RTIGS stations) transmit their observation data in real-time via the open internet to registerd users to support the development of potential new real-time products and services. One example for such a new real-time application based on the observations of the RTIGS network is the software RTIGU-Control developed within this PHD thesis. RTIGU-Control fulls 2 main tasks. The rst task is the monitoring (integrity) of the predicted IGS orbit and clock products (IGU products) using real-time observations from the station network. The second task deals with calculating more precise satellite and station clock corrections compared to the predicted values of the IGU solutions based on the already very precise IGU orbit solutions. In a rst step RTIGU-Control calculates based on the IGU orbit predictions together with code-smoothed station observations precise values for the satellite and station clock corrections.The code-smoothed observations are additionally corrected for several corrections eecting the GNSS observations (for example the delay of the signal propagation time due to the atmosphere, relativistic eects, etc.). The second calculation step deals with monitoring the IGU predicted orbits using the calculated clock solution in the calculation step before and again the corrected real-time observations

  2. 47 CFR 25.206 - Station identification.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Station identification. 25.206 Section 25.206 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS... identification is waived for all radio stations licensed under this part with the exception of satellite uplinks...

  3. Information management system: A summary discussion. [for use in the space shuttle sortie, modular space station and TDR satellite

    Science.gov (United States)

    Sayers, R. S.

    1972-01-01

    An information management system is proposed for use in the space shuttle sortie, the modular space station, the tracking data relay satellite and associated ground support systems. Several different information management functions, including data acquisition, transfer, storage, processing, control and display are integrated in the system.

  4. Advanced domestic digital satellite communications systems experiments

    Science.gov (United States)

    Iso, A.; Izumisawa, T.; Ishida, N.

    1984-02-01

    The characteristics of advanced digital transmission systems were measured, using newly developed small earth stations and a K-band and C-band communication satellite. Satellite link performance for data, facsimile, video and packet switching information transmission at bit rates ranging from 6.4 kbit/s to 6.3 Mbit/s have been confirmed, using a small K-band earth station and a demand-assignment time division multiple access system. A low-capacity omni-use C-band terminal experiment has verified a telephone channel transmission performance by spread-spectrum multiple access. Single point to multipoint transmission characteristics of the 64 kbit/s data signals from the computer center were tested, using a receive-only 4 GHz earth terminal. Basic satellite link performance was confirmed under clear-sky conditions. Precise satellite orbit and attitude keeping experiments were carried out to obtain precise satellite antenna pointing accuracy for development of K-band earth stations that do not require satellite tracking equipment. Precise station keeping accuracy of 0.02 degrees was obtained.

  5. Low-cost approach for a software-defined radio based ground station receiver for CCSDS standard compliant S-band satellite communications

    Science.gov (United States)

    Boettcher, M. A.; Butt, B. M.; Klinkner, S.

    2016-10-01

    A major concern of a university satellite mission is to download the payload and the telemetry data from a satellite. While the ground station antennas are in general easy and with limited afford to procure, the receiving unit is most certainly not. The flexible and low-cost software-defined radio (SDR) transceiver "BladeRF" is used to receive the QPSK modulated and CCSDS compliant coded data of a satellite in the HAM radio S-band. The control software is based on the Open Source program GNU Radio, which also is used to perform CCSDS post processing of the binary bit stream. The test results show a good performance of the receiving system.

  6. Installing the earth station of Ka-band satellite frequency in Malaysia: conceptual framework for site decision

    Science.gov (United States)

    Mahmud, M. R.; Reba, M. N. M.; Jaw, S. W.; Arsyad, A.; Ibrahim, M. A. M.

    2017-05-01

    This paper developed a conceptual framework in determining the suitable location in installing the earth station for Ka-band satellite communication in Malaysia. This current evolution of high throughput satellites experienced major challenge due to Malaysian climate. Because Ka-band frequency is highly attenuated by the rainfall; it is an enormous challenge to define the most appropriate site for the static communication. Site diversity, a measure to anticipate this conflict by choosing less attenuated region and geographically change the transmission strategy on season basis require accurate spatio-temporal information on the geographical, environmental and hydro-climatology at local scale. Prior to that request, this study developed a conceptual framework to cater the needs. By using the digital spatial data, acquired from site measurement and remote sensing, the proposed framework applied a multiple criteria analysis to perform the tasks of site selection. With the advancement of high resolution remotely sensed data, site determination can be conducted as in Malaysia; accommodating a new, fast, and effective satellite communication. The output of this study is one of the pioneer contributions to create a high tech-society.

  7. JERS-1 Workshop on the Ground Station for ASEAN

    Science.gov (United States)

    Peanvijarnpong, Chanchai

    1990-11-01

    Presented in viewgraph format, the present status of the ground station and future plan for utilizing earth observation satellites in Thailand is outlined. Topics addressed include: data acquisition system; operation status of LANDSAT, SPOT, and MOS-1 (Marine Observation Satellite-1); remote sensors of satellites; data output form; data correction level; data system in Thailand; ground station for MOS-1 satellite in Thailand; and future plan.

  8. Gaussian entanglement distribution via satellite

    Science.gov (United States)

    Hosseinidehaj, Nedasadat; Malaney, Robert

    2015-02-01

    In this work we analyze three quantum communication schemes for the generation of Gaussian entanglement between two ground stations. Communication occurs via a satellite over two independent atmospheric fading channels dominated by turbulence-induced beam wander. In our first scheme, the engineering complexity remains largely on the ground transceivers, with the satellite acting simply as a reflector. Although the channel state information of the two atmospheric channels remains unknown in this scheme, the Gaussian entanglement generation between the ground stations can still be determined. On the ground, distillation and Gaussification procedures can be applied, leading to a refined Gaussian entanglement generation rate between the ground stations. We compare the rates produced by this first scheme with two competing schemes in which quantum complexity is added to the satellite, thereby illustrating the tradeoff between space-based engineering complexity and the rate of ground-station entanglement generation.

  9. Satellite-Based Sunshine Duration for Europe

    Directory of Open Access Journals (Sweden)

    Bodo Ahrens

    2013-06-01

    Full Text Available In this study, two different methods were applied to derive daily and monthly sunshine duration based on high-resolution satellite products provided by the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT Satellite Application Facility on Climate Monitoring using data from Meteosat Second Generation (MSG SEVIRI (Spinning Enhanced Visible and Infrared Imager. The satellite products were either hourly cloud type or hourly surface incoming direct radiation. The satellite sunshine duration estimates were not found to be significantly different using the native 15-minute temporal resolution of SEVIRI. The satellite-based sunshine duration products give additional spatial information over the European continent compared with equivalent in situ-based products. An evaluation of the satellite sunshine duration by product intercomparison and against station measurements was carried out to determine their accuracy. The satellite data were found to be within ±1 h/day compared to high-quality Baseline Surface Radiation Network or surface synoptic observations (SYNOP station measurements. The satellite-based products differ more over the oceans than over land, mainly because of the treatment of fractional clouds in the cloud type-based sunshine duration product. This paper presents the methods used to derive the satellite sunshine duration products and the performance of the different retrievals. The main benefits and disadvantages compared to station-based products are also discussed.

  10. Satellite-Relayed Intercontinental Quantum Network.

    Science.gov (United States)

    Liao, Sheng-Kai; Cai, Wen-Qi; Handsteiner, Johannes; Liu, Bo; Yin, Juan; Zhang, Liang; Rauch, Dominik; Fink, Matthias; Ren, Ji-Gang; Liu, Wei-Yue; Li, Yang; Shen, Qi; Cao, Yuan; Li, Feng-Zhi; Wang, Jian-Feng; Huang, Yong-Mei; Deng, Lei; Xi, Tao; Ma, Lu; Hu, Tai; Li, Li; Liu, Nai-Le; Koidl, Franz; Wang, Peiyuan; Chen, Yu-Ao; Wang, Xiang-Bin; Steindorfer, Michael; Kirchner, Georg; Lu, Chao-Yang; Shu, Rong; Ursin, Rupert; Scheidl, Thomas; Peng, Cheng-Zhi; Wang, Jian-Yu; Zeilinger, Anton; Pan, Jian-Wei

    2018-01-19

    We perform decoy-state quantum key distribution between a low-Earth-orbit satellite and multiple ground stations located in Xinglong, Nanshan, and Graz, which establish satellite-to-ground secure keys with ∼kHz rate per passage of the satellite Micius over a ground station. The satellite thus establishes a secure key between itself and, say, Xinglong, and another key between itself and, say, Graz. Then, upon request from the ground command, Micius acts as a trusted relay. It performs bitwise exclusive or operations between the two keys and relays the result to one of the ground stations. That way, a secret key is created between China and Europe at locations separated by 7600 km on Earth. These keys are then used for intercontinental quantum-secured communication. This was, on the one hand, the transmission of images in a one-time pad configuration from China to Austria as well as from Austria to China. Also, a video conference was performed between the Austrian Academy of Sciences and the Chinese Academy of Sciences, which also included a 280 km optical ground connection between Xinglong and Beijing. Our work clearly confirms the Micius satellite as a robust platform for quantum key distribution with different ground stations on Earth, and points towards an efficient solution for an ultralong-distance global quantum network.

  11. Satellite-Relayed Intercontinental Quantum Network

    Science.gov (United States)

    Liao, Sheng-Kai; Cai, Wen-Qi; Handsteiner, Johannes; Liu, Bo; Yin, Juan; Zhang, Liang; Rauch, Dominik; Fink, Matthias; Ren, Ji-Gang; Liu, Wei-Yue; Li, Yang; Shen, Qi; Cao, Yuan; Li, Feng-Zhi; Wang, Jian-Feng; Huang, Yong-Mei; Deng, Lei; Xi, Tao; Ma, Lu; Hu, Tai; Li, Li; Liu, Nai-Le; Koidl, Franz; Wang, Peiyuan; Chen, Yu-Ao; Wang, Xiang-Bin; Steindorfer, Michael; Kirchner, Georg; Lu, Chao-Yang; Shu, Rong; Ursin, Rupert; Scheidl, Thomas; Peng, Cheng-Zhi; Wang, Jian-Yu; Zeilinger, Anton; Pan, Jian-Wei

    2018-01-01

    We perform decoy-state quantum key distribution between a low-Earth-orbit satellite and multiple ground stations located in Xinglong, Nanshan, and Graz, which establish satellite-to-ground secure keys with ˜kHz rate per passage of the satellite Micius over a ground station. The satellite thus establishes a secure key between itself and, say, Xinglong, and another key between itself and, say, Graz. Then, upon request from the ground command, Micius acts as a trusted relay. It performs bitwise exclusive or operations between the two keys and relays the result to one of the ground stations. That way, a secret key is created between China and Europe at locations separated by 7600 km on Earth. These keys are then used for intercontinental quantum-secured communication. This was, on the one hand, the transmission of images in a one-time pad configuration from China to Austria as well as from Austria to China. Also, a video conference was performed between the Austrian Academy of Sciences and the Chinese Academy of Sciences, which also included a 280 km optical ground connection between Xinglong and Beijing. Our work clearly confirms the Micius satellite as a robust platform for quantum key distribution with different ground stations on Earth, and points towards an efficient solution for an ultralong-distance global quantum network.

  12. Cirrus cloud-temperature interactions over a tropical station, Gadanki from lidar and satellite observations

    International Nuclear Information System (INIS)

    S, Motty G; Satyanarayana, M.; Krishnakumar, V.; Dhaman, Reji k.

    2014-01-01

    The cirrus clouds play an important role in the radiation budget of the earth's atmospheric system and are important to characterize their vertical structure and optical properties. LIDAR measurements are obtained from the tropical station Gadanki (13.5 0 N, 79.2 0 E), India, and meteorological indicators derived from Radiosonde data. Most of the cirrus clouds are observed near to the tropopause, which substantiates the strength of the tropical convective processes. The height and temperature dependencies of cloud height, optical depth, and depolarization ratio were investigated. Cirrus observations made using CALIPSO satellite are compared with lidar data for systematic statistical study of cirrus climatology

  13. Trends in communications satellites

    CERN Document Server

    Curtin, Denis J

    1979-01-01

    Trends in Communications Satellites offers a comprehensive look at trends and advances in satellite communications, including experimental ones such as NASA satellites and those jointly developed by France and Germany. The economic aspects of communications satellites are also examined. This book consists of 16 chapters and begins with a discussion on the fundamentals of electrical communications and their application to space communications, including spacecraft, earth stations, and orbit and wavelength utilization. The next section demonstrates how successful commercial satellite communicati

  14. Real-time monitoring of seismic data using satellite telemetry

    Directory of Open Access Journals (Sweden)

    L. Merucci

    1997-06-01

    Full Text Available This article describes the ARGO Satellite Seismic Network (ARGO SSN as a reliable system for monitoring, collection, visualisation and analysis of seismic and geophysical low-frequency data, The satellite digital telemetry system is composed of peripheral geophysical stations, a centraI communications node (master sta- tion located in CentraI Italy, and a data collection and processing centre located at ING (Istituto Nazionale di Geofisica, Rome. The task of the peripheral stations is to digitalise and send via satellite the geophysical data collected by the various sensors to the master station. The master station receives the data and forwards them via satellite to the ING in Rome; it also performs alI the monitoring functions of satellite communications. At the data collection and processing centre of ING, the data are received and analysed in real time, the seismic events are identified and recorded, the low-frequency geophysical data are stored. In addition, the generaI sta- tus of the satellite network and of each peripheral station connected, is monitored. The procedure for analysjs of acquired seismic signals allows the automatic calculation of local magnitude and duration magnitude The communication and data exchange between the seismic networks of Greece, Spain and Italy is the fruit of a recent development in the field of technology of satellite transmission of ARGO SSN (project of European Community "Southern Europe Network for Analysis of Seismic Data"

  15. Experiment In Aeronautical-Mobile/Satellite Communication

    Science.gov (United States)

    Jedrey, Thomas C.; Lay, Norman E.; Dessouky, Khaled

    1992-01-01

    Report describes study of performance of digital mobile/satellite communication terminals of advanced design intended for use in ground stations and airplanes in aeronautical-mobile service. Study was collaboration of NASA, Federal Aviation Administration (FAA), Communications Satellite Corp. (COMSAT), and International Maritime Satellite System (INMARSAT).

  16. New insight of Arctic cloud parameterization from regional climate model simulations, satellite-based, and drifting station data

    Science.gov (United States)

    Klaus, D.; Dethloff, K.; Dorn, W.; Rinke, A.; Wu, D. L.

    2016-05-01

    Cloud observations from the CloudSat and CALIPSO satellites helped to explain the reduced total cloud cover (Ctot) in the atmospheric regional climate model HIRHAM5 with modified cloud physics. Arctic climate conditions are found to be better reproduced with (1) a more efficient Bergeron-Findeisen process and (2) a more generalized subgrid-scale variability of total water content. As a result, the annual cycle of Ctot is improved over sea ice, associated with an almost 14% smaller area average than in the control simulation. The modified cloud scheme reduces the Ctot bias with respect to the satellite observations. Except for autumn, the cloud reduction over sea ice improves low-level temperature profiles compared to drifting station data. The HIRHAM5 sensitivity study highlights the need for improving accuracy of low-level (<700 m) cloud observations, as these clouds exert a strong impact on the near-surface climate.

  17. Texstar: The all-Texas educational satellite system

    Science.gov (United States)

    1990-01-01

    Longhorn Satellite Company (LSC) has designed Texstar, and educational satellite communications system which will be considered as a means of equalizing the distribution of educational resources throughout the state of Texas. Texstar will be capable of broadcasting live lectures and documentaries in addition to transmitting data from a centralized receiving-transmitting station. Included in the design of Texstar is the system and subsystem design for the satellite and the design of the ground stations. The launch vehicle used will be the Texas-built Conestoga 421-48. The Texstar system incorporates three small satellites in slightly inclined geosynchronous orbits. Due to the configuration and spacing of these satellites, the system will be accessed as if it were one large, geostationary satellite. Texstar is shown to be a viable option to the educational crisis in the state of Texas.

  18. Satellite interference analysis and simulation using personal computers

    Science.gov (United States)

    Kantak, Anil

    1988-03-01

    This report presents the complete analysis and formulas necessary to quantify the interference experienced by a generic satellite communications receiving station due to an interfering satellite. Both satellites, the desired as well as the interfering satellite, are considered to be in elliptical orbits. Formulas are developed for the satellite look angles and the satellite transmit angles generally related to the land mask of the receiving station site for both satellites. Formulas for considering Doppler effect due to the satellite motion as well as the Earth's rotation are developed. The effect of the interfering-satellite signal modulation and the Doppler effect on the power received are considered. The statistical formulation of the interference effect is presented in the form of a histogram of the interference to the desired signal power ratio. Finally, a computer program suitable for microcomputers such as IBM AT is provided with the flowchart, a sample run, results of the run, and the program code.

  19. Time series for water levels in virtual gauge stations in the Amazon basin using satellite radar altimetry

    Directory of Open Access Journals (Sweden)

    Juan Gabriel León Hernández

    2009-01-01

    Full Text Available Using satellite altimeter radar technology for monitoring changes in water levels at continental scale is a relatively recent ad- vance. Several studies have demonstrated the interest being shown in applying this technology to monitoring the hydrographic patterns of large-scale basins worldwide. The current study presents the inference of time series representing changes in water le- vel for bodies of water by defining virtual gauge stations deduced for two very different rivers in terms of their biophysical and to- pographic characteristics; the two rivers were the Rio Negro in the Brazilian Amazon Basin and the Caqueta River on the Colombian side. The differences between the two rivers revealed the limits of satellite radar altimeter when applied to continental waters (±20cm and ±40 cm precision for Río Negro and Río Caquetá, respectively. However, applying this technology seems very promising, since new missions have been scheduled to be put into orbit by the end of 2008.

  20. Blossom Point Satellite Tracking and Command Station

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: The Blossom Point Satellite Command and Tracking Facility (BP) provides engineering and operational support to several complex space systems for the Navy...

  1. The method of quick satellite aiming with 3-Steps on the mobile satellite station

    Directory of Open Access Journals (Sweden)

    Sheng Liang

    2017-02-01

    Full Text Available The study analyses and concludes the technology of the satellite aiming during real-time broadcast of mobile video.We conclude a method of quick satellite aiming with 3-steps according to practical exercises and users' requirement to meet situation of facts and standardized operation,which can improve efficiency and quality of service.

  2. National Seismic Station

    International Nuclear Information System (INIS)

    Stokes, P.A.

    1982-06-01

    The National Seismic Station was developed to meet the needs of regional or worldwide seismic monitoring of underground nuclear explosions to verify compliance with a nuclear test ban treaty. The Station acquires broadband seismic data and transmits it via satellite to a data center. It is capable of unattended operation for periods of at least a year, and will detect any tampering that could result in the transmission of unauthentic seismic data

  3. ACTS TDMA network control. [Advanced Communication Technology Satellite

    Science.gov (United States)

    Inukai, T.; Campanella, S. J.

    1984-01-01

    This paper presents basic network control concepts for the Advanced Communications Technology Satellite (ACTS) System. Two experimental systems, called the low-burst-rate and high-burst-rate systems, along with ACTS ground system features, are described. The network control issues addressed include frame structures, acquisition and synchronization procedures, coordinated station burst-time plan and satellite-time plan changes, on-board clock control based on ground drift measurements, rain fade control by means of adaptive forward-error-correction (FEC) coding and transmit power augmentation, and reassignment of channel capacities on demand. The NASA ground system, which includes a primary station, diversity station, and master control station, is also described.

  4. Satellite communication from user to user

    Science.gov (United States)

    Gern, Manfred

    Satellite communication systems which allow a multitude of user-to-user, point-to-point, and multipoint connections, are presented. The bit rates are 64 kbit/sec and multiples, up to 1.92 Mbit/sec. If required, the ground-stations are installed at the customer's site or at suitable locations in order to serve several customers. However, technical requirements for station location have also to be fulfulled, in order to avoid interference with terrestrial radio services. The increasing number of participants to Satellite Multi Service and INTELSAT Business Services imposes the solution of the problem of communication using cheap techniques. The changes of the German Federal Post Office also permit the economic use of satellite radio techniques for short distances.

  5. Launching the First Indian Satellite

    Indian Academy of Sciences (India)

    materials and chemicals, rocket propulsion, satellite technology, control and guidance system, etc. ... entire country, especially the rural areas, and in the survey and management of natural resources. Listeners are no .... satellite will store the information over a longer period and then on command from the ground station at ...

  6. An access alternative for mobile satellite networks

    Science.gov (United States)

    Wu, W. W.

    1988-01-01

    Conceptually, this paper discusses strategies of digital satellite communication networks for a very large number of low density traffic stations. These stations can be either aeronautical, land mobile, or maritime. The techniques can be applied to international, domestic, regional, and special purpose satellite networks. The applications can be commercial, scientific, military, emergency, navigational or educational. The key strategy is the use of a non-orthogonal access method, which tolerates overlapping signals. With n being either time or frequency partitions, and with a single overlapping signal allowed, a low cost mobile satellite system can be designed with n squared (n squared + n + 1) number of terminals.

  7. 47 CFR 76.66 - Satellite broadcast signal carriage.

    Science.gov (United States)

    2010-10-01

    ... carriers are required to carry digital-only stations upon request in markets in which the satellite carrier... digital signals of each television broadcast station that is located in a local market in Alaska or Hawaii... retransmits a local television station signal back into the local market of that television station for...

  8. Al-Manar and Alhurra: Competing Satellite Stations and Ideologies

    National Research Council Canada - National Science Library

    Baylouny, Anne Marie

    2006-01-01

    .... Secretary of Defense Donald Rumsfeld blamed al-Jazeera, the leading Arabic language news station, for encouraging Islamism by broadcasting beheadings of hostages in Iraq, a charge the station denies...

  9. Mapping of Polar Areas Based on High-Resolution Satellite Images: The Example of the Henryk Arctowski Polish Antarctic Station

    Science.gov (United States)

    Kurczyński, Zdzisław; Różycki, Sebastian; Bylina, Paweł

    2017-12-01

    To produce orthophotomaps or digital elevation models, the most commonly used method is photogrammetric measurement. However, the use of aerial images is not easy in polar regions for logistical reasons. In these areas, remote sensing data acquired from satellite systems is much more useful. This paper presents the basic technical requirements of different products which can be obtain (in particular orthoimages and digital elevation model (DEM)) using Very-High-Resolution Satellite (VHRS) images. The study area was situated in the vicinity of the Henryk Arctowski Polish Antarctic Station on the Western Shore of Admiralty Bay, King George Island, Western Antarctic. Image processing was applied on two triplets of images acquired by the Pléiades 1A and 1B in March 2013. The results of the generation of orthoimages from the Pléiades systems without control points showed that the proposed method can achieve Root Mean Squared Error (RMSE) of 3-9 m. The presented Pléiades images are useful for thematic remote sensing analysis and processing of measurements. Using satellite images to produce remote sensing products for polar regions is highly beneficial and reliable and compares well with more expensive airborne photographs or field surveys.

  10. Satellite communications for the next generation telecommunication services and networks

    Science.gov (United States)

    Chitre, D. M.

    1991-01-01

    Satellite communications can play an important role in provisioning the next-generation telecommunication services and networks, provided the protocols specifying these services and networks are satellite-compatible and the satellite subnetworks, consisting of earth stations interconnected by the processor and the switch on board the satellite, interwork effectively with the terrestrial networks. The specific parameters and procedures of frame relay and broadband integrated services digital network (B-ISDN) protocols which are impacted by a satellite delay. Congestion and resource management functions for frame relay and B-ISDN are discussed in detail, describing the division of these functions between earth stations and on board the satellite. Specific onboard and ground functions are identified as potential candidates for their implementation via neural network technology.

  11. The EGSE science software of the IBIS instrument on-board INTEGRAL satellite

    International Nuclear Information System (INIS)

    La Rosa, Giovanni; Fazio, Giacomo; Segreto, Alberto; Gianotti, Fulvio; Stephen, John; Trifoglio, Massimo

    2000-01-01

    IBIS (Imager on Board INTEGRAL Satellite) is one of the key instrument on-board the INTEGRAL satellite, the follow up mission of the high energy missions CGRO and Granat. The EGSE of IBIS is composed by a Satellite Interface Simulator, a Control Station and a Science Station. Here are described the solutions adopted for the architectural design of the software running on the Science Station. Some preliminary results are used to show the science functionality, that allowed to understand the instrument behavior, all along the test and calibration campaigns of the Engineering Model of IBIS

  12. SeaTrack: Ground station orbit prediction and planning software for sea-viewing satellites

    Science.gov (United States)

    Lambert, Kenneth S.; Gregg, Watson W.; Hoisington, Charles M.; Patt, Frederick S.

    1993-01-01

    An orbit prediction software package (Sea Track) was designed to assist High Resolution Picture Transmission (HRPT) stations in the acquisition of direct broadcast data from sea-viewing spacecraft. Such spacecraft will be common in the near future, with the launch of the Sea viewing Wide Field-of-view Sensor (SeaWiFS) in 1994, along with the continued Advanced Very High Resolution Radiometer (AVHRR) series on NOAA platforms. The Brouwer-Lyddane model was chosen for orbit prediction because it meets the needs of HRPT tracking accuracies, provided orbital elements can be obtained frequently (up to within 1 week). Sea Track requires elements from the U.S. Space Command (NORAD Two-Line Elements) for the satellite's initial position. Updated Two-Line Elements are routinely available from many electronic sources (some are listed in the Appendix). Sea Track is a menu-driven program that allows users to alter input and output formats. The propagation period is entered by a start date and end date with times in either Greenwich Mean Time (GMT) or local time. Antenna pointing information is provided in tabular form and includes azimuth/elevation pointing angles, sub-satellite longitude/latitude, acquisition of signal (AOS), loss of signal (LOS), pass orbit number, and other pertinent pointing information. One version of Sea Track (non-graphical) allows operation under DOS (for IBM-compatible personal computers) and UNIX (for Sun and Silicon Graphics workstations). A second, graphical, version displays orbit tracks, and azimuth-elevation for IBM-compatible PC's, but requires a VGA card and Microsoft FORTRAN.

  13. 47 CFR 25.102 - Station authorization required.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Station authorization required. 25.102 Section 25.102 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS General § 25.102 Station authorization required. (a) No person shall use or operate...

  14. Analysis of COMS-1 North-South Station Keeping Method

    Directory of Open Access Journals (Sweden)

    Hae-Yeon Kim

    2005-12-01

    Full Text Available The perturbations caused by the Sun and the Moon are predominantly out-of-plane effects causing a change in the inclination and in the right ascension of ascending node of a geostationary satellite. Due to the change of the inclination, subsatellite latitude of the geostationary satellite has a daily variations of the same magnitude of the inclination. Therefore we need a facility to control the orbital inclination and right ascension of ascending node for maintaining the satellite position in specified subsatellite latitude boundary using thrusters. In this paper we studied North-South station keeping strategies of the COMS-1 such as Track-Back Chord Target (TBCT method, Maximum Compensation Target (MCT method and Minimum Fuel Target (MFT method. We accomplished those North-South station keeping maneuvers for one year starting from December 2008. The required velocity increments to maintain the satellite are estimated as MCT 52.6065m/s, TBCT 52.2383m/s, MFT 51.5428m/s, respectively. We demonstrated that TBCT and MFT methods are proper to North-South station keeping for COMS-1. MFT method showed the minimum required velocity increments whereas TBCT traced narrow inclination boundary area for North-South station keeping.

  15. Preliminary Design of Monitoring and Control Subsystem for GNSS Ground Station

    Directory of Open Access Journals (Sweden)

    Seongkyun Jeong

    2008-06-01

    Full Text Available GNSS (Global Navigation Satellite System Ground Station monitors navigation satellite signal, analyzes navigation result, and uploads correction information to satellite. GNSS Ground Station is considered as a main object for constructing GNSS infra-structure and applied in various fields. ETRI (Electronics and Telecommunications Research Institute is developing Monitoring and Control subsystem, which is subsystem of GNSS Ground Station. Monitoring and Control subsystem acquires GPS and Galileo satellite signal and provides signal monitoring data to GNSS control center. In this paper, the configurations of GNSS Ground Station and Monitoring and Control subsystem are introduced and the preliminary design of Monitoring and Control subsystem is performed. Monitoring and Control subsystem consists of data acquisition module, data formatting and archiving module, data error correction module, navigation solution determination module, independent quality monitoring module, and system operation and maintenance module. The design process uses UML (Unified Modeling Language method which is a standard for developing software and consists of use-case modeling, domain design, software structure design, and user interface structure design. The preliminary design of Monitoring and Control subsystem enhances operation capability of GNSS Ground Station and is used as basic material for detail design of Monitoring and Control subsystem.

  16. Two-way laser ranging and time transfer experiments between LOLA and an Earth-based satellite laser ranging station

    Science.gov (United States)

    Mao, D.; Sun, X.; Neumann, G. A.; Barker, M. K.; Mazarico, E. M.; Hoffman, E.; Zagwodzki, T. W.; Torrence, M. H.; Mcgarry, J.; Smith, D. E.; Zuber, M. T.

    2017-12-01

    Satellite Laser Ranging (SLR) has established time-of-flight measurements with mm precision to targets orbiting the Earth and the Moon using single-ended round-trip laser ranging to passive optical retro-reflectors. These high-precision measurements enable advances in fundamental physics, solar system dynamics. However, the received signal strength suffers from a 1/R4 decay, which makes it impractical for measuring distances beyond the Moon's orbit. On the other hand, for a two-way laser transponder pair, where laser pulses are both transmitted to and received from each end of the laser links, the signal strength at both terminals only decreases by 1/R2, thus allowing a greater range of distances to be covered. The asynchronous transponder concept has been previously demonstrated by a test in 2005 between the Mercury Laser Altimeter (MLA) aboard the MESSENGER (MErcury Surface, Space ENvironment, Geochemistry, and Ranging) spacecraft and NASA's Goddard Geophysical and Astronomical Observatory (GGAO) at a distance of ˜0.16 AU. In October 2013, regular two-way transponder-type range measurements were obtained over 15 days between the Lunar Laser Communication Demonstration (LLCD) aboard the Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft and NASA's ground station at White Sands, NM. The Lunar Orbiter Laser Altimeter (LOLA) aboard the Lunar Reconnaissance Orbiter (LRO) provides us a unique capability to test time-transfer beyond near Earth orbit. Here we present results from two-way transponder-type experiments between LOLA and GGAO conducted in March 2014 and 2017. As in the time-transfer by laser link (T2L2) experiments between a ground station and an earth-orbiting satellite, LOLA and GGAO ranged to each other simultaneously in these two-way tests at lunar distance. We measured the time-of-flight while cross-referencing the spacecraft clock to the ground station time. On May 4th, 2017, about 20 minutes of two-way measurements were collected. The

  17. Evaluating meteorological data from weather stations, and from satellites and global models for a multi-site epidemiological study.

    Science.gov (United States)

    Colston, Josh M; Ahmed, Tahmeed; Mahopo, Cloupas; Kang, Gagandeep; Kosek, Margaret; de Sousa Junior, Francisco; Shrestha, Prakash Sunder; Svensen, Erling; Turab, Ali; Zaitchik, Benjamin

    2018-04-21

    Longitudinal and time series analyses are needed to characterize the associations between hydrometeorological parameters and health outcomes. Earth Observation (EO) climate data products derived from satellites and global model-based reanalysis have the potential to be used as surrogates in situations and locations where weather-station based observations are inadequate or incomplete. However, these products often lack direct evaluation at specific sites of epidemiological interest. Standard evaluation metrics of correlation, agreement, bias and error were applied to a set of ten hydrometeorological variables extracted from two quasi-global, commonly used climate data products - the Global Land Data Assimilation System (GLDAS) and Climate Hazards Group InfraRed Precipitation with Stations (CHIRPS) - to evaluate their performance relative to weather-station derived estimates at the specific geographic locations of the eight sites in a multi-site cohort study. These metrics were calculated for both daily estimates and 7-day averages and for a rotavirus-peak-season subset. Then the variables from the two sources were each used as predictors in longitudinal regression models to test their association with rotavirus infection in the cohort after adjusting for covariates. The availability and completeness of station-based validation data varied depending on the variable and study site. The performance of the two gridded climate models varied considerably within the same location and for the same variable across locations, according to different evaluation criteria and for the peak-season compared to the full dataset in ways that showed no obvious pattern. They also differed in the statistical significance of their association with the rotavirus outcome. For some variables, the station-based records showed a strong association while the EO-derived estimates showed none, while for others, the opposite was true. Researchers wishing to utilize publicly available climate data

  18. Spin motion determination of the Envisat satellite through laser ranging measurements from a single pass measured by a single station

    Science.gov (United States)

    Pittet, Jean-Noël; Šilha, Jiří; Schildknecht, Thomas

    2018-02-01

    The Satellite Laser Ranging (SLR) technology is used to accurately determine the position of space objects equipped with so-called retro-reflectors or retro-reflector arrays (RRA). This type of measurement allows to measure the range to the spacecraft with high precision, which leads to determination of very accurate orbits for these targets. Non-active spacecraft, which are not attitude controlled any longer, tend to start to spin or tumble under influence of the external and internal torques and forces. If the return signal is measured for a non-spherical non-active rotating object, the signal in the range residuals with respect to the reference orbit is more complex. For rotating objects the return signal shows an oscillating pattern or patterns caused by the RRA moving around the satellite's centre of mass. This behaviour is projected onto the radial component measured by the SLR. In our work, we demonstrate how the SLR ranging technique from one sensor to a satellite equipped with a RRA can be used to precisely determine its spin motion during one passage. Multiple SLR measurements of one target over time allow to accurately monitor spin motion changes which can be further used for attitude predictions. We show our solutions of the spin motion determined for the non-active ESA satellite Envisat obtained from measurements acquired during years 2013-2015 by the Zimmerwald SLR station, Switzerland. All the necessary parameters are defined for our own so-called point-like model which describes the motion of a point in space around the satellite centre of mass.

  19. Validation of the CHIRPS Satellite Rainfall Estimates over Eastern of Africa

    Science.gov (United States)

    Dinku, T.; Funk, C. C.; Tadesse, T.; Ceccato, P.

    2017-12-01

    Long and temporally consistent rainfall time series are essential in climate analyses and applications. Rainfall data from station observations are inadequate over many parts of the world due to sparse or non-existent observation networks, or limited reporting of gauge observations. As a result, satellite rainfall estimates have been used as an alternative or as a supplement to station observations. However, many satellite-based rainfall products with long time series suffer from coarse spatial and temporal resolutions and inhomogeneities caused by variations in satellite inputs. There are some satellite rainfall products with reasonably consistent time series, but they are often limited to specific geographic areas. The Climate Hazards Group Infrared Precipitation (CHIRP) and CHIRP combined with station observations (CHIRPS) are recently produced satellite-based rainfall products with relatively high spatial and temporal resolutions and quasi-global coverage. In this study, CHIRP and CHIRPS were evaluated over East Africa at daily, dekadal (10-day) and monthly time scales. The evaluation was done by comparing the satellite products with rain gauge data from about 1200 stations. The is unprecedented number of validation stations for this region covering. The results provide a unique region-wide understanding of how satellite products perform over different climatic/geographic (low lands, mountainous regions, and coastal) regions. The CHIRP and CHIRPS products were also compared with two similar satellite rainfall products: the African Rainfall Climatology version 2 (ARC2) and the latest release of the Tropical Applications of Meteorology using Satellite data (TAMSAT). The results show that both CHIRP and CHIRPS products are significantly better than ARC2 with higher skill and low or no bias. These products were also found to be slightly better than the latest version of the TAMSAT product. A comparison was also done between the latest release of the TAMSAT product

  20. Results of the Ongoing Monitoring of the Position of a Geostationary Telecommunication Satellite by the Method of Spatially Separated Basis Receiving of Digital Satellite Television Signals

    Directory of Open Access Journals (Sweden)

    Bushuev F.

    2016-10-01

    Full Text Available The results of the ongoing monitoring of the position of geostationary telecommunication satellite Eutelsat-13B (13° East are presented in the article. The results were obtained using a radio engineering complex (RC of four stations receiving digital satellite television and a data processing centre. The stations are located in Kyiv, Mukachevo, Kharkiv and Mykolaiv.

  1. LOD First Estimates In 7406 SLR San Juan Argentina Station

    Science.gov (United States)

    Pacheco, A.; Podestá, R.; Yin, Z.; Adarvez, S.; Liu, W.; Zhao, L.; Alvis Rojas, H.; Actis, E.; Quinteros, J.; Alacoria, J.

    2015-10-01

    In this paper we show results derived from satellite observations at the San Juan SLR station of Felix Aguilar Astronomical Observatory (OAFA). The Satellite Laser Ranging (SLR) telescope was installed in early 2006, in accordance with an international cooperation agreement between the San Juan National University (UNSJ) and the Chinese Academy of Sciences (CAS). The SLR has been in successful operation since 2011 using NAOC SLR software for the data processing. This program was designed to calculate satellite orbits and station coordinates, however it was used in this work for the determination of LOD (Length Of Day) time series and Earth Rotation speed.

  2. Looking at Earth from space: Direct readout from environmental satellites

    Science.gov (United States)

    1994-01-01

    Direct readout is the capability to acquire information directly from meteorological satellites. Data can be acquired from NASA-developed, National Oceanic and Atmospheric Administration (NOAA)-operated satellites, as well as from other nations' meteorological satellites. By setting up a personal computer-based ground (Earth) station to receive satellite signals, direct readout may be obtained. The electronic satellite signals are displayed as images on the computer screen. The images can display gradients of the Earth's topography and temperature, cloud formations, the flow and direction of winds and water currents, the formation of hurricanes, the occurrence of an eclipse, and a view of Earth's geography. Both visible and infrared images can be obtained. This booklet introduces the satellite systems, ground station configuration, and computer requirements involved in direct readout. Also included are lists of associated resources and vendors.

  3. Satellite-based detection of global urban heat-island temperature influence

    Science.gov (United States)

    Gallo, K.P.; Adegoke, Jimmy O.; Owen, T.W.; Elvidge, C.D.

    2002-01-01

    This study utilizes a satellite-based methodology to assess the urban heat-island influence during warm season months for over 4400 stations included in the Global Historical Climatology Network of climate stations. The methodology includes local and regional satellite retrievals of an indicator of the presence green photosynthetically active vegetation at and around the stations. The difference in local and regional samples of the normalized difference vegetation index (NDVI) is used to estimate differences in mean air temperature. Stations classified as urban averaged 0.90??C (N. Hemisphere) and 0.92??C (S. Hemisphere) warmer than the surrounding environment on the basis of the NDVI-derived temperature estimates. Additionally, stations classified as rural averaged 0.19??C (N. Hemisphere) and 0.16??C (S. Hemisphere) warmer than the surrounding environment. The NDVI-derived temperature estimates were found to be in reasonable agreement with temperature differences observed between climate stations. The results suggest that satellite-derived data sets can be used to estimate the urban heat-island temperature influence on a global basis and that a more detailed analysis of rural stations and their surrounding environment may be necessary to assure that temperature trends derived from assumed rural environments are not influenced by changes in land use/land cover. Copyright 2002 by the American Geophysical Union.

  4. CONCEPTUAL DESIGN OF MONITORING AND CONTROL SUBSYSTEM FOR GNSS GROUND STATION

    Directory of Open Access Journals (Sweden)

    Seongkyun Jeong

    2007-12-01

    Full Text Available The Global Navigation Satellite System (GNSS becomes more important and is applied to various systems. Recently, the Galileo navigation system is being developed in Europe. Also, other countries like China, Japan and India are developing the global/regional navigation satellite system. As various global/regional navigation satellite systems are used, the navigation ground system gets more important for using the navigation system reasonably and efficiently. According to this trend, the technology of GNSS Ground Station (GGS is developing in many fields. The one of purposes for this study is to develop the high precision receiver for GNSS sensor station and to provide ground infrastructure for better performance services on navigation system. In this study, we consider the configuration of GNSS Ground Station and analyze function of Monitoring and Control subsystem which is a part of GNSS Ground Station. We propose Monitoring and Control subsystem which contains the navigation software for GNSS Ground System to monitor and control equipments in GNSS Ground Station, to spread the applied field of navigation system, and to provide improved navigation information to user.

  5. Geostationary satellites collocation

    CERN Document Server

    Li, Hengnian

    2014-01-01

    Geostationary Satellites Collocation aims to find solutions for deploying a safe and reliable collocation control. Focusing on the orbital perturbation analysis, the mathematical foundations for orbit and control of the geostationary satellite are summarized. The mathematical and physical principle of orbital maneuver and collocation strategies for multi geostationary satellites sharing with the same dead band is also stressed. Moreover, the book presents some applications using the above algorithms and mathematical models to help readers master the corrective method for planning station keeping maneuvers. Engineers and scientists in the fields of aerospace technology and space science can benefit from this book. Hengnian Li is the Deputy Director of State Key Laboratory of Astronautic Dynamics, China.

  6. The next generation of Palapa satellite (Palapa-C)

    Science.gov (United States)

    Setiawan, Bambang

    The Indonesian Palapa Communication Satellite System was established in Aug. 1976 when the first satellite of Palapa A series (Palapa A1) began operation. The system is owned and operated by PT. Telekomunikasi Indonesia (Telkom), which is a state owned company. The purpose of the system was to unify the telecommunications of the nation. Many years of operation have shown that satellite technology is the best solution for improving telecommunications in Indonesia. The system was started with 2 (two) satellites, each with 12 transponders (for a total of 24), and 40 earth stations. Now the system has 3 (three) satellites, each with 24 transponders (for a total of 72 transponders), and thousands of earth stations. The services have been extended to satisfy the requirements of the region as well as the original objectives. The use of satellite transponders in the region is increasing rapidly. In the next ten years, opportunities in the satellite communications business will become even more attractive. The next generation Palapa-C will incorporate improvements in capacity, quality, and coverage. The new frequency bands (ku- and Extended-C Band) will be used to meet the new transponder capacity requirements.

  7. 47 CFR 25.271 - Control of transmitting stations.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Control of transmitting stations. 25.271 Section 25.271 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Operations § 25.271 Control of transmitting stations. (a) The licensee of...

  8. Estimation of satellite position, clock and phase bias corrections

    Science.gov (United States)

    Henkel, Patrick; Psychas, Dimitrios; Günther, Christoph; Hugentobler, Urs

    2018-05-01

    Precise point positioning with integer ambiguity resolution requires precise knowledge of satellite position, clock and phase bias corrections. In this paper, a method for the estimation of these parameters with a global network of reference stations is presented. The method processes uncombined and undifferenced measurements of an arbitrary number of frequencies such that the obtained satellite position, clock and bias corrections can be used for any type of differenced and/or combined measurements. We perform a clustering of reference stations. The clustering enables a common satellite visibility within each cluster and an efficient fixing of the double difference ambiguities within each cluster. Additionally, the double difference ambiguities between the reference stations of different clusters are fixed. We use an integer decorrelation for ambiguity fixing in dense global networks. The performance of the proposed method is analysed with both simulated Galileo measurements on E1 and E5a and real GPS measurements of the IGS network. We defined 16 clusters and obtained satellite position, clock and phase bias corrections with a precision of better than 2 cm.

  9. A multievent study of broadband electrons observed by the DMSP satellites and their relation to red aurora observed at midlatitude stations

    International Nuclear Information System (INIS)

    Shiokawa, K.; Meng, C.; Reeves, G.D.; Rich, F.J.; Yumoto, K.

    1997-01-01

    Broadband electrons during magnetic storms are characterized by an unusually intense flux of precipitating electrons in the broadband energy range from 30 eV to 30 keV near the equatorward edge of the auroral oval (47 degree endash 66 degree magnetic latitude). Broadband electrons were first reported by Shiokawa et al. [1996]. In this paper, we report a multievent study of broadband electrons, using particle data obtained by the Defense Meteorological Satellite Program (DMSP) satellites during 23 magnetic storms from January 1989 through May 1992. Twelve broadband electron events are identified. Most of them are observed in the night sector, but some are observed in the morning sector. Particle data for successive polar passes of the DMSP multisatellites are used to show that broadband electrons generally last for less than 30 min and that for some events, they precipitate over a wide range of local times simultaneously. On the basis of a quantitative calculation of optical emissions from electrons in the neutral atmosphere, we conclude that broadband electrons are a possible cause of red auroras observed at midlatitude ground stations. We suggest that broadband electrons are associated with certain substorms during the main phase of magnetic storms. This conjecture comes from observations of H component positive bays and Pi 2 pulsations observed at low-latitude magnetic stations and from magnetic field variations observed at geosynchronous satellites. We conclude that the magnetospheric source of broadband electrons lies within the inner part of the plasma sheet. This conclusion is based on the facts that broadband electrons appear in latitudes where plasma sheet particles were observed before the event and that broadband electrons are observed poleward of the subauroral ion drifts, a position that corresponds to the inner edge of the injected particle layer during storms. (Abstract Truncated)

  10. Results of the Ongoing Monitoring of the Position of a Geostationary Telecommunication Satellite by the Method of Spatially Separated Basis Receiving of Digital Satellite Television Signals

    Science.gov (United States)

    Bushuev, F.; Kaliuzhnyi, M.; Sybiryakova, Y.; Shulga, O.; Moskalenko, S.; Balagura, O.; Kulishenko, V.

    2016-10-01

    The results of the ongoing monitoring of the position of geostationary telecommunication satellite Eutelsat-13B (13° East) are presented in the article. The results were obtained using a radio engineering complex (RC) of four stations receiving digital satellite television and a data processing centre. The stations are located in Kyiv, Mukachevo, Kharkiv and Mykolaiv. The equipment of each station allows synchronous recording (by the GPS) of fragments of DVB-S signal from the quadrature detector output of the satellite television receiver. Samples of the complex signal are archived and sent to the data processing center through the Internet. Here three linearly independent slant range differences (Δr) for three pairs of the stations are determined as a result of correlation processing of received signals. Every second measured values of Δr are used to calculate Cartesian coordinates (XYZ) of the satellite in the coordinate system WGS84 by multilateration method. The time series of Δr, X, Y and Z obtained during continuous observations from March to May 2015 are presented in the article. Single-measurement errors of Δr, X, Y and Z are equal to 2.6 m, 3540 m, 705 m and 455 m, respectively. The complex is compared with known analogues. Ways of reduction of measurement errors of satellite coordinates are considered. The radio engineering complex could be considered a prototype of a system of independent ongoing monitoring of the position of geostationary telecommunication satellites.

  11. High Bandwidth Optical Links for Micro-Satellite Support

    Science.gov (United States)

    Chao, Tien-Hsin (Inventor); Wilson, Keith E. (Inventor); Coste, Keith (Inventor)

    2016-01-01

    A method, systems, apparatus and device enable high bandwidth satellite communications. An onboard tracking detector, installed in a low-earth orbit satellite, detects a position of an incoming optical beam received/transmitted from a first ground station of one or more ground stations. Tracker electronics determine orientation information of the incoming optical beam based on the position. Control electronics receive the orientation information from the tracker electronics, and control a waveguide drive electronics. The waveguide drive electronics control a voltage that is provided to an electro-optic waveguide beam steering device. The electro-optic waveguide beam steering device steers an outgoing optical beam to one of the one or more ground stations based on the voltage.

  12. 47 CFR 25.113 - Station licenses and launch authority.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Station licenses and launch authority. 25.113 Section 25.113 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Applications and Licenses General Application Filing Requirements § 25.113 Station...

  13. 47 CFR 25.277 - Temporary fixed earth station operations.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Temporary fixed earth station operations. 25.277 Section 25.277 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Operations § 25.277 Temporary fixed earth station operations...

  14. 6/4 GHz band small capacity omni-use terminal satellite system

    Science.gov (United States)

    Masamura, T.; Inoue, T.

    1983-03-01

    This paper presents system outline and multiple access techniques for a domestic satellite communication system accommodating numerous small earth stations. Two kinds of earth stations are employed in this system, a small earth terminal (SET) and a master earth station (MES). There are 48 both way satellite channels using a 6/4 GHz band transponder whose e.i.r.p is about 62 dBm. The TDM (Time Division Multiplex) method is employed in the MES to SET link, and the SSMA (Spread Spectrum Multiple Access) method is used in the SET to MES link.

  15. A comparison of Frequency Domain Multiple Access (FDMA) and Time Domain Multiple Access (TDMA) approaches to satellite service for low data rate Earth stations

    Science.gov (United States)

    Stevens, G.

    1983-01-01

    A technological and economic assessment is made of providing low data rate service to small earth stations by satellite at Ka-band. Various Frequency Domain Multiple Access (FDMA) and Time Domain Multiple Access (TDMA) scenarios are examined and compared on the basis of cost to the end user. Very small stations (1 to 2 meters in diameter) are found not to be viable alternatives to available terrestrial services. However, medium size (3 to 5 meters) earth stations appear to be very competitive if a minimum throughput of about 1.5 Mbs is maintained. This constrains the use of such terminals to large users and shared use by smaller users. No advantage was found to the use of FDMA. TDMA had a slight advantage from a total system viewpoint and a very significant advantage in the space segment (about 1/3 the required payload weight for an equivalent capacity).

  16. NASA space station automation: AI-based technology review

    Science.gov (United States)

    Firschein, O.; Georgeff, M. P.; Park, W.; Neumann, P.; Kautz, W. H.; Levitt, K. N.; Rom, R. J.; Poggio, A. A.

    1985-01-01

    Research and Development projects in automation for the Space Station are discussed. Artificial Intelligence (AI) based automation technologies are planned to enhance crew safety through reduced need for EVA, increase crew productivity through the reduction of routine operations, increase space station autonomy, and augment space station capability through the use of teleoperation and robotics. AI technology will also be developed for the servicing of satellites at the Space Station, system monitoring and diagnosis, space manufacturing, and the assembly of large space structures.

  17. Best Longitudinal Adjustment of Satellite Trajectories for the Observation of Forest Fires (Blastoff): A Stochastic Programming Approach to Satellite System Design

    Science.gov (United States)

    Hoskins, Aaron B.

    Forest fires cause a significant amount of damage and destruction each year. Optimally dispatching resources reduces the amount of damage a forest fire can cause. Models predict the fire spread to provide the data required to optimally dispatch resources. However, the models are only as accurate as the data used to build them. Satellites are one valuable tool in the collection of data for the forest fire models. Satellites provide data on the types of vegetation, the wind speed and direction, the soil moisture content, etc. The current operating paradigm is to passively collect data when possible. However, images from directly overhead provide better resolution and are easier to process. Maneuvering a constellation of satellites to fly directly over the forest fire provides higher quality data than is achieved with the current operating paradigm. Before launch, the location of the forest fire is unknown. Therefore, it is impossible to optimize the initial orbits for the satellites. Instead, the expected cost of maneuvering to observe the forest fire determines the optimal initial orbits. A two-stage stochastic programming approach is well suited for this class of problem where initial decisions are made with an uncertain future and then subsequent decisions are made once a scenario is realized. A repeat ground track orbit provides a non-maneuvering, natural solution providing a daily flyover of the forest fire. However, additional maneuvers provide a second daily flyover of the forest fire. The additional maneuvering comes at a significant cost in terms of additional fuel, but provides more data collection opportunities. After data are collected, ground stations receive the data for processing. Optimally selecting the ground station locations reduce the number of built ground stations and reduces the data fusion issues. However, the location of the forest fire alters the optimal ground station sites. A two-stage stochastic programming approach optimizes the

  18. Plan of Time Management of Satellite Positioning System using Quasi-zenith Satellite

    Science.gov (United States)

    Takahashi, Yasuhiro; Fujieda, Miho; Amagai, Jun; Yokota, Shoichiro; Kimura, Kazuhiro; Ito, Hiroyuki; Hama, Shin'ichi; Morikawa, Takao; Kawano, Isao; Kogure, Satoshi

    The Quasi-Zenith satellites System (QZSS) is developed as an integrated satellite service system of communication, broadcasting and positioning for mobile users in specified regions of Japan from high elevation angle. Purposes of the satellite positioning system using Quasi-Zenith satellite (QZS) are to complement and augment the GPS. The national institutes concerned have been developing the positioning system using QZS since 2003 and will carry out experiments and researches in three years after the launch. In this system, National Institute of Information and Communications Technology (NICT) is mainly in charge of timing system for the satellite positioning system using QZS, such as onboard hydrogen maser atomic clock and precise time management system of the QZSS. We started to develop the engineering model of the time management system for the QZSS. The time management system for the QZSS will be used to compare time differences between QZS and earth station as well as to compare between three onboard atomic clocks. This paper introduces time management of satellite positioning system using the QZSS.

  19. Tracking on non-active collaborative objects from San Fernando Laser station

    Science.gov (United States)

    Catalán, Manuel; Quijano, Manuel; Cortina, Luis M.; Pazos, Antonio A.; Martín-Davila, José

    2016-04-01

    The Royal Observatory of the Spanish Navy (ROA) works on satellite geodesy from the early days of the space age, when the first artificial satellite tracking telescope was installed in 1958: the Baker-Nunn camera. In 1975 a French satellite Laser ranging (SLR) station was installed and operated at ROA . Since 1980, ROA has been operating this instrument which was upgraded to a third generation and it is still keep into a continuous update to reach the highest level of operability. Since then ROA has participated in different space geodesy campaigns through the International Laser Service Stations (ILRS) or its European regional organization (EUROLAS), tracking a number of artificial satellites types : ERS, ENVISAT, LAGEOS, TOPEX- POSEIDON to name but a few. Recently we opened a new field of research: space debris tracking, which is receiving increasing importance and attention from international space agencies. The main problem is the relatively low accuracy of common used methods. It is clear that improving the predicted orbit accuracy is necessary to fulfill our aims (avoiding unnecessary anti-collision maneuvers,..). Following results obtained by other colleagues (Austria, China, USA,...) we proposed to share our time-schedule using our satellite ranging station to obtain data which will make orbital elements predictions far more accurate (sub-meter accuracy), while we still keep our tracking routines over active satellites. In this communication we report the actions fulfill until nowadays.

  20. An interactive software package for validating satellite data

    Digital Repository Service at National Institute of Oceanography (India)

    Muraleedharan, P.M.; Pankajakshan, T.

    to be highly correlated (r = 0.75) with the satellite data. Very good correlation (r = 0.80) is obtained for wind speed measured from both Moored buoy and Autonomous Weather Station. Night time SSTs are found to be closer to the satellite values for wind speed...

  1. Astrometry and Geostationary Satellites in Venezuela

    Science.gov (United States)

    Lacruz, E.; Abad, C.

    2015-10-01

    We present the current status and the first results of the astrometric project CIDA - ABAE for tracking geo-stationary satellites. This project aims to determine a preliminary orbit for the Venezuelan satellite VENESAT-1, using astrometric positions obtained from an optical telescope. The results presented here are based on observations from the Luepa space tracking ground station in Venezuela, which were processed using astrometric procedures.

  2. Viking telecommunication effects of GEOS satellite interference based on testing at the Madrid deep space station

    Science.gov (United States)

    Stuhr, F. V.; Kent, S. S.; Galvez, J. L.; Luaces, B. G.; Pasero, G. R.; Urech, J. M.

    1976-01-01

    In support of the ongoing NASA-European Space Agency (ESA) effort to understand and control possible interference between missions, testing was conducted at the Madrid Deep Space Station from July 1975 to February 1976 to characterize the effect on Viking 1975 telecommunication link performance of Geodetic Earth-Orbiting Satellite (GEOS) downlink signals. The prime use of the data was to develop a capability to predict GEOS interference effects for evaluation of Viking 1975 mission impacts and possible temporary GEOS shutdown. Also, the data would serve as a basis for assessment of the GEOS impact on missions other than Viking as well as for more general interference applications. Performances of the reference receiver, telemetry, and planetary ranging were measured in the presence of various types of GEOS-related interference, including an unmodulated GEOS carrier and simulation of the actual spectrum by an ESA-supplied GEOS suitcase model.

  3. Microwave energy transmission test toward the SPS using the space station

    Energy Technology Data Exchange (ETDEWEB)

    Kaya, N.; Matsumoto, H.; Miyatake, S.; Kimura, I.; Nagatomo, M.

    1986-12-01

    An outline of a project METT (Microwave Energy Transmission Test) using the Space Station is described. The objectives of the METT are to develop and test the technology of microwave energy transmission for the future Solar Power Satellite (SPS), and to estimate the environmental effects of the high power microwaves on the ionosphere and the atmosphere. Energy generated with solar cells is transmitted from a transmitting antenna on the bus platform near the Space Station to a rectenna on the sub-satellite or the ground station in order to test the total efficiency and the functions of the developed system of the energy transmission. Plasma similar to that in the D and E layers in the ionosphere is produced in a large balloon opened on the sub-satellite in order to investigate possible interactions between the SPS microwave and the ionospheric plasma and to determine the maximum power density of the microwave beam which passes through the ionosphere.

  4. Estimation of solar radiation over Cambodia from long-term satellite data

    Energy Technology Data Exchange (ETDEWEB)

    Janjai, S.; Pankaew, P.; Laksanaboonsong, J. [Solar Energy Research Laboratory, Department of Physics, Faculty of Science, Silpakorn University, Nakhon Pathom 73000 (Thailand); Kitichantaropas, P. [Department of Alternative Energy Development and Efficiency, Ministry of Energy, 17 Rama 1 Road, Patumwan, Bangkok 10330 (Thailand)

    2011-04-15

    In this work, monthly average daily global solar irradiation over Cambodia was estimated from a long-term satellite data. A 14-year period (1995-2008) of visible channel data from GMS5, GOES9 and MTSAT-1R satellites were used to provide earth-atmospheric reflectivity. A satellite-based solar radiation model developed for a tropical environment was used to estimate surface solar radiation. The model relates the satellite-derived earth-atmospheric reflectivity to absorption and scattering coefficients of various atmospheric constituents. The absorption of solar radiation due to water vapour was calculated from precipitable water derived from ambient relative humidity and temperature. Ozone data from the TOMS and OMI satellite data were employed to compute the solar radiation absorption by ozone. The depletion of radiation due to aerosols was estimated from the visibility data. Five new solar radiation measuring stations were established at Cambodian cities, namely Siem Reap (13.87 N, 103.85 E), Kompong Thom (12.68 N, 104.88 E), Phnom Penh (11.55 N, 104.83 E), Sihanouke Ville (10.67 N, 103.63 E) and Kampot (10.70 N, 104.28 E). Global solar radiation measured at these stations was used to validate the model. The validation was also carried out by using solar radiation measured at four Thai meteorological stations. These stations are situated near the Cambodian border. Monthly average daily global irradiation from these stations was compared with that calculated from the model. The measured and calculated irradiation is in good agreement, with the root mean square difference of 6.3%, with respect to the mean values. After the validation, the model was used to calculate monthly average daily global solar irradiation over Cambodia. Based on this satellite-derived irradiation, solar radiation maps for Cambodia were generated. These maps show that solar radiation climate of this country is strongly influenced by the monsoons. A solar radiation database was also generated

  5. Simultaneous Laser Ranging and Communication from an Earth-Based Satellite Laser Ranging Station to the Lunar Reconnaissance Orbiter in Lunar Orbit

    Science.gov (United States)

    Sun, Xiaoli; Skillman, David R.; Hoffman, Evan D.; Mao, Dandan; McGarry, Jan F.; Neumann, Gregory A.; McIntire, Leva; Zellar, Ronald S.; Davidson, Frederic M.; Fong, Wai H.; hide

    2013-01-01

    We report a free space laser communication experiment from the satellite laser ranging (SLR) station at NASA Goddard Space Flight Center (GSFC) to the Lunar Reconnaissance Orbiter (LRO) in lunar orbit through the on board one-way Laser Ranging (LR) receiver. Pseudo random data and sample image files were transmitted to LRO using a 4096-ary pulse position modulation (PPM) signal format. Reed-Solomon forward error correction codes were used to achieve error free data transmission at a moderate coding overhead rate. The signal fading due to the atmosphere effect was measured and the coding gain could be estimated.

  6. A network architecture for International Business Satellite communications

    Science.gov (United States)

    Takahata, Fumio; Nohara, Mitsuo; Takeuchi, Yoshio

    Demand Assignment (DA) control is expected to be introduced in the International Business Satellte communications (IBS) network in order to cope with a growing international business traffic. The paper discusses the DA/IBS network from the viewpoints of network configuration, satellite channel configuration and DA control. The network configuration proposed here consists of one Central Station with network management function and several Network Coordination Stations with user management function. A satellite channel configuration is also presented along with a tradeoff study on transmission bit rate, high power amplifier output power requirement, and service quality. The DA control flow and protocol based on CCITT Signalling System No. 7 are also proposed.

  7. Eumetcast receiving station integration withinthe satellite image database interface (SAIDIN) system.

    OpenAIRE

    Chic, Òscar

    2010-01-01

    Within the tasks devoted to operational oceanography, Coastal Ocean Observatory at Institut de Ciències del Mar (CSIC) has acquired an European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) Broadcast System for Environmental Data (EUMETCast reception system) to replace a satellite direct broadcast system that receives data via High Resolution Picture Transmission (HRPT). EUMETCast system can receive data based on standard Digital Video Broadcastin...

  8. Results from the northern New Mexico satellite-beacon radio interferometer

    International Nuclear Information System (INIS)

    Carlos, R.; Jacobson, A.; Massey, R.; Wu, G.

    1994-01-01

    An interferometer described in the Boston, 1992, meeting of the Beacon Satellite Symposium has been in full operation for over a year now. It consists of four autonomous stations; three are in a triangle 70 km on a side and one is in the center. The stations receive the VHF beacons from two geosynchronous satellites, GOES-2 and ATS-3. The phases of the beacons are tracked at each station by referring them to an extremely stable rubidium oscillator. The studies of the two satellites are virtually separate experiments. The received phase of the beacon is retarded by the increased Total-Electron-Content of the dense regions of waves in the ionosphere. By comparing the phase history at four spatially separated stations, the authors can determine the two-dimensional propagation vector of the waves. This array is optimal for wavelengths of 70--300 km (periods of 300--3,000 seconds). Since the measurement is of the phase of the signal rather than the difference between the O-mode and X-mode phases, and since the beacons are in the VHF rather than in the L-band of GPS beacons, the array is very sensitive. It has a noise level of 10 13 electrons/m 2 , or 10 -4 of the normal daytime TEC. This has been verified by operating two stations in the same location, so that they saw the same ionosphere. The first interesting results from a year's study is that the authors do not see the same TID's when looking at the two satellites. One conclusion they draw is that they do not see evidence of ionospheric winds

  9. DUBNA-GRAN SASSO: Satellite computer link

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    In April a 64 kbit/s computer communication link was set up between the Joint Institute for Nuclear Research (JINR), Dubna (Russia) and Gran Sasso (Italy) Laboratories via nearby ground satellite stations using the INTELSAT V satellite. Previously the international community of Dubna's experimentalists and theorists (high energy physics, condensed matter physics, low energy nuclear and neutron physics, accelerator and applied nuclear physics) had no effective computer links with scientific centres worldwide

  10. Current Trends and Challenges in Satellite Laser Ranging

    Science.gov (United States)

    Appleby, Graham M.; Bianco, Giuseppe; Noll, Carey E.; Pavlis, Erricos C.; Pearlman, Michael R.

    2016-12-01

    Satellite Laser Ranging (SLR) is used to measure accurately the distance from ground stations to retro-reflectors on satellites and on the Moon. SLR is one of the fundamental space-geodetic techniques that define the International Terrestrial Reference Frame (ITRF), which is the basis upon which many aspects of global change over space, time, and evolving technology are measured; with VLBI the two techniques define the scale of the ITRF; alone the SLR technique defines its origin (geocenter). The importance of the reference frame has recently been recognized at the inter-governmental level through the United Nations, which adopted in February 2015 the Resolution "Global Geodetic Reference Frame for Sustainable Development." Laser Ranging provides precision orbit determination and instrument calibration and validation for satellite-borne altimeters for the better understanding of sea level change, ocean dynamics, ice mass-balance, and terrestrial topography. It is also a tool to study the dynamics of the Moon and fundamental constants and theories. With the exception of the currently in-orbit GPS constellation, all GNSS satellites now carry retro-reflectors for improved orbit determination, harmonization of reference frames, and in-orbit co-location and system performance validation; the next generation of GPS satellites due for launch from 2019 onwards will also carry retro-reflectors. The ILRS delivers weekly realizations that are accumulated sequentially to extend the ITRF and the Earth Orientation Parameter series with a daily resolution. SLR technology continues to evolve towards the next-generation laser ranging systems and it is expected to successfully meet the challenges of the GGOS2020 program for a future Global Space Geodetic Network. Ranging precision is improving as higher repetition rate, narrower pulse lasers, and faster detectors are implemented within the network. Automation and pass interleaving at some stations is expanding temporal coverage and

  11. 47 CFR 25.131 - Filing requirements for receive-only earth stations.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Filing requirements for receive-only earth stations. 25.131 Section 25.131 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Applications and Licenses Earth Stations § 25.131 Filing...

  12. Protocols for second-generation business satellites systems

    Science.gov (United States)

    Evans, B. G.; Coakley, F. P.; El Amin, M. H. M.

    The paper discusses the nature and mix of traffic in business satellite systems and describes the limitations on the protocol imposed by the differing impairments of speech, video, and data. A simple TDMA system protocol is presented which meets the requirements of mixed-service operation. The efficiency of the protocol together with implications for allocation, scheduling and synchronisation are discussed. Future-generation satellites will probably use on-board processing. Some initial work on protocols that make use of on-board processing and the implications for satellite and earth-station equipment are presented.

  13. Sea level change along the Black Sea coast from satellite altimetry, tide gauge and GPS observations

    Directory of Open Access Journals (Sweden)

    Nevin B. Avsar

    2016-01-01

    Full Text Available Sea level change affects human living conditions, particularly ocean coasts. However, sea level change is still unclear along the Black Sea coast due to lack of in-situ measurements and low resolution satellite data. In this paper, sea level change along the Black Sea coast is investigated from joint satellite altimetry, tide gauge (TG and Global Positioning System (GPS observations. The linear trend and seasonal components of sea level change are estimated at 8 TG stations (Amasra, Igneada, Trabzon-II, Sinop, Sile, Poti, Tuapse, and Batumi located along the Black Sea coast, which are compared with Satellite Altimetry and GPS. At the tide gauge stations with long-term records such as Poti (about 21 years and Tuapse (about 19 years, the results obtained from the satellite altimetry and tide gauge observations show a remarkably good agreement. While some big differences are existed between Satellite Altimetry and TG at other stations, after adding vertical motion from GPS, correlation coefficients of the trend have been greatly improved from 0.37 to 0.99 at 3 co-located GPS and TG stations (Trabzon-II, Sinop and Sile.

  14. Servicing communication satellites in geostationary orbit

    Science.gov (United States)

    Russell, Paul K.; Price, Kent M.

    1990-01-01

    The econmic benefits of a LEO space station are quantified by identifying alternative operating scenarios utilizing the space station's transportation facilities and assembly and repair facilities. Particular consideration is given to the analysis of the impact of on-orbit assembly and servicing on a typical communications satellite is analyzed. The results of this study show that on-orbit servicing can increase the internal rate of return by as much as 30 percent.

  15. Geolocation applications of the Gonets LEO messaging satellites

    Science.gov (United States)

    Vlasov, Vladimir N.; Ashjaee, Javad M.

    Geostationary satellites carry a majority of the international telecommunications traffic not carried by transoceanic cable. However, because the radio path links to and from geostationary satellites total at least 70,000 km and because of inherent on-board spacecraft power limitations, earth stations used in conjunction with geostationary satellites are usually large and expensive. This limits their installation to areas with a well-developed industrial and economic infrastructure. This reality helps perpetuate a chicken egg dilemma for the developing countries and isolated regions. Economic integration with the developed world requires being 'networked'. But for many developing entities, even the initial price of entry exceeds their modest resources. Exclusion from the global information highways virtually assures retardation of economic growth for developing nations, remote and isolated areas. Very Small Aperture Terminal (VSAT) earth stations are often thought of as a solution for networking developing regions. But economic considerations often forecloses this option. If VSAT size and cost is to be minimized, powerful spot beams from the satellite need to be focused on relatively small regions. This is not often feasible because of the high cost of the satellite itself. To dedicate a high power spot beam to a small region is usually not economically feasible.

  16. ECAPS - Eddy Current Approach and Proximity Satellites

    Data.gov (United States)

    National Aeronautics and Space Administration — Multiple, energized coils in a small satellite will generate eddy currents in the skin of the International Space Station (ISS). This will create repulsive forces...

  17. Monitoring of nuclear power stations

    International Nuclear Information System (INIS)

    Ull, E.; Labudda, H.J.

    1987-01-01

    The purpose of the invention is to create a process for undelayed automated detection and monitoring of accidents in the operation of nuclear power stations. According to the invention, this problem is solved by the relevant local measurements, such as radiation dose, components and type of radiation and additional relevant meteorological parameters being collected by means of wellknown data collection platforms, these being transmitted via transmission channels by means of satellites to suitable worldwide situated receiving stations on the ground, being processed there and being evaluated to recognise accidents. The local data collection platforms are used in the immediate vicinity of the nuclear power station. The use of aircraft, ships and balloons as data collection systems is also intended. (HWJ)

  18. Passive correlation ranging of a geostationary satellite using DVB-S payload signals.

    Science.gov (United States)

    Shakun, Leonid; Shulga, Alexandr; Sybiryakova, Yevgeniya; Bushuev, Felix; Kaliuzhnyi, Mykola; Bezrukovs, Vladislavs; Moskalenko, Sergiy; Kulishenko, Vladislav; Balagura, Oleg

    2016-07-01

    Passive correlation ranging (PaCoRa) for geostationary satellites is now considered as an alternate to tone-ranging (https://artes.esa.int/search/node/PaCoRa). The PaCoRa method has been employed in the Research Institute "Nikolaev astronomical observatory" since the first experiment in August 2011 with two stations spatially separated on 150 km. The PaCoRa has been considered as an independent method for tracking the future Ukrainian geostationary satellite "Lybid'. Now a radio engineering complex (RC) for passive ranging consists of five spatially separated stations of receiving digital satellite television and a data processing center located in Mykolaiv. The stations are located in Kyiv, Kharkiv, Mukacheve, Mykolaiv (Ukraine) and in Ventspils (Latvia). Each station has identical equipment. The equipment allows making synchronous recording of fragments of the DVB-S signal from the quadrature detector output of a satellite television receiver. The fragments are recorded every second. Synchronization of the stations is performed using GPS receivers. Samples of the complex signal obtained in this way are archived and are sent to the data processing center over the Internet. Here the time differences of arrival (TDOA) for pairs of the stations are determined as a result of correlation processing of received signals. The values of the TDOA that measured every second are used for orbit determination (OD) of the satellite. The results of orbit determination of the geostationary telecommunication satellite "Eutelsat-13B" (13º East) obtained during about four months of observations in 2015 are presented in the report. The TDOA and OD accuracies are also given. Single-measurement error (1 sigma) of the TDOA is equal about 8.7 ns for all pairs of the stations. Standard deviations and average values of the residuals between the observed TDOA and the TDOA computed using the orbit elements obtained from optical measurements are estimated for the pairs Kharkiv-Mykolaiv and

  19. Analysis of BeiDou Satellite Measurements with Code Multipath and Geometry-Free Ionosphere-Free Combinations

    Directory of Open Access Journals (Sweden)

    Qile Zhao

    2016-01-01

    Full Text Available Using GNSS observable from some stations in the Asia-Pacific area, the carrier-to-noise ratio (CNR and multipath combinations of BeiDou Navigation Satellite System (BDS, as well as their variations with time and/or elevation were investigated and compared with those of GPS and Galileo. Provided the same elevation, the CNR of B1 observables is the lowest among the three BDS frequencies, while B3 is the highest. The code multipath combinations of BDS inclined geosynchronous orbit (IGSO and medium Earth orbit (MEO satellites are remarkably correlated with elevation, and the systematic “V” shape trends could be eliminated through between-station-differencing or modeling correction. Daily periodicity was found in the geometry-free ionosphere-free (GFIF combinations of both BDS geostationary Earth orbit (GEO and IGSO satellites. The variation range of carrier phase GFIF combinations of GEO satellites is −2.0 to 2.0 cm. The periodicity of carrier phase GFIF combination could be significantly mitigated through between-station differencing. Carrier phase GFIF combinations of BDS GEO and IGSO satellites might also contain delays related to satellites. Cross-correlation suggests that the GFIF combinations’ time series of some GEO satellites might vary according to their relative geometries with the sun.

  20. Analysis of BeiDou Satellite Measurements with Code Multipath and Geometry-Free Ionosphere-Free Combinations.

    Science.gov (United States)

    Zhao, Qile; Wang, Guangxing; Liu, Zhizhao; Hu, Zhigang; Dai, Zhiqiang; Liu, Jingnan

    2016-01-20

    Using GNSS observable from some stations in the Asia-Pacific area, the carrier-to-noise ratio (CNR) and multipath combinations of BeiDou Navigation Satellite System (BDS), as well as their variations with time and/or elevation were investigated and compared with those of GPS and Galileo. Provided the same elevation, the CNR of B1 observables is the lowest among the three BDS frequencies, while B3 is the highest. The code multipath combinations of BDS inclined geosynchronous orbit (IGSO) and medium Earth orbit (MEO) satellites are remarkably correlated with elevation, and the systematic "V" shape trends could be eliminated through between-station-differencing or modeling correction. Daily periodicity was found in the geometry-free ionosphere-free (GFIF) combinations of both BDS geostationary Earth orbit (GEO) and IGSO satellites. The variation range of carrier phase GFIF combinations of GEO satellites is -2.0 to 2.0 cm. The periodicity of carrier phase GFIF combination could be significantly mitigated through between-station differencing. Carrier phase GFIF combinations of BDS GEO and IGSO satellites might also contain delays related to satellites. Cross-correlation suggests that the GFIF combinations' time series of some GEO satellites might vary according to their relative geometries with the sun.

  1. A global satellite assisted precipitation climatology

    Science.gov (United States)

    Funk, Christopher C.; Verdin, Andrew P.; Michaelsen, Joel C.; Pedreros, Diego; Husak, Gregory J.; Peterson, P.

    2015-01-01

    Accurate representations of mean climate conditions, especially in areas of complex terrain, are an important part of environmental monitoring systems. As high-resolution satellite monitoring information accumulates with the passage of time, it can be increasingly useful in efforts to better characterize the earth's mean climatology. Current state-of-the-science products rely on complex and sometimes unreliable relationships between elevation and station-based precipitation records, which can result in poor performance in food and water insecure regions with sparse observation networks. These vulnerable areas (like Ethiopia, Afghanistan, or Haiti) are often the critical regions for humanitarian drought monitoring. Here, we show that long period of record geo-synchronous and polar-orbiting satellite observations provide a unique new resource for producing high resolution (0.05°) global precipitation climatologies that perform reasonably well in data sparse regions. Traditionally, global climatologies have been produced by combining station observations and physiographic predictors like latitude, longitude, elevation, and slope. While such approaches can work well, especially in areas with reasonably dense observation networks, the fundamental relationship between physiographic variables and the target climate variables can often be indirect and spatially complex. Infrared and microwave satellite observations, on the other hand, directly monitor the earth's energy emissions. These emissions often correspond physically with the location and intensity of precipitation. We show that these relationships provide a good basis for building global climatologies. We also introduce a new geospatial modeling approach based on moving window regressions and inverse distance weighting interpolation. This approach combines satellite fields, gridded physiographic indicators, and in situ climate normals. The resulting global 0.05° monthly precipitation climatology, the Climate

  2. Implementation of Multiple Access Techniques Applicable for Maritime Satellite Communications

    OpenAIRE

    Stojce Dimov Ilcev

    2013-01-01

    In this paper are introduced fundamentals, characteristics, advantages and disadvantages of Multiple Access (MA) employed as transmission techniques in the Maritime Mobile Satellite Communications (MMSC) between ships and Coast Earth Station (CES) via Geostationary Earth Orbit (GEO) or Not-GEO satellite constellations. In fixed satellite communication, as a rule, especially in MMSC many users are active at the same time. The problem of simultaneous communications between many single or multip...

  3. Next generation satellite communications networks

    Science.gov (United States)

    Garland, P. J.; Osborne, F. J.; Streibl, I.

    The paper introduces two potential uses for new space hardware to permit enhanced levels of signal handling and switching in satellite communication service for Canada. One application involves increased private-sector services in the Ku band; the second supports new personal/mobile services by employing higher levels of handling and switching in the Ka band. First-generation satellite regeneration and switching experiments involving the NASA/ACTS spacecraft are described, where the Ka band and switching satellite network problems are emphasized. Second-generation satellite development is outlined based on demand trends for more packet-based switching, low-cost earth stations, and closed user groups. A demonstration mission for new Ka- and Ku-band technologies is proposed, including the payload configuration. The half ANIK E payload is shown to meet the demonstration objectives, and projected to maintain a fully operational payload for at least 10 years.

  4. Satellite switched FDMA advanced communication technology satellite program

    Science.gov (United States)

    Atwood, S.; Higton, G. H.; Wood, K.; Kline, A.; Furiga, A.; Rausch, M.; Jan, Y.

    1982-01-01

    The satellite switched frequency division multiple access system provided a detailed system architecture that supports a point to point communication system for long haul voice, video and data traffic between small Earth terminals at Ka band frequencies at 30/20 GHz. A detailed system design is presented for the space segment, small terminal/trunking segment at network control segment for domestic traffic model A or B, each totaling 3.8 Gb/s of small terminal traffic and 6.2 Gb/s trunk traffic. The small terminal traffic (3.8 Gb/s) is emphasized, for the satellite router portion of the system design, which is a composite of thousands of Earth stations with digital traffic ranging from a single 32 Kb/s CVSD voice channel to thousands of channels containing voice, video and data with a data rate as high as 33 Mb/s. The system design concept presented, effectively optimizes a unique frequency and channelization plan for both traffic models A and B with minimum reorganization of the satellite payload transponder subsystem hardware design. The unique zoning concept allows multiple beam antennas while maximizing multiple carrier frequency reuse. Detailed hardware design estimates for an FDMA router (part of the satellite transponder subsystem) indicate a weight and dc power budget of 353 lbs, 195 watts for traffic model A and 498 lbs, 244 watts for traffic model B.

  5. An introduction to optimal satellite range scheduling

    CERN Document Server

    Vázquez Álvarez, Antonio José

    2015-01-01

    The satellite range scheduling (SRS) problem, an important operations research problem in the aerospace industry consisting of allocating tasks among satellites and Earth-bound objects, is examined in this book. SRS principles and solutions are applicable to many areas, including: Satellite communications, where tasks are communication intervals between sets of satellites and ground stations Earth observation, where tasks are observations of spots on the Earth by satellites Sensor scheduling, where tasks are observations of satellites by sensors on the Earth. This self-contained monograph begins with a structured compendium of the problem and moves on to explain the optimal approach to the solution, which includes aspects from graph theory, set theory, game theory and belief networks. This book is accessible to students, professionals and researchers in a variety of fields, including: operations research, optimization, scheduling theory, dynamic programming and game theory. Taking account of the distributed, ...

  6. University Satellite Consortium and Space Education in Japan Centered on Micro-Nano Satellites

    Science.gov (United States)

    Nakasuka, S.; Kawashima, R.

    2002-01-01

    the space development. activities, including how to acquire frequency permission, how to obtain launch opportunity and financial support, how to operate the launched satellites using cheap ground stations, etc. Especially, the frequency problem should be solved as soon as possible because so many universities in the world are planning similar projects and the frequency in the amateur band are already very congested. One idea is that universities should make a world wide "university satellite community" and collaboratively ask for a kind of "Educational frequency" to ITU, and share the obtained frequency within the community under the community's own management. This kind of community will also be useful for collaborative satellite operation, because the universities which have a ground station spread over the world. I hope the IAC meeting will provide a good opportunity for discussing these problems and facilitating the construction of world wide university community to tackle with these problems.

  7. Multi-GNSS orbit determination using satellite laser ranging

    Science.gov (United States)

    Bury, Grzegorz; Sośnica, Krzysztof; Zajdel, Radosław

    2018-04-01

    Galileo, BeiDou, QZSS, and NavIC are emerging global navigation satellite systems (GNSSs) and regional navigation satellite systems all of which are equipped with laser retroreflector arrays for range measurements. This paper summarizes the GNSS-intensive tracking campaigns conducted by the International Laser Ranging Service and provides results from multi-GNSS orbit determination using solely SLR observations. We consider the whole constellation of GLONASS, all active Galileo, four BeiDou satellites: 1 MEO, 3 IGSO, and one QZSS. We analyze the influence of the number of SLR observations on the quality of the 3-day multi-GNSS orbit solution. About 60 SLR observations are needed for obtaining MEO orbits of sufficient quality with the root mean square (RMS) of 3 cm for the radial component when compared to microwave-based orbits. From the analysis of a minimum number of tracking stations, when considering the 3-day arcs, 5 SLR stations do not provide a sufficient geometry of observations. The solution obtained using ten stations is characterized with RMS of 4, 9, and 18 cm in the radial, along-track, and cross-track direction, respectively, for MEO satellites. We also investigate the impact of the length of orbital arc on the quality of SLR-derived orbits. Hence, 5- and 7-day arcs constitute the best solution, whereas 3-day arcs are of inferior quality due to an insufficient number of SLR observations and 9-day arcs deteriorate the along-track component. The median RMS from the comparison between 7-day orbital arcs determined using SLR data with microwave-based orbits assumes values in the range of 3-4, 11-16, and 15-27 cm in radial, along-track, and cross-track, respectively, for MEO satellites. BeiDou IGSO and QZSS are characterized by RMS values higher by a factor of 8 and 24, respectively, than MEO orbits.

  8. Satellite power system in the service of man

    Energy Technology Data Exchange (ETDEWEB)

    Hyde, F.W.

    1981-01-01

    The solar power satellite concept is discussed in its various aspects: technical assumptions; unit power output; economic impact; impact on resources; environmental impacts; primary system functions; transmission of energy to earth; reception and conversion to usable energy on earth; space transport; station-keeping and attitude control; fabrication and assembly in space; power beam phase control; satellite maintenance; ancillary functions at rectenna site; and emerging technologies.

  9. INVESTIGATION OF ADS-B MESSAGES TRAFFIC VIA SATELLITE COMMUNICATION CHANNEL

    OpenAIRE

    Volodymyr Kharchenko; Wang Bo; Andrii Grekhov; Marina Kovalenko

    2014-01-01

    For modelling of ADS-B messages transmition with the help of low-orbit satellite complex Іrіdіumdifferent models of communication channel "Aircraft-to-Satellites-to-Ground Stations" were built using NetCrackerProfessіonal 4.1 software. Influence of aircraft and satellites amount on average link utilization and message travellingtime was studied for telecommunication channels with intersatellite link and bent-pipe architecture. The effect ofcommunication channel "saturation" during simultaneou...

  10. 47 CFR 25.148 - Licensing provisions for the Direct Broadcast Satellite Service.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Licensing provisions for the Direct Broadcast Satellite Service. 25.148 Section 25.148 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Applications and Licenses Space Stations § 25.148...

  11. Infrared Astronomy Satellite

    Science.gov (United States)

    Ferrera, G. A.

    1981-09-01

    In 1982, the Infrared Astronomy Satellite (IRAS) will be launched into a 900-km sun-synchronous (twilight) orbit to perform an unbiased, all-sky survey of the far-infrared spectrum from 8 to 120 microns. Observations telemetered to ground stations will be compiled into an IR astronomy catalog. Attention is given the cryogenically cooled, 60-cm Ritchey-Chretien telescope carried by the satellite, whose primary and secondary mirrors are fabricated from beryllium by means of 'Cryo-Null Figuring'. This technique anticipates the mirror distortions that will result from cryogenic cooling of the telescope and introduces dimensional compensations for them during machining and polishing. Consideration is also given to the interferometric characterization of telescope performance and Cryo/Thermal/Vacuum simulated space environment testing.

  12. Digital, Satellite-Based Aeronautical Communication

    Science.gov (United States)

    Davarian, F.

    1989-01-01

    Satellite system relays communication between aircraft and stations on ground. System offers better coverage with direct communication between air and ground, costs less and makes possible new communication services. Carries both voice and data. Because many data exchanged between aircraft and ground contain safety-related information, probability of bit errors essential.

  13. INVESTIGATION OF ADS-B MESSAGES TRAFFIC VIA SATELLITE COMMUNICATION CHANNEL

    Directory of Open Access Journals (Sweden)

    Volodymyr Kharchenko

    2014-12-01

    Full Text Available For modelling of ADS-B messages transmition with the help of low-orbit satellite complex Іrіdіumdifferent models of communication channel "Aircraft-to-Satellites-to-Ground Stations" were built using NetCrackerProfessіonal 4.1 software. Influence of aircraft and satellites amount on average link utilization and message travellingtime was studied for telecommunication channels with intersatellite link and bent-pipe architecture. The effect ofcommunication channel "saturation" during simultaneous data transmission through a satellite communicationchannel from many planes was investigated.

  14. Artificial Satellites and How to Observe Them

    CERN Document Server

    Schmude, Jr , Richard

    2012-01-01

    Astronomers' Observing Guides provide up-to-date information for amateur astronomers who want to know all about what it is they are observing. This is the basis for the first part of the book. The second part details observing techniques for practical astronomers, working with a range of different instruments. Every amateur astronomer sees "stars" that aren't natural objects steadily slide across the background of the sky. Artificial satellites can be seen on any night, and some are as bright as the planets. But can you identify which satellite or spent launch vehicle casing you are seeing? Do you know how to image it? Artificial Satellites and How to Observe Them describes all of the different satellites that can be observed, including communication, scientific, spy satellites, and of course, the International Space Station. Richard Schmude describes how to recognize them and even how to predict their orbits. The book tells how to observe artificial satellites with the unaided eye, binoculars and with telesc...

  15. Myostatin Suppression of Akirin1 Mediates Glucocorticoid-Induced Satellite Cell Dysfunction

    Science.gov (United States)

    Dong, Yanjun; Pan, Jenny S.; Zhang, Liping

    2013-01-01

    Glucocorticoids production is increased in many pathological conditions that are associated with muscle loss, but their role in causing muscle wasting is not fully understood. We have demonstrated a new mechanism of glucocorticoid-induced muscle atrophy: Dexamethasone (Dex) suppresses satellite cell function contributing to the development of muscle atrophy. Specifically, we found that Dex decreases satellite cell proliferation and differentiation in vitro and in vivo. The mechanism involved Dex-induced upregulation of myostatin and suppression of Akirin1, a promyogenic gene. When myostatin was inhibited in Dex-treated mice, Akirin1 expression increased as did satellite cell activity, muscle regeneration and muscle growth. In addition, silencing myostatin in myoblasts or satellite cells prevented Dex from suppressing Akirin1 expression and cellular proliferation and differentiation. Finally, overexpression of Akirin1 in myoblasts increased their expression of MyoD and myogenin and improved cellular proliferation and differentiation, theses improvements were no longer suppressed by Dex. We conclude that glucocorticoids stimulate myostatin which inhibits Akirin1 expression and the reparative functions of satellite cells. These responses attribute to muscle atrophy. Thus, inhibition of myostatin or increasing Akirin1 expression could lead to therapeutic strategies for improving satellite cell activation and enhancing muscle growth in diseases associated with increased glucocorticoid production. PMID:23516508

  16. Myostatin suppression of Akirin1 mediates glucocorticoid-induced satellite cell dysfunction.

    Directory of Open Access Journals (Sweden)

    Yanjun Dong

    Full Text Available Glucocorticoids production is increased in many pathological conditions that are associated with muscle loss, but their role in causing muscle wasting is not fully understood. We have demonstrated a new mechanism of glucocorticoid-induced muscle atrophy: Dexamethasone (Dex suppresses satellite cell function contributing to the development of muscle atrophy. Specifically, we found that Dex decreases satellite cell proliferation and differentiation in vitro and in vivo. The mechanism involved Dex-induced upregulation of myostatin and suppression of Akirin1, a promyogenic gene. When myostatin was inhibited in Dex-treated mice, Akirin1 expression increased as did satellite cell activity, muscle regeneration and muscle growth. In addition, silencing myostatin in myoblasts or satellite cells prevented Dex from suppressing Akirin1 expression and cellular proliferation and differentiation. Finally, overexpression of Akirin1 in myoblasts increased their expression of MyoD and myogenin and improved cellular proliferation and differentiation, theses improvements were no longer suppressed by Dex. We conclude that glucocorticoids stimulate myostatin which inhibits Akirin1 expression and the reparative functions of satellite cells. These responses attribute to muscle atrophy. Thus, inhibition of myostatin or increasing Akirin1 expression could lead to therapeutic strategies for improving satellite cell activation and enhancing muscle growth in diseases associated with increased glucocorticoid production.

  17. 78 FR 39200 - Federal Earth Stations-Non-Federal Fixed Satellite Service Space Stations; Spectrum for Non...

    Science.gov (United States)

    2013-07-01

    ... of the commercial space sector: the commercial communications satellite industry and the commercial... of the commercial launch sector. It is noted that the Commission has long regulated communication... these views. 42. Anticipating the need for non-Federal spectrum for communications for commercial...

  18. Peculiarities of the ionosphere monitoring from low-flying satellites

    International Nuclear Information System (INIS)

    Danilkin, N.P.; Denisenko, P.F.; Mal'tseva, O.A.

    1998-01-01

    Peculiarities of the HF-radiowave propagation between ground stations and low-flying satellites near and below the maximum of the F area are studied through the method of mathematical modeling. It is established that the signal may propagate by three trajectories. The first one is below the satellite orbit. The turn altitudes of the second and the third beams are above the satellite orbit. Availability of three trajectories leads to the three-digit dependence of the group ways on the working frequency F. The P(f) curves for different satellite distances from a reception point and its orbit altitudes for the isotropic and magnetoactive ionosphere are presented

  19. 47 CFR 25.135 - Licensing provisions for earth station networks in the non-voice, non-geostationary mobile...

    Science.gov (United States)

    2010-10-01

    ... in the non-voice, non-geostationary mobile-satellite service. 25.135 Section 25.135 Telecommunication...-voice, non-geostationary mobile-satellite service. (a) Each applicant for a blanket earth station license in the non-voice, non-geostationary mobile-satellite service shall demonstrate that transceiver...

  20. 47 CFR 25.117 - Modification of station license.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Modification of station license. 25.117 Section 25.117 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Applications and Licenses General Application Filing Requirements § 25.117...

  1. Satellite Ozone Analysis Center (SOAC)

    International Nuclear Information System (INIS)

    Lovill, J.E.; Sullivan, T.J.; Knox, J.B.; Korver, J.A.

    1976-08-01

    Many questions have been raised during the 1970's regarding the possible modification of the ozonosphere by aircraft operating in the stratosphere. Concern also has been expressed over the manner in which the ozonosphere may change in the future as a result of fluorocarbon releases. There are also other ways by which the ozonosphere may be significantly altered, both anthropogenic and natural. Very basic questions have been raised, bearing upon the amount of ozone which would be destroyed by the NO/sub x/ produced in atmospheric nuclear explosions. Studies of the available satellite data have suggested that the worldwide increase of ozone during the past decade, which was observed over land stations, may have been biased by a poor distribution of stations and/or a shift of the planetary wave. Additional satellite data will be required to resolve this issue. Proposals are presented for monitoring of the Earth's ozone variability from the present time into the 1980's to establish a baseline upon which regional, as well as global, ozone trends can be measured

  2. Earth rotation, station coordinates and orbit determination from satellite laser ranging

    Science.gov (United States)

    Murata, Masaaki

    The Project MERIT, a special program of international colaboration to Monitor Earth Rotation and Intercompare the Techniques of observation and analysis, has come to an end with great success. Its major objective was to evaluate the ultimate potential of space techniques such as VLBI and satellite laser ranging, in contrast with the other conventional techniques, in the determination of rotational dynamics of the earth. The National Aerospace Laboratory (NAL) has officially participated in the project as an associate analysis center for satellite laser technique for the period of the MERIT Main Campaign (September 1983-October 1984). In this paper, the NAL analysis center results are presented.

  3. The precision of today's satellite laser ranging systems

    Science.gov (United States)

    Dunn, Peter J.; Torrence, Mark H.; Hussen, Van S.; Pearlman, Michael R.

    1993-06-01

    Recent improvements in the accuracy of modern satellite laser ranging (SLR) systems are strengthened by the new capability of many instruments to track an increasing number of geodetic satellite targets without significant scheduling conflict. This will allow the refinement of some geophysical parameters, such as solid Earth tidal effects and GM, and the improved temporal resolution of others, such as Earth orientation and station position. Better time resolution for the locations of fixed observatories will allow us to monitor more subtle motions at the stations, and transportable systems will be able to provide indicators of long term trends with shorter occupations. If we are to take advantage of these improvements, care must be taken to preserve the essential accuracy of an increasing volume of range observations at each stage of the data reduction process.

  4. The solar panels on the GOES-L satellite are deployed

    Science.gov (United States)

    1999-01-01

    Loral workers at Astrotech, Titusville, Fla., check out the solar panels of the GOES-L weather satellite, to be launched from Cape Canaveral Air Station (CCAS) aboard an Atlas II rocket in late March. The GOES-L is the fourth of a new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration. It is a three-axis inertially stabilized spacecraft that will provide pictures and perform atmospheric sounding at the same time. Once launched, the satellite, to be designated GOES-11, will undergo checkout and provide backup capabilities for the existing, aging GOES East weather satellite.

  5. A Framework for Developing Artificial Intelligence for Autonomous Satellite Operations

    Science.gov (United States)

    Anderson, Jason L.; Kurfess, Franz J.; Puig-Suari, Jordi

    2009-09-01

    In the world of educational satellites, student teams manually conduct operations daily. Educational satellites typically travel in a Low Earth Orbit allowing communication for approximately thirty minutes each day. Manual operations during these times is manageable for student teams as the required manpower is minimal. The international Global Educational Network for Satellite Operations (GENSO), however, promises satellite contact upwards of sixteen hours per day by connecting earth stations globally through the Internet. This large increase in satellite communication time makes manual student operations unreasonable and alternatives must be explored. This paper introduces a framework to conduct autonomous satellite operations using different AI methodologies. This paper additionally demonstrates the framework's usability by introducing a sample rule-based implementation for Cal Poly's CubeSat, CP3.

  6. Advanced technologies for encryption of satellite links

    Science.gov (United States)

    McMahan, Sherry S.

    The use of encryption on satellite links is discussed. Advanced technology exists to provide transmission security for large earth station with data rates up to 50 megabits per second. One of the major concerns in the use of encryption equipment with very small aperture terminals (VSAT) is the key management issue and the related operational costs. The low cost requirement and the lack of physical protection of remote VSATs place severe constraints on the design of encryption equipment. Encryption may be accomplished by embedding a tamper proof encryption module into the baseband unit of each VSAT. VSAT networks are usually star networks where there is a single large earth station that serves as a hub and all satellite communications takes place between each VSAT and the hub earth station. The hub earth station has the secret master key of each VSAT. These master keys are used to downline load encrypted session keys to each VSAT. A more secure alternative is to use public key techniques where each embedded VSAT encryption module internally generates its own secret and public numbers. The secret number never leaves the module while the public number is sent to the hub at the time of initialization of the encryption module into the VSAT. Physical access control to encryption modules of VSAT systems can be implemented using passwords, smart cards or biometrics.

  7. 75 FR 53198 - Rate Adjustment for the Satellite Carrier Compulsory License

    Science.gov (United States)

    2010-08-31

    ... ROYALTY FEES FOR SECONDARY TRANSMISSIONS BY SATELLITE CARRIERS Sec. 386.1 General. 386.2 Royalty fee for... transmission of broadcast stations under 17 U.S.C. 119. Sec. 386.2 Royalty fee for secondary transmission by... LIBRARY OF CONGRESS Copyright Royalty Board 37 CFR Part 386 [Docket No. 2010-4 CRB Satellite Rate...

  8. Assessing Temporal Stability for Coarse Scale Satellite Moisture Validation in the Maqu Area, Tibet

    Science.gov (United States)

    Bhatti, Haris Akram; Rientjes, Tom; Verhoef, Wouter; Yaseen, Muhammad

    2013-01-01

    This study evaluates if the temporal stability concept is applicable to a time series of satellite soil moisture images so to extend the common procedure of satellite image validation. The area of study is the Maqu area, which is located in the northeastern part of the Tibetan plateau. The network serves validation purposes of coarse scale (25–50 km) satellite soil moisture products and comprises 20 stations with probes installed at depths of 5, 10, 20, 40, 80 cm. The study period is 2009. The temporal stability concept is applied to all five depths of the soil moisture measuring network and to a time series of satellite-based moisture products from the Advance Microwave Scanning Radiometer (AMSR-E). The in-situ network is also assessed by Pearsons's correlation analysis. Assessments by the temporal stability concept proved to be useful and results suggest that probe measurements at 10 cm depth best match to the satellite observations. The Mean Relative Difference plot for satellite pixels shows that a RMSM pixel can be identified but in our case this pixel does not overlay any in-situ station. Also, the RMSM pixel does not overlay any of the Representative Mean Soil Moisture (RMSM) stations of the five probe depths. Pearson's correlation analysis on in-situ measurements suggests that moisture patterns over time are more persistent than over space. Since this study presents first results on the application of the temporal stability concept to a series of satellite images, we recommend further tests to become more conclusive on effectiveness to broaden the procedure of satellite validation. PMID:23959237

  9. WGS 84 Coordinate Validation and Improvement for the NIMA and Air Force GPS Tracking Stations

    National Research Council Canada - National Science Library

    Cunningham, James

    1996-01-01

    Using 10 days of Global Positioning System (GPS) pseudorange and carrier phase data collected in 1995 from 31 stations and 24 Block II/IIA satellites, estimates of GPS clocks, orbits, and tracking station coordinates were generated...

  10. Security Concepts for Satellite Links

    Science.gov (United States)

    Tobehn, C.; Penné, B.; Rathje, R.; Weigl, A.; Gorecki, Ch.; Michalik, H.

    2008-08-01

    The high costs to develop, launch and maintain a satellite network makes protecting the assets imperative. Attacks may be passive such as eavesdropping on the payload data. More serious threat are active attacks that try to gain control of the satellite, which may lead to the total lost of the satellite asset. To counter these threats, new satellite and ground systems are using cryptographic technologies to provide a range of services: confidentiality, entity & message authentication, and data integrity. Additionally, key management cryptographic services are required to support these services. This paper describes the key points of current satellite control and operations, that are authentication of the access to the satellite TMTC link and encryption of security relevant TM/TC data. For payload data management the key points are multi-user ground station access and high data rates both requiring frequent updates and uploads of keys with the corresponding key management methods. For secure satellite management authentication & key negotiation algorithms as HMAC-RIPEMD160, EC- DSA and EC-DH are used. Encryption of data uses algorithms as IDEA, AES, Triple-DES, or other. A channel coding and encryption unit for payload data provides download data rates up to Nx250 Mbps. The presented concepts are based on our experience and heritage of the security systems for all German MOD satellite projects (SATCOMBw2, SAR-Lupe multi- satellite system and German-French SAR-Lupe-Helios- II systems inter-operability) as well as for further international (KOMPSAT-II Payload data link system) and ESA activities (TMTC security and GMES).

  11. Satellite Contributions to Global Change Studies

    Science.gov (United States)

    Parkinson, Claire L.

    2009-01-01

    By providing a global view with a level playing field (no region missed because of unfavorable surface conditions or political boundaries), satellites have made major contributions to improved monitoring and understanding of our constantly changing planet. The global view has allowed surprising realizations like the relative sparsity of lightning strikes over oceans and the large-scale undulations on the massive Antarctic ice sheet. It has allowed the tracking of all sorts of phenomena, including aerosols, both natural and anthropogenic, as they move with the atmospheric circulation and impact weather and human health. But probably nothing that the global view allows is more important in the long term than its provision. of unbiased data sets to address the issue of global change, considered by many to be among the most important issues facing humankind today. With satellites we can monitor atmospheric temperatures at all latitudes and longitudes, and obtain a global average that lessens the likelihood of becoming endlessly mired in the confusions brought about by the certainty of regional differences. With satellites we can monitor greenhouse gases such as CO2 not just above individual research stations but around the globe. With satellites we can monitor the polar sea ice covers, as we have done since the late 1970s, determining and quantifying the significant reduction in Arctic sea ice and the slight growth in Antarctic sea ice over that period, With satellites we can map the full extent and changes in the Antarctic stratospheric ozone depletions that were first identified from using a single ground station; and through satellite data we have witnessed from afar land surface changes brought about by humans both intentionally, as with wide-scale deforestation, and unintentionally, as with the decay of the Aral Sea. The satellite data are far from sufficient for all that we need in order to understand the global system and forecast its changes, as we also need

  12. Establishment of Karadeniz Technical University Permanent GNSS Station as Reactivated of TRAB IGS Station

    Directory of Open Access Journals (Sweden)

    Kazancı Selma Zengin

    2017-12-01

    Full Text Available In recent years, Global Navigation Satellite Systems (GNSS have gained great importance in terms of the benefi ts it provides such as precise geodetic point positioning, determining crustal deformations, navigation, vehicle monitoring systems and meteorological applications etc. As in Turkey, for this purpose, each country has set up its own GNSS station networks like Turkish National Permanent RTK Network analyzed precise station coordinates and velocities together with the International GNSS Service, Turkish National Fundamental GPS Network and Turkish National Permanent GNSS Network (TNPGN stations not only are utilized as precise positioning but also GNSS meteorology studies so total number of stations are increased. This work is related to the reactivated of the TRAB IGS station which was established in Karadeniz Technical University, Department of Geomatics Engineering. Within the COST ES1206 Action (GNSS4SWEC KTU analysis center was established and Trop-NET system developed by Geodetic Observatory Pecny (GOP, RIGTC in order to troposphere monitoring. The project titled “Using Regional GNSS Networks to Strengthen Severe Weather Prediction” was accepted to the scientifi c and technological research council of Turkey (TUBITAK. With this project, we will design 2 new constructed GNSS reference station network. Using observation data of network, we will compare water vapor distribution derived by GNSS Meteorology and GNSS Tomography. At this time, KTU AC was accepted as E-GVAP Analysis Centre in December 2016. KTU reference station is aimed to be a member of the EUREF network with these studies.

  13. Establishment of Karadeniz Technical University Permanent GNSS Station as Reactivated of TRAB IGS Station

    Science.gov (United States)

    Kazancı, Selma Zengin; Kayıkçı, Emine Tanır

    2017-12-01

    In recent years, Global Navigation Satellite Systems (GNSS) have gained great importance in terms of the benefi ts it provides such as precise geodetic point positioning, determining crustal deformations, navigation, vehicle monitoring systems and meteorological applications etc. As in Turkey, for this purpose, each country has set up its own GNSS station networks like Turkish National Permanent RTK Network analyzed precise station coordinates and velocities together with the International GNSS Service, Turkish National Fundamental GPS Network and Turkish National Permanent GNSS Network (TNPGN) stations not only are utilized as precise positioning but also GNSS meteorology studies so total number of stations are increased. This work is related to the reactivated of the TRAB IGS station which was established in Karadeniz Technical University, Department of Geomatics Engineering. Within the COST ES1206 Action (GNSS4SWEC) KTU analysis center was established and Trop-NET system developed by Geodetic Observatory Pecny (GOP, RIGTC) in order to troposphere monitoring. The project titled "Using Regional GNSS Networks to Strengthen Severe Weather Prediction" was accepted to the scientifi c and technological research council of Turkey (TUBITAK). With this project, we will design 2 new constructed GNSS reference station network. Using observation data of network, we will compare water vapor distribution derived by GNSS Meteorology and GNSS Tomography. At this time, KTU AC was accepted as E-GVAP Analysis Centre in December 2016. KTU reference station is aimed to be a member of the EUREF network with these studies.

  14. NRC/UBC fuelling station with intelligent compression

    International Nuclear Information System (INIS)

    Dada, A.; Boyd, B.; Law, L.; Semczyszyn, D.

    2004-01-01

    BOC Canada Ltd. will design, integrate and construct the second fueling station on the Hydrogen Highway. This station will be located at the National Research Council's Institute for Fuel Cell Innovation on the campus of the University of British Columbia. BOC's design will bring together an existing alkaline electrolyser, new compression, storage and dispensing. The station will be designed to serve fuel cell passenger vehicles using 350-bar storage. However, the flexible design concept will allow for many other user needs including the potential for servicing larger vehicles, as well as filling portable storage systems for use at satellite stations. The novel station design also offers the potential to fuel from multiple hydrogen sources. Together with NRC, this fueling station will be used to increase public, consumer and investor awareness of hydrogen technologies. Design and construction of this facility will assist in the development of industry codes and standards and familiarize authorities having jurisdiction with hydrogen fueling. The system concept offers the utmost attention to safety, novelty and flexibility. (author)

  15. GPS Modeling and Analysis. Summary of Research: GPS Satellite Axial Ratio Predictions

    Science.gov (United States)

    Axelrad, Penina; Reeh, Lisa

    2002-01-01

    This report outlines the algorithms developed at the Colorado Center for Astrodynamics Research to model yaw and predict the axial ratio as measured from a ground station. The algorithms are implemented in a collection of Matlab functions and scripts that read certain user input, such as ground station coordinates, the UTC time, and the desired GPS (Global Positioning System) satellites, and compute the above-mentioned parameters. The position information for the GPS satellites is obtained from Yuma almanac files corresponding to the prescribed date. The results are displayed graphically through time histories and azimuth-elevation plots.

  16. Design and Development of High-Repetition-Rate Satellite Laser Ranging System

    Science.gov (United States)

    Choi, Eun-Jung; Bang, Seong-Cheol; Sung, Ki-Pyoung; Lim, Hyung-Chul; Jung, Chan-Gyu; Kim, In-Yeung; Choi, Jae-Seung

    2015-09-01

    The Accurate Ranging System for Geodetic Observation ? Mobile (ARGO-M) was successfully developed as the first Korean mobile Satellite Laser Ranging (SLR) system in 2012, and has joined in the International Laser Ranging Service (ILRS) tracking network, DAEdeoK (DAEK) station. The DAEK SLR station was approved as a validated station in April 2014, through the ILRS station ¡°data validation¡± process. The ARGO-M system is designed to enable 2 kHz laser ranging with millimeter-level precision for geodetic, remote sensing, navigation, and experimental satellites equipped with Laser Retroreflector Arrays (LRAs). In this paper, we present the design and development of a next generation high-repetition-rate SLR system for ARGO-M. The laser ranging rate up to 10 kHz is becoming an important issue in the SLR community to improve ranging precision. To implement high-repetition-rate SLR system, the High-repetition-rate SLR operation system (HSLR-10) was designed and developed using ARGO-M Range Gate Generator (A-RGG), so as to enable laser ranging from 50 Hz to 10 kHz. HSLR-10 includes both hardware controlling software and data post-processing software. This paper shows the design and development of key technologies of high-repetition-rate SLR system. The developed system was tested successfully at DAEK station and then moved to Sejong station, a new Korean SLR station, on July 1, 2015. HSLR-10 will begin normal operations at Sejong station in the near future.

  17. Satellite and ground-based sensors for the Urban Heat Island analysis in the city of Rome

    DEFF Research Database (Denmark)

    Fabrizi, Roberto; Bonafoni, Stefania; Biondi, Riccardo

    2010-01-01

    In this work, the trend of the Urban Heat Island (UHI) of Rome is analyzed by both ground-based weather stations and a satellite-based infrared sensor. First, we have developed a suitable algorithm employing satellite brightness temperatures for the estimation of the air temperature belonging...... and nighttime scenes taken between 2003 and 2006 have been processed. Analysis of the Canopy Layer Heat Island (CLHI) during summer months reveals a mean growth in magnitude of 3-4 K during nighttime and a negative or almost zero CLHI intensity during daytime, confirmed by the weather stations. © 2010...... by the authors; licensee MDPI, Basel, Switzerland. Keyword: Thermal pollution,Summer months,Advanced-along track scanning radiometers,Urban heat island,Remote sensing,Canopy layer,Atmospheric temperature,Ground based sensors,Weather information services,Satellite remote sensing,Infra-red sensor,Weather stations...

  18. Precise Point Positioning with the BeiDou Navigation Satellite System

    Directory of Open Access Journals (Sweden)

    Min Li

    2014-01-01

    Full Text Available By the end of 2012, China had launched 16 BeiDou-2 navigation satellites that include six GEOs, five IGSOs and five MEOs. This has provided initial navigation and precise pointing services ability in the Asia-Pacific regions. In order to assess the navigation and positioning performance of the BeiDou-2 system, Wuhan University has built up a network of BeiDou Experimental Tracking Stations (BETS around the World. The Position and Navigation Data Analyst (PANDA software was modified to determine the orbits of BeiDou satellites and provide precise orbit and satellite clock bias products from the BeiDou satellite system for user applications. This article uses the BeiDou/GPS observations of the BeiDou Experimental Tracking Stations to realize the BeiDou and BeiDou/GPS static and kinematic precise point positioning (PPP. The result indicates that the precision of BeiDou static and kinematic PPP reaches centimeter level. The precision of BeiDou/GPS kinematic PPP solutions is improved significantly compared to that of BeiDou-only or GPS-only kinematic PPP solutions. The PPP convergence time also decreases with the use of combined BeiDou/GPS systems.

  19. Precise point positioning with the BeiDou navigation satellite system.

    Science.gov (United States)

    Li, Min; Qu, Lizhong; Zhao, Qile; Guo, Jing; Su, Xing; Li, Xiaotao

    2014-01-08

    By the end of 2012, China had launched 16 BeiDou-2 navigation satellites that include six GEOs, five IGSOs and five MEOs. This has provided initial navigation and precise pointing services ability in the Asia-Pacific regions. In order to assess the navigation and positioning performance of the BeiDou-2 system, Wuhan University has built up a network of BeiDou Experimental Tracking Stations (BETS) around the World. The Position and Navigation Data Analyst (PANDA) software was modified to determine the orbits of BeiDou satellites and provide precise orbit and satellite clock bias products from the BeiDou satellite system for user applications. This article uses the BeiDou/GPS observations of the BeiDou Experimental Tracking Stations to realize the BeiDou and BeiDou/GPS static and kinematic precise point positioning (PPP). The result indicates that the precision of BeiDou static and kinematic PPP reaches centimeter level. The precision of BeiDou/GPS kinematic PPP solutions is improved significantly compared to that of BeiDou-only or GPS-only kinematic PPP solutions. The PPP convergence time also decreases with the use of combined BeiDou/GPS systems.

  20. Relativity mission with two counter-orbiting polar satellites

    International Nuclear Information System (INIS)

    Van Patten, R.A.; Everitt, C.W.F.

    1975-01-01

    In 1918, J. Lense and H. Thirring calculated that a moon in orbit around a massive rotating planet would experience a nodal dragging effect due to general relativity. An experiment to measure this effect with two counter-orbiting drag-free satellites in polar earth orbit is described. For a 2 1 / 2 year experiment, the measurement accuracy should approach 1 percent. In addition to precision tracking data from existing ground stations, satellite-to-satellite Doppler ranging data are taken at points of passing near the poles. New geophysical information on both earth harmonics and tidal effects is inherent in the polar ranging data. (auth)

  1. Laser experiments in light cloudiness with the geostationary satellite ARTEMIS

    Science.gov (United States)

    Kuzkov, V.; Kuzkov, S.; Sodnik, Z.

    2016-08-01

    The geostationary satellite ARTEMIS was launched in July 2001. The satellite is equipped with a laser communication terminal, which was used for the world's first inter-satellite laser communication link between ARTEMIS and the low earth orbit satellite SPOT-4. Ground-to-space laser communication experiments were also conducted under various atmospheric conditions involving ESA's optical ground station. With a rapidly increasing volume of information transferred by geostationary satellites, there is a rising demand for high-speed data links between ground stations and satellites. For ground-to-space laser communications there are a number of important design parameters that need to be addressed, among them, the influence of atmospheric turbulence in different atmospheric conditions and link geometries. The Main Astronomical Observatory of NAS of Ukraine developed a precise computer tracking system for its 0.7 m AZT-2 telescope and a compact laser communication package LACES (Laser Atmosphere and Communication experiments with Satellites) for laser communication experiments with geostationary satellites. The specially developed software allows computerized tracking of the satellites using their orbital data. A number of laser experiments between MAO and ARTEMIS were conducted in partial cloudiness with some amount of laser light observed through clouds. Such conditions caused high break-up (splitting) of images from the laser beacon of ARTEMIS. One possible explanation is Raman scattering of photons on molecules of a water vapor in the atmosphere. Raman scattering causes a shift in a wavelength of the photons.In addition, a different value for the refraction index appears in the direction of the meridian for the wavelength-shifted photons. This is similar to the anomalous atmospheric refraction that appears at low angular altitudes above the horizon. We have also estimated the atmospheric attenuation and the influence of atmospheric turbulence on observed results

  2. The BDS iGMAS RIOS station at Observatório Nacional, Rio de Janeiro

    Science.gov (United States)

    Humberto Andrei, Alexandre; Song, Shuli; Junqueira, Selma; Beauvalet, Laurene

    2016-07-01

    GNSS navigation satellites are currently being developed by all major players in the science and technology scene, to compete with the GPS system. Because their applications span many different areas, from traffic and cargo control, to geodesy and seismic monitoring, it is required to assess the coherence between the different constellations. BDS is the GNSS system currently developed in China. Its first generation of satellites consisted of 3 geostationnary satellites allowing geolocalisation in China only. In addition to these satellites, other satellites have been launched in geostationnary and geosynchronous orbits, as well as satellites orbiting with a classical GNSS semi-major axis. With these additions, the BDS system possesses 19 operating satellites, and though the system is mostly efficient for geolocalisation in Asia, the satellites are also visible in other parts of the globe. In parallel to the development of the BDS constellation, China has launched the iGMAS (International GNSS Monitoring and Assessment Service) project to develop a global tracking network of multi-GNSS geodetic receivers. One of the goals of this project is to evaluate the efficiency of the BDS constellation as well as the efficiency of the receivers developed by the Chinese laboratories. As part of the Brazilian program COSBAN leaded by the Foreign Affairs Ministry to foster up the science and technology partnership with China, materialized by the collaboration between the Shanghai Astronomical Observatory/CAS and the Observatório Nacional/MCTI, in Rio de Janeiro. Through it the RIOS-iGMAS station was installed at Observatório Nacional, where the RJEP GNSS station already operates as part of the Brazilian reference system. Thus at the Observatório Nacional can be observed satellites from any constellation with both systems of reception, leading to a direct, efficient way to compare the results obtained for each network. In this communication we focus on the determination of the

  3. A Study on Fuel Estimation Algorithms for a Geostationary Communication & Broadcasting Satellite

    OpenAIRE

    Jong Won Eun

    2000-01-01

    It has been developed to calculate fuel budget for a geostationary communication and broadcasting satellite. It is quite essential that the pre-launch fuel budget estimation must account for the deterministic transfer and drift orbit maneuver requirements. After on-station, the calculation of satellite lifetime should be based on the estimation of remaining fuel and assessment of actual performance. These estimations step from the proper algorithms to produce the prediction of satellite lifet...

  4. Laser technology for high precision satellite tracking

    Science.gov (United States)

    Plotkin, H. H.

    1974-01-01

    Fixed and mobile laser ranging stations have been developed to track satellites equipped with retro-reflector arrays. These have operated consistently at data rates of once per second with range precision better than 50 cm, using Q-switched ruby lasers with pulse durations of 20 to 40 nanoseconds. Improvements are being incorporated to improve the precision to 10 cm, and to permit ranging to more distant satellites. These include improved reflector array designs, processing and analysis of the received reflection pulses, and use of sub-nanosecond pulse duration lasers.

  5. 47 CFR 25.115 - Application for earth station authorizations.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Application for earth station authorizations. 25.115 Section 25.115 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Applications and Licenses General Application Filing Requirements § 25...

  6. Multi-Satellite Orbit Determination Using Interferometric Observables with RF Localization Applications

    Science.gov (United States)

    Geeraert, Jeroen L.

    Very long baseline interferometry (VLBI) specifically same-beam interferometry (SBI), and dual-satellite geolocation are two fields of research not previously connected. This is due to the different application of each field, SBI is used for relative interplanetary navigation of two satellites while dual-satellite geolocation is used to locate the source of a radio frequency (RF) signal. In this dissertation however, we leverage both fields to create a novel method for multi-satellite orbit determination (OD) using time difference of arrival (TDOA) and frequency difference of arrival (FDOA) measurements. The measurements are double differenced between the satellites and the stations, in so doing, many of the common errors are canceled which can significantly improve measurement precision. Provided with this novel OD technique, the observability is first analyzed to determine the benefits and limitations of this method. In all but a few scenarios the measurements successfully reduce the covariance when examining the Cramer-Rao Lower Bound (CRLB). Reduced observability is encountered with geostationary satellites as their motion with respect to the stations is limited, especially when only one baseline is used. However, when using satellite pairs with greater relative motion with respect to the stations, even satellites that are close to, but not exactly in a geostationary orbit can be estimated accurately. We find that in a strong majority of cases the OD technique provides lower uncertainties and solutions far more accurate than using conventional OD observables such as range and range-rate while also not being affected by common errors and biases. We specifically examine GEO-GEO, GEO-MEO, and GEO-LEO dual-satellite estimation cases. The work is further extended by developing a relative navigation scenario where the chief satellite is assumed to have perfect knowledge, or some small amount of uncertainty considered but not estimated, while estimating the deputy

  7. The use of satellite laser observations in studying the crustal movements

    Directory of Open Access Journals (Sweden)

    Gamal F. Attia

    2012-12-01

    Full Text Available The mutual tectonic displacements of the lithospheric blocks take place within the deep fracture dividing them into hundreds and thousands kilometers long. It is possible to suggest that the reason of the accumulation of considerable local shift deformations is the change of the velocity of the tectonic motion in some or other parts of fractures as a result of different physical, chemical and mechanical processes. Nowadays, the range precision of Satellite Laser Ranging (SLR technique reaches a few millimeters level. Therefore, the space geodesy technique becomes a very important tool in detecting and monitoring recent crustal movements. Regular repeated measurements of the baselines between some stations on different plates give the possibility to construct precise and detail models of crustal movements. In this paper, the length of four baselines between Helwan-SLR station and other four SLR stations are calculated using satellite geodetical technique.

  8. Network Performance Evaluation of Abis Interface over DVB-S2 in the GSM over Satellite Network

    Directory of Open Access Journals (Sweden)

    S. B. Musabekov

    2010-01-01

    Full Text Available This paper deals with establishing a GSM link over Satellite. Abis interface, which is defined between Base Transceiver Station (BTS and Base Station Controller (BSC, in a GSM network is considered here to be routed over the Satellite. The satellite link enables a quick and cost-effective GSM link in meagerly populated areas. A different scenario comparison was done to understand the impact of Satellite environment on network availability comparing to terrestrial scenario. We have implemented an Abis interface over DVB S2 in NS2 and evaluated the performance over the high delay and loss satellite channel. Network performance was evaluated with respect to Satellite channel delay and DVB S2 encapsulation efficiency under different amount of user traffic and compared with the terrestrial scenario. The results clearly showed an increased amount of SDCCH and TCH channels required in the case of satellite scenario for the same amount of traffic in comparison to conventional terrestrial scenario. We have optimized the parameters based on the simulation results. Link budget estimation considering DVB-S2 platform was done to find satellite bandwidth and cost requirements for different network setups.

  9. A Study on the Tracking and Position Predictions of Artificial Satellite (II

    Directory of Open Access Journals (Sweden)

    Pil-Ho Park

    1991-06-01

    Full Text Available We developed a software system called IODS (ISSA Orbit Determination System, which can predict the orbit of arbitrary artificial satellite using the numerical method. For evaluating the orbit prediction accuracy of IODS, the orbital data predicted for the meteorological satellite NOAA-11 and the stationary satellite INTELSAT-V are intercompared with those tracked at the Central Bureau of Meteorology and the Kum-San Satellites Communication Station. And the Perturbation affecting the orbit of these artificial satellites are quantitatively analyzed. The orbital variation and the eclipse phenomina due to the earth shadow are analyzed for a hypothetical geostationary satellite called KORSAT-1 which is assumed to be located in longitude 110°E.

  10. 47 CFR 25.216 - Limits on emissions from mobile earth stations for protection of aeronautical radionavigation...

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Limits on emissions from mobile earth stations for protection of aeronautical radionavigation-satellite service. 25.216 Section 25.216 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS...

  11. Satellite and Ground-Based Sensors for the Urban Heat Island Analysis in the City of Rome

    Directory of Open Access Journals (Sweden)

    Roberto Fabrizi

    2010-05-01

    Full Text Available In this work, the trend of the Urban Heat Island (UHI of Rome is analyzed by both ground-based weather stations and a satellite-based infrared sensor. First, we have developed a suitable algorithm employing satellite brightness temperatures for the estimation of the air temperature belonging to the layer of air closest to the surface. UHI spatial characteristics have been assessed using air temperatures measured by both weather stations and brightness temperature maps from the Advanced Along Track Scanning Radiometer (AATSR on board ENVISAT polar-orbiting satellite. In total, 634 daytime and nighttime scenes taken between 2003 and 2006 have been processed. Analysis of the Canopy Layer Heat Island (CLHI during summer months reveals a mean growth in magnitude of 3–4 K during nighttime and a negative or almost zero CLHI intensity during daytime, confirmed by the weather stations.

  12. Experiment on the diagnostics of the interplanetary and magnetospheric plasma on the ''Venera-11, 12'' automatic interplanetary stations and the ''Prognoz 7'' artificial Earth satellite

    International Nuclear Information System (INIS)

    Vajsberg, O.L.; Gorn, L.S.; Ermolaev, Yu.I.

    1979-01-01

    Solar wind with the Earth magnetosphere are studied. The experiments have been carried out at the ''Venera 11'', ''Venera 12'' automatic interplanetary stations and at the ''Prognoz 7'' artificial satellite of the Earth in 1978-79 with the help of the three identical combined plasma spectrometers. The SCS spectrometer measures the electron, proton and α particle spectra in the energy ranges of 10-200 eV, 250-5000 eV, and 500-10000 eV, respectively. Examples of energy spectra of charged particles are presented. Some characteristics of solar wind and the Earth magnetosphere plasma are discussed

  13. MLRS - A lunar/artificial satellite laser ranging facility at the McDonald Observatory

    Science.gov (United States)

    Shelus, P. J.

    1985-01-01

    Experience from lunar and satellite laser ranging experiments carried out at McDonald Observatory has been used to design the McDonald Laser Ranging Station (MLRS). The MLRS is a dual-purpose installation designed to obtain observations from the LAGEOS satellite and lunar targets. The instruments used at the station include a telescope assembly 0.76 meters in diameter; a Q-switched doubled neodymium YAG laser with a pulse rate of three nanoseconds; and a GaAs photodetector with Fabry-Perot interferometric filter. A functional diagram of the system is provided. The operating parameters of the instruments are summarized in a table.

  14. Satellite communication transponders and their reliability; Eisei tosai tsushin kiki oyobi shinraisei ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, H [NTT Wireless System Laboratories, Kanagawa (Japan)

    1994-11-01

    The Engineering Test Satellite-VI is a large composite test satellite weighing two tons to perform different communication experiments. Adoption of the multi-beam satellite communication system has made possible to increase the transmission capacity, reduce the sizes of earth stations, and utilize frequencies more effectively. This paper describes the configuration of the relaying devices mounted thereon, the newly developed circuit technologies, and their reliability. The multi-beam satellite communication system mounts a number of transponders, with the frequency bands used divided into the 2.6/2.5 GHz band between the moving body and the satellite, the 6/4 GHz band for the channels between the earth stations and the satellite, and the 30/20 GHz band for the fixed communications. These arrangements were intended to achieve large size reduction as a result of applying the integrated circuit technology. The transmitters and the receivers corresponding to each beam are connected by using the satellite switches (16 inputs {times} 12 outputs). The parts used were general purpose ones rather than those specified in the MIL standards because of their number having reached so huge. Their reliability was ensured by long-term burn-in operations. 5 refs., 6 figs., 1 tab.

  15. 47 CFR 25.221 - Blanket Licensing provisions for Earth Stations on Vessels (ESVs) receiving in the 3700-4200 MHz...

    Science.gov (United States)

    2010-10-01

    ... the 5925-6425 MHz (Earth-to-space) frequency band, operating with Geostationary Satellite Orbit (GSO) Satellites in the Fixed-Satellite Service. 25.221 Section 25.221 Telecommunication FEDERAL COMMUNICATIONS... 47 Telecommunication 2 2010-10-01 2010-10-01 false Blanket Licensing provisions for Earth Stations...

  16. 78 FR 14952 - Earth Stations Aboard Aircraft Communicating with Fixed-Satellite Service Geostationary-Orbit...

    Science.gov (United States)

    2013-03-08

    ... FEDERAL COMMUNICATIONS COMMISSION 47 CFR Part 2 [IB Docket No. 12-376; FCC 12-161] Earth Stations... (NPRM) seeks comment on a proposal to elevate the allocation status of Earth Stations Aboard Aircraft... with GSO space stations of the FSS on a primary basis in the 11.7-12.2 GHz band (space-to-Earth), on an...

  17. New progress of ranging technology at Wuhan Satellite Laser Ranging Station

    Science.gov (United States)

    Xia, Zhiz-Hong; Ye, Wen-Wei; Cai, Qing-Fu

    1993-01-01

    A satellite laser ranging system with an accuracy of the level of centimeter has been successfully developed at the Institute of Seismology, State Seismological Bureau with the cooperation of the Institute of Geodesy and Geophysics, Chinese Academy of Science. With significant improvements on the base of the second generation SLR system developed in 1985, ranging accuracy of the new system has been upgraded from 15 cm to 3-4 cm. Measuring range has also been expanded, so that the ETALON satellite with an orbit height of 20,000 km launched by the former U.S.S.R. can now be tracked. Compared with the 2nd generation SLR system, the newly developed system has the following improvements. A Q modulated laser is replaced by a mode-locked YAG laser. The new device has a pulse width of 150 ps and a repetition rate of 1-4 pps. A quick response photomultiplier has been adopted as the receiver for echo; for example, the adoption of the MCP tube has obviously reduced the jitter error of the transit time and has improved the ranging accuracy. The whole system is controlled by an IBM PC/XT Computer to guide automatic tracking and measurement. It can carry out these functions for satellite orbit calculation, real-time tracking and adjusting, data acquisition and the preprocessed of observing data, etc. The automatization level and reliability of the observation have obviously improved.

  18. Development of a PC-based ground support system for a small satellite instrument

    Science.gov (United States)

    Deschambault, Robert L.; Gregory, Philip R.; Spenler, Stephen; Whalen, Brian A.

    1993-11-01

    The importance of effective ground support for the remote control and data retrieval of a satellite instrument cannot be understated. Problems with ground support may include the need to base personnel at a ground tracking station for extended periods, and the delay between the instrument observation and the processing of the data by the science team. Flexible solutions to such problems in the case of small satellite systems are provided by using low-cost, powerful personal computers and off-the-shelf software for data acquisition and processing, and by using Internet as a communication pathway to enable scientists to view and manipulate satellite data in real time at any ground location. The personal computer based ground support system is illustrated for the case of the cold plasma analyzer flown on the Freja satellite. Commercial software was used as building blocks for writing the ground support equipment software. Several levels of hardware support, including unit tests and development, functional tests, and integration were provided by portable and desktop personal computers. Satellite stations in Saskatchewan and Sweden were linked to the science team via phone lines and Internet, which provided remote control through a central point. These successful strategies will be used on future small satellite space programs.

  19. The Impact of Eclipsing GNSS Satellites on the Precise Point Positioning

    Directory of Open Access Journals (Sweden)

    Xinyun Cao

    2018-01-01

    Full Text Available When satellites enter into the noon maneuver or the shadow crossing regimes, the actual attitudes will depart from their nominal values. If improper attitude models are used, the induced-errors due to the wind-up effect and satellite antenna PCO (Phase Center Offset will deteriorate the positioning accuracy. Because different generations of satellites adopt different attitude control models, the influences on the positioning performances deserve further study. Consequently, the impact of three eclipsing strategies on the single-system and multi-GNSS (Global Navigation Satellite System Precise Point Positioning (PPP are analyzed. According to the results of the eclipsing monitor, 65 globally distributed MGEX (Multi-GNSS EXperiment stations for 31-day period in July 2017 are selected to perform G/R/E/C/GR/GREC PPP in both static and kinematic modes. The results show that the influences of non-nominal attitudes are related to the magnitude of the PCO values, maximum yaw angle differences, the duration of maneuver, the value of the sun angle and the satellite geometric strength. For single-system, using modeled attitudes rather than the nominal ones will greatly improve the positioning accuracy of GLONASS-only and BDS-only PPP while slightly contributions to the GPS-only and GALILEO-only PPP. Deleting the eclipsing satellites may sometimes induce a longer convergence time and a worse solution due to the poor satellite geometry, especially for GLONASS kinematic PPP when stations are located in the low latitude and BDS kinematic PPP. When multi-GNSS data are available, especially four navigation systems, the accuracy improvements of using the modeled attitudes or deleting eclipsing satellites are non-significant.

  20. Space Station power system issues

    International Nuclear Information System (INIS)

    Giudici, R.J.

    1985-01-01

    Issues governing the selection of power systems for long-term manned Space Stations intended solely for earth orbital missions are covered briefly, drawing on trade study results from both in-house and contracted studies that have been conducted over nearly two decades. An involvement, from the Program Development Office at MSFC, with current Space Station concepts began in late 1982 with the NASA-wide Systems Definition Working Group and continued throughout 1984 in support of various planning activities. The premise for this discussion is that, within the confines of the current Space Station concept, there is good reason to consider photovoltaic power systems to be a venerable technology option for both the initial 75 kW and 300 kW (or much greater) growth stations. The issue of large physical size required by photovoltaic power systems is presented considering mass, atmospheric drag, launch packaging and power transmission voltage as being possible practicality limitations. The validity of searching for a cross-over point necessitating the introduction of solar thermal or nuclear power system options as enabling technologies is considered with reference to programs ranging from the 4.8 kW Skylab to the 9.5 gW Space Power Satellite

  1. A Mathematical Model for the Height of a Satellite.

    Science.gov (United States)

    Thoemke, Sharon S.; And Others

    1993-01-01

    Emphasizes a real-world-problem situation using sine law and cosine law. Angles of elevation from two tracking stations located in the plane of the equator determine height of a satellite. Calculators or computers can be used. (LDR)

  2. Time Transfer Experiment by TCE on the ETS-VIII Satellite

    National Research Council Canada - National Science Library

    Nakagawa, Fumimaru; Takahashi, Yasuhiro; Amagai, Jun; Tabuchi, Ryo; Hama, Shin'ichi; Hosokawa, Mizuhiko

    2007-01-01

    .... At NICT, we developed Time Comparison Equipment (TCE) both onboard ETS-VIII and in the Earth station for precise time transfer between the atomic clocks on the satellite and a ground reference clock...

  3. Customer premise service study for 30/20 GHz satellite system

    Science.gov (United States)

    Milton, R. T.; Ross, D. P.; Harcar, A. R.; Freedenberg, P.; Schoen, D.

    1983-01-01

    Satellite systems in which the space segment operates in the 30/20 GHz frequency band are defined and compared as to their potential for providing various types of communications services to customer premises and the economic and technical feasibility of doing so. Technical tasks performed include: market postulation, definition of the ground segment, definition of the space segment, definition of the integrated satellite system, service costs for satellite systems, sensitivity analysis, and critical technology. Based on an analysis of market data, a sufficiently large market for services is projected so as to make the system economically viable. A large market, and hence a high capacity satellite system, is found to be necessary to minimize service costs, i.e., economy of scale is found to hold. The wide bandwidth expected to be available in the 30/20 GHz band, along with frequency reuse which further increases the effective system bandwidth, makes possible the high capacity system. Extensive ground networking is required in most systems to both connect users into the system and to interconnect Earth stations to provide spatial diversity. Earth station spatial diversity is found to be a cost effective means of compensating the large fading encountered in the 30/20 GHz operating band.

  4. MODELING OF ADS-B MESSAGES TRANSMISSION THROUGH SATELLITE TELECOMMUNICATION CHANNEL IRIDIUM USING NETCRACKER PROFESSIONAL 4.1

    Directory of Open Access Journals (Sweden)

    В. Харченко

    2012-04-01

    Full Text Available The model for the traffic analysis in a communication channel "aircraft - satellite - ground station" wasbuilt and used for modeling of transfer ADS-B messages with the help low-orbit satellite complex Іrіdіum.Dependences of factor BER on channel average working load and average utilization time were obtained.Dependences of package failure probabilities on average working load, average utilization time and signaltraveling time were analyzed. The developed model was applied for determination of traffic characteristics ina communication channel "aircraft - satellite - ground station": the dependence of average working load,average channel utilization time and message traveling time on the size of transaction, the dependence oftravelling time on channel delay time were built.

  5. Component Data Base for Space Station Resistojet Auxiliary Propulsion

    Science.gov (United States)

    Bader, Clayton H.

    1988-01-01

    The resistojet was baselined for Space Station auxiliary propulsion because of its operational versatility, efficiency, and durability. This report was conceived as a guide to designers and planners of the Space Station auxiliary propulsion system. It is directed to the low thrust resistojet concept, though it should have application to other station concepts or systems such as the Environmental Control and Life Support System (ECLSS), Manufacturing and Technology Laboratory (MTL), and the Waste Fluid Management System (WFMS). The information will likely be quite useful in the same capacity for other non-Space Station systems including satellite, freeflyers, explorers, and maneuvering vehicles. The report is a catalog of the most useful information for the most significant feed system components and is organized for the greatest convenience of the user.

  6. Network design consideration of a satellite-based mobile communications system

    Science.gov (United States)

    Yan, T.-Y.

    1986-01-01

    Technical considerations for the Mobile Satellite Experiment (MSAT-X), the ground segment testbed for the low-cost spectral efficient satellite-based mobile communications technologies being developed for the 1990's, are discussed. The Network Management Center contains a flexible resource sharing algorithm, the Demand Assigned Multiple Access scheme, which partitions the satellite transponder bandwidth among voice, data, and request channels. Satellite use of multiple UHF beams permits frequency reuse. The backhaul communications and the Telemetry, Tracking and Control traffic are provided through a single full-coverage SHF beam. Mobile Terminals communicate with the satellite using UHF. All communications including SHF-SHF between Base Stations and/or Gateways, are routed through the satellite. Because MSAT-X is an experimental network, higher level network protocols (which are service-specific) will be developed only to test the operation of the lowest three levels, the physical, data link, and network layers.

  7. Estimating Ground-Level PM2.5 by Fusing Satellite and Station Observations: A Geo-Intelligent Deep Learning Approach

    Science.gov (United States)

    Li, Tongwen; Shen, Huanfeng; Yuan, Qiangqiang; Zhang, Xuechen; Zhang, Liangpei

    2017-12-01

    Fusing satellite observations and station measurements to estimate ground-level PM2.5 is promising for monitoring PM2.5 pollution. A geo-intelligent approach, which incorporates geographical correlation into an intelligent deep learning architecture, is developed to estimate PM2.5. Specifically, it considers geographical distance and spatiotemporally correlated PM2.5 in a deep belief network (denoted as Geoi-DBN). Geoi-DBN can capture the essential features associated with PM2.5 from latent factors. It was trained and tested with data from China in 2015. The results show that Geoi-DBN performs significantly better than the traditional neural network. The out-of-sample cross-validation R2 increases from 0.42 to 0.88, and RMSE decreases from 29.96 to 13.03 μg/m3. On the basis of the derived PM2.5 distribution, it is predicted that over 80% of the Chinese population live in areas with an annual mean PM2.5 of greater than 35 μg/m3. This study provides a new perspective for air pollution monitoring in large geographic regions.

  8. Adaptive topographic mass correction for satellite gravity and gravity gradient data

    Science.gov (United States)

    Holzrichter, Nils; Szwillus, Wolfgang; Götze, Hans-Jürgen

    2014-05-01

    Subsurface modelling with gravity data includes a reliable topographic mass correction. Since decades, this mandatory step is a standard procedure. However, originally methods were developed for local terrestrial surveys. Therefore, these methods often include defaults like a limited correction area of 167 km around an observation point, resampling topography depending on the distance to the station or disregard the curvature of the earth. New satellite gravity data (e.g. GOCE) can be used for large scale lithospheric modelling with gravity data. The investigation areas can include thousands of kilometres. In addition, measurements are located in the flight height of the satellite (e.g. ~250 km for GOCE). The standard definition of the correction area and the specific grid spacing around an observation point was not developed for stations located in these heights and areas of these dimensions. This asks for a revaluation of the defaults used for topographic correction. We developed an algorithm which resamples the topography based on an adaptive approach. Instead of resampling topography depending on the distance to the station, the grids will be resampled depending on its influence at the station. Therefore, the only value the user has to define is the desired accuracy of the topographic correction. It is not necessary to define the grid spacing and a limited correction area. Furthermore, the algorithm calculates the topographic mass response with a spherical shaped polyhedral body. We show examples for local and global gravity datasets and compare the results of the topographic mass correction to existing approaches. We provide suggestions how satellite gravity and gradient data should be corrected.

  9. PRMT7 Preserves Satellite Cell Regenerative Capacity

    Directory of Open Access Journals (Sweden)

    Roméo Sébastien Blanc

    2016-02-01

    Full Text Available Regeneration of skeletal muscle requires the continued presence of quiescent muscle stem cells (satellite cells, which become activated in response to injury. Here, we report that whole-body protein arginine methyltransferase PRMT7−/− adult mice and mice conditionally lacking PRMT7 in satellite cells using Pax7-CreERT2 both display a significant reduction in satellite cell function, leading to defects in regenerative capacity upon muscle injury. We show that PRMT7 is preferentially expressed in activated satellite cells and, interestingly, PRMT7-deficient satellite cells undergo cell-cycle arrest and premature cellular senescence. These defects underlie poor satellite cell stem cell capacity to regenerate muscle and self-renew after injury. PRMT7-deficient satellite cells express elevated levels of the CDK inhibitor p21CIP1 and low levels of its repressor, DNMT3b. Restoration of DNMT3b in PRMT7-deficient cells rescues PRMT7-mediated senescence. Our findings define PRMT7 as a regulator of the DNMT3b/p21 axis required to maintain muscle stem cell regenerative capacity.

  10. Large Deployable Reflector (LDR) Requirements for Space Station Accommodations

    Science.gov (United States)

    Crowe, D. A.; Clayton, M. J.; Runge, F. C.

    1985-01-01

    Top level requirements for assembly and integration of the Large Deployable Reflector (LDR) Observatory at the Space Station are examined. Concepts are currently under study for LDR which will provide a sequel to the Infrared Astronomy Satellite and the Space Infrared Telescope Facility. LDR will provide a spectacular capability over a very broad spectral range. The Space Station will provide an essential facility for the initial assembly and check out of LDR, as well as a necessary base for refurbishment, repair and modification. By providing a manned platform, the Space Station will remove the time constraint on assembly associated with use of the Shuttle alone. Personnel safety during necessary EVA is enhanced by the presence of the manned facility.

  11. Large Deployable Reflector (LDR) requirements for space station accommodations

    Science.gov (United States)

    Crowe, D. A.; Clayton, M. J.; Runge, F. C.

    1985-04-01

    Top level requirements for assembly and integration of the Large Deployable Reflector (LDR) Observatory at the Space Station are examined. Concepts are currently under study for LDR which will provide a sequel to the Infrared Astronomy Satellite and the Space Infrared Telescope Facility. LDR will provide a spectacular capability over a very broad spectral range. The Space Station will provide an essential facility for the initial assembly and check out of LDR, as well as a necessary base for refurbishment, repair and modification. By providing a manned platform, the Space Station will remove the time constraint on assembly associated with use of the Shuttle alone. Personnel safety during necessary EVA is enhanced by the presence of the manned facility.

  12. A Framework for Building an Interactive Satellite TV Based M-Learning Environment

    Directory of Open Access Journals (Sweden)

    Ghassan Issa

    2010-07-01

    Full Text Available This paper presents a description of an interactive satellite TV based mobile learning (STV-ML framework, in which a satellite TV station is used as an integral part of a comprehensive interactive mobile learning (M-Learning environment. The proposed framework assists in building a reliable, efficient, and cost-effective environment to meet the growing demands of M-Learning all over the world, especially in developing countries. It utilizes recent advances in satellite reception, broadcasting technologies, and interactive TV to facilitate the delivery of gigantic learning materials. This paper also proposed a simple and flexible three-phase implementation methodology which includes construction of earth station, expansion of broadcasting channels, and developing true user interactivity. The proposed framework and implementation methodology ensure the construction of a true, reliable, and cost effective M-Learning system that can be used efficiently and effectively by a wide range of users and educational institutions to deliver ubiquitous learning.

  13. Space Solar Power: Satellite Concepts

    Science.gov (United States)

    Little, Frank E.

    1999-01-01

    Space Solar Power (SSP) applies broadly to the use of solar power for space related applications. The thrust of the NASA SSP initiative is to develop concepts and demonstrate technology for applying space solar power to NASA missions. Providing power from satellites in space via wireless transmission to a receiving station either on earth, another celestial body or a second satellite is one goal of the SSP initiative. The sandwich design is a satellite design in which the microwave transmitting array is the front face of a thin disk and the back of the disk is populated with solar cells, with the microwave electronics in between. The transmitter remains aimed at the earth in geostationary orbit while a system of mirrors directs sunlight to the photovoltaic cells, regardless of the satellite's orientation to the sun. The primary advantage of the sandwich design is it eliminates the need for a massive and complex electric power management and distribution system for the satellite. However, it requires a complex system for focusing sunlight onto the photovoltaic cells. In addition, positioning the photovoltaic array directly behind the transmitting array power conversion electronics will create a thermal management challenge. This project focused on developing designs and finding emerging technology to meet the challenges of solar tracking, a concentrating mirror system including materials and coatings, improved photovoltaic materials and thermal management.

  14. Direct Satellite Data Acquisition and its Application for Large -scale Monitoring Projects in Russia

    Science.gov (United States)

    Gershenzon, O.

    2011-12-01

    ScanEx RDC created an infrastructure (ground stations network) to acquire and process remote sensing data from different satellites: Terra, Aqua, Landsat, IRS-P5/P6, SPOT 4/5, FORMOSAT-2, EROS A/B, RADARSAT-1/2, ENVISAT-1. It owns image archives from these satellites as well as from SPOT-2 and CARTOSAT-2. ScanEx RDC builds and delivers remote sensing ground stations (working with up to 15 satellites); and owns the ground stations network to acquire data for Russia and surrounding territory. ScanEx stations are the basic component in departmental networks of remote sensing data acquisition for different state authorities (Roshydromet, Ministry of Natural Recourses, Emercom) and University- based remote sensing data acquisition and processing centers in Russia and abroad. ScanEx performs large-scale projects in collaboration with government agencies to monitor forests, floods, fires, sea surface pollution, and ice situation in Northern Russia. During 2010-2011 ScanEx conducted daily monitoring of wild fires in Russia detecting and registering thermal anomalies using data from Terra, Aqua, Landsat and SPOT satellites. Detailed SPOT 4/5 data is used to analyze burnt areas and to assess damage caused by fire. Satellite data along with other information about fire situation in Russia was daily updated and published via free-access Internet geoportal. A few projects ScanEx conducted together with environmental NGO. Project "Satellite monitoring of Especially Protected Natural Areas of Russia and its results visualization on geoportal was conducted in cooperation with NGO "Transparent World". The project's goal was to observe natural phenomena and economical activity, including illegal, by means of Earth remote sensing data. Monitoring is based on multi-temporal optical space imagery of different spatial resolution. Project results include detection of anthropogenic objects that appeared in the vicinity or even within the border of natural territories, that have never been

  15. GLONASS satellite monitoring of nuclear transports

    International Nuclear Information System (INIS)

    Davydov, Yu.L.

    2012-01-01

    In 2011 Rosatom has made the decision to create the industry-wide automated system for monitoring of transports of radioactive substances (RS) and wastes (RAW), as well as hazardous loads by rail and automobile, based upon the same hardware as used by the GLONASS satellite navigation system - the so-called ASBT-GLONASS system. The new system will use the same technical infrastructure as the existing operational Automated System for Safe Transport of Nuclear Materials of Categories I and II (ASBT). The ASBT structure includes a network of control centres fitted with automation and communication hardware. In addition, ASBT includes technical complexes installed upon transport vehicles intended for nuclear material transport. In order to identify transport vehicle location, the GLONASS/GPS (GALS-P-ASBT) satellite navigational receiver device is used, it is developed especially for ASBT systems taking in account information security requirements. By now the basic software and hardware complex ASBT-GLONASS has been created (equipment to be carried on-board the transport vehicle loaded with RS and RAW, as well as the transport control stations) that supports transport monitoring and transmission of an emergency signal to control stations of companies which deal with RS and RAW transportation [ru

  16. Coverage Extension via Side-Lobe Transmission in Multibeam Satellite System

    OpenAIRE

    Gharanjik, Ahmad; Kmieciak, Jarek; Shankar, Bhavani; Ottersten, Björn

    2017-01-01

    In this paper, we study feasibility of coverage extension of a multibeam satellite network by providing low-rate communications to terminals located outside the coverage of main beams. Focusing on the MEO satellite network, and using realistic link budgets from O3b networks, we investigate the performance of both forward and return-links for terminals stationed in the side lobes of the main beams. Particularly, multi-carrier transmission for forward-link and single carrier transmission for re...

  17. Planning and Scheduling for Fleets of Earth Observing Satellites

    Science.gov (United States)

    Frank, Jeremy; Jonsson, Ari; Morris, Robert; Smith, David E.; Norvig, Peter (Technical Monitor)

    2001-01-01

    We address the problem of scheduling observations for a collection of earth observing satellites. This scheduling task is a difficult optimization problem, potentially involving many satellites, hundreds of requests, constraints on when and how to service each request, and resources such as instruments, recording devices, transmitters, and ground stations. High-fidelity models are required to ensure the validity of schedules; at the same time, the size and complexity of the problem makes it unlikely that systematic optimization search methods will be able to solve them in a reasonable time. This paper presents a constraint-based approach to solving the Earth Observing Satellites (EOS) scheduling problem, and proposes a stochastic heuristic search method for solving it.

  18. Advanced Communications Technology Satellite (ACTS) and potential system applications

    Science.gov (United States)

    Wright, David L.; Balombin, Joseph R.; Sohn, Philip Y.

    1990-01-01

    A description of the advanced communications technology satellite (ACTS) system is given with special emphasis on the communication characteristics. Potential satellite communications scenarios, including future operational ACTS-like satellite systems, are discussed. The description of the ACTS system updates previously published ACTS system references. Detailed information on items such as experimental ground stations is presented. The potential services can be generically described as voice, video, and data services. The implementation of these services on future operational ACTS-like systems can lead to unique quality, flexibility, and capacity characteristics at lower service costs. The specific service applications that could be supported range from low to high data rates and include both domestic and international applications.

  19. A Study on Fuel Estimation Algorithms for a Geostationary Communication & Broadcasting Satellite

    Directory of Open Access Journals (Sweden)

    Jong Won Eun

    2000-12-01

    Full Text Available It has been developed to calculate fuel budget for a geostationary communication and broadcasting satellite. It is quite essential that the pre-launch fuel budget estimation must account for the deterministic transfer and drift orbit maneuver requirements. After on-station, the calculation of satellite lifetime should be based on the estimation of remaining fuel and assessment of actual performance. These estimations step from the proper algorithms to produce the prediction of satellite lifetime. This paper concentrates on the fuel estimation method that was studied for calculation of the propellant budget by using the given algorithms. Applications of this method are discussed for a communication and broadcasting satellite.

  20. Design of an MSAT-X mobile transceiver and related base and gateway stations

    Science.gov (United States)

    Fang, Russell J. F.; Bhaskar, Udaya; Hemmati, Farhad; Mackenthun, Kenneth M.; Shenoy, Ajit

    This paper summarizes the results of a design study of the mobile transceiver, base station, and gateway station for NASA's proposed Mobile Satellite Experiment (MSAT-X). Major ground segment system design issues such as frequency stability control, modulation method, linear predictive coding vocoder algorithm, and error control technique are addressed. The modular and flexible transceiver design is described in detail, including the core, RF/IF, modem, vocoder, forward error correction codec, amplitude-companded single sideband, and input/output modules, as well as the flexible interface. Designs for a three-carrier base station and a 10-carrier gateway station are also discussed, including the interface with the controllers and with the public-switched telephone networks at the gateway station. Functional specifications are given for the transceiver, the base station, and the gateway station.

  1. Design of an MSAT-X mobile transceiver and related base and gateway stations

    Science.gov (United States)

    Fang, Russell J. F.; Bhaskar, Udaya; Hemmati, Farhad; Mackenthun, Kenneth M.; Shenoy, Ajit

    1987-01-01

    This paper summarizes the results of a design study of the mobile transceiver, base station, and gateway station for NASA's proposed Mobile Satellite Experiment (MSAT-X). Major ground segment system design issues such as frequency stability control, modulation method, linear predictive coding vocoder algorithm, and error control technique are addressed. The modular and flexible transceiver design is described in detail, including the core, RF/IF, modem, vocoder, forward error correction codec, amplitude-companded single sideband, and input/output modules, as well as the flexible interface. Designs for a three-carrier base station and a 10-carrier gateway station are also discussed, including the interface with the controllers and with the public-switched telephone networks at the gateway station. Functional specifications are given for the transceiver, the base station, and the gateway station.

  2. Anti-jamming Technology in Small Satellite Communication

    Science.gov (United States)

    Jia, Zixiang

    2018-01-01

    Small satellite communication has an increasingly important position among the wireless communications due to the advantages of low cost and high technology. However, in view of the case that its relay station stays outside the earth, its uplink may face interference from malicious signal frequently. Here this paper classified enumerates existing interferences, and proposes channel signals as main interference by comparison. Based on a basic digital communication process, then this paper discusses the possible anti - jamming techniques that commonly be realized at all stages in diverse processes, and comes to the conclusion that regarding the spread spectrum technology and antenna anti-jamming technology as fundamental direction of future development. This work provides possible thought for the design of new small satellite communication system with the coexistence of multi - technologies. This basic popular science can be consulted for people interested in small satellite communication.

  3. 47 CFR 25.144 - Licensing provisions for the 2.3 GHz satellite digital audio radio service.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Licensing provisions for the 2.3 GHz satellite digital audio radio service. 25.144 Section 25.144 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Applications and Licenses Space Stations § 25...

  4. Evaluating Satellite Products for Precipitation Estimation in Mountain Regions: A Case Study for Nepal

    Directory of Open Access Journals (Sweden)

    Tarendra Lakhankar

    2013-08-01

    Full Text Available Precipitation in mountain regions is often highly variable and poorly observed, limiting abilities to manage water resource challenges. Here, we evaluate remote sensing and ground station-based gridded precipitation products over Nepal against weather station precipitation observations on a monthly timescale. We find that the Tropical Rainfall Measuring Mission (TRMM 3B-43 precipitation product exhibits little mean bias and reasonable skill in giving precipitation over Nepal. Compared to station observations, the TRMM precipitation product showed an overall Nash-Sutcliffe efficiency of 0.49, which is similar to the skill of the gridded station-based product Asian Precipitation-Highly Resolved Observational Data Integration Towards Evaluation of Water Resources (APHRODITE. The other satellite precipitation products considered (Global Satellite Mapping of Precipitation (GSMaP, the Climate Prediction Center Morphing technique (CMORPH, Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks-Cloud Classification System (PERSIANN-CCS were less skillful, as judged by Nash-Sutcliffe efficiency, and, on average, substantially underestimated precipitation compared to station observations, despite their, in some cases, higher nominal spatial resolution compared to TRMM. None of the products fully captured the dependence of mean precipitation on elevation seen in the station observations. Overall, the TRMM product is promising for use in water resources applications.

  5. Development of the Arctic radionuclide monitoring station

    International Nuclear Information System (INIS)

    King, S.E.; Phillips, G.W.; Aakenes, U.R.

    1996-01-01

    In recent years, the world has learned about the dumping of nuclear reactors and other waste into the Arctic seas by the former Soviet Union. Most of the information on the present levels of radioactivity in the region has been obtained by oceanographic expeditions conducted during the brief Arctic summers. Year-round monitoring of the movement of radio-activity during dynamic seasonal and episodic chances is hampered by the difficulties caused by sea ice, logistics and communication constraints associated with deployment and maintenance of monitoring equipment in this remote region. We have designed an autonomous station to measure the benthic gamma-ray emitting radioactivity for periods of at least one year. The station is capable of detecting a 30 Bq/m 3 increase in the 137 Cs activity in a 24 hour period. After a year-long deployment, the station releases its anchor and rises to the surface to transmit the accumulated spectra and oceanographic data via an Argos satellite link. The design and performance characteristics of the prototype station will be discussed

  6. Development of the Arctic radionuclide monitoring station

    Science.gov (United States)

    King, S. E.; Aakenes, U. R.; McCoy, K.; Phillips, G. W.

    1997-06-01

    The world has learned about the dumping of nuclear reactors and other waste into the Arctic seas by the former Soviet Union. Most of the information on the present levels of radioactivity in the region has been obtained by oceanographic expeditions conducted during the brief Arctic summers. Year-round monitoring of the movement of radioactivity during dynamic seasonal and episodic changes is hampered by the difficulties caused by sea ice, logistics and communication constraints associated with deployment and maintenance of monitoring equipment in this remote region. The authors have designed an autonomous station to measure the benthic gamma-ray emitting radioactivity for periods of at least one year. The station is capable of detecting a 30 Bq/m/sup 3/ increase in the /sup 137/Cs activity in a 24 hour period. After a year-long deployment, the station releases its anchor and rises to the surface to transmit the accumulated spectra and oceanographic data via an Argos satellite link. The design and performance characteristics of the prototype station are discussed.

  7. Automated tracking for advanced satellite laser ranging systems

    Science.gov (United States)

    McGarry, Jan F.; Degnan, John J.; Titterton, Paul J., Sr.; Sweeney, Harold E.; Conklin, Brion P.; Dunn, Peter J.

    1996-06-01

    NASA's Satellite Laser Ranging Network was originally developed during the 1970's to track satellites carrying corner cube reflectors. Today eight NASA systems, achieving millimeter ranging precision, are part of a global network of more than 40 stations that track 17 international satellites. To meet the tracking demands of a steadily growing satellite constellation within existing resources, NASA is embarking on a major automation program. While manpower on the current systems will be reduced to a single operator, the fully automated SLR2000 system is being designed to operate for months without human intervention. Because SLR2000 must be eyesafe and operate in daylight, tracking is often performed in a low probability of detection and high noise environment. The goal is to automatically select the satellite, setup the tracking and ranging hardware, verify acquisition, and close the tracking loop to optimize data yield. TO accomplish the autotracking tasks, we are investigating (1) improved satellite force models, (2) more frequent updates of orbital ephemerides, (3) lunar laser ranging data processing techniques to distinguish satellite returns from noise, and (4) angular detection and search techniques to acquire the satellite. A Monte Carlo simulator has been developed to allow optimization of the autotracking algorithms by modeling the relevant system errors and then checking performance against system truth. A combination of simulator and preliminary field results will be presented.

  8. Electron and ion temperatures: a comparison of ground-based incoherent scatter and AE-C satellite measurements

    International Nuclear Information System (INIS)

    Benson, R.F.; Bauer, P.; Brace, L.H.; Carlson, H.C.; Hagen, J.; Hanson, W.B.; Hoegy, W.R.; Torr, M.R.; Wickwar, V.B.

    1977-01-01

    The Atmosphere Exploere-C satellite (AE-C) is uniquely suited for correlative studies with ground-based stations because its on-board propulsion system enables a desired ground station overflight condition to be maintained for a period of several weeks. It also provides the first low-altitude (below 260 km) comparison of satellite and incoherent scatter electron and ion temperatures. More than 40 comparisons of remote and in situ measurements were made by using data from AE-C and four incoherent scatter stations (Arecibo, Chatanika, Millstone Hill, and St. Santin). The results indicate very good agreement between satellite and ground measurements of the ion temperature, the average satellite retarding potential analyzer temperatures differing from the average incoherent scatter temperatures by -2% at St. Santin, +3% at Millstone Hill, and +2% at Arecibo. The electron temperatures also agree well, the average satellite temperatures exceeding the average incoherent scatter temperatures by 3% at St. Santin, 2% at Arecibo, and 11% at Millstone Hill. Several temperature comparisons were made between AE-C and Chatanika. In spite of the highly variable ionosphere often encountered at this high-latitude location, good agreement was obtained between the in situ and remote measurements of electron and ion temperatures. Longitudinal variations are found to be very important in the comparisons of electron temperature in some locations. The agreement between the electron temperatures is considerably better than that found in some earlier comparisons involving satellities at higher altitudes

  9. TELE-X and its role in a future operational Nordic satellite system

    Science.gov (United States)

    Anderson, Lars

    In the middle of 1987 it is planned to launch TELE-X, the first Nordic telecommunications satellite. The Swedish-Norwegian company NOTELSAT (Nordic Telecommunications Satellite Corporation) will be responsible for the operation of the TELE-X system. Via the experimental TELE-X satellite the Nordic countries will get access to direct broadcasting of two TV-programs and at least four digital sound programs in stereo by use of two transponders in the 12.2 to 12.5 GHz band. The programs are planned to be composed of nationally produced programs in Norway. Sweden and Finland. By means of distributing these programs via satellite they will reach up to 4 times as many viewers and listernes as presently in the terrestrial national systems. The basic motivations for exchanging programs are to strengthen the cultural ties between the Nordic countries and to give the individuals more freedom in the choice of programs. Another goal is to give the public a better sound and picture quality than can be achieved today. These quality improvements shall be met by using small receiver parabolas of less than 1 m in diameter. Contributing to the improved quality is the choice of the C-MAC (Multiplexed Analoque Components) modulation system. TELE-X is a multipurpose satellite which besides the two TV-transponders will have two transponders for data/video communication in the frequency band 12.5 to 12.75 GHz. The choice of system for data and video is based on the philosophy of thin-route traffic between small and low cost earth stations (1.8 to 2.5 m) placed directly at the subscribers premises. The system includes an advanced Data/Video Control Station which automatically connects the traffic stations with standarized transmission speeds up to 2 Mbps. The system which is based on the SCPC/DAMA method can be expanded up to 5000 traffic stations. Numerous data/video applications will be investigated in the initial experimental phase of the project which also will be used for market

  10. 47 CFR 25.220 - Non-conforming transmit/receive earth station operations.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Non-conforming transmit/receive earth station operations. 25.220 Section 25.220 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Standards § 25.220 Non-conforming transmit/receive...

  11. Preliminary PANSAT ground station software design and use of an expert system to analyze telemetry

    Science.gov (United States)

    Lawrence, Gregory W.

    1994-03-01

    The Petite Amateur Navy Satellite (PANSAT) is a communications satellite designed to be used by civilian amateur radio operators. A master ground station is being built at the Naval Postgraduate School. This computer system performs satellite commands, displays telemetry, trouble-shoots problems, and passes messages. The system also controls an open loop tracking antenna. This paper concentrates on the telemetry display, decoding, and interpretation through artificial intelligence (AI). The telemetry is displayed in an easily interpretable format, so that any user can understand the current health of the satellite and be cued as to any problems and possible solutions. Only the master ground station has the ability to receive all telemetry and send commands to the spacecraft; civilian ham users do not have access to this information. The telemetry data is decommutated and analyzed before it is displayed to the user, so that the raw data will not have to be interpreted by ground users. The analysis will use CLIPS imbedded in the code, and derive its inputs from telemetry decommutation. The program is an expert system using a forward chaining set of rules based on the expected operation and parameters of the satellite. By building the rules during the construction and design of the satellite, the telemetry can be well understood and interpreted after the satellite is launched and the designers may no longer be available to provide input to the problem.

  12. Face to Face Seismic Rays, Satellites and Sea Winds

    Indian Academy of Sciences (India)

    and determine important environmental and geological events. ... Government in the Department of Ocean Development (DOD). Here he ... It is comprised of about 24 active satellites in medium Earth orbit, control and monitoring stations. .... They were nice human beings but their classroom teachings consisted of facilitating ...

  13. An artificial neural network ensemble model for estimating global solar radiation from Meteosat satellite images

    International Nuclear Information System (INIS)

    Linares-Rodriguez, Alvaro; Ruiz-Arias, José Antonio; Pozo-Vazquez, David; Tovar-Pescador, Joaquin

    2013-01-01

    An optimized artificial neural network ensemble model is built to estimate daily global solar radiation over large areas. The model uses clear-sky estimates and satellite images as input variables. Unlike most studies using satellite imagery based on visible channels, our model also exploits all information within infrared channels of the Meteosat 9 satellite. A genetic algorithm is used to optimize selection of model inputs, for which twelve are selected – eleven 3-km Meteosat 9 channels and one clear-sky term. The model is validated in Andalusia (Spain) from January 2008 through December 2008. Measured data from 83 stations across the region are used, 65 for training and 18 independent ones for testing the model. At the latter stations, the ensemble model yields an overall root mean square error of 6.74% and correlation coefficient of 99%; the generated estimates are relatively accurate and errors spatially uniform. The model yields reliable results even on cloudy days, improving on current models based on satellite imagery. - Highlights: • Daily solar radiation data are generated using an artificial neural network ensemble. • Eleven Meteosat channels observations and a clear sky term are used as model inputs. • Model exploits all information within infrared Meteosat channels. • Measured data for a year from 83 ground stations are used. • The proposed approach has better performance than existing models on daily basis

  14. Radiation-hard mid-power booster optical fiber amplifiers for high-speed digital and analogue satellite laser communication links

    Science.gov (United States)

    Stampoulidis, L.; Kehayas, E.; Stevens, G.; Henwood-Moroney, L.; Hosking, P.; Robertson, A.

    2017-11-01

    Optical laser communications (OLC) has been identified as the technology to enable high-data rate, secure links between and within satellites, as well as between satellites and ground stations with decreased mass, size, and electrical power compared to traditional RF technology.

  15. Increasing cellular coverage within integrated terrestrial/satellite mobile networks

    Science.gov (United States)

    Castro, Jonathan P.

    1995-01-01

    When applying the hierarchical cellular concept, the satellite acts as giant umbrella cell covering a region with some terrestrial cells. If a mobile terminal traversing the region arrives to the border-line or limits of a regular cellular ground service, network transition occurs and the satellite system continues the mobile coverage. To adequately assess the boundaries of service of a mobile satellite system an a cellular network within an integrated environment, this paper provides an optimized scheme to predict when a network transition may be necessary. Under the assumption of a classified propagation phenomenon and Lognormal shadowing, the study applies an analytical approach to estimate the location of a mobile terminal based on a reception of the signal strength emitted by a base station.

  16. 47 CFR 25.145 - Licensing conditions for the Fixed-Satellite Service in the 20/30 GHz bands.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Licensing conditions for the Fixed-Satellite Service in the 20/30 GHz bands. 25.145 Section 25.145 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Applications and Licenses Space Stations § 25...

  17. Aircraft monitoring by the fusion of satellite and ground ADS-B data

    Science.gov (United States)

    Zhang, Xuan; Zhang, Jingjing; Wu, Shufan; Cheng, Qian; Zhu, Rui

    2018-02-01

    The Automatic Dependent Surveillance- Broadcast (ADS-B) system is today a standard equipment on civil aircraft, transmitting periodically data packages containing information of key data such as aircraft ID, position, altitude and intention. It is designed for terrestrial based ground station to monitor air traffic flow in certain regions. Space based ADS-B is the idea to place sensitive receivers on board satellites in orbit, which can receive ADS-B packages and relay them the relevant ground stations. The terrestrial ADS-B receiver has been widely applied for airport information system, help monitor and control traffic flow, etc. However, its coverage is strongly limited by sea or mountain conditions. This paper first introduces the CubeSat mission, then discusses the integrated application of ADS-B data received from ground stations and from satellites, analyze their characteristics with statistical results of comparison, and explore the technologies to fuse these two different data resources for an integrated application. The satellite data is based on a Chinese CubeSat, STU-2C, being launched into space on Sept 25th 2015. The ADS-B data received from two different resources have shown a good complementary each other, such as to increase the coverage of space for air traffic, and to monitor the whole space in a better and complete way.

  18. On Chinese National Continuous Operating Reference Station System of GNSS

    Directory of Open Access Journals (Sweden)

    CHEN Junyong

    2007-11-01

    Full Text Available Objective: Global navigation satellite system (GNSS Continuous Operating Reference Station (CORS System can maintain a accurate, 3D, geocentric and dynamic reference coordinate frame in the corresponding area, can provide positioning and navigation service. It can also serve for the meteorology, geodynamics, earthquake monitoring and Location Based services (LBS etc in the same area. Until now, our country can’t provide a facing National CORS System serving for every profession and trade, and the national sharing platform of CORS System resources has not been established. So this paper discusses some valuable insight how to construct the National CORS System in China. Method: Constructing goal、Service object、CORS distribution、CORS geographic、geology and communication environment and other factors, are major considerations for the Constructing the National CORS System. Moreover, constructing GNSS CORS is more specific, mainly from four aspects, namely site-selection、civil construction、security measures and equipment-selection for consideration. Outcome: The project of the Constructing Global navigation satellite system (GNSS Continuous Operating Reference Station (CORS System in china is put forward, and is discussed from goal、principle、project and other for construction. Some meaning thought how to construct the National CORS System is submitted Conclusion: The Global navigation satellite system (GNSS Continuous Operating Reference Station (CORS System in china is the lack of a unified planning and design in the national level. So far, the national CORS system serving all walks of life has not been provided, and the national sharing platform of CORS System resources has not been established The primary mission of the Global navigation satellite system (GNSS Continuous Operating Reference Station (CORS System in china is as follows: using data set of GNSS and receiving, transport, process, integration, transmit information and

  19. Satellite and ground measurements of latitude distribution of upper ionosphere parameters in the region of the main trough of ionization

    International Nuclear Information System (INIS)

    Filippov, V.M.; Alekseev, V.N.; Afonin, V.V.

    1988-01-01

    Results of simultaneous complex measurements of subauroral ionosphere structure at observations of charged-particle precipitation at Interkosmos-19 satellite, electron concentration and temperature at Kosmos-900 satellite, ionosphere parameters and plasma convection at Zhigansk (L∼4) and Jakutsk (L∼3) stations and 630.0 mm line luminescence by scanning photometer at Zhigansk station, carried out on the 26 - 27.03.1979, are presented. It is found, that the through polar edge is formed by low-energy electron precipitations in diffuse auroral zone. It is confirmed by spatial coincidence of diffuse precipitations equatorial boundary, determined by satellite and ground optical measurements, with the ionization main through polar edge, determined by ground ionospherical observation and satellite measurements Ne at Kosmos-900 satellite. Results of these complex experiments show as well, that one of the main mechanisms of main ionospherical through formation may be plasma convection peculiarities within F region at subauroral zone widthes

  20. Clock synchronisation experiment in India using symphonie satellite

    Science.gov (United States)

    Somayajulu, Y. V.; Mathur, B. S.; Banerjee, P.; Garg, S. C.; Singh, L.; Sood, P. C.; Tyagi, T. R.; Jain, C. L.; Kumar, K.

    1979-01-01

    A recent clock synchronization experiment between the National Physical Laboratory (NPL), New Delhi and Space Applications Center (SAC), Ahemedabad, in India via geostationary satellite symphonie 2, stationed at 49 E longitude, is reported. A two-way transmission using a microwave transponder considered to provide the greatest precision in synchronization of two remote clocks is described.

  1. Federated Ground Station Network Model and Interface Specification

    Science.gov (United States)

    2014-12-01

    of-sight of a small portion of the ground at any moment due to the geometry of a satellite in LEO above a planet of Earth’s size. The portion of the...Subnetwork 3 started out as a lone network in which there was a single CA and a number of ground stations. Then Subnetwork 3 joined with SA 1 and its

  2. Analysis on BDS Satellite Internal Multipath and Its Impact on Wide-lane FCB Estimation

    Directory of Open Access Journals (Sweden)

    RUAN Rengui

    2017-08-01

    Full Text Available To the issue of the satellite internal multipath (SIMP of BeiDou satellites, it proposed and emphasized that the SIMP model should be established as a function of the nadir angle with respect to the observed satellite rather than the elevation of the measurement, so that it can be used for receivers at various altitude. BDS data from global distributed stations operated by the International Monitoring and Assessment System (iGMAS and the Multi-GNSS Experiment (MGEX of the International GNSS Service (IGS are collected and a new SIMP model as a piece-wise linear function of the nadir angle is released for the IGSO-and MEO-satellite groups and for B1, B2 and B3 frequency band individually. The SIMP of GEO,IGSO and MEO satellites is further analyzed with B1/B2 dual-frequency data onboard the FengYun-3 C(FY3C satellite at an altitude of~830 km, and it showed that, for nadir angles smaller than 7°, the SIMP values for GEO is quite close to the IGSO's, especially for B2, which may suggest that the SIMP model for IGSO satellites possibly also works for GEO satellites. It also demonstrated that, when the nadir angle is smaller than 12°for the MEO and 7°for the IGSO, the estimated SIMP model with data from FY3C is considerable consistent with that estimated with data collected at ground stations. Experiments are carried out to investigate the impacts of the SIMP on wide-lane fractional cycle bias (FCB estimation for BDS satellites. The result indicates that, with the correction of the estimated SIMP, the repeatability of the FCB series is significantly improved by more than 60% for all satellites. Specifically, for the MEO and IGSO satellites, the repeatability is smaller than 0.05 cycle; the repeatability of 0.023 and 0.068 cycles achieved for GEO satellites C01 and C02 respectively with the estimated SIMP model for IGSO satellites.

  3. A Method for Estimating BeiDou Inter-frequency Satellite Clock Bias

    Directory of Open Access Journals (Sweden)

    LI Haojun

    2016-02-01

    Full Text Available A new method for estimating the BeiDou inter-frequency satellite clock bias is proposed, considering the shortage of the current methods. The constant and variable parts of the inter-frequency satellite clock bias are considered in the new method. The data from 10 observation stations are processed to validate the new method. The characterizations of the BeiDou inter-frequency satellite clock bias are also analyzed using the computed results. The results of the BeiDou inter-frequency satellite clock bias indicate that it is stable in the short term. The estimated BeiDou inter-frequency satellite clock bias results are molded. The model results show that the 10 parameters of model for each satellite can express the BeiDou inter-frequency satellite clock bias well and the accuracy reaches cm level. When the model parameters of the first day are used to compute the BeiDou inter-frequency satellite clock bias of the second day, the accuracy also reaches cm level. Based on the stability and modeling, a strategy for the BeiDou satellite clock service is presented to provide the reference of our BeiDou.

  4. Satellite switching concepts for European business services in the nineties

    Science.gov (United States)

    Lombard, D.; Rouffet, D.

    A first generation of business communication satellites are now operational or to be launched. Increased demands for communication satellite facilities will develop, if special services, such as videoconferencing, can be provided at a reasonable cost. For such developments, it will be necessary to define a second generation of business communication satellites. The present investigation evaluates briefly the size of the expected European market for 1995. A study is conducted of the payload structure for the required satellite system, and aspects related to link budgets and power consumption are explored. It is found that system dimensioning is determined by the up-link and by technology. Critical factors are related to the output and input multiplexors for the link budget, the switching matrix, and implications for the mass budget. The best trade-off between technological, mass, and link budget limitations is achieved in connection with the employment of a hinged antennas satellite, using an intermediate number of spot beams and associated earth stations of reasonable size.

  5. TAK1 modulates satellite stem cell homeostasis and skeletal muscle repair

    Science.gov (United States)

    Ogura, Yuji; Hindi, Sajedah M.; Sato, Shuichi; Xiong, Guangyan; Akira, Shizuo; Kumar, Ashok

    2015-01-01

    Satellite cells are resident adult stem cells that are required for regeneration of skeletal muscle. However, signalling mechanisms that regulate satellite cell function are less understood. Here we demonstrate that transforming growth factor-β-activated kinase 1 (TAK1) is important in satellite stem cell homeostasis and function. Inactivation of TAK1 in satellite cells inhibits muscle regeneration in adult mice. TAK1 is essential for satellite cell proliferation and its inactivation causes precocious differentiation. Moreover, TAK1-deficient satellite cells exhibit increased oxidative stress and undergo spontaneous cell death, primarily through necroptosis. TAK1 is required for the activation of NF-κB and JNK in satellite cells. Forced activation of NF-κB improves survival and proliferation of TAK1-deficient satellite cells. Furthermore, TAK1-mediated activation of JNK is essential to prevent oxidative stress and precocious differentiation of satellite cells. Collectively, our study suggests that TAK1 is required for maintaining the pool of satellite stem cells and for regenerative myogenesis. PMID:26648529

  6. Evaluating Surface Radiation Fluxes Observed From Satellites in the Southeastern Pacific Ocean

    Science.gov (United States)

    Pinker, R. T.; Zhang, B.; Weller, R. A.; Chen, W.

    2018-03-01

    This study is focused on evaluation of current satellite and reanalysis estimates of surface radiative fluxes in a climatically important region. It uses unique observations from the STRATUS Ocean Reference Station buoy in a region of persistent marine stratus clouds 1,500 km off northern Chile during 2000-2012. The study shows that current satellite estimates are in better agreement with buoy observations than model outputs at a daily time scale and that satellite data depict well the observed annual cycle in both shortwave and longwave surface radiative fluxes. Also, buoy and satellite estimates do not show any significant trend over the period of overlap or any interannual variability. This verifies the stability and reliability of the satellite data and should make them useful to examine El Niño-Southern Oscillation variability influences on surface radiative fluxes at the STRATUS site for longer periods for which satellite record is available.

  7. Technical comparison of several global mobile satellite communications systems

    Science.gov (United States)

    Comparetto, Gary M.

    The era of satellite-based mobile satellite communications (MSC) systems started with the first MARISAT satellite which was launched into a geostationary orbit over the Pacific Ocean in 1976 to provide communications between ships and shore stations. The combination of high cost and unacceptably large equipment has kept the space-based MSC systems from appealing to the wider market of personal mobile communications. The progress made over the last ten years, however, in digital voice processing, satellite technology, and component miniaturization has resulted in the viability of satellite-based mobile satellite communications systems to meet the growing market in personal mobile communications using handsets similar to those currently in use with land-based cellular systems. Three of the more mature LEO/MEO satellite systems are addressed in this paper including GLOBALSTAR, Iridium, and Odyssey. The system architectures of each system are presented along with a description of the satellite and user handset designs and the multiaccess techniques employed. It will be shown that, although a number of similarities exist among the system addressed, each system is unique in a variety of significant design areas. It is concluded that the technical feasibility of satellite-based mobile satellite communications systems seems to be secure. It will be challenging, however, for the vendors to actually develop and deploy these systems in a cost effective, timely, and reliable way that meets a continually evolving set of requirements based upon a rapidly changing technology base.

  8. Asian Dust Weather Categorization with Satellite and Surface Observations

    Science.gov (United States)

    Lin, Tang-Huang; Hsu, N. Christina; Tsay, Si-Chee; Huang, Shih-Jen

    2011-01-01

    This study categorizes various dust weather types by means of satellite remote sensing over central Asia. Airborne dust particles can be identified by satellite remote sensing because of the different optical properties exhibited by coarse and fine particles (i.e. varying particle sizes). If a correlation can be established between the retrieved aerosol optical properties and surface visibility, the intensity of dust weather can be more effectively and consistently discerned using satellite rather than surface observations. In this article, datasets consisting of collocated products from Moderate Resolution Imaging Spectroradiometer Aqua and surface measurements are analysed. The results indicate an exponential relationship between the surface visibility and the satellite-retrieved aerosol optical depth, which is subsequently used to categorize the dust weather. The satellite-derived spatial frequency distributions in the dust weather types are consistent with China s weather station reports during 2003, indicating that dust weather classification using satellite data is highly feasible. Although the period during the springtime from 2004 to 2007 may be not sufficient for statistical significance, our results reveal an increasing tendency in both intensity and frequency of dust weather over central Asia during this time period.

  9. Proposed systems configurations for a satellite based ISDN

    Science.gov (United States)

    Capece, M.; Pavesi, B.; Tozzi, P.; Galligan, K. P.

    This paper summarizes concepts developed during a study for the ESA in which the evolution of ISDN capability and the impact in the satellite land mobile area are examined. Following the progressive steps of the expected ISDN implementation and the potential market penetration, a space based system capable of satisfying particular user services classes has been investigated. The approach used is to establish a comparison between the requirements of potential mobile users and the services already envisaged by ISDN, identifying the service subclasses that might be adopted in a mobile environment through a satellite system. Two system alternatives, with different ISDN compatibility, have been identified. The first option allows a partial compatibility, by providing the central stations of the earth segment with suitable interface units. The second option permits a full integration, operating on the satellite on-board capabilities.

  10. Satellite data transferring subsystem based on system 'Materik'

    International Nuclear Information System (INIS)

    Belogub, V.P.; Kal'schikov, I.B.; Kirillov, Yu.K.; Kulikov, V.N.; Shumov, A.N.

    1998-01-01

    One of the most important indicators of successful function of the International Monitoring System is existence of highly reliable communication channels providing transfer data from observation points in a real time scales. Up to present, the most communication channels were provided with existing VF-channels (Voice Frequency) that are relatively low-speedy in transfer process (4.8-9.6 kbit/sec.). In addition, reliability of the channels is insufficient because of many retransmission points. In connection with it, the special control service of MD RF decided to improve the information transfer system (ITS) installed between the observation point and National Data Center (Dubna-city). The improvement of the ITS comprises replacement of wire lines of VF-channels with satellite ones within the framework of the computer-aided satellite communication system (CASCS) M aterik . Besides it was considered to be expedient that the satellite system of data transfer from NPP to the Crisis Center of 'ROSENERGOATOM' Concern would be combined with CASCS M aterik , using the facilities of the Central Earth Station of Satellite Communication (CESSC) in Dubna. Such approach to the creation of Satellite communication has advantages in solution of radiation safety and global monitoring issues

  11. Global mobile satellite communications theory for maritime, land and aeronautical applications

    CERN Document Server

    Ilčev, Stojče Dimov

    2017-01-01

    This book discusses current theory regarding global mobile satellite communications (GMSC) for maritime, land (road and rail), and aeronautical applications. It covers how these can enable connections between moving objects such as ships, road and rail vehicles and aircrafts on one hand, and on the other ground telecommunications subscribers through the medium of communications satellites, ground earth stations, Terrestrial Telecommunication Networks (TTN), Internet Service Providers (ISP) and other wireless and landline telecommunications providers. This new edition covers new developments and initiatives that have resulted in land and aeronautical applications and the introduction of new satellite constellations in non-geostationary orbits and projects of new hybrid satellite constellations. The book presents current GMSC trends, mobile system concepts and network architecture using a simple mode of style with understandable technical information, characteristics, graphics, illustrations and mathematics equ...

  12. GNSS satellite transmit power and its impact on orbit determination

    Science.gov (United States)

    Steigenberger, Peter; Thoelert, Steffen; Montenbruck, Oliver

    2018-06-01

    Antenna thrust is a small acceleration acting on Global Navigation Satellite System satellites caused by the transmission of radio navigation signals. Knowledge about the transmit power and the mass of the satellites is required for the computation of this effect. The actual transmit power can be obtained from measurements with a high-gain antenna and knowledge about the properties of the transmit and receive antennas as well as losses along the propagation path. Transmit power measurements for different types of GPS, GLONASS, Galileo, and BeiDou-2 satellites were taken with a 30-m dish antenna of the German Aerospace Center (DLR) located at its ground station in Weilheim. For GPS, total L-band transmit power levels of 50-240 W were obtained, 20-135 W for GLONASS, 95-265 W for Galileo, and 130-185 W for BeiDou-2. The transmit power differs usually only slightly for individual spacecraft within one satellite block. An exception are the GLONASS-M satellites where six subgroups with different transmit power levels could be identified. Considering the antenna thrust in precise orbit determination of GNSS satellites decreases the orbital radius by 1-27 mm depending on the transmit power, the satellite mass, and the orbital period.

  13. Orbit and clock determination of BDS regional navigation satellite system based on IGS M-GEX and WHU BETS tracking network

    Science.gov (United States)

    GENG, T.; Zhao, Q.; Shi, C.; Shum, C.; Guo, J.; Su, X.

    2013-12-01

    BeiDou Navigation Satellite System (BDS) began to provide the regional open service on December 27th 2012 and will provide the global open service by the end of 2020. Compared to GPS, the space segment of BDS Regional System consists of 5 Geostationary Earth Orbit satellites (GEO), 5 Inclined Geosynchronous Orbit satellites (IGSO) and 4 Medium Earth orbit (MEO) satellites. Since 2011, IGS Multiple-GNSS Experiment (M-GEX) focuses on tracking the newly available GNSS signals. This includes all signals from the modernized satellites of the GPS and GLONASS systems, as well as signals of the BDS, Galileo and QZSS systems. Up to now, BDS satellites are tracked by around 25 stations with a variety of different antennas and receivers from different GNSS manufacture communities in M-GEX network. Meanwhile, there are 17 stations with Unicore Communications Incorporation's GPS/BDS receivers in BeiDou Experimental Tracking Stations (BETS) network by Wuhan University. In addition, 5 BDS satellites have been tracking by the International Laser Ranging Service (ILRS). BDS performance is expected to be further studied by the GNSS communities. Following an introduction of the BDS system and above different tracking network, this paper discusses the achieved BDS characterization and performance assessment. Firstly, the BDS signal and measurement quality are analyzed with different antennas and receivers in detail compared to GPS. This includes depth of coverage for satellite observation, carrier-to-noise-density ratios, code noise and multipath, carrier phase errors. Secondly, BDS Precise Orbit Determination (POD) is processed. Different arc lengths and sets of orbit parameters are tested using Position And Navigation Data Analysis software (PANDA) which is developed at the Wuhan University. GEO, IGSO and MEO satellites orbit quality will be assessed using overlap comparison, 2-day orbit fit and external validations with Satellite Laser Range (SLR). Then BDS satellites are equipped

  14. Service offerings and interfaces for the ACTS network of earth stations

    Science.gov (United States)

    Coney, T. A.; Dobyns, T. R.; Chitre, D. M.; Lindstrom, R.

    1988-01-01

    The NASA Advanced Communications Technology Satellite (ACTS) will use a network of about 20 earth stations to operate as a Mode 1 network. This network will support two ACTS program objectives: to verify the technical performance of ACTS Mode 1 operation in GEO and to demonstrate the types and quality of services that can be provided by an ACTS Mode 1 communications system. The terrestrial interface design is a critical element in assuring that these network earth stations will meet the objectives. In this paper, the applicable terrestrial interface design requirements, the resulting interface specifications, and the associated terrestrial input/output hardware are discussed. A functional block diagram of a network earth station is shown.

  15. Sentinel-2: next generation satellites for optical land observation from space

    Science.gov (United States)

    Lautenschläger, G.; Gessner, R.; Gockel, W.; Haas, C.; Schweickert, G.; Bursch, S.; Welsch, M.; Sontag, H.

    2013-10-01

    flexible operational concept, allowing downlink of all mission data to a nominal X-band core ground stations network. In addition, users could receive mission data sets at selected X-band local user ground stations or through an Optical Communication Payload (OCP) via an inter-orbit optical link to a geostationary EDRS relay satellite at Ka-band user ground stations. Different priority schemes can be selected in flight to allow transmission of critical image data with the shortest possible latency. The system is designed for high system autonomy allowing for pre-programming of the operational schedule for 15 days in advance without interference from ground. Apart from the nominal and extended imaging modes, the satellites also feature a calibration mode to support regular in-orbit radiometric calibration of the instrument. Overall, the Sentinel- 2 satellites are designed to provide in-orbit availability for the instrument data greater than 97%, which fulfills the requirements of a fully operational system for multispectral Earth observation.

  16. 75 FR 72968 - Implementation of Section 203 of the Satellite Television Extension and Localism Act of 2010...

    Science.gov (United States)

    2010-11-29

    ... sufficient audience to be considered local and those that do not''). \\15\\ Section 202 of the Satellite Home... into the local market of that television station for reception by subscribers.\\27\\ Generally, a... television stations ``that have sufficient audience to be considered local and those that do not.'' 1972...

  17. A proposed architecture for a satellite-based mobile communications network - The lowest three layers

    Science.gov (United States)

    Yan, T. Y.; Naderi, F. M.

    1986-01-01

    Architecture for a commercial mobile satellite network is proposed. The mobile satellite system (MSS) is composed of a network management center, mobile terminals, base stations, and gateways; the functions of each component are described. The satellite is a 'bent pipe' that performs frequency translations, and it has multiple UHF beams. The development of the MSS design based on the seven-layer open system interconnection model is examined. Consideration is given to the functions of the physical, data link, and network layers and the integrated adaptive mobile access protocol.

  18. Recent Korean R&D in Satellite Communications

    Science.gov (United States)

    Lee, Ho-Jin; Kim, Jae Moung; Lee, Byung-Seub; Lee, Han; Ryoo, Jang-Soo

    The R&D in satellite communications in Korea has been driven mainly by KCC (Korea Communications Commission) but in a small scale compared to Korea space development program organized by MEST (Ministry of Education, Science and Technology). Public and civilian satcom sector R&D has been led mainly by ETRI with small/medium companies contrary to rare investment in private sector while military sector R&D has been orchestrated by ADD with defense industry. By the COMS (Communication, Ocean and Meteorological Satellite) experimental Ka-band payload, Korea pursues a space qualification of own technology for national infrastructure evolution as well as industrialization of space R&D results. Once COMS launched and space qualified in 2009, subsequent application experiments and new technology R&D like UHDTV will entail service and industry promotion. The payload technology is expected for the next Korean commercial satellites or for new OBP satellites. The COMS ground control system and GNSS ground station technologies are under development for COMS operation and enhanced GNSS services along with advent of Galileo respectively. Satellite broadband mobile VSAT based on DVB-S2/RCS (+M) and low profile tracking antennas have been developed for trains, ships, and planes. While APSI is developing GMR-1 based Thuraya handset functions, ETRI is designing IMT-Advanced satellite radio interface for satellite and terrestrial dual-mode handheld communication system like Japanese STICS, with universities' satellite OFDM researches. A 21GHz Ka-band higher-availability scalable HD broadcasting technology and SkyLife's hybrid satellite IPTV technology are being developed. In near term Korea will extend R&D programs to upgrade the space communication infrastructure for universal access to digital opportunity and safer daily life from disaster, and to promote space green IT industrialization, national security, and space resources sovereign. Japanese stakeholders are invited to establish

  19. Satellite ATM Networks: Architectures and Guidelines Developed

    Science.gov (United States)

    vonDeak, Thomas C.; Yegendu, Ferit

    1999-01-01

    An important element of satellite-supported asynchronous transfer mode (ATM) networking will involve support for the routing and rerouting of active connections. Work published under the auspices of the Telecommunications Industry Association (http://www.tiaonline.org), describes basic architectures and routing protocol issues for satellite ATM (SATATM) networks. The architectures and issues identified will serve as a basis for further development of technical specifications for these SATATM networks. Three ATM network architectures for bent pipe satellites and three ATM network architectures for satellites with onboard ATM switches were developed. The architectures differ from one another in terms of required level of mobility, supported data rates, supported terrestrial interfaces, and onboard processing and switching requirements. The documentation addresses low-, middle-, and geosynchronous-Earth-orbit satellite configurations. The satellite environment may require real-time routing to support the mobility of end devices and nodes of the ATM network itself. This requires the network to be able to reroute active circuits in real time. In addition to supporting mobility, rerouting can also be used to (1) optimize network routing, (2) respond to changing quality-of-service requirements, and (3) provide a fault tolerance mechanism. Traffic management and control functions are necessary in ATM to ensure that the quality-of-service requirements associated with each connection are not violated and also to provide flow and congestion control functions. Functions related to traffic management were identified and described. Most of these traffic management functions will be supported by on-ground ATM switches, but in a hybrid terrestrial-satellite ATM network, some of the traffic management functions may have to be supported by the onboard satellite ATM switch. Future work is planned to examine the tradeoffs of placing traffic management functions onboard a satellite as

  20. 47 CFR 25.158 - Consideration of GSO-like satellite applications.

    Science.gov (United States)

    2010-10-01

    ... directional antennas. Examples of GSO-like satellite systems are those which use earth stations with antennas... contiguous bandwidth in both the uplink and downlink band. Each licensee's bandwidth selection shall not... selection. (e) Services offered pursuant to a GSO-like license in a frequency band granted before the...

  1. Initial results of centralized autonomous orbit determination of the new-generation BDS satellites with inter-satellite link measurements

    Science.gov (United States)

    Tang, Chengpan; Hu, Xiaogong; Zhou, Shanshi; Liu, Li; Pan, Junyang; Chen, Liucheng; Guo, Rui; Zhu, Lingfeng; Hu, Guangming; Li, Xiaojie; He, Feng; Chang, Zhiqiao

    2018-01-01

    Autonomous orbit determination is the ability of navigation satellites to estimate the orbit parameters on-board using inter-satellite link (ISL) measurements. This study mainly focuses on data processing of the ISL measurements as a new measurement type and its application on the centralized autonomous orbit determination of the new-generation Beidou navigation satellite system satellites for the first time. The ISL measurements are dual one-way measurements that follow a time division multiple access (TDMA) structure. The ranging error of the ISL measurements is less than 0.25 ns. This paper proposes a derivation approach to the satellite clock offsets and the geometric distances from TDMA dual one-way measurements without a loss of accuracy. The derived clock offsets are used for time synchronization, and the derived geometry distances are used for autonomous orbit determination. The clock offsets from the ISL measurements are consistent with the L-band two-way satellite, and time-frequency transfer clock measurements and the detrended residuals vary within 0.5 ns. The centralized autonomous orbit determination is conducted in a batch mode on a ground-capable server for the feasibility study. Constant hardware delays are present in the geometric distances and become the largest source of error in the autonomous orbit determination. Therefore, the hardware delays are estimated simultaneously with the satellite orbits. To avoid uncertainties in the constellation orientation, a ground anchor station that "observes" the satellites with on-board ISL payloads is introduced into the orbit determination. The root-mean-square values of orbit determination residuals are within 10.0 cm, and the standard deviation of the estimated ISL hardware delays is within 0.2 ns. The accuracy of the autonomous orbits is evaluated by analysis of overlap comparison and the satellite laser ranging (SLR) residuals and is compared with the accuracy of the L-band orbits. The results indicate

  2. A Restricted Boltzman Neural Net to Infer Carbon Uptake from OCO-2 Satellite Data

    Science.gov (United States)

    Halem, M.; Dorband, J. E.; Radov, A.; Barr-Dallas, M.; Gentine, P.

    2015-12-01

    For several decades, scientists have been using satellite observations to infer climate budgets of terrestrial carbon uptake employing inverse methods in conjunction with ecosystem models and coupled global climate models. This is an extremely important Big Data calculation today since the net annual photosynthetic carbon uptake changes annually over land and removes on average ~20% of the emissions from human contributions to atmospheric loading of CO2 from fossil fuels. Unfortunately, such calculations have large uncertainties validated with in-situ networks of measuring stations across the globe. One difficulty in using satellite data for these budget calculations is that the models need to assimilate surface fluxes of CO2 as well as soil moisture, vegatation cover and the eddy covariance of latent and sensible heat to calculate the carbon fixed in the soil while satellite spectral observations only provide near surface concentrations of CO2. In July 2014, NASA successfully launched OCO-2 which provides 3km surface measurements of CO2 over land and oceans. We have collected nearly one year of Level 2 XCO2 data from the OCO-2 satellite for 3 sites of ~200 km2 at equatorial, temperate and high latitudes. Each selected site was part of the Fluxnet or ARM system with tower stations for measuring and collecting CO2 fluxes on an hourly basis, in addition to eddy transports of the other parameters. We are also planning to acquire the 4km NDVI products from MODIS and registering the data to the 3km XCO2 footprints for the three sites. We have implemented a restricted Boltzman machine on the quantum annealing D-Wave computer, a novel deep learning neural net, to be used for training with station data to infer CO2 fluxes from collocated XCO2, MODIS vegetative land cover and MERRA reanalysis surface exchange products. We will present performance assessments of the D-Wave Boltzman machine for generating XCO2 fluxes from the OCO-2 satellite observations for the 3 sites by

  3. Bottom Pressure Tides Along a Line in the Southeast Atlantic Ocean and Comparisons with Satellite Altimetry

    Science.gov (United States)

    Ray, Richard D.; Byrne, Deidre A.

    2010-01-01

    Seafloor pressure records, collected at 11 stations aligned along a single ground track of the Topex/Poseidon and Jason satellites, are analyzed for their tidal content. With very low background noise levels and approximately 27 months of high-quality records, tidal constituents can be estimated with unusually high precision. This includes many high-frequency lines up through the seventh-diurnal band. The station deployment provides a unique opportunity to compare with tides estimated from satellite altimetry, point by point along the satellite track, in a region of moderately high mesoscale variability. That variability can significantly corrupt altimeter-based tide estimates, even with 17 years of data. A method to improve the along-track altimeter estimates by correcting the data for nontidal variability is found to yield much better agreement with the bottom-pressure data. The technique should prove useful in certain demanding applications, such as altimetric studies of internal tides.

  4. Surface navigation on Mars with a Navigation Satellite

    Science.gov (United States)

    Vijayaraghavan, A.; Thurman, Sam W.; Kahn, Robert D.; Hastrup, Rolf C.

    Radiometric navigation data from the Deep Space Network (DSN) stations on the earth to transponders and other surface elements such as rovers and landers on Mars, can determine their positions to only within a kilometer in inertial space. The positional error is mostly in the z-component of the surface element parallel to the Martian spin-axis. However, with Doppler and differenced-Doppler data from a Navigation Satellite in orbit around Mars to two or more of such transponders on the planetary surface, their positions can be determined to within 15 meters (or 20 meters for one-way Doppler beacons on Mars) in inertial space. In this case, the transponders (or other vehicles) on Mars need not even be capable of directly communicating to the earth. When the Navigation Satellite data is complemented by radiometric observations from the DSN stations also, directly to the surface elements on Mars, their positions can be determined to within 3 meters in inertial space. The relative positions of such surface elements on Mars (relative to one another) in Mars-fixed coordinates, however, can be determined to within 5 meters from simply range and Doppler data from the DSN stations to the surface elements. These results are obtained from covariance studies assuming X-band data noise levels and data-arcs not exceeding 10 days. They are significant in the planning and deployment of a Mars-based navigation network necessary to support real-time operations during critical phases of manned exploration of Mars.

  5. 47 CFR 25.222 - Blanket Licensing provisions for Earth Stations on Vessels (ESVs) receiving in the 10.95-11.2 GHz...

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Blanket Licensing provisions for Earth Stations...) frequency band, operating with Geostationary Orbit (GSO) Satellites in the Fixed-Satellite Service. 25.222 Section 25.222 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES...

  6. A New Database of Global and Direct Solar Radiation Using the Eastern Meteosat Satellite, Models and Validation

    Directory of Open Access Journals (Sweden)

    Ana Gracia Amillo

    2014-08-01

    Full Text Available We present a new database of solar radiation at ground level for Eastern Europe and Africa, the Middle East and Asia, estimated using satellite images from the Meteosat East geostationary satellites. The method presented calculates global horizontal (G and direct normal irradiance (DNI at hourly intervals, using the full Meteosat archive from 1998 to present. Validation of the estimated global horizontal and direct normal irradiance values has been performed by comparison with high-quality ground station measurements. Due to the low number of ground measurements in the viewing area of the Meteosat Eastern satellites, the validation of the calculation method has been extended by a comparison of the estimated values derived from the same class of satellites but positioned at 0°E, where more ground stations are available. Results show a low overall mean bias deviation (MBD of +1.63 Wm−2 or +0.73% for global horizontal irradiance. The mean absolute bias of the individual station MBD is 2.36%, while the root mean square deviation of the individual MBD values is 3.18%. For direct normal irradiance the corresponding values are overall MBD of +0.61 Wm−2 or +0.62%, while the mean absolute bias of the individual station MBD is 5.03% and the root mean square deviation of the individual MBD values is 6.30%. The resulting database of hourly solar radiation values will be made freely available. These data will also be integrated into the PVGIS web application to allow users to estimate the energy output of photovoltaic (PV systems not only in Europe and Africa, but now also in Asia.

  7. Automation and robotics for the Space Station - The influence of the Advanced Technology Advisory Committee

    Science.gov (United States)

    Nunamaker, Robert R.; Willshire, Kelli F.

    1988-01-01

    The reports of a committee established by Congress to identify specific systems of the Space Station which would advance automation and robotics technologies are reviewed. The history of the committee, its relation to NASA, and the reports which it has released are discussed. The committee's reports recommend the widespread use of automation and robotics for the Space Station, a program for technology development and transfer between industries and research and development communities, and the planned use of robots to service and repair satellites and their payloads which are accessible from the Space Station.

  8. Satellite retrieval of cloud condensation nuclei concentrations by using clouds as CCN chambers

    Science.gov (United States)

    Rosenfeld, Daniel; Zheng, Youtong; Hashimshoni, Eyal; Pöhlker, Mira L.; Jefferson, Anne; Pöhlker, Christopher; Yu, Xing; Zhu, Yannian; Liu, Guihua; Yue, Zhiguo; Fischman, Baruch; Li, Zhanqing; Giguzin, David; Goren, Tom; Artaxo, Paulo; Pöschl, Ulrich

    2016-01-01

    Quantifying the aerosol/cloud-mediated radiative effect at a global scale requires simultaneous satellite retrievals of cloud condensation nuclei (CCN) concentrations and cloud base updraft velocities (Wb). Hitherto, the inability to do so has been a major cause of high uncertainty regarding anthropogenic aerosol/cloud-mediated radiative forcing. This can be addressed by the emerging capability of estimating CCN and Wb of boundary layer convective clouds from an operational polar orbiting weather satellite. Our methodology uses such clouds as an effective analog for CCN chambers. The cloud base supersaturation (S) is determined by Wb and the satellite-retrieved cloud base drop concentrations (Ndb), which is the same as CCN(S). Validation against ground-based CCN instruments at Oklahoma, at Manaus, and onboard a ship in the northeast Pacific showed a retrieval accuracy of ±25% to ±30% for individual satellite overpasses. The methodology is presently limited to boundary layer not raining convective clouds of at least 1 km depth that are not obscured by upper layer clouds, including semitransparent cirrus. The limitation for small solar backscattering angles of <25° restricts the satellite coverage to ∼25% of the world area in a single day. PMID:26944081

  9. An Overview of the GOLD Experiment Between the ETS-6 Satellite and the Table Mountain Facility

    Science.gov (United States)

    Wilson, K. E.

    1996-01-01

    The Ground/Orbiter Lasercomm Demonstration is a demonstration of optical communications between the Japanese Engineering Test Satellite (ETS-VI) and an optical ground transmitting and receiving station at the Table Mountain Facility in Wrightwood, California. Laser transmissions to the satellite are performed for approximately 4 hours every third night when the satellite is at apogee above Table Mountain. The experiment requires the coordination of resources at the Communications Research Laboratory (CRL), JPL, the National Aeronautics and Space Development Agency (NASDA) Tsukuba tracking station, and NASA's Deep Space Network at Goldstone, California, to generate and transmit real-time commands and receive telemetry from the ETS-VI. Transmissions to the ETS-VI began in November 1995 and are scheduled to last into the middle of January 1996, when the satellite is expected to be eclipsed by the Earth's shadow for a major part of its orbit. The eclipse is expected to last for about 2 months, and during this period there will be limited electrical power available on board the satellite. NASDA plans to restrict experiments with the ETS-VI during this period, and no laser transmissions are planned. Posteclipse experiments are currently being negotiated. GOLD is a joint NASA-CRL experiment that is being conducted by JPL in coordination with CRL and NASDA.

  10. Channel coding in the space station data system network

    Science.gov (United States)

    Healy, T.

    1982-01-01

    A detailed discussion of the use of channel coding for error correction, privacy/secrecy, channel separation, and synchronization is presented. Channel coding, in one form or another, is an established and common element in data systems. No analysis and design of a major new system would fail to consider ways in which channel coding could make the system more effective. The presence of channel coding on TDRS, Shuttle, the Advanced Communication Technology Satellite Program system, the JSC-proposed Space Operations Center, and the proposed 30/20 GHz Satellite Communication System strongly support the requirement for the utilization of coding for the communications channel. The designers of the space station data system have to consider the use of channel coding.

  11. Improving the Quality of Satellite Imagery Based on Ground-Truth Data from Rain Gauge Stations

    Directory of Open Access Journals (Sweden)

    Ana F. Militino

    2018-03-01

    Full Text Available Multitemporal imagery is by and large geometrically and radiometrically accurate, but the residual noise arising from removal clouds and other atmospheric and electronic effects can produce outliers that must be mitigated to properly exploit the remote sensing information. In this study, we show how ground-truth data from rain gauge stations can improve the quality of satellite imagery. To this end, a simulation study is conducted wherein different sizes of outlier outbreaks are spread and randomly introduced in the normalized difference vegetation index (NDVI and the day and night land surface temperature (LST of composite images from Navarre (Spain between 2011 and 2015. To remove outliers, a new method called thin-plate splines with covariates (TpsWc is proposed. This method consists of smoothing the median anomalies with a thin-plate spline model, whereby transformed ground-truth data are the external covariates of the model. The performance of the proposed method is measured with the square root of the mean square error (RMSE, calculated as the root of the pixel-by-pixel mean square differences between the original data and the predicted data with the TpsWc model and with a state-space model with and without covariates. The study shows that the use of ground-truth data reduces the RMSE in both the TpsWc model and the state-space model used for comparison purposes. The new method successfully removes the abnormal data while preserving the phenology of the raw data. The RMSE reduction percentage varies according to the derived variables (NDVI or LST, but reductions of up to 20% are achieved with the new proposal.

  12. Space Station Integrated Kinetic Launcher for Orbital Payload Systems (SSIKLOPS) - Cyclops

    Science.gov (United States)

    Smith, James P.; Lamb, Craig R.; Ballard, Perry G.

    2013-01-01

    Access to space for satellites in the 50-100 kg class is a challenge for the small satellite community. Rideshare opportunities are limited and costly, and the small sat must adhere to the primary payloads schedule and launch needs. Launching as an auxiliary payload on an Expendable Launch Vehicle presents many technical, environmental, and logistical challenges to the small satellite community. To assist the community in mitigating these challenges and in order to provide the community with greater access to space for 50-100 kg satellites, the NASA International Space Station (ISS) and Engineering communities in collaboration with the Department of Defense (DOD) Space Test Program (STP) is developing a dedicated 50-100 kg class ISS small satellite deployment system. The system, known as Cyclops, will utilize NASA's ISS resupply vehicles to launch small sats to the ISS in a controlled pressurized environment in soft stow bags. The satellites will then be processed through the ISS pressurized environment by the astronaut crew allowing satellite system diagnostics prior to orbit insertion. Orbit insertion is achieved through use of the Japan Aerospace Exploration Agency's Experiment Module Robotic Airlock (JEM Airlock) and one of the ISS Robotic Arms. Cyclops' initial satellite deployment demonstration of DOD STP's SpinSat and UT/TAMU's Lonestar satellites will be toward the end of 2013 or beginning of 2014. Cyclops will be housed on-board the ISS and used throughout its lifetime. The anatomy of Cyclops, its concept of operations for satellite deployment, and its satellite interfaces and requirements will be addressed further in this paper.

  13. Assessment of four methods to estimate surface UV radiation using satellite data, by comparison with ground measurements from four stations in Europe

    Science.gov (United States)

    Arola, Antti; Kalliskota, S.; den Outer, P. N.; Edvardsen, K.; Hansen, G.; Koskela, T.; Martin, T. J.; Matthijsen, J.; Meerkoetter, R.; Peeters, P.; Seckmeyer, G.; Simon, P. C.; Slaper, H.; Taalas, P.; Verdebout, J.

    2002-08-01

    Four different satellite-UV mapping methods are assessed by comparing them against ground-based measurements. The study includes most of the variability found in geographical, meteorological and atmospheric conditions. Three of the methods did not show any significant systematic bias, except during snow cover. The mean difference (bias) in daily doses for the Rijksinstituut voor Volksgezondheid en Milieu (RIVM) and Joint Research Centre (JRC) methods was found to be less than 10% with a RMS difference of the order of 30%. The Deutsches Zentrum für Luft- und Raumfahrt (DLR) method was assessed for a few selected months, and the accuracy was similar to the RIVM and JRC methods. It was additionally used to demonstrate how spatial averaging of high-resolution cloud data improves the estimation of UV daily doses. For the Institut d'Aéronomie Spatiale de Belgique (IASB) method the differences were somewhat higher, because of their original cloud algorithm. The mean difference in daily doses for IASB was about 30% or more, depending on the station, while the RMS difference was about 60%. The cloud algorithm of IASB has been replaced recently, and as a result the accuracy of the IASB method has improved. Evidence is found that further research and development should focus on the improvement of the cloud parameterization. Estimation of daily exposures is likely to be improved if additional time-resolved cloudiness information is available for the satellite-based methods. It is also demonstrated that further development work should be carried out on the treatment of albedo of snow-covered surfaces.

  14. Feasibility of satellite quantum key distribution

    OpenAIRE

    Bonato, Cristian; Tomaello, Andrea; Da Deppo, Vania; Naletto, Giampiero; Villoresi, Paolo

    2009-01-01

    In this paper we present a novel analysis of the feasibility of quantum key distribution between a LEO satellite and a ground station. First of all, we study signal propagation through a turbulent atmosphere for uplinks and downlinks, discussing the contribution of beam spreading and beam wandering. Then we introduce a model for the background noise of the channel during night-time and day-time, calculating the signal-to-noise ratio for different configurations. We also discuss the expected e...

  15. A Battery Certification Testbed for Small Satellite Missions

    Science.gov (United States)

    Cameron, Zachary; Kulkarni, Chetan S.; Luna, Ali Guarneros; Goebel, Kai; Poll, Scott

    2015-01-01

    A battery pack consisting of standard cylindrical 18650 lithium-ion cells has been chosen for small satellite missions based on previous flight heritage and compliance with NASA battery safety requirements. However, for batteries that transit through the International Space Station (ISS), additional certification tests are required for individual cells as well as the battery packs. In this manuscript, we discuss the development of generalized testbeds for testing and certifying different types of batteries critical to small satellite missions. Test procedures developed and executed for this certification effort include: a detailed physical inspection before and after experiments; electrical cycling characterization at the cell and pack levels; battery-pack overcharge, over-discharge, external short testing; battery-pack vacuum leak and vibration testing. The overall goals of these certification procedures are to conform to requirements set forth by the agency and identify unique safety hazards. The testbeds, procedures, and experimental results are discussed for batteries chosen for small satellite missions to be launched from the ISS.

  16. TRAF6 regulates satellite stem cell self-renewal and function during regenerative myogenesis

    Science.gov (United States)

    Hindi, Sajedah M.; Kumar, Ashok

    2015-01-01

    Satellite cells are a stem cell population within adult muscle and are responsible for myofiber regeneration upon injury. Satellite cell dysfunction has been shown to underlie the loss of skeletal muscle mass in many acquired and genetic muscle disorders. The transcription factor paired box-protein-7 (PAX7) is indispensable for supplementing the reservoir of satellite cells and driving regeneration in normal and diseased muscle. TNF receptor–associated factor 6 (TRAF6) is an adaptor protein and an E3 ubiquitin ligase that mediates the activation of multiple cell signaling pathways in a context-dependent manner. Here, we demonstrated that TRAF6-mediated signaling is critical for homeostasis of satellite cells and their function during regenerative myogenesis. Selective deletion of Traf6 in satellite cells of adult mice led to profound muscle regeneration defects and dramatically reduced levels of PAX7 and late myogenesis markers. TRAF6 was required for the activation of MAPKs ERK1/2 and JNK1/2, which in turn activated the transcription factor c-JUN, which binds the Pax7 promoter and augments Pax7 expression. Moreover, TRAF6/c-JUN signaling repressed the levels of the microRNAs miR-1 and miR-206, which promote differentiation, to maintain PAX7 levels in satellite cells. We also determined that satellite cell–specific deletion of Traf6 exaggerates the dystrophic phenotype in the mdx (a mouse model of Duchenne muscular dystrophy) mouse by blunting the regeneration of injured myofibers. Collectively, our study reveals an essential role for TRAF6 in satellite stem cell function. PMID:26619121

  17. Satellite laser ranging to low Earth orbiters: orbit and network validation

    Science.gov (United States)

    Arnold, Daniel; Montenbruck, Oliver; Hackel, Stefan; Sośnica, Krzysztof

    2018-04-01

    Satellite laser ranging (SLR) to low Earth orbiters (LEOs) provides optical distance measurements with mm-to-cm-level precision. SLR residuals, i.e., differences between measured and modeled ranges, serve as a common figure of merit for the quality assessment of orbits derived by radiometric tracking techniques. We discuss relevant processing standards for the modeling of SLR observations and highlight the importance of line-of-sight-dependent range corrections for the various types of laser retroreflector arrays. A 1-3 cm consistency of SLR observations and GPS-based precise orbits is demonstrated for a wide range of past and present LEO missions supported by the International Laser Ranging Service (ILRS). A parameter estimation approach is presented to investigate systematic orbit errors and it is shown that SLR validation of LEO satellites is not only able to detect radial but also along-track and cross-track offsets. SLR residual statistics clearly depend on the employed precise orbit determination technique (kinematic vs. reduced-dynamic, float vs. fixed ambiguities) but also reveal pronounced differences in the ILRS station performance. Using the residual-based parameter estimation approach, corrections to ILRS station coordinates, range biases, and timing offsets are derived. As a result, root-mean-square residuals of 5-10 mm have been achieved over a 1-year data arc in 2016 using observations from a subset of high-performance stations and ambiguity-fixed orbits of four LEO missions. As a final contribution, we demonstrate that SLR can not only validate single-satellite orbit solutions but also precise baseline solutions of formation flying missions such as GRACE, TanDEM-X, and Swarm.

  18. Report of study group 3.3 ''LNG and LPG peak shaving and satellite plants''; Rapport du groupe d'etude 3.3 ''usines d'ecretement de pointes et stations satellites GNL et GPL''

    Energy Technology Data Exchange (ETDEWEB)

    Klein Nagelvoort, R.

    2000-07-01

    This report presents a world-wide overview of LNG and LPG Peak Shaving and Satellite Plants, compiled by the study group 3.3 of the International Gas Union. The scope of the work of the study group includes: - LPG peak shavers (LPG + air, N{sub 2}) in gas distribution networks; - LPG peak shavers for start-up and back-up fuel for LNG terminals and power stations; - LNG peak shavers for gas distribution networks; - Small-scale liquefaction plants for distribution to satellites and dedicated consumers (e.g. power generators, chemical plants, trucking companies etc.); - LNG peak shavers as back-up for large consumers; - Alternative liquefaction technologies for LNG and LPG (e.g. refrigeration cycles, supersonic expansion, thermo-acoustic designs); - Alternative storage tank designs for LNG and LPG. The report presents an overview of current installations world-wide and considers the prospects of technological developments with respect to equipment, remote operations and safety constraints. It also includes where possible a review of capital and operating costs, regulations, and an identification of opportunities and trends. The report collates the information available to the study group at the time of the writing, which may explain some heterogeneity in the document. (author)

  19. 47 CFR 25.218 - Off-axis EIRP envelopes for FSS earth station operations.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Off-axis EIRP envelopes for FSS earth station operations. 25.218 Section 25.218 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Standards § 25.218 Off-axis EIRP envelopes for FSS...

  20. Testing the gravitational interaction in the field of the Earth via satellite laser ranging and the Laser Ranged Satellites Experiment (LARASE)

    International Nuclear Information System (INIS)

    Lucchesi, D M; Peron, R; Visco, M; Anselmo, L; Pardini, C; Bassan, M; Pucacco, G

    2015-01-01

    In this work, the Laser Ranged Satellites Experiment (LARASE) is presented. This is a research program that aims to perform new refined tests and measurements of gravitation in the field of the Earth in the weak field and slow motion (WFSM) limit of general relativity (GR). For this objective we use the free available data relative to geodetic passive satellite lasers tracked from a network of ground stations by means of the satellite laser ranging (SLR) technique. After a brief introduction to GR and its WFSM limit, which aims to contextualize the physical background of the tests and measurements that LARASE will carry out, we focus on the current limits of validation of GR and on current constraints on the alternative theories of gravity that have been obtained with the precise SLR measurements of the two LAGEOS satellites performed so far. Afterward, we present the scientific goals of LARASE in terms of upcoming measurements and tests of relativistic physics. Finally, we introduce our activities and we give a number of new results regarding the improvements to the modelling of both gravitational and non-gravitational perturbations to the orbit of the satellites. These activities are a needed prerequisite to improve the forthcoming new measurements of gravitation. An innovation with respect to the past is the specialization of the models to the LARES satellite, especially for what concerns the modelling of its spin evolution, the neutral drag perturbation and the impact of Earth's solid tides on the satellite orbit. (paper)

  1. A Satellite-Based Sunshine Duration Climate Data Record for Europe and Africa

    Directory of Open Access Journals (Sweden)

    Steffen Kothe

    2017-05-01

    Full Text Available Besides 2 m - temperature and precipitation, sunshine duration is one of the most important and commonly used parameter in climatology, with measured time series of partly more than 100 years in length. EUMETSAT’s Satellite Application Facility on Climate Monitoring (CM SAF presents a climate data record for daily and monthly sunshine duration (SDU for Europe and Africa. Basis for the advanced retrieval is a highly resolved satellite product of the direct solar radiation from measurements by Meteosat satellites 2 to 10. The data record covers the time period 1983 to 2015 with a spatial resolution of 0.05° × 0.05°. The comparison against ground-based data shows high agreement but also some regional differences. Sunshine duration is overestimated by the satellite-based data in many regions, compared to surface data. In West and Central Africa, low clouds seem to be the reason for a stronger overestimation of sunshine duration in this region (up to 20% for monthly sums. For most stations, the overestimation is low, with a bias below 7.5 h for monthly sums and below 0.4 h for daily sums. A high correlation of 0.91 for daily SDU and 0.96 for monthly SDU also proved the high agreement with station data. As SDU is based on a stable and homogeneous climate data record of more than 30 years length, it is highly suitable for climate applications, such as trend estimates.

  2. Synchronized Position and Hold Reorient Experimental Satellites - International Space Station (SPHERES-ISS), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Payload Systems Inc. (PSI) and the MIT Space Systems Laboratory (MIT-SSL) propose an innovative research program entitled SPHERES-ISS that uses their satellite...

  3. Dissemination of satellite-based river discharge and flood data

    Science.gov (United States)

    Kettner, A. J.; Brakenridge, G. R.; van Praag, E.; de Groeve, T.; Slayback, D. A.; Cohen, S.

    2014-12-01

    In collaboration with NASA Goddard Spaceflight Center and the European Commission Joint Research Centre, the Dartmouth Flood Observatory (DFO) daily measures and distributes: 1) river discharges, and 2) near real-time flood extents with a global coverage. Satellite-based passive microwave sensors and hydrological modeling are utilized to establish 'remote-sensing based discharge stations', and observed time series cover 1998 to the present. The advantages over in-situ gauged discharges are: a) easy access to remote or due to political reasons isolated locations, b) relatively low maintenance costs to maintain a continuous observational record, and c) the capability to obtain measurements during floods, hazardous conditions that often impair or destroy in-situ stations. Two MODIS instruments aboard the NASA Terra and Aqua satellites provide global flood extent coverage at a spatial resolution of 250m. Cloud cover hampers flood extent detection; therefore we ingest 6 images (the Terra and Aqua images of each day, for three days), in combination with a cloud shadow filter, to provide daily global flood extent updates. The Flood Observatory has always made it a high priority to visualize and share its data and products through its website. Recent collaborative efforts with e.g. GeoSUR have enhanced accessibility of DFO data. A web map service has been implemented to automatically disseminate geo-referenced flood extent products into client-side GIS software. For example, for Latin America and the Caribbean region, the GeoSUR portal now displays current flood extent maps, which can be integrated and visualized with other relevant geographical data. Furthermore, the flood state of satellite-observed river discharge sites are displayed through the portal as well. Additional efforts include implementing Open Geospatial Consortium (OGC) standards to incorporate Water Markup Language (WaterML) data exchange mechanisms to further facilitate the distribution of the satellite

  4. A DTN-ready application for the real-time dissemination of Earth Observation data received by Direct Readout stations

    Science.gov (United States)

    Paronis, Dimitris; Daglis, Ioannis A.; Diamantopoulos, Sotirios; Tsaoussidis, Vassilis; Tsigkanos, Antonis; Ghita, Bogdan; Evans, Michael

    2014-05-01

    The majority of Earth observation satellites operate in low Earth sun-synchronous orbit and transmit data captured by a variety of sensors. The effective dissemination of satellite data in real-time is a crucial parameter for disaster monitoring in particular. Generally, a spacecraft collects data and then stores it on-board until it passes over dedicated ground stations to transmit the data. Additionally, some satellites (e.g. Terra, Aqua, Suomi-NPP, NOAA series satellites) have the so-called Direct Broadcast (DB) capability, which is based on a real-time data transmission sub-system. Compatible Direct Readout (DR) stations in direct line of sight are able to receive these transmissions. To date data exchange between DR stations have not been fully exploited for real-time data dissemination. Stations around the world store data locally, which is then disseminated on demand via Internet gateways based on the standard TCP-IP protocols. On the other hand, Delay Tolerant Networks (DTNs), which deliver data by enabling store-and-forward transmission in order to cope with link failures, service disruptions and network congestion, could prove as an alternative/complementary transmission mechanism for the efficient dissemination of data. The DTN architecture allows for efficient utilization of the network, using in-network storage and taking advantage of the network availability among the interconnected nodes. Although DTNs were originally developed for high-propagation delay, challenged connectivity environments such as deep space, the broader research community has investigated possible architectural enhancements for various emerging applications (e.g., terrestrial infrastructure, ground-to-air communications, content retrieval and dissemination). In this paper, a scheme for the effective dissemination of DB data is conceptualized, designed and implemented based on store-and-forward transmission capabilities provided by DTNs. For demonstration purposes, a set-up has

  5. Intersatellite link application to commercial communications satellites

    Science.gov (United States)

    Lee, Young S.; Atia, Ali E.; Ponchak, Denise S.

    1988-01-01

    The fundamental characteristics of intersatellite link (ISL) systems, and their application to domestic, regional, and global satellite communications, are described. The quantitative advantages of using ISLs to improve orbit utilization, spectrum occupancy, transmission delay (compared to multi-hop links), coverage, and connectivity, and to reduce the number of earth station antennas, are also presented. Cost-effectiveness and other systems benefits of using ISLs are identified, and the technical and systems planning aspects of ISL systems implementation are addressed.

  6. Soviet satellite communications science and technology

    Energy Technology Data Exchange (ETDEWEB)

    Birch, J.N.; Campanella, S.J.; Gordon, G.D.; McElroy, D.R.; Pritchard, W.L.; Stamminger, R.

    1991-08-01

    This is a report by six US scientists and engineers concerning the current state of the art and projections of future Soviet satellite communications technologies. The panel members are experts in satellite stabilization, spacecraft environments, space power generation, launch systems, spacecraft communications sciences and technologies, onboard processing, ground stations, and other technologies that impact communications. The panel assessed the Soviet ability to support high-data-rate space missions at 128 Mbps by evaluating current and projected Soviet satellite communications technologies. A variety of space missions were considered, including Earth-to-Earth communications via satellites in geostationary or highly elliptical orbits, those missions that require space-to-Earth communications via a direct path and those missions that require space-to-Earth communications via a relay satellite. Soviet satellite communications capability, in most cases, is 10 years behind that of the United States and other industrialized nations. However, based upon an analysis of communications links needed to support these missions using current Soviet capabilities, it is well within the current Soviet technology to support certain space missions outlined above at rates of 128 Mbps or higher, although published literature clearly shows that the Soviet Union has not exceeded 60 Mbps in its current space system. These analyses are necessary but not sufficient to determine mission data rates, and other technologies such as onboard processing and storage could limit the mission data rate well below that which could actually be supported via the communications links. Presently, the Soviet Union appears to be content with data rates in the low-Earth-orbit relay via geostationary mode of 12 Mbps. This limit is a direct result of power amplifier limits, spacecraft antenna size, and the utilization of K{sub u}-band frequencies. 91 refs., 16 figs., 15 tabs.

  7. GNSS-SLR satellite co-location for the estimate of local ties

    Science.gov (United States)

    Bruni, Sara; Zerbini, Susanna; Errico, Maddalena; Santi, Efisio

    2013-04-01

    The current realization of the International Terrestrial Reference Frame (ITRF) is based on four different space-geodetic techniques, so that the benefits brought by each observing system to the definition of the frame can compensate for the drawbacks of the others and technique-specific systematic errors might be identified. The strategy used to combine the observations from the different techniques is then of prominent importance for the realization of a precise and stable reference frame. This study concentrates, in particular, on the combination of Satellite Laser Ranging (SLR) and Global Navigation Satellite System (GNSS) observations by exploiting satellite co-locations. This innovative approach is based on the fact that laser tracking of GNSS satellites, carrying on board laser reflector arrays, allows for the combination of optical and microwave signals in the determination of the spacecraft orbit. Besides, the use of satellite co-locations differs quite significantly from the traditional combination method in which each single technique solution is carried out autonomously and is interrelated in a second step. One of the benefits of the approach adopted in this study is that it allows for an independent validation of the local tie, i.e. of the vector connecting the SLR and GNSS reference points in a multi-techniques station. Typically, local ties are expressed by a single value, measured with ground-based geodetic techniques and taken as constant. In principle, however, local ties might show time variations likely caused by the different monumentation characteristics of the GNSS antennas with respect to those of a SLR system. This study evaluates the possibility of using the satellite co-location approach to generate local-ties time series by means of observations available for a selected network of ILRS stations. The data analyzed in this study were acquired as part of the NASA's Earth Science Data Systems and are archived and distributed by the Crustal

  8. 47 CFR 25.132 - Verification of earth station antenna performance standards.

    Science.gov (United States)

    2010-10-01

    ...- and H-planes, plus and minus 9 degrees. (iii) Main beam gain. (2) The FCC envelope specified in § 25...-axis. The FCC envelope specified in § 25.209 shall be superimposed on each pattern. The transmit patterns are to be measured with the aid of a co-operating earth station in coordination with the satellite...

  9. A novel emergency system for low earth orbit satellites using Galileo GNSS

    NARCIS (Netherlands)

    Gill, E.K.A.; Helderweirt, A.

    2010-01-01

    Low Earth Orbit (LEO) satellites have a limited direct contact time with the stations of their ground segment. This fundamentally constraints a timeliness reaction of the mission control center in case of emergency situations onboard the LEO spacecraft. To enable such a rapid reaction to emergency

  10. Where on Earth am I? Don't Worry,. GPS Satellites will Guide you ...

    Indian Academy of Sciences (India)

    ordinate frame shown is the reference frame used by GPS, it is called earth .... the satellite clock offsets five monitoring stations are spread over the earth ..... (P 2) GPS receiver for armoured vehicles (on the right is auxiliary display). ( P 3) GPS ...

  11. JEOS. The JANUS earth observation satellite

    Science.gov (United States)

    Molette, P.; Jouan, J.

    The JANUS multimission platform has been designed to minimize the cost of the satellite (by a maximum reuse of equipment from other proprogrammes) and of its associated launch by Aŕiane (by a piggy-back configuration optimized for Ariane 4). The paper describes the application of the JANUS platform to an Earth observation mission with the objective to provide a given country with a permanent monitoring of its earth resources by exploitation of spaceborne imagery. According to this objective, and to minimize the overall system and operational cost, the JANUS Earth Observation Satellite (JEOS) will provide a limited coverage with real time transmission of image data, thus avoiding need for on-board storage and simplifying operations. The JEOS operates on a low earth, near polar sun synchronous orbit. Launched in a piggy-back configuration on Ariane 4, with a SPOT or ERS spacecraft, it reaches its operational orbit after a drift orbit of a few weeks maximum. In its operational mode, the JEOS is 3-axis stabilised, earth pointed. After presentation of the platform, the paper describes the solid state push-broom camera which is composed of four optical lenses mounted on a highly stable optical bench. Each lens includes an optics system, reused from an on-going development, and two CCD linear arrays of detectors. The camera provides four registered channels in visible and near IR bands. The whole optical bench is supported by a rotating mechanism which allows rotation of the optical axis in the across-track direction. The JEOS typical performance for a 700 km altitude is then summarized: spatial resolution 30 m, swath width 120 km, off-track capability 325 km,… The payload data handling and transmission electronics, derived from the French SPOT satellite, realizes the processing, formatting, and transmission to the ground; this allows reuse of the standard SPOT receiving stations. The camera is only operated when the spacecraft is within the visibility of the ground

  12. Advances in snow cover distributed modelling via ensemble simulations and assimilation of satellite data

    Science.gov (United States)

    Revuelto, J.; Dumont, M.; Tuzet, F.; Vionnet, V.; Lafaysse, M.; Lecourt, G.; Vernay, M.; Morin, S.; Cosme, E.; Six, D.; Rabatel, A.

    2017-12-01

    Nowadays snowpack models show a good capability in simulating the evolution of snow in mountain areas. However singular deviations of meteorological forcing and shortcomings in the modelling of snow physical processes, when accumulated on time along a snow season, could produce large deviations from real snowpack state. The evaluation of these deviations is usually assessed with on-site observations from automatic weather stations. Nevertheless the location of these stations could strongly influence the results of these evaluations since local topography may have a marked influence on snowpack evolution. Despite the evaluation of snowpack models with automatic weather stations usually reveal good results, there exist a lack of large scale evaluations of simulations results on heterogeneous alpine terrain subjected to local topographic effects.This work firstly presents a complete evaluation of the detailed snowpack model Crocus over an extended mountain area, the Arve upper catchment (western European Alps). This catchment has a wide elevation range with a large area above 2000m a.s.l. and/or glaciated. The evaluation compares results obtained with distributed and semi-distributed simulations (the latter nowadays used on the operational forecasting). Daily observations of the snow covered area from MODIS satellite sensor, seasonal glacier surface mass balance evolution measured in more than 65 locations and the galciers annual equilibrium line altitude from Landsat/Spot/Aster satellites, have been used for model evaluation. Additionally the latest advances in producing ensemble snowpack simulations for assimilating satellite reflectance data over extended areas will be presented. These advances comprises the generation of an ensemble of downscaled high-resolution meteorological forcing from meso-scale meteorological models and the application of a particle filter scheme for assimilating satellite observations. Despite the results are prefatory, they show a good

  13. Scattering Effects of Solar Panels on Space Station Antenna Performance

    Science.gov (United States)

    Panneton, Robert J.; Ngo, John C.; Hwu, Shian U.; Johnson, Larry A.; Elmore, James D.; Lu, Ba P.; Kelley, James S.

    1994-01-01

    Characterizing the scattering properties of the solar array panels is important in predicting Space Station antenna performance. A series of far-field, near-field, and radar cross section (RCS) scattering measurements were performed at S-Band and Ku-Band microwave frequencies on Space Station solar array panels. Based on investigation of the measured scattering patterns, the solar array panels exhibit similar scattering properties to that of the same size aluminum or copper panel mockup. As a first order approximation, and for worse case interference simulation, the solar array panels may be modeled using perfect reflecting plates. Numerical results obtained using the Geometrical Theory of Diffraction (GTD) modeling technique are presented for Space Station antenna pattern degradation due to solar panel interference. The computational and experimental techniques presented in this paper are applicable for antennas mounted on other platforms such as ship, aircraft, satellite, and space or land vehicle.

  14. Artificial intelligence techniques applied to hourly global irradiance estimation from satellite-derived cloud index

    Energy Technology Data Exchange (ETDEWEB)

    Zarzalejo, L.F.; Ramirez, L.; Polo, J. [DER-CIEMAT, Madrid (Spain). Renewable Energy Dept.

    2005-07-01

    Artificial intelligence techniques, such as fuzzy logic and neural networks, have been used for estimating hourly global radiation from satellite images. The models have been fitted to measured global irradiance data from 15 Spanish terrestrial stations. Both satellite imaging data and terrestrial information from the years 1994, 1995 and 1996 were used. The results of these artificial intelligence models were compared to a multivariate regression based upon Heliosat I model. A general better behaviour was observed for the artificial intelligence models. (author)

  15. Artificial intelligence techniques applied to hourly global irradiance estimation from satellite-derived cloud index

    International Nuclear Information System (INIS)

    Zarzalejo, Luis F.; Ramirez, Lourdes; Polo, Jesus

    2005-01-01

    Artificial intelligence techniques, such as fuzzy logic and neural networks, have been used for estimating hourly global radiation from satellite images. The models have been fitted to measured global irradiance data from 15 Spanish terrestrial stations. Both satellite imaging data and terrestrial information from the years 1994, 1995 and 1996 were used. The results of these artificial intelligence models were compared to a multivariate regression based upon Heliosat I model. A general better behaviour was observed for the artificial intelligence models

  16. Review of progress in gathering, distributing and using satellite data for activities within COST 238 (PRIME

    Directory of Open Access Journals (Sweden)

    S. Stankov

    1996-06-01

    Full Text Available Recent progress in using the satellite data for various PRIME purposes is briefly presented. The satellite data base is already in operation and contains data of local plasma and neutral atmosphere parameters taken from several ionospheric satellites. A method of tracing the locally measured parameters along the magnetic field lines down to hmF2 is developed using a theoretical F-region code. This method is applied to receive f0F2sat needed to test monthly median and instantaneous mapping methods. In order to reduce the uncertainties arising from the unknown photoionization and recombination rates, f0F2 is calibrated at one point on the satellite orbit with a Vertical Incident (VI f0F2 and their ratio is then assumed constant along the whole satellite track over the PRIME area. The testing procedure for monthly median maps traces the measured plasma density down to a basic height of 400 km, where individual f0F2sat values are accumulated in every time/subarea bin within the given month, then their median is calibrated with the available medians from the VI ionosonde network. From all available satellite orbits over the PRIME area, 35 of them were found to pass over two VI ionosonde stations. The second station in these orbits was used to check the calculated f0F2sat with the measured VI f0F2. The standard deviation was found to be only 0.15 MHz.

  17. Satellites

    International Nuclear Information System (INIS)

    Burns, J.A.; Matthews, M.S.

    1986-01-01

    The present work is based on a conference: Natural Satellites, Colloquium 77 of the IAU, held at Cornell University from July 5 to 9, 1983. Attention is given to the background and origins of satellites, protosatellite swarms, the tectonics of icy satellites, the physical characteristics of satellite surfaces, and the interactions of planetary magnetospheres with icy satellite surfaces. Other topics include the surface composition of natural satellites, the cratering of planetary satellites, the moon, Io, and Europa. Consideration is also given to Ganymede and Callisto, the satellites of Saturn, small satellites, satellites of Uranus and Neptune, and the Pluto-Charon system

  18. Space station systems analysis study. Part 2, Volume 2. [technical report

    Science.gov (United States)

    1977-01-01

    Specific system options are defined and identified for a cost effective space station capable of orderly growth with regard to both function and orbit location. Selected program options are analyzed and configuration concepts are developed to meet objectives for the satellite power system, earth servicing, space processing, and supporting activities. Transportation systems are analyzed for both LEO and GEO orbits.

  19. Generation of real-time global ionospheric map based on the global GNSS stations with only a sparse distribution

    Science.gov (United States)

    Li, Zishen; Wang, Ningbo; Li, Min; Zhou, Kai; Yuan, Yunbin; Yuan, Hong

    2017-04-01

    The Earth's ionosphere is part of the atmosphere stretching from an altitude of about 50 km to more than 1000 km. When the Global Navigation Satellite System (GNSS) signal emitted from a satellite travels through the ionosphere before reaches a receiver on or near the Earth surface, the GNSS signal is significantly delayed by the ionosphere and this delay bas been considered as one of the major errors in the GNSS measurement. The real-time global ionospheric map calculated from the real-time data obtained by global stations is an essential method for mitigating the ionospheric delay for real-time positioning. The generation of an accurate global ionospheric map generally depends on the global stations with dense distribution; however, the number of global stations that can produce the real-time data is very limited at present, which results that the generation of global ionospheric map with a high accuracy is very different when only using the current stations with real-time data. In view of this, a new approach is proposed for calculating the real-time global ionospheric map only based on the current stations with real-time data. This new approach is developed on the basis of the post-processing and the one-day predicted global ionospheric map from our research group. The performance of the proposed approach is tested by the current global stations with the real-time data and the test results are also compared with the IGS-released final global ionospheric map products.

  20. An alternative ionospheric correction model for global navigation satellite systems

    Science.gov (United States)

    Hoque, M. M.; Jakowski, N.

    2015-04-01

    The ionosphere is recognized as a major error source for single-frequency operations of global navigation satellite systems (GNSS). To enhance single-frequency operations the global positioning system (GPS) uses an ionospheric correction algorithm (ICA) driven by 8 coefficients broadcasted in the navigation message every 24 h. Similarly, the global navigation satellite system Galileo uses the electron density NeQuick model for ionospheric correction. The Galileo satellite vehicles (SVs) transmit 3 ionospheric correction coefficients as driver parameters of the NeQuick model. In the present work, we propose an alternative ionospheric correction algorithm called Neustrelitz TEC broadcast model NTCM-BC that is also applicable for global satellite navigation systems. Like the GPS ICA or Galileo NeQuick, the NTCM-BC can be optimized on a daily basis by utilizing GNSS data obtained at the previous day at monitor stations. To drive the NTCM-BC, 9 ionospheric correction coefficients need to be uploaded to the SVs for broadcasting in the navigation message. Our investigation using GPS data of about 200 worldwide ground stations shows that the 24-h-ahead prediction performance of the NTCM-BC is better than the GPS ICA and comparable to the Galileo NeQuick model. We have found that the 95 percentiles of the prediction error are about 16.1, 16.1 and 13.4 TECU for the GPS ICA, Galileo NeQuick and NTCM-BC, respectively, during a selected quiet ionospheric period, whereas the corresponding numbers are found about 40.5, 28.2 and 26.5 TECU during a selected geomagnetic perturbed period. However, in terms of complexity the NTCM-BC is easier to handle than the Galileo NeQuick and in this respect comparable to the GPS ICA.

  1. How to implement decoy-state quantum key distribution for a satellite uplink with 50-dB channel loss

    Science.gov (United States)

    Meyer-Scott, Evan; Yan, Zhizhong; MacDonald, Allison; Bourgoin, Jean-Philippe; Hübel, Hannes; Jennewein, Thomas

    2011-12-01

    Quantum key distribution (QKD) takes advantage of fundamental properties of quantum physics to allow two distant parties to share a secret key; however, QKD is hampered by a distance limitation of a few hundred kilometers on Earth. The most immediate solution for global coverage is to use a satellite, which can receive separate QKD transmissions from two or more ground stations and act as a trusted node to link these ground stations. In this article we report on a system capable of performing QKD in the high loss regime expected in an uplink to a satellite using weak coherent pulses and decoy states. Such a scenario profits from the simplicity of its receiver payload, but has so far been considered to be infeasible due to very high transmission losses (40-50 dB). The high loss is overcome by implementing an innovative photon source and advanced timing analysis. Our system handles up to 57 dB photon loss in the infinite key limit, confirming the viability of the satellite uplink scenario. We emphasize that while this system was designed with a satellite uplink in mind, it could just as easily overcome high losses on any free space QKD link.

  2. How to implement decoy-state quantum key distribution for a satellite uplink with 50-dB channel loss

    International Nuclear Information System (INIS)

    Meyer-Scott, Evan; Yan, Zhizhong; MacDonald, Allison; Bourgoin, Jean-Philippe; Huebel, Hannes; Jennewein, Thomas

    2011-01-01

    Quantum key distribution (QKD) takes advantage of fundamental properties of quantum physics to allow two distant parties to share a secret key; however, QKD is hampered by a distance limitation of a few hundred kilometers on Earth. The most immediate solution for global coverage is to use a satellite, which can receive separate QKD transmissions from two or more ground stations and act as a trusted node to link these ground stations. In this article we report on a system capable of performing QKD in the high loss regime expected in an uplink to a satellite using weak coherent pulses and decoy states. Such a scenario profits from the simplicity of its receiver payload, but has so far been considered to be infeasible due to very high transmission losses (40-50 dB). The high loss is overcome by implementing an innovative photon source and advanced timing analysis. Our system handles up to 57 dB photon loss in the infinite key limit, confirming the viability of the satellite uplink scenario. We emphasize that while this system was designed with a satellite uplink in mind, it could just as easily overcome high losses on any free space QKD link.

  3. Worldwide satellite market demand forecast

    Science.gov (United States)

    Bowyer, J. M.; Frankfort, M.; Steinnagel, K. M.

    1981-01-01

    The forecast is for the years 1981 - 2000 with benchmark years at 1985, 1990 and 2000. Two typs of markets are considered for this study: Hardware (worldwide total) - satellites, earth stations and control facilities (includes replacements and spares); and non-hardware (addressable by U.S. industry) - planning, launch, turnkey systems and operations. These markets were examined for the INTELSAT System (international systems and domestic and regional systems using leased transponders) and domestic and regional systems. Forecasts were determined for six worldwide regions encompassing 185 countries using actual costs for existing equipment and engineering estimates of costs for advanced systems. Most likely (conservative growth rate estimates) and optimistic (mid range growth rate estimates) scenarios were employed for arriving at the forecasts which are presented in constant 1980 U.S. dollars. The worldwide satellite market demand forecast predicts that the market between 181 and 2000 will range from $35 to $50 billion. Approximately one-half of the world market, $16 to $20 billion, will be generated in the United States.

  4. Experimental test for receiving X-Band data LAPAN-A3 Satellite with 5.4m antenna diameter

    Science.gov (United States)

    Dwi Harsono, Sonny; Hasbi, Wahyudi

    2018-05-01

    LAPAN-A3 / LAPAN-IPB Satellite launched on June 22, 2016 (03:56 UTC) as an experimental micro-satellite for remote sensing and monitoring of maritime traffic. The Satellite was launched as a secondary payload on ISRO Cartosat-2C as its main payload, the launch carried out at SDSC (Satish Dhawan Space Centre) in India using PSLV-C34 rocket launcher. The Satellite was in orbit polar sun-synchronous with a height of 505 km above sea level. It has an inclination angle of 97 degrees and heavy satellite 115 kg, with this orbit, the satellite will pass through Ground station 4 times (2 times during the day and two times at night) with a duration of the track at the time of the pass about 10-15 minutes. The Satellite payload carried 4 bands Line Scan Cameras and Digital Imager (SpaceCam). For main mission is the earth observation for food vegetables And as additional mission is carrying AIS (Automatic Identification System) receiver to monitor maritime traffic in the region of the poles, then Star Sensor made by LAPAN for qualifying room, then for scientific contained magnetometer sensor for monitoring the Earth's Magnetic field. The purpose of this scientific paper is to test the reception of data payloads of the LAPAN-A3 satellite on X-Band frequency of 8.2 GHz using a 5.4 M solid antenna Ground Stations LAPAN in Pare-Pare. The purpose of this experiment will tell us with 5.4 meter of diameter solid antenna is capable or not enough for HDRM receiver to lock a signal and produce the data output, and how this result if compare with 11 meter of diameter antenna in Splitzberg Groundstation in Norway.

  5. Correlation of variations of charged particle fluxes in the flare on 3 November, 1973 with change of parameters of interplanetary medium according to the data of the ''Mars-7'' automatic interplanetary station and ''Prognoz-3'' artificial Earth's satellite

    International Nuclear Information System (INIS)

    Kuzhevskij, B.M.; Mineev, Yu.V.; Savenko, I.A.; Spir'kova, E.S.; Surova, G.M.; ShestopaloV, I.P.

    1979-01-01

    The experimental data on the charged particle fluxes in the flare on the 3d of November, 1973 are analyzed. The experiments were carried out at the ''Prognoz-3'' artificial Earth satellite and ''Mars-7'' automatic interplanetary station with the help of devices recorded Esub(e) >= 30 keV energy electrons, 1 <= Esub(p) <= 5 MeV energy protons and 1-150 MeV energy protons. Presented are the data on variations of the intensity of cosmic ray particles which are compared with the data on interplanetary magnetic fields. The character of proton and electron intensity variations is explained by the change of interplanetary medium parameters. It is supposed that the electron splashes and proton intensity variations recorded at the satellites are conditioned by the sign change of the interplanetary magnetic field

  6. 47 CFR 80.1061 - Special requirements for 406.0-406.1 MHz EPIRB stations.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Special requirements for 406.0-406.1 MHz EPIRB stations. 80.1061 Section 80.1061 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY... entitled RTCM Paper 77-02/SC110-STD, “RTCM Recommended Standards for 406 MHz Satellite Emergency Position...

  7. Response of heterogeneous vegetation to aerosol radiative forcing over a northeast Indian station.

    Science.gov (United States)

    Latha, R; Vinayak, B; Murthy, B S

    2018-01-15

    Importance of atmospheric aerosols through direct and indirect effects on hydrological cycle is highlighted through multiple studies. This study tries to find how much the aerosols can affect evapo-transpiration (ET), a key component of the hydrological cycle over high NDVI (normalized difference vegetation index)/dense canopy, over Dibrugarh, known for vast tea plantation. The radiative effects of aerosols are calculated using satellite (Terra-MODIS) and reanalysis data on daily and monthly scales. Aerosol optical depth (AOD) obtained from satellite and ground observations compares well. Aerosol radiative forcing (ARF), calculated using MERRA data sets of 'clean-clear radiation' and 'clear-radiation' at the surface, shows a lower forcing efficiency, 35 Wm -zs , that is about half of that of ground observations. As vegetation controls ET over high NDVI area to the maximum and that gets modified through ARF, a regression equation is fitted between ET, AOD and NDVI for this station as ET = 0.25 + (-84.27) × AOD + (131.51) × NDVI that explains 82% of 'daily' ET variation using easily available satellite data. ET is found to follow net radiation closely and the direct relation between soil moisture and ET is weak on daily scale over this station as it may be acting through NDVI. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Global Mobile Satellite Service Interference Analysis for the AeroMACS

    Science.gov (United States)

    Wilson, Jeffrey D.; Apaza, Rafael D.; Hall, Ward; Phillips, Brent

    2013-01-01

    The AeroMACS (Aeronautical Mobile Airport Communications System), which is based on the IEEE 802.16-2009 mobile wireless standard, is envisioned as the wireless network which will cover all areas of airport surfaces for next generation air transportation. It is expected to be implemented in the 5091-5150 MHz frequency band which is also occupied by mobile satellite service uplinks. Thus the AeroMACS must be designed to avoid interference with this incumbent service. Simulations using Visualyse software were performed utilizing a global database of 6207 airports. Variations in base station and subscriber antenna distribution and gain pattern were examined. Based on these simulations, recommendations for global airport base station and subscriber antenna power transmission limitations are provided.

  9. Observations of magnetohydrodynamic waves on the ground and on a satellite

    International Nuclear Information System (INIS)

    Lanzerotti, L.J.; Fukunishi, H.; Maclennan, C.G.; Cahill, L.J. Jr.

    1976-01-01

    A comparison is made of magnetohydrodynamic waves observed near the equator on Explorer 45 and at an array of ground stations in the northern hemisphere and at their conjugate station at Siple, Antartica. The data comparisons strongly support the notion that the observed waves can be considered odd mode standing waves in the magnetosphere. This conclusion has important implications for the interpretation of single-point satellite and/or ground measurements of ULF plasma wave phenomena in the magnetosphere. Further, the data comparisons strongly suggest that the overall ULF (approx.5-30 mHz) power levels are quite similar in the magnetosphere and on the ground, at least during the intervals studied

  10. Comparison of long-term SLR and GNSS solutions from selected stations in the frame of GGOS realization

    Science.gov (United States)

    Szafranek, K.; Schillak, S.; Araszkiewicz, A.; Figurski, M.; Lehmann, M.; Lejba, P.

    2012-04-01

    Up-to-date investigations concerning space geodesy are mostly aimed at data of various techniques joint processing. The poster presents solutions (North, East, Up components) of selected stations (McDonald, Yarragadee, Greenbelt, Monument Peak, Zimmerwald, Borowiec, Mt.Stromlo-Orroral, Potsdam, Graz, Herstmonceux and Wettzell), which adopted Satellite Laser Ranging (SLR) and Global Navigation Satellite System (GNSS) techniques and which were gathering the data in the same time (from 1994 to 2010). Processing of both types of data was made according to Global Geodetic Observing System (GGOS) recommendations, the same models and parameters from IERS Conventions 2010 were used in both processing strategies (if it was possible). The main goal was to obtain coordinates and their changes in time (velocities) basing on both techniques and to compare the results. The station coordinates were determined for the common reference epoch of both techniques - for first day of each month. Monthly orbital arcs for laser observations were created basing on solutions from several SLR sites (observations to LAGEOS-1 and LAGEOS-2 satellites) with the best solutions quality and the highest amount of observations. For GNSS coordinates determination about 130 sites belonging to International GNSS Service (IGS) were selected: 30 with local ties to SLR sites and others basing on their geolocalization (length of the baselines) and solutions time series analysis. Mainly, core IGS stations were used. Solutions of both techniques were analyzed in order to verify agreement of both techniques and for independent control of local ties.

  11. Remote, mobile telemedicine: the satellite transmission of medical data from Mount Logan.

    Science.gov (United States)

    Otto, C; Pipe, A

    1997-01-01

    The purpose of this investigation was to demonstrate the potential of remote, mobile telemedicine during a four-week, high-altitude mountaineering expedition to Mount Logan, Canada's highest summit. Using a mobile satellite terminal and a laptop computer (both powered by a photovoltaic solar panel), ECG tracings and blood pressure measurements, in addition to colour images, short-segment video and audio clips were transmitted during the course of the ascent. The data were transmitted via a mobile communications satellite to a ground station in Ottawa, a distance of over 4000 km. The data were then transferred to the public switched data network and delivered to the University of Ottawa Heart Institute for analysis. Similarly, data were transmitted from the ground station to the expedition team on Mount Logan throughout the ascent. Using this technique, medical diagnosis and emergency care can be facilitated in extreme and isolated locations lacking a telecommunications infrastructure. Such technology has applications in developing countries, disaster response efforts, remote civilian and military operations, and in space operations.

  12. 47 CFR 25.262 - Licensing and domestic coordination requirements for 17/24 GHz BSS space stations.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Licensing and domestic coordination requirements for 17/24 GHz BSS space stations. 25.262 Section 25.262 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Standards § 25.262...

  13. A geostationary satellite system for mobile multimedia applications using portable, aeronautical and mobile terminals

    Science.gov (United States)

    Losquadro, G.; Luglio, M.; Vatalaro, F.

    1997-01-01

    A geostationary satellite system for mobile multimedia services via portable, aeronautical and mobile terminals was developed within the framework of the Advanced Communications Technology Service (ACTS) programs. The architecture of the system developed under the 'satellite extremely high frequency communications for multimedia mobile services (SECOMS)/ACTS broadband aeronautical terminal experiment' (ABATE) project is presented. The system will be composed of a Ka band system component, and an extremely high frequency band component. The major characteristics of the space segment, the ground control station and the portable, aeronautical and mobile user terminals are outlined.

  14. Transient HIF2A inhibition promotes satellite cell proliferation and muscle regeneration.

    Science.gov (United States)

    Xie, Liwei; Yin, Amelia; Nichenko, Anna S; Beedle, Aaron M; Call, Jarrod A; Yin, Hang

    2018-03-13

    The remarkable regeneration capability of skeletal muscle depends on coordinated proliferation and differentiation of satellite cells. The self-renewal of satellite cells is critical for long-term maintenance of muscle regeneration potential. Hypoxia profoundly affects the proliferation, differentiation, and self-renewal of cultured myoblasts. However, the physiological relevance of hypoxia and hypoxia signaling in satellite cells in vivo remains largely unknown. Here, we report that satellite cells are in an intrinsic hypoxic state in vivo and express hypoxia-inducible factor 2A (HIF2A). HIF2A promotes the stemness and long-term homeostatic maintenance of satellite cells by maintaining the quiescence, increasing the self-renewal and blocking the myogenic differentiation of satellite cells. HIF2A stabilization in satellite cells cultured under normoxia augmented their engraftment potential in regenerative muscle. Reversely, HIF2A ablation led to the depletion of satellite cells and the consequent regenerative failure in the long-term. In contrast, transient pharmacological inhibition of HIF2A accelerated muscle regeneration by increasing satellite cell proliferation and differentiation. Mechanistically, HIF2A induces the quiescence/self-renewal of satellite cells by binding the promoter of Spry1 gene and activating Spry1 expression. These findings suggest that HIF2A is a pivotal mediator of hypoxia signaling in satellite cells and may be therapeutically targeted to improve muscle regeneration.

  15. Study of the crater deformation of the CODELCO/Andina mine using the satellite and ground data

    Science.gov (United States)

    Caverlotti-Silva, M. A.; Arellano-Baeza, A. A.

    2011-12-01

    The correct monitoring of the subsidence of the craters related to the underground mine exploitation is one of the most important endeavors of the satellite remote sensing. The ASTER and LANDSAT satellite images have been used to study the deformation of the crater of the CODELCO/Andina mine, Valparaiso Region, Chile. The high-resolution satellite images were used to detect changes in the lineament patterns related to the subsidence. These results were compared with the ground deformation extracted from the GPS and topography station networks. It was found that sudden changes in the lineament patterns appear when the ground deformation overcomes a definite threshold.

  16. Implementation of Multiple Access Techniques Applicable for Maritime Satellite Communications

    Directory of Open Access Journals (Sweden)

    Stojce Dimov Ilcev

    2013-12-01

    Full Text Available In this paper are introduced fundamentals, characteristics, advantages and disadvantages of Multiple Access (MA employed as transmission techniques in the Maritime Mobile Satellite Communications (MMSC between ships and Coast Earth Station (CES via Geostationary Earth Orbit (GEO or Not-GEO satellite constellations. In fixed satellite communication, as a rule, especially in MMSC many users are active at the same time. The problem of simultaneous communications between many single or multipoint mobile satellite users can be solved by using MA technique, such as Frequency Division Multiple Access (FDMA, Time Division Multiple Access (TDMA, Code Division Multiple Access (CDMA, Space Division Multiple Access (SDMA and Random (Packet Division Multiple Access (RDMA. Since the resources of the systems such as the transmitting power and the bandwidth are limited, it is advisable to use the channels with complete charge and to create a different MA to the channel. This generates a problem of summation and separation of signals in the transmission and reception parts, respectively. Deciding this problem consists in the development of orthogonal channels of transmission in order to divide signals from various users unambiguously on the reception part.

  17. GNSS, Satellite Altimetry and Formosat-3/COSMIC for Determination of Ionosphere Parameters

    Science.gov (United States)

    Mahdi Alizadeh Elizei, M.; Schuh, Harald; Schmidt, Michael; Todorova, Sonya

    The dispersion of ionosphere with respect to the microwave signals allows gaining information about the parameters of this medium in terms of the electron density (Ne), or the Total Elec-tron Content (TEC). In the last decade space geodetic techniques, such as Global Navigation Satellite System (GNSS), satellite altimetry missions, and Low Earth Orbiting (LEO) satel-lites have turned into a promising tool for remote sensing the ionosphere. The dual-frequency GNSS observations provide the main input data for development of Global Ionosphere Maps (GIM). However, the GNSS stations are heterogeneously distributed, with large gaps particu-larly over the sea surface, which lowers the precision of the GIM over these areas. Conversely, dual-frequency satellite altimetry missions provide information about the ionosphere precisely above the sea surface. In addition, LEO satellites such as Formosat-3/COSMIC (F-3/C) pro-vide well-distributed information of ionosphere around the world. In this study we developed GIMs of VTEC from combination of GNSS, satellite altimetry and F-3/C data with temporal resolution of 2 hours and spatial resolution of 5 degree in longitude and 2.5 degree in latitude. The combined GIMs provide a more homogeneous global coverage and higher precision and reliability than results of each individual technique.

  18. Stage measurement at gaging stations

    Science.gov (United States)

    Sauer, Vernon B.; Turnipseed, D. Phil

    2010-01-01

    Stream and reservoir stage are critical parameters in the computation of stream discharge and reservoir volume, respectively. In addition, a record of stream stage is useful in the design of structures that may be affected by stream elevation, as well as for the planning for various uses of flood plains. This report describes equipment and methodology for the observation, sensing, and recording of stage in streams and reservoirs. Although the U.S. Geological Survey (USGS) still uses the traditional, basic stilling-well float system as a predominant gaging station, modern electronic stage sensors and water-level recorders are now commonly used. Bubble gages coupled with nonsubmersible pressure transducers eliminate the need for stilling wells. Submersible pressure transducers have become common in use for the measurement of stage in both rivers and lakes. Furthermore, noncontact methods, such as radar, acoustic, and laser methods of sensing water levels, are being developed and tested, and in the case of radar, are commonly used for the measurement of stage. This report describes commonly used gaging-station structures, as well as the design and operation of gaging stations. Almost all of the equipment and instruments described in this report will meet the accuracy standard set by the USGS Office of Surface Water (OSW) for the measurement of stage for most applications, which is ±0.01 foot (ft) or 0.2 percent of the effective stage. Several telemetry systems are used to transmit stage data from the gaging station to the office, although satellite telemetry has become the standard. These telemetry systems provide near real-time stage data, as well as other information that alerts the hydrographer to extreme or abnormal events, and instrument malfunctions.

  19. Hyper Hospital on the satellite multi-media network.

    Science.gov (United States)

    Yamaguchi, T

    1997-01-01

    We have been developing the Hyper Hospital, a network based VR mediated medical care system. The Hyper Hospital is composed of two seamlessly integrated environments, that is, the virtual and the real worlds. Of them, its virtual environment expands the conventional medical care system using the virtual reality technology as a principal human interface and a collaboration tool, in the present study, an attempt to extend the Hyper Hospital system to various modalities of communication network is reported. A satellite communication based multi-media network using Internet protocols with the WWW interface is used. Data transmission rate and other performances were measured under various conditions and the satellite network was shown to be suitable to the Hyper Hospital network.

  20. Experimental study of the helicopter-mobile radioelectrical channel and possible extension to the satellite-mobile channel

    Science.gov (United States)

    Blanchetiere-Ciarletti, V.; Sylvain, M.; Lemenn, P.

    1994-07-01

    The use of satellite seems to be an answer to the radioelectrical covering problem for the mobile communications, particularly in the low populated areas. Frequency bands at 1.5 and 2.5 GHz have been dedicated to these future services. Satellite-mobile links will be much more affected by propagation phenomena than the existing links between satellites and fixed stations. The reasons for that are twofold: The probable use of LEO (Low-Earth-Orbit) satellites instead of GEO; such satellites will have to be received at relatively low elevation to limit their number; the use of mobile communication terminals with small and non directive antennas that must work in various environments instead of terrestrian stations located at carefully chosen places and equipped with large diameter paraboloids. These propagation phenomena mainly consist in the fading of the signal level (shadowing of the link), and a frequency selective fading due to multipath propagation. The experience run by C.R.P.E. is aimed at a better understanding of the satellite-mobile propagation channel at fixed frequency as well as on a large band. In this paper, we discuss preliminary results from a series of propagation measurements performed (by lack of any experimental satellite) on an experimental radio link at 1.45 GHz on a of 20 MHz bandwidth between a helicopter flying at a height of 2 km and a mobile receiver. The whole experiment has been run in a rural environment in Brittany (France). In a first part, we illustrate the quality of the data collected during the experiment on a typical case study and give a possible physical interpretation of the observed phenomena. Then we present statistical results concerning the various characteristics (attenuation and delay spreads) of the propagation channel. Finally, we discuss the problem of using a helicopter (flying at a height of 2 km) as a substitute for a satellite at about 1000 km and try to estimate to what extent it is possible to use the data

  1. Rating curve estimation using Envisat virtual stations on the main Orinoco river

    Directory of Open Access Journals (Sweden)

    Juan León

    2011-09-01

    Full Text Available Rating curve estimation (height-stream relation made by hydrometric stations representing cross-sections of a river is one of hydrometrics’ fundamental tasks due to the fact that it leads to deducing a river’s average daily flow on that particular section. This information is fundamental in any attempt at hydrological modelling. However, the number of hydrological control stations monitoring large hydrological basins has been reduced worldwide. Space hydrology studies during the last five years have shown that satellite radar altimetry means that hydrological monitoring networks’ available information can be densified due to the introduction of so-called virtual stations and the joint use of such information along with in-situ measured flow records for estimating expenditure curves at these stations. This study presents the rating curves for 4 Envisat virtual stations located on the main stream of the Orinoco River. Virtual stations’ flows were estimated by using the Muskingum- Cunge 1D model. There was less than 1% error between measured and estimated flows. The methodology led to reducing average zero flow depth; in this case, it led to depths ranging from 11 to 20 meters being found along the 130 km of the Orinoco River represented by the virtual stations being considered.

  2. Solar power satellite life-cycle energy recovery consideration

    Science.gov (United States)

    Weingartner, S.; Blumenberg, J.

    The construction, in-orbit installation and maintenance of a solar power satellite (SPS) will demand large amounts of energy. As a minimum requirement for an energy effective power satellite it is asked that this amount of energy be recovered. The energy effectiveness in this sense resulting in a positive net energy balance is a prerequisite for cost-effective power satellite. This paper concentrates on life-cycle energy recovery instead on monetary aspects. The trade-offs between various power generation systems (different types of solar cells, solar dynamic), various construction and installation strategies (using terrestrial or extra-terrestrial resources) and the expected/required lifetime of the SPS are reviewed. The presented work is based on a 2-year study performed at the Technical University of Munich. The study showed that the main energy which is needed to make a solar power satellite a reality is required for the production of the solar power components (up to 65%), especially for the solar cell production. Whereas transport into orbit accounts in the order of 20% and the receiving station on earth (rectenna) requires about 15% of the total energy investment. The energetic amortization time, i.e. the time the SPS has to be operational to give back the amount of energy which was needed for its production installation and operation, is about two years.

  3. Evaluating satellite-derived long-term historical precipitation datasets for drought monitoring in Chile

    Science.gov (United States)

    Zambrano, Francisco; Wardlow, Brian; Tadesse, Tsegaye; Lillo-Saavedra, Mario; Lagos, Octavio

    2017-04-01

    Precipitation is a key parameter for the study of climate change and variability and the detection and monitoring of natural disaster such as drought. Precipitation datasets that accurately capture the amount and spatial variability of rainfall is critical for drought monitoring and a wide range of other climate applications. This is challenging in many parts of the world, which often have a limited number of weather stations and/or historical data records. Satellite-derived precipitation products offer a viable alternative with several remotely sensed precipitation datasets now available with long historical data records (+30years), which include the Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR) datasets. This study presents a comparative analysis of three historical satellite-based precipitation datasets that include Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) 3B43 version 7 (1998-2015), PERSIANN-CDR (1983-2015) and CHIRPS 2.0 (1981-2015) over Chile to assess their performance across the country and for the case of the two long-term products the applicability for agricultural drought were evaluated when used in the calculation of commonly used drought indicator as the Standardized Precipitation Index (SPI). In this analysis, 278 weather stations of in situ rainfall measurements across Chile were initially compared to the satellite data. The study area (Chile) was divided into five latitudinal zones: North, North-Central, Central, South-Central and South to determine if there were a regional difference among these satellite products, and nine statistics were used to evaluate their performance to estimate the amount and spatial distribution of historical rainfall across Chile. Hierarchical cluster analysis, k-means and singular value decomposition were used to analyze

  4. Mixing stream and datagram traffic on satellite: A FIFO Order-based Demand Assignment (FODA) Time Division Multiple Access (TDMA) scheme

    Science.gov (United States)

    Beltrame, R.; Bonito, A. B.; Celandroni, N.; Ferro, E.

    1985-11-01

    A FIFO Order based Demand Assignment (FODA) access scheme was designed to handle packetized data and voice traffic in a multiple access satellite broadcast channel of Mbits band. The channel is shared by as many as 64 simultaneously active stations in a range of 255 addressable stations. A sophisticated traffic environment is assumed, including different types of service requirements and an arbitrary load distribution among the stations. The results of 2Mbit/sec simulation tests for an existing hardware environment are presented.

  5. 47 CFR 25.224 - Protection of receive-only earth stations in the 17/24 GHz BSS.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Protection of receive-only earth stations in the 17/24 GHz BSS. 25.224 Section 25.224 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Standards § 25.224 Protection of...

  6. Report on workshop "Study of the polar atmosphere and cryosphere using satellite data with surface validation observations including unmanned one"

    Directory of Open Access Journals (Sweden)

    Hiroshi Kanzawa

    1993-07-01

    Full Text Available The workshop was organized to discuss algorithms to derive parameters of the polar atmosphere and cryosphere using satellite data received mainly at Syowa Station (69°S, 40°E, Antarctica, i.e., the data from NOAA, MOS (Marine Observation Satellite-1,ERS (European Remote Sensing Satellite-1,JERS (Japanese Earth Resources Satellite-1 with validation data at the surface. It was held on 16 March 1993 at the National Institute of Polar Research (NIPR, total number of participants being about 40. The contents of the workshop are as follows : The present status of receipt and utilization of the satellite data of NOAA, MOS-1,ERS-1,JERS-1; The Atmosphere; Sea ice; The Cryosphere; Introduction to the satellite data analysis system at the Information Science Center at NIPR.

  7. Assessment of satellite-based precipitation estimates over Paraguay

    Science.gov (United States)

    Oreggioni Weiberlen, Fiorella; Báez Benítez, Julián

    2018-04-01

    Satellite-based precipitation estimates represent a potential alternative source of input data in a plethora of meteorological and hydrological applications, especially in regions characterized by a low density of rain gauge stations. Paraguay provides a good example of a case where the use of satellite-based precipitation could be advantageous. This study aims to evaluate the version 7 of the Tropical Rainfall Measurement Mission Multi-Satellite Precipitation Analysis (TMPA V7; 3B42 V7) and the version 1.0 of the purely satellite-based product of the Climate Prediction Center Morphing Technique (CMORPH RAW) through their comparison with daily in situ precipitation measurements from 1998 to 2012 over Paraguay. The statistical assessment is conducted with several commonly used indexes. Specifically, to evaluate the accuracy of daily precipitation amounts, mean error (ME), root mean square error (RMSE), BIAS, and coefficient of determination (R 2) are used, and to analyze the capability to correctly detect different precipitation intensities, false alarm ratio (FAR), frequency bias index (FBI), and probability of detection (POD) are applied to various rainfall rates (0, 0.1, 0.5, 1, 2, 5, 10, 20, 40, 60, and 80 mm/day). Results indicate that TMPA V7 has a better performance than CMORPH RAW over Paraguay. TMPA V7 has higher accuracy in the estimation of daily rainfall volumes and greater precision in the detection of wet days (> 0 mm/day). However, both satellite products show a lower ability to appropriately detect high intensity precipitation events.

  8. Development of the European Small Geostationary Satellite SGEO

    Science.gov (United States)

    Lübberstedt, H.; Schneider, A.; Schuff, H.; Miesner, Th.; Winkler, A.

    2008-08-01

    The SGEO product portfolio, ranging from Satellite platform delivery up to in-orbit delivery of a turnkey system including satellite and ground control station, is designed for applications ranging from TV Broadcast to multimedia applications, Internet access, mobile or fixed services in a wide range of frequency bands. Furthermore, Data Relay missions such as the European Data Relay Satellite (EDRS) as well as other institutional missions are targeted. Key design features of the SGEO platform are high flexibility and modularity in order to accommodate a very wide range of future missions, a short development time below two years and the objective to build the system based on ITAR free subsystems and components. The system will provide a long lifetime of up to 15 years in orbit operations with high reliability. SGEO is the first European satellite to perform all orbit control tasks solely by electrical propulsion (EP). This design provides high mass efficiency and the capability for direct injection into geostationary orbit without chemical propulsion (CP). Optionally, an Apogee Engine Module based on CP will provide the perigee raising manoeuvres in case of a launch into geostationary transfer orbit (GTO). This approach allows an ideal choice out of a wide range of launcher candidates in dependence of the required payload capacity. SGEO will offer to the market a versatile and high performance satellite system with low investment risk for the customer and a short development time. This paper provides an overview of the SGEO system key features and the current status of the SGEO programme.

  9. Simultaneous Observations of pi 2 Pulsations on the Satellite and Geound-Based Measurements

    Directory of Open Access Journals (Sweden)

    S. H. Lee

    1997-12-01

    Full Text Available We have investigated Pi2 pulsations which were observed both on ground magnetometer array and by satellites. On November 9th in 1994, pi2 pulsations appeared globally on the 190/210 magnetometer chain and Hermanus station when two satellites(EXOS-D and ETS-VI were located near the magnetic meridian of the 210 array. The local time of measurements covers form morning(LT=8.47hr to afternoon(LT=20.3hr and the bandwidth of peak frequency is found relatively small. The signals of the electric field measurement of board the EXOS-D, which is located inside the plasmasphere(L=2.35, are highly coherent with the ground-based observations with the out of phase oscillations. However, the magnetic field measurement on the ETS-VI in the outer magnetosphere(L=6.60 shows no signature of pi2 pulsations over the same time interval and the correlation with any of ground-based stations is found to be very weak, even though both satellites and magnetometer chain are located close to each other in local time. We suggest that this event may be a direct evidence of Pi2 pulsations as virtual resonant modes which are localized in the plasmasphere(Lee 1996. The results show that the cavity mode oscillations can occur in the inner magnetosphere with less spectral noise compared to the outer magnetospheric case.

  10. Space Network IP Services (SNIS): An Architecture for Supporting Low Earth Orbiting IP Satellite Missions

    Science.gov (United States)

    Israel, David J.

    2005-01-01

    The NASA Space Network (SN) supports a variety of missions using the Tracking and Data Relay Satellite System (TDRSS), which includes ground stations in White Sands, New Mexico and Guam. A Space Network IP Services (SNIS) architecture is being developed to support future users with requirements for end-to-end Internet Protocol (IP) communications. This architecture will support all IP protocols, including Mobile IP, over TDRSS Single Access, Multiple Access, and Demand Access Radio Frequency (RF) links. This paper will describe this architecture and how it can enable Low Earth Orbiting IP satellite missions.

  11. A model for calculating hourly global solar radiation from satellite data in the tropics

    International Nuclear Information System (INIS)

    Janjai, S.; Pankaew, P.; Laksanaboonsong, J.

    2009-01-01

    A model for calculating global solar radiation from geostationary satellite data is presented. The model is designed to calculate the monthly average hourly global radiation in the tropics with high aerosol load. This model represents a physical relation between the earth-atmospheric albedo derived from GMS5 satellite data and the absorption and scattering coefficients of various atmospheric constituents. The absorption of solar radiation by water vapour which is important for the tropics, was calculated from ambient temperature and relative humidity. The relationship between the visibility and solar radiation depletion due to aerosols was developed for a high aerosol load environment. This relationship was used to calculate solar radiation depletion by aerosols in the model. The total column ozone from TOMS/EP satellite was employed for the determination of solar radiation absorbed by ozone. Solar radiation from four pyranometer stations was used to formulate the relationship between the satellite band earth-atmospheric albedo and broadband earth-atmospheric albedo required by the model. To test its performance, the model was used to compute the monthly average hourly global radiation at 25 solar radiation monitoring stations in tropical areas in Thailand. It was found that the values of monthly average of hourly global radiations calculated from the model were in good agreement with those obtained from the measurements, with the root mean square difference of 10%. After the validation the model was employed to generate hourly solar radiation maps of Thailand. These maps reveal the diurnal and season variation of solar radiation over the country.

  12. A model for calculating hourly global solar radiation from satellite data in the tropics

    Energy Technology Data Exchange (ETDEWEB)

    Janjai, S.; Pankaew, P.; Laksanaboonsong, J. [Solar Energy Research Laboratory, Department of Physics, Faculty of Science, Silpakorn University, Nakhon Pathom 73000 (Thailand)

    2009-09-15

    A model for calculating global solar radiation from geostationary satellite data is presented. The model is designed to calculate the monthly average hourly global radiation in the tropics with high aerosol load. This model represents a physical relation between the earth-atmospheric albedo derived from GMS5 satellite data and the absorption and scattering coefficients of various atmospheric constituents. The absorption of solar radiation by water vapour which is important for the tropics, was calculated from ambient temperature and relative humidity. The relationship between the visibility and solar radiation depletion due to aerosols was developed for a high aerosol load environment. This relationship was used to calculate solar radiation depletion by aerosols in the model. The total column ozone from TOMS/EP satellite was employed for the determination of solar radiation absorbed by ozone. Solar radiation from four pyranometer stations was used to formulate the relationship between the satellite band earth-atmospheric albedo and broadband earth-atmospheric albedo required by the model. To test its performance, the model was used to compute the monthly average hourly global radiation at 25 solar radiation monitoring stations in tropical areas in Thailand. It was found that the values of monthly average of hourly global radiations calculated from the model were in good agreement with those obtained from the measurements, with the root mean square difference of 10%. After the validation the model was employed to generate hourly solar radiation maps of Thailand. These maps reveal the diurnal and season variation of solar radiation over the country. (author)

  13. Impacts and societal benefits of research activities at Summit Station, Greenland

    Science.gov (United States)

    Hawley, R. L.; Burkhart, J. F.; Courville, Z.; Dibb, J. E.; Koenig, L.; Vaughn, B. H.

    2017-12-01

    Summit Station began as the site for the Greenland Ice Sheet Project 2 ice core in 1989. Since then, it has hosted both summer campaign science, and since 1997, year-round observations of atmospheric and cryospheric processes. The station has been continuously occupied since 2003. While most of the science activities at the station are supported by the US NSF Office of Polar Programs, the station also hosts many interagency and international investigations in physical glaciology, atmospheric chemistry, satellite validation, astrophysics and other disciplines. Summit is the only high elevation observatory north of the Arctic circle that can provide clean air or snow sites. The station is part of the INTER-ACT consortium of Arctic research stations with the main objective to identify, understand, predict and respond to diverse environmental changes, and part of the International Arctic Systems for Observing the Atmosphere (IASOA) that coordinates Arctic research activities and provides a networked, observations-based view of the Arctic. The Summit Station Science Summit, sponsored by NSF, assembled a multidisciplinary group of scientists to review Summit Station science, define the leading research questions for Summit, and make community-based recommendations for future science goals and governance for Summit. The impact of several on-going observation records was summarized in the report "Sustaining the Science Impact of Summit Station, Greenland," including the use of station data in weather forecasts and climate models. Observations made at the station as part of long-term, year-round research or during shorter summer-only campaign seasons contribute to several of the identified Social Benefit Areas (SBAs) outlined in the International Arctic Observations Assessment Framework published by the IDA Science and Technology Policy Institute and Sustaining Arctic Observing Networks as an outcome of the 2016 Arctic Science Ministerial. The SBAs supported by research

  14. The local ionospheric modeling by integration ground GPS observations and satellite altimetry data

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Sharifi

    2017-01-01

    Full Text Available The free electrons in the ionosphere have a strong impact on the propagation of radio waves. When the signals pass through the ionosphere, both their group and phase velocity are disturbed. Several space geodetic techniques such as satellite altimetry, low Earth orbit (LEO satellite and very long baseline interferometry (VLBI can be used to model the total electron content. At present, the classical input data for development of ionospheric models are based on dual-frequency GPS observations, However, a major problem with this observation type is the nonuniform distribution of the terrestrial GPS reference stations with large gaps notably over the sea surface and ocean where only some single stations are located on islands, leading to lower the precision of the model over these areas. In these regions the dual-frequency satellite altimeters provide precise information about the parameters of the ionosphere. Combination of GPS and satellite altimetry observations allows making best use of the advantages of their different spatial and temporal distributions. In this study, the local ionosphere modeling was done by the combination of space geodetic observations using spherical Slepian function. The combination of the data from ground GPS observations over the western part of the USA and the altimetry mission Jason-2 was performed on the normal equation level in the least-square procedure and a least-square variance component estimation (LS-VCE was applied to take into account the different accuracy levels of the observations. The integrated ionosphere model is more accurate and more reliable than the results derived from the ground GPS observations over the oceans.

  15. The FUSE satellite is encased in a canister before being moved to the Launch Pad.

    Science.gov (United States)

    1999-01-01

    At Hangar AE, Cape Canaveral Air Station (CCAS), the last segment is lifted over the top of NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite already encased in a protective canister. The satellite will next be moved to Launch Pad 17A, CCAS, for its scheduled launch June 23 aboard a Boeing Delta II rocket. FUSE was developed by The Johns Hopkins University under contract to Goddard Space Flight Center, Greenbelt, Md., to investigate the origin and evolution of the lightest elements in the universe - hydrogen and deuterium. In addition, the FUSE satellite will examine the forces and process involved in the evolution of the galaxies, stars and planetary systems by investigating light in the far ultraviolet portion of the electromagnetic spectrum.

  16. An orbit determination algorithm for small satellites based on the magnitude of the earth magnetic field

    Science.gov (United States)

    Zagorski, P.; Gallina, A.; Rachucki, J.; Moczala, B.; Zietek, S.; Uhl, T.

    2018-06-01

    Autonomous attitude determination systems based on simple measurements of vector quantities such as magnetic field and the Sun direction are commonly used in very small satellites. However, those systems always require knowledge of the satellite position. This information can be either propagated from orbital elements periodically uplinked from the ground station or measured onboard by dedicated global positioning system (GPS) receiver. The former solution sacrifices satellite autonomy while the latter requires additional sensors which may represent a significant part of mass, volume, and power budget in case of pico- or nanosatellites. Hence, it is thought that a system for onboard satellite position determination without resorting to GPS receivers would be useful. In this paper, a novel algorithm for determining the satellite orbit semimajor-axis is presented. The methods exploit only the magnitude of the Earth magnetic field recorded onboard by magnetometers. This represents the first step toward an extended algorithm that can determine all orbital elements of the satellite. The method is validated by numerical analysis and real magnetic field measurements.

  17. Relation of decorrelated transionospheric GPS signal fluctuations from two stations in the northern anomaly crest region with equatorial ionospheric dynamics

    Science.gov (United States)

    Paul, K. S.; Paul, A.

    2017-05-01

    The ionosphere around the northern crest of the equatorial ionization anomaly (EIA) and beyond exhibits rapid temporal as well as spatial development of ionization density irregularities during postsunset hours. A GPS campaign was conducted during September 2012 and April 2013 from the Institute of Radio Physics and Electronics, Calcutta (22.58°N, 88.38°E geographic; magnetic dip: 32°N), and North Bengal University (NBU), Siliguri (26.72°N, 88.39°E geographic, magnetic dip: 39.49°N) in India in order to assess and quantify differences, if any, in the nature of carrier to noise ratio (C/N0) fluctuations observed on the same satellite link around the same time interval from these stations. Significant decorrelation of the received signals was found when tracking the same satellite vehicle (SV) link from these stations during periods of scintillations. Low values of correlation coefficient of C/N0 at L1 frequency recorded on the same SV link at these two stations were found to correspond with high irregularity characteristic velocities. North-south spatial displacement rates of the impact of ionospheric irregularities were calculated based on coordinated GPS observations which followed an increasing trend with irregularity characteristic velocities measured at VHF. Values of characteristic velocities in excess of 36 m/s were also found to result in large receiver position deviations 3.5-4.0 m during periods of scintillations. Information related to time lag associated with occurrence of scintillations on the same SV link observed from two stations could be useful for improving performance of transionospheric satellite-based position determination techniques.

  18. The solar power satellite

    Energy Technology Data Exchange (ETDEWEB)

    Combes, P.F.

    1982-01-01

    The construction, launch, components, and operations of satellite solar power systems (SSPS) for direct beaming of solar energy converted to electricity to earth stations are outlined. The reference designs of either Si or concentrator GaAs solar cell assemblies large enough to project 5 GW of power are described. The beam will be furnished by klystrons or amplitrons for reception by rectennas on earth. Conforming to the law of amplitude and the equiphase law will permit high efficiencies, pointing accuracy, and low power deposition/sq cm, thus avoiding environmental problems, although some telecommunications systems may suffer interference. The construction of the dipole rectenna grid is sketched, noting that one receiver would be an ellipse sized at 10 x 13 km. Various forms of pollution which could result from the construction of an SSPS are examined.

  19. Satellite monitoring of remote volcanoes improves study efforts in Alaska

    Science.gov (United States)

    Dean, K.; Servilla, M.; Roach, A.; Foster, B.; Engle, K.

    Satellite monitoring of remote volcanoes is greatly benefitting the Alaska Volcano Observatory (AVO), and last year's eruption of the Okmok Volcano in the Aleutian Islands is a good case in point. The facility was able to issue and refine warnings of the eruption and related activity quickly, something that could not have been done using conventional seismic surveillance techniques, since seismometers have not been installed at these locations.AVO monitors about 100 active volcanoes in the North Pacific (NOPAC) region, but only a handful are observed by costly and logistically complex conventional means. The region is remote and vast, about 5000 × 2500 km, extending from Alaska west to the Kamchatka Peninsula in Russia (Figure 1). Warnings are transmitted to local communities and airlines that might be endangered by eruptions. More than 70,000 passenger and cargo flights fly over the region annually, and airborne volcanic ash is a threat to them. Many remote eruptions have been detected shortly after the initial magmatic activity using satellite data, and eruption clouds have been tracked across air traffic routes. Within minutes after eruptions are detected, information is relayed to government agencies, private companies, and the general public using telephone, fax, and e-mail. Monitoring of volcanoes using satellite image data involves direct reception, real-time monitoring, and data analysis. Two satellite data receiving stations, located at the Geophysical Institute, University of Alaska Fairbanks (UAF), are capable of receiving data from the advanced very high resolution radiometer (AVHRR) on National Oceanic and Atmospheric Administration (NOAA) polar orbiting satellites and from synthetic aperture radar (SAR) equipped satellites.

  20. Measuring Relativistic effects in the field of the Earth with Laser Ranged Satellites and the LARASE research program

    Science.gov (United States)

    Lucchesi, David; Anselmo, Luciano; Bassan, Massimo; Magnafico, Carmelo; Pardini, Carmen; Peron, Roberto; Pucacco, Giuseppe; Stanga, Ruggero; Visco, Massimo

    2017-04-01

    The main goal of the LARASE (LAser RAnged Satellites Experiment) research program is to obtain refined tests of Einstein's theory of General Relativity (GR) by means of very precise measurements of the round-trip time among a number of ground stations of the International Laser Ranging Service (ILRS) network and a set of geodetic satellites. These measurements are guaranteed by means of the powerful and precise Satellite Laser Ranging (SLR) technique. In particular, a big effort of LARASE is dedicated to improve the dynamical models of the LAGEOS, LAGEOS II and LARES satellites, with the objective to obtain a more precise and accurate determination of their orbit. These activities contribute to reach a final error budget that should be robust and reliable in the evaluation of the main systematic errors sources that come to play a major role in masking the relativistic precession on the orbit of these laser-ranged satellites. These error sources may be of gravitational and non-gravitational origin. It is important to stress that a more accurate and precise orbit determination, based on more reliable dynamical models, represents a fundamental prerequisite in order to reach a sub-mm precision in the root-mean-square of the SLR range residuals and, consequently, to gather benefits in the fields of geophysics and space geodesy, such as stations coordinates knowledge, geocenter determination and the realization of the Earth's reference frame. The results reached over the last year will be presented in terms of the improvements achieved in the dynamical model, in the orbit determination and, finally, in the measurement of the relativistic precessions that act on the orbit of the satellites considered.

  1. Possible experiment with two counter-orbiting drag-free satellites to obtain a new test of Einstein's general theory of relativity and improved measurements in geodesy

    International Nuclear Information System (INIS)

    Van Patten, R.A.; Everitt, C.W.F.

    1976-01-01

    In 1918, Lense and Thirring calculated that a moon orbiting a rotating planet would experience a nodal dragging effect due to general relativity. We describe an experiment to measure this effect to 1% with two counter-orbiting drag-free satellites in polar earth orbit. In addition to tracking data from existing ground stations, satellite-to-satellite Doppler ranging data are taken near the poles. New geophysical information is inherent in the polar data

  2. Internet-to-orbit gateway and virtual ground station: A tool for space research and scientific outreach

    Science.gov (United States)

    Jaffer, Ghulam; Nader, Ronnie; Koudelka, Otto

    2011-09-01

    Students in higher education, and scientific and technological researchers want to communicate with the International Space Station (ISS), download live satellite images, and receive telemetry, housekeeping and science/engineering data from nano-satellites and larger spacecrafts. To meet this need the Ecuadorian Civilian Space Agency (EXA) has recently provided the civilian world with an internet-to-orbit gateway (Hermes-A/Minotaur) Space Flight Control Center (SFCC) available for public use. The gateway has a maximum range of tracking and detection of 22,000 km and sensitivity such that it can receive and discriminate the signals from a satellite transmitter with power˜0.1 W. The capability is enough to receive the faintest low-earth-orbit (LEO) satellites. This gateway virtually connects participating internet clients around the world to a remote satellite ground station (GS), providing a broad community for multinational cooperation. The goal of the GS is to lower financial and engineering barriers that hinder access to science and engineering data from orbit. The basic design of the virtual GS on a user side is based on free software suites. Using these and other software tools the GS is able to provide access to orbit for a multitude of users without each having to go through the costly setups. We present the design and implementation of the virtual GS in a higher education and scientific outreach settings. We also discuss the basic architecture of the single existing system and the benefits of a proposed distributed system. Details of the software tools and their applicability to synchronous round-the-world tracking, monitoring and processing performed by students and teams at Graz University of Technology, Austria, EXA-Ecuador, University of Michigan, USA and JAXA who have participated in various mission operations and have investigated real-time satellite data download and image acquisition and processing. Students and other remote users at these

  3. Economics of satellite communications systems

    Science.gov (United States)

    Pritchard, Wilbur L.

    This paper is partly a tutorial, telling systematically how one goes about calculating the total annual costs of a satellite communications system, and partly the expression of some original ideas on the choice of parameters so as to minimize these costs. The calculation of costs can be divided into two broad categories. The first is technical and is concerned with estimating what particular equipment will cost and what will be the annual expense to maintain and operate it. One starts in the estimation of any new system by listing the principal items of equipment, such as satellites, earth stations of various sizes and functions, telemetry and tracking equipment and terrestrial interfaces, and then estimating how much each item will cost. Methods are presented for generating such estimates, based on a knowledge of the gross parameters, such as antenna size, coverage area, transmitter power and information rate. These parameters determine the system performance and it is usually possible, knowing them, to estimate the costs of the equipment rather well. Some formulae based on regression analyses are presented. Methods are then given for estimating closely related expenses, such as maintenance and operation, and then an approximate method is developed for estimating terrestrial interconnection costs. It is pointed out that in specific cases when tariff and geographical information are available, it is usually better to work with specific data, but nonetheless it is often desirable, especially in global system estimating, to approximate these interconnect costs without recourse to individual tariffs. The procedure results in a set of costs for the purchase of equipment and its maintenance, and a schedule of payments. Some payments will be incurred during the manufacture of the satellite and before any systems operation, but many will not be incurred until the system is no longer in use, e.g. incentives. In any case, with the methods presented in the first section, one

  4. [Mediator effect analysis of the trait coping style on job stress and fatigue of the military personnel stationed in plateau and high cold region].

    Science.gov (United States)

    Zhang, J J; Jia, J M; Tao, N; Song, Z X; Ge, H; Jiang, Y; Tian, H; Qiu, E C; Tang, J H; Liu, J W

    2017-03-20

    Objective: To investigate the fatigue status of military personnel stationed in plateau and high cold region, and to analyze the mediator effect of trait coping style on job stress and fatigue. Methods: In October 2010, with the method of cluster random sampling survey, 531 military personnel stationed in plateau and high cold region were chosen as subject. The fatigue status were evaluated by the Chinese version multidimensional fatigue inventory (MFI-20) , job stress were evaluated by the Job Stress Survey (JSS) , and trait coping style were evaluated by the Trait Coping Style Questionnaire (TCSQ) . Results: According to the information of different population characteristics, mean rank of physical fatigue about the urban (town) group were higher than that of rural group ( Z =-2.200, P fatigue scores about the urban (town) group were higher than that of rural group ( Z =-3.026, P fatigue about the up or equal 20-years old age group were higher than that of below 20-years old age group ( Z =-4.045, P fatigue about the up or equal 20-years old age group were higher than that of below 20-years old age group ( Z =-2.879, P fatigue scores about the up or equal 20-years old age group were higher than that of below 20-years old age group ( Z =-3.647, P fatigue scores were significant statistical difference among the military officers, sergeancy and soldier group ( F =14.711, P fatigue ( r (s)=0.129) , reduced activity ( r (s)=0.123) , reduced motivation ( r (s)=0.149) and general fatigue ( r (s)=0.174) respectively, the score of organizational support lack strength were positively correlated with the score of physical fatigue ( r (s)=0.090) , reduced activity ( r (s)=0.098) , reduced motivation ( r (s)=0.099) and general fatigue ( r (s)=0.130) respectively. The mediator effect of negative coping style on the job stress and fatigue was 0.013 ( P fatigue statuses of the urban (town) group and the up or equal 20-years old age group are poor, and the negative coping style

  5. An approach for real-time fast point positioning of the BeiDou Navigation Satellite System using augmentation information

    Science.gov (United States)

    Tu, Rui; Zhang, Rui; Zhang, Pengfei; Liu, Jinhai; Lu, Xiaochun

    2018-07-01

    This study proposes an approach to facilitate real-time fast point positioning of the BeiDou Navigation Satellite System (BDS) based on regional augmentation information. We term this as the precise positioning based on augmentation information (BPP) approach. The coordinates of the reference stations were highly constrained to extract the augmentation information, which contained not only the satellite orbit clock error correlated with the satellite running state, but also included the atmosphere error and unmodeled error, which are correlated with the spatial and temporal states. Based on these mixed augmentation corrections, a precise point positioning (PPP) model could be used for the coordinates estimation of the user stations, and the float ambiguity could be easily fixed for the single-difference between satellites. Thus, this technique provided a quick and high-precision positioning service. Three different datasets with small, medium, and large baselines (0.6 km, 30 km and 136 km) were used to validate the feasibility and effectiveness of the proposed BPP method. The validations showed that using the BPP model, 1–2 cm positioning service can be provided in a 100 km wide area after just 2 s of initialization. Thus, as the proposed approach not only capitalized on both PPP and RTK but also provided consistent application, it can be used for area augmentation positioning.

  6. Ground-based observations coordinated with Viking satellite measurements

    International Nuclear Information System (INIS)

    Opgenoorth, H.J.; Kirkwood, S.

    1989-01-01

    The instrumentation and the orbit of the Viking satellite made this first Swedish satellite mission ideally suited for coordinated observations with the dense network of ground-based stations in northern Scandinavia. Several arrays of complementing instruments such as magnetometers, all-sky cameras, riometers and doppler radars monitored on a routine basis the ionosphere under the magnetospheric region passed by Viking. For a large number of orbits the Viking passages close to Scandinavia were covered by the operation of specially designed programmes at the European incoherent-scatter facility (EISCAT). First results of coordinated observations on the ground and aboard Viking have shed new light on the most spectacular feature of substorm expansion, the westward-travelling surge. The end of a substorm and the associated decay of a westward-travelling surge have been analysed. EISCAT measurements of high spatial and temporal resolution indicate that the conductivities and electric fields associated with westward-travelling surges are not represented correctly by the existing models. (author)

  7. First Reprocessing of Southern Hemisphere Additional Ozonesondes (SHADOZ) Ozone Profiles (1998-2016): 2. Comparisons With Satellites and Ground-Based Instruments

    Science.gov (United States)

    Thompson, Anne M.; Witte, Jacquelyn C.; Sterling, Chance; Jordan, Allen; Johnson, Bryan J.; Oltmans, Samuel J.; Fujiwara, Masatomo; Vömel, Holger; Allaart, Marc; Piters, Ankie; Coetzee, Gert J. R.; Posny, Françoise; Corrales, Ernesto; Diaz, Jorge Andres; Félix, Christian; Komala, Ninong; Lai, Nga; Ahn Nguyen, H. T.; Maata, Matakite; Mani, Francis; Zainal, Zamuna; Ogino, Shin-ya; Paredes, Francisco; Penha, Tercio Luiz Bezerra; da Silva, Francisco Raimundo; Sallons-Mitro, Sukarni; Selkirk, Henry B.; Schmidlin, F. J.; Stübi, Rene; Thiongo, Kennedy

    2017-12-01

    The Southern Hemisphere ADditional OZonesonde (SHADOZ) network was assembled to validate a new generation of ozone-monitoring satellites and to better characterize the vertical structure of tropical ozone in the troposphere and stratosphere. Beginning with nine stations in 1998, more than 7,000 ozone and P-T-U profiles are available from 14 SHADOZ sites that have operated continuously for at least a decade. We analyze ozone profiles from the recently reprocessed SHADOZ data set that is based on adjustments for inconsistencies caused by varying ozonesonde instruments and operating techniques. First, sonde-derived total ozone column amounts are compared to the overpasses from the Earth Probe/Total Ozone Mapping Spectrometer, Ozone Monitoring Instrument, and Ozone Mapping and Profiler Suite satellites that cover 1998-2016. Second, characteristics of the stratospheric and tropospheric columns are examined along with ozone structure in the tropical tropopause layer (TTL). We find that (1) relative to our earlier evaluations of SHADOZ data, in 2003, 2007, and 2012, sonde-satellite total ozone column offsets at 12 stations are 2% or less, a significant improvement; (2) as in prior studies, the 10 tropical SHADOZ stations, defined as within ±19° latitude, display statistically uniform stratospheric column ozone, 229 ± 3.9 DU (Dobson units), and a tropospheric zonal wave-one pattern with a 14 DU mean amplitude; (3) the TTL ozone column, which is also zonally uniform, masks complex vertical structure, and this argues against using satellites for lower stratospheric ozone trends; and (4) reprocessing has led to more uniform stratospheric column amounts across sites and reduced bias in stratospheric profiles. As a consequence, the uncertainty in total column ozone now averages 5%.

  8. Classical and modern control strategies for the deployment, reconfiguration, and station-keeping of the National Aeronautics and Space Administration (NASA) Benchmark Tetrahedron Constellation

    Science.gov (United States)

    Capo-Lugo, Pedro A.

    Formation flying consists of multiple spacecraft orbiting in a required configuration about a planet or through Space. The National Aeronautics and Space Administration (NASA) Benchmark Tetrahedron Constellation is one of the proposed constellations to be launched in the year 2009 and provides the motivation for this investigation. The problem that will be researched here consists of three stages. The first stage contains the deployment of the satellites; the second stage is the reconfiguration process to transfer the satellites through different specific sizes of the NASA benchmark problem; and, the third stage is the station-keeping procedure for the tetrahedron constellation. Every stage contains different control schemes and transfer procedures to obtain/maintain the proposed tetrahedron constellation. In the first stage, the deployment procedure will depend on a combination of two techniques in which impulsive maneuvers and a digital controller are used to deploy the satellites and to maintain the tetrahedron constellation at the following apogee point. The second stage that corresponds to the reconfiguration procedure shows a different control scheme in which the intelligent control systems are implemented to perform this procedure. In this research work, intelligent systems will eliminate the use of complex mathematical models and will reduce the computational time to perform different maneuvers. Finally, the station-keeping process, which is the third stage of this research problem, will be implemented with a two-level hierarchical control scheme to maintain the separation distance constraints of the NASA Benchmark Tetrahedron Constellation. For this station-keeping procedure, the system of equations defining the dynamics of a pair of satellites is transformed to take in account the perturbation due to the oblateness of the Earth and the disturbances due to solar pressure. The control procedures used in this research will be transformed from a continuous

  9. Program on application of communications satellites to educational development: Design of a 12 channel FM microwave receiver. [color television from communication satellites

    Science.gov (United States)

    Risch, C. O.; Rosenbaum, F. J.; Gregory, R. O.

    1974-01-01

    The design, fabrication, and performance of elements of a low cost FM microwave satellite ground station receiver is described. It is capable of accepting 12 contiguous color television equivalent bandwidth channels in the 11.72 to 12.2 GHz band. Each channel is 40 MHz wide and incorporates a 4 MHz guard band. The modulation format is wideband FM and the channels are frequency division multiplexed. Twelve independent CATV compatible baseband outputs are provided. The overall system specifications are first discussed, then consideration is given to the receiver subsystems and the signal branching network.

  10. Solar resources estimation combining digital terrain models and satellite images techniques

    Energy Technology Data Exchange (ETDEWEB)

    Bosch, J.L.; Batlles, F.J. [Universidad de Almeria, Departamento de Fisica Aplicada, Ctra. Sacramento s/n, 04120-Almeria (Spain); Zarzalejo, L.F. [CIEMAT, Departamento de Energia, Madrid (Spain); Lopez, G. [EPS-Universidad de Huelva, Departamento de Ingenieria Electrica y Termica, Huelva (Spain)

    2010-12-15

    One of the most important steps to make use of any renewable energy is to perform an accurate estimation of the resource that has to be exploited. In the designing process of both active and passive solar energy systems, radiation data is required for the site, with proper spatial resolution. Generally, a radiometric stations network is used in this evaluation, but when they are too dispersed or not available for the study area, satellite images can be utilized as indirect solar radiation measurements. Although satellite images cover wide areas with a good acquisition frequency they usually have a poor spatial resolution limited by the size of the image pixel, and irradiation must be interpolated to evaluate solar irradiation at a sub-pixel scale. When pixels are located in flat and homogeneous areas, correlation of solar irradiation is relatively high, and classic interpolation can provide a good estimation. However, in complex topography zones, data interpolation is not adequate and the use of Digital Terrain Model (DTM) information can be helpful. In this work, daily solar irradiation is estimated for a wide mountainous area using a combination of Meteosat satellite images and a DTM, with the advantage of avoiding the necessity of ground measurements. This methodology utilizes a modified Heliosat-2 model, and applies for all sky conditions; it also introduces a horizon calculation of the DTM points and accounts for the effect of snow covers. Model performance has been evaluated against data measured in 12 radiometric stations, with results in terms of the Root Mean Square Error (RMSE) of 10%, and a Mean Bias Error (MBE) of +2%, both expressed as a percentage of the mean value measured. (author)

  11. UHF coplanar-slot antenna for aircraft-to-satellite data communications

    Science.gov (United States)

    Myhre, R. W.

    1979-01-01

    The initiative for starting the Aircraft-to-Satellite Data Relay (ASDAR) Program came from a recognition that much of the world's weather originates in the data sparse area of the tropics which are primarily ocean. The ASDAR system consists of (1) a data acquisition and control unit to acquire, store and format these data; (2) a clock to time the data sampling and transmission periods; and (3) a transmitter and low-profile upper hemisphere coverage antenna to relay the formatted data via satellite to the National Weather Service ground stations, as shown schematically. The low-profile antenna is a conformal antenna based on the coplanar-slot approach. The antenna is circular polarized and has an on-axis gain of nearly 2.5 dB and a HPBW greater than 90 deg. The discussion covers antenna design, radiation characteristics, flight testing, and system performance.

  12. A low-cost transportable ground station for capture and processing of direct broadcast EOS satellite data

    Science.gov (United States)

    Davis, Don; Bennett, Toby; Short, Nicholas M., Jr.

    1994-01-01

    The Earth Observing System (EOS), part of a cohesive national effort to study global change, will deploy a constellation of remote sensing spacecraft over a 15 year period. Science data from the EOS spacecraft will be processed and made available to a large community of earth scientists via NASA institutional facilities. A number of these spacecraft are also providing an additional interface to broadcast data directly to users. Direct broadcast of real-time science data from overhead spacecraft has valuable applications including validation of field measurements, planning science campaigns, and science and engineering education. The success and usefulness of EOS direct broadcast depends largely on the end-user cost of receiving the data. To extend this capability to the largest possible user base, the cost of receiving ground stations must be as low as possible. To achieve this goal, NASA Goddard Space Flight Center is developing a prototype low-cost transportable ground station for EOS direct broadcast data based on Very Large Scale Integration (VLSI) components and pipelined, multiprocessing architectures. The targeted reproduction cost of this system is less than $200K. This paper describes a prototype ground station and its constituent components.

  13. EFFECTS OF RICIAN FADING ON THE OPERATION OF AERONAUTICAL SATELLITE OFDM CHANNEL

    Directory of Open Access Journals (Sweden)

    Volodymyr Kharchenko

    2016-06-01

    Full Text Available The aim of this study is to investigate the influence of Rician fading on messages transmission via the aeronautical satellite OFDM channel with adaptive modulation and the development of a method for estimating the parameters of such a channel. Methods: To study the effect of Rician fading on messages transmission via aeronautical satellite OFDM channel with adaptive modulation the original model of the communication channel “Aircraft-Satellite-Ground Station” was built using software package MATLAB Sіmulіnk. The model includes “Aircraft Transmitter”, “Uplink/Downlink Path”, “Satellite Transponder”, and “Ground Station Receiver”. Each modulator block in the modulation bank performs convolutional coding and puncturing using code rates of ½, ²/3, and ¾, data interleaving, BPSK, QPSK, 16-QAM, and 64-QAM modulation. Results: Dependences of Estimated channel SNR on the ratio between the power of the LOS component and the diffuse component, on the downlink gain and delay in the diffuse component for different Doppler spectrum types and Doppler frequency offsets were obtained. A method for estimating the parameters of the satellite channels with fading was proposed. Discussion: The realistic model of aeronautical satellite OFDM link with Rician fading is developed for the first time on a basis of IEEE 802.11a standard and used for channel parameters evaluation. Proposed in this article approach can be considered as a method for estimating parameters of the channel with fading.

  14. Research on Scheduling Algorithm for Multi-satellite and Point Target Task on Swinging Mode

    Science.gov (United States)

    Wang, M.; Dai, G.; Peng, L.; Song, Z.; Chen, G.

    2012-12-01

    Nowadays, using satellite in space to observe ground is an important and major method to obtain ground information. With the development of the scientific technology in the field of space, many fields such as military and economic and other areas have more and more requirement of space technology because of the benefits of the satellite's widespread, timeliness and unlimited of area and country. And at the same time, because of the wide use of all kinds of satellites, sensors, repeater satellites and ground receiving stations, ground control system are now facing great challenge. Therefore, how to make the best value of satellite resources so as to make full use of them becomes an important problem of ground control system. Satellite scheduling is to distribute the resource to all tasks without conflict to obtain the scheduling result so as to complete as many tasks as possible to meet user's requirement under considering the condition of the requirement of satellites, sensors and ground receiving stations. Considering the size of the task, we can divide tasks into point task and area task. This paper only considers point targets. In this paper, a description of satellite scheduling problem and a chief introduction of the theory of satellite scheduling are firstly made. We also analyze the restriction of resource and task in scheduling satellites. The input and output flow of scheduling process are also chiefly described in the paper. On the basis of these analyses, we put forward a scheduling model named as multi-variable optimization model for multi-satellite and point target task on swinging mode. In the multi-variable optimization model, the scheduling problem is transformed the parametric optimization problem. The parameter we wish to optimize is the swinging angle of every time-window. In the view of the efficiency and accuracy, some important problems relating the satellite scheduling such as the angle relation between satellites and ground targets, positive

  15. Evolution of the Orbital Elements for Geosynchronous Orbit of Communications Satellite, II

    Directory of Open Access Journals (Sweden)

    Kyu-Hong Choi

    1987-06-01

    Full Text Available For a geostationary satellite north-south station keeping maneuver must control the inclination elements. The effects on the orbit plane of maneuvers and natural perturbations may be represented by a plane plot of Wc versus Ws, since these inclination elements represent the projection of the unit orbit normal onto the equatorial plane. The evolution of the semi-major axis and the inclination elements are obtained.

  16. Multi-Satellite Synergy for Aerosol Analysis in the Asian Monsoon Region

    Science.gov (United States)

    Ichoku, Charles; Petrenko, Maksym

    2012-01-01

    Atmospheric aerosols represent one of the greatest uncertainties in environmental and climate research, particularly in tropical monsoon regions such as the Southeast Asian regions, where significant contributions from a variety of aerosol sources and types is complicated by unstable atmospheric dynamics. Although aerosols are now routinely retrieved from multiple satellite Sensors, in trying to answer important science questions about aerosol distribution, properties, and impacts, researchers often rely on retrievals from only one or two sensors, thereby running the risk of incurring biases due to sensor/algorithm peculiarities. We are conducting detailed studies of aerosol retrieval uncertainties from various satellite sensors (including Terra-/ Aqua-MODIS, Terra-MISR, Aura-OMI, Parasol-POLDER, SeaWiFS, and Calipso-CALIOP), based on the collocation of these data products over AERONET and other important ground stations, within the online Multi-sensor Aerosol Products Sampling System (MAPSS) framework that was developed recently. Such analyses are aimed at developing a synthesis of results that can be utilized in building reliable unified aerosol information and climate data records from multiple satellite measurements. In this presentation, we will show preliminary results of. an integrated comparative uncertainly analysis of aerosol products from multiple satellite sensors, particularly focused on the Asian Monsoon region, along with some comparisons from the African Monsoon region.

  17. Coded throughput performance simulations for the time-varying satellite channel. M.S. Thesis

    Science.gov (United States)

    Han, LI

    1995-01-01

    The design of a reliable satellite communication link involving the data transfer from a small, low-orbit satellite to a ground station, but through a geostationary satellite, was examined. In such a scenario, the received signal power to noise density ratio increases as the transmitting low-orbit satellite comes into view, and then decreases as it then departs, resulting in a short-duration, time-varying communication link. The optimal values of the small satellite antenna beamwidth, signaling rate, modulation scheme and the theoretical link throughput (in bits per day) have been determined. The goal of this thesis is to choose a practical coding scheme which maximizes the daily link throughput while satisfying a prescribed probability of error requirement. We examine the throughput of both fixed rate and variable rate concatenated forward error correction (FEC) coding schemes for the additive white Gaussian noise (AWGN) channel, and then examine the effect of radio frequency interference (RFI) on the best coding scheme among them. Interleaving is used to mitigate degradation due to RFI. It was found that the variable rate concatenated coding scheme could achieve 74 percent of the theoretical throughput, equivalent to 1.11 Gbits/day based on the cutoff rate R(sub 0). For comparison, 87 percent is achievable for AWGN-only case.

  18. Observations of Terrestrial Nightglow (Meinel Bands) at King Sejong Station, Antarctica

    OpenAIRE

    Young-In Won; Young-Mon Cho; Bang Yong Lee; Jhoon Kim; Jong Kyun Chung; Yong Ha Kim

    1999-01-01

    A Fourier Transform Spectrometer was used to study upper mesospheric thermodynamic by observing the hydroxyl (OH) emission. Rocket-born and satellited-born photometers place the peak emission near 87 km. The instrument was installed in February 1999 at King Sejong station (62.22 °S, 301.25 °E), Antarctica and has been in routine operation since then. An intensive operational effort has resulted in a substantial data between April and June, 1999. A harmonic analysis was carried out to examine ...

  19. Temporal Variability of Total Ozone in the Asian Region Inferred from Ground-Based and Satellite Measurement Data

    Science.gov (United States)

    Visheratin, K. N.; Nerushev, A. F.; Orozaliev, M. D.; Zheng, Xiangdong; Sun, Shumen; Liu, Li

    2017-12-01

    This paper reports investigation data on the temporal variability of total ozone content (TOC) in the Central Asian and Tibet Plateau mountain regions obtained by conventional methods, as well as by spectral, cross-wavelet, and composite analyses. The data of ground-based observation stations located at Huang He, Kunming, and Lake Issyk-Kul, along with the satellite data obtained at SBUV/SBUV2 (SBUV merged total and profile ozone data, Version 8.6) for 1980-2013 and OMI (Ozone Monitoring Instrument) and TOU (Total Ozone Unit) for 2009-2013 have been used. The average relative deviation from the SBUV/SBUV2 data is less than 1% in Kunming and Issyk-Kul for the period of 1980-2013, while the Huang He Station is characterized by an excess of the satellite data over the ground-based information at an average deviation of 2%. According to the Fourier analysis results, the distribution of amplitudes and the periods of TOC oscillations within a range of over 14 months is similar for all series analyzed. Meanwhile, according to the cross-wavelet and composite analyses results, the phase relationships between the series may considerably differ, especially in the periods of 5-7 years. The phase of quasi-decennial oscillations in the Kunming Station is close to the 11-year oscillations of the solar cycle, while in the Huang He and Issyk-Kul stations the TOC variations go ahead of the solar cycle.

  20. Error threshold inference from Global Precipitation Measurement (GPM) satellite rainfall data and interpolated ground-based rainfall measurements in Metro Manila

    Science.gov (United States)

    Ampil, L. J. Y.; Yao, J. G.; Lagrosas, N.; Lorenzo, G. R. H.; Simpas, J.

    2017-12-01

    The Global Precipitation Measurement (GPM) mission is a group of satellites that provides global observations of precipitation. Satellite-based observations act as an alternative if ground-based measurements are inadequate or unavailable. Data provided by satellites however must be validated for this data to be reliable and used effectively. In this study, the Integrated Multisatellite Retrievals for GPM (IMERG) Final Run v3 half-hourly product is validated by comparing against interpolated ground measurements derived from sixteen ground stations in Metro Manila. The area considered in this study is the region 14.4° - 14.8° latitude and 120.9° - 121.2° longitude, subdivided into twelve 0.1° x 0.1° grid squares. Satellite data from June 1 - August 31, 2014 with the data aggregated to 1-day temporal resolution are used in this study. The satellite data is directly compared to measurements from individual ground stations to determine the effect of the interpolation by contrast against the comparison of satellite data and interpolated measurements. The comparisons are calculated by taking a fractional root-mean-square error (F-RMSE) between two datasets. The results show that interpolation improves errors compared to using raw station data except during days with very small amounts of rainfall. F-RMSE reaches extreme values of up to 654 without a rainfall threshold. A rainfall threshold is inferred to remove extreme error values and make the distribution of F-RMSE more consistent. Results show that the rainfall threshold varies slightly per month. The threshold for June is inferred to be 0.5 mm, reducing the maximum F-RMSE to 9.78, while the threshold for July and August is inferred to be 0.1 mm, reducing the maximum F-RMSE to 4.8 and 10.7, respectively. The maximum F-RMSE is reduced further as the threshold is increased. Maximum F-RMSE is reduced to 3.06 when a rainfall threshold of 10 mm is applied over the entire duration of JJA. These results indicate that

  1. Online Resource for Earth-Observing Satellite Sensor Calibration

    Science.gov (United States)

    McCorkel, J.; Czapla-Myers, J.; Thome, K.; Wenny, B.

    2015-01-01

    The Radiometric Calibration Test Site (RadCaTS) at Railroad Valley Playa, Nevada is being developed by the University of Arizona to enable improved accuracy and consistency for airborne and satellite sensor calibration. Primary instrumentation at the site consists of ground-viewing radiometers, a sun photometer, and a meteorological station. Measurements made by these instruments are used to calculate surface reflectance, atmospheric properties and a prediction for top-of-atmosphere reflectance and radiance. This work will leverage research for RadCaTS, and describe the requirements for an online database, associated data formats and quality control, and processing levels.

  2. Relative drifts and stability of satellite and ground-based stratospheric ozone profiles at NDACC lidar stations

    Directory of Open Access Journals (Sweden)

    P. J. Nair

    2012-06-01

    Full Text Available The long-term evolution of stratospheric ozone at different stations in the low and mid-latitudes is investigated. The analysis is performed by comparing the collocated profiles of ozone lidars, at the northern mid-latitudes (Meteorological Observatory Hohenpeißenberg, Haute-Provence Observatory, Tsukuba and Table Mountain Facility, tropics (Mauna Loa Observatory and southern mid-latitudes (Lauder, with ozonesondes and space-borne sensors (SBUV(/2, SAGE II, HALOE, UARS MLS and Aura MLS, extracted around the stations. Relative differences are calculated to find biases and temporal drifts in the measurements. All measurement techniques show their best agreement with respect to the lidar at 20–40 km, where the differences and drifts are generally within ±5% and ±0.5% yr−1, respectively, at most stations. In addition, the stability of the long-term ozone observations (lidar, SBUV(/2, SAGE II and HALOE is evaluated by the cross-comparison of each data set. In general, all lidars and SBUV(/2 exhibit near-zero drifts and the comparison between SAGE II and HALOE shows larger, but insignificant drifts. The RMS of the drifts of lidar and SBUV(/2 is 0.22 and 0.27% yr−1, respectively at 20–40 km. The average drifts of the long-term data sets, derived from various comparisons, are less than ±0.3% yr−1 in the 20–40 km altitude at all stations. A combined time series of the relative differences between SAGE II, HALOE and Aura MLS with respect to lidar data at six sites is constructed, to obtain long-term data sets lasting up to 27 years. The relative drifts derived from these combined data are very small, within ±0.2% yr−1.

  3. Ground-based multi-station spectroscopic imaging with ALIS. - Scientific highlights, project status and future prospects

    Science.gov (United States)

    Brändström; Gustavsson, Björn; Pellinen-Wannberg, Asta; Sandahl, Ingrid; Sergienko, Tima; Steen, Ake

    2005-08-01

    The Auroral Large Imaging System (ALIS) was first proposed at the ESA-PAC meeting in Lahnstein 1989. The first spectroscopic imaging station was operational in 1994, and since then up to six stations have been in simultaneous operation. Each station has a scientific-grade CCD-detector and a filter-wheel for narrow-band interference-filters with six positions. The field-of-view is around 70°. Each imager is mounted in a positioning system, enabling imaging of a common volume from several sites. This enables triangulation and tomography. Raw data from ALIS is freely available at ("http://alis.irf.se") and ALIS is open for scientific colaboration. ALIS made the first unambiguous observations of Radio-induced optical emissions at high latitudes, and the detection of water in a Leonid meteor-trail. Both rockets and satellite coordination are considered for future observations with ALIS.

  4. Saturn satellites

    International Nuclear Information System (INIS)

    Ruskol, E.L.

    1981-01-01

    The characteristics of the Saturn satellites are discussed. The satellites close to Saturn - Janus, Mimas, Enceladus, Tethys, Dione and Rhea - rotate along the circular orbits. High reflectivity is attributed to them, and the density of the satellites is 1 g/cm 3 . Titan is one of the biggest Saturn satellites. Titan has atmosphere many times more powerful than that of Mars. The Titan atmosphere is a peculiar medium with a unique methane and hydrogen distribution in the whole Solar system. The external satellites - Hyperion, Japetus and Phoebe - are poorly investigated. Neither satellite substance density, nor their composition are known. The experimental data on the Saturn rings obtained on the ''Pioneer-11'' and ''Voyager-1'' satellites are presented [ru

  5. Satellite-based quantum communication terminal employing state-of-the-art technology

    Science.gov (United States)

    Pfennigbauer, Martin; Aspelmeyer, Markus; Leeb, Walter R.; Baister, Guy; Dreischer, Thomas; Jennewein, Thomas; Neckamm, Gregor; Perdigues, Josep M.; Weinfurter, Harald; Zeilinger, Anton

    2005-09-01

    Feature Issue on Optical Wireless Communications (OWC) We investigate the design and the accommodation of a quantum communication transceiver in an existing classical optical communication terminal on board a satellite. Operation from a low earth orbit (LEO) platform (e.g., the International Space Station) would allow transmission of single photons and pairs of entangled photons to ground stations and hence permit quantum communication applications such as quantum cryptography on a global scale. Integration of a source generating entangled photon pairs and single-photon detection into existing optical terminal designs is feasible. Even more, major subunits of the classical terminals such as those for pointing, acquisition, and tracking as well as those providing the required electronic, thermal, and structural backbone can be adapted so as to meet the quantum communication terminal needs.

  6. Re-assessing Rainwater Harvesting Volume by CHIRPS Satellite in Semarang Settlement Area

    Science.gov (United States)

    Prihanto, Yosef; Koestoer, Raldi H.; Sutjiningsih, Dwita

    2017-12-01

    Semarang City is one of the most influential coastal cities in Java Island. The city is facing increasingly-high water demand due to its development and water problems due to climate change. The spatial physiography and landscape of Semarang City are also exposed the city to water security problem. Hence, rainwater harvesting treatment is an urgent effort to meet the city’s water needs. However, planning, implementation and management of rainwater harvesting are highly depended on multitemporal rainfall data. It has not yet been fully compiled due to limited rain stations. This study aims to examine the extent to which CHIRPS satellite data can be utilized in estimating volume of rainwater harvesting 16 sub-districts in Semarang and determine the water security status. This study uses descriptive statistical method based on spatial analyses. Such method was developed through spatial modeling for rainfall using isohyetal model. The parameters used are rainfall, residential rooftop area, administrative area, population, physiographic and altitude units. Validation is carried out by using monthly 10 rain stations data. The results show level of validity by utilizing CHIRPS Satellite data and mapping rainfall distribution. This study also produces a potential map of distribution rainfall volume that can be harvested in 16 sub-districts of Semarang.

  7. Precise Orbit Determination of GPS Satellites Using Phase Observables

    Directory of Open Access Journals (Sweden)

    Myung-Kook Jee

    1997-12-01

    Full Text Available The accuracy of user position by GPS is heavily dependent upon the accuracy of satellite position which is usually transmitted to GPS users in radio signals. The real-time satellite position information directly obtained from broadcast ephimerides has the accuracy of 3 x 10 meters which is very unsatisfactory to measure 100km baseline to the accuracy of less than a few mili-meters. There are globally at present seven orbit analysis centers capable of generating precise GPS ephimerides and their orbit quality is of the order of about 10cm. Therefore, precise orbit model and phase processing technique were reviewed and consequently precise GPS ephimerides were produced after processing the phase observables of 28 global GPS stations for 1 day. Initial 6 orbit parameters and 2 solar radiation coefficients were estimated using batch least square algorithm and the final results were compared with the orbit of IGS, the International GPS Service for Geodynamics.

  8. The Climate Hazards group InfraRed Precipitation (CHIRP) with Stations (CHIRPS): Development and Validation

    Science.gov (United States)

    Peterson, P.; Funk, C. C.; Husak, G. J.; Pedreros, D. H.; Landsfeld, M.; Verdin, J. P.; Shukla, S.

    2013-12-01

    CHIRP and CHIRPS are new quasi-global precipitation products with daily to seasonal time scales, a 0.05° resolution, and a 1981 to near real-time period of record. Developed by the Climate Hazards Group at UCSB and scientists at the U.S. Geological Survey Earth Resources Observation and Science Center specifically for drought early warning and environmental monitoring, CHIRPS provides moderate latency precipitation estimates that place observed hydrologic extremes in their historic context. Three main types of information are used in the CHIRPS: (1) global 0.05° precipitation climatologies, (2) time-varying grids of satellite-based precipitation estimates, and (3) in situ precipitation observations. CHIRP: The global grids of long-term (1980-2009) average precipitation were estimated for each month based on station data, averaged satellite observations, and physiographic parameters. 1981-present time-varying grids of satellite precipitation were derived from spatially varying regression models based on pentadal cold cloud duration (CCD) values and TRMM V7 training data. The CCD time-series were derived from the CPC and NOAA B1 datasets. Pentadal CCD-percent anomaly values were multiplied by pentadal climatology fields to produce low bias pentadal precipitation estimates. CHIRPS: The CHG station blending procedure uses the satellite-observed spatial covariance structure to assign relative weights to neighboring stations and the CHIRP values. The CHIRPS blending procedure is based on the expected correlation between precipitation at a given target location and precipitation at the locations of the neighboring observation stations. These correlations are estimated using the CHIRP fields. The CHG has developed an extensive archive of in situ daily, pentadal and monthly precipitation totals. The CHG database has over half a billion daily rainfall observations since 1980 and another half billion before 1980. Most of these observations come from four sets of global

  9. The RING and Seismic Network: Data Acquisition of Co-located Stations

    Science.gov (United States)

    Falco, L.; Avallone, A.; Cattaneo, M.; Cecere, G.; Cogliano, R.; D'Agostino, N.; D'Ambrosio, C.; D'Anastasio, E.; Selvaggi, G.

    2007-12-01

    The plate boundary between Africa and Eurasia represents an interesting geodynamical region characterized by a complex pattern of deformation. First-order scientific problems regarding the existence of rigid blocks within the plate boundary, the present-day activity of the Calabrian subduction zone and the modes of release of seismic deformation are still awaiting for a better understanding. To address these issues, the INGV (Istituto Nazionale Geofisica e Vulcanlogia) deployed a permanent, integrated and real-time monitoring GPS network (RING) all over Italy. RING is now constituted by about 120 stations. The CGPS sites, acquiring at 1Hz and 30s sampling rate, are integrated either with broad band or very broad band seismometers and accelerometers for an improved definition of the seismically active regions. Most of the sites are connected to the acquisition centre (located in Rome and duplicated in Grottaminarda) through a satellite system (VSAT), while the remaining sites transmit data by Internet and classical phone connections. The satellite data transmission and the integration with seismic instruments makes this network one of the most innovative CGPS networks in Europe. The heterogeneity of the installed instrumentation, the transmission types and the increasing number of stations needed a central monitoring and acquisition system. A central acquisition system has been developed in Grottaminarda in southern Italy. Regarding the seismic monitoring we chose to use the open source system Earthworm, developed by USGS, with which we store waveforms and implement automatic localization of the seismic events occurring in the area. As most of the GPS sites are acquired by means of Nanometrics satellite technology, we developed a specific software (GpsView), written in Java, to monitor the state of health of those CGPS. This software receives GPS data from NaqsServer (Nanometrics acquisition system) and outputs information about the sites (i.e. approx position

  10. MoMoSat -- Mobile Service for Monitoring with GeoNotes via Satellite

    Energy Technology Data Exchange (ETDEWEB)

    Niemeyer, Irmgard [Forschungszentrum Juelich (Germany). Programme Group Systems Analysis and Technology Evaluation (STE); Jonas, Karl [Univ. of Applied Science Bonn-Rhein-Sieg, Sankt Augustin (Germany). FhG FOKUS CC SATCom; Horz, Alexander [horz informatik, Sankt Augustin (Germany); Wettschereck, Dietrich; Schmidt, Dirk [DIALOGIS GmbH, Bonn (Germany)

    2003-05-01

    The MoMoSat service will enable mobile end-users to view, manage, annotate, and communicate mapbased information in the field. The handled information exists of a huge volume of raster (satellite or aerial images) and vector data (i.e. street networks, cadastral maps or points of interest), as well as text-specific geo-referenced textual notes (the so-called 'GeoNotes') and real-time voice. A secure real-time communication between mobile units and the primary data store is an essential task of the MoMoSat service. The basic information is stored in the primary database that is accessible through a virtual private network (VPN) and cached at a server at a base station in order to ensure data availability. The base station may be installed in a car or another mobile vehicle. The two servers will periodically communicate with each other via secure satellite communication in order to check for updates. The base station supplies the relevant GIS data for the mobile units (people or even robots in the field at remote solutions). The communication between the mobile units is based on a peer-to-peer wireless local area network (WLAN) architecture. The mobile units are equipped with mobile computers (i.e. laptop, tablet PC or PDA) combined with a satellite-based positioning system (GPS) that enables them to request the proper geographic data sets from yhe base station's map server. An interactive mapping software shows the actual location on the map and allows the user to navigate (zoom, pan) through the high-resolution map display. The user can switch 'on' or 'off' several thematic layers (i.e. street network or points of interest) on the map. The software also supports collaborative aspects of MoMoSat by offering tools for the management of the GeoNotes that can be visualized by categories. The user can extend the existing GeoNotes with his personnel comments or create new GeoNotes by defining categories, recipients and the level of

  11. Space station automation: the role of robotics and artificial intelligence (Invited Paper)

    Science.gov (United States)

    Park, W. T.; Firschein, O.

    1985-12-01

    Automation of the space station is necessary to make more effective use of the crew, to carry out repairs that are impractical or dangerous, and to monitor and control the many space station subsystems. Intelligent robotics and expert systems play a strong role in automation, and both disciplines are highly dependent on a common artificial intelligence (Al) technology base. The AI technology base provides the reasoning and planning capabilities needed in robotic tasks, such as perception of the environment and planning a path to a goal, and in expert systems tasks, such as control of subsystems and maintenance of equipment. This paper describes automation concepts for the space station, the specific robotic and expert systems required to attain this automation, and the research and development required. It also presents an evolutionary development plan that leads to fully automatic mobile robots for servicing satellites. Finally, we indicate the sequence of demonstrations and the research and development needed to confirm the automation capabilities. We emphasize that advanced robotics requires AI, and that to advance, AI needs the "real-world" problems provided by robotics.

  12. CryoSat-2 satellite radar altimetry for river analysis and modelling

    DEFF Research Database (Denmark)

    Schneider, Raphael

    The global coverage of in situ observations of surface water dynamics is insufficient to effectively manage water resources. Moreover, the availability of these data is decreasing, due to the lack of gauging stations and data sharing. Satellite radar altimetry, initially developed to monitor ocean...... water levels, also offers measurements of water levels of rivers and lakes on a global scale. Because of the continuous upstart of new missions, and sensor and processing innovations, the importance of satellite altimetry data for the hydrologic community is increasing. CryoSat-2, launched......) and Synthetic Aperture Radar Interferometric (SARIn) mode. SAR and SARIn have reduced footprint size in the along-track direction owing to delay/Doppler processing, potentially increasing observation accuracy. Second, CryoSat-2 is placed on a unique long-repeat orbit with a cycle of 369 days. This is different...

  13. Space base laser torque applied on LEO satellites of various geometries at satellite’s closest approach

    Directory of Open Access Journals (Sweden)

    N.S. Khalifa

    2013-12-01

    Full Text Available In light of using laser power in space applications, the motivation of this paper is to use a space based solar pumped laser to produce a torque on LEO satellites of various shapes. It is assumed that there is a space station that fires laser beam toward the satellite so the beam spreading due to diffraction is considered to be the dominant effect on the laser beam propagation. The laser torque is calculated at the point of closest approach between the space station and some sun synchronous low Earth orbit cubesats. The numerical application shows that space based laser torque has a significant contribution on the LEO cubesats. It has a maximum value in the order of 10−8 Nm which is comparable with the residual magnetic moment. However, it has a minimum value in the order 10−11 Nm which is comparable with the aerodynamic and gravity gradient torque. Consequently, space based laser torque can be used as an active attitude control system.

  14. Analysis on coverage ability of BeiDou navigation satellite system for manned spacecraft

    Science.gov (United States)

    Zhao, Sihao; Yao, Zheng; Zhuang, Xuebin; Lu, Mingquan

    2014-12-01

    To investigate the service ability of the BeiDou Navigation Satellite System (BDS) for manned spacecraft, both the current regional and the future-planned global constellations of BDS are introduced and simulated. The orbital parameters of the International Space Station and China's Tiangong-1 spacelab are used to create the simulation scenario and evaluate the performance of the BDS constellations. The number of visible satellites and the position dilution (PDOP) of precision at the spacecraft-based receiver are evaluated. Simulation and analysis show quantitative results on the coverage ability and time percentages of both the current BDS regional and future global constellations for manned-space orbits which can be a guideline to the applications and mission design of BDS receivers on manned spacecraft.

  15. Ionospheric turbulence from ground-based and satellite VLF/LF transmitter signal observations for the Simushir earthquake (November 15, 2006

    Directory of Open Access Journals (Sweden)

    Pier Francesco Biagi

    2012-04-01

    Full Text Available

    Signals from very low frequency (VLF/ low frequency (LF transmitters recorded on the ground station at Petropavlovsk-Kamchatsky and on board the French DEMETER satellite were analyzed for the Simushir earthquake (M 8.3; November 15, 2006. The period of analysis was from October 1, 2006, to January 31, 2007. The ground and satellite data were processed by a method based on the difference between the real signal at night-time and the model signal. The model for the ground observations was the monthly averaged signal amplitudes and phases, as calculated for the quiet days of every month. For the satellite data, a two-dimensional model of the signal distribution over the selected area was constructed. Preseismic effects were found several days before the earthquake, in both the ground and satellite observations.

     

  16. Appraising city-scale pollution monitoring capabilities of multi-satellite datasets using portable pollutant monitors

    Science.gov (United States)

    Aliyu, Yahaya A.; Botai, Joel O.

    2018-04-01

    The retrieval characteristics for a city-scale satellite experiment was explored over a Nigerian city. The study evaluated carbon monoxide and aerosol contents in the city atmosphere. We utilized the MSA Altair 5× gas detector and CW-HAT200 particulate counter to investigate the city-scale monitoring capabilities of satellite pollution observing instruments; atmospheric infrared sounder (AIRS), measurement of pollution in the troposphere (MOPITT), moderate resolution imaging spectroradiometer (MODIS), multi-angle imaging spectroradiometer (MISR) and ozone monitoring instrument (OMI). To achieve this, we employed the Kriging interpolation technique to collocate the satellite pollutant estimations over 19 ground sample sites for the period of 2015-2016. The portable pollutant devices were validated using the WHO air filter sampling model. To determine the city-scale performance of the satellite datasets, performance indicators: correlation coefficient, model efficiency, reliability index and root mean square error, were adopted as measures. The comparative analysis revealed that MOPITT carbon monoxide (CO) and MODIS aerosol optical depth (AOD) estimates are the appropriate satellite measurements for ground equivalents in Zaria, Nigeria. Our findings were within the acceptable limits of similar studies that utilized reference stations. In conclusion, this study offers direction to Nigeria's air quality policy organizers about available alternative air pollution measurements for mitigating air quality effects within its limited resource environment.

  17. Gas data transmission system by satellite telephone; Systeme de transmission de donnees sur le gaz utilisant le telephone par satellite

    Energy Technology Data Exchange (ETDEWEB)

    Ogasawara, S.; Tanji, A. [Dengineer Co., Ltd (Japan); Akiyama, S. [Buyo Gas Company (Japan)

    2000-07-01

    Dengineer Co., Ltd. and Buyo Gas Co., Ltd. had been developing and using the data and alarm transmission system by public telephone since 1984, that was first practical use in Japan. It is very important for business management that adjusts the production value of gas by measuring gas pressures in each governor. Also, it is indispensable to know the accident of gas leakage or abnormal gas pressure quickly. But this convenient system is not spread yet in Japanese market cause of the following reasons. - Take time and cost for installation of terminal station. - Terminal station is apt to damage by thunder. - Big disaster must stop working this system. In order to solve those problems, we have developed and tested the system organized of the satellite telephone system and solar cells for power. This system will be very useful for wide place, not only Japanese market but also the area, which has no electricity and phone. Also, it will be convenient for international rescue as is able to access it from the foreign countries. (authors)

  18. Monitoring of crustal movements in the San Andreas fault zone by a satellite-borne ranging system. Ph.D. Thesis

    Science.gov (United States)

    Kumar, M.

    1976-01-01

    The Close Grid Geodynamic Measurement System is conceived as an orbiting ranging device with a ground base grid of reflectors or transponders (spacing 1.0 to 30 km), which are projected to be of low cost (maintenance free and unattended), and which will permit the saturation of a local area to obtain data useful to monitor crustal movements in the San Andreas fault zone. The system includes a station network of 75 stations covering an area between 36 deg N and 38 deg N latitudes, and 237 deg E and 239 deg E longitudes, with roughly half of the stations on either side of the faults. In addition, the simulation of crustal movements through the introduction of changes in the relative positions between grid stations, weather effect for intervisibility between satellite and station and loss of observations thereof, and comparative evaluation of various observational scheme-patterns have been critically studied.

  19. Satellite single-axis attitude determination based on Automatic Dependent Surveillance - Broadcast signals

    Science.gov (United States)

    Zhou, Kaixing; Sun, Xiucong; Huang, Hai; Wang, Xinsheng; Ren, Guangwei

    2017-10-01

    The space-based Automatic Dependent Surveillance - Broadcast (ADS-B) is a new technology for air traffic management. The satellite equipped with spaceborne ADS-B system receives the broadcast signals from aircraft and transfers the message to ground stations, so as to extend the coverage area of terrestrial-based ADS-B. In this work, a novel satellite single-axis attitude determination solution based on the ADS-B receiving system is proposed. This solution utilizes the signal-to-noise ratio (SNR) measurement of the broadcast signals from aircraft to determine the boresight orientation of the ADS-B receiving antenna fixed on the satellite. The basic principle of this solution is described. The feasibility study of this new attitude determination solution is implemented, including the link budget and the access analysis. On this basis, the nonlinear least squares estimation based on the Levenberg-Marquardt method is applied to estimate the single-axis orientation. A full digital simulation has been carried out to verify the effectiveness and performance of this solution. Finally, the corresponding results are processed and presented minutely.

  20. Space Station view of the Pyramids at Giza

    Science.gov (United States)

    2002-01-01

    One of the world's most famous archaeological sites has been photographed in amazing detail by the astronauts onboard Space Station Alpha. This image, taken 15 August, 2001, represents the greatest detail of the Giza plateau captured from a human-occupied spacecraft (approximate 7 m resolution). Afternoon sun casts shadows that help the eye make out the large pyramids of Khufu, Khafre and Menkaure. Sets of three smaller queens' pyramids can be seen to the east of the Pyramid of Khufu and south of the Pyramid of Menkaure. The light-colored causeway stretching from the Mortuary Temple at the Pyramid of Khafre to the Valley Temple near the Sphinx (arrow) can also be seen. Because it is not tall enough to cast a deep shadow, the Sphinx itself cannot readily be distinguished. Although some commercial satellites, such as IKONOS, have imaged the Pyramids at Giza in greater detail (1 m resolution), this image highlights the potential of the International Space Station as a remote sensing platform. A commercial digital camera without space modifications was used to obtain this picture. Similarly, a variety of remote sensing instruments developed for use on aircraft can potentially be used from the Space Station. Currently, all photographs of Earth taken by astronauts from the Space Shuttle and Space Station are released to the public for scientific and educational benefit and can be accessed on the World Wide Web through the NASA-JSC Gateway to Astronaut Photography of Earth (http://eol/jsc.nasa.gov/sseop). Image ISS003-ESC-5120 was provided by the Earth Sciences and Image Analysis Laboratory at Johnson Space Center (http://eol.jsc.nasa.gov).

  1. The impact of urban morphology and land cover on the sensible heat flux retrieved by satellite and in-situ observations

    Science.gov (United States)

    Gawuc, L.; Łobocki, L.; Kaminski, J. W.

    2017-12-01

    Land surface temperature (LST) is a key parameter in various applications for urban environments research. However, remotely-sensed radiative surface temperature is not equivalent to kinetic nor aerodynamic surface temperature (Becker and Li, 1995; Norman and Becker, 1995). Thermal satellite observations of urban areas are also prone to angular anisotropy which is directly connected with the urban structure and relative sun-satellite position (Hu et al., 2016). Sensible heat flux (Qh) is the main component of surface energy balance in urban areas. Retrieval of Qh, requires observations of, among others, a temperature gradient. The lower level of temperature measurement is commonly replaced by remotely-sensed radiative surface temperature (Chrysoulakis, 2003; Voogt and Grimmond, 2000; Xu et al., 2008). However, such replacement requires accounting for the differences between aerodynamic and radiative surface temperature (Chehbouni et al., 1996; Sun and Mahrt, 1995). Moreover, it is important to avoid micro-scale processes, which play a major role in the roughness sublayer. This is due to the fact that Monin-Obukhov similarity theory is valid only in dynamic sublayer. We will present results of the analyses of the impact of urban morphology and land cover on the seasonal changes of sensible heat flux (Qh). Qh will be retrieved by two approaches. First will be based on satellite observations of radiative surface temperature and second will be based on in-situ observations of kinetic road temperature. Both approaches will utilize wind velocity, and air temperature observed in-situ. We will utilize time series of MODIS LST observations for the period of 2005-2014 as well as simultaneous in-situ observations collected by road weather network (9 stations). Ground stations are located across the city of Warsaw, outside the city centre in low-rise urban structure. We will account for differences in urban morphology and land cover in the proximity of ground stations. We will

  2. A Satellite-Based Surface Radiation Climatology Derived by Combining Climate Data Records and Near-Real-Time Data

    Directory of Open Access Journals (Sweden)

    Bodo Ahrens

    2013-09-01

    Full Text Available This study presents a method for adjusting long-term climate data records (CDRs for the integrated use with near-real-time data using the example of surface incoming solar irradiance (SIS. Recently, a 23-year long (1983–2005 continuous SIS CDR has been generated based on the visible channel (0.45–1 μm of the MVIRI radiometers onboard the geostationary Meteosat First Generation Platform. The CDR is available from the EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF. Here, it is assessed whether a homogeneous extension of the SIS CDR to the present is possible with operationally generated surface radiation data provided by CM SAF using the SEVIRI and GERB instruments onboard the Meteosat Second Generation satellites. Three extended CM SAF SIS CDR versions consisting of MVIRI-derived SIS (1983–2005 and three different SIS products derived from the SEVIRI and GERB instruments onboard the MSG satellites (2006 onwards were tested. A procedure to detect shift inhomogeneities in the extended data record (1983–present was applied that combines the Standard Normal Homogeneity Test (SNHT and a penalized maximal T-test with visual inspection. Shift detection was done by comparing the SIS time series with the ground stations mean, in accordance with statistical significance. Several stations of the Baseline Surface Radiation Network (BSRN and about 50 stations of the Global Energy Balance Archive (GEBA over Europe were used as the ground-based reference. The analysis indicates several breaks in the data record between 1987 and 1994 probably due to artefacts in the raw data and instrument failures. After 2005 the MVIRI radiometer was replaced by the narrow-band SEVIRI and the broadband GERB radiometers and a new retrieval algorithm was applied. This induces significant challenges for the homogenisation across the satellite generations. Homogenisation is performed by applying a mean-shift correction depending on the shift size of

  3. Using satellite-based rainfall estimates for streamflow modelling: Bagmati Basin

    Science.gov (United States)

    Shrestha, M.S.; Artan, Guleid A.; Bajracharya, S.R.; Sharma, R. R.

    2008-01-01

    In this study, we have described a hydrologic modelling system that uses satellite-based rainfall estimates and weather forecast data for the Bagmati River Basin of Nepal. The hydrologic model described is the US Geological Survey (USGS) Geospatial Stream Flow Model (GeoSFM). The GeoSFM is a spatially semidistributed, physically based hydrologic model. We have used the GeoSFM to estimate the streamflow of the Bagmati Basin at Pandhera Dovan hydrometric station. To determine the hydrologic connectivity, we have used the USGS Hydro1k DEM dataset. The model was forced by daily estimates of rainfall and evapotranspiration derived from weather model data. The rainfall estimates used for the modelling are those produced by the National Oceanic and Atmospheric Administration Climate Prediction Centre and observed at ground rain gauge stations. The model parameters were estimated from globally available soil and land cover datasets – the Digital Soil Map of the World by FAO and the USGS Global Land Cover dataset. The model predicted the daily streamflow at Pandhera Dovan gauging station. The comparison of the simulated and observed flows at Pandhera Dovan showed that the GeoSFM model performed well in simulating the flows of the Bagmati Basin.

  4. A small satellite design for deep space network testing and training

    Science.gov (United States)

    Mcwilliams, Dennis; Slatton, Clint; Norman, Cassidy; Araiza, Joe; Jones, Jason; Tedesco, Mark; Wortman, Michael; Opiela, John; Lett, Pat; Clavenna, Michael

    1993-01-01

    With the continuing exploration of the Solar System and the reemphasis on Earth focused missions, the need for faster data transmission rates has grown. Ka-band could allow a higher data delivery rate over the current X-band, however the adverse effects of the Earth's atmosphere on Ka are as yet unknown. The Deep Space Network and Jet Propulsion Lab have proposed to launch a small satellite that would simultaneously transmit X and Ka signals to test the viability of switching to Ka-band. The Mockingbird Design Team at the University of Texas at Austin applied small satellite design principles to achieve this objective. The Mockingbird design, named BATSAT, incorporates simple, low-cost systems designed for university production and testing. The BATSAT satellite is a 0.64 m diameter, spherical panel led satellite, mounted with solar cells and omni-directional antennae. The antennae configuration negates the need for active attitude control or spin stabilization. The space-frame truss structure was designed for 11 g launch loads while allowing for easy construction and solar-panel mounting. The communication system transmits at 1 mW by carrying the required Ka and X-band transmitters, as well as an S band transmitter used for DSN training. The power system provides the 8.6 W maximum power requirements via silicon solar arrays and nickel-cadmium batteries. The BATSAT satellite will be lofted into an 1163 km, 70 deg orbit by the Pegasus launch system. This orbit fulfills DSN dish slew rate requirements while keeping the satellite out of the heaviest regions of the Van Allen radiation belts. Each of the three DSN stations capable of receiving Ka-band (Goldstone, Canberra, and Madrid) will have an average of 85 minutes of view-time per day over the satellites ten year design life. Mockingbird Designs hopes that its small satellite design will not only be applicable to this specific mission scenario, but that it could easily be modified for instrument capability for

  5. A small satellite design for deep space network testing and training

    Science.gov (United States)

    McWilliams, Dennis; Slatton, Clint; Norman, Cassidy; Araiza, Joe; Jones, Jason; Tedesco, Mark; Wortman, Michael; Opiela, John; Lett, Pat; Clavenna, Michael

    1993-05-01

    With the continuing exploration of the Solar System and the reemphasis on Earth focused missions, the need for faster data transmission rates has grown. Ka-band could allow a higher data delivery rate over the current X-band, however the adverse effects of the Earth's atmosphere on Ka are as yet unknown. The Deep Space Network and Jet Propulsion Lab have proposed to launch a small satellite that would simultaneously transmit X and Ka signals to test the viability of switching to Ka-band. The Mockingbird Design Team at the University of Texas at Austin applied small satellite design principles to achieve this objective. The Mockingbird design, named BATSAT, incorporates simple, low-cost systems designed for university production and testing. The BATSAT satellite is a 0.64 m diameter, spherical panel led satellite, mounted with solar cells and omni-directional antennae. The antennae configuration negates the need for active attitude control or spin stabilization. The space-frame truss structure was designed for 11 g launch loads while allowing for easy construction and solar-panel mounting. The communication system transmits at 1 mW by carrying the required Ka and X-band transmitters, as well as an S band transmitter used for DSN training. The power system provides the 8.6 W maximum power requirements via silicon solar arrays and nickel-cadmium batteries. The BATSAT satellite will be lofted into an 1163 km, 70 deg orbit by the Pegasus launch system. This orbit fulfills DSN dish slew rate requirements while keeping the satellite out of the heaviest regions of the Van Allen radiation belts. Each of the three DSN stations capable of receiving Ka-band (Goldstone, Canberra, and Madrid) will have an average of 85 minutes of view-time per day over the satellites ten year design life. Mockingbird Designs hopes that its small satellite design will not only be applicable to this specific mission scenario, but that it could easily be modified for instrument capability for

  6. Mobile System for the Measurement of Dose Rates with locations determined by means of satellite positioning technology

    International Nuclear Information System (INIS)

    Baeza, A.; Rio, L.M. del; Macias, J.A.; Vasco, J.

    1998-01-01

    Our laboratory has been developing and implementing a Real Time Radiological Warning Network around the Almaraz Nuclear Power Plant since 1990. It consists of six gamma dosimetry stations, two devices for the detection of radio-iodines and alpha, beta, and gamma emissions in air, a monitor for the continuous measurement of gamma radiation in water, and two basic meteorological stations. In this context, we have developed a mobile station endowed with a device for the measurement of dose rates which uses satellite positioning technology (GPS) so that it can be located remotely. The information gathered is sent back to our central laboratory in real/or deferred time through the digital mobile telephone network. A twofold utility is foreseen for this station: (a) action in the case of a radiological alert situation detected by our network, and (b) the performance of radiological-dosimetric studies of distant geographical zones. (Author)

  7. HEXIM1 controls satellite cell expansion after injury to regulate skeletal muscle regeneration

    Science.gov (United States)

    Hong, Peng; Chen, Kang; Huang, Bihui; Liu, Min; Cui, Miao; Rozenberg, Inna; Chaqour, Brahim; Pan, Xiaoyue; Barton, Elisabeth R.; Jiang, Xian-Cheng; Siddiqui, M.A.Q.

    2012-01-01

    The native capacity of adult skeletal muscles to regenerate is vital to the recovery from physical injuries and dystrophic diseases. Currently, the development of therapeutic interventions has been hindered by the complex regulatory network underlying the process of muscle regeneration. Using a mouse model of skeletal muscle regeneration after injury, we identified hexamethylene bisacetamide inducible 1 (HEXIM1, also referred to as CLP-1), the inhibitory component of the positive transcription elongation factor b (P-TEFb) complex, as a pivotal regulator of skeletal muscle regeneration. Hexim1-haplodeficient muscles exhibited greater mass and preserved function compared with those of WT muscles after injury, as a result of enhanced expansion of satellite cells. Transplanted Hexim1-haplodeficient satellite cells expanded and improved muscle regeneration more effectively than WT satellite cells. Conversely, HEXIM1 overexpression restrained satellite cell proliferation and impeded muscle regeneration. Mechanistically, dissociation of HEXIM1 from P-TEFb and subsequent activation of P-TEFb are required for satellite cell proliferation and the prevention of early myogenic differentiation. These findings suggest a crucial role for the HEXIM1/P-TEFb pathway in the regulation of satellite cell–mediated muscle regeneration and identify HEXIM1 as a potential therapeutic target for degenerative muscular diseases. PMID:23023707

  8. Use of satellite telecommunications for telemedicine

    Science.gov (United States)

    Tamkovich, Gennady

    1991-01-01

    The use of space telecommunications facilities in the interests of medicine should establish a reliable and timely connection between the specialists involved and access for each of them to information sources the need. Since a certain global-scale program should be implemented for this goal to be achieved, one of the top-priority tasks is to determine appropriate orbital facilities for telecommunications as well as appropriate areas and countries for them, outlining the territories where portable data receive/transport records can be placed and stations that are cheap and simple enough to operate can be stored. Eventually the satellite telecommunications system should encourage health workers to unite in a world community on the basis of a regular and efficient information exchange with the goal of protecting the health of man and the peace of Earth. This goal could only be achieved by gradually removing differences in the domain of medical education and information in different regions over the globe, by providing a possibility of rapid and coordinated access to the information on medical problems of interest on the global scale, as well as by coordinating the discussion and solution of all problems associated with the development and progress of the satellite communications system.

  9. Impact of ITRS 2014 realizations on altimeter satellite precise orbit determination

    Science.gov (United States)

    Zelensky, Nikita P.; Lemoine, Frank G.; Beckley, Brian D.; Chinn, Douglas S.; Pavlis, Despina E.

    2018-01-01

    This paper evaluates orbit accuracy and systematic error for altimeter satellite precise orbit determination on TOPEX, Jason-1, Jason-2 and Jason-3 by comparing the use of four SLR/DORIS station complements from the International Terrestrial Reference System (ITRS) 2014 realizations with those based on ITRF2008. The new Terrestrial Reference Frame 2014 (TRF2014) station complements include ITRS realizations from the Institut National de l'Information Géographique et Forestière (IGN) ITRF2014, the Jet Propulsion Laboratory (JPL) JTRF2014, the Deutsche Geodätisches Forschungsinstitut (DGFI) DTRF2014, and the DORIS extension to ITRF2014 for Precise Orbit Determination, DPOD2014. The largest source of error stems from ITRF2008 station position extrapolation past the 2009 solution end time. The TRF2014 SLR/DORIS complement impact on the ITRF2008 orbit is only 1-2 mm RMS radial difference between 1992-2009, and increases after 2009, up to 5 mm RMS radial difference in 2016. Residual analysis shows that station position extrapolation error past the solution span becomes evident even after two years, and will contribute to about 3-4 mm radial orbit error after seven years. Crossover data show the DTRF2014 orbits are the most accurate for the TOPEX and Jason-2 test periods, and the JTRF2014 orbits for the Jason-1 period. However for the 2016 Jason-3 test period only the DPOD2014-based orbits show a strong and statistically significant margin of improvement. The positive results with DTRF2014 suggest the new approach to correct station positions or normal equations for non-tidal loading before combination is beneficial. We did not find any compelling POD advantage in using non-linear over linear station velocity models in our SLR & DORIS orbit tests on the Jason satellites. The JTRF2014 proof-of-concept ITRS realization demonstrates the need for improved SLR+DORIS orbit centering when compared to the Ries (2013) CM annual model. Orbit centering error is seen as an annual

  10. ASSESSMENT OF SATELLITE PRECIPITATION PRODUCTS IN THE PHILIPPINE ARCHIPELAGO

    Directory of Open Access Journals (Sweden)

    M. D. Ramos

    2016-06-01

    Full Text Available Precipitation is the most important weather parameter in the Philippines. Made up of more than 7100 islands, the Philippine archipelago is an agricultural country that depends on rain-fed crops. Located in the western rim of the North West Pacific Ocean, this tropical island country is very vulnerable to tropical cyclones that lead to severe flooding events. Recently, satellite-based precipitation estimates have improved significantly and can serve as alternatives to ground-based observations. These data can be used to fill data gaps not only for climatic studies, but can also be utilized for disaster risk reduction and management activities. This study characterized the statistical errors of daily precipitation from four satellite-based rainfall products from (1 the Tropical Rainfall Measuring Mission (TRMM, (2 the CPC Morphing technique (CMORPH of NOAA and (3 the Global Satellite Mapping of Precipitation (GSMAP and (4 Precipitation Estimation from Remotely Sensed information using Artificial Neural Networks (PERSIANN. Precipitation data were compared to 52 synoptic weather stations located all over the Philippines. Results show GSMAP to have over all lower bias and CMORPH with lowest Mean Absolute Error (MAE and Root Mean Square Error (RMSE. In addition, a dichotomous rainfall test reveals GSMAP and CMORPH have low Proportion Correct (PC for convective and stratiform rainclouds, respectively. TRMM consistently showed high PC for almost all raincloud types. Moreover, all four satellite precipitation showed high Correct Negatives (CN values for the north-western part of the country during the North-East monsoon and spring monsoonal transition periods.

  11. Assessment of Satellite Precipitation Products in the Philippine Archipelago

    Science.gov (United States)

    Ramos, M. D.; Tendencia, E.; Espana, K.; Sabido, J.; Bagtasa, G.

    2016-06-01

    Precipitation is the most important weather parameter in the Philippines. Made up of more than 7100 islands, the Philippine archipelago is an agricultural country that depends on rain-fed crops. Located in the western rim of the North West Pacific Ocean, this tropical island country is very vulnerable to tropical cyclones that lead to severe flooding events. Recently, satellite-based precipitation estimates have improved significantly and can serve as alternatives to ground-based observations. These data can be used to fill data gaps not only for climatic studies, but can also be utilized for disaster risk reduction and management activities. This study characterized the statistical errors of daily precipitation from four satellite-based rainfall products from (1) the Tropical Rainfall Measuring Mission (TRMM), (2) the CPC Morphing technique (CMORPH) of NOAA and (3) the Global Satellite Mapping of Precipitation (GSMAP) and (4) Precipitation Estimation from Remotely Sensed information using Artificial Neural Networks (PERSIANN). Precipitation data were compared to 52 synoptic weather stations located all over the Philippines. Results show GSMAP to have over all lower bias and CMORPH with lowest Mean Absolute Error (MAE) and Root Mean Square Error (RMSE). In addition, a dichotomous rainfall test reveals GSMAP and CMORPH have low Proportion Correct (PC) for convective and stratiform rainclouds, respectively. TRMM consistently showed high PC for almost all raincloud types. Moreover, all four satellite precipitation showed high Correct Negatives (CN) values for the north-western part of the country during the North-East monsoon and spring monsoonal transition periods.

  12. Practical guidance for conducting mediation analysis with multiple mediators using inverse odds ratio weighting.

    Science.gov (United States)

    Nguyen, Quynh C; Osypuk, Theresa L; Schmidt, Nicole M; Glymour, M Maria; Tchetgen Tchetgen, Eric J

    2015-03-01

    Despite the recent flourishing of mediation analysis techniques, many modern approaches are difficult to implement or applicable to only a restricted range of regression models. This report provides practical guidance for implementing a new technique utilizing inverse odds ratio weighting (IORW) to estimate natural direct and indirect effects for mediation analyses. IORW takes advantage of the odds ratio's invariance property and condenses information on the odds ratio for the relationship between the exposure (treatment) and multiple mediators, conditional on covariates, by regressing exposure on mediators and covariates. The inverse of the covariate-adjusted exposure-mediator odds ratio association is used to weight the primary analytical regression of the outcome on treatment. The treatment coefficient in such a weighted regression estimates the natural direct effect of treatment on the outcome, and indirect effects are identified by subtracting direct effects from total effects. Weighting renders treatment and mediators independent, thereby deactivating indirect pathways of the mediators. This new mediation technique accommodates multiple discrete or continuous mediators. IORW is easily implemented and is appropriate for any standard regression model, including quantile regression and survival analysis. An empirical example is given using data from the Moving to Opportunity (1994-2002) experiment, testing whether neighborhood context mediated the effects of a housing voucher program on obesity. Relevant Stata code (StataCorp LP, College Station, Texas) is provided. © The Author 2015. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Assessment of global precipitation measurement satellite products over Saudi Arabia

    Science.gov (United States)

    Mahmoud, Mohammed T.; Al-Zahrani, Muhammad A.; Sharif, Hatim O.

    2018-04-01

    Most hydrological analysis and modeling studies require reliable and accurate precipitation data for successful simulations. However, precipitation measurements should be more representative of the true precipitation distribution. Many approaches and techniques are used to collect precipitation data. Recently, hydrometeorological and climatological applications of satellite precipitation products have experienced a significant improvement with the emergence of the latest satellite products, namely, the Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (GPM) mission (IMERG) products, which can be utilized to estimate and analyze precipitation data. This study focuses on the validation of the IMERG early, late and final run rainfall products using ground-based rain gauge observations throughout Saudi Arabia for the period from October 2015 to April 2016. The accuracy of each IMERG product is assessed using six statistical performance measures to conduct three main evaluations, namely, regional, event-based and station-based evaluations. The results indicate that the early run product performed well in the middle and eastern parts as well as some of the western parts of the country; meanwhile, the satellite estimates for the other parts fluctuated between an overestimation and an underestimation. The late run product showed an improved accuracy over the southern and western parts; however, over the northern and middle parts, it showed relatively high errors. The final run product revealed significantly improved precipitation estimations and successfully obtained higher accuracies over most parts of the country. This study provides an early assessment of the performance of the GPM satellite products over the Middle East. The study findings can be used as a beneficial reference for the future development of the IMERG algorithms.

  14. Autoregressive spatially varying coefficients model for predicting daily PM2.5 using VIIRS satellite AOT

    Science.gov (United States)

    Schliep, E. M.; Gelfand, A. E.; Holland, D. M.

    2015-12-01

    There is considerable demand for accurate air quality information in human health analyses. The sparsity of ground monitoring stations across the United States motivates the need for advanced statistical models to predict air quality metrics, such as PM2.5, at unobserved sites. Remote sensing technologies have the potential to expand our knowledge of PM2.5 spatial patterns beyond what we can predict from current PM2.5 monitoring networks. Data from satellites have an additional advantage in not requiring extensive emission inventories necessary for most atmospheric models that have been used in earlier data fusion models for air pollution. Statistical models combining monitoring station data with satellite-obtained aerosol optical thickness (AOT), also referred to as aerosol optical depth (AOD), have been proposed in the literature with varying levels of success in predicting PM2.5. The benefit of using AOT is that satellites provide complete gridded spatial coverage. However, the challenges involved with using it in fusion models are (1) the correlation between the two data sources varies both in time and in space, (2) the data sources are temporally and spatially misaligned, and (3) there is extensive missingness in the monitoring data and also in the satellite data due to cloud cover. We propose a hierarchical autoregressive spatially varying coefficients model to jointly model the two data sources, which addresses the foregoing challenges. Additionally, we offer formal model comparison for competing models in terms of model fit and out of sample prediction of PM2.5. The models are applied to daily observations of PM2.5 and AOT in the summer months of 2013 across the conterminous United States. Most notably, during this time period, we find small in-sample improvement incorporating AOT into our autoregressive model but little out-of-sample predictive improvement.

  15. Data Collection Satellite Application in Precision Agriculture

    Science.gov (United States)

    Durào, O.

    2002-01-01

    Agricultural Instrumentation Research Center, Brazilian Agricultural Research Corporation; Space Programs Brazil launched in 1993 its first satellite partially built and entirely designed, integrated, tested and operated in the country. It was the SCD-1 satellite, a small (115 kg. and an octagonal prism with 80 cm. height and an external diameter of 100 cm.) with a payload transponder that receives data from ground platforms spread all over the country (including its sea shore). These data are then retransmitted to a receiving station at every satellite pass. Data collected and received are processed at Data Collection Mission Center for distribution via internet at most 30 min after the satellite pass. The ground platforms are called PCD's and differ in the parameters measured according to its purpose and location. Thus, they are able to measure temperature, rain level, wind direction, solar radiation, carbon monoxide as well as many others, beyond its own location. SCD- 1 had a nominal designed life of one year, but is still functioning. It is a LEO satellite with inclination of 25°. In 1998, the country launched SCD-2, with the same purpose, but in phase with SCD-1 . Other differences were a higher index of Brazilian made components and an active attitude control subsystem for the spin rate provided by the magnetic torque coils (these in accordance with a development strategy previously planned). In 1999 the country launched in cooperation with China a remote sensing satellite (mass of 1.4 ton.) called CBERS-1. This satellite is sun synchronous (98° inclination) and also carries a transponder for data collection/transmission as a secondary payload. Thus, the country has now three satellites with data collection/transmission capabilities, two in low inclination phased orbits and one in polar orbit, providing a nice coverage both geographical and temporal not only to its territory but also to other regions of the world.. At first there were not too many PCD

  16. Evaluation Of Geo-Spatial Proximity Of Mobile Communication GSM Base Transceiver Stations To Buildings In Ile-Ife Nigeria

    Directory of Open Access Journals (Sweden)

    Badru

    2015-08-01

    Full Text Available Efficient placement of radio facilities for the communication base transceiver station CBS of the two small global system for mobile communication GSM has being an area of research due to fast growing of GSM market in Nigeria. In line with this development Nigerian Communication Commission NCC and Nigeria Environmental Standard and Regulation Enforcement Agency NESREA have stated the setback between communication base station and the nearest infrastructure as 5 m and 10 m respectively. To evaluate the degree of the implementation of these setbacks in Ile-Ife the study area the research study identified the spatial locations of the CBS using a global communication for satellite GPS receiver and also employed the use of a high resolution satellite imagery which were processed using geo-spatial techniques. The results of this study revealed that 45.6 and 59.5 of the CBS had setback to building structures at 5 m and 10 m respectively with spatial variability between 30 m to 17074 m at elevation between 193 m to 377 m.

  17. Methodology of satellite microwave diagnostics of latitudinal-zonal and seasonal variations of frozen soil and sea ice

    Directory of Open Access Journals (Sweden)

    V. V. Melentiev

    2013-01-01

    Full Text Available In the frame of the work we have had investigated the utility of 6.9GHz dual polarization passive microwave data from the sensor AMSR-E for quantitative assessment of spatial and temporal variations of permafrost, seasonally frozen grounds and sea ice properties along the transect 70° E in 2005–2008 years. Analysis of the factors which could be detected with using study of the spatial-temporal variations of the microwave emissivity (brightness temperatures of the system «Earth-atmosphere» was carried out with using in situ data obtained from meteorological stations situated along the investigated transect of the Western Siberia and geocryologic station Marre-Sale (Yamal Peninsula. A new method of visualization of the brightness temperatures in spatial-temporal dimensions was suggested and practical applied. Eight latitudinal zones with intrinsic peculiarities of the spatial and seasonal variability of the brightness temperatures were revealed and investigated in many details. Comparison of the location of these zones with geographic distribution of biomes in Western Siberia was provided and it shows that satellite passive microwave information can be used for classification of the territories inside biomes. In frame of this study the annual brightness temperatures course for tundra zone area has been strictly divided into four periods (seasons characterized by different types of microwave emissivity variations. For boreal needle-leaved forest zone these seasons are manifested weaker. Comprehensive analysis of the satellite microwave survey data and corresponding the in situ data has shown satisfactory correlation between the brightness temperatures of the tundra areas on the Yamal Peninsula and their thermodynamic ground-trough temperatures at the square of geocryologic station Marre-Sale during winter period of stable frozen conditions and vegetation period. In these periods one-channel satellite microwave survey could be applied for the

  18. Satellite traces, range spread-F occurrence, and gravity wave propagation at the southern anomaly crest

    Energy Technology Data Exchange (ETDEWEB)

    Cabrera, M.A. [Universidad Tecnologica Nacional, Tucuman (Argentina). CIASUR, Facultad Regional Tucuman; Universidad Nacional de Tucuman (Argentina). Lab. de Ionosfera; Pezzopane, M.; Zuccheretti, E. [Istituto Nazionale di Geofisica e Vulcanologia, Rome (Italy); Ezquer, R.G. [Universidad Tecnologica Nacional, Tucuman (Argentina). CIASUR, Facultad Regional Tucuman; Universidad Nacional de Tucuman (Argentina). Lab. de Ionosfera; Consejo Nacional de Investigaciones Cientificas y Tecnicas, Buenos Aires (Argentina)

    2010-07-01

    Range spread-F (RSF) and occurrence of ''satellite'' traces prior to RSF onset were studied at the southern peak of the ionospheric equatorial anomaly (EA). Ionograms recorded in September 2007 at the new ionospheric station of Tucuman, Argentina (26.9 S, 294.6 E, dip latitude 15.5 S), by the Advanced Ionospheric Sounder (AIS) developed at the Istituto Nazionale di Geofisica e Vulcanologia (INGV), were considered. Satellite traces (STs) are confirmed to be a necessary precursor to the appearance of an RSF trace on the ionograms. Moreover, an analysis of isoheight contours of electron density seems to suggest a relationship between RSF occurrence and gravity wave (GW) propagation. (orig.)

  19. DESIGN, CONSTRUCTION AND IMPLEMENTATION OF A 3 METER SATELLITE DISH ANTENNA (PARABOLOID REFLECTORS)

    OpenAIRE

    Danladi A; Jerome G

    2008-01-01

    The objective of this work is to design, construct and implement a 3m diameter paraboloid reflector with a frequency allocation of 3GHZ and above. The design was achieved with the help of wire mesh, aluminum span, mild steel, aluminum foil and glass fiber. The designed model was able to pick up signal from Arabian Satellite CNN, Adamawa Broadcasting television station and other channels with the help of low noise amplification block (LNB)

  20. A shared-world conceptual model for integrating space station life sciences telescience operations

    Science.gov (United States)

    Johnson, Vicki; Bosley, John

    1988-01-01

    Mental models of the Space Station and its ancillary facilities will be employed by users of the Space Station as they draw upon past experiences, perform tasks, and collectively plan for future activities. The operational environment of the Space Station will incorporate telescience, a new set of operational modes. To investigate properties of the operational environment, distributed users, and the mental models they employ to manipulate resources while conducting telescience, an integrating shared-world conceptual model of Space Station telescience is proposed. The model comprises distributed users and resources (active elements); agents who mediate interactions among these elements on the basis of intelligent processing of shared information; and telescience protocols which structure the interactions of agents as they engage in cooperative, responsive interactions on behalf of users and resources distributed in space and time. Examples from the life sciences are used to instantiate and refine the model's principles. Implications for transaction management and autonomy are discussed. Experiments employing the model are described which the authors intend to conduct using the Space Station Life Sciences Telescience Testbed currently under development at Ames Research Center.

  1. 47 CFR 25.223 - Off-axis EIRP spectral density limits for feeder link earth stations in the 17/24 GHz BSS.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Off-axis EIRP spectral density limits for feeder link earth stations in the 17/24 GHz BSS. 25.223 Section 25.223 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Standards § 25...

  2. A comparison of the Space Station version of ASTROMAG with two free-flyer versions

    International Nuclear Information System (INIS)

    Green, M.A.

    1992-06-01

    This Report compares the Space Station version of ASTROMAG with free-flyer versions of ASTROMAG which could fly on an Atlas lla rocket and a Delta rocket. Launch with either free-flyer imposes severe weight limits on the magnet and its cryogenic system. Both versions of ASTROMAG magnet which fly on free-flying satellites do not have to be charged more than once during the mission. This permits one to simplify the charging system and the cryogenic system. The helium ll pump loop which supplies helium to the gas cooled electrical leads can be eliminated in both of the free-flyer versions of the ASTROMAG magnet. This report describes the superconducting dipole moment correction coils which are necessary for the magnet to operate on a free-flying satellite

  3. Digital optical feeder links system for broadband geostationary satellite

    Science.gov (United States)

    Poulenard, Sylvain; Mège, Alexandre; Fuchs, Christian; Perlot, Nicolas; Riedi, Jerome; Perdigues, Josep

    2017-02-01

    An optical link based on a multiplex of wavelengths at 1.55μm is foreseen to be a valuable solution for the feeder link of the next generation of high-throughput geostationary satellite. The main satellite operator specifications for such link are an availability of 99.9% over the year, a capacity around 500Gbit/s and to be bent-pipe. Optical ground station networks connected to Terabit/s terrestrial fibers are proposed. The availability of the optical feeder link is simulated over 5 years based on a state-of-the-art cloud mask data bank and an atmospheric turbulence strength model. Yearly and seasonal optical feeder link availabilities are derived and discussed. On-ground and on-board terminals are designed to be compliant with 10Gbit/s per optical channel data rate taking into account adaptive optic systems to mitigate the impact of atmospheric turbulences on single-mode optical fiber receivers. The forward and return transmission chains, concept and implementation, are described. These are based on a digital transparent on-off keying optical link with digitalization of the DVB-S2 and DVB-RCS signals prior to the transmission, and a forward error correcting code. In addition, the satellite architecture is described taking into account optical and radiofrequency payloads as well as their interfaces.

  4. Comparison of two-way satellite time transfer and GPS common-view time transfer between OCA and TUG

    Science.gov (United States)

    Kirchner, Dieter; Thyr, U.; Ressler, H.; Robnik, R.; Grudler, P.; Baumont, Francoise S.; Veillet, Christian; Lewandowski, Wlodzimierz W.; Hanson, W.; Clements, A.

    1992-01-01

    For about one year the time scales UTC(OCA) and UTC(TUG) were compared by means of GPS and two-way satellite time transfer. At the end of the experiment both links were independently 'calibrated' by measuring the differential delays of the GPS receivers and of the satellite earth stations by transportation of a GPS receiver and of one of the satellite terminals. The results obtained by both methods differ by about 3 ns, but reveal a seasonal variation of about 8 ns peak-to-peak which is likely the result of a temperature-dependence of the delays of the GPS receivers used. For the comparison of both methods the stabilities of the timescales are of great importance. Unfortunately, during the last three months of the experiment a less stable clock had to be used for the generation of UTC(TUG).

  5. A Simple Semi-Empirical Model for the Estimation of Photosynthetically Active Radiation from Satellite Data in the Tropics

    Directory of Open Access Journals (Sweden)

    S. Janjai

    2013-01-01

    Full Text Available This paper presents a simple semi-empirical model for estimating global photosynthetically active radiation (PAR under all sky conditions. The model expresses PAR as a function of cloud index, aerosol optical depth, total ozone column, solar zenith angle, and air mass. The formulation of the model was based on a four-year period (2008–2011 of PAR data obtained from the measurements at four solar monitoring stations in a tropical environment of Thailand. These are Chiang Mai (18.78°N, 98.98°E, Ubon Ratchathani (15.25°N, 104.87°E, Nakhon Pathom (13.82°N, 100.04°E, and Songkhla (7.20°N, 100.60°E. The cloud index was derived from MTSAT-1R satellite, whereas the aerosol optical depth was obtained from MODIS/Terra satellite. For the total ozone column, it was retrieved from OMI/Aura satellite. The model was validated against independent data set from the four stations. It was found that hourly PAR estimated from the proposed model and that obtained from the measurements were in reasonable agreement, with the root mean square difference (RMSD and mean bias difference (MBD of 14.3% and −5.8%, respectively. In addition, for the case of monthly average hourly PAR, RMSD and MBD were reduced to 11.1% and −5.1%, respectively.

  6. Comparison of atmospheric CO2 mole fractions and source-sink characteristics at four WMO/GAW stations in China

    Science.gov (United States)

    Cheng, Siyang; Zhou, Lingxi; Tans, Pieter P.; An, Xingqin; Liu, Yunsong

    2018-05-01

    As CO2 is a primary driving factor of climate change, the mole fraction and source-sink characteristics of atmospheric CO2 over China are constantly inferred from multi-source and multi-site data. In this paper, we compared ground-based CO2 measurements with satellite retrievals and investigated the source-sink regional representativeness at China's four WMO/GAW stations. The results indicate that, firstly, atmospheric CO2 mole fractions from ground-based sampling measurement and Greenhouse Gases Observing Satellite (GOSAT) products reveal similar seasonal variation. The seasonal amplitude of the column-averaged CO2 mole fractions is smaller than that of the ground-based CO2 at all stations. The extrema of the seasonal cycle of ground-based and column CO2 mole fractions are basically synchronous except a slight phase delay at Lin'an (LAN) station. For the two-year average, the column CO2 is lower than ground-based CO2, and both of them reveal the lowest CO2 mole fraction at Waliguan (WLG) station. The lowest (∼4 ppm) and largest (∼8 ppm) differences between the column and ground-based CO2 appear at WLG and Longfengshan (LFS) stations, respectively. The CO2 mole fraction and its difference between GOSAT and ground-based measurement are smaller in summer than in winter. The differences of summer column CO2 among these stations are also much smaller than their ground-based counterparts. In winter, the maximum of ground-based CO2 mole fractions and the greatest difference between the two (ground-based and column) datasets appear at the LFS station. Secondly, the representative areas of the monthly CO2 background mole fractions at each station were found by employing footprints and emissions. Smaller representative areas appeared at Shangdianzi (SDZ) and LFS, whereas larger ones were seen at WLG and LAN. The representative areas in summer are larger than those in winter at WLG and SDZ, but the situation is opposite at LAN and LFS. The representative areas for the

  7. Estimating Zenith Tropospheric Delays from BeiDou Navigation Satellite System Observations

    Directory of Open Access Journals (Sweden)

    Xin Sui

    2013-04-01

    Full Text Available The GNSS derived Zenith Tropospheric Delay (ZTD plays today a very critical role in meteorological study and weather forecasts, as ZTDs of thousands of GNSS stations are operationally assimilated into numerical weather prediction models. Recently, the Chinese BeiDou Navigation Satellite System (BDS was officially announced to provide operational services around China and its neighborhood and it was demonstrated to be very promising for precise navigation and positioning. In this contribution, we concentrate on estimating ZTD using BDS observations to assess its capacity for troposphere remote sensing. A local network which is about 250 km from Beijing and comprised of six stations equipped with GPS- and BDS-capable receivers is utilized. Data from 5 to 8 November 2012 collected on the network is processed in network mode using precise orbits and in Precise Point Positioning mode using precise orbits and clocks. The precise orbits and clocks are generated from a tracking network with most of the stations in China and several stations around the world. The derived ZTDs are compared with that estimated from GPS data using the final products of the International GNSS Service (IGS. The comparison shows that the bias and the standard deviation of the ZTD differences are about 2 mm and 5 mm, respectively, which are very close to the differences of GPS ZTD estimated using different software packages.

  8. Gridded sunshine duration climate data record for Germany based on combined satellite and in situ observations

    Science.gov (United States)

    Walawender, Jakub; Kothe, Steffen; Trentmann, Jörg; Pfeifroth, Uwe; Cremer, Roswitha

    2017-04-01

    The purpose of this study is to create a 1 km2 gridded daily sunshine duration data record for Germany covering the period from 1983 to 2015 (33 years) based on satellite estimates of direct normalised surface solar radiation and in situ sunshine duration observations using a geostatistical approach. The CM SAF SARAH direct normalized irradiance (DNI) satellite climate data record and in situ observations of sunshine duration from 121 weather stations operated by DWD are used as input datasets. The selected period of 33 years is associated with the availability of satellite data. The number of ground stations is limited to 121 as there are only time series with less than 10% of missing observations over the selected period included to keep the long-term consistency of the output sunshine duration data record. In the first step, DNI data record is used to derive sunshine hours by applying WMO threshold of 120 W/m2 (SDU = DNI ≥ 120 W/m2) and weighting of sunny slots to correct the sunshine length between two instantaneous image data due to cloud movement. In the second step, linear regression between SDU and in situ sunshine duration is calculated to adjust the satellite product to the ground observations and the output regression coefficients are applied to create a regression grid. In the last step regression residuals are interpolated with ordinary kriging and added to the regression grid. A comprehensive accuracy assessment of the gridded sunshine duration data record is performed by calculating prediction errors (cross-validation routine). "R" is used for data processing. A short analysis of the spatial distribution and temporal variability of sunshine duration over Germany based on the created dataset will be presented. The gridded sunshine duration data are useful for applications in various climate-related studies, agriculture and solar energy potential calculations.

  9. New perspectives for high accuracy SLR with second generation geodesic satellites

    Science.gov (United States)

    Lund, Glenn

    1993-01-01

    This paper reports on the accuracy limitations imposed by geodesic satellite signatures, and on the potential for achieving millimetric performances by means of alternative satellite concepts and an optimized 2-color system tradeoff. Long distance laser ranging, when performed between a ground (emitter/receiver) station and a distant geodesic satellite, is now reputed to enable short arc trajectory determinations to be achieved with an accuracy of 1 to 2 centimeters. This state-of-the-art accuracy is limited principally by the uncertainties inherent to single-color atmospheric path length correction. Motivated by the study of phenomena such as postglacial rebound, and the detailed analysis of small-scale volcanic and strain deformations, the drive towards millimetric accuracies will inevitably be felt. With the advent of short pulse (less than 50 ps) dual wavelength ranging, combined with adequate detection equipment (such as a fast-scanning streak camera or ultra-fast solid-state detectors) the atmospheric uncertainty could potentially be reduced to the level of a few millimeters, thus, exposing other less significant error contributions, of which by far the most significant will then be the morphology of the retroreflector satellites themselves. Existing geodesic satellites are simply dense spheres, several 10's of cm in diameter, encrusted with a large number (426 in the case of LAGEOS) of small cube-corner reflectors. A single incident pulse, thus, results in a significant number of randomly phased, quasi-simultaneous return pulses. These combine coherently at the receiver to produce a convolved interference waveform which cannot, on a shot to shot basis, be accurately and unambiguously correlated to the satellite center of mass. This paper proposes alternative geodesic satellite concepts, based on the use of a very small number of cube-corner retroreflectors, in which the above difficulties are eliminated while ensuring, for a given emitted pulse, the return

  10. Control of GABARAP-mediated autophagy by the Golgi complex, centrosome and centriolar satellites.

    Science.gov (United States)

    Joachim, Justin; Tooze, Sharon A

    2018-01-01

    Within minutes of induction of autophagy by amino-acid starvation in mammalian cells, multiple autophagosomes form throughout the cell cytoplasm. During their formation, the autophagosomes sequester cytoplasmic material and deliver it to lysosomes for degradation. How these organelles can be so rapidly formed and how their formation is acutely regulated are major questions in the autophagy field. Protein and lipid trafficking from diverse cell compartments contribute membrane to, or regulate the formation of the autophagosome. In addition, recruitment of Atg8 (in yeast), and the ATG8-family members (in mammalian cells) to autophagosomes is required for efficient autophagy. Recently, it was discovered that the centrosome and centriolar satellites regulate autophagosome formation by delivery of an ATG8-family member, GABARAP, to the forming autophagosome membrane, the phagophore. We propose that GABARAP regulates phagophore expansion by activating the ULK complex, the amino-acid controlled initiator complex. This finding reveals a previously unknown link between the centrosome, centriolar satellites and autophagy. © 2017 Société Française des Microscopies and Société de Biologie Cellulaire de France. Published by John Wiley & Sons Ltd.

  11. The Italian contribution to the CSES satellite

    Science.gov (United States)

    Conti, Livio

    2016-04-01

    parameters and stability of Van Allen belt are constantly modified by natural non-seismic and man-made processes. Therefore, in order to identify seismo-associated perturbations, it is needed to reject the "normal" background effects of the e.m. emissions due to: geomagnetic storms, tropospheric phenomena, and artificial sources (such as power lines, VLF transmitters, HF stations, etc.). Currently, the only available large database is that collected by the Demeter satellite and by rare observations made by some previous space missions, non-dedicated to this purpose. The CSES satellite aims at continuing the exploration started by Demeter with advanced multi-parametric measurements. The configuration of the CSES sensors foresees measurements of energetic particle fluxes, ionospheric plasma parameters and electromagnetic fields, in a wide range of energy and frequencies. The main sensors onboard the satellite are: the HEPD (High Energy Particle Detector) developed by the Italian participants, and the following Chinese sensors: LEPD (Low Energy Particle Detector), LP (Langmuir Probes), IDM (Ion Drift Meter), ICM (Ion Capture Meter), RPA (Retarding Potential Analyzer), EFD (Electric Field Detectors) developed in collaboration with Italian team, HPM (High Precision Magnetometer) and SCM (Search-Coil Magnetometer). The research activity is at an advanced phase, being the various payloads already built and, right now, an intense activity is going on for calibration of the various sensors. In particular, the Italian payload HEPD is under test at the laboratories of the National Institute for Nuclear Physics (INFN) and the Chinese payloads LP, IDM, ICM, RPA and EFD are tested at the INAF-IAPS "Plasma Chamber" in Rome, which is a facility where the response of the sensors, and their compatibility with ionospheric plasma, can be verified in environmental conditions very similar to those met by the satellite in orbit.

  12. Near-Earth Asteroid Lightcurve Analysis at CS3-Palmer Divide Station: 2017 October-December

    Science.gov (United States)

    Warner, Brian D.

    2018-04-01

    Lightcurves for 20 near-Earth asteroids (NEAs) obtained at the Center for Solar System Studies-Palmer Divide Station (CS3-PDS) from 2017 October-December were analyzed for rotation period and signs of satellites or tumbling. The results for 7336 Saunders are based on data obtained in 2017 August and revise the original period of 3.36 h to 4.311 h. Preliminary shape and spin axis models are given for 1864 Daedalus and (17511) 1992 QN.

  13. Investigations Some Impact Space Debris and Working Satellites

    Science.gov (United States)

    Vovchyk, Yeva

    Combining the coordinate with the photometric date of the artificial satellite the information of its behavior on the orbit, its orientation, form and optical characteristics of the object’s surface could be determined. The successful solution of this task could be received only on the base of complex observations. It means that one must have coordinate and photometric observations from some (at least two) stations and the observations must be done synchronous. Photometric observations enable to record the reflection of the Sunlight from the separate fragments of the object’s surface. The periodic splashes give the information of the own rotation and the precession of the object. But from the light curve of the object to the information of its rotations is a long way of mathematics analysis with the supplement of the information from the other type observations. As the example the way of received the information of the behavior of the two satellites -- “EgyptSat” in the June-August 2010 after its collision on the orbit with unknown space debris and Russian station “Fobos-grunt” in the November 2011 during the unsuccessfully launching, inoperative spacecraft Envisat is shown. In the paper the initial observations and mathematical process of the solution of this task would be given. These investigations were made by the team "Astronoms from Ukraine" -- Ja. Blagodyr, A.Bilinsky, Ye.Vovchyk,K.Martyniyuk-Lotocky from Astronomical Observatory of Ivan Franko National University, Lviv; V.Yepishev, V.Kudak, I.Motrunych,I.Najbaer from Laboratory of the Space Investigations, National University of Uzgorod; N.Koshkin,L. Shakun from Astronomical Observatory of National University of Odessa; V.Lopachenko,V.Rykhalsky from National Centre of Direction and Testing of the Space System, Yevpatoriya.

  14. Nansen Station Data for the Indian and Pacific Oceans 1982 to 1987

    Science.gov (United States)

    1989-09-01

    with GMS and NOAA satellite derived values. Diagrams of SST versus cumulat;ve ship distance travelled foi the Kin’ola cruises are available from the...88 THIS IS A BLANK PAGE WSRL-TM-30/88 12 *50*E 15- 16 2 3 35* 6s 7\\-S 1 6 10 HANSEN STATION Pow rIoHs 12 112 - CRUISE TRAC11 4 -.. TRAVEL DIRECTION A...included in the present report. Contamination of samples by salps appeared to be the cause. Other sources of data for cruise RANRL 24183 Hamilton, L.J

  15. Global detailed gravimetric geoid. [based on gravity model derived from satellite tracking and surface gravity data

    Science.gov (United States)

    Vincent, S.; Marsh, J. G.

    1973-01-01

    A global detailed gravimetric geoid has been computed by combining the Goddard Space Flight Center GEM-4 gravity model derived from satellite and surface gravity data and surface 1 deg-by-1 deg mean free air gravity anomaly data. The accuracy of the geoid is + or - 2 meters on continents, 5 to 7 meters in areas where surface gravity data are sparse, and 10 to 15 meters in areas where no surface gravity data are available. Comparisons have been made with the astrogeodetic data provided by Rice (United States), Bomford (Europe), and Mather (Australia). Comparisons have also been carried out with geoid heights derived from satellite solutions for geocentric station coordinates in North America, the Caribbean, Europe, and Australia.

  16. Evaluation of Future Internet Technologies for Processing and Distribution of Satellite Imagery

    Science.gov (United States)

    Becedas, J.; Perez, R.; Gonzalez, G.; Alvarez, J.; Garcia, F.; Maldonado, F.; Sucari, A.; Garcia, J.

    2015-04-01

    Satellite imagery data centres are designed to operate a defined number of satellites. For instance, difficulties when new satellites have to be incorporated in the system appear. This occurs because traditional infrastructures are neither flexible nor scalable. With the appearance of Future Internet technologies new solutions can be provided to manage large and variable amounts of data on demand. These technologies optimize resources and facilitate the appearance of new applications and services in the traditional Earth Observation (EO) market. The use of Future Internet technologies for the EO sector were validated with the GEO-Cloud experiment, part of the Fed4FIRE FP7 European project. This work presents the final results of the project, in which a constellation of satellites records the whole Earth surface on a daily basis. The satellite imagery is downloaded into a distributed network of ground stations and ingested in a cloud infrastructure, where the data is processed, stored, archived and distributed to the end users. The processing and transfer times inside the cloud, workload of the processors, automatic cataloguing and accessibility through the Internet are evaluated to validate if Future Internet technologies present advantages over traditional methods. Applicability of these technologies is evaluated to provide high added value services. Finally, the advantages of using federated testbeds to carry out large scale, industry driven experiments are analysed evaluating the feasibility of an experiment developed in the European infrastructure Fed4FIRE and its migration to a commercial cloud: SoftLayer, an IBM Company.

  17. Integration of Ground, Buoys, Satellite and Model data to map the Changes in Meteorological Parameters Associated with Harvey Hurricane

    Science.gov (United States)

    Chauhan, A.; Sarkar, S.; Singh, R. P.

    2017-12-01

    The coastal areas have dense onshore and marine observation network and are also routinely monitored by constellation of satellites. The monitoring of ocean, land and atmosphere through a range of meteorological parameters, provides information about the land and ocean surface. Satellite data also provide information at different pressure levels that help to access the development of tropical storms and formation of hurricanes at different categories. Integration of ground, buoys, satellite and model data showing the changes in meteorological parameters during the landfall stages of hurricane Harvey will be discussed. Hurricane Harvey was one of the deadliest hurricanes at the Gulf coast which caused intense flooding from the precipitation. The various observation networks helped city administrators to evacuate the coastal areas, that minimized the loss of lives compared to the Galveston hurricane of 1900 which took 10,000 lives. Comparison of meteorological parameters derived from buoys, ground stations and satellites associated with Harvey and 2005 Katrina hurricane present some of the interesting features of the two hurricanes.

  18. Survey and analysis of satellite-based telemedicine projects involving Japan and developing nations: investigation of transmission rates, channel numbers, and node numbers.

    Science.gov (United States)

    Nakajima, I; Natori, M; Takizawa, M; Kaihara, S

    2001-01-01

    We surveyed interactive telemedicine projects via telecommunications satellite (AMINE-PARTNERS, Post-PARTNERS, and Shinshu University Project using Inmarsat satellites) offered by Japan as assistance to developing countries. The survey helped clarify channel occupation time and data transfer rates. Using our survey results, we proposed an optimized satellite model with VSATs simulating the number of required channels and bandwidth magnitude. For future implementation of VSATs for medical use in developing nations, design of telecommunication channels should take into consideration TCP/IP-based operations. We calculated that one hub station with 30-76 VSATs in developing nation can be operated on bandwidth 6 Mbps using with 128 Kbps videoconferencing system for teleconsultation and teleconference, and linking with Internet.

  19. Assessment of a satellite power system and six alternative technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wolsko, T.; Whitfield, R.; Samsa, M.; Habegger, L.S.; Levine, E.; Tanzman, E.

    1981-04-01

    The satellite power system is assessed in comparison to six alternative technologies. The alternatives are: central-station terrestrial photovoltaic systems, conventional coal-fired power plants, coal-gasification/combined-cycle power plants, light water reactor power plants, liquid-metal fast-breeder reactors, and fusion. The comparison is made regarding issues of cost and performance, health and safety, environmental effects, resources, socio-economic factors, and insitutional issues. The criteria for selecting the issues and the alternative technologies are given, and the methodology of the comparison is discussed. Brief descriptions of each of the technologies considered are included. (LEW)

  20. Radio-location of mobile stations in third generation networks

    Directory of Open Access Journals (Sweden)

    Milan Manojle Šunjevarić

    2013-06-01

    direction, if specified by a direction on an object, (b circle, if determined by measuring the distance of an object, or (c a hyperbola, if the difference is determined by measuring the distance between two objects. In cellular networks, the location of mobile stations can be estimated roughly by proximity sensing methods and methods based on an evaluation of the characteristics of base stations (fingerprinting. Basic characteristics of the UMTS standard The radio network controller (RNC has three different roles and is therefore known as: Controlling RNC (CRNC, Serving RNC (SRNC and Drifting RNC (DRNC. The Local Measurement Unit (LMU performs radio measurements (measuring the delay of signals from base stations to the LMU and forwards the data to the CRNC. The main location functions are performed within the Serving RNC which can operate in two modes: RNC central and central SAS (Standalone SMLC. The RNC in the RNC central mode controls the flow of requirements for the localization, chooses the method of localization, provides information as necessary and, finally, estimates the location of the user. The SAS mode performs the procedures based on the requirements of the service radio network controller (SRNC. The SAS executes the global location (Global Navigation Satellite System and location on the uplink, based on measuring the time difference U-TDoA (Uplink - Time Difference of Arrival. Methods of locating the MS in a UMTS network In the UMTS network, depending on the used network infrastructure,  both the station and network-based method can be used, i.e. determining the MS location can be performed on the MS or on the network side. In UMTS networks, the following methods can be used: methods based on measurements in the time domain (time-based, methods based on measurements of a received power level (Received Signal Strength - RSS, methods based on measuring the angle under which the signal arrives to the receiving antenna and methods based on the global location

  1. Leveraging the NPS Femto Satellite for Alternative Satellite Communication Networks

    Science.gov (United States)

    2017-09-01

    programmed for eventual integration with the Iridium Network , which is then tested. C. THESIS ORGANIZATION The thesis addresses these questions...NPS FEMTO SATELLITE FOR ALTERNATIVE SATELLITE COMMUNICATION NETWORKS by Faisal S. Alshaya September 2017 Co-Advisors: Steven J. Iatrou...TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE LEVERAGING THE NPS FEMTO SATELLITE FOR ALTERNATIVE SATELLITE COMMUNICATION NETWORKS 5

  2. Co-location satellite GPS and SLR geodetic techniques at the Felix Aguilar Astronomical Observatory of San Juan, Argentina

    Science.gov (United States)

    Podestá, R.; Pacheco, A. M.; Alvis Rojas, H.; Quinteros, J.; Podestá, F.; Albornoz, E.; Navarro, A.; Luna, M.

    2018-01-01

    This work shows the strategy followed for the co-location of the Satellite Laser Ranging (SLR) ILRS 7406 telescope and the antenna of the permanent Global Positioning System (GPS) station, located at the Félix Aguilar Astronomical Observatory (OAFA) in San Juan, Argentina. The accomplishment of the co-location consisted in the design, construction, measurement, adjustment and compensation of a geodesic net between the stations SLR and GPS, securing support points solidly built in the soil. The co-location allows the coordinates of the station to be obtained by combining the data of both SLR and GPS techniques, achieving a greater degree of accuracy than individually. The International Earth Rotation and Reference Systems Service (IERS) considers the co-located stations as the most valuable and important points for the maintenance of terrestrial reference systems and their connection with the celestial ones. The 3 mm precision required by the IERS has been successfully achieved.

  3. A new licensing strategy for Canadian mobile earth stations

    Science.gov (United States)

    Amero, Ronald G.

    1990-01-01

    Initiatives presently under consideration by the Department of Communications which will greatly simplify the licensing process for mobile earth stations are addressed. The current licensing approach is reviewed and the limitations of that system identified. A new approach is needed to respond to the needs of mobile satellite users in the 1990's and beyond, one which will have a minimal impact on the user while still respecting the legislative responsibilities of the department under the new Radiocommunication Act and the General Radio Regulations. The objective of this new strategy is to lead to a transparent licensing scheme for the end user, which in turn could lead to license exemption of blanket licenses as soon as possible.

  4. Stratospheric Aerosol and Gas Experiment III on the International Space Station (SAGE III/ISS)

    Science.gov (United States)

    Gasbarre, Joseph; Walker, Richard; Cisewski, Michael; Zawodny, Joseph; Cheek, Dianne; Thornton, Brooke

    2015-01-01

    The Stratospheric Aerosol and Gas Experiment III on the International Space Station (SAGE III/ISS) mission will extend the SAGE data record from the ideal vantage point of the International Space Station (ISS). The ISS orbital inclination is ideal for SAGE measurements providing coverage between 70 deg north and 70 deg south latitude. The SAGE data record includes an extensively validated data set including aerosol optical depth data dating to the Stratospheric Aerosol Measurement (SAM) experiments in 1975 and 1978 and stratospheric ozone profile data dating to the Stratospheric Aerosol and Gas Experiment (SAGE) in 1979. These and subsequent data records, notably from the SAGE II experiment launched on the Earth Radiation Budget Satellite in 1984 and the SAGE III experiment launched on the Russian Meteor-3M satellite in 2001, have supported a robust, long-term assessment of key atmospheric constituents. These scientific measurements provide the basis for the analysis of five of the nine critical constituents (aerosols, ozone (O3), nitrogen dioxide (NO2), water vapor (H2O), and air density using O2) identified in the U.S. National Plan for Stratospheric Monitoring. SAGE III on ISS was originally scheduled to fly on the ISS in the same timeframe as the Meteor-3M mission, but was postponed due to delays in ISS construction. The project was re-established in 2009.

  5. Satellite fixed communications service: A forecast of potential domestic demand through the year 2000. Volume 3: Appendices

    Science.gov (United States)

    Kratochvil, D.; Bowyer, J.; Bhushan, C.; Steinnagel, K.; Kaushal, D.; Al-Kinani, G.

    1983-09-01

    Voice applications, data applications, video applications, impacted baseline forecasts, market distribution model, net long haul forecasts, trunking earth station definition and costs, trunking space segment cost, trunking entrance/exit links, trunking network costs and crossover distances with terrestrial tariffs, net addressable forecasts, capacity requirements, improving spectrum utilization, satellite system market development, and the 30/20 net accessible market are considered.

  6. Method and associated apparatus for capturing, servicing, and de-orbiting earth satellites using robotics

    Science.gov (United States)

    Cepollina, Frank J. (Inventor); Burns, Richard D. (Inventor); Holz, Jill M. (Inventor); Corbo, James E. (Inventor); Jedhrich, Nicholas M. (Inventor)

    2009-01-01

    This invention is a method and supporting apparatus for autonomously capturing, servicing and de-orbiting a free-flying spacecraft, such as a satellite, using robotics. The capture of the spacecraft includes the steps of optically seeking and ranging the satellite using LIDAR; and matching tumble rates, rendezvousing and berthing with the satellite. Servicing of the spacecraft may be done using supervised autonomy, which is allowing a robot to execute a sequence of instructions without intervention from a remote human-occupied location. These instructions may be packaged at the remote station in a script and uplinked to the robot for execution upon remote command giving authority to proceed. Alternately, the instructions may be generated by Artificial Intelligence (AI) logic onboard the robot. In either case, the remote operator maintains the ability to abort an instruction or script at any time, as well as the ability to intervene using manual override to teleoperate the robot.In one embodiment, a vehicle used for carrying out the method of this invention comprises an ejection module, which includes the robot, and a de-orbit module. Once servicing is completed by the robot, the ejection module separates from the de-orbit module, leaving the de-orbit module attached to the satellite for de-orbiting the same at a future time. Upon separation, the ejection module can either de-orbit itself or rendezvous with another satellite for servicing. The ability to de-orbit a spacecraft further allows the opportunity to direct the landing of the spent satellite in a safe location away from population centers, such as the ocean.

  7. Meteorological satellite systems

    CERN Document Server

    Tan, Su-Yin

    2014-01-01

    “Meteorological Satellite Systems” is a primer on weather satellites and their Earth applications. This book reviews historic developments and recent technological advancements in GEO and polar orbiting meteorological satellites. It explores the evolution of these remote sensing technologies and their capabilities to monitor short- and long-term changes in weather patterns in response to climate change. Satellites developed by various countries, such as U.S. meteorological satellites, EUMETSAT, and Russian, Chinese, Japanese and Indian satellite platforms are reviewed. This book also discusses international efforts to coordinate meteorological remote sensing data collection and sharing. This title provides a ready and quick reference for information about meteorological satellites. It serves as a useful tool for a broad audience that includes students, academics, private consultants, engineers, scientists, and teachers.

  8. The Satellite Cell Niche Regulates the Balance between Myoblast Differentiation and Self-Renewal via p53.

    Science.gov (United States)

    Flamini, Valentina; Ghadiali, Rachel S; Antczak, Philipp; Rothwell, Amy; Turnbull, Jeremy E; Pisconti, Addolorata

    2018-03-13

    Satellite cells are adult muscle stem cells residing in a specialized niche that regulates their homeostasis. How niche-generated signals integrate to regulate gene expression in satellite cell-derived myoblasts is poorly understood. We undertook an unbiased approach to study the effect of the satellite cell niche on satellite cell-derived myoblast transcriptional regulation and identified the tumor suppressor p53 as a key player in the regulation of myoblast quiescence. After activation and proliferation, a subpopulation of myoblasts cultured in the presence of the niche upregulates p53 and fails to differentiate. When satellite cell self-renewal is modeled ex vivo in a reserve cell assay, myoblasts treated with Nutlin-3, which increases p53 levels in the cell, fail to differentiate and instead become quiescent. Since both these Nutlin-3 effects are rescued by small interfering RNA-mediated p53 knockdown, we conclude that a tight control of p53 levels in myoblasts regulates the balance between differentiation and return to quiescence. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Analysis of South Atlantic Anomaly perturbations on Sentinel-3A Ultra Stable Oscillator. Impact on DORIS phase measurement and DORIS station positioning

    Science.gov (United States)

    Jalabert, Eva; Mercier, Flavien

    2018-07-01

    DORIS measurements rely on the precise knowledge of the embedded oscillator which is called the Ultra Stable Oscillator (DORIS USO). The important radiations in the South Atlantic Anomaly (SAA) perturb the USO behavior by causing rapid frequency variations when the satellite is flying through the SAA. These variations are not taken into account in standard DORIS processing, since the USO is modelled as a third degree polynomial over 7-10 days. Therefore, there are systematic measurements errors when the satellite passes through SAA. In standard GNSS processing, the clock is directly estimated at each epoch. On Sentinel-3A, the GPS receiver and the DORIS receiver use the same USO. It is thus possible to estimate the behavior of the USO using GPS measurements. This estimated USO behavior can be used in the DORIS processing, instead of the third degree polynomial, hence allowing an estimation of the orbit sensitivity to these USO anomalies. This study shows two main results. First, the SAA effect on the DORIS USO is observed well using GPS measurements. Second, the USO behavior observed with GPS can be used to mitigate the SAA effect. Indeed, when used in Sentinel-3A processing, the resulting DORIS orbit shows improved phase measurements and station positioning for stations inside the SAA (Arequipa and Cachoeira). The phase measurements residuals are improved by up to 10 cm, and station vertical positioning (i.e. on the estimated Up component in the North-East-Up station frame) is improved by up to a few centimeters. However, the orbit itself is not sensitive to the correction because only two stations (out of almost 60) are SAA-sensitive on Sentinel-3A.

  10. Boomerang Satellites

    Science.gov (United States)

    Hesselbrock, Andrew; Minton, David A.

    2017-10-01

    We recently reported that the orbital architecture of the Martian environment allows for material in orbit around the planet to ``cycle'' between orbiting the planet as a ring, or as coherent satellites. Here we generalize our previous analysis to examine several factors that determine whether satellites accreting at the edge of planetary rings will cycle. In order for the orbiting material to cycle, tidal evolution must decrease the semi-major axis of any accreting satellites. In some systems, the density of the ring/satellite material, the surface mass density of the ring, the tidal parameters of the system, and the rotation rate of the primary body contribute to a competition between resonant ring torques and tidal dissipation that prevent this from occurring, either permanently or temporarily. Analyzing these criteria, we examine various bodies in our solar system (such as Saturn, Uranus, and Eris) to identify systems where cycling may occur. We find that a ring-satellite cycle may give rise to the current Uranian ring-satellite system, and suggest that Miranda may have formed from an early, more massive Uranian ring.

  11. Differential requirement for satellite cells during overload-induced muscle hypertrophy in growing versus mature mice.

    Science.gov (United States)

    Murach, Kevin A; White, Sarah H; Wen, Yuan; Ho, Angel; Dupont-Versteegden, Esther E; McCarthy, John J; Peterson, Charlotte A

    2017-07-10

    Pax7+ satellite cells are required for skeletal muscle fiber growth during post-natal development in mice. Satellite cell-mediated myonuclear accretion also appears to persist into early adulthood. Given the important role of satellite cells during muscle development, we hypothesized that the necessity of satellite cells for adaptation to an imposed hypertrophic stimulus depends on maturational age. Pax7 CreER -R26R DTA mice were treated for 5 days with vehicle (satellite cell-replete, SC+) or tamoxifen (satellite cell-depleted, SC-) at 2 months (young) and 4 months (mature) of age. Following a 2-week washout, mice were subjected to sham surgery or 10 day synergist ablation overload of the plantaris (n = 6-9 per group). The surgical approach minimized regeneration, de novo fiber formation, and fiber splitting while promoting muscle fiber growth. Satellite cell density (Pax7+ cells/fiber), embryonic myosin heavy chain expression (eMyHC), and muscle fiber cross sectional area (CSA) were evaluated via immunohistochemistry. Myonuclei (myonuclei/100 mm) were counted on isolated single muscle fibers. Tamoxifen treatment depleted satellite cells by ≥90% and prevented myonuclear accretion with overload in young and mature mice (p overload. Average muscle fiber CSA increased ~20% in young SC+ (p = 0.07), mature SC+ (p overload (p overload-induced hypertrophy is dependent on maturational age, and global responses to overload differ in young versus mature mice.

  12. Validation of Galileo orbits using SLR with a focus on satellites launched into incorrect orbital planes

    Science.gov (United States)

    Sośnica, Krzysztof; Prange, Lars; Kaźmierski, Kamil; Bury, Grzegorz; Drożdżewski, Mateusz; Zajdel, Radosław; Hadas, Tomasz

    2018-02-01

    The space segment of the European Global Navigation Satellite System (GNSS) Galileo consists of In-Orbit Validation (IOV) and Full Operational Capability (FOC) spacecraft. The first pair of FOC satellites was launched into an incorrect, highly eccentric orbital plane with a lower than nominal inclination angle. All Galileo satellites are equipped with satellite laser ranging (SLR) retroreflectors which allow, for example, for the assessment of the orbit quality or for the SLR-GNSS co-location in space. The number of SLR observations to Galileo satellites has been continuously increasing thanks to a series of intensive campaigns devoted to SLR tracking of GNSS satellites initiated by the International Laser Ranging Service. This paper assesses systematic effects and quality of Galileo orbits using SLR data with a main focus on Galileo satellites launched into incorrect orbits. We compare the SLR observations with respect to microwave-based Galileo orbits generated by the Center for Orbit Determination in Europe (CODE) in the framework of the International GNSS Service Multi-GNSS Experiment for the period 2014.0-2016.5. We analyze the SLR signature effect, which is characterized by the dependency of SLR residuals with respect to various incidence angles of laser beams for stations equipped with single-photon and multi-photon detectors. Surprisingly, the CODE orbit quality of satellites in the incorrect orbital planes is not worse than that of nominal FOC and IOV orbits. The RMS of SLR residuals is even lower by 5.0 and 1.5 mm for satellites in the incorrect orbital planes than for FOC and IOV satellites, respectively. The mean SLR offsets equal -44.9, -35.0, and -22.4 mm for IOV, FOC, and satellites in the incorrect orbital plane. Finally, we found that the empirical orbit models, which were originally designed for precise orbit determination of GNSS satellites in circular orbits, provide fully appropriate results also for highly eccentric orbits with variable linear

  13. Evaluation of Satellite and Model Precipitation Products Over Turkey

    Science.gov (United States)

    Yilmaz, M. T.; Amjad, M.

    2017-12-01

    Satellite-based remote sensing, gauge stations, and models are the three major platforms to acquire precipitation dataset. Among them satellites and models have the advantage of retrieving spatially and temporally continuous and consistent datasets, while the uncertainty estimates of these retrievals are often required for many hydrological studies to understand the source and the magnitude of the uncertainty in hydrological response parameters. In this study, satellite and model precipitation data products are validated over various temporal scales (daily, 3-daily, 7-daily, 10-daily and monthly) using in-situ measured precipitation observations from a network of 733 gauges from all over the Turkey. Tropical Rainfall Measurement Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) 3B42 version 7 and European Center of Medium-Range Weather Forecast (ECMWF) model estimates (daily, 3-daily, 7-daily and 10-daily accumulated forecast) are used in this study. Retrievals are evaluated for their mean and standard deviation and their accuracies are evaluated via bias, root mean square error, error standard deviation and correlation coefficient statistics. Intensity vs frequency analysis and some contingency table statistics like percent correct, probability of detection, false alarm ratio and critical success index are determined using daily time-series. Both ECMWF forecasts and TRMM observations, on average, overestimate the precipitation compared to gauge estimates; wet biases are 10.26 mm/month and 8.65 mm/month, respectively for ECMWF and TRMM. RMSE values of ECMWF forecasts and TRMM estimates are 39.69 mm/month and 41.55 mm/month, respectively. Monthly correlations between Gauges-ECMWF, Gauges-TRMM and ECMWF-TRMM are 0.76, 0.73 and 0.81, respectively. The model and the satellite error statistics are further compared against the gauges error statistics based on inverse distance weighting (IWD) analysis. Both the model and satellite data have less IWD errors (14

  14. Forecasting the Impact of an 1859-calibre Superstorm on Satellite Resources

    Science.gov (United States)

    Odenwald, Sten; Green, James; Taylor, William

    2005-01-01

    We have assembled a database of operational satellites in orbit as of 2004, and have developed a series of simple models to assess the economic impacts to this resource caused by various scenarios of superstorm events possible during the next sunspot cycle between 2010 and 2014. Despite the apparent robustness of our satellite assets against the kinds of storms we have encountered during the satellite era, our models suggest a potential economic loss exceeding $10(exp 11) for satellite replacement and lost profitability caused by a once a century single storm similar to the 1859 superstorm. From a combination of power system and attitude control system (the most vulnerable) failures, we estimate that 80 satellites (LEO, MEO, GEO) may be disabled as a consequence of a superstorm event. Additional consequences may include the failure of many of the GPS, GLONASS and Galileo satellite systems in MEO. Approximately 98 LEO satellites that normally would not have re-entered for many decades, may prematurely de-orbit in ca 2021 as a result of the temporarily increased atmospheric drag caused by the superstorm event occurring in 2012. The $10(exp 11) International Space Station may lose at least 15 kilometers of altitude, placing it in critical need for re-boosting by an amount that is potentially outside the range of typical Space Shuttle operations during the previous solar maximum in ca 2000, and at a time when NASA plans to decommission the Space Shuttle. Several LEO satellites will unexpectedly be placed on orbits that enter the ISS zone of avoidance, requiring some action by ground personnel and ISS astronauts to avoid close encounters. Radiation effects on astronauts have also been considered and could include a range of possibilities from acute radiation sickness for astronauts inside spacecraft, to near-lethal doses during EVAs. The specifics depends very sensitively on the spectral hardness of the accompanying SPE event. Currently, the ability to forecast extreme

  15. Estimating the accuracy of the technique of reconstructing the rotational motion of a satellite based on the measurements of its angular velocity and the magnetic field of the Earth

    Science.gov (United States)

    Belyaev, M. Yu.; Volkov, O. N.; Monakhov, M. I.; Sazonov, V. V.

    2017-09-01

    The paper has studied the accuracy of the technique that allows the rotational motion of the Earth artificial satellites (AES) to be reconstructed based on the data of onboard measurements of angular velocity vectors and the strength of the Earth magnetic field (EMF). The technique is based on kinematic equations of the rotational motion of a rigid body. Both types of measurement data collected over some time interval have been processed jointly. The angular velocity measurements have been approximated using convenient formulas, which are substituted into the kinematic differential equations for the quaternion that specifies the transition from the body-fixed coordinate system of a satellite to the inertial coordinate system. Thus obtained equations represent a kinematic model of the rotational motion of a satellite. The solution of these equations, which approximate real motion, has been found by the least-square method from the condition of best fitting between the data of measurements of the EMF strength vector and its calculated values. The accuracy of the technique has been estimated by processing the data obtained from the board of the service module of the International Space Station ( ISS). The reconstruction of station motion using the aforementioned technique has been compared with the telemetry data on the actual motion of the station. The technique has allowed us to reconstruct the station motion in the orbital orientation mode with a maximum error less than 0.6° and the turns with a maximal error of less than 1.2°.

  16. Specificity of Atmosphere Correction of Satellite Ocean Color Data in Far-Eastern Region

    Science.gov (United States)

    Trusenkova, O.; Kachur, V.; Aleksanin, A. I.

    2016-02-01

    It was carried out an error analysis of satellite reflectance coefficients (Rrs) of MODIS/AQUA colour data for two atmospheric correction algorithms (NIR, MUMM) in the Far-Eastern region. Some sets of unique data of in situ and satellite measurements have been analysed. A set has some measurements with ASD spectroradiometer for each satellite pass. The measurement allocations were selected so the Chlorophyll-a concentration has high variability. Analysis of arbitrary set demonstrated that the main error component is systematic error, and it has simple relations on Rrs values. The reasons of such error behavior are considered. The most probable explanation of the large errors of oceanic color parameters in the Far-Eastern region is the ability of high concentrations of continental aerosol. A comparison of satellite and in situ measurements at AERONET stations of USA and South Korea regions has been made. It was shown that for NIR-correction of the atmosphere influence the error values in these two regions have differences up to 10 times for almost the same water turbidity and relatively good accuracy of computation of aerosol optical thickness. The study was supported by grant Russian Scientific Foundation No. 14-50-00034, by grant of Russian Foundation of Basic Research No.15-35-21032-mol-a-ved, and by Program of Basic Research "Far East" of Far Eastern Branch of Russian Academy of Sciences.

  17. An exact solution for orbit view-periods from a station on a tri-axial ellipsoidal planet

    Science.gov (United States)

    Tang, C. C. H.

    1986-01-01

    This paper presents the concise exact solution for predicting view-periods to be observed from a masked or unmasked tracking station on a tri-axial ellipsoidal surface. The new exact approach expresses the azimuth and elevation angles of a spacecraft in terms of the station-centered geodetic topocentric coordinates in an elegantly concise manner. A simple and efficient algorithm is developed to avoid costly repetitive computations in searching for neighborhoods near the rise and set times of each satellite orbit for each station. Only one search for each orbit is necessary for each station. Sample results indicate that the use of an assumed spherical earth instead of an 'actual' tri-axial ellipsoidal earth could introduce an error up to a few minutes in a view-period prediction for circular orbits of low or medium altitude. For an elliptical orbit of high eccentricity and long period, the maximum error could be even larger. The analytic treatment and the efficient algorithm are designed for geocentric orbits, but they should be applicable to interplanetary trajectories by an appropriate coordinates transformation at each view-period calculation. This analysis can be accomplished only by not using the classical orbital elements.

  18. An exact solution for orbit view-periods from a station on a tri-axial ellipsoidal planet

    Science.gov (United States)

    Tang, C. C. H.

    1986-08-01

    This paper presents the concise exact solution for predicting view-periods to be observed from a masked or unmasked tracking station on a tri-axial ellipsoidal surface. The new exact approach expresses the azimuth and elevation angles of a spacecraft in terms of the station-centered geodetic topocentric coordinates in an elegantly concise manner. A simple and efficient algorithm is developed to avoid costly repetitive computations in searching for neighborhoods near the rise and set times of each satellite orbit for each station. Only one search for each orbit is necessary for each station. Sample results indicate that the use of an assumed spherical earth instead of an 'actual' tri-axial ellipsoidal earth could introduce an error up to a few minutes in a view-period prediction for circular orbits of low or medium altitude. For an elliptical orbit of high eccentricity and long period, the maximum error could be even larger. The analytic treatment and the efficient algorithm are designed for geocentric orbits, but they should be applicable to interplanetary trajectories by an appropriate coordinates transformation at each view-period calculation. This analysis can be accomplished only by not using the classical orbital elements.

  19. Ganga floods of 2010 in Uttar Pradesh, north India: a perspective analysis using satellite remote sensing data

    Directory of Open Access Journals (Sweden)

    C.M. Bhatt

    2016-03-01

    Full Text Available The present study focuses on the unprecedented flood situation captured through multi-temporal satellite images, witnessed along the Ganga River in Uttar Pradesh during September 2010. At three gauge stations (Kannauj, Ankinghat and Kanpur, river water level exceeded the previous high-flood level attained by river more than a decade ago. The present communication with the aid of pre- and post-flood satellite images, coupled with hydrological (river water level and meteorological (rainfall data, explains about the unprecedented flood situation. In the latter part of the study, a novel and cost-effective method for building a library of flood inundation extents based on historical satellite data analysis and tagging the inundation layer with observed water level is demonstrated. During flood season, based on the forecasted water level, the library can be accessed to fetch the spatial inundation layer corresponding to the forecasted stage and anticipate in advance, likely spatial inundation pattern and submergence of villages and hence in alerting the habitation at risk. This method can be helpful in anticipating the areas to be affected in situations where satellite images cannot be effectively utilized due to cloud cover and also for providing information about the areas being partially covered in satellite data.

  20. Satellite Servicing's Autonomous Rendezvous and Docking Testbed on the International Space Station

    Science.gov (United States)

    Naasz, Bo J.; Strube, Matthew; Van Eepoel, John; Barbee, Brent W.; Getzandanner, Kenneth M.

    2011-01-01

    The Space Servicing Capabilities Project (SSCP) at NASA's Goddard Space Flight Center (GSFC) has been tasked with developing systems for servicing space assets. Starting in 2009, the SSCP completed a study documenting potential customers and the business case for servicing, as well as defining several notional missions and required technologies. In 2010, SSCP moved to the implementation stage by completing several ground demonstrations and commencing development of two International Space Station (ISS) payloads-the Robotic Refueling Mission (RRM) and the Dextre Pointing Package (DPP)--to mitigate new technology risks for a robotic mission to service existing assets in geosynchronous orbit. This paper introduces the DPP, scheduled to fly in July of 2012 on the third operational SpaceX Dragon mission, and its Autonomous Rendezvous and Docking (AR&D) instruments. The combination of sensors and advanced avionics provide valuable on-orbit demonstrations of essential technologies for servicing existing vehicles, both cooperative and non-cooperative.

  1. GEROS-ISS: GNSS REflectometry, Radio Occultation and Scatterometry onboard the International Space Station

    DEFF Research Database (Denmark)

    Wickert, Jens; Cardellach, Estel; Bandeiras, Jorge

    2016-01-01

    GEROS-ISS stands for GNSS REflectometry, radio occultation, and scatterometry onboard the International Space Station (ISS). It is a scientific experiment, successfully proposed to the European Space Agency in 2011. The experiment as the name indicates will be conducted on the ISS. The main focus...... of GEROS-ISS is the dedicated use of signals from the currently available Global Navigation Satellite Systems (GNSS) in L-band for remote sensing of the Earth with a focus to study climate change. Prime mission objectives are the determination of the altimetric sea surface height of the oceans...

  2. Tethered elevator and platforms as space station facilities: Systems studies and demonstrative experiments

    Science.gov (United States)

    1986-01-01

    Several key concepts of the science and applications tethered platforms were studied. Some conclusions reached are herein listed. Tether elevator and platform could improve the space station scientific and applicative capabilities. The space elevator presents unique characteristics as microgravity facility and as a tethered platform servicing vehicle. Pointing platforms could represent a new kind of observation facility for large class of payloads. The dynamical, control and technological complexity of these concepts advised demonstrative experiments. The on-going tethered satellite system offers the opportunity to perform such experiments. And feasibility studies are in progress.

  3. Use of satellite data to estimate radiation and evaporation for northwest Mexico

    International Nuclear Information System (INIS)

    Stewart, J.B.; Watts, C.J.; Rodriguez, J.C.; Bruin, H.A.R. de; Berg, A.R. van den; Garatuza-Payán, J.

    1999-01-01

    Incoming solar radiation was estimated from visible band data obtained by the GOES satellite over northwest Mexico. Comparisons against ground-based measurements of incoming solar radiation showed good agreement, particularly in months with low cloud cover. The data from an automatic weather station installed within the Yaqui Valley Irrigation Scheme was used to estimate potential evaporation from a formula based on incoming solar radiation and climatological values of temperature. The success of this formula was assessed by comparison against potential evaporation estimated using the Penman and Penman–Monteith formulae and measurements of net radiation. (author)

  4. An Investigation on Water Quality of Darlik Dam Drinking Water using Satellite Images

    Directory of Open Access Journals (Sweden)

    Erhan Alparslan

    2010-01-01

    Full Text Available Darlik Dam supplies 15% of the water demand of Istanbul Metropolitan City of Turkey. Water quality (WQ in the Darlik Dam was investigated from Landsat 5 TM satellite images of the years 2004, 2005, and 2006 in order to determine land use/land cover changes in the watershed of the dam that may deteriorate its WQ. The images were geometrically and atmospherically corrected for WQ analysis. Next, an investigation was made by multiple regression analysis between the unitless planetary reflectance values of the first four bands of the June 2005 Landsat TM image of the dam and WQ parameters, such as chlorophyll-a, total dissolved matter, turbidity, total phosphorous, and total nitrogen, measured at satellite image acquisition time at seven stations in the dam. Finally, WQ in the dam was studied from satellite images of the years 2004, 2005, and 2006 by pattern recognition techniques in order to determine possible water pollution in the dam. This study was compared to a previous study done by the authors in the Küçükçekmece water reservoir, also in Istanbul City.

  5. Cirlularly Polarized Proximity- Fed Microstrip Array Antenna for LAPAN TUBSAT Micro Satellite System

    Directory of Open Access Journals (Sweden)

    Endra Wijaya

    2013-11-01

    Full Text Available The design microstrip of array antenna circular polarization characteristic developed for support LAPAN TUBSAT micro satellite system. The antenna on the micro satellite systems transmit data to ground stations operating at S band frequencies.The antenna is designed for impedance matching at frequencies of 2:25 GHz.The four elements of the square patch antenna array composed using linear methods, where the design of the transmission lines used by federal corporate structure model network consisting of three elements of the quarter wave transformer of a power divider. The feeding techniques for antenna designed using proximity coupling method, which for the type of substrate material used is similar. Circularly polarized antenna characteristics are influenced by the truncated corner pieces on the patch. To design the overall antenna used simulated method of moments in microwave office software applications. The results of measurements and simulations obtained antenna parameters, such as: bandwidth of return loss under 10 dB is 200 MHz (shifted 35%, bandwidth of axial ratio under 3dB is 1.7% and maximum gain directivity is 9 dB. Overall results obtained antenna parameters to meet the specifications of LAPAN TUBSAT micro satellite system.

  6. 47 CFR 25.258 - Sharing between NGSO MSS Feeder links Stations and GSO FSS services in the 29.25-29.5 GHz Bands.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Sharing between NGSO MSS Feeder links Stations and GSO FSS services in the 29.25-29.5 GHz Bands. 25.258 Section 25.258 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Standards § 25...

  7. Centriolar satellites

    DEFF Research Database (Denmark)

    Tollenaere, Maxim A X; Mailand, Niels; Bekker-Jensen, Simon

    2015-01-01

    Centriolar satellites are small, microscopically visible granules that cluster around centrosomes. These structures, which contain numerous proteins directly involved in centrosome maintenance, ciliogenesis, and neurogenesis, have traditionally been viewed as vehicles for protein trafficking...... highlight newly discovered regulatory mechanisms targeting centriolar satellites and their functional status, and we discuss how defects in centriolar satellite components are intimately linked to a wide spectrum of human diseases....

  8. The NASA Earth Science Program and Small Satellites

    Science.gov (United States)

    Neeck, Steven P.

    2015-01-01

    Earth's changing environment impacts every aspect of life on our planet and climate change has profound implications on society. Studying Earth as a single complex system is essential to understanding the causes and consequences of climate change and other global environmental concerns. NASA's Earth Science Division (ESD) shapes an interdisciplinary view of Earth, exploring interactions among the atmosphere, oceans, ice sheets, land surface interior, and life itself. This enables scientists to measure global and climate changes and to inform decisions by Government, other organizations, and people in the United States and around the world. The data collected and results generated are accessible to other agencies and organizations to improve the products and services they provide, including air quality indices, disaster prediction and response, agricultural yield projections, and aviation safety. ESD's Flight Program provides the spacebased observing systems and supporting infrastructure for mission operations and scientific data processing and distribution that support NASA's Earth science research and modeling activities. The Flight Program currently has 21 operating Earth observing space missions, including the recently launched Global Precipitation Measurement (GPM) mission, the Orbiting Carbon Observatory-2 (OCO-2), the Soil Moisture Active Passive (SMAP) mission, and the International Space Station (ISS) RapidSCAT and Cloud-Aerosol Transport System (CATS) instruments. The ESD has 22 more missions and instruments planned for launch over the next decade. These include first and second tier missions from the 2007 Earth Science Decadal Survey, Climate Continuity missions to assure availability of key climate data sets, and small-sized competitively selected orbital missions and instrument missions of opportunity belonging to the Earth Venture (EV) Program. Small satellites (500 kg or less) are critical contributors to these current and future satellite missions

  9. The Case for Deep Space Telecommunications Relay Stations

    Science.gov (United States)

    Chandler, Charles W.; Miranda, Felix A. (Technical Monitor)

    2004-01-01

    Each future mission to Jupiter and beyond must carry the traditional suite of telecommunications systems for command and control and for mission data transmission to earth. The telecommunications hardware includes the large antenna and the high-power transmitters that enable the communications link. Yet future spacecraft will be scaled down from the hallmark missions of Galileo and Cassini to Jupiter and Saturn, respectively. This implies that a higher percentage of the spacecraft weight and power must be dedicated to telecommunications system. The following analysis quantifies this impact to future missions and then explores the merits of an alternative approach using deep space relay stations for the link back to earth. It will be demonstrated that a telecommunications relay satellite would reduce S/C telecommunications weight and power sufficiently to add one to two more instruments.

  10. Assessment of NASA airborne laser altimetry data using ground-based GPS data near Summit Station, Greenland

    Science.gov (United States)

    Brunt, Kelly M.; Hawley, Robert L.; Lutz, Eric R.; Studinger, Michael; Sonntag, John G.; Hofton, Michelle A.; Andrews, Lauren C.; Neumann, Thomas A.

    2017-03-01

    A series of NASA airborne lidars have been used in support of satellite laser altimetry missions. These airborne laser altimeters have been deployed for satellite instrument development, for spaceborne data validation, and to bridge the data gap between satellite missions. We used data from ground-based Global Positioning System (GPS) surveys of an 11 km long track near Summit Station, Greenland, to assess the surface-elevation bias and measurement precision of three airborne laser altimeters including the Airborne Topographic Mapper (ATM), the Land, Vegetation, and Ice Sensor (LVIS), and the Multiple Altimeter Beam Experimental Lidar (MABEL). Ground-based GPS data from the monthly ground-based traverses, which commenced in 2006, allowed for the assessment of nine airborne lidar surveys associated with ATM and LVIS between 2007 and 2016. Surface-elevation biases for these altimeters - over the flat, ice-sheet interior - are less than 0.12 m, while assessments of measurement precision are 0.09 m or better. Ground-based GPS positions determined both with and without differential post-processing techniques provided internally consistent solutions. Results from the analyses of ground-based and airborne data provide validation strategy guidance for the Ice, Cloud, and land Elevation Satellite 2 (ICESat-2) elevation and elevation-change data products.

  11. The Satellite Cell in Male and Female, Developing and Adult Mouse Muscle: Distinct Stem Cells for Growth and Regeneration

    Science.gov (United States)

    Neal, Alice; Boldrin, Luisa; Morgan, Jennifer Elizabeth

    2012-01-01

    Satellite cells are myogenic cells found between the basal lamina and the sarcolemma of the muscle fibre. Satellite cells are the source of new myofibres; as such, satellite cell transplantation holds promise as a treatment for muscular dystrophies. We have investigated age and sex differences between mouse satellite cells in vitro and assessed the importance of these factors as mediators of donor cell engraftment in an in vivo model of satellite cell transplantation. We found that satellite cell numbers are increased in growing compared to adult and in male compared to female adult mice. We saw no difference in the expression of the myogenic regulatory factors between male and female mice, but distinct profiles were observed according to developmental stage. We show that, in contrast to adult mice, the majority of satellite cells from two week old mice are proliferating to facilitate myofibre growth; however a small proportion of these cells are quiescent and not contributing to this growth programme. Despite observed changes in satellite cell populations, there is no difference in engraftment efficiency either between satellite cells derived from adult or pre-weaned donor mice, male or female donor cells, or between male and female host muscle environments. We suggest there exist two distinct satellite cell populations: one for muscle growth and maintenance and one for muscle regeneration. PMID:22662253

  12. The remote sensing of ocean primary productivity - Use of a new data compilation to test satellite algorithms

    Science.gov (United States)

    Balch, William; Evans, Robert; Brown, Jim; Feldman, Gene; Mcclain, Charles; Esaias, Wayne

    1992-01-01

    Global pigment and primary productivity algorithms based on a new data compilation of over 12,000 stations occupied mostly in the Northern Hemisphere, from the late 1950s to 1988, were tested. The results showed high variability of the fraction of total pigment contributed by chlorophyll, which is required for subsequent predictions of primary productivity. Two models, which predict pigment concentration normalized to an attenuation length of euphotic depth, were checked against 2,800 vertical profiles of pigments. Phaeopigments consistently showed maxima at about one optical depth below the chlorophyll maxima. CZCS data coincident with the sea truth data were also checked. A regression of satellite-derived pigment vs ship-derived pigment had a coefficient of determination. The satellite underestimated the true pigment concentration in mesotrophic and oligotrophic waters and overestimated the pigment concentration in eutrophic waters. The error in the satellite estimate showed no trends with time between 1978 and 1986.

  13. Space satellite power system. [conversion of solar energy by photovoltaic solar cell arrays

    Science.gov (United States)

    Glaser, P. E.

    1974-01-01

    The concept of a satellite solar power station was studied. It is shown that it offers the potential to meet a significant portion of future energy needs, is pollution free, and is sparing of irreplaceable earth resources. Solar energy is converted by photovoltaic solar cell arrays to dc energy which in turn is converted into microwave energy in a large active phased array. The microwave energy is beamed to earth with little attenuation and is converted back to dc energy on the earth. Economic factors are considered.

  14. Analysis of Errors in a Special Perturbations Satellite Orbit Propagator

    Energy Technology Data Exchange (ETDEWEB)

    Beckerman, M.; Jones, J.P.

    1999-02-01

    We performed an analysis of error densities for the Special Perturbations orbit propagator using data for 29 satellites in orbits of interest to Space Shuttle and International Space Station collision avoidance. We find that the along-track errors predominate. These errors increase monotonically over each 36-hour prediction interval. The predicted positions in the along-track direction progressively either leap ahead of or lag behind the actual positions. Unlike the along-track errors the radial and cross-track errors oscillate about their nearly zero mean values. As the number of observations per fit interval decline the along-track prediction errors, and amplitudes of the radial and cross-track errors, increase.

  15. Reduced satellite cell numbers and myogenic capacity in aging can be alleviated by endurance exercise.

    Directory of Open Access Journals (Sweden)

    Gabi Shefer

    2010-10-01

    Full Text Available Muscle regeneration depends on satellite cells, myogenic stem cells that reside on the myofiber surface. Reduced numbers and/or decreased myogenic aptitude of these cells may impede proper maintenance and contribute to the age-associated decline in muscle mass and repair capacity. Endurance exercise was shown to improve muscle performance; however, the direct impact on satellite cells in aging was not yet thoroughly determined. Here, we focused on characterizing the effect of moderate-intensity endurance exercise on satellite cell, as possible means to attenuate adverse effects of aging. Young and old rats of both genders underwent 13 weeks of treadmill-running or remained sedentary.Gastrocnemius muscles were assessed for the effect of age, gender and exercise on satellite-cell numbers and myogenic capacity. Satellite cells were identified in freshly isolated myofibers based on Pax7 immunostaining (i.e., ex-vivo. The capacity of individual myofiber-associated cells to produce myogenic progeny was determined in clonal assays (in-vitro. We show an age-associated decrease in satellite-cell numbers and in the percent of myogenic clones in old sedentary rats. Upon exercise, there was an increase in myofibers that contain higher numbers of satellite cells in both young and old rats, and an increase in the percent of myogenic clones derived from old rats. Changes at the satellite cell level in old rats were accompanied with positive effects on the lean-to-fat Gast muscle composition and on spontaneous locomotion levels. The significance of these data is that they suggest that the endurance exercise-mediated boost in both satellite numbers and myogenic properties may improve myofiber maintenance in aging.

  16. Satellite myths

    Science.gov (United States)

    Easton, Roger L.; Hall, David

    2008-01-01

    Richard Corfield's article “Sputnik's legacy” (October 2007 pp23-27) states that the satellite on board the US Vanguard rocket, which exploded during launch on 6 December 1957 two months after Sputnik's successful take-off, was “a hastily put together contraption of wires and circuitry designed only to send a radio signal back to Earth”. In fact, the Vanguard satellite was developed over a period of several years and put together carefully using the best techniques and equipment available at the time - such as transistors from Bell Laboratories/Western Electric. The satellite contained not one but two transmitters, in which the crystal-controlled oscillators had been designed to measure both the temperature of the satellite shell and of the internal package.

  17. The Advanced Communication Technology Satellite and ISDN

    Science.gov (United States)

    Lowry, Peter A.

    1996-01-01

    This paper depicts the Advanced Communication Technology Satellite (ACTS) system as a global central office switch. The ground portion of the system is the collection of earth stations or T1-VSAT's (T1 very small aperture terminals). The control software for the T1-VSAT's resides in a single CPU. The software consists of two modules, the modem manager and the call manager. The modem manager (MM) controls the RF modem portion of the T1-VSAT. It processes the orderwires from the satellite or from signaling generated by the call manager (CM). The CM controls the Recom Laboratories MSPs by receiving signaling messages from the stacked MSP shelves ro units and sending appropriate setup commands to them. There are two methods used to setup and process calls in the CM; first by dialing up a circuit using a standard telephone handset or, secondly by using an external processor connected to the CPU's second COM port, by sending and receiving signaling orderwires. It is the use of the external processor which permits the ISDN (Integrated Services Digital Network) Signaling Processor to implement ISDN calls. In August 1993, the initial testing of the ISDN Signaling Processor was carried out at ACTS System Test at Lockheed Marietta, Princeton, NJ using the spacecraft in its test configuration on the ground.

  18. Communication satellite applications

    Science.gov (United States)

    Pelton, Joseph N.

    The status and future of the technologies, numbers and services provided by communications satellites worldwide are explored. The evolution of Intelsat satellites and the associated earth terminals toward high-rate all-digital telephony, data, facsimile, videophone, videoconferencing and DBS capabilities are described. The capabilities, services and usage of the Intersputnik, Eutelsat, Arabsat and Palapa systems are also outlined. Domestic satellite communications by means of the Molniya, ANIK, Olympus, Intelsat and Palapa spacecraft are outlined, noting the fast growth of the market and the growing number of different satellite manufacturers. The technical, economic and service definition issues surrounding DBS systems are discussed, along with presently operating and planned maritime and aeronautical communications and positioning systems. Features of search and rescue and tracking, data, and relay satellite systems are summarized, and services offered or which will be offered by every existing or planned communication satellite worldwide are tabulated.

  19. Vertical microphysical profiles of convective clouds as a tool for obtaining aerosol cloud-mediated climate forcings

    Energy Technology Data Exchange (ETDEWEB)

    Rosenfeld, Daniel [Hebrew Univ. of Jerusalem (Israel)

    2015-12-23

    Quantifying the aerosol/cloud-mediated radiative effect at a global scale requires simultaneous satellite retrievals of cloud condensation nuclei (CCN) concentrations and cloud base updraft velocities (Wb). Hitherto, the inability to do so has been a major cause of high uncertainty regarding anthropogenic aerosol/cloud-mediated radiative forcing. This can be addressed by the emerging capability of estimating CCN and Wb of boundary layer convective clouds from an operational polar orbiting weather satellite. Our methodology uses such clouds as an effective analog for CCN chambers. The cloud base supersaturation (S) is determined by Wb and the satellite-retrieved cloud base drop concentrations (Ndb), which is the same as CCN(S). Developing and validating this methodology was possible thanks to the ASR/ARM measurements of CCN and vertical updraft profiles. Validation against ground-based CCN instruments at the ARM sites in Oklahoma, Manaus, and onboard a ship in the northeast Pacific showed a retrieval accuracy of ±25% to ±30% for individual satellite overpasses. The methodology is presently limited to boundary layer not raining convective clouds of at least 1 km depth that are not obscured by upper layer clouds, including semitransparent cirrus. The limitation for small solar backscattering angles of <25º restricts the satellite coverage to ~25% of the world area in a single day. This methodology will likely allow overcoming the challenge of quantifying the aerosol indirect effect and facilitate a substantial reduction of the uncertainty in anthropogenic climate forcing.

  20. Precipitation estimates and comparison of satellite rainfall data to in situ rain gauge observations to further develop the watershed-modeling capabilities for the Lower Mekong River Basin

    Science.gov (United States)

    Dandridge, C.; Lakshmi, V.; Sutton, J. R. P.; Bolten, J. D.

    2017-12-01

    This study focuses on the lower region of the Mekong River Basin (MRB), an area including Burma, Cambodia, Vietnam, Laos, and Thailand. This region is home to expansive agriculture that relies heavily on annual precipitation over the basin for its prosperity. Annual precipitation amounts are regulated by the global monsoon system and therefore vary throughout the year. This research will lead to improved prediction of floods and management of floodwaters for the MRB. We compare different satellite estimates of precipitation to each other and to in-situ precipitation estimates for the Mekong River Basin. These comparisons will help us determine which satellite precipitation estimates are better at predicting precipitation in the MRB and will help further our understanding of watershed-modeling capabilities for the basin. In this study we use: 1) NOAA's PERSIANN daily 0.25° precipitation estimate Climate Data Record (CDR), 2) NASA's Tropical Rainfall Measuring Mission (TRMM) daily 0.25° estimate, and 3) NASA's Global Precipitation Measurement (GPM) daily 0.1 estimate and 4) 488 in-situ stations located in the lower MRB provide daily precipitation estimates. The PERSIANN CDR precipitation estimate was able to provide the longest data record because it is available from 1983 to present. The TRMM precipitation estimate is available from 2000 to present and the GPM precipitation estimates are available from 2015 to present. It is for this reason that we provide several comparisons between our precipitation estimates. Comparisons were done between each satellite product and the in-situ precipitation estimates based on geographical location and date using the entire available data record for each satellite product for daily, monthly, and yearly precipitation estimates. We found that monthly PERSIANN precipitation estimates were able to explain up to 90% of the variability in station precipitation depending on station location.

  1. 76 FR 31252 - Fixed and Mobile Services in the Mobile Satellite Service Bands at 1525-1559 MHz and 1626.5-1660...

    Science.gov (United States)

    2011-05-31

    ... operations in the L-band on GPS and other Global Navigation Satellite System (GNSS) receivers. 24. The... and NTIA about LightSquared's operations in the MSS L-band, LightSquared is working with the GPS... from its base station operations in the MSS L-band spectrum to GPS receivers in the adjacent 1559-1610...

  2. 47 CFR 25.138 - Blanket Licensing provisions of GSO FSS Earth Stations in the 18.3-18.8 GHz (space-to-Earth), 19...

    Science.gov (United States)

    2010-10-01

    ...°, provided that the total angular range over which this occurs does not exceed 20° when measured along both... applicant shall provide for each earth station antenna type, a series of radiation patterns measured on a... operating protocol specified by the satellite operator. The holder of an FCC blanket license pursuant to...

  3. History of Satellite TV Broadcasting and Satellite Broadcasting Market in Turkey

    Directory of Open Access Journals (Sweden)

    Mihalis KUYUCU

    2015-09-01

    Full Text Available The present study analyses the satellite broadcasting that is the first important development that emerged as a result of digitalization in communication technologies and its reflections in Turkey. As the first milestone in the globalization of television broadcasting, satellite broadcasting provided substantial contribution towards the development of the media. Satellite bro adcasting both increased the broadcasting quality and geographical coverage of the television media. A conceptual study was carried out in the first part of the study in connection with the history of satellite broadcasting in Turkey and across the world. In the research part of the study, an analysis was performed on 160 television channels that broadcast in Turkey via Turksat Satellite. Economic structure of the television channels broadcasting in Turkey via satellite was studied and an analysis was perfo rmed on the operational structure of the channels. As a result of the study, it was emphasized that the television channels broadcasting via satellite platform also use other platforms for the purpose of spreading their broadcasts and television channel ow ners make investments in different branches of the media, too. Capital owners invest in different business areas other than the media although television channels broadcasting via Turksat mostly focus on thematic broadcasting and make effort to generate ec onomic income from advertisements. Delays are encountered in the course of the convergence between the new media and television channels that broadcast only from the satellite platform and such television channels experience more economic problems than the other channels. New media and many TV broadcasting platforms emerged as a result of the developments in the communication technologies. In television broadcasting, satellite platform is not an effective platform on its own. Channels make effort to reach t o more people by using other platforms in addition to

  4. Relative tracking control of constellation satellites considering inter-satellite link

    Science.gov (United States)

    Fakoor, M.; Amozegary, F.; Bakhtiari, M.; Daneshjou, K.

    2017-11-01

    In this article, two main issues related to the large-scale relative motion of satellites in the constellation are investigated to establish the Inter Satellite Link (ISL) which means the dynamic and control problems. In the section related to dynamic problems, a detailed and effective analytical solution is initially provided for the problem of satellite relative motion considering perturbations. The direct geometric method utilizing spherical coordinates is employed to achieve this solution. The evaluation of simulation shows that the solution obtained from the geometric method calculates the relative motion of the satellite with high accuracy. Thus, the proposed analytical solution will be applicable and effective. In the section related to control problems, the relative tracking control system between two satellites will be designed in order to establish a communication link between the satellites utilizing analytical solution for relative motion of satellites with respect to the reference trajectory. Sliding mode control approach is employed to develop the relative tracking control system for body to body and payload to payload tracking control. Efficiency of sliding mode control approach is compared with PID and LQR controllers. Two types of payload to payload tracking control considering with and without payload degree of freedom are designed and suitable one for practical ISL applications is introduced. Also, Fuzzy controller is utilized to eliminate the control input in the sliding mode controller.

  5. Mobile satellite service communications tests using a NASA satellite

    Science.gov (United States)

    Chambers, Katherine H.; Koschmeder, Louis A.; Hollansworth, James E.; ONeill, Jack; Jones, Robert E.; Gibbons, Richard C.

    1995-01-01

    Emerging applications of commercial mobile satellite communications include satellite delivery of compact disc (CD) quality radio to car drivers who can select their favorite programming as they drive any distance; transmission of current air traffic data to aircraft; and handheld communication of data and images from any remote corner of the world. Experiments with the enabling technologies and tests and demonstrations of these concepts are being conducted before the first satellite is launched by utilizing an existing NASA spacecraft.

  6. A new stochastic model considering satellite clock interpolation errors in precise point positioning

    Science.gov (United States)

    Wang, Shengli; Yang, Fanlin; Gao, Wang; Yan, Lizi; Ge, Yulong

    2018-03-01

    Precise clock products are typically interpolated based on the sampling interval of the observational data when they are used for in precise point positioning. However, due to the occurrence of white noise in atomic clocks, a residual component of such noise will inevitable reside within the observations when clock errors are interpolated, and such noise will affect the resolution of the positioning results. In this paper, which is based on a twenty-one-week analysis of the atomic clock noise characteristics of numerous satellites, a new stochastic observation model that considers satellite clock interpolation errors is proposed. First, the systematic error of each satellite in the IGR clock product was extracted using a wavelet de-noising method to obtain the empirical characteristics of atomic clock noise within each clock product. Then, based on those empirical characteristics, a stochastic observation model was structured that considered the satellite clock interpolation errors. Subsequently, the IGR and IGS clock products at different time intervals were used for experimental validation. A verification using 179 stations worldwide from the IGS showed that, compared with the conventional model, the convergence times using the stochastic model proposed in this study were respectively shortened by 4.8% and 4.0% when the IGR and IGS 300-s-interval clock products were used and by 19.1% and 19.4% when the 900-s-interval clock products were used. Furthermore, the disturbances during the initial phase of the calculation were also effectively improved.

  7. Satellite Geomagnetism

    DEFF Research Database (Denmark)

    Olsen, Nils; Stolle, Claudia

    2012-01-01

    Observations of Earth’s magnetic field from space began more than 50 years ago. A continuous monitoring of the field using low Earth orbit (LEO) satellites, however, started only in 1999, and three satellites have taken highprecision measurements of the geomagnetic field during the past decade....... The unprecedented time-space coverage of their data opened revolutionary new possibilities for monitoring, understanding, and exploring Earth’s magnetic field. In the near future, the three-satellite constellation Swarm will ensure continuity of such measurement and provide enhanced possibilities to improve our...... ability to characterize and understand the many sources that contribute to Earth’s magnetic field. In this review, we summarize investigations of Earth’s interior and environment that have been possible through the analysis of high-precision magnetic field observations taken by LEO satellites....

  8. Satellite Power Systems (SPS) concept definition study. Volume 2, part 2: System engineering. [cost and programmatics

    Science.gov (United States)

    Hanley, G. M.

    1980-01-01

    The latest technical and programmatic developments are considered as well as expansions of the Rockwell SPS cost model covering each phase of the program through the year 2030. Comparative cost/economic analyses cover elements of the satellite, construction system, space transportation vehicles and operations, and the ground receiving station. System plans to define time phased costs and planning requirements that support major milestones through the year 2000. A special analysis is included on natural resources required to build the SPS reference configuration. An appendix contains the SPS Work Breakdown Structure and dictionary along with detail cost data sheet on each system and main element of the program. Over 200 line items address DDT&E, theoretical first unit, investment cost per satellite, and operations charges for replacement capital and normal operations and maintenance costs.

  9. Interim Service ISDN Satellite (ISIS) simulator development for advanced satellite designs and experiments

    Science.gov (United States)

    Pepin, Gerard R.

    1992-01-01

    The simulation development associated with the network models of both the Interim Service Integrated Services Digital Network (ISDN) Satellite (ISIS) and the Full Service ISDN Satellite (FSIS) architectures is documented. The ISIS Network Model design represents satellite systems like the Advanced Communications Technology Satellite (ACTS) orbiting switch. The FSIS architecture, the ultimate aim of this element of the Satellite Communications Applications Research (SCAR) Program, moves all control and switching functions on-board the next generation ISDN communications satellite. The technical and operational parameters for the advanced ISDN communications satellite design will be obtained from the simulation of ISIS and FSIS engineering software models for their major subsystems. Discrete event simulation experiments will be performed with these models using various traffic scenarios, design parameters, and operational procedures. The data from these simulations will be used to determine the engineering parameters for the advanced ISDN communications satellite.

  10. Next-Generation NASA Earth-Orbiting Relay Satellites: Fusing Optical and Microwave Communications

    Science.gov (United States)

    Israel, David J.; Shaw, Harry

    2018-01-01

    NASA is currently considering architectures and concepts for the generation of relay satellites that will replace the Tracking and Data Relay Satellite (TDRS) constellation, which has been flying since 1983. TDRS-M, the last of the second TDRS generation, launched in August 2017, extending the life of the TDRS constellation beyond 2030. However, opportunities exist to re-engineer the concepts of geosynchronous Earth relay satellites. The needs of the relay satellite customers have changed dramatically over the last 34 years since the first TDRS launch. There is a demand for greater bandwidth as the availability of the traditional RF spectrum for space communications diminishes and the demand for ground station access grows. The next generation of NASA relay satellites will provide for operations that have factored in these new constraints. In this paper, we describe a heterogeneous constellation of geosynchronous relay satellites employing optical and RF communications. The new constellation will enable new optical communications services formed by user-to-space relay, space relay-to-space relay and space relay-to-ground links. It will build upon the experience from the Lunar Laser Communications Demonstration from 2013 and the Laser Communications Relay Demonstration to be launched in 2019.Simultaneous to establishment of the optical communications space segment, spacecraft in the TDRS constellation will be replaced with RF relay satellites with targeted subsets of the TDRS capabilities. This disaggregation of the TDRS service model will allow for flexibility in replenishing the needs of legacy users as well as addition of new capabilities for future users. It will also permit the U.S. government access to launch capabilities such as rideshare and to hosted payloads that were not previously available.In this paper, we also explore how the next generation of Earth relay satellites provides a significant boost in the opportunities for commercial providers to the

  11. Next-Generation NASA Earth-Orbiting Relay Satellites: Fusing Microwave and Optical Communications

    Science.gov (United States)

    Israel, David J.

    2018-01-01

    NASA is currently considering architectures and concepts for the generation of relay satellites that will replace the Tracking and Data Relay Satellite (TDRS) constellation, which has been flying since 1983. TDRS-M, the last of the second TDRS generation, launched in August 2017, extending the life of the TDRS constellation beyond 2030. However, opportunities exist to re-engineer the concepts of geosynchronous Earth relay satellites. The needs of the relay satellite customers have changed dramatically over the last 34 years since the first TDRS launch. There is a demand for greater bandwidth as the availability of the traditional RF spectrum for space communications diminishes and the demand for ground station access grows. The next generation of NASA relay satellites will provide for operations that have factored in these new constraints. In this paper, we describe a heterogeneous constellation of geosynchronous relay satellites employing optical and RF communications. The new constellation will enable new optical communications services formed by user-to-space relay, space relay-to-space relay and space relay-to-ground links. It will build upon the experience from the Lunar Laser Communications Demonstration from 2013 and the Laser Communications Relay Demonstration to be launched in 2019.Simultaneous to establishment of the optical communications space segment, spacecraft in the TDRS constellation will be replaced with RF relay satellites with targeted subsets of the TDRS capabilities. This disaggregation of the TDRS service model will allow for flexibility in replenishing the needs of legacy users as well as addition of new capabilities for future users. It will also permit the U.S. government access to launch capabilities such as rideshare and to hosted payloads that were not previously available. In this paper, we also explore how the next generation of Earth relay satellites provides a significant boost in the opportunities for commercial providers to the

  12. Handbook of satellite applications

    CERN Document Server

    Madry, Scott; Camacho-Lara, Sergio

    2017-01-01

    The first edition of this ground breaking reference work was the most comprehensive reference source available about the key aspects of the satellite applications field. This updated second edition covers the technology, the markets, applications and regulations related to satellite telecommunications, broadcasting and networking—including civilian and military systems; precise satellite navigation and timing networks (i.e. GPS and others); remote sensing and meteorological satellite systems. Created under the auspices of the International Space University based in France, this brand new edition is now expanded to cover new innovative small satellite constellations, new commercial launching systems, innovation in military application satellites and their acquisition, updated appendices, a useful glossary and more.

  13. Satellite image collection optimization

    Science.gov (United States)

    Martin, William

    2002-09-01

    Imaging satellite systems represent a high capital cost. Optimizing the collection of images is critical for both satisfying customer orders and building a sustainable satellite operations business. We describe the functions of an operational, multivariable, time dynamic optimization system that maximizes the daily collection of satellite images. A graphical user interface allows the operator to quickly see the results of what if adjustments to an image collection plan. Used for both long range planning and daily collection scheduling of Space Imaging's IKONOS satellite, the satellite control and tasking (SCT) software allows collection commands to be altered up to 10 min before upload to the satellite.

  14. Analysis of Grazing GNSS Reflections Observed at the Zeppelin Mountain Station, Spitsbergen

    Science.gov (United States)

    Peraza, L.; Semmling, M.; Falck, C.; Pavlova, O.; Gerland, S.; Wickert, J.

    2017-11-01

    A reflectometry station has been set up in 2013 near Ny-Ålesund, Svalbard, at 78.9082°N, 11.9031°E. The main goal of the setup is to resolve the spatial and temporal variations in snow and ice cover, based on reflection power observations at grazing elevations. In this study, we develop a method to map the recorded signal power to the main reflection contributions while also discussing the spatial characteristics of the observations. A spectral analysis resolving differential Doppler between direct and reflected signals is presented to identify reflection contributions for a complete year (2014). Strong water reflections are identified with power ratios higher than 70 dB/Hz and constant Doppler shifts of 0.5-0.6 Hz for all elevations. Contributions with ratios higher than 40 dB/Hz can be related to specular land or glacier reflections, for which Doppler shift usually increases with the elevation angle and the distance between reflection point and receiver. Reflections nearby, around 3-5 km, show differential Doppler of 0.4-0.5 Hz, while for reflections farther than 16 km away, Doppler shift is usually larger than 0.8 Hz. Azimuth variations cause cross-track drift of up to 4° during the observation year. Topography-induced shadowing of very low lying satellites limits the extent of the monitoring area. However, the amount of satellites tracked daily, up to 30, allows the reflectometry station to constantly record reflections over areas with thick snow cover and glaciers. This offers the possibility to compare the derived reflected power with local meteorological data to resolve snow and ice variations on the area.

  15. Mission Analysis for LEO Microwave Power-Beaming Station in Orbital Launch of Microwave Lightcraft

    Science.gov (United States)

    Myrabo, L. N.; Dickenson, T.

    2005-01-01

    A detailed mission analysis study has been performed for a 1 km diameter, rechargeable satellite solar power station (SPS) designed to boost 20m diameter, 2400 kg Micr,oWave Lightcraft (MWLC) into low earth orbit (LEO) Positioned in a 476 km daily-repeating oi.bit, the 35 GHz microwave power station is configured like a spinning, thin-film bicycle wheel covered by 30% efficient sola cells on one side and billions of solid state microwave transmitter elements on the other, At the rim of this wheel are two superconducting magnets that can stor,e 2000 G.J of energy from the 320 MW, solar array over a period of several orbits. In preparation for launch, the entire station rotates to coarsely point at the Lightcraft, and then phases up using fine-pointing information sent from a beacon on-board the Lightcraft. Upon demand, the station transmits a 10 gigawatt microwave beam to lift the MWLC from the earth surface into LEO in a flight of several minutes duration. The mission analysis study was comprised of two parts: a) Power station assessment; and b) Analysis of MWLC dynamics during the ascent to orbit including the power-beaming relationships. The power station portion addressed eight critical issues: 1) Drag force vs. station orbital altitude; 2) Solar pressure force on the station; 3) Station orbital lifetime; 4) Feasibility of geo-magnetic re-boost; 5) Beta angle (i..e., sola1 alignment) and power station effective area relationship; 6) Power station percent time in sun vs, mission elapsed time; 7) Station beta angle vs.. charge time; 8) Stresses in station structures.. The launch dynamics portion examined four issues: 1) Ascent mission/trajecto1y profile; 2) MWLC/power-station mission geometry; 3) MWLC thrust angle vs. time; 4) Power station pitch rate during power beaming. Results indicate that approximately 0 58 N of drag force acts upon the station when rotated edge-on to project the minimum frontal area of 5000 sq m. An ion engine or perhaps an electrodynamic

  16. UAS CNPC Satellite Link Performance - Sharing Spectrum with Terrestrial Systems

    Science.gov (United States)

    Kerczewski, Robert J.; Wilson, Jeffrey D.; Bishop, William D.

    2016-01-01

    In order to provide for the safe integration of unmanned aircraft systems into the National Airspace System, the control and non-payload communications (CNPC) link connecting the ground-based pilot with the unmanned aircraft must be highly reliable. A specific requirement is that it must operate using aviation safety radiofrequency spectrum. The 2012 World Radiocommunication Conference (WRC-12) provided a potentially suitable allocation for radio line-of-sight (LOS), terrestrial based CNPC link at 5030-5091 MHz. For a beyond radio line-of-sight (BLOS), satellite-based CNPC link, aviation safety spectrum allocations are currently inadequate. Therefore, the 2015 WRC will consider the use of Fixed Satellite Service (FSS) bands to provide BLOS CNPC under Agenda Item 1.5. This agenda item requires studies to be conducted to allow for the consideration of how unmanned aircraft can employ FSS for BLOS CNPC while maintaining existing systems. Since there are terrestrial Fixed Service systems also using the same frequency bands under consideration in Agenda Item 1.5 one of the studies required considered spectrum sharing between earth stations on-board unmanned aircraft and Fixed Service station receivers. Studies carried out by NASA have concluded that such sharing is possible under parameters previously established by the International Telecommunications Union. As the preparation for WRC-15 has progressed, additional study parameters Agenda Item 1.5 have been proposed, and some studies using these parameters have been added. This paper examines the study results for the original parameters as well as results considering some of the more recently proposed parameters to provide insight into the complicated process of resolving WRC-15 Agenda Item 1.5 and achieving a solution for BLOS CNPC for unmanned aircraft.

  17. Theory of satellite geodesy applications of satellites to geodesy

    CERN Document Server

    Kaula, William M

    2000-01-01

    The main purpose of this classic text is to demonstrate how Newtonian gravitational theory and Euclidean geometry can be used and developed in the earth's environment. The second is to collect and explain some of the mathematical techniques developed for measuring the earth by satellite.Book chapters include discussions of the earth's gravitational field, with special emphasis on spherical harmonies and the potential of the ellipsoid; matrices and orbital geometry; elliptic motion, linear perturbations, resonance, and other aspects of satellite orbit dynamics; the geometry of satellite obser

  18. Spatiotemporal estimation of air temperature patterns at the street level using high resolution satellite imagery.

    Science.gov (United States)

    Pelta, Ran; Chudnovsky, Alexandra A

    2017-02-01

    Although meteorological monitoring stations provide accurate measurements of Air Temperature (AT), their spatial coverage within a given region is limited and thus is often insufficient for exposure and epidemiological studies. In many applications, satellite imagery measures energy flux, which is spatially continuous, and calculates Brightness Temperature (BT) that used as an input parameter. Although both quantities (AT-BT) are physically related, the correlation between them is not straightforward, and varies daily due to parameters such as meteorological conditions, surface moisture, land use, satellite-surface geometry and others. In this paper we first investigate the relationship between AT and BT as measured by 39 meteorological stations in Israel during 1984-2015. Thereafter, we apply mixed regression models with daily random slopes to calibrate Landsat BT data with monitored AT measurements for the period 1984-2015. Results show that AT can be predicted with high accuracy by using BT with high spatial resolution. The model shows relatively high accuracy estimation of AT (R 2 =0.92, RMSE=1.58°C, slope=0.90). Incorporating meteorological parameters into the model generates better accuracy (R 2 =0.935) than the AT-BT model (R 2 =0.92). Furthermore, based on the relatively high model accuracy, we investigated the spatial patterns of AT within the study domain. In the latter we focused on July-August, as these two months are characterized by relativity stable synoptic conditions in the study area. In addition, a temporal change in AT during the last 30years was estimated and verified using available meteorological stations and two additional remote sensing platforms. Finally, the impact of different land coverage on AT were estimated, as an example of future application of the presented approach. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Evaluation of Daily Evapotranspiration Over Orchards Using METRIC Approach and Landsat Satellite Observations

    Science.gov (United States)

    He, R.; Jin, Y.; Daniele, Z.; Kandelous, M. M.; Kent, E. R.

    2016-12-01

    The pistachio and almond acreage in California has been rapidly growing in the past 10 years, raising concerns about competition for limited water resources in California. A robust and cost-effective mapping of crop water use, mostly evapotranspiration (ET), by orchards, is needed for improved farm-level irrigation management and regional water planning. METRIC™, a satellite-based surface energy balance approach, has been widely used to map field-scale crop ET, mostly over row crops. We here aim to apply METRIC with Landsat satellite observations over California's orchards and evaluate the ET estimates by comparing with field measurements in South San Joaquin Valley, California. Reference ET of grass (ETo) from California Irrigation Management Information system (CIMIS) stations was used to estimate daily ET of commercial almond and pistachio orchards. Our comparisons showed that METRIC-Landsat ET daily estimates agreed well with ET measured by the eddy covariance and surface renewal stations, with a RMSE of 1.25 and a correlation coefficient of 0.84 for the pistachio orchard. A slight high bias of satellite based ET estimates was found for both pistachio and almond orchards. We also found time series of NDVI was highly correlated with ET temporal dynamics within each field, but the correlation was reduced to 0.56 when all fields were pooled together. Net radiation, however, remained highly correlated with ET across all the fields. The METRIC ET was able to distinguish the differences in ET among salt- and non-salt affected pistachio orchards, e.g., mean daily ET during growing season in salt-affected orchards was lower than that of non-salt affected one by 0.87 mm/day. The remote sensing based ET estimate will support a variety of state and local interests in water use and management, for both planning and regulatory/compliance purposes, and provide the farmers observation-based guidance for site-specific and time-sensitive irrigation management.

  20. Non-Coop Station History

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Station history documentation for stations outside the US Cooperative Observer network. Primarily National Weather Service stations assigned WBAN station IDs. Other...

  1. Satellite Communications

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Satellite Communications. Arthur C Clarke wrote a seminal paper in 1945 in wireless world. Use three satellites in geo-synchronous orbit to enable intercontinental communications. System could be realised in '50 to 100 years'

  2. 47 CFR 80.107 - Service of private coast stations and marine-utility stations.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Service of private coast stations and marine...) SAFETY AND SPECIAL RADIO SERVICES STATIONS IN THE MARITIME SERVICES Operating Requirements and Procedures Operating Procedures-Land Stations § 80.107 Service of private coast stations and marine-utility stations. A...

  3. TYCHO: Demonstrator and operational satellite mission to Earth-Moon-Libration point EML-4 for communication relay provision as a service

    Science.gov (United States)

    Hornig, Andreas; Homeister, Maren

    2015-03-01

    In the current wake of mission plans to the Moon and to Earth-Moon Libration points (EML) by several agencies and organizations, TYCHO identifies the key role of telecommunication provision for the future path of lunar exploration. It demonstrates an interesting extension to existing communication methods to the Moon and beyond by combining innovative technology with a next frontier location and the commercial space communication sector. It is evident that all communication systems will rely on direct communication to Earth ground stations. In case of EML-2 missions around HALO orbits or bases on the far side of the Moon, it has to be extended by communication links via relay stations. The innovative approach is that TYCHO provides this relay communication to those out-of-sight lunar missions as a service. TYCHO will establish a new infrastructure for future missions and even create a new market for add-on relay services. The TMA-0 satellite is TYCHO's first phase and a proposed demonstrator mission to the Earth-Moon Libration point EML-4. It demonstrates relay services needed for automated exploratory and manned missions (Moon bases) on the rim (>90°E and >90°W) and far side surface, to lunar orbits and even to EML-2 halo orbits (satellites and space stations). Its main advantage is the permanent availability of communication coverage. This will provide full access to scientific and telemetry data and furthermore to crucial medical monitoring and safety. The communication subsystem is a platform for conventional communication but also a test-bed for optical communication with high data-rate LASER links to serve the future needs of manned bases and periodic burst data-transfer from lunar poles. The operational TMA-1 satellite is a stand-alone mission integrated into existing space communication networks to provide open communication service to external lunar missions. Therefore the long-time stable libration points EML-4 and -5 are selected to guarantee an

  4. The 136 MHZ/400 MHz earth station antenna-noise temperature prediction program for RAE-B

    Science.gov (United States)

    Taylor, R. E.; Fee, J. J.; Chin, M.

    1972-01-01

    A simulation study was undertaken to determine the 136 MHz and 400 MHz noise temperature of the ground network antennas which will track the RAE-B satellite during data transmission periods. Since the noise temperature of the antenna effectively sets the signal-to-noise ratio of the received signal, a knowledge of SNR will be helpful in locating the optimum time windows for data transmission during low noise periods. Antenna noise temperatures will be predicted for selected earth-based ground stations which will support RAE-B. Telemetry data acquisition will be at 400 MHz; tracking support at 136 MHz will be provided by the Goddard Range and Range Rate (RARR) stations. The antenna-noise temperature predictions will include the effects of galactic-brightness temperature, the sun, and the brightest radio stars. Predictions will cover the ten-month period from March 1, 1973 to December 31, 1973.

  5. Geostationary Satellite (GOES) Images

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Visible and Infrared satellite imagery taken from radiometer instruments on SMS (ATS) and GOES satellites in geostationary orbit. These satellites produced...

  6. Estimating Tropical Cyclone Precipitation from Station Observations

    Institute of Scientific and Technical Information of China (English)

    REN Fumin; WANG Yongmei; WANG Xiaoling; LI Weijing

    2007-01-01

    In this paper, an objective technique for estimating the tropical cyclone (TC) precipitation from station observations is proposed. Based on a comparison between the Original Objective Method (OOM) and the Expert Subjective Method (ESM), the Objective Synoptic Analysis Technique (OSAT) for partitioning TC precipitation was developed by analyzing the western North Pacific (WNP) TC historical track and the daily precipitation datasets. Being an objective way of the ESM, OSAT overcomes the main problems in OOM,by changing two fixed parameters in OOM, the thresholds for the distance of the absolute TC precipitation (D0) and the TC size (D1), into variable parameters.Case verification for OSAT was also carried out by applying CMORPH (Climate Prediction Center MORPHing technique) daily precipitation measurements, which is NOAA's combined satellite precipitation measurement system. This indicates that OSAT is capable of distinguishing simultaneous TC precipitation rain-belts from those associated with different TCs or with middle-latitude weather systems.

  7. Assessing Crop Coefficients for Natural Vegetated Areas Using Satellite Data and Eddy Covariance Stations

    Directory of Open Access Journals (Sweden)

    Chiara Corbari

    2017-11-01

    Full Text Available The Food and Agricultural Organization (FAO method for potential evapotranspiration assessment is based on the crop coefficient, which allows one to relate the reference evapotranspiration of well irrigated grass to the potential evapotranspiration of specific crops. The method was originally developed for cultivated species based on lysimeter measurements of potential evapotranspiration. Not many applications to natural vegetated areas exist due to the lack of available data for these species. In this paper we investigate the potential of using evapotranspiration measurements acquired by micrometeorological stations for the definition of crop coefficient functions of natural vegetated areas and extrapolation to ungauged sites through remotely sensed data. Pastures, deciduous and evergreen forests have been considered and lower crop coefficient values are found with respect to FAO data.

  8. Assessing Crop Coefficients for Natural Vegetated Areas Using Satellite Data and Eddy Covariance Stations.

    Science.gov (United States)

    Corbari, Chiara; Ravazzani, Giovanni; Galvagno, Marta; Cremonese, Edoardo; Mancini, Marco

    2017-11-18

    The Food and Agricultural Organization (FAO) method for potential evapotranspiration assessment is based on the crop coefficient, which allows one to relate the reference evapotranspiration of well irrigated grass to the potential evapotranspiration of specific crops. The method was originally developed for cultivated species based on lysimeter measurements of potential evapotranspiration. Not many applications to natural vegetated areas exist due to the lack of available data for these species. In this paper we investigate the potential of using evapotranspiration measurements acquired by micrometeorological stations for the definition of crop coefficient functions of natural vegetated areas and extrapolation to ungauged sites through remotely sensed data. Pastures, deciduous and evergreen forests have been considered and lower crop coefficient values are found with respect to FAO data.

  9. 47 CFR 73.6016 - Digital Class A TV station protection of TV broadcast stations.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Digital Class A TV station protection of TV... Class A TV station protection of TV broadcast stations. Digital Class A TV stations must protect authorized TV broadcast stations, applications for minor changes in authorized TV broadcast stations filed on...

  10. Theory of geostationary satellites

    CERN Document Server

    Zee, Chong-Hung

    1989-01-01

    Geostationary or equatorial synchronous satellites are a daily reminder of our space efforts during the past two decades. The nightly television satellite weather picture, the intercontinental telecommunications of television transmissions and telephone conversations, and the establishrnent of educational programs in remote regions on Earth are constant reminders of the presence of these satellites. As used here, the term 'geo­ stationary' must be taken loosely because, in the long run, the satellites will not remain 'stationary' with respect to an Earth-fixed reference frame. This results from the fact that these satellites, as is true for all satellites, are incessantly subject to perturbations other than the central-body attraction of the Earth. Among the more predominant pertur­ bations are: the ellipticity of the Earth's equator, the Sun and Moon, and solar radiation pressure. Higher harmonics of the Earth's potential and tidal effects also influence satellite motion, but they are of second­ order whe...

  11. An Improved BeiDou-2 Satellite-Induced Code Bias Estimation Method

    Directory of Open Access Journals (Sweden)

    Jingyang Fu

    2018-04-01

    Full Text Available Different from GPS, GLONASS, GALILEO and BeiDou-3, it is confirmed that the code multipath bias (CMB, which originate from the satellite end and can be over 1 m, are commonly found in the code observations of BeiDou-2 (BDS IGSO and MEO satellites. In order to mitigate their adverse effects on absolute precise applications which use the code measurements, we propose in this paper an improved correction model to estimate the CMB. Different from the traditional model which considering the correction values are orbit-type dependent (estimating two sets of values for IGSO and MEO, respectively and modeling the CMB as a piecewise linear function with a elevation node separation of 10°, we estimate the corrections for each BDS IGSO + MEO satellite on one hand, and a denser elevation node separation of 5° is used to model the CMB variations on the other hand. Currently, the institutions such as IGS-MGEX operate over 120 stations which providing the daily BDS observations. These large amounts of data provide adequate support to refine the CMB estimation satellite by satellite in our improved model. One month BDS observations from MGEX are used for assessing the performance of the improved CMB model by means of precise point positioning (PPP. Experimental results show that for the satellites on the same orbit type, obvious differences can be found in the CMB at the same node and frequency. Results show that the new correction model can improve the wide-lane (WL ambiguity usage rate for WL fractional cycle bias estimation, shorten the WL and narrow-lane (NL time to first fix (TTFF in PPP ambiguity resolution (AR as well as improve the PPP positioning accuracy. With our improved correction model, the usage of WL ambiguity is increased from 94.1% to 96.0%, the WL and NL TTFF of PPP AR is shorten from 10.6 to 9.3 min, 67.9 to 63.3 min, respectively, compared with the traditional correction model. In addition, both the traditional and improved CMB model have

  12. [Mobile hospital -real time mobile telehealthcare system with ultrasound and CT van using high-speed satellite communication-].

    Science.gov (United States)

    Takizawa, Masaomi; Miyashita, Toyohisa; Murase, Sumio; Kanda, Hirohito; Karaki, Yoshiaki; Yagi, Kazuo; Ohue, Toru

    2003-01-01

    A real-time telescreening system is developed to detect early diseases for rural area residents using two types of mobile vans with a portable satellite station. The system consists of a satellite communication system with 1.5Mbps of the JCSAT-1B satellite, a spiral CT van, an ultrasound imaging van with two video conference system, a DICOM server and a multicast communication unit. The video image and examination image data are transmitted from the van to hospitals and the university simultaneously. Physician in the hospital observes and interprets exam images from the van and watches the video images of the position of ultrasound transducer on screenee in the van. After the observation images, physician explains a results of the examination by the video conference system. Seventy lung CT screening and 203 ultrasound screening were done from March to June 2002. The trial of this real time screening suggested that rural residents are given better healthcare without visit to the hospital. And it will open the gateway to reduce the medical cost and medical divide between city area and rural area.

  13. Fire Stations

    Data.gov (United States)

    Department of Homeland Security — Fire Stations in the United States Any location where fire fighters are stationed or based out of, or where equipment that such personnel use in carrying out their...

  14. Do cities deserve more railway stations? The choice of a departure railway station in a multiple-station region

    NARCIS (Netherlands)

    Givoni, M.; Rietveld, P.

    2014-01-01

    Promoting the use of rail is an important element in sustainable transport policy. One of the most important decisions to make in planning the railway network is on the number of stations to provide. Stations are the access points to rail services and while each additional station increases rail's

  15. Water Quality Determination of Küçükçekmece Lake, Turkey by Using Multispectral Satellite Data

    Directory of Open Access Journals (Sweden)

    Erhan Alparslan

    2009-01-01

    Full Text Available This study focuses on the analysis of the Landsat-5 TM + SPOT-Pan (1992, IRS-1C/D LISS + Pan (2000, and Landsat-5 TM (2006 satellite images that reflect the drastic land use/land cover changes in the Küçükçekmece Lake region, Istanbul. Landsat-5 TM satellite data dated 2006 was used for mapping water quality. A multiple regression analysis was carried out between the unitless planetary reflectance values derived from the satellite image and in situ water quality parameters chlorophyll a, total phosphorus, total nitrogen, turbidity, and biological and chemical oxygen demand measured at a number of stations homogenously distributed over the lake surface. The results of this study provided valuable information to local administrators on the water quality of Küçükçekmece Lake, which is a large water resource of the Istanbul Metropolitan Area. Results also show that such a methodology structured by use of reflectance values provided from satellite imagery, in situ water quality measurements, and basin land use/land cover characteristics obtained from images can serve as a powerful and rapid monitoring tool for the drinking water basins that suffer from rapid urbanization and pollution, all around the world.

  16. Space Solar Power Satellite Systems, Modern Small Satellites, and Space Rectenna

    Science.gov (United States)

    Bergsrud, Corey Alexis Marvin

    Space solar power satellite (SSPS) systems is the concept of placing large satellite into geostationary Earth orbit (GEO) to harvest and convert massive amounts of solar energy into microwave energy, and to transmit the microwaves to a rectifying antenna (rectenna) array on Earth. The rectenna array captures and converts the microwave power into usable power that is injected into the terrestrial electric grid for use. This work approached the microwave power beam as an additional source of power (with solar) for lower orbiting satellites. Assuming the concept of retrodirectivity, a GEO-SSPS antenna array system tracks and delivers microwave power to lower orbiting satellites. The lower orbiting satellites are equipped with a stacked photovoltaic (PV)/rectenna array hybrid power generation unit (HPGU) in order to harvest solar and/or microwave energy for on-board use during orbit. The area, and mass of the PV array part of the HPGU was reduced at about 32% beginning-of-life power in order to achieve the spacecraft power requirements. The HPGU proved to offer a mass decrease in the PGU, and an increase in mission life due to longer living component life of the rectenna array. Moreover, greater mission flexibility is achieved through a track and power delivery concept. To validate the potential advantages offered by a HPGU, a mission concept was presented that utilizes modern small satellites as technology demonstrators. During launch, a smaller power receiving "daughter" satellite sits inside a larger power transmitting "mother" satellite. Once separated from the launch vehicle the daughter satellite is ejected away from the mother satellite, and each satellite deploys its respective power transmitting or power receiving hardware's for experimentation. The concept of close proximity mission operations between the satellites is considered. To validate the technology of the space rectenna array part of the HPGU, six milestones were completed in the design. The first

  17. 47 CFR 73.6018 - Digital Class A TV station protection of DTV stations.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Digital Class A TV station protection of DTV... TV station protection of DTV stations. Digital Class A TV stations must protect the DTV service that... application for digital operation of an existing Class A TV station or to change the facilities of a digital...

  18. Satellite imagery and the Department of Safeguards

    International Nuclear Information System (INIS)

    Chitumbo, K.; Bunney, J.; Leve, G.; Robb, S.

    2001-01-01

    . Because satellite imagery is purchased from commercial vendors the need for confidentiality is paramount. Present ordering is handled via encrypted electronic communication, however SIAL is already investigating more secure possibilities including acquiring an agency ground station for direct downloading of imagery data and 'buying time' on a remote sensor that would allow the agency to directly task satellite operation via secure communications links. The presentation is expected to illustrate the value of commercial satellite imagery to Strengthened Safeguards and the importance of a clearly defined analytical process that will as a consequence manifest itself in a series of unique products and tools that will make for a more robust and efficient inspectorate. (author)

  19. Satellite skill in detecting extreme episodes in near-surface air quality

    Science.gov (United States)

    Ruiz, D. J.; Prather, M. J.

    2017-12-01

    Ozone (O3) contributes to ambient air pollution, adversely affecting public health, agriculture, and ecosystems. Reliable, long-term, densely distributed surface networks are required to establish the scale, intensity and repeatability of major pollution events (designated here in a climatological sense as air quality extremes, AQX as defined in Schnell's work). Regrettably, such networks are only available for North America (NA) and Europe (EU), which does not include many populated regions where the deaths associated with air pollution exposure are alarmingly high. Directly measuring surface pollutants from space without lidar is extremely difficult. Mapping of daily pollution events requires cross-track nadir scanners and these have limited sensitivity to surface O3 levels. This work examines several years of coincident surface and OMI satellite measurements over NA-EU, in combination with a chemistry-transport model (CTM) hindcast of that period to understand how the large-scale AQX episodes may extend into the free troposphere and thus be more amenable to satellite mapping. We show how extreme NA-EU episodes are measured from OMI and then look for such patterns over other polluted regions of the globe. We gather individual high-quality O3 surface site measurements from these other regions, to check on our satellite detection. Our approach with global satellite detection would avoid issues associated with regional variations in seasonality, chemical regime, data product biases; and it does not require defining a separate absolute threshold for each data product (surface site and satellite). This also enables coherent linking of the extreme events into large-scale pollution episodes whose magnitude evolves over 100's of km for several days. Tools used here include the UC Irvine CTM, which shows that much of the O3 surface variability is lost at heights above 2 km, but AQX local events are readily seen in a 0-3 km column average. The OMI data are taken from X

  20. SatelliteDL: a Toolkit for Analysis of Heterogeneous Satellite Datasets

    Science.gov (United States)

    Galloy, M. D.; Fillmore, D.

    2014-12-01

    SatelliteDL is an IDL toolkit for the analysis of satellite Earth observations from a diverse set of platforms and sensors. The core function of the toolkit is the spatial and temporal alignment of satellite swath and geostationary data. The design features an abstraction layer that allows for easy inclusion of new datasets in a modular way. Our overarching objective is to create utilities that automate the mundane aspects of satellite data analysis, are extensible and maintainable, and do not place limitations on the analysis itself. IDL has a powerful suite of statistical and visualization tools that can be used in conjunction with SatelliteDL. Toward this end we have constructed SatelliteDL to include (1) HTML and LaTeX API document generation,(2) a unit test framework,(3) automatic message and error logs,(4) HTML and LaTeX plot and table generation, and(5) several real world examples with bundled datasets available for download. For ease of use, datasets, variables and optional workflows may be specified in a flexible format configuration file. Configuration statements may specify, for example, a region and date range, and the creation of images, plots and statistical summary tables for a long list of variables. SatelliteDL enforces data provenance; all data should be traceable and reproducible. The output NetCDF file metadata holds a complete history of the original datasets and their transformations, and a method exists to reconstruct a configuration file from this information. Release 0.1.0 distributes with ingest methods for GOES, MODIS, VIIRS and CERES radiance data (L1) as well as select 2D atmosphere products (L2) such as aerosol and cloud (MODIS and VIIRS) and radiant flux (CERES). Future releases will provide ingest methods for ocean and land surface products, gridded and time averaged datasets (L3 Daily, Monthly and Yearly), and support for 3D products such as temperature and water vapor profiles. Emphasis will be on NPP Sensor, Environmental and

  1. Surface temperature monitoring by integrating satellite data and ground thermal camera network on Solfatara Crater in Campi Flegrei volcanic area (Italy)

    Science.gov (United States)

    Buongiorno, M. F.; Musacchio, M.; Silvestri, M.; Vilardo, G.; Sansivero, F.; caPUTO, T.; bellucci Sessa, E.; Pieri, D. C.

    2017-12-01

    Current satellite missions providing imagery in the TIR region at high spatial resolution offer the possibility to estimate the surface temperature in volcanic area contributing in understanding the ongoing phenomena to mitigate the volcanic risk when population are exposed. The Campi Flegrei volcanic area (Italy) is part of the Napolitan volcanic district and its monitored by INGV ground networks including thermal cameras. TIRS on LANDSAT and ASTER on NASA-TERRA provide thermal IR channels to monitor the evolution of the surface temperatures on Campi Flegrei area. The spatial resolution of the TIR data is 100 m for LANDSAT8 and 90 m for ASTER, temporal resolution is 16 days for both satellites. TIRNet network has been developed by INGV for long-term volcanic surveillance of the Flegrei Fields through the acquisition of thermal infrared images. The system is currently comprised of 5 permanent stations equipped with FLIR A645SC thermo cameras with a 640x480 resolution IR sensor. To improve the systematic use of satellite data in the monitor procedures of Volcanic Observatories a suitable integration and validation strategy is needed, also considering that current satellite missions do not provide TIR data with optimal characteristics to observe small thermal anomalies that may indicate changes in the volcanic activity. The presented procedure has been applied to the analysis of Solfatara Crater and is based on 2 different steps: 1) parallel processing chains to produce ground temperature data both from satellite and ground cameras; 2) data integration and comparison. The ground cameras images generally correspond to views of portion of the crater slopes characterized by significant thermal anomalies due to fumarole fields. In order to compare the satellite and ground cameras it has been necessary to take into account the observation geometries. All thermal images of the TIRNet have been georeferenced to the UTM WGS84 system, a regular grid of 30x30 meters has been

  2. The structure of the latidudinal total electron content (T.E.C.). Gradients over mid-latitude stations

    International Nuclear Information System (INIS)

    Keroub, I.H.

    1976-01-01

    New results concerning the day gradients of Total Electron Contents (T.E.C.) in Haifa region were obtained by the method specific for the determination of TEC in the transverse zone. The latitudinal gradients thus obtained agree with the results obtained by topside sounding (Alouette 1 satellite). A quantitative explanation of the results yielded by the classical counting method is presented. Il implies that all day TEC data obtained by the counting methods in stations situated at middle geomagnetic latitudes such as Haifa, must be corrected

  3. Interim Service ISDN Satellite (ISIS) network model for advanced satellite designs and experiments

    Science.gov (United States)

    Pepin, Gerard R.; Hager, E. Paul

    1991-01-01

    The Interim Service Integrated Services Digital Network (ISDN) Satellite (ISIS) Network Model for Advanced Satellite Designs and Experiments describes a model suitable for discrete event simulations. A top-down model design uses the Advanced Communications Technology Satellite (ACTS) as its basis. The ISDN modeling abstractions are added to permit the determination and performance for the NASA Satellite Communications Research (SCAR) Program.

  4. 47 CFR 25.250 - Sharing between NGSO MSS Feeder links Earth Stations in the 19.3-19.7 GHz and 29.1-29.5 GHz Bands.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Sharing between NGSO MSS Feeder links Earth Stations in the 19.3-19.7 GHz and 29.1-29.5 GHz Bands. 25.250 Section 25.250 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Standards § 25...

  5. Assembling Typical Meteorological Year Data Sets for Building Energy Performance Using Reanalysis and Satellite-Based Data

    Directory of Open Access Journals (Sweden)

    Thomas Huld

    2018-02-01

    Full Text Available We present a method to generate Typical Meteorological Year (TMY data sets for use in calculations of the energy performance of buildings, based on satellite derived solar radiation data and other meteorological parameters obtained from reanalysis products. The great advantage of this method is the availability of data over large geographical regions, giving global coverage for the reanalysis and continental-scale coverage for the solar radiation data, making it possible to generate TMY data for nearly any location, independent of the availability of meteorological measurement stations in the area. The TMY data generated with this method have been validated against 487 meteorological stations in Europe, by calculating heating and cooling degree days, and by running building energy performance simulations using EnergyPlus. Results show that the generated data sets using a long time series perform better than the TMY data generated from station measurements for building heating calculations and nearly as well for cooling calculations, with relative standard deviations remaining below 6% for heating calculations. TMY data constructed using the proposed method yield somewhat larger deviations compared to TMY data constructed from station data. We outline a number of possibilities for further improvement using data sets that will become available in the near future.

  6. From city’s station to station city. An integrative spatial approach to the (redevelopment of station areas

    Directory of Open Access Journals (Sweden)

    Ana Luísa Martins da Conceição

    2014-12-01

    Full Text Available Since its origin, the railway station has had a complicated relationship with the city, demanding periodical updates, particularly regarding spatial issues. With the aim of improving the liveability of station areas, current redevelopment projects are reconceptualising them as balanced transport ‘nodes’ and ‘places’ in the city. However, the proposed spatial solutions do not fully support the sought after economic, social and environmental performances. These intentions continue to be predominantly bounded with the (abstract planological level, not finding appropriate translation at the (concrete spatial design level. Further, the interdisciplinary nature of the highly complex planning and design processes of station areas, which should contribute to enhance the performance of their spaces, reinforces constraints and relegates architecture to a marginal role in this quest. It is thus necessary to understand how architecture can contribute to the improvement of the spatial performance of contemporary stations areas, supporting their current reconceptualization. To gain this understanding, the research explored the factors which influence the spatial definition and performance of European High Speed Train station areas, using “design research” and “research by design”. Via a theoretical integrative framework, synthesized from knowledge developed by architecture and other sciences, case studies of ‘through’ stations were analysed and compared. Six cases, encapsulating the most recurrent relative positions of the railway (infrastructure and the station building towards the(ir direct built environment, were chosen out of a large sample. For each category (cases with railway tracks at (a ground level, (b elevated level and (c underground level, two cases, featuring an adapted station building and a newly built one, were studied. Their physical and functional characteristics were mapped at several scales and moments (in history, as

  7. Offshore Wind Resources Assessment from Multiple Satellite Data and WRF Modeling over South China Sea

    Directory of Open Access Journals (Sweden)

    Rui Chang

    2015-01-01

    Full Text Available Using accurate inputs of wind speed is crucial in wind resource assessment, as predicted power is proportional to the wind speed cubed. This study outlines a methodology for combining multiple ocean satellite winds and winds from WRF simulations in order to acquire the accurate reconstructed offshore winds which can be used for offshore wind resource assessment. First, wind speeds retrieved from Synthetic Aperture Radar (SAR and Scatterometer ASCAT images were validated against in situ measurements from seven coastal meteorological stations in South China Sea (SCS. The wind roses from the Navy Operational Global Atmospheric Prediction System (NOGAPS and ASCAT agree well with these observations from the corresponding in situ measurements. The statistical results comparing in situ wind speed and SAR-based (ASCAT-based wind speed for the whole co-located samples show a standard deviation (SD of 2.09 m/s (1.83 m/s and correlation coefficient of R 0.75 (0.80. When the offshore winds (i.e., winds directed from land to sea are excluded, the comparison results for wind speeds show an improvement of SD and R, indicating that the satellite data are more credible over the open ocean. Meanwhile, the validation of satellite winds against the same co-located mast observations shows a satisfactory level of accuracy which was similar for SAR and ASCAT winds. These satellite winds are then assimilated into the Weather Research and Forecasting (WRF Model by WRF Data Assimilation (WRFDA system. Finally, the wind resource statistics at 100 m height based on the reconstructed winds have been achieved over the study area, which fully combines the offshore wind information from multiple satellite data and numerical model. The findings presented here may be useful in future wind resource assessment based on satellite data.

  8. Comparing land surface phenology derived from satellite and GPS network microwave remote sensing.

    Science.gov (United States)

    Jones, Matthew O; Kimball, John S; Small, Eric E; Larson, Kristine M

    2014-08-01

    The land surface phenology (LSP) start of season (SOS) metric signals the seasonal onset of vegetation activity, including canopy growth and associated increases in land-atmosphere water, energy and carbon (CO2) exchanges influencing weather and climate variability. The vegetation optical depth (VOD) parameter determined from satellite passive microwave remote sensing provides for global LSP monitoring that is sensitive to changes in vegetation canopy water content and biomass, and insensitive to atmosphere and solar illumination constraints. Direct field measures of canopy water content and biomass changes desired for LSP validation are generally lacking due to the prohibitive costs of maintaining regional monitoring networks. Alternatively, a normalized microwave reflectance index (NMRI) derived from GPS base station measurements is sensitive to daily vegetation water content changes and may provide for effective microwave LSP validation. We compared multiyear (2007-2011) NMRI and satellite VOD records at over 300 GPS sites in North America, and their derived SOS metrics for a subset of 24 homogenous land cover sites to investigate VOD and NMRI correspondence, and potential NMRI utility for LSP validation. Significant correlations (P<0.05) were found at 276 of 305 sites (90.5 %), with generally favorable correspondence in the resulting SOS metrics (r (2)=0.73, P<0.001, RMSE=36.8 days). This study is the first attempt to compare satellite microwave LSP metrics to a GPS network derived reflectance index and highlights both the utility and limitations of the NMRI data for LSP validation, including spatial scale discrepancies between local NMRI measurements and relatively coarse satellite VOD retrievals.

  9. Operational monitoring of turbidity in rivers: how satellites can contribute

    Science.gov (United States)

    Hucke, Dorothee; Hillebrand, Gudrun; Winterscheid, Axel; Kranz, Susanne; Baschek, Björn

    2016-10-01

    The applications of remote sensing in hydrology are diverse and offer significant benefits for water monitoring. Up to now, operational river monitoring and sediment management in Germany mainly rely on in-situ measurements and on results obtained from numerical modelling. Remote sensing by satellites has a great potential to supplement existing data with two-dimensional information on near-surface turbidity distributions at greater spatial scales than in-situ measurements can offer. Within the project WasMon-CT (WaterMonitoring-Chlorophyll/Turbidity), the Federal Institute of Hydrology (BfG) aims at the implementation of an operational monitoring of turbidity distributions based on satellite images (esp. Sentinel-2, Landsat7 and 8). Initially, selected federal inland and estuarine waterways will be addressed: Rhine, Elbe, Ems, Weser. WasMon-CT is funded within the German Copernicus activities. Within the project, a database of atmospherically corrected, geo-referenced turbidity data will be assembled. The collected corresponding meta-data will include aspects of satellite data as well as hydrological data, e.g. cloud cover and river run-off. Based on this catalogue of spatially linked meta-data, the satellite data will be selected by e.g. cloud cover or run-off. The permanently updated database will include past as well as recent satellite images. It is designed with a long-term perspective to optimize the existing in-situ measurement network, which will serve partly for calibration and partly as validation data set. The aim is to extend, but not to substitute, the existing frequent point measurements with spatially extensive, satellite-derived data from the near surface part of the water column. Here, turbidity is used as proxy for corresponding suspended sediment concentrations. For this, the relationship between turbidity and suspended sediment concentrations will be investigated. Products as e.g. longitudinal profiles or virtual measurement stations will be

  10. Sensor and computing resource management for a small satellite

    Science.gov (United States)

    Bhatia, Abhilasha; Goehner, Kyle; Sand, John; Straub, Jeremy; Mohammad, Atif; Korvald, Christoffer; Nervold, Anders Kose

    A small satellite in a low-Earth orbit (e.g., approximately a 300 to 400 km altitude) has an orbital velocity in the range of 8.5 km/s and completes an orbit approximately every 90 minutes. For a satellite with minimal attitude control, this presents a significant challenge in obtaining multiple images of a target region. Presuming an inclination in the range of 50 to 65 degrees, a limited number of opportunities to image a given target or communicate with a given ground station are available, over the course of a 24-hour period. For imaging needs (where solar illumination is required), the number of opportunities is further reduced. Given these short windows of opportunity for imaging, data transfer, and sending commands, scheduling must be optimized. In addition to the high-level scheduling performed for spacecraft operations, payload-level scheduling is also required. The mission requires that images be post-processed to maximize spatial resolution and minimize data transfer (through removing overlapping regions). The payload unit includes GPS and inertial measurement unit (IMU) hardware to aid in image alignment for the aforementioned. The payload scheduler must, thus, split its energy and computing-cycle budgets between determining an imaging sequence (required to capture the highly-overlapping data required for super-resolution and adjacent areas required for mosaicking), processing the imagery (to perform the super-resolution and mosaicking) and preparing the data for transmission (compressing it, etc.). This paper presents an approach for satellite control, scheduling and operations that allows the cameras, GPS and IMU to be used in conjunction to acquire higher-resolution imagery of a target region.

  11. Satellite Communications

    CERN Document Server

    Pelton, Joseph N

    2012-01-01

    The field of satellite communications represents the world's largest space industry. Those who are interested in space need to understand the fundamentals of satellite communications, its technology, operation, business, economic, and regulatory aspects. This book explains all this along with key insights into the field's future growth trends and current strategic challenges. Fundamentals of Satellite Communications is a concise book that gives all of the key facts and figures as well as a strategic view of where this dynamic industry is going. Author Joseph N. Pelton, PhD, former Dean of the International Space University and former Director of Strategic Policy at Intelstat, presents a r

  12. A possible experiment with two counter-orbiting drag-free satellites to obtain a new test of Einstein's general theory of relativity and improved measurements in geodesy

    Science.gov (United States)

    Van Patten, R. A.; Everitt, C. W. F.

    1976-01-01

    In 1918, Lense and Thirring calculated that a moon in orbit around a massive rotating planet would experience a nodal dragging effect due to general relativity. We describe an experiment to measure this effect by means of two counter-orbiting drag-free satellites in polar orbit about the earth. For a 2-1/2 year experiment, the measurement should approach an accuracy of 1%. An independent measurement of the geodetic precession of the orbit plane due to the motion about the sun may also be possible to about 10% accuracy. In addition to precision tracking data from existing ground stations, satellite-to-satellite Doppler data are taken at points of passing near the poles to yield an accurate measurement of the separation distance between the two satellites. New geophysical information on both earth harmonics and tidal effects is inherent in this polar ranging data.

  13. Geographically weighted regression based methods for merging satellite and gauge precipitation

    Science.gov (United States)

    Chao, Lijun; Zhang, Ke; Li, Zhijia; Zhu, Yuelong; Wang, Jingfeng; Yu, Zhongbo

    2018-03-01

    Real-time precipitation data with high spatiotemporal resolutions are crucial for accurate hydrological forecasting. To improve the spatial resolution and quality of satellite precipitation, a three-step satellite and gauge precipitation merging method was formulated in this study: (1) bilinear interpolation is first applied to downscale coarser satellite precipitation to a finer resolution (PS); (2) the (mixed) geographically weighted regression methods coupled with a weighting function are then used to estimate biases of PS as functions of gauge observations (PO) and PS; and (3) biases of PS are finally corrected to produce a merged precipitation product. Based on the above framework, eight algorithms, a combination of two geographically weighted regression methods and four weighting functions, are developed to merge CMORPH (CPC MORPHing technique) precipitation with station observations on a daily scale in the Ziwuhe Basin of China. The geographical variables (elevation, slope, aspect, surface roughness, and distance to the coastline) and a meteorological variable (wind speed) were used for merging precipitation to avoid the artificial spatial autocorrelation resulting from traditional interpolation methods. The results show that the combination of the MGWR and BI-square function (MGWR-BI) has the best performance (R = 0.863 and RMSE = 7.273 mm/day) among the eight algorithms. The MGWR-BI algorithm was then applied to produce hourly merged precipitation product. Compared to the original CMORPH product (R = 0.208 and RMSE = 1.208 mm/hr), the quality of the merged data is significantly higher (R = 0.724 and RMSE = 0.706 mm/hr). The developed merging method not only improves the spatial resolution and quality of the satellite product but also is easy to implement, which is valuable for hydrological modeling and other applications.

  14. How robust are in situ observations for validating satellite-derived albedo over the dark zone of the Greenland Ice Sheet?

    Science.gov (United States)

    Ryan, J.; Hubbard, A., II; Irvine-Fynn, T. D.; Doyle, S. H.; Cook, J.; Stibal, M.; Smith, L. C.; Box, J. E.

    2017-12-01

    Calibration and validation of satellite-derived ice sheet albedo data require high-quality, in situ measurements commonly acquired by up and down facing pyranometers mounted on automated weather stations (AWS). However, direct comparison between ground and satellite-derived albedo can only be justified when the measured surface is homogeneous at the length-scale of both satellite pixel and in situ footprint. We used digital imagery acquired by an unmanned aerial vehicle to evaluate point-to-pixel albedo comparisons across the western, ablating margin of the Greenland Ice Sheet. Our results reveal that in situ measurements overestimate albedo by up to 0.10 at the end of the melt season because the ground footprints of AWS-mounted pyranometers are insufficient to capture the spatial heterogeneity of the ice surface as it progressively ablates and darkens. Statistical analysis of 21 AWS across the entire Greenland Ice Sheet reveals that almost half suffer from this bias, including some AWS located within the wet snow zone.

  15. The American Satellite Company (ASC) satellite deployed from payload bay

    Science.gov (United States)

    1985-01-01

    The American Satellite Company (ASC) communications satellite is deployed from the payload bay of the Shuttle Discovery. A portion of the cloudy surface of the earth can be seen to the left of the frame.

  16. Establishing a Robotic, LEO-to-GEO Satellite Servicing Infrastructure as an Economic Foundation for Exploration

    Science.gov (United States)

    Horsham, Gary A. P.; Schmidt, George R.; Gilland, James H.

    2010-01-01

    The strategy for accomplishing civilian exploration goals and objectives is in the process of a fundamental shift towards a potential new approach called Flexible Path. This paper suggests that a government-industry or public-private partnership in the commercial development of low Earth orbit to geostationary orbit (LEO-to-GEO (LTG)) space, following or in parallel with the commercialization of Earth-to-LEO and International Space Station (ISS) operations, could serve as a necessary, logical step that can be incorporated into the flexible path approach. A LTG satellite-servicing infrastructure and architecture concept is discussed within this new strategic context. The concept consists of a space harbor that serves as a transport facility for a fleet of specialized, fully- or semi-autonomous robotic servicing spacecraft. The baseline, conceptual system architecture is composed of a space harbor equipped with specialized servicer spacecraft; a satellite command, communication, and control system; a parts station; a fuel station or depot; and a fuel/parts replenishment transport. The commercial servicer fleet would consist of several types of spacecraft, each designed with specialized robotic manipulation subsystems to provide services such as refueling, upgrade, repair, inspection, relocation, and removal. The space harbor is conceptualized as an ISS-type, octagonal truss structure equipped with radiation tolerant subsystems. This space harbor would be primarily capable of serving as an operational platform for various commercially owned and operated servicer spacecraft positioned and docked symmetrically on four of the eight sides. Several aspects of this concept are discussed, such as: system-level feasibility in terms of ISS-truss-type infrastructure and subsystems emplacement and maintenance between LEO and GEO; infrastructure components assembly in LEO, derived from ISS assembly experience, and transfer to various higher orbital locations; the evolving Earth

  17. Bandwidth-Efficient Communication through 225 MHz Ka-band Relay Satellite Channel

    Science.gov (United States)

    Downey, Joseph; Downey, James; Reinhart, Richard C.; Evans, Michael Alan; Mortensen, Dale John

    2016-01-01

    The communications and navigation space infrastructure of the National Aeronautics and Space Administration (NASA) consists of a constellation of relay satellites (called Tracking and Data Relay Satellites (TDRS)) and a global set of ground stations to receive and deliver data to researchers around the world from mission spacecraft throughout the solar system. Planning is underway to enhance and transform the infrastructure over the coming decade. Key to the upgrade will be the simultaneous and efficient use of relay transponders to minimize cost and operations while supporting science and exploration spacecraft. Efficient use of transponders necessitates bandwidth efficient communications to best use and maximize data throughput within the allocated spectrum. Experiments conducted with NASA's Space Communication and Navigation (SCaN) Testbed on the International Space Station provides a unique opportunity to evaluate advanced communication techniques, such as bandwidth-efficient modulations, in an operational flight system. Demonstrations of these new techniques in realistic flight conditions provides critical experience and reduces the risk of using these techniques in future missions. Efficient use of spectrum is enabled by using high-order modulations coupled with efficient forward error correction codes. This paper presents a high-rate, bandwidth-efficient waveform operating over the 225 MHz Ka-band service of the TDRS System (TDRSS). The testing explores the application of Gaussian Minimum Shift Keying (GMSK), 248-phase shift keying (PSK) and 1632- amplitude PSK (APSK) providing over three bits-per-second-per-Hertz (3 bsHz) modulation combined with various LDPC encoding rates to maximize throughput. With a symbol rate of 200 Mbaud, coded data rates of 1000 Mbps were tested in the laboratory and up to 800 Mbps over the TDRS 225 MHz channel. This paper will present on the high-rate waveform design, channel characteristics, performance results, compensation

  18. Trends in mobile satellite communication

    Science.gov (United States)

    Johannsen, Klaus G.; Bowles, Mike W.; Milliken, Samuel; Cherrette, Alan R.; Busche, Gregory C.

    1993-01-01

    Ever since the U.S. Federal Communication Commission opened the discussion on spectrum usage for personal handheld communication, the community of satellite manufacturers has been searching for an economically viable and technically feasible satellite mobile communication system. Hughes Aircraft Company and others have joined in providing proposals for such systems, ranging from low to medium to geosynchronous orbits. These proposals make it clear that the trend in mobile satellite communication is toward more sophisticated satellites with a large number of spot beams and onboard processing, providing worldwide interconnectivity. Recent Hughes studies indicate that from a cost standpoint the geosynchronous satellite (GEOS) is most economical, followed by the medium earth orbit satellite (MEOS) and then by the low earth orbit satellite (LEOS). From a system performance standpoint, this evaluation may be in reverse order, depending on how the public will react to speech delay and collision. This paper discusses the trends and various mobile satellite constellations in satellite communication under investigation. It considers the effect of orbital altitude and modulation/multiple access on the link and spacecraft design.

  19. Long-Term Water Temperature Variations in Daya Bay, China Using Satellite and In Situ Observations

    Directory of Open Access Journals (Sweden)

    Jing Yu

    2010-01-01

    Full Text Available Daya Bay is a shallow, semi-en closed bay in the northern section of the South China Sea. The present study analyzed variations of water temperature in Daya Bay over the past 21 years (1985 - 2005 using Advanced Very High Resolution Radiometer (AVHRR satellite remote sensing data and in situ observations. Results showed that AVHRR readings of sea surface temperature (SST increased by 0.07°C y-1. Linear regression anal y sis for monthly SST anomalies (SSTA showed a shift from negative to positive from 1995 - 1996, when the Daya Bay nuclear power station commenced operations in 1994. The slope of linear regression analysis for SSTA nearly doubled from 0.05 (1985 - 1993 to 0.09 (1994 - 2005. Monthly AVHRR images showed a thermal plume from the power station and revealed the in crease of SST over 21 years. In situ observations in water temperature also showed an in creasing trend for the same period (1985 - 2005. Variations in water temperature in Daya Bay were connected with climatic perturbations and in creasing human activity including thermal discharge from nuclear power stations and the rapid economic development around the bay area.

  20. Estimating Pedestrian flows at train stations using the Station Transfer Model

    NARCIS (Netherlands)

    Van den Heuvel, J.P.A.; Dekkers, K.; De Vos, S.

    2012-01-01

    Train stations play a vital role in the door to door travel experience of train passengers. From the passengers’ value of time perspective, the station is the weakest link in total time value of the journey. Within the station the transfer function – moving between the various transport modes and