WorldWideScience

Sample records for satellite measures temperature

  1. Estimating the Retrievability of Temperature Profiles from Satellite Infrared Measurements

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A method is developed to assess retrievability, namely the retrieval potential for atmospheric temperature profiles, from satellite infrared measurements in clear-sky conditions. This technique is based upon generalized linear inverse theory and empirical orthogonal function analysis. Utilizing the NCEP global temperature reanalysis data in January and July from 1999 to 2003, the retrievabilities obtained with the Atmospheric Infrared Sounder (AIRS) and the High Resolution Infrared Radiation Sounder/3 (HIRS/3)sounding channel data are derived respectively for each standard pressure level on a global scale. As an incidental result of this study, the optimum truncation number in the method of generalized linear inverse is deduced too. The results show that the retrievabilities of temperature obtained with the two datasets are similar in spatial distribution and seasonal change characteristics. As for the vertical distribution, the retrievabilities are low in the upper and lower atmosphere, and high between 400 hPa and 850 hPa. For the geographical distribution, the retrievabilities are low in the low-latitude oceanic regions and in some regions in Antarctica, and relatively high in mid-high latitudes and continental regions. Compared with the HIRS/3 data, the retrievability obtained with the AIRS data can be improved by an amount between 0.15 and 0.40.

  2. MEaSUREs Land Surface Temperature from GOES Satellites

    Science.gov (United States)

    Pinker, Rachel T.; Chen, Wen; Ma, Yingtao; Islam, Tanvir; Borbas, Eva; Hain, Chris; Hulley, Glynn; Hook, Simon

    2017-04-01

    Information on Land Surface Temperature (LST) can be generated from observations made from satellites in low Earth orbit (LEO) such as MODIS and ASTER and by sensors in geostationary Earth orbit (GEO) such as GOES. Under a project titled: "A Unified and Coherent Land Surface Temperature and Emissivity Earth System Data Record for Earth Science" led by Jet Propulsion Laboratory, an effort is underway to develop long term consistent information from both such systems. In this presentation we will describe an effort to derive LST information from GOES satellites. Results will be presented from two approaches: 1) based on regression developed from a wide range of simulations using MODTRAN, SeeBor Version 5.0 global atmospheric profiles and the CAMEL (Combined ASTER and MODIS Emissivity for Land) product based on the standard University of Wisconsin 5 km emissivity values (UWIREMIS) and the ASTER Global Emissivity Database (GED) product; 2) RTTOV radiative transfer model driven with MERRA-2 reanalysis fields. We will present results of evaluation of these two methods against various products, such as MOD11, and ground observations for the five year period of (2004-2008).

  3. A pathway to generating Climate Data Records of sea-surface temperature from satellite measurements

    Science.gov (United States)

    Minnett, Peter J.; Corlett, Gary K.

    2012-11-01

    In addition to having known uncertainty characteristics, Climate Data Records (CDRs) of geophysical variables derived from satellite measurements must be of sufficient length to resolve signals that might reveal the signatures of climate change against a background of larger, unrelated variability. The length of the record requires using satellite measurements from many instruments over several decades, and the uncertainty requirement implies that a consistent approach be used to establish the errors in the satellite retrievals over the entire period. Retrieving sea-surface temperature (SST) from satellite is a relatively mature topic, and the uncertainties of satellite retrievals are determined by comparison with collocated independent measurements. To avoid the complicating effects of near-surface temperature gradients in the upper ocean, the best validating measurements are from ship-board radiometers that measure, at source, the surface emission that is measured in space, after modification by its propagation through the atmosphere. To attain sufficient accuracy, such ship-based radiometers must use internal blackbody calibration targets, but to determine the uncertainties in these radiometric measurements, i.e. to confirm that the internal calibration is effective, it is necessary to conduct verification of the field calibration using independent blackbodies with accurately known emissivity and at very accurately measured temperatures. This is a well-justifiable approach to providing the necessary underpinning of a Climate Data Record of SST.

  4. Assessment of the quality of OSIRIS mesospheric temperatures using satellite and ground-based measurements

    Directory of Open Access Journals (Sweden)

    P. E. Sheese

    2012-12-01

    Full Text Available The Optical Spectrograph and InfraRed Imaging System (OSIRIS on the Odin satellite is currently in its 12th year of observing the Earth's limb. For the first time, continuous temperature profiles extending from the stratopause to the upper mesosphere have been derived from OSIRIS measurements of Rayleigh-scattered sunlight. Through most of the mesosphere, OSIRIS temperatures are in good agreement with coincident temperature profiles derived from other satellite and ground-based measurements. In the altitude region of 55–80 km, OSIRIS temperatures are typically within 4–5 K of those from the SABER, ACE-FTS, and SOFIE instruments on the TIMED, SciSat-I, and AIM satellites, respectively. The mean differences between individual OSIRIS profiles and those of the other satellite instruments are typically within the combined uncertainties and previously reported biases. OSIRIS temperatures are typically within 2 K of those from the University of Western Ontario's Purple Crow Lidar in the altitude region of 52–79 km, where the mean differences are within combined uncertainties. Near 84 km, OSIRIS temperatures exhibit a cold bias of 10–15 K, which is due to a cold bias in OSIRIS O2 A-band temperatures at 85 km, the upper boundary of the Rayleigh-scatter derived temperatures; and near 48 km OSIRIS temperatures exhibit a cold bias of 5–15 K, which is likely due to multiple-scatter effects that are not taken into account in the retrieval.

  5. Improving the Accuracy of Satellite Sea Surface Temperature Measurements by Explicitly Accounting for the Bulk-Skin Temperature Difference

    Science.gov (United States)

    Castro, Sandra L.; Emery, William J.

    2002-01-01

    The focus of this research was to determine whether the accuracy of satellite measurements of sea surface temperature (SST) could be improved by explicitly accounting for the complex temperature gradients at the surface of the ocean associated with the cool skin and diurnal warm layers. To achieve this goal, work centered on the development and deployment of low-cost infrared radiometers to enable the direct validation of satellite measurements of skin temperature. During this one year grant, design and construction of an improved infrared radiometer was completed and testing was initiated. In addition, development of an improved parametric model for the bulk-skin temperature difference was completed using data from the previous version of the radiometer. This model will comprise a key component of an improved procedure for estimating the bulk SST from satellites. The results comprised a significant portion of the Ph.D. thesis completed by one graduate student and they are currently being converted into a journal publication.

  6. Application of remote sensing to thermal pollution analysis. [satellite sea surface temperature measurement assessment

    Science.gov (United States)

    Hiser, H. W.; Lee, S. S.; Veziroglu, T. N.; Sengupta, S.

    1975-01-01

    A comprehensive numerical model development program for near-field thermal plume discharge and far field general circulation in coastal regions is being carried on at the University of Miami Clean Energy Research Institute. The objective of the program is to develop a generalized, three-dimensional, predictive model for thermal pollution studies. Two regions of specific application of the model are the power plants sites at the Biscayne Bay and Hutchinson Island area along the Florida coastline. Remote sensing from aircraft as well as satellites are used in parallel with in situ measurements to provide information needed for the development and verification of the mathematical model. This paper describes the efforts that have been made to identify problems and limitations of the presently available satellite data and to develop methods for enhancing and enlarging thermal infrared displays for mesoscale sea surface temperature measurements.

  7. Sea Temperature Fiducial Reference Measurements for the Validation and Data Gap Bridging of Satellite SST Data Products

    Science.gov (United States)

    Wimmer, Werenfrid

    2016-08-01

    The Infrared Sea surface temperature Autonomous Radiometer (ISAR) was developed to provide reference data for the validation of satellite Sea Surface Temperature at the Skin interface (SSTskin) temperature data products, particularly the Advanced Along Track Scanning Radiometer (AATSR). Since March 2004 ISAR instruments have been deployed nearly continuously on ferries crossing the English Channel and the Bay of Biscay, between Portsmouth (UK) and Bilbao/Santander (Spain). The resulting twelve years of ISAR data, including an individual uncertainty estimate for each SST record, are calibrated with traceability to national standards (National Institute of Standards and Technology, USA (NIST) and National Physical Laboratory, Teddigton, UK (NPL), Fiducial Reference Measurements for satellite derived surface temperature product validation (FRM4STS)). They provide a unique independent in situ reference dataset against which to validate satellite derived products. We present results of the AATSR validation, and show the use of ISAR fiducial reference measurements as a common traceable validation data source for both AATSR and Sea and Land Surface Temperature Radiometer (SLSTR). ISAR data were also used to review performance of the Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) Sea Surface Temperature (SST) analysis before and after the demise of ESA Environmental Satellite (Envisat) when AATSR inputs ceased This demonstrates use of the ISAR reference data set for validating the SST climatologies that will bridge the data gap between AATSR and SLSTR.

  8. Spatial variability of the Black Sea surface temperature from high resolution modeling and satellite measurements

    Science.gov (United States)

    Mizyuk, Artem; Senderov, Maxim; Korotaev, Gennady

    2016-04-01

    Large number of numerical ocean models were implemented for the Black Sea basin during last two decades. They reproduce rather similar structure of synoptical variability of the circulation. Since 00-s numerical studies of the mesoscale structure are carried out using high performance computing (HPC). With the growing capacity of computing resources it is now possible to reconstruct the Black Sea currents with spatial resolution of several hundreds meters. However, how realistic these results can be? In the proposed study an attempt is made to understand which spatial scales are reproduced by ocean model in the Black Sea. Simulations are made using parallel version of NEMO (Nucleus for European Modelling of the Ocean). A two regional configurations with spatial resolutions 5 km and 2.5 km are described. Comparison of the SST from simulations with two spatial resolutions shows rather qualitative difference of the spatial structures. Results of high resolution simulation are compared also with satellite observations and observation-based products from Copernicus using spatial correlation and spectral analysis. Spatial scales of correlations functions for simulated and observed SST are rather close and differs much from satellite SST reanalysis. Evolution of spectral density for modelled SST and reanalysis showed agreed time periods of small scales intensification. Using of the spectral analysis for satellite measurements is complicated due to gaps. The research leading to this results has received funding from Russian Science Foundation (project № 15-17-20020)

  9. The neutral atmosphere temperature experiment. [for thermospheric nitrogen measurement on AEROS satellite

    Science.gov (United States)

    Spencer, N. W.; Pelz, D. T.; Niemann, H. B.; Carignan, G. R.; Caldwell, J. R.

    1974-01-01

    The AEROS Neutral Atmosphere Temperature Experiment (NATE) is designed to measure the kinetic temperature of molecular nitrogen in the thermosphere. A quadrupole mass spectrometer tuned to N2 measures the N2 density variation in a small spherical antechamber having a knife-edged orifice which is exposed to the atmosphere at the outer surface of the spacecraft. The changing density of N2 due to the spinning motion of the spacecraft permits determination of the velocity distribution of the N2 from which the temperature is calculated. An alternate mode of operation of the instrument allows measurement of the other gases in the atmosphere as well as N2 permitting determination of the neutral particle composition of the atmosphere.

  10. Enhancement in electron and ion temperatures due to solar flares as measured by SROSS-C2 satellite

    Directory of Open Access Journals (Sweden)

    D. K. Sharma

    2004-06-01

    Full Text Available The observations on the ionospheric electron and ion temperatures (Te and Ti measured by the RPA payload aboard the SROSS-C2 satellite have been used to study the effect of solar flares on ionospheric heating. The data on solar flare has been obtained from the National Geophysical Data Center (NGDC Boulder, Colorado (USA. It has been found that the electron and ion temperatures have a consistent enhancement during the solar flares on the dayside Earth's ionosphere. The estimated enhancement for the average electron temperature is from 1.3 to 1.9 times whereas for ion temperature it is from 1.2 to 1.4 times to the normal days average temperature. The enhancement of ionospheric temperatures due to solar flares is correlated with the diurnal variation of normal days' ionospheric temperatures. The solar flare does not have any significant effect on the nightside ionosphere. A comparison with the temperature obtained from the IRI-95 model also shows a similar enhancement.

  11. Can satellite land surface temperature data be used similarly to ground discharge measurements for distributed hydrological model calibration?

    NARCIS (Netherlands)

    Corbari, C.; Mancini, M.; Li, J.; Su, Zhongbo

    2015-01-01

    This study proposes a new methodology for the calibration of distributed hydrological models at basin scale by constraining an internal model variable using satellite data of land surface temperature. The model algorithm solves the system of energy and mass balances in terms of a representative equi

  12. Stream Gauges and Satellite Measurements

    Science.gov (United States)

    Alsdorf, D. E.

    2010-12-01

    Satellite measurements should not be viewed as a replacement for stream gauges. However, occasionally it is suggested that because satellite-based measurements can provide river discharge, a motivation for satellite approaches is an increasing lack of stream gauges. This is an argument for more stream gauges, but not necessarily for satellite measurements. Rather, in-situ and spaceborne methods of estimating discharge are complementary. Stream gauges provide frequent measurements at one point in the river reach whereas satellites have the potential to measure throughout all reaches but at orbital repeat intervals of days to weeks. The Surface Water and Ocean Topography satellite mission (SWOT) is an opportunity to further develop these complements. The motivation for SWOT, and indeed for any satellite based method of estimating discharge, should not be as a replacement for stream gauges. Scientific and application uses should motivate the measurements. For example, understanding floods with their dynamic water surfaces are best sampled from remote platforms that provide water surface elevations throughout the floodwave. As another example, today’s water and energy balance models are giving outputs at increasing spatial resolution and are making use of water surface elevations throughout the modeled basin. These models require a similar resolution in the calibrating and validating observations. We should also be aware of practical limitations. In addition to providing spatially distributed hydrodynamic measurements on rivers, SWOT will be able to measure storage changes in the estimated 30 million lakes in the world that are larger than a hectare. Knowing the storage changes in these lakes is especially important in certain regions such as the Arctic but gauging even a small fraction of these is impractical. Another motivator for satellite methods is that even in the presence of stream gauges, discharge data is not always well shared throughout all countries

  13. Satellite Sensed Skin Sea Surface Temperature

    Science.gov (United States)

    Donlon, Craig

    1997-01-01

    be confidently detected. Some of these activities are focussed to develop and deploy instrumentation suitable for the collection of precise in situ measurements of the SSST which can be used to improve the accuracy of satellite measurements, while others develop techniques to generate improved global analyses of sea surface temperature using historical data.

  14. Temperature dependent ozone absorption cross section spectra measured with the GOME-2 FM3 spectrometer and first application in satellite retrievals

    Directory of Open Access Journals (Sweden)

    W. Chehade

    2012-10-01

    Full Text Available The Global Ozone Monitoring Experiment (GOME-2 Flight Model (FM absorption cross section spectra of ozone were measured under representative atmospheric conditions in the laboratory setup at temperatures between 203 K and 293 K in the wavelength range of 230–790 nm at a medium spectral resolution of 0.24 to 0.54 nm. Since the exact ozone amounts were unknown in the gas flow system used, the measured ozone cross sections were required to be scaled to absolute cross section units using published literature data. The Hartley, Huggins and Chappuis bands were recorded simultaneously and their temperature dependence is in good agreement with previous studies (strong temperature effect in the Huggins band and weak in the Hartley and Chappuis bands. The overall agreement of the GOME-2 FM cross sections with the literature data is well within 3%. The total ozone column retrieved from the GOME-2/MetOp-A satellite using the new cross section data is within 1% compared to the ozone amounts retrieved routinely from GOME-2.

  15. TOWARD CALIBRATED MODULAR WIRELESS SYSTEM BASED AD HOC SENSORS FOR IN SITU LAND SURFACE TEMPERATURE MEASUREMENTS AS SUPPORT TO SATELLITE REMOTE SENSING

    Directory of Open Access Journals (Sweden)

    ASAAD CHAHBOUN

    2011-06-01

    Full Text Available This paper presents a new method for in situ Land Surface Temperature (LST measurements' campaigns for satellite algorithms validations. The proposed method based on Wireless Sensor Network (WSN is constituted by modules of node arrays. Each of which is constituted by 25 smart nodes scattered throughout a target field. Every node represents a Thermal Infra Red (TIR radiation sensor and keeps a minimum size while ensuring the functions of communication, sensing, and processing. This Wireless-LST (Wi-LST system is convenient to beinstalled on a field pointing to any type of targets (e.g. bare soil, grass, water, etc.. Ad hoc topology is adopted among the TIR nodes with multi-hop mesh routing protocol for communication, acquisition data are transmitted to the client tier wirelessly. Using these emergent technologies, we propose a practical method for Wi-LSTsystem calibration. TIR sensor (i.e. OSM101 from OMEGA society measures temperature, which is conditioned and amplified by an AD595 within a precision of 0.1 °C. Assessed LST is transmitted over thedeveloped ad hoc WSN modules (i.e. MICA2DOT from CROSSBOW society, and collected at in situ base station (i.e. PANASONIC CF19 laptop using an integrated database. LST is evaluated with a polynomialalgorithm structure as part of developed software. Finally, the comparison of the mean values of LST(Wi-LST in each site with the Moderate Resolution Imaging Spectro-radiometer (MODIS sensor, obtained from the daily LST product (MOD11C1 developed by the MODIS-NASA Science Team, on board TERRA satellite during the campaign period is provided.

  16. Satellite sea surface temperature: a powerful tool for interpreting in situ pCO{sub 2} measurements in the equatorial Pacific Ocean

    Energy Technology Data Exchange (ETDEWEB)

    Boutin, J.; Etcheto, J.; Dandonneau, Y.; Bakker, D.C.E. [CNRS/ORSTOM/UPMC, Paris (France). Lab. d`Oceanographie Dynamique et de Climatologie; Feely, R.A. [National Oceanic and Atmospheric Administration, Seattle, WA (United States). Pacific Marine Environmental Lab.; Inoue, H.Y.; Ishii, M. [Meteorological Research Inst., Tsukuba (Japan). Geochemical Lab.; Ling, R.D.; Nightingale, P.D. [Plymouth Marine Lab. (United Kingdom); Metzl, N. [LPCM, URA CNRS/UPMC, Paris (France); Wanninkhof, R. [National Oceanic and Atmospheric Administration, Miami, FL (United States). Atlantic Oceanographic and Meteorological Labs.

    1999-04-01

    In order to determine the seasonal and interannual variability of the CO{sub 2} released to the atmosphere from the equatorial Pacific, we have developed pCO{sub 2}-temperature relationships based upon shipboard oceanic CO{sub 2} partial pressure measurements, pCO{sub 2}, and satellite sea surface temperature, SST, measurements. We interpret the spatial variability in pCO{sub 2} with the help of the SST imagery. In the eastern equatorial Pacific, at 5 deg S, pCO{sub 2} variations of up to 100 {mu}atm are caused by undulations in the southern boundary of the equatorial upwelled waters. These undulations appear to be periodic with a phase and a wavelength comparable to tropical instability waves, TIW, observed at the northern boundary of the equatorial upwelling. Once the pCO{sub 2} signature of the TIW is removed from the Alize II cruise measurements in January 1991, the equatorial pCO{sub 2} data exhibit a diel cycle of about 10 {mu}atm with maximum values occurring at night. In the western equatorial Pacific, the variability in pCO{sub 2} is primarily governed by the displacement of the boundary between warm pool waters, where air-sea CO{sub 2} fluxes are weak, and equatorial upwelled waters which release high CO{sub 2} fluxes to the atmosphere. We detect this boundary using satellite SST maps. East of the warm pool, {Delta}P is related to SST and SST anomalies. The 1985-1997 CO{sub 2} flux is computed in a 5 deg wide latitudinal band as a combination of {Delta}P and CO{sub 2} exchange coefficient, K, deduced from satellite wind speeds, U. It exhibits up to a factor 2 seasonal variation caused by K-seasonal variation and a large interannual variability, a factor 5 variation between 1987 and 1988. The interannual variability is primarily driven by displacements of the warm pool that makes the surface area of the outgassing region variable. The contribution of {Delta}P to the flux variability is about half the contribution of K. The mean CO{sub 2} flux computed

  17. Preliminary results on the comparison between satellite derived ground temperature and in-situ measurement of soil CO2 flux and soil temperature at Solfatara of Pozzuoli (Naples, Italy)

    Science.gov (United States)

    Cardellini, Carlo; Silvestri, Malvina; Chiodini, Giovanni; Fabrizia Buongiorno, Maria

    2014-05-01

    In this work we want to analyze the comparison between the ground temperature acquired with in-situ campaigns and the ground temperature obtained by processing remote sensing data with particular attention to ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) data. Moreover we have studied the possible correlation between the CO2 measurements and the ground temperature. Test site area has been the Solfatara volcano, situated to the west of Naples, Italy. The Solfatara crater has a persistent volcanic-hydrothermal activity as demonstrate by ground deformation, seismicity and variations of the chemical-physical characteristics of the fluids emitted from fumaroles. Solfatara crater is characterized by a large soil diffuse degassing structure (Solfatara DDS, abot 0.8 km2), from where a CO2 flux in the order of 1000-1500 t/d is released by the soil. Solfatara DDS is also characterized by anomalous soil temperature. The correspondence between high CO2 fluxes and soil temperature has been interpreted as the results of the condensation of CO2-rich steam, rising from the hydrothermal system, in the uppermost part of the soil (Chiodini et al., 2001; 2005). The energy dissipated daily by the degassing at Solfatara DDS is the main source of energy release in the entire Campi Flegrei caldera in the current period (Chiodini et al., 2001; 2005). Concerning the satellite data, to monitor the thermal state of volcanic areas it is necessary to use TIR sensors with high spatial resolution in order to obtain detailed information on the areas where there are significant changes. Thanks to ASTER thermal infrared (TIR, 5 bands, 90 m spatial resolution) regions of the electromagnetic spectrum we have obtained the temperature ground map on the volcano area. For this study we have considered the ASTER's night observations that show well defined episodes of increasing thermal emission of crater thanks to a more uniform background temperature. CO2 fluxes and soil

  18. Rayleigh LIDAR and satellite (HALOE, SABER, CHAMP and COSMIC) measurements of stratosphere-mesosphere temperature over a southern sub-tropical site, Reunion (20.8° S; 55.5° E): climatology and comparison study

    CSIR Research Space (South Africa)

    Sivakumar, V

    2011-01-01

    Full Text Available For the first time, climatology of the middle atmosphere thermal structure is presented, based on 14 years of LIDAR and satellite (HALOE, SABER, CHAMP and COSMIC) temperature measurements. The data is collected over a southern sub-tropical site...

  19. Satellite data sets for the atmospheric radiation measurement (ARM) program

    Energy Technology Data Exchange (ETDEWEB)

    Shi, L.; Bernstein, R.L. [SeaSpace Corp., San Diego, CA (United States)

    1996-04-01

    This abstract describes the type of data obtained from satellite measurements in the Atmospheric Radiation Measurement (ARM) program. The data sets have been widely used by the ARM team to derive cloud-top altitude, cloud cover, snow and ice cover, surface temperature, water vapor, and wind, vertical profiles of temperature, and continuoous observations of weather needed to track and predict severe weather.

  20. Low Temperature Emissivity Measurement System

    Directory of Open Access Journals (Sweden)

    Jignesh A. Patel

    2014-05-01

    Full Text Available The emissivity of a material is the relative ability of its surface to emit energy by radiation. It is the ratio of energy radiated by a particular material to energy radiated by a black body at the same temperature. Knowledge about the low temperature emissivity of materials and coatings can be essential to the design of fusion cryoplants and in the thermal modeling for space satellite missions. The emittance of materials at cryogenics temperatures often cannot be predicted from room temperature data, but for computing radiative loads and infrared backgrounds this cryogenic data is often required. Measurement of the cryogenic emissivity of a highly reflective surface is a significant challenge: little thermal power is radiated from the sample, and the background radiation. However some researchers have measured emissivity at various low temperature ranges. Present work reports, the various emissivity measurement setup and their considerations.

  1. Electron temperature and density probe for small aeronomy satellites

    Energy Technology Data Exchange (ETDEWEB)

    Oyama, K.-I. [Plasma and Space Science Center, National Cheng Kung University, Tainan, Taiwan (China); Institute of Space and Plasma Sciences, National Cheng Kung University, Tainan, Taiwan (China); International Center for Space Weather Study and education, Kyushu University, Fukuoka (Japan); Hsu, Y. W.; Jiang, G. S.; Chen, W. H.; Liu, W. T. [Plasma and Space Science Center, National Cheng Kung University, Tainan, Taiwan (China); Cheng, C. Z.; Fang, H. K. [Plasma and Space Science Center, National Cheng Kung University, Tainan, Taiwan (China); Institute of Space and Plasma Sciences, National Cheng Kung University, Tainan, Taiwan (China)

    2015-08-15

    A compact and low power consumption instrument for measuring the electron density and temperature in the ionosphere has been developed by modifying the previously developed Electron Temperature Probe (ETP). A circuit block which controls frequency of the sinusoidal signal is added to the ETP so that the instrument can measure both T{sub e} in low frequency mode and N{sub e} in high frequency mode from the floating potential shift of the electrode. The floating potential shift shows a minimum at the upper hybrid resonance frequency (f{sub UHR}). The instrument which is named “TeNeP” can be used for tiny satellites which do not have enough conductive surface area for conventional DC Langmuir probe measurements. The instrument also eliminates the serious problems associated with the contamination of satellite surface as well as the sensor electrode.

  2. Electron temperature and density probe for small aeronomy satellites

    Science.gov (United States)

    Oyama, K.-I.; Hsu, Y. W.; Jiang, G. S.; Chen, W. H.; Cheng, C. Z.; Fang, H. K.; Liu, W. T.

    2015-08-01

    A compact and low power consumption instrument for measuring the electron density and temperature in the ionosphere has been developed by modifying the previously developed Electron Temperature Probe (ETP). A circuit block which controls frequency of the sinusoidal signal is added to the ETP so that the instrument can measure both Te in low frequency mode and Ne in high frequency mode from the floating potential shift of the electrode. The floating potential shift shows a minimum at the upper hybrid resonance frequency (fUHR). The instrument which is named "TeNeP" can be used for tiny satellites which do not have enough conductive surface area for conventional DC Langmuir probe measurements. The instrument also eliminates the serious problems associated with the contamination of satellite surface as well as the sensor electrode.

  3. Temperature measurement and control

    CERN Document Server

    Leigh, JR

    1988-01-01

    This book treats the theory and practice of temperature measurement and control and important related topics such as energy management and air pollution. There are no specific prerequisites for the book although a knowledge of elementary control theory could be useful. The first half of the book is an application oriented survey of temperature measurement techniques and devices. The second half is concerned mainly with temperature control in both simple and complex situations.

  4. Satellite Global and Hemispheric Lower Tropospheric Temperature Annual Temperature Cycle

    Directory of Open Access Journals (Sweden)

    Michael A. Brunke

    2010-11-01

    Full Text Available Previous analyses of the Earth’s annual cycle and its trends have utilized surface temperature data sets. Here we introduce a new analysis of the global and hemispheric annual cycle using a satellite remote sensing derived data set during the period 1979–2009, as determined from the lower tropospheric (LT channel of the MSU satellite. While the surface annual cycle is tied directly to the heating and cooling of the land areas, the tropospheric annual cycle involves additionally the gain or loss of heat between the surface and atmosphere. The peak in the global tropospheric temperature in the 30 year period occurs on 10 July and the minimum on 9 February in response to the larger land mass in the Northern Hemisphere. The actual dates of the hemispheric maxima and minima are a complex function of many variables which can change from year to year thereby altering these dates.Here we examine the time of occurrence of the global and hemispheric maxima and minima lower tropospheric temperatures, the values of the annual maxima and minima, and the slopes and significance of the changes in these metrics.  The statistically significant trends are all relatively small. The values of the global annual maximum and minimum showed a small, but significant trend. Northern and Southern Hemisphere maxima and minima show a slight trend toward occurring later in the year. Most recent analyses of trends in the global annual cycle using observed surface data have indicated a trend toward earlier maxima and minima.

  5. Measuring snow and glacier ice properties from satellite

    Science.gov (United States)

    KöNig, Max; Winther, Jan-Gunnar; Isaksson, Elisabeth

    2001-02-01

    Satellite remote sensing is a convenient tool for studying snow and glacier ice, allowing us to conduct research over large and otherwise inaccessible areas. This paper reviews various methods for measuring snow and glacier ice properties with satellite remote sensing. These methods have been improving with the use of new satellite sensors, like the synthetic aperture radar (SAR) during the last decade, leading to the development of new and powerful methods, such as SAR interferometry for glacier velocity, digital elevation model generation of ice sheets, or snow cover mapping. Some methods still try to overcome the limitations of present sensors, but future satellites will have much increased capability, for example, the ability to measure the whole optical spectrum or SAR sensors with multiple polarization or frequencies. Among the methods presented are the satellite-derived determination of surface albedo, snow extent, snow volume, snow grain size, surface temperature, glacier facies, glacier velocities, glacier extent, and ice sheet topography. In this review, emphasis is put on the principles and theory of each satellite remote sensing method. An extensive list of references, with an emphasis on studies from the 1990s, allows the reader to delve into specific topics.

  6. Geostationary Operational Environmental Satellite (GOES) Gyro Temperature Model

    Science.gov (United States)

    Rowe, J. N.; Noonan, C. H.; Garrick, J.

    1996-01-01

    The geostationary Operational Environmental Satellite (GOES) 1/M series of spacecraft are geostationary weather satellites that use the latest in weather imaging technology. The inertial reference unit package onboard consists of three gyroscopes measuring angular velocity along each of the spacecraft's body axes. This digital integrating rate assembly (DIRA) is calibrated and used to maintain spacecraft attitude during orbital delta-V maneuvers. During the early orbit support of GOES-8 (April 1994), the gyro drift rate biases exhibited a large dependency on gyro temperature. This complicated the calibration and introduced errors into the attitude during delta-V maneuvers. Following GOES-8, a model of the DIRA temperature and drift rate bias variation was developed for GOES-9 (May 1995). This model was used to project a value of the DIRA bias to use during the orbital delta-V maneuvers based on the bias change observed as the DIRA warmed up during the calibration. The model also optimizes the yaw reorientation necessary to achieve the correct delta-V pointing attitude. As a result, a higher accuracy was achieved on GOES-9 leading to more efficient delta-V maneuvers and a propellant savings. This paper summarizes the: Data observed on GOES-8 and the complications it caused in calibration; DIRA temperature/drift rate model; Application and results of the model on GOES-9 support.

  7. Skin Temperature Measurement

    OpenAIRE

    Sarjoghian, Siamak

    2017-01-01

    This report represents the design and implementation of a skin temperature measurement system. The system aims to measure the skin temperature from a sensor and send it to the PC using a USB cable to display on screen. The data needs to be updated every second. The PIC18F4550 microcontroller has been used in this project to obtain data from the sensor and send it to the PC using USB 2.0 that has been built into the microcontroller. The microcontroller has a 10-bit Analog Digital Converting ac...

  8. Measurement of Satellite Bunches at the LHC

    CERN Document Server

    Jeff, A; Boccardi, A; Bozyigit, S; Bravin, E; Lefevre, T; Rabiller, A; Roncarolo, F; Welsch, C P; Fisher, A S

    2012-01-01

    The RF gymnastics involved in the delivery of proton and lead ion bunches to the LHC can result in satellite bunches of varying intensity occupying the nominally empty RF buckets. Quantification of these satellites is crucial for bunch-by-bunch luminosity normalization as well as for machine protection. We present an overview of the longitudinal density monitor (LDM) which is the principal instrument for the measurement of satellite bunches in the LHC. The LDM uses single photon counting of synchrotron light. The very high energies reached in the LHC, combined with a dedicated undulator for diagnostics, allow synchrotron light measurements to be made with both protons and heavy ions. The arrival times of photons are collected over a few million turns, with the resulting histogram corrected for the effects of the detector’s deadtime and afterpulsing in order to reconstruct the longitudinal profile of the entire LHC ring. The LDM has achieved a dynamic range in excess of 105 and a time resolution of 90 ps. Ex...

  9. Antarctica: measuring glacier velocity from satellite images.

    Science.gov (United States)

    Lucchitta, B K; Ferguson, H M

    1986-11-28

    Many Landsat images of Antarctica show distinctive flow and crevasse features in the floating part of ice streams and outlet glaciers immediately below their grounding zones. Some of the features, which move with the glacier or ice stream, remain visible over many years and thus allow time-lapse measurements of ice velocities. Measurements taken from Landsat images of features on Byrd Glacier agree well with detailed ground and aerial observations. The satellite-image technique thus offers a rapid and cost-effective method of obtaining average velocities, to a first order of accuracy, of many ice streams and outlet glaciers near their termini.

  10. Monitoring Surface Climate With its Emissivity Derived From Satellite Measurements

    Science.gov (United States)

    Zhou, Daniel K.; Larar, Allen M.; Liu, Xu

    2012-01-01

    Satellite thermal infrared (IR) spectral emissivity data have been shown to be significant for atmospheric research and monitoring the Earth fs environment. Long-term and large-scale observations needed for global monitoring and research can be supplied by satellite-based remote sensing. Presented here is the global surface IR emissivity data retrieved from the last 5 years of Infrared Atmospheric Sounding Interferometer (IASI) measurements observed from the MetOp-A satellite. Monthly mean surface properties (i.e., skin temperature T(sub s) and emissivity spectra epsilon(sub v) with a spatial resolution of 0.5x0.5-degrees latitude-longitude are produced to monitor seasonal and inter-annual variations. We demonstrate that surface epsilon(sub v) and T(sub s) retrieved with IASI measurements can be used to assist in monitoring surface weather and surface climate change. Surface epsilon(sub v) together with T(sub s) from current and future operational satellites can be utilized as a means of long-term and large-scale monitoring of Earth 's surface weather environment and associated changes.

  11. Satellite to measure equatorial ozone layer

    Science.gov (United States)

    1975-01-01

    The Atmosphere Explorer E (Explorer 55) Satellite is described. The satellite will gather information on the earth's upper atmosphere, particularly regarding the condition of the protective ozone layer. The satellite will also provide information concerning the earth's heat balance, and heat flow characteristics, and energy conversion mechanisms.

  12. Analysis of some methods for obtaining sea surface temperature from satellite observations

    Science.gov (United States)

    Price, J. C.

    1973-01-01

    Satellite measurements of sea surface temperature must be corrected for atmospheric moisture, cloud contamination, reflected solar radiation and other sources of error. Procedures for reducing errors are discussed. It appears that routine accuracies of 1 C are possible, given low noise spectral measurements in the infrared.

  13. Low latitude electron temperature observed by the CHAMP satellite

    DEFF Research Database (Denmark)

    Stolle, Claudia; Truhlik, V.; Richards, P.;

    2012-01-01

    km, although this was not predicted by earlier models. The temperature peaks coincides with the density peaks and are increased during high solar flux. Even more extended possibilities in investigating the ionosphere/thermosphere system are expected from the ESA Swarm satellite constellation mission...

  14. Eruption column height: a comparison between ground and satellite measurements

    Science.gov (United States)

    Scollo, Simona; Prestifilippo, Michele; Pecora, Emilio; Corradini, Stefano; Merucci, Luca; Spata, Gaetano; Coltelli, Mauro

    2014-05-01

    The eruption column height estimation is an essential parameter to evaluate the total mass eruption rate, the gas and aerosol plume dispersal and retrievals. The column height may be estimated using different systems (e.g. satellite, aircraft and ground observations) which may present marked differences. In this work we use the calibrated images collected by the video-surveillance system of the Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Etneo, from the visible camera located in Catania, 27 km from the vent. The analysis is carried out on twenty lava fountains from the New South East Crater during the recent Etna explosive activity. Firstly, we calibrated the camera to estimate its intrinsic parameters and the full camera model. Furthermore, we selected the images which recorded the maximum phase of the eruptive activity. Hence, we applied an appropriate correction to take into account the wind effect. The column height was also evaluated using SEVIRI and MODIS satellite images collected at the same time of the video camera measurements. The satellite column height retrievals is realized by comparing the 11 μm brightness temperature of the most opaque plume pixels with the atmospheric temperature profile measured at Trapani WMO Meteo station (the nearest WMO station to the Etnean area). The comparison between satellite and ground data show a good agreement and the column altitudes ranges between 7.5 and 9 km (upper limit of the camera system). For nine events we evaluated also the thickness of the volcanic plumes in the umbrella region (near the vent) which ranges between 2 and 3 km. The proposed approach help to quantitatively evaluate the column height that may be used by volcanic ash dispersal and sedimentation models for improving forecasts and reducing risks to aviation during volcanic crisis.

  15. Comparison of satellite-derived land surface temperature and air temperature from meteorological stations on the Pan-Arctic scale

    NARCIS (Netherlands)

    Urban, M.; Eberle, J.; Hüttich, C.; Schmullius, C.; Herold, M.

    2013-01-01

    Satellite-based temperature measurements are an important indicator for global climate change studies over large areas. Records from Moderate Resolution Imaging Spectroradiometer (MODIS), Advanced Very High Resolution Radiometer (AVHRR) and (Advanced) Along Track Scanning Radiometer ((A)ATSR) are pr

  16. Satellite measurements of formaldehyde from shipping emissions

    Directory of Open Access Journals (Sweden)

    T. Marbach

    2009-04-01

    Full Text Available International shipping is recognized as a pollution source of growing importance, in particular in the remote marine boundary layer. Nitrogen dioxide originating from ship emissions has previously been detected in satellite measurements. This study presents the first satellite measurements of formaldehyde (HCHO linked to shipping emissions as derived from observations made by the Global Ozone Monitoring Experiment (GOME instrument.

    We analyzed enhanced HCHO tropospheric columns from shipping emissions over the Indian Ocean between Sri Lanka and Sumatra. This region offers good conditions in term of plume detection with the GOME instrument as all ship tracks follow a single narrow track in the same east-west direction as used for the GOME pixel scanning. The HCHO signal alone is weak but could be clearly seen in the high-pass filtered data. The line of enhanced HCHO in the Indian Ocean as seen in the 7-year composite of cloud free GOME observations clearly coincides with the distinct ship track corridor from Sri Lanka to Indonesia. The observed mean HCHO column enhancement over this shipping route is about 2.0×1015 molec/cm2.

    The observed HCHO pattern also agrees qualitatively well with results from the coupled earth system model ECHAM5/MESSy applied to atmospheric chemistry (EMAC. However, the modelled HCHO values over the ship corridor are two times lower than in the GOME high-pass filtered data. This might indicate that the used emission inventories are too low and/or that the in-plume chemistry taking place in the narrow path of the shipping lanes are not well represented at the rather coarse model resolution.

  17. GHRSST Level 2P Global Subskin Sea Surface Temperature from TRMM Microwave Imager (TMI) onboard Tropical Rainfall Measurement Mission (TRMM) satellite (GDS versions 1 and 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — GDS2 Version -The Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) is a well calibrated passive microwave radiometer, similar to the Special Sensor...

  18. Satellite (Timed, Aura, Aqua) and In Situ (Meteorological Rockets, Balloons) Measurement Comparability

    Science.gov (United States)

    Schmidlin, F. J.; Goldberg, Richard A.; Feofilov, A.; Rose, R.

    2010-01-01

    Measurements using the inflatable falling sphere often are requested to provide density data in support of special sounding rocket launchings into the mesosphere and thermosphere. To insure density measurements within narrow time frames and close in space, the inflatable falling sphere is launched within minutes of the major test. Sphere measurements are reliable for the most part, however, availability of these rocket systems has become more difficult and, in fact, these instruments no longer are manufactured resulting in a reduction of the meager stockpile of instruments. Sphere measurements also are used to validate remotely measured temperatures and have the advantage of measuring small-scale atmospheric features. Even so, with the dearth of remaining falling spheres perhaps it is time to consider whether the remote measurements are mature enough to stand alone. Presented are two field studies, one in 2003 from Northern Sweden and one in 2010 from the vicinity of Kwajalein Atoll that compare temperature retrievals between satellite and in situ failing spheres. The major satellite instruments employed are SABER, MLS, and AIRS. The comparisons indicate that remotely measured temperatures mimic the sphere temperature measurements quite well. The data also confirm that satellite retrievals, while not always at the exact location required for individual studies, are adaptable enough and highly useful. Although the falling sphere will provide a measurement at a specific location and time, satellites only pass a given location daily or less often. This report reveals that averaged satellite measurements can provide temperatures and densities comparable to the falling sphere.

  19. Use of satellite land surface temperatures in the EUSTACE global surface air temperature analysis

    Science.gov (United States)

    Ghent, D.; Good, E.; Rayner, N. A.

    2015-12-01

    EUSTACE (EU Surface Temperatures for All Corners of Earth) is a Horizon2020 project that will produce a spatially complete, near-surface air temperature (NSAT) analysis for the globe for every day since 1850. The analysis will be based on both satellite and in situ surface temperature observations over land, sea, ice and lakes, which will be combined using state-of-the-art statistical methods. The use of satellite data will enable the EUSTACE analysis to offer improved estimates of NSAT in regions that are poorly observed in situ, compared with existing in-situ based analyses. This presentation illustrates how satellite land surface temperature (LST) data - sourced from the European Space Agency (ESA) Data User Element (DUE) GlobTemperature project - will be used in EUSTACE. Satellite LSTs represent the temperature of the Earth's skin, which can differ from the corresponding NSAT by several degrees or more, particularly during the hottest part of the day. Therefore the first challenge is to develop an approach to estimate global NSAT from satellite observations. Two methods will be trialled in EUSTACE, both of which are summarised here: an established empirical regression-based approach for predicting NSAT from satellite data, and a new method whereby NSAT is calculated from LST and other parameters using a physics-based model. The second challenge is in estimating the uncertainties for the satellite NSAT estimates, which will determine how these data are used in the final blended satellite-in situ analysis. This is also important as a key component of EUSTACE is in delivering accurate uncertainty information to users. An overview of the methods to estimate the satellite NSATs is also included in this presentation.

  20. Surface temperature measurements of diamond

    CSIR Research Space (South Africa)

    Masina, BN

    2006-07-01

    Full Text Available ) and the waist position (z0) 3. TEMPERATURE MEASUREMENTS There are many methods to measure the temperature of a body. Here we used a thermocou- ple and a pyrometer, while future plans involve emission spectroscopy. A thermocouple is a temperature... sensor that consists of two wires con- nected together made from different metals, which produces an electrical voltage that is dependant on tem- perature. A Newport electronic thermocou- ple was used to meas- ured temperature. It can measure...

  1. Transportable IOT measurement station for direct-broadcast satellites

    Science.gov (United States)

    Ulbricht, Michael

    A transportable 11.7-12.5-GHz flux-density measurement facility for use in the in-orbit testing (IOT) of the FRG TV-Sat direct-broadcast satellites is described. Major components include a 1.2-m-diameter antenna, the fluxmeter, a radiometer to determine atmospheric attenuation, a weather station, and a control and data-processing computer; all of the components are mounted on a 5.10 x 2.35 x 2.70-m trailer. IOT performance parameters include gain/temperature ratio 15.9 dB/K, measurement range -97 to -117 dBW/sq m, measurement accuracy less than 0.5 dB rms, and measurement rate 250-650 msec. Photographs and a block diagram are provided.

  2. Integration Of GPS And GLONASS Systems In Geodetic Satellite Measurements

    Science.gov (United States)

    Maciuk, Kamil

    2015-12-01

    The article shows the results of satellites measurements elaborations using GPS & GLONASS signals. The aim of this article is to define the influence of adding GLONASS signals on position determination accuracy. It especially concerns areas with big horizon coverages. Object of the study were analysis of DOP coefficients, code and RTK solutions, and usage of satellite techniques in levelling. The performed studies and analysis show that integrated GPS-GLONASS satellite measurements provide possibility to achieve better results than measurements using single navigation satellite system (GPS).

  3. Global distribution of pauses observed with satellite measurements

    Indian Academy of Sciences (India)

    M Venkat Ratnam; P Kishore; Isabella Velicogna

    2013-04-01

    Several studies have been carried out on the tropopause, stratopause, and mesopause (collectively termed as ‘pauses’) independently; however, all the pauses have not been studied together. We present global distribution of altitudes and temperatures of these pauses observed with long-term space borne high resolution measurements of Global Positioning System (GPS) Radio Occultation (RO) and Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) aboard Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics (TIMED) satellite. Here we study the commonality and differences observed in the variability of all the pauses. We also examined how good other datasets will represent these features among (and in between) different satellite measurements, re-analysis, and model data. Hemispheric differences observed in all the pauses are also reported. In addition, we show that asymmetries between northern and southern hemispheres continue up to the mesopause. We analyze inter and intra-seasonal variations and long-term trends of these pauses at different latitudes. Finally, a new reference temperature profile is shown from the ground to 110 km for tropical, mid-latitudes, and polar latitudes for both northern and southern hemispheres.

  4. Thermal Conductivity Measurements on Icy Satellite Analogs

    Science.gov (United States)

    Javeed, Aurya; Barmatz, Martin; Zhong, Fang; Choukroun, Mathieu

    2012-01-01

    With regard to planetary science, NASA aspires to: "Advance scientific knowledge of the origin and history of the solar system, the potential for life elsewhere, and the hazards and resources present as humans explore space". In pursuit of such an end, the Galileo and Cassini missions garnered spectral data of icy satellite surfaces implicative of the satellites' structure and material composition. The potential for geophysical modeling afforded by this information, coupled with the plausibility of life on icy satellites, has pushed Jupiter's Europa along with Saturn's Enceladus and Titan toward the fore of NASA's planetary focus. Understanding the evolution of, and the present processes at work on, the aforementioned satellites falls squarely in-line with NASA's cited goal.

  5. Selected Geomagnetic Measurements From Several Satellites

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — More than 17 million selected magnetic observations from several orbiting low-altitude satellites are contained in this digital collection. Except for MAGSAT, all...

  6. Temperature Measurements in the Magnetic Measurement Facility

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, Zachary

    2010-12-13

    Several key LCLS undulator parameter values depend strongly on temperature primarily because of the permanent magnet material the undulators are constructed with. The undulators will be tuned to have specific parameter values in the Magnetic Measurement Facility (MMF). Consequently, it is necessary for the temperature of the MMF to remain fairly constant. Requirements on undulator temperature have been established. When in use, the undulator temperature will be in the range 20.0 {+-} 0.2 C. In the MMF, the undulator tuning will be done at 20.0 {+-} 0.1 C. For special studies, the MMF temperature set point can be changed to a value between 18 C and 23 C with stability of {+-}0.1 C. In order to ensure that the MMF temperature requirements are met, the MMF must have a system to measure temperatures. The accuracy of the MMF temperature measurement system must be better than the {+-}0.1 C undulator tuning temperature tolerance, and is taken to be {+-}0.01 C. The temperature measurement system for the MMF is under construction. It is similar to a prototype system we built two years ago in the Sector 10 alignment lab at SLAC. At that time, our goal was to measure the lab temperature to {+-}0.1 C. The system has worked well for two years and has maintained its accuracy. For the MMF system, we propose better sensors and a more extensive calibration program to achieve the factor of 10 increase in accuracy. In this note we describe the measurement system under construction. We motivate our choice of system components and give an overview of the system. Most of the software for the system has been written and will be discussed. We discuss error sources in temperature measurements and show how these errors have been dealt with. The calibration system is described in detail. All the LCLS undulators must be tuned in the Magnetic Measurement Facility at the same temperature to within {+-}0.1 C. In order to ensure this, we are building a system to measure the temperature of the

  7. Spacecraft design project: High temperature superconducting infrared imaging satellite

    Science.gov (United States)

    1991-01-01

    The High Temperature Superconductor Infrared Imaging Satellite (HTSCIRIS) is designed to perform the space based infrared imaging and surveillance mission. The design of the satellite follows the black box approach. The payload is a stand alone unit, with the spacecraft bus designed to meet the requirements of the payload as listed in the statement of work. Specifications influencing the design of the spacecraft bus were originated by the Naval Research Lab. A description of the following systems is included: spacecraft configuration, orbital dynamics, radio frequency communication subsystem, electrical power system, propulsion, attitude control system, thermal control, and structural design. The issues of testing and cost analysis are also addressed. This design project was part of the course Advanced Spacecraft Design taught at the Naval Postgraduate School.

  8. Radiometric temperature measurements fundamentals

    CERN Document Server

    Zhang, Zhuomin M; Machin, Graham

    2009-01-01

    This book describes the theory of radiation thermometry, both at a primary level and for a variety of applications, such as in the materials processing industries and remote sensing. This book is written for those who will apply radiation thermometry in industrial practice; use radiation thermometers for scientific research; the radiation thermometry specialist in a national measurement institute; developers of radiation thermometers who are working to innovate products for instrument manufacturers, and developers of non-contact thermometry methods to address challenging thermometry problems.

  9. The Relativistic Effect of the Deviation between the CMB Temperatures Obtained by the COBE Satellite

    Directory of Open Access Journals (Sweden)

    Rabounski D.

    2007-01-01

    Full Text Available The Far-Infrared Absolute Spectrophotometer (FIRAS on the COBE satellite, gives different temperatures of the Cosmic Microwave Background. This deviation has a theoretical explanation in the Doppler effect on the dipole (weak component of the radiation, the true microwave background of the Universe that moves at 365 km/sec, if the monopole (strong component of the radiation is due to the Earth. Owing to the Doppler effect, the dipole radiation temperature (determined by the 1st derivative of the monopole is lower than the monopole radiation temperature, with a value equal to the observed deviation. By this theory, the WMAP and PLANCK satellites, targeting the L2 point in the Sun-Earth-Moon system, should be insensitive to the monopole radiation. In contrast to the launched WMAP satellite, the PLANCK satellite will have on board absolute instruments which will not be able to detect the measured temperature of the Cosmic Microwave Background. That the monopole (strong component of the observed Cosmic Microwave Background is generated by the Earth is given a complete theoretical proof herein.

  10. Efficient statistical classification of satellite measurements

    CERN Document Server

    Mills, Peter

    2012-01-01

    Supervised statistical classification is a vital tool for satellite image processing. It is useful not only when a discrete result, such as feature extraction or surface type, is required, but also for continuum retrievals by dividing the quantity of interest into discrete ranges. Because of the high resolution of modern satellite instruments and because of the requirement for real-time processing, any algorithm has to be fast to be useful. Here we describe an algorithm based on kernel estimation called Adaptive Gaussian Filtering that incorporates several innovations to produce superior efficiency as compared to three other popular methods: k-nearest-neighbour (KNN), Learning Vector Quantization (LVQ) and Support Vector Machines (SVM). This efficiency is gained with no compromises: accuracy is maintained, while estimates of the conditional probabilities are returned. These are useful not only to gauge the accuracy of an estimate in the absence of its true value, but also to re-calibrate a retrieved image and...

  11. Saturn's icy satellites investigated by Cassini - VIMS. IV. Daytime temperature maps

    CERN Document Server

    Filacchione, Gianrico; Capaccioni, Fabrizio; Clark, Roger N; Cruikshank, Dale P; Ciarniello, Mauro; Cerroni, Priscilla; Bellucci, Giancarlo; Brown, Robert H; Buratti, Bonnie J; Nicholson, Phillip D; Jaumann, Ralf; McCord, Thomas B; Sotin, Christophe; Stephan, Katrin; Ore, Cristina M Dalle

    2016-01-01

    The spectral position of the 3.6 micron continuum peak measured on Cassini-VIMS I/F spectra is used as a marker to infer the temperature of the regolith particles covering the surfaces of Saturn's icy satellites. This feature is characterizing the crystalline water ice spectrum which is the dominant compositional endmember of the satellites' surfaces. Laboratory measurements indicate that the position of the 3.6 micron peak of pure water ice is temperature-dependent, shifting towards shorter wavelengths when the sample is cooled, from about 3.65 micron at T=123 K to about 3.55 micron at T=88 K. A similar method was already applied to VIMS Saturn's rings mosaics to retrieve ring particles temperature (Filacchione et al., 2014). We report here about the daytime temperature variations observed on the icy satellites as derived from three different VIMS observation types. Temperature maps are built by mining the complete VIMS dataset collected in years 2004-2009 (pre-equinox) and in 2009-2012 (post equinox) by sel...

  12. Temperature measurement in the sea

    Digital Repository Service at National Institute of Oceanography (India)

    Krishnamacharyulu, R.J.; Rao, L.V.G.

    ), their advantages and limitations are also touched upon. Calibration of various instruments used for temperature measurement in the sea and the special setup/facilities needed for this purpose are also discussed...

  13. Land mobile satellite propagation measurements in Japan using ETS-V satellite

    Science.gov (United States)

    Obara, Noriaki; Tanaka, Kenji; Yamamoto, Shin-Ichi; Wakana, Hiromitsu

    1993-01-01

    Propagation characteristics of land mobile satellite communications channels have been investigated actively in recent years. Information of propagation characteristics associated with multipath fading and shadowing is required to design commercial land mobile satellite communications systems, including protocol and error correction method. CRL (Communications Research Laboratory) has carried out propagation measurements using the Engineering Test Satellite-V (ETS-V) at L band (1.5 GHz) through main roads in Japan by a medium gain antenna with an autotracking capability. This paper presents the propagation statistics obtained in this campaign.

  14. Interference susceptibility measurements for an MSK satellite communication link

    Science.gov (United States)

    Kerczewski, Robert J.; Fujikawa, Gene

    1992-01-01

    The results are presented of measurements of the degradation of an MSK satellite link due to modulated and CW (unmodulated) interference. These measurements were made using a hardware based satellite communication link simulator at NASA-Lewis. The results indicate the amount of bit error rate degradation caused by CW interference as a function of frequency and power level, and the degradation caused by adjacent channel and cochannel modulated interference as a function of interference power level. Results were obtained for both the uplink case (including satellite nonlinearity) and the downlink case (linear channel).

  15. Non-contact temperature measurement

    Science.gov (United States)

    Nordine, Paul C.; Krishnan, Shankar; Weber, J. K. R.; Schiffman, Robert A.

    Three methods for noncontact temperature measurement are presented. Ideal gas thermometry is realized by using laser-induced fluorescence to measure the concentration of mercury atoms in a Hg-Ar mixture in the vicinity of hot specimens. Emission polarimetry is investigated by measuring the spatially resolved intensities of polarized light from a hot tungsten sphere. Laser polarimetry is used to measure the optical properties, emissivity, and, in combination with optical pyrometry, the temperature of electromagnetically levitated liquid aluminum. The precision of temperature measurements based on the ideal gas law is + or - 2.6 percent at 1500-2000 K. The polarized emission technique is found to have the capability to determine optical properties and/or spectral emissivities of specimens over a wide range of wavelengths with quite simple instruments.

  16. Integrated Emissivity And Temperature Measurement

    Science.gov (United States)

    Poulsen, Peter

    2005-11-08

    A multi-channel spectrometer and a light source are used to measure both the emitted and the reflected light from a surface which is at an elevated temperature relative to its environment. In a first method, the temperature of the surface and emissivity in each wavelength is calculated from a knowledge of the spectrum and the measurement of the incident and reflected light. In the second method, the reflected light is measured from a reference surface having a known reflectivity and the same geometry as the surface of interest and the emitted and the reflected light are measured for the surface of interest. These measurements permit the computation of the emissivity in each channel of the spectrometer and the temperature of the surface of interest.

  17. Intercomparison of planetary-scale diagnostics derived from separate satellite and radiosonde time-mean temperature fields

    Science.gov (United States)

    Miles, T.; Chapman, W. A.

    1984-01-01

    The planetary-scale components of the extratropical Northern Hemisphere troposphere-stratosphere 1973-74 winter circulation are diagnosed using separate time-mean temperature fields based on radiosonde and satellite observations. Meridional cross-sections of zonal wind together with, for zonal wavenumbers 1, 2 and 3, the streamfunction amplitude, phase and Eliassen-Palm flux are displayed, with the relative accuracy of the satellite-derived diagnostics assessed through comparison with the 'ground-truth' radiosonde information. The satellite and radiosonde diagnostics compare most favourably in terms of zonal wind speed and shear, direction of wave propagation and meridional wave structure - all of which are closely related to the differential properties of the atmospheric temperature field. The intensity of the satellite-derived patterns of tropospheric wave propagation is underestimated due to the effects of spatial smoothing and residual cloud contamination present in the satellite radiance measurements.

  18. Digitization and Position Measurement of Astronomical Plates of Saturnian Satellites

    Science.gov (United States)

    Yan, D.; Yu, Y.; Zhang, H. Y.; Qiao, R. C.

    2014-05-01

    Using the advanced commercial scanners to digitize astronomical plates may be a simple and effective way. In this paper, we discuss the method of digitizing and astrometrically reducing six astronomical plates of Saturnian satellites, which were taken from the 1 m RCC (Ritchey Chretien Coude) telescope of Yunnan Observatory in 1988, by using the 10000XL scanner of Epson. The digitized images of the astronomical plates of Saturnian satellites are re-reduced, and the positions of Saturnian satellites based on the UCAC2 (The Second US Naval Observatory CCD Astrograph Catalog) catalogue are given. A comparison of our measured positions with the IMCCE (Institut de Mecanique Celeste et de Calcul des Ephemerides) ephemeris of Saturnian satellites shows the high quality of our measurements, which have an accuracy of 106 mas in right ascension and 89 mas in declination. Moreover, our measurements appear to be consistent with this ephemeris within only about 56 mas in right ascension and 9 mas in declination.

  19. Ice surface temperatures: seasonal cycle and daily variability from in-situ and satellite observations

    Science.gov (United States)

    Madsen, Kristine S.; Dybkjær, Gorm; Høyer, Jacob L.; Nielsen-Englyst, Pia; Rasmussen, Till A. S.; Tonboe, Rasmus T.

    2016-04-01

    Surface temperature is an important parameter for understanding the climate system, including the Polar Regions. Yet, in-situ temperature measurements over ice- and snow covered regions are sparse and unevenly distributed, and atmospheric circulation models estimating surface temperature may have large biases. To change this picture, we will analyse the seasonal cycle and daily variability of in-situ and satellite observations, and give an example of how to utilize the data in a sea ice model. We have compiled a data set of in-situ surface and 2 m air temperature observations over land ice, snow, sea ice, and from the marginal ice zone. 2523 time series of varying length from 14 data providers, with a total of more than 13 million observations, have been quality controlled and gathered in a uniform format. An overview of this data set will be presented. In addition, IST satellite observations have been processed from the Metop/AVHRR sensor and a merged analysis product has been constructed based upon the Metop/AVHRR, IASI and Modis IST observations. The satellite and in-situ observations of IST are analysed in parallel, to characterize the IST variability on diurnal and seasonal scales and its spatial patterns. The in-situ data are used to estimate sampling effects within the satellite observations and the good coverage of the satellite observations are used to complete the geographical variability. As an example of the application of satellite IST data, results will be shown from a coupled HYCOM-CICE ocean and sea ice model run, where the IST products have been ingested. The impact of using IST in models will be assessed. This work is a part of the EUSTACE project under Horizon 2020, where the ice surface temperatures form an important piece of the puzzle of creating an observationally based record of surface temperatures for all corners of the Earth, and of the ESA GlobTemperature project which aims at applying surface temperatures in models in order to

  20. Satellite measurements of the earth's crustal magnetic field

    Science.gov (United States)

    Schnetzler, C. C.

    1989-01-01

    The literature associated with the Magsat mission has evaluated the capabilities and limitations of satellite measurements of the earth's crustal magnetic field, and demonstrated that there exists a 300-3000 km magnetic field, related to major features in the earth's crust, which is primarily caused by induction. Due to its scale and sensitivity, satellite data have been useful in the development of models for such large crustal features as subduction zones, submarine platforms, continental accretion boundaries, and rifts. Attention is presently given to the lack of agreement between laboratory and satellite estimates of lower crustal magnetization.

  1. Michelson interferometer for measuring temperature

    OpenAIRE

    Xie, Dong; Xu, Chunling; Wang, Anmin

    2016-01-01

    We investigate that temperature can be measured by a modified Michelson interferometer, where at least one reflected mirror is replaced by a thermalized sample. Both of two mirrors replaced by the corresponding two thermalized samples can help to approximatively improve the resolution of temperature up to twice than only one mirror replaced by a thermalized sample. For further improving the precision, a nonlinear medium can be employed. The Michelson interferometer is embedded in a gas displa...

  2. Comparison of Satellite-Derived and In-Situ Observations of Ice and Snow Surface Temperatures over Greenland

    Science.gov (United States)

    Hall, Dorothy K.; Box, Jason E.; Casey, Kimberly A.; Hook, Simon J.; Shuman, Christopher A.; Steffen, Konrad

    2008-01-01

    The most practical way to get a spatially broad and continuous measurements of the surface temperature in the data-sparse cryosphere is by satellite remote sensing. The uncertainties in satellite-derived LSTs must be understood to develop internally-consistent decade-scale land-surface temperature (LST) records needed for climate studies. In this work we assess satellite-derived "clear-sky" LST products from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), and LSTs derived from the Enhanced Thematic Mapper Plus (ETM+) over snow and ice on Greenland. When possible, we compare satellite-derived LSTs with in-situ air-temperature observations from Greenland Climate Network (GC-Net) automatic-weather stations (AWS). We find that MODIS, ASTER and ETM+ provide reliable and consistent LSTs under clear-sky conditions and relatively-flat terrain over snow and ice targets over a range of temperatures from -40 to 0 C. The satellite-derived LSTs agree within a relative RMS uncertainty of approx.0.5 C. The good agreement among the LSTs derived from the various satellite instruments is especially notable since different spectral channels and different retrieval algorithms are used to calculate LST from the raw satellite data. The AWS record in-situ data at a "point" while the satellite instruments record data over an area varying in size from: 57 X 57 m (ETM+), 90 X 90 m (ASTER), or to 1 X 1 km (MODIS). Surface topography and other factors contribute to variability of LST within a pixel, thus the AWS measurements may not be representative of the LST of the pixel. Without more information on the local spatial patterns of LST, the AWS LST cannot be considered valid ground truth for the satellite measurements, with RMS uncertainty approx.2 C. Despite the relatively large AWS-derived uncertainty, we find LST data are characterized by high accuracy but have uncertain absolute precision.

  3. Fifth generation lithospheric magnetic field model from CHAMP satellite measurements

    OpenAIRE

    Maus, S.; Hermann Lühr; Martin Rother; Hemant, K.; Balasis, G.; Patricia Ritter; Claudia Stolle

    2007-01-01

    Six years of low-orbit CHAMP satellite magnetic measurements have provided an exceptionally high-quality data resource for lithospheric magnetic field modeling and interpretation. Here we describe the fifth-generation satellite-only magnetic field model MF5. The model extends to spherical harmonic degree 100. As a result of careful data selection, extensive corrections, filtering, and line leveling, the model has low noise levels, even if evaluated at the Earth's surface. The model is particu...

  4. COMPARISON OF THE GROUND AND SATELLITE TEMPERATURE DATA, CASE OF WRANGELL ISLAND

    Directory of Open Access Journals (Sweden)

    M. Y. Grishchenko

    2016-01-01

    Full Text Available In modern times, in the country many remote areas are characterized by low density of weather stations, which reduces the accuracy of synoptic forecasts for territories remoted from the weather stations. In this regard, the use of thermal infrared satellite images for simulation of some climatic parameters is considered by the authors as a promising area of science. The article presents the results of comparing the land surface temperature values calculated from Landsat satellites images and ground-measured air temperature values. For the considered seasons the indicators are characterized by a pronounced linear relationship with a high correlation coefficient.

  5. Global Land Surface Emissivity Retrieved From Satellite Ultraspectral IR Measurements

    Science.gov (United States)

    Zhou, D. K.; Larar, A. M.; Liu, Xu; Smith, W. L.; Strow, L. L.; Yang, Ping; Schlussel, P.; Calbet, X.

    2011-01-01

    Ultraspectral resolution infrared (IR) radiances obtained from nadir observations provide information about the atmosphere, surface, aerosols, and clouds. Surface spectral emissivity (SSE) and surface skin temperature from current and future operational satellites can and will reveal critical information about the Earth s ecosystem and land-surface-type properties, which might be utilized as a means of long-term monitoring of the Earth s environment and global climate change. In this study, fast radiative transfer models applied to the atmosphere under all weather conditions are used for atmospheric profile and surface or cloud parameter retrieval from ultraspectral and/or hyperspectral spaceborne IR soundings. An inversion scheme, dealing with cloudy as well as cloud-free radiances observed with ultraspectral IR sounders, has been developed to simultaneously retrieve atmospheric thermodynamic and surface or cloud microphysical parameters. This inversion scheme has been applied to the Infrared Atmospheric Sounding Interferometer (IASI). Rapidly produced SSE is initially evaluated through quality control checks on the retrievals of other impacted surface and atmospheric parameters. Initial validation of retrieved emissivity spectra is conducted with Namib and Kalahari desert laboratory measurements. Seasonal products of global land SSE and surface skin temperature retrieved with IASI are presented to demonstrate seasonal variation of SSE.

  6. Improving Estuarine Transport Models using Satellite Measurements

    Science.gov (United States)

    2013-09-30

    standard methods (Siegel,2005; Palacios et al., 2009; Doxaran et. al. 2009, Hu et. al. 2004), we estimate turbidity and water temperature by regessing...mass conservation. Estuaries and Coasts, 30p.1095-1105. Palacios , L. Sherry. Tawnya D. Peterson., Raphael M. Kudela. (2009). Development of

  7. UAH Version 6 global satellite temperature products: Methodology and results

    Science.gov (United States)

    Spencer, Roy W.; Christy, John R.; Braswell, William D.

    2017-02-01

    Version 6 of the UAH MSU/AMSU global satellite temperature dataset represents an extensive revision of the procedures employed in previous versions of the UAH datasets. The two most significant results from an end-user perspective are (1) a decrease in the global-average lower tropospheric temperature (LT) trend from +0.14°C decade-1 to +0.11°C decade-1 (Jan. 1979 through Dec. 2015); and (2) the geographic distribution of the LT trends, including higher spatial resolution, owing to a new method for computing LT. We describe the major changes in processing strategy, including a new method for monthly gridpoint averaging which uses all of the footprint data yet eliminates the need for limb correction; a new multi-channel (rather than multi-angle) method for computing the lower tropospheric (LT) temperature product which requires an additional tropopause (TP) channel to be used; and a new empirical method for diurnal drift correction. We show results for LT, the midtroposphere (MT, from MSU2/AMSU5), and lower stratosphere (LS, from MSU4/AMSU9). A 0.03°C decade-1 reduction in the global LT trend from the Version 5.6 product is partly due to lesser sensitivity of the new LT to land surface skin temperature (est. 0.01°C decade-1), with the remainder of the reduction (0.02°C decade-1) due to the new diurnal drift adjustment, the more robust method of LT calculation, and other changes in processing procedures.

  8. Cloud Masking and Surface Temperature Distribution in the Polar Regions Using AVHRR and other Satellite Data

    Science.gov (United States)

    Comiso, Joey C.

    1995-01-01

    Surface temperature is one of the key variables associated with weather and climate. Accurate measurements of surface air temperatures are routinely made in meteorological stations around the world. Also, satellite data have been used to produce synoptic global temperature distributions. However, not much attention has been paid on temperature distributions in the polar regions. In the polar regions, the number of stations is very sparse. Because of adverse weather conditions and general inaccessibility, surface field measurements are also limited. Furthermore, accurate retrievals from satellite data in the region have been difficult to make because of persistent cloudiness and ambiguities in the discrimination of clouds from snow or ice. Surface temperature observations are required in the polar regions for air-sea-ice interaction studies, especially in the calculation of heat, salinity, and humidity fluxes. They are also useful in identifying areas of melt or meltponding within the sea ice pack and the ice sheets and in the calculation of emissivities of these surfaces. Moreover, the polar regions are unique in that they are the sites of temperature extremes, the location of which is difficult to identify without a global monitoring system. Furthermore, the regions may provide an early signal to a potential climate change because such signal is expected to be amplified in the region due to feedback effects. In cloud free areas, the thermal channels from infrared systems provide surface temperatures at relatively good accuracies. Previous capabilities include the use of the Temperature Humidity Infrared Radiometer (THIR) onboard the Nimbus-7 satellite which was launched in 1978. Current capabilities include the use of the Advance Very High Resolution Radiometer (AVHRR) aboard NOAA satellites. Together, these two systems cover a span of 16 years of thermal infrared data. Techniques for retrieving surface temperatures with these sensors in the polar regions have

  9. An Orbiting Standards Platform for communication satellite system RF measurements

    Science.gov (United States)

    Wallace, R. G.; Woodruff, J. J.

    1978-01-01

    The Orbiting Standards Platform (OSP) is a proposed satellite dedicated to performing RF measurements on space communications systems. It would consist of a quasi-geostationary spacecraft containing an ensemble of calibrated RF sources and field strength meters operating in several microwave bands, and would be capable of accurately and conveniently measuring critical earth station and satellite RF performance parameters, such as EIRP, gain, figure of merit (G/T), crosspolarization, beamwidth, and sidelobe levels. The feasibility and utility of the OSP concept has been under joint study by NASA, NBS, Comsat and NTIA. A survey of potential OSP users was conducted by NTIA as part of this effort. The response to this survey, along with certain trends in satellite communications system design, indicates a growing need for such a measurement service.

  10. Results of ionospheric measurements, got on micro satellite "Compass-2"

    Science.gov (United States)

    Dokukin, Vladimir; Kuznetsov, V. D.; Garipov, G. K.; Kapustina, O.; Mikhailov, Yu. M.; Mikhailova, G. A.; Ruzhin, Yu. Ya.; Sinelnikov, V. M.; Shirokov, A. V.; Yashin, I. V.; Danilkin, V. A.; Degtyar, V. G.

    Results of measurements, executed by complex of scientific instruments of micro satellite Compass-2 in the period of 2006-2007, are presented. The project was aimed on registration and study of ionospheric effects, related to the natural and anthropogenic anomalous phenomena. The effects of interaction of solar wind with magnetosphere in the period of flare activity of the Sun and anomalous low frequency radiations, happened one day before the earthquake with magnitude 4.2, are registered. The data was got on measurements of corpuscular radiation, wide band radiations and low frequency waves along the orbit of satellite.

  11. Validation of Satellite-Derived Land Surface Temperature Products - Methods and Good Practice

    Science.gov (United States)

    Guillevic, P. C.; Hulley, G. C.; Hook, S. J.; Biard, J.; Ghent, D.

    2014-12-01

    Land Surface Temperature (LST) is a key variable for surface water and energy budget calculations that can be obtained globally and operationally from satellite observations. LST is used for many applications, including weather forecasting, short-term climate prediction, extreme weather monitoring, and irrigation and water resource management. In order to maximize the usefulness of LST for research and studies it is necessary to know the uncertainty in the LST measurement. Multiple validation methods and activities are necessary to assess LST compliance with the quality specifications of operational users. This work presents four different validation methods that have been widely used to determine the uncertainties in LST products derived from satellite measurements. 1) The temperature based validation method involves comparisons with ground-based measurements of LST. The method is strongly limited by the number and quality of available field stations. 2) Scene-based comparisons involve comparing a new satellite LST product with a heritage LST product. This method is not an absolute validation and satellite LST inter-comparisons alone do not provide an independent validation measurement. 3) The radiance-based validation method does not require ground-based measurements and is usually used for large scale validation effort or for LST products with coarser spatial resolution (> 1km). 4) Time series comparisons are used to detect problems that can occur during the instrument's life, e.g. calibration drift, or unrealistic outliers due to cloud coverage. This study enumerates the sources of errors associated with each method. The four different approaches are complementary and provide different levels of information about the quality of the retrieved LST. The challenges in retrieving the LST from satellite measurements are discussed using results obtained for MODIS and VIIRS. This work contributes to the objective of the Land Product Validation (LPV) sub-group of the

  12. PERSPECTIVE Working towards a community-wide understanding of satellite skin temperature observations

    Science.gov (United States)

    Shreve, Cheney

    2010-12-01

    With more than sixty free and publicly available high-quality datasets, including ecosystem variables, radiation budget variables, and land cover products, the MODIS instrument and the MODIS scientific team have contributed significantly to scientific investigations of ecosystems across the globe. The MODIS instrument, launched in December 1999, has 36 spectral bands, a viewing swath of 2330 km, and acquires data at 250 m, 500 m, and 1000 m spatial resolution every one to two days. Radiation budget variables include surface reflectance, skin temperature, emissivity, and albedo, to list a few. Ecosystem variables include several vegetation indices and productivity measures. Land cover characteristics encompass land cover classifications as well as model parameters and vegetation classifications. Many of these products are instrumental in constraining global climate models and climate change studies, as well as monitoring events such as the recent flooding in Pakistan, the unprecedented oil spill in the Gulf of Mexico, or phytoplankton bloom in the Barents Sea. While product validation efforts by the MODIS scientific team are both vigorous and continually improving, validation is unquestionably one of the most difficult tasks when dealing with remotely derived datasets, especially at the global scale. The quality and availability of MODIS data have led to widespread usage in the scientific community that has further contributed to validation and development of the MODIS products. In their recent paper entitled 'Land surface skin temperature climatology: benefitting from the strengths of satellite observations', Jin and Dickinson review the scientific theory behind, and demonstrate application of, a MODIS temperature product: surface skin temperature. Utilizing datasets from the Global Historical Climatological Network (GHCN), daily skin and air temperature from the Atmospheric Radiation Measurement (ARM) program, and MODIS products (skin temperature, albedo, land

  13. Improvement of NCEP Numerical Weather Prediction with Use of Satellite Land Measurements

    Science.gov (United States)

    Zheng, W.; Ek, M. B.; Wei, H.; Meng, J.; Dong, J.; Wu, Y.; Zhan, X.; Liu, J.; Jiang, Z.; Vargas, M.

    2014-12-01

    Over the past two decades, satellite measurements are being increasingly used in weather and climate prediction systems and have made a considerable progress in accurate numerical weather and climate predictions. However, it is noticed that the utilization of satellite measurements over land is far less than over ocean, because of the high land surface inhomogeneity and the high emissivity variabilities in time and space of surface characteristics. In this presentation, we will discuss the application efforts of satellite land observations in the National Centers for Environmental Prediction (NCEP) operational Global Forecast System (GFS) in order to improve the global numerical weather prediction (NWP). Our study focuses on use of satellite data sets such as vegetation type and green vegetation fraction, assimilation of satellite products such as soil moisture retrieval, and direct radiance assimilation. Global soil moisture data products could be used for initialization of soil moisture state variables in numerical weather, climate and hydrological forecast models. A global Soil Moisture Operational Product System (SMOPS) has been developed at NOAA-NESDIS to continuously provide global soil moisture data products to meet NOAA-NCEP's soil moisture data needs. The impact of the soil moisture data products on numerical weather forecast is assessed using the NCEP GFS in which the Ensemble Kalman Filter (EnKF) data assimilation algorithm has been implemented. In terms of radiance assimilation, satellite radiance measurements in various spectral channels are assimilated through the JCSDA Community Radiative Transfer Model (CRTM) on the NCEP Gridpoint Statistical Interpolation (GSI) system, which requires the CRTM to calculate model brightness temperature (Tb) with input of model atmosphere profiles and surface parameters. Particularly, for surface sensitive channels (window channels), Tb largely depends on surface parameters such as land surface skin temperature, soil

  14. Noninvasive Temperature Measurement Based on Microwave Temperature Sensor

    OpenAIRE

    Shoucheng Ding

    2013-01-01

    In this study, we have a research of the noninvasive temperature measurement based on microwave temperature sensor. Moreover, in order to solve the surface temperature measurement for designing microwave temperature sensor, the microwave was issued by the transmitting antenna. Microwave encountered by the measured object to return back to the measured object and then convert it into electrical signals, the use of the quantitative relationship between this signal and input noise temperature to...

  15. Determination of atmospheric aerosol properties over land using satellite measurements

    NARCIS (Netherlands)

    Kokhanovsky, A.A.; Leeuw, G. de

    2009-01-01

    Mostly, aerosol properties are poorly understood because the aerosol properties are very sparse. The first workshop on the determination of atmospheric aerosol properties over land using satellite measurements is convened in Bremen, Germany. In this workshop, the topics of discussions included a var

  16. Impact of sea surface temperature on satellite retrieval of sea surface salinity

    Science.gov (United States)

    Jin, Xuchen; Zhu, Qiankun; He, Xianqiang; Chen, Peng; Wang, Difeng; Hao, Zengzhou; Huang, Haiqing

    2016-10-01

    Currently, global sea surface salinity (SSS) can be retrieved by the satellite microwave radiometer onboard the satellite, such as the Soil Moisture and Ocean Salinity(SMOS) and the Aqurius. SMOS is an Earth Explorer Opportunity Mission from the European Space Agency(ESA). It was launched at a sun-synchronous orbit in 2009 and one of the payloads is called MIRAS(Microwave Imaging Radiometer using Aperture Synthesis), which is the first interferometric microwave radiometer designed for observing SSS at L-band(1.41 GHz).The foundation of the salinity retrieval by microwave radiometer is that the sea surface radiance at L-band has the most suitable sensitivity with the variation of the salinity. It is well known that the sensitivity of brightness temperatures(TB) to SSS depends on the sea surface temperature (SST), but the quantitative impact of the SST on the satellite retrieval of the SSS is still poorly known. In this study, we investigate the impact of the SST on the accuracy of salinity retrieval from the SMOS. First of all, The dielectric constant model proposed by Klein and Swift has been used to estimate the vertically and horizontally polarized brightness temperatures(TV and TH) of a smooth sea water surface at L-band and derive the derivatives of TV and TH as a function of SSS to show the relative sensitivity at 45° incident angle. Then, we use the GAM(generalized additive model) method to evaluate the association between the satellite-measured brightness temperature and in-situ SSS at different SST. Moreover, the satellite-derived SSS from the SMOS is validated using the ARGO data to assess the RMSE(root mean squared error). We compare the SMOS SSS and ARGO SSS over two regions of Pacific ocean far from land and ice under different SST. The RMSE of retrieved SSS at different SST have been estimated. Our results showed that SST is one of the most significant factors affecting the accuracy of SSS retrieval. The satellite-measured brightness temperature has a

  17. Spectral Measurements of Geosynchronous Satellites During Glint Season

    Science.gov (United States)

    Chun, F.; Tucker, R.; Weld, E.; Chun, F.; Tippets, R.

    During certain times of the year, stable geosynchronous (GEO) satellites are known to glint or exhibit a very bright specular reflection, which is easily observed through broadband photometric filters. The glints are typically brighter in the Johnson red filter compared to the Johnson blue filter. In previous years, USAFA cadets have developed and refined techniques to take, calibrate and process satellite spectral data taken using a diffraction grating on the USAFA 16-inch, f/8.2 telescope (slitless spectroscopy). To the best of our knowledge, we have not seen any published research on observing glints across the visible spectrum. We present research from an Air Force Academy senior physics capstone project on observing glints off of GEO satellites using slitless spectroscopy. We discuss the calibration of the measurements using solar analog and solar twin stars, as well as results of the spectra of a glinting GEO satellite. A key question is whether a GEO satellite glint is localized in wavelength or equally observed across the entire spectra.

  18. Satellite air temperature estimation for monitoring the canopy layer heat island of Milan

    DEFF Research Database (Denmark)

    Pichierri, Manuele; Bonafoni, Stefania; Biondi, Riccardo

    2012-01-01

    2007 and 2010 were processed. Analysis of the canopy layer heat island (CLHI) maps during summer months reveals an average heat island effect of 3–4K during nighttime (with some peaks around 5K) and a weak CLHI intensity during daytime. In addition, the satellite maps reveal a well defined island shape......In this work, satellite maps of the urban heat island of Milan are produced using satellite-based infrared sensor data. For this aim, we developed suitable algorithms employing satellite brightness temperatures for the direct air temperature estimation 2 m above the surface (canopy layer), showing...

  19. Cirrus cloud-temperature interactions over a tropical station, Gadanki from lidar and satellite observations

    Energy Technology Data Exchange (ETDEWEB)

    S, Motty G, E-mail: mottygs@gmail.com; Satyanarayana, M., E-mail: mottygs@gmail.com; Krishnakumar, V., E-mail: mottygs@gmail.com; Dhaman, Reji k., E-mail: mottygs@gmail.com [Department of Optoelectronics, University of Kerala, Kariavattom, Trivandrum-695 581, Kerala (India)

    2014-10-15

    The cirrus clouds play an important role in the radiation budget of the earth's atmospheric system and are important to characterize their vertical structure and optical properties. LIDAR measurements are obtained from the tropical station Gadanki (13.5{sup 0} N, 79.2{sup 0} E), India, and meteorological indicators derived from Radiosonde data. Most of the cirrus clouds are observed near to the tropopause, which substantiates the strength of the tropical convective processes. The height and temperature dependencies of cloud height, optical depth, and depolarization ratio were investigated. Cirrus observations made using CALIPSO satellite are compared with lidar data for systematic statistical study of cirrus climatology.

  20. Validation of satellite data with IASOA observatories and shipboard measurements in Arctic Ocean

    Science.gov (United States)

    Repina, Irina; Artamonov, Arseniy; Mazilkina, Alexandra; Valiullin, Denis; Stanichny, Sergey

    2016-04-01

    The paper shows the possibility of using surface observation data at high latitudes for the validation of different satellite products. We use data from International Arctic Systems for Observing the Atmosphere (IASOA) observatories and data from Nansen and Amundsen basins observation system (NABOS) project. The NABOS field experiment was carried out in the central part of the Arctic and in the eastern Arctic seas during summer and fall period of 2004-2009, 2013 and 2015. Newly improved satellite products and surface observations provide an opportunity to revisit remote-sensing capabilities for estimating shortwave and longwave radiative fluxes, as well as turbulent fluxes at high latitudes. Estimates of SW fluxes from the MODIS and LW fluxes from the NOAA satellites are evaluated against land observations from IASOA observatories, and unique shipboard measurements. Results show that the satellite products are in better agreement with observations than those from numerical models. Therefore, the large scale satellite based estimates should be useful for model evaluation and for providing information in formulating energy budgets at high latitudes. Visible and near-infrared albedos over snow and ice surfaces are retrieved from AVHRR. Comparison with surface measurements of albedo in arctic observatories and Arctic ocean shows very good agreement. Meteorological and micrometeorological observations were used to validate the surface temperature and surface heat fluxes in the satellite data. Compared data arrays are independent and sufficiently detailed to perform trustworthy evaluations. The spatial and temporal patterns of the resulting flux fields are investigated and compared with those derived from satellite observations such as HOAPS, from blended data such as AOFLUX (in the open water cases). A computation of the sensible heat flux at the surface is formulated on the basis of spatial variations of the surface temperature estimated from satellite data. Based on

  1. Global clear-sky surface skin temperature from multiple satellites using a single-channel algorithm with angular anisotropy corrections

    Science.gov (United States)

    Scarino, Benjamin R.; Minnis, Patrick; Chee, Thad; Bedka, Kristopher M.; Yost, Christopher R.; Palikonda, Rabindra

    2017-01-01

    Surface skin temperature (Ts) is an important parameter for characterizing the energy exchange at the ground/water-atmosphere interface. The Satellite ClOud and Radiation Property retrieval System (SatCORPS) employs a single-channel thermal-infrared (TIR) method to retrieve Ts over clear-sky land and ocean surfaces from data taken by geostationary Earth orbit (GEO) and low Earth orbit (LEO) satellite imagers. GEO satellites can provide somewhat continuous estimates of Ts over the diurnal cycle in non-polar regions, while polar Ts retrievals from LEO imagers, such as the Advanced Very High Resolution Radiometer (AVHRR), can complement the GEO measurements. The combined global coverage of remotely sensed Ts, along with accompanying cloud and surface radiation parameters, produced in near-realtime and from historical satellite data, should be beneficial for both weather and climate applications. For example, near-realtime hourly Ts observations can be assimilated in high-temporal-resolution numerical weather prediction models and historical observations can be used for validation or assimilation of climate models. Key drawbacks to the utility of TIR-derived Ts data include the limitation to clear-sky conditions, the reliance on a particular set of analyses/reanalyses necessary for atmospheric corrections, and the dependence on viewing and illumination angles. Therefore, Ts validation with established references is essential, as is proper evaluation of Ts sensitivity to atmospheric correction source.This article presents improvements on the NASA Langley GEO satellite and AVHRR TIR-based Ts product that is derived using a single-channel technique. The resulting clear-sky skin temperature values are validated with surface references and independent satellite products. Furthermore, an empirically adjusted theoretical model of satellite land surface temperature (LST) angular anisotropy is tested to improve satellite LST retrievals. Application of the anisotropic correction

  2. Global Clear-Sky Surface Skin Temperature from Multiple Satellites Using a Single-Channel Algorithm with Angular Anisotropy Corrections

    Science.gov (United States)

    Scarino, Benjamin R.; Minnis, Patrick; Chee, Thad; Bedka, Kristopher M.; Yost, Christopher R.; Palikonda, Rabindra

    2017-01-01

    Surface skin temperature (T(sub s)) is an important parameter for characterizing the energy exchange at the ground/water-atmosphere interface. The Satellite ClOud and Radiation Property retrieval System (SatCORPS) employs a single-channel thermal-infrared (TIR) method to retrieve T(sub s) over clear-sky land and ocean surfaces from data taken by geostationary Earth orbit (GEO) and low Earth orbit (LEO) satellite imagers. GEO satellites can provide somewhat continuous estimates of T(sub s) over the diurnal cycle in non-polar regions, while polar T(sub s) retrievals from LEO imagers, such as the Advanced Very High Resolution Radiometer (AVHRR), can complement the GEO measurements. The combined global coverage of remotely sensed T(sub s), along with accompanying cloud and surface radiation parameters, produced in near-realtime and from historical satellite data, should be beneficial for both weather and climate applications. For example, near-realtime hourly T(sub s) observations can be assimilated in high-temporal-resolution numerical weather prediction models and historical observations can be used for validation or assimilation of climate models. Key drawbacks to the utility of TIR-derived T(sub s) data include the limitation to clear-sky conditions, the reliance on a particular set of analyses/reanalyses necessary for atmospheric corrections, and the dependence on viewing and illumination angles. Therefore, T(sub s) validation with established references is essential, as is proper evaluation of T(sub s) sensitivity to atmospheric correction source. This article presents improvements on the NASA Langley GEO satellite and AVHRR TIR-based T(sub s) product that is derived using a single-channel technique. The resulting clear-sky skin temperature values are validated with surface references and independent satellite products. Furthermore, an empirically adjusted theoretical model of satellite land surface temperature (LST) angular anisotropy is tested to improve

  3. High temperature skin friction measurement

    Science.gov (United States)

    Tcheng, Ping; Holmes, Harlan K.; Supplee, Frank H., Jr.

    1989-01-01

    Skin friction measurement in the NASA Langley hypersonic propulsion facility is described. The sensor configuration utilized an existing balance, modified to provide thermal isolation and an increased standoff distance. For test run times of about 20 sec and ambient-air cooling of the test section and balance, the modified balance performed satisfactorily, even when it was subjected to acoustic and structural vibration. The balance is an inertially balanced closed-loop servo system where the current to a moving-coil motor needed to restore or null the output from the position sensor is a measure of the force or skin friction tending to displace the moving element. The accuracy of the sensor is directly affected by the position sensor in the feedback loop, in this case a linear-variable differential transformer which has proven to be influenced by temperature gradients.

  4. A Three-Dimensional Satellite Retrieval Method for Atmospheric Temperature and Moisture Profiles

    Institute of Scientific and Technical Information of China (English)

    ZHANG Lei; QIU Chongjian; HUANG Jianping

    2008-01-01

    A three-dimensional variational method iS proposed to simultaneously retrieve the 3-D atmospheric temperature and moisture profiles from satellite radiance measurements.To include both vertical structure and the horizontal patterns of the atmospheric temperature and moisture.an EOF technique iS used to decompose the temperature and moisture field in a 3-D space.A number of numerical simulations are conducted and they demonstrate that the 3-D method iS less sensitive to the observation errors compared to the 1-D method.When the observation error iS more than 2.0 K.to get the best results.the truncation number for the EOF'S expansion have to be restricted to 2 in the 1-D method.while it can be set as large as 40 in a 3-D method.This results in the truncation error being reduced and the retrieval accuracy being improved in the 3-D method.Compared to the 1-D method.the rlTLS errors of the 3-D method are reduced by 48%and 36%for the temperature and moisture retrievals,respectively.Using the real satellite measured brightness temperatures at 0557 UTC 31 July 2002,the temperature and moisture profiles are retrieved over a region(20°-45°N,100°-125°E)and compared with 37 collocated radiosonde observations.The results show that the retrieval accuracy with a 3-D method iS significantly higher than those with the 1-D method.

  5. Generation of high resolution sea surface temperature using multi-satellite data for operational oceanography

    Institute of Scientific and Technical Information of China (English)

    YANG Chan-Su; KIM Sun-Hwa; OUCHI Kazuo; BACK Ji-Hun

    2015-01-01

    In the present article, we introduce a high resolution sea surface temperature (SST) product generated daily by Korea Institute of Ocean Science and Technology (KIOST). The SST product is comprised of four sets of data including eight-hour and daily average SST data of 1 km resolution, and is based on the four infrared (IR) satellite SST data acquired by advanced very high resolution radiometer (AVHRR), Moderate Resolution Imaging Spectroradiometer (MODIS), Multifunctional Transport Satellites-2 (MTSAT-2) Imager and Meteorological Imager (MI), two microwave radiometer SSTs acquired by Advanced Microwave Scanning Radiometer 2 (AMSR2), and WindSAT within-situ temperature data. These input satellite andin-situ SST data are merged by using the optimal interpolation (OI) algorithm. The root-mean-square-errors (RMSEs) of satellite andin-situ data are used as a weighting value in the OI algorithm. As a pilot product, four SST data sets were generated daily from January to December 2013. In the comparison between the SSTs measured by moored buoys and the daily mean KIOST SSTs, the estimated RMSE was 0.71°C and the bias value was –0.08°C. The largest RMSE and bias were 0.86 and –0.26°C respectively, observed at a buoy site in the boundary region of warm and cold waters with increased physical variability in the Sea of Japan/East Sea. Other site near the coasts shows a lower RMSE value of 0.60°C than those at the open waters. To investigate the spatial distributions of SST, the Group for High Resolution Sea Surface Temperature (GHRSST) product was used in the comparison of temperature gradients, and it was shown that the KIOST SST product represents well the water mass structures around the Korean Peninsula. The KIOST SST product generated from both satellite and buoy data is expected to make substantial contribution to the Korea Operational Oceanographic System (KOOS) as an input parameter for data assimilation.

  6. Study of land surface temperature and spectral emissivity using multi-sensor satellite data

    Indian Academy of Sciences (India)

    P K Srivastava; T J Majumdar; Amit K Bhattacharya

    2010-02-01

    In this study, an attempt has been made to estimate land surface temperatures (LST) and spectral emissivities over a hard rock terrain using multi-sensor satellite data. The study area, of about 6000 km2, is a part of Singhbhum–Orissa craton situated in the eastern part of India. TIR data from ASTER, MODIS and Landsat ETM+ have been used in the present study. Telatemp Model AG-42D Portable Infrared Thermometer was used for ground measurements to validate the results derived from satellite (MODIS/ASTER) data. LSTs derived using Landsat ETM+ data of two different dates have been compared with the satellite data (ASTER and MODIS) of those two dates. Various techniques, viz., temperature and emissivity separation (TES) algorithm, gray body adjustment approach in TES algorithm, Split-Window algorithms and Single Channel algorithm along with NDVI based emissivity approach have been used. LSTs derived from bands 31 and 32 of MODIS data using Split-Window algorithms with higher viewing angle (50°) (LST1 and LST2) are found to have closer agreement with ground temperature measurements (ground LST) over waterbody, Dalma forest and Simlipal forest, than that derived from ASTER data (TES with AST 13). However, over agriculture land, there is some uncertainty and difference between the measured and the estimated LSTs for both validation dates for all the derived LSTs. LST obtained using Single Channel algorithm with NDVI based emissivity method in channel 13 of ASTER data has yielded closer agreement with ground measurements recorded over vegetation and mixed lands of low spectral contrast. LST results obtained with TIR band 6 of Landsat ETM+ using Single Channel algorithm show close agreement over Dalma forest, Simlipal forest and waterbody with LSTs obtained using MODIS and ASTER data for a different date. Comparison of LSTs shows good agreement with ground measurements in thermally homogeneous area. However, results in agriculture area with less homogeneity show

  7. Derivation and evaluation of land surface temperature from the geostationary operational environmental satellite series

    Science.gov (United States)

    Fang, Li

    according to the characteristics of the imager onboard the GOES series. For the GOES 8-11 and GOES R series with split window (SW) channels, a new temperature and emissivity separation (TES) approach was proposed for deriving LST and LSE simultaneously by using multiple-temporal satellite observations. Two split-window regression formulas were selected for this approach, and two satellite observations over the same geo-location within a certain time interval were utilized. This method is particularly applicable to geostationary satellite missions from which qualified multiple-temporal observations are available. For the GOES M(12)-Q series without SW channels, the dual-window LST algorithm was adopted to derive LST. Instead of using the conventional training method to generate coefficients for the LST regression algorithms, a machine training technique was introduced to automatically select the criteria and the boundary of the sub-ranges for generating algorithm coefficients under different conditions. A software package was developed to produce a brand new GOES LST product from both operational GOES measurements and historical archive. The system layers of the software and related system input and output were illustrated in this work. Comprehensive evaluation of GOES LST products was conducted by validating products against multiple ground-based LST observations, LST products from fine-resolution satellites (e.g. MODIS) and GSIP LST products. The key issues relevant to the cloud diffraction effect were studied as well. GOES measurements as well as ancillary data, including satellite and solar geometry, water vapor, cloud mask, land emissivity etc., were collected to generate GOES LST products. In addition, multiple in situ temperature measurements were collected to test the performance of the proposed GOES LST retrieval algorithms. The ground-based dataset included direct surface temperature measurements from the Atmospheric Radiation Measurement program (ARM), and

  8. Observing convection with satellite, radar, and lightning measurements

    Science.gov (United States)

    Hamann, Ulrich; Nisi, Luca; Clementi, Lorenzo; Ventura, Jordi Figueras i.; Gabella, Marco; Hering, Alessandro M.; Sideris, Ioannis; Trefalt, Simona; Germann, Urs

    2015-04-01

    Heavy precipitation, hail, and wind gusts are the fundamental meteorological hazards associated with strong convection and thunderstorms. The thread is particularly severe in mountainous areas, e.g. it is estimated that on average between 50% and 80% of all weather-related damage in Switzerland is caused by strong thunderstorms (Hilker et al., 2010). Intense atmospheric convection is governed by processes that range from the synoptic to the microphysical scale and are considered to be one of the most challenging and difficult weather phenomena to predict. Even though numerical weather prediction models have some skills to predict convection, in general the exact location of the convective initialization and its propagation cannot be forecasted by these models with sufficient precision. Hence, there is a strong interest to improve the short-term forecast by using statistical, object oriented and/or heuristic nowcasting methods. MeteoSwiss has developed several operational nowcasting systems for this purpose such as TRT (Hering, 2008) and COALITION (Nisi, 2014). In this contribution we analyze the typical development of convection using measurements of the Swiss C-band Dual Polarization Doppler weather radar network, the MSG SEVIRI satellite, and the Météorage lighting network. The observations are complemented with the analysis and forecasts of the COSMO model. Special attention is given to the typical evolutionary stages like the pre-convective environment, convective initiation, cloud top glaciation, start, maximum, and end of precipitation and lightning activity. The pre-convective environment is examined using instability indices derived from SEVIRI observations and the COSMO forecasts. During the early development satellite observations are used to observe the rise of the cloud top, the growth of the cloud droplet or crystals, and the glaciation of the cloud top. SEVIRI brightness temperatures, channel differences, and temporal trends as suggested by

  9. Calibration of the Distributed Hydrological Model mHM using Satellite derived Land Surface Temperature

    Science.gov (United States)

    Zink, M.; Samaniego, L. E.; Cuntz, M.

    2012-12-01

    A combined investigation of the water and energy balance in hydrologic models can lead to a more accurate estimation of hydrological fluxes and state variables, such as evapotranspiration and soil moisture. Hydrologic models are usually calibrated against discharge measurements, and thus are only trained on information of few points within a catchment. This procedure does not take into account any spatio-temporal variability of fluxes or state variables. Satellite data are a useful source of information to account for this spatial distributions. The objective of this study is to calibrate the distributed hydrological model mHM with satellite derived Land Surface Temperature (LST) fields provided by the Land Surface Analysis - Satellite Application Facility (LSA-SAF). LST is preferred to other satellite products such as soil moisture or evapotranspiration due to its higher precision. LST is obtained by solving the energy balance by assuming that the soil heat flux and the storage term are negligible on a daily time step. The evapotranspiration is determined by closing the water balance in mHM. The net radiation is calculated by using the incoming short- and longwave radiation, albedo and emissivity data provided by LSA-SAF. The Multiscale Parameter Regionalization technique (MPR, Samaniego et al. 2010) is used to determine the aerodynamic resistance among other parameters. The optimization is performed within the time period 2008-2010 using three objective functions that consider 1) only discharge, 2) only LST, and 3) a combination of both. The proposed method is applied to seven major German river basins: Danube, Ems, Main, Mulde, Neckar, Saale, and Weser. The annual coefficient of correlation between LSA-SAF incoming shortwave radiation and 28 meteorological stations operated by the German Weather Service (DWD) is 0.94 (RMSE = 29 W m-2) in 2009. LSA-SAF incoming longwave radiation could be further evaluated at two eddy covariance stations with a very similar

  10. Measurements of sea ice by satellite and airborne altimetry

    DEFF Research Database (Denmark)

    Kildegaard Rose, Stine

    A changing sea ice cover in the Arctic Ocean is an early indicator of a climate in transition, the sea ice has in addition a large impact on the climate. The annual and interannual variations of the sea ice cover have been observed by satellites since the start of the satellite era in 1979......, and it has been in retreat every since. The mass balance of the sea ice is an important input to climate models, where the ice thickness is the most uncertain parameter. In this study, data from the CryoSat-2 radar altimeter satellite are used. CryoSat-2 has been measuring the sea ice in the Arctic Ocean...... freeboard is found to be 35 cm for both the airborne and satellite data implying, that the radar signal is here reflected from the snow surface, probably due to weather conditions. CryoSat-2 is very sensitive to returns from specular surfaces, even if they appear o_-nadir. This contaminates the “true...

  11. Air quality performed with satellite measurement within the QUITSAT project

    Science.gov (United States)

    Masieri, Samuele; Petritoli, Andrea; Premuda, Margarita; Kostadinov, Ivan; Bortoli, Daniele; Ravegnani, Fabrizio; Giovanelli, Giorgio

    Ground pollutants monitoring, using satellite observation, represents an interesting and high potential approach to air quality that could be inserted into Global monitoring systems. The QUITSAT Italian pilot project (air QUality with Integration of ground based and SAtellite measurements and chemical Transport and multiphase model), funded by the Italian Space Agency (ASI), proposes a new approach producing some interesting results in this frame. The approach focuses in the integration of the satellite observations (ENVISAT/SCIAMACHY and AURA/OMI) with the outputs of the GAMES (Gas Aerosol Modelling Evaluation System) chemical transport model, to provide the evaluation of the tropospheric profiles of some atmo-spheric compounds such as NO2 , O3 , HCHO and SO2 . This activity appears to be very useful to retrieve the surface concentration of trace gases from tropospheric columns of atmospheric compounds obtained with satellite instrumentation. The comparison with the in situ analyzer network over the Po' Valley shows a good correlation between the two data set. The corre-spondence can be improved taking into account also concentration gradients between different stations, classifying the ground base stations according to their rural or urban characteristics and considering the general orography of the ground. Results and methodology are presented and discussed.

  12. Study of High-Temperature Superconductor Diplexers for Satellite Communications

    Institute of Scientific and Technical Information of China (English)

    LIU Juan-xiu; YANG Kai; LUO Zheng-xiang; BU Shi-rong; NING Jun-song; ZHANG Tian-liang

    2005-01-01

    The high-temperature superconductor (HTSC) resonator and diplexer are simulated by full-wave tools.A newly developed miniature HTSC diplexer is designed and fabricated on double sided YBa2Cu3O7 (YBCO) film (YBCO/LaAlO3/YBCO), the thickness of which is 400 nm for YBCO and 0.5 mm for the LaAlO3. The measured results show a good agreement with the simulation. The volume and mass of the diplexers are greatly reduced by miniaturized configuration.

  13. Cloud and Thermodynamic Parameters Retrieved from Satellite Ultraspectral Infrared Measurements

    Science.gov (United States)

    Zhou, Daniel K.; Smith, William L.; Larar, Allen M.; Liu, Xu; Taylor, Jonathan P.; Schluessel, Peter; Strow, L. Larrabee; Mango, Stephen A.

    2008-01-01

    Atmospheric-thermodynamic parameters and surface properties are basic meteorological parameters for weather forecasting. A physical geophysical parameter retrieval scheme dealing with cloudy and cloud-free radiance observed with satellite ultraspectral infrared sounders has been developed and applied to the Infrared Atmospheric Sounding Interferometer (IASI) and the Atmospheric InfraRed Sounder (AIRS). The retrieved parameters presented herein are from radiance data gathered during the Joint Airborne IASI Validation Experiment (JAIVEx). JAIVEx provided intensive aircraft observations obtained from airborne Fourier Transform Spectrometer (FTS) systems, in-situ measurements, and dedicated dropsonde and radiosonde measurements for the validation of the IASI products. Here, IASI atmospheric profile retrievals are compared with those obtained from dedicated dropsondes, radiosondes, and the airborne FTS system. The IASI examples presented here demonstrate the ability to retrieve fine-scale horizontal features with high vertical resolution from satellite ultraspectral sounder radiance spectra.

  14. NOx emission trends in megacities derived from satellite measurements

    Science.gov (United States)

    Konovalov, Igor; Beekmann, Matthias; Richter, Andreas

    2010-05-01

    The effects of air pollutant emissions on both local air quality in megacities and composition of the atmosphere on regional and global scales are currently an important issue of atmospheric researches. In order to properly evaluate these effects, atmospheric models should be provided with accurate information on emissions of major air pollutants. However, such information is frequently very uncertain, as it is documented in literature. The quantification of emissions and related effects is an especially difficult task in the case of developing countries. Recently, it has been demonstrated that satellite measurements of nitrogen dioxide (NO2) can be used as a source of independent information on NOx emissions. In particular, the satellite measurements were used in our earlier studies to improve spatial allocation of NOx emissions, to estimate multi-annual changes of NOx emissions on regional scales and to validate data of traditional emission inventories (see Ref. 1, 2). The goals of the present study are (1) developing an efficient method for estimation of NOx emissions trend in megacity regions by using satellite measurements and an inverse modeling technique and (2) obtaining independent estimates of NOx emission trends in several megacities in Europe and the Middle East in the period from 1996 to 2008. The study is based on the synergetic use of the data for tropospheric NO2 column amounts derived from the long-term GOME and SCIAMACHY measurements and simulations performed by the CHIMERE chemistry transport model. We performed the analysis involving methods of different complexity ranging from estimation of linear trends in the tropospheric NO2 columns retrieved from satellite measurements to evaluation of nonlinear trends in NOx emission estimates obtained with the inverse modeling approach, which, in the given case, involves only very simple and transparent formulations. The most challenging part of the study is the nonlinear trend estimation, which is

  15. The annual cycle of satellite-derived sea surface temperature in the southwestern Atlantic Ocean

    Science.gov (United States)

    Podesta, Guillermo P.; Brown, Otis B.; Evans, Robert H.

    1991-01-01

    The annual cycle of sea surface temperature (SST) in the southwestern Atlantic Ocean was estimated using four years (July 1984-July 1988) of NOAA Advanced Very High Resolution Radiometer observations. High resolution satellite observations at 1-km space and daily time resolution were grided at 100-km space and 5-day time intervals to develop an analysis dataset for determination of low frequency SST variability. The integral time scale, a measure of serial correlation, was found to vary from 40 to 60 days in the domain of interest. The existence of superannual trends in the SST data was investigated, but conclusive results could not be obtained. The annual cycle (and, in particular, the annual harmonic) explains a large proportion of the SST variability. The estimated amplitude of the cycle ranges between 5 deg and 13 deg C throughout the study area, with minima in August-September and maxima in February. The resultant climatology is compared with an arbitrary 5-day satellite SST field, and with the COADS/ICE SST climatology. It was found that the higher resolution satellite-based SST climatology resolves boundary current structure and has significantly better structural agreement with the observed field.

  16. Atmospheric correction for sea surface temperature retrieval from single thermal channel radiometer data onboard Kalpana satellite

    Science.gov (United States)

    Shahi, Naveen R.; Agarwal, Neeraj; Mathur, Aloke K.; Sarkar, Abhijit

    2011-06-01

    An atmospheric correction method has been applied on sea surface temperature (SST) retrieval algorithm using Very High Resolution Radiometer (VHRR) single window channel radiance data onboard Kalpana satellite (K-SAT). The technique makes use of concurrent water vapour fields available from Microwave Imager onboard Tropical Rainfall Measuring Mission (TRMM/TMI) satellite. Total water vapour content and satellite zenith angle dependent SST retrieval algorithm has been developed using Radiative Transfer Model [MODTRAN ver3.0] simulations for Kalpana 10.5-12.5 μm thermal window channel. Retrieval of Kalpana SST (K-SST) has been carried out for every half-hourly acquisition of Kalpana data for the year 2008 to cover whole annual cycle of SST over Indian Ocean (IO). Validation of the retrieved corrected SST has been carried out using near-simultaneous observations of ship and buoys datasets covering Arabian Sea, Bay of Bengal and IO regions. A significant improvement in Root Mean Square Deviation (RMSD) of K-SST with respect to buoy (1.50-1.02 K) and to ship datasets (1.41-1.19 K) is seen with the use of near real-time water vapour fields of TMI. Furthermore, comparison of the retrieved SST has also been carried out using near simultaneous observations of TRMM/TMI SST over IO regions. The analysis shows that K-SST has overall cold bias of 1.17 K and an RMSD of 1.09 K after bias correction.

  17. Temperature effect on proliferation and differentiation of satellite cells from turkeys with different growth rates.

    Science.gov (United States)

    Clark, D L; Coy, C S; Strasburg, G M; Reed, K M; Velleman, S G

    2016-04-01

    Poultry selected for growth have an inefficient thermoregulatory system and are more sensitive to temperature extremes. Satellite cells are precursors to skeletal muscle and mediate all posthatch muscle growth. Their physiological functions are affected by temperature. The objective of the current study was to determine how temperature affects satellite cells isolated from the pectoralis major (p. major) muscle (breast muscle) of turkeys selected for increased 16 wk body weight (F line) in comparison to a randombred control line (RBC2) from which the F line originated. Pectoralis major muscle satellite cells were thermally challenged by culturing between 33°C and 43°C to analyze the effects of cold and heat on proliferation and differentiation as compared to control temperature of 38°C. Expression levels of myogenic regulatory factors: myogenic differentiation factor 1 (MYOD1) and myogenin (MYOG) were quantified by quantitative polymerase chain reaction (qPCR). At all sampling times, proliferation increased at a linear rate across temperature in both the RBC2 and F lines. Differentiation also increased at a linear rate across temperature from 33 to 41°C at all sampling times in both the F and RBC2 lines. Satellite cells isolated from F line turkeys were more sensitive to both hot and cold temperatures as proliferation and differentiation increased to a greater extent across temperature (33 to 43°C) when compared with the RBC2 line. Expression of MYOD1 and MYOG increased as temperatures increased from 33 to 41°C at all sampling times in both the F and RBC2 lines. These results demonstrate that satellite cell function is sensitive to both cold and hot temperatures and p. major muscle satellite cells from F line turkeys are more sensitive to temperature extremes than RBC2 satellite cells.

  18. Measurement of sea ice and icebergs topography using satellite imagery

    Science.gov (United States)

    Zakharov, I.; Power, D.; Prasad, S.

    2016-12-01

    Sea ice topography represents geospatial information on the three-dimensional geometrical attributes of the ice surface including height and shape of various ice features. The features interest consist of deformed (pressure ridges, rubbles and hummocks) and level sea ice as well as glacial ice. Sea ice topography is important for scientific research and climate studies because it helps characterise ice volume and thickness and it influences the near-surface atmospheric transport by impacting the drag coefficients. It also represents critical information to marine operational applications, such as ships navigation and risks assessment for offshore infrastructures. The several methods were used to measure sea ice topography from a single satellite image as well as multiple images. The techniques based on the single image, acquired by optical or synthetic aperture radar (SAR) satellites, derive the height and shape information from shadow and shading. Optical stereo images acquired by very high resolution (0.5 m) satellites were used to extract highly detailed digital elevation model (DEM). SAR imagery allowed extraction of DEM using stereo-radargrammetry and interferometry. The images from optical satellites WorldView, Pleiades, GeoEye, Spot, and Landsat-8 were used to measure topography of sea ice deformation features and glacial ice including icebergs and ice islands. These features were mapped in regions of the Central Arctic, Baffin Bay and the coast of Greenland. SAR imagery including interferometric TanDEM-X data and full polarimetric Radarsat-2 were used to extract ridge frequency and measure spatial parameters of glacial features. The accuracy was evaluated by comparison of the results from different methods demonstrating their strengths and limitations. Ridge height and frequency were also compared with the high resolution results from the Los Alamos sea ice model (CICE), regionally implemented for Baffin Bay and the Labrador Sea.

  19. Evaluation of Aerosol Properties in GCMs using Satellite Measurements

    Science.gov (United States)

    Wang, Y.; Jiang, J. H.; Su, H.; Zhang, H.

    2015-12-01

    Atmospheric aerosols from natural or anthropogenic sources have profound impacts on the regional and global climate. Currently the radiative forcing of aerosols predicted by global climate models remains highly uncertain, representing the largest uncertainty in climate predictions. The uncertainty mainly arises from the complicated aerosol chemical and physical properties, coarse emission inventories for pre-cursor gases as well as unrealistic representations of aerosol activation and cloud processing in global climate models. In this study, we will utilize multiple satellite measurements including MODIS, MISR and CALIPSO to quantitatively evaluate aerosol simulations from climate models. Our analyses show that the global means in AOD climatology from NCAR CAM5 and GFDL AM3 simulations are comparable with satellite measurements. However, the overall correlation coefficient between the AOD spatial patterns from CAM5 and satellite is only 0.4. Moreover, at finer scales, the magnitude of AOD in CAM5 is much lower than satellite measurements for most of the non-dust regions, especially over East Asia. GFDL AM3 shows better AOD simulations over East Asia. The underestimated AOD over remote maritime areas in CAM5 was attributed to the unrealistic wet removal processes in convective clouds of CAM5. Over continents, biases on AOD could stem from underestimations in the emissions inventory and unresolved sub-grid variations of relative humidity due to the model's coarse resolution. Uncertainty from emission inventory over developing countries in East Asia will be assessed using the newly updated Regional Emission inventory in Asia (REAS) and Multi-resolution Emission Inventory in China (MEIC) in the model simulations.

  20. Algorithm for Automated Mapping of Land Surface Temperature Using LANDSAT 8 Satellite Data

    Directory of Open Access Journals (Sweden)

    Ugur Avdan

    2016-01-01

    Full Text Available Land surface temperature is an important factor in many areas, such as global climate change, hydrological, geo-/biophysical, and urban land use/land cover. As the latest launched satellite from the LANDSAT family, LANDSAT 8 has opened new possibilities for understanding the events on the Earth with remote sensing. This study presents an algorithm for the automatic mapping of land surface temperature from LANDSAT 8 data. The tool was developed using the LANDSAT 8 thermal infrared sensor Band 10 data. Different methods and formulas were used in the algorithm that successfully retrieves the land surface temperature to help us study the thermal environment of the ground surface. To verify the algorithm, the land surface temperature and the near-air temperature were compared. The results showed that, for the first case, the standard deviation was 2.4°C, and for the second case, it was 2.7°C. For future studies, the tool should be refined with in situ measurements of land surface temperature.

  1. A study of temperature's spatial distribution in Neuquen River valley through satellite imaging

    Directory of Open Access Journals (Sweden)

    Marisa Gloria Cogliati

    2010-01-01

    Full Text Available This paper looks into the spatial distribution of brightness and surface temperature through the use of LAND SAT7 ETM+ and NO AA-AVHRR satellite imagery in the cultivated valley of the Neuquén river. Studying the spatial distribution of temperatures in an area with a somewhat complex terrain requires the use of a great density of meteorological measurements. It is often impossible to obtain the right density of the argometeorological network due to the high installation and maintenance costs. Remote sensors provide a large flow of information in various resolutions, at considerably lower costs. Determining the valley's warm and cold zones would allow for more efficient irrigation and frost-protection methods, and it would provide tools to improve the area's productive planning.

  2. Land-mobile-satellite fade measurements in Australia

    Science.gov (United States)

    Vogel, Wolfhard J.; Goldhirsh, Julius; Hase, Yoshihiro

    1992-01-01

    Attenuation measurements were implemented at L-band (1.5 GHz) in southeastern Australia during an 11-day period in October 1988 as part of a continuing examination of the propagation effects due to roadside trees and terrain for mobile-satellite service. Beacon transmissions from the geostationary ETS-V and IPORS satellites were observed. The Australian campaign expanded to another continent our Mobile Satellite Service data base of measurements executed in the eastern and southwestern United States regions. An empirical fade distribution model based on U.S. data predicted the Australian results with errors generally less than 1 dB in the 1-20 percent probability region. Directive antennas are shown to suffer deeper fades under severe shadowing conditions (3 dB excess at 4 percent), the equal-probability isolation between co- and cross-polarized transmissions deteriorated to 10 dB at the 5 dB fade level, and antenna diversity reception may reduce unavailability of the system by a factor of 2-8.

  3. Evaluation of CHAMP Satellite Orbit with SLR Measurements

    Institute of Scientific and Technical Information of China (English)

    QIN Xianping; YANG Yuanxi

    2005-01-01

    The technique of Evaluating CHAMP satellite orbit with SLR measurements is presented. As an independent evaluation of the orbit solution, SLR data observed from January 1 to 16, 2002 are processed to compute the residuals after fixing the GFZ's post science orbits solutions. The SLR residuals are computed as the differences of the SLR measurements minus the corresponding distances between the SLR station and the GPS-derived orbit positions. On the basis of the SLR residuals analysis, it is found that the accuracy of GFZ's post science orbits is better than 10 em and that there is no systematic error in GFZ's post science orbits.

  4. Retrieving Clear-Sky Surface Skin Temperature for Numerical Weather Prediction Applications from Geostationary Satellite Data

    Directory of Open Access Journals (Sweden)

    Baojuan Shan

    2013-01-01

    Full Text Available Atmospheric models rely on high-accuracy, high-resolution initial radiometric and surface conditions for better short-term meteorological forecasts, as well as improved evaluation of global climate models. Remote sensing of the Earth’s energy budget, particularly with instruments flown on geostationary satellites, allows for near-real-time evaluation of cloud and surface radiation properties. The persistence and coverage of geostationary remote sensing instruments grant the frequent retrieval of near-instantaneous quasi-global skin temperature. Among other cloud and clear-sky retrieval parameters, NASA Langley provides a non-polar, high-resolution land and ocean skin temperature dataset for atmospheric modelers by applying an inverted correlated k-distribution method to clear-pixel values of top-of-atmosphere infrared temperature. The present paper shows that this method yields clear-sky skin temperature values that are, for the most part, within 2 K of measurements from ground-site instruments, like the Southern Great Plains Atmospheric Radiation Measurement (ARM Infrared Thermometer and the National Climatic Data Center Apogee Precision Infrared Thermocouple Sensor. The level of accuracy relative to the ARM site is comparable to that of the Moderate-resolution Imaging Spectroradiometer (MODIS with the benefit of an increased number of daily measurements without added bias or increased error. Additionally, matched comparisons of the high-resolution skin temperature product with MODIS land surface temperature reveal a level of accuracy well within 1 K for both day and night. This confidence will help in characterizing the diurnal and seasonal biases and root-mean-square differences between the retrievals and modeled values from the NASA Goddard Earth Observing System Version 5 (GEOS-5 in preparation for assimilation of the retrievals into GEOS-5. Modelers should find the immediate availability and broad coverage of these skin temperature

  5. Intercomparison of desert dust optical depth from satellite measurements

    Directory of Open Access Journals (Sweden)

    E. Carboni

    2012-08-01

    Full Text Available This work provides a comparison of satellite retrievals of Saharan desert dust aerosol optical depth (AOD during a strong dust event through March 2006. In this event, a large dust plume was transported over desert, vegetated, and ocean surfaces. The aim is to identify the differences between current datasets. The satellite instruments considered are AATSR, AIRS, MERIS, MISR, MODIS, OMI, POLDER, and SEVIRI. An interesting aspect is that the different algorithms make use of different instrument characteristics to obtain retrievals over bright surfaces. These include multi-angle approaches (MISR, AATSR, polarisation measurements (POLDER, single-view approaches using solar wavelengths (OMI, MODIS, and the thermal infrared spectral region (SEVIRI, AIRS. Differences between instruments, together with the comparison of different retrieval algorithms applied to measurements from the same instrument, provide a unique insight into the performance and characteristics of the various techniques employed. As well as the intercomparison between different satellite products, the AODs have also been compared to co-located AERONET data. Despite the fact that the agreement between satellite and AERONET AODs is reasonably good for all of the datasets, there are significant differences between them when compared to each other, especially over land. These differences are partially due to differences in the algorithms, such as assumptions about aerosol model and surface properties. However, in this comparison of spatially and temporally averaged data, it is important to note that differences in sampling, related to the actual footprint of each instrument on the heterogeneous aerosol field, cloud identification and the quality control flags of each dataset can be an important issue.

  6. Sub-visual cirrus LIDAR measurements for satellite masking improvement

    Science.gov (United States)

    Landulfo, Eduardo; Larroza, Eliane G.; Lopes, Fábio J. S.; de Jesus, Wellington C.; Bottino, Marcus; Nakaema, Walter M.; Steffens, Juliana

    2008-10-01

    Understanding the impact of cirrus cloud on modifying both the solar reflected and terrestrial emitted radiations is crucial for climate studies. Unlike most boundary layer stratus and stratocumulus clouds that have a net cooling effect on the climate, high-level thin cirrus clouds have a warming effect on our climate. However, the satellites as GOES from the NOAA series are limited to the cloud top and its reflectivity or brightness temperature, without assessing accurately the optical depth or physical thickness. Other more recent sensors as MODIS are able to determine optical depths for aerosols and clouds but when related to cirrus they are still inaccurate. Research programs as First ISCCP, FIRE, HOIST, ECLIPS and ARM have concentrated efforts in the research of cirrus, being based mainly on the observations of combined terrestrial remote sensing and airplanes instruments. LIDARs are able to detect sub-visual cirrus cloud (SVCs) in altitudes above 15 km and estimate exactly their height, thickness and optical depth, contributing with information for satellites sensors and radiative transfer models. In order to research characteristics of SVCs, the LIDAR system at Instituto de Pesquisas Energeticas e Nucleares has as objective to determine such parameters and implement a cirrus cloud mask that could be used in the satellite images processing as well as in the qualitative improvement of the radiative parameters for numerical models of climate changes. The first preliminary study shows where we compare the data lidar with Brightness temperature differences between the split-window data from GOES-10 (DSA/INPE) and CALIPSO.

  7. New algorithm for extreme temperature measurements

    NARCIS (Netherlands)

    Damean, N.

    2000-01-01

    A new algorithm for measurement of extreme temperature is presented. This algorithm reduces the measurement of the unknown temperature to the solving of an optimal control problem, using a numerical computer. Based on this method, a new device for extreme temperature measurements is projected. It co

  8. [Measurement and management of body temperature].

    Science.gov (United States)

    Iwashita, Hironobu; Matsukawa, Takashi

    2012-01-01

    Body temperature regulation is at the basis of life maintenance and for humans to maintain the central body temperature within the range of 37 +/- 0.2 degrees Celsius. In the case of anesthesia, a patient would have a high possibility of lower body temperature and also could have more complications with low body temperature. In addition, it would generate more complications and extend a period of hospitalization. For that reason, anesthetists must pay full attention to body temperature management during surgery. Measurement for central body temperature is necessary as a monitor for body temperature measurement and the measurement for nasopharyngeal temperature, tympanic temperature, and lung artery temperature is effective for this purpose. Therapeutic hypothermia for brain injury is receiving attention recently as a preventive method for brain disorder and the method is utilized in hospital facilities. In future, it is expected to attain the most suitable treatment method by clinical studies on low body temperature.

  9. Noninvasive Temperature Measurement Based on Microwave Temperature Sensor

    Directory of Open Access Journals (Sweden)

    Shoucheng Ding

    2013-01-01

    Full Text Available In this study, we have a research of the noninvasive temperature measurement based on microwave temperature sensor. Moreover, in order to solve the surface temperature measurement for designing microwave temperature sensor, the microwave was issued by the transmitting antenna. Microwave encountered by the measured object to return back to the measured object and then convert it into electrical signals, the use of the quantitative relationship between this signal and input noise temperature to real-time calibration. In order to calculate the antenna brightness temperature and then after signal conditioning circuit, which can show the temperature value, in order to achieve the detection of microwave temperature. Microwave-temperature measurement system hardware based on 89C51 microcontroller consists of the microwave temperature sensor, signal conditioning circuitry and chip control circuit, AD converter circuit and display circuit. The system software is by the main program, the AD conversion routines, subroutines and delay subprogram. The microwave temperature measurement characterize has: without gain fluctuations, without the impact of changes in the noise of the machine, to provide continuous calibration, wide dynamic range.

  10. Scenarios and performance measures for advanced ISDN satellite design and experiments

    Science.gov (United States)

    Pepin, Gerard R.

    1991-01-01

    Described here are the contemplated input and expected output for the Interim Service Integrated Services Digital Network (ISDN) Satellite (ISIS) and Full Service ISDN Satellite (FSIS) Models. The discrete event simulations of these models are presented with specific scenarios that stress ISDN satellite parameters. Performance measure criteria are presented for evaluating the advanced ISDN communication satellite designs of the NASA Satellite Communications Research (SCAR) Program.

  11. Measuring Specific Heats at High Temperatures

    Science.gov (United States)

    Vandersande, Jan W.; Zoltan, Andrew; Wood, Charles

    1987-01-01

    Flash apparatus for measuring thermal diffusivities at temperatures from 300 to 1,000 degrees C modified; measures specific heats of samples to accuracy of 4 to 5 percent. Specific heat and thermal diffusivity of sample measured. Xenon flash emits pulse of radiation, absorbed by sputtered graphite coating on sample. Sample temperature measured with thermocouple, and temperature rise due to pulse measured by InSb detector.

  12. Measuring thermal budgets of active volcanoes by satellite remote sensing

    Science.gov (United States)

    Glaze, L.; Francis, P. W.; Rothery, D. A.

    1989-01-01

    Thematic Mapper measurements of the total radiant energy flux Q at Lascar volcano in north Chile for December 1984 are reported. The results are consistent with the earlier suggestion that a lava lake is the source of a reported thermal budget anomaly, and with values for 1985-1986 that are much lower, suggesting that fumarolic activity was then a more likely heat source. The results show that satellite remote sensing may be used to monitor the activity of a volcano quantitatively, in a way not possible by conventional ground studies, and may provide a method for predicting eruptions.

  13. Total ozone retrieval from satellite multichannel filter radiometer measurements

    Energy Technology Data Exchange (ETDEWEB)

    Lovill, J.E.; Sullivan, T.J.; Weichel, R.L.; Ellis, J.S.; Huebel, J.G.; Korver, J.; Weidhaas, P.P.; Phelps, F.A.

    1978-05-25

    A total ozone retrieval model has been developed to process radiance data gathered by a satellite-mounted multichannel filter radiometer (MFR). Extensive effort went into theoretical radiative transfer modeling, a retrieval scheme was developed, and the technique was applied to the MFR radiance measurements. The high quality of the total ozone retrieval results was determined through comparisons with Dobson measurements. Included in the report are global total ozone maps for 20 days between May 12 and July 5, 1977. A comparison of MFR results for 13 days in June 1977 with Dobson spectrophotometer measurements of ozone for the same period showed good agreement: there was a root-mean-square difference of 6.2% (equivalent to 20.2 m.atm.cm). The estimated global total ozone value for June 1977 (296 m.atm.cm) was in good agreement with satellite backscatter ultraviolet data for June 1970 (304 m.atm.cm) and June 1971 (preliminary data--299 m.atm.cm).

  14. Comparison of Satellite-Derived Land Surface Temperature and Air Temperature from Meteorological Stations on the Pan-Arctic Scale

    Directory of Open Access Journals (Sweden)

    Christiane Schmullius

    2013-05-01

    Full Text Available Satellite-based temperature measurements are an important indicator for global climate change studies over large areas. Records from Moderate Resolution Imaging Spectroradiometer (MODIS, Advanced Very High Resolution Radiometer (AVHRR and (Advanced Along Track Scanning Radiometer ((AATSR are providing long-term time series information. Assessing the quality of remote sensing-based temperature measurements provides feedback to the climate modeling community and other users by identifying agreements and discrepancies when compared to temperature records from meteorological stations. This paper presents a comparison of state-of-the-art remote sensing-based land surface temperature data with air temperature measurements from meteorological stations on a pan-arctic scale (north of 60° latitude. Within this study, we compared land surface temperature products from (AATSR, MODIS and AVHRR with an in situ air temperature (Tair database provided by the National Climate Data Center (NCDC. Despite analyzing the whole acquisition time period of each land surface temperature product, we focused on the inter-annual variability comparing land surface temperature (LST and air temperature for the overlapping time period of the remote sensing data (2000–2005. In addition, land cover information was included in the evaluation approach by using GLC2000. MODIS has been identified as having the highest agreement in comparison to air temperature records. The time series of (AATSR is highly variable, whereas inconsistencies in land surface temperature data from AVHRR have been found.

  15. Nonlinear analysis of a simple model of temperature evolution in a satellite

    CERN Document Server

    Gaite, Jose; Pérez-Grande, Isabel

    2007-01-01

    We analyse a simple model of the heat transfer to and from a small satellite orbiting round a solar system planet. Our approach considers the satellite isothermal, with external heat input from the environment and from internal energy dissipation, and output to the environment as black-body radiation. The resulting nonlinear ordinary differential equation for the satellite's temperature is analysed by qualitative, perturbation and numerical methods, which show that the temperature approaches a periodic pattern (attracting limit cycle). This approach can occur in two ways, according to the values of the parameters: (i) a slow decay towards the limit cycle over a time longer than the period, or (ii) a fast decay towards the limit cycle over a time shorter than the period. In the first case, an exactly soluble average equation is valid. We discuss the consequences of our model for the thermal stability of satellites.

  16. Application of satellite microwave remote sensed brightness temperature in the regional soil moisture simulation

    Directory of Open Access Journals (Sweden)

    X. K. Shi

    2009-02-01

    Full Text Available As the satellite microwave remote sensed brightness temperature is sensitive to land surface soil moisture (SM and SM is a basic output variable in model simulation, it is of great significance to use the brightness temperature data to improve SM numerical simulation. In this paper, the theory developed by Yan et al. (2004 about the relationship between satellite microwave remote sensing polarization index and SM was used to estimate the land surface SM from AMSR-E (Advanced Microwave Scanning Radiometer – Earth Observing System brightness temperature data. With consideration of land surface soil texture, surface roughness, vegetation optical thickness, and the AMSR-E monthly SM products, the regional daily land surface SM was estimated over the eastern part of the Qinghai-Tibet Plateau. The results show that the estimated SM is lower than the ground measurements and the NCEP (American National Centers for Environmental Prediction reanalysis data at the Maqu Station (33.85° N, 102.57° E and the Tanglha Station (33.07° N, 91.94° E, but its regional distribution is reasonable and somewhat better than that from the daily AMSR-E SM product, and its temporal variation shows a quick response to the ground daily precipitations. Furthermore, in order to improve the simulating ability of the WRF (Weather Research and Forecasting model to land surface SM, the estimated SM was assimilated into the Noah land surface model by the Newtonian relaxation (NR method. The results indicate that, by fine tuning of the quality factor in NR method, the simulated SM values are improved most in desert area, followed by grassland, shrub and grass mixed zone. At temporal scale, Root Mean Square Error (RMSE values between simulated and observed SM are decreased 0.03 and 0.07 m3/m3 by using the NR method in the Maqu Station and the Tanglha Station, respectively.

  17. Analysis of the role of urban vegetation in local climate of Budapest using satellite measurements

    Science.gov (United States)

    Pongracz, Rita; Bartholy, Judit; Dezso, Zsuzsanna; Fricke, Cathy

    2016-08-01

    Urban areas significantly modify the natural environment due to the concentrated presence of humans and the associated anthropogenic activities. In order to assess this effect, it is essential to evaluate the relationship between urban and vegetated surface covers. In our study we focused on the Hungarian capital, Budapest, in which about 1.7 million inhabitants are living nowadays. The entire city is divided by the river Danube into the hilly, greener Buda side on the west, and the flat, more densely built-up Pest side on the east. Most of the extended urban vegetation, i.e., forests are located in the western Buda side. The effects of the past changing of these green areas are analyzed using surface temperature data calculated from satellite measurements in the infrared channels, and NDVI (Normalized Difference Vegetation Index) derived from visible and near-infrared satellite measurements. For this purpose, data available from sensor MODIS (Moderate Resolution Imaging Spectroradiometer) of NASA satellites (i.e., Terra and Aqua) are used. First, the climatological effects of forests on the urban heat island intensity are evaluated. Then, we also aim to evaluate the relationship of surface temperature and NDVI in this urban environment with special focus on vegetation-related sections of the city where the vegetation cover either increased or decreased remarkably.

  18. Axillary and rectal temperature measurements in infants.

    OpenAIRE

    Morley, C J; Hewson, P H; Thornton, A. J.; Cole, T J

    1992-01-01

    Rectal and axillary temperatures were measured during the daytime in 281 infants seen randomly at home and 656 at hospital under 6 months old, using mercury-in-glass thermometers. The normal temperature range derived from the babies at home was 36.7-37.9 degrees C for rectal temperature and 35.6-37.2 degrees C for axillary temperature. Rectal temperature was higher than axillary in 98% of the measurements. The mean (SD) difference between rectal and axillary temperatures was 0.7 (0.5) degrees...

  19. Atmospheric correction for sea surface temperature retrieval from single thermal channel radiometer data onboard Kalpana satellite

    Indian Academy of Sciences (India)

    Naveen R Shahi; Neeraj Agarwal; Aloke K Mathur; Abhijit Sarkar

    2011-06-01

    An atmospheric correction method has been applied on sea surface temperature (SST) retrieval algorithm using Very High Resolution Radiometer (VHRR) single window channel radiance data onboard Kalpana satellite (K-SAT). The technique makes use of concurrent water vapour fields available from Microwave Imager onboard Tropical Rainfall Measuring Mission (TRMM/TMI) satellite. Total water vapour content and satellite zenith angle dependent SST retrieval algorithm has been developed using Radiative Transfer Model [MODTRAN ver3.0] simulations for Kalpana 10.5–12.5 m thermal window channel. Retrieval of Kalpana SST (K-SST) has been carried out for every half-hourly acquisition of Kalpana data for the year 2008 to cover whole annual cycle of SST over Indian Ocean (IO). Validation of the retrieved corrected SST has been carried out using near-simultaneous observations of ship and buoys datasets covering Arabian Sea, Bay of Bengal and IO regions. A significant improvement in Root Mean Square Deviation (RMSD) of K-SST with respect to buoy (1.50–1.02 K) and to ship datasets (1.41–1.19 K) is seen with the use of near real-time water vapour fields of TMI. Furthermore, comparison of the retrieved SST has also been carried out using near simultaneous observations of TRMM/TMI SST over IO regions. The analysis shows that K-SST has overall cold bias of 1.17 K and an RMSD of 1.09 K after bias correction.

  20. Satellite Observations of Wind Farm Impacts on Nocturnal Land Surface Temperature in Iowa

    Directory of Open Access Journals (Sweden)

    Ronald A. Harris

    2014-12-01

    Full Text Available Wind farms (WFs are believed to have an impact on lower boundary layer meteorology. A recent study examined satellite-measured land surface temperature data (LST and found a local nighttime warming effect attributable to a group of four large WFs in Texas. This study furthers their work by investigating the impacts of five individual WFs in Iowa, where the land surface properties and climate conditions are different from those in Texas. Two methods are used to assess WF impacts: first, compare the spatial coupling between the LST changes (after turbine construction versus before and the geographic layouts of the WFs; second, quantify the LST difference between the WFs and their immediate surroundings (non-WF areas. Each WF shows an irrefutable nighttime warming signal relative to the surrounding areas after their turbines were installed, and these warming signals are generally coupled with the geographic layouts of the wind turbines, especially in summer. This study provides further observational evidence that WFs can cause surface warming at nighttime, and that such a signal can be detected by satellite-based sensors.

  1. Temperature measurements in cavitation bubbles

    Science.gov (United States)

    Coutier-Delgosha, Olivier

    2016-11-01

    Cavitation is usually a nearly isothermal process in the liquid phase, but in some specific flow conditions like hot water or cryogenic fluids, significant temperature variations are detected. In addition, a large temperature increase happens inside the cavitation bubbles at the very end of their collapse, due to the fast compression of the gas at the bubble core, which is almost adiabatic. This process is of primary interest in various biomedical and pharmaceutical applications, where the mechanisms of bubble collapse plays a major role. To investigate the amplitude and the spatial distribution of these temperature variations inside and outside the cavitation bubbles, a system based on cold wires has been developed. They have been tested in a configuration of a single bubble obtained by submitting a small air bubble to a large amplitude pressure wave. Some promising results have been obtained after the initial validation tests. This work is funded by the Office of Naval Research Global under Grant N62909-16-1-2116, Dr. Salahuddin Ahmed & Ki-Han Kim program managers.

  2. Field of Temperature Measurement by Virtual Instrumentation

    Directory of Open Access Journals (Sweden)

    Libor HARGAŠ

    2009-01-01

    Full Text Available This paper introduces about temperature determination for given dot of picture through image analysis. Heat transfer is the transition of thermal energy from a heated item to a cooler item. Main method of measurement of temperature in image is Pattern Matching, color scale detection and model detection. We can measure temperature dependency at time for selected point of thermo vision images. This measurement gives idea about the heat transfer at time dependences.

  3. Heavy precipitation retrieval from combined satellite observations and ground-based lightning measurements

    Science.gov (United States)

    Mugnai, A.; Dietrich, S.; Casella, D.; di Paola, F.; Formenton, M.; Sanò, P.

    2010-09-01

    We have developed a series of algorithms for the retrieval of precipitation (especially, heavy precipitation) over the Mediterranean area using satellite observations from the available microwave (MW) radiometers onboard low Earth orbit (LEO) satellites and from the visible-infrared (VIS-IR) SEVIRI radiometer onboard the European geosynchronous (GEO) satellite Meteosat Second Generation (MSG), in conjunction with lightning data from ground-based networks - such as ZEUS and LINET. These are: • A new approach for precipitation retrieval from space (which we call the Cloud Dynamics and Radiation Database approach, CDRD) that incorporates lightning and environmental/dynamical information in addition to the upwelling microwave brightness temperatures (TB’s) so as to reduce the retrieval uncertainty and improve the retrieval performance; • A new combined MW-IR technique for producing frequent precipitation retrievals from space (which we call PM-GCD technique), that uses passive-microwave (PM) retrievals in conjunction with lightning information and the Global Convection Detection (GCD) technique to discriminate deep convective clouds within the GEO observations; • A new morphing approach (which we call the Lightning-based Precipitation Evolving Technique, L-PET) that uses the available lightning measurements for propagating the rainfall estimates from satellite-borne MW radiometers to a much higher time resolution than the MW observations. We will present and discuss our combined MW/IR/lightning precipitation algorithms and analyses with special reference to some case studies over the western Mediterranean.

  4. A statistical method to get surface level air-temperature from satellite observations of precipitable water

    Digital Repository Service at National Institute of Oceanography (India)

    Pankajakshan, T.; Shikauchi, A.; Sugimori, Y.; Kubota, M.

    Vol. 49, pp. 551 to 558. 1993 A Statistical Method to Get Surface Level Air-Temperature from Satellite Observations of Precipitable Water PANKAJAKSHAN THADATHIL*, AKIRA SHIKAUCHI, YASUHIRO SUGIMORI and MASAHISA KUBOTA School of Marine Science... observations for getting the estimates of heat flux across the air-sea boundary (Miller, 1981; Liu, 1988). Bulk method has widely been used for this purpose and the parameters required are: sea surface temperature, and wind speed, air-temperature and specific...

  5. Identification and recovery of discontinuous synoptic features in satellite-retrieved brightness temperatures using a radiative transfer model

    Science.gov (United States)

    White, G. A., III; Mcguirk, J. P.; Thompson, A. H.

    1988-01-01

    An attempt is made to recover and identify discontinuous synoptic features from satellite-retrieved brightness temperatures, with attention to near-discontinuities in temperature and moisture that are typically found in fronts and inversions. Efforts are made to ascertain whether the vectors of satellite channel brightness temperatures can be classified according to synoptic source, and whether those sources are amenable to quantification.

  6. Temperature standards, what and where: resources for effective temperature measurements

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, W.W. Jr.

    1982-01-01

    Many standards have been published to describe devices, methods, and other topics. How they are developed and by whom are briefly described, and an attempt is made to extract most of those relating to temperature measurements. A directory of temperature standards and their sources is provided.

  7. Evaluation of HCMM satellite data for estuarine tidal circulation patterns and thermal inertia soil moisture measurements. [Delaware Bay, Cooper River, and the Potomac River estuaries; Luverne, Minnesota, soil moisture, and water temperature of Lake Anna, Virginia

    Science.gov (United States)

    Wiesnet, D. R.; Mcginnis, D. F., Jr. (Principal Investigator); Matson, M.; Pritchard, J. A.

    1981-01-01

    Digital thermal maps of the Cooper River (SC) and the Potomac River estuaries were prepared from heat capacity mapping radiometer (HCMR) tapes. Tidal phases were correctly interpreted and verified. Synoptic surface circulation patterns were charted by location thermal fronts and water mass boundaries within the estuaries. Thermal anomalies were detected adjacent of a conventional power plant on the Potomac. Under optimum conditions, estuaries as small as the Cooper River can be monitored for generalized thermal/tidal circulation patterns by the HCMM-type IR sensors. The HCMM thermal inertia approach to estimating soil moisture at the Luverne (MN) test site was found to be unsatisfactory as a NESS operational satellite technique because of cloud cover interference. Thermal-IR data show similar structure of the Baltimore and Washington heat islands when compared to NOAA AVHRR thermal-IR data. Thermal anomalies from the warm water discharge water of a nuclear power plant were mapped in Lake Anna, Virginia.

  8. Measuring Moduli Of Elasticity At High Temperatures

    Science.gov (United States)

    Wolfenden, Alan

    1993-01-01

    Shorter, squatter specimens and higher frequencies used in ultrasonic measurement technique. Improved version of piezo-electric ultrasonic composite oscillator technique used to measure moduli of elasticity of solid materials at high temperatures.

  9. Accuracy of Satellite-Measured Wave Heights in the Australian Region for Wave Power Applications

    Science.gov (United States)

    Meath, Sian E.; Aye, Lu; Haritos, Nicholas

    2008-01-01

    This article focuses on the accuracy of satellite data, which may then be used in wave power applications. The satellite data are compared to data from wave buoys, which are currently considered to be the most accurate of the devices available for measuring wave characteristics. This article presents an analysis of satellite- (Topex/Poseidon) and…

  10. Retrieving Marine Inherent Optical Properties from Satellites Using Temperature and Salinity-dependent Backscattering by Seawater

    Science.gov (United States)

    Werdell, Paul J.; Franz, Bryan Alden; Lefler, Jason Travis; Robinson, Wayne D.; Boss, Emmanuel

    2013-01-01

    Time-series of marine inherent optical properties (IOPs) from ocean color satellite instruments provide valuable data records for studying long-term time changes in ocean ecosystems. Semi-analytical algorithms (SAAs) provide a common method for estimating IOPs from radiometric measurements of the marine light field. Most SAAs assign constant spectral values for seawater absorption and backscattering, assume spectral shape functions of the remaining constituent absorption and scattering components (e.g., phytoplankton, non-algal particles, and colored dissolved organic matter), and retrieve the magnitudes of each remaining constituent required to match the spectral distribution of measured radiances. Here, we explore the use of temperature- and salinity-dependent values for seawater backscattering in lieu of the constant spectrum currently employed by most SAAs. Our results suggest that use of temperature- and salinity-dependent seawater spectra elevate the SAA-derived particle backscattering, reduce the non-algal particles plus colored dissolved organic matter absorption, and leave the derived absorption by phytoplankton unchanged.

  11. Ocean tidal signals in observatory and satellite magnetic measurements

    DEFF Research Database (Denmark)

    Maus, S.; Kuvshinov, A.

    2004-01-01

    Ocean flow moves sea water through the Earth's magnetic field, inducing electric fields, currents and secondary magnetic fields. These motionally induced magnetic fields have a potential for the remote sensing of ocean flow variability. A first goal must be to gain a better understanding...... of magnetic field generation by tidal ocean flow. We predict the motionally induced magnetic fields for the six major tidal constituents and compare their amplitudes with the spectra of night time observatory and satellite magnetic measurements for the Indian Ocean. The magnetic variations at the solar S2, K1......, and P1 periods turn out to be dominated by unrelated external fields. In contrast, observed lunar M2 and N2 tidal signals are in fair agreement with predictions from motional induction. The lunar diurnal O1 signal, visible at some observatories, could be caused by ocean flow but disagrees in amplitude...

  12. Satellite measurements of formaldehyde linked to shipping emissions

    Directory of Open Access Journals (Sweden)

    T. Wagner

    2009-11-01

    Full Text Available International shipping is recognized as a pollution source of growing importance, in particular in the remote marine boundary layer. Nitrogen dioxide originating from ship emissions has previously been detected in satellite measurements. This study presents the first satellite measurements of formaldehyde (HCHO linked to shipping emissions as derived from observations made by the Global Ozone Monitoring Experiment (GOME instrument.

    We analyzed enhanced HCHO tropospheric columns from shipping emissions over the Indian Ocean between Sri Lanka and Sumatra. This region offers good conditions in term of plume detection with the GOME instrument as all ship tracks follow a single narrow track in the same east-west direction as used for the GOME pixel scanning. The HCHO signal alone is weak but could be clearly seen in the high-pass filtered data. The line of enhanced HCHO in the Indian Ocean as seen in the 7-year composite of cloud free GOME observations clearly coincides with the distinct ship track corridor from Sri Lanka to Indonesia. The observed mean HCHO column enhancement over this shipping route is about 2.0×1015 molec/cm2.

    Compared to the simultaneously observed NO2 values over the shipping route, those of HCHO are substantially higher; also the HCHO peaks are found at larger distance from the ship routes. These findings indicate that direct emissions of HCHO or degradation of emitted NMHC cannot explain the observed enhanced HCHO values. One possible reason might be increased CH4 degradation due to enhanced OH concentrations related to the ship emissions, but this source is probably too weak to fully explain the observed values.

    The observed HCHO pattern also agrees qualitatively well with results from the coupled earth system model ECHAM5/MESSy applied to atmospheric chemistry (EMAC. However, the modelled HCHO values over the ship corridor are two times lower than in the

  13. Simulation of land surface temperatures: comparison of two climate models and satellite retrievals

    Directory of Open Access Journals (Sweden)

    J. M. Edwards

    2009-03-01

    Full Text Available Recently there has been significant progress in the retrieval of land surface temperature from satellite observations. Satellite retrievals of surface temperature offer several advantages, including broad spatial coverage, and such data are potentially of great value in assessing general circulation models of the atmosphere. Here, retrievals of the land surface temperature over the contiguous United States are compared with simulations from two climate models. The models generally simulate the diurnal range realistically, but show significant warm biases during the summer. The models' diurnal cycle of surface temperature is related to their surface flux budgets. Differences in the diurnal cycle of the surface flux budget between the models are found to be more pronounced than those in the diurnal cycle of surface temperature.

  14. Numerical methods for computing the temperature distribution in satellite systems

    OpenAIRE

    Gómez-Valadés Maturano, Francisco José

    2012-01-01

    [ANGLÈS] The present thesis has been done at ASTRIUM company to find new methods to obtain temperature distributions. Current software packages such as ESATAN or ESARAD provide not only excellent thermal analysis solutions, at a high price as they are very time consuming though, but also radiative simulations in orbit scenarios. Since licenses of this product are usually limited for the use of many engineers, it is important to provide new tools to do these calculations. In consequence, a dif...

  15. Numerical methods for computing the temperature distribution in satellite systems

    OpenAIRE

    Gómez-Valadés Maturano, Francisco José

    2012-01-01

    [ANGLÈS] The present thesis has been done at ASTRIUM company to find new methods to obtain temperature distributions. Current software packages such as ESATAN or ESARAD provide not only excellent thermal analysis solutions, at a high price as they are very time consuming though, but also radiative simulations in orbit scenarios. Since licenses of this product are usually limited for the use of many engineers, it is important to provide new tools to do these calculations. In consequence, a dif...

  16. Application of satellite infrared measurements to mapping sea ice

    Science.gov (United States)

    Barnes, J. C.

    1972-01-01

    The application of the ITOS-SR (scanning radiometer) infrared measurements for mapping sea ice was examined. The work included detailed mapping of ice features visible in the ITOS nighttime DRSR (direct readout scanning radiometer) pictorial data and in Nimbus summertime film strip data. Analyses of digital temperature values from computer printouts of ITOS stored data and from Nimbus data listings were also undertaken, and densitometric measurements of both ITOS and Nimbus data were initiated.

  17. The retrieval of cloud microphysical properties using satellite measurements and an in situ database

    Directory of Open Access Journals (Sweden)

    Christophe Poix

    Full Text Available By combining AVHRR data from the NOAA satellites with information from a database of in situ measurements, large-scale maps can be generated of the microphysical parameters most immediately significant for the modelling of global circulation and climate. From the satellite data, the clouds can be classified into cumuliform, stratiform and cirrus classes and then into further sub-classes by cloud top temperature. At the same time a database of in situ measurements made by research aircraft is classified into the same sub-classes and a statistical analysis is used to derive relationships between the sub-classes and the cloud microphysical properties. These two analyses are then linked to give estimates of the microphysical properties of the satellite observed clouds. Examples are given of the application of this technique to derive maps of the probability of occurrence of precipitating clouds and of precipitating water content derived from a case study within the International Cirrus Experiment (ICE held in 1989 over the North Sea.

  18. Acoustic CT system for temperature distribution measurement

    Institute of Scientific and Technical Information of China (English)

    Shinji Ohyama; Toyofumi Oga; Kazuo Oshima; Junya Takayama

    2008-01-01

    In this paper,a measurement method for crosssectional temperature distribution is addressed. A novel method based on an acoustic CT technique is proposed. Specifically,the temperature distributions are estimated using the time of flight data of several ultrasonic propagation paths. The times of the flight data contain both temperature and wind effect,and the method to select only temperature component is introduced. A filtered back projection method is applied to reconstruct the temperature distributions from the time of flight data. An experimental system was designed and fabricated to realize simultaneous temperature and wind velocity distribution measurements. Through this system,the effectiveness of the proposed measurement method is confirmed.

  19. The effect of temperature on proliferation and differentiation of chicken skeletal muscle satellite cells isolated from different muscle types.

    Science.gov (United States)

    Harding, Rachel L; Halevy, Orna; Yahav, Shlomo; Velleman, Sandra G

    2016-04-01

    Skeletal muscle satellite cells are a muscle stem cell population that mediate posthatch muscle growth and repair. Satellite cells respond differentially to environmental stimuli based upon their fiber-type of origin. The objective of this study was to determine how temperatures below and above the in vitro control of 38°C affected the proliferation and differentiation of satellite cells isolated from the chicken anaerobic pectoralis major (p. major) or mixed fiber biceps femoris (b.femoris) muscles. The satellite cells isolated from the p. major muscle were more sensitive to both cold and hot temperatures compared to the b.femoris satellite cells during both proliferation and differentiation. The expressions of myogenic regulatory transcription factors were also different between satellite cells from different fiber types. MyoD expression, which partially regulates proliferation, was generally expressed at higher levels in p. major satellite cells compared to the b.femoris satellite cells from 33 to 43°C during proliferation and differentiation. Similarly, myogenin expression, which is required for differentiation, was also expressed at higher levels in p. major satellite cells in response to both cold and hot temperatures during proliferation and differentiation than b. femoris satellite cells. These data demonstrate that satellite cells from the anaerobic p. major muscle are more sensitive than satellite cells from the aerobic b. femoris muscle to both hot and cold thermal stress during myogenic proliferation and differentiation.

  20. [Temperature Measurement with Bluetooth under Android Platform].

    Science.gov (United States)

    Wang, Shuai; Shen, Hao; Luo, Changze

    2015-03-01

    To realize the real-time transmission of temperature data and display using the platform of intelligent mobile phone and bluetooth. Application of Arduino Uno R3 in temperature data acquisition of digital temperature sensor DS18B20 acquisition, through the HC-05 bluetooth transmits the data to the intelligent smart phone Android system, realizes transmission of temperature data. Using Java language to write applications program under Android development environment, can achieve real-time temperature data display, storage and drawing temperature fluctuations drawn graphics. Temperature sensor is experimentally tested to meet the body temperature measurement precision and accuracy. This paper can provide a reference for other smart phone mobile medical product development.

  1. Accurate measurement of unsteady state fluid temperature

    Science.gov (United States)

    Jaremkiewicz, Magdalena

    2017-03-01

    In this paper, two accurate methods for determining the transient fluid temperature were presented. Measurements were conducted for boiling water since its temperature is known. At the beginning the thermometers are at the ambient temperature and next they are immediately immersed into saturated water. The measurements were carried out with two thermometers of different construction but with the same housing outer diameter equal to 15 mm. One of them is a K-type industrial thermometer widely available commercially. The temperature indicated by the thermometer was corrected considering the thermometers as the first or second order inertia devices. The new design of a thermometer was proposed and also used to measure the temperature of boiling water. Its characteristic feature is a cylinder-shaped housing with the sheath thermocouple located in its center. The temperature of the fluid was determined based on measurements taken in the axis of the solid cylindrical element (housing) using the inverse space marching method. Measurements of the transient temperature of the air flowing through the wind tunnel using the same thermometers were also carried out. The proposed measurement technique provides more accurate results compared with measurements using industrial thermometers in conjunction with simple temperature correction using the inertial thermometer model of the first or second order. By comparing the results, it was demonstrated that the new thermometer allows obtaining the fluid temperature much faster and with higher accuracy in comparison to the industrial thermometer. Accurate measurements of the fast changing fluid temperature are possible due to the low inertia thermometer and fast space marching method applied for solving the inverse heat conduction problem.

  2. Offshore Wind Energy: Wind and Sea Surface Temperature from Satellite Observations

    DEFF Research Database (Denmark)

    Karagali, Ioanna

    as the entire atmosphere above. Under conditions of light winds and strong solar insolation, warming of the upper oceanic layer may occur. In this PhD study, remote sensing from satellites is used to obtain information for the near-surface ocean wind and the sea surface temperature over the North Sea...

  3. Fractional calculus approach to study temperature distribution within a spinning satellite

    Directory of Open Access Journals (Sweden)

    Jyotindra C. Prajapati

    2016-09-01

    Full Text Available This paper deals with the temperature distribution within spinning satellites and problem is formulated in terms of fractional differential equation. Applying fractional calculus approach, solution of this equation is obtained in terms of Wright generalized hypergeometric function, a generalization of exponential function.

  4. Coherent Uncertainty Analysis of Aerosol Measurements from Multiple Satellite Sensors

    Science.gov (United States)

    Petrenko, M.; Ichoku, C.

    2013-01-01

    Aerosol retrievals from multiple spaceborne sensors, including MODIS (on Terra and Aqua), MISR, OMI, POLDER, CALIOP, and SeaWiFS altogether, a total of 11 different aerosol products were comparatively analyzed using data collocated with ground-based aerosol observations from the Aerosol Robotic Network (AERONET) stations within the Multi-sensor Aerosol Products Sampling System (MAPSS, http://giovanni.gsfc.nasa.gov/mapss/ and http://giovanni.gsfc.nasa.gov/aerostat/). The analysis was performed by comparing quality-screened satellite aerosol optical depth or thickness (AOD or AOT) retrievals during 2006-2010 to available collocated AERONET measurements globally, regionally, and seasonally, and deriving a number of statistical measures of accuracy. We used a robust statistical approach to detect and remove possible outliers in the collocated data that can bias the results of the analysis. Overall, the proportion of outliers in each of the quality-screened AOD products was within 12%. Squared correlation coefficient (R2) values of the satellite AOD retrievals relative to AERONET exceeded 0.6, with R2 for most of the products exceeding 0.7 over land and 0.8 over ocean. Root mean square error (RMSE) values for most of the AOD products were within 0.15 over land and 0.09 over ocean. We have been able to generate global maps showing regions where the different products present advantages over the others, as well as the relative performance of each product over different landcover types. It was observed that while MODIS, MISR, and SeaWiFS provide accurate retrievals over most of the landcover types, multi-angle capabilities make MISR the only sensor to retrieve reliable AOD over barren and snow / ice surfaces. Likewise, active sensing enables CALIOP to retrieve aerosol properties over bright-surface shrublands more accurately than the other sensors, while POLDER, which is the only one of the sensors capable of measuring polarized aerosols, outperforms other sensors in

  5. Coherent uncertainty analysis of aerosol measurements from multiple satellite sensors

    Directory of Open Access Journals (Sweden)

    M. Petrenko

    2013-02-01

    Full Text Available Aerosol retrievals from multiple spaceborne sensors, including MODIS (on Terra and Aqua, MISR, OMI, POLDER, CALIOP, and SeaWiFS – altogether, a total of 11 different aerosol products – were comparatively analyzed using data collocated with ground-based aerosol observations from the Aerosol Robotic Network (AERONET stations within the Multi-sensor Aerosol Products Sampling System (MAPSS, http://giovanni.gsfc.nasa.gov/mapss/ and http://giovanni.gsfc.nasa.gov/aerostat/. The analysis was performed by comparing quality-screened satellite aerosol optical depth or thickness (AOD or AOT retrievals during 2006–2010 to available collocated AERONET measurements globally, regionally, and seasonally, and deriving a number of statistical measures of accuracy. We used a robust statistical approach to detect and remove possible outliers in the collocated data that can bias the results of the analysis. Overall, the proportion of outliers in each of the quality-screened AOD products was within 12%. Squared correlation coefficient (R2 values of the satellite AOD retrievals relative to AERONET exceeded 0.6, with R2 for most of the products exceeding 0.7 over land and 0.8 over ocean. Root mean square error (RMSE values for most of the AOD products were within 0.15 over land and 0.09 over ocean. We have been able to generate global maps showing regions where the different products present advantages over the others, as well as the relative performance of each product over different landcover types. It was observed that while MODIS, MISR, and SeaWiFS provide accurate retrievals over most of the landcover types, multi-angle capabilities make MISR the only sensor to retrieve reliable AOD over barren and snow/ice surfaces. Likewise, active sensing enables CALIOP to retrieve aerosol properties

  6. Coherent uncertainty analysis of aerosol measurements from multiple satellite sensors

    Directory of Open Access Journals (Sweden)

    M. Petrenko

    2013-07-01

    Full Text Available Aerosol retrievals from multiple spaceborne sensors, including MODIS (on Terra and Aqua, MISR, OMI, POLDER, CALIOP, and SeaWiFS – altogether, a total of 11 different aerosol products – were comparatively analyzed using data collocated with ground-based aerosol observations from the Aerosol Robotic Network (AERONET stations within the Multi-sensor Aerosol Products Sampling System (MAPSS, http://giovanni.gsfc.nasa.gov/mapss/ and http://giovanni.gsfc.nasa.gov/aerostat/. The analysis was performed by comparing quality-screened satellite aerosol optical depth or thickness (AOD or AOT retrievals during 2006–2010 to available collocated AERONET measurements globally, regionally, and seasonally, and deriving a number of statistical measures of accuracy. We used a robust statistical approach to detect and remove possible outliers in the collocated data that can bias the results of the analysis. Overall, the proportion of outliers in each of the quality-screened AOD products was within 7%. Squared correlation coefficient (R2 values of the satellite AOD retrievals relative to AERONET exceeded 0.8 for many of the analyzed products, while root mean square error (RMSE values for most of the AOD products were within 0.15 over land and 0.07 over ocean. We have been able to generate global maps showing regions where the different products present advantages over the others, as well as the relative performance of each product over different land cover types. It was observed that while MODIS, MISR, and SeaWiFS provide accurate retrievals over most of the land cover types, multi-angle capabilities make MISR the only sensor to retrieve reliable AOD over barren and snow/ice surfaces. Likewise, active sensing enables CALIOP to retrieve aerosol properties over bright-surface closed shrublands more accurately than the other sensors, while POLDER, which is the only one of the sensors capable of measuring polarized aerosols, outperforms other sensors in certain

  7. First results of measurements of extreme ultraviolet radiation onboard a geostationary satellite "ELECTRO-L"

    Science.gov (United States)

    Nusinov, Anatoliy; Kazachevskaya, Tamara; Gonjukh, David

    Measurements of the intensity of EUV emission in the hydrogen Lyman-alpha line were conducted by a broadband photometer VUSS-E onboard geostationary Hydrometeorological satellite "Electro" since March 2011. The solar hydrogen Lyman-alpha line (lambda = 121.6 nm) was monitored. The photomultiplier with LiF window used as a detector insensitive to visible light. Long-wavelength limit of the spectral band sensitivity of the instrument is about 200 nm, so the signal of the device is defined as the flux of solar radiation in the region of 123-200 nm. Its exclusion was carried out by calculation. Since the satellite "Electro" designed for remote sensing of the Earth, its line of sight focused on Earth. Alignment of instrument in the Sun direction was achieved by installing it on the solar panel, periodically moved in the solar direction. Correction of instrument readings, reduced due to the deviation of its axis from the Sun direction, carried out by calculation. Measurements were carried out every second. The first results of the measurements are presented. The difference in absolute calibration Electro-L/VUSS-E is within 5% of corresponding values for measurements TIMED satellite in those days, that is in agreement with laboratory calibrations. It is useful to measure the temperature of the instrument, as its variation on a small interval of time makes change the value of the output signal about 1-2 %. During first year of operation, the sensitivity of the apparatus remained within ± 2% of measured value, significant degradation of sensitivity was not observed. Over time of observation there have been several large flares of X class. The increase of the signal in the ultraviolet range does not exceed a few percent during these flares.

  8. Satellite-based detection of global urban heat-island temperature influence

    Science.gov (United States)

    Gallo, K.P.; Adegoke, Jimmy O.; Owen, T.W.; Elvidge, C.D.

    2002-01-01

    This study utilizes a satellite-based methodology to assess the urban heat-island influence during warm season months for over 4400 stations included in the Global Historical Climatology Network of climate stations. The methodology includes local and regional satellite retrievals of an indicator of the presence green photosynthetically active vegetation at and around the stations. The difference in local and regional samples of the normalized difference vegetation index (NDVI) is used to estimate differences in mean air temperature. Stations classified as urban averaged 0.90??C (N. Hemisphere) and 0.92??C (S. Hemisphere) warmer than the surrounding environment on the basis of the NDVI-derived temperature estimates. Additionally, stations classified as rural averaged 0.19??C (N. Hemisphere) and 0.16??C (S. Hemisphere) warmer than the surrounding environment. The NDVI-derived temperature estimates were found to be in reasonable agreement with temperature differences observed between climate stations. The results suggest that satellite-derived data sets can be used to estimate the urban heat-island temperature influence on a global basis and that a more detailed analysis of rural stations and their surrounding environment may be necessary to assure that temperature trends derived from assumed rural environments are not influenced by changes in land use/land cover. Copyright 2002 by the American Geophysical Union.

  9. Dynamic temperature measurements with embedded optical sensors.

    Energy Technology Data Exchange (ETDEWEB)

    Dolan, Daniel H.,; Seagle, Christopher T; Ao, Tommy

    2013-10-01

    This report summarizes LDRD project number 151365, \\Dynamic Temperature Measurements with Embedded Optical Sensors". The purpose of this project was to develop an optical sensor capable of detecting modest temperature states (<1000 K) with nanosecond time resolution, a recurring diagnostic need in dynamic compression experiments at the Sandia Z machine. Gold sensors were selected because the visible re ectance spectrum of gold varies strongly with temperature. A variety of static and dynamic measurements were performed to assess re ectance changes at di erent temperatures and pressures. Using a minimal optical model for gold, a plausible connection between static calibrations and dynamic measurements was found. With re nements to the model and diagnostic upgrades, embedded gold sensors seem capable of detecting minor (<50 K) temperature changes under dynamic compression.

  10. Benefits Derived From Laser Ranging Measurements for Orbit Determination of the GPS Satellite Orbit

    Science.gov (United States)

    Welch, Bryan W.

    2007-01-01

    While navigation systems for the determination of the orbit of the Global Position System (GPS) have proven to be very effective, the current research is examining methods to lower the error in the GPS satellite ephemerides below their current level. Two GPS satellites that are currently in orbit carry retro-reflectors onboard. One notion to reduce the error in the satellite ephemerides is to utilize the retro-reflectors via laser ranging measurements taken from multiple Earth ground stations. Analysis has been performed to determine the level of reduction in the semi-major axis covariance of the GPS satellites, when laser ranging measurements are supplemented to the radiometric station keeping, which the satellites undergo. Six ground tracking systems are studied to estimate the performance of the satellite. The first system is the baseline current system approach which provides pseudo-range and integrated Doppler measurements from six ground stations. The remaining five ground tracking systems utilize all measurements from the current system and laser ranging measurements from the additional ground stations utilized within those systems. Station locations for the additional ground sites were taken from a listing of laser ranging ground stations from the International Laser Ranging Service. Results show reductions in state covariance estimates when utilizing laser ranging measurements to solve for the satellite s position component of the state vector. Results also show dependency on the number of ground stations providing laser ranging measurements, orientation of the satellite to the ground stations, and the initial covariance of the satellite's state vector.

  11. Estimation of Satellite Orientation from Space Surveillance Imagery Measured with an Adaptive Optics Telescope

    Science.gov (United States)

    1996-12-01

    SATELLITE ORIENTATION FROM SPACE SURVEILLANCE IMAGERY MEASURED WITH AN ADAPTIVE OPTICS TELESCOPE THESIS Gregory E. Wood Lieutenant, USAF AFIT/GSO/ENP...the official policy or position of the Department of Defense or the U. S. Government. AFIT/GSO/ENP/96D-02 ESTIMATION OF SATELLITE ORIENTATION FROM...surveillance operations. xii ESTIMATION OF SATELLITE ORIENTATION FROM SPACE SURVEILLANCE IMAGERY MEASURED WITH AN ADAPTIVE OPTICS TELESCOPE

  12. Long-Term Record of Arctic and Antarctic Sea and Ice Surface Temperatures from Thermal Infrared Satellite Sensors

    Science.gov (United States)

    Luis, Cristina; Dybkjær, Gorm; Eastwood, Steinar; Tonboe, Rasmus; Høyer, Jacob

    2015-04-01

    Surface temperature is among the most important variables in the surface energy balance equation and it significantly affects the atmospheric boundary layer structure, the turbulent heat exchange and, over ice, the ice growth rate. Here we measure the surface temperature using thermal infrared sensors from 10-12 µm wavelength, a method whose primary limitation over sea ice is the detection of clouds. However, in the Arctic and around Antarctica there are very few conventional observations of surface temperature from buoys, and it is sometimes difficult to determine if the temperature is measured at the surface or within the snowpack, the latter of which often results in a warm bias. To reduce this bias, much interest is being paid to alternative remote sensing methods for monitoring high latitude surface temperature. We used Advanced Very High Resolution Radiometer (AVHRR) global area coverage (GAC) data to produce a high latitude sea surface temperature (SST), ice surface temperature (IST) and ice cap skin temperature dataset spanning 27 years (1982-2009). This long-term climate record is the first of its kind for IST. In this project we used brightness temperatures from the infrared channels of AVHRR sensors aboard NOAA and Metop polar-orbiting satellites. Surface temperatures were calculated using separate split window algorithms for day SST, night SST, and IST. The snow surface emissivity across all angles of the swath were simulated specifically for all sensors using an emission model. Additionally, all algorithms were tuned to the Arctic using simulated brightness temperatures from a radiative transfer model with atmospheric profiles and skin temperatures from European Centre for Medium-Range Forecasts (ECMWF) re-analysis data (ERA-Interim). Here we present the results of product quality as compared to in situ measurements from buoys and infrared radiometers, as well as a preliminary analysis of climate trends revealed by the record.

  13. Measuring temperature rise during orthopaedic surgical procedures.

    Science.gov (United States)

    Manoogian, Sarah; Lee, Adam K; Widmaier, James C

    2016-09-01

    A reliable means for measuring temperatures generated during surgical procedures is needed to recommend best practices for inserting fixation devices and minimizing the risk of osteonecrosis. Twenty four screw tests for three surgical procedures were conducted using the four thermocouples in the bone and one thermocouple in the screw. The maximum temperature rise recorded from the thermocouple in the screw (92.7±8.9°C, 158.7±20.9°C, 204.4±35.2°C) was consistently higher than the average temperature rise recorded in the bone (31.8±9.3°C, 44.9±12.4°C, 77.3±12.7°C). The same overall trend between the temperatures that resulted from three screw insertion procedures was recorded with significant statistical analyses using either the thermocouple in the screw or the average of several in-bone thermocouples. Placing a single thermocouple in the bone was determined to have limitations in accurately comparing temperatures from different external fixation screw insertion procedures. Using the preferred measurement techniques, a standard screw with a predrilled hole was found to have the lowest maximum temperatures for the shortest duration compared to the other two insertion procedures. Future studies evaluating bone temperature increase need to use reliable temperature measurements for recommending best practices to surgeons.

  14. Transfer and distortion of atmospheric information in the satellite temperature retrieval problem

    Science.gov (United States)

    Thompson, O. E.

    1981-01-01

    A systematic approach to investigating the transfer of basic ambient temperature information and its distortion by satellite systems and subsequent analysis algorithms is discussed. The retrieval analysis cycle is derived, the variance spectrum of information is examined as it takes different forms in that process, and the quality and quantity of information existing at each stop is compared with the initial ambient temperature information. Temperature retrieval algorithms can smooth, add, or further distort information, depending on how stable the algorithm is, and how heavily influenced by a priori data.

  15. Use of SSU/MSU Satellite Observations to Validate Upper Atmospheric Temperature Trends in CMIP5 Simulations

    Directory of Open Access Journals (Sweden)

    Lilong Zhao

    2015-12-01

    Full Text Available The tropospheric and stratospheric temperature trends and uncertainties in the fifth Coupled Model Intercomparison Project (CMIP5 model simulations in the period of 1979–2005 have been compared with satellite observations. The satellite data include those from the Stratospheric Sounding Units (SSU, Microwave Sounding Units (MSU, and the Advanced Microwave Sounding Unit-A (AMSU. The results show that the CMIP5 model simulations reproduced the common stratospheric cooling (−0.46–−0.95 K/decade and tropospheric warming (0.05–0.19 K/decade features although a significant discrepancy was found among the individual models being selected. The changes of global mean temperature in CMIP5 simulations are highly consistent with the SSU measurements in the stratosphere, and the temporal correlation coefficients between observation and model simulations vary from 0.6–0.99 at the 99% confidence level. At the same time, the spread of temperature mean in CMIP5 simulations increased from stratosphere to troposphere. Multiple linear regression analysis indicates that the temperature variability in the stratosphere is dominated by radioactive gases, volcanic events and solar forcing. Generally, the high-top models show better agreement with observations than the low-top model, especially in the lower stratosphere. The CMIP5 simulations underestimated the stratospheric cooling in the tropics and overestimated the cooling over the Antarctic compared to the satellite observations. The largest spread of temperature trends in CMIP5 simulations is seen in both the Arctic and Antarctic areas, especially in the stratospheric Antarctic.

  16. Online data base of satellite sounder and insitu measurements covering two solar cycles

    Science.gov (United States)

    Bilitza, D.; Reinisch, B.; Benson, R.; Grebowsky, J.; Papitashvili, N.; Huang, X.; Schar, W.; Hills, K.

    Accurate descriptions of the solar cycle variations of ionospheric parameters are an important goal of ionospheric modeling. Reliable predictions of these variations are of essential importance for almost all applications of ionospheric models. Unfortunately there are very few global data sources that cover a solar cycle or more. In an effort to expand the solar cycle coverage of data readily available for ionospheric modeling, we have processed a large number of satellite data sets from the sixties, seventies, and early eighties and have made them online accessible as part of NSSDC's ftp archive (http://nssdcftp.gsfc.nasa.gov/spacecraft data/) and it's ATMOWeb retrieval and plotting system (http://nssdc.gsfc.nasa.gov/atmoweb/). We report about two data restoration efforts supported through NASA's Applied Information Systems Research Program (AISRP). The first project deals with insitu data from a large number of US, Canadian, Japanese and German satellites that measured ionospheric densities and temperatures from 1964 to 1983. The accumulated data base includes data from the BE-B, DME-A, AE-B, Alouette 2, ISIS 1, 2, OGO-6, AEROS A, AE-C, -D, -E, Hinotori, ISS-b and DE-2 satellite missions. The second project involves the production of digital topside sounder ionograms from the ISIS 1 and 2 satellites and their subsequent inversion to produce electron-density profiles. Approximately 340,000 ionograms are available from NSSDC as of July 2002. An automatic topside ionogram scaler with true height algorithm (TOPIST) was developed as part of this project and is now being used to obtain electron density profiles from these ionograms. Providing global coverage over more than two solar cycles the database established by this two projects is a valuable asset for improvements of the International Reference Ionosphere model and for ionospheric research.

  17. New Measuring Temperature Setup with Optical Probe①

    Institute of Scientific and Technical Information of China (English)

    HOUPeiguo; LIUJianming

    1997-01-01

    A new setup of measuring temperature is developed,which the probe is a micro-power consumptive one with CMOS circuit and is driven by optical power.For transmitting the measured signal and optical signal in a long distance,the fiber technology is applied in this setup.

  18. Upper ocean currents and sea surface temperatures (SST) from Satellite-tracked drifting buoys (drifters) as part of the Global Drifter Program for Hawaii region 1980/02/01 - 2009/03/31 (NODC Accession 0063296)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Satellite-tracked drifting buoys ("drifters") collect measurements of upper ocean currents and sea surface temperatures (SST) around the world as part of the Global...

  19. Validation of Satellite-Derived Sea Surface Temperatures for Waters around Taiwan

    Directory of Open Access Journals (Sweden)

    Ming-An Lee

    2005-01-01

    Full Text Available In order to validate the Advanced Very High Resolution Radiometer (AVHRR-derived sea surface temperatures (SST of the waters around Taiwan, we generated a match-up data set of 961 pairs, which included in situ SSTs and concurrent AVHRR measurements for the period of 1998 to 2002. Availability of cloud-free images, i.e., images with more than 85% of cloud-free area in their coverage, was about 2.23% of all AVHRR images during the study period. The range of in situ SSTs was from _ to _ The satellite derived-SSTs through MCSST and NLSST algorithms were linearly related to the in situ SSTs with correlation coefficients of 0.985 and 0.98, respectively. The MCSSTs and NLSSTs had small biases of 0.009 _ and 0.256 _ with root mean square deviations of 0.64 _ and 0.801 _ respectively, therefore the AVHRR-based MCSSTs and NLSSTs had high accuracy in the seas around Taiwan.

  20. High Temperature Superconducting Maglev Measurement System

    OpenAIRE

    Wang, Jia-Su; Wang, Su-Yu

    2010-01-01

    Three high temperature superconducting (HTS) Maglev measurement systems were successfully developed in the Applied Superconductivity Laboratory (ASCLab) of Southwest Jiaotong University, P. R. China. These systems include liquid nitrogen vessel, Permanent Magnet Guideway (PMG), data collection and processing, mechanical drive and Autocontrol features. This chapter described the three different measuring systems along with their theory of operations and workflow. The SCML-01 HTS Maglev measure...

  1. Turbine gas temperature measurement and control system

    Science.gov (United States)

    Webb, W. L.

    1973-01-01

    A fluidic Turbine Inlet Gas Temperature (TIGIT) Measurement and Control System was developed for use on a Pratt and Whitney Aircraft J58 engine. Based on engine operating requirements, criteria for high temperature materials selection, system design, and system performance were established. To minimize development and operational risk, the TIGT control system was designed to interface with an existing Exhaust Gas Temperature (EGT) Trim System and thereby modulate steady-state fuel flow to maintain a desired TIGT level. Extensive component and system testing was conducted including heated (2300F) vibration tests for the fluidic sensor and gas sampling probe, temperature and vibration tests on the system electronics, burner rig testing of the TIGT measurement system, and in excess of 100 hours of system testing on a J58 engine. (Modified author abstract)

  2. CONCEPTUAL PAPER : Utilization of GPS Satellites for Precise Irradiation Measurement and Monitoring

    Indian Academy of Sciences (India)

    S. Vijayan

    2008-03-01

    Precise measurement of irradiance over the earth under various circumstances like solar flares, coronal mass ejections, over an 11-year solar cycle, etc. leads to better understanding of Sun–earth relationship. To continuously monitor the irradiance over earth-space regions several satellites at several positions are required. For that continuous and multiple satellite monitoring we can use GPS (Global Positioning System) satellites (like GLONASS, GALILEO, future satellites) installed with irradiance measuring and monitoring instruments. GPS satellite system consists of 24 constellations of satellites. Therefore usage of all the satellites leads to 24 measurements of irradiance at the top of the atmosphere (or 12 measurements of those satellites which are pointing towards the Sun) at an instant. Therefore in one day, numerous irradiance observations can be obtained for the whole globe, which will be very helpful for several applications like Albedo calculation, Earth Radiation Budget calculation, monitoring of near earth-space atmosphere, etc. Moreover, measuring irradiance both in ground (using ground instruments) and in space at the same instant of time over a same place, leads to numerous advantages. That is, for a single position we obtain irradiance at the top of the atmosphere, irradiance at ground and the difference in irradiance from over top of the atmosphere to the ground. Measurement of irradiance over the atmosphere and in ground at a precise location gives more fine details about the solar irradiance influence over the earth, path loss and interaction of irradiance with the atmosphere.

  3. Contribution of satellite lines to temperature diagnostics with He-like triplet lines in photoionized plasma

    Science.gov (United States)

    Wang, Feilu; Han, Bo; Salzmann, David; Zhao, Gang

    2017-04-01

    In the present paper, the He α triplet line ratios (resonance, intercombination, and forbidden lines) are computed for photoionized plasmas, when the contributions of nearby satellite lines are taken into account. The computations have been carried out with our radiative-collisional code, RCF, which is based on the flexible atomic code. The calculations of these line ratios have been done for three materials, namely, silicon, magnesium, and neon. Our calculations are used to derive the plasma temperatures for several astronomical objects, where the spectra are emitted from photoionizing plasmas. It is shown that the incorporation of the satellite lines from doubly excited Li-like ions into the He α triplet lines is necessary to obtain reliable temperature diagnostics for these astrophysical objects.

  4. Cutting temperature measurement and material machinability

    Directory of Open Access Journals (Sweden)

    Nedić Bogdan P.

    2014-01-01

    Full Text Available Cutting temperature is very important parameter of cutting process. Around 90% of heat generated during cutting process is then away by sawdust, and the rest is transferred to the tool and workpiece. In this research cutting temperature was measured with artificial thermocouples and question of investigation of metal machinability from aspect of cutting temperature was analyzed. For investigation of material machinability during turning artificial thermocouple was placed just below the cutting top of insert, and for drilling thermocouples were placed through screw holes on the face surface. In this way was obtained simple, reliable, economic and accurate method for investigation of cutting machinability.

  5. High resolution temperature measurement technique for measuring marine heat flow

    Institute of Scientific and Technical Information of China (English)

    QIN; YangYang; YANG; XiaoQiu; WU; BaoZhen; SUN; ZhaoHua; SHI; XiaoBin

    2013-01-01

    High resolution temperature measurement technique is one of the key techniques for measuring marine heat flow. Basing on Pt1000 platinum resistance which has the characteristics of high accuracy and good stability, we designed a bridge reversal excitation circuit for high resolution temperature measurement. And the deep ocean floor in-situ test results show that: (1) temperature deviation and peak-to-peak resolution of the first version circuit board (V1) are 1.960-1.990 mK and 0.980-0.995 m Kat 1.2-2.7°C, respectively; and temperature deviation and peak-to-peak resolution of the second circuit board (V2) are 2.260mK and 1.130 mK at 1.2-1.3°C, respectively; (2) During the 2012NSFC-IndOcean cruise, seafloor geothermal gradient at Ind2012HF03,-07 and-12 stations (water depth ranges from 3841 to 4541 m) were successfully measured, the values are 59.1,75.1 and 71.6°C/km, respectively. And the measurement errors of geothermal gradient at these three stations are less than 3.0% in terms of the peak-to-peak resolution. These indicate that the high resolution temperature measurement technique based on Pt1000 platinum resistance in this paper can be applied to marine heat flow measurement to obtain high precision geothermal parameters.

  6. [Flame temperature distribution measurement of solid propellants].

    Science.gov (United States)

    Zhao, Wen-hua; Zhu, Shu-guang; Li, Yan; Fang, Zhong-yan; Yang, Rong-jie; Li, Yu-ping; Zhang, Jie; Liu, Yun-fei

    2004-09-01

    Many high temperature bodies such as flame, in which chemical reactions are very complex, emit their own spectra. These emission spectra usually consist of the spectral lines, spectral bands and the continuous spectra. In some cases, the spectral lines gather together. It is very difficult to find the right single spectral line when the spectral line intensity method is used. To deal with this problem, the idea that the single spectral line intensity is replaced by the total intensity of many spectral lines to measure the temperature is mentioned. And the relative intensity method is also changed to deal with this idea. The measurement of the temperature distribution based on this improved method is successful, and the measurement results are compared with the results of the thermocouple method.

  7. Slot Antenna for Wireless Temperature Measurement Systems

    DEFF Research Database (Denmark)

    Acar, Öncel; Jakobsen, Kaj Bjarne

    2016-01-01

    This paper presents a novel clover-slot antenna for a surface-acoustic-wave sensor based wireless temperature measurement system. The slot is described by a parametric locus curve that has the shape of a clover. The antenna is operated at high temperatures, in rough environments, and has a 43......% fractional bandwidth at the 2.4 GHz ISM-band. The slot antenna has been optimized for excitation by a passive chip soldered onto it. Measurement results are compared with simulation results and show good agreements....

  8. Two-temperature method for measuring emissivity

    Science.gov (United States)

    Watson, K.

    1992-01-01

    Spectral emissivity can be uniquely determined from radiance measurements if the object can be observed at two different temperatures. The advantage of this approach is that the spectral emissivity is determined without a priori assumptions about spectral shape. Because the different temperatures are obtained by observing the scene at two times in the diurnal cycle (optimally after midday and midnight), the method assumes that emissivity is temporally invariant. This is valid for rocks and dry soils, not well established for vegetation, and not true when changes in soil moisture occur between the measurements. Accurate image registration and satisfactory signal:noise are critical factors that limit extensive use of this method. ?? 1992.

  9. Modeling of solar irradiance using satellite images and direct terrestrial measurements with PV modules

    Science.gov (United States)

    Tyukhov, Igor; Schakhramanyan, Michael; Strebkov, Dmitry; Tikhonov, Anton; Vignola, Frank

    2009-08-01

    A simple, affordable and efficient multifaceted system with technical software programs, "Kosmos 3M", was developed for taking images of the Earth from NOAA satellites and for handling this images and analyzing many geographical and meteorological parameters. Technical software programs have been developed that utilize the "Kosmos 3M" Receiver system. Basic capabilities of the multifaceted "Kosmos 3M" system include: receiving signal from NOAA satellites; digital processing of space images with geographical fixing, superposition of maps of cities and coordinate grid; finding of geographical coordinates at any point of space image; finding of temperature of underlying surface at given points; finding of albedo (reflection coefficient) at any point of space image; finding of upper boundary of clouds (cloudiness); forecasting of dangerous weather phenomena; defining wind fields in cyclones; precipitations forecast; measuring distances between given points; measuring surfaces (areas); and forming of electronic library of images of the Earth. Work is underway to use the "Kosmos 3M" cloudiness images to estimate the incident solar radiation values for evaluating terrestrial solar energy performance in real time. Such kind of system would have a wide variety of uses from the classroom to the field.

  10. Ion temperature measurements in the Maryland Spheromak

    Energy Technology Data Exchange (ETDEWEB)

    Gauvreau, J.L.

    1992-12-31

    Initial spectroscopic data from MS showed evidence of ion heating as deduced from the line widths of different ion species. Detailed measurements of OIV spectral emission line profiles in space and time revealed that heating takes place at early time, before spheromak formation and is occurring within the current discharge. The measured ion temperature is several times the electron temperature and cannot be explained by classical (Spitzer) resistivity. Classically, ions are expected to have lower temperatures than the electrons and therefore, lower temperatures than observed. High ion temperatures have been observed in different RFP`s and Spheromaks but are usually associated with relaxation to the Taylor state and occur in the sustainment phase. During formation, the current delivered to start the discharge is not axisymmetric and as a consequence, X-points appear in the magnetic flux. A two dimensional analysis predicts that magnetic reconnection occurring at an X-point can give rise to high ion heating rates. A simple 0-dimensional calculation showed that within the first 20 {mu}s, a conversion of mass flow kinetic energy into ion temperature could take place due to viscosity.

  11. Hail detection algorithm for the Global Precipitation Measuring mission core satellite sensors

    Science.gov (United States)

    Mroz, Kamil; Battaglia, Alessandro; Lang, Timothy J.; Tanelli, Simone; Cecil, Daniel J.; Tridon, Frederic

    2017-04-01

    By exploiting an abundant number of extreme storms observed simultaneously by the Global Precipitation Measurement (GPM) mission core satellite's suite of sensors and by the ground-based S-band Next-Generation Radar (NEXRAD) network over continental US, proxies for the identification of hail are developed based on the GPM core satellite observables. The full capabilities of the GPM observatory are tested by analyzing more than twenty observables and adopting the hydrometeor classification based on ground-based polarimetric measurements as truth. The proxies have been tested using the Critical Success Index (CSI) as a verification measure. The hail detection algorithm based on the mean Ku reflectivity in the mixed-phase layer performs the best, out of all considered proxies (CSI of 45%). Outside the Dual frequency Precipitation Radar (DPR) swath, the Polarization Corrected Temperature at 18.7 GHz shows the greatest potential for hail detection among all GMI channels (CSI of 26% at a threshold value of 261 K). When dual variable proxies are considered, the combination involving the mixed-phase reflectivity values at both Ku and Ka-bands outperforms all the other proxies, with a CSI of 49%. The best-performing radar-radiometer algorithm is based on the mixed-phase reflectivity at Ku-band and on the brightness temperature (TB) at 10.7 GHz (CSI of 46%). When only radiometric data are available, the algorithm based on the TBs at 36.6 and 166 GHz is the most efficient, with a CSI of 27.5%.

  12. High-Temperature Superconductive Cabling Investigated for Space Solar Power Satellites

    Science.gov (United States)

    Tew, Roy C.; Juhasz, Albert J.

    2000-01-01

    NASA has been directed by Congress to take a fresh look at the Space Solar Power (SSP) concept that was studied by the Department of Energy and NASA about 20 years ago. To summarize, the concept involves (1) collecting solar energy and converting it to electrical energy via photovoltaic arrays on satellites in Earth orbit, (2) conducting the electricity to the microwave transmitting portion of the satellite, and (3) transmitting the power via microwave transmitters (or possibly via lasers) to ground power station antennas located on the surface of the Earth. One Sun Tower SSP satellite concept is illustrated here. This figure shows many photovoltaic arrays attached to a "backbone" that conducts electricity down to a wireless transmitter, which is pointed toward the Earth. Other variations on this concept use multiple backbones to reduce the overall length of the satellite structure. In addition, non-Sun-Tower concepts are being considered. The objective of the work reported here was to determine the benefits to the SSP concept of using high-temperature superconductors (HTS) to conduct the electricity from the photovoltaic arrays to the wireless power transmitters. Possible benefits are, for example, reduced mass, improved efficiency, and improved reliability. Dr. James Powell of Plus Ultra Technologies, Inc., of Stony Brook, New York, is conducting the study, and it is being managed by the NASA Glenn Research Center at Lewis Field via a task-order contract through Scientific Applications International Corp. (SAIC).

  13. Ice Sheet Temperature Records - Satellite and In Situ Data from Antarctica and Greenland

    Science.gov (United States)

    Shuman, C. A.; Comiso, J. C.

    2001-12-01

    Recently completed decadal-length surface temperature records from Antarctica and Greenland are providing insights into the challenge of detecting climate change. Ice and snow cover at high latitudes influence the global climate system by reflecting much of the incoming solar energy back to space. An expected consequence of global warming is a decrease in area covered by snow and ice and an increase in Earth's absorption of solar radiation. Models have predicted that the effects of climate warming may be amplified at high latitudes; thinning of the Greenland ice sheet margins and the breakup of Antarctic Peninsula ice shelves suggest this process may have begun. Satellite data provide an excellent means of observing climate parameters across both long temporal and remote spatial domains but calibration and validation of their data remains a challenge. Infrared sensors can provide excellent temperature information but cloud cover and calibration remain as problems. Passive-microwave sensors can obtain data during the long polar night and through clouds but have calibration issues and a much lower spatial resolution. Automatic weather stations are generally spatially- and temporally-restricted and may have long gaps due to equipment failure. Stable isotopes of oxygen and hydrogen from ice sheet locations provide another means of determining temperature variations with time but are challenging to calibrate to observed temperatures and also represent restricted areas. This presentation will discuss these issues and elaborate on the development and limitations of composite satellite, automatic weather station, and proxy temperature data from selected sites in Antarctica and Greenland.

  14. Neutral thermospheric temperature from ion concentration measurements

    Science.gov (United States)

    Breig, E. L.; Donaldson, J. S.; Hanson, W. B.; Hoffman, J. H.; Power, R. A.; Kayser, D. C.; Spencer, N. W.; Wharton, L. E.

    1981-01-01

    A technique for extracting information on neutral temperature from in situ F region measurements of O(+) and H(+) ion concentrations is analyzed and evaluated. Advantage is taken of the condition of charge-exchange equilibrium of these species in the neighborhood of 320 km to infer the associated relative abundances of neutral oxygen and hydrogen. Results are shown to be generally consistent with other concurrent in situ measurements.

  15. Validation of INSAT-3D sounder data with in situ measurements and other similar satellite observations over India

    Science.gov (United States)

    Venkat Ratnam, Madineni; Hemanth Kumar, Alladi; Jayaraman, Achuthan

    2016-11-01

    To date, several satellites measurements are available which can provide profiles of temperature and water vapour with reasonable accuracies. However, the temporal resolution has remained poor, particularly over the tropics, as most of them are polar orbiting. At this juncture, the launch of INSAT-3D (Indian National Satellite System) by the Indian Space Research Organization (ISRO) on 26 July 2013 carrying a multi-spectral imager covering visible to long-wave infrared made it possible to obtain profiles of temperature and water vapour over India with higher temporal and vertical resolutions and altitude coverage, besides other parameters. The initial validation of INSAT-3D data is made with the high temporal (3 h) resolution radiosonde observations launched over Gadanki (13.5° N, 79.2° E) during a special campaign and routine evening soundings obtained at 12:00 UTC (17:30 LT). We also compared INSAT-3D data with the radiosonde observations obtained from 34 India Meteorological Department stations. Comparisons were also made over India with data from other satellites like AIRS, MLS and SAPHIR and from ERA-Interim and NCEP reanalysis data sets. INSAT-3D is able to show better coverage over India with high spatial and temporal resolutions as expected. Good correlation in temperature between INSAT-3D and in situ measurements is noticed except in the upper tropospheric and lower stratospheric regions (positive bias of 2-3 K). There is a mean dry bias of 20-30 % in the water vapour mixing ratio. Similar biases are noticed when compared to other satellites and reanalysis data sets. INSAT-3D shows a large positive bias in temperature above 25° N in the lower troposphere. Thus, caution is advised when using these data for tropospheric studies. Finally it is concluded that temperature data from INSAT-3D are of high quality and can be directly assimilated for better forecasts over India.

  16. Long-term stability of TES satellite radiance measurements

    Directory of Open Access Journals (Sweden)

    T. C. Connor

    2011-07-01

    Full Text Available The utilization of Tropospheric Emission Spectrometer (TES Level 2 (L2 retrieval products for the purpose of assessing long term changes in atmospheric trace gas composition requires knowledge of the overall radiometric stability of the Level 1B (L1B radiances. The purpose of this study is to evaluate the stability of the radiometric calibration of the TES instrument by analyzing the difference between measured and calculated brightness temperatures in selected window regions of the spectrum. The Global Modeling and Assimilation Office (GMAO profiles for temperature and water vapor and the Real-Time Global Sea Surface Temperature (RTGSST are used as input to the Optimal Spectral Sampling (OSS radiative transfer model to calculate the simulated spectra. The TES reference measurements selected cover a 4-year period of time from mid 2005 through mid 2009 with the selection criteria being; observation latitudes greater than −30° and less than 30°, over ocean, Global Survey mode (nadir view and retrieved cloud optical depth of less than or equal to 0.01. The TES cloud optical depth retrievals are used only for screening purposes and no effects of clouds on the radiances are included in the forward model. This initial screening results in over 55 000 potential reference spectra spanning the four year period. Presented is a trend analysis of the time series of the residuals (observation minus calculations in the TES 2B1, 1B2, 2A1, and 1A1 bands, with the standard deviation of the residuals being approximately equal to 0.6 K for bands 2B1, 1B2, 2A1, and 0.9 K for band 1A1. The analysis demonstrates that the trend in the residuals is not significantly different from zero over the 4-year period. This is one method used to demonstrate that the relative radiometric calibration is stable over time, which is very important for any longer term analysis of TES retrieved products (L2, particularly well-mixed species such as carbon dioxide and methane.

  17. Validation of JAXA/MODIS Sea Surface Temperature in Water around Taiwan Using the Terra and Aqua Satellites

    Directory of Open Access Journals (Sweden)

    Ming-An Lee

    2010-01-01

    Full Text Available The research vessel-based Conductivity Temperature Depth profiler (CTD provides underwater measurements of the bulk sea surface temperature (SST at the depths of shallower than 5 m. The CTD observations of the seas around Taiwan provide useful data for comparison with SST of MODIS (Moderate Resolution Imaging Spectroradiometers aboard Aqua and Terra satellites archived by JAXA (Japan Aerospace Exploration Agency. We produce a high-resolution (1 km MODIS SST by using Multi-Channel SST (MCSST algorithm. There were 1516 cloud-free match-up data pairs of MODIS SST and in situ measurements during the period from 2003 - 2005. The difference of the root mean square error (RMSE of satellite observations from each platform during the day and at night was: _ in Aqua daytime, _ in Aqua nighttime, _ in Terra daytime, and _ in Terra nighttime. The total analysis of MODIS-derived SST shows good agreement with a bias of _ and RMSE of _ The analyses indicate that the bias of Aqua daytime was always positive throughout the year and the large RMSE should be attributed to the large positive bias _ under diurnal warming. It was also found that the bias of Terra daytime was usually negative with a mean bias of _ its large RMSE should be treated with care because of low solar radiation in the morning.

  18. Measurements of Integration Gain for the Cospas-Sarsat System from Geosynchronous Satellites

    Science.gov (United States)

    Klein-Lebbink, Elizabeth; Christo, James; Peters, Robert; Nguyen, Xuan

    2015-01-01

    The GOES-R satellite is the first satellite to use a standard straight bent pipe transponder with no on-board re-modulation to support Search and Rescue (SAR) operations. Here, we report on the link measurements with a high fidelity satellite transponder simulator made up of satellite EDU (Engineering Design Units) components using an uplink from a beacon simulator and received by a GEOLUT (GEOsynchronous satellite Local User Terminal). We also report on the first ever measurements showing the performance gain obtained by the signal integration performed by the GEOLUT. In addition, a simulator made of commercially available off-the-shelf components assembled to develop the test plan was found to perform very close to the high fidelity simulator. In this paper, we describe what message integration is, how it is implemented in the particular satellite receiving station model used for this tests, and show the measured improvement in message decoding due to this integration process. These are the first tests to quantify the integration gain and are the first tests on the new SARSAT standard for the bent pipe (no onboard re-modulation) repeater used in GOES-R. An inexpensive satellite simulator to run test scripts built from off the shelf components was also found to have the same performance as a high fidelity simulator using actual satellite EDUs.

  19. Evaluation of Land Surface Temperature Operationally Retrieved from Korean Geostationary Satellite (COMS Data

    Directory of Open Access Journals (Sweden)

    A-Ra Cho

    2013-08-01

    Full Text Available We evaluated the precision of land surface temperature (LST operationally retrieved from the Korean multipurpose geostationary satellite, Communication, Ocean and Meteorological Satellite (COMS. The split-window (SW-type retrieval algorithm was developed through radiative transfer model simulations under various atmospheric profiles, satellite zenith angles, surface emissivity values and surface lapse rate conditions using Moderate Resolution Atmospheric Transmission version 4 (MODTRAN4. The estimation capabilities of the COMS SW (CSW LST algorithm were evaluated for various impacting factors, and the retrieval accuracy of COMS LST data was evaluated with collocated Moderate Resolution Imaging Spectroradiometer (MODIS LST data. The surface emissivity values for two SW channels were generated using a vegetation cover method. The CSW algorithm estimated the LST distribution reasonably well (averaged bias = 0.00 K, Root Mean Square Error (RMSE = 1.41 K, correlation coefficient = 0.99; however, the estimation capabilities of the CSW algorithm were significantly impacted by large brightness temperature differences and surface lapse rates. The CSW algorithm reproduced spatiotemporal variations of LST comparing well to MODIS LST data, irrespective of what month or time of day the data were collected from. The one-year evaluation results with MODIS LST data showed that the annual mean bias, RMSE and correlation coefficient for the CSW algorithm were −1.009 K, 2.613 K and 0.988, respectively.

  20. Calculation of smoke plume mass from passive UV satellite measurements by GOME-2 polarization measurement devices

    Science.gov (United States)

    Penning de Vries, M. J. M.; Tuinder, O. N. E.; Wagner, T.; Fromm, M.

    2012-04-01

    The Wallow wildfire of 2011 was one of the most devastating fires ever in Arizona, burning over 2,000 km2 in the states of Arizona and New Mexico. The fire originated in the Bear Wallow Wilderness area in June, 2011, and raged for more than a month. The intense heat of the fire caused the formation of a pyro-convective cloud. The resulting smoke plume, partially located above low-lying clouds, was detected by several satellite instruments, including GOME-2 on June 2. The UV Aerosol Index, indicative of aerosol absorption, reached a maximum of 12 on that day, pointing to an elevated plume with moderately absorbing aerosols. We have performed extensive model calculations assuming different aerosol optical properties to determine the total aerosol optical depth of the plume. The plume altitude, needed to constrain the aerosol optical depth, was obtained from independent satellite measurements. The model results were compared with UV Aerosol Index and UV reflectances measured by the GOME-2 polarization measurement devices, which have a spatial resolution of roughly 10x40 km2. Although neither the exact aerosol optical properties nor optical depth can be obtained with this method, the range in aerosol optical depth values that we calculate, combined with the assumed specific extinction mass factor of 5 m2/kg lead us to a rough estimate of the smoke plume mass that cannot, at present, be assessed in another way.

  1. Variable-Temperature Critical-Current Measurements

    Energy Technology Data Exchange (ETDEWEB)

    L. F. Goodrich; T. C. Stauffer

    2009-05-19

    This is the final report of a three year contract that covered 09/19/2005 to 07/14/2008. We requested and received a no cost time extension for the third year, 07/15/2007 to 07/14/2008, to allow DoE to send us funds if they became available during that year. It turned out that we did not receive any funding for the third year. The following paper covers our variable-temperature critical-current measurements. We made transport critical-current (Ic) measurements on commercial multifilamentary Nb3Sn strands at temperatures (T) from 4 to 17 K and magnetic fields (H) from 0 to 14 T. One of the unique features of our measurements is that we can cover a wide range of critical currents from less than 0.1 A to over 700 A.

  2. Spectral Measurements of Geosynchronous Satellites During Glint Season

    Science.gov (United States)

    2015-10-18

    primarily due to specular reflection off of the solar panels , the occurrence of a glint relative to solar phase angle or even the number of glints can...and south solar panels on DTV-12 being offset in different east-west angles causing two glints, whereas the two solar panels of Wildblue-1 are both in... solar panels that maintain a stable attitude relative to the earth and sun. During the equinox periods of the year, the geometry of the satellite

  3. High temperature measurement of water vapor absorption

    Science.gov (United States)

    Keefer, Dennis; Lewis, J. W. L.; Eskridge, Richard

    1985-01-01

    An investigation was undertaken to measure the absorption coefficient, at a wavelength of 10.6 microns, for mixtures of water vapor and a diluent gas at high temperature and pressure. The experimental concept was to create the desired conditions of temperature and pressure in a laser absorption wave, similar to that which would be created in a laser propulsion system. A simplified numerical model was developed to predict the characteristics of the absorption wave and to estimate the laser intensity threshold for initiation. A non-intrusive method for temperature measurement utilizing optical laser-beam deflection (OLD) and optical spark breakdown produced by an excimer laser, was thoroughly investigated and found suitable for the non-equilibrium conditions expected in the wave. Experiments were performed to verify the temperature measurement technique, to screen possible materials for surface initiation of the laser absorption wave and to attempt to initiate an absorption wave using the 1.5 kW carbon dioxide laser. The OLD technique was proven for air and for argon, but spark breakdown could not be produced in helium. It was not possible to initiate a laser absorption wave in mixtures of water and helium or water and argon using the 1.5 kW laser, a result which was consistent with the model prediction.

  4. Measurements of Cumulonimbus Clouds using quantitative satellite and radar data

    Science.gov (United States)

    Negri, A. J.; Reynolds, D. W.; Maddox, R. A.

    1977-01-01

    Results are reported for a preliminary study of SMS-2 digital brightness and IR data obtained at frequent 5-7.5 min intervals. The clouds studied were over the Central and Great Plains in midlatitudes and thus were typical of an environment much different from that of the tropical oceans. The satellite data are compared to radar data for both a severe weather event and weak thundershower activity of the type which might be a target for weather modification efforts. The relative importance of short time interval satellite data is shown for both cases, and possible relationships between the two types of data are presented. It is concluded that (1) using a threshold technique for visible reflected brightness, precipitating vs. nonprecipitating clouds can be discriminated; (2) brightness is well related to cloud size and shape; and (3) satellite-derived growth rates may be a significant parameter to be used in determining storm severity, especially if rapid time sequence data are used during the development phase of the storm.

  5. Long term sea surface temperature trends in US Affiliated Pacific Islands from satellite data, 1982-2003

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Monthly average NOAA satellite-derived Sea Surface Temperature (SST) values from 1982-2003 and their long-term trends are presented for sixteen US affiliated Pacific...

  6. A technique for measurement of earth station antenna G/T by radio stars and Applications Technology Satellites.

    Science.gov (United States)

    Kochevar, H. J.

    1972-01-01

    A new technique has been developed to accurately measure the G/T of a small aperture antenna using geostationary satellites and the well established radio star method. A large aperture antenna having the capability of accurately measuring its G/T by using a radio star of known power density is used to obtain an accurate G/T to use as a reference. The CNR of both the large and small aperture antennas are then measured using an Applications Technology Satellite (ATS). After normalizing the two C/N ratios to the large antenna system noise temperature the G/T or the gain G of the small aperture antenna can then be determined.

  7. Surface Emissivity Retrieved with Satellite Ultraspectral IR Measurements for Monitoring Global Change

    Science.gov (United States)

    Zhou, Daniel K.; Larar, Allen M.; Liu, Xu; Smith, William L.; Schluessel, Peter

    2009-01-01

    Surface and atmospheric thermodynamic parameters retrieved with advanced ultraspectral remote sensors aboard Earth observing satellites are critical to general atmospheric and Earth science research, climate monitoring, and weather prediction. Ultraspectral resolution infrared radiance obtained from nadir observations provide atmospheric, surface, and cloud information. Presented here is the global surface IR emissivity retrieved from Infrared Atmospheric Sounding Interferometer (IASI) measurements under "clear-sky" conditions. Fast radiative transfer models, applied to the cloud-free (or clouded) atmosphere, are used for atmospheric profile and surface parameter (or cloud parameter) retrieval. The inversion scheme, dealing with cloudy as well as cloud-free radiances observed with ultraspectral infrared sounders, has been developed to simultaneously retrieve atmospheric thermodynamic and surface (or cloud microphysical) parameters. Rapidly produced surface emissivity is initially evaluated through quality control checks on the retrievals of other impacted atmospheric and surface parameters. Surface emissivity and surface skin temperature from the current and future operational satellites can and will reveal critical information on the Earth s ecosystem and land surface type properties, which can be utilized as part of long-term monitoring for the Earth s environment and global climate change.

  8. An Autonomous System to Take Angular Thermal-Infrared Measurements for Validating Satellite Products

    Directory of Open Access Journals (Sweden)

    Raquel Niclòs

    2015-11-01

    Full Text Available An autonomous system for field land surface temperature (LST measurements taken at different observation angles was developed to be deployed easily at any conventional meteorological tower station. The system permits ground-truth data to be acquired on a continuous basis, and angularly scans land and sky hemispheres with a single thermal-infrared (TIR radiometer. This paper describes the autonomous angular system and the methodology to assess ground-truth LST and relative-to-nadir emissivity data from system measurements. Ground-truth LSTs were used to validate satellite-retrieved LST products at two experimental sites (rice crop and shrubland areas. The relative-to-nadir emissivity values were used to analyze the anisotropy of surface emissive properties over thermally-homogeneous covers. The EOS-MODIS MOD11_L2/MYD11_L2 LST product was evaluated and shown to work within expected uncertainties (<2.0 K when tested against the system data. A slight underestimation of around −0.15 K was observed, which became greater for the off-nadir observation angles at the shrubland site. The system took angular measurements for the different seasonal homogeneous covers at the rice crop site. These measurements showed emissivity angular anisotropies, which were in good agreement with previously published data. The dual-view ENVISAT-AATSR data reproduced them, and revealed that the system data collected for thermally-homogeneous surfaces could be used to test future satellite TIR sensors with multi-angular or bi-angular capabilities, like the forthcoming SLSTR on board Copernicus Sentinel-3A.

  9. Thermoluminescence measurement technique using millisecond temperature pulses.

    Science.gov (United States)

    Manfred, Michael E; Gabriel, Nicholas T; Yukihara, Eduardo G; Talghader, Joseph J

    2010-06-01

    A measurement technique, pulsed thermoluminescence, is described which uses short thermal pulses to excite trapped carriers leading to radiative recombination. The pulses are obtained using microstructures with approximately 500 micros thermal time constants. The technique has many of the advantages of pulsed optically stimulated luminescence without the need for optical sources and filters to isolate the luminescent signal. Charge carrier traps in alpha-Al(2)O(3):C particles on microheaters were filled using 205 nm light. Temperature pulses of 10 and 50 ms were applied to the heaters and compared with a standard thermoluminescence curve taken at a ramp rate of 5 K s(-1). This produced curves of intensity verses temperature similar to standard thermoluminescence except shifted to higher temperatures. The luminescence of single particles was read multiple times with negligible loss of population. The lower limit of the duration of useful pulses appears to be limited by particle size and thermal contact between the particle and heater.

  10. The Geodesy of the Main Saturnian Satellites from Range Rate Measurements of the Cassini Spacecraft

    Science.gov (United States)

    Ducci, M.; Iess, L.; Armstrong, J. W.; Asmar, S. W.; Jacobson, R. A.; Lunine, J. I.; Racioppa, P.; Rappaport, N. J.; Stevenson, D. J.; Tortora, P.

    2012-03-01

    During Cassini's eight-year tour in the saturnian system, the gravity field of the main satellites was inferred from range rate measurements of the spacecraft. Here we present our latest results and an overview of our analysis methods.

  11. Comparison of stratospheric temperature profiles from a ground-based microwave radiometer with lidar, radiosonde and satellite data

    Science.gov (United States)

    Navas-Guzmán, Francisco; Kämpfer, Niklaus; Haefele, Alexander; Keckhut, Philippe; Hauchecorne, Alain

    2015-04-01

    The importance of the knowledge of the temperature structure in the atmosphere has been widely recognized. Temperature is a key parameter for dynamical, chemical and radiative processes in the atmosphere. The cooling of the stratosphere is an indicator for climate change as it provides evidence of natural and anthropogenic climate forcing just like surface warming ( [1] and references therein). However, our understanding of the observed stratospheric temperature trend and our ability to test simulations of the stratospheric response to emissions of greenhouse gases and ozone depleting substances remains limited. Stratospheric long-term datasets are sparse and obtained trends differ from one another [1]. Therefore it is important that in the future such datasets are generated. Different techniques allow to measure stratospheric temperature profiles as radiosonde, lidar or satellite. The main advantage of microwave radiometers against these other instruments is a high temporal resolution with a reasonable good spatial resolution. Moreover, the measurement at a fixed location allows to observe local atmospheric dynamics over a long time period, which is crucial for climate research. TEMPERA (TEMPERature RAdiometer) is a newly developed ground-based microwave radiometer designed, built and operated at the University of Bern. The instrument and the retrieval of temperature profiles has been described in detail in [2]. TEMPERA is measuring a pressure broadened oxygen line at 53.1 GHz in order to determine stratospheric temperature profiles. The retrieved profiles of TEMPERA cover an altitude range of approximately 20 to 45 km with a vertical resolution in the order of 15 km. The lower limit is given by the instrumental baseline and the bandwidth of the measured spectrum. The upper limit is given by the fact that above 50 km the oxygen lines are splitted by the Zeeman effect in the terrestrial magnetic field. In this study we present a comparison of stratospheric

  12. Global rainbow refractometry for droplet temperature measurement

    Energy Technology Data Exchange (ETDEWEB)

    Pascal Lemaitre; Emmanuel Porcheron; Amandine Nuboer; Philippe Brun; Pierre Cornet; Jeanne Malet; Jacques Vendel; Laurent Bouilloux [Institut de Radioprotection et de Surete Nucleaire DSU/SERAC, BP 68, 91192 Gif-sur-Yvette Cedex (France); Gerard Grehan [UMR 6614 CORIA, Laboratoire d' Electromagnetisme et Systemes Particulaires Site Universitaire du Madrillet, Avenue de l' universite BP 12, 76 801 Saint Etienne du Rouvray Cedex, (France)

    2005-07-01

    Full text of publication follows: In order to establish an accurate database to characterize the heat and mass transfers between a spray and the atmosphere with thermal-hydraulic conditions representative of a hypothetical nuclear reactor accident in the containment enclosure of a pressurized water reactor (PWR), the French Institut de Radioprotection et de Surete Nucleaire (IRSN) has developed the TOSQAN experimental facility. This experiment is highly instrumented with non-intrusive diagnostics allowing to measure droplet size and velocity and gas concentrations [1]. The aim of this work is to present the Global Rainbow Thermometry (GRT), which is an advanced non-intrusive optical diagnostic, developed to measure the mean temperature of a set of falling droplets, in a measurement volume of 1 cm{sup 3}. The final paper will be divided in three parts. In the first one, we will explain the principle of the rainbow formation and how droplet temperature can be deduced from the rainbow analysis [2]. This part will be illustrated with the theoretical background on the rainbow and numerical simulations of the global rainbow. The second part will be devoted to present the global rainbow experimental set-up we have developed on optical table, its experimental qualification and finally its implementation on the TOSQAN facility [3]. Finally, we will present the temperature measurements achieved in TOSQAN for thermal-hydraulic conditions representative of a hypothetical nuclear reactor accident. These measurements are useful to characterize the heat and mass transfers between the spraying droplets and the air-steam mixture composing the atmosphere. This analysis will be exposed in a two companion papers. References: [1] E. Porcheron, P. Brun, P. Cornet, J. Malet, J. Vendel. Optical diagnostics applied for single and multi-phase flow characterization in the TOSQAN facility dedicated for thermal hydraulic containment studies. NURETH-10 Seoul, Korea, October 5-9, 2003. [2] P

  13. Modeling directional effects in land surface temperature derived from geostationary satellite data

    DEFF Research Database (Denmark)

    Rasmussen, Mads Olander

    This PhD-thesis investigates the directional effects in land surface temperature (LST) estimates from the SEVIRI sensor onboard the Meteosat Second Generation (MSG) satellites. The directional effects are caused by the land surface structure (i.e. tree size and shape) interacting with the changing...... sun-target-sensor geometry. The directional effects occur because the different surface components, e.g. tree canopies and bare soil surfaces, will in many cases have significantly different temperatures. Depending on the viewing angle, different fractions of each of the components will be viewed......; shaded and sunlit canopy and background, respectively. Given data on vegetation structure and density, the model estimates the fractions of the four components as well as the directional composite temperature in the view of a sensor, given the illumination and viewing geometry. The modeling results show...

  14. Calculation of the satellite "Sich-1M" orientation on onboard magnetometric measurements

    Science.gov (United States)

    Suhorukov, A.; Kozak, L.

    2005-04-01

    The satellite "Sich-1M" was launched on 24 December 2004. It came out onto the elliptic orbit with the perigee height near 280 km except planned earlier higher near circle orbit. In addition, the satellite has gotten a non-planned rotation (about 2 rotations per turn). Later the gravitational beam had been pulled out from the satellite which partly stabilized it. A rotation of the satellite was superseded by its oscillation with a period near 2-4 swings per turn and amplitude 50 degrees. The oscillations have an unstable character. Rotations and oscillations of the satellite set inessential limitations on realization of scientific tasks of the project "Variant" because there is a possibility to determine the satellite orientation for a given time moment with the help of measurements of ferrosonde magnetometer FZM or onboard magnetometer. The device FZM measures three components of magnetic field Bx, By, Bz of the Earth in coordinate system of the satellite. To determine the satellite orientation we have used the fact that each of the component of the magnetic field at the present time moment is a function of geographical coordinates of the satellite (latitude, longitude, height over sea level), its orientation and components of a vector of Earth magnetic field in this point, calculated from magnetosphere model. Thus, having direct satellite measurements of Bx, By, Bz at given time moment in given point, orbital elements and position of the satellite on the orbit and using the standard model of Earth's magnetosphere one can calculate the satellite orientation as function of time. For the calculation we have used the magnetosphere model "The International Geomagnetic Reference Field" (IGRF) which empirically calculates the components of magnetic field of the Earth and is recommended for scientific investigations by International Association of Geomagnetism and Aeronomy (IAGA). Coefficients of IGRF model are based on accessible information sources including

  15. Satellite and terrestrial narrow-band propagation measurements at 2.05 GHz

    Science.gov (United States)

    Vaisnys, Arv; Vogel, Wolf

    1995-08-01

    A series of satellite and terrestrial propagation measurements were conducted on 15 and 16 Dec. 1994 in the vicinity of the Jet Propulsion Laboratory (JPL), Pasadena, California, in support of the VOA/JPL DBS-Radio Program. The reason for including terrestrial measurements was the possible use of terrestrial boosters to improve reception in some satellite digital audio broadcasting system service areas. The signal sources used were the NASA TDRS satellite located at 171 degrees West and a terrestrial transmitter located on a high point on JPL property. Both signals were unmodulated carriers near 2.05 GHz, spaced a few kHz apart so that both could be received simultaneously by a single receiver. An unmodulated signal was used in order to maximize the dynamic range of the signal strength measurement. A range of greater than 35 dB was achieved with the satellite signal, and over 50 dB was achieved with the terrestrial signal measurements. Three test courses were used to conduct the measurements: (1) a 33 km round trip drive from JPL through Pasadena was used to remeasure the propagation of the satellite signal over the path previously used in DBS-Radio experiments in mid 1994. A shortened portion of this test course, approximately 20 km, was used to measure the satellite and terrestrial signals simultaneously; (2) a 9 km round trip drive through JPL property, going behind buildings and other obstacles, was used to measure the satellite and terrestrial signals simultaneously; and (3) a path through one of the buildings at JPL, hand carrying the receiver, was also used to measure the satellite and terrestrial signals simultaneously.

  16. Satellite observations of surface temperature during the March 2015 total solar eclipse.

    Science.gov (United States)

    Good, Elizabeth

    2016-09-28

    The behaviour of remotely sensed land surface temperatures (LSTs) from the spinning-enhanced visible and infrared imager (SEVIRI) during the total solar eclipse of 20 March 2015 is analysed over Europe. LST is found to drop by up to several degrees Celcius during the eclipse, with the minimum LST occurring just after the eclipse mid-point (median=+1.5 min). The drop in LST is typically larger than the drop in near-surface air temperatures reported elsewhere, and correlates with solar obscuration (r=-0.47; larger obscuration = larger LST drop), eclipse duration (r=-0.62; longer duration = larger LST drop) and time (r=+0.37; earlier eclipse = larger LST drop). Locally, the LST drop is also correlated with vegetation (up to r=+0.6), with smaller LST drops occurring over more vegetated surfaces. The LSTs at locations near the coast and at higher elevation are also less affected by the eclipse. This study covers the largest area and uses the most observations of eclipse-induced surface temperature drops to date, and is the first full characterization of satellite LST during an eclipse (known to the author). The methods described could be applied to Geostationary Operational Environmental Satellite (GOES) LST data over North America during the August 2017 total solar eclipse.This article is part of the themed issue 'Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse'.

  17. Spin period and attitude of satellites and space debris measured by using photometry

    Science.gov (United States)

    Shakun, Leonid; Koshkin, Nikolay; Korobeynikova, Elena; Strakhova, Svetlana; Melikyants, Seda; Ryabov, Andrey

    2016-07-01

    Photometry is an essential method for studying of the properties of the proper rotation of satellites and space debris. The observation method with high time resolution is used in the Odessa astronomical observatory for observations of artificial satellites. This method provides the measuring of the orbital motion and the proper rotation of satellites. Worth note, that the time resolution of the light curve and the accuracy of positioning in time of the details in the light curve are more important for the interpretation of the brightness variations than the precise measuring of the brightness. The rapid photometry allows not only registering of the flashes caused by mirror surfaces of structure satellite elements but also determining the indicatrix of the corresponding structure satellite element. This principal change of the photometric quality allows significant improving the interpretation of the satellites' light curves. We obtained a large amount of the photometric observations sequences of the satellites with time resolution 0.02 sec on the 50 cm telescope during last 11 years. We used this data for determination of the rotational parameters of several space objects. We present the method and results of the data analysis for the inactive satellites such as Envisat, Cbers-2B, Topex and other. Each of them changes its rotational parameters in its own way. For some satellites, the rotation period increases, for other it decreases. The rotation axis also change their orientation in space. The obtained information about rotation characteristics can be used for the precise numerical models of the satellite orbital motion and for the future Active Debris Removal missions.

  18. Homogenised daily lake surface water temperature data generated from multiple satellite sensors: A long-term case study of a large sub-Alpine lake

    Science.gov (United States)

    Pareeth, Sajid; Salmaso, Nico; Adrian, Rita; Neteler, Markus

    2016-08-01

    Availability of remotely sensed multi-spectral images since the 1980’s, which cover three decades of voluminous data could help researchers to study the changing dynamics of bio-physical characteristics of land and water. In this study, we introduce a new methodology to develop homogenised Lake Surface Water Temperature (LSWT) from multiple polar orbiting satellites. Precisely, we developed homogenised 1 km daily LSWT maps covering the last 30 years (1986 to 2015) combining data from 13 satellites. We used a split-window technique to derive LSWT from brightness temperatures and a modified diurnal temperature cycle model to homogenise data which were acquired between 8:00 to 17:00 UTC. Gaps in the temporal LSWT data due to the presence of clouds were filled by applying Harmonic ANalysis of Time Series (HANTS). The satellite derived LSWT maps were validated based on long-term monthly in-situ bulk temperature measurements in Lake Garda, the largest lake in Italy. We found the satellite derived homogenised LSWT being significantly correlated to in-situ data. The new LSWT time series showed a significant annual rate of increase of 0.020 °C yr-1 (*P summer.

  19. Effects of Slope and Aspect Variations on Satellite Surface Temperature Retrievals and Mesoscale Analysis in Mountainous Terrain.

    Science.gov (United States)

    Lipton, Alan E.

    1992-03-01

    Surface temperature retrieval in mountainous areas is complicated by the high variability of temperatures that can occur within a single satellite field of view. Temperatures depend in part on slope orientation relative to the sun, which can vary radically over very short distances. The surface temperature detected by a satellite is biased toward the temperatures of the sub-field-of-view terrain elements that most directly face the satellite. Numerical simulations were conducted to estimate the effects of satellite viewing geometry on surface temperature retrievals for a section of central Colorado. Surface temperatures were computed using a mesoscale model with a parameterization of subgrid variations in slope and aspect angles.The simulations indicate that the slope-aspect effect can lead to local surface temperature variations up to 30°C for autumn conditions in the Colorado mountains. For realistic satellite viewing conditions, these variations can give rise to biases in retrieved surface temperatures of about 3°C. Relative biases between retrievals from two satellites with different viewing angles can be over 6°C, which could lead to confusion when merging datasets. The bias computations were limited by the resolution of the available terrain height data (90 m). The results suggest that the biases would be significantly larger if the data resolution was fine enough to represent every detail of the real Colorado terrain or if retrievals were made in mountain areas that have a larger proportion of steep slopes than the Colorado Rockies. The computed bias gradients across the Colorado domain were not large enough to significantly alter the forcing of the diurnal upslope-downslope circulations, according to simulations in which surface temperature retrievals with view-dependent biases were assimilated into time-continuous analyses. View-dependent retrieval biases may be relevant to climatological analysts that rely on remotely sensed data, given that bias

  20. Barium Strontium Titanate Thin Film Growth with rotational speed variation as a satellite temperature sensor prototype

    Science.gov (United States)

    Mulyadi; Rika, W.; Sulidah; Irzaman; Hardhienata, Hendradi

    2017-01-01

    Barium Strontium Titanate(BST) is a promising material for sensor devices such as temperature and infrared sensor. BaxSr1-xTiO3 thin films with affordable Si substrate were prepared by chemical solution deposition method and spin coating technique for 30 seconds with variation in rotation speed (3000 rpm, 5500 rpm and 8000 rpm). A high baking temperature at 8500C has been used for 15 hours during the annealing process. The thickness of BST film was calculated via gravimetric calculation. USB 2000 VIS-NIR was used to characterize the optical properties of BST thin film. The obtained reflectance curve showed that the most reflected wavelengths were in the range of 408-452 nm respectively. The result of the optical film characterization is very important for further development as a sensor in satellite technology.

  1. [Temperature measurements during abrasive water jet osteotomy].

    Science.gov (United States)

    Schmolke, S; Pude, F; Kirsch, L; Honl, M; Schwieger, K; Krömer, S

    2004-01-01

    Working on bone is a major aspect of orthopaedic surgery. Despite its well-known appreciable thermal effects on the edges of the bone cut, the oscillating bone saw blade the oscillating saw remains the standard instrument both for cutting long bones and creating a bed for an endoprosthesis. The application of abrasive water jets offers the possibility of achieving an extremely precise curved cut in bone with no accompanying thermal effect. The thermographically measured absolute temperature increase at the cut edges seen with the water jet was 13 K maximum. The small process forces permit the application in automated handling systems.

  2. Experimental study of mountain lee—waves by means of satellite photographs and aircraft measurements

    OpenAIRE

    Cruette, Denise

    2011-01-01

    This paper is a summary of a Ph.D. Thesis1 which was a systematic study of the influence of various meteorological factors on the occurrence and characteristics of mountain waves, more specifically of lee-waves of great horizontal extent. The data used are, beside classical meteorological informations, that given by satellite pictures completed by quasi-simultaneous measurements from planes or gliders. The analysis of many satellite pictures received at the french station of Lannion (Brittany...

  3. Comparing clouds and their seasonal variations in 10 atmospheric general circulation models with satellite measurements

    OpenAIRE

    Zhang, M.; Lin, W.; Klein, S.; J. Bacmeister; Bony, S.; Cederwall, R.; Del Genio, A; Hack, J.; Loeb, N.; Lohmann, U.; P. Minnis; Musat, I.; Pincus, R; Stier, P.; Suarez, M.

    2005-01-01

    To assess the current status of climate models in simulating clouds, basic cloud climatologies from ten atmospheric general circulation models are compared with satellite measurements from the International Satellite Cloud Climatology Project (ISCCP) and the Clouds and Earth's Radiant Energy System (CERES) program. An ISCCP simulator is employed in all models to facilitate the comparison. Models simulated a four-fold difference in high-top clouds. There are also, however, large uncertainties ...

  4. Towards a protocol for validating satellite-based Land Surface Temperature: Application to AATSR data

    Science.gov (United States)

    Ghent, Darren; Schneider, Philipp; Remedios, John

    2013-04-01

    Land surface temperature (LST) retrieval accuracy can be challenging as a result of emissivity variability and atmospheric effects. Surface emissivities can be highly variable owing to the heterogeneity of the land; a problem which is amplified in regions of high topographic variance or for larger viewing angles. Atmospheric effects caused by the presence of aerosols and by water vapour absorption can give a bias to the underlying LST. Combined, atmospheric effects and emissivity variability can result in retrieval errors of several degrees. If though these are appropriately handled satellite-derived LST products can be used to improve our ability to monitor and to understand land surface and climate change processes, such as desertification, urbanization, deforestation and land/atmosphere coupling. Here we present validation of an improved LST data record from the Advanced Along-Track Scanning Radiometer (AATSR) and illustrate the improvements in accuracy and precision compared with the standard ESA LST product. Validation is a critical part of developing any satellite product, although over the land heterogeneity ensures this is a challenging undertaking. A substantial amount of previous effort has gone into the area of structuring and standardizing calibration and validation approaches within the field of Earth Observation. However, no unified approach for accomplishing this for LST has yet to be practised by the LST community. Recent work has attempted to address this situation with the development of a protocol for validating LST (Schneider et al., 2012) under the auspices of ESA and the support of the wider LST community. We report here on a first application of this protocol to satellite LST data. The approach can briefly be summarised thus: in situ validation is performed where ground-based observations are available - being predominantly homogeneous sites; heterogeneous pixels are validated by way of established radiometric-based techniques (Wan and Li

  5. Relative navigation for satellite formation flight using a continuous-discrete converted measurement Kalman filter

    Institute of Scientific and Technical Information of China (English)

    XUE Dan; CAO Xi-bin

    2008-01-01

    The present paper develops an approach of relative orbit determination for satellite formation flight. Inter-satellite measurements by the onboard devices of the satellite were chosen to perform this relative naviga-tion, and the equations of relative motion expressed in the Earth Centered Inertial frame were used to eliminate the assumption of the circular reference orbit. The relative orbit estimation was achieved through a continuous-discrete converted measurement Kalman filter design, in which the measurements were transformed to the iner-tial frame to avoid the linearization error of the observation equation. In addition, the situation of the coarse measurement period (only microwave radar measurements are available) existing was analyzed. The numerical simulation results verify the validity of the navigation approach, and it has been proved that this approach can be applied to the formation with an elliptical reference orbit.

  6. Multi-Temporal Evaluation of Soil Moisture and Land Surface Temperature Dynamics Using in Situ and Satellite Observations

    Directory of Open Access Journals (Sweden)

    Miriam Pablos

    2016-07-01

    Full Text Available Soil moisture (SM is an important component of the Earth’s surface water balance and by extension the energy balance, regulating the land surface temperature (LST and evapotranspiration (ET. Nowadays, there are two missions dedicated to monitoring the Earth’s surface SM using L-band radiometers: ESA’s Soil Moisture and Ocean Salinity (SMOS and NASA’s Soil Moisture Active Passive (SMAP. LST is remotely sensed using thermal infrared (TIR sensors on-board satellites, such as NASA’s Terra/Aqua MODIS or ESA & EUMETSAT’s MSG SEVIRI. This study provides an assessment of SM and LST dynamics at daily and seasonal scales, using 4 years (2011–2014 of in situ and satellite observations over the central part of the river Duero basin in Spain. Specifically, the agreement of instantaneous SM with a variety of LST-derived parameters is analyzed to better understand the fundamental link of the SM–LST relationship through ET and thermal inertia. Ground-based SM and LST measurements from the REMEDHUS network are compared to SMOS SM and MODIS LST spaceborne observations. ET is obtained from the HidroMORE regional hydrological model. At the daily scale, a strong anticorrelation is observed between in situ SM and maximum LST (R ≈ − 0.6 to −0.8, and between SMOS SM and MODIS LST Terra/Aqua day (R ≈ − 0.7. At the seasonal scale, results show a stronger anticorrelation in autumn, spring and summer (in situ R ≈ − 0.5 to −0.7; satellite R ≈ − 0.4 to −0.7 indicating SM–LST coupling, than in winter (in situ R ≈ +0.3; satellite R ≈ − 0.3 indicating SM–LST decoupling. These different behaviors evidence changes from water-limited to energy-limited moisture flux across seasons, which are confirmed by the observed ET evolution. In water-limited periods, SM is extracted from the soil through ET until critical SM is reached. A method to estimate the soil critical SM is proposed. For REMEDHUS, the critical SM is estimated to be ∼0

  7. A stable, unbiased, long-term satellite based data record of sea surface temperature from ESA's Climate Change Initiative

    Science.gov (United States)

    Rayner, Nick; Good, Simon; Merchant, Chris

    2013-04-01

    The study of climate change demands long-term, stable observational records of climate variables such as sea surface temperature (SST). ESA's Climate Change Initiative was set up to unlock the potential of satellite data records for this purpose. As part of this initiative, 13 projects were established to develop the data records for different essential climate variables - aerosol, cloud, fire, greenhouse gases, glaciers, ice sheets, land cover, ocean colour, ozone, sea ice, sea level, soil moisture and SST. In this presentation we describe the development work that has taken place in the SST project and present new prototype data products that are available now for users to trial. The SST project began in 2010 and has now produced two prototype products. The first is a long-term product (covering mid-1991 - 2010 currently, but with a view to update this in the future), which prioritises length of data record and stability over other considerations. It is based on data from the Along-Track Scanning Radiometer (ATSR) and Advanced Very-High Resolution Radiometer (AVHRR) series of satellite instruments. The product aims to combine the favourable stability and bias characteristics of ATSR data with the geographical coverage achieved with the AVHRR series. Following an algorithm selection process, an optimal estimation approach to retrieving SST from the satellite measurements from both sensors was adopted. The retrievals do not depend on in situ data and so this data record represents an independent assessment of SST change. In situ data are, however, being used to validate the resulting data. The second data product demonstrates the coverage that can be achieved using the modern satellite observing system including, for example, geostationary satellite data. Six months worth of data have been processed for this demonstration product. The prototype SST products will be released in April to users to trial in their work. The long term product will be available as

  8. Apparatus for accurately measuring high temperatures

    Science.gov (United States)

    Smith, D.D.

    The present invention is a thermometer used for measuring furnace temperatures in the range of about 1800/sup 0/ to 2700/sup 0/C. The thermometer comprises a broadband multicolor thermal radiation sensor positioned to be in optical alignment with the end of a blackbody sight tube extending into the furnace. A valve-shutter arrangement is positioned between the radiation sensor and the sight tube and a chamber for containing a charge of high pressure gas is positioned between the valve-shutter arrangement and the radiation sensor. A momentary opening of the valve shutter arrangement allows a pulse of the high gas to purge the sight tube of air-borne thermal radiation contaminants which permits the radiation sensor to accurately measure the thermal radiation emanating from the end of the sight tube.

  9. Understanding data noise in gravity field recovery on the basis of inter-satellite ranging measurements acquired by the satellite gravimetry mission GRACE

    NARCIS (Netherlands)

    Ditmar, P.; Teixeira da Encarnacao, J.; Hashemi Farahani, H.

    2012-01-01

    Spectral analysis of data noise is performed in the context of gravity field recovery from inter-satellite ranging measurements acquired by the satellite gravimetry mission GRACE. The motivation of the study is two-fold: (i) to promote a further improvement of GRACE data processing techniques and

  10. A Satellite-Based Estimation of Evapotranspiration Using Vegetation Index-Temperature Trapezoid Concept: A Case Study in Southern Florida, U.S.A.

    Science.gov (United States)

    Yagci, A. L.; Santanello, J. A., Jr.; Jones, J. W.

    2015-12-01

    One of the key surface variables for hydrological applications, monitoring of natural and anthropogenic water consumption, closing energy balance and water budgets and drought identification is evapotranspiration (ET). There is currently a strong need for high temporal and spatial resolution ET products for climate and hydrological modelers. A satellite-based retrieval method based on vegetation index-temperature trapezoid (VITT) concept has been developed. This model has the ability to generate accurate ET estimates at high temporal and spatial resolutions by taking advantage of key remotely sensed parameters such as vegetation indices (VIs) and land surface temperature (LST) acquired by satellites as well as routinely-measured meteorological variables such as air temperature (Ta) and net radiation. For local-scale applications, the model has been successfully implemented in Python programming language and tested using Landsat satellite products at an eddy covariance flux tower in Florida. It is fully functional and automated such that there is no need of user intervention to run the model. The model development for continental-scale applications using VI and LST products from NASA satellites such as the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Visible Infrared Imaging Radiometer Suite (VIIRS) is currently in progress. The results for local-scale application and early results for continental-scale (US) will be presented and discussed.

  11. High resolution 3-D temperature and salinity fields derived from in situ and satellite observations

    Directory of Open Access Journals (Sweden)

    S. Guinehut

    2012-10-01

    Full Text Available This paper describes an observation-based approach that efficiently combines the main components of the global ocean observing system using statistical methods. Accurate but sparse in situ temperature and salinity profiles (mainly from Argo for the last 10 yr are merged with the lower accuracy but high-resolution synthetic data derived from satellite altimeter and sea surface temperature observations to provide global 3-D temperature and salinity fields at high temporal and spatial resolution. The first step of the method consists in deriving synthetic temperature fields from altimeter and sea surface temperature observations, and salinity fields from altimeter observations, through multiple/simple linear regression methods. The second step of the method consists in combining the synthetic fields with in situ temperature and salinity profiles using an optimal interpolation method. Results show the revolutionary nature of the Argo observing system. Argo observations now allow a global description of the statistical relationships that exist between surface and subsurface fields needed for step 1 of the method, and can constrain the large-scale temperature and mainly salinity fields during step 2 of the method. Compared to the use of climatological estimates, results indicate that up to 50% of the variance of the temperature fields can be reconstructed from altimeter and sea surface temperature observations and a statistical method. For salinity, only about 20 to 30% of the signal can be reconstructed from altimeter observations, making the in situ observing system essential for salinity estimates. The in situ observations (step 2 of the method further reduce the differences between the gridded products and the observations by up to 20% for the temperature field in the mixed layer, and the main contribution is for salinity and the near surface layer with an improvement up to 30%. Compared to estimates derived using in situ observations only, the

  12. High Resolution 3-D temperature and salinity fields derived from in situ and satellite observations

    Directory of Open Access Journals (Sweden)

    S. Guinehut

    2012-03-01

    Full Text Available This paper describes an observation-based approach that combines efficiently the main components of the global ocean observing system using statistical methods. Accurate but sparse in situ temperature and salinity profiles (mainly from Argo for the last 10 years are merged with the lower accuracy but high-resolution synthetic data derived from altimeter and sea surface temperature satellite observations to provide global 3-D temperature and salinity fields at high temporal and spatial resolution. The first step of the method consists in deriving synthetic temperature fields from altimeter and sea surface temperature observations and salinity fields from altimeter observations through multiple/simple linear regression methods. The second step of the method consists in combining the synthetic fields with in situ temperature and salinity profiles using an optimal interpolation method. Results show the revolution of the Argo observing system. Argo observations now allow a global description of the statistical relationships that exist between surface and subsurface fields needed for step 1 of the method and can constrain the large-scale temperature and mainly salinity fields during step 2 of the method. Compared to the use of climatological estimates, results indicate that up to 50 % of the variance of the temperature fields can be reconstructed from altimeter and sea surface temperature observations and a statistical method. For salinity, only about 20 to 30 % of the signal can be reconstructed from altimeter observations, making the in situ observing system mandatory for salinity estimates. The in situ observations (step 2 of the method reduce additionally the error by up to 20 % for the temperature field in the mixed layer and the main contribution is for salinity and the near surface layer with an improvement up to 30 %. Compared to estimates derived using in situ observations only, the merged fields provide a better reconstruction of the high

  13. Preliminary study on direct assimilation of cloud-affected satellite microwave brightness temperatures

    Science.gov (United States)

    Zhang, Sibo; Guan, Li

    2017-02-01

    Direct assimilation of cloud-affected microwave brightness temperatures from AMSU-A into the GSI three-dimensional variational (3D-Var) assimilation system is preliminarily studied in this paper. A combination of cloud microphysics parameters retrieved by the 1D-Var algorithm (including vertical profiles of cloud liquid water content, ice water content, and rain water content) and atmospheric state parameters from objective analysis fields of an NWP model are used as background fields. Three cloud microphysics parameters (cloud liquid water content, ice water content, and rain water content) are applied to the control variable. Typhoon Halong (2014) is selected as an example. The results show that direct assimilation of cloud-affected AMSU-A observations can effectively adjust the structure of large-scale temperature, humidity and wind analysis fields due to the assimilation of more AMSU-A observations in typhoon cloudy areas, especially typhoon spiral cloud belts. These adjustments, with temperatures increasing and humidities decreasing in the movement direction of the typhoon, bring the forecasted typhoon moving direction closer to its real path. The assimilation of cloud-affected satellite microwave brightness temperatures can provide better analysis fields that are more similar to the actual situation. Furthermore, typhoon prediction accuracy is improved using these assimilation analysis fields as the initial forecast fields in NWP models.

  14. The influence of snow depth and surface air temperature on satellite-derived microwave brightness temperature. [central Russian steppes, and high plains of Montana, North Dakota, and Canada

    Science.gov (United States)

    Foster, J. L.; Hall, D. K.; Chang, A. T. C.; Rango, A.; Allison, L. J.; Diesen, B. C., III

    1980-01-01

    Areas of the steppes of central Russia, the high plains of Montana and North Dakota, and the high plains of Canada were studied in an effort to determine the relationship between passive microwave satellite brightness temperature, surface air temperature, and snow depth. Significant regression relationships were developed in each of these homogeneous areas. Results show that sq R values obtained for air temperature versus snow depth and the ratio of microwave brightness temperature and air temperature versus snow depth were not as the sq R values obtained by simply plotting microwave brightness temperature versus snow depth. Multiple regression analysis provided only marginal improvement over the results obtained by using simple linear regression.

  15. Nature of the Venus thermosphere derived from satellite drag measurements (solicited paper)

    Science.gov (United States)

    Keating, G.; Theriot, M.; Bougher, S.

    2008-09-01

    From drag measurements obtained by Pioneer Venus and Magellan, the Venus upper atmosphere was discovered to be much colder than Earth's, even though Venus is much closer to the Sun than the Earth. On the dayside, exospheric temperatures are near 300K compared to Earth's of near 1200K [1]. This is thought to result principally from 15 micron excitation of carbon dioxide by atomic oxygen resulting in very strong 15 micron emission to space, cooling off the upper atmosphere [2]. On the nightside the Venus upper atmosphere is near 100K [3], compared to Earth where temperatures are near 900K. The nightside Venus temperatures drop with altitude contrary to a thermosphere where temperatures rise with altitude. As a result, the very cold nightside is called a "cryosphere" rather than a thermosphere. This is the first cryosphere discovered in the solar system [1]. Temperatures sharply drop near the terminator. Apparently, heat is somehow blocked near the terminator from being significantly transported to the nightside [4]. Recently, drag studies were performed on a number of Earth satellites to establish whether the rise of carbon dioxide on Earth was cooling the Earth's thermosphere similar to the dayside of Venus. Keating et al. [5] discovered that a 10 percent drop in density near 350km at solar minimum occurred globally over a period of 20 years with a 10 per cent rise in carbon dioxide. This should result in about a factor of 2 decline in density from 1976 values, by the end of the 21st century brought on by thermospheric cooling. Subsequent studies have confirmed these results. Thus we are beginning to see the cooling of Earth's upper atmosphere apparently from the same process cooling the Venus thermosphere. Fig. 1 VIRA Exospheric Temperatures Atmospheric drag data from the Pioneer Venus Orbiter and Magellan were combined to generate an improved version of the Venus International Reference Atmosphere (VIRA) [6], [7]. A "fountain effect" was discovered where the

  16. Measurements of ionospheric TEC in the direction of GPS satellites and comparison with three ionospheric models

    Directory of Open Access Journals (Sweden)

    E. Zuccheretti

    1997-06-01

    Full Text Available The IEN Galileo Ferraris uses GPS for time and frequency synchronization. To obtain high performance it is important to reduce the error due to the ionospheric time-delay in GPS measurements. Evaluations of TEC in the direction of GPS satellites, obtained from three different ionospheric models, have been compared with corresponding measurements by GPS signal.

  17. Radiation budget and related measurements in 1985 and beyond. [earth radiation budget satellite system

    Science.gov (United States)

    1978-01-01

    Development of systems for obtaining radiation budget and cloud data is discussed. Instruments for measuring total solar irradiance, total infrared flux, reflected solar flux, and cloud heights and properties are considered. Other topics discussed include sampling by multiple satellites, user identification, and determination of the parameters that need to be measured.

  18. Stochastic estimation of dynamically changing object orientation parameters using satellite measurements

    OpenAIRE

    Lukasevich, V. I.; Kramarov, S. O.; Sokolov, Sergey V.

    2015-01-01

    It is solved a problem of a posteriori estimation of dynamically modified parameters of angular movement of the object by satellite measurements. There are shown advantages of application of the methods of stochastic non-linear dynamic filtration before single-stage measurements. It is represented an example, showing efficiency of proposed approach.

  19. Bowie Lecture: The Record of Sea Level Change from Satellite Measurements: What Have We Learned?

    Science.gov (United States)

    Nerem, R. S.

    2005-12-01

    Over the last decade, satellite geodetic measurements together with in situ measurements, have revolutionized our understanding of present-day sea level change. This is important because sea level change can be used as one barometer of climate variations and because of the implications sea level change has for coastal populations. With measurements from satellite altimeter missions (TOPEX/Posiedon and Jason), satellite gravity missions (GRACE), and the Global Positioning System (GPS), we are now able to start asking some important questions with regards to global sea level change and its regional variations. What has been the rate of global mean sea level change over the last dozen years? Is this rate different from the historical rate observed by the tide gauges over the last century? What are the principal causes of the observed sea level change, and are they related to anthropogenic climate variations? The record of sea level change from satellite altimetry will be reviewed, its error sources and limitations discussed, and the results placed in context with other estimates of sea level change from tide gauges, in situ measurements, and global climate models. The much shorter, but just as important, record of ocean mass variations from satellite gravity measurements will be similarly reviewed. In addition, GPS measurements of the deformation of the solid Earth due to the melting of continental ice and what they tell us about sea level change will be discussed. A sea level change budget will be presented, both for the altimetric era and the last century, containing estimates of contributions from thermal expansion, ocean mass changes (melting ice, runoff, etc.), and other contributions to sea level change. Finally, the need for continuing the satellite measurements of sea level change will be discussed in the context of future missions and the scientific gain that would result.

  20. Global Assessment of Land Surface Temperature From Geostationary Satellites and Model Estimates

    Science.gov (United States)

    Reichle, Rolf H.; Liu, Q.; Minnis, P.; daSilva, A. M., Jr.; Palikonda, R.; Yost, C. R.

    2012-01-01

    Land surface (or 'skin') temperature (LST) lies at the heart of the surface energy balance and is a key variable in weather and climate models. In this research we compare two global and independent data sets: (i) LST retrievals from five geostationary satellites generated at the NASA Langley Research Center (LaRC) and (ii) LST estimates from the quasi-operational NASA GEOS-5 global modeling and assimilation system. The objective is to thoroughly understand both data sets and their systematic differences in preparation for the assimilation of the LaRC LST retrievals into GEOS-5. As expected, mean differences (MD) and root-mean-square differences (RMSD) between modeled and retrieved LST vary tremendously by region and time of day. Typical (absolute) MD values range from 1-3 K in Northern Hemisphere mid-latitude regions to near 10 K in regions where modeled clouds are unrealistic, for example in north-eastern Argentina, Uruguay, Paraguay, and southern Brazil. Typically, model estimates of LST are higher than satellite retrievals during the night and lower during the day. RMSD values range from 1-3 K during the night to 2-5 K during the day, but are larger over the 50-120 W longitude band where the LST retrievals are derived from the FY2E platform

  1. A satellite-based climatology (1989-2012) of lake surface water temperature from AVHRR 1-km for Central European water bodies

    Science.gov (United States)

    Riffler, Michael; Wunderle, Stefan

    2013-04-01

    The temperature of lakes is an important parameter for lake ecosystems influencing the speed of physio-chemical reactions, the concentration of dissolved gazes (e.g. oxygen), and vertical mixing. Even small temperature changes might have irreversible effects on the lacustrine system due to the high specific heat capacity of water. These effects could alter the quality of lake water depending on parameters like lake size and volume. Numerous studies mention lake water temperature as an indicator of climate change and in the Global Climate Observing System (GCOS) requirements it is listed as an essential climate variable. In contrast to in situ observations, satellite imagery offers the possibility to derive spatial patterns of lake surface water temperature (LSWT) and their variability. Moreover, although for some European lakes long in situ time series are available, the temperatures of many lakes are not measured or only on a non-regular basis making these observations insufficient for climate monitoring. However, only few satellite sensors offer the possibility to analyze time series which cover more than 20 years. The Advanced Very High Resolution Radiometer (AVHRR) is among these and has been flown on the National Oceanic and Atmospheric Administration (NOAA) Polar Operational Environmental Satellites (POES) and on the Meteorological Operational Satellites (MetOp) from the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) as a heritage instrument for almost 35 years. It will be carried on for at least ten more years finally offering a unique opportunity for satellite-based climate studies. Herein we present the results from a study initiated by the Swiss GCOS office to generate a satellite-based LSWT climatology for the pre-alpine water bodies in Switzerland. It relies on the extensive AVHRR 1-km data record (1985-2012) of the Remote Sensing Research Group at the University of Bern (RSGB) and has been derived from the AVHRR/2

  2. Simultaneous measurements from the Millstone Hill radar and the Active satellite during the SAID/SAR arc event of the March 1990 CEDAR storm

    Directory of Open Access Journals (Sweden)

    M. Förster

    Full Text Available During a nearby passage of the Active satellite above the Millstone Hill radar on 21 March 1990 at local sunset, the satellite and the radar performed simultaneous measurements of upper ionospheric parameters in nearly the same spatial volume. For this purpose the radar carried out a special azimuth-elevation scan to track the satellite. Direct comparisons of radar data and in situ satellite measurements have been carried out quite rarely. In this case, the coincidence of co-ordinated measurements and active ionospheric-magnetospheric processes during an extended storm recovery phase presents a unique occasion resulting in a very valuable data set. The measurements show generally good agreement both during quiet prestorm and storm conditions and the combination of radar and satellite observations gives a more comprehensive picture of the physical processes involved. We find a close relationship between the rapid westward ion drift peak at subauroral latitudes (SAID event and the occurrence of a stable auroral red (SAR arc observed after sunset by an all-sky imager and reported in an earlier study of this event. The SAID electric field is caused by the penetration of energetic ions with energies between about 1 keV and 100 keV into the outer plasmasphere to a latitude equatorward of the extent of the plasmasheet electrons. Charge separation results in the observed polarisation field and the SAID. Unusually high molecular ion densities measured by the satellite at altitudes of 700-870 km at subauroral and auroral latitudes point on strong upward-directed ion acceleration processes and an intense neutral gas upwelling. These structures are collocated with a narrow trough in electron density and an electron temperature peak as observed simultaneously by the radar and the satellite probes.

    Key words. Ionosphere (ionosphere-magnetosphere interactions; plasma temperature and density; Magnetospheric physics (plasmasphere.

  3. High temperature hall effect measurement system design, measurement and analysis

    Science.gov (United States)

    Berkun, Isil

    A reliable knowledge of the transport properties of semiconductor materials is essential for the development and understanding of a number of electronic devices. In this thesis, the work on developing a Hall Effect measurement system with software based data acqui- sition and control for a temperature range of 300K-700K will be described. A system was developed for high temperature measurements of materials including single crystal diamond, poly-crystalline diamond, and thermoelectric compounds. An added capability for monitor- ing the current versus voltage behavior of the contacts was used for studying the influence of ohmic and non-ohmic contacts on Hall Effect measurements. The system has been primar- ily used for testing the transport properties of boron-doped single crystal diamond (SCD) deposited in a microwave plasma-assisted chemical vapor deposition (MPCVD) reactor [1]. Diamond has several outstanding properties that are of high interest for its development as an electronic material. These include a relatively wide band gap of 5.5 (eV), high thermal conductivity, high mobility, high saturation velocity, and a high breakdown voltage. For a temperature range of 300K-700K, IV curves, Hall mobilities and carrier concentrations are shown. Temperature dependent Hall effect measurements have shown carrier concentrations from below 1017cm --3 to approximately 1021 cm--3 with mobilities ranging from 763( cm2/V s) to 0.15(cm 2/V s) respectively. Simulation results have shown the effects of single and mixed carrier models, activation energies, effective mass and doping concentrations. These studies have been helpful in the development of single crystal diamond for diode applications. Reference materials of Ge and GaAs were used to test the Hall Effect system. The system was also used to characterize polycrystalline diamond deposited on glass for electrochemical applications, and Mg2(Si,Sn) compounds which are promising candidates of low-cost, light weight and non

  4. Snow thickness retrieval using SMOS satellite data: Comparison with airborne IceBridge and buoy measurements

    Science.gov (United States)

    Maaß, N.; Kaleschke, L.; Tian-Kunze, X.

    2015-12-01

    The passive microwave mission SMOS (Soil Moisture and Ocean Salinity) provides daily coverage of the polar regions and its data have been used to retrieve thin sea ice thickness up to about one meter. In addition, there has been an attempt to retrieve snow thickness over thick Arctic multi-year ice, which is a crucial parameter for the freeboard-based estimation of (thick) sea ice thickness from lidar and radar altimetry. SMOS provides measurements at a frequency of 1.4 GHz (L-band) at horizontal and vertical polarization for a range of incidence angles (0 to 60°). The retrieval of ice or snow parameters from SMOS measurements is based on an emission model that describes the 1.4 GHz brightness temperature of (snow-covered) sea ice as a function of the ice and snow thicknesses and the permittivities of these media, which are mainly determined by ice temperature and salinity and snow density, respectively. In the first attempts to retrieve snow thickness from SMOS data, these parameters were assumed to be constant in the emission model, and the resulting maps were compared with airborne ice and snow thickness measurements taken during NASA's Operation IceBridge mission in spring 2012. The present approach to produce SMOS snow thickness maps is more elaborate. For example, available information on the ice surface temperature from MODIS (MODerate resolution Imaging Spectroradiometer) satellite images or from the IceBridge campaign itself are used, and the ice in the retrieval model is described by temperature and salinity profiles instead of using bulk values. As a first step we have produced (winter/spring) snow thickness maps of the Arctic, from 3-day-averages up to monthly means, using the available SMOS data from 2010 on. Here, we show how our spatial snow thickness distributions compare with IceBridge campaign data in the western Arctic from spring 2011 to 2015. In addition, we show how the temporal evolution of SMOS-retrieved snow thickness compares with snow

  5. Coarse Initial Orbit Determination for a Geostationary Satellite Using Single-Epoch GPS Measurements

    Directory of Open Access Journals (Sweden)

    Ghangho Kim

    2015-04-01

    Full Text Available A practical algorithm is proposed for determining the orbit of a geostationary orbit (GEO satellite using single-epoch measurements from a Global Positioning System (GPS receiver under the sparse visibility of the GPS satellites. The algorithm uses three components of a state vector to determine the satellite’s state, even when it is impossible to apply the classical single-point solutions (SPS. Through consideration of the characteristics of the GEO orbital elements and GPS measurements, the components of the state vector are reduced to three. However, the algorithm remains sufficiently accurate for a GEO satellite. The developed algorithm was tested on simulated measurements from two or three GPS satellites, and the calculated maximum position error was found to be less than approximately 40 km or even several kilometers within the geometric range, even when the classical SPS solution was unattainable. In addition, extended Kalman filter (EKF tests of a GEO satellite with the estimated initial state were performed to validate the algorithm. In the EKF, a reliable dynamic model was adapted to reduce the probability of divergence that can be caused by large errors in the initial state.

  6. Fade-durations derived from land-mobile-satellite measurements in Australia

    Science.gov (United States)

    Hase, Yoshihiro; Vogel, Wolfhard J.; Goldhirsh, Julius

    1991-01-01

    Transmissions from the Japanese ETS-V geostationary satellite were measured at L band (1.5 GHz) in a vehicle driving on roads of southeastern Australia. The measurements were part of a program designed to characterize propagation effects due to roadside trees and terrain for mobile satellite service. It is shown that the cumulative distributions of fade and nonfade durations follow a lognormal and power law, respectively. At 1 percent probability, fades last 2-8 m, and nonfades 10-100 m, depending on the degree of shadowing. Phase fluctuations are generally small, allowing the channel characteristics to be estimated from levels only.

  7. Validation of PV performance models using satellite-based irradiance measurements : a case study.

    Energy Technology Data Exchange (ETDEWEB)

    Stein, Joshua S.; Parkins, Andrew (Clean Power Research); Perez, Richard (University at Albany)

    2010-05-01

    Photovoltaic (PV) system performance models are relied upon to provide accurate predictions of energy production for proposed and existing PV systems under a wide variety of environmental conditions. Ground based meteorological measurements are only available from a relatively small number of locations. In contrast, satellite-based radiation and weather data (e.g., SUNY database) are becoming increasingly available for most locations in North America, Europe, and Asia on a 10 x 10 km grid or better. This paper presents a study of how PV performance model results are affected when satellite-based weather data is used in place of ground-based measurements.

  8. [Physical meaning of temperature measured by spectral line intensity method].

    Science.gov (United States)

    Zhao, Wen-Hua; Tang, Huang-Zai; Shen, Yan; Shi, Yong; Hou, Ling-Yun

    2007-11-01

    The difference between electron temperature and excitation temperature is analyzed in the aspect of statistics thermodynamics. It is presented clearly that the temperature acquired by spectral line intensity method is not free electron temperature, but internal electronic excitation temperature of heavy particle. Under thermal equilibrium condition, the excitation temperature is equal to the electron temperature, while under non-thermal equilibrium condition, the excitation temperature is not equal to the electron temperature. In the study of arc jet plume in vacuum chamber, spectral line intensity method was employed to measure the apparent excitation temperature of arc jet plume, and Langmuir probe was employed to measure the electron temperature of arcjet plume. The big difference between the excitation temperature and the electron temperature proved that the temperature acquired by spectral line intensity method is not free electron temperature.

  9. Towards a protocol for validating satellite-based Land Surface Temperature: Theoretical considerations

    Science.gov (United States)

    Schneider, Philipp; Ghent, Darren J.; Corlett, Gary C.; Prata, Fred; Remedios, John J.

    2013-04-01

    Land Surface Temperature (LST) and emissivity are important parameters for environmental monitoring and earth system modelling. LST has been observed from space for several decades using a wide variety of satellite instruments with different characteristics, including both platforms in low-earth orbit and in geostationary orbit. This includes for example the series of Advanced Very High Resolution Radiometers (AVHRR) delivering a continuous thermal infrared (TIR) data stream since the early 1980s, the series of Along-Track Scanning Radiometers (ATSR) providing TIR data since 1991, and the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments onboard NASA's Terra and Aqua platforms, providing data since the year 2000. In addition, the Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard of the geostationary Meteosat satellites is now providing LST at unprecedented sub-hour frequency. The data record provided by such instruments is extremely valuable for a wide variety of applications, including climate change, land/atmosphere feedbacks, fire monitoring, modelling, land cover change, geology, crop- and water management. All of these applications, however, require a rigorous validation of the data in order to assess the product quality and the associated uncertainty. Here we report on recent work towards developing a protocol for validation of satellite-based Land Surface Temperature products. Four main validation categories are distinguished within the protocol: A) Comparison with in situ observations, B) Radiance-based validation, C) Inter-comparison with similar LST products, and D) Time-series analysis. Each category is further subdivided into several quality classes, which approximately reflect the validation accuracy that can be achieved by the different approaches, as well as the complexity involved with each method. Advice on best practices is given for methodology common to all categories. For each validation category, recommendations

  10. A thermodynamic geography: night-time satellite imagery as a proxy measure of emergy.

    Science.gov (United States)

    Coscieme, Luca; Pulselli, Federico M; Bastianoni, Simone; Elvidge, Christopher D; Anderson, Sharolyn; Sutton, Paul C

    2014-11-01

    Night-time satellite imagery enables the measurement, visualization, and mapping of energy consumption in an area. In this paper, an index of the "sum of lights" as observed by night-time satellite imagery within national boundaries is compared with the emergy of the nations. Emergy is a measure of the solar energy equivalent used, directly or indirectly, to support the processes that characterize the economic activity in a country. Emergy has renewable and non-renewable components. Our results show that the non-renewable component of national emergy use is positively correlated with night-time satellite imagery. This relationship can be used to produce emergy density maps which enable the incorporation of spatially explicit representations of emergy in geographic information systems. The region of Abruzzo (Italy) is used to demonstrate this relationship as a spatially disaggregate case.

  11. Improving knowledge of the surface salinity annual cycle with Aquarius satellite measurements

    Science.gov (United States)

    Lagerloef, G. S. E.

    2016-12-01

    To improve knowledge of the ocean surface salinity annual cycle, and its link to global precipitation patterns, remains a key science measurement objective for satellites. The Aquarius satellite data are applied here to address this, and the analysis is not as straightforward as it may seem. Sensor calibration is considered carefully to ensure that seasonality in external calibration data sources do not alias the satellite measurements. For example, quasi-monthly calibration error signals were identified early in the Aquarius mission. Subsequently, Aquarius data processing has relied primarily on an ocean target calibration method, whereby the satellite observations were co-located with output from the US Navy operational HYCOM model to adjust for these quasi-monthly calibration drifts. It was later determined that HYCOM salinity fields are themselves adjusted with a climatological restoring term, that imprints the seasonal climatology signal on the sensor calibration. When that output is compared with a parallel Aquarius data processing that bypasses the HYCOM ocean target calibration, and substitutes a simulation of the sensor electronics, the globally averaged output show very different annual signals between these trials. A modified ocean-target calibration, that employs satellite data matched directly with the in situ observations, is presently being investigated. The methodology uses signal processing to separate the satellite-in situ differences related to the sensor calibration from geophysical error sources. This remains a work-in-progress, and the results, with any unresolved issues, will be discussed. The presentation will also provide a very brief summary of Aquarius scientific accomplishments, the final "legacy" data set production, and the program to continue salinity data processing from other satellites.

  12. Comparative Study of Ground Measured, Satellite-Derived, and Estimated Global Solar Radiation Data in Nigeria

    Directory of Open Access Journals (Sweden)

    Boluwaji M. Olomiyesan

    2016-01-01

    Full Text Available In this study, the performance of three global solar radiation models and the accuracy of global solar radiation data derived from three sources were compared. Twenty-two years (1984–2005 of surface meteorological data consisting of monthly mean daily sunshine duration, minimum and maximum temperatures, and global solar radiation collected from the Nigerian Meteorological (NIMET Agency, Oshodi, Lagos, and the National Aeronautics Space Agency (NASA for three locations in North-Western region of Nigeria were used. A new model incorporating Garcia model into Angstrom-Prescott model was proposed for estimating global radiation in Nigeria. The performances of the models used were determined by using mean bias error (MBE, mean percentage error (MPE, root mean square error (RMSE, and coefficient of determination (R2. Based on the statistical error indices, the proposed model was found to have the best accuracy with the least RMSE values (0.376 for Sokoto, 0.463 for Kaduna, and 0.449 for Kano and highest coefficient of determination, R2 values of 0.922, 0.938, and 0.961 for Sokoto, Kano, and Kaduna, respectively. Also, the comparative study result indicates that the estimated global radiation from the proposed model has a better error range and fits the ground measured data better than the satellite-derived data.

  13. Dose Measurements on the BION-M1 satellite applying passive detector packages

    Science.gov (United States)

    Stradi, Andrea; Berger, Thomas; Kodaira, Satoshi; Kubancak, Jan; Palfalvi, Jozsef K.; Ambrozova, Iva; Tolochek, Raisa; Shurshakov, Vyacheslav; Szabo, Julianna

    A passive detector package was developed in the past years in the Centre for Energy Research, Hungarian Academy of Science to detect cosmic ray particles, to determine their flux and dose. It consists of thermoluminescent detectors (TLD) and plastic solid state nuclear track detectors (SSNTD). In the frame of a scientific co-operation between the Institute for Biomedical Problems (IBMP) fourteen packages were flow within the new BION-M1 satellite program together with biological samples and detector packages from other participants. Two packages were located outside and the rest ones inside the recoverable capsule. Comparing to the previous BION and similar FOTON experiments, (all together 17 successful ones), this flight was a “champion” with the highest altitude (575 km), orbital inclination (64.9°) and flight duration (30 days). The external exposure provided a unique possibility to study not only the elevated level of cosmic rays but also the behavior of the detector packages in extreme circumstances as low temperature and pressure. The paper will summarize the construction of the detector packages, the calibration and evaluation processes, as well as, the linear energy transfer (LET) spectra, the absorbed dose and the mean quality factor. These quantities will be compared taking into consideration their location inside and outside the capsule and to the results of other participants. Also some comparison of results to the previous BION and FOTON flights and contemporary measurements on the ISS will be presented.

  14. Saharan dust detection using multi-sensor satellite measurements.

    Science.gov (United States)

    Madhavan, Sriharsha; Qu, John J; Hao, X

    2017-02-01

    Contemporary scientists have vested interest in trying to understand the climatology of the North Atlantic Basin since this region is considered as the genesis for hurricane formation that eventually get shipped to the tropical Atlantic region and the Caribbean. The effects of atmospheric water cycle and the climate of West Africa and the Atlantic basin are hugely impacted by the radiative forcing of Saharan dust. The focus area in this paper would be to improve the dust detection schemes by employing the use of multi sensor measurements in the thermal emissive wavelengths using legacy sensors such as Terra (T) and Aqua (A) MODerate-resolution Imaging Spectroradiometer (MODIS), fusing with Ozone Monitoring Instrument (OMI). Previous work by Hao and Qu (2007) had considered a limited number of thermal infrared channels which led to a correlation coefficient R(2) value of 0.765 between the Aerosol Optical Thickness (AOT) at 550 nm and the modeled dust index. In this work, we extend the thermal infrared based dust detection by employing additional channels: the 8.55 μm which has shown high sensitivity to the Saharan dust, along with water vapor channel of 7.1 μm and cloud top channel of 13.1 μm. Also, the dust pixels were clearly identified using the OMI based aerosol types. The dust pixels were cleanly segregated from the other aerosol types such as sulfates, biomass, and other carbonaceous aerosols. These improvements led to a much higher correlation coefficient R(2) value of 0.85 between the modified dust index and the AOT in comparison to the previous work. The key limitations from the current AOT products based on MODIS and were put to test by validating the improved dust detection algorithm. Two improvements were noted. First, the dust measurement radiometry using MODIS is significantly improved by at least an order of 2. Second the spatial measurements are enhanced by a factor of at least 10.

  15. Saharan dust detection using multi-sensor satellite measurements

    Directory of Open Access Journals (Sweden)

    Sriharsha Madhavan

    2017-02-01

    Full Text Available Contemporary scientists have vested interest in trying to understand the climatology of the North Atlantic Basin since this region is considered as the genesis for hurricane formation that eventually get shipped to the tropical Atlantic region and the Caribbean. The effects of atmospheric water cycle and the climate of West Africa and the Atlantic basin are hugely impacted by the radiative forcing of Saharan dust. The focus area in this paper would be to improve the dust detection schemes by employing the use of multi sensor measurements in the thermal emissive wavelengths using legacy sensors such as Terra (T and Aqua (A MODerate-resolution Imaging Spectroradiometer (MODIS, fusing with Ozone Monitoring Instrument (OMI. Previous work by Hao and Qu (2007 had considered a limited number of thermal infrared channels which led to a correlation coefficient R2 value of 0.765 between the Aerosol Optical Thickness (AOT at 550 nm and the modeled dust index. In this work, we extend the thermal infrared based dust detection by employing additional channels: the 8.55 μm which has shown high sensitivity to the Saharan dust, along with water vapor channel of 7.1 μm and cloud top channel of 13.1 μm. Also, the dust pixels were clearly identified using the OMI based aerosol types. The dust pixels were cleanly segregated from the other aerosol types such as sulfates, biomass, and other carbonaceous aerosols. These improvements led to a much higher correlation coefficient R2 value of 0.85 between the modified dust index and the AOT in comparison to the previous work. The key limitations from the current AOT products based on MODIS and were put to test by validating the improved dust detection algorithm. Two improvements were noted. First, the dust measurement radiometry using MODIS is significantly improved by at least an order of 2. Second the spatial measurements are enhanced by a factor of at least 10.

  16. High-temperature archeointensity measurements from Mesopotamia

    Science.gov (United States)

    Gallet, Yves; Le Goff, Maxime

    2006-01-01

    We present new archeointensity results obtained from 127 potsherds and baked brick fragments dated from the last four millennia BC which were collected from different Syrian archeological excavations. High temperature magnetization measurements were carried out using a laboratory-built triaxial vibrating sample magnetometer (Triaxe), and ancient field intensity determinations were derived from the experimental procedure described by Le Goff and Gallet [Le Goff and Gallet. Earth Planet. Sci. Lett. 229 (2004) 31-43]. As some of the studied samples were previously analyzed using the classical Thellier and Thellier [Thellier and Thellier . Ann. Geophys. 15 (1959) 285-376] method revised by Coe [Coe. J. Geophys. Res. 72 (1967) 3247-3262], a comparison of the results is made from the two methods. The differences both at the fragment and site levels are mostly within ± 5%, which strengthens the validity of the experimental procedure developed for the Triaxe. The new data help to better constrain the geomagnetic field intensity variations in Mesopotamia during archeological times, with the probable occurrence of an archeomagnetic jerk around 2800-2600 BC.

  17. Japanese Global Precipitation Measurement (GPM) mission status and application of satellite-based global rainfall map

    Science.gov (United States)

    Kachi, Misako; Shimizu, Shuji; Kubota, Takuji; Yoshida, Naofumi; Oki, Riko; Kojima, Masahiro; Iguchi, Toshio; Nakamura, Kenji

    2010-05-01

    As accuracy of satellite precipitation estimates improves and observation frequency increases, application of those data to societal benefit areas, such as weather forecasts and flood predictions, is expected, in addition to research of precipitation climatology to analyze precipitation systems. There is, however, limitation on single satellite observation in coverage and frequency. Currently, the Global Precipitation Measurement (GPM) mission is scheduled under international collaboration to fulfill various user requirements that cannot be achieved by the single satellite, like the Tropical Rainfall Measurement Mission (TRMM). The GPM mission is an international mission to achieve high-accurate and high-frequent rainfall observation over a global area. GPM is composed of a TRMM-like non-sun-synchronous orbit satellite (GPM core satellite) and constellation of satellites carrying microwave radiometer instruments. The GPM core satellite carries the Dual-frequency Precipitation Radar (DPR), which is being developed by the Japan Aerospace Exploration Agency (JAXA) and the National Institute of Information and Communications Technology (NICT), and microwave radiometer provided by the National Aeronautics and Space Administration (NASA). Development of DPR instrument is in good progress for scheduled launch in 2013, and DPR Critical Design Review has completed in July - September 2009. Constellation satellites, which carry a microwave imager and/or sounder, are planned to be launched around 2013 by each partner agency for its own purpose, and will contribute to extending coverage and increasing frequency. JAXA's future mission, the Global Change Observation Mission (GCOM) - Water (GCOM-W) satellite will be one of constellation satellites. The first generation of GCOM-W satellite is scheduled to be launched in 2011, and it carries the Advanced Microwave Scanning Radiometer 2 (AMSR2), which is being developed based on the experience of the AMSR-E on EOS Aqua satellite

  18. Land Surface Temperature- Comparing Data from Polar Orbiting and Geostationary Satellites

    Science.gov (United States)

    Comyn-Platt, E.; Remedios, J. J.; Good, E. J.; Ghent, D.; Saunders, R.

    2012-04-01

    Land Surface Temperature (LST) is a vital parameter in Earth climate science, driving long-wave radiation exchanges that control the surface energy budget and carbon fluxes, which are important factors in Numerical Weather Prediction (NWP) and the monitoring of climate change. Satellites offer a convenient way to observe LST consistently and regularly over large areas. A comparison between LST retrieved from a Geostationary Instrument, the Spinning Enhanced Visible and InfraRed Imager (SEVIRI), and a Polar Orbiting Instrument, the Advanced Along Track Scanning Radiometer (AATSR) is presented. Both sensors offer differing benefits. AATSR offers superior precision and spatial resolution with global coverage but given its sun-synchronous platform only observes at two local times, ~10am and ~10pm. SEVIRI provides the high-temporal resolution (every 15 minutes) required for observing diurnal variability of surface temperatures but given its geostationary platform has a poorer resolution, 3km at nadir, which declines at higher latitudes. A number of retrieval methods are applied to the raw satellite data: First order coefficient based algorithms provided on an operational basis by the LandSAF (for SEVIRI) and the University of Leicester (for AATSR); Second order coefficient based algorithms put forward by the University of Valencia; and an optimal estimation method using the 1DVar software provided by the NWP SAF. Optimal estimation is an iterative technique based upon inverse theory, thus is very useful for expanding into data assimilation systems. The retrievals are assessed and compared on both a fine scale using in-situ data from recognised validation sites and on a broad scale using two 100x100 regions such that biases can be better understood. Overall, the importance of LST lies in monitoring daily temperature extremes, e.g. for estimating permafrost thawing depth or risk of crop damage due to frost, hence the ideal dataset would use a combination of observations

  19. Evolution of stratospheric ozone and water vapour time series studied with satellite measurements

    Directory of Open Access Journals (Sweden)

    A. Jones

    2009-01-01

    Full Text Available The long term evolution of stratospheric ozone and water vapour has been investigated by extending satellite time series to April 2008. For ozone, we examine monthly average ozone values from various satellite data sets for nine latitude and altitude bins covering 60° S to 60° N and 20–45 km and covering the time period 1979–2008. Data are from the Stratospheric Aerosol and Gas Experiment (SAGE I+II, the HALogen Occultation Experiment (HALOE, the Solar BackscatterUltraViolet-2 (SBUV/2 instrument, the Sub-Millimetre Radiometer (SMR, the Optical Spectrograph InfraRed Imager System (OSIRIS, and the SCanning Imaging Absorption spectroMeter for Atmospheric CHartograpY (SCIAMACHY. Monthly ozone anomalies are calculated by utilising a linear regression model, which also models the solar, quasi-biennial oscillation (QBO, and seasonal cycle contributions. Individual instrument ozone anomalies are combined producing a weighted all instrument average. Assuming a turning point of 1997 and that the all instrument average is represented by good instrumental long term stability, the largest statistically significant ozone declines from 1979–1997 are seen at the mid-latitudes between 35 and 45 km, namely −7.7%/decade in the Northern Hemisphere and −7.8%/decade in the Southern Hemisphere. For the period 1997 to 2008 we find that the southern mid-latitudes between 35 and 45 km show the largest ozone recovery (+3.4%/decade compared to other global regions, although the estimated trend model error is of a similar magnitude (+2.1%/decade, at the 95% confidence level. An all instrument average is also constructed from water vapour anomalies during 1984–2008, using the SAGE II, HALOE, SMR, and the Microwave Limb Sounder (aura/MLS measurements. We report that the decrease in water vapour values after 2001 slows down around 2004 in the lower tropical stratosphere (20–25 km, and has even shown signs of increasing values in upper stratospheric mid

  20. Evolution of stratospheric ozone and water vapour time series studied with satellite measurements

    Directory of Open Access Journals (Sweden)

    A. Jones

    2009-08-01

    Full Text Available The long term evolution of stratospheric ozone and water vapour has been investigated by extending satellite time series to April 2008. For ozone, we examine monthly average ozone values from various satellite data sets for nine latitude and altitude bins covering 60° S to 60° N and 20–45 km and covering the time period of 1979–2008. Data are from the Stratospheric Aerosol and Gas Experiment (SAGE I+II, the HALogen Occultation Experiment (HALOE, the Solar BackscatterUltraViolet-2 (SBUV/2 instrument, the Sub-Millimetre Radiometer (SMR, the Optical Spectrograph InfraRed Imager System (OSIRIS, and the SCanning Imaging Absorption spectroMeter for Atmospheric CHartograpY (SCIAMACHY. Monthly ozone anomalies are calculated by utilising a linear regression model, which also models the solar, quasi-biennial oscillation (QBO, and seasonal cycle contributions. Individual instrument ozone anomalies are combined producing an all instrument average. Assuming a turning point of 1997 and that the all instrument average is represented by good instrumental long term stability, the largest statistically significant ozone declines (at two sigma from 1979–1997 are seen at the mid-latitudes between 35 and 45 km, namely −7.2%±0.9%/decade in the Northern Hemisphere and −7.1%±0.9%/in the Southern Hemisphere. Furthermore, for the period 1997 to 2008 we find that the same locations show the largest ozone recovery (+1.4% and +0.8%/decade respectively compared to other global regions, although the estimated trend model errors indicate that the trend estimates are not significantly different from a zero trend at the 2 sigma level. An all instrument average is also constructed from water vapour anomalies during 1991–2008, using the SAGE II, HALOE, SMR, and the Microwave Limb Sounder (Aura/MLS measurements. We report that the decrease in water vapour values after 2001 slows down around 2004–2005 in the lower tropical stratosphere (20–25 km and has even

  1. Support scattering effects on low-gain satellite antenna pattern measurements

    DEFF Research Database (Denmark)

    Appel-Hansen, Jørgen

    1973-01-01

    The purpose of the present investigation is to determine the difference between the scattering effects from two types of supports on satellite antenna pattern measurements. The difference in scattering effects is estimated by comparing low-gain antenna patterns recorded when using a foam tower an...

  2. Derivation of the radiation budget at ground level from satellite measurements

    Science.gov (United States)

    Raschke, E.

    1982-01-01

    Determination of the Earth radiaton budget and progress in measurement of the budget components and in the treatment of imaging data from satellites are described. Methods for calculating the radiation budget in a general circulation model, radiative transfer characteristics of clouds, computation of solar radiation at ground level using meteorological data and development of a 10-channel radiometer are discussed.

  3. Linear and Nonlinear Relative Navigation Strategies for Small Satellite Formation Flying Based on Relative Position Measurement

    Science.gov (United States)

    Zhang, Xiaomin; Zheng, You

    Based on linear and nonlinear mathematical model of spacecraft formation flying and technology of relative position measurement of small satellites, the linear and nonlinear relative navigation strategies are developed in this paper. The dynamical characteristics of multi spacecraft formation flying have been researched in many references, including the authors' several International Astronautical Congress papers with numbers of IAF-98-A.2.06, IAA-99-IAA.11.1.09, IAA-01-IAA.11.4.08. Under conditions of short distance and short time, the linear model can describe relative orbit motion; otherwise, nonlinear model must be adopted. Furthermore the means of measurement and their error will influence relative navigation. Thus three kinds of relative navigation strategy are progressed. With consideration of difficulty in relative velocity measurement of small satellites, the three relative navigation strategies are proposed and only depend on sequential data of relative position through measuring the relative distance and relative orientation. The first kind of relative navigation strategy is based on linear model. The second relative navigation strategy is based on nonlinear model, with inclusion of the second order item. In fact the measurement error can not be avoided especially for small satellites, it is mainly considered in the third relative navigation strategy. This research is theoretical yet and a series of formulas of relative navigation are presented in this paper. Also the authors analyzed the three strategies qualitatively and quantitatively. According to results of simulation, the ranges of application are indicated and suggested in allusion to the three strategies of relative navigation. On the view of authors, the relative navigation strategies for small satellite formation flying based on relative position measurement are significant for engineering of small satellite formation flying.

  4. Pico satellite attitude estimation via Robust Unscented Kalman Filter in the presence of measurement faults.

    Science.gov (United States)

    Soken, Halil Ersin; Hajiyev, Chingiz

    2010-07-01

    In the normal operation conditions of a pico satellite, a conventional Unscented Kalman Filter (UKF) gives sufficiently good estimation results. However, if the measurements are not reliable because of any kind of malfunction in the estimation system, UKF gives inaccurate results and diverges by time. This study introduces Robust Unscented Kalman Filter (RUKF) algorithms with the filter gain correction for the case of measurement malfunctions. By the use of defined variables named as measurement noise scale factor, the faulty measurements are taken into consideration with a small weight, and the estimations are corrected without affecting the characteristics of the accurate ones. Two different RUKF algorithms, one with single scale factor and one with multiple scale factors, are proposed and applied for the attitude estimation process of a pico satellite. The results of these algorithms are compared for different types of measurement faults in different estimation scenarios and recommendations about their applications are given.

  5. Low temperature fiber optic pyrometer for fast time resolved temperature measurements

    Science.gov (United States)

    Willsch, M.; Bosselmann, T.; Gaenshirt, D.; Kaiser, J.; Villnow, M.; Banda, M.

    2016-05-01

    Low temperature Pyrometry at temperatures beyond 150°C is limited in the measurement speed due to slow pyroelectric detectors. To detect the circumferential temperature distribution of fast rotating machines a novel Fiber Optical Pyrometer Type is presented here.

  6. ATM Quality of Service Parameters at 45 Mbps Using a Satellite Emulator: Laboratory Measurements

    Science.gov (United States)

    Ivancic, William D.; Bobinsky, Eric A.

    1997-01-01

    Results of 45-Mbps DS3 intermediate-frequency loopback measurements of asynchronous transfer mode (ATM) quality of service parameters (cell error ratio and cell loss ratio) are presented. These tests, which were conducted at the NASA Lewis Research Center in support of satellite-ATM interoperability research, represent initial efforts to quantify the minimum parameters for stringent ATM applications, such as MPEG-1 and MPEG-2 video transmission. Portions of these results were originally presented to the International Telecommunications Union's ITU-R Working Party 4B in February 1996 in support of their Draft Preliminary Recommendation on the Transmission of ATM Traffic via Satellite.

  7. Method for validating cloud mask obtained from satellite measurements using ground-based sky camera.

    Science.gov (United States)

    Letu, Husi; Nagao, Takashi M; Nakajima, Takashi Y; Matsumae, Yoshiaki

    2014-11-01

    Error propagation in Earth's atmospheric, oceanic, and land surface parameters of the satellite products caused by misclassification of the cloud mask is a critical issue for improving the accuracy of satellite products. Thus, characterizing the accuracy of the cloud mask is important for investigating the influence of the cloud mask on satellite products. In this study, we proposed a method for validating multiwavelength satellite data derived cloud masks using ground-based sky camera (GSC) data. First, a cloud cover algorithm for GSC data has been developed using sky index and bright index. Then, Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data derived cloud masks by two cloud-screening algorithms (i.e., MOD35 and CLAUDIA) were validated using the GSC cloud mask. The results indicate that MOD35 is likely to classify ambiguous pixels as "cloudy," whereas CLAUDIA is likely to classify them as "clear." Furthermore, the influence of error propagations caused by misclassification of the MOD35 and CLAUDIA cloud masks on MODIS derived reflectance, brightness temperature, and normalized difference vegetation index (NDVI) in clear and cloudy pixels was investigated using sky camera data. It shows that the influence of the error propagation by the MOD35 cloud mask on the MODIS derived monthly mean reflectance, brightness temperature, and NDVI for clear pixels is significantly smaller than for the CLAUDIA cloud mask; the influence of the error propagation by the CLAUDIA cloud mask on MODIS derived monthly mean cloud products for cloudy pixels is significantly smaller than that by the MOD35 cloud mask.

  8. In situ autonomous optical radiometry measurements for satellite ocean color validation in the Western Black Sea

    Directory of Open Access Journals (Sweden)

    G. Zibordi

    2014-12-01

    Full Text Available The accuracy of primary satellite ocean color data products from the Moderate Resolution Imaging Spectroradiometer on-board Aqua (MODIS-A and the Visible/Infrared Imager/Radiometer Suite (VIIRS, is investigated in the Western Black Sea using in situ measurements from the Gloria site included in the Ocean Color component of the Aerosol Robotic Network (AERONET-OC. The analysis is also extended to an additional well-established AERONET-OC site in the northern Adriatic Sea characterized by optically complex coastal waters exhibiting similarities with those observed at the Gloria site. Results from the comparison of normalized-water leaving radiance LWN indicate biases of a few percent between satellite derived and in situ data at the center-wavelengths relevant for the determination of chlorophyll a concentration (443–547 nm, or equivalent. Remarkable is the consistency among the annual cycle determined with time series of satellite-derived and in situ LWN ratios at these center-wavelengths. Contrarily, the differences between in situ and satellite-derived LWN are pronounced at the blue (i.e., 412 nm and red (i.e., 667 nm, or equivalent center-wavelengths, suggesting difficulties in confidently applying satellite-derived radiometric data from these spectral regions for quantitative analysis in optically complex waters.

  9. Maximizing the Use of Satellite Thermal Infrared Data for Advancing Land Surface Temperature Analysis

    Science.gov (United States)

    Weng, Q.; Fu, P.; Gao, F.

    2014-12-01

    Land surface temperature (LST) is a crucial parameter in investigating environmental, ecological processes and climate change at various scales, and is also valuable in the studies of evapotranspiration, soil moisture conditions, surface energy balance, and urban heat islands. These studies require thermal infrared (TIR) images at both high temporal and spatial resolution to retrieve LST. However, currently, no single satellite sensors can deliver TIR data at both high temporal and spatial resolution. Thus, various algorithms/models have been developed to enhance the spatial or the temporal resolution of TIR data, but rare of those can enhance both spatial and temporal details. This paper presents a new data fusion algorithm for producing Landsat-like LST data by blending daily MODIS and periodic Landsat TM datasets. The original Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) was improved and modified for predicting thermal radiance and LST data by considering annual temperature cycle (ATC) and urban thermal landscape heterogeneity. The technique of linear spectral mixture analysis was employed to relate the Landsat radiance with the MODIS one, so that the temporal changes in radiance can be incorporated in the fusion model. This paper details the theoretical basis and the implementation procedures of the proposed data fusion algorithm, Spatio-temporal Adaptive Data Fusion Algorithm for Temperature mapping (SADFAT). A case study was conducted that predicted LSTs of five dates in 2005 from July to October in Los Angeles County, California. The results indicate that the prediction accuracy for the whole study area ranged from 1.3 K to 2 K. Like existing spatio-temporal data fusion models, the SADFAT method has a limitation in predicting LST changes that were not recorded in the MODIS and/or Landsat pixels due to the model assumption.

  10. Measurement of cloud point temperature in polymer solutions.

    Science.gov (United States)

    Mannella, G A; La Carrubba, V; Brucato, V

    2013-07-01

    A temperature-controlled turbidity measurement apparatus for the characterization of polymer solutions has been instrumented and set up. The main features are the coupled temperature-light transmittance measurement and the accurate temperature control, achieved by means of peltier cells. The apparatus allows to measure cloud point temperatures by adopting different cooling protocols: low rate for quasi-equilibrium measurements and high rate for detect kinetic effects. A ternary polymeric solution was adopted as case study system showing that cooling rate affects the measured cloud point temperature.

  11. Comparison of Satellite-Derived Wind Measurements with Other Wind Measurement Sensors

    Science.gov (United States)

    Susko, Michael; Herman, Leroy

    1995-01-01

    The purpose of this paper is to compare the good data from the Jimsphere launches with the data from the satellite system. By comparing the wind speeds from the Fixed Pedestal System 16 (FPS-16) Radar/Jimsphere Wind System and NASA's 50-MHz Radar Wind Profiler, the validation of winds from Geostationary Operational Environmental Satellite 7 (GOES-7) is performed. This study provides an in situ data quality check for the GOES-7 satellite winds. Comparison was made of the flowfields in the troposphere and the lower stratosphere of case studies of pairs of Jimsphere balloon releases and Radar Wind Profiler winds during Space Shuttle launches. The mean and standard deviation of the zonal component statistics, the meridional component statistics, and the power spectral density curves show good agreement between the two wind sensors. The standard deviation of the u and v components for the STS-37 launch (consisting of five Jimsphere/Radar Wind Profiler data sets) was 1.92 and 1.67 m/s, respectively; for the STS-43 launch (there were six Jimsphere/Wind Profiler data sets) it was 1.39 and 1.44 m/s, respectively. The overall standard deviation was 1.66 m/s for the u component and 1.55 m/s tor the v component, and a standard deviation of 2.27 m/s tor the vector wind difference. The global comparison of satellite with Jimsphere balloon vector winds shows a standard deviation of 3.15 m/s for STS-43 and 4.37 m/s for STS-37. The overall standard deviation of the vector wind was 3.76 m/s, with a root-mean-square vector difference of 4.43 m/s. These data have demonstrated that this unique comparison of the Jimsphere and satellite winds provides excellent ground truth and a frame of reference during testing and validation of satellite data

  12. Harmonized dataset of ozone profiles from satellite limb and occultation measurements

    Directory of Open Access Journals (Sweden)

    V. F. Sofieva

    2013-06-01

    Full Text Available In this paper, we present a HARMonized dataset of OZone profiles (HARMOZ based on limb and occultation measurements from Envisat (GOMOS, MIPAS and SCIAMACHY, Odin (OSIRIS, SMR and SCISAT (ACE-FTS satellite instruments. These measurements provide high-vertical-resolution ozone profiles covering the altitude range from the upper troposphere up to the mesosphere in years 2001–2012. HARMOZ has been created in the framework of European Space Agency Climate Change Initiative project. The harmonized dataset consists of original retrieved ozone profiles from each instrument, which are screened for invalid data by the instrument teams. While the original ozone profiles are presented in different units and on different vertical grids, the harmonized dataset is given on a common pressure grid in netcdf format. The pressure grid corresponds to vertical sampling of ~ 1 km below 20 km and 2–3 km above 20 km. The vertical range of the ozone profiles is specific for each instrument, thus all information contained in the original data is preserved. Provided altitude and temperature profiles allow the representation of ozone profiles in number density or mixing ratio on a pressure or altitude vertical grids. Geolocation, uncertainty estimates and vertical resolution are provided for each profile. For each instrument, optional parameters, which might be related to the data quality, are also included. For convenience of users, tables of biases between each pair of instruments for each month, as well as bias uncertainties, are provided. These tables characterize the data consistency and can be used in various bias and drift analyses, which are needed, for instance, for combining several datasets to obtain a long-term climate dataset. This user-friendly dataset can be interesting and useful for various analyses and applications, such as data merging, data validation, assimilation and scientific research. Dataset is available at: http

  13. Quantitative measurements of Jupiter, Saturn, their rings and satellites made from Voyager imaging data

    Science.gov (United States)

    Collins, S. A.; Bunker, A. S.

    1983-01-01

    The Voyager spacecraft cameras use selenium-sulfur slow scan vidicons to convert focused optical images into sensible electrical signals. The vidicon-generated data thus obtained are the basis of measurements of much greater precision than was previously possible, in virtue of their superior linearity, geometric fidelity, and the use of in-flight calibration. Attention is given to positional, radiometric, and dynamical measurements conducted on the basis of vidicon data for the Saturn rings, the Saturn satellites, and the Jupiter atmosphere.

  14. Measurement-based perturbation theory and differential equation parameter estimation for high-precision high-resolution reconstruction of the Earth's gravitational field from satellite tracking measurements

    CERN Document Server

    Xu, Peiliang

    2016-01-01

    The numerical integration method has been routinely used to produce global standard gravitational models from satellite tracking measurements of CHAMP/GRACE types. It is implemented by solving the differential equations of the partial derivatives of a satellite orbit with respect to the unknown harmonic coefficients under the conditions of zero initial values. From the mathematical point of view, satellite gravimetry from satellite tracking is the problem of estimating unknown parameters in the Newton's nonlinear differential equations from satellite tracking measurements. We prove that zero initial values for the partial derivatives are incorrect mathematically and not permitted physically. The numerical integration method, as currently implemented and used in satellite gravimetry and statistics, is groundless. We use three different methods to derive new local solutions to the Newton's nonlinear governing differential equations of motion with a nominal reference orbit. Bearing in mind that satellite orbits ...

  15. Establishing the Antarctic Dome C community reference standard site towards consistent measurements from Earth observation satellites

    Science.gov (United States)

    Cao, C.; Uprety, S.; Xiong, J.; Wu, A.; Jing, P.; Smith, D.; Chander, G.; Fox, N.; Ungar, S.

    2010-01-01

    Establishing satellite measurement consistency by using common desert sites has become increasingly more important not only for climate change detection but also for quantitative retrievals of geophysical variables in satellite applications. Using the Antarctic Dome C site (75°06′S, 123°21′E, elevation 3.2 km) for satellite radiometric calibration and validation (Cal/Val) is of great interest owing to its unique location and characteristics. The site surface is covered with uniformly distributed permanent snow, and the atmospheric effect is small and relatively constant. In this study, the long-term stability and spectral characteristics of this site are evaluated using well-calibrated satellite instruments such as the Moderate Resolution Imaging Spectroradiometer (MODIS) and Sea-viewing Wide Field-of-view Sensor (SeaWiFS). Preliminary results show that despite a few limitations, the site in general is stable in the long term, the bidirectional reflectance distribution function (BRDF) model works well, and the site is most suitable for the Cal/Val of reflective solar bands in the 0.4–1.0 µm range. It was found that for the past decade, the reflectivity change of the site is within 1.35% at 0.64 µm, and interannual variability is within 2%. The site is able to resolve calibration biases between instruments at a level of ~1%. The usefulness of the site is demonstrated by comparing observations from seven satellite instruments involving four space agencies, including OrbView-2–SeaWiFS, Terra–Aqua MODIS, Earth Observing 1 (EO-1) – Hyperion, Meteorological Operational satellite programme (MetOp) – Advanced Very High Resolution Radiometer (AVHRR), Envisat Medium Resolution Imaging Spectrometer (MERIS) – dvanced Along-Track Scanning Radiometer (AATSR), and Landsat 7 Enhanced Thematic Mapper Plus (ETM+). Dome C is a promising candidate site for climate quality calibration of satellite radiometers towards more consistent satellite measurements, as part

  16. Ice Mass Change in Greenland and Antarctica Between 1993 and 2013 from Satellite Gravity Measurements

    Science.gov (United States)

    Talpe, Matthieu J.; Nerem, R. Steven; Forootan, Ehsan; Schmidt, Michael; Lemoine, Frank G.; Enderlin, Ellyn M.; Landerer, Felix W.

    2017-01-01

    We construct long-term time series of Greenland and Antarctic ice sheet mass change from satellite gravity measurements. A statistical reconstruction approach is developed based on a principal component analysis (PCA) to combine high-resolution spatial modes from the Gravity Recovery and Climate Experiment (GRACE) mission with the gravity information from conventional satellite tracking data. Uncertainties of this reconstruction are rigorously assessed; they include temporal limitations for short GRACE measurements, spatial limitations for the low-resolution conventional tracking data measurements, and limitations of the estimated statistical relationships between low- and high-degree potential coefficients reflected in the PCA modes. Trends of mass variations in Greenland and Antarctica are assessed against a number of previous studies. The resulting time series for Greenland show a higher rate of mass loss than other methods before 2000, while the Antarctic ice sheet appears heavily influenced by interannual variations.

  17. Comparison of the simulated performance of a VSAT satellite link with measurements

    Science.gov (United States)

    Mwanakatwe, M.; Willis, M. J.; Evans, B. G.

    1991-06-01

    The transmisson performance of a Ka-band VSAT system (CODE) has been simulated to verify the systems design and to demonstrate the adequacy of the implementation margin and phase noise. A detailed simulation of phase noise effects on VSAT systems design is also presented. Hardware measurements and BOSS simulations for the test set-up show a good agreement for values of Eb/N0 up to 7dB. The simulated results indicate an increased error when the TWTA is operated in the nonlinear region, with the simulations indicating larger degradation than the measurement. The phase noise performance of the digital TRL modem is found to be consistently better than that of the simulated model. There appears to be closer agreement with the BOSS simulations than with the TOPSIM III simulations. The discrepancy between the TOPSIM III and BOSS phase noise simulations was only resolved by measurements taken using the Olympus satellite and BTI satellite simulator.

  18. A noncontact temperature measurement method in polymerase chain reaction reactors

    Science.gov (United States)

    Sochivko, D. G.; Varlamov, D. A.; Fedorov, A. A.; Kurochkin, V. E.

    2016-04-01

    A new noncontact method for measuring temperatures of liquids, which is based on the fluorescent probes, is proposed. The method is intended for measuring temperatures of reaction media in reactors of devices for polymerase chain reactions in real time and can be used for determining dynamic temperature parameters.

  19. Temperature measurement of contact resistance based on infrared detection

    Science.gov (United States)

    En, De; Feng, Jieyu

    2010-11-01

    For science and technology, the level of science and technology is determined by the measurement accuracy and efficiency to some extent. Contact resistance can not be ignored in precise measurement. Because the measured object is not directly contacted with infrared measurement device, there is no friction. Infrared measurement has the advantage of high sensitivity, fast response and so on. In this paper, the reasons for the temperature rising of the contact resistance and its harm and the importance of measuring the temperature of the contact resistance in precise measurement are analyzed firstly; then some theories of the infrared detection technology are introduced; finally, an infrared temperature measurement system based on SCM is designed.

  20. The Measurement of Landfill Gas Emissions with the Orbiting Carbon Observatory and CarbonSAT Satellites

    Science.gov (United States)

    Vigil, S. A.; Bovensmann, H.

    2010-12-01

    Landfill gas is a significant contributor to anthropogenic emissions of CH4 and CO2. The U.S. Environmental Protection Agency has estimated the total U.S. 2007 emissions of the CH4 component of landfill gas at 132.9 Tg CO2 Equivalent. This compares to total CH4 emission from all US sources in 2007 at 585.3 Tg CO2 Equivalent. Worldwide CH4 emissions from landfill gas have been estimated at 668 Tg CO2 Equivalent. Satellite remote sensing can also be used to characterize landfill gas emissions. The NASA Orbiting Carbon Observatory (OCO-2) and the proposed CarbonSAT (University of Bremen) satellites are particularly suited for this purpose. The Orbiting Carbon Observatory (OCO) was designed to provided high spatial resolution ( developed countries. In general, landfills in the developed countries have landfill gas control system ground based landfill gas monitoring systems. These ground-based measurements can be used to calibrate OCO-2 and CarbonSAT landfill gas measurements. OCO-2 and CarbonSAT can be used to measure landfill emissions from the large landfills and open dumps of the emerging megacities in the developing world where accurate ground measurements are not available. For example Mexico City generates 26,000 MT of municipal solid waste that is disposed of in two uncontrolled landfills. Similar conditions exist in Asia, Latin America, and Africa. Satellite based measurements of these landfill gas emissions could help prioritize greenhouse gas remediation projects for these countries.

  1. Vertical Profiles of Aerosol Optical Properties Over Central Illinois and Comparison with Surface and Satellite Measurements

    Science.gov (United States)

    Sheridan P. J.; Andrews, E.; Ogren, J A.; Tackett, J. L.; Winker, D. M.

    2012-01-01

    Between June 2006 and September 2009, an instrumented light aircraft measured over 400 vertical profiles of aerosol and trace gas properties over eastern and central Illinois. The primary objectives of this program were to (1) measure the in situ aerosol properties and determine their vertical and temporal variability and (2) relate these aircraft measurements to concurrent surface and satellite measurements. Underflights of the CALIPSO satellite show reasonable agreement in a majority of retrieved profiles between aircraft-measured extinction at 532 nm (adjusted to ambient relative humidity) and CALIPSO-retrieved extinction, and suggest that routine aircraft profiling programs can be used to better understand and validate satellite retrieval algorithms. CALIPSO tended to overestimate the aerosol extinction at this location in some boundary layer flight segments when scattered or broken clouds were present, which could be related to problems with CALIPSO cloud screening methods. The in situ aircraft-collected aerosol data suggest extinction thresholds for the likelihood of aerosol layers being detected by the CALIOP lidar. These statistical data offer guidance as to the likelihood of CALIPSO's ability to retrieve aerosol extinction at various locations around the globe.

  2. Design of High Precision Temperature Measurement System based on Labview

    OpenAIRE

    Weimin Zhu; Jin Liu; Haima Yang; Chaochao Yan

    2015-01-01

    Using the LabVIEW software platform, a high precision temperature measuring device is designed based on the principle of the thermocouple. The system uses the STM32 MCU as the main control chip, using AD7076 analog digital converter. The converter has 8 channel, synchronous sampling, and bipolar input. Improving the precision of temperature measurement by cold end compensation, fitting and other measures. The test results show that, the device temperature measurement precision can reach ±0.1 ...

  3. Measuring Method for Lightning Channel Temperature

    Science.gov (United States)

    Li, X.; Zhang, J.; Chen, L.; Xue, Q.; Zhu, R.

    2016-01-01

    In this paper, we demonstrate the temperature of lightning channel utilizing the theory of lightning spectra and the model of local thermodynamic equilibrium (LTE). The impulse current generator platform (ICGS) was used to simulate the lightning discharge channel, and the spectral energy of infrared spectroscopy (930 nm) and the visible spectroscopy (648.2 nm) of the simulated lightning has been calculated. Results indicate that the peaks of luminous intensity of both infrared and visible spectra increase with the lightning current intensity in range of 5–50 kA. Based on the results, the temperature of the lightning channel is derived to be 6140.8–10424 K. Moreover, the temperature of the channel is approximately exponential to the lightning current intensity, which shows good agreement with that of the natural lightning cases. PMID:27665937

  4. Measuring Method for Lightning Channel Temperature

    Science.gov (United States)

    Li, X.; Zhang, J.; Chen, L.; Xue, Q.; Zhu, R.

    2016-09-01

    In this paper, we demonstrate the temperature of lightning channel utilizing the theory of lightning spectra and the model of local thermodynamic equilibrium (LTE). The impulse current generator platform (ICGS) was used to simulate the lightning discharge channel, and the spectral energy of infrared spectroscopy (930 nm) and the visible spectroscopy (648.2 nm) of the simulated lightning has been calculated. Results indicate that the peaks of luminous intensity of both infrared and visible spectra increase with the lightning current intensity in range of 5-50 kA. Based on the results, the temperature of the lightning channel is derived to be 6140.8-10424 K. Moreover, the temperature of the channel is approximately exponential to the lightning current intensity, which shows good agreement with that of the natural lightning cases.

  5. Measuring Method for Lightning Channel Temperature.

    Science.gov (United States)

    Li, X; Zhang, J; Chen, L; Xue, Q; Zhu, R

    2016-09-26

    In this paper, we demonstrate the temperature of lightning channel utilizing the theory of lightning spectra and the model of local thermodynamic equilibrium (LTE). The impulse current generator platform (ICGS) was used to simulate the lightning discharge channel, and the spectral energy of infrared spectroscopy (930 nm) and the visible spectroscopy (648.2 nm) of the simulated lightning has been calculated. Results indicate that the peaks of luminous intensity of both infrared and visible spectra increase with the lightning current intensity in range of 5-50 kA. Based on the results, the temperature of the lightning channel is derived to be 6140.8-10424 K. Moreover, the temperature of the channel is approximately exponential to the lightning current intensity, which shows good agreement with that of the natural lightning cases.

  6. Pyrometric temperature measurements in the solar furnace

    Energy Technology Data Exchange (ETDEWEB)

    Tschudi, H.-R; Mueller, Ch.

    2000-07-01

    Surface temperatures are key parameters in many applications of concentrated solar radiation. Pyrometric temperature determination is here hampered by the reflected solar radiation. Two approaches to solve this problem were experimentally tested with the TREMPER reactor in the solar furnace at PSI: the flash assisted multiwavelength pyrometry (FAMP) developed at PSI and a so called 'solar-blind' pyrometer developed by IMPAC Electronic GmbH in Frankfurt, Germany, in collaboration with PSI. Performance, advantages and disadvantages of the two different pyrometers are reported and discussed. (authors)

  7. Comprehensive Comparisons of Satellite Data, Signals, and Measurements between the BeiDou Navigation Satellite System and the Global Positioning System.

    Science.gov (United States)

    Jan, Shau-Shiun; Tao, An-Lin

    2016-05-13

    The Chinese BeiDou navigation satellite system (BDS) aims to provide global positioning service by 2020. The combined use of BDS and Global Positioning System (GPS) is proposed to provide navigation service with more stringent requirements. Actual satellite data, signals and measurements were collected for more than one month to analyze the positioning service qualities from both BDS and GPS. In addition to the conversions of coordinate and timing system, five data quality analysis (DQA) methods, three signal quality analysis (SQA) methods, and four measurement quality analysis (MQA) methods are proposed in this paper to improve the integrated positioning performance of BDS and GPS. As shown in the experiment results, issues related to BDS and GPS are resolved by the above proposed quality analysis methods. Thus, the anomalies in satellite data, signals and measurements can be detected by following the suggested resolutions to enhance the positioning performance of the combined use of BDS and GPS in the Asia Pacific region.

  8. Integrated Multi-Point Space Plasma Measurements With Four Ionospheric Satellites

    Science.gov (United States)

    Siefring, C. L.; Bernhardt, P. A.; Selcher, C.; Wilkens, M. R.; McHarg, M. G.; Krause, L.; Chun, F.; Enloe, L.; Panholzer, R.; Sakoda, D.; Phelps, R.; D Roussel-Dupre, D.; Colestock, P.; Close, S.

    2006-12-01

    The STP-1 launch scheduled for late 2006 will place four satellites with ionospheric plasma diagnostics into the same nearly circular orbit with an altitude of 560 km and inclination of 35.4°. The satellites will allow for unique multipoint measurements of ionospheric scintillations and their causes. Both the radio and in-situ diagnostics will provide coverage of low- and mid-latitudes. The four satellites, STPSat1, NPSat1, FalconSat3, and CFE will follow the same ground-track but because of drag and mass differences their relative velocities will be different and vary during the lifetime of the satellites. The four satellites will start close together; separate over a few months and coming back together with near conjunctions at six and eight months. Two satellite conjunctions between NPSat1 and STPSat1 will occur most often, approximately one month apart at the end of the mission. STPSat1 is equipped with CITRIS (sCintillation and TEC Receiver In Space) which will measure scintillations in the VHF, UHF and L-band along with measuring Total Electron Content (TEC) along the propagation path. NPSat1 will carry a three-frequency CERTO (Coherent Electromagnetic Radio TOmography) Beacon which broadcasts phase-coherent signals at 150.012 MHz, 400.032 MHz, and 1066.752 MHz. CITRIS will be able to measure TEC and Scintillations along the orbital path (propagation path from NPSat1 to STPSat1) as well as between the CITRIS and the ground. NPSat1 carries electron and ion saturation Langmuir Probes, while FalconSat3 carries the FLAPS (FLAt Plasma Spectrometer) and PLANE (Plasma Local Anomalous Noise Environment). The in-situ diagnostic complement the CITRIS/CERTO radio techniques in many ways. The CIBOLA Flight Experiment (CFE) contains a wide band receiver covering 100 to 500 MHz. The CFE data can be processed to show distortion of wide-band modulations by ionospheric irregularities. CFE and CITRIS can record ground transmissions from the French DORIS beacons which radiate

  9. Restore good conditions of Incore temperature measurement

    Energy Technology Data Exchange (ETDEWEB)

    Solanas, A.; Izquierdo, J.

    2014-07-01

    In the frame of life time extension of Nuclear Power plants, operators have to face numerous problems. Loss of too many incore temperature lines, for aging or obsolescence reasons, can be one of them. In such situation, large numbers of thermocouples could have to be replaced before starting this new operating period. (Author)

  10. An intelligent instrument for measuring exhaust temperature of marine engine

    Institute of Scientific and Technical Information of China (English)

    MA Nan-qi; SU Hua; LIU Jun

    2006-01-01

    Exhaust temperature of the marine engine is commonly measured through thermocouple.Measure deviation will occur after using the thermocouple for some time due to nonlinearity of thermocouple itself, high temperature and chemical corrosion of measure point. Frequent replacement of thermocouple will increase the operating cost. This paper designs a new intelligent instrument for solving the above-mentioned problems of the marine engine temperature measurement, which combines the conventional thermocouple temperature measurement technology and SCM(single chip microcomputer).The reading of the thermocouple is simple and precise and the calibration can be made automatically and manually..

  11. Design of High Precision Temperature Measurement System based on Labview

    Directory of Open Access Journals (Sweden)

    Weimin Zhu

    2015-06-01

    Full Text Available Using the LabVIEW software platform, a high precision temperature measuring device is designed based on the principle of the thermocouple. The system uses the STM32 MCU as the main control chip, using AD7076 analog digital converter. The converter has 8 channel, synchronous sampling, and bipolar input. Improving the precision of temperature measurement by cold end compensation, fitting and other measures. The test results show that, the device temperature measurement precision can reach ±0.1 °C, has the advantages of small size, high precision, and reliable performance, this high precision temperature measurement can be widely used in industrial production.

  12. Validation of VIIRS Cloud Base Heights at Night Using Ground and Satellite Measurements over Alaska

    Science.gov (United States)

    NOH, Y. J.; Miller, S. D.; Seaman, C.; Forsythe, J. M.; Brummer, R.; Lindsey, D. T.; Walther, A.; Heidinger, A. K.; Li, Y.

    2016-12-01

    Knowledge of Cloud Base Height (CBH) is critical to describing cloud radiative feedbacks in numerical models and is of practical significance to aviation communities. We have developed a new CBH algorithm constrained by Cloud Top Height (CTH) and Cloud Water Path (CWP) by performing a statistical analysis of A-Train satellite data. It includes an extinction-based method for thin cirrus. In the algorithm, cloud geometric thickness is derived with upstream CTH and CWP input and subtracted from CTH to generate the topmost layer CBH. The CBH information is a key parameter for an improved Cloud Cover/Layers product. The algorithm has been applied to the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi NPP spacecraft. Nighttime cloud optical properties for CWP are retrieved from the nighttime lunar cloud optical and microphysical properties (NLCOMP) algorithm based on a lunar reflectance model for the VIIRS Day/Night Band (DNB) measuring nighttime visible light such as moonlight. The DNB has innovative capabilities to fill the polar winter and nighttime gap of cloud observations which has been an important shortfall from conventional radiometers. The CBH products have been intensively evaluated against CloudSat data. The results showed the new algorithm yields significantly improved performance over the original VIIRS CBH algorithm. However, since CloudSat is now operational during daytime only due to a battery anomaly, the nighttime performance has not been fully assessed. This presentation will show our approach to assess the performance of the CBH algorithm at night. VIIRS CBHs are retrieved over the Alaska region from October 2015 to April 2016 using the Clouds from AVHRR Extended (CLAVR-x) processing system. Ground-based measurements from ceilometer and micropulse lidar at the Atmospheric Radiation Measurement (ARM) site on the North Slope of Alaska are used for the analysis. Local weather conditions are checked using temperature and precipitation

  13. Nanosecond-resolved temperature measurements using magnetic nanoparticles

    Science.gov (United States)

    Xu, Wenbiao; Liu, Wenzhong; Zhang, Pu

    2016-05-01

    Instantaneous and noninvasive temperature measurements are important when laser thermotherapy or welding is performed. A noninvasive nanosecond-resolved magnetic nanoparticle (MNP) temperature measurement system is described in which a transient change in temperature causes an instantaneous change in the magnetic susceptibilities of the MNPs. These transient changes in the magnetic susceptibilities are rapidly recorded using a wideband magnetic measurement system with an upper frequency limit of 0.5 GHz. The Langevin function (the thermodynamic model characterizing the MNP magnetization process) is used to obtain the temperature information. Experiments showed that the MNP DC magnetization temperature-measurement system can detect a 14.4 ns laser pulse at least. This method of measuring temperature is likely to be useful for acquiring the internal temperatures of materials irradiated with lasers, as well as in other areas of research.

  14. Influence of Sensor Ingestion Timing on Consistency of Temperature Measures

    Science.gov (United States)

    2009-01-01

    Copyright @ 200 by the American College of Sports Medicine. Unauthorized reproduction of this article is prohibited.9 Influence of Sensor Ingestion ... Ingestion Timing on Consistency of Temperature Measures. Med. Sci. Sports Exerc., Vol. 41, No. 3, pp. 597–602, 2009. Purpose: The validity and the...reliability of using intestinal temperature (Tint) via ingestible temperature sensors (ITS) to measure core body temperature have been demonstrated. However

  15. Satellite laser ranging measurements in South Africa: Contributions to earth system sciences

    Directory of Open Access Journals (Sweden)

    Christina M. Botai

    2015-03-01

    Full Text Available This contribution reassesses progress in the development of satellite laser ranging (SLR technology and its scientific and societal applications in South Africa. We first highlight the current global SLR tracking stations within the framework of the International Laser Ranging Service (ILRS and the artificial satellites currently being tracked by these stations. In particular, the present work focuses on analysing SLR measurements at Hartebeesthoek Radio Astronomy Observatory (HartRAO, South Africa, based on the MOBLAS-6 SLR configuration. Generally, there is a weak geometry of ILRS stations in the southern hemisphere and the SLR tracking station at HartRAO is the only active ILRS station operating on the African continent. The SLR-derived products such as station positions and velocities, satellite orbits, components of earth's gravity field and their temporal variations, earth orientation parameters are collected, merged, achieved and distributed by the ILRS under the Crustal Dynamic Data Information System. These products are used in various research fields such as detection and monitoring of tectonic plate motion, crustal deformation, earth rotation, polar motion, and the establishment and monitoring of International Terrestrial Reference Frames, as well as modelling of the spatio-temporal variations of the earth's gravity field. The MOBLAS-6 tracking station is collocated with other geodetic techniques such as very long baseline interferometry and Global Navigation Satellite Systems, thus making this observatory a fiducial geodetic location. Some applications of the SLR data products are described within the context of earth system science.

  16. Energetic particle radiations measured by particle detector on board CBERS-1 satellite

    Institute of Scientific and Technical Information of China (English)

    HAO YongQiang; XIAO Zuo; ZOU Hong; ZHANG DongHe

    2007-01-01

    Using the data measured by energetic particle detector on board CBERS-01 and -02 for the past five years, statistics was made to show the general features of MeV electrons and protons along a solar synchronous orbit at an altitude of 780 km. This height is in the bottom region of the Earth's radiation belts. Detectors are inside the satellite cabinet and such continuous monitoring of particle radiation environment inside a satellite has seldom conducted so far. After a proper and careful treatment, it is indicated that the data inside satellite are well correlated with the radiation environment outside. Besides the agreement of the general distribution characteristics of energetic electrons and protons with similar observations from other satellites, attention is particularly paid to the disturbed conditions. Variations of particle fluxes are closely related with solar proton events, in general, electron fluxes of outer belt are well correlated with Dst index after three days' delay while the electron injection occurred almost at the same day during great magnetic storms. It is confirmed that both energetic electrons and protons appear in the Polar Cap region only after the solar proton events.

  17. Are there urban signatures in the tropospheric ozone column products derived from satellite measurements?

    Directory of Open Access Journals (Sweden)

    J. Kar

    2010-06-01

    Full Text Available In view of the proposed geostationary satellite missions to monitor air quality from space, it is important to first assess the capability of the current suite of satellite instruments to provide information on the urban scale pollution. We explore the possibility of detecting urban signatures in the tropospheric column ozone data derived from Total Ozone Mapping Spectrometer (TOMS/Solar Backscattered Ultraviolet (SBUV and Ozone Monitoring Instrument (OMI/Microwave Limb Sounder (MLS satellite data. We find that distinct isolated plumes of tropospheric ozone near several large and polluted cities around the world may be detected in these data sets. The ozone plumes generally correspond with the tropospheric column NO2 plumes around these cities as observed by the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY instrument. Similar plumes are also seen in tropospheric mean ozone mixing ratio distribution after accounting for the surface and tropopause pressure variations. The total column ozone retrievals indicate fairly significant sensitivity to the lower troposphere over the polluted land areas, which might help explain these detections. These results indicate that ultraviolet (UV measurements may, in principle, be able to capture the urban signatures and may have implications for future missions using geostationary satellites.

  18. Lidar Measurements of Stratospheric Ozone, Aerosols and Temperature during the SAUNA Campaign at Sodankyla, Finland

    Science.gov (United States)

    McGee, T.; Twigg, L.; Sumnicht, G.; McPeters, R.; Bojkov, B.; Kivi, R.

    2008-01-01

    The Sodankyla Total Column Ozone Intercomparison (SAUNA) campaign took place at the Finnish Meteorological Institute Arctic Research Center (FMI-ARC) at Sodankyla, Finland (67.37 N) in two separate phases during early spring 2006, and winter 2007. These campaigns has several goals: to determine and improve the accuracy of total column ozone measurements during periods of low solar zenith angle and high total column ozone; to determine the effect of ozone profile shape on the total column retrieval; and to make validate satellite ozone measurements under these same conditions. The GSFC Stratospheric Ozone Lidar (STROZ), which makes profile measurements of ozone temperature, aerosols and water vapor participated in both phases of the campaign. During the deployments, more than 30 profile measurements were made by the lidar instrument, along with Dobson, Brewer, DOAS, ozonesonde, and satellite measurements. The presentation will concentrate on STROZ lidar results from the second phase of the campaign and comparisons with other instruments will be discussed. This will include both ground-based and satellite comparisons.

  19. Infrared measurement and simulation of magnesium alloy welding temperature field

    Institute of Scientific and Technical Information of China (English)

    LIU Liming; CHI Mingsheng; HUANG Ruisheng; SONG Gang; ZHOU Yang

    2005-01-01

    The welding temperature field of magnesium alloy AZ31 welded by TIG was measured with the uncooled infrared (IR) thermal imaging technology. The variables in the mathematic mode of welding temperature fields were revised by IR temperature data. Based on the results of simulation, the loss of temperature fields caused by arc interfered was compensated, and a whole temperature field was achieved, which provided a precise and powerful foundation for the investigation of microstructure of the joints.

  20. Air Quality Measurements from Satellites during the 2008 Beijing Olympics and Paralympics

    Science.gov (United States)

    Witte, J. C.; Schoeberl, M.; Douglass, A.; Gleason, J.; Krotkov, N.; Gille, J.; Pickering, K.; Livesey, N.

    2009-05-01

    In preparation for the Olympic and Paralympic games in August and September 2008 in Beijing, China, the Chinese government imposed strict controls on industrial emissions and motor vehicle traffic in and around the city and vicinity before and during the events to improve the air quality for the competitors and visitors. To test the efficacy of these measures, we used satellite data from NASA's Aura/Ozone Monitoring Instrument (OMI) and Terra/Measurements Of Pollution In The Troposphere (MOPITT) over Beijing and surrounding areas during the Olympic and Paralympic period. The satellite instruments recorded significant reductions in nitrogen dioxide of up to 50%, up to 10% in tropospheric column ozone, 20-40% in boundary layer sulfur dioxide, and 10-20% reductions in carbon monoxide concentrations below 700 hPa.

  1. Optimality of incompletely measurable active and passive attitude control systems. [for satellites

    Science.gov (United States)

    Schiehlen, W.; Popp, K.

    1973-01-01

    Passive attitude control systems and active systems with incomplete state measurements are only suboptimal systems in the sense of optimal control theory, since optimal systems require complete state measurements or state estimations. An optimal system, then, requires additional hardware (especially in the case of flexible spacecraft) which results in higher costs. Therefore, it is a real engineering problem to determine how much an optimal system exceeds the suboptimal system, or in other words, what is the suboptimal system's degree of optimality. The problem will be treated in three steps: (1) definition of the degree of optimality for linear, time-invariant systems; (2) a computation method using the quadratic cost functional; (3) application to a gravity-gradient stabilized three-body satellite and a spinning flexible satellite.

  2. Validation of aerosol measurements by the satellite sensors SAM II and Sage

    Science.gov (United States)

    Russell, P. B.; Mccormick, M. P.; Swissler, T. J.

    1982-01-01

    A global data base on stratospheric aerosols has been obtained with the aid of the sensors SAM II and SAGE since the satellites carrying the sensors were launched in October 1978 and Feburary 1979, respectively. Several major comparative experiments have been conducted to acquire correlative data for validating the extinction profiles measured by these satellite sensors. The present investigation has the objective to present results from the first two of these experiments, which were conducted at Sondrestorm, Greenland, in November 1978, and at Poker Flat, Alaska, in July 1979. In both experiments, extinction profiles derived from the correlative sensors (dustsonde, lidar, filter, wire impactor) agreed, to within their respective uncertainties, with the extinction profiles measured by SAM II and SAGE (which in turn agreed with each other).

  3. Contribution of Modis Satellite Image to Estimate the Daily Air Temperature in the Casablanca City, Morocco

    Science.gov (United States)

    Bahi, Hicham; Rhinane, Hassan; Bensalmia, Ahmed

    2016-10-01

    Air temperature is considered to be an essential variable for the study and analysis of meteorological regimes and chronics. However, the implementation of a daily monitoring of this variable is very difficult to achieve. It requires sufficient of measurements stations density, meteorological parks and favourable logistics. The present work aims to establish relationship between day and night land surface temperatures from MODIS data and the daily measurements of air temperature acquired between [2011-20112] and provided by the Department of National Meteorology [DMN] of Casablanca, Morocco. The results of the statistical analysis show significant interdependence during night observations with correlation coefficient of R2=0.921 and Root Mean Square Error RMSE=1.503 for Tmin while the physical magnitude estimated from daytime MODIS observation shows a relatively coarse error with R2=0.775 and RMSE=2.037 for Tmax. A method based on Gaussian process regression was applied to compute the spatial distribution of air temperature from MODIS throughout the city of Casablanca.

  4. CONTRIBUTION OF MODIS SATELLITE IMAGE TO ESTIMATE THE DAILY AIR TEMPERATURE IN THE CASABLANCA CITY, MOROCCO

    Directory of Open Access Journals (Sweden)

    H. Bahi

    2016-10-01

    Full Text Available Air temperature is considered to be an essential variable for the study and analysis of meteorological regimes and chronics. However, the implementation of a daily monitoring of this variable is very difficult to achieve. It requires sufficient of measurements stations density, meteorological parks and favourable logistics. The present work aims to establish relationship between day and night land surface temperatures from MODIS data and the daily measurements of air temperature acquired between [2011-20112] and provided by the Department of National Meteorology [DMN] of Casablanca, Morocco. The results of the statistical analysis show significant interdependence during night observations with correlation coefficient of R2=0.921 and Root Mean Square Error RMSE=1.503 for Tmin while the physical magnitude estimated from daytime MODIS observation shows a relatively coarse error with R2=0.775 and RMSE=2.037 for Tmax. A method based on Gaussian process regression was applied to compute the spatial distribution of air temperature from MODIS throughout the city of Casablanca.

  5. An All Fiber White Light Interferometric Absolute Temperature Measurement System

    Directory of Open Access Journals (Sweden)

    Jeonggon Harrison Kim

    2008-11-01

    Full Text Available Recently the author of this article proposed a new signal processing algorithm for an all fiber white light interferometer. In this article, an all fiber white light interferometric absolute temperature measurement system is presented using the previously proposed signal processing algorithm. Stability and absolute temperature measurement were demonstrated. These two tests demonstrated the feasibility of absolute temperature measurement with an accuracy of 0.015 fringe and 0.0005 fringe, respectively. A hysteresis test from 373K to 873K was also presented. Finally, robustness of the sensor system towards laser diode temperature drift, AFMZI temperature drift and PZT non-linearity was demonstrated.

  6. 46 CFR 154.1340 - Temperature measuring devices.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Temperature measuring devices. 154.1340 Section 154.1340... Instrumentation § 154.1340 Temperature measuring devices. (a) Each cargo tank must have devices that measure the... level allowed under § 154.1844. (b) Each device required by paragraph (a) must have a readout at...

  7. Study of Ice Crystal Orientation in Cirrus Clouds based on Satellite Polarized Radiance Measurements

    OpenAIRE

    Noel, Vincent; Chepfer, Hélène

    2004-01-01

    International audience; The goal of this paper is to retrieve information about ice particle orientation in cirrus clouds. This is achieved by comparing simulations of sunlight reflection on a cirrus cloud with measurements of polarized radiances from the spaceborne instrument Polarization and Directionality of the Earth's Reflectance (POLDER-1) on Advanced Earth Observing Satellite-1 (ADEOS-1). Results show that horizontal orientation of cr ystals can be spotted by the presence of a local ma...

  8. Environmental Satellites: Strategy Needed to Sustain Critical Climate and Space Weather Measurements

    Science.gov (United States)

    2010-04-01

    together. For example, climate measurements have allowed scientists to better understand the effect of deforestation on how the earth absorbs heat, retains...Geostationary Operational Environmental Satellites: Progress Has Been Made, but Improvements Are Needed to Effectively Manage Risks, GAO-08-18 (Washington...color; and atmospheric observations such as greenhouse gas levels (e.g., carbon dioxide), aerosol and dust particles, and moisture concentration. When

  9. Combining satellite, aerial and ground measurements to assess forest carbon stocks in Democratic Republic of Congo

    Science.gov (United States)

    Beaumont, Benjamin; Bouvy, Alban; Stephenne, Nathalie; Mathoux, Pierre; Bastin, Jean-François; Baudot, Yves; Akkermans, Tom

    2015-04-01

    Monitoring tropical forest carbon stocks changes has been a rising topic in the recent years as a result of REDD+ mechanisms negotiations. Such monitoring will be mandatory for each project/country willing to benefit from these financial incentives in the future. Aerial and satellite remote sensing technologies offer cost advantages in implementing large scale forest inventories. Despite the recent progress made in the use of airborne LiDAR for carbon stocks estimation, no widely operational and cost effective method has yet been delivered for central Africa forest monitoring. Within the Maï Ndombe region of Democratic Republic of Congo, the EO4REDD project develops a method combining satellite, aerial and ground measurements. This combination is done in three steps: [1] mapping and quantifying forest cover changes using an object-based semi-automatic change detection (deforestation and forest degradation) methodology based on very high resolution satellite imagery (RapidEye), [2] developing an allometric linear model for above ground biomass measurements based on dendrometric parameters (tree crown areas and heights) extracted from airborne stereoscopic image pairs and calibrated using ground measurements of individual trees on a data set of 18 one hectare plots and [3] relating these two products to assess carbon stocks changes at a regional scale. Given the high accuracies obtained in [1] (> 80% for deforestation and 77% for forest degradation) and the suitable, but still to be improved with a larger calibrating sample, model (R² of 0.7) obtained in [2], EO4REDD products can be seen as a valid and replicable option for carbon stocks monitoring in tropical forests. Further improvements are planned to strengthen the cost effectiveness value and the REDD+ suitability in the second phase of EO4REDD. This second phase will include [A] specific model developments per forest type; [B] measurements of afforestation, reforestation and natural regeneration processes and

  10. Comparison of NO2 vertical profiles from satellite and ground based measurements over Antarctica

    OpenAIRE

    Kulkarni, Pavan; Bortoli, Daniele; Costa, Maria João; Silva, Ana Maria; Ravegnani, Fabrizio; Giovanelli, Giorgio

    2011-01-01

    The Intercomparison of nitrogen dioxide (NO2) vertical profiles, derived from the satellite based HALogen Occultation Experiment (HALOE) measurements and from the ground based UV-VIS spectrometer GASCOD (Gas Analyzer Spectrometer Correlating Optical Differences) observations at the Mario Zucchelli Station (MZS), in Antarctica, are done for the first time. It is shown here that both datasets are in good agreement showing the same features in terms of magnitude, profile structure, a...

  11. Amazon vegetation greenness as measured by satellite sensors over the last decade

    OpenAIRE

    Atkinson, P.M.; Dash, J.; Jeganathan, C.

    2011-01-01

    [1] During the last decade two major drought events, one in 2005 and another in 2010, occurred in the Amazon basin. Several studies have claimed the ability to detect the effect of these droughts on Amazon vegetation response, measured through satellite sensor vegetation indices (VIs). Such monitoring capability is important as it potentially links climate changes (increasing frequency and severity of drought), vegetation response as observed through vegetation greenness, and land-atmosphere ...

  12. Comparison of advanced Arctic Ocean model sea ice fields to satellite derived measurements

    OpenAIRE

    Dimitriou, David S.

    1998-01-01

    Approved for public release; distribution is unlimited Numerical models have proven integral to the study of climate dynamics. Sea ice models are critical to the improvement of general circulation models used to study the global climate. The object of this study is to evaluate a high resolution ice-ocean coupled model by comparing it to derived measurements from SMMR and SSM/I satellite observations. Utilized for this study was the NASA Goddard Space Flight (GSFC) Sea Ice Concentration Dat...

  13. Simulation of Satellite Water Vapour Lidar Measurements: Performance Assessment under Real Atmospheric Conditions.

    OpenAIRE

    Di Girolamo, Paolo; Behrendt, Andreas; Kiemle, Christoph; Wulfmeyer, Volker; Bauer, Heinz; Summa, Donato; Dörnbrack, Andreas; Ehret, Gerhard

    2008-01-01

    A lidar simulator has been applied to assess the performances of a satellite water vapour differential absorption lidar (DIAL) system. Measurements performed by the airborne Deutsches Zentrum für Luft- und Raumfahrt (DLR) water vapour DIAL on 15 May 2002 during ESA’s Water Vapour Lidar Experiment (WALEX), in combination with MM5 mesoscale model output, were used to obtain backscatter and water vapour fields with high resolution and accuracy. These data and model output serve as input for the ...

  14. Measuring the Electron Temperature in the Corona

    Science.gov (United States)

    Davila, Joseph; SaintCyr, Orville C.; Reginald, Nelson

    2008-01-01

    We report on an experiment to demonstrate the feasibility of a new method to obtain the electron temperature and flow speed in the solar corona by observing the visible Kcoronal spectrum during the total solar eclipse on 29 March 2006 in Libya. Results show that this new method is indeed feasible, giving electron temperatures and speeds of 1.10 $\\pm$ 0.05 MK, 103.0 $\\pm$ 92.0 $kmsA{-l}$; 0.98 $\\pm$ 0.12 MK, 0.0 + 10.0 $kmsA{-1)s; 0.70 $\\pm$ 0.08 MK, 0.0 + 10.0 $kmsA{-l)$ at l.l{\\it R)$ {\\odot}$ in the solar north, east and west, respectively, and 0.93 $\\pm$ 0.12 MK, 0.0 + 10.0 $kmsA{-l}$ at 1.2{\\it R}$ {\\odot}$ in the solar east. This new technique could be easily used from a space-based platform in a coronagraph to produce two dimensional maps of the electron temperature and bulk flow speed at the base of the solar wind useful for the study of heliospheric structure and space weather.

  15. Inter-Comparison of In-Situ Sensors for Land Surface Temperature Measurements

    Science.gov (United States)

    Krishnan, P.; Kochendorfer, J.; Meyers, T. P.; Guillevic, P. C.; Hook, S. J.

    2014-12-01

    Land Surface Temperature (LST) is a key variable in the determination of land surface processes from local to global scales. It has been identified as one of the most important environmental data records and is widely used in meteorological, climatological, hydrological, ecological, biophysical, and biochemical studies. Despite its importance, accurate in-situ measurements of LST are not yet available for the whole globe and are not routinely conducted at weather stations along with standard meteorological observations, with few exceptions including NOAA's United States Climate Reference Network. Even though satellite radiometric measurements of LST are a powerful tool, there are still large uncertainties associated with the retrieval of remotely sensed LST measurements. To improve confidence in the methods, algorithms, and parameters used to derive remotely sensed LST, validation of satellite data using high-quality ground-based measurements is required. With the objective of improving the quality of in situ measurements of LST and to evaluate the quantitative uncertainties in the ground-based measurements, intensive experiments were conducted at NOAA/ATDD in Oak ridge, TN from September 2013 to 2014. During the study period, multiple measurements of land surface skin temperature were made using infra-red temperature sensors - including the JPL radiometer, two models of Apogee infrared radiometers, and thermocouples embedded in the ground surface. In addition, aspirated air temperature and four-band net radiation measurements were also made. Overall the in situ LST measurements from the different sensors were in good agreement with each other, with a correlation coefficient of ~1 and root mean square error of <1 oC.

  16. Acoustic temperature measurement in a rocket noise field.

    Science.gov (United States)

    Giraud, Jarom H; Gee, Kent L; Ellsworth, John E

    2010-05-01

    A 1 μm diameter platinum wire resistance thermometer has been used to measure temperature fluctuations generated during a static GEM-60 rocket motor test. Exact and small-signal relationships between acoustic pressure and acoustic temperature are derived in order to compare the temperature probe output with that of a 3.18 mm diameter condenser microphone. After preliminary plane wave tests yielded good agreement between the transducers within the temperature probe's ∼2 kHz bandwidth, comparison between the temperature probe and microphone data during the motor firing show that the ±∼3 K acoustic temperature fluctuations are a significant contributor to the total temperature variations.

  17. [Welding arc temperature field measurements based on Boltzmann spectrometry].

    Science.gov (United States)

    Si, Hong; Hua, Xue-Ming; Zhang, Wang; Li, Fang; Xiao, Xiao

    2012-09-01

    Arc plasma, as non-uniform plasma, has complicated energy and mass transport processes in its internal, so plasma temperature measurement is of great significance. Compared with absolute spectral line intensity method and standard temperature method, Boltzmann plot measuring is more accurate and convenient. Based on the Boltzmann theory, the present paper calculates the temperature distribution of the plasma and analyzes the principle of lines selection by real time scanning the space of the TIG are measurements.

  18. Computer-aided evaluation of the railway track geometry on the basis of satellite measurements

    Science.gov (United States)

    Specht, Cezary; Koc, Władysław; Chrostowski, Piotr

    2016-05-01

    In recent years, all over the world there has been a period of intensive development of GNSS (Global Navigation Satellite Systems) measurement techniques and their extension for the purpose of their applications in the field of surveying and navigation. Moreover, in many countries a rising trend in the development of rail transportation systems has been noticed. In this paper, a method of railway track geometry assessment based on mobile satellite measurements is presented. The paper shows the implementation effects of satellite surveying railway geometry. The investigation process described in the paper is divided on two phases. The first phase is the GNSS mobile surveying and the analysis obtained data. The second phase is the analysis of the track geometry using the flat coordinates from the surveying. The visualization of the measured route, separation and quality assessment of the uniform geometric elements (straight sections, arcs), identification of the track polygon (main directions and intersection angles) are discussed and illustrated by the calculation example within the article.

  19. Image-processing techniques in precisely measuring positions of Saturn and its satellites

    Institute of Scientific and Technical Information of China (English)

    PENG; Qingyu; (彭青玉)

    2003-01-01

    After overcoming the deficiencies of previous image-processing techniques, a novel technique based on the edge-detection of Saturnian ring is developed to precisely measure Saturn's position. Furthermore, the scattering light (i.e. halo light) of Saturn and its ring is removed effectively based on its center symmetry. Therefore, we have much more opportunities to accurately measure the positions of Mimas and Enceladus-- two satellites very close to the Saturn. Experimental tests with 127 frames of CCD images obtained on the 1-meter telescope at the Yunnan Observatory over three nights show that the geometric center of the Saturnian ring and its 4 satellites (Tethys, Dione, Rhea and Titan) have the same positional precision, and the standard error for a single observation is less than ±0.05 arcsec. It is believed that these new techniques would have important impetus to the positional measurement of both Saturn by using a CCD meridian instrument and its faint satellites by using a long focal length telescope.

  20. Towards validation of ammonia (NH3 measurements from the IASI satellite

    Directory of Open Access Journals (Sweden)

    M. Van Damme

    2014-12-01

    Full Text Available Limited availability of ammonia (NH3 observations is currently a barrier for effective monitoring of the nitrogen cycle. It prevents a full understanding of the atmospheric processes in which this trace gas is involved and therefore impedes determining its related budgets. Since the end of 2007, the Infrared Atmospheric Sounding Interferometer (IASI satellite has been observing NH3 from space at a high spatiotemporal resolution. This valuable data set, already used by models, still needs validation. We present here a first attempt to validate IASI-NH3 measurements using existing independent ground-based and airborne data sets. The yearly distributions reveal similar patterns between ground-based and space-borne observations and highlight the scarcity of local NH3 measurements as well as their spatial heterogeneity and lack of representativity. By comparison with monthly resolved data sets in Europe, China and Africa, we show that IASI-NH3 observations are in fair agreement but that they are characterized by a smaller variation in concentrations. The use of hourly and airborne data sets to compare with IASI individual observations allows to investigate the impact of averaging as well as the representativity of independent observations for the satellite footprint. The importance of considering the latter and the added value of densely located airborne measurements at various altitudes to validate IASI-NH3 columns are discussed. Perspectives and guidelines for future validation work on NH3 satellite observations are presented.

  1. Joint Polar Satellite System (JPSS) Common Ground System (CGS) Current Technical Performance Measures

    Science.gov (United States)

    Cochran, S.; Panas, M.; Jamilkowski, M. L.; Miller, S. W.

    2015-12-01

    ABSTRACT The National Oceanic and Atmospheric Administration (NOAA) and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation civilian weather and environmental satellite system: the Joint Polar Satellite System (JPSS). The Joint Polar Satellite System will replace the afternoon orbit component and ground processing system of the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA. The JPSS satellites will carry a suite of sensors designed to collect meteorological, oceanographic, climatological and geophysical observations of the Earth. The ground processing system for JPSS is known as the JPSS Common Ground System (JPSS CGS). Developed and maintained by Raytheon Intelligence, Information and Services (IIS), the CGS is a multi-mission enterprise system serving NOAA, NASA and their national and international partners. The CGS has demonstrated its scalability and flexibility to incorporate multiple missions efficiently and with minimal cost, schedule and risk, while strengthening global partnerships in weather and environmental monitoring. The CGS architecture is being upgraded to Block 2.0 in 2015 to "operationalize" S-NPP, leverage lessons learned to date in multi-mission support, take advantage of more reliable and efficient technologies, and satisfy new requirements and constraints in the continually evolving budgetary environment. To ensure the CGS meets these needs, we have developed 49 Technical Performance Measures (TPMs) across 10 categories, such as data latency, operational availability and scalability. This paper will provide an overview of the CGS Block 2.0 architecture, with particular focus on the 10 TPM categories listed above. We will provide updates on how we ensure the deployed architecture meets these TPMs to satisfy our multi-mission objectives with the deployment of Block 2.0.

  2. Search for Best Astronomical Observatory Sites in the MENA Region using Satellite Measurements

    Science.gov (United States)

    Abdelaziz, G.; Guebsi, R.; Guessoum, N.; Flamant, C.

    2017-06-01

    We perform a systematic search for astronomical observatory sites in the MENA (Middle-East and North Africa) region using space-based data for all the relevant factors, i.e. altitude (DEM), cloud fraction (CF), light pollution (NTL), precipitable water vapor (PWV), aerosol optical depth (AOD), relative humidity (RH), wind speed (WS), Richardson Number (RN), and diurnal temperature range (DTR). We look for the best locations overall even where altitudes are low (the threshold that we normally consider being 1,500 m) or where the combination of the afore-mentioned determining factors had previously excluded all locations in a given country. In this aim, we use the rich data that Earth-observing satellites provide, e.g. the Terra and Aqua multi-national NASA research satellites, with their MODIS (Moderate Resolution Imaging Spectroradiometer) and AIRS (Atmospheric Infrared Sounder) instruments, the Defense Meteorological Satellite Program’s Operational Linescan System (DMSP-OLS), and other products from climate diagnostics archives (e.g. MERRA). We present preliminary results on the best locations for the region.

  3. Evapotranspiration Estimation over Yangtze River Basin from GRACE satellite measurement and in situ data

    Science.gov (United States)

    Li, Qiong; Luo, Zhicai; Zhong, Bo; Wang, Haihong; Zhou, Zebing

    2016-04-01

    As the critical component of hydrologic cycle, evapotranspiration (ET) plays an important role in global water exchanges and energy flow across the hydrosphere, atmosphere and biosphere. Influenced by the Asian monsoon, the Yangtze River Basin (YRB) suffer from the several severe floods and droughts over the last decades due to the significant difference between temporal and spatial distribution terrestrial water storages. As an indispensable part, it is practically important to assessment ET in the YRB accompany with increased population and rapid economic and agriculture development. Average ET over the YRB is computed as the residual of terrestrial water budget using the Gravity Recovery and Climate Experiment (GRACE) satellite-based measurements and the ground-based observations. The GRACE-based ET were well coincidence with the ET from MODIS, with the correlation coefficient of 0.853, and the correlation coefficient is 0.696 while comparing with the ET ground-based observation. The mean monthly average of ET from these various estimates is 56.9 mm/month over the whole YRB, and peak between June and August. Monthly variations of ET reach a maximum in Wujiang with 69.11 mm/month and a minimum in Jinshajiang with 39.01 mm/month. Based on the correlation between ET and independent estimates of near-surface temperature and soil moisture, it is showed that as the temperature increased, the ET of the seven sub-catchment were rising except for the Poyang Lake and Donting Lake. And we also can infer that the midstream of YRB is significant correlated with ESON especially in the Hanjiang basin. The Surface Humidity Index over the YRB was gradually decreased and its variations in each sub-catchment showed a significant decreasing trend in Jinshajiang and Mingjiang. This research has important potential for use in large-scale water budget assessments and intercomparison studies. Acknowledgements: This research is supported by the National Natural Science Foundation of

  4. Measurement of magnetic properties at cryogenic temperatures

    CERN Multimedia

    1977-01-01

    This picture shows part of the low-mu permeameter to measure permeability of stainless steels and other low-mu materials used in superconducting magnets. The sample, a 5 mm diam., 45 mm long rod, is suspended to long leads before being inserted in the test cryostat. For the measurement the sample is surrounded by a flux- measuring coil and placed in the field of a superconducting solenoid. At a given field the sample is removed.During the removal, the voltage induced in the flux-measuring coil is time integrated giving the flux variation. This equipment was developed to select stainless steels and other low-mu materials used in the ISR Prototype Superconducting Qaudrupole. The person is W.Ansorge.

  5. Air Temperature Measurements Using Dantec Draught Probes

    DEFF Research Database (Denmark)

    Kristensen, Martin Heine; Jensen, Jakob Søland; Jensen, Rasmus Lund

    This technical report is written based on investigations of Dantec measurement equipment used in a master thesis project by the authors in the period September 2014 to June 2015 (Kristensen & Jensen, 2015)....

  6. Solar energy control system. [temperature measurement

    Science.gov (United States)

    Currie, J. R. (Inventor)

    1981-01-01

    A solar energy control system for a hot air type solar energy heating system wherein thermocouples are arranged to sense the temperature of a solar collector, a space to be heated, and a top and bottom of a heat storage unit is disclosed. Pertinent thermocouples are differentially connected together, and these are employed to effect the operation of dampers, a fan, and an auxiliary heat source. In accomplishing this, the differential outputs from the thermocouples are amplified by a single amplifier by multiplexing techniques. Additionally, the amplifier is corrected as to offset by including as one multiplex channel a common reference signal.

  7. The multifractal structure of satellite sea surface temperature maps can be used to obtain global maps of streamlines

    Directory of Open Access Journals (Sweden)

    A. Turiel

    2009-01-01

    Full Text Available Nowadays Earth observation satellites provide information about many relevant variables of the ocean-climate system, such as temperature, moisture, aerosols, etc. However, to retrieve the velocity field, which is the most relevant dynamical variable, is still a technological challenge, specially in the case of oceans. New processing techniques, emerged from the theory of turbulent flows, have come to assist us in this task. In this paper, we show that multifractal techniques applied to new Sea Surface Temperature satellite products opens the way to build maps of ocean currents with unprecedented accuracy. With the application of singularity analysis, we show that global ocean circulation patterns can be retrieved in a daily basis. We compare these results with high-quality altimetry-derived geostrophic velocities, finding a quite good correspondence of the observed patterns both qualitatively and quantitatively. The implications of this findings from the perspective both of theory and of operational applications are discussed.

  8. Assessing regional crop water demand using a satellite-based combination equation with a land surface temperature componen

    DEFF Research Database (Denmark)

    Moyano, Carmen; Garcia, Monica; Tornos, Lucia

    2015-01-01

    consumption trends in the area. The results showed that the thermal-PT-JPL model is a suitable and simple tool requiring only air temperature and incoming solar radiation apart from standard satellites-products freely available. Our results show that in comparison with the hydrological model conceptual...... to estimate soil surface conductance based on an apparent thermal inertia index. A process-based model was applied to estimate surface energy fluxes including daily ET based on a modified version of the Priestley-Taylor Jet Propulsion Laboratory (PT-JPL) model at 1km pixel resolution during a chrono......-sequence spanning for more than a decade (2002-2013). The thermal-PT-JPL model was forced with vegetation, albedo, reflectance and temperature products from the Moderate-resolution Imaging Spectroradiometer (MODIS) from both Aqua and Terra satellites. The study region, B-XII Irrigation District of the Lower...

  9. From skin to bulk: An adjustment technique for assimilation of satellite-derived temperature observations in numerical models of small inland water bodies

    Science.gov (United States)

    Javaheri, Amir; Babbar-Sebens, Meghna; Miller, Robert N.

    2016-06-01

    Data Assimilation (DA) has been proposed for multiple water resources studies that require rapid employment of incoming observations to update and improve accuracy of operational prediction models. The usefulness of DA approaches in assimilating water temperature observations from different types of monitoring technologies (e.g., remote sensing and in-situ sensors) into numerical models of in-land water bodies (e.g., lakes and reservoirs) has, however, received limited attention. In contrast to in-situ temperature sensors, remote sensing technologies (e.g., satellites) provide the benefit of collecting measurements with better X-Y spatial coverage. However, assimilating water temperature measurements from satellites can introduce biases in the updated numerical model of water bodies because the physical region represented by these measurements do not directly correspond with the numerical model's representation of the water column. This study proposes a novel approach to address this representation challenge by coupling a skin temperature adjustment technique based on available air and in-situ water temperature observations, with an ensemble Kalman filter based data assimilation technique. Additionally, the proposed approach used in this study for four-dimensional analysis of a reservoir provides reasonably accurate surface layer and water column temperature forecasts, in spite of the use of a fairly small ensemble. Application of the methodology on a test site - Eagle Creek Reservoir - in Central Indiana demonstrated that assimilation of remotely sensed skin temperature data using the proposed approach improved the overall root mean square difference between modeled surface layer temperatures and the adjusted remotely sensed skin temperature observations from 5.6°C to 0.51°C (i.e., 91% improvement). In addition, the overall error in the water column temperature predictions when compared with in-situ observations also decreased from 1.95°C (before assimilation

  10. APPLICATION OF VISION METROLOGY TO IN-ORBIT MEASUREMENT OF LARGE REFLECTOR ONBOARD COMMUNICATION SATELLITE FOR NEXT GENERATION MOBILE SATELLITE COMMUNICATION

    Directory of Open Access Journals (Sweden)

    M. Akioka

    2016-06-01

    Full Text Available Satellite for next generation mobile satellite communication service with small personal terminal requires onboard antenna with very large aperture reflector larger than twenty meters diameter because small personal terminal with lower power consumption in ground base requires the large onboard reflector with high antenna gain. But, large deployable antenna will deform in orbit because the antenna is not a solid dish but the flexible structure with fine cable and mesh supported by truss. Deformation of reflector shape deteriorate the antenna performance and quality and stability of communication service. However, in case of digital beam forming antenna with phased array can modify the antenna beam performance due to adjustment of excitation amplitude and excitation phase. If we can measure the reflector shape precisely in orbit, beam pattern and antenna performance can be compensated with the updated excitation amplitude and excitation phase parameters optimized for the reflector shape measured every moment. Softbank Corporation and National Institute of Information and Communications Technology has started the project "R&D on dynamic beam control technique for next generation mobile communication satellite" as a contracted research project sponsored by Ministry of Internal Affairs and Communication of Japan. In this topic, one of the problem in vision metrology application is a strong constraints on geometry for camera arrangement on satellite bus with very limited space. On satellite in orbit, we cannot take many images from many different directions as ordinary vision metrology measurement and the available area for camera positioning is quite limited. Feasibility of vision metrology application and general methodology to apply to future mobile satellite communication satellite is to be found. Our approach is as follows: 1 Development of prototyping simulator to evaluate the expected precision for network design in zero order and first order

  11. Application of Vision Metrology to In-Orbit Measurement of Large Reflector Onboard Communication Satellite for Next Generation Mobile Satellite Communication

    Science.gov (United States)

    Akioka, M.; Orikasa, T.; Satoh, M.; Miura, A.; Tsuji, H.; Toyoshima, M.; Fujino, Y.

    2016-06-01

    Satellite for next generation mobile satellite communication service with small personal terminal requires onboard antenna with very large aperture reflector larger than twenty meters diameter because small personal terminal with lower power consumption in ground base requires the large onboard reflector with high antenna gain. But, large deployable antenna will deform in orbit because the antenna is not a solid dish but the flexible structure with fine cable and mesh supported by truss. Deformation of reflector shape deteriorate the antenna performance and quality and stability of communication service. However, in case of digital beam forming antenna with phased array can modify the antenna beam performance due to adjustment of excitation amplitude and excitation phase. If we can measure the reflector shape precisely in orbit, beam pattern and antenna performance can be compensated with the updated excitation amplitude and excitation phase parameters optimized for the reflector shape measured every moment. Softbank Corporation and National Institute of Information and Communications Technology has started the project "R&D on dynamic beam control technique for next generation mobile communication satellite" as a contracted research project sponsored by Ministry of Internal Affairs and Communication of Japan. In this topic, one of the problem in vision metrology application is a strong constraints on geometry for camera arrangement on satellite bus with very limited space. On satellite in orbit, we cannot take many images from many different directions as ordinary vision metrology measurement and the available area for camera positioning is quite limited. Feasibility of vision metrology application and general methodology to apply to future mobile satellite communication satellite is to be found. Our approach is as follows: 1) Development of prototyping simulator to evaluate the expected precision for network design in zero order and first order 2) Trial

  12. The effect of temperature cycling typical of low earth orbit satellites on thin films of YBa2Cu3O(7-x)

    Science.gov (United States)

    Mogro-Campero, A.; Turner, L. G.; Bogorad, A.; Herschitz, R.

    1990-01-01

    The refrigeration of superconductors in space poses a challenging problem. The problem could be less severe if superconducting materials would not have to be cooled when not in use. Thin films of the YBa2Cu3O(7-x) (YBCO) superconductor were subjected to thermal cycling, which was carried out to simulate a large number of eclipses of a low earth orbit satellite. Electrical measurements were performed to find the effect of the temperature cycling. Thin films of YBCO were formed by coevaporation of Y, BaF2, and Cu and postannealing in wet oxygen at 850 C for 3.5 h. The substrates used were (100) SrTiO3, polycrystalline alumina, and oxidized silicon; the last two have an evaporated zirconia layer. Processing and microstructure studies of these types of films have been published. THe zero resistance transition temperatures of the samples used in this study were 91, 82, and 86 K, respectively. The samples were characterized by four point probe electrical measurements as a function of temperature. The parameters measured were: the zero resistance transition temperature, the 10 to 90 percent transition width, and the room temperature resistance, normalized to that measured before temperature cycling. The results for two samples are presented. Each sample had a cumulative exposure. Cycling in atmospheric pressure nitrogen was performed at a rate of about 60 cycles per day, whereas in vacuum the rate was only about 10 cycles per day. The results indicate only little or no changes in the parameters measured. Degradation of superconducting thin films of YBCO has been reported due to storage in nitrogen. It is believed that the relatively good performance of films after temperature cycling is related to the fact that BaF2 was used as an evaporation source. The latest result on extended temperature cycling indicates significant degradation. Further tests of extended cycling will be carried out to provide additional data and to clarify this preliminary finding.

  13. An Integrated-Circuit Temperature Sensor for Calorimetry and Differential Temperature Measurement.

    Science.gov (United States)

    Muyskens, Mark A.

    1997-01-01

    Describes the application of an integrated-circuit (IC) chip which provides an easy-to-use, inexpensive, rugged, computer-interfaceable temperature sensor for calorimetry and differential temperature measurement. Discusses its design and advantages. (JRH)

  14. Fluxes of energetic protons and electrons measured on board the Oersted satellite

    Directory of Open Access Journals (Sweden)

    J. Cabrera

    2005-11-01

    Full Text Available The Charged Particle Detector (CPD on board the Oersted satellite (649 km perigee, 865 km apogee and 96.48° inclination currently measures energetic protons and electrons. The measured peak fluxes of E>1 MeV electrons are found to confirm the predictions of AE8-MAX, though they occur at a geographical position relatively shifted in the SAA. The fluxes of protons are one order of magnitude higher than the predictions of AP8-MAX in the energy range 20-500 MeV. This huge discrepancy between AP8 and recent measurements in LEO was already noticed and modelled in SAMPEX/PSB97 and TPM-1 models. Nevertheless some other LEO measurements such as PROBA and CORONA-F result in flux values in good agreement with AP8 within a factor 2. The anisotropy of the low-altitude proton flux, combined with measurement performed on board three-axis stabilised satellites, has been suspected to be one possible source of the important discrepancies observed by different missions. In this paper, we evaluate the effect of anisotropy on flux measurements conducted using the CPD instruments. On the basis of the available data, we confirm the inaccuracy of AP8 at LEO and suggest methods to improve the analysis of data in future flux measurements of energetic protons at low altitudes.

  15. Advanced two-way satellite frequency transfer by carrier-phase and carrier-frequency measurements

    Science.gov (United States)

    Fujieda, Miho; Gotoh, Tadahiro; Amagai, Jun

    2016-06-01

    Carrier-phase measurement is one of the ways to improve the measurement resolution of two-way satellite frequency transfer. We introduce two possible methods for carrier-phase measurement: direct carrier-phase detection identified by Two-Way Carrier-Phase (TWCP) and the use of carrier-frequency information identified by Two-Way Carrier Frequency (TWCF). We performed the former using an arbitrary waveform generator and an analog-to-digital sampler and the latter using a conventional modem. The TWCF measurement using the modem had a resolution of 10-13 and the result agreed with that obtained by GPS carrier-phase frequency transfer in a 1500 km baseline. The measurement accuracy may have been limited by the poor frequency resolution of the modem; however, the TWCF measurement was able to improve the stability of conventional two-way satellite frequency transfer. Additionally, we show that the TWCP measurement system has the potential to achieve a frequency stability of 10-17.

  16. Body Temperature Measurements for Metabolic Phenotyping in Mice.

    Science.gov (United States)

    Meyer, Carola W; Ootsuka, Youichirou; Romanovsky, Andrej A

    2017-01-01

    Key Points Rectal probing is subject to procedural bias. This method is suitable for first-line phenotyping, provided probe depth and measurement duration are standardized. It is also useful for detecting individuals with out-of-range body temperatures (during hypothermia, torpor).The colonic temperature attained by inserting the probe >2 cm deep is a measure of deep (core) body temperature.IR imaging of the skin is useful for detecting heat leaks and autonomous thermoregulatory alterations, but it does not measure body temperature.Temperature of the hairy or shaved skin covering the inter-scapular brown adipose tissue can be used as a measure of BAT thermogenesis. However, obtaining such measurements of sufficient quality is very difficult, and interpreting them can be tricky. Temperature differences between the inter-scapular and lumbar areas can be a better measure of the thermogenic activity of inter-scapular brown adipose tissue.Implanted probes for precise determination of BAT temperature (changes) should be fixed close to the Sulzer's vein. For measurement of BAT thermogenesis, core body temperature and BAT temperature should be recorded simultaneously.Tail temperature is suitable to compare the presence or absence of vasoconstriction or vasodilation.Continuous, longitudinal monitoring of core body temperature is preferred over single probing, as the readings are taken in a non-invasive, physiological context.Combining core body temperature measurements with metabolic rate measurements yields insights into the interplay between heat production and heat loss (thermal conductance), potentially revealing novel thermoregulatory phenotypes. Endothermic organisms rely on tightly balanced energy budgets to maintain a regulated body temperature and body mass. Metabolic phenotyping of mice, therefore, often includes the recording of body temperature. Thermometry in mice is conducted at various sites, using various devices and measurement practices, ranging from

  17. Sensitivity of Satellite-Based Skin Temperature to Different Surface Emissivity and NWP Reanalysis Sources Demonstrated Using a Single-Channel, Viewing-Angle-Corrected Retrieval Algorithm

    Science.gov (United States)

    Scarino, B. R.; Minnis, P.; Yost, C. R.; Chee, T.; Palikonda, R.

    2015-12-01

    Single-channel algorithms for satellite thermal-infrared- (TIR-) derived land and sea surface skin temperature (LST and SST) are advantageous in that they can be easily applied to a variety of satellite sensors. They can also accommodate decade-spanning instrument series, particularly for periods when split-window capabilities are not available. However, the benefit of one unified retrieval methodology for all sensors comes at the cost of critical sensitivity to surface emissivity (ɛs) and atmospheric transmittance estimation. It has been demonstrated that as little as 0.01 variance in ɛs can amount to more than a 0.5-K adjustment in retrieved LST values. Atmospheric transmittance requires calculations that employ vertical profiles of temperature and humidity from numerical weather prediction (NWP) models. Selection of a given NWP model can significantly affect LST and SST agreement relative to their respective validation sources. Thus, it is necessary to understand the accuracies of the retrievals for various NWP models to ensure the best LST/SST retrievals. The sensitivities of the single-channel retrievals to surface emittance and NWP profiles are investigated using NASA Langley historic land and ocean clear-sky skin temperature (Ts) values derived from high-resolution 11-μm TIR brightness temperature measured from geostationary satellites (GEOSat) and Advanced Very High Resolution Radiometers (AVHRR). It is shown that mean GEOSat-derived, anisotropy-corrected LST can vary by up to ±0.8 K depending on whether CERES or MODIS ɛs sources are used. Furthermore, the use of either NOAA Global Forecast System (GFS) or NASA Goddard Modern-Era Retrospective Analysis for Research and Applications (MERRA) for the radiative transfer model initial atmospheric state can account for more than 0.5-K variation in mean Ts. The results are compared to measurements from the Surface Radiation Budget Network (SURFRAD), an Atmospheric Radiation Measurement (ARM) Program ground

  18. Modelling Angular Dependencies in Land Surface Temperatures From the SEVIRI Instrument onboard the Geostationary Meteosat Second Generation Satellites

    DEFF Research Database (Denmark)

    Rasmussen, Mads Olander; Pinheiro, AC; Proud, Simon Richard

    2010-01-01

    Satellite-based estimates of land surface temperature (LST) are widely applied as an input to models. A model output is often very sensitive to error in the input data, and high-quality inputs are therefore essential. One of the main sources of errors in LST estimates is the dependence on vegetat......Satellite-based estimates of land surface temperature (LST) are widely applied as an input to models. A model output is often very sensitive to error in the input data, and high-quality inputs are therefore essential. One of the main sources of errors in LST estimates is the dependence...... on vegetation structure and viewing and illumination geometry. Despite this, these effects are not considered in current operational LST products from neither polar-orbiting nor geostationary satellites. In this paper, we simulate the angular dependence that can be expected when estimating LST with the viewing...... by different land covers. The results show that the sun-target-sensor geometry plays a significant role in the estimated temperature, with variations strictly due to the angular configuration of more than ±3°C in some cases. On the continental scale, the average error is small except in hot-spot conditions...

  19. Finger temperature controller for non-invasive blood glucose measurement

    Science.gov (United States)

    Zhang, Xiqin; Ting, Choon Meng; Yeo, Joon Hock

    2010-11-01

    Blood glucose level is an important parameter for doctors to diagnose and treat diabetes. The Near-Infra-Red (NIR) spectroscopy method is the most promising approach and this involves measurement on the body skin. However it is noted that the skin temperature does fluctuate with the environmental and physiological conditions and we found that temperature has important influences on the glucose measurement. In-vitro and in-vivo investigations on the temperature influence on blood glucose measurement have been carried out. The in-vitro results show that water temperature has significant influence on water absorption. Since 90% of blood components are water, skin temperature of measurement site has significant influence on blood glucose measurement. Also the skin temperature is related to the blood volume, blood volume inside capillary vessels changes with skin temperature. In this paper the relationship of skin temperature and signal from the skin and inside tissue was studied at different finger temperatures. Our OGTT (oral glucose tolerance test) trials results show the laser signals follow the skin temperature trend and the correlation of signal and skin temperature is much stronger than the correlation of signal and glucose concentration. A finger heater device is designed to heat and maintain the skin temperature of measurement site. The heater is controlled by an electronic circuit according to the skin temperature sensed by a thermocouple that is put close to the measurement site. In vivo trials were carried out and the results show that the skin temperature significantly influences the signal fluctuations caused by pulsate blood and the average signal value.

  20. Microwave radiometric system for biomedical 'true temperature' and emissivity measurements.

    Science.gov (United States)

    Lüdeke, K M; Köhler, J

    1983-09-01

    A novel type of radiometer is described, which solves the problem of emissivity-(mismatch)-independent noise temperature measurements by simultaneous registration of an object's apparent temperature and its reflectivity with just one microwave receiver and real-time calculation of the object's emissivity and its actual temperature.

  1. An automated processing chains for surface temperature monitoring on Earth's most active volcanoes by optical data from multiple satellites

    Science.gov (United States)

    Silvestri, Malvina; Musacchio, Massimo; Fabrizia Buongiorno, Maria

    2017-04-01

    The Geohazards Exploitation Platform, or GEP is one of six Thematic Exploitation Platforms developed by ESA to serve data user communities. As a new element of the ground segment delivering satellite results to users, these cloud-based platforms provide an online environment to access information, processing tools, computing resources for community collaboration. The aim is to enable the easy extraction of valuable knowledge from vast quantities of satellite-sensed data now being produced by Europe's Copernicus programme and other Earth observation satellites. In this context, the estimation of surface temperature on active volcanoes around the world is considered. E2E processing chains have been developed for different satellite data (ASTER, Landsat8 and Sentinel 3 missions) using thermal infrared (TIR) channels by applying specific algorithms. These chains have been implemented on the GEP platform enabling the use of EO missions and the generation of added value product such as surface temperature map, from not skilled users. This solution will enhance the use of satellite data and improve the dissemination of the results saving valuable time (no manual browsing, downloading or processing is needed) and producing time series data that can be speedily extracted from a single co-registered pixel, to highlight gradual trends within a narrow area. Moreover, thanks to the high-resolution optical imagery of Sentinel 2 (MSI), the detection of lava maps during an eruption can be automatically obtained. The proposed lava detection method is based on a contextual algorithm applied to Sentinel-2 NIR (band 8 - 0.8 micron) and SWIR (band 12 - 2.25 micron) data. Examples derived by last eruptions on active volcanoes are showed.

  2. Measurement of improved pressure dependence of superconducting transition temperature

    Science.gov (United States)

    Karmakar, S.

    2013-06-01

    We describe a technique for making electrical transport measurements in a diamond anvil cell at liquid helium temperature having in situ pressure measurement option, permitting accurate pressure determination at any low temperature during the resistance measurement scan. In general, for four-probe resistivity measurements on a polycrystalline sample, four fine gold wires are kept in contact with the sample with the help of the compression from the soft solid (usually alkali halides such as NaCl, KCl, etc.) acting as a pressure-transmitting medium. The actual pressure on the sample is underestimated if not measured from a ruby sphere placed adjacent to the sample and at that very low temperature. Here, we demonstrate the technique with a quasi-four-probe resistance measurement on an Fe-based superconductor in the temperature range 1.2-300 K and pressures up to 8 GPa to find an improved pressure dependence of the superconducting transition temperature.

  3. Secular Gravity Gradients in Non-Dynamical Chern-Simons Modified Gravity for Satellite Gradiometry Measurements

    CERN Document Server

    Qiang, Li-E

    2016-01-01

    With continuous advances in related technologies, relativistic gravitational experiments with orbiting gradiometers becomes feasible, which could naturally be incorporated into future satellite gravity missions. Tests of Chern-Simons modified gravity are meaningful since such a modification gives us insights into (possible) parity-violations in gravitation. In this work, we derive, at the post-Newtonian level, the new observables of secular gradients from the non-dynamical Chern-Simons modified gravity, which will greatly improve the constraint on the mass scale $M_{CS}$ that may be drawn from satellite gradiometry measurements. For superconducting gradiometers, a strong bound $M_{CS}\\geq 10^{-7}\\ eV$ could in principle be obtained. For future optical gradiometers based on similar technologies from the LISA PathFinder mission, a even stronger bound $M_{CS}\\geq 10^{-5}\\ eV$ might be expected.

  4. Ionizing radiation fluxes and dose measurements during the Kosmos 1887 satellite flight.

    Science.gov (United States)

    Charvat, J; Spurny, F; Kopecka, B; Votockova, I

    1990-01-01

    The results of dosimetric experiments performed during the flight of Kosmos 1887 biosatellite are presented. Two kinds of measurements were performed on the external surface of the satellite. First, the fluences and spectra of low energy charged particles were established. It was found that most of the particles registered by means of solid state nuclear track detectors are helium nuclei. Tracks of oxygen nuclei and some heavier charged particles were also observed. Thermoluminescent detectors were used to establish absorbed doses in open space on the satellite's surface and behind thin shielding. It was found that these doses were rather high; nevertheless, their decrease with shielding thickness is very rapid. Dosimetric and other consequences of the results obtained are analyzed and discussed.

  5. Absorbed dose measurements on external surface of Kosmos-satellites with glass thermoluminescent detectors.

    Science.gov (United States)

    Akatov YuA; Arkhangelsky, V V; Kovalev, E E; Spurny, F; Votochkova, I

    1989-01-01

    In this paper we present absorbed dose measurements with glass thermoluminescent detectors on external surface of satellites of Kosmos-serie flying in 1983-87. Experiments were performed with thermoluminescent aluminophosphate glasses of thicknesses 0.1, 0.3, 0.4, 0.5, and 1 mm. They were exposed in sets of total thickness between 5 and 20 mm, which were protected against sunlight with thin aluminized foils. In all missions, extremely high absorbed dose values were observed in the first layers of detectors, up to the thickness of 0.2 to 0.5 gcm-2. These experimental results confirm that, during flights at 250 to 400 km, doses on the surface of the satellites are very high, due to the low energy component of the proton and electron radiation.

  6. Distribution and composition of suspended particulate matter in the Atlantic Ocean: Direct measurements and satellite data

    Science.gov (United States)

    Lisitzin, A. P.; Klyuvitkin, A. A.; Burenkov, V. I.; Kravchishina, M. D.; Politova, N. V.; Novigatsky, A. N.; Shevchenko, V. P.; Klyuvitkina, T. S.

    2016-01-01

    The main purpose of this work is to study the real distribution and spatial-temporal variations of suspended particulate matter and its main components in surface waters of the Atlantic Ocean on the basis of direct and satellite measurements for development of new and perfection of available algorithms for converting satellite data. The distribution fields of suspended particulate matter were calculated and plotted for the entire Atlantic Ocean. It is established that its distribution in the open ocean is subordinate to the latitudinal climatic zonality. The areas with maximum concentrations form latitudinal belts corresponding to high-productivity eutrophic and mesotrophic waters of the northern and southern temperate humid belts and with the equatorial humid zone. Phytoplankton, the productivity of which depends primarily on the climatic zonality, is the main producer of suspended particulate matter in the surface water layer.

  7. "Cloud Slicing" : A New Technique to Derive Tropospheric Ozone Profile Information from Satellite Measurements

    Science.gov (United States)

    Ziemke, J. R.; Chandra, S.; Bhartia, P. K.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    A new technique denoted cloud slicing has been developed for estimating tropospheric ozone profile information. All previous methods using satellite data were only capable of estimating the total column of ozone in the troposphere. Cloud slicing takes advantage of the opaque property of water vapor clouds to ultraviolet wavelength radiation. Measurements of above-cloud column ozone from the Nimbus 7 total ozone mapping spectrometer (TOMS) instrument are combined together with Nimbus 7 temperature humidity and infrared radiometer (THIR) cloud-top pressure data to derive ozone column amounts in the upper troposphere. In this study tropical TOMS and THIR data for the period 1979-1984 are analyzed. By combining total tropospheric column ozone (denoted TCO) measurements from the convective cloud differential (CCD) method with 100-400 hPa upper tropospheric column ozone amounts from cloud slicing, it is possible to estimate 400-1000 hPa lower tropospheric column ozone and evaluate its spatial and temporal variability. Results for both the upper and lower tropical troposphere show a year-round zonal wavenumber 1 pattern in column ozone with largest amounts in the Atlantic region (up to approx. 15 DU in the 100-400 hPa pressure band and approx. 25-30 DU in the 400-1000 hPa pressure band). Upper tropospheric ozone derived from cloud slicing shows maximum column amounts in the Atlantic region in the June-August and September-November seasons which is similar to the seasonal variability of CCD derived TCO in the region. For the lower troposphere, largest column amounts occur in the September-November season over Brazil in South America and also southern Africa. Localized increases in the tropics in lower tropospheric ozone are found over the northern region of South America around August and off the west coast of equatorial Africa in the March-May season. Time series analysis for several regions in South America and Africa show an anomalous increase in ozone in the lower

  8. Quantum-limited measurements of optical signals from a geostationary satellite

    CERN Document Server

    Günthner, Kevin; Elser, Dominique; Stiller, Birgit; Bayraktar, Ömer; Müller, Christian R; Saucke, Karen; Tröndle, Daniel; Heine, Frank; Seel, Stefan; Greulich, Peter; Zech, Herwig; Gütlich, Björn; Richter, Ines; Lutzer, Michael; Philipp-May, Sabine; Meyer, Rolf; Marquardt, Christoph; Leuchs, Gerd

    2016-01-01

    The measurement of quantum signals that traveled through long distances is of fundamental and technical interest. We present quantum-limited coherent measurements of optical signals, sent from a satellite in geostationary Earth orbit to an optical ground station. We bound the excess noise that the quantum states could have acquired after having propagated 38600 km through Earth's gravitational potential as well as its turbulent atmosphere. Our results indicate that quantum communication is feasible in principle in such a scenario, highlighting the possibility of a global quantum key distribution network for secure communication.

  9. Portable optical fiber probe for in vivo brain temperature measurements.

    Science.gov (United States)

    Musolino, Stefan; Schartner, Erik P; Tsiminis, Georgios; Salem, Abdallah; Monro, Tanya M; Hutchinson, Mark R

    2016-08-01

    This work reports on the development of an optical fiber based probe for in vivo measurements of brain temperature. By utilizing a thin layer of rare-earth doped tellurite glass on the tip of a conventional silica optical fiber a robust probe, suitable for long-term in vivo measurements of temperature can be fabricated. This probe can be interrogated using a portable optical measurement setup, allowing for measurements to be performed outside of standard optical laboratories.

  10. Improved Forest Biomass and Carbon Estimations Using Texture Measures from WorldView-2 Satellite Data

    Directory of Open Access Journals (Sweden)

    Sandra Eckert

    2012-03-01

    Full Text Available Accurate estimation of aboveground biomass and carbon stock has gained importance in the context of the United Nations Framework Convention on Climate Change (UNFCCC and the Kyoto Protocol. In order to develop improved forest stratum–specific aboveground biomass and carbon estimation models for humid rainforest in northeast Madagascar, this study analyzed texture measures derived from WorldView-2 satellite data. A forest inventory was conducted to develop stratum-specific allometric equations for dry biomass. On this basis, carbon was calculated by applying a conversion factor. After satellite data preprocessing, vegetation indices, principal components, and texture measures were calculated. The strength of their relationships with the stratum-specific plot data was analyzed using Pearson’s correlation. Biomass and carbon estimation models were developed by performing stepwise multiple linear regression. Pearson’s correlation coefficients revealed that (a texture measures correlated more with biomass and carbon than spectral parameters, and (b correlations were stronger for degraded forest than for non-degraded forest. For degraded forest, the texture measures of Correlation, Angular Second Moment, and Contrast, derived from the red band, contributed to the best estimation model, which explained 84% of the variability in the field data (relative RMSE = 6.8%. For non-degraded forest, the vegetation index EVI and the texture measures of Variance, Mean, and Correlation, derived from the newly introduced coastal blue band, both NIR bands, and the red band, contributed to the best model, which explained 81% of the variability in the field data (relative RMSE = 11.8%. These results indicate that estimation of tropical rainforest biomass/carbon, based on very high resolution satellite data, can be improved by (a developing and applying forest stratum–specific models, and (b including textural information in addition to spectral information.

  11. Non-contact temperature measurement requirements for electronic materials processing

    Science.gov (United States)

    Lehoczky, S. L.; Szofran, F. R.

    1988-01-01

    The requirements for non-contact temperature measurement capabilities for electronic materials processing in space are assessed. Non-contact methods are probably incapable of sufficient accuracy for the actual absolute measurement of temperatures in most such applications but would be useful for imaging in some applications.

  12. Optically Powered Temperature Measuring Instrument for Big Rotor①

    Institute of Scientific and Technical Information of China (English)

    ZHENGDezhong

    1997-01-01

    A micro-power consumption non-contact temperature measuring instrument for big rotos is introduced.As it solver very well the signal coupling under high speed rotation and power supply problem for probe,the instrument can realize persistent on-line temperature measurement for big rotor drived by the ordinary light transmitted by optical fiber under the room light.

  13. Measurement of Temperature Fields in Long Span Concrete Bridges

    Directory of Open Access Journals (Sweden)

    J. Římal

    2001-01-01

    Full Text Available This paper deals with assesing of the influence of climate temperatures on deformations and stresses in a cross section of the Nusle Bridge. The main purpose is to describe the measurement of the thermal fields, to compare measured and computed temperature fields, and to provide a real estimation of the stresses that occur.

  14. Measured gas and particle temperatures in VTT's entrained flow reactor

    DEFF Research Database (Denmark)

    Clausen, Sønnik; Sørensen, L.H.

    2006-01-01

    Particle and gas temperature measurements were carried out in experiments on VTTs entrained flow reactor with 5% and 10% oxygen using Fourier transform infrared emission spectroscopy (FTIR). Particle temperature measurements were performed on polish coal,bark, wood, straw particles, and bark...

  15. Luminous Flame Temperature Distribution Measurement Using the Emission Method

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Flame temperature distribution is one of the most important characteristic parameters in combustion research. The emission method is a good way to measure the luminous flame temperature field. The maximum entropy method is introduced to the temperature distribution measurement of a luminous flame using the emission method. A simplified mathematical model was derived by combining the thermal radiation theory, reconstruction algorithm and maximum entropy method. Suitable parameters were selected in the computing process. Good experimental results were obtained with pulverized coal flames.

  16. Measurement of relative permittivity of LTCC ceramic at different temperatures

    Science.gov (United States)

    Tan, Qiulin; Kang, Hao; Qin, Li; Xiong, Jijun; Zhou, Zhaoying; Zhang, Wendong; Luo, Tao; Xue, Chenyang; Liu, Jun

    2014-03-01

    Devices based on LTCC (low-temperature co-fired ceramic) technology are more widely applied in high temperature environments, and the temperature-dependent properties of the LTCC material play an important role in measurements of the characteristics of these devices at high temperature. In this paper, the temperature-dependence of the relative permittivity of DuPont 951 LTCC ceramic is studied from room temperature to 500 °C. An expression for relative permittivity is obtained, which relates the relative permittivity to the resonant frequency, inductance, parasitic capacitance and electrode capacitance of the LTCC sample. Of these properties, the electrode capacitance is the most strongly temperature-dependent. The LTCC sample resonant frequency, inductance and parasitic capacitance were measured (from room temperature to 500 °C) with a high temperature measurement system comprising a muffle furnace and network analyzer. We found that the resonant frequency reduced and the inductance and parasitic capacitance increased slightly as the temperature increases. The relative permittivity can be calculated from experimental frequency, inductance and parasitic capacitance measurements. Calculating results show that the relative permittivity of DuPont 951 LTCC ceramic ceramic increases to 8.21 from room temperature to 500 °C.

  17. Measurement of relative permittivity of LTCC ceramic at different temperatures

    Directory of Open Access Journals (Sweden)

    Qiulin Tan

    2014-02-01

    Full Text Available Devices based on LTCC (low-temperature co-fired ceramic technology are more widely applied in high temperature environments, and the temperature-dependent properties of the LTCC material play an important role in measurements of the characteristics of these devices at high temperature. In this paper, the temperature-dependence of the relative permittivity of DuPont 951 LTCC ceramic is studied from room temperature to 500 °C. An expression for relative permittivity is obtained, which relates the relative permittivity to the resonant frequency, inductance, parasitic capacitance and electrode capacitance of the LTCC sample. Of these properties, the electrode capacitance is the most strongly temperature-dependent. The LTCC sample resonant frequency, inductance and parasitic capacitance were measured (from room temperature to 500 °C with a high temperature measurement system comprising a muffle furnace and network analyzer. We found that the resonant frequency reduced and the inductance and parasitic capacitance increased slightly as the temperature increases. The relative permittivity can be calculated from experimental frequency, inductance and parasitic capacitance measurements. Calculating results show that the relative permittivity of DuPont 951 LTCC ceramic ceramic increases to 8.21 from room temperature to 500 °C.

  18. Non-invasive body temperature measurement of wild chimpanzees using fecal temperature decline.

    Science.gov (United States)

    Jensen, Siv Aina; Mundry, Roger; Nunn, Charles L; Boesch, Christophe; Leendertz, Fabian H

    2009-04-01

    New methods are required to increase our understanding of pathologic processes in wild mammals. We developed a noninvasive field method to estimate the body temperature of wild living chimpanzees habituated to humans, based on statistically fitting temperature decline of feces after defecation. The method was established with the use of control measures of human rectal temperature and subsequent changes in fecal temperature over time. The method was then applied to temperature data collected from wild chimpanzee feces. In humans, we found good correspondence between the temperature estimated by the method and the actual rectal temperature that was measured (maximum deviation 0.22 C). The method was successfully applied and the average estimated temperature of the chimpanzees was 37.2 C. This simple-to-use field method reliably estimates the body temperature of wild chimpanzees and probably also other large mammals.

  19. Rayleigh Lidar observed atmospheric temperature characteristics over a western Indian location: intercomparison with satellite observations and models

    Science.gov (United States)

    Sharma, Som; Vaishnav, Rajesh; Shukla, Krishna K.; Lal, Shyam; Chandra, Harish; Acharya, Yashwant B.

    2017-07-01

    General characteristics of sub-tropical middle atmospheric temperature structure over a high altitude station, Mt. Abu (24.5°N, 72.7°E, altitude 1670 m, above mean sea level (amsl)) are presented using about 150 nights observational datasets of Rayleigh Lidar. The monthly mean temperature contour plot shows two distinct maxima in the stratopause region ( 45-55 km), occurring during February-March and September-October, a seasonal dependence similar to that reported for mid- and high-latitudes respectively. Semi-Annual Oscillation (SAO) are stronger at an altitude 60 km in the mesospheric temperature in comparison to stratospheric region. A comparison with the satellite (Halogen Occultation Experiment, (HALOE)) data shows qualitative agreement, but quantitatively a significant difference is found between the observation and satellite. The derived temperatures from Lidar observations are warmer 2-3 K in the stratospheric region and 5-10 K in the mesospheric region than temperatures observed from the satellite. A comparison with the models, COSPAR International Reference Atmosphere (CIRA)-86 and Mass Spectrometer Incoherent Scatter Extended (MSISE)-90, showed differences of 3 K in the stratosphere and 5-10 K in the mesosphere, with deviations somewhat larger for CIRA-86. In most of the months and in all altitude regions model temperatures were lower than the Lidar observed temperature except in the altitude range of 40-50 km. MSISE-90 Model temperature overestimates as compared to Lidar temperature during December-February in the altitude region of 50-60 km. In the altitude region of 55-70 km both models deviate significantly, with differences exceeding 10-12 K, particularly during equinoctial periods. An average heating rate of 2.5 K/month during equinoxes and cooling rate of 4 K/month during November-December are found in altitude region of 50-70 km, relatively less heating and cooling rates are found in the altitude range of 30-50 km. The stratospheric

  20. Measuring Temperature in Pipe Flow with Non-Homogeneous Temperature Distribution

    Science.gov (United States)

    Klason, P.; Kok, G. J.; Pelevic, N.; Holmsten, M.; Ljungblad, S.; Lau, P.

    2014-04-01

    Accurate temperature measurements in flow lines are critical for many industrial processes. It is normally more a rule than an exception in such applications to obtain water flows with inhomogeneous temperature distributions. In this paper, a number of comparisons were performed between different 100 ohm platinum resistance thermometer (Pt-100) configurations and a new speed-of-sound-based temperature sensor used to measure the average temperature of water flows with inhomogeneous temperature distributions. The aim was to achieve measurement deviations lower than 1 K for the temperature measurement of water flows with inhomogeneous temperature distributions. By using a custom-built flow injector, a water flow with a hot-water layer on top of a cold-water layer was created. The temperature difference between the two layers was up to 32 K. This study shows that the deviations to the temperature reference for the average temperature of four Pt-100s, the multisensor consisting of nine Pt-100s, and the new speed-of-sound sensors are remarkably lower than the deviation for a single Pt-100 under the same conditions. The aim of reaching a deviation lower than 1 K was achieved with the speed-of-sound sensors, the configuration with four Pt-100s, and the multisensor. The promising results from the speed-of sound temperature sensors open the possibility for an integrated flow and temperature sensor. In addition, the immersion depth of a single Pt-100 was also investigated at three different water temperatures.

  1. Remote Measurement of Pollution - A 40-Year Langley Retrospective. Part 1; Temperature and Gaseous Species

    Science.gov (United States)

    Remsberg, Ellis E.

    2011-01-01

    The National Aeronautics and Space Administration (NASA) phased down its Apollo Moon Program after 1970 in favor of a partly reusable Space Shuttle vehicle that could be used to construct and supply a manned, Earth-orbiting Space Station. Applications programs were emphasized in response to the growing public concern about Earth's finite natural resources and the degradation of its environment. Shortly thereafter, a workshop was convened in Norfolk, Virginia, on Remote Measurement of Pollution (or RMOP), and its findings are in a NASA Special Publication (NASA SP-285). The three primary workshop panels and their chairmen were focused on trace gas species (Will Kellogg), atmospheric particulates or aerosols (Verner Suomi), and water pollution (Gifford Ewing). Many of the workshop participants were specialists in the techniques that might be employed for the regional to global-scale, remote measurements from an Earth-orbiting satellite. The findings and recommendations of the RMOP Report represent the genesis of and a blueprint for the satellite, atmospheric sensing programs within NASA for nearly two decades. This paper is a brief, 40-year retrospective of those instrument developments that were an outgrowth of the RMOP activity. Its focus is on satellite measurement capabilities for temperature and gaseous species that were demonstrated by atmospheric technologists at the Langley Research Center. Limb absorption by solar occultation, limb infrared radiometry, and gas filter correlation radiometry techniques provided significant science data, so they are emphasized in this review.

  2. Processing the data of measurements of angular velocity and microaccelerations onboard the Foton-12 satellite

    Science.gov (United States)

    Sazonov, V. V.

    2011-10-01

    The results of reconstruction of uncontrolled rotational motion of the Foton-12 satellite using the measurement data of onboard sensors are presented. This problem has already been solved successfully several years ago. The satellite motion was reconstructed using the data of measuring the Earth's magnetic field. The data of measuring the angular velocity and microaccelerations by the QSAM system were actually not used for this purpose, since these data include a clearly seen additional component whose origin was at that time unclear. This component prevented one from using these data directly for reconstruction of the angular motion. Later it became clear that the additional component was caused by the Earth's magnetic field. Discovery of this fact allowed us to make necessary corrections when processing the QSAM system data and to use them for reconstruction of rotational motion of Foton-12. Below, a modified method of processing the QSAM system data is described together with the results of its application. The main result is obtained by comparing the motion reconstructed from measurements of angular velocity or acceleration with that found by way of processing the measurements of the Earth's magnetic field. Their coincidence turned out to be rather accurate.

  3. Coastal ocean research in sub-Saharan Africa: towards operational oceanography using satellites, in situ measurements and numerical models

    Science.gov (United States)

    Shillington, Frank

    Sub-Saharan Africa is greatly influenced by major western boundary currents of the Indian Ocean, Agulhas Current and the Somali Current (for six months of the year), and the major eastern boundary upwelling current systems of the Atlantic Ocean, with their concomitant nu-trient rich upwelling ecosystems which support large fisheries: the Benguela Upwelling System and the Canary Upwelling System. The location of the tip of placecountry-regionSouth Africa is unique in the world oceans, since it is such the only place where a warm western boundary current can interact with a cold upwelling ecosystem. In addition, the Agulhas Current is unique in that it retroflects 80% of its large volume flux back into the placeIndian Ocean. The interocean transport of warm thermocline water from the Indian to the placeAtlantic ocean is of global importance. Satellite observations of temperature, chlorophyll, sea surface height, and wind and waves have elucidated many of these first order processes. Numerical ocean models forced and constrained by satellite measurements are being increasingly used to place operational oceanography on a sound footing. Partnerships with African and northern hemisphere collaborators (e.g. the new Norwegian Nansen-Tutu Centre for Marine Research, PlaceNamePrinceton PlaceTypeUniversity) will enhance operational oceanography around placeAfrica to the benefit of all its inhabitants. All of the above aspects will be discussed, with specific examples of local innovative space borne techniques.

  4. Validation of Land Surface Temperature products in arid climate regions with permanent in-situ measurements

    Science.gov (United States)

    Goettsche, F.; Olesen, F.; Trigo, I.; Hulley, G. C.

    2013-12-01

    Land Surface Temperature (LST) is operationally obtained from several space-borne sensors, e.g. from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard Meteosat Second Generation (MSG) by the Land Surface Analysis - Satellite Application Facility (LSA-SAF) and from the Moderate Resolution Imaging Spectroradiometer (MODIS) on EOS-Terra by the MODIS Land Team. The relative accuracy of LST products can be assessed by cross-validating different products. Alternatively, the so-called 'radiance based validation' can be used to compare satellite-retrieved LST with results from radiative transfer models: however, this requires precise a priori knowledge of land surface emissivity (LSE) and atmospheric conditions. Ultimately, in-situ measurements (';ground truth') are needed for validating satellite LST&E products. Therefore, the LST product derived by LSA-SAF is validated with independent in-situ measurements (';temperature based validation') at permanent validation stations located in different climate regions on the SEVIRI disk. In-situ validation is largely complicated by the spatial scale mismatch between satellite sensors and ground based sensors, i.e. areas observed by ground radiometers usually cover about 10 m2, whereas satellite measurements in the thermal infrared typically cover between 1 km2 and 100 km2. Furthermore, an accurate characterization of the surface is critical for all validation approaches, but particularly over arid regions, as shown by in-situ measurements revealing that LSE products can be wrong by more than 3% [1]. The permanent stations near Gobabeb (Namibia; hyper-arid desert climate) and Dahra (Senegal; hot-arid steppe-prairie climate) are two of KIT's four dedicated LST validation stations. Gobabeb station is located on vast and flat gravel plains (several 100 km2), which are mainly covered by coarse gravel, sand, and desiccated grass. The gravel plains are highly homogeneous in space and time, which makes them ideal for

  5. Subpixel Accuracy Analysis of Phase Correlation Shift Measurement Methods Applied to Satellite Imagery

    Directory of Open Access Journals (Sweden)

    S.M. Badwai

    2013-01-01

    Full Text Available the key point of super resolution process is the accurate measuring of sub-pixel shift. Any tiny error in measuring such shift leads to an incorrect image focusing. In this paper, methodology of measuring sub-pixel shift using Phase correlation (PC are evaluated using different window functions, then modified version of (PC method using high pass filter (HPF is introduced . Comprehensive analysis and assessment of (PC methods shows that different natural features yield different shift measurements. It is concluded that there is no universal window function for measuring shift; it mainly depends on the features in the satellite images. Even the question of which window is optimal of particular feature is generally remains open. This paper presents the design of a method for obtaining high accuracy sub pixel shift phase correlation using (HPF.The proposed method makes the change in the different locations that lack of edges easy.

  6. Surface radiation at sea validation of satellite-derived data with shipboard measurements

    Directory of Open Access Journals (Sweden)

    Hein Dieter Behr

    2009-03-01

    Full Text Available Quality-controlled and validated radiation products are the basis for their ability to serve the climate and solar energy community. Satellite-derived radiation fluxes are well preferred for this task as they cover the whole research area in time and space. In order to monitor the accuracy of these data, validation with well maintained and calibrated ground based measurements is necessary. Over sea, however, long-term accurate reference data sets from calibrated instruments recording radiation are scarce. Therefore data from research vessels operating at sea are used to perform a reasonable validation. A prerequisite is that the instruments on board are maintained as well as land borne stations. This paper focuses on the comparison of radiation data recorded on board of the German Research Vessel "Meteor" during her 13 months cruise across the Mediterranean and the Black Sea with CM-SAF products using NOAA- and MSG-data (August 2006-August 2007: surface incoming short-wave radiation (SIS and surface downward long-wave radiation (SDL. Measuring radiation fluxes at sea causes inevitable errors, e.g.shadowing of fields of view of the radiometers by parts of the ship. These ship-inherent difficulties are discussed at first. A comparison of pairs of ship-recorded and satellite-derived mean fluxes for the complete measuring period delivers a good agreement: the mean bias deviation (MBD for SIS daily means is −7.6 W/m2 with a median bias of −4 W/m2 and consistently the MBD for monthly means is −7.3 W/m2, for SDL daily means the MBD is 8.1 and 6 W/m2 median bias respectively. The MBD for monthly means is 8.2 W/m2. The variances of the daily means (ship and satellite have the same annual courses for both fluxes. No significant dependence of the bias on the total cloud cover recorded according to WMO (1969 has been found. The results of the comparison between ship-based observations and satellite retrieved surface radiation reveal the good accuracy

  7. Solar cell junction temperature measurement of PV module

    KAUST Repository

    Huang, B.J.

    2011-02-01

    The present study develops a simple non-destructive method to measure the solar cell junction temperature of PV module. The PV module was put in the environmental chamber with precise temperature control to keep the solar PV module as well as the cell junction in thermal equilibrium with the chamber. The open-circuit voltage of PV module Voc is then measured using a short pulse of solar irradiation provided by a solar simulator. Repeating the measurements at different environment temperature (40-80°C) and solar irradiation S (200-1000W/m2), the correlation between the open-circuit voltage Voc, the junction temperature Tj, and solar irradiation S is derived.The fundamental correlation of the PV module is utilized for on-site monitoring of solar cell junction temperature using the measured Voc and S at a short time instant with open circuit. The junction temperature Tj is then determined using the measured S and Voc through the fundamental correlation. The outdoor test results show that the junction temperature measured using the present method, Tjo, is more accurate. The maximum error using the average surface temperature Tave as the junction temperature is 4.8 °C underestimation; while the maximum error using the present method is 1.3 °C underestimation. © 2010 Elsevier Ltd.

  8. A Model For The Use Of Satellite Remote Sensing For The Measurement Of Primary Production In The Ocean

    Science.gov (United States)

    Collins, Donald J.; Kiefer, Dale A.; SooHoo, Janice B.; Stallings, Casson; Yang, Wei-Liang

    1986-08-01

    The estimation of oceanic primary production on a global scale is the focus of efforts in remote sensing using the Coastal Zone Color Scanner (CZCS). The goal of this research is to provide a measure of the primary production using only satellite data for the estimate. This estimate requires the measurement of surface pigments (chlorophyll a + phaeophytin a) using the CZCS, an estimate of the sea-surface temperature using the AVHRR and determination of the incident solar irradiance using GOES imagery. In this paper, we describe a model of primary production based upon the responses of phytoplankton to differing light and nutrient fields. This model includes the effects on production of variations in surface pigment concentration, the mixed layer depth and the dependence on the incident solar irradiance. The model has been tested using in situ data provided by the Southern California Bight Studies (Eppley, et al., 1979), California Cooperative Fisheries Investigations (CalCOFI), Organization of Persistent Upwelling Structures (J.B. Soolloo in OPUS Data Report) and other data sets. A synoptic measure of the distribution of surface pigments is derived from the West Coast Chlorophyll and Temperature Time Series (West Coast Time Series Advisory Group, 1985). The features and behavior of the model will be presented together with the results of the model verification.

  9. Study on a transient optical fiber high temperature measurement system

    Science.gov (United States)

    Cai, Lulu; Liu, Yusha; Wang, Yutian

    2009-07-01

    High temperature is one of the most important parameters in the fields of scientific research and industrial production. At present, thermocouple, thermo resistive and radiance thermometer are already technologically mature which can be adopted to measure the general temperature, but when it comes to the transient high temperature that changes pretty quickly in wretched conditions, those traditional pyrometers can not meet the requirements any more. In this paper, we designed a transient optical high temperature measurement system. First, design of the temperature measurement probe. The system took blackbody cavity sensor together with optical fiber to receive the measured signal, here, the integrated emissivity model of the blackbody cavity was established and the optimum structure parameters were confirmed. Secondly, design of the entire temperature measurement system. A contact-noncontact measurement method was applied, which is to make the blackbody cavity and the measured high-temperature source contact, the fiber probe and the blackbody cavity noncontact, as a result, the error caused by contact measurement is overcame and the precision is guaranteed at the same time. In addition, a fiber grating was introduced as the wavelength filter device which can realize the dynamic filter of narrow-band signals and reduce the impact of background light. Thirdly, signal processing. In this part, we applied labVIEW software and wavelet analysis method. All of the signal acquisition and processing were realized in the labVIEW environment. Through calling matlab in labVIEW, the signals from optical fiber detector were wavelet denoised and decomposed, thus the temperature information was extracted, and the temperature value was obtained. On basis of wavelet transformation, the paper adopted the 4dB wavelet with horizontal scale of 5 to realize the feature extraction and noise removal, parts of the signals before and after the wavelet noise removal were given and analyzed

  10. Evaluation of cloud base height measurements from ceilometer CL31 and MODIS satellite over Ahmedabad, India

    Directory of Open Access Journals (Sweden)

    S. Sharma

    2015-11-01

    Full Text Available Clouds play a tangible role in the Earth's atmosphere and in particular, the cloud base height (CBH which is linked to cloud type is one of the important characteristic to describe the influence of clouds on the environment. In present study, CBH observations from ceilometer CL31 have been extensively studied during May 2013 to January 2015 over Ahmedabad (23.03° N, 72.54° E, India. A detail comparison has been performed with the use of ground-based CBH measurements from ceilometer CL31 and CBH retrieved from MODIS (Moderate Resolution Imaging Spectroradiometer onboard Aqua and Terra satellite. Some interesting features of cloud dynamics viz. strong downdraft and updraft have been observed over Ahmedabad which revealed different cloud characteristics during monsoon and post-monsoon periods. CBH shows seasonal variation during Indian summer monsoon and post-monsoon period. Results indicate that ceilometer is one of the excellent instruments to precisely detect low and mid-level clouds and MODIS satellite provides accurate retrieval of high-level clouds over this region. The CBH algorithm used for MODIS satellite is also able to capture the low-level clouds.

  11. Estimation of snow cover distribution in Beas basin, Indian Himalaya using satellite data and ground measurements

    Indian Academy of Sciences (India)

    H S Negi; A V Kulkarni; B S Semwal

    2009-10-01

    In the present paper,a methodology has been developed for the mapping of snow cover in Beas basin,Indian Himalaya using AWiFS (IRS-P6)satellite data.The complexities in the mapping of snow cover in the study area are snow under vegetation,contaminated snow and patchy snow. To overcome these problems,field measurements using spectroradiometer were carried out and reflectance/snow indices trend were studied.By evaluation and validation of different topographic correction models,it was observed that,the normalized difference snow index (NDSI)values remain constant with the variations in slope and aspect and thus NDSI can take care of topography effects.Different snow cover mapping methods using snow indices are compared to find the suitable mapping technique.The proposed methodology for snow cover mapping uses the NDSI (estimated using planetary re flectance),NIR band reflectance and forest/vegetation cover information.The satellite estimated snow or non-snow pixel information using proposed methodology was validated with the snow cover information collected at three observatory locations and it was found that the algorithm classify all the sample points correctly,once that pixel is cloud free.The snow cover distribution was estimated using one year (2004 –05)cloud free satellite data and good correlation was observed between increase/decrease areal extent of seasonal snow cover and ground observed fresh snowfall and standing snow data.

  12. Correlating Global Precipitation Measurement satellite data with karst spring hydrographs for rapid catchment delineation

    Science.gov (United States)

    Longenecker, Jake; Bechtel, Timothy; Chen, Zhao; Goldscheider, Nico; Liesch, Tanja; Walter, Robert

    2017-05-01

    To protect karst spring water resources, catchments must be known. We have developed a method for correlating spring hydrographs with newly available, high-resolution, satellite-based Global Precipitation Measurement data to rapidly and remotely locate recharge areas. We verify the method using a synthetic comparison of ground-based rain gage data with the satellite precipitation data set. Application to karst springs is proven by correlating satellite data with hydrographs from well-known springs with published catchments in Europe and North America. Application to an unknown-catchment spring in Pennsylvania suggests distant recharge, requiring a flow path that crosses topographic divides, as well as multiple lithologies, physiographic provinces, and tectonic boundaries. Although surprising, this latter result is consistent with published geologic/geophysical, monitoring well, and stream gage data. We conclude that the method has considerable potential to improve the speed and accuracy of catchment identification and hydrodynamic characterization, with applications to water resource protection and groundwater exploration, among others.

  13. Exploring the relationship between monitored ground-based and satellite aerosol measurements over the City of Johannesburg

    CSIR Research Space (South Africa)

    Garland, Rebecca M

    2012-09-01

    Full Text Available This project studied the relationship between aerosol optical depth (AOD) from the Multi-angle Imaging SpectroRadiometer (MISR) instrument on the Terra satellite, and ground-based monitored particulate matter (PM) mass concentrations measured...

  14. Ground-based microwave measuring of middle atmosphere ozone and temperature profiles during sudden stratospheric warming

    Science.gov (United States)

    Feigin, A. M.; Shvetsov, A. A.; Krasilnikov, A. A.; Kulikov, M. Y.; Karashtin, D. A.; Mukhin, D.; Bolshakov, O. S.; Fedoseev, L. I.; Ryskin, V. G.; Belikovich, M. V.; Kukin, L. M.

    2012-12-01

    We carried out the experimental campaign aimed to study the response of middle atmosphere on a sudden stratospheric warming in winter 2011-2012 above Nizhny Novgorod, Russia (56N, 44E). We employed the ground-based microwave complex for remote sensing of middle atmosphere developed in the Institute of Applied Physics of the Russian Academy of Science. The complex combines two room-temperature radiometers, i.e. microwave ozonometer and the stratospheric thermometer. Ozonometer is a heterodyne spectroradiometer, operating in a range of frequencies that include the rotation transition of ozone molecules with resonance frequency 110.8 GHz. Operating frequency range of the stratospheric thermometer is 52.5-5.4 GHz and includes lower frequency edge of 5 mm molecular oxygen absorption bands and among them two relatively weak lines of O2 emission. Digital fast Fourier transform spectrometers developed by "Acqiris" are employed for signal spectral analysis. The spectrometers have frequency range 0.05-1 GHz and realizes the effective resolution about 61 KHz. For retrieval vertical profiles of ozone and temperature from radiometric data we applied novel method based on Bayesian approach to inverse problem solution, which assumed a construction of probability distribution of the characteristics of retrieved profiles with taking into account measurement noise and available a priori information about possible distributions of ozone and temperature in the middle atmosphere. Here we introduce the results of the campaign in comparison with Aura MLS data. Presented data includes one sudden stratospheric warming event which took place in January 13-14 and was accompanied by temperature increasing up to 310 K at 45 km height. During measurement period, ozone and temperature variations were (almost) anti-correlated, and total ozone abundance achieved a local maxima during the stratosphere cooling phase. In general, results of ground-based measurements are in good agreement with

  15. NDACC UV-visible total ozone measurements: improved retrieval and comparison with correlative satellite and ground-based observations

    Directory of Open Access Journals (Sweden)

    F. Hendrick

    2010-08-01

    Full Text Available Accurate long-term monitoring of total ozone is one of the most important requirements for identifying possible natural or anthropogenic changes in the composition of the stratosphere. For this purpose, the NDACC (Network for the Detection of Atmospheric Composition Change UV-visible Working Group has made recommendations for improving and homogenizing the retrieval of total ozone columns from twilight zenith-sky visible spectrometers. These instruments, deployed all over the world in about 35 stations, allow measurements of total ozone twice daily with little sensitivity to stratospheric temperature and cloud cover. The NDACC recommendations address both the DOAS retrieval parameters and the calculation of air mass factors (AMF needed for the conversion of O3 slant column densities into vertical column amounts. The most important improvement is the use of O3 AMF look-up tables calculated using the TOMS V8 O3 profile climatology, that allows accounting for the dependence of the O3 AMF on the seasonal and latitudinal variations of the O3 vertical distribution. To investigate their impact on the retrieved ozone columns, the recommendations have been applied to measurements from the NDACC/SAOZ (Système d'Analyse par Observation Zénithale network. The revised SAOZ ozone data from eight stations covering all latitude regions have been compared to TOMS, GOME-GDP4, SCIAMACHY-TOSOMI, OMI-TOMS, and OMI-DOAS satellite overpass observations, as well as to those of collocated Dobson and Brewer instruments. A significant improvement is obtained after applying the new O3 AMFs, although systematic seasonal differences between SAOZ and all other instruments remain. These are shown to mainly originate from i the temperature dependence of the ozone absorption cross sections in the UV being not or improperly corrected by some retrieval algorithms, and ii the longitudinal differences in

  16. Temperature lags of luminescence measurements in a commercial luminescence reader

    Energy Technology Data Exchange (ETDEWEB)

    Kitis, George [Aristotle University of Thessaloniki, Nuclear Physics Laboratory, 54124 Thessaloniki (Greece); Kiyak, Nafiye G. [ISIK University, Faculty of Science and Arts, Physics Department, Sile, 34980 Istanbul (Turkey); Polymeris, George S., E-mail: gspolymeris@ankara.edu.tr [Ankara University, Institute of Nuclear Sciences, Beşevler, 06100 Ankara (Turkey)

    2015-09-15

    The temperature recorded in thermoluminescence and optically stimulated luminescence equipments is not the temperature of the sample but that of the heating element on which the thermocouple is attached. Depending upon the rate of heating, a temperature difference appears between the samples and the heating element, termed as temperature lag, which could have serious effects on the curve shapes and trapping parameters. In the present work the temperature lag effect is studied in a newly developed luminescence equipment measuring both thermoluminescence and optically stimulated luminescence. It is found that the temperature lag could be large for heating rates above 2 K/s and it is strongly dependent upon the sample holder. A simple approximation method is proposed in order to both predict as well as correct for temperature lag effects in luminescence measurements.

  17. Fast Response Temperature Measurements in Stirling Cycle Cryocooler Components

    Science.gov (United States)

    Kar, K.; Dadd, M. W.; Bailey, P. B.; Stone, C. R.

    2008-03-01

    One reason that heat transfer processes are not well understood is the difficulty of obtaining reliable temperature measurements when gas temperatures vary rapidly. In the work described here gas temperatures have been measured using a fine wire resistance thermometer with a 3.8 micron active sensor. The equipment represented the basic elements of a cryocooler: a clearance seal linear compressor and a wire mesh regenerator. Both were operated close to ambient temperature, with gas temperatures being measured close to the regenerator. The test rig was run at different volume ratios, frequencies (8-50 Hz), gases and filling pressures (1-26 bar). The waveforms of the gas temperature were found to vary dramatically for differing flow regimes. The results suggested that the thermometer was measuring the temperatures of two distinct volumes of gas, and that the gas must remain stratified in the compression space. A flow transition was identified from the cycle-by-cycle variations in temperature. The critical Reynolds number was determined to be 9.6-11. At the critical condition, the temperature was so unstable that fluctuations up to 250 Hz were observed. A series of validation tests have confirmed that the observed temperatures were not artifacts.

  18. Thermo-voltage measurements of atomic contacts at low temperature

    Directory of Open Access Journals (Sweden)

    Ayelet Ofarim

    2016-05-01

    Full Text Available We report the development of a novel method to determine the thermopower of atomic-sized gold contacts at low temperature. For these measurements a mechanically controllable break junction (MCBJ system is used and a laser source generates a temperature difference of a few kelvins across the junction to create a thermo-voltage. Since the temperature difference enters directly into the Seebeck coefficient S = −ΔV/ΔT, the determination of the temperature plays an important role. We present a method for the determination of the temperature difference using a combination of a finite element simulation, which reveals the temperature distribution of the sample, and the measurement of the resistance change due to laser heating of sensor leads on both sides next to the junction. Our results for the measured thermopower are in agreement with recent reports in the literature.

  19. Determination of Foton M-2 satellite attitude motion by the data of microacceleration measurements

    Science.gov (United States)

    Beuselinck, T.; van Bavinchove, C.; Sazonov, V. V.; Chebukov, S. Yu.

    2009-12-01

    The results of reconstruction of uncontrolled attitude motion of the Foton M-2 satellite using measurements with the accelerometer TAS-3 are presented. The attitude motion of this satellite has been previously determined by the measurement data of the Earth’s magnetic field and the angular velocity. The TAS-3 data for this purpose are used for the first time. These data contain a well-pronounced additional component which made impossible their direct employment for the reconstruction of the attitude motion and whose origin was unknown several years ago. Later it has become known that the additional component is caused by the influence of the Earth’s magnetic field. The disclosure of this fact allowed us to take into account a necessary correction in processing of TAS-3 data and to use them for the reconstruction of the attitude motion of Foton M-2. Here, a modified method of processing TAS-3 data is described, as well as results of its testing and employing. The testing consisted in the direct comparison of the motion reconstructed by the new method with the motion constructed by the magnetic measurements. The new method allowed us to find the actual motion of Foton M-2 in the period June 9, 2005-June 14, 2005, when no magnetic measurements were carried out.

  20. Global carbon monoxide products from combined AIRS, TES and MLS measurements on A-train satellites

    Directory of Open Access Journals (Sweden)

    J. X. Warner

    2013-06-01

    Full Text Available This study tests a novel methodology to add value to satellite datasets. This methodology, data fusion, is similar to data assimilation, except that the background model-based field is replaced by a satellite dataset, in this case AIRS (Atmospheric Infrared Sounder carbon monoxide (CO measurements. The observational information comes from CO measurements with lower spatial coverage than AIRS, namely, from TES (Tropospheric Emission Spectrometer and MLS (Microwave Limb Sounder. We show that combining these datasets with data fusion uses the higher spectral resolution of TES to extend AIRS CO observational sensitivity to the lower troposphere, a region especially important for air quality studies. We also show that combined CO measurements from AIRS and MLS provide enhanced information in the UTLS (upper troposphere/lower stratosphere region compared to each product individually. The combined AIRS/TES and AIRS/MLS CO products are validated against DACOM (differential absorption mid-IR diode laser spectrometer in situ CO measurements from the INTEX-B (Intercontinental Chemical Transport Experiment: MILAGRO and Pacific phases field campaign and in situ data from HIPPO (HIAPER Pole-to-Pole Observations flights. The data fusion results show improved sensitivities in the lower and upper troposphere (20–30% and above 20%, respectively as compared with AIRS-only retrievals, and improved coverage compared with TES and MLS CO data.

  1. Global Carbon Monoxide Products from Combined AIRS, TES and MLS Measurements on A-Train Satellites

    Science.gov (United States)

    Warner, Juying X.; Yang, R.; Wei, Z.; Carminati, F.; Tangborn, A.; Sun, Z.; Lahoz, W.; Attie, J. L.; El Amraoui, L.; Duncan, B.

    2014-01-01

    This study tests a novel methodology to add value to satellite data sets. This methodology, data fusion, is similar to data assimilation, except that the background modelbased field is replaced by a satellite data set, in this case AIRS (Atmospheric Infrared Sounder) carbon monoxide (CO) measurements. The observational information comes from CO measurements with lower spatial coverage than AIRS, namely, from TES (Tropospheric Emission Spectrometer) and MLS (Microwave Limb Sounder). We show that combining these data sets with data fusion uses the higher spectral resolution of TES to extend AIRS CO observational sensitivity to the lower troposphere, a region especially important for air quality studies. We also show that combined CO measurements from AIRS and MLS provide enhanced information in the UTLS (upper troposphere/lower stratosphere) region compared to each product individually. The combined AIRS-TES and AIRS-MLS CO products are validated against DACOM (differential absorption mid-IR diode laser spectrometer) in situ CO measurements from the INTEX-B (Intercontinental Chemical Transport Experiment: MILAGRO and Pacific phases) field campaign and in situ data from HIPPO (HIAPER Pole-to-Pole Observations) flights. The data fusion results show improved sensitivities in the lower and upper troposphere (20-30% and above 20%, respectively) as compared with AIRS-only version 5 CO retrievals, and improved daily coverage compared with TES and MLS CO data.

  2. Atmospheric influences on infrared-laser signals used for occultation measurements between Low Earth Orbit satellites

    Directory of Open Access Journals (Sweden)

    S. Schweitzer

    2011-10-01

    Full Text Available LEO-LEO infrared-laser occultation (LIO is a new occultation technique between Low Earth Orbit (LEO satellites, which applies signals in the short wave infrared spectral range (SWIR within 2 μm to 2.5 μm. It is part of the LEO-LEO microwave and infrared-laser occultation (LMIO method that enables to retrieve thermodynamic profiles (pressure, temperature, humidity and altitude levels from microwave signals and profiles of greenhouse gases and further variables such as line-of-sight wind speed from simultaneously measured LIO signals. Due to the novelty of the LMIO method, detailed knowledge of atmospheric influences on LIO signals and of their suitability for accurate trace species retrieval did not yet exist. Here we discuss these influences, assessing effects from refraction, trace species absorption, aerosol extinction and Rayleigh scattering in detail, and addressing clouds, turbulence, wind, scattered solar radiation and terrestrial thermal radiation as well. We show that the influence of refractive defocusing, foreign species absorption, aerosols and turbulence is observable, but can be rendered small to negligible by use of the differential transmission principle with a close frequency spacing of LIO absorption and reference signals within 0.5%. The influences of Rayleigh scattering and terrestrial thermal radiation are found negligible. Cloud-scattered solar radiation can be observable under bright-day conditions, but this influence can be made negligible by a close time spacing (within 5 ms of interleaved laser-pulse and background signals. Cloud extinction loss generally blocks SWIR signals, except very thin or sub-visible cirrus clouds, which can be addressed by retrieving a cloud layering profile and exploiting it in the trace species retrieval. Wind can have a small influence on the trace species absorption, which can be made negligible by using a simultaneously retrieved or a moderately accurate background wind speed profile. We

  3. Modeling Navigation System Performance of a Satellite-Observing Star Tracker Tightly Integrated with an Inertial Measurement Unit

    Science.gov (United States)

    2015-03-26

    Hancock, R.C. Stirbl, and B. Pain. “ Active pixel sensor (APS) based star tracker ”. Aerospace Conference, 1998 IEEE, volume 1, 119–127 vol.1. 1998...Modeling Navigation System Performance of a Satellite-Observing Star Tracker Tightly Integrated with an Inertial Measurement Unit DISSERTATION Scott...Navigation System Performance of a Satellite-Observing Star Tracker Tightly Integrated with an Inertial Measurement Unit DISSERTATION Presented to the

  4. REKF and RUKF for pico satellite attitude estimation in the presence of measurement faults

    Institute of Scientific and Technical Information of China (English)

    Halil Ersin Söken; Chingiz Hajiyev

    2014-01-01

    When a pico satel ite is under normal operational condi-tions, whether it is extended or unscented, a conventional Kalman filter gives sufficiently good estimation results. However, if the measurements are not reliable because of any kind of malfunc-tions in the estimation system, the Kalman filter gives inaccurate results and diverges by time. This study compares two different robust Kalman filtering algorithms, robust extended Kalman filter (REKF) and robust unscented Kalman filter (RUKF), for the case of measurement malfunctions. In both filters, by the use of de-fined variables named as the measurement noise scale factor, the faulty measurements are taken into the consideration with a smal weight, and the estimations are corrected without affecting the characteristic of the accurate ones. The proposed robust Kalman filters are applied for the attitude estimation process of a pico satel-lite, and the results are compared.

  5. Temperature Distribution Measurement of The Wing Surface under Icing Conditions

    Science.gov (United States)

    Isokawa, Hiroshi; Miyazaki, Takeshi; Kimura, Shigeo; Sakaue, Hirotaka; Morita, Katsuaki; Japan Aerospace Exploration Agency Collaboration; Univ of Notre Dame Collaboration; Kanagawa Institute of Technology Collaboration; Univ of Electro-(UEC) Team, Comm

    2016-11-01

    De- or anti-icing system of an aircraft is necessary for a safe flight operation. Icing is a phenomenon which is caused by a collision of supercooled water frozen to an object. For the in-flight icing, it may cause a change in the wing cross section that causes stall, and in the worst case, the aircraft would fall. Therefore it is important to know the surface temperature of the wing for de- or anti-icing system. In aerospace field, temperature-sensitive paint (TSP) has been widely used for obtaining the surface temperature distribution on a testing article. The luminescent image from the TSP can be related to the temperature distribution. (TSP measurement system) In icing wind tunnel, we measured the surface temperature distribution of the wing model using the TSP measurement system. The effect of icing conditions on the TSP measurement system is discussed.

  6. RS trigger based relaxation oscillator for temperature measurement circuit

    Institute of Scientific and Technical Information of China (English)

    ZOU Zhi-ge; ZOU Xue-cheng; JIAN Wen-xiang; LEI Jian-ming

    2008-01-01

    Resistance-to-time converter is always used for digital temperature measurement. An reset-set (RS) trigger based, relaxation oscillator based temperature measurement circuit, which is used to convert the change of thermistor sensor into a frequency signal for later processing, has been presented in this article. The RS trigger, which is composed of two inverters designed with distinct logical transition threshold voltages by changing the metal-oxide-semiconductor (MOS) transistor gains, has the same function as the Schmitt trigger in the relaxation oscillator. The advantage of the RS trigger based Schmitt trigger is that it reduces the dependence to supply voltage, chip temperature, and process variation. This temperature measurement circuit has been applied in a clinical thermometer chip that can measure temperature to an accuracy of better than 0.05℃ down to 1.1 V battery voltage. It is fabricated in 0.5double metal single poly complementary MOS (CMOS) process.

  7. Application of Phosphor Thermometry to a Galvanneal Temperature Measurement System

    Energy Technology Data Exchange (ETDEWEB)

    Beshears, D.L.; Allison, S.W.; Andrews, W.H.; Cates, M.R.; Grann, E.B.; Manges, W.W.; McIntyre, T.J.; Scudiere, M.B.; Simpson, M.L.; Childs, R.M.; Vehec, J.; Zhang, L.

    1999-06-01

    The Galvanneal Temperature Measurement System (GTMS) was developed for the American Iron and Steel Institute by the Oak Ridge National Laboratory through a partnership with the National Steel Midwest Division in Portage, Indiana. The GTMS provides crucial on-line thermal process control information during the manufacturing of galvanneal steel. The system has been used with the induction furnaces to measure temperatures ranging from 840 to 1292 F with an accuracy of better than {+-}9 F. The GTMS provides accurate, reliable temperature information thus ensuring a high quality product, reducing waste, and saving energy. The production of uniform, high-quality galvanneal steel is only possible through strict temperature control.

  8. Measurements of temperature profiles at the exit of small rockets.

    Science.gov (United States)

    Griggs, M; Harshbarger, F C

    1966-02-01

    The sodium line reversal technique was used to determine the reversal temperature profile across the exit of small rockets. Measurements were made on one 73-kg thrust rocket, and two 23-kg thrust rockets with different injectors. The large rocket showed little variation of reversal temperature across the plume. However, the 23-kg rockets both showed a large decrease of reversal temperature from the axis to the edge of the plume. In addition, the sodium line reversal technique of temperature measurement was compared with an infrared technique developed in these laboratories.

  9. Coastal Geostationary Sea Surface Temperature (SST) Products from NOAA GOES and Japanese MTSAT-1R satellites, coastal United States, 2000 - present (NCEI Accession 0108128)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA's Office of Satellite and Data Distribution (OSDPD) generates geostationary sea surface temperature (SST) products. These products are derived from NOAA's...

  10. Retrieval of ozone column content from airborne Sun photometer measurements during SOLVE II: comparison with coincident satellite and aircraft measurements

    Directory of Open Access Journals (Sweden)

    J. M. Livingston

    2005-01-01

    Full Text Available During the 2003 SAGE (Stratospheric Aerosol and Gas Experiment III Ozone Loss and Validation Experiment (SOLVE II, the fourteen-channel NASA Ames Airborne Tracking Sunphotometer (AATS-14 was mounted on the NASA DC-8 aircraft and measured spectra of total and aerosol optical depth (TOD and AOD during the sunlit portions of eight science flights. Values of ozone column content above the aircraft have been derived from the AATS-14 measurements by using a linear least squares method that exploits the differential ozone absorption in the seven AATS-14 channels located within the Chappuis band. We compare AATS-14 columnar ozone retrievals with temporally and spatially near-coincident measurements acquired by the SAGE III and the Polar Ozone and Aerosol Measurement (POAM III satellite sensors during four solar occultation events observed by each satellite. RMS differences are 19 DU (7% of the AATS value for AATS-SAGE and 10 DU (3% of the AATS value for AATS-POAM. In these checks of consistency between AATS-14 and SAGE III or POAM III ozone results, the AATS-14 analyses use airmass factors derived from the relative vertical profiles of ozone and aerosol extinction obtained by SAGE III or POAM III. We also compare AATS-14 ozone retrievals for measurements obtained during three DC-8 flights that included extended horizontal transects with total column ozone data acquired by the Total Ozone Mapping Spectrometer (TOMS and the Global Ozone Monitoring Experiment (GOME satellite sensors. To enable these comparisons, the amount of ozone in the column below the aircraft is estimated either by assuming a climatological model or by combining SAGE and/or POAM data with high resolution in-situ ozone measurements acquired by the NASA Langley Research Center chemiluminescent ozone sensor, FASTOZ, during the aircraft vertical profile at the start or end of each flight. Resultant total column ozone values agree with corresponding TOMS and GOME measurements to within 10

  11. Retrieval of ozone column content from airborne Sun photometer measurements during SOLVE II: comparison with coincident satellite and aircraft measurements

    Directory of Open Access Journals (Sweden)

    J. M. Livingston

    2005-01-01

    Full Text Available During the 2003 SAGE (Stratospheric Aerosol and Gas Experiment III Ozone Loss and Validation Experiment (SOLVE II, the fourteen-channel NASA Ames Airborne Tracking Sunphotometer (AATS-14 was mounted on the NASA DC-8 aircraft and measured spectra of total and aerosol optical depth (TOD and AOD during the sunlit portions of eight science flights. Values of ozone column content above the aircraft have been derived from the AATS-14 measurements by using a linear least squares method that exploits the differential ozone absorption in the seven AATS-14 channels located within the Chappuis band. We compare AATS-14 columnar ozone retrievals with temporally and spatially near-coincident measurements acquired by the SAGE III and the Polar Ozone and Aerosol Measurement (POAM III satellite sensors during four solar occultation events observed by each satellite. RMS differences are 19 DU (6% of the AATS value for AATS-SAGE and 10 DU (3% of the AATS value for AATS-POAM. In these checks of consistency between AATS-14 and SAGE III or POAM III ozone results, the AATS-14 analyses use airmass factors derived from the relative vertical profiles of ozone and aerosol extinction obtained by SAGE III or POAM III.

    We also compare AATS-14 ozone retrievals for measurements obtained during three DC-8 flights that included extended horizontal transects with total column ozone data acquired by the Total Ozone Mapping Spectrometer (TOMS and the Global Ozone Monitoring Experiment (GOME satellite sensors. To enable these comparisons, the amount of ozone in the column below the aircraft is estimated either by assuming a climatological model or by combining SAGE and/or POAM data with high resolution in-situ ozone measurements acquired by the NASA Langley Research Center chemiluminescent ozone sensor, FASTOZ, during the aircraft vertical profile at the start or end of each flight. Resultant total column ozone values agree with corresponding TOMS and GOME measurements to

  12. Spatial and temporal variation of CO over Alberta using measurements from satellite, aircrafts, and ground stations

    Science.gov (United States)

    Marey, H. S.; Hashisho, Z.; Fu, L.; Gille, J.

    2014-12-01

    Alberta is Canada's largest oil producer and its oil sand deposits comprise 30% of the world's oil reserves. The process of bitumen extraction and upgrading releases trace gases and aerosols to the atmosphere. In this study we present satellite-based analysis to explore, for the first time, various contributing factors that affect tropospheric carbon monoxide (CO) levels over Alberta. The multispectral product that uses both near-infrared (NIR) and the thermal-infrared (TIR) radiances for CO retrieval from the Measurements of Pollution in the Troposphere (MOPITT) are examined for the 12 year period from 2002-2013. Moderate Resolution Imaging Spectroradiometer (MODIS) thermal anomaly product from 2001 to 2013 is employed to investigate the seasonal and temporal variations of forest fires. Additionally, in situ CO measurements at industrial and urban sites are compared to satellite data. Furthermore, the available MOZAIC/IAGOS (Measurement of Ozone, Water Vapor, Carbon Monoxide, Nitrogen Oxide by Airbus In-Service Aircraft/In service Aircraft for Global Observing System) aircraft CO profiles (April 2009-December 2011) are used to validate MOPITT CO data. The climatological time curtain plot and spatial maps for CO over northern Alberta indicate the signatures of transported CO for two distinct biomass burning seasons, summer and spring. Distinct seasonal patterns of CO at the urban site s (Edmonton and Calgary cities) point to the strong influence of traffic. Meteorological parameters play an important role on the CO spatial distribution at various pressure levels. Northern Alberta shows stronger upward lifting motion which leads to larger CO total column values while the poor dispersion in central and south Alberta exacerbates the surface CO pollution. Inter-annual variations of satellite data depict a slightly decreasing trend for both regions while the decline trend is more evident from ground observations, especially at the urban sites. MOPITT CO vertical

  13. Spatial and temporal variation in CO over Alberta using measurements from satellites, aircraft, and ground stations

    Science.gov (United States)

    Marey, H. S.; Hashisho, Z.; Fu, L.; Gille, J.

    2015-04-01

    Alberta is Canada's largest oil producer, and its oil sands deposits comprise 30% of the world's oil reserves. The process of bitumen extraction and upgrading releases trace gases and aerosols to the atmosphere. In this study we present satellite-based analysis to explore, for the first time, various contributing factors that affect tropospheric carbon monoxide (CO) levels over Alberta. The multispectral product that uses both near-infrared (NIR) and the thermal-infrared (TIR) radiances for CO retrieval from the Measurements of Pollution in the Troposphere (MOPITT) is examined for the 12-year period from 2002 to 2013. The Moderate Resolution Imaging Spectroradiometer (MODIS) thermal anomaly product from 2001 to 2013 is employed to investigate the seasonal and temporal variations in forest fires. Additionally, in situ CO measurements at industrial and urban sites are compared to satellite data. Furthermore, the available MOZAIC/IAGOS (Measurement of Ozone, Water Vapor, Carbon Monoxide, Nitrogen Oxide by Airbus In-Service Aircraft/In service Aircraft for Global Observing System) aircraft CO profiles (April 2009-December 2011) are used to validate MOPITT CO data. The climatological time curtain plot and spatial maps for CO over northern Alberta indicate the signatures of transported CO for two distinct biomass burning seasons: summer and spring. Distinct seasonal patterns of CO at the urban sites (Edmonton and Calgary) point to the strong influence of traffic. Meteorological parameters play an important role in the CO spatial distribution at various pressure levels. Northern Alberta shows a stronger upward lifting motion which leads to larger CO total column values, while the poor dispersion in central and southern Alberta exacerbates the surface CO pollution. Interannual variations in satellite data depict a slightly decreasing trend for both regions, while the decline trend is more evident from ground observations, especially at the urban sites. MOPITT CO vertical

  14. Monolithic sensors for low frequency motion measurement and control of spacecrafts and satellites

    Science.gov (United States)

    Barone, F.; Giordano, G.; Acernese, F.; Romano, R.

    2016-10-01

    In this paper we describe the characteristics and performances of a monolithic sensor designed for low frequency motion measurement and control of spacecrafts and satellites, whose mechanics is based on the UNISA Folded Pendulum. The latter, developed for ground-based applications, exhibits unique features (compactness, lightness, scalability, low resonance frequency and high quality factor), consequence of the action of the gravitational force on its inertial mass. In this paper we introduce and discuss the general methodology used to extend the application of ground-based folded pendulums to space, also in total absence of gravity, still keeping all their peculiar features and characteristics.

  15. Spatial and temporal variation of CO over Alberta using measurements from satellite, aircrafts, and ground stations

    Directory of Open Access Journals (Sweden)

    H. S. Marey

    2014-12-01

    Full Text Available Alberta is Canada's largest oil producer and its oil sand deposits comprise 30% of the world's oil reserves. The process of bitumen extraction and upgrading releases trace gases and aerosols to the atmosphere. In this study we present satellite-based analysis to explore, for the first time, various contributing factors that affect tropospheric carbon monoxide (CO levels over Alberta. The multispectral product that uses both near-infrared (NIR and the thermal-infrared (TIR radiances for CO retrieval from the Measurements of Pollution in the Troposphere (MOPITT are examined for the 12 year period from 2002–2013. Moderate Resolution Imaging Spectroradiometer (MODIS thermal anomaly product from 2001 to 2013 is employed to investigate the seasonal and temporal variations of forest fires. Additionally, in situ CO measurements at industrial and urban sites are compared to satellite data. Furthermore, the available MOZAIC/IAGOS (Measurement of Ozone, Water Vapor, Carbon Monoxide, Nitrogen Oxide by Airbus In-Service Aircraft/In service Aircraft for Global Observing System aircraft CO profiles (April 2009–December 2011 are used to validate MOPITT CO data. The climatological time curtain plot and spatial maps for CO over northern Alberta indicate the signatures of transported CO for two distinct biomass burning seasons, summer and spring. Distinct seasonal patterns of CO at the urban site s (Edmonton and Calgary cities point to the strong influence of traffic. Meteorological parameters play an important role on the CO spatial distribution at various pressure levels. Northern Alberta shows stronger upward lifting motion which leads to larger CO total column values while the poor dispersion in central and south Alberta exacerbates the surface CO pollution. Inter-annual variations of satellite data depict a slightly decreasing trend for both regions while the decline trend is more evident from ground observations, especially at the urban sites. MOPITT CO

  16. Note: Inter-satellite laser range-rate measurement by using digital phase locked loop.

    Science.gov (United States)

    Liang, Yu-Rong; Duan, Hui-Zong; Xiao, Xin-Long; Wei, Bing-Bing; Yeh, Hsien-Chi

    2015-01-01

    This note presents an improved high-resolution frequency measurement system dedicated for the inter-satellite range-rate monitoring that could be used in the future's gravity recovery mission. We set up a simplified common signal test instead of the three frequencies test. The experimental results show that the dominant noises are the sampling time jitter and the thermal drift of electronic components, which can be reduced by using the pilot-tone correction and passive thermal control. The improved noise level is about 10(-8) Hz/Hz(1/2)@0.01Hz, limited by the signal-to-noise ratio of the sampling circuit.

  17. An automated fog monitoring system for the Indo-Gangetic Plains based on satellite measurements

    Science.gov (United States)

    Patil, Dinesh; Chourey, Reema; Rizvi, Sarwar; Singh, Manoj; Gautam, Ritesh

    2016-05-01

    Fog is a meteorological phenomenon that causes reduction in regional visibility and affects air quality, thus leading to various societal and economic implications, especially disrupting air and rail transportation. The persistent and widespread winter fog impacts the entire the Indo-Gangetic Plains (IGP), as frequently observed in satellite imagery. The IGP is a densely populated region in south Asia, inhabiting about 1/6th of the world's population, with a strong upward pollution trend. In this study, we have used multi-spectral radiances and aerosol/cloud retrievals from Terra/Aqua MODIS data for developing an automated web-based fog monitoring system over the IGP. Using our previous and existing methodologies, and ongoing algorithm development for the detection of fog and retrieval of associated microphysical properties (e.g. fog droplet effective radius), we characterize the widespread fog detection during both daytime and nighttime. Specifically, for the night time fog detection, the algorithm employs a satellite-based bi-spectral brightness temperature difference technique between two spectral channels: MODIS band-22 (3.9μm) and band-31 (10.75μm). Further, we are extending our algorithm development to geostationary satellites, for providing continuous monitoring of the spatial-temporal variation of fog. We anticipate that the ongoing and future development of a fog monitoring system would be of assistance to air, rail and vehicular transportation management, as well as for dissemination of fog information to government agencies and general public. The outputs of fog detection algorithm and related aerosol/cloud parameters are operationally disseminated via http://fogsouthasia.com/.

  18. Constructing new satellite-only time series of global mean, sea surface temperature data for climate from ATSR data

    Science.gov (United States)

    Veal, Karen; Remedios, John; Ghent, Darren

    2013-04-01

    The Along Track Scanning Radiometers (ATSRs) have provided a near-continuous record of sea surface temperature (SST) data for climate from the launch of ATSR-1 in 1991 to the loss of the Advanced ATSR (AATSR) in April 2012. The intention was always to provide an SST record, independent of in situ data, to corroborate and improve climate data records in recent times. We show that the ATSR record provides a very suitable data set with which to study the recent climate record, particularly during the ATSR-2 and AATSR periods (1995 to 2012) in three major respects. First, ATSR climate time series achieve anomaly accuracies of better than 0.05 K (and high stability). Second, the overlap between instruments allows for excellent determination and removal of biases; between ATSR-2 and AATSR, these are less than 0.05 K for the highest accuracy SST data. Finally, uncertainties on global monthly mean data are less than 0.02 K and hence comparable to those achieved by in situ analyses such as HadSST3. A particular hallmark of the ATSR instruments was their exceptional design for accuracy incorporating high accuracy radiometric calibration, dual-view of the Earth's surface and the use of three thermal emission channels; additional channels are included for cloud clearing in this context. The use of dual-view and multiple thermnal wavelengths allows a number of combinations for retrievals of SST, the most accurate being the dual-view, three-channel retrieval (D3) at nighttime. This restriction is due to the use of the 3.7 micron channel which is sensitive to solar radiation during the day. Extensive work has resulted in a major advances recently resulting in both an operational V2.0 SST product and a further improved ATSR Re-analysis for Climate (ARC) product, a particular feature of the latter being the development of a depth SST product in addition to the skin SST directly determined from satellite data. We will discuss the characteristics of these data sets in terms of

  19. Validation of the Aura Microwave Limb Sounder Temperature and Geopotential Height Measurements

    Science.gov (United States)

    Schwartz, M. J.; Lambert, A.; Manney, G. L.; Read, W. G.; Livesey, N. J.; Froidevaux, L.; Ao, C. O.; Bernath, P. F.; Boone, C. D.; Cofield, R. E.; Daffer, W. H.; Drouin, B. J.; Fetzer, E. J.; Fuller, R. A.; Jarnot, R. F.; Jiang, J. H.; Jiang, Y. B.; Knosp, B. W.; Krueger, K.; Li, J.-L. F.; Mlynczak, M. G.; Pawson, S.; Russell, J. M., III; Santee, M. L.; Snyder, W. V.

    2007-01-01

    This paper describes the retrievals algorithm used to determine temperature and height from radiance measurements by the Microwave Limb Sounder on EOS Aura. MLS is a "limbscanning" instrument, meaning that it views the atmosphere along paths that do not intersect the surface - it actually looks forwards from the Aura satellite. This means that the temperature retrievals are for a "profile" of the atmosphere somewhat ahead of the satellite. Because of the need to view a finite sample of the atmosphere, the sample spans a box about 1.5km deep and several tens of kilometers in width; the optical characteristics of the atmosphere mean that the sample is representative of a tube about 200-300km long in the direction of view. The retrievals use temperature analyses from NASA's Goddard Earth Observing System, Version 5 (GEOS-5) data assimilation system as a priori states. The temperature retrievals are somewhat deperrdezt on these a priori states, especially in the lower stratosphere. An important part of the validation of any new dataset involves comparison with other, independent datasets. A large part of this study is concerned with such comparisons, using a number of independent space-based measurements obtained using different techniques, and with meteorological analyses. The MLS temperature data are shown to have biases that vary with height, but also depend on the validation dataset. MLS data are apparently biased slightly cold relative to correlative data in the upper troposphere and slightly warm in the middle stratosphere. A warm MLS bias in the upper stratosphere may be due to a cold bias in GEOS-5 temperatures.

  20. An anatomically realistic temperature phantom for radiofrequency heating measurements.

    Science.gov (United States)

    Graedel, Nadine N; Polimeni, Jonathan R; Guerin, Bastien; Gagoski, Borjan; Wald, Lawrence L

    2015-01-01

    An anthropomorphic phantom with realistic electrical properties allows for a more accurate reproduction of tissue current patterns during excitation. A temperature map can then probe the worst-case heating expected in the unperfused case. We describe an anatomically realistic human head phantom that allows rapid three-dimensional (3D) temperature mapping at 7T. The phantom was based on hand-labeled anatomical imaging data and consists of four compartments matching the corresponding human tissues in geometry and electrical properties. The increases in temperature resulting from radiofrequency excitation were measured with MR thermometry using a temperature-sensitive contrast agent (TmDOTMA(-)) validated by direct fiber optic temperature measurements. Acquisition of 3D temperature maps of the full phantom with a temperature accuracy better than 0.1°C was achieved with an isotropic resolution of 5 mm and acquisition times of 2-4 minutes. Our results demonstrate the feasibility of constructing anatomically realistic phantoms with complex geometries incorporating the ability to measure accurate temperature maps in the phantom. The anthropomorphic temperature phantom is expected to provide a useful tool for the evaluation of the heating effects of both conventional and parallel transmit pulses and help validate electromagnetic and temperature simulations. © 2014 Wiley Periodicals, Inc.

  1. Inferring Land Surface Model Parameters for the Assimilation of Satellite-Based L-Band Brightness Temperature Observations into a Soil Moisture Analysis System

    Science.gov (United States)

    Reichle, Rolf H.; De Lannoy, Gabrielle J. M.

    2012-01-01

    The Soil Moisture and Ocean Salinity (SMOS) satellite mission provides global measurements of L-band brightness temperatures at horizontal and vertical polarization and a variety of incidence angles that are sensitive to moisture and temperature conditions in the top few centimeters of the soil. These L-band observations can therefore be assimilated into a land surface model to obtain surface and root zone soil moisture estimates. As part of the observation operator, such an assimilation system requires a radiative transfer model (RTM) that converts geophysical fields (including soil moisture and soil temperature) into modeled L-band brightness temperatures. At the global scale, the RTM parameters and the climatological soil moisture conditions are still poorly known. Using look-up tables from the literature to estimate the RTM parameters usually results in modeled L-band brightness temperatures that are strongly biased against the SMOS observations, with biases varying regionally and seasonally. Such biases must be addressed within the land data assimilation system. In this presentation, the estimation of the RTM parameters is discussed for the NASA GEOS-5 land data assimilation system, which is based on the ensemble Kalman filter (EnKF) and the Catchment land surface model. In the GEOS-5 land data assimilation system, soil moisture and brightness temperature biases are addressed in three stages. First, the global soil properties and soil hydraulic parameters that are used in the Catchment model were revised to minimize the bias in the modeled soil moisture, as verified against available in situ soil moisture measurements. Second, key parameters of the "tau-omega" RTM were calibrated prior to data assimilation using an objective function that minimizes the climatological differences between the modeled L-band brightness temperatures and the corresponding SMOS observations. Calibrated parameters include soil roughness parameters, vegetation structure parameters

  2. Fully automated setup for high temperature Seebeck coefficient measurement

    CERN Document Server

    Patel, Ashutosh

    2016-01-01

    In this work, we report the fabrication of fully automated experimental setup for high temperature Seebeck coefficient ($\\alpha$) measurement. The K-type thermocouples are used to measure the average temperature of the sample and Seebeck voltage (SV) across it. The temperature dependence of the Seebeck coefficients of the thermocouple and its negative leg is taken care by using the integration method. Steady state based differential technique is used for $\\alpha$ measurement. Use of limited component and thin heater simplify the sample holder design and minimize the heat loss. The power supplied to the heater decides temperature difference across the sample and measurement is carried out by achieving the steady state. The LabVIEW based program is built to automize the whole measurement process. The complete setup is fabricated by using commonly available materials in the market. This instrument is standardized for materials with a wide range of $\\alpha$ and for the wide range of $\\Delta T$ across the specimen...

  3. The definition analyses of radiation temperature measurement area

    Institute of Scientific and Technical Information of China (English)

    Fu Tairan; Cheng Xiaofang; Zhong Maohua

    2008-01-01

    In the research of primary spectrum pyrometry, this paper discussed the definition problem of radiation tem-perature measurement area based on the measurement coordinates. For the linear spectrum emissivity model and im-proved monotonic spectrum emissivity model, the characteristics of radiation temperature measurement area restricted by the measurement coordinates were theoretically analyzed, through the investigations of the temperature and emissivity co-ordinate axes. Choosing the specific primary spectrum pyrometer as an example in applications, the theoretical area of radiation temperature measurement of this pyrometer was given and it was verified through blackbody experiments. The discussions of this paper will provide the necessary foundation for the theory research development of primary spectrum pyrometry and the realization of technical applications.

  4. Retrieval of Black Carbon Absorption from Proposed Satellite Measurements Over the Ocean Glint

    Science.gov (United States)

    Kaufman, Y. J.; Matins, J. V.; Remer, L. A.; Schoeberl, M. R.; Yamasoe, M. A.; Lau, William K. M. (Technical Monitor)

    2001-01-01

    Haze and air pollution includes many chemicals that together form small particles suspended in the air called aerosols. One of the main ingredients found to affect climate and human health is Black Carbon. Black particles emitted from engines that do not burn the fuel completely, e.g. old trucks. Black carbon absorption of sunlight emerges as one of the key components of man-made forcing of climate. However, global characterization of black carbon emissions, distribution and pathways in which it can affect the amount of solar radiation absorbed by the atmosphere is very uncertain. A new method is proposed to measure sunlight absorption by fine aerosol particles containing black carbon over the ocean glint from a satellite mission designed for this purpose. The satellite will scan the same spot over the ocean in the glint plane and a plane 40 degrees off-glint a minute apart, collecting measurements of the reflected light across the solar spectrum. First the dark ocean off the glint is used to derive aerosol properties. Then the black carbon absorption is derived prop the attenuation of the bright glint by the aerosol layer. Such measurements if realized in a proposed future mission - COBRA are expected to produce global monthly climatology of black carbon absorption with high accuracy (110 to 15%) that can show their effect on climate.

  5. [Calculation of infrared temperature measurement on non-Lambertian objects].

    Science.gov (United States)

    Yang, Zhen; Zhang, Shi-cheng; Yang, Li

    2010-08-01

    According to the theory of infrared radiation and principles of temperature measurement using infrared imager, a universal mathematical model of infrared imager is established. Based on the normal emissivity characteristics of measured surface, the mathematical model is simplified, and the formula of temperature measurement using infrared imager is obtained. Through the relevant experiment, it is proved that the sum of emissivity and reflectivity of objects remained basically unchanged in a certain temperature range. The sum of emissivity and reflectivity of objects is relevant to the object types, surface conditions and the object temperature. The closer an object to Lambertian objects, the greater the sum is and the closer it is to 1. The farther the surface conditions deviate from the Lambertian surface, or the smoother the surface, the smaller the sum is. Experimental results show that if the object is close to Lambertian objects, it could be regarded as Lambertian, without the need for amendments to the actual objects. For non-Lambertian body (especially the smooth surfaces and low-emissivity objects), the amendment is necessary, or the temperature measurement error will increase, or even the obtained temperature is very far away from its true temperature. The study shows that, through the amendment, infrared temperature measurement on non-Lambertian objects is available.

  6. Axillary temperature measurement: a less stressful alternative for hospitalised cats?

    Science.gov (United States)

    Girod, M; Vandenheede, M; Farnir, F; Gommeren, K

    2016-02-20

    Rectal temperature measurement (RTM) can promote stress and defensive behaviour in hospitalised cats. The aim of this study was to assess if axillary temperature measurement (ATM) could be a reliable and less stressful alternative for these animals. In this prospective study, paired rectal and axillary temperatures were measured in 42 cats, either by a veterinarian or a student. To assess the impact of these procedures on the cat's stress state, their heart rate was checked and a cat stress score (CSS) was defined and graded from 1 (relaxed) to 5 (terrified). A moderate correlation was found between RTM and ATM (r=0.52; Pcats.

  7. Ground-based measurement of surface temperature and thermal emissivity

    Science.gov (United States)

    Owe, M.; Van De Griend, A. A.

    1994-01-01

    Motorized cable systems for transporting infrared thermometers have been used successfully during several international field campaigns. Systems may be configured with as many as four thermal sensors up to 9 m above the surface, and traverse a 30 m transect. Ground and canopy temperatures are important for solving the surface energy balance. The spatial variability of surface temperature is often great, so that averaged point measurements result in highly inaccurate areal estimates. The cable systems are ideal for quantifying both temporal and spatial variabilities. Thermal emissivity is also necessary for deriving the absolute physical temperature, and measurements may be made with a portable measuring box.

  8. Formaldehyde (HCHO) column measurements from airborne instruments: Comparison with airborne in-situ measurements, model, and satellites

    Science.gov (United States)

    Kwon, Hyeong-Ahn; Park, Rokjin; Nowlan, Caroline; González Abad, Gonzalo; Chance, Kelly; Janz, Scott

    2017-04-01

    Trace gas measurements from airborne instruments are useful to evaluate and improve a retrieval algorithm developed for the Geostationary Environment Monitoring Spectrometer (GEMS). We used radiances measured from two airborne 2D array sensors, the GeoCAPE Airborne Simulator (GCAS) and the Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) for DISCOVER-AQ Texas in 2013 and for KORUS-AQ in 2016 to retrieve formaldehyde (HCHO) columns and to evaluate the GEMS retrieval algorithm. In addition, we used simulated aerosol concentrations constrained by airborne LIDAR observations for AMF calculation to convert slant columns to vertical columns. We compared retrieved HCHO columns with vertical columns obtained from in-situ airborne HCHO measurements. Optical properties and distributions of aerosols are found to be important factors, affecting HCHO retrievals. Finally, additional comparisons of retrieved results with model simulations and low-orbiting satellites provides quantitative information for improving bottom-up emission estimates of volatile organic carbon emissions.

  9. Calorimetric Measurements at Low Temperatures in Toluene Glass and Crystal

    Science.gov (United States)

    Alvarez-Ney, C.; Labarga, J.; Moratalla, M.; Castilla, J. M.; Ramos, M. A.

    2017-04-01

    The specific heat of toluene in glass and crystal states has been measured both at low temperatures down to 1.8 K (using the thermal relaxation method) and in a wide temperature range up to the liquid state (using a quasiadiabatic continuous method). Our measurements therefore extend earlier published data to much lower temperatures, thereby allowing to explore the low-temperature "glassy anomalies" in the case of toluene. Surprisingly, no indication of the existence of tunneling states is found, at least within the temperature range studied. At moderate temperatures, our data either for the glass or for the crystal show good agreement with those found in the literature. Also, we have been able to prepare bulk samples of toluene glass by only doping with 2% mol ethanol instead of with higher impurity doses used by other authors.

  10. Seasonal variability of cloud optical depth over northwestern China derived from CERES/MODIS satellite measurements

    Institute of Scientific and Technical Information of China (English)

    Yonghang Chen; Hongtao Bai; Jianping Huang; Hua Zhang; Jinming Ge; Xiaodan Guan; Xiaoqin Mao

    2008-01-01

    The seasonal variability of cloud optical depth over northwestern China derived from Clouds and the Earth's Radiant Energy System (CERES) Single Scanner Footprint (SSF) Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) Edition 1B data from July 2002 to June 2004 is presented. The regions of interest are those with Asia monsoon influence, the Tianshan and Qilian Mountains, and the Taklimakan Desert. The results show that the instantaneous measurements presented here are much higher than the previous results derived from International Satellite Cloud Climatology Project (ISCCP) D2 monthly mean data. Generally the measurements of cloud optical depth are the highest in summer and the lowest in winter, however, Taklimakan Desert has the lowest measurements in autumn. The regional variation is quite significant over northwestern China.

  11. SIDRA instrument for measurements of particle fluxes at satellite altitudes. Laboratory prototype

    Science.gov (United States)

    Dudnik, O. V.; Prieto, M.; Kurbatov, E. V.; Sanchez, S.; Timakova, T. G.; Spassky, A. V.; Dubina, V. N.; Parra, P.

    2013-01-01

    The design concept and first set of results are presented for electronic modules of a laboratory prototype of the small-size satellite instrument SIDRA intended for measurements of charged particle fluxes in outer space. The working prototype consists of a detector assembly based on high-purity silicon and fast scintillation detectors, modules of analogue and digital processing, and a secondary power supply module. The first results are discussed of a Monte-Carlo simulation of the instrument with the use of the GEANT4 toolkit and of measurements of the main parameters of charge-sensitive pre-amplifiers, shapers, and peak detectors. Results of calibration measurements with the use of radioactive sources and beams of accelerated charged particles are presented.

  12. Magnetometry and electrical transport measurements of high temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Mun Keat [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-13

    Prior to preparing and performing measurements in pulsed magnetic fields, it is necessary to characterize them. For the cuprates such as HgBa2CuO4+δ (Hg1201), measurements of the superconducting temperature is essential. This experiment comprises just such a characterization of Hg1201 crystals to be used for pulsed magnetic field measurements.

  13. Measurements of UV irradiance within the area of one satellite pixel

    Science.gov (United States)

    Weihs, P.; Blumthaler, M.; Rieder, H. E.; Kreuter, A.; Simic, S.; Laube, W.; Schmalwieser, A. W.; Wagner, J. E.; Tanskanen, A.

    2008-09-01

    A measurement campaign was performed in the region of Vienna and its surroundings from May to July 2007. Within the scope of this campaign erythemal UV was measured at six ground stations within a radius of 30 km. First, the homogeneity of the UV levels within the area of one satellite pixel was studied. Second, the ground UV was compared to ground UV retrieved by the ozone monitoring instrument (OMI) onboard the NASA EOS Aura Spacecraft. During clear-sky conditions the mean bias between erythemal UV measured by the different stations was within the measurement uncertainty of ±5%. Short term fluctuations of UV between the stations were below 3% within a radius of 20 km. For partly cloudy conditions and overcast conditions the discrepancy of instantaneous values between the stations is up to 200% or even higher. If averages of the UV index over longer time periods are compared the difference between the stations decreases strongly. The agreement is better than 20% within a distance of 10 km between the stations for 3 h averages. The comparison with OMI UV showed for clear-sky conditions higher satellite retrieved UV values by, on the average, approximately 15%. The ratio of OMI to ground measured UV lies between 0.9 and 1.5. and strongly depends on the aerosol optical depth. For partly cloudy and overcast conditions the OMI derived surface UV estimates show larger deviation from the ground-based reference data, and even bigger systematic positive bias. Here the ratio OMI to ground data lies between 0.5 and 4.5. The average difference between OMI and ground measurements is +24 to +37% for partly cloudy conditions and more than +50% for overcast conditions.

  14. Measurements of UV irradiance within the area of one satellite pixel

    Directory of Open Access Journals (Sweden)

    P. Weihs

    2008-09-01

    Full Text Available A measurement campaign was performed in the region of Vienna and its surroundings from May to July 2007. Within the scope of this campaign erythemal UV was measured at six ground stations within a radius of 30 km. First, the homogeneity of the UV levels within the area of one satellite pixel was studied. Second, the ground UV was compared to ground UV retrieved by the ozone monitoring instrument (OMI onboard the NASA EOS Aura Spacecraft. During clear-sky conditions the mean bias between erythemal UV measured by the different stations was within the measurement uncertainty of ±5%. Short term fluctuations of UV between the stations were below 3% within a radius of 20 km. For partly cloudy conditions and overcast conditions the discrepancy of instantaneous values between the stations is up to 200% or even higher. If averages of the UV index over longer time periods are compared the difference between the stations decreases strongly. The agreement is better than 20% within a distance of 10 km between the stations for 3 h averages. The comparison with OMI UV showed for clear-sky conditions higher satellite retrieved UV values by, on the average, approximately 15%. The ratio of OMI to ground measured UV lies between 0.9 and 1.5. and strongly depends on the aerosol optical depth. For partly cloudy and overcast conditions the OMI derived surface UV estimates show larger deviation from the ground-based reference data, and even bigger systematic positive bias. Here the ratio OMI to ground data lies between 0.5 and 4.5. The average difference between OMI and ground measurements is +24 to +37% for partly cloudy conditions and more than +50% for overcast conditions.

  15. Technology and education: First approach for measuring temperature with Arduino

    Science.gov (United States)

    Carrillo, Alejandro

    2017-04-01

    This poster session presents some ideas and approaches to understand concepts of thermal equilibrium, temperature and heat in order to bulid a man-nature relationship in a harmonious and responsible manner, emphasizing the interaction between science and technology, without neglecting the relationship of the environment and society, an approach to sustainability. It is proposed the development of practices that involve the use of modern technology, of easy access and low cost to measure temperature. We believe that the Arduino microcontroller and some temperature sensors can open the doors of innovation to carry out such practices. In this work we present some results of simple practices presented to a population of students between the ages of 16 and 17 years old. The practices in this proposal are: Zero law of thermodynamics and the concept of temperature, calibration of thermometers and measurement of temperature for heating and cooling of three different substances under the same physical conditions. Finally the student is asked to make an application that involves measuring of temperature and other physical parameters. Some suggestions are: to determine the temperature at which we take some food, measure the temperature difference at different rooms of a house, housing constructions that favour optimal condition, measure the temperature of different regions, measure of temperature trough different colour filters, solar activity and UV, propose applications to understand current problems such as global warming, etc. It is concluded that the Arduino practices and electrical sensors increase the cultural horizon of the students while awaking their interest to understand their operation, basic physics and its application from a modern perspective.

  16. A preliminary measurement of the cosmic microwave background spectrum by the Cosmic Background Explorer (COBE) satellite

    Energy Technology Data Exchange (ETDEWEB)

    Mather, J.C.; Cheng, E.S.; Shafer, R.A.; Bennett, C.L.; Boggess, N.W.; Dwek, E.; Hauser, M.G.; Kelsall, T.; Moseley, S.H. Jr.; Silverberg, R.F. (NASA, Goddard Space Flight Center, Greenbelt, MD (USA))

    1990-05-01

    A preliminary spectrum is presented of the background radiation between 1 and 20/cm from regions near the north Galactic pole, as observed by the FIRAS instrument on the COBE satellite. The spectral resolution is 1/cm. The spectrum is well fitted by a blackbody with a temperature of 2.735 + or - 0.06 K, and the deviation from a blackbody is less than 1 percent of the peak intensity over the range 1-20/cm. These new data show no evidence for the submillimeter excess previously reported by Matsumoto et al. (1988) in the cosmic microwave background. Further analysis and additional data are expected to improve the sensitivity to deviations from a blackbody spectrum by an order of magnitude. 31 refs.

  17. A preliminary measurement of the cosmic microwave background spectrum by the Cosmic Background Explorer (COBE) satellite

    Science.gov (United States)

    Mather, J. C.; Cheng, E. S.; Shafer, R. A.; Bennett, C. L.; Boggess, N. W.; Dwek, E.; Hauser, M. G.; Kelsall, T.; Moseley, S. H., Jr.; Silverberg, R. F.

    1990-01-01

    A preliminary spectrum is presented of the background radiation between 1 and 20/cm from regions near the north Galactic pole, as observed by the FIRAS instrument on the COBE satellite. The spectral resolution is 1/cm. The spectrum is well fitted by a blackbody with a temperature of 2.735 + or - 0.06 K, and the deviation from a blackbody is less than 1 percent of the peak intensity over the range 1-20/cm. These new data show no evidence for the submillimeter excess previously reported by Matsumoto et al. (1988) in the cosmic microwave background. Further analysis and additional data are expected to improve the sensitivity to deviations from a blackbody spectrum by an order of magnitude.

  18. A preliminary measurement of the cosmic microwave background spectrum by the Cosmic Background Explorer (COBE) satellite

    Science.gov (United States)

    Mather, J. C.; Cheng, E. S.; Shafer, R. A.; Bennett, C. L.; Boggess, N. W.; Dwek, E.; Hauser, M. G.; Kelsall, T.; Moseley, S. H., Jr.; Silverberg, R. F.

    1990-01-01

    A preliminary spectrum is presented of the background radiation between 1 and 20/cm from regions near the north Galactic pole, as observed by the FIRAS instrument on the COBE satellite. The spectral resolution is 1/cm. The spectrum is well fitted by a blackbody with a temperature of 2.735 + or - 0.06 K, and the deviation from a blackbody is less than 1 percent of the peak intensity over the range 1-20/cm. These new data show no evidence for the submillimeter excess previously reported by Matsumoto et al. (1988) in the cosmic microwave background. Further analysis and additional data are expected to improve the sensitivity to deviations from a blackbody spectrum by an order of magnitude.

  19. Combined NMR moisture, temperature and pressure measurements during heating

    Directory of Open Access Journals (Sweden)

    Pel L.

    2013-09-01

    Full Text Available For model validation, quantitative measurements of the evolution of moisture, temperature, and pressure distributions in time are needed. For this purpose, we have developed an NMR setup to measure the moisture transport in heated building materials. The measured combined moisture content and temperature profiles give a unique insight in the moisture transport and dehydration kinetics inside concrete during fire. These measurements give the first quantitative proof for the build-up of a moisture peak due to the vapor pressure build-up. In this study we have also combined for the first time the measurement of the moisture and temperature profiles with the measurement of the pressure at one position, which show that the pressure build up is directly related to the moisture profiles.

  20. High temperature thermographic measurements of laser heated silica

    Energy Technology Data Exchange (ETDEWEB)

    Elhadj, S; Yang, S T; Matthews, M J; Cooke, D J; Bude, J D; Johnson, M; Feit, M; Draggoo, V; Bisson, S E

    2009-11-02

    In situ spatial and temporal surface temperature profiles of CO{sub 2} laser-heated silica were obtained using a long wave infrared (LWIR) HgCdTe camera. Solutions to the linear diffusion equation with volumetric and surface heating are shown to describe the temperature evolution for a range of beam powers, over which the peak surface temperature scales linearly with power. These solutions were used with on-axis steady state and transient experimental temperatures to extract thermal diffusivity and conductivity for a variety of materials, including silica, spinel, sapphire, and lithium fluoride. Experimentally-derived thermal properties agreed well with reported values and, for silica, thermal conductivity and diffusivity are shown to be approximately independent of temperature between 300 and 2800K. While for silica our analysis based on a temperature independent thermal conductivity is shown to be accurate, for other materials studied this treatment yields effective thermal properties that represent reasonable approximations for laser heating. Implementation of a single-wavelength radiation measurement in the semi-transparent regime is generally discussed, and estimates of the apparent temperature deviation from the actual outer surface temperature are also presented. The experimental approach and the simple analysis presented yield surface temperature measurements that can be used to validate more complex physical models, help discriminate dominant heat transport mechanisms, and to predict temperature distribution and evolution during laser-based material processing.

  1. High temperature thermographic measurements of laser heated silica

    Science.gov (United States)

    Elhadj, Selim; Yang, Steven T.; Matthews, Manyalibo J.; Cooke, Diane J.; Bude, Jeffrey D.; Johnson, Michael; Feit, Michael; Draggoo, Vaughn; Bisson, Scott E.

    2009-10-01

    In situ spatial and temporal surface temperature profiles of CO2 laser-heated silica were obtained using a long wave infrared (LWIR) HgCdTe camera. Solutions to the linear diffusion equation with volumetric and surface heating are shown to describe the temperature evolution for a range of beam powers, over which the peak surface temperature scales linearly with power. These solutions were used with on-axis steady state and transient experimental temperatures to extract thermal diffusivity and conductivity for a variety of materials, including silica, spinel, sapphire, and lithium fluoride. Experimentally-derived thermal properties agreed well with reported values and, for silica, thermal conductivity and diffusivity are shown to be approximately independent of temperature between 300 and 2800K. While for silica our analysis based on a temperature independent thermal conductivity is shown to be accurate, for other materials studied this treatment yields effective thermal properties that represent reasonable approximations for laser heating. Implementation of a single-wavelength radiation measurement in the semi-transparent regime is generally discussed, and estimates of the apparent temperature deviation from the actual outer surface temperature are also presented. The experimental approach and the simple analysis presented yield surface temperature measurements that can be used to validate more complex physical models, help discriminate dominant heat transport mechanisms, and to predict temperature distribution and evolution during laser-based material processing.

  2. Comparison of digital holographic interferometry and constant temperature anemometry for measurement of temperature field in fluid

    Science.gov (United States)

    Doleček, Roman; Psota, Pavel; Lédl, Vít.; Vít, Tomáś; Dančová, Petra; Kopecký, Václav

    2015-05-01

    The presented paper shows possibility of using digital holographic interferometry (DHI) for temperature field measurement in moving fluids. This method uses a modified Twymann-Green setup having double sensitivity instead of commonly used Mach-Zehnder type of interferometer in order to obtain sufficient phases change of the field. On the other hand this setup is not light efficient as Mach-Zehnder interferometer. For measurement of the fast periodical phenomenon is not necessary to use always the high speed camera. One can consider this field to coherent phenomenon. With employing one digital camera synchronized to periodic field and external triggered one can capture whole period of the phenomenon. However the projections form one viewing direction of asymmetrical temperature field maybe misguided. Hence for sufficient examination of the asymmetrical field one should capture a large number of the phenomenon's projections from different viewing directions. This projections are later used for 3D tomographic reconstruction of the whole temperature field and its time evolution. One of the commonly used method for temperature field measurement in moving fluids is hot wire method - constant temperature anemometry (CTA). In contrast to whole field measurement of DHI it is an invasive point temperature measurement method. One of the limiting factor of using CTA in moving fluids is frequency of temperature changes. This changes should not exceed 1 kHz. This limitation could be overcome by using of optical methods such as DHI. The results of temperature field measurement achieved by both method are compared in the paper.

  3. Temperature measurement in hollow contacts; Mesure de temperature dans un contact creux

    Energy Technology Data Exchange (ETDEWEB)

    Maftoul, J. [Schneider Electric, Groupe appareillage, Centre de recherches A2, 75 - Paris (France)

    2002-06-01

    When studying the behaviour of electric arcs, specifically as regards interaction with circuit-breaker contacts walls, precise measurements require sensors insensitive to strong electric and magnetic fields. This article discusses optical sensor technology, with optic fibre conveying radiation to a photo-sensor from the surface of the body whose temperature is being measured. Temperature is measured every 100 microseconds at several locations, by interpolation. (author)

  4. Wide-range logarithmic radiometer for measuring high temperatures

    Science.gov (United States)

    Liston, E. M.

    1971-01-01

    Filter radiometer utilizing photomultiplier circuit, in which a direct-coupled amplifier varies dynode voltage to maintain constant anode current, measures rapid variations of temperature of white-hot charred body at 2000 K to 3000 K.

  5. Development of a multispectral sensor for crop canopy temperature measurement

    Science.gov (United States)

    Quantifying spatial and temporal variability in plant stress has precision agriculture applications in controlling variable rate irrigation and variable rate nutrient application. One approach to plant stress detection is crop canopy temperature measurement by the use of thermographic or radiometric...

  6. LIDAR for atmospheric backscatter and temperature measurements Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objectives of this effort are to measure atmospheric backscatter profiles and temperature using a zenith looking lidar, designed for a small lander.The lidar...

  7. Composition Estimation in Dividing-Wall Columns Using Temperature Measurements

    OpenAIRE

    Ghadrdan, Maryam; Ivar J. Halvorsen; Skogestad, Sigurd

    2011-01-01

    In this work, we propose a method to estimate the product compositions in a distillation column section based on a combination of a number of temperature measurements from different locations in the column stages.

  8. Principle study of temperature measurement based on primary colors

    Institute of Scientific and Technical Information of China (English)

    程晓舫; 周洲

    1997-01-01

    The Plank law reflecting the actual radiation of an object is ingeniously combined with the principle of primary colors which is the basis of the object’s color reappearing and the principle of primary colors temperature measurement is established.

  9. Study of Windows Effects for Shock Wave Temperature Measurements

    Energy Technology Data Exchange (ETDEWEB)

    W. D. Turley, G. Stevens, L. Veeser, D. Holtkamp, A. Seifter

    2011-05-25

    Temperature measurements of shocked plutonium are needed for improved understanding of its equation of state (EOS) and will enable better understanding and reliability of the U.S. nuclear weapon stockpile.

  10. Analysis of multi-temporal landsat satellite images for monitoring land surface temperature of municipal solid waste disposal sites.

    Science.gov (United States)

    Yan, Wai Yeung; Mahendrarajah, Prathees; Shaker, Ahmed; Faisal, Kamil; Luong, Robin; Al-Ahmad, Mohamed

    2014-12-01

    This studypresents a remote sensing application of using time series Landsat satellite images for monitoring the Trail Road and Nepean municipal solid waste (MSW) disposal sites in Ottawa, Ontario, Canada. Currently, the Trail Road landfill is in operation; however, during the 1960s and 1980s, the city relied heavily on the Nepean landfill. More than 400 Landsat satellite images were acquired from the US Geological Survey (USGS) data archive between 1984 and 2011. Atmospheric correction was conducted on the Landsat images in order to derive the landfill sites' land surface temperature (LST). The findings unveil that the average LST of the landfill was always higher than the immediate surrounding vegetation and air temperature by 4 to 10 °C and 5 to 11.5 °C, respectively. During the summer, higher differences of LST between the landfill and its immediate surrounding vegetation were apparent, while minima were mostly found in fall. Furthermore, there was no significant temperature difference between the Nepean landfill (closed) and the Trail Road landfill (active) from 1984 to 2007. Nevertheless, the LST of the Trail Road landfill was much higher than the Nepean by 15 to 20 °C after 2007. This is mainly due to the construction and dumping activities (which were found to be active within the past few years) associated with the expansion of the Trail Road landfill. The study demonstrates that the use of the Landsat data archive can provide additional and viable information for the aid of MSW disposal site monitoring.

  11. Multi-day convective-environmental evolution prior to tropical cyclone formation from geostationary satellite measurements

    Science.gov (United States)

    Chang, Minhee; Ho, Chang-Hoi; Park, Myung-Sook

    2016-04-01

    Tropical cyclones (TCs) are developed through persistent latent heating taken from deep convective process. By analyzing aircraft and polar-orbit satellite observations, distinct upper-level warm-core induced by strong updraft was found in pre-TCs while vertically uniform temperature profile is found in non-developers. Precipitation is also broader and more frequent in developing disturbances than in nondeveloping ones. However, large uncertainties remain in determining which disturbance will develop into TC by using observation snap-shots. Here, five-day systematic evolution of deep convection and environments in developing (80) and non-developing (491) disturbances are examined over the western North Pacific for 20072009 by using geostationary satellite observation. Daily, positive tendencies in the hourly time series of the area of the MTSAT-1R infrared (IR) and water vapor (WV) brightness temperature difference intensification was driven only after from Day 3 with rapid increase in relative vorticity and abrupt convective burst. There also exist many non-developing cases with mCB (54 %), which appear to candidates of TC formation as gradually increasing their convective area from Day 1 to Day 4. Due to the initially weak large-scale vorticity, they eventually decay on Day 5. For nondeveloping disturbances without mCB (46%), initially weak large-scale vorticity as well as dry atmosphere resulted in one-time deep convection and decay. Thus, this study suggests that the multiple days of convective burst, which initially accompanies strong low- to mid-troposphere large-scale vorticity, is important in TC formation.

  12. Feasibility of a Constellation of Miniature Satellites for Performing Measurements of the Magnetic Field of the Earth

    DEFF Research Database (Denmark)

    Thomsen, Michael; Merayo, José M.G.; Brauer, Peter

    2008-01-01

    This paper studies the requirements for a small constellation of satellites to perform measurements of the magnetic field of the Earth and a payload and boom design for such a mission is discussed. After studying communication, power and mass requirements it is found that it is feasible to develop...... a 10 x 10 x 30 cm(3) satellite with a mass of about 2.5 kg, which can fulfill such a mission. We also study the feasibility of controlling a constellation of such small satellites by means of air drag by extracting one or more flaps. It is found that it is indeed possible, but for best performance...

  13. Ultrasonic Measurements of Temperature in Aqueous Solutions: Why and How

    Directory of Open Access Journals (Sweden)

    A. Afaneh

    2011-01-01

    Full Text Available The paper describes two different approaches to ultrasonic measurements of temperature in aqueous solutions. The first approach uses two narrowband ultrasonic transducers and support electronics that form an oscillating sensor which output frequency is related to the measured temperature. This low-cost sensor demonstrated sensitivity of about 40 Hz/K at the distance of 190 mm and the operating frequency of about 25 kHz. The second approach utilised pulse-echo mode at the centre frequency of 20 MHz. The reflector featured a cavity that was filled with deionised water. The ultrasound propagation delay in the cavity was related to the temperature in the solution. The experiments were conducted for deionised water, and solutions of sodium persulfate, sodium chloride, and acetic acid with concentrations up to 0.5 M. In the experiments (conducted within the temperature range from 15 to 30°C, we observed increases in the ultrasound velocity for increased temperatures and concentrations as was expected. Measurement results were compared with literature data for pure and seawater. It was concluded that ultrasonic measurements of temperature were conducted with the resolution well below 0.1 K for both methods. Advantages of ultrasonic temperature measurements over conventional thermometers were discussed.

  14. Upper tropospheric water vapour variability over tropical latitudes observed using radiosonde and satellite measurements

    Indian Academy of Sciences (India)

    Ghouse Basha; M Venkat Ratnam; B V Krishna Murthy

    2013-12-01

    The present study deals with using long-term database for upper tropospheric water vapour (UTWV) variability studies over three tropical stations (Gadanki, Singapore and Truk), where different climatic conditions prevail. Over Gadanki (13.5°N, 79.2°E) strong seasonal variation in UTWV is revealed but not over Singapore (1.37°N, 103.98°E) and Truk (7.46°N, 151.85°E) except at 100 hPa. It is examined whether high resolution radiosonde measurements represent well the UTWV by comparing with different satellite based (Atmospheric Infrared Sounder (AIRS), Advanced Microwave Sounding Unit-B (AMSUB) and Microwave Limb Sounder (MLS)) water vapour measurements. Very good comparison in the nature of variations of UTWV is observed between radiosonde data and satellite data, except over Singapore particularly with AIRS and MLS data, on long-term basis. An attempt is also made to examine the source for UTWV. A close relationship is found between UTWV and deep convection over Gadanki indicating that the source for UTWV is convection particularly during the summer monsoon season.

  15. Measuring snow cover using satellite imagery during 1973 and 1974 melt season: North Santiam, Boise, and Upper Snake Basins, phase 1. [LANDSAT satellites, imaging techniques

    Science.gov (United States)

    Wiegman, E. J.; Evans, W. E.; Hadfield, R.

    1975-01-01

    Measurements are examined of snow coverage during the snow-melt season in 1973 and 1974 from LANDSAT imagery for the three Columbia River Subbasins. Satellite derived snow cover inventories for the three test basins were obtained as an alternative to inventories performed with the current operational practice of using small aircraft flights over selected snow fields. The accuracy and precision versus cost for several different interactive image analysis procedures was investigated using a display device, the Electronic Satellite Image Analysis Console. Single-band radiance thresholding was the principal technique employed in the snow detection, although this technique was supplemented by an editing procedure involving reference to hand-generated elevation contours. For each data and view measured, a binary thematic map or "mask" depicting the snow cover was generated by a combination of objective and subjective procedures. Photographs of data analysis equipment (displays) are shown.

  16. Hysteresis and Temperature Dependency of Moisture Sorption – New Measurements

    DEFF Research Database (Denmark)

    Rode, Carsten; Hansen, Kurt Kielsgaard

    2011-01-01

    It is well known that sorption characteristics of building materials exhibit hysteresis in the way the equilibrium curves develop between adsorption and desorption, and that the sorption curves are also somewhat temperature dependent. However, these two facts are most often neglected in models...... measurements of hysteresis and temperature dependency of the moisture sorption characteristics of three different porous building materials: aerated concrete, cement paste and spruce. Scanning curves are measured for all three materials where periods with adsorption and desorption interrupt each other...

  17. Global Fine Particulate Matter Concentrations and Trends Inferred from Satellite Observations, Modeling, and Ground-Based Measurements

    Science.gov (United States)

    Martin, Randall; van Donkelaar, Aaron; Boys, Brian; Philip, Sajeev; Lee, Colin; Snider, Graydon; Weagle, Crystal

    2014-05-01

    Outdoor fine particulate matter (PM2.5) is a leading environmentally-related cause of premature mortality worldwide. However, ground-level PM2.5 monitors remain sparse in many regions of the world. Satellite remote sensing from MODIS, MISR, and SeaWiFS yields a powerful global data source to address this issue. Global modeling (GEOS-Chem) plays a critical role in relating these observations to ground-level concentrations. The resultant satellite-based estimates of PM2.5 indicate dramatic variation around the world, with implications for global public health. A new ground-based aerosol network (SPARTAN) offers valuable measurements to understand the relationship between satellite observations of aerosol optical depth and ground-level PM2.5 concentrations. This talk will highlight recent advances in combining satellite remote sensing, global modeling, and ground-based measurements to improve understanding of global population exposure to outdoor fine particulate matter.

  18. Measurement of the electron and ion temperatures by the x-ray imaging crystal spectrometer on joint Texas experimental tokamak

    Science.gov (United States)

    Yan, W.; Chen, Z. Y.; Jin, W.; Lee, S. G.; Shi, Y. J.; Huang, D. W.; Tong, R. H.; Wang, S. Y.; Wei, Y. N.; Ma, T. K.; Zhuang, G.

    2016-11-01

    An x-ray imaging crystal spectrometer has been developed on joint Texas experimental tokamak for the measurement of electron and ion temperatures from the Kα spectra of helium-like argon and its satellite lines. A two-dimensional multi-wire proportional counter has been applied to detect the spectra. The electron and ion temperatures have been obtained from the Voigt fitting with the spectra of helium-like argon ions. The profiles of electron and ion temperatures show the dependence on electron density in ohmic plasmas.

  19. Ring to measure magnetic permeability at cryogenic temperatures

    CERN Multimedia

    1977-01-01

    While for magn. permeability measurements at room temperature a split-coil permeameter is used (see photo 7708553X), for measurements at cryogenic temperatures the excitation and the flux-measuring coils are wound directly on the ring sample by means of a toroidal winding machine. The ring in the picture was made to select the mild steel for the ISR Prototype Superconducting Quadrupole(see photo 7702690X). The excitation coil was wound with 1 mm diam. copper wire and had about 2730 turns. For measurements at 4.2 K a max. current of 90 A was used. See also photos 7708553X,7708100,7708103.

  20. MPPT Technique Based on Current and Temperature Measurements

    Directory of Open Access Journals (Sweden)

    Eduardo Moreira Vicente

    2015-01-01

    Full Text Available This paper presents a new maximum power point tracking (MPPT method based on the measurement of temperature and short-circuit current, in a simple and efficient approach. These measurements, which can precisely define the maximum power point (MPP, have not been used together in other existing techniques. The temperature is measured with a low cost sensor and the solar irradiance is estimated through the relationship of the measured short-circuit current and its reference. Fast tracking speed and stable steady-state operation are advantages of this technique, which presents higher performance when compared to other well-known techniques.

  1. Temperature and voltage measurement in quantum systems far from equilibrium

    Science.gov (United States)

    Shastry, Abhay; Stafford, Charles A.

    2016-10-01

    We show that a local measurement of temperature and voltage for a quantum system in steady state, arbitrarily far from equilibrium, with arbitrary interactions within the system, is unique when it exists. This is interpreted as a consequence of the second law of thermodynamics. We further derive a necessary and sufficient condition for the existence of a solution. In this regard, we find that a positive temperature solution exists whenever there is no net population inversion. However, when there is a net population inversion, we may characterize the system with a unique negative temperature. Voltage and temperature measurements are treated on an equal footing: They are simultaneously measured in a noninvasive manner, via a weakly coupled thermoelectric probe, defined by requiring vanishing charge and heat dissipation into the probe. Our results strongly suggest that a local temperature measurement without a simultaneous local voltage measurement, or vice versa, is a misleading characterization of the state of a nonequilibrium quantum electron system. These results provide a firm mathematical foundation for voltage and temperature measurements far from equilibrium.

  2. Temperature measurement methods during direct heat arterial tissue fusion.

    Science.gov (United States)

    Cezo, James D; Kramer, Eric; Taylor, Kenneth D; Ferguson, Virginia; Rentschler, Mark E

    2013-09-01

    Fusion of biological tissues through direct and indirect heating is a growing area of medical research, yet there are still major gaps in understanding this procedure. Several companies have developed devices which fuse blood vessels, but little is known about the tissue's response to the stimuli. The need for accurate measurements of tissue behavior during tissue fusion is essential for the continued development and improvement of energy delivery devices. An experimental study was performed to measure the temperatures experienced during tissue fusion and the resulting burst pressure of the fused arteries. An array of thermocouples was placed in the lumen of a porcine splenic artery segment and sealed using a ConMed Altrus thermal fusion device. The temperatures within the tissue, in the device, and at the tissue-device interface were recorded. These measurements were then analyzed to calculate the temperature profile in the lumen of the artery. The temperature in the artery at the site of tissue fusion was measured to range from 142 to 163 °C using the ConMed Altrus. The corresponding burst pressure for arteries fused at this temperature was measured as 416 ± 79 mmHg. This study represents the first known experimental measurement of temperature at the site of vessel sealing found in the literature.

  3. Wet method for measuring starch gelatinization temperature using electrical conductivity.

    Science.gov (United States)

    Morales-Sanchez, E; Figueroa, J D C; Gaytan-Martínez, M

    2009-09-01

    The objective of the present study was to develop a method for obtaining the gelatinization temperature of starches by using electrical conductivity. Native starches from corn, rice, potato, and wheat were prepared with different proportions of water and heated from room temperature to 90 degrees C, in a device especially designed for monitoring the electrical conductivity as a function of temperature. The results showed a linear trend of the electrical conductivity with the temperature until it reaches the onset gelatinization temperature. After that point, the electrical conductivity presented an increment or decrement depending on the water content in the sample and it was related to starch swelling and gelatinization phenomena. At the end gelatinization temperature, the conductivity becomes stable and linear, indicating that there are no more changes of phase. The starch gelatinization parameter, which was evaluated in the 4 types of starches using the electrical conductivity, was compared with those obtained by using differential scanning calorimeter (DSC). The onset temperature at which the electrical conductivity increased or decreased was found to be similar to that obtained by DSC. Also, the final temperature at which the electrical conductivity returned to linearity matched the end gelatinization temperature of the DSC. Further, a wet method for measuring the onset, peak, and end gelatinization temperatures as a function of temperature using the electrical conductivity curves is presented for a starch-water suspension.

  4. Aluminum flame temperature measurements in solid propellant combustion.

    Science.gov (United States)

    Parigger, Christian G; Woods, Alexander C; Surmick, David M; Donaldson, A B; Height, Jonathan L

    2014-01-01

    The temperature in an aluminized propellant is determined as a function of height and plume depth from diatomic AlO and thermal emission spectra. Higher in the plume, 305 and 508 mm from the burning surface, measured AlO emission spectra show an average temperature with 1σ errors of 2980 ± 80 K. Lower in the plume, 152 mm from the burning surface, an average AlO emission temperature of 2450 ± 100 K is inferred. The thermal emission analysis yields higher temperatures when using constant emissivity. Particle size effects along the plume are investigated using wavelength-dependent emissivity models.

  5. Direct measurements of laser light aberration from the ARTEMIS geostationary satellite through thin clouds

    CERN Document Server

    Kuzkov, Volodymyr; Sodnik, Zoran

    2015-01-01

    A precise ground based telescope system was developed for laser communication experiments with the geostationary satellite ARTEMIS of ESA. Precise tracking of the satellite was realized by using time resolved coordinates of the satellite. During the experiments, the time propagation of laser signal from the satellite and the point-ahead angle for the laser beam were calculated. Some laser experiments though thin clouds were performed. A splitting of some images of the laser beam from the satellite along declination and right ascension coordinates of telescope could be observed through thin clouds. The splitting along the declination coordinate may be interpreted as refraction in the atmosphere. The splitting along the right ascension coordinate is equivalent to the calculated point-ahead angle for the satellite. We find out that a small part of laser beam was observed ahead of the velocity vector in the point where the satellite would be after the laser light from the satellite reaches the telescope. These re...

  6. Earth's gravity field modelling based on satellite accelerations derived from onboard GPS phase measurements

    Science.gov (United States)

    Guo, X.; Ditmar, P.; Zhao, Q.; Klees, R.; Farahani, H. H.

    2017-09-01

    GPS data collected by satellite gravity missions can be used for extracting the long-wavelength part of the Earth's gravity field. We propose a new data processing method which makes use of the `average acceleration' approach to gravity field modelling. In this method, satellite accelerations are directly derived from GPS carrier phase measurements with an epoch-differenced scheme. As a result, no ambiguity solutions are needed and the systematic errors that do not change much from epoch to epoch are largely eliminated. The GPS data collected by the Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) satellite mission are used to demonstrate the added value of the proposed method. An analysis of the residual accelerations shows that accelerations derived in this way are more precise, with noise being reduced by about 20 and 5% at the cross-track component and the other two components, respectively, as compared to those based on kinematic orbits. The accelerations obtained in this way allow the recovery of the gravity field to a slightly higher maximum degree compared to the solution based on kinematic orbits. Furthermore, the gravity field solution has an overall better performance. Errors in spherical harmonic coefficients are smaller, especially at low degrees. The cumulative geoid height error is reduced by about 15 and 5% up to degree 50 and 150, respectively. An analysis in the spatial domain shows that large errors along the geomagnetic equator, which are caused by a high electron density coupled with large short-term variations, are substantially reduced. Finally, the new method allows for a better observation of mass transport signals. In particular, sufficiently realistic signatures of regional mass anomalies in North America and south-west Africa are obtained.

  7. Validation of NH3 satellite observations by ground-based FTIR measurements

    Science.gov (United States)

    Dammers, Enrico; Palm, Mathias; Van Damme, Martin; Shephard, Mark; Cady-Pereira, Karen; Capps, Shannon; Clarisse, Lieven; Coheur, Pierre; Erisman, Jan Willem

    2016-04-01

    Global emissions of reactive nitrogen have been increasing to an unprecedented level due to human activities and are estimated to be a factor four larger than pre-industrial levels. Concentration levels of NOx are declining, but ammonia (NH3) levels are increasing around the globe. While NH3 at its current concentrations poses significant threats to the environment and human health, relatively little is known about the total budget and global distribution. Surface observations are sparse and mainly available for north-western Europe, the United States and China and are limited by the high costs and poor temporal and spatial resolution. Since the lifetime of atmospheric NH3 is short, on the order of hours to a few days, due to efficient deposition and fast conversion to particulate matter, the existing surface measurements are not sufficient to estimate global concentrations. Advanced space-based IR-sounders such as the Tropospheric Emission Spectrometer (TES), the Infrared Atmospheric Sounding Interferometer (IASI), and the Cross-track Infrared Sounder (CrIS) enable global observations of atmospheric NH3 that help overcome some of the limitations of surface observations. However, the satellite NH3 retrievals are complex requiring extensive validation. Presently there have only been a few dedicated satellite NH3 validation campaigns performed with limited spatial, vertical or temporal coverage. Recently a retrieval methodology was developed for ground-based Fourier Transform Infrared Spectroscopy (FTIR) instruments to obtain vertical concentration profiles of NH3. Here we show the applicability of retrieved columns from nine globally distributed stations with a range of NH3 pollution levels to validate satellite NH3 products.

  8. The contribution of satellite SAR-derived displacement measurements in landslide risk management practices

    Science.gov (United States)

    Raspini, Federico; Bardi, Federica; Bianchini, Silvia; Ciampalini, Andrea; Del Ventisette, Chiara; Farina, Paolo; Ferrigno, Federica; Solari, Lorenzo; Casagli, Nicola

    2017-04-01

    Landslides are common phenomena that occur worldwide and are a main cause of loss of life and damage to property. The hazards associated with landslides are a challenging concern in many countries, including Italy. With 13% of the territory prone to landslides, Italy is one of the European countries with the highest landslide hazard, and on a worldwide scale, it is second only to Japan among the technologically advanced countries. Over the last 15 years, an increasing number of applications have aimed to demonstrate the applicability of images captured by space-borne Synthetic Aperture Radar (SAR) sensors in slope instability investigations. InSAR (SAR Interferometry) is currently one of the most exploited techniques for the assessment of ground displacements, and it is becoming a consolidated tool for Civil Protection institutions in addressing landslide risk. We present a subset of the results obtained in Italy within the framework of SAR-based programmes and applications intended to test the potential application of C- and X-band satellite interferometry during different Civil Protection activities (namely, prevention, prevision, emergency response and post-emergency phases) performed to manage landslide risk. In all phases, different benefits can be derived from the use of SAR-based measurements, which were demonstrated to be effective in the field of landslide analysis. Analysis of satellite-SAR data is demonstrated to play a major role in the investigation of landslide-related events at different stages, including detection, mapping, monitoring, characterization and prediction. Interferometric approaches are widely consolidated for analysis of slow-moving slope deformations in a variety of environments, and exploitation of the amplitude data in SAR images is a somewhat natural complement for rapid-moving landslides. In addition, we discuss the limitations that still exist and must be overcome in the coming years to manage the transition of satellite SAR

  9. Earth's gravity field modelling based on satellite accelerations derived from onboard GPS phase measurements

    Science.gov (United States)

    Guo, X.; Ditmar, P.; Zhao, Q.; Klees, R.; Farahani, H. H.

    2017-02-01

    GPS data collected by satellite gravity missions can be used for extracting the long-wavelength part of the Earth's gravity field. We propose a new data processing method which makes use of the `average acceleration' approach to gravity field modelling. In this method, satellite accelerations are directly derived from GPS carrier phase measurements with an epoch-differenced scheme. As a result, no ambiguity solutions are needed and the systematic errors that do not change much from epoch to epoch are largely eliminated. The GPS data collected by the Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) satellite mission are used to demonstrate the added value of the proposed method. An analysis of the residual accelerations shows that accelerations derived in this way are more precise, with noise being reduced by about 20 and 5% at the cross-track component and the other two components, respectively, as compared to those based on kinematic orbits. The accelerations obtained in this way allow the recovery of the gravity field to a slightly higher maximum degree compared to the solution based on kinematic orbits. Furthermore, the gravity field solution has an overall better performance. Errors in spherical harmonic coefficients are smaller, especially at low degrees. The cumulative geoid height error is reduced by about 15 and 5% up to degree 50 and 150, respectively. An analysis in the spatial domain shows that large errors along the geomagnetic equator, which are caused by a high electron density coupled with large short-term variations, are substantially reduced. Finally, the new method allows for a better observation of mass transport signals. In particular, sufficiently realistic signatures of regional mass anomalies in North America and south-west Africa are obtained.

  10. Comprehensive Comparisons of Satellite Data, Signals, and Measurements between the BeiDou Navigation Satellite System and the Global Positioning System

    Directory of Open Access Journals (Sweden)

    Shau-Shiun Jan

    2016-05-01

    Full Text Available The Chinese BeiDou navigation satellite system (BDS aims to provide global positioning service by 2020. The combined use of BDS and Global Positioning System (GPS is proposed to provide navigation service with more stringent requirements. Actual satellite data, signals and measurements were collected for more than one month to analyze the positioning service qualities from both BDS and GPS. In addition to the conversions of coordinate and timing system, five data quality analysis (DQA methods, three signal quality analysis (SQA methods, and four measurement quality analysis (MQA methods are proposed in this paper to improve the integrated positioning performance of BDS and GPS. As shown in the experiment results, issues related to BDS and GPS are resolved by the above proposed quality analysis methods. Thus, the anomalies in satellite data, signals and measurements can be detected by following the suggested resolutions to enhance the positioning performance of the combined use of BDS and GPS in the Asia Pacific region.

  11. High Accuracy Thermal Expansion Measurement at Cryogenic Temperatures

    Science.gov (United States)

    Tucker, Jim; Despit, Gregory; Stallcup, Michael; Presson, Joan; Nein, Max

    2003-01-01

    A new, interferometer-based system for measuring thermal expansion to an absolute accuracy of 20 ppb or better at cryogenic temperatures has been developed. Data from NIST Copper SRM 736 measured from room temperature to 15 K will be presented along with data from many other materials including beryllium, ULE, Zerodur, and composite materials. Particular attention will be given to a study by the Space Optics Manufacturing Technology Center (SOMTC) investigating the variability of ULE and beryllium materials used in the AMSD program Approximately 20 samples of each material, tested from room temperature to below 30 K are compared as a function of billet location.

  12. Simultaneous measurement of temperature and strain using four connecting wires

    Science.gov (United States)

    Parker, Allen R., Jr.

    1993-01-01

    This paper describes a new signal-conditioning technique for measuring strain and temperature which uses fewer connecting wires than conventional techniques. Simultaneous measurement of temperature and strain has been achieved by using thermocouple wire to connect strain gages to signal conditioning. This signal conditioning uses a new method for demultiplexing sampled analog signals and the Anderson current loop circuit. Theory is presented along with data to confirm that strain gage resistance change is sensed without appreciable error because of thermoelectric effects. Furthermore, temperature is sensed without appreciable error because of voltage drops caused by strain gage excitation current flowing through the gage resistance.

  13. Dielectric properties measurement system at cryogenic temperatures and microwave frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Molla, J.; Ibarra, A.; Margineda, J.; Zamarro, J. M.; Hernandez, A.

    1994-07-01

    A system based on the resonant cavity method has been developed to measure the permittivity and loss tangent at 12-18 GHz over the temperature range 80 K to 300 K. Changes of permittivity as low as 0.01 % in the range 1 to 30, and 3 x 10{sup 6} for loss tangent values below 10{sup 2}, can be obtained without requiring temperature stability. The thermal expansion coefficient and resistivity factor of copper have been measured between 80 K and 300 K. Permittivity of sapphire and loss tangent of alumina of 99.9 % purity in the same temperature range are presented. (Author) 23 refs.

  14. [Analyses of spectral emissivity in radiation temperature measurement].

    Science.gov (United States)

    Fu, Tai-Ran; Cheng, Xiao-Fang; Zhong, Mao-Hua; Yang, Zang-Jian

    2008-01-01

    The complexity of the spectral emissivity of actual surfaces is the key point in the research and applications of radiation temperature measurement, resulting in the difficulty in the achievement of the temperature measurement. In the present paper, based on the discussions of the Taylor expansion, the non-dimension wavelength and the exponent, the authors describe the mathematical expression of the spectral emissivity of actual surfaces, and establish the general spectral emissivity function. Through the fitting of experimental data of the spectral emissivities of different metals at different temperatures, the applicability of the spectral emissivity function is verified which especially becomes the fundamental in the research of primary spectrum pyrometry.

  15. Effect of temperature on the pathogenesis, accumulation of viral and satellite RNAs and on plant proteome in peanut stunt virus and satellite RNA-infected plants

    Directory of Open Access Journals (Sweden)

    Aleksandra eObrępalska-Stęplowska

    2015-10-01

    Full Text Available Temperature is an important environmental factor influencing plant development in natural and diseased conditions. The growth rate of plants grown at 27°C is more rapid than for plants grown at 21°C. Thus, temperature affects the rate of pathogenesis progression in individual plants. We have analyzed the effect of temperature conditions (either 21°C or 27°C during the day on the accumulation rate of the virus and satellite RNA (satRNA in Nicotiana benthamiana plants infected by peanut stunt virus (PSV with and without its satRNA, at four time points. In addition, we extracted proteins from PSV and PSV+satRNA-infected plants harvested at 21 dpi, when disease symptoms began to appear on plants grown at 21°C and were well developed on those grown at 27°C, to assess the proteome profile in infected plants compared to mock-inoculated plants grown at these two temperatures, using 2D-gel electrophoresis and mass spectrometry approaches. The accumulation rate of the viral RNAs and satRNA was more rapid at 27°C at the beginning of the infection and then rapidly decreased in PSV-infected plants. At 21 dpi, PSV and satRNA accumulation was higher at 21°C and had a tendency to increase further. In all studied plants grown at 27°C, we observed a significant drop in the identified proteins participating in photosynthesis and carbohydrate metabolism at the proteome level, in comparison to plants maintained at 21°C. On the other hand, the proteins involved in protein metabolic processes were all more abundant in plants grown at 27°C. This was especially evident when PSV-infected plants were analyzed, where increase in abundance of proteins involved in protein synthesis, degradation, and folding was revealed. In mock-inoculated and PSV-infected plants we found an increase in abundance of the majority of stress-related differently-regulated proteins and those associated with protein metabolism. In contrast, in PSV+satRNA-infected plants the shift in the

  16. Sixth generation lithospheric magnetic field model, MF6, from CHAMP satellite magnetic measurements

    Science.gov (United States)

    Maus, S.; Fan, Y.; Manoj, C.; Rother, M.; Rauberg, J.; Stolle, C.; Luhr, H.

    2007-12-01

    The CHAMP satellite continues to provide highly accurate magnetic field measurements with decreasing orbital altitudes (<350km) at solar minimum conditions. A promising new CHAMP data product has become available, which provides the total field with one order of magnitude smaller noise amplitudes. The product is inferred from suitably merged Fluxgate and Overhauser magnetometer data. While the low-noise Fluxgate measurements are used in the short-period range (<900sec, or <6000km wavelength), we take advantage of the high stability provided by the Overhauser for the longer periods. The new data set is used for generating an improved lithospheric magnetic field model (MF6). Although MF6 is still in production at the time of writing this abstract, we anticipate significant benefits in terms of resolving small- scale low-amplitude crustal features from the new data. Further improvements include a new correction for steady ocean circulation and an expansion to higher spherical harmonic degrees of the model.

  17. Night sky brightness at sites from DMSP-OLS satellite measurements

    CERN Document Server

    Cinzano, P

    2004-01-01

    We apply the sky brightness modelling technique introduced and developed by Roy Garstang to high-resolution DMSP-OLS satellite measurements of upward artificial light flux and to GTOPO30 digital elevation data in order to predict the brightness distribution of the night sky at a given site in the primary astronomical photometric bands for a range of atmospheric aerosol contents. This method, based on global data and accounting for elevation, Earth curvature and mountain screening, allows the evaluation of sky glow conditions over the entire sky for any site in the World, to evaluate its evolution, to disentangle the contribution of individual sources in the surrounding territory, and to identify main contributing sources. Sky brightness, naked eye stellar visibility and telescope limiting magnitude are produced as 3-dimensional arrays whose axes are the position on the sky and the atmospheric clarity. We compared our results to available measurements.

  18. Measurements of Ocean Spectral Irradiance for Correlation with Satellite Remote Sensing

    Science.gov (United States)

    1980-05-01

    PRT "E02="YR2; , +R9R15+R25;1+R9 36; SPCF R6+R26F PRT LOG f1E6R6)l- 7’I 22:1 37-o PRT "RA I) SI G ~-R:3R10R21+R3;R4RI IF R’?0OPRT 0; 8: 0R22+R4...Listings . ......... C-I APPENDIX D. Log Sheets ................ ............... D-1 (1) Daily Log (2) Data Printout Supplement APPENDIX E. XBT Trace...taken. --q a Estimated from XBT log ; between stations 17 and 18. X Measurement made or action taken. 0 No measurement or action. Table 2-1. Satellite

  19. Temperature measurement in laminar free convective flow using digital holography.

    Science.gov (United States)

    Hossain, Md Mosarraf; Shakher, Chandra

    2009-04-01

    A method for measurement of temperature in laminar free convection flow of water is presented using digital holographic interferometry. The method is relatively simple and fast because the method uses lensless Fourier transform digital holography, for which the reconstruction algorithm is simple and fast, and also the method does not require use of any extra experimental efforts as in phase shifting. The quantitative unwrapped phase difference is calculated experimentally from two digital holograms recorded in two different states of water--one in the quiescent state, the other in the laminar free convection. Unknown temperature in laminar free convection is measured quantitatively using a known value of temperature in the quiescent state from the unwrapped phase difference, where the equation by Tilton and Taylor describing the variation of refractive index of water with temperature is used to connect the phase with temperature. Experiments are also performed to visualize the turbulent free convection flow.

  20. Vibrational and rotational temperature measurements in a shock tube

    Science.gov (United States)

    Sharma, S. P.

    1992-01-01

    Vibrational and rotational temperatures in nitrogen test gas relaxing behind a normal shock are measured using the emission spectra of N2(+)(1-) and N2(2+) band systems in an electric-arc driven shock tube, at a shock velocity of 6.2 km/sec. The results are compared with similar data obtained by AVCO-Everett Research Laboratory during the 1960s. The vibrational and rotational temperatures in the equilibrium region obtained in the present experiment agreed with those of AVCO, but those in the nonequilibrium region are greatly different from the AVCO results. The measured rotational temperature seems to be in nonequilibrium with the translational temperature, contradicting the two-temperature model widely used in CFD. Also, the relaxation rates for both N2(+) and N2 molecules seem to be of the same order.

  1. [Combustion temperature measurement of solid propellant by remote sensing FTIR].

    Science.gov (United States)

    Li, Yan; Wang, Jun-De; Sun, Xiu-Yun; Zhou, Xue-Tie

    2004-08-01

    The combustion temperature of solid propellant was measured in this paper. Emission spectra of the combustion flame were collected with remote sensing FTIR at the resolution of 4 cm(-1). The combustion temperatures with the burning time were calculated from the maximum spectral line intensity and the molecular rotation-vibration spectra of HF molecule, respectively. Combustion temperatures at each time were all 1 788.8 K from the maximum spectral line intensity method. For comparison, the temperatures calculated from the molecular rotation-vibration spectra were 1 859.7, 1 848. 3, 1 804.0 and 1 782.7 K, respectively. Results show that the two methods are all dependable in measuring combustion temperature of solid propellant. But the maximum spectral line intensity method is more convenient and rapid than the other when the combustion is relatively stable.

  2. Measurement of thermal expansion coefficient of nonuniform temperature specimen

    Institute of Scientific and Technical Information of China (English)

    Jingmin Dai; Chunsuo Kin; Xiaowa He

    2008-01-01

    A new technique is developed to measure the longitudinal thermal expansion coefficient of C/C composite material at high temperature. The measuring principle and components of the apparatus are described in detail. The calculation method is derived from the temperature dependence of the thermal expansion coefficient. The apparatus mainly consists of a high temperature environmental chamber, a power circuit of heating, two high-speed pyrometers, and a laser scanning system. A long solid specimen is resistively heated to a steady high-temperature state by a steady electrical current. The temperature profile of the specimen surface is not uniform because of the thermal conduction and radiation. The temperature profile and the total expansion are measured with a high-speed scanning pyrometer and a laser slit scanning measuring system, respectively. The thermal expansion coefficient in a wide temperature range (1000 - 3800 K) of the specimen can therefore be obtained. The perfect consistency between the present and previous results justifies the validity of this technique.

  3. Body temperature measurements in pigs during general anaesthesia.

    Science.gov (United States)

    Musk, G C; Costa, R S; Tuke, J

    2016-04-01

    The aim was to compare rectal, pharyngeal and oesophageal temperature measurements in anaesthetized pigs. Data were compared using the Bland-Altman method, and correlation coefficients and error measures were calculated. Sixty-six sets of data were collected from 16 pigs weighing 16.2 ± 4.2 kg. The bias (and 95% limit of agreement) for rectal and pharyngeal compared with oesophageal temperature were 0.69 (-1.18 to 2.57) ℃ and 0.22 (-0.84 to 1.28) ℃, respectively. The correlation coefficients for rectal and pharyngeal compared with oesophageal temperature were 0.47 and 0.87, respectively. The absolute error for rectal and pharyngeal compared with oesophageal temperature was 0.7 ± 0.9℃ and 0.2 ± 0.5℃, respectively. Pharyngeal temperature measurement may be more suitable than rectal temperature measurement for estimation of oesophageal temperature during general anaesthesia of pigs.

  4. Sensorless battery temperature measurements based on electrochemical impedance spectroscopy

    Science.gov (United States)

    Raijmakers, L. H. J.; Danilov, D. L.; van Lammeren, J. P. M.; Lammers, M. J. G.; Notten, P. H. L.

    2014-02-01

    A new method is proposed to measure the internal temperature of (Li-ion) batteries. Based on electrochemical impedance spectroscopy measurements, an intercept frequency (f0) can be determined which is exclusively related to the internal battery temperature. The intercept frequency is defined as the frequency at which the imaginary part of the impedance is zero (Zim = 0), i.e. where the phase shift between the battery current and voltage is absent. The advantage of the proposed method is twofold: (i) no hardware temperature sensors are required anymore to monitor the battery temperature and (ii) the method does not suffer from heat transfer delays. Mathematical analysis of the equivalent electrical-circuit, representing the battery performance, confirms that the intercept frequency decreases with rising temperatures. Impedance measurements on rechargeable Li-ion cells of various chemistries were conducted to verify the proposed method. These experiments reveal that the intercept frequency is clearly dependent on the temperature and does not depend on State-of-Charge (SoC) and aging. These impedance-based sensorless temperature measurements are therefore simple and convenient for application in a wide range of stationary, mobile and high-power devices, such as hybrid- and full electric vehicles.

  5. Validation of magnetic resonance concentration measurements with adiabatic wall temperature measurements

    Science.gov (United States)

    Sayles, Emily L.; Eaton, John K.

    2016-12-01

    Adiabatic wall temperature measurements were obtained in a high subsonic Mach number airflow experiment and compared with concentration measurements near the surface from a low-speed liquid flow experiment. Excellent agreement between the temperature and concentration measurements validates the investigation of turbulent mixing phenomena in compressible gas flows through the study of incompressible liquid flows with magnetic resonance techniques.

  6. Observation operator for the assimilation of aerosol type resolving satellite measurements into a chemical transport model

    Directory of Open Access Journals (Sweden)

    M. Schroedter-Homscheidt

    2010-11-01

    Full Text Available Modelling of aerosol particles with chemical transport models is still based mainly on static emission databases while episodic emissions cannot be treated sufficiently. To overcome this situation, a coupling of chemical mass concentration modelling with satellite-based measurements relying on physical and optical principles has been developed. This study deals with the observation operator for a component-wise assimilation of satellite measurements. It treats aerosol particles classified into water soluble, water insoluble, soot, sea salt and mineral dust containing aerosol particles in the atmospheric boundary layer as separately assimilated aerosol components. It builds on a mapping of aerosol classes used both in observation and model space taking their optical and chemical properties into account. Refractive indices for primary organic carbon particles, anthropogenic particles, and secondary organic species have been defined based on a literature review. Together with a treatment of different size distributions in observations and model state, this allows transforming the background from mass concentrations into aerosol optical depths. A two-dimensional, variational assimilation is applied for component-wise aerosol optical depths. Error covariance matrices are defined based on a validation against AERONET sun photometer measurements. Analysis fields are assessed threefold: (1 through validation against AERONET especially in Saharan dust outbreak situations, (2 through comparison with the British Black Smoke and Sulphur Dioxide Network for soot-containing particles, and (3 through comparison with measurements of the water soluble components SO4, NH4, and NO3 conducted by the EMEP (European Monitoring and Evaluation Programme network. Separately, for the water soluble, the soot and the mineral dust aerosol components a bias reduction and subsequent a root mean square error reduction is observed in the

  7. CLAIRE: a Canadian Small Satellite Mission for Measurement of Greenhouse Gases

    Science.gov (United States)

    Sloan, James; Grant, Cordell; Germain, Stephane; Durak, Berke; McKeever, Jason; Latendresse, Vincent

    2016-07-01

    CLAIRE, a Canadian mission operated by GHGSat Inc. of Montreal, is the world's first satellite designed to measure greenhouse gas emissions from single targeted industrial facilities. Claire was launched earlier this year into a 500 km polar sun-synchronous orbit selected to provide an acceptable balance between return frequency and spatial resolution. Extensive simulations of oil & gas facilities, power plants, hydro reservoirs and even animal feedlots were used to predict the mission performance. The principal goal is to measure the emission rates of carbon dioxide and methane from selected targets with greater precision and lower cost than ground-based alternatives. CLAIRE will measure sources having surface areas less than 10 x 10 km2 with a spatial resolution better than 50 m, thereby providing industrial site operators and government regulators with the information they need to understand, manage and ultimately to reduce greenhouse gas emissions more economically. The sensor is based on a Fabry-Perot interferometer, coupled with a 2D InGaAs focal plane array operating in the short-wave infrared with a spectral resolution of about 0.1 nm. The patented, high étendue, instrument design provides signal to noise ratios that permit quantification of emission rates with accuracies adequate for most regulatory reporting thresholds. The very high spatial resolution of the density maps produced by the CLAIRE mission resolves plume shapes and emitter locations so that advanced dispersion models can derive accurate emission rates of multiple sources within the field of view. The satellite bus, provided by the University of Toronto's Space Flight Laboratory, is based on the well-characterized NEMO architecture, including hardware that has significant spaceflight heritage. The mission is currently undergoing initial test and validation measurements in preparation for commercial operation later this year.

  8. Quantitative assessment of impedance tomography for temperature measurements in hyperthermia.

    Science.gov (United States)

    Blad, B; Persson, B; Lindström, K

    1992-01-01

    The objective of this study is a non-invasive assessment of the thermal dose in hyperthermia. Electrical impedance tomography (EIT) has previously been given a first trial as a temperature monitoring method together with microwave-induced hyperthermia treatment, but it has not been thoroughly investigated. In the present work we have examined this method in order to investigate the correlation in vitro between the true spatial temperature distribution and the corresponding measured relative resistivity changes. Different hyperthermia techniques, such as interstitial water tubings, microwave-induced, laser-induced and ferromagnetic seeds have been used. The results show that it is possible to find a correlation between the measured temperature values and the tomographically measured relative resistivity changes in tissue-equivalent phantoms. But the uncertainty of the temperature coefficients, which has been observed, shows that the method has to be improved before it can be applied to clinical in vivo applications.

  9. Device for measurement of thermal emissivity at cryogenic temperatures

    CERN Document Server

    Kralik, Tomas; Musilova, Vera; Srnka, Ales

    2016-01-01

    In the described device, the thermal emissivity or absorptivity of the sample is measured by substitution of the radiative heat flow between two parallel surfaces by thermal output of a heater. Fast measurements of the mutual emissivity for the range of the temperature of the radiating surface 25 K-150 K are possible. The absorbing surface has a temperature between 5 K and 10 K when LHe is used as cryoliquid. The desired measurement sensitivity is 1 mK for temperature and 0.1 {\\mu}W for heat power, respectively. The diameter of the whole device is 50 mm and so it is possible to use a commercial dewar can for the cooling. The form of the sample is a round plate 40 mm in diameter and 1 mm in thickness with one tested side. The emissivity and its temperature dependency for various surface treatments can be checked immediately before application in a cryogenic system.

  10. Modern gas-based temperature and pressure measurements

    CERN Document Server

    Pavese, Franco

    2013-01-01

    This 2nd edition volume of Modern Gas-Based Temperature and Pressure Measurements follows the first publication in 1992. It collects a much larger set of information, reference data, and bibliography in temperature and pressure metrology of gaseous substances, including the physical-chemical issues related to gaseous substances. The book provides solutions to practical applications where gases are used in different thermodynamic conditions. Modern Gas-Based Temperature and Pressure Measurements, 2nd edition is the only comprehensive survey of methods for pressure measurement in gaseous media used in the medium-to-low pressure range closely connected with thermometry. It assembles current information on thermometry and manometry that involve the use of gaseous substances which are likely to be valid methods for the future. As such, it is an important resource for the researcher. This edition is updated through the very latest scientific and technical developments of gas-based temperature and pressure measurem...

  11. High temperature internal friction measurements of 3YTZP zirconia polycrystals. High temperature background and creep

    OpenAIRE

    Simas, P.; Castillo-Rodríguez, Miguel; Nó, M. L.; De-Bernardi, S.; Gómez-García, D.; Domínguez-Rodríguez, Alejandro; San Juan, J.

    2014-01-01

    This work focuses on the high-temperature mechanic properties of a 3 mol % yttria zirconia polycrystals (3YTZP), fabricated by hot-pressureless sintering. Systematic measurements of mechanical loss as a function of temperature and frequency were performed. An analytical method, based on the generalised Maxwell rheological model, has been used to analyse the high temperature internal friction background (HTB). This method has been previously applied to intermetallic compounds...

  12. GHRSST Level 2P Eastern Pacific Regional Skin Sea Surface Temperature from the Geostationary Operational Environmental Satellites (GOES) Imager on the GOES-11 satellite (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Geostationary Operational Environmental Satellites (GOES) operated by the United States National Oceanic and Atmospheric Administration (NOAA) support weather...

  13. GHRSST Level 2P West Atlantic Regional Skin Sea Surface Temperature from the Geostationary Operational Environmental Satellites (GOES) Imager on the GOES-12 satellite (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Geostationary Operational Environmental Satellites (GOES) operated by the United States National Oceanic and Atmospheric Administration (NOAA) support weather...

  14. OW NOAA GOES Sea-Surface Temperature

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The dataset contains satellite-derived sea-surface temperature measurements collected by means of the Geostationary Orbiting Environmental Satellite. The data is...

  15. Simultaneous wind and temperature measurements in the middle atmosphere with a twin Doppler lidar

    Science.gov (United States)

    Hildebrand, Jens; Baumgarten, Gerd; Fiedler, Jens; Lübken, Franz-Josef

    2016-04-01

    Winds play an important role for the filtering of gravity waves traveling from the ground to higher altitudes. They control the propagation of gravity waves and the amount of transported energy and momentum. The thermal structure of the atmosphere determines its stability, hence the buoyancy frequency. Therefore, knowing winds and temperatures in the middle atmosphere is crucial to study and interpret atmospheric dynamics comprehensively. Both temperature and wind affect the propagation of infrasound waves through the middle atmosphere. Observing winds and temperatures in the middle atmosphere on routine basis is challenging since a large part of this altitude range is not accessible by radars or satellites. Using the Doppler Rayleigh Iodine Spectrometer DoRIS, our Rayleigh/Mie/Raman lidar at the Arctic station ALOMAR in Northern Norway (69°N, 16°E) is capable to measure winds and temperatures simultaneously in the middle atmosphere between about 20 and 80 km altitude. Since two independently steerable telescopes are used, we can derive two wind components at once. Winds and temperatures are measured even under daylight conditions, yielding observations spanning multiple days, which is essential for, e.g., gravity-wave studies. We will present results from case studies and a larger data set covering winter situations between 2012 and 2015, including stratospheric warmings and periods of enhanced gravity wave activity.

  16. Estimation of fossil-fuel CO2 emissions using satellite measurements of "proxy" species

    Science.gov (United States)

    Konovalov, Igor B.; Berezin, Evgeny V.; Ciais, Philippe; Broquet, Grégoire; Zhuravlev, Ruslan V.; Janssens-Maenhout, Greet

    2016-11-01

    Fossil-fuel (FF) burning releases carbon dioxide (CO2) together with many other chemical species, some of which, such as nitrogen dioxide (NO2) and carbon monoxide (CO), are routinely monitored from space. This study examines the feasibility of estimation of FF CO2 emissions from large industrial regions by using NO2 and CO column retrievals from satellite measurements in combination with simulations by a mesoscale chemistry transport model (CTM). To this end, an inverse modeling method is developed that allows estimating FF CO2 emissions from different sectors of the economy, as well as the total CO2 emissions, in a given region. The key steps of the method are (1) inferring "top-down" estimates of the regional budget of anthropogenic NOx and CO emissions from satellite measurements of proxy species (NO2 and CO in the case considered) without using formal a priori constraints on these budgets, (2) the application of emission factors (the NOx-to-CO2 and CO-to-CO2 emission ratios in each sector) that relate FF CO2 emissions to the proxy species emissions and are evaluated by using data of "bottom-up" emission inventories, and (3) cross-validation and optimal combination of the estimates of CO2 emission budgets derived from measurements of the different proxy species. Uncertainties in the top-down estimates of the NOx and CO emissions are evaluated and systematic differences between the measured and simulated data are taken into account by using original robust techniques validated with synthetic data. To examine the potential of the method, it was applied to the budget of emissions for a western European region including 12 countries by using NO2 and CO column amounts retrieved from, respectively, the OMI and IASI satellite measurements and simulated by the CHIMERE mesoscale CTM, along with the emission conversion factors based on the EDGAR v4.2 emission inventory. The analysis was focused on evaluation of the uncertainty levels for the top-down NOx and CO emission

  17. Early assessment of Integrated Multi-satellite Retrievals for Global Precipitation Measurement over China

    Science.gov (United States)

    Guo, Hao; Chen, Sheng; Bao, Anming; Behrangi, Ali; Hong, Yang; Ndayisaba, Felix; Hu, Junjun; Stepanian, Phillip M.

    2016-07-01

    Two post-real time precipitation products from the Integrated Multi-satellite Retrievals for Global Precipitation Measurement Mission (IMERG) are systematically evaluated over China with China daily Precipitation Analysis Product (CPAP) as reference. The IMERG products include the gauge-corrected IMERG product (IMERG_Cal) and the version of IMERG without direct gauge correction (IMERG_Uncal). The post-research TRMM Multisatellite Precipitation Analysis version 7 (TMPA-3B42V7) is also evaluated concurrently with IMERG for better perspective. In order to be consistent with CPAP, the evaluation and comparison of selected products are performed at 0.25° and daily resolutions from 12 March 2014 through 28 February 2015. The results show that: Both IMERG and 3B42V7 show similar performances. Compared to IMERG_Uncal, IMERG_Cal shows significant improvement in overall and conditional bias and in the correlation coefficient. Both IMERG_Cal and IMERG_Uncal perform relatively poor in winter and over-detect slight precipitation events in northwestern China. As an early validation of the GPM-era IMERG products that inherit the TRMM-era global satellite precipitation products, these findings will provide useful feedbacks and insights for algorithm developers and data users over China and beyond.

  18. POGO satellite orbit corrections: an opportunity to improve the quality of the geomagnetic field measurements?

    Science.gov (United States)

    Stockmann, Reto; Christiansen, Freddy; Olsen, Nils; Jackson, Andrew

    2015-06-01

    We present an attempt to improve the quality of the geomagnetic field measurements from the Polar Orbiting Geophysical Observatory (POGO) satellite missions in the late 1960s. Inaccurate satellite positions are believed to be a major source of errors for using the magnetic observations for field modelling. To improve the data, we use an iterative approach consisting of two main parts: one is a main field modelling process to obtain the radial field gradient to perturb the orbits and the other is the state-of-the-art GPS orbit modelling software BERNESE to calculate new physical orbits. We report results based on a single-day approach showing a clear increase of the data quality. That single-day approach leads, however, to undesirable orbital jumps at midnight. Furthermore, we report results obtained for a much larger data set comprising almost all of the data from the three missions. With this approach, we eliminate the orbit discontinuities at midnight but only tiny quality improvements could be achieved for geomagnetically quiet data. We believe that improvements to the data are probably still possible, but it would require the original tracking observations to be found.

  19. Satellite quenching time-scales in clusters from projected phase space measurements matched to simulated orbits

    Science.gov (United States)

    Oman, Kyle A.; Hudson, Michael J.

    2016-12-01

    We measure the star formation quenching efficiency and time-scale in cluster environments. Our method uses N-body simulations to estimate the probability distribution of possible orbits for a sample of observed Sloan Digital Sky Survey galaxies in and around clusters based on their position and velocity offsets from their host cluster. We study the relationship between their star formation rates and their likely orbital histories via a simple model in which star formation is quenched once a delay time after infall has elapsed. Our orbit library method is designed to isolate the environmental effect on the star formation rate due to a galaxy's present-day host cluster from `pre-processing' in previous group hosts. We find that quenching of satellite galaxies of all stellar masses in our sample (109-10^{11.5}M_{⊙}) by massive (> 10^{13} M_{⊙}) clusters is essentially 100 per cent efficient. Our fits show that all galaxies quench on their first infall, approximately at or within a Gyr of their first pericentric passage. There is little variation in the onset of quenching from galaxy-to-galaxy: the spread in this time is at most ˜2 Gyr at fixed M*. Higher mass satellites quench earlier, with very little dependence on host cluster mass in the range probed by our sample.

  20. An Ad-hoc Satellite Network to Measure Filamentary Current Structures in the Auroral Zone

    Science.gov (United States)

    Nabong, C.; Fritz, T. A.; Semeter, J. L.

    2014-12-01

    An ad-hoc cubesat-based satellite network project known as ANDESITE is under development at Boston University. It aims to develop a dense constellation of easy-to-use, rapidly-deployable low-cost wireless sensor nodes in space. The objectives of the project are threefold: 1) Demonstrate viability of satellite based sensor networks by deploying an 8-node miniature sensor network to study the filamentation of the field aligned currents in the auroral zones of the Earth's magnetosphere. 2) Test the scalability of proposed protocols, including localization techniques, tracking, data aggregation, and routing, for a 3 dimensional wireless sensor network using a "flock" of nodes. 3) Construct a 6U Cube-sat running the Android OS as an integrated constellation manager, data mule and sensor node deplorer. This small network of sensor nodes will resolve current densities at different spatial resolutions in the near-Earth magnetosphere using measurements from magnetometers with 1-nT sensitivities and 0.2 nT/√Hz self-noise. Mapping of these currents will provide new constraints for models of auroral particle acceleration, wave-particle interactions, ionospheric destabilization, and other kinetic processes operating in the low-beta plasma of the near Earth magnetosphere.

  1. MONS on the Danish Roemer satellite Measuring Oscillations in Nearby Stars

    CERN Document Server

    Christensen-Dalsgaard, J

    2001-01-01

    MONS is the scientific project on the Danish Roemer satellite mission, which is being developed as part of the Danish Small Satellite Programme. The principal goal is to study solar-like oscillations in around 20 bright stars, with a precision that in the best cases will be limited only by the intrinsic stellar `noise'. The baseline orbit, a so-called Molniya orbit, allows access to essentially the entire sky during the planned 2-year mission. The main instrument is a short-focus reflecting telescope with an aperture of 32 cm, making two-colour measurements. A focused Field Monitor will be used to detect and correct for possible faint variable stars of substantial amplitude near the main target. In addition the Field Monitor, and the Star Trackers on the platform, may be used to observe a broad range of variable phenomena. The project has concluded the Systems Definition Phase by a successful review, and launch is scheduled for the middle of 2005.

  2. Soil temperature variability in complex terrain measured using fiber-optic distributed temperature sensing

    Science.gov (United States)

    Soil temperature (Ts) exerts critical controls on hydrologic and biogeochemical processes but magnitude and nature of Ts variability in a landscape setting are rarely documented. Fiber optic distributed temperature sensing systems (FO-DTS) potentially measure Ts at high density over a large extent. ...

  3. Self-calibrated active pyrometer for furnace temperature measurements

    Science.gov (United States)

    Woskov, Paul P.; Cohn, Daniel R.; Titus, Charles H.; Surma, Jeffrey E.

    1998-01-01

    Pyrometer with a probe beam superimposed on its field-of-view for furnace temperature measurements. The pyrometer includes a heterodyne millimeter/sub-millimeter-wave or microwave receiver including a millimeter/sub-millimeter-wave or microwave source for probing. The receiver is adapted to receive radiation from a surface whose temperature is to be measured. The radiation includes a surface emission portion and a surface reflection portion which includes the probe beam energy reflected from the surface. The surface emission portion is related to the surface temperature and the surface reflection portion is related to the emissivity of the surface. The simultaneous measurement of surface emissivity serves as a real time calibration of the temperature measurement. In an alternative embodiment, a translatable base plate and a visible laser beam allow slow mapping out of interference patterns and obtaining peak values therefor. The invention also includes a waveguide having a replaceable end portion, an insulating refractory sleeve and/or a source of inert gas flow. The pyrometer may be used in conjunction with a waveguide to form a system for temperature measurements in a furnace. The system may employ a chopper or alternatively, be constructed without a chopper. The system may also include an auxiliary reflector for surface emissivity measurements.

  4. Online junction temperature measurement using peak gate current

    DEFF Research Database (Denmark)

    Baker, Nick; Munk-Nielsen, Stig; Iannuzzo, Francesco

    2015-01-01

    A new method for junction temperature measurement of MOS-gated power semiconductor switches is presented. The measurement method involves detecting the peak voltage over the external gate resistor of an IGBT or MOSFET during turn-on. This voltage is directly proportional to the peak gate current...

  5. HIGH TEMPERATURE HIGH PRESSURE THERMODYNAMIC MEASUREMENTS FOR COAL MODEL COMPOUNDS

    Energy Technology Data Exchange (ETDEWEB)

    Vinayak N. Kabadi

    2000-05-01

    The flow VLE apparatus designed and built for a previous project was upgraded and recalibrated for data measurements for this project. The modifications include better and more accurate sampling technique, addition of a digital recorder to monitor temperature and pressure inside the VLE cell, and a new technique for remote sensing of the liquid level in the cell. VLE data measurements for three binary systems, tetralin-quinoline, benzene--ethylbenzene and ethylbenzene--quinoline, have been completed. The temperature ranges of data measurements were 325 C to 370 C for the first system, 180 C to 300 C for the second system, and 225 C to 380 C for the third system. The smoothed data were found to be fairly well behaved when subjected to thermodynamic consistency tests. SETARAM C-80 calorimeter was used for incremental enthalpy and heat capacity measurements for benzene--ethylbenzene binary liquid mixtures. Data were measured from 30 C to 285 C for liquid mixtures covering the entire composition range. An apparatus has been designed for simultaneous measurement of excess volume and incremental enthalpy of liquid mixtures at temperatures from 30 C to 300 C. The apparatus has been tested and is ready for data measurements. A flow apparatus for measurement of heat of mixing of liquid mixtures at high temperatures has also been designed, and is currently being tested and calibrated.

  6. Pulsed Raman measurements of lattice temperature: Validity tests

    Science.gov (United States)

    Compaan, A.; Lee, M. C.; Lo, H. W.; Trott, G. J.; Aydinli, A.

    1983-10-01

    We measure the temperature dependence of the Raman correction factors and present data on the spot size and transverse beam quality of lasers used in the pulsed Raman measurements of lattice temperature in Si. Recent criticisms are also evaluated and shown to be inappropriate or in error. Finally we measure the shift of the 520-cm-1 Raman line and find it also to be consistent with the observed Stokes/anti-Stokes ratios indicating optic phonon populations characteristic of ˜450 °C.

  7. The multifractal structure of satellite sea surface temperature maps can be used to obtain global maps of streamlines

    Directory of Open Access Journals (Sweden)

    A. Turiel

    2009-10-01

    Full Text Available Nowadays Earth observation satellites provide information about many relevant variables of the ocean-climate system, such as temperature, moisture, aerosols, etc. However, to retrieve the velocity field, which is the most relevant dynamical variable, is still a technological challenge, specially in the case of oceans. New processing techniques, emerged from the theory of turbulent flows, have come to assist us in this task. In this paper, we show that multifractal techniques applied to new Sea Surface Temperature satellite products opens the way to build maps of ocean currents with unprecedented accuracy. With the application of singularity analysis, we show that global ocean circulation patterns can be retrieved in a daily basis. We compare these results with high-quality altimetry-derived geostrophic velocities, finding a quite good correspondence of the observed patterns both qualitatively and quantitatively; and this is done for the first time on a global basis, even for less active areas. The implications of this findings from the perspective both of theory and of operational applications are discussed.

  8. Direct Radiative Forcing from Saharan Mineral Dust Layers from In-situ Measurements and Satellite Retrievals

    Science.gov (United States)

    Sauer, D. N.; Vázquez-Navarro, M.; Gasteiger, J.; Chouza, F.; Weinzierl, B.

    2016-12-01

    Mineral dust is the major species of airborne particulate matter by mass in the atmosphere. Each year an estimated 200-3000 Tg of dust are emitted from the North African desert and arid regions alone. A large fraction of the dust is lifted into the free troposphere and gets transported in extended dust layers westward over the Atlantic Ocean into the Caribbean Sea. Especially over the dark surface of the ocean, those dust layers exert a significant effect on the atmospheric radiative balance though aerosol-radiation interactions. During the Saharan Aerosol Long-range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE) in summer 2013 airborne in-situ aerosol measurements on both sides of the Atlantic Ocean, near the African coast and the Caribbean were performed. In this study we use data about aerosol microphysical properties acquired between Cabo Verde and Senegal to derive the aerosol optical properties and the resulting radiative forcing using the radiative transfer package libRadtran. We compare the results to values retrieved from MSG/SEVIRI data using the RRUMS algorithm. The RRUMS algorithm can derive shortwave and longwave top-of-atmosphere outgoing fluxes using only information issued from the narrow-band MSG/SEVIRI channels. A specific calibration based on collocated Terra/CERES measurements ensures a correct retrieval of the upwelling flux from the dust covered pixels. The comparison of radiative forcings based on in-situ data to satellite-retrieved values enables us to extend the radiative forcing estimates from small-scale in-situ measurements to large scale satellite coverage over the Atlantic Ocean.

  9. CARS Temperature and Species Measurements For Air Vehicle Propulsion Systems

    Science.gov (United States)

    Danehy, Paul M.; Gord, James R.; Grisch, Frederic; Klimenko, Dmitry; Clauss, Walter

    2005-01-01

    The coherent anti-Stokes Raman spectroscopy (CARS) method has recently been used in the United States and Europe to probe several different types of propulsion systems for air vehicles. At NASA Langley Research Center in the United States, CARS has been used to simultaneously measure temperature and the mole fractions of N2, O2 and H2 in a supersonic combustor, representative of a scramjet engine. At Wright- Patterson Air Force Base in the United States, CARS has been used to simultaneously measure temperature and mole fractions of N2, O2 and CO2, in the exhaust stream of a liquid-fueled, gas-turbine combustor. At ONERA in France and the DLR in Germany researchers have used CARS to measure temperature and species concentrations in cryogenic LOX-H2 rocket combustion chambers. The primary aim of these measurements has been to provide detailed flowfield information for computational fluid dynamics (CFD) code validation.

  10. [Combustion temperature measurement of solid propellant and the effect of organic compound on combustion temperature].

    Science.gov (United States)

    Zhou, Xue-tie; Li, Yan; Chen, Zuo-ru; Wang, Jun-de

    2003-06-01

    The FTIR emission spectra in the spectral range of 4,500-300 cm-1 for the solid propellants were measured by a remote sensing FTIR system. The P-branch of fine structure of HCl fundamental band lying at 3.46 microns was used for precise combustion temperature measurement of the solid propellant. The effect of the organic compound in the solid propellant on the combustion temperature was discussed.

  11. Analysis of rain fade duration models for Earth-to-satellite path based on data measured in Malaysia

    Science.gov (United States)

    Dao, Hassan; Rafiqul, Islam Md; Al-Khateeb, Khalid A. S.

    2013-12-01

    Statistical analysis of rain fade duration is crucial information for system engineer to design and plan a fade mitigation technique (FMT) for the satellite communication system. An investigation is carried out based on data measured of one year period in Kuala Lumpur, Malaysia from satellite path of MEASAT3. This paper presents statistical analysis of measured fade duration on high elevation angle (77.4°) in Ku-band compared to three prediction models of fade duration. It is found that none of the models could predict measured fade duration distribution accurately.

  12. Innovations in plantar pressure and foot temperature measurements in diabetes.

    Science.gov (United States)

    Bus, S A

    2016-01-01

    Plantar pressure and temperature measurements in the diabetic foot primarily contribute to identifying abnormal values that increase risk for foot ulceration, and they are becoming increasingly more integrated in clinical practice and daily life of the patient. While plantar pressure measurements have long been present, only recently evidence shows their importance in ulcer prevention, as a data-driven approach to therapeutic footwear provision. The long-term monitoring of plantar pressures with the option to provide feedback, when alarming pressure levels occur, is a promising development in this area, although more technical and clinical validation is required. Shear is considered important in ulcer aetiology but is technically difficult to measure. Innovative research is underway to assess if foot temperature can act as a useful surrogate for shear. Because the skin heats up before it breaks down, frequent monitoring of foot temperature can identify these warning signals. This approach has shown to be effective in preventing foot ulcers. Innovation in diagnostic methods for foot temperature monitoring and evidence on cost effectiveness will likely facilitate implementation. Finally, monitoring of adherence to offloading treatment using temperature-based sensors has proven to be a feasible and relevant method with a wide range of possible research and patient care applications. These innovations in plantar pressure and temperature measurements illustrate an important transfer in diabetic foot care from subjective to objective evaluation of the high-risk patient. They demonstrate clinical value and a large potential in helping to reduce the patient and economic burden of diabetic foot disease.

  13. Preliminary Strength Measurements of High Temperature Ash Filter Deposits

    Energy Technology Data Exchange (ETDEWEB)

    Kang, B.S.; Johnson, E.K.; Mallela, R.; Barberio, J.F. [West Virginia Univ., Morgantown, WV (United States). Dept. of Mechanical and Aerospace Engineering

    1996-12-31

    The objective of this study is to develop and evaluate preliminary strength measurement techniques for high temperature candle filter ash deposits. The efficient performance of a high temperature gas filtering system is essential for many of the new thermal cycles being proposed for power plants of the future. These new cycles hold the promise of higher thermal efficiency and lower emissions of pollutants. Many of these cycles involve the combustion or gasification of coal to produce high temperature gases to eventually be used in gas turbines. These high temperature gases must be relatively free of particulates. Today, the candle filter appears to be the leading candidate for high temperature particulate removal. The performance of a candle filter depends on the ash deposits shattering into relatively large particles during the pulse cleaning (back flushing) of the filters. These relatively large particles fall into the ash hopper and are removed from the system. Therefore, these 1247 particles must be sufficiently large so that they will not be re-entrained by the gas flow. The shattering process is dictated by the strength characteristics of the ash deposits. Consequently, the objective of this research is to develop measurements for the desired strength characteristics of the ash deposits. Experimental procedures were developed to measure Young`s modulus of the ash deposit at room temperature and the failure tensile strain of ash deposits from room temperature to elevated temperatures. Preliminary data has been obtained for both soft and hard ash deposits. The qualifier ``preliminary`` is used to indicate that these measurements are a first for this material, and consequently, the measurement techniques are not perfected. In addition, the ash deposits tested are not necessarily uniform and further tests are needed in order to obtain meaningful average data.

  14. Atmospheric influences on infrared-laser signals used for occultation measurements between Low Earth Orbit satellites

    Directory of Open Access Journals (Sweden)

    S. Schweitzer

    2011-05-01

    Full Text Available LEO-LEO infrared-laser occultation (LIO is a new occultation technique between Low Earth Orbit (LEO satellites, which applies signals in the short wave infrared spectral range (SWIR within 2 μm to 2.5 μm. It is part of the LEO-LEO microwave and infrared-laser occultation (LMIO method, recently introduced by Kirchengast and Schweitzer (2011, that enables to retrieve thermodynamic profiles (pressure, temperature, humidity and accurate altitude levels from microwave signals and profiles of greenhouse gases and further variables such as line-of-sight wind speed from simultaneously measured LIO signals. For enabling trace species retrieval based on differential transmission, the LIO signals are spectrally located as pairs, one in the centre of a suitable absorption line of a target species (absorption signal and one close by but outside of any absorption lines (reference signal. Due to the novelty of the LMIO method, detailed knowledge of atmospheric influences on LIO signals and of their suitability for accurate trace species retrieval did not yet exist. Here we discuss the atmospheric influences on the transmission and differential transmission of LIO signals. Refraction effects, trace species absorption (by target species, and cross-sensitivity to foreign species, aerosol extinction and Rayleigh scattering are studied in detail. The influences of clouds, turbulence, wind, scattered solar radiation and terrestrial thermal radiation are discussed as well. We show that the influence of defocusing, foreign species absorption, aerosols and turbulence is observable, but can be rendered small to negligible by use of the differential transmission principle and by a design with close frequency spacing of absorption and reference signals within 0.5 %. The influences of Rayleigh scattering and thermal radiation on the received signal intensities are found negligible. Cloud-scattered solar radiation can be observable under bright-day conditions but this

  15. Modelling dengue fever risk in the State of Yucatan, Mexico using regional-scale satellite-derived sea surface temperature.

    Science.gov (United States)

    Laureano-Rosario, Abdiel E; Garcia-Rejon, Julian E; Gomez-Carro, Salvador; Farfan-Ale, Jose A; Muller-Karger, Frank E

    2017-08-01

    Accurately predicting vector-borne diseases, such as dengue fever, is essential for communities worldwide. Changes in environmental parameters such as precipitation, air temperature, and humidity are known to influence dengue fever dynamics. Furthermore, previous studies have shown how oceanographic variables, such as El Niño Southern Oscillation (ENSO)-related sea surface temperature from the Pacific Ocean, influences dengue fever in the Americas. However, literature is lacking on the use of regional-scale satellite-derived sea surface temperature (SST) to assess its relationship with dengue fever in coastal areas. Data on confirmed dengue cases, demographics, precipitation, and air temperature were collected. Incidence of weekly dengue cases was examined. Stepwise multiple regression analyses (AIC model selection) were used to assess which environmental variables best explained increased dengue incidence rates. SST, minimum air temperature, precipitation, and humidity substantially explained 42% of the observed variation (r(2)=0.42). Infectious diseases are characterized by the influence of past cases on current cases and results show that previous dengue cases alone explained 89% of the variation. Ordinary least-squares analyses showed a positive trend of 0.20±0.03°C in SST from 2006 to 2015. An important element of this study is to help develop strategic recommendations for public health officials in Mexico by providing a simple early warning capability for dengue incidence. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Capabilities and uncertainties of aircraft measurements for the validation of satellite precipitation products – a virtual case study

    Directory of Open Access Journals (Sweden)

    Andrea Lammert

    2015-08-01

    Full Text Available Remote sensing sensors on board of research aircraft provide detailed measurements of clouds and precipitation which can be used as reference data to validate satellite products. Such satellite derived precipitation data using passive microwave radiometers with a resolution of typically 50×50km2$50\\times50\\,\\text{km}^2$ stands against high spatial and temporal resolved airborne measurements, but only along a chosen line. This paper focuses on analysis on the uncertainty arising from the different spatial resolution and coverage. Therefore we use a perfect model approach, with a high resolved forecast model yielding perfect virtual aircraft and satellite observations. The mean precipitation and standard deviation per satellite box were estimated with a Gaussian approach. The comparison of the mean values shows a high correlation of 0.92, but a very wide spread. As criterion to define good agreement between satellite mean and reference, we choose a deviation of one standard deviation of the virtual aircraft as threshold. Considering flight tracks in the range of 50 km (one overflight, the perfect agreement of satellite and aircraft observations is only detected in 65 % of the cases. To increase this low reliability the precipitation distributions of the virtual aircraft were fitted by a gamma density function. Using the same quality criterion, the usage of gamma density fit yields an improvement of the Aircraft reliability up to 80 %.

  17. Quantifying Above-Cloud Aerosols through Integrating Multi-Sensor Measurements from A-Train Satellites

    Science.gov (United States)

    Zhang, Yan

    2012-01-01

    Quantifying above-cloud aerosols can help improve the assessment of aerosol intercontinental transport and climate impacts. Large-scale measurements of aerosol above low-level clouds had been generally unexplored until very recently when CALIPSO lidar started to acquire aerosol and cloud profiles in June 2006. Despite CALIPSO s unique capability of measuring above-cloud aerosol optical depth (AOD), such observations are substantially limited in spatial coverage because of the lidar s near-zero swath. We developed an approach that integrates measurements from A-Train satellite sensors (including CALIPSO lidar, OMI, and MODIS) to extend CALIPSO above-cloud AOD observations to substantially larger areas. We first examine relationships between collocated CALIPSO above-cloud AOD and OMI absorbing aerosol index (AI, a qualitative measure of AOD for elevated dust and smoke aerosol) as a function of MODIS cloud optical depth (COD) by using 8-month data in the Saharan dust outflow and southwest African smoke outflow regions. The analysis shows that for a given cloud albedo, above-cloud AOD correlates positively with AI in a linear manner. We then apply the derived relationships with MODIS COD and OMI AI measurements to derive above-cloud AOD over the whole outflow regions. In this talk, we will present spatial and day-to-day variations of the above-cloud AOD and the estimated direct radiative forcing by the above-cloud aerosols.

  18. Comparison of different methods of temperature measurement in children

    Directory of Open Access Journals (Sweden)

    Pavlović Momčilo

    2008-01-01

    Full Text Available Introduction The consequences of failing to notice fever in children can be serious. On the other hand, false positive reading can result in unnecessary investigation or diagnostic approach. The aim of this study was to compare different ways of body temperature measurement. Material and methods This prospective study was carried out on Pediatric Department of General Hospital in Subotica during 10 months (March-December 2006. In 263 children aged 1 month to 18 years of age, the body temperature was obtained from 4 measurement sites: tactile assessment, forehead and ear by electronic thermometer, rectal temperature in small children (up to 2 years of age or axillar temperature in older children by mercury thermometer. Tympanic thermometry was considered as a standard for fever detection. Results The sensitivity of rectal temperature to detect fever is 46.67%, while specificity is 92.19%. The sensitivity of fever detection by electronic thermometry on the forehead is lower according to rectal thermometry - 36.08%, while specificity is 95.18%. The lowest values of sensitivity are recorded in axillar thermometry (35.82%, specificity is 90.20%. The correlation coefficient is higher between tympanic and rectal temperature measurement (r=0.5076, p<0.0005, than between tympanic and forehead measurements (r=0.5076, p<0,0005, while the lowest was between tympanic and axillar measurement sites (r=0.4933, p<0.0005. Conclusions The results of our study and literature data show that the most accurate methods of thermometry are rectal measurement of body temperature in small children and tympanic thermometry in children over 2 years of age.

  19. Density and Temperature Measurements in a Solar Active Region

    Science.gov (United States)

    Warren, Harry P.; Winebarger, Amy R.

    2003-10-01

    We present electron density and temperature measurements from an active region observed above the limb with the Solar Ultraviolet Measurements of Emitted Radiation spectrometer on the Solar and Heliospheric Observatory. Density-sensitive line ratios from Si VIII and S X indicate densities greater than 108 cm-3 as high as 200" (or 145 Mm) above the limb. At these heights, static, uniformly heated loop models predict densities close to 107 cm-3. Differential emission measure analysis shows that the observed plasma is nearly isothermal with a mean temperature of about 1.5 MK and a dispersion of about 0.2 MK. Both the differential emission measure and the Si XI/Si VIII line ratios indicate only small variations in the temperature at the heights observed. These measurements confirm recent observations from the Transition Region and Coronal Explorer of ``overdense'' plasma at temperatures near 1 MK in solar active regions. Time-dependent hydrodynamic simulations suggest that impulsive heating models can account for the large densities, but they have a difficult time reproducing the narrow range of observed temperatures. The observations of overdense, nearly isothermal plasma in the solar corona provide a significant challenge to theories of coronal heating.

  20. Dynamic measurement of temperature using neutron resonance spectroscopy (NRS)

    Energy Technology Data Exchange (ETDEWEB)

    Funk, D.J.; Asay, B.W.; Bennett, B.I.; Bowman, J.D.; Boat, R.M.; Dickson, P.M.; Henson, B.F.; Hull, L.M.; Idar, D.J.; Laabs, G.W.; London, R.K.; Mace, J.L.; Morgan, G.L.; Murk, D.M.; Rabie, R.L.; Ragan, C.E.; Stacy, H.L.; Yuan, V.W. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    1998-07-01

    Accurate temperature measurements in dynamic systems have been pursued for decades and have usually relied on optical techniques. These approaches are generally hampered by insufficient information regarding the emissivity of the system under study. We are developing NRS techniques to measure temperature in dynamic systems and overcome these limitations. Many neutron resonances have narrow intrinsic Breit-Wigner widths such that the resonance is substantially broadened by the atomic motion even at room temperature. Thus, accurate measurement of the Doppler contribution allows one to infer the material temperature, and for the conditions achieved using standard high explosives, the probe itself is not perturbed by the high temperature and pressure. Experiments are conducted using a pulsed spallation source at LANSCE with time-of-flight measurement of the neutron spectra. In initial experiments, we have demonstrated that measurements with ten percent accuracy are possible. We have fielded dynamic tests, most of which were neutron-flux limited. An overview of the approach and the status of our experimental campaign are discussed. {copyright} {ital 1998 American Institute of Physics.}

  1. Quantification of in situ temperature measurements on a PBI-based high temperature PEMFC unit cell

    DEFF Research Database (Denmark)

    Lebæk, Jesper; Ali, Syed Talat; Møller, Per

    2010-01-01

    The temperature is a very important operating parameter for all types of fuel cells. In the present work distributed in situ temperature measurements are presented on a polybenzimidazole based high temperature PEM fuel cell (HT-PEM). A total of 16 T-type thermocouples were embedded on both...... sensors showed minimal influence on cell performance, this difference seen in performance is believed to be caused by different bipolar plate materials. The measurement method is suitable for obtaining detailed data for validation of computational models, moreover the results indicate that the method can...

  2. The influence of topographic structures on night-time surface temperatures: Evaluation of a satellite thermal image of the upper Rhine plain and the surrounding highlands. [Germany and Switzerland

    Science.gov (United States)

    Gossmann, H. (Principal Investigator)

    1980-01-01

    The author has identified the following significant results. Satellite data supplied the same information as aerial IR registrations with corresponding averaging for all studies requiring a survey of the thermal pattern within an area measuring 10 km x 10 km ore more, provided that sufficiently precise control points could be established for the purpose of geometric rectification in the surroundings of the area observed. Satellite thermal data are more comprehensive than aircraft data for studies on a regional, rather than a local scale, since airborne images often obscure the basic correlation in thermal patterns because of a variety of irrelevant topographical detail. The satellite data demonstrate the dependence of surface temperature on relief more clearly than comparable airborne imagery.

  3. Agreement between rectal and vaginal temperature measured with temperature loggers in dairy cows.

    Science.gov (United States)

    Suthar, Vishal; Burfeind, Onno; Maeder, Britta; Heuwieser, Wolfgang

    2013-05-01

    The overall objective of this study was to evaluate agreement between rectal (RT) and vaginal temperature (VT) measured with the same temperature loggers in dairy cows. Three experiments were conducted. The study began with a validation in vitro of 24 temperature loggers comparing them to a calibrated liquid-in-glass thermometer as a reference method. The association and agreement between the 24 temperature loggers with the reference method was r=0.996 (Ptemperature loggers were tested in 11 healthy post-partum cows (Experiment 2) and 12 early post-partum cows with greater body temperature (Experiment 3). Temperature loggers were set to record VT and RT at 1-min intervals. To prevent rectal and vaginal straining and potential expulsion of temperature logger an epidural injection of 2.5 ml of 2% Procain was administered. Association between RT and VT was r=0.92 (Ptemperature in Experiments 2 and 3, respectively. Furthermore the intra-class correlation coefficient between RT and VT measured with identical loggers within cows of Experiments 2 and 3 also demonstrated greater agreements (Ptemperature loggers can be used as a measure of body temperature in dairy cows.

  4. Airborne compact rotational Raman lidar for temperature measurement.

    Science.gov (United States)

    Wu, Decheng; Wang, Zhien; Wechsler, Perry; Mahon, Nick; Deng, Min; Glover, Brent; Burkhart, Matthew; Kuestner, William; Heesen, Ben

    2016-09-05

    We developed an airborne compact rotational Raman lidar (CRL) for use on the University of Wyoming King Air (UWKA) aircraft to obtain two-dimensional (2D) temperature disman tributions. It obtained fine-scale 2D temperature distributions within 3 km below the aircraft for the first time during the PECAN (Plains Elevated Convection At Night) campaign in 2015. The CRL provided nighttime temperature measurements with a random error of <0.5 K within 800 m below aircraft at 45 m vertical and 1000 m horizontal resolution. The temperatures obtained by the CRL and a radiosonde agreed. Along with water vapor and aerosol measurements, the CRL provides critical parameters on the state of the lower atmosphere for a wide range of atmospheric research.

  5. Investigation on pre-seismic equatorial ionospheric anomaly and its possible association with the gravity wave using satellite measurements

    Science.gov (United States)

    Ryu, K.; Oyama, K. I.; Sun, Y. Y.; Liu, T. J. Y.

    2016-12-01

    Some examples of the equatorial plasma density measured by DEMETER (Detection of Electro-Magnetic Emissions Transmitted from Earthquake Regions) increased before some large earthquakes are introduced. Previous examples of the pre-seismic equatorial ionization anomalies (EIA) associated with the northern Sumatra earthquake of 2005, Wenchuan earthquake of 2008, Pisco earthquake of 2007, and Kuril Island earthquake of 2007, commonly accompanied conspicuous precursory EIA enhancements distinct from the longitudinal asymmetric variation which is known as a result of ionospheric interaction with the thermospheric tidal modulation generating wave structure in the global ionospheric density profile in the dayside local time. The physical mechanisms of the seismo-ionospheric coupling manifested as the enhanced EIA intensity can be ascribed either to the gravity wave or static electric field generated by the lithosphere-atmosphere-ionosphere coupling, which is still in debate because of lack in confident observational evidences. Molucca sea earthquake of 2007 which accompanied dominant-ever precursory EIA enhancement was selected as a case study to investigate whether the seismo-ionospheric coupling was originated from the gravity wave propagating from the mesosphere to the thermosphere using the SABER satellite data. The gravity wave intensity according to the frequency was derived by applying the s-transform to the atmospheric neutral temperature profile measured by SABER limb-scanning method. The initial analysis results of the ionospheric plasma condition and thermospheric gravity wave derived from DEMETER, CHAMP, and SABER are introduced and the possible association between the physical conditions are discussed.

  6. A Temperature Sensor using a Silicon-on-Insulator (SOI) Timer for Very Wide Temperature Measurement

    Science.gov (United States)

    Patterson, Richard L.; Hammoud, Ahmad; Elbuluk, Malik; Culley, Dennis E.

    2008-01-01

    A temperature sensor based on a commercial-off-the-shelf (COTS) Silicon-on-Insulator (SOI) Timer was designed for extreme temperature applications. The sensor can operate under a wide temperature range from hot jet engine compartments to cryogenic space exploration missions. For example, in Jet Engine Distributed Control Architecture, the sensor must be able to operate at temperatures exceeding 150 C. For space missions, extremely low cryogenic temperatures need to be measured. The output of the sensor, which consisted of a stream of digitized pulses whose period was proportional to the sensed temperature, can be interfaced with a controller or a computer. The data acquisition system would then give a direct readout of the temperature through the use of a look-up table, a built-in algorithm, or a mathematical model. Because of the wide range of temperature measurement and because the sensor is made of carefully selected COTS parts, this work is directly applicable to the NASA Fundamental Aeronautics/Subsonic Fixed Wing Program--Jet Engine Distributed Engine Control Task and to the NASA Electronic Parts and Packaging (NEPP) Program. In the past, a temperature sensor was designed and built using an SOI operational amplifier, and a report was issued. This work used an SOI 555 timer as its core and is completely new work.

  7. Global top-down smoke aerosol emissions estimation using satellite fire radiative power measurements

    Directory of Open Access Journals (Sweden)

    C. Ichoku

    2013-10-01

    Full Text Available Biomass burning occurs seasonally in most vegetated parts of the world, consuming large amounts of biomass fuel, generating intense heat energy, and emitting corresponding amounts of smoke plumes that comprise different species of aerosols and trace gases. Accurate estimates of these emissions are required as model inputs to evaluate and forecast smoke plume transport and impacts on air quality, human health, clouds, weather, radiation, and climate. Emissions estimates have long been based on bottom-up approaches that are not only complex, but also fraught with compounding uncertainties. Fortunately, a series of recent studies have revealed that both the rate of biomass consumption and the rate of emission of aerosol particulate matter (PM by open biomass burning are directly proportional to the rate of release of fire radiative energy (FRE, which is fire radiative power (FRP that is measurable from satellite. This direct relationship enables the determination of coefficients of emission (Ce, which can be used to convert FRP or FRE to smoke aerosol emissions in the same manner as emission factors (EFs are used to convert burned biomass to emissions. We have leveraged this relationship to generate the first global 1° × 1° gridded Ce product for smoke aerosol or total particulate matter (TPM emissions using coincident measurements of FRP and aerosol optical thickness (AOT from the Moderate-resolution Imaging Spectro-radiometer (MODIS sensors aboard the Terra and Aqua satellites. This new Fire Energetics and Emissions Research version 1.0 (FEER.v1 Ce product has now been released to the community and can be obtained from http://feer.gsfc.nasa.gov/, along with the corresponding 1-to-1 mapping of their quality assurance (QA flags that will enable the Ce values to be filtered by quality for use in various applications. The regional averages of Ce values for different ecosystem types were found to be in the ranges of: 16–21 g MJ−1 for savanna

  8. Earth's lithospheric magnetic field determined to spherical harmonic degree 90 from CHAMP satellite measurements

    DEFF Research Database (Denmark)

    Maus, S.; Rother, M.; Hemant, K.;

    2006-01-01

    The CHAMP magnetic field mission is providing highly reliable measurements from which the global lithospheric magnetic field can be determined in unprecedented resolution and accuracy. Using almost 5 yr of data, we derive our fourth generation lithospheric field model termed MF4, which is expanded...... to spherical harmonic degree and order 90. After subtracting from the full magnetic field observations predicted fields from an internal field model up to degree 15, an external field model up to degree two, and the predicted magnetic field signatures for the eight dominant ocean tidal constituents, we fit...... of the lithospheric field down to an altitude of about 50 km at lower latitudes, with reduced accuracy in the polar regions. Crustal features come out significantly sharper than in previous models. In particular, bands of magnetic anomalies along subduction zones become visible by satellite for the first time....

  9. Equatorial ionosphere semiannual oscillation investigated from Schumann resonance measurements on board the C/NOFS satellite

    Science.gov (United States)

    Simões, Fernando; Pfaff, Robert; Freudenreich, Henry; Klenzing, Jeffrey; Rowland, Douglas; Bromund, Kenneth; Kepko, Larry; Le, Guan; Liebrecht, Maria Carmen; Martin, Steven; Uribe, Paulo

    2013-11-01

    of Schumann resonance signatures in the equatorial ionosphere offers remote sensing capabilities for the investigation of tropospheric and space weather effects in the ionosphere. Schumann resonances are electromagnetic oscillations in the earth-ionosphere cavity produced by lightning activity. Analysis of AC electric field measurements gathered by the Communications/Navigation Outage Forecasting System satellite reveals a semiannual pattern in Schumann resonance data recorded during nighttime in the equatorial ionosphere. This pattern observed in the Schumann resonance amplitude is expected to help validate—or at least constrain—potential mechanisms proposed to explain the semiannual oscillation observed in different geophysical records, such as those reported in a variety of tropospheric, ionospheric/thermospheric, and magnetospheric observations.

  10. Temperatures stabilization of a field instrument for uranium enrichment measurements

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, R.; Wawrowski, S.; Charland, M. [Canberra Industries, Inc., Meriden, CT (United States)] [and others

    1996-12-31

    Enrichment measurements with sodium iodide (NaI) detectors are hampered with a number of problems related to the temperature behavior of NaI crystals and the associated electronics. This problem is of particular concern in applications requiring the use of fixed regions of interest; such applications are used by the International Atomic Energy Agency (IAEA) in Vienna. The Canberra IMCA is a new portable instrument for such applications which can use either a NaI or a Ge detector. In developing the IMCA to meet the IAEA requirements for NaI detectors, Canberra has designed a system with a new temperature stabilization method capable of maintaining the detector stability at 0.5% over a temperature range of -10 to +50{degrees}C. This paper includes a detailed description of this IMCA temperature stabilization system, as well as test results for a range of temperatures using uranium standards.

  11. Snow water content estimation from measured snow temperature

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The vertical temperature profiles of snow and sea ice have been measured in the Arctic during the 2nd Chinese National Arctic Research Expedition in 2003 (CHINARE2003). The high-resolution temperature profile in snow is solved by one-dimensional heat transfer equation. The effective heat diffusivity, internal heat sources are identified. The internal heat source refers to the penetrated solar radiation which usually warms the lower part of the snow layer in summer. By temperature gradient analysis, the zero level can be clarified quantitatively as the boundary of the dry and wet snow. According to the in situ time series of vertical temperature profile, the time series of water content in snow is obtained based on an evaluation method of snow water content associated with the snow and ice physical parameters. The relationship of snow water content and snow temperature and temporal-spatial distribution of snow water content are presented

  12. Temperature calibration of Pico-Rad detectors for radon measurement.

    Science.gov (United States)

    Bem, H; Bem, E M; Chruścielewski, W; Skalski, H

    2000-01-01

    A simple mathematical equation linking the activity of adsorbed radon in the vials to the time and temperature of its exposure is discussed. The calibration coefficient--Ks, defined as activity measured in cpm after saturation time, corresponding to radon air concentration of 1 Bq m-3, was determined for four temperatures: 284, 291, 294 and 298 K. A linear relationship of ln Ks values versus T-1 was found. The relatively high difference in Ks values: 2.12 and 1.24 cpm/Bq m-3 for the temperatures of 284 and 298 K, respectively, was observed. It indicates that temperature fluctuations during Pico-Rad vial exposure may lead to erroneous results if the constant average temperature of exposure is introduced into a commonly used computer programme for calculating Rn concentration.

  13. Time-resolved, local temperature measurements during pulsed laser heating

    Energy Technology Data Exchange (ETDEWEB)

    Kappes, Ralf S; Li Chen; Butt, Hans-Juergen; Gutmann, Jochen S, E-mail: kappes@mpip-mainz.mpg.d [Max Planck Institute for Polymer Research, D-55128 Mainz (Germany)

    2010-08-15

    To analyse processes during laser heating, one needs to be able to measure temperatures of about 1000 K within one microsecond and with micrometre resolution. To achieve this accuracy, we set up a high-performance optical detection system with a microsecond gated camera in combination with selected interference filters to detect the thermal emission spectrum in the visible range. By fitting the emission spectrum to Planck's law, we are able to collect an area temperature profile for time intervals as short as one microsecond. Thus we can show that a polymer film, which is doped with an organic dye for energy conversion, can reach temperatures of at least 900 K, which is high above its 'normal' decomposition temperature. It is, furthermore, possible to relate the temperature to the effect of the laser beam on the polymer film.

  14. TEMPERATURE MEASUREMENT OF REFLECTED SHOCK WAVE BY USING CHEMICAL INDICATOR

    Institute of Scientific and Technical Information of China (English)

    Cui Jiping; He Yuzhong; Wang Su; Wang Jing; Fan Bingcheng

    2000-01-01

    This report describes a new method for measuring the temperature of the gas behind the reflected shock wave in shock tube,corresponding to the reservoir temperature of a shock tunnel,based on the chemical reaction of small amount of CF4 premixed in the test gas.The final product C2F4 is used as the temperature indicator,which is sampled and detected by a gas chromatography in the experiment.The detected concentration of C2F4 is correlated to the temperature of the reflected shock wave with the initial pressure P1 and test time γas parameters in the temperature range 3300K<T<5600K,pressure range 5kPa<P1<12kPa andγ≈0.4ms.

  15. Methods of Evaluating Thermodynamic Properties of Landscape Cover Using Multispectral Reflected Radiation Measurements by the Landsat Satellite

    Directory of Open Access Journals (Sweden)

    Yuriy Puzachenko

    2013-09-01

    Full Text Available The paper discusses methods of evaluating thermodynamic properties of landscape cover based on multi-spectral measurements by the Landsat satellites. Authors demonstrate how these methods could be used for studying functionality of landscapes and for spatial interpolation of Flux NET system measurements.

  16. Temperature and Density Measurements in a Quiet Coronal Streamer

    Science.gov (United States)

    Warren, Harry P.; Warshall, Andrew D.

    2002-06-01

    Many previous studies have used emission line or broadband filter ratios to infer the presence of temperature gradients in the quiet solar corona. Recently it has been suggested that these temperature gradients are not real, but result from the superposition of isothermal loops with different temperatures and density scale heights along the line of sight. A model describing this hydrostatic weighting bias has been developed by Aschwanden & Acton. In this paper we present the application of the Aschwanden & Acton differential emission measure model to Solar and Heliospheric Observatory Solar Ultraviolet Measurement of Emitted Radiation (SUMER) observations of a quiet coronal streamer. Simultaneous Yohkoh soft X-ray telescope (SXT) observations show increases in the filter ratios with height above the limb, indicating an increase in temperature. The application of the Aschwanden & Acton model to these SUMER data, however, show that the temperature is constant with height and that the distribution of temperatures in the corona is much too narrow for the hydrostatic weighting bias to have any effect on the SXT filter ratios. We consider the possibility that there is a tenuous hot component (~3 MK) that accounts for the SXT observations. We find that a hot plasma with an emission measure sufficient to reproduce the observed SXT fluxes would also produce significant count rates in the high-temperature emission lines in the SUMER wavelength range. These lines are not observed, and we conclude that the SUMER spectra are not consistent with the SXT filter ratio temperatures. Calculations from a hydrodynamic loop model suggest that nonuniform footpoint heating may be consistent with the temperatures and densities observed at most heights, consistent with the recent analysis of relatively cool (~1 MK) active region loops. We also find, however, that at the lowest heights the observed densities are smaller than those predicted by uniform or footpoint heating.

  17. An Analysis of Satellite, Radiosonde, and Lidar Observations of Upper Tropospheric Water Vapor from the Atmospheric Radiation Measurement Program

    Energy Technology Data Exchange (ETDEWEB)

    Soden, Brian J.; Turner, David D.; Lesht, B. M.; Miloshevich, Larry M.

    2004-02-25

    To improve our understanding of the distribution and radiative effects of water vapor, the U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) program has conducted a series of coordinated water vapor Intensive Observational Periods (IOPs). This study uses observations collected from four ARM IOPs to accomplish two goals: first, we compare radiosonde and Raman lidar observations of upper tropospheric water vapor with co-located geostationary satellite radiances at 6.7 micrometers. During all four IOPs, we find excellent agreement between the satellite and Raman lidar observations of upper tropospheric humidity with systematic differences of ~10%. In contrast, radiosondes equipped with Vaisala sensors are shown to be systematically drier in the upper troposphere by ~40% relative to both the lidar and satellite measurements. Second, we assess the performance of various "correction" strategies designed to rectify known deficiencies in the radiosonde measurements. It is shown that existing methods for correcting the radiosonde dry bias, while effective in the lower troposphere, offer little improvement in the upper troposphere. An alternative method based on variational assimilation of satellite radiances is presented and, when applied to the radiosonde measurements, is shown to significantly improve their agreement with coincident Raman lidar observations. It is suggested that a similar strategy could be used to improve the quality of the global historical record of radiosonde water vapor observations during the satellite era.