WorldWideScience

Sample records for satellite measurements shows

  1. Measuring performance at trade shows

    DEFF Research Database (Denmark)

    Hansen, Kåre

    2004-01-01

    Trade shows is an increasingly important marketing activity to many companies, but current measures of trade show performance do not adequately capture dimensions important to exhibitors. Based on the marketing literature's outcome and behavior-based control system taxonomy, a model is built...... that captures a outcome-based sales dimension and four behavior-based dimensions (i.e. information-gathering, relationship building, image building, and motivation activities). A 16-item instrument is developed for assessing exhibitors perceptions of their trade show performance. The paper presents evidence...

  2. Stream Gauges and Satellite Measurements

    Science.gov (United States)

    Alsdorf, D. E.

    2010-12-01

    Satellite measurements should not be viewed as a replacement for stream gauges. However, occasionally it is suggested that because satellite-based measurements can provide river discharge, a motivation for satellite approaches is an increasing lack of stream gauges. This is an argument for more stream gauges, but not necessarily for satellite measurements. Rather, in-situ and spaceborne methods of estimating discharge are complementary. Stream gauges provide frequent measurements at one point in the river reach whereas satellites have the potential to measure throughout all reaches but at orbital repeat intervals of days to weeks. The Surface Water and Ocean Topography satellite mission (SWOT) is an opportunity to further develop these complements. The motivation for SWOT, and indeed for any satellite based method of estimating discharge, should not be as a replacement for stream gauges. Scientific and application uses should motivate the measurements. For example, understanding floods with their dynamic water surfaces are best sampled from remote platforms that provide water surface elevations throughout the floodwave. As another example, today’s water and energy balance models are giving outputs at increasing spatial resolution and are making use of water surface elevations throughout the modeled basin. These models require a similar resolution in the calibrating and validating observations. We should also be aware of practical limitations. In addition to providing spatially distributed hydrodynamic measurements on rivers, SWOT will be able to measure storage changes in the estimated 30 million lakes in the world that are larger than a hectare. Knowing the storage changes in these lakes is especially important in certain regions such as the Arctic but gauging even a small fraction of these is impractical. Another motivator for satellite methods is that even in the presence of stream gauges, discharge data is not always well shared throughout all countries

  3. Satellite signal shows storage-unloading subsidence in North China

    Science.gov (United States)

    Moiwo, J. P.; Tao, F.

    2015-06-01

    Worsening water storage depletion (WSD) contributes to environmental degradation, land subsidence and earthquake and could disrupt food production/security and social stability. There is need for efficient water use strategies in North China, a pivotal agrarian, industrial and political base in China with a widespread WSD. This study integrates satellite, model and field data products to investigate WSD and land subsidence in North China. In the first step, GRACE (Gravity Recovery and Climate Experiment) mass rates are used to show WSD in the region. Next, GRACE total water storage (TWS) is corrected for soil water storage (SWS) to derive groundwater storage (GWS) using GLDAS (Global Land Data Assimilation System) data products. The derived GWS is compared with GWS obtained from field-measured groundwater level to show land subsidence in the study area. Then GPS (Global Positioning System) data of relative land surface change (LSC) are used to confirm the subsidence due to WSD. A total of ~ 96 near-consecutive months (January 2002 through December 2009) of datasets are used in the study. Based on GRACE mass rates, TWS depletion is 23.76 ± 1.74 mm yr-1 or 13.73 ± 1.01 km3 yr-1 in the 578 000 km2 study area. This is ~ 31 % of the slated 45 km3 yr-1 water delivery in 2050 via the South-North Water Diversion Project. Analysis of relative LSC shows subsidence of 7.29 ± 0.35 mm yr-1 in Beijing and 2.74 ± 0.16 mm yr-1 in North China. About 11.53 % (2.74 ± 0.18 mm or 1.58 ± 0.12 km3) of the TWS and 8.37 % (1.52 ± 0.70 mm or 0.88 ± 0.03 km3) of the GWS are attributed to storage reductions accompanying subsidence in the region. Although interpretations of the findings require caution due to the short temporal and large spatial coverage, the concurrence of WSD and land subsidence could have adverse implications for the study area. It is critical that the relevant stakeholders embark on resource-efficient measures to ensure water availability, food security, ecological

  4. Integration Of GPS And GLONASS Systems In Geodetic Satellite Measurements

    Science.gov (United States)

    Maciuk, Kamil

    2015-12-01

    The article shows the results of satellites measurements elaborations using GPS & GLONASS signals. The aim of this article is to define the influence of adding GLONASS signals on position determination accuracy. It especially concerns areas with big horizon coverages. Object of the study were analysis of DOP coefficients, code and RTK solutions, and usage of satellite techniques in levelling. The performed studies and analysis show that integrated GPS-GLONASS satellite measurements provide possibility to achieve better results than measurements using single navigation satellite system (GPS).

  5. Antarctica: measuring glacier velocity from satellite images.

    Science.gov (United States)

    Lucchitta, B K; Ferguson, H M

    1986-11-28

    Many Landsat images of Antarctica show distinctive flow and crevasse features in the floating part of ice streams and outlet glaciers immediately below their grounding zones. Some of the features, which move with the glacier or ice stream, remain visible over many years and thus allow time-lapse measurements of ice velocities. Measurements taken from Landsat images of features on Byrd Glacier agree well with detailed ground and aerial observations. The satellite-image technique thus offers a rapid and cost-effective method of obtaining average velocities, to a first order of accuracy, of many ice streams and outlet glaciers near their termini.

  6. Satellite microglia show spontaneous electrical activity that is uncorrelated with activity of the attached neuron.

    Science.gov (United States)

    Wogram, Emile; Wendt, Stefan; Matyash, Marina; Pivneva, Tatyana; Draguhn, Andreas; Kettenmann, Helmut

    2016-06-01

    Microglia are innate immune cells of the brain. We have studied a subpopulation of microglia, called satellite microglia. This cell type is defined by a close morphological soma-to-soma association with a neuron, indicative of a direct functional interaction. Indeed, ultrastructural analysis revealed closely attached plasma membranes of satellite microglia and neurons. However, we found no apparent morphological specializations of the contact, and biocytin injection into satellite microglia showed no dye-coupling with the apposed neurons or any other cell. Likewise, evoked local field potentials or action potentials and postsynaptic potentials of the associated neuron did not lead to any transmembrane currents or non-capacitive changes in the membrane potential of the satellite microglia in the cortex and hippocampus. Both satellite and non-satellite microglia, however, showed spontaneous transient membrane depolarizations that were not correlated with neuronal activity. These events could be divided into fast-rising and slow-rising depolarizations, which showed different characteristics in satellite and non-satellite microglia. Fast-rising and slow-rising potentials differed with regard to voltage dependence. The frequency of these events was not affected by the application of tetrodotoxin, but the fast-rising event frequency decreased after application of GABA. We conclude that microglia show spontaneous electrical activity that is uncorrelated with the activity of adjacent neurons.

  7. Digitization and Position Measurement of Astronomical Plates of Saturnian Satellites

    Science.gov (United States)

    Yan, D.; Yu, Y.; Zhang, H. Y.; Qiao, R. C.

    2014-05-01

    Using the advanced commercial scanners to digitize astronomical plates may be a simple and effective way. In this paper, we discuss the method of digitizing and astrometrically reducing six astronomical plates of Saturnian satellites, which were taken from the 1 m RCC (Ritchey Chretien Coude) telescope of Yunnan Observatory in 1988, by using the 10000XL scanner of Epson. The digitized images of the astronomical plates of Saturnian satellites are re-reduced, and the positions of Saturnian satellites based on the UCAC2 (The Second US Naval Observatory CCD Astrograph Catalog) catalogue are given. A comparison of our measured positions with the IMCCE (Institut de Mecanique Celeste et de Calcul des Ephemerides) ephemeris of Saturnian satellites shows the high quality of our measurements, which have an accuracy of 106 mas in right ascension and 89 mas in declination. Moreover, our measurements appear to be consistent with this ephemeris within only about 56 mas in right ascension and 9 mas in declination.

  8. Measurement of Satellite Bunches at the LHC

    CERN Document Server

    Jeff, A; Boccardi, A; Bozyigit, S; Bravin, E; Lefevre, T; Rabiller, A; Roncarolo, F; Welsch, C P; Fisher, A S

    2012-01-01

    The RF gymnastics involved in the delivery of proton and lead ion bunches to the LHC can result in satellite bunches of varying intensity occupying the nominally empty RF buckets. Quantification of these satellites is crucial for bunch-by-bunch luminosity normalization as well as for machine protection. We present an overview of the longitudinal density monitor (LDM) which is the principal instrument for the measurement of satellite bunches in the LHC. The LDM uses single photon counting of synchrotron light. The very high energies reached in the LHC, combined with a dedicated undulator for diagnostics, allow synchrotron light measurements to be made with both protons and heavy ions. The arrival times of photons are collected over a few million turns, with the resulting histogram corrected for the effects of the detector’s deadtime and afterpulsing in order to reconstruct the longitudinal profile of the entire LHC ring. The LDM has achieved a dynamic range in excess of 105 and a time resolution of 90 ps. Ex...

  9. Satellite to measure equatorial ozone layer

    Science.gov (United States)

    1975-01-01

    The Atmosphere Explorer E (Explorer 55) Satellite is described. The satellite will gather information on the earth's upper atmosphere, particularly regarding the condition of the protective ozone layer. The satellite will also provide information concerning the earth's heat balance, and heat flow characteristics, and energy conversion mechanisms.

  10. Satellite measurements of formaldehyde from shipping emissions

    Directory of Open Access Journals (Sweden)

    T. Marbach

    2009-04-01

    Full Text Available International shipping is recognized as a pollution source of growing importance, in particular in the remote marine boundary layer. Nitrogen dioxide originating from ship emissions has previously been detected in satellite measurements. This study presents the first satellite measurements of formaldehyde (HCHO linked to shipping emissions as derived from observations made by the Global Ozone Monitoring Experiment (GOME instrument.

    We analyzed enhanced HCHO tropospheric columns from shipping emissions over the Indian Ocean between Sri Lanka and Sumatra. This region offers good conditions in term of plume detection with the GOME instrument as all ship tracks follow a single narrow track in the same east-west direction as used for the GOME pixel scanning. The HCHO signal alone is weak but could be clearly seen in the high-pass filtered data. The line of enhanced HCHO in the Indian Ocean as seen in the 7-year composite of cloud free GOME observations clearly coincides with the distinct ship track corridor from Sri Lanka to Indonesia. The observed mean HCHO column enhancement over this shipping route is about 2.0×1015 molec/cm2.

    The observed HCHO pattern also agrees qualitatively well with results from the coupled earth system model ECHAM5/MESSy applied to atmospheric chemistry (EMAC. However, the modelled HCHO values over the ship corridor are two times lower than in the GOME high-pass filtered data. This might indicate that the used emission inventories are too low and/or that the in-plume chemistry taking place in the narrow path of the shipping lanes are not well represented at the rather coarse model resolution.

  11. Air quality performed with satellite measurement within the QUITSAT project

    Science.gov (United States)

    Masieri, Samuele; Petritoli, Andrea; Premuda, Margarita; Kostadinov, Ivan; Bortoli, Daniele; Ravegnani, Fabrizio; Giovanelli, Giorgio

    Ground pollutants monitoring, using satellite observation, represents an interesting and high potential approach to air quality that could be inserted into Global monitoring systems. The QUITSAT Italian pilot project (air QUality with Integration of ground based and SAtellite measurements and chemical Transport and multiphase model), funded by the Italian Space Agency (ASI), proposes a new approach producing some interesting results in this frame. The approach focuses in the integration of the satellite observations (ENVISAT/SCIAMACHY and AURA/OMI) with the outputs of the GAMES (Gas Aerosol Modelling Evaluation System) chemical transport model, to provide the evaluation of the tropospheric profiles of some atmo-spheric compounds such as NO2 , O3 , HCHO and SO2 . This activity appears to be very useful to retrieve the surface concentration of trace gases from tropospheric columns of atmospheric compounds obtained with satellite instrumentation. The comparison with the in situ analyzer network over the Po' Valley shows a good correlation between the two data set. The corre-spondence can be improved taking into account also concentration gradients between different stations, classifying the ground base stations according to their rural or urban characteristics and considering the general orography of the ground. Results and methodology are presented and discussed.

  12. Benefits Derived From Laser Ranging Measurements for Orbit Determination of the GPS Satellite Orbit

    Science.gov (United States)

    Welch, Bryan W.

    2007-01-01

    While navigation systems for the determination of the orbit of the Global Position System (GPS) have proven to be very effective, the current research is examining methods to lower the error in the GPS satellite ephemerides below their current level. Two GPS satellites that are currently in orbit carry retro-reflectors onboard. One notion to reduce the error in the satellite ephemerides is to utilize the retro-reflectors via laser ranging measurements taken from multiple Earth ground stations. Analysis has been performed to determine the level of reduction in the semi-major axis covariance of the GPS satellites, when laser ranging measurements are supplemented to the radiometric station keeping, which the satellites undergo. Six ground tracking systems are studied to estimate the performance of the satellite. The first system is the baseline current system approach which provides pseudo-range and integrated Doppler measurements from six ground stations. The remaining five ground tracking systems utilize all measurements from the current system and laser ranging measurements from the additional ground stations utilized within those systems. Station locations for the additional ground sites were taken from a listing of laser ranging ground stations from the International Laser Ranging Service. Results show reductions in state covariance estimates when utilizing laser ranging measurements to solve for the satellite s position component of the state vector. Results also show dependency on the number of ground stations providing laser ranging measurements, orientation of the satellite to the ground stations, and the initial covariance of the satellite's state vector.

  13. Evaluation of Aerosol Properties in GCMs using Satellite Measurements

    Science.gov (United States)

    Wang, Y.; Jiang, J. H.; Su, H.; Zhang, H.

    2015-12-01

    Atmospheric aerosols from natural or anthropogenic sources have profound impacts on the regional and global climate. Currently the radiative forcing of aerosols predicted by global climate models remains highly uncertain, representing the largest uncertainty in climate predictions. The uncertainty mainly arises from the complicated aerosol chemical and physical properties, coarse emission inventories for pre-cursor gases as well as unrealistic representations of aerosol activation and cloud processing in global climate models. In this study, we will utilize multiple satellite measurements including MODIS, MISR and CALIPSO to quantitatively evaluate aerosol simulations from climate models. Our analyses show that the global means in AOD climatology from NCAR CAM5 and GFDL AM3 simulations are comparable with satellite measurements. However, the overall correlation coefficient between the AOD spatial patterns from CAM5 and satellite is only 0.4. Moreover, at finer scales, the magnitude of AOD in CAM5 is much lower than satellite measurements for most of the non-dust regions, especially over East Asia. GFDL AM3 shows better AOD simulations over East Asia. The underestimated AOD over remote maritime areas in CAM5 was attributed to the unrealistic wet removal processes in convective clouds of CAM5. Over continents, biases on AOD could stem from underestimations in the emissions inventory and unresolved sub-grid variations of relative humidity due to the model's coarse resolution. Uncertainty from emission inventory over developing countries in East Asia will be assessed using the newly updated Regional Emission inventory in Asia (REAS) and Multi-resolution Emission Inventory in China (MEIC) in the model simulations.

  14. Thermal Conductivity Measurements on Icy Satellite Analogs

    Science.gov (United States)

    Javeed, Aurya; Barmatz, Martin; Zhong, Fang; Choukroun, Mathieu

    2012-01-01

    With regard to planetary science, NASA aspires to: "Advance scientific knowledge of the origin and history of the solar system, the potential for life elsewhere, and the hazards and resources present as humans explore space". In pursuit of such an end, the Galileo and Cassini missions garnered spectral data of icy satellite surfaces implicative of the satellites' structure and material composition. The potential for geophysical modeling afforded by this information, coupled with the plausibility of life on icy satellites, has pushed Jupiter's Europa along with Saturn's Enceladus and Titan toward the fore of NASA's planetary focus. Understanding the evolution of, and the present processes at work on, the aforementioned satellites falls squarely in-line with NASA's cited goal.

  15. Selected Geomagnetic Measurements From Several Satellites

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — More than 17 million selected magnetic observations from several orbiting low-altitude satellites are contained in this digital collection. Except for MAGSAT, all...

  16. Eruption column height: a comparison between ground and satellite measurements

    Science.gov (United States)

    Scollo, Simona; Prestifilippo, Michele; Pecora, Emilio; Corradini, Stefano; Merucci, Luca; Spata, Gaetano; Coltelli, Mauro

    2014-05-01

    The eruption column height estimation is an essential parameter to evaluate the total mass eruption rate, the gas and aerosol plume dispersal and retrievals. The column height may be estimated using different systems (e.g. satellite, aircraft and ground observations) which may present marked differences. In this work we use the calibrated images collected by the video-surveillance system of the Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Etneo, from the visible camera located in Catania, 27 km from the vent. The analysis is carried out on twenty lava fountains from the New South East Crater during the recent Etna explosive activity. Firstly, we calibrated the camera to estimate its intrinsic parameters and the full camera model. Furthermore, we selected the images which recorded the maximum phase of the eruptive activity. Hence, we applied an appropriate correction to take into account the wind effect. The column height was also evaluated using SEVIRI and MODIS satellite images collected at the same time of the video camera measurements. The satellite column height retrievals is realized by comparing the 11 μm brightness temperature of the most opaque plume pixels with the atmospheric temperature profile measured at Trapani WMO Meteo station (the nearest WMO station to the Etnean area). The comparison between satellite and ground data show a good agreement and the column altitudes ranges between 7.5 and 9 km (upper limit of the camera system). For nine events we evaluated also the thickness of the volcanic plumes in the umbrella region (near the vent) which ranges between 2 and 3 km. The proposed approach help to quantitatively evaluate the column height that may be used by volcanic ash dispersal and sedimentation models for improving forecasts and reducing risks to aviation during volcanic crisis.

  17. Measuring thermal budgets of active volcanoes by satellite remote sensing

    Science.gov (United States)

    Glaze, L.; Francis, P. W.; Rothery, D. A.

    1989-01-01

    Thematic Mapper measurements of the total radiant energy flux Q at Lascar volcano in north Chile for December 1984 are reported. The results are consistent with the earlier suggestion that a lava lake is the source of a reported thermal budget anomaly, and with values for 1985-1986 that are much lower, suggesting that fumarolic activity was then a more likely heat source. The results show that satellite remote sensing may be used to monitor the activity of a volcano quantitatively, in a way not possible by conventional ground studies, and may provide a method for predicting eruptions.

  18. Efficient statistical classification of satellite measurements

    CERN Document Server

    Mills, Peter

    2012-01-01

    Supervised statistical classification is a vital tool for satellite image processing. It is useful not only when a discrete result, such as feature extraction or surface type, is required, but also for continuum retrievals by dividing the quantity of interest into discrete ranges. Because of the high resolution of modern satellite instruments and because of the requirement for real-time processing, any algorithm has to be fast to be useful. Here we describe an algorithm based on kernel estimation called Adaptive Gaussian Filtering that incorporates several innovations to produce superior efficiency as compared to three other popular methods: k-nearest-neighbour (KNN), Learning Vector Quantization (LVQ) and Support Vector Machines (SVM). This efficiency is gained with no compromises: accuracy is maintained, while estimates of the conditional probabilities are returned. These are useful not only to gauge the accuracy of an estimate in the absence of its true value, but also to re-calibrate a retrieved image and...

  19. Land mobile satellite propagation measurements in Japan using ETS-V satellite

    Science.gov (United States)

    Obara, Noriaki; Tanaka, Kenji; Yamamoto, Shin-Ichi; Wakana, Hiromitsu

    1993-01-01

    Propagation characteristics of land mobile satellite communications channels have been investigated actively in recent years. Information of propagation characteristics associated with multipath fading and shadowing is required to design commercial land mobile satellite communications systems, including protocol and error correction method. CRL (Communications Research Laboratory) has carried out propagation measurements using the Engineering Test Satellite-V (ETS-V) at L band (1.5 GHz) through main roads in Japan by a medium gain antenna with an autotracking capability. This paper presents the propagation statistics obtained in this campaign.

  20. Total ozone retrieval from satellite multichannel filter radiometer measurements

    Energy Technology Data Exchange (ETDEWEB)

    Lovill, J.E.; Sullivan, T.J.; Weichel, R.L.; Ellis, J.S.; Huebel, J.G.; Korver, J.; Weidhaas, P.P.; Phelps, F.A.

    1978-05-25

    A total ozone retrieval model has been developed to process radiance data gathered by a satellite-mounted multichannel filter radiometer (MFR). Extensive effort went into theoretical radiative transfer modeling, a retrieval scheme was developed, and the technique was applied to the MFR radiance measurements. The high quality of the total ozone retrieval results was determined through comparisons with Dobson measurements. Included in the report are global total ozone maps for 20 days between May 12 and July 5, 1977. A comparison of MFR results for 13 days in June 1977 with Dobson spectrophotometer measurements of ozone for the same period showed good agreement: there was a root-mean-square difference of 6.2% (equivalent to 20.2 m.atm.cm). The estimated global total ozone value for June 1977 (296 m.atm.cm) was in good agreement with satellite backscatter ultraviolet data for June 1970 (304 m.atm.cm) and June 1971 (preliminary data--299 m.atm.cm).

  1. Interference susceptibility measurements for an MSK satellite communication link

    Science.gov (United States)

    Kerczewski, Robert J.; Fujikawa, Gene

    1992-01-01

    The results are presented of measurements of the degradation of an MSK satellite link due to modulated and CW (unmodulated) interference. These measurements were made using a hardware based satellite communication link simulator at NASA-Lewis. The results indicate the amount of bit error rate degradation caused by CW interference as a function of frequency and power level, and the degradation caused by adjacent channel and cochannel modulated interference as a function of interference power level. Results were obtained for both the uplink case (including satellite nonlinearity) and the downlink case (linear channel).

  2. Global distribution of pauses observed with satellite measurements

    Indian Academy of Sciences (India)

    M Venkat Ratnam; P Kishore; Isabella Velicogna

    2013-04-01

    Several studies have been carried out on the tropopause, stratopause, and mesopause (collectively termed as ‘pauses’) independently; however, all the pauses have not been studied together. We present global distribution of altitudes and temperatures of these pauses observed with long-term space borne high resolution measurements of Global Positioning System (GPS) Radio Occultation (RO) and Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) aboard Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics (TIMED) satellite. Here we study the commonality and differences observed in the variability of all the pauses. We also examined how good other datasets will represent these features among (and in between) different satellite measurements, re-analysis, and model data. Hemispheric differences observed in all the pauses are also reported. In addition, we show that asymmetries between northern and southern hemispheres continue up to the mesopause. We analyze inter and intra-seasonal variations and long-term trends of these pauses at different latitudes. Finally, a new reference temperature profile is shown from the ground to 110 km for tropical, mid-latitudes, and polar latitudes for both northern and southern hemispheres.

  3. Measurements of Integration Gain for the Cospas-Sarsat System from Geosynchronous Satellites

    Science.gov (United States)

    Klein-Lebbink, Elizabeth; Christo, James; Peters, Robert; Nguyen, Xuan

    2015-01-01

    The GOES-R satellite is the first satellite to use a standard straight bent pipe transponder with no on-board re-modulation to support Search and Rescue (SAR) operations. Here, we report on the link measurements with a high fidelity satellite transponder simulator made up of satellite EDU (Engineering Design Units) components using an uplink from a beacon simulator and received by a GEOLUT (GEOsynchronous satellite Local User Terminal). We also report on the first ever measurements showing the performance gain obtained by the signal integration performed by the GEOLUT. In addition, a simulator made of commercially available off-the-shelf components assembled to develop the test plan was found to perform very close to the high fidelity simulator. In this paper, we describe what message integration is, how it is implemented in the particular satellite receiving station model used for this tests, and show the measured improvement in message decoding due to this integration process. These are the first tests to quantify the integration gain and are the first tests on the new SARSAT standard for the bent pipe (no onboard re-modulation) repeater used in GOES-R. An inexpensive satellite simulator to run test scripts built from off the shelf components was also found to have the same performance as a high fidelity simulator using actual satellite EDUs.

  4. Satellite measurements of the earth's crustal magnetic field

    Science.gov (United States)

    Schnetzler, C. C.

    1989-01-01

    The literature associated with the Magsat mission has evaluated the capabilities and limitations of satellite measurements of the earth's crustal magnetic field, and demonstrated that there exists a 300-3000 km magnetic field, related to major features in the earth's crust, which is primarily caused by induction. Due to its scale and sensitivity, satellite data have been useful in the development of models for such large crustal features as subduction zones, submarine platforms, continental accretion boundaries, and rifts. Attention is presently given to the lack of agreement between laboratory and satellite estimates of lower crustal magnetization.

  5. Fifth generation lithospheric magnetic field model from CHAMP satellite measurements

    OpenAIRE

    Maus, S.; Hermann Lühr; Martin Rother; Hemant, K.; Balasis, G.; Patricia Ritter; Claudia Stolle

    2007-01-01

    Six years of low-orbit CHAMP satellite magnetic measurements have provided an exceptionally high-quality data resource for lithospheric magnetic field modeling and interpretation. Here we describe the fifth-generation satellite-only magnetic field model MF5. The model extends to spherical harmonic degree 100. As a result of careful data selection, extensive corrections, filtering, and line leveling, the model has low noise levels, even if evaluated at the Earth's surface. The model is particu...

  6. Measuring snow and glacier ice properties from satellite

    Science.gov (United States)

    KöNig, Max; Winther, Jan-Gunnar; Isaksson, Elisabeth

    2001-02-01

    Satellite remote sensing is a convenient tool for studying snow and glacier ice, allowing us to conduct research over large and otherwise inaccessible areas. This paper reviews various methods for measuring snow and glacier ice properties with satellite remote sensing. These methods have been improving with the use of new satellite sensors, like the synthetic aperture radar (SAR) during the last decade, leading to the development of new and powerful methods, such as SAR interferometry for glacier velocity, digital elevation model generation of ice sheets, or snow cover mapping. Some methods still try to overcome the limitations of present sensors, but future satellites will have much increased capability, for example, the ability to measure the whole optical spectrum or SAR sensors with multiple polarization or frequencies. Among the methods presented are the satellite-derived determination of surface albedo, snow extent, snow volume, snow grain size, surface temperature, glacier facies, glacier velocities, glacier extent, and ice sheet topography. In this review, emphasis is put on the principles and theory of each satellite remote sensing method. An extensive list of references, with an emphasis on studies from the 1990s, allows the reader to delve into specific topics.

  7. Satellite data sets for the atmospheric radiation measurement (ARM) program

    Energy Technology Data Exchange (ETDEWEB)

    Shi, L.; Bernstein, R.L. [SeaSpace Corp., San Diego, CA (United States)

    1996-04-01

    This abstract describes the type of data obtained from satellite measurements in the Atmospheric Radiation Measurement (ARM) program. The data sets have been widely used by the ARM team to derive cloud-top altitude, cloud cover, snow and ice cover, surface temperature, water vapor, and wind, vertical profiles of temperature, and continuoous observations of weather needed to track and predict severe weather.

  8. An Orbiting Standards Platform for communication satellite system RF measurements

    Science.gov (United States)

    Wallace, R. G.; Woodruff, J. J.

    1978-01-01

    The Orbiting Standards Platform (OSP) is a proposed satellite dedicated to performing RF measurements on space communications systems. It would consist of a quasi-geostationary spacecraft containing an ensemble of calibrated RF sources and field strength meters operating in several microwave bands, and would be capable of accurately and conveniently measuring critical earth station and satellite RF performance parameters, such as EIRP, gain, figure of merit (G/T), crosspolarization, beamwidth, and sidelobe levels. The feasibility and utility of the OSP concept has been under joint study by NASA, NBS, Comsat and NTIA. A survey of potential OSP users was conducted by NTIA as part of this effort. The response to this survey, along with certain trends in satellite communications system design, indicates a growing need for such a measurement service.

  9. The predictable narwhal: satellite tracking shows behavioural similarities between isolated subpopulations

    DEFF Research Database (Denmark)

    Heide-Jørgensen, M. P.; Nielsen, N.H.; Hansen, R. G.;

    2015-01-01

    Comparison of behavioural similarities between subpopulations of species that have been isolated for a long time is important for understanding the general ecology of species that are under pressure from large-scale changes in habitats. Narwhals (Monodon monoceros) east and west of Greenland...... are examples of separated populations that, in different ocean parts, will be coping with similar anthropogenic and climate-driven habitat alterations. To study this, 28 narwhals from the Scoresby Sound fjord system were tracked by satellite in 2010-2013. The average duration of contact with the whales was 124...

  10. Results of ionospheric measurements, got on micro satellite "Compass-2"

    Science.gov (United States)

    Dokukin, Vladimir; Kuznetsov, V. D.; Garipov, G. K.; Kapustina, O.; Mikhailov, Yu. M.; Mikhailova, G. A.; Ruzhin, Yu. Ya.; Sinelnikov, V. M.; Shirokov, A. V.; Yashin, I. V.; Danilkin, V. A.; Degtyar, V. G.

    Results of measurements, executed by complex of scientific instruments of micro satellite Compass-2 in the period of 2006-2007, are presented. The project was aimed on registration and study of ionospheric effects, related to the natural and anthropogenic anomalous phenomena. The effects of interaction of solar wind with magnetosphere in the period of flare activity of the Sun and anomalous low frequency radiations, happened one day before the earthquake with magnitude 4.2, are registered. The data was got on measurements of corpuscular radiation, wide band radiations and low frequency waves along the orbit of satellite.

  11. Measuring Political Polarization: Twitter shows the two sides of Venezuela

    CERN Document Server

    Morales, A J; Losada, J C; Benito, R M

    2015-01-01

    We say that a population is perfectly polarized when divided in two groups of the same size and opposite opinions. In this paper, we propose a methodology to study and measure the emergence of polarization from social interactions. We begin by proposing a model to estimate opinions in which a minority of influential individuals propagate their opinions through a social network. The result of the model is an opinion probability density function. Next, we propose an index to quantify the extent to which the resulting distribution is polarized. Finally, we apply the proposed methodology to a Twitter conversation about the late Venezuelan president, Hugo Ch\\'avez, finding a good agreement between our results and offline data. Hence, we show that our methodology can detect different degrees of polarization, depending on the structure of the network.

  12. Measuring political polarization: Twitter shows the two sides of Venezuela

    Science.gov (United States)

    Morales, A. J.; Borondo, J.; Losada, J. C.; Benito, R. M.

    2015-03-01

    We say that a population is perfectly polarized when divided in two groups of the same size and opposite opinions. In this paper, we propose a methodology to study and measure the emergence of polarization from social interactions. We begin by proposing a model to estimate opinions in which a minority of influential individuals propagate their opinions through a social network. The result of the model is an opinion probability density function. Next, we propose an index to quantify the extent to which the resulting distribution is polarized. Finally, we apply the proposed methodology to a Twitter conversation about the late Venezuelan president, Hugo Chávez, finding a good agreement between our results and offline data. Hence, we show that our methodology can detect different degrees of polarization, depending on the structure of the network.

  13. Determination of atmospheric aerosol properties over land using satellite measurements

    NARCIS (Netherlands)

    Kokhanovsky, A.A.; Leeuw, G. de

    2009-01-01

    Mostly, aerosol properties are poorly understood because the aerosol properties are very sparse. The first workshop on the determination of atmospheric aerosol properties over land using satellite measurements is convened in Bremen, Germany. In this workshop, the topics of discussions included a var

  14. Spectral Measurements of Geosynchronous Satellites During Glint Season

    Science.gov (United States)

    Chun, F.; Tucker, R.; Weld, E.; Chun, F.; Tippets, R.

    During certain times of the year, stable geosynchronous (GEO) satellites are known to glint or exhibit a very bright specular reflection, which is easily observed through broadband photometric filters. The glints are typically brighter in the Johnson red filter compared to the Johnson blue filter. In previous years, USAFA cadets have developed and refined techniques to take, calibrate and process satellite spectral data taken using a diffraction grating on the USAFA 16-inch, f/8.2 telescope (slitless spectroscopy). To the best of our knowledge, we have not seen any published research on observing glints across the visible spectrum. We present research from an Air Force Academy senior physics capstone project on observing glints off of GEO satellites using slitless spectroscopy. We discuss the calibration of the measurements using solar analog and solar twin stars, as well as results of the spectra of a glinting GEO satellite. A key question is whether a GEO satellite glint is localized in wavelength or equally observed across the entire spectra.

  15. Stochastic estimation of dynamically changing object orientation parameters using satellite measurements

    OpenAIRE

    Lukasevich, V. I.; Kramarov, S. O.; Sokolov, Sergey V.

    2015-01-01

    It is solved a problem of a posteriori estimation of dynamically modified parameters of angular movement of the object by satellite measurements. There are shown advantages of application of the methods of stochastic non-linear dynamic filtration before single-stage measurements. It is represented an example, showing efficiency of proposed approach.

  16. Coherent Uncertainty Analysis of Aerosol Measurements from Multiple Satellite Sensors

    Science.gov (United States)

    Petrenko, M.; Ichoku, C.

    2013-01-01

    Aerosol retrievals from multiple spaceborne sensors, including MODIS (on Terra and Aqua), MISR, OMI, POLDER, CALIOP, and SeaWiFS altogether, a total of 11 different aerosol products were comparatively analyzed using data collocated with ground-based aerosol observations from the Aerosol Robotic Network (AERONET) stations within the Multi-sensor Aerosol Products Sampling System (MAPSS, http://giovanni.gsfc.nasa.gov/mapss/ and http://giovanni.gsfc.nasa.gov/aerostat/). The analysis was performed by comparing quality-screened satellite aerosol optical depth or thickness (AOD or AOT) retrievals during 2006-2010 to available collocated AERONET measurements globally, regionally, and seasonally, and deriving a number of statistical measures of accuracy. We used a robust statistical approach to detect and remove possible outliers in the collocated data that can bias the results of the analysis. Overall, the proportion of outliers in each of the quality-screened AOD products was within 12%. Squared correlation coefficient (R2) values of the satellite AOD retrievals relative to AERONET exceeded 0.6, with R2 for most of the products exceeding 0.7 over land and 0.8 over ocean. Root mean square error (RMSE) values for most of the AOD products were within 0.15 over land and 0.09 over ocean. We have been able to generate global maps showing regions where the different products present advantages over the others, as well as the relative performance of each product over different landcover types. It was observed that while MODIS, MISR, and SeaWiFS provide accurate retrievals over most of the landcover types, multi-angle capabilities make MISR the only sensor to retrieve reliable AOD over barren and snow / ice surfaces. Likewise, active sensing enables CALIOP to retrieve aerosol properties over bright-surface shrublands more accurately than the other sensors, while POLDER, which is the only one of the sensors capable of measuring polarized aerosols, outperforms other sensors in

  17. Coherent uncertainty analysis of aerosol measurements from multiple satellite sensors

    Directory of Open Access Journals (Sweden)

    M. Petrenko

    2013-02-01

    Full Text Available Aerosol retrievals from multiple spaceborne sensors, including MODIS (on Terra and Aqua, MISR, OMI, POLDER, CALIOP, and SeaWiFS – altogether, a total of 11 different aerosol products – were comparatively analyzed using data collocated with ground-based aerosol observations from the Aerosol Robotic Network (AERONET stations within the Multi-sensor Aerosol Products Sampling System (MAPSS, http://giovanni.gsfc.nasa.gov/mapss/ and http://giovanni.gsfc.nasa.gov/aerostat/. The analysis was performed by comparing quality-screened satellite aerosol optical depth or thickness (AOD or AOT retrievals during 2006–2010 to available collocated AERONET measurements globally, regionally, and seasonally, and deriving a number of statistical measures of accuracy. We used a robust statistical approach to detect and remove possible outliers in the collocated data that can bias the results of the analysis. Overall, the proportion of outliers in each of the quality-screened AOD products was within 12%. Squared correlation coefficient (R2 values of the satellite AOD retrievals relative to AERONET exceeded 0.6, with R2 for most of the products exceeding 0.7 over land and 0.8 over ocean. Root mean square error (RMSE values for most of the AOD products were within 0.15 over land and 0.09 over ocean. We have been able to generate global maps showing regions where the different products present advantages over the others, as well as the relative performance of each product over different landcover types. It was observed that while MODIS, MISR, and SeaWiFS provide accurate retrievals over most of the landcover types, multi-angle capabilities make MISR the only sensor to retrieve reliable AOD over barren and snow/ice surfaces. Likewise, active sensing enables CALIOP to retrieve aerosol properties

  18. Coherent uncertainty analysis of aerosol measurements from multiple satellite sensors

    Directory of Open Access Journals (Sweden)

    M. Petrenko

    2013-07-01

    Full Text Available Aerosol retrievals from multiple spaceborne sensors, including MODIS (on Terra and Aqua, MISR, OMI, POLDER, CALIOP, and SeaWiFS – altogether, a total of 11 different aerosol products – were comparatively analyzed using data collocated with ground-based aerosol observations from the Aerosol Robotic Network (AERONET stations within the Multi-sensor Aerosol Products Sampling System (MAPSS, http://giovanni.gsfc.nasa.gov/mapss/ and http://giovanni.gsfc.nasa.gov/aerostat/. The analysis was performed by comparing quality-screened satellite aerosol optical depth or thickness (AOD or AOT retrievals during 2006–2010 to available collocated AERONET measurements globally, regionally, and seasonally, and deriving a number of statistical measures of accuracy. We used a robust statistical approach to detect and remove possible outliers in the collocated data that can bias the results of the analysis. Overall, the proportion of outliers in each of the quality-screened AOD products was within 7%. Squared correlation coefficient (R2 values of the satellite AOD retrievals relative to AERONET exceeded 0.8 for many of the analyzed products, while root mean square error (RMSE values for most of the AOD products were within 0.15 over land and 0.07 over ocean. We have been able to generate global maps showing regions where the different products present advantages over the others, as well as the relative performance of each product over different land cover types. It was observed that while MODIS, MISR, and SeaWiFS provide accurate retrievals over most of the land cover types, multi-angle capabilities make MISR the only sensor to retrieve reliable AOD over barren and snow/ice surfaces. Likewise, active sensing enables CALIOP to retrieve aerosol properties over bright-surface closed shrublands more accurately than the other sensors, while POLDER, which is the only one of the sensors capable of measuring polarized aerosols, outperforms other sensors in certain

  19. Monitoring Surface Climate With its Emissivity Derived From Satellite Measurements

    Science.gov (United States)

    Zhou, Daniel K.; Larar, Allen M.; Liu, Xu

    2012-01-01

    Satellite thermal infrared (IR) spectral emissivity data have been shown to be significant for atmospheric research and monitoring the Earth fs environment. Long-term and large-scale observations needed for global monitoring and research can be supplied by satellite-based remote sensing. Presented here is the global surface IR emissivity data retrieved from the last 5 years of Infrared Atmospheric Sounding Interferometer (IASI) measurements observed from the MetOp-A satellite. Monthly mean surface properties (i.e., skin temperature T(sub s) and emissivity spectra epsilon(sub v) with a spatial resolution of 0.5x0.5-degrees latitude-longitude are produced to monitor seasonal and inter-annual variations. We demonstrate that surface epsilon(sub v) and T(sub s) retrieved with IASI measurements can be used to assist in monitoring surface weather and surface climate change. Surface epsilon(sub v) together with T(sub s) from current and future operational satellites can be utilized as a means of long-term and large-scale monitoring of Earth 's surface weather environment and associated changes.

  20. Measurements of sea ice by satellite and airborne altimetry

    DEFF Research Database (Denmark)

    Kildegaard Rose, Stine

    A changing sea ice cover in the Arctic Ocean is an early indicator of a climate in transition, the sea ice has in addition a large impact on the climate. The annual and interannual variations of the sea ice cover have been observed by satellites since the start of the satellite era in 1979......, and it has been in retreat every since. The mass balance of the sea ice is an important input to climate models, where the ice thickness is the most uncertain parameter. In this study, data from the CryoSat-2 radar altimeter satellite are used. CryoSat-2 has been measuring the sea ice in the Arctic Ocean...... freeboard is found to be 35 cm for both the airborne and satellite data implying, that the radar signal is here reflected from the snow surface, probably due to weather conditions. CryoSat-2 is very sensitive to returns from specular surfaces, even if they appear o_-nadir. This contaminates the “true...

  1. Cloud and Thermodynamic Parameters Retrieved from Satellite Ultraspectral Infrared Measurements

    Science.gov (United States)

    Zhou, Daniel K.; Smith, William L.; Larar, Allen M.; Liu, Xu; Taylor, Jonathan P.; Schluessel, Peter; Strow, L. Larrabee; Mango, Stephen A.

    2008-01-01

    Atmospheric-thermodynamic parameters and surface properties are basic meteorological parameters for weather forecasting. A physical geophysical parameter retrieval scheme dealing with cloudy and cloud-free radiance observed with satellite ultraspectral infrared sounders has been developed and applied to the Infrared Atmospheric Sounding Interferometer (IASI) and the Atmospheric InfraRed Sounder (AIRS). The retrieved parameters presented herein are from radiance data gathered during the Joint Airborne IASI Validation Experiment (JAIVEx). JAIVEx provided intensive aircraft observations obtained from airborne Fourier Transform Spectrometer (FTS) systems, in-situ measurements, and dedicated dropsonde and radiosonde measurements for the validation of the IASI products. Here, IASI atmospheric profile retrievals are compared with those obtained from dedicated dropsondes, radiosondes, and the airborne FTS system. The IASI examples presented here demonstrate the ability to retrieve fine-scale horizontal features with high vertical resolution from satellite ultraspectral sounder radiance spectra.

  2. Estimating the Retrievability of Temperature Profiles from Satellite Infrared Measurements

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A method is developed to assess retrievability, namely the retrieval potential for atmospheric temperature profiles, from satellite infrared measurements in clear-sky conditions. This technique is based upon generalized linear inverse theory and empirical orthogonal function analysis. Utilizing the NCEP global temperature reanalysis data in January and July from 1999 to 2003, the retrievabilities obtained with the Atmospheric Infrared Sounder (AIRS) and the High Resolution Infrared Radiation Sounder/3 (HIRS/3)sounding channel data are derived respectively for each standard pressure level on a global scale. As an incidental result of this study, the optimum truncation number in the method of generalized linear inverse is deduced too. The results show that the retrievabilities of temperature obtained with the two datasets are similar in spatial distribution and seasonal change characteristics. As for the vertical distribution, the retrievabilities are low in the upper and lower atmosphere, and high between 400 hPa and 850 hPa. For the geographical distribution, the retrievabilities are low in the low-latitude oceanic regions and in some regions in Antarctica, and relatively high in mid-high latitudes and continental regions. Compared with the HIRS/3 data, the retrievability obtained with the AIRS data can be improved by an amount between 0.15 and 0.40.

  3. NOx emission trends in megacities derived from satellite measurements

    Science.gov (United States)

    Konovalov, Igor; Beekmann, Matthias; Richter, Andreas

    2010-05-01

    The effects of air pollutant emissions on both local air quality in megacities and composition of the atmosphere on regional and global scales are currently an important issue of atmospheric researches. In order to properly evaluate these effects, atmospheric models should be provided with accurate information on emissions of major air pollutants. However, such information is frequently very uncertain, as it is documented in literature. The quantification of emissions and related effects is an especially difficult task in the case of developing countries. Recently, it has been demonstrated that satellite measurements of nitrogen dioxide (NO2) can be used as a source of independent information on NOx emissions. In particular, the satellite measurements were used in our earlier studies to improve spatial allocation of NOx emissions, to estimate multi-annual changes of NOx emissions on regional scales and to validate data of traditional emission inventories (see Ref. 1, 2). The goals of the present study are (1) developing an efficient method for estimation of NOx emissions trend in megacity regions by using satellite measurements and an inverse modeling technique and (2) obtaining independent estimates of NOx emission trends in several megacities in Europe and the Middle East in the period from 1996 to 2008. The study is based on the synergetic use of the data for tropospheric NO2 column amounts derived from the long-term GOME and SCIAMACHY measurements and simulations performed by the CHIMERE chemistry transport model. We performed the analysis involving methods of different complexity ranging from estimation of linear trends in the tropospheric NO2 columns retrieved from satellite measurements to evaluation of nonlinear trends in NOx emission estimates obtained with the inverse modeling approach, which, in the given case, involves only very simple and transparent formulations. The most challenging part of the study is the nonlinear trend estimation, which is

  4. Measurement of sea ice and icebergs topography using satellite imagery

    Science.gov (United States)

    Zakharov, I.; Power, D.; Prasad, S.

    2016-12-01

    Sea ice topography represents geospatial information on the three-dimensional geometrical attributes of the ice surface including height and shape of various ice features. The features interest consist of deformed (pressure ridges, rubbles and hummocks) and level sea ice as well as glacial ice. Sea ice topography is important for scientific research and climate studies because it helps characterise ice volume and thickness and it influences the near-surface atmospheric transport by impacting the drag coefficients. It also represents critical information to marine operational applications, such as ships navigation and risks assessment for offshore infrastructures. The several methods were used to measure sea ice topography from a single satellite image as well as multiple images. The techniques based on the single image, acquired by optical or synthetic aperture radar (SAR) satellites, derive the height and shape information from shadow and shading. Optical stereo images acquired by very high resolution (0.5 m) satellites were used to extract highly detailed digital elevation model (DEM). SAR imagery allowed extraction of DEM using stereo-radargrammetry and interferometry. The images from optical satellites WorldView, Pleiades, GeoEye, Spot, and Landsat-8 were used to measure topography of sea ice deformation features and glacial ice including icebergs and ice islands. These features were mapped in regions of the Central Arctic, Baffin Bay and the coast of Greenland. SAR imagery including interferometric TanDEM-X data and full polarimetric Radarsat-2 were used to extract ridge frequency and measure spatial parameters of glacial features. The accuracy was evaluated by comparison of the results from different methods demonstrating their strengths and limitations. Ridge height and frequency were also compared with the high resolution results from the Los Alamos sea ice model (CICE), regionally implemented for Baffin Bay and the Labrador Sea.

  5. Validation of satellite data with IASOA observatories and shipboard measurements in Arctic Ocean

    Science.gov (United States)

    Repina, Irina; Artamonov, Arseniy; Mazilkina, Alexandra; Valiullin, Denis; Stanichny, Sergey

    2016-04-01

    The paper shows the possibility of using surface observation data at high latitudes for the validation of different satellite products. We use data from International Arctic Systems for Observing the Atmosphere (IASOA) observatories and data from Nansen and Amundsen basins observation system (NABOS) project. The NABOS field experiment was carried out in the central part of the Arctic and in the eastern Arctic seas during summer and fall period of 2004-2009, 2013 and 2015. Newly improved satellite products and surface observations provide an opportunity to revisit remote-sensing capabilities for estimating shortwave and longwave radiative fluxes, as well as turbulent fluxes at high latitudes. Estimates of SW fluxes from the MODIS and LW fluxes from the NOAA satellites are evaluated against land observations from IASOA observatories, and unique shipboard measurements. Results show that the satellite products are in better agreement with observations than those from numerical models. Therefore, the large scale satellite based estimates should be useful for model evaluation and for providing information in formulating energy budgets at high latitudes. Visible and near-infrared albedos over snow and ice surfaces are retrieved from AVHRR. Comparison with surface measurements of albedo in arctic observatories and Arctic ocean shows very good agreement. Meteorological and micrometeorological observations were used to validate the surface temperature and surface heat fluxes in the satellite data. Compared data arrays are independent and sufficiently detailed to perform trustworthy evaluations. The spatial and temporal patterns of the resulting flux fields are investigated and compared with those derived from satellite observations such as HOAPS, from blended data such as AOFLUX (in the open water cases). A computation of the sensible heat flux at the surface is formulated on the basis of spatial variations of the surface temperature estimated from satellite data. Based on

  6. Estimating carbon and showing impacts of drought using satellite data in regression-tree models

    Science.gov (United States)

    Boyte, Stephen; Wylie, Bruce K.; Howard, Danny; Dahal, Devendra; Gilmanov, Tagir G.

    2018-01-01

    Integrating spatially explicit biogeophysical and remotely sensed data into regression-tree models enables the spatial extrapolation of training data over large geographic spaces, allowing a better understanding of broad-scale ecosystem processes. The current study presents annual gross primary production (GPP) and annual ecosystem respiration (RE) for 2000–2013 in several short-statured vegetation types using carbon flux data from towers that are located strategically across the conterminous United States (CONUS). We calculate carbon fluxes (annual net ecosystem production [NEP]) for each year in our study period, which includes 2012 when drought and higher-than-normal temperatures influence vegetation productivity in large parts of the study area. We present and analyse carbon flux dynamics in the CONUS to better understand how drought affects GPP, RE, and NEP. Model accuracy metrics show strong correlation coefficients (r) (r ≥ 94%) between training and estimated data for both GPP and RE. Overall, average annual GPP, RE, and NEP are relatively constant throughout the study period except during 2012 when almost 60% less carbon is sequestered than normal. These results allow us to conclude that this modelling method effectively estimates carbon dynamics through time and allows the exploration of impacts of meteorological anomalies and vegetation types on carbon dynamics.

  7. Land-mobile-satellite fade measurements in Australia

    Science.gov (United States)

    Vogel, Wolfhard J.; Goldhirsh, Julius; Hase, Yoshihiro

    1992-01-01

    Attenuation measurements were implemented at L-band (1.5 GHz) in southeastern Australia during an 11-day period in October 1988 as part of a continuing examination of the propagation effects due to roadside trees and terrain for mobile-satellite service. Beacon transmissions from the geostationary ETS-V and IPORS satellites were observed. The Australian campaign expanded to another continent our Mobile Satellite Service data base of measurements executed in the eastern and southwestern United States regions. An empirical fade distribution model based on U.S. data predicted the Australian results with errors generally less than 1 dB in the 1-20 percent probability region. Directive antennas are shown to suffer deeper fades under severe shadowing conditions (3 dB excess at 4 percent), the equal-probability isolation between co- and cross-polarized transmissions deteriorated to 10 dB at the 5 dB fade level, and antenna diversity reception may reduce unavailability of the system by a factor of 2-8.

  8. Evaluation of CHAMP Satellite Orbit with SLR Measurements

    Institute of Scientific and Technical Information of China (English)

    QIN Xianping; YANG Yuanxi

    2005-01-01

    The technique of Evaluating CHAMP satellite orbit with SLR measurements is presented. As an independent evaluation of the orbit solution, SLR data observed from January 1 to 16, 2002 are processed to compute the residuals after fixing the GFZ's post science orbits solutions. The SLR residuals are computed as the differences of the SLR measurements minus the corresponding distances between the SLR station and the GPS-derived orbit positions. On the basis of the SLR residuals analysis, it is found that the accuracy of GFZ's post science orbits is better than 10 em and that there is no systematic error in GFZ's post science orbits.

  9. Intercomparison of desert dust optical depth from satellite measurements

    Directory of Open Access Journals (Sweden)

    E. Carboni

    2012-08-01

    Full Text Available This work provides a comparison of satellite retrievals of Saharan desert dust aerosol optical depth (AOD during a strong dust event through March 2006. In this event, a large dust plume was transported over desert, vegetated, and ocean surfaces. The aim is to identify the differences between current datasets. The satellite instruments considered are AATSR, AIRS, MERIS, MISR, MODIS, OMI, POLDER, and SEVIRI. An interesting aspect is that the different algorithms make use of different instrument characteristics to obtain retrievals over bright surfaces. These include multi-angle approaches (MISR, AATSR, polarisation measurements (POLDER, single-view approaches using solar wavelengths (OMI, MODIS, and the thermal infrared spectral region (SEVIRI, AIRS. Differences between instruments, together with the comparison of different retrieval algorithms applied to measurements from the same instrument, provide a unique insight into the performance and characteristics of the various techniques employed. As well as the intercomparison between different satellite products, the AODs have also been compared to co-located AERONET data. Despite the fact that the agreement between satellite and AERONET AODs is reasonably good for all of the datasets, there are significant differences between them when compared to each other, especially over land. These differences are partially due to differences in the algorithms, such as assumptions about aerosol model and surface properties. However, in this comparison of spatially and temporally averaged data, it is important to note that differences in sampling, related to the actual footprint of each instrument on the heterogeneous aerosol field, cloud identification and the quality control flags of each dataset can be an important issue.

  10. A thermodynamic geography: night-time satellite imagery as a proxy measure of emergy.

    Science.gov (United States)

    Coscieme, Luca; Pulselli, Federico M; Bastianoni, Simone; Elvidge, Christopher D; Anderson, Sharolyn; Sutton, Paul C

    2014-11-01

    Night-time satellite imagery enables the measurement, visualization, and mapping of energy consumption in an area. In this paper, an index of the "sum of lights" as observed by night-time satellite imagery within national boundaries is compared with the emergy of the nations. Emergy is a measure of the solar energy equivalent used, directly or indirectly, to support the processes that characterize the economic activity in a country. Emergy has renewable and non-renewable components. Our results show that the non-renewable component of national emergy use is positively correlated with night-time satellite imagery. This relationship can be used to produce emergy density maps which enable the incorporation of spatially explicit representations of emergy in geographic information systems. The region of Abruzzo (Italy) is used to demonstrate this relationship as a spatially disaggregate case.

  11. Scenarios and performance measures for advanced ISDN satellite design and experiments

    Science.gov (United States)

    Pepin, Gerard R.

    1991-01-01

    Described here are the contemplated input and expected output for the Interim Service Integrated Services Digital Network (ISDN) Satellite (ISIS) and Full Service ISDN Satellite (FSIS) Models. The discrete event simulations of these models are presented with specific scenarios that stress ISDN satellite parameters. Performance measure criteria are presented for evaluating the advanced ISDN communication satellite designs of the NASA Satellite Communications Research (SCAR) Program.

  12. Transportable IOT measurement station for direct-broadcast satellites

    Science.gov (United States)

    Ulbricht, Michael

    A transportable 11.7-12.5-GHz flux-density measurement facility for use in the in-orbit testing (IOT) of the FRG TV-Sat direct-broadcast satellites is described. Major components include a 1.2-m-diameter antenna, the fluxmeter, a radiometer to determine atmospheric attenuation, a weather station, and a control and data-processing computer; all of the components are mounted on a 5.10 x 2.35 x 2.70-m trailer. IOT performance parameters include gain/temperature ratio 15.9 dB/K, measurement range -97 to -117 dBW/sq m, measurement accuracy less than 0.5 dB rms, and measurement rate 250-650 msec. Photographs and a block diagram are provided.

  13. Improving knowledge of the surface salinity annual cycle with Aquarius satellite measurements

    Science.gov (United States)

    Lagerloef, G. S. E.

    2016-12-01

    To improve knowledge of the ocean surface salinity annual cycle, and its link to global precipitation patterns, remains a key science measurement objective for satellites. The Aquarius satellite data are applied here to address this, and the analysis is not as straightforward as it may seem. Sensor calibration is considered carefully to ensure that seasonality in external calibration data sources do not alias the satellite measurements. For example, quasi-monthly calibration error signals were identified early in the Aquarius mission. Subsequently, Aquarius data processing has relied primarily on an ocean target calibration method, whereby the satellite observations were co-located with output from the US Navy operational HYCOM model to adjust for these quasi-monthly calibration drifts. It was later determined that HYCOM salinity fields are themselves adjusted with a climatological restoring term, that imprints the seasonal climatology signal on the sensor calibration. When that output is compared with a parallel Aquarius data processing that bypasses the HYCOM ocean target calibration, and substitutes a simulation of the sensor electronics, the globally averaged output show very different annual signals between these trials. A modified ocean-target calibration, that employs satellite data matched directly with the in situ observations, is presently being investigated. The methodology uses signal processing to separate the satellite-in situ differences related to the sensor calibration from geophysical error sources. This remains a work-in-progress, and the results, with any unresolved issues, will be discussed. The presentation will also provide a very brief summary of Aquarius scientific accomplishments, the final "legacy" data set production, and the program to continue salinity data processing from other satellites.

  14. Sub-visual cirrus LIDAR measurements for satellite masking improvement

    Science.gov (United States)

    Landulfo, Eduardo; Larroza, Eliane G.; Lopes, Fábio J. S.; de Jesus, Wellington C.; Bottino, Marcus; Nakaema, Walter M.; Steffens, Juliana

    2008-10-01

    Understanding the impact of cirrus cloud on modifying both the solar reflected and terrestrial emitted radiations is crucial for climate studies. Unlike most boundary layer stratus and stratocumulus clouds that have a net cooling effect on the climate, high-level thin cirrus clouds have a warming effect on our climate. However, the satellites as GOES from the NOAA series are limited to the cloud top and its reflectivity or brightness temperature, without assessing accurately the optical depth or physical thickness. Other more recent sensors as MODIS are able to determine optical depths for aerosols and clouds but when related to cirrus they are still inaccurate. Research programs as First ISCCP, FIRE, HOIST, ECLIPS and ARM have concentrated efforts in the research of cirrus, being based mainly on the observations of combined terrestrial remote sensing and airplanes instruments. LIDARs are able to detect sub-visual cirrus cloud (SVCs) in altitudes above 15 km and estimate exactly their height, thickness and optical depth, contributing with information for satellites sensors and radiative transfer models. In order to research characteristics of SVCs, the LIDAR system at Instituto de Pesquisas Energeticas e Nucleares has as objective to determine such parameters and implement a cirrus cloud mask that could be used in the satellite images processing as well as in the qualitative improvement of the radiative parameters for numerical models of climate changes. The first preliminary study shows where we compare the data lidar with Brightness temperature differences between the split-window data from GOES-10 (DSA/INPE) and CALIPSO.

  15. Accuracy of Satellite-Measured Wave Heights in the Australian Region for Wave Power Applications

    Science.gov (United States)

    Meath, Sian E.; Aye, Lu; Haritos, Nicholas

    2008-01-01

    This article focuses on the accuracy of satellite data, which may then be used in wave power applications. The satellite data are compared to data from wave buoys, which are currently considered to be the most accurate of the devices available for measuring wave characteristics. This article presents an analysis of satellite- (Topex/Poseidon) and…

  16. Ocean tidal signals in observatory and satellite magnetic measurements

    DEFF Research Database (Denmark)

    Maus, S.; Kuvshinov, A.

    2004-01-01

    Ocean flow moves sea water through the Earth's magnetic field, inducing electric fields, currents and secondary magnetic fields. These motionally induced magnetic fields have a potential for the remote sensing of ocean flow variability. A first goal must be to gain a better understanding...... of magnetic field generation by tidal ocean flow. We predict the motionally induced magnetic fields for the six major tidal constituents and compare their amplitudes with the spectra of night time observatory and satellite magnetic measurements for the Indian Ocean. The magnetic variations at the solar S2, K1......, and P1 periods turn out to be dominated by unrelated external fields. In contrast, observed lunar M2 and N2 tidal signals are in fair agreement with predictions from motional induction. The lunar diurnal O1 signal, visible at some observatories, could be caused by ocean flow but disagrees in amplitude...

  17. Satellite measurements of formaldehyde linked to shipping emissions

    Directory of Open Access Journals (Sweden)

    T. Wagner

    2009-11-01

    Full Text Available International shipping is recognized as a pollution source of growing importance, in particular in the remote marine boundary layer. Nitrogen dioxide originating from ship emissions has previously been detected in satellite measurements. This study presents the first satellite measurements of formaldehyde (HCHO linked to shipping emissions as derived from observations made by the Global Ozone Monitoring Experiment (GOME instrument.

    We analyzed enhanced HCHO tropospheric columns from shipping emissions over the Indian Ocean between Sri Lanka and Sumatra. This region offers good conditions in term of plume detection with the GOME instrument as all ship tracks follow a single narrow track in the same east-west direction as used for the GOME pixel scanning. The HCHO signal alone is weak but could be clearly seen in the high-pass filtered data. The line of enhanced HCHO in the Indian Ocean as seen in the 7-year composite of cloud free GOME observations clearly coincides with the distinct ship track corridor from Sri Lanka to Indonesia. The observed mean HCHO column enhancement over this shipping route is about 2.0×1015 molec/cm2.

    Compared to the simultaneously observed NO2 values over the shipping route, those of HCHO are substantially higher; also the HCHO peaks are found at larger distance from the ship routes. These findings indicate that direct emissions of HCHO or degradation of emitted NMHC cannot explain the observed enhanced HCHO values. One possible reason might be increased CH4 degradation due to enhanced OH concentrations related to the ship emissions, but this source is probably too weak to fully explain the observed values.

    The observed HCHO pattern also agrees qualitatively well with results from the coupled earth system model ECHAM5/MESSy applied to atmospheric chemistry (EMAC. However, the modelled HCHO values over the ship corridor are two times lower than in the

  18. Ice Mass Change in Greenland and Antarctica Between 1993 and 2013 from Satellite Gravity Measurements

    Science.gov (United States)

    Talpe, Matthieu J.; Nerem, R. Steven; Forootan, Ehsan; Schmidt, Michael; Lemoine, Frank G.; Enderlin, Ellyn M.; Landerer, Felix W.

    2017-01-01

    We construct long-term time series of Greenland and Antarctic ice sheet mass change from satellite gravity measurements. A statistical reconstruction approach is developed based on a principal component analysis (PCA) to combine high-resolution spatial modes from the Gravity Recovery and Climate Experiment (GRACE) mission with the gravity information from conventional satellite tracking data. Uncertainties of this reconstruction are rigorously assessed; they include temporal limitations for short GRACE measurements, spatial limitations for the low-resolution conventional tracking data measurements, and limitations of the estimated statistical relationships between low- and high-degree potential coefficients reflected in the PCA modes. Trends of mass variations in Greenland and Antarctica are assessed against a number of previous studies. The resulting time series for Greenland show a higher rate of mass loss than other methods before 2000, while the Antarctic ice sheet appears heavily influenced by interannual variations.

  19. Comparison of the simulated performance of a VSAT satellite link with measurements

    Science.gov (United States)

    Mwanakatwe, M.; Willis, M. J.; Evans, B. G.

    1991-06-01

    The transmisson performance of a Ka-band VSAT system (CODE) has been simulated to verify the systems design and to demonstrate the adequacy of the implementation margin and phase noise. A detailed simulation of phase noise effects on VSAT systems design is also presented. Hardware measurements and BOSS simulations for the test set-up show a good agreement for values of Eb/N0 up to 7dB. The simulated results indicate an increased error when the TWTA is operated in the nonlinear region, with the simulations indicating larger degradation than the measurement. The phase noise performance of the digital TRL modem is found to be consistently better than that of the simulated model. There appears to be closer agreement with the BOSS simulations than with the TOPSIM III simulations. The discrepancy between the TOPSIM III and BOSS phase noise simulations was only resolved by measurements taken using the Olympus satellite and BTI satellite simulator.

  20. Study of Ice Crystal Orientation in Cirrus Clouds based on Satellite Polarized Radiance Measurements

    OpenAIRE

    Noel, Vincent; Chepfer, Hélène

    2004-01-01

    International audience; The goal of this paper is to retrieve information about ice particle orientation in cirrus clouds. This is achieved by comparing simulations of sunlight reflection on a cirrus cloud with measurements of polarized radiances from the spaceborne instrument Polarization and Directionality of the Earth's Reflectance (POLDER-1) on Advanced Earth Observing Satellite-1 (ADEOS-1). Results show that horizontal orientation of cr ystals can be spotted by the presence of a local ma...

  1. Comparison of NO2 vertical profiles from satellite and ground based measurements over Antarctica

    OpenAIRE

    Kulkarni, Pavan; Bortoli, Daniele; Costa, Maria João; Silva, Ana Maria; Ravegnani, Fabrizio; Giovanelli, Giorgio

    2011-01-01

    The Intercomparison of nitrogen dioxide (NO2) vertical profiles, derived from the satellite based HALogen Occultation Experiment (HALOE) measurements and from the ground based UV-VIS spectrometer GASCOD (Gas Analyzer Spectrometer Correlating Optical Differences) observations at the Mario Zucchelli Station (MZS), in Antarctica, are done for the first time. It is shown here that both datasets are in good agreement showing the same features in terms of magnitude, profile structure, a...

  2. Vertical Profiles of Aerosol Optical Properties Over Central Illinois and Comparison with Surface and Satellite Measurements

    Science.gov (United States)

    Sheridan P. J.; Andrews, E.; Ogren, J A.; Tackett, J. L.; Winker, D. M.

    2012-01-01

    Between June 2006 and September 2009, an instrumented light aircraft measured over 400 vertical profiles of aerosol and trace gas properties over eastern and central Illinois. The primary objectives of this program were to (1) measure the in situ aerosol properties and determine their vertical and temporal variability and (2) relate these aircraft measurements to concurrent surface and satellite measurements. Underflights of the CALIPSO satellite show reasonable agreement in a majority of retrieved profiles between aircraft-measured extinction at 532 nm (adjusted to ambient relative humidity) and CALIPSO-retrieved extinction, and suggest that routine aircraft profiling programs can be used to better understand and validate satellite retrieval algorithms. CALIPSO tended to overestimate the aerosol extinction at this location in some boundary layer flight segments when scattered or broken clouds were present, which could be related to problems with CALIPSO cloud screening methods. The in situ aircraft-collected aerosol data suggest extinction thresholds for the likelihood of aerosol layers being detected by the CALIOP lidar. These statistical data offer guidance as to the likelihood of CALIPSO's ability to retrieve aerosol extinction at various locations around the globe.

  3. Establishing the Antarctic Dome C community reference standard site towards consistent measurements from Earth observation satellites

    Science.gov (United States)

    Cao, C.; Uprety, S.; Xiong, J.; Wu, A.; Jing, P.; Smith, D.; Chander, G.; Fox, N.; Ungar, S.

    2010-01-01

    Establishing satellite measurement consistency by using common desert sites has become increasingly more important not only for climate change detection but also for quantitative retrievals of geophysical variables in satellite applications. Using the Antarctic Dome C site (75°06′S, 123°21′E, elevation 3.2 km) for satellite radiometric calibration and validation (Cal/Val) is of great interest owing to its unique location and characteristics. The site surface is covered with uniformly distributed permanent snow, and the atmospheric effect is small and relatively constant. In this study, the long-term stability and spectral characteristics of this site are evaluated using well-calibrated satellite instruments such as the Moderate Resolution Imaging Spectroradiometer (MODIS) and Sea-viewing Wide Field-of-view Sensor (SeaWiFS). Preliminary results show that despite a few limitations, the site in general is stable in the long term, the bidirectional reflectance distribution function (BRDF) model works well, and the site is most suitable for the Cal/Val of reflective solar bands in the 0.4–1.0 µm range. It was found that for the past decade, the reflectivity change of the site is within 1.35% at 0.64 µm, and interannual variability is within 2%. The site is able to resolve calibration biases between instruments at a level of ~1%. The usefulness of the site is demonstrated by comparing observations from seven satellite instruments involving four space agencies, including OrbView-2–SeaWiFS, Terra–Aqua MODIS, Earth Observing 1 (EO-1) – Hyperion, Meteorological Operational satellite programme (MetOp) – Advanced Very High Resolution Radiometer (AVHRR), Envisat Medium Resolution Imaging Spectrometer (MERIS) – dvanced Along-Track Scanning Radiometer (AATSR), and Landsat 7 Enhanced Thematic Mapper Plus (ETM+). Dome C is a promising candidate site for climate quality calibration of satellite radiometers towards more consistent satellite measurements, as part

  4. Comparison of Satellite-Derived Wind Measurements with Other Wind Measurement Sensors

    Science.gov (United States)

    Susko, Michael; Herman, Leroy

    1995-01-01

    The purpose of this paper is to compare the good data from the Jimsphere launches with the data from the satellite system. By comparing the wind speeds from the Fixed Pedestal System 16 (FPS-16) Radar/Jimsphere Wind System and NASA's 50-MHz Radar Wind Profiler, the validation of winds from Geostationary Operational Environmental Satellite 7 (GOES-7) is performed. This study provides an in situ data quality check for the GOES-7 satellite winds. Comparison was made of the flowfields in the troposphere and the lower stratosphere of case studies of pairs of Jimsphere balloon releases and Radar Wind Profiler winds during Space Shuttle launches. The mean and standard deviation of the zonal component statistics, the meridional component statistics, and the power spectral density curves show good agreement between the two wind sensors. The standard deviation of the u and v components for the STS-37 launch (consisting of five Jimsphere/Radar Wind Profiler data sets) was 1.92 and 1.67 m/s, respectively; for the STS-43 launch (there were six Jimsphere/Wind Profiler data sets) it was 1.39 and 1.44 m/s, respectively. The overall standard deviation was 1.66 m/s for the u component and 1.55 m/s tor the v component, and a standard deviation of 2.27 m/s tor the vector wind difference. The global comparison of satellite with Jimsphere balloon vector winds shows a standard deviation of 3.15 m/s for STS-43 and 4.37 m/s for STS-37. The overall standard deviation of the vector wind was 3.76 m/s, with a root-mean-square vector difference of 4.43 m/s. These data have demonstrated that this unique comparison of the Jimsphere and satellite winds provides excellent ground truth and a frame of reference during testing and validation of satellite data

  5. Cucumber mosaic virus satellite RNAs that induce similar symptoms in melon plants show large differences in fitness.

    Science.gov (United States)

    Betancourt, Mónica; Fraile, Aurora; García-Arenal, Fernando

    2011-08-01

    Two groups of Cucumber mosaic virus (CMV) satellite RNAs (satRNAs), necrogenic and non-necrogenic, can be differentiated according to the symptoms they cause in tomato plants, a host in which they also differ in fitness. In most other CMV hosts these CMV-satRNA cause similar symptoms. Here, we analyse whether they differ in traits determining their relative fitness in melon plants, in which the two groups of CMV-satRNAs cause similar symptoms. For this, ten necrogenic and ten non-necrogenic field satRNA genotypes were assayed with Fny-CMV as a helper virus. Neither type of CMV-satRNA modified Fny-CMV symptoms, and both types increased Fny-CMV virulence similarly, as measured by decreases in plant biomass and lifespan. Necrogenic and non-necrogenic satRNAs differed in their ability to multiply in melon tissues; necrogenic satRNAs accumulated to higher levels both in single infection and in competition with non-necrogenic satRNAs. Indeed, multiplication of some non-necrogenic satRNAs was undetectable. Transmission between hosts by aphids was less efficient for necrogenic satRNAs as a consequence of a more severe reduction of CMV accumulation in leaves. The effect of CMV accumulation on aphid transmission was not compensated for by differences in satRNA encapsidation efficiency or transmissibility to CMV progeny. Thus, necrogenic and non-necrogenic satRNAs differ in their relative fitness in melon, and trade-offs are apparent between the within-host and between-host components of satRNA fitness. Hence, CMV-satRNAs could have different evolutionary dynamics in CMV host-plant species in which they do not differ in pathogenicity.

  6. Energetic particle radiations measured by particle detector on board CBERS-1 satellite

    Institute of Scientific and Technical Information of China (English)

    HAO YongQiang; XIAO Zuo; ZOU Hong; ZHANG DongHe

    2007-01-01

    Using the data measured by energetic particle detector on board CBERS-01 and -02 for the past five years, statistics was made to show the general features of MeV electrons and protons along a solar synchronous orbit at an altitude of 780 km. This height is in the bottom region of the Earth's radiation belts. Detectors are inside the satellite cabinet and such continuous monitoring of particle radiation environment inside a satellite has seldom conducted so far. After a proper and careful treatment, it is indicated that the data inside satellite are well correlated with the radiation environment outside. Besides the agreement of the general distribution characteristics of energetic electrons and protons with similar observations from other satellites, attention is particularly paid to the disturbed conditions. Variations of particle fluxes are closely related with solar proton events, in general, electron fluxes of outer belt are well correlated with Dst index after three days' delay while the electron injection occurred almost at the same day during great magnetic storms. It is confirmed that both energetic electrons and protons appear in the Polar Cap region only after the solar proton events.

  7. Estimation of Satellite Orientation from Space Surveillance Imagery Measured with an Adaptive Optics Telescope

    Science.gov (United States)

    1996-12-01

    SATELLITE ORIENTATION FROM SPACE SURVEILLANCE IMAGERY MEASURED WITH AN ADAPTIVE OPTICS TELESCOPE THESIS Gregory E. Wood Lieutenant, USAF AFIT/GSO/ENP...the official policy or position of the Department of Defense or the U. S. Government. AFIT/GSO/ENP/96D-02 ESTIMATION OF SATELLITE ORIENTATION FROM...surveillance operations. xii ESTIMATION OF SATELLITE ORIENTATION FROM SPACE SURVEILLANCE IMAGERY MEASURED WITH AN ADAPTIVE OPTICS TELESCOPE

  8. Integrated Multi-Point Space Plasma Measurements With Four Ionospheric Satellites

    Science.gov (United States)

    Siefring, C. L.; Bernhardt, P. A.; Selcher, C.; Wilkens, M. R.; McHarg, M. G.; Krause, L.; Chun, F.; Enloe, L.; Panholzer, R.; Sakoda, D.; Phelps, R.; D Roussel-Dupre, D.; Colestock, P.; Close, S.

    2006-12-01

    The STP-1 launch scheduled for late 2006 will place four satellites with ionospheric plasma diagnostics into the same nearly circular orbit with an altitude of 560 km and inclination of 35.4°. The satellites will allow for unique multipoint measurements of ionospheric scintillations and their causes. Both the radio and in-situ diagnostics will provide coverage of low- and mid-latitudes. The four satellites, STPSat1, NPSat1, FalconSat3, and CFE will follow the same ground-track but because of drag and mass differences their relative velocities will be different and vary during the lifetime of the satellites. The four satellites will start close together; separate over a few months and coming back together with near conjunctions at six and eight months. Two satellite conjunctions between NPSat1 and STPSat1 will occur most often, approximately one month apart at the end of the mission. STPSat1 is equipped with CITRIS (sCintillation and TEC Receiver In Space) which will measure scintillations in the VHF, UHF and L-band along with measuring Total Electron Content (TEC) along the propagation path. NPSat1 will carry a three-frequency CERTO (Coherent Electromagnetic Radio TOmography) Beacon which broadcasts phase-coherent signals at 150.012 MHz, 400.032 MHz, and 1066.752 MHz. CITRIS will be able to measure TEC and Scintillations along the orbital path (propagation path from NPSat1 to STPSat1) as well as between the CITRIS and the ground. NPSat1 carries electron and ion saturation Langmuir Probes, while FalconSat3 carries the FLAPS (FLAt Plasma Spectrometer) and PLANE (Plasma Local Anomalous Noise Environment). The in-situ diagnostic complement the CITRIS/CERTO radio techniques in many ways. The CIBOLA Flight Experiment (CFE) contains a wide band receiver covering 100 to 500 MHz. The CFE data can be processed to show distortion of wide-band modulations by ionospheric irregularities. CFE and CITRIS can record ground transmissions from the French DORIS beacons which radiate

  9. Global Land Surface Emissivity Retrieved From Satellite Ultraspectral IR Measurements

    Science.gov (United States)

    Zhou, D. K.; Larar, A. M.; Liu, Xu; Smith, W. L.; Strow, L. L.; Yang, Ping; Schlussel, P.; Calbet, X.

    2011-01-01

    Ultraspectral resolution infrared (IR) radiances obtained from nadir observations provide information about the atmosphere, surface, aerosols, and clouds. Surface spectral emissivity (SSE) and surface skin temperature from current and future operational satellites can and will reveal critical information about the Earth s ecosystem and land-surface-type properties, which might be utilized as a means of long-term monitoring of the Earth s environment and global climate change. In this study, fast radiative transfer models applied to the atmosphere under all weather conditions are used for atmospheric profile and surface or cloud parameter retrieval from ultraspectral and/or hyperspectral spaceborne IR soundings. An inversion scheme, dealing with cloudy as well as cloud-free radiances observed with ultraspectral IR sounders, has been developed to simultaneously retrieve atmospheric thermodynamic and surface or cloud microphysical parameters. This inversion scheme has been applied to the Infrared Atmospheric Sounding Interferometer (IASI). Rapidly produced SSE is initially evaluated through quality control checks on the retrievals of other impacted surface and atmospheric parameters. Initial validation of retrieved emissivity spectra is conducted with Namib and Kalahari desert laboratory measurements. Seasonal products of global land SSE and surface skin temperature retrieved with IASI are presented to demonstrate seasonal variation of SSE.

  10. Computer-aided evaluation of the railway track geometry on the basis of satellite measurements

    Science.gov (United States)

    Specht, Cezary; Koc, Władysław; Chrostowski, Piotr

    2016-05-01

    In recent years, all over the world there has been a period of intensive development of GNSS (Global Navigation Satellite Systems) measurement techniques and their extension for the purpose of their applications in the field of surveying and navigation. Moreover, in many countries a rising trend in the development of rail transportation systems has been noticed. In this paper, a method of railway track geometry assessment based on mobile satellite measurements is presented. The paper shows the implementation effects of satellite surveying railway geometry. The investigation process described in the paper is divided on two phases. The first phase is the GNSS mobile surveying and the analysis obtained data. The second phase is the analysis of the track geometry using the flat coordinates from the surveying. The visualization of the measured route, separation and quality assessment of the uniform geometric elements (straight sections, arcs), identification of the track polygon (main directions and intersection angles) are discussed and illustrated by the calculation example within the article.

  11. Image-processing techniques in precisely measuring positions of Saturn and its satellites

    Institute of Scientific and Technical Information of China (English)

    PENG; Qingyu; (彭青玉)

    2003-01-01

    After overcoming the deficiencies of previous image-processing techniques, a novel technique based on the edge-detection of Saturnian ring is developed to precisely measure Saturn's position. Furthermore, the scattering light (i.e. halo light) of Saturn and its ring is removed effectively based on its center symmetry. Therefore, we have much more opportunities to accurately measure the positions of Mimas and Enceladus-- two satellites very close to the Saturn. Experimental tests with 127 frames of CCD images obtained on the 1-meter telescope at the Yunnan Observatory over three nights show that the geometric center of the Saturnian ring and its 4 satellites (Tethys, Dione, Rhea and Titan) have the same positional precision, and the standard error for a single observation is less than ±0.05 arcsec. It is believed that these new techniques would have important impetus to the positional measurement of both Saturn by using a CCD meridian instrument and its faint satellites by using a long focal length telescope.

  12. Towards validation of ammonia (NH3 measurements from the IASI satellite

    Directory of Open Access Journals (Sweden)

    M. Van Damme

    2014-12-01

    Full Text Available Limited availability of ammonia (NH3 observations is currently a barrier for effective monitoring of the nitrogen cycle. It prevents a full understanding of the atmospheric processes in which this trace gas is involved and therefore impedes determining its related budgets. Since the end of 2007, the Infrared Atmospheric Sounding Interferometer (IASI satellite has been observing NH3 from space at a high spatiotemporal resolution. This valuable data set, already used by models, still needs validation. We present here a first attempt to validate IASI-NH3 measurements using existing independent ground-based and airborne data sets. The yearly distributions reveal similar patterns between ground-based and space-borne observations and highlight the scarcity of local NH3 measurements as well as their spatial heterogeneity and lack of representativity. By comparison with monthly resolved data sets in Europe, China and Africa, we show that IASI-NH3 observations are in fair agreement but that they are characterized by a smaller variation in concentrations. The use of hourly and airborne data sets to compare with IASI individual observations allows to investigate the impact of averaging as well as the representativity of independent observations for the satellite footprint. The importance of considering the latter and the added value of densely located airborne measurements at various altitudes to validate IASI-NH3 columns are discussed. Perspectives and guidelines for future validation work on NH3 satellite observations are presented.

  13. Observing convection with satellite, radar, and lightning measurements

    Science.gov (United States)

    Hamann, Ulrich; Nisi, Luca; Clementi, Lorenzo; Ventura, Jordi Figueras i.; Gabella, Marco; Hering, Alessandro M.; Sideris, Ioannis; Trefalt, Simona; Germann, Urs

    2015-04-01

    Heavy precipitation, hail, and wind gusts are the fundamental meteorological hazards associated with strong convection and thunderstorms. The thread is particularly severe in mountainous areas, e.g. it is estimated that on average between 50% and 80% of all weather-related damage in Switzerland is caused by strong thunderstorms (Hilker et al., 2010). Intense atmospheric convection is governed by processes that range from the synoptic to the microphysical scale and are considered to be one of the most challenging and difficult weather phenomena to predict. Even though numerical weather prediction models have some skills to predict convection, in general the exact location of the convective initialization and its propagation cannot be forecasted by these models with sufficient precision. Hence, there is a strong interest to improve the short-term forecast by using statistical, object oriented and/or heuristic nowcasting methods. MeteoSwiss has developed several operational nowcasting systems for this purpose such as TRT (Hering, 2008) and COALITION (Nisi, 2014). In this contribution we analyze the typical development of convection using measurements of the Swiss C-band Dual Polarization Doppler weather radar network, the MSG SEVIRI satellite, and the Météorage lighting network. The observations are complemented with the analysis and forecasts of the COSMO model. Special attention is given to the typical evolutionary stages like the pre-convective environment, convective initiation, cloud top glaciation, start, maximum, and end of precipitation and lightning activity. The pre-convective environment is examined using instability indices derived from SEVIRI observations and the COSMO forecasts. During the early development satellite observations are used to observe the rise of the cloud top, the growth of the cloud droplet or crystals, and the glaciation of the cloud top. SEVIRI brightness temperatures, channel differences, and temporal trends as suggested by

  14. Advanced two-way satellite frequency transfer by carrier-phase and carrier-frequency measurements

    Science.gov (United States)

    Fujieda, Miho; Gotoh, Tadahiro; Amagai, Jun

    2016-06-01

    Carrier-phase measurement is one of the ways to improve the measurement resolution of two-way satellite frequency transfer. We introduce two possible methods for carrier-phase measurement: direct carrier-phase detection identified by Two-Way Carrier-Phase (TWCP) and the use of carrier-frequency information identified by Two-Way Carrier Frequency (TWCF). We performed the former using an arbitrary waveform generator and an analog-to-digital sampler and the latter using a conventional modem. The TWCF measurement using the modem had a resolution of 10-13 and the result agreed with that obtained by GPS carrier-phase frequency transfer in a 1500 km baseline. The measurement accuracy may have been limited by the poor frequency resolution of the modem; however, the TWCF measurement was able to improve the stability of conventional two-way satellite frequency transfer. Additionally, we show that the TWCP measurement system has the potential to achieve a frequency stability of 10-17.

  15. Global carbon monoxide products from combined AIRS, TES and MLS measurements on A-train satellites

    Directory of Open Access Journals (Sweden)

    J. X. Warner

    2013-06-01

    Full Text Available This study tests a novel methodology to add value to satellite datasets. This methodology, data fusion, is similar to data assimilation, except that the background model-based field is replaced by a satellite dataset, in this case AIRS (Atmospheric Infrared Sounder carbon monoxide (CO measurements. The observational information comes from CO measurements with lower spatial coverage than AIRS, namely, from TES (Tropospheric Emission Spectrometer and MLS (Microwave Limb Sounder. We show that combining these datasets with data fusion uses the higher spectral resolution of TES to extend AIRS CO observational sensitivity to the lower troposphere, a region especially important for air quality studies. We also show that combined CO measurements from AIRS and MLS provide enhanced information in the UTLS (upper troposphere/lower stratosphere region compared to each product individually. The combined AIRS/TES and AIRS/MLS CO products are validated against DACOM (differential absorption mid-IR diode laser spectrometer in situ CO measurements from the INTEX-B (Intercontinental Chemical Transport Experiment: MILAGRO and Pacific phases field campaign and in situ data from HIPPO (HIAPER Pole-to-Pole Observations flights. The data fusion results show improved sensitivities in the lower and upper troposphere (20–30% and above 20%, respectively as compared with AIRS-only retrievals, and improved coverage compared with TES and MLS CO data.

  16. Global Carbon Monoxide Products from Combined AIRS, TES and MLS Measurements on A-Train Satellites

    Science.gov (United States)

    Warner, Juying X.; Yang, R.; Wei, Z.; Carminati, F.; Tangborn, A.; Sun, Z.; Lahoz, W.; Attie, J. L.; El Amraoui, L.; Duncan, B.

    2014-01-01

    This study tests a novel methodology to add value to satellite data sets. This methodology, data fusion, is similar to data assimilation, except that the background modelbased field is replaced by a satellite data set, in this case AIRS (Atmospheric Infrared Sounder) carbon monoxide (CO) measurements. The observational information comes from CO measurements with lower spatial coverage than AIRS, namely, from TES (Tropospheric Emission Spectrometer) and MLS (Microwave Limb Sounder). We show that combining these data sets with data fusion uses the higher spectral resolution of TES to extend AIRS CO observational sensitivity to the lower troposphere, a region especially important for air quality studies. We also show that combined CO measurements from AIRS and MLS provide enhanced information in the UTLS (upper troposphere/lower stratosphere) region compared to each product individually. The combined AIRS-TES and AIRS-MLS CO products are validated against DACOM (differential absorption mid-IR diode laser spectrometer) in situ CO measurements from the INTEX-B (Intercontinental Chemical Transport Experiment: MILAGRO and Pacific phases) field campaign and in situ data from HIPPO (HIAPER Pole-to-Pole Observations) flights. The data fusion results show improved sensitivities in the lower and upper troposphere (20-30% and above 20%, respectively) as compared with AIRS-only version 5 CO retrievals, and improved daily coverage compared with TES and MLS CO data.

  17. CONCEPTUAL PAPER : Utilization of GPS Satellites for Precise Irradiation Measurement and Monitoring

    Indian Academy of Sciences (India)

    S. Vijayan

    2008-03-01

    Precise measurement of irradiance over the earth under various circumstances like solar flares, coronal mass ejections, over an 11-year solar cycle, etc. leads to better understanding of Sun–earth relationship. To continuously monitor the irradiance over earth-space regions several satellites at several positions are required. For that continuous and multiple satellite monitoring we can use GPS (Global Positioning System) satellites (like GLONASS, GALILEO, future satellites) installed with irradiance measuring and monitoring instruments. GPS satellite system consists of 24 constellations of satellites. Therefore usage of all the satellites leads to 24 measurements of irradiance at the top of the atmosphere (or 12 measurements of those satellites which are pointing towards the Sun) at an instant. Therefore in one day, numerous irradiance observations can be obtained for the whole globe, which will be very helpful for several applications like Albedo calculation, Earth Radiation Budget calculation, monitoring of near earth-space atmosphere, etc. Moreover, measuring irradiance both in ground (using ground instruments) and in space at the same instant of time over a same place, leads to numerous advantages. That is, for a single position we obtain irradiance at the top of the atmosphere, irradiance at ground and the difference in irradiance from over top of the atmosphere to the ground. Measurement of irradiance over the atmosphere and in ground at a precise location gives more fine details about the solar irradiance influence over the earth, path loss and interaction of irradiance with the atmosphere.

  18. Spatial variability of the Black Sea surface temperature from high resolution modeling and satellite measurements

    Science.gov (United States)

    Mizyuk, Artem; Senderov, Maxim; Korotaev, Gennady

    2016-04-01

    Large number of numerical ocean models were implemented for the Black Sea basin during last two decades. They reproduce rather similar structure of synoptical variability of the circulation. Since 00-s numerical studies of the mesoscale structure are carried out using high performance computing (HPC). With the growing capacity of computing resources it is now possible to reconstruct the Black Sea currents with spatial resolution of several hundreds meters. However, how realistic these results can be? In the proposed study an attempt is made to understand which spatial scales are reproduced by ocean model in the Black Sea. Simulations are made using parallel version of NEMO (Nucleus for European Modelling of the Ocean). A two regional configurations with spatial resolutions 5 km and 2.5 km are described. Comparison of the SST from simulations with two spatial resolutions shows rather qualitative difference of the spatial structures. Results of high resolution simulation are compared also with satellite observations and observation-based products from Copernicus using spatial correlation and spectral analysis. Spatial scales of correlations functions for simulated and observed SST are rather close and differs much from satellite SST reanalysis. Evolution of spectral density for modelled SST and reanalysis showed agreed time periods of small scales intensification. Using of the spectral analysis for satellite measurements is complicated due to gaps. The research leading to this results has received funding from Russian Science Foundation (project № 15-17-20020)

  19. Subpixel Accuracy Analysis of Phase Correlation Shift Measurement Methods Applied to Satellite Imagery

    Directory of Open Access Journals (Sweden)

    S.M. Badwai

    2013-01-01

    Full Text Available the key point of super resolution process is the accurate measuring of sub-pixel shift. Any tiny error in measuring such shift leads to an incorrect image focusing. In this paper, methodology of measuring sub-pixel shift using Phase correlation (PC are evaluated using different window functions, then modified version of (PC method using high pass filter (HPF is introduced . Comprehensive analysis and assessment of (PC methods shows that different natural features yield different shift measurements. It is concluded that there is no universal window function for measuring shift; it mainly depends on the features in the satellite images. Even the question of which window is optimal of particular feature is generally remains open. This paper presents the design of a method for obtaining high accuracy sub pixel shift phase correlation using (HPF.The proposed method makes the change in the different locations that lack of edges easy.

  20. Capabilities and uncertainties of aircraft measurements for the validation of satellite precipitation products – a virtual case study

    Directory of Open Access Journals (Sweden)

    Andrea Lammert

    2015-08-01

    Full Text Available Remote sensing sensors on board of research aircraft provide detailed measurements of clouds and precipitation which can be used as reference data to validate satellite products. Such satellite derived precipitation data using passive microwave radiometers with a resolution of typically 50×50km2$50\\times50\\,\\text{km}^2$ stands against high spatial and temporal resolved airborne measurements, but only along a chosen line. This paper focuses on analysis on the uncertainty arising from the different spatial resolution and coverage. Therefore we use a perfect model approach, with a high resolved forecast model yielding perfect virtual aircraft and satellite observations. The mean precipitation and standard deviation per satellite box were estimated with a Gaussian approach. The comparison of the mean values shows a high correlation of 0.92, but a very wide spread. As criterion to define good agreement between satellite mean and reference, we choose a deviation of one standard deviation of the virtual aircraft as threshold. Considering flight tracks in the range of 50 km (one overflight, the perfect agreement of satellite and aircraft observations is only detected in 65 % of the cases. To increase this low reliability the precipitation distributions of the virtual aircraft were fitted by a gamma density function. Using the same quality criterion, the usage of gamma density fit yields an improvement of the Aircraft reliability up to 80 %.

  1. Note: Inter-satellite laser range-rate measurement by using digital phase locked loop.

    Science.gov (United States)

    Liang, Yu-Rong; Duan, Hui-Zong; Xiao, Xin-Long; Wei, Bing-Bing; Yeh, Hsien-Chi

    2015-01-01

    This note presents an improved high-resolution frequency measurement system dedicated for the inter-satellite range-rate monitoring that could be used in the future's gravity recovery mission. We set up a simplified common signal test instead of the three frequencies test. The experimental results show that the dominant noises are the sampling time jitter and the thermal drift of electronic components, which can be reduced by using the pilot-tone correction and passive thermal control. The improved noise level is about 10(-8) Hz/Hz(1/2)@0.01Hz, limited by the signal-to-noise ratio of the sampling circuit.

  2. Evaluation of cloud base height measurements from ceilometer CL31 and MODIS satellite over Ahmedabad, India

    Directory of Open Access Journals (Sweden)

    S. Sharma

    2015-11-01

    Full Text Available Clouds play a tangible role in the Earth's atmosphere and in particular, the cloud base height (CBH which is linked to cloud type is one of the important characteristic to describe the influence of clouds on the environment. In present study, CBH observations from ceilometer CL31 have been extensively studied during May 2013 to January 2015 over Ahmedabad (23.03° N, 72.54° E, India. A detail comparison has been performed with the use of ground-based CBH measurements from ceilometer CL31 and CBH retrieved from MODIS (Moderate Resolution Imaging Spectroradiometer onboard Aqua and Terra satellite. Some interesting features of cloud dynamics viz. strong downdraft and updraft have been observed over Ahmedabad which revealed different cloud characteristics during monsoon and post-monsoon periods. CBH shows seasonal variation during Indian summer monsoon and post-monsoon period. Results indicate that ceilometer is one of the excellent instruments to precisely detect low and mid-level clouds and MODIS satellite provides accurate retrieval of high-level clouds over this region. The CBH algorithm used for MODIS satellite is also able to capture the low-level clouds.

  3. Calculation of smoke plume mass from passive UV satellite measurements by GOME-2 polarization measurement devices

    Science.gov (United States)

    Penning de Vries, M. J. M.; Tuinder, O. N. E.; Wagner, T.; Fromm, M.

    2012-04-01

    The Wallow wildfire of 2011 was one of the most devastating fires ever in Arizona, burning over 2,000 km2 in the states of Arizona and New Mexico. The fire originated in the Bear Wallow Wilderness area in June, 2011, and raged for more than a month. The intense heat of the fire caused the formation of a pyro-convective cloud. The resulting smoke plume, partially located above low-lying clouds, was detected by several satellite instruments, including GOME-2 on June 2. The UV Aerosol Index, indicative of aerosol absorption, reached a maximum of 12 on that day, pointing to an elevated plume with moderately absorbing aerosols. We have performed extensive model calculations assuming different aerosol optical properties to determine the total aerosol optical depth of the plume. The plume altitude, needed to constrain the aerosol optical depth, was obtained from independent satellite measurements. The model results were compared with UV Aerosol Index and UV reflectances measured by the GOME-2 polarization measurement devices, which have a spatial resolution of roughly 10x40 km2. Although neither the exact aerosol optical properties nor optical depth can be obtained with this method, the range in aerosol optical depth values that we calculate, combined with the assumed specific extinction mass factor of 5 m2/kg lead us to a rough estimate of the smoke plume mass that cannot, at present, be assessed in another way.

  4. Spectral Measurements of Geosynchronous Satellites During Glint Season

    Science.gov (United States)

    2015-10-18

    primarily due to specular reflection off of the solar panels , the occurrence of a glint relative to solar phase angle or even the number of glints can...and south solar panels on DTV-12 being offset in different east-west angles causing two glints, whereas the two solar panels of Wildblue-1 are both in... solar panels that maintain a stable attitude relative to the earth and sun. During the equinox periods of the year, the geometry of the satellite

  5. Measurements of Cumulonimbus Clouds using quantitative satellite and radar data

    Science.gov (United States)

    Negri, A. J.; Reynolds, D. W.; Maddox, R. A.

    1977-01-01

    Results are reported for a preliminary study of SMS-2 digital brightness and IR data obtained at frequent 5-7.5 min intervals. The clouds studied were over the Central and Great Plains in midlatitudes and thus were typical of an environment much different from that of the tropical oceans. The satellite data are compared to radar data for both a severe weather event and weak thundershower activity of the type which might be a target for weather modification efforts. The relative importance of short time interval satellite data is shown for both cases, and possible relationships between the two types of data are presented. It is concluded that (1) using a threshold technique for visible reflected brightness, precipitating vs. nonprecipitating clouds can be discriminated; (2) brightness is well related to cloud size and shape; and (3) satellite-derived growth rates may be a significant parameter to be used in determining storm severity, especially if rapid time sequence data are used during the development phase of the storm.

  6. Seasonal variability of cloud optical depth over northwestern China derived from CERES/MODIS satellite measurements

    Institute of Scientific and Technical Information of China (English)

    Yonghang Chen; Hongtao Bai; Jianping Huang; Hua Zhang; Jinming Ge; Xiaodan Guan; Xiaoqin Mao

    2008-01-01

    The seasonal variability of cloud optical depth over northwestern China derived from Clouds and the Earth's Radiant Energy System (CERES) Single Scanner Footprint (SSF) Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) Edition 1B data from July 2002 to June 2004 is presented. The regions of interest are those with Asia monsoon influence, the Tianshan and Qilian Mountains, and the Taklimakan Desert. The results show that the instantaneous measurements presented here are much higher than the previous results derived from International Satellite Cloud Climatology Project (ISCCP) D2 monthly mean data. Generally the measurements of cloud optical depth are the highest in summer and the lowest in winter, however, Taklimakan Desert has the lowest measurements in autumn. The regional variation is quite significant over northwestern China.

  7. The Geodesy of the Main Saturnian Satellites from Range Rate Measurements of the Cassini Spacecraft

    Science.gov (United States)

    Ducci, M.; Iess, L.; Armstrong, J. W.; Asmar, S. W.; Jacobson, R. A.; Lunine, J. I.; Racioppa, P.; Rappaport, N. J.; Stevenson, D. J.; Tortora, P.

    2012-03-01

    During Cassini's eight-year tour in the saturnian system, the gravity field of the main satellites was inferred from range rate measurements of the spacecraft. Here we present our latest results and an overview of our analysis methods.

  8. Retrieval of Black Carbon Absorption from Proposed Satellite Measurements Over the Ocean Glint

    Science.gov (United States)

    Kaufman, Y. J.; Matins, J. V.; Remer, L. A.; Schoeberl, M. R.; Yamasoe, M. A.; Lau, William K. M. (Technical Monitor)

    2001-01-01

    Haze and air pollution includes many chemicals that together form small particles suspended in the air called aerosols. One of the main ingredients found to affect climate and human health is Black Carbon. Black particles emitted from engines that do not burn the fuel completely, e.g. old trucks. Black carbon absorption of sunlight emerges as one of the key components of man-made forcing of climate. However, global characterization of black carbon emissions, distribution and pathways in which it can affect the amount of solar radiation absorbed by the atmosphere is very uncertain. A new method is proposed to measure sunlight absorption by fine aerosol particles containing black carbon over the ocean glint from a satellite mission designed for this purpose. The satellite will scan the same spot over the ocean in the glint plane and a plane 40 degrees off-glint a minute apart, collecting measurements of the reflected light across the solar spectrum. First the dark ocean off the glint is used to derive aerosol properties. Then the black carbon absorption is derived prop the attenuation of the bright glint by the aerosol layer. Such measurements if realized in a proposed future mission - COBRA are expected to produce global monthly climatology of black carbon absorption with high accuracy (110 to 15%) that can show their effect on climate.

  9. Measurements of UV irradiance within the area of one satellite pixel

    Science.gov (United States)

    Weihs, P.; Blumthaler, M.; Rieder, H. E.; Kreuter, A.; Simic, S.; Laube, W.; Schmalwieser, A. W.; Wagner, J. E.; Tanskanen, A.

    2008-09-01

    A measurement campaign was performed in the region of Vienna and its surroundings from May to July 2007. Within the scope of this campaign erythemal UV was measured at six ground stations within a radius of 30 km. First, the homogeneity of the UV levels within the area of one satellite pixel was studied. Second, the ground UV was compared to ground UV retrieved by the ozone monitoring instrument (OMI) onboard the NASA EOS Aura Spacecraft. During clear-sky conditions the mean bias between erythemal UV measured by the different stations was within the measurement uncertainty of ±5%. Short term fluctuations of UV between the stations were below 3% within a radius of 20 km. For partly cloudy conditions and overcast conditions the discrepancy of instantaneous values between the stations is up to 200% or even higher. If averages of the UV index over longer time periods are compared the difference between the stations decreases strongly. The agreement is better than 20% within a distance of 10 km between the stations for 3 h averages. The comparison with OMI UV showed for clear-sky conditions higher satellite retrieved UV values by, on the average, approximately 15%. The ratio of OMI to ground measured UV lies between 0.9 and 1.5. and strongly depends on the aerosol optical depth. For partly cloudy and overcast conditions the OMI derived surface UV estimates show larger deviation from the ground-based reference data, and even bigger systematic positive bias. Here the ratio OMI to ground data lies between 0.5 and 4.5. The average difference between OMI and ground measurements is +24 to +37% for partly cloudy conditions and more than +50% for overcast conditions.

  10. Measurements of UV irradiance within the area of one satellite pixel

    Directory of Open Access Journals (Sweden)

    P. Weihs

    2008-09-01

    Full Text Available A measurement campaign was performed in the region of Vienna and its surroundings from May to July 2007. Within the scope of this campaign erythemal UV was measured at six ground stations within a radius of 30 km. First, the homogeneity of the UV levels within the area of one satellite pixel was studied. Second, the ground UV was compared to ground UV retrieved by the ozone monitoring instrument (OMI onboard the NASA EOS Aura Spacecraft. During clear-sky conditions the mean bias between erythemal UV measured by the different stations was within the measurement uncertainty of ±5%. Short term fluctuations of UV between the stations were below 3% within a radius of 20 km. For partly cloudy conditions and overcast conditions the discrepancy of instantaneous values between the stations is up to 200% or even higher. If averages of the UV index over longer time periods are compared the difference between the stations decreases strongly. The agreement is better than 20% within a distance of 10 km between the stations for 3 h averages. The comparison with OMI UV showed for clear-sky conditions higher satellite retrieved UV values by, on the average, approximately 15%. The ratio of OMI to ground measured UV lies between 0.9 and 1.5. and strongly depends on the aerosol optical depth. For partly cloudy and overcast conditions the OMI derived surface UV estimates show larger deviation from the ground-based reference data, and even bigger systematic positive bias. Here the ratio OMI to ground data lies between 0.5 and 4.5. The average difference between OMI and ground measurements is +24 to +37% for partly cloudy conditions and more than +50% for overcast conditions.

  11. Satellite (Timed, Aura, Aqua) and In Situ (Meteorological Rockets, Balloons) Measurement Comparability

    Science.gov (United States)

    Schmidlin, F. J.; Goldberg, Richard A.; Feofilov, A.; Rose, R.

    2010-01-01

    Measurements using the inflatable falling sphere often are requested to provide density data in support of special sounding rocket launchings into the mesosphere and thermosphere. To insure density measurements within narrow time frames and close in space, the inflatable falling sphere is launched within minutes of the major test. Sphere measurements are reliable for the most part, however, availability of these rocket systems has become more difficult and, in fact, these instruments no longer are manufactured resulting in a reduction of the meager stockpile of instruments. Sphere measurements also are used to validate remotely measured temperatures and have the advantage of measuring small-scale atmospheric features. Even so, with the dearth of remaining falling spheres perhaps it is time to consider whether the remote measurements are mature enough to stand alone. Presented are two field studies, one in 2003 from Northern Sweden and one in 2010 from the vicinity of Kwajalein Atoll that compare temperature retrievals between satellite and in situ failing spheres. The major satellite instruments employed are SABER, MLS, and AIRS. The comparisons indicate that remotely measured temperatures mimic the sphere temperature measurements quite well. The data also confirm that satellite retrievals, while not always at the exact location required for individual studies, are adaptable enough and highly useful. Although the falling sphere will provide a measurement at a specific location and time, satellites only pass a given location daily or less often. This report reveals that averaged satellite measurements can provide temperatures and densities comparable to the falling sphere.

  12. Calculation of the satellite "Sich-1M" orientation on onboard magnetometric measurements

    Science.gov (United States)

    Suhorukov, A.; Kozak, L.

    2005-04-01

    The satellite "Sich-1M" was launched on 24 December 2004. It came out onto the elliptic orbit with the perigee height near 280 km except planned earlier higher near circle orbit. In addition, the satellite has gotten a non-planned rotation (about 2 rotations per turn). Later the gravitational beam had been pulled out from the satellite which partly stabilized it. A rotation of the satellite was superseded by its oscillation with a period near 2-4 swings per turn and amplitude 50 degrees. The oscillations have an unstable character. Rotations and oscillations of the satellite set inessential limitations on realization of scientific tasks of the project "Variant" because there is a possibility to determine the satellite orientation for a given time moment with the help of measurements of ferrosonde magnetometer FZM or onboard magnetometer. The device FZM measures three components of magnetic field Bx, By, Bz of the Earth in coordinate system of the satellite. To determine the satellite orientation we have used the fact that each of the component of the magnetic field at the present time moment is a function of geographical coordinates of the satellite (latitude, longitude, height over sea level), its orientation and components of a vector of Earth magnetic field in this point, calculated from magnetosphere model. Thus, having direct satellite measurements of Bx, By, Bz at given time moment in given point, orbital elements and position of the satellite on the orbit and using the standard model of Earth's magnetosphere one can calculate the satellite orientation as function of time. For the calculation we have used the magnetosphere model "The International Geomagnetic Reference Field" (IGRF) which empirically calculates the components of magnetic field of the Earth and is recommended for scientific investigations by International Association of Geomagnetism and Aeronomy (IAGA). Coefficients of IGRF model are based on accessible information sources including

  13. Satellite and terrestrial narrow-band propagation measurements at 2.05 GHz

    Science.gov (United States)

    Vaisnys, Arv; Vogel, Wolf

    1995-08-01

    A series of satellite and terrestrial propagation measurements were conducted on 15 and 16 Dec. 1994 in the vicinity of the Jet Propulsion Laboratory (JPL), Pasadena, California, in support of the VOA/JPL DBS-Radio Program. The reason for including terrestrial measurements was the possible use of terrestrial boosters to improve reception in some satellite digital audio broadcasting system service areas. The signal sources used were the NASA TDRS satellite located at 171 degrees West and a terrestrial transmitter located on a high point on JPL property. Both signals were unmodulated carriers near 2.05 GHz, spaced a few kHz apart so that both could be received simultaneously by a single receiver. An unmodulated signal was used in order to maximize the dynamic range of the signal strength measurement. A range of greater than 35 dB was achieved with the satellite signal, and over 50 dB was achieved with the terrestrial signal measurements. Three test courses were used to conduct the measurements: (1) a 33 km round trip drive from JPL through Pasadena was used to remeasure the propagation of the satellite signal over the path previously used in DBS-Radio experiments in mid 1994. A shortened portion of this test course, approximately 20 km, was used to measure the satellite and terrestrial signals simultaneously; (2) a 9 km round trip drive through JPL property, going behind buildings and other obstacles, was used to measure the satellite and terrestrial signals simultaneously; and (3) a path through one of the buildings at JPL, hand carrying the receiver, was also used to measure the satellite and terrestrial signals simultaneously.

  14. Spatial and temporal variation of CO over Alberta using measurements from satellite, aircrafts, and ground stations

    Science.gov (United States)

    Marey, H. S.; Hashisho, Z.; Fu, L.; Gille, J.

    2014-12-01

    Alberta is Canada's largest oil producer and its oil sand deposits comprise 30% of the world's oil reserves. The process of bitumen extraction and upgrading releases trace gases and aerosols to the atmosphere. In this study we present satellite-based analysis to explore, for the first time, various contributing factors that affect tropospheric carbon monoxide (CO) levels over Alberta. The multispectral product that uses both near-infrared (NIR) and the thermal-infrared (TIR) radiances for CO retrieval from the Measurements of Pollution in the Troposphere (MOPITT) are examined for the 12 year period from 2002-2013. Moderate Resolution Imaging Spectroradiometer (MODIS) thermal anomaly product from 2001 to 2013 is employed to investigate the seasonal and temporal variations of forest fires. Additionally, in situ CO measurements at industrial and urban sites are compared to satellite data. Furthermore, the available MOZAIC/IAGOS (Measurement of Ozone, Water Vapor, Carbon Monoxide, Nitrogen Oxide by Airbus In-Service Aircraft/In service Aircraft for Global Observing System) aircraft CO profiles (April 2009-December 2011) are used to validate MOPITT CO data. The climatological time curtain plot and spatial maps for CO over northern Alberta indicate the signatures of transported CO for two distinct biomass burning seasons, summer and spring. Distinct seasonal patterns of CO at the urban site s (Edmonton and Calgary cities) point to the strong influence of traffic. Meteorological parameters play an important role on the CO spatial distribution at various pressure levels. Northern Alberta shows stronger upward lifting motion which leads to larger CO total column values while the poor dispersion in central and south Alberta exacerbates the surface CO pollution. Inter-annual variations of satellite data depict a slightly decreasing trend for both regions while the decline trend is more evident from ground observations, especially at the urban sites. MOPITT CO vertical

  15. Spatial and temporal variation in CO over Alberta using measurements from satellites, aircraft, and ground stations

    Science.gov (United States)

    Marey, H. S.; Hashisho, Z.; Fu, L.; Gille, J.

    2015-04-01

    Alberta is Canada's largest oil producer, and its oil sands deposits comprise 30% of the world's oil reserves. The process of bitumen extraction and upgrading releases trace gases and aerosols to the atmosphere. In this study we present satellite-based analysis to explore, for the first time, various contributing factors that affect tropospheric carbon monoxide (CO) levels over Alberta. The multispectral product that uses both near-infrared (NIR) and the thermal-infrared (TIR) radiances for CO retrieval from the Measurements of Pollution in the Troposphere (MOPITT) is examined for the 12-year period from 2002 to 2013. The Moderate Resolution Imaging Spectroradiometer (MODIS) thermal anomaly product from 2001 to 2013 is employed to investigate the seasonal and temporal variations in forest fires. Additionally, in situ CO measurements at industrial and urban sites are compared to satellite data. Furthermore, the available MOZAIC/IAGOS (Measurement of Ozone, Water Vapor, Carbon Monoxide, Nitrogen Oxide by Airbus In-Service Aircraft/In service Aircraft for Global Observing System) aircraft CO profiles (April 2009-December 2011) are used to validate MOPITT CO data. The climatological time curtain plot and spatial maps for CO over northern Alberta indicate the signatures of transported CO for two distinct biomass burning seasons: summer and spring. Distinct seasonal patterns of CO at the urban sites (Edmonton and Calgary) point to the strong influence of traffic. Meteorological parameters play an important role in the CO spatial distribution at various pressure levels. Northern Alberta shows a stronger upward lifting motion which leads to larger CO total column values, while the poor dispersion in central and southern Alberta exacerbates the surface CO pollution. Interannual variations in satellite data depict a slightly decreasing trend for both regions, while the decline trend is more evident from ground observations, especially at the urban sites. MOPITT CO vertical

  16. Spatial and temporal variation of CO over Alberta using measurements from satellite, aircrafts, and ground stations

    Directory of Open Access Journals (Sweden)

    H. S. Marey

    2014-12-01

    Full Text Available Alberta is Canada's largest oil producer and its oil sand deposits comprise 30% of the world's oil reserves. The process of bitumen extraction and upgrading releases trace gases and aerosols to the atmosphere. In this study we present satellite-based analysis to explore, for the first time, various contributing factors that affect tropospheric carbon monoxide (CO levels over Alberta. The multispectral product that uses both near-infrared (NIR and the thermal-infrared (TIR radiances for CO retrieval from the Measurements of Pollution in the Troposphere (MOPITT are examined for the 12 year period from 2002–2013. Moderate Resolution Imaging Spectroradiometer (MODIS thermal anomaly product from 2001 to 2013 is employed to investigate the seasonal and temporal variations of forest fires. Additionally, in situ CO measurements at industrial and urban sites are compared to satellite data. Furthermore, the available MOZAIC/IAGOS (Measurement of Ozone, Water Vapor, Carbon Monoxide, Nitrogen Oxide by Airbus In-Service Aircraft/In service Aircraft for Global Observing System aircraft CO profiles (April 2009–December 2011 are used to validate MOPITT CO data. The climatological time curtain plot and spatial maps for CO over northern Alberta indicate the signatures of transported CO for two distinct biomass burning seasons, summer and spring. Distinct seasonal patterns of CO at the urban site s (Edmonton and Calgary cities point to the strong influence of traffic. Meteorological parameters play an important role on the CO spatial distribution at various pressure levels. Northern Alberta shows stronger upward lifting motion which leads to larger CO total column values while the poor dispersion in central and south Alberta exacerbates the surface CO pollution. Inter-annual variations of satellite data depict a slightly decreasing trend for both regions while the decline trend is more evident from ground observations, especially at the urban sites. MOPITT CO

  17. Early assessment of Integrated Multi-satellite Retrievals for Global Precipitation Measurement over China

    Science.gov (United States)

    Guo, Hao; Chen, Sheng; Bao, Anming; Behrangi, Ali; Hong, Yang; Ndayisaba, Felix; Hu, Junjun; Stepanian, Phillip M.

    2016-07-01

    Two post-real time precipitation products from the Integrated Multi-satellite Retrievals for Global Precipitation Measurement Mission (IMERG) are systematically evaluated over China with China daily Precipitation Analysis Product (CPAP) as reference. The IMERG products include the gauge-corrected IMERG product (IMERG_Cal) and the version of IMERG without direct gauge correction (IMERG_Uncal). The post-research TRMM Multisatellite Precipitation Analysis version 7 (TMPA-3B42V7) is also evaluated concurrently with IMERG for better perspective. In order to be consistent with CPAP, the evaluation and comparison of selected products are performed at 0.25° and daily resolutions from 12 March 2014 through 28 February 2015. The results show that: Both IMERG and 3B42V7 show similar performances. Compared to IMERG_Uncal, IMERG_Cal shows significant improvement in overall and conditional bias and in the correlation coefficient. Both IMERG_Cal and IMERG_Uncal perform relatively poor in winter and over-detect slight precipitation events in northwestern China. As an early validation of the GPM-era IMERG products that inherit the TRMM-era global satellite precipitation products, these findings will provide useful feedbacks and insights for algorithm developers and data users over China and beyond.

  18. Spin period and attitude of satellites and space debris measured by using photometry

    Science.gov (United States)

    Shakun, Leonid; Koshkin, Nikolay; Korobeynikova, Elena; Strakhova, Svetlana; Melikyants, Seda; Ryabov, Andrey

    2016-07-01

    Photometry is an essential method for studying of the properties of the proper rotation of satellites and space debris. The observation method with high time resolution is used in the Odessa astronomical observatory for observations of artificial satellites. This method provides the measuring of the orbital motion and the proper rotation of satellites. Worth note, that the time resolution of the light curve and the accuracy of positioning in time of the details in the light curve are more important for the interpretation of the brightness variations than the precise measuring of the brightness. The rapid photometry allows not only registering of the flashes caused by mirror surfaces of structure satellite elements but also determining the indicatrix of the corresponding structure satellite element. This principal change of the photometric quality allows significant improving the interpretation of the satellites' light curves. We obtained a large amount of the photometric observations sequences of the satellites with time resolution 0.02 sec on the 50 cm telescope during last 11 years. We used this data for determination of the rotational parameters of several space objects. We present the method and results of the data analysis for the inactive satellites such as Envisat, Cbers-2B, Topex and other. Each of them changes its rotational parameters in its own way. For some satellites, the rotation period increases, for other it decreases. The rotation axis also change their orientation in space. The obtained information about rotation characteristics can be used for the precise numerical models of the satellite orbital motion and for the future Active Debris Removal missions.

  19. MEaSUREs Land Surface Temperature from GOES Satellites

    Science.gov (United States)

    Pinker, Rachel T.; Chen, Wen; Ma, Yingtao; Islam, Tanvir; Borbas, Eva; Hain, Chris; Hulley, Glynn; Hook, Simon

    2017-04-01

    Information on Land Surface Temperature (LST) can be generated from observations made from satellites in low Earth orbit (LEO) such as MODIS and ASTER and by sensors in geostationary Earth orbit (GEO) such as GOES. Under a project titled: "A Unified and Coherent Land Surface Temperature and Emissivity Earth System Data Record for Earth Science" led by Jet Propulsion Laboratory, an effort is underway to develop long term consistent information from both such systems. In this presentation we will describe an effort to derive LST information from GOES satellites. Results will be presented from two approaches: 1) based on regression developed from a wide range of simulations using MODTRAN, SeeBor Version 5.0 global atmospheric profiles and the CAMEL (Combined ASTER and MODIS Emissivity for Land) product based on the standard University of Wisconsin 5 km emissivity values (UWIREMIS) and the ASTER Global Emissivity Database (GED) product; 2) RTTOV radiative transfer model driven with MERRA-2 reanalysis fields. We will present results of evaluation of these two methods against various products, such as MOD11, and ground observations for the five year period of (2004-2008).

  20. Force spectroscopy measurements show that cortical neurons exposed to excitotoxic agonists stiffen before showing evidence of bleb damage.

    Directory of Open Access Journals (Sweden)

    Shan Zou

    Full Text Available In ischemic and traumatic brain injury, hyperactivated glutamate (N-methyl-D-aspartic acid, NMDA and sodium (Nav channels trigger excitotoxic neuron death. Na(+, Ca(++ and H2O influx into affected neurons elicits swelling (increased cell volume and pathological blebbing (disassociation of the plasma membrane's bilayer from its spectrin-actomyosin matrix. Though usually conflated in injured tissue, cell swelling and blebbing are distinct processes. Around an injury core, salvageable neurons could be mildly swollen without yet having suffered the bleb-type membrane damage that, by rendering channels leaky and pumps dysfunctional, exacerbates the excitotoxic positive feedback spiral. Recognizing when neuronal inflation signifies non-lethal osmotic swelling versus blebbing should further efforts to salvage injury-penumbra neurons. To assess whether the mechanical properties of osmotically-swollen versus excitotoxically-blebbing neurons might be cytomechanically distinguishable, we measured cortical neuron elasticity (gauged via atomic force microscopy (AFM-based force spectroscopy upon brief exposure to hypotonicity or to excitotoxic agonists (glutamate and Nav channel activators, NMDA and veratridine. Though unperturbed by solution exchange per se, elasticity increased abruptly with hypotonicity, with NMDA and with veratridine. Neurons then invariably softened towards or below the pre-treatment level, sometimes starting before the washout. The initial channel-mediated stiffening bespeaks an abrupt elevation of hydrostatic pressure linked to NMDA or Nav channel-mediated ion/H2O fluxes, together with increased [Ca(++]int-mediated submembrane actomyosin contractility. The subsequent softening to below-control levels is consistent with the onset of a lethal level of bleb damage. These findings indicate that dissection/identification of molecular events during the excitotoxic transition from stiff/swollen to soft/blebbing is warranted and should be

  1. Tidally induced velocity variations of the Beardmore Glacier, Antarctica, and their representation in satellite measurements of ice velocity

    Directory of Open Access Journals (Sweden)

    O. J. Marsh

    2013-09-01

    Full Text Available Ocean tides close to the grounding line of outlet glaciers around Antarctica have been shown to directly influence ice velocity, both linearly and non-linearly. These fluctuations can be significant and have the potential to affect satellite measurements of ice discharge, which assume displacement between satellite passes to be consistent and representative of annual means. Satellite observations of horizontal velocity variation in the grounding zone are also contaminated by vertical tidal effects, the importance of which is highlighted here in speckle tracking measurements. Eight TerraSAR-X scenes from the grounding zone of the Beardmore Glacier are analysed in conjunction with GPS measurements to determine short-term and decadal trends in ice velocity. Diurnal tides produce horizontal velocity fluctuations of >50% on the ice shelf, recorded in the GPS data 4 km downstream of the grounding line. This variability decreases rapidly to <5% only 15 km upstream of the grounding line. Daily fluctuations are smoothed to <1% in the 11-day repeat pass TerraSAR-X imagery, but fortnightly variations over this period are still visible and show that satellite-velocity measurements can be affected by tides over longer periods. The measured tidal displacement observed in radar look direction over floating ice also allows the grounding line to be identified, using differential speckle tracking where phase information cannot be easily unwrapped.

  2. Satellite-based RAR performance simulation for measuring directional ocean wave spectrum based on SAR inversion spectrum

    Institute of Scientific and Technical Information of China (English)

    REN Lin; MAO Zhihua; HUANG Haiqing; GONG Fang

    2010-01-01

    Some missions have been carried out to measure wave directional spectrum by synthetic aperture radar (SAR) and airborne real aperture radar (RAR) at a low incidence. Both them have their own advantages and limitations. Scientists hope that SAR and satellite-based RAR can complement each other for the research on wave properties in the future. For this study, the authors aim to simulate the satellite-based RAR system to validate performance for measuring the directional wave spectrum. The principal measurements are introduced and the simulation methods based on the one developed by Hauser are adopted and slightly modified. To enhance the authenticity of input spectrum and the wave spectrum measuring consistency for SAR and satellite-based RAR, the wave height spectrum inversed from Envisat ASAR data by cross spectrum technology is used as the input spectrum of the simulation system. In the process of simulation, the sea surface, backscattering signal, modulation spectrum and the estimated wave height spectrum are simulated in each look direction. Directional wave spectrum are measured based on the simulated observations from 0° to 360~. From the estimated wave spectrum, it has an 180° ambiguity like SAR, but it has no special high wave number cut off in all the direction. Finally, the estimated spectrum is compared with the input one in terms of the dominant wave wavelength, direction and SWH and the results are promising. The simulation shows that satellite-based RAR should be capable of measuring the directional wave properties. Moreover, it indicates satellite-based RAR basically can measure waves that SAR can measure.

  3. Earth's gravity field modelling based on satellite accelerations derived from onboard GPS phase measurements

    Science.gov (United States)

    Guo, X.; Ditmar, P.; Zhao, Q.; Klees, R.; Farahani, H. H.

    2017-09-01

    GPS data collected by satellite gravity missions can be used for extracting the long-wavelength part of the Earth's gravity field. We propose a new data processing method which makes use of the `average acceleration' approach to gravity field modelling. In this method, satellite accelerations are directly derived from GPS carrier phase measurements with an epoch-differenced scheme. As a result, no ambiguity solutions are needed and the systematic errors that do not change much from epoch to epoch are largely eliminated. The GPS data collected by the Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) satellite mission are used to demonstrate the added value of the proposed method. An analysis of the residual accelerations shows that accelerations derived in this way are more precise, with noise being reduced by about 20 and 5% at the cross-track component and the other two components, respectively, as compared to those based on kinematic orbits. The accelerations obtained in this way allow the recovery of the gravity field to a slightly higher maximum degree compared to the solution based on kinematic orbits. Furthermore, the gravity field solution has an overall better performance. Errors in spherical harmonic coefficients are smaller, especially at low degrees. The cumulative geoid height error is reduced by about 15 and 5% up to degree 50 and 150, respectively. An analysis in the spatial domain shows that large errors along the geomagnetic equator, which are caused by a high electron density coupled with large short-term variations, are substantially reduced. Finally, the new method allows for a better observation of mass transport signals. In particular, sufficiently realistic signatures of regional mass anomalies in North America and south-west Africa are obtained.

  4. Earth's gravity field modelling based on satellite accelerations derived from onboard GPS phase measurements

    Science.gov (United States)

    Guo, X.; Ditmar, P.; Zhao, Q.; Klees, R.; Farahani, H. H.

    2017-02-01

    GPS data collected by satellite gravity missions can be used for extracting the long-wavelength part of the Earth's gravity field. We propose a new data processing method which makes use of the `average acceleration' approach to gravity field modelling. In this method, satellite accelerations are directly derived from GPS carrier phase measurements with an epoch-differenced scheme. As a result, no ambiguity solutions are needed and the systematic errors that do not change much from epoch to epoch are largely eliminated. The GPS data collected by the Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) satellite mission are used to demonstrate the added value of the proposed method. An analysis of the residual accelerations shows that accelerations derived in this way are more precise, with noise being reduced by about 20 and 5% at the cross-track component and the other two components, respectively, as compared to those based on kinematic orbits. The accelerations obtained in this way allow the recovery of the gravity field to a slightly higher maximum degree compared to the solution based on kinematic orbits. Furthermore, the gravity field solution has an overall better performance. Errors in spherical harmonic coefficients are smaller, especially at low degrees. The cumulative geoid height error is reduced by about 15 and 5% up to degree 50 and 150, respectively. An analysis in the spatial domain shows that large errors along the geomagnetic equator, which are caused by a high electron density coupled with large short-term variations, are substantially reduced. Finally, the new method allows for a better observation of mass transport signals. In particular, sufficiently realistic signatures of regional mass anomalies in North America and south-west Africa are obtained.

  5. A pathway to generating Climate Data Records of sea-surface temperature from satellite measurements

    Science.gov (United States)

    Minnett, Peter J.; Corlett, Gary K.

    2012-11-01

    In addition to having known uncertainty characteristics, Climate Data Records (CDRs) of geophysical variables derived from satellite measurements must be of sufficient length to resolve signals that might reveal the signatures of climate change against a background of larger, unrelated variability. The length of the record requires using satellite measurements from many instruments over several decades, and the uncertainty requirement implies that a consistent approach be used to establish the errors in the satellite retrievals over the entire period. Retrieving sea-surface temperature (SST) from satellite is a relatively mature topic, and the uncertainties of satellite retrievals are determined by comparison with collocated independent measurements. To avoid the complicating effects of near-surface temperature gradients in the upper ocean, the best validating measurements are from ship-board radiometers that measure, at source, the surface emission that is measured in space, after modification by its propagation through the atmosphere. To attain sufficient accuracy, such ship-based radiometers must use internal blackbody calibration targets, but to determine the uncertainties in these radiometric measurements, i.e. to confirm that the internal calibration is effective, it is necessary to conduct verification of the field calibration using independent blackbodies with accurately known emissivity and at very accurately measured temperatures. This is a well-justifiable approach to providing the necessary underpinning of a Climate Data Record of SST.

  6. Comparison of global irradiance measurements of the official Spanish radiometric network for 2006 with satellite estimated data

    Directory of Open Access Journals (Sweden)

    J. M. Sancho

    2011-01-01

    Full Text Available The monthly average values of daily global irradiance measured in broadband at 40 stations of the National Radiometric Network of the Spanish Meteorological Agency have been compared with the monthly values of SIS (Surface Incoming Shortwave radiation of the Climate Monitoring-Satellite Application Facility for 2006. It is calculated by the data from the instrument Spinning Enhanced Visible and Infrared Imager of the Meteosat Second Generation satellite and of the Advanced Very High Resolution Radiometer of the NOAA polar satellites. The results show a great similarity between the data from both sources of information, and the discrepancies found are around 5%. The aim of such a comparison is to evaluate the suitability of the use of the SIS data for the elaboration of an atlas of solar irradiance available in Spain.

  7. Experimental study of mountain lee—waves by means of satellite photographs and aircraft measurements

    OpenAIRE

    Cruette, Denise

    2011-01-01

    This paper is a summary of a Ph.D. Thesis1 which was a systematic study of the influence of various meteorological factors on the occurrence and characteristics of mountain waves, more specifically of lee-waves of great horizontal extent. The data used are, beside classical meteorological informations, that given by satellite pictures completed by quasi-simultaneous measurements from planes or gliders. The analysis of many satellite pictures received at the french station of Lannion (Brittany...

  8. Comparing clouds and their seasonal variations in 10 atmospheric general circulation models with satellite measurements

    OpenAIRE

    Zhang, M.; Lin, W.; Klein, S.; J. Bacmeister; Bony, S.; Cederwall, R.; Del Genio, A; Hack, J.; Loeb, N.; Lohmann, U.; P. Minnis; Musat, I.; Pincus, R; Stier, P.; Suarez, M.

    2005-01-01

    To assess the current status of climate models in simulating clouds, basic cloud climatologies from ten atmospheric general circulation models are compared with satellite measurements from the International Satellite Cloud Climatology Project (ISCCP) and the Clouds and Earth's Radiant Energy System (CERES) program. An ISCCP simulator is employed in all models to facilitate the comparison. Models simulated a four-fold difference in high-top clouds. There are also, however, large uncertainties ...

  9. Relative navigation for satellite formation flight using a continuous-discrete converted measurement Kalman filter

    Institute of Scientific and Technical Information of China (English)

    XUE Dan; CAO Xi-bin

    2008-01-01

    The present paper develops an approach of relative orbit determination for satellite formation flight. Inter-satellite measurements by the onboard devices of the satellite were chosen to perform this relative naviga-tion, and the equations of relative motion expressed in the Earth Centered Inertial frame were used to eliminate the assumption of the circular reference orbit. The relative orbit estimation was achieved through a continuous-discrete converted measurement Kalman filter design, in which the measurements were transformed to the iner-tial frame to avoid the linearization error of the observation equation. In addition, the situation of the coarse measurement period (only microwave radar measurements are available) existing was analyzed. The numerical simulation results verify the validity of the navigation approach, and it has been proved that this approach can be applied to the formation with an elliptical reference orbit.

  10. Evaluation of the satellite-based Global Flood Detection System for measuring river discharge: influence of local factors

    Directory of Open Access Journals (Sweden)

    B. Revilla-Romero

    2014-07-01

    Full Text Available One of the main challenges for global hydrological modelling is the limited availability of observational data for calibration and model verification. This is particularly the case for real time applications. This problem could potentially be overcome if discharge measurements based on satellite data were sufficiently accurate to substitute for ground-based measurements. The aim of this study is to test the potentials and constraints of the remote sensing signal of the Global Flood Detection System for converting the flood detection signal into river discharge values. The study uses data for 322 river measurement locations in Africa, Asia, Europe, North America and South America. Satellite discharge measurements were calibrated for these sites and a validation analysis with in situ discharge was performed. The locations with very good performance will be used in a future project where satellite discharge measurements are obtained on a daily basis to fill the gaps where real time ground observations are not available. These include several international river locations in Africa: Niger, Volta and Zambezi rivers. Analysis of the potential factors affecting the satellite signal was based on a classification decision tree (Random Forest and showed that mean discharge, climatic region, land cover and upstream catchment area are the dominant variables which determine good or poor performance of the measurement sites. In general terms, higher skill scores were obtained for locations with one or more of the following characteristics: a river width higher than 1 km; a large floodplain area and in flooded forest; with a potential flooded area greater than 40%; sparse vegetation, croplands or grasslands and closed to open and open forest; Leaf Area Index > 2; tropical climatic area; and without hydraulic infrastructures. Also, locations where river ice cover is seasonally present obtained higher skill scores. The work provides guidance on the best

  11. Validation of NH3 satellite observations by ground-based FTIR measurements

    Science.gov (United States)

    Dammers, Enrico; Palm, Mathias; Van Damme, Martin; Shephard, Mark; Cady-Pereira, Karen; Capps, Shannon; Clarisse, Lieven; Coheur, Pierre; Erisman, Jan Willem

    2016-04-01

    Global emissions of reactive nitrogen have been increasing to an unprecedented level due to human activities and are estimated to be a factor four larger than pre-industrial levels. Concentration levels of NOx are declining, but ammonia (NH3) levels are increasing around the globe. While NH3 at its current concentrations poses significant threats to the environment and human health, relatively little is known about the total budget and global distribution. Surface observations are sparse and mainly available for north-western Europe, the United States and China and are limited by the high costs and poor temporal and spatial resolution. Since the lifetime of atmospheric NH3 is short, on the order of hours to a few days, due to efficient deposition and fast conversion to particulate matter, the existing surface measurements are not sufficient to estimate global concentrations. Advanced space-based IR-sounders such as the Tropospheric Emission Spectrometer (TES), the Infrared Atmospheric Sounding Interferometer (IASI), and the Cross-track Infrared Sounder (CrIS) enable global observations of atmospheric NH3 that help overcome some of the limitations of surface observations. However, the satellite NH3 retrievals are complex requiring extensive validation. Presently there have only been a few dedicated satellite NH3 validation campaigns performed with limited spatial, vertical or temporal coverage. Recently a retrieval methodology was developed for ground-based Fourier Transform Infrared Spectroscopy (FTIR) instruments to obtain vertical concentration profiles of NH3. Here we show the applicability of retrieved columns from nine globally distributed stations with a range of NH3 pollution levels to validate satellite NH3 products.

  12. Understanding data noise in gravity field recovery on the basis of inter-satellite ranging measurements acquired by the satellite gravimetry mission GRACE

    NARCIS (Netherlands)

    Ditmar, P.; Teixeira da Encarnacao, J.; Hashemi Farahani, H.

    2012-01-01

    Spectral analysis of data noise is performed in the context of gravity field recovery from inter-satellite ranging measurements acquired by the satellite gravimetry mission GRACE. The motivation of the study is two-fold: (i) to promote a further improvement of GRACE data processing techniques and

  13. An Autonomous System to Take Angular Thermal-Infrared Measurements for Validating Satellite Products

    Directory of Open Access Journals (Sweden)

    Raquel Niclòs

    2015-11-01

    Full Text Available An autonomous system for field land surface temperature (LST measurements taken at different observation angles was developed to be deployed easily at any conventional meteorological tower station. The system permits ground-truth data to be acquired on a continuous basis, and angularly scans land and sky hemispheres with a single thermal-infrared (TIR radiometer. This paper describes the autonomous angular system and the methodology to assess ground-truth LST and relative-to-nadir emissivity data from system measurements. Ground-truth LSTs were used to validate satellite-retrieved LST products at two experimental sites (rice crop and shrubland areas. The relative-to-nadir emissivity values were used to analyze the anisotropy of surface emissive properties over thermally-homogeneous covers. The EOS-MODIS MOD11_L2/MYD11_L2 LST product was evaluated and shown to work within expected uncertainties (<2.0 K when tested against the system data. A slight underestimation of around −0.15 K was observed, which became greater for the off-nadir observation angles at the shrubland site. The system took angular measurements for the different seasonal homogeneous covers at the rice crop site. These measurements showed emissivity angular anisotropies, which were in good agreement with previously published data. The dual-view ENVISAT-AATSR data reproduced them, and revealed that the system data collected for thermally-homogeneous surfaces could be used to test future satellite TIR sensors with multi-angular or bi-angular capabilities, like the forthcoming SLSTR on board Copernicus Sentinel-3A.

  14. POGO satellite orbit corrections: an opportunity to improve the quality of the geomagnetic field measurements?

    Science.gov (United States)

    Stockmann, Reto; Christiansen, Freddy; Olsen, Nils; Jackson, Andrew

    2015-06-01

    We present an attempt to improve the quality of the geomagnetic field measurements from the Polar Orbiting Geophysical Observatory (POGO) satellite missions in the late 1960s. Inaccurate satellite positions are believed to be a major source of errors for using the magnetic observations for field modelling. To improve the data, we use an iterative approach consisting of two main parts: one is a main field modelling process to obtain the radial field gradient to perturb the orbits and the other is the state-of-the-art GPS orbit modelling software BERNESE to calculate new physical orbits. We report results based on a single-day approach showing a clear increase of the data quality. That single-day approach leads, however, to undesirable orbital jumps at midnight. Furthermore, we report results obtained for a much larger data set comprising almost all of the data from the three missions. With this approach, we eliminate the orbit discontinuities at midnight but only tiny quality improvements could be achieved for geomagnetically quiet data. We believe that improvements to the data are probably still possible, but it would require the original tracking observations to be found.

  15. Satellite quenching time-scales in clusters from projected phase space measurements matched to simulated orbits

    Science.gov (United States)

    Oman, Kyle A.; Hudson, Michael J.

    2016-12-01

    We measure the star formation quenching efficiency and time-scale in cluster environments. Our method uses N-body simulations to estimate the probability distribution of possible orbits for a sample of observed Sloan Digital Sky Survey galaxies in and around clusters based on their position and velocity offsets from their host cluster. We study the relationship between their star formation rates and their likely orbital histories via a simple model in which star formation is quenched once a delay time after infall has elapsed. Our orbit library method is designed to isolate the environmental effect on the star formation rate due to a galaxy's present-day host cluster from `pre-processing' in previous group hosts. We find that quenching of satellite galaxies of all stellar masses in our sample (109-10^{11.5}M_{⊙}) by massive (> 10^{13} M_{⊙}) clusters is essentially 100 per cent efficient. Our fits show that all galaxies quench on their first infall, approximately at or within a Gyr of their first pericentric passage. There is little variation in the onset of quenching from galaxy-to-galaxy: the spread in this time is at most ˜2 Gyr at fixed M*. Higher mass satellites quench earlier, with very little dependence on host cluster mass in the range probed by our sample.

  16. Surface net solar radiation estimated from satellite measurements - Comparisons with tower observations

    Science.gov (United States)

    Li, Zhanqing; Leighton, H. G.; Cess, Robert D.

    1993-01-01

    A parameterization that relates the reflected solar flux at the top of the atmosphere to the net solar flux at the surface in terms of only the column water vapor amount and the solar zenith angle was tested against surface observations. Net surface fluxes deduced from coincidental collocated satellite-measured radiances and from measurements from towers in Boulder during summer and near Saskatoon in winter have mean differences of about 2 W/sq m, regardless of whether the sky is clear or cloudy. Furthermore, comparisons between the net fluxes deduced from the parameterization and from surface measurements showed equally good agreement when the data were partitioned into morning and afternoon observations. This is in contrast to results from an empirical clear-sky algorithm that is unable to account adequately for the effects of clouds and that shows, at Boulder, a distinct morning to afternoon variation. It is also demonstrated that the parameterization may be applied to irradiances at the top of the atmosphere that have been temporally averaged. The good agreement between the results of the parameterization and surface measurements suggests that the algorithm is a useful tool for a variety of climate studies.

  17. Surface Net Solar Radiation Estimated from Satellite Measurements: Comparisons with Tower Observations

    Science.gov (United States)

    Li, Zhanqing; Leighton, H. G.; Cess, Robert D.

    1993-01-01

    A parameterization that relates the reflected solar flux at the top of the atmosphere to the net solar flux at the surface in terms of only the column water vapor amount and the solar zenith angle was tested against surface observations. Net surface fluxes deduced from coincidental collocated satellite-measured radiances and from measurements from towers in Boulder during summer and near Saskatoon in winter have mean differences of about 2 W/sq m, regardless of whether the sky is clear or cloudy. Furthermore, comparisons between the net fluxes deduced from the parameterization and from surface measurements showed equally good agreement when the data were partitioned into morning and afternoon observations. This is in contrast to results from an empirical clear-sky algorithm that is unable to account adequately for the effects of clouds and that shows, at Boulder, a distinct morning to afternoon variation, which is presumably due to the predominance of different cloud types throughout the day. It is also demonstrated that the parameterization may be applied to irradiances at the top of the atmosphere that have been temporally averaged by using the temporally averaged column water vapor amount and the temporally averaged cosine of the solar zenith angle. The good agreement between the results of the parameterization and surface measurements suggests that the algorithm is a useful tool for a variety of climate studies.

  18. All satellites total ozone evaluation in the tropics by comparison with SAOZ-NDACC ground-based measurements

    Science.gov (United States)

    Pommereau, Jean-Pierre; Lerot, Christophe; Van Roozendael, Michel; Goutail, Florence; Pazmino, Andrea; Frihi, Aymen; Bekki, Slimane; Clerbaux, Cathy

    2016-07-01

    All satellites total ozone measurements available from SBUV, OMI-T, OMI-D, OMI-CCI, GOME-CCI, GOME2-CCI, SCIAMACHY-CCI, NPP and IASI, since 2001 until 2015 are compared to those provided by the UV-Vis SAOZ/NDACC spectrometer at the two tropical stations of Reunion Island in the Indian Ocean and Bauru in Southern Brazil. The differences between satellites and SAOZ except IASI do show systematic seasonal variations of 0-3% (0-9 DU) amplitude and sharp negative peaks in Jan-Mar in Reunion Is in the austral summer. Whereas the summer negative peaks seen particularly on IASI, OMI-T, NPP and OMI-CCI at Reunion are shown to correlate with hurricanes and those seen in Brazil with high altitude overshooting convective clouds both not properly removed, ozone minima outside these events are shown to correlate with high altitude volcanic plumes impacting all satellites as well as ground-based total ozone measurements The seasonality of the Sat-SAOZ difference of varying amplitude from 0 to 3% with the satellite is attributed to the satellite retrieval. Surprisingly and though there has been no change in either SAOZ instruments or data analysis processes, the amplitude of the seasonal cycle of the Sat-SAOZ difference reduces in 2012 and drops to less than ± 0.5% (1.5 DU) after 2013 in Reunion Island and less than ±1% in Bauru, reduction for which there is no clear explanation yet. Shown in the presentation will be the demonstration of the impact of hurricanes, high altitude convective clouds and volcanic plumes on satellites total ozone retrievals, followed by a discussion of possible causes of seasonality of Sat-SAOZ amplitude drop after 2012.

  19. Measurements of ionospheric TEC in the direction of GPS satellites and comparison with three ionospheric models

    Directory of Open Access Journals (Sweden)

    E. Zuccheretti

    1997-06-01

    Full Text Available The IEN Galileo Ferraris uses GPS for time and frequency synchronization. To obtain high performance it is important to reduce the error due to the ionospheric time-delay in GPS measurements. Evaluations of TEC in the direction of GPS satellites, obtained from three different ionospheric models, have been compared with corresponding measurements by GPS signal.

  20. Radiation budget and related measurements in 1985 and beyond. [earth radiation budget satellite system

    Science.gov (United States)

    1978-01-01

    Development of systems for obtaining radiation budget and cloud data is discussed. Instruments for measuring total solar irradiance, total infrared flux, reflected solar flux, and cloud heights and properties are considered. Other topics discussed include sampling by multiple satellites, user identification, and determination of the parameters that need to be measured.

  1. Hail detection algorithm for the Global Precipitation Measuring mission core satellite sensors

    Science.gov (United States)

    Mroz, Kamil; Battaglia, Alessandro; Lang, Timothy J.; Tanelli, Simone; Cecil, Daniel J.; Tridon, Frederic

    2017-04-01

    By exploiting an abundant number of extreme storms observed simultaneously by the Global Precipitation Measurement (GPM) mission core satellite's suite of sensors and by the ground-based S-band Next-Generation Radar (NEXRAD) network over continental US, proxies for the identification of hail are developed based on the GPM core satellite observables. The full capabilities of the GPM observatory are tested by analyzing more than twenty observables and adopting the hydrometeor classification based on ground-based polarimetric measurements as truth. The proxies have been tested using the Critical Success Index (CSI) as a verification measure. The hail detection algorithm based on the mean Ku reflectivity in the mixed-phase layer performs the best, out of all considered proxies (CSI of 45%). Outside the Dual frequency Precipitation Radar (DPR) swath, the Polarization Corrected Temperature at 18.7 GHz shows the greatest potential for hail detection among all GMI channels (CSI of 26% at a threshold value of 261 K). When dual variable proxies are considered, the combination involving the mixed-phase reflectivity values at both Ku and Ka-bands outperforms all the other proxies, with a CSI of 49%. The best-performing radar-radiometer algorithm is based on the mixed-phase reflectivity at Ku-band and on the brightness temperature (TB) at 10.7 GHz (CSI of 46%). When only radiometric data are available, the algorithm based on the TBs at 36.6 and 166 GHz is the most efficient, with a CSI of 27.5%.

  2. Bowie Lecture: The Record of Sea Level Change from Satellite Measurements: What Have We Learned?

    Science.gov (United States)

    Nerem, R. S.

    2005-12-01

    Over the last decade, satellite geodetic measurements together with in situ measurements, have revolutionized our understanding of present-day sea level change. This is important because sea level change can be used as one barometer of climate variations and because of the implications sea level change has for coastal populations. With measurements from satellite altimeter missions (TOPEX/Posiedon and Jason), satellite gravity missions (GRACE), and the Global Positioning System (GPS), we are now able to start asking some important questions with regards to global sea level change and its regional variations. What has been the rate of global mean sea level change over the last dozen years? Is this rate different from the historical rate observed by the tide gauges over the last century? What are the principal causes of the observed sea level change, and are they related to anthropogenic climate variations? The record of sea level change from satellite altimetry will be reviewed, its error sources and limitations discussed, and the results placed in context with other estimates of sea level change from tide gauges, in situ measurements, and global climate models. The much shorter, but just as important, record of ocean mass variations from satellite gravity measurements will be similarly reviewed. In addition, GPS measurements of the deformation of the solid Earth due to the melting of continental ice and what they tell us about sea level change will be discussed. A sea level change budget will be presented, both for the altimetric era and the last century, containing estimates of contributions from thermal expansion, ocean mass changes (melting ice, runoff, etc.), and other contributions to sea level change. Finally, the need for continuing the satellite measurements of sea level change will be discussed in the context of future missions and the scientific gain that would result.

  3. Quantifying Above-Cloud Aerosols through Integrating Multi-Sensor Measurements from A-Train Satellites

    Science.gov (United States)

    Zhang, Yan

    2012-01-01

    Quantifying above-cloud aerosols can help improve the assessment of aerosol intercontinental transport and climate impacts. Large-scale measurements of aerosol above low-level clouds had been generally unexplored until very recently when CALIPSO lidar started to acquire aerosol and cloud profiles in June 2006. Despite CALIPSO s unique capability of measuring above-cloud aerosol optical depth (AOD), such observations are substantially limited in spatial coverage because of the lidar s near-zero swath. We developed an approach that integrates measurements from A-Train satellite sensors (including CALIPSO lidar, OMI, and MODIS) to extend CALIPSO above-cloud AOD observations to substantially larger areas. We first examine relationships between collocated CALIPSO above-cloud AOD and OMI absorbing aerosol index (AI, a qualitative measure of AOD for elevated dust and smoke aerosol) as a function of MODIS cloud optical depth (COD) by using 8-month data in the Saharan dust outflow and southwest African smoke outflow regions. The analysis shows that for a given cloud albedo, above-cloud AOD correlates positively with AI in a linear manner. We then apply the derived relationships with MODIS COD and OMI AI measurements to derive above-cloud AOD over the whole outflow regions. In this talk, we will present spatial and day-to-day variations of the above-cloud AOD and the estimated direct radiative forcing by the above-cloud aerosols.

  4. Application of satellite infrared measurements to mapping sea ice

    Science.gov (United States)

    Barnes, J. C.

    1972-01-01

    The application of the ITOS-SR (scanning radiometer) infrared measurements for mapping sea ice was examined. The work included detailed mapping of ice features visible in the ITOS nighttime DRSR (direct readout scanning radiometer) pictorial data and in Nimbus summertime film strip data. Analyses of digital temperature values from computer printouts of ITOS stored data and from Nimbus data listings were also undertaken, and densitometric measurements of both ITOS and Nimbus data were initiated.

  5. Improvement of NCEP Numerical Weather Prediction with Use of Satellite Land Measurements

    Science.gov (United States)

    Zheng, W.; Ek, M. B.; Wei, H.; Meng, J.; Dong, J.; Wu, Y.; Zhan, X.; Liu, J.; Jiang, Z.; Vargas, M.

    2014-12-01

    Over the past two decades, satellite measurements are being increasingly used in weather and climate prediction systems and have made a considerable progress in accurate numerical weather and climate predictions. However, it is noticed that the utilization of satellite measurements over land is far less than over ocean, because of the high land surface inhomogeneity and the high emissivity variabilities in time and space of surface characteristics. In this presentation, we will discuss the application efforts of satellite land observations in the National Centers for Environmental Prediction (NCEP) operational Global Forecast System (GFS) in order to improve the global numerical weather prediction (NWP). Our study focuses on use of satellite data sets such as vegetation type and green vegetation fraction, assimilation of satellite products such as soil moisture retrieval, and direct radiance assimilation. Global soil moisture data products could be used for initialization of soil moisture state variables in numerical weather, climate and hydrological forecast models. A global Soil Moisture Operational Product System (SMOPS) has been developed at NOAA-NESDIS to continuously provide global soil moisture data products to meet NOAA-NCEP's soil moisture data needs. The impact of the soil moisture data products on numerical weather forecast is assessed using the NCEP GFS in which the Ensemble Kalman Filter (EnKF) data assimilation algorithm has been implemented. In terms of radiance assimilation, satellite radiance measurements in various spectral channels are assimilated through the JCSDA Community Radiative Transfer Model (CRTM) on the NCEP Gridpoint Statistical Interpolation (GSI) system, which requires the CRTM to calculate model brightness temperature (Tb) with input of model atmosphere profiles and surface parameters. Particularly, for surface sensitive channels (window channels), Tb largely depends on surface parameters such as land surface skin temperature, soil

  6. Sea Temperature Fiducial Reference Measurements for the Validation and Data Gap Bridging of Satellite SST Data Products

    Science.gov (United States)

    Wimmer, Werenfrid

    2016-08-01

    The Infrared Sea surface temperature Autonomous Radiometer (ISAR) was developed to provide reference data for the validation of satellite Sea Surface Temperature at the Skin interface (SSTskin) temperature data products, particularly the Advanced Along Track Scanning Radiometer (AATSR). Since March 2004 ISAR instruments have been deployed nearly continuously on ferries crossing the English Channel and the Bay of Biscay, between Portsmouth (UK) and Bilbao/Santander (Spain). The resulting twelve years of ISAR data, including an individual uncertainty estimate for each SST record, are calibrated with traceability to national standards (National Institute of Standards and Technology, USA (NIST) and National Physical Laboratory, Teddigton, UK (NPL), Fiducial Reference Measurements for satellite derived surface temperature product validation (FRM4STS)). They provide a unique independent in situ reference dataset against which to validate satellite derived products. We present results of the AATSR validation, and show the use of ISAR fiducial reference measurements as a common traceable validation data source for both AATSR and Sea and Land Surface Temperature Radiometer (SLSTR). ISAR data were also used to review performance of the Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) Sea Surface Temperature (SST) analysis before and after the demise of ESA Environmental Satellite (Envisat) when AATSR inputs ceased This demonstrates use of the ISAR reference data set for validating the SST climatologies that will bridge the data gap between AATSR and SLSTR.

  7. Coarse Initial Orbit Determination for a Geostationary Satellite Using Single-Epoch GPS Measurements

    Directory of Open Access Journals (Sweden)

    Ghangho Kim

    2015-04-01

    Full Text Available A practical algorithm is proposed for determining the orbit of a geostationary orbit (GEO satellite using single-epoch measurements from a Global Positioning System (GPS receiver under the sparse visibility of the GPS satellites. The algorithm uses three components of a state vector to determine the satellite’s state, even when it is impossible to apply the classical single-point solutions (SPS. Through consideration of the characteristics of the GEO orbital elements and GPS measurements, the components of the state vector are reduced to three. However, the algorithm remains sufficiently accurate for a GEO satellite. The developed algorithm was tested on simulated measurements from two or three GPS satellites, and the calculated maximum position error was found to be less than approximately 40 km or even several kilometers within the geometric range, even when the classical SPS solution was unattainable. In addition, extended Kalman filter (EKF tests of a GEO satellite with the estimated initial state were performed to validate the algorithm. In the EKF, a reliable dynamic model was adapted to reduce the probability of divergence that can be caused by large errors in the initial state.

  8. Fade-durations derived from land-mobile-satellite measurements in Australia

    Science.gov (United States)

    Hase, Yoshihiro; Vogel, Wolfhard J.; Goldhirsh, Julius

    1991-01-01

    Transmissions from the Japanese ETS-V geostationary satellite were measured at L band (1.5 GHz) in a vehicle driving on roads of southeastern Australia. The measurements were part of a program designed to characterize propagation effects due to roadside trees and terrain for mobile satellite service. It is shown that the cumulative distributions of fade and nonfade durations follow a lognormal and power law, respectively. At 1 percent probability, fades last 2-8 m, and nonfades 10-100 m, depending on the degree of shadowing. Phase fluctuations are generally small, allowing the channel characteristics to be estimated from levels only.

  9. Validation of PV performance models using satellite-based irradiance measurements : a case study.

    Energy Technology Data Exchange (ETDEWEB)

    Stein, Joshua S.; Parkins, Andrew (Clean Power Research); Perez, Richard (University at Albany)

    2010-05-01

    Photovoltaic (PV) system performance models are relied upon to provide accurate predictions of energy production for proposed and existing PV systems under a wide variety of environmental conditions. Ground based meteorological measurements are only available from a relatively small number of locations. In contrast, satellite-based radiation and weather data (e.g., SUNY database) are becoming increasingly available for most locations in North America, Europe, and Asia on a 10 x 10 km grid or better. This paper presents a study of how PV performance model results are affected when satellite-based weather data is used in place of ground-based measurements.

  10. Global top-down smoke aerosol emissions estimation using satellite fire radiative power measurements

    Directory of Open Access Journals (Sweden)

    C. Ichoku

    2013-10-01

    and grasslands, 15–32 g MJ−1 for tropical forest, 9–12 g MJ−1 for North American boreal forest, about ~24 g MJ−1 for Russian boreal forest, and 18–26 g MJ−1 for Russian croplands and natural vegetation. The FEER.v1 Ce product was multiplied with FRP data to generate smoke TPM emissions, which were compared with equivalent emissions products from three existing inventories. The smoke TPM emissions results from FEER.v1 showed higher and more reasonable estimates than those of two other emissions inventories that are based on bottom up approaches and already reported in the literature to be too low, but portrayed an overall reasonable agreement with those of another inventory based on a hybrid method that includes the top-down approach, thereby suggesting that top-down approaches may hold better promise and need to be further developed to accelerate the reduction of uncertainty associated with fire emissions estimation in air-quality and climate research and applications. Based on analysis of data covering the period of 2004–2011, FEER.v1 results show that ~65–85 Tg yr−1 of TPM is emitted globally from open biomass burning, with a generally decreasing trend over this short time period. The FEER.v1 Ce product is the first global gridded product in the family of "emission factors", that is based essentially on satellite measurements, and requires only direct satellite FRP measurements of an actively burning fire anywhere to evaluate its emission rate in near real time, which is essential for operational activities, such as the monitoring and forecasting of smoke emission impacts on air quality.

  11. Vertical profiles of aerosol optical properties over central Illinois and comparison with surface and satellite measurements

    Directory of Open Access Journals (Sweden)

    P. J. Sheridan

    2012-12-01

    Full Text Available Between June 2006 and September 2009, an instrumented light aircraft measured over 400 vertical profiles of aerosol and trace gas properties over eastern and central Illinois. The primary objectives of this program were to (1 measure the in situ aerosol properties and determine their vertical and temporal variability and (2 relate these aircraft measurements to concurrent surface and satellite measurements. The primary profile location was within 15 km of the NOAA/ESRL surface aerosol monitoring station near Bondville, Illinois. Identical instruments at the surface and on the aircraft ensured that the data from both platforms would be directly comparable and permitted a determination of how representative surface aerosol properties were of the lower column. Aircraft profiles were also conducted occasionally at two other nearby locations to increase the frequency of A-Train satellite underflights for the purpose of comparing in situ and satellite-retrieved aerosol data. Measurements of aerosol properties conducted at low relative humidity over the Bondville site compare well with the analogous surface aerosol data and do not indicate any major sampling issues or that the aerosol is radically different at the surface compared with the lowest flyby altitude of ~ 240 m above ground level. Statistical analyses of the in situ vertical profile data indicate that aerosol light scattering and absorption (related to aerosol amount decreases substantially with increasing altitude. Parameters related to the nature of the aerosol (e.g., single-scattering albedo, Ångström exponent, etc., however, are relatively constant throughout the mixed layer, and do not vary as much as the aerosol amount throughout the profile. While individual profiles often showed more variability, the median in situ single-scattering albedo was 0.93–0.95 for all sampled altitudes. Several parameters (e.g., submicrometer scattering fraction, hemispheric backscattering fraction, and

  12. Multi-decadal record of ice dynamics on Daugaard Jensen Gletscher, East Greenland, from satellite imagery and terrestrial measurements

    DEFF Research Database (Denmark)

    Stearns, L.A.; Hamilton, G.S.; Reeh, Niels

    2005-01-01

    The history of ice velocity and calving front position of Daugaard Jensen Gletscher, a large outlet glacier in East Greenland, is reconstructed from field measurements, aerial photography and satellite imagery for the period 1950-2001. The calving terminus of the glacier has remained in approxima......The history of ice velocity and calving front position of Daugaard Jensen Gletscher, a large outlet glacier in East Greenland, is reconstructed from field measurements, aerial photography and satellite imagery for the period 1950-2001. The calving terminus of the glacier has remained...... vs snow accumulation in the interior catchment show that Daugaard Jensen Gletscher has a small negative mass balance. This result is consistent with other mass-balance estimates for the inland region of the glacier....

  13. Saharan dust detection using multi-sensor satellite measurements.

    Science.gov (United States)

    Madhavan, Sriharsha; Qu, John J; Hao, X

    2017-02-01

    Contemporary scientists have vested interest in trying to understand the climatology of the North Atlantic Basin since this region is considered as the genesis for hurricane formation that eventually get shipped to the tropical Atlantic region and the Caribbean. The effects of atmospheric water cycle and the climate of West Africa and the Atlantic basin are hugely impacted by the radiative forcing of Saharan dust. The focus area in this paper would be to improve the dust detection schemes by employing the use of multi sensor measurements in the thermal emissive wavelengths using legacy sensors such as Terra (T) and Aqua (A) MODerate-resolution Imaging Spectroradiometer (MODIS), fusing with Ozone Monitoring Instrument (OMI). Previous work by Hao and Qu (2007) had considered a limited number of thermal infrared channels which led to a correlation coefficient R(2) value of 0.765 between the Aerosol Optical Thickness (AOT) at 550 nm and the modeled dust index. In this work, we extend the thermal infrared based dust detection by employing additional channels: the 8.55 μm which has shown high sensitivity to the Saharan dust, along with water vapor channel of 7.1 μm and cloud top channel of 13.1 μm. Also, the dust pixels were clearly identified using the OMI based aerosol types. The dust pixels were cleanly segregated from the other aerosol types such as sulfates, biomass, and other carbonaceous aerosols. These improvements led to a much higher correlation coefficient R(2) value of 0.85 between the modified dust index and the AOT in comparison to the previous work. The key limitations from the current AOT products based on MODIS and were put to test by validating the improved dust detection algorithm. Two improvements were noted. First, the dust measurement radiometry using MODIS is significantly improved by at least an order of 2. Second the spatial measurements are enhanced by a factor of at least 10.

  14. Saharan dust detection using multi-sensor satellite measurements

    Directory of Open Access Journals (Sweden)

    Sriharsha Madhavan

    2017-02-01

    Full Text Available Contemporary scientists have vested interest in trying to understand the climatology of the North Atlantic Basin since this region is considered as the genesis for hurricane formation that eventually get shipped to the tropical Atlantic region and the Caribbean. The effects of atmospheric water cycle and the climate of West Africa and the Atlantic basin are hugely impacted by the radiative forcing of Saharan dust. The focus area in this paper would be to improve the dust detection schemes by employing the use of multi sensor measurements in the thermal emissive wavelengths using legacy sensors such as Terra (T and Aqua (A MODerate-resolution Imaging Spectroradiometer (MODIS, fusing with Ozone Monitoring Instrument (OMI. Previous work by Hao and Qu (2007 had considered a limited number of thermal infrared channels which led to a correlation coefficient R2 value of 0.765 between the Aerosol Optical Thickness (AOT at 550 nm and the modeled dust index. In this work, we extend the thermal infrared based dust detection by employing additional channels: the 8.55 μm which has shown high sensitivity to the Saharan dust, along with water vapor channel of 7.1 μm and cloud top channel of 13.1 μm. Also, the dust pixels were clearly identified using the OMI based aerosol types. The dust pixels were cleanly segregated from the other aerosol types such as sulfates, biomass, and other carbonaceous aerosols. These improvements led to a much higher correlation coefficient R2 value of 0.85 between the modified dust index and the AOT in comparison to the previous work. The key limitations from the current AOT products based on MODIS and were put to test by validating the improved dust detection algorithm. Two improvements were noted. First, the dust measurement radiometry using MODIS is significantly improved by at least an order of 2. Second the spatial measurements are enhanced by a factor of at least 10.

  15. Global Characterization of Biomass-Burning Patterns using Satellite Measurements of Fire Radiative Energy

    Science.gov (United States)

    Ichoku, Charles; Giglio, Louis; Wooster, Martin J.; Remer, Lorraine A.

    2008-01-01

    Remote sensing is the most practical means of measuring energy release from large open-air biomass burning. Satellite measurement of fire radiative energy (FRE) release rate or power (FRP) enables distinction between fires of different strengths. Based on a 1-km resolution fire data acquired globally by the MODerate-resolution Imaging Spectro-radiometer (MODIS) sensor aboard the Terra and Aqua satellites from 2000 to 2006, instanteaneous FRP values ranged between 0.02 MW and 1866 MW, with global daily means ranging between 20 and 40 MW. Regionally, at the Aqua-MODIS afternoon overpass, the mean FRP values for Alaska, Western US, Western Australia, Quebec and the rest of Canada are significantly higher than these global means, with Quebec having the overall highest value of 85 MW. Analysis of regional mean FRP per unit area of land (FRP flux) shows that a peak fire season in certain regions, fires can be responsible for up to 0.2 W/m(sup 2) at peak time of day. Zambia has the highest regional monthly mean FRP flux of approximately 0.045 W/m(sup 2) at peak time of day and season, while the Middle East has the lowest value of approximately 0.0005 W/m(sup 2). A simple scheme based on FRP has been devised to classify fires into five categories, to facilitate fire rating by strength, similar to earthquakes and hurricanes. The scheme uses MODIS measurements of FRP at 1-km resolution as follows: catagory 1 (less than 100 MW), category 2 (100 to less than 500 MW), category 3 (500 to less than 1000 MW), category 4 (1000 to less than 1500 MW), catagory 5 (greater than or equal to 1500 MW). In most regions of the world, over 90% of fires fall into category 1, while only less than 1% fall into each of categories 3 to 5, although these proportions may differ significantly from day to day and by season. The frequency of occurence of the larger fires is region specific, and could not be explained by ecosystem type alone. Time-series analysis of the propertions of higher category

  16. Multi-decadal satellite measurements of passive and eruptive volcanic SO2 emissions

    Science.gov (United States)

    Carn, Simon; Yang, Kai; Krotkov, Nickolay; Prata, Fred; Telling, Jennifer

    2015-04-01

    Periodic injections of sulfur gas species (SO2, H2S) into the stratosphere by volcanic eruptions are among the most important, and yet unpredictable, drivers of natural climate variability. However, passive (lower tropospheric) volcanic degassing is the major component of total volcanic emissions to the atmosphere on a time-averaged basis, but is poorly constrained, impacting estimates of global emissions of other volcanic gases (e.g., CO2). Stratospheric volcanic emissions are very well quantified by satellite remote sensing techniques, and we report ongoing efforts to catalog all significant volcanic SO2 emissions into the stratosphere and troposphere since 1978 using measurements from the ultraviolet (UV) Total Ozone Mapping Spectrometer (TOMS; 1978-2005), Ozone Monitoring Instrument (OMI; 2004 - present) and Ozone Mapping and Profiler Suite (OMPS; 2012 - present) instruments, supplemented by infrared (IR) data from HIRS, MODIS and AIRS. The database, intended for use as a volcanic forcing dataset in climate models, currently includes over 600 eruptions releasing a total of ~100 Tg SO2, with a mean eruption discharge of ~0.2 Tg SO2. Sensitivity to SO2 emissions from smaller eruptions greatly increased following the launch of OMI in 2004, but uncertainties remain on the volcanic flux of other sulfur species other than SO2 (H2S, OCS) due to difficulty of measurement. Although the post-Pinatubo 1991 era is often classified as volcanically quiescent, many smaller eruptions (Volcanic Explosivity Index [VEI] 3-4) since 2000 have injected significant amounts of SO2 into the upper troposphere - lower stratosphere (UTLS), peaking in 2008-2011. We also show how even smaller (VEI 2) tropical eruptions can impact the UTLS and sustain above-background stratospheric aerosol optical depth, thus playing a role in climate forcing on short timescales. To better quantify tropospheric volcanic degassing, we use ~10 years of operational SO2 measurements by OMI to identify the

  17. Quantitative evaluation of smoke source strengths and impacts by infusing satellite fire- strength measurements in transport models.

    Science.gov (United States)

    Ichoku, C.; Chin, M.; Diehl, T.; Wooster, M.; Roberts, G.; Giglio, L.

    2007-05-01

    Chemical transport models currently derive their smoke emission sources from counts of fire hot spots detected from satellites, usually with single daily overpasses. However, fires vary in size and strength, with a significant diurnal trend, making the use of pixel counts measured at the same time of day very unreliable for estimating smoke sources. Fortunately, the Moderate-resolution Imaging Spectro-radiometer (MODIS) twin sensors onboard the Terra and Aqua satellites, not only detect fires everywhere at four strategic times of day, but also measure their strength in the form of fire radiative power (FRP) or rate of release of fire radiative energy (FRE). FRP is now also being derived from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) sensor onboard the geostationary Meteosat-8 platform, which observes Africa and Europe virtually every 15 mins. The SEVIRI measurements show that MODIS 4-times-a-day measurements capture the essence of the fire diurnal cycle. Therefore, MODIS is currently the only satellite data source ideal for estimating daily smoke emissions globally. In a number of recent studies, FRP has been found to be directly proportional to both the rate of biomass consumption and the rate of smoke aerosol emission. Indeed, (1) a combustion factor (Fc), which relates FRE to burned biomass was established, and (2) a FRE-based emission coefficient (Ce), which is a simple coefficient to convert FRP (or FRE) to smoke aerosol emissions was derived for different parts of the world. The results obtained from satellite have been reproduced in the laboratory, and the ingestion of FRP in models is now being tested using the Goddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) model. Although MODIS has been in operation since the last 6 years, regrettably, this rare but formidable data resource it provides (FRP) has been left largely unutilized. In this presentation, we will show the preliminary results of using FRP to improve the

  18. Japanese Global Precipitation Measurement (GPM) mission status and application of satellite-based global rainfall map

    Science.gov (United States)

    Kachi, Misako; Shimizu, Shuji; Kubota, Takuji; Yoshida, Naofumi; Oki, Riko; Kojima, Masahiro; Iguchi, Toshio; Nakamura, Kenji

    2010-05-01

    As accuracy of satellite precipitation estimates improves and observation frequency increases, application of those data to societal benefit areas, such as weather forecasts and flood predictions, is expected, in addition to research of precipitation climatology to analyze precipitation systems. There is, however, limitation on single satellite observation in coverage and frequency. Currently, the Global Precipitation Measurement (GPM) mission is scheduled under international collaboration to fulfill various user requirements that cannot be achieved by the single satellite, like the Tropical Rainfall Measurement Mission (TRMM). The GPM mission is an international mission to achieve high-accurate and high-frequent rainfall observation over a global area. GPM is composed of a TRMM-like non-sun-synchronous orbit satellite (GPM core satellite) and constellation of satellites carrying microwave radiometer instruments. The GPM core satellite carries the Dual-frequency Precipitation Radar (DPR), which is being developed by the Japan Aerospace Exploration Agency (JAXA) and the National Institute of Information and Communications Technology (NICT), and microwave radiometer provided by the National Aeronautics and Space Administration (NASA). Development of DPR instrument is in good progress for scheduled launch in 2013, and DPR Critical Design Review has completed in July - September 2009. Constellation satellites, which carry a microwave imager and/or sounder, are planned to be launched around 2013 by each partner agency for its own purpose, and will contribute to extending coverage and increasing frequency. JAXA's future mission, the Global Change Observation Mission (GCOM) - Water (GCOM-W) satellite will be one of constellation satellites. The first generation of GCOM-W satellite is scheduled to be launched in 2011, and it carries the Advanced Microwave Scanning Radiometer 2 (AMSR2), which is being developed based on the experience of the AMSR-E on EOS Aqua satellite

  19. A New Satellite Measurement Capability for Assessing Damage to Crops from Regional Scale Ozone Pollution

    Science.gov (United States)

    Fishman, J. J.; Creilson, J. K.; Parker, P. A.; Ainsworth, E. A.; Vining, G. G.; Szarka, J. L.

    2009-05-01

    High concentrations of ground-level ozone are frequently measured over farmland regions in many parts of the world. Since laboratory data show that ozone can significantly impact crop productivity if levels above a threshold concentration are reached, there is a consensus that crop yield should be impacted now and that the effects will become even more detrimental as global background concentrations continue to rise, as suggested by the latest IPCC report. Using the long-term record of tropospheric ozone derived from satellite measurements (http://asd-www.larc.nasa.gov/TOR/data.html), we present a methodology that can be used to assess the impact of regional ozone pollution on crop productivity. In this study, we use soybean crop yield data during a 5-year period over the Midwest of the United States and analyze the results using multiple linear regression statistical models. The results are consistent with findings using conventional ground-based measurements and with results obtained from an open-air experimental facility SoyFACE (Soybean Free Air Concentration Enrichment) in central Illinois. Our analysis suggests that the cost to the farmers globally is substantial, and supports other studies that calculate an economic loss to the farming community of more than 10 billion dollars annually.

  20. First satellite measurements of chemical changes in coincidence with sprite activity

    Science.gov (United States)

    Arnone, Enrico; São Sabbas, Fernanda; Kero, Antti; Soula, Serge; Carlotti, Massimo; Chanrion, Olivier; Dinelli, Bianca Maria; Papandrea, Enzo; Castelli, Elisa; Neubert, Torsten

    2010-05-01

    The last twenty years have seen the discovery of electric discharges in the Earth's atmosphere above thunderstorms, the so-called sprites and jets. It has been suggested that they impact the atmospheric chemistry and possibly affect the ozone layer through their repeated occurrence. Whereas theoretical studies and laboratory experiments suggest enhancement of such gasses as nitrogen oxides by up to hundreds of percent within sprites, a definitive detection of their chemical effects have to date been unsuccessful. In this paper, we report on the first measurements of atmospheric chemical perturbations recorded in coincidence with sprite activity. A striking event occurred on 25 August 2003 when the MIPAS spectrometer onboard the Envisat satellite recorded spectroscopic measurements soon after a sequence of 11 sprites observed above Corsica (France) by Eurosprite ground facilities (details of the convective system are discussed in a companion paper by São Sabbas et al.). The measurements show an enhancement of ambient nitrous oxide by 80% at 52 km altitude in the region above the parent thunderstorm. The recorded chemical changes imply sprites can exert significant modification of the atmospheric chemistry at a regional scale, confirming model and laboratory predictions of sprite-chemistry, and requiring a new estimate of their global impact. The results of the analysis and their implications are discussed.

  1. Measurement of interseismic strain accumulation across the North Anatolian Fault by satellite radar interferometry

    Science.gov (United States)

    Wright, Tim; Parsons, Barry; Fielding, Eric

    In recent years, interseismic crustal velocities and strains have been determined for a number of tectonically active areas through repeated measurements using the Global Positioning System. The terrain in such areas is often remote and difficult, and the density of GPS measurements relatively sparse. In principle, satellite radar interferometry can be used to make millimetric-precision measurements of surface displacement over large surface areas. In practice, the small crustal deformation signal is dominated over short time intervals by errors due to atmospheric, topographic and orbital effects. Here we show that these effects can be over-come by stacking multiple interferograms, after screening for atmospheric anomalies, effectively creating a new interferogram that covers a longer time interval. In this way, we have isolated a 70 km wide region of crustal deformation across the eastern end of the North Anatolian Fault, Turkey. The distribution of deformation is consistent with slip of 17-32 mm/yr below 5-33 km on the extension of the surface fault at depth. If the GPS determined slip rate of 24±1 mm/yr is accepted, the locking depth is constrained to 18±6 km.

  2. Measuring risk attitudes in a natural experiment: Data from the television game show Lingo

    NARCIS (Netherlands)

    Beetsma, R.M.W.J.; Schotman, P.C.

    2001-01-01

    We use data from a television game show involving elementary lotteries as a natural experiment to measure risk attitudes. Unique features of our data set are the substantial monetary stakes and the large sample size. CRRA and CARA utility specifications perform approximately equally well. We find ro

  3. Measuring risk attitudes in a natural experiment: Data from the television game show LINGO

    NARCIS (Netherlands)

    Beetsma, R.M.W.J.; Schotman, P.C.

    1998-01-01

    We use data from a television game show, involving elementary lotteries and substantial prize money, as a natural experiment to measure risk attitudes. We find robust evidence of substantial risk aversion. As an extension, we estimate the various models using transformations of the 'true' probabilit

  4. Support scattering effects on low-gain satellite antenna pattern measurements

    DEFF Research Database (Denmark)

    Appel-Hansen, Jørgen

    1973-01-01

    The purpose of the present investigation is to determine the difference between the scattering effects from two types of supports on satellite antenna pattern measurements. The difference in scattering effects is estimated by comparing low-gain antenna patterns recorded when using a foam tower an...

  5. Derivation of the radiation budget at ground level from satellite measurements

    Science.gov (United States)

    Raschke, E.

    1982-01-01

    Determination of the Earth radiaton budget and progress in measurement of the budget components and in the treatment of imaging data from satellites are described. Methods for calculating the radiation budget in a general circulation model, radiative transfer characteristics of clouds, computation of solar radiation at ground level using meteorological data and development of a 10-channel radiometer are discussed.

  6. Linear and Nonlinear Relative Navigation Strategies for Small Satellite Formation Flying Based on Relative Position Measurement

    Science.gov (United States)

    Zhang, Xiaomin; Zheng, You

    Based on linear and nonlinear mathematical model of spacecraft formation flying and technology of relative position measurement of small satellites, the linear and nonlinear relative navigation strategies are developed in this paper. The dynamical characteristics of multi spacecraft formation flying have been researched in many references, including the authors' several International Astronautical Congress papers with numbers of IAF-98-A.2.06, IAA-99-IAA.11.1.09, IAA-01-IAA.11.4.08. Under conditions of short distance and short time, the linear model can describe relative orbit motion; otherwise, nonlinear model must be adopted. Furthermore the means of measurement and their error will influence relative navigation. Thus three kinds of relative navigation strategy are progressed. With consideration of difficulty in relative velocity measurement of small satellites, the three relative navigation strategies are proposed and only depend on sequential data of relative position through measuring the relative distance and relative orientation. The first kind of relative navigation strategy is based on linear model. The second relative navigation strategy is based on nonlinear model, with inclusion of the second order item. In fact the measurement error can not be avoided especially for small satellites, it is mainly considered in the third relative navigation strategy. This research is theoretical yet and a series of formulas of relative navigation are presented in this paper. Also the authors analyzed the three strategies qualitatively and quantitatively. According to results of simulation, the ranges of application are indicated and suggested in allusion to the three strategies of relative navigation. On the view of authors, the relative navigation strategies for small satellite formation flying based on relative position measurement are significant for engineering of small satellite formation flying.

  7. Pico satellite attitude estimation via Robust Unscented Kalman Filter in the presence of measurement faults.

    Science.gov (United States)

    Soken, Halil Ersin; Hajiyev, Chingiz

    2010-07-01

    In the normal operation conditions of a pico satellite, a conventional Unscented Kalman Filter (UKF) gives sufficiently good estimation results. However, if the measurements are not reliable because of any kind of malfunction in the estimation system, UKF gives inaccurate results and diverges by time. This study introduces Robust Unscented Kalman Filter (RUKF) algorithms with the filter gain correction for the case of measurement malfunctions. By the use of defined variables named as measurement noise scale factor, the faulty measurements are taken into consideration with a small weight, and the estimations are corrected without affecting the characteristics of the accurate ones. Two different RUKF algorithms, one with single scale factor and one with multiple scale factors, are proposed and applied for the attitude estimation process of a pico satellite. The results of these algorithms are compared for different types of measurement faults in different estimation scenarios and recommendations about their applications are given.

  8. Long-term stability of TES satellite radiance measurements

    Directory of Open Access Journals (Sweden)

    T. C. Connor

    2011-07-01

    Full Text Available The utilization of Tropospheric Emission Spectrometer (TES Level 2 (L2 retrieval products for the purpose of assessing long term changes in atmospheric trace gas composition requires knowledge of the overall radiometric stability of the Level 1B (L1B radiances. The purpose of this study is to evaluate the stability of the radiometric calibration of the TES instrument by analyzing the difference between measured and calculated brightness temperatures in selected window regions of the spectrum. The Global Modeling and Assimilation Office (GMAO profiles for temperature and water vapor and the Real-Time Global Sea Surface Temperature (RTGSST are used as input to the Optimal Spectral Sampling (OSS radiative transfer model to calculate the simulated spectra. The TES reference measurements selected cover a 4-year period of time from mid 2005 through mid 2009 with the selection criteria being; observation latitudes greater than −30° and less than 30°, over ocean, Global Survey mode (nadir view and retrieved cloud optical depth of less than or equal to 0.01. The TES cloud optical depth retrievals are used only for screening purposes and no effects of clouds on the radiances are included in the forward model. This initial screening results in over 55 000 potential reference spectra spanning the four year period. Presented is a trend analysis of the time series of the residuals (observation minus calculations in the TES 2B1, 1B2, 2A1, and 1A1 bands, with the standard deviation of the residuals being approximately equal to 0.6 K for bands 2B1, 1B2, 2A1, and 0.9 K for band 1A1. The analysis demonstrates that the trend in the residuals is not significantly different from zero over the 4-year period. This is one method used to demonstrate that the relative radiometric calibration is stable over time, which is very important for any longer term analysis of TES retrieved products (L2, particularly well-mixed species such as carbon dioxide and methane.

  9. ATM Quality of Service Parameters at 45 Mbps Using a Satellite Emulator: Laboratory Measurements

    Science.gov (United States)

    Ivancic, William D.; Bobinsky, Eric A.

    1997-01-01

    Results of 45-Mbps DS3 intermediate-frequency loopback measurements of asynchronous transfer mode (ATM) quality of service parameters (cell error ratio and cell loss ratio) are presented. These tests, which were conducted at the NASA Lewis Research Center in support of satellite-ATM interoperability research, represent initial efforts to quantify the minimum parameters for stringent ATM applications, such as MPEG-1 and MPEG-2 video transmission. Portions of these results were originally presented to the International Telecommunications Union's ITU-R Working Party 4B in February 1996 in support of their Draft Preliminary Recommendation on the Transmission of ATM Traffic via Satellite.

  10. In situ autonomous optical radiometry measurements for satellite ocean color validation in the Western Black Sea

    Directory of Open Access Journals (Sweden)

    G. Zibordi

    2014-12-01

    Full Text Available The accuracy of primary satellite ocean color data products from the Moderate Resolution Imaging Spectroradiometer on-board Aqua (MODIS-A and the Visible/Infrared Imager/Radiometer Suite (VIIRS, is investigated in the Western Black Sea using in situ measurements from the Gloria site included in the Ocean Color component of the Aerosol Robotic Network (AERONET-OC. The analysis is also extended to an additional well-established AERONET-OC site in the northern Adriatic Sea characterized by optically complex coastal waters exhibiting similarities with those observed at the Gloria site. Results from the comparison of normalized-water leaving radiance LWN indicate biases of a few percent between satellite derived and in situ data at the center-wavelengths relevant for the determination of chlorophyll a concentration (443–547 nm, or equivalent. Remarkable is the consistency among the annual cycle determined with time series of satellite-derived and in situ LWN ratios at these center-wavelengths. Contrarily, the differences between in situ and satellite-derived LWN are pronounced at the blue (i.e., 412 nm and red (i.e., 667 nm, or equivalent center-wavelengths, suggesting difficulties in confidently applying satellite-derived radiometric data from these spectral regions for quantitative analysis in optically complex waters.

  11. Quantitative measurements of Jupiter, Saturn, their rings and satellites made from Voyager imaging data

    Science.gov (United States)

    Collins, S. A.; Bunker, A. S.

    1983-01-01

    The Voyager spacecraft cameras use selenium-sulfur slow scan vidicons to convert focused optical images into sensible electrical signals. The vidicon-generated data thus obtained are the basis of measurements of much greater precision than was previously possible, in virtue of their superior linearity, geometric fidelity, and the use of in-flight calibration. Attention is given to positional, radiometric, and dynamical measurements conducted on the basis of vidicon data for the Saturn rings, the Saturn satellites, and the Jupiter atmosphere.

  12. Added value measures in education show genetic as well as environmental influence.

    Science.gov (United States)

    Haworth, Claire M A; Asbury, Kathryn; Dale, Philip S; Plomin, Robert

    2011-02-02

    Does achievement independent of ability or previous attainment provide a purer measure of the added value of school? In a study of 4000 pairs of 12-year-old twins in the UK, we measured achievement with year-long teacher assessments as well as tests. Raw achievement shows moderate heritability (about 50%) and modest shared environmental influences (25%). Unexpectedly, we show that for indices of the added value of school, genetic influences remain moderate (around 50%), and the shared (school) environment is less important (about 12%). The pervasiveness of genetic influence in how and how much children learn is compatible with an active view of learning in which children create their own educational experiences in part on the basis of their genetic propensities.

  13. Measurement-based perturbation theory and differential equation parameter estimation for high-precision high-resolution reconstruction of the Earth's gravitational field from satellite tracking measurements

    CERN Document Server

    Xu, Peiliang

    2016-01-01

    The numerical integration method has been routinely used to produce global standard gravitational models from satellite tracking measurements of CHAMP/GRACE types. It is implemented by solving the differential equations of the partial derivatives of a satellite orbit with respect to the unknown harmonic coefficients under the conditions of zero initial values. From the mathematical point of view, satellite gravimetry from satellite tracking is the problem of estimating unknown parameters in the Newton's nonlinear differential equations from satellite tracking measurements. We prove that zero initial values for the partial derivatives are incorrect mathematically and not permitted physically. The numerical integration method, as currently implemented and used in satellite gravimetry and statistics, is groundless. We use three different methods to derive new local solutions to the Newton's nonlinear governing differential equations of motion with a nominal reference orbit. Bearing in mind that satellite orbits ...

  14. Multi-decadal record of ice dynamics on Daugaard Jensen Gletscher, East Greenland, from satellite imagery and terrestrial measurements

    DEFF Research Database (Denmark)

    Stearns, L.A.; Hamilton, G.S.; Reeh, Niels

    2005-01-01

    The history of ice velocity and calving front position of Daugaard Jensen Gletscher, a large outlet glacier in East Greenland, is reconstructed from field measurements, aerial photography and satellite imagery for the period 1950-2001. The calving terminus of the glacier has remained...... in approximately the same position over the past similar to 50 years. There is no evidence of a change in ice motion between 1968 and 2001, based on a comparison of velocities derived from terrestrial surveying and feature tracking using sequential satellite images. Estimates of flux near the entrance to the fjord...... vs snow accumulation in the interior catchment show that Daugaard Jensen Gletscher has a small negative mass balance. This result is consistent with other mass-balance estimates for the inland region of the glacier....

  15. Evolution of stratospheric ozone and water vapour time series studied with satellite measurements

    Directory of Open Access Journals (Sweden)

    A. Jones

    2009-01-01

    Full Text Available The long term evolution of stratospheric ozone and water vapour has been investigated by extending satellite time series to April 2008. For ozone, we examine monthly average ozone values from various satellite data sets for nine latitude and altitude bins covering 60° S to 60° N and 20–45 km and covering the time period 1979–2008. Data are from the Stratospheric Aerosol and Gas Experiment (SAGE I+II, the HALogen Occultation Experiment (HALOE, the Solar BackscatterUltraViolet-2 (SBUV/2 instrument, the Sub-Millimetre Radiometer (SMR, the Optical Spectrograph InfraRed Imager System (OSIRIS, and the SCanning Imaging Absorption spectroMeter for Atmospheric CHartograpY (SCIAMACHY. Monthly ozone anomalies are calculated by utilising a linear regression model, which also models the solar, quasi-biennial oscillation (QBO, and seasonal cycle contributions. Individual instrument ozone anomalies are combined producing a weighted all instrument average. Assuming a turning point of 1997 and that the all instrument average is represented by good instrumental long term stability, the largest statistically significant ozone declines from 1979–1997 are seen at the mid-latitudes between 35 and 45 km, namely −7.7%/decade in the Northern Hemisphere and −7.8%/decade in the Southern Hemisphere. For the period 1997 to 2008 we find that the southern mid-latitudes between 35 and 45 km show the largest ozone recovery (+3.4%/decade compared to other global regions, although the estimated trend model error is of a similar magnitude (+2.1%/decade, at the 95% confidence level. An all instrument average is also constructed from water vapour anomalies during 1984–2008, using the SAGE II, HALOE, SMR, and the Microwave Limb Sounder (aura/MLS measurements. We report that the decrease in water vapour values after 2001 slows down around 2004 in the lower tropical stratosphere (20–25 km, and has even shown signs of increasing values in upper stratospheric mid

  16. Evolution of stratospheric ozone and water vapour time series studied with satellite measurements

    Directory of Open Access Journals (Sweden)

    A. Jones

    2009-08-01

    Full Text Available The long term evolution of stratospheric ozone and water vapour has been investigated by extending satellite time series to April 2008. For ozone, we examine monthly average ozone values from various satellite data sets for nine latitude and altitude bins covering 60° S to 60° N and 20–45 km and covering the time period of 1979–2008. Data are from the Stratospheric Aerosol and Gas Experiment (SAGE I+II, the HALogen Occultation Experiment (HALOE, the Solar BackscatterUltraViolet-2 (SBUV/2 instrument, the Sub-Millimetre Radiometer (SMR, the Optical Spectrograph InfraRed Imager System (OSIRIS, and the SCanning Imaging Absorption spectroMeter for Atmospheric CHartograpY (SCIAMACHY. Monthly ozone anomalies are calculated by utilising a linear regression model, which also models the solar, quasi-biennial oscillation (QBO, and seasonal cycle contributions. Individual instrument ozone anomalies are combined producing an all instrument average. Assuming a turning point of 1997 and that the all instrument average is represented by good instrumental long term stability, the largest statistically significant ozone declines (at two sigma from 1979–1997 are seen at the mid-latitudes between 35 and 45 km, namely −7.2%±0.9%/decade in the Northern Hemisphere and −7.1%±0.9%/in the Southern Hemisphere. Furthermore, for the period 1997 to 2008 we find that the same locations show the largest ozone recovery (+1.4% and +0.8%/decade respectively compared to other global regions, although the estimated trend model errors indicate that the trend estimates are not significantly different from a zero trend at the 2 sigma level. An all instrument average is also constructed from water vapour anomalies during 1991–2008, using the SAGE II, HALOE, SMR, and the Microwave Limb Sounder (Aura/MLS measurements. We report that the decrease in water vapour values after 2001 slows down around 2004–2005 in the lower tropical stratosphere (20–25 km and has even

  17. Assessment of the quality of OSIRIS mesospheric temperatures using satellite and ground-based measurements

    Directory of Open Access Journals (Sweden)

    P. E. Sheese

    2012-12-01

    Full Text Available The Optical Spectrograph and InfraRed Imaging System (OSIRIS on the Odin satellite is currently in its 12th year of observing the Earth's limb. For the first time, continuous temperature profiles extending from the stratopause to the upper mesosphere have been derived from OSIRIS measurements of Rayleigh-scattered sunlight. Through most of the mesosphere, OSIRIS temperatures are in good agreement with coincident temperature profiles derived from other satellite and ground-based measurements. In the altitude region of 55–80 km, OSIRIS temperatures are typically within 4–5 K of those from the SABER, ACE-FTS, and SOFIE instruments on the TIMED, SciSat-I, and AIM satellites, respectively. The mean differences between individual OSIRIS profiles and those of the other satellite instruments are typically within the combined uncertainties and previously reported biases. OSIRIS temperatures are typically within 2 K of those from the University of Western Ontario's Purple Crow Lidar in the altitude region of 52–79 km, where the mean differences are within combined uncertainties. Near 84 km, OSIRIS temperatures exhibit a cold bias of 10–15 K, which is due to a cold bias in OSIRIS O2 A-band temperatures at 85 km, the upper boundary of the Rayleigh-scatter derived temperatures; and near 48 km OSIRIS temperatures exhibit a cold bias of 5–15 K, which is likely due to multiple-scatter effects that are not taken into account in the retrieval.

  18. Validation of INSAT-3D sounder data with in situ measurements and other similar satellite observations over India

    Science.gov (United States)

    Venkat Ratnam, Madineni; Hemanth Kumar, Alladi; Jayaraman, Achuthan

    2016-11-01

    To date, several satellites measurements are available which can provide profiles of temperature and water vapour with reasonable accuracies. However, the temporal resolution has remained poor, particularly over the tropics, as most of them are polar orbiting. At this juncture, the launch of INSAT-3D (Indian National Satellite System) by the Indian Space Research Organization (ISRO) on 26 July 2013 carrying a multi-spectral imager covering visible to long-wave infrared made it possible to obtain profiles of temperature and water vapour over India with higher temporal and vertical resolutions and altitude coverage, besides other parameters. The initial validation of INSAT-3D data is made with the high temporal (3 h) resolution radiosonde observations launched over Gadanki (13.5° N, 79.2° E) during a special campaign and routine evening soundings obtained at 12:00 UTC (17:30 LT). We also compared INSAT-3D data with the radiosonde observations obtained from 34 India Meteorological Department stations. Comparisons were also made over India with data from other satellites like AIRS, MLS and SAPHIR and from ERA-Interim and NCEP reanalysis data sets. INSAT-3D is able to show better coverage over India with high spatial and temporal resolutions as expected. Good correlation in temperature between INSAT-3D and in situ measurements is noticed except in the upper tropospheric and lower stratospheric regions (positive bias of 2-3 K). There is a mean dry bias of 20-30 % in the water vapour mixing ratio. Similar biases are noticed when compared to other satellites and reanalysis data sets. INSAT-3D shows a large positive bias in temperature above 25° N in the lower troposphere. Thus, caution is advised when using these data for tropospheric studies. Finally it is concluded that temperature data from INSAT-3D are of high quality and can be directly assimilated for better forecasts over India.

  19. The Measurement of Landfill Gas Emissions with the Orbiting Carbon Observatory and CarbonSAT Satellites

    Science.gov (United States)

    Vigil, S. A.; Bovensmann, H.

    2010-12-01

    Landfill gas is a significant contributor to anthropogenic emissions of CH4 and CO2. The U.S. Environmental Protection Agency has estimated the total U.S. 2007 emissions of the CH4 component of landfill gas at 132.9 Tg CO2 Equivalent. This compares to total CH4 emission from all US sources in 2007 at 585.3 Tg CO2 Equivalent. Worldwide CH4 emissions from landfill gas have been estimated at 668 Tg CO2 Equivalent. Satellite remote sensing can also be used to characterize landfill gas emissions. The NASA Orbiting Carbon Observatory (OCO-2) and the proposed CarbonSAT (University of Bremen) satellites are particularly suited for this purpose. The Orbiting Carbon Observatory (OCO) was designed to provided high spatial resolution ( developed countries. In general, landfills in the developed countries have landfill gas control system ground based landfill gas monitoring systems. These ground-based measurements can be used to calibrate OCO-2 and CarbonSAT landfill gas measurements. OCO-2 and CarbonSAT can be used to measure landfill emissions from the large landfills and open dumps of the emerging megacities in the developing world where accurate ground measurements are not available. For example Mexico City generates 26,000 MT of municipal solid waste that is disposed of in two uncontrolled landfills. Similar conditions exist in Asia, Latin America, and Africa. Satellite based measurements of these landfill gas emissions could help prioritize greenhouse gas remediation projects for these countries.

  20. Comprehensive Comparisons of Satellite Data, Signals, and Measurements between the BeiDou Navigation Satellite System and the Global Positioning System.

    Science.gov (United States)

    Jan, Shau-Shiun; Tao, An-Lin

    2016-05-13

    The Chinese BeiDou navigation satellite system (BDS) aims to provide global positioning service by 2020. The combined use of BDS and Global Positioning System (GPS) is proposed to provide navigation service with more stringent requirements. Actual satellite data, signals and measurements were collected for more than one month to analyze the positioning service qualities from both BDS and GPS. In addition to the conversions of coordinate and timing system, five data quality analysis (DQA) methods, three signal quality analysis (SQA) methods, and four measurement quality analysis (MQA) methods are proposed in this paper to improve the integrated positioning performance of BDS and GPS. As shown in the experiment results, issues related to BDS and GPS are resolved by the above proposed quality analysis methods. Thus, the anomalies in satellite data, signals and measurements can be detected by following the suggested resolutions to enhance the positioning performance of the combined use of BDS and GPS in the Asia Pacific region.

  1. Discrepant estimates of primary and export production from satellite algorithms, a biogeochemical model, and geochemical tracer measurements in the North Pacific Ocean

    Science.gov (United States)

    Palevsky, Hilary I.; Quay, Paul D.; Nicholson, David P.

    2016-08-01

    Estimates of primary and export production (PP and EP) based on satellite remote sensing algorithms and global biogeochemical models are widely used to provide year-round global coverage not available from direct observations. However, observational data to validate these approaches are limited. We find that no single satellite algorithm or model can reproduce seasonal and annual geochemically determined PP, export efficiency (EP/PP), and EP rates throughout the North Pacific basin, based on comparisons throughout the full annual cycle at time series stations in the subarctic and subtropical gyres and basin-wide regions sampled by container ship transects. The high-latitude regions show large PP discrepancies in winter and spring and strong effects of deep winter mixed layers on annual EP that cannot be accounted for in current satellite-based approaches. These results underscore the need to evaluate satellite- and model-based estimates using multiple productivity parameters measured over broad ocean regions throughout the annual cycle.

  2. Validity of satellite measurements used for the monitoring of UV radiation risk on health

    Directory of Open Access Journals (Sweden)

    F. Jégou

    2011-06-01

    Full Text Available In order to test the validity of ultraviolet index (UVI satellite products and UVI model simulations for general public information, intercomparison involving three satellite instruments (SCIAMACHY, OMI and GOME-2, the Chemistry and Transport Model, Modélisation de la Chimie Atmosphérique Grande Echelle (MOCAGE, and ground-based instruments was performed in 2008 and 2009. The intercomparison highlighted a systematic high bias of ~1 UVI in the OMI clear-sky products compared to the SCIAMACHY and TUV model clear-sky products. The OMI and GOME-2 all-sky products are close to the ground-based observations with a low 6 % positive bias, comparable to the results found during the satellite validation campaigns. This result shows that OMI and GOME-2 all-sky products are well appropriate to evaluate the UV-risk on health. The study has pointed out the difficulty to take into account either in the retrieval algorithms or in the models, the large spatial and temporal cloud modification effect on UV radiation. This factor is crucial to provide good quality UV information. OMI and GOME-2 show a realistic UV variability as a function of the cloud cover. Nevertheless these satellite products do not sufficiently take into account the radiation reflected by clouds. MOCAGE numerical forecasts show good results during periods with low cloud covers, but are actually not adequate for overcast conditions; this is why Météo-France currently uses human-expertised cloudiness (rather than direct outputs from Numerical Prediction Models together with MOCAGE clear-sky UV indices for its operational forecasts. From now on, the UV monitoring could be done using free satellite products (OMI, GOME-2 and operational forecast for general public by using modelling, as long as cloud forecasts and the parametrisation of the impact of cloudiness on UV radiation are adequate.

  3. Satellite laser ranging measurements in South Africa: Contributions to earth system sciences

    Directory of Open Access Journals (Sweden)

    Christina M. Botai

    2015-03-01

    Full Text Available This contribution reassesses progress in the development of satellite laser ranging (SLR technology and its scientific and societal applications in South Africa. We first highlight the current global SLR tracking stations within the framework of the International Laser Ranging Service (ILRS and the artificial satellites currently being tracked by these stations. In particular, the present work focuses on analysing SLR measurements at Hartebeesthoek Radio Astronomy Observatory (HartRAO, South Africa, based on the MOBLAS-6 SLR configuration. Generally, there is a weak geometry of ILRS stations in the southern hemisphere and the SLR tracking station at HartRAO is the only active ILRS station operating on the African continent. The SLR-derived products such as station positions and velocities, satellite orbits, components of earth's gravity field and their temporal variations, earth orientation parameters are collected, merged, achieved and distributed by the ILRS under the Crustal Dynamic Data Information System. These products are used in various research fields such as detection and monitoring of tectonic plate motion, crustal deformation, earth rotation, polar motion, and the establishment and monitoring of International Terrestrial Reference Frames, as well as modelling of the spatio-temporal variations of the earth's gravity field. The MOBLAS-6 tracking station is collocated with other geodetic techniques such as very long baseline interferometry and Global Navigation Satellite Systems, thus making this observatory a fiducial geodetic location. Some applications of the SLR data products are described within the context of earth system science.

  4. Heavy precipitation retrieval from combined satellite observations and ground-based lightning measurements

    Science.gov (United States)

    Mugnai, A.; Dietrich, S.; Casella, D.; di Paola, F.; Formenton, M.; Sanò, P.

    2010-09-01

    We have developed a series of algorithms for the retrieval of precipitation (especially, heavy precipitation) over the Mediterranean area using satellite observations from the available microwave (MW) radiometers onboard low Earth orbit (LEO) satellites and from the visible-infrared (VIS-IR) SEVIRI radiometer onboard the European geosynchronous (GEO) satellite Meteosat Second Generation (MSG), in conjunction with lightning data from ground-based networks - such as ZEUS and LINET. These are: • A new approach for precipitation retrieval from space (which we call the Cloud Dynamics and Radiation Database approach, CDRD) that incorporates lightning and environmental/dynamical information in addition to the upwelling microwave brightness temperatures (TB’s) so as to reduce the retrieval uncertainty and improve the retrieval performance; • A new combined MW-IR technique for producing frequent precipitation retrievals from space (which we call PM-GCD technique), that uses passive-microwave (PM) retrievals in conjunction with lightning information and the Global Convection Detection (GCD) technique to discriminate deep convective clouds within the GEO observations; • A new morphing approach (which we call the Lightning-based Precipitation Evolving Technique, L-PET) that uses the available lightning measurements for propagating the rainfall estimates from satellite-borne MW radiometers to a much higher time resolution than the MW observations. We will present and discuss our combined MW/IR/lightning precipitation algorithms and analyses with special reference to some case studies over the western Mediterranean.

  5. Are there urban signatures in the tropospheric ozone column products derived from satellite measurements?

    Directory of Open Access Journals (Sweden)

    J. Kar

    2010-06-01

    Full Text Available In view of the proposed geostationary satellite missions to monitor air quality from space, it is important to first assess the capability of the current suite of satellite instruments to provide information on the urban scale pollution. We explore the possibility of detecting urban signatures in the tropospheric column ozone data derived from Total Ozone Mapping Spectrometer (TOMS/Solar Backscattered Ultraviolet (SBUV and Ozone Monitoring Instrument (OMI/Microwave Limb Sounder (MLS satellite data. We find that distinct isolated plumes of tropospheric ozone near several large and polluted cities around the world may be detected in these data sets. The ozone plumes generally correspond with the tropospheric column NO2 plumes around these cities as observed by the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY instrument. Similar plumes are also seen in tropospheric mean ozone mixing ratio distribution after accounting for the surface and tropopause pressure variations. The total column ozone retrievals indicate fairly significant sensitivity to the lower troposphere over the polluted land areas, which might help explain these detections. These results indicate that ultraviolet (UV measurements may, in principle, be able to capture the urban signatures and may have implications for future missions using geostationary satellites.

  6. Application of remote sensing to thermal pollution analysis. [satellite sea surface temperature measurement assessment

    Science.gov (United States)

    Hiser, H. W.; Lee, S. S.; Veziroglu, T. N.; Sengupta, S.

    1975-01-01

    A comprehensive numerical model development program for near-field thermal plume discharge and far field general circulation in coastal regions is being carried on at the University of Miami Clean Energy Research Institute. The objective of the program is to develop a generalized, three-dimensional, predictive model for thermal pollution studies. Two regions of specific application of the model are the power plants sites at the Biscayne Bay and Hutchinson Island area along the Florida coastline. Remote sensing from aircraft as well as satellites are used in parallel with in situ measurements to provide information needed for the development and verification of the mathematical model. This paper describes the efforts that have been made to identify problems and limitations of the presently available satellite data and to develop methods for enhancing and enlarging thermal infrared displays for mesoscale sea surface temperature measurements.

  7. Air Quality Measurements from Satellites during the 2008 Beijing Olympics and Paralympics

    Science.gov (United States)

    Witte, J. C.; Schoeberl, M.; Douglass, A.; Gleason, J.; Krotkov, N.; Gille, J.; Pickering, K.; Livesey, N.

    2009-05-01

    In preparation for the Olympic and Paralympic games in August and September 2008 in Beijing, China, the Chinese government imposed strict controls on industrial emissions and motor vehicle traffic in and around the city and vicinity before and during the events to improve the air quality for the competitors and visitors. To test the efficacy of these measures, we used satellite data from NASA's Aura/Ozone Monitoring Instrument (OMI) and Terra/Measurements Of Pollution In The Troposphere (MOPITT) over Beijing and surrounding areas during the Olympic and Paralympic period. The satellite instruments recorded significant reductions in nitrogen dioxide of up to 50%, up to 10% in tropospheric column ozone, 20-40% in boundary layer sulfur dioxide, and 10-20% reductions in carbon monoxide concentrations below 700 hPa.

  8. Optimality of incompletely measurable active and passive attitude control systems. [for satellites

    Science.gov (United States)

    Schiehlen, W.; Popp, K.

    1973-01-01

    Passive attitude control systems and active systems with incomplete state measurements are only suboptimal systems in the sense of optimal control theory, since optimal systems require complete state measurements or state estimations. An optimal system, then, requires additional hardware (especially in the case of flexible spacecraft) which results in higher costs. Therefore, it is a real engineering problem to determine how much an optimal system exceeds the suboptimal system, or in other words, what is the suboptimal system's degree of optimality. The problem will be treated in three steps: (1) definition of the degree of optimality for linear, time-invariant systems; (2) a computation method using the quadratic cost functional; (3) application to a gravity-gradient stabilized three-body satellite and a spinning flexible satellite.

  9. Validation of aerosol measurements by the satellite sensors SAM II and Sage

    Science.gov (United States)

    Russell, P. B.; Mccormick, M. P.; Swissler, T. J.

    1982-01-01

    A global data base on stratospheric aerosols has been obtained with the aid of the sensors SAM II and SAGE since the satellites carrying the sensors were launched in October 1978 and Feburary 1979, respectively. Several major comparative experiments have been conducted to acquire correlative data for validating the extinction profiles measured by these satellite sensors. The present investigation has the objective to present results from the first two of these experiments, which were conducted at Sondrestorm, Greenland, in November 1978, and at Poker Flat, Alaska, in July 1979. In both experiments, extinction profiles derived from the correlative sensors (dustsonde, lidar, filter, wire impactor) agreed, to within their respective uncertainties, with the extinction profiles measured by SAM II and SAGE (which in turn agreed with each other).

  10. Satellite quenching timescales in clusters from projected phase space measurements matched to simulated orbits

    CERN Document Server

    Oman, Kyle A

    2016-01-01

    We measure the star formation quenching efficiency and timescale in cluster environments. Our method uses N-body simulations to estimate the probability distribution of possible orbits for a sample of observed SDSS galaxies in and around clusters based on their position and velocity offsets from their host cluster. We study the relationship between their star formation rates and their likely orbital histories via a simple model in which star formation is quenched once a delay time after infall has elapsed. Our orbit library method is designed to isolate the environmental effect on the star formation rate due to a galaxy's present-day host cluster from `pre-processing' in previous group hosts. We find that quenching of satellite galaxies of all stellar masses in our sample ($10^{9}-10^{11.5}\\,{\\rm M}_\\odot$) by massive ($> 10^{13}\\,{\\rm M}_\\odot$) clusters is essentially $100$ per cent efficient. Our fits show that all galaxies quench on their first infall, approximately at or within a Gyr of their first peric...

  11. An Arctic sea ice thickness variability revealed from satellite altimetric measurements

    Institute of Scientific and Technical Information of China (English)

    BI Haibo; HUANG Haijun; SU Qiao; YAN Liwen; LIU Yanxia; XU Xiuli

    2014-01-01

    A modified algorithm taking into account the first year (FY) and multiyear (MY) ice densities is used to derive a sea ice thickness from freeboard measurements acquired by satellite altimetry ICESat (2003-2008). Estimates agree with various independent in situ measurements within 0.21 m. Both the fall and winter campaigns see a dramatic extent retreat of thicker MY ice that survives at least one summer melting sea-son. There were strong seasonal and interannual variabilities with regard to the mean thickness. Seasonal increases of 0.53 m for FY the ice and 0.29 m for the MY ice between the autumn and the winter ICESat campaigns, roughly 4-5 month separation, were found. Interannually, the significant MY ice thickness de-clines over the consecutive four ICESat winter campaigns (2005-2008) leads to a pronounced thickness drop of 0.8 m in MY sea ice zones. No clear trend was identified from the averaged thickness of thinner, FY ice that emerges in autumn and winter and melts in summer. Uncertainty estimates for our calculated thick-ness, caused by the standard deviations of multiple input parameters including freeboard, ice density, snow density, snow depth, show large errors more than 0.5 m in thicker MY ice zones and relatively small stan-dard deviations under 0.5 m elsewhere. Moreover, a sensitivity analysis is implemented to determine the separate impact on the thickness estimate in the dependence of an individual input variable as mentioned above. The results show systematic bias of the estimated ice thickness appears to be mainly caused by the variations of freeboard as well as the ice density whereas the snow density and depth brings about relatively insignificant errors.

  12. Environmental Satellites: Strategy Needed to Sustain Critical Climate and Space Weather Measurements

    Science.gov (United States)

    2010-04-01

    together. For example, climate measurements have allowed scientists to better understand the effect of deforestation on how the earth absorbs heat, retains...Geostationary Operational Environmental Satellites: Progress Has Been Made, but Improvements Are Needed to Effectively Manage Risks, GAO-08-18 (Washington...color; and atmospheric observations such as greenhouse gas levels (e.g., carbon dioxide), aerosol and dust particles, and moisture concentration. When

  13. Combining satellite, aerial and ground measurements to assess forest carbon stocks in Democratic Republic of Congo

    Science.gov (United States)

    Beaumont, Benjamin; Bouvy, Alban; Stephenne, Nathalie; Mathoux, Pierre; Bastin, Jean-François; Baudot, Yves; Akkermans, Tom

    2015-04-01

    Monitoring tropical forest carbon stocks changes has been a rising topic in the recent years as a result of REDD+ mechanisms negotiations. Such monitoring will be mandatory for each project/country willing to benefit from these financial incentives in the future. Aerial and satellite remote sensing technologies offer cost advantages in implementing large scale forest inventories. Despite the recent progress made in the use of airborne LiDAR for carbon stocks estimation, no widely operational and cost effective method has yet been delivered for central Africa forest monitoring. Within the Maï Ndombe region of Democratic Republic of Congo, the EO4REDD project develops a method combining satellite, aerial and ground measurements. This combination is done in three steps: [1] mapping and quantifying forest cover changes using an object-based semi-automatic change detection (deforestation and forest degradation) methodology based on very high resolution satellite imagery (RapidEye), [2] developing an allometric linear model for above ground biomass measurements based on dendrometric parameters (tree crown areas and heights) extracted from airborne stereoscopic image pairs and calibrated using ground measurements of individual trees on a data set of 18 one hectare plots and [3] relating these two products to assess carbon stocks changes at a regional scale. Given the high accuracies obtained in [1] (> 80% for deforestation and 77% for forest degradation) and the suitable, but still to be improved with a larger calibrating sample, model (R² of 0.7) obtained in [2], EO4REDD products can be seen as a valid and replicable option for carbon stocks monitoring in tropical forests. Further improvements are planned to strengthen the cost effectiveness value and the REDD+ suitability in the second phase of EO4REDD. This second phase will include [A] specific model developments per forest type; [B] measurements of afforestation, reforestation and natural regeneration processes and

  14. Amazon vegetation greenness as measured by satellite sensors over the last decade

    OpenAIRE

    Atkinson, P.M.; Dash, J.; Jeganathan, C.

    2011-01-01

    [1] During the last decade two major drought events, one in 2005 and another in 2010, occurred in the Amazon basin. Several studies have claimed the ability to detect the effect of these droughts on Amazon vegetation response, measured through satellite sensor vegetation indices (VIs). Such monitoring capability is important as it potentially links climate changes (increasing frequency and severity of drought), vegetation response as observed through vegetation greenness, and land-atmosphere ...

  15. Comparison of advanced Arctic Ocean model sea ice fields to satellite derived measurements

    OpenAIRE

    Dimitriou, David S.

    1998-01-01

    Approved for public release; distribution is unlimited Numerical models have proven integral to the study of climate dynamics. Sea ice models are critical to the improvement of general circulation models used to study the global climate. The object of this study is to evaluate a high resolution ice-ocean coupled model by comparing it to derived measurements from SMMR and SSM/I satellite observations. Utilized for this study was the NASA Goddard Space Flight (GSFC) Sea Ice Concentration Dat...

  16. Simulation of Satellite Water Vapour Lidar Measurements: Performance Assessment under Real Atmospheric Conditions.

    OpenAIRE

    Di Girolamo, Paolo; Behrendt, Andreas; Kiemle, Christoph; Wulfmeyer, Volker; Bauer, Heinz; Summa, Donato; Dörnbrack, Andreas; Ehret, Gerhard

    2008-01-01

    A lidar simulator has been applied to assess the performances of a satellite water vapour differential absorption lidar (DIAL) system. Measurements performed by the airborne Deutsches Zentrum für Luft- und Raumfahrt (DLR) water vapour DIAL on 15 May 2002 during ESA’s Water Vapour Lidar Experiment (WALEX), in combination with MM5 mesoscale model output, were used to obtain backscatter and water vapour fields with high resolution and accuracy. These data and model output serve as input for the ...

  17. How well can interannual to decadal-scale variability in stratospheric ozone and water vapor be quantified using limb-based satellite measurements?

    Science.gov (United States)

    Davis, S. M.; Rosenlof, K. H.; Hurst, D. F.; Hassler, B.; Read, W. G.

    2015-12-01

    Vertical profiles of ozone and humidity from the upper troposphere to stratosphere have been retrieved from a number of limb sounding and solar occultation satellite instruments since the 1980's. In particular, measurements from the SAGE instruments, UARS MLS, UARS HALOE, and most recently Aura MLS, have provided overlapping data since 1984. In order to quantify interannual- to decadal-scale variability in water vapor and ozone, it is necessary to have a uniform and homogenous record over the period of interest. With this in mind, we merged the aforementioned satellite measurements to create the Stratospheric Water and Ozone Satellite Homogenized (SWOOSH) data set, which contains vertically resolved zonal-mean (2.5°) monthly-mean water vapor and ozone concentration at levels covering the stratosphere. In this presentation, we describe the process of merging the satellite data sets, which involves adjusting the data to a reference measurement using offsets calculated from coincident observations taken during instrument overlap periods. Uncertainties associated with individual measurement precision, geophysical variability, and the merging process are quantified and compared to one another. We show that while the SWOOSH data can be used to quantify interannual variability, quantifying long-term trends in SWOOSH is complicated by the various sources of uncertainty, as well as by potential drifts of individual instruments. The issue of satellite-derived trends is discussed in relation to the long-term record of balloon-borne frostpoint hygrometer measurements from Boulder, CO.

  18. Joint Polar Satellite System (JPSS) Common Ground System (CGS) Current Technical Performance Measures

    Science.gov (United States)

    Cochran, S.; Panas, M.; Jamilkowski, M. L.; Miller, S. W.

    2015-12-01

    ABSTRACT The National Oceanic and Atmospheric Administration (NOAA) and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation civilian weather and environmental satellite system: the Joint Polar Satellite System (JPSS). The Joint Polar Satellite System will replace the afternoon orbit component and ground processing system of the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA. The JPSS satellites will carry a suite of sensors designed to collect meteorological, oceanographic, climatological and geophysical observations of the Earth. The ground processing system for JPSS is known as the JPSS Common Ground System (JPSS CGS). Developed and maintained by Raytheon Intelligence, Information and Services (IIS), the CGS is a multi-mission enterprise system serving NOAA, NASA and their national and international partners. The CGS has demonstrated its scalability and flexibility to incorporate multiple missions efficiently and with minimal cost, schedule and risk, while strengthening global partnerships in weather and environmental monitoring. The CGS architecture is being upgraded to Block 2.0 in 2015 to "operationalize" S-NPP, leverage lessons learned to date in multi-mission support, take advantage of more reliable and efficient technologies, and satisfy new requirements and constraints in the continually evolving budgetary environment. To ensure the CGS meets these needs, we have developed 49 Technical Performance Measures (TPMs) across 10 categories, such as data latency, operational availability and scalability. This paper will provide an overview of the CGS Block 2.0 architecture, with particular focus on the 10 TPM categories listed above. We will provide updates on how we ensure the deployed architecture meets these TPMs to satisfy our multi-mission objectives with the deployment of Block 2.0.

  19. Simultaneous measurements from the Millstone Hill radar and the Active satellite during the SAID/SAR arc event of the March 1990 CEDAR storm

    Directory of Open Access Journals (Sweden)

    M. Förster

    Full Text Available During a nearby passage of the Active satellite above the Millstone Hill radar on 21 March 1990 at local sunset, the satellite and the radar performed simultaneous measurements of upper ionospheric parameters in nearly the same spatial volume. For this purpose the radar carried out a special azimuth-elevation scan to track the satellite. Direct comparisons of radar data and in situ satellite measurements have been carried out quite rarely. In this case, the coincidence of co-ordinated measurements and active ionospheric-magnetospheric processes during an extended storm recovery phase presents a unique occasion resulting in a very valuable data set. The measurements show generally good agreement both during quiet prestorm and storm conditions and the combination of radar and satellite observations gives a more comprehensive picture of the physical processes involved. We find a close relationship between the rapid westward ion drift peak at subauroral latitudes (SAID event and the occurrence of a stable auroral red (SAR arc observed after sunset by an all-sky imager and reported in an earlier study of this event. The SAID electric field is caused by the penetration of energetic ions with energies between about 1 keV and 100 keV into the outer plasmasphere to a latitude equatorward of the extent of the plasmasheet electrons. Charge separation results in the observed polarisation field and the SAID. Unusually high molecular ion densities measured by the satellite at altitudes of 700-870 km at subauroral and auroral latitudes point on strong upward-directed ion acceleration processes and an intense neutral gas upwelling. These structures are collocated with a narrow trough in electron density and an electron temperature peak as observed simultaneously by the radar and the satellite probes.

    Key words. Ionosphere (ionosphere-magnetosphere interactions; plasma temperature and density; Magnetospheric physics (plasmasphere.

  20. APPLICATION OF VISION METROLOGY TO IN-ORBIT MEASUREMENT OF LARGE REFLECTOR ONBOARD COMMUNICATION SATELLITE FOR NEXT GENERATION MOBILE SATELLITE COMMUNICATION

    Directory of Open Access Journals (Sweden)

    M. Akioka

    2016-06-01

    Full Text Available Satellite for next generation mobile satellite communication service with small personal terminal requires onboard antenna with very large aperture reflector larger than twenty meters diameter because small personal terminal with lower power consumption in ground base requires the large onboard reflector with high antenna gain. But, large deployable antenna will deform in orbit because the antenna is not a solid dish but the flexible structure with fine cable and mesh supported by truss. Deformation of reflector shape deteriorate the antenna performance and quality and stability of communication service. However, in case of digital beam forming antenna with phased array can modify the antenna beam performance due to adjustment of excitation amplitude and excitation phase. If we can measure the reflector shape precisely in orbit, beam pattern and antenna performance can be compensated with the updated excitation amplitude and excitation phase parameters optimized for the reflector shape measured every moment. Softbank Corporation and National Institute of Information and Communications Technology has started the project "R&D on dynamic beam control technique for next generation mobile communication satellite" as a contracted research project sponsored by Ministry of Internal Affairs and Communication of Japan. In this topic, one of the problem in vision metrology application is a strong constraints on geometry for camera arrangement on satellite bus with very limited space. On satellite in orbit, we cannot take many images from many different directions as ordinary vision metrology measurement and the available area for camera positioning is quite limited. Feasibility of vision metrology application and general methodology to apply to future mobile satellite communication satellite is to be found. Our approach is as follows: 1 Development of prototyping simulator to evaluate the expected precision for network design in zero order and first order

  1. Application of Vision Metrology to In-Orbit Measurement of Large Reflector Onboard Communication Satellite for Next Generation Mobile Satellite Communication

    Science.gov (United States)

    Akioka, M.; Orikasa, T.; Satoh, M.; Miura, A.; Tsuji, H.; Toyoshima, M.; Fujino, Y.

    2016-06-01

    Satellite for next generation mobile satellite communication service with small personal terminal requires onboard antenna with very large aperture reflector larger than twenty meters diameter because small personal terminal with lower power consumption in ground base requires the large onboard reflector with high antenna gain. But, large deployable antenna will deform in orbit because the antenna is not a solid dish but the flexible structure with fine cable and mesh supported by truss. Deformation of reflector shape deteriorate the antenna performance and quality and stability of communication service. However, in case of digital beam forming antenna with phased array can modify the antenna beam performance due to adjustment of excitation amplitude and excitation phase. If we can measure the reflector shape precisely in orbit, beam pattern and antenna performance can be compensated with the updated excitation amplitude and excitation phase parameters optimized for the reflector shape measured every moment. Softbank Corporation and National Institute of Information and Communications Technology has started the project "R&D on dynamic beam control technique for next generation mobile communication satellite" as a contracted research project sponsored by Ministry of Internal Affairs and Communication of Japan. In this topic, one of the problem in vision metrology application is a strong constraints on geometry for camera arrangement on satellite bus with very limited space. On satellite in orbit, we cannot take many images from many different directions as ordinary vision metrology measurement and the available area for camera positioning is quite limited. Feasibility of vision metrology application and general methodology to apply to future mobile satellite communication satellite is to be found. Our approach is as follows: 1) Development of prototyping simulator to evaluate the expected precision for network design in zero order and first order 2) Trial

  2. Fluxes of energetic protons and electrons measured on board the Oersted satellite

    Directory of Open Access Journals (Sweden)

    J. Cabrera

    2005-11-01

    Full Text Available The Charged Particle Detector (CPD on board the Oersted satellite (649 km perigee, 865 km apogee and 96.48° inclination currently measures energetic protons and electrons. The measured peak fluxes of E>1 MeV electrons are found to confirm the predictions of AE8-MAX, though they occur at a geographical position relatively shifted in the SAA. The fluxes of protons are one order of magnitude higher than the predictions of AP8-MAX in the energy range 20-500 MeV. This huge discrepancy between AP8 and recent measurements in LEO was already noticed and modelled in SAMPEX/PSB97 and TPM-1 models. Nevertheless some other LEO measurements such as PROBA and CORONA-F result in flux values in good agreement with AP8 within a factor 2. The anisotropy of the low-altitude proton flux, combined with measurement performed on board three-axis stabilised satellites, has been suspected to be one possible source of the important discrepancies observed by different missions. In this paper, we evaluate the effect of anisotropy on flux measurements conducted using the CPD instruments. On the basis of the available data, we confirm the inaccuracy of AP8 at LEO and suggest methods to improve the analysis of data in future flux measurements of energetic protons at low altitudes.

  3. Comparison of horizontal winds from the LIMS satellite instrument with rocket measurements

    Science.gov (United States)

    Smith, A. K.; Bailey, P. L.

    1985-01-01

    Statistical results are given for a comparison between horizontal geostrophic winds computed from satellite height data and all available in situ rocket wind soundings during a 7-month period. The satellite data are the daily mapped fields from the Nimbus 7 Limb Infrared Monitor of the Stratosphere (LIMS) instrument, which extend from 100 to 0.1 mbar. Results indicate that in both the tropics and the extratropical Northern Hemisphere, the average zonal and meridional wind speeds agree to within 2-4 m/s throughout the stratosphere. The rms differences are much larger, with values of 5-10 m/s in the lower stratosphere, increasing to 20-40 m/s in the lower mesosphere. Time series show that LIMS and rocketsonde zonal wind speeds show coherent variations with temporal periods of 1-2 weeks and more, and both exhibit irregular variations on time scales of less than one week.

  4. Method for validating cloud mask obtained from satellite measurements using ground-based sky camera.

    Science.gov (United States)

    Letu, Husi; Nagao, Takashi M; Nakajima, Takashi Y; Matsumae, Yoshiaki

    2014-11-01

    Error propagation in Earth's atmospheric, oceanic, and land surface parameters of the satellite products caused by misclassification of the cloud mask is a critical issue for improving the accuracy of satellite products. Thus, characterizing the accuracy of the cloud mask is important for investigating the influence of the cloud mask on satellite products. In this study, we proposed a method for validating multiwavelength satellite data derived cloud masks using ground-based sky camera (GSC) data. First, a cloud cover algorithm for GSC data has been developed using sky index and bright index. Then, Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data derived cloud masks by two cloud-screening algorithms (i.e., MOD35 and CLAUDIA) were validated using the GSC cloud mask. The results indicate that MOD35 is likely to classify ambiguous pixels as "cloudy," whereas CLAUDIA is likely to classify them as "clear." Furthermore, the influence of error propagations caused by misclassification of the MOD35 and CLAUDIA cloud masks on MODIS derived reflectance, brightness temperature, and normalized difference vegetation index (NDVI) in clear and cloudy pixels was investigated using sky camera data. It shows that the influence of the error propagation by the MOD35 cloud mask on the MODIS derived monthly mean reflectance, brightness temperature, and NDVI for clear pixels is significantly smaller than for the CLAUDIA cloud mask; the influence of the error propagation by the CLAUDIA cloud mask on MODIS derived monthly mean cloud products for cloudy pixels is significantly smaller than that by the MOD35 cloud mask.

  5. Analysis of the role of urban vegetation in local climate of Budapest using satellite measurements

    Science.gov (United States)

    Pongracz, Rita; Bartholy, Judit; Dezso, Zsuzsanna; Fricke, Cathy

    2016-08-01

    Urban areas significantly modify the natural environment due to the concentrated presence of humans and the associated anthropogenic activities. In order to assess this effect, it is essential to evaluate the relationship between urban and vegetated surface covers. In our study we focused on the Hungarian capital, Budapest, in which about 1.7 million inhabitants are living nowadays. The entire city is divided by the river Danube into the hilly, greener Buda side on the west, and the flat, more densely built-up Pest side on the east. Most of the extended urban vegetation, i.e., forests are located in the western Buda side. The effects of the past changing of these green areas are analyzed using surface temperature data calculated from satellite measurements in the infrared channels, and NDVI (Normalized Difference Vegetation Index) derived from visible and near-infrared satellite measurements. For this purpose, data available from sensor MODIS (Moderate Resolution Imaging Spectroradiometer) of NASA satellites (i.e., Terra and Aqua) are used. First, the climatological effects of forests on the urban heat island intensity are evaluated. Then, we also aim to evaluate the relationship of surface temperature and NDVI in this urban environment with special focus on vegetation-related sections of the city where the vegetation cover either increased or decreased remarkably.

  6. The retrieval of cloud microphysical properties using satellite measurements and an in situ database

    Directory of Open Access Journals (Sweden)

    Christophe Poix

    Full Text Available By combining AVHRR data from the NOAA satellites with information from a database of in situ measurements, large-scale maps can be generated of the microphysical parameters most immediately significant for the modelling of global circulation and climate. From the satellite data, the clouds can be classified into cumuliform, stratiform and cirrus classes and then into further sub-classes by cloud top temperature. At the same time a database of in situ measurements made by research aircraft is classified into the same sub-classes and a statistical analysis is used to derive relationships between the sub-classes and the cloud microphysical properties. These two analyses are then linked to give estimates of the microphysical properties of the satellite observed clouds. Examples are given of the application of this technique to derive maps of the probability of occurrence of precipitating clouds and of precipitating water content derived from a case study within the International Cirrus Experiment (ICE held in 1989 over the North Sea.

  7. Validation of VIIRS Cloud Base Heights at Night Using Ground and Satellite Measurements over Alaska

    Science.gov (United States)

    NOH, Y. J.; Miller, S. D.; Seaman, C.; Forsythe, J. M.; Brummer, R.; Lindsey, D. T.; Walther, A.; Heidinger, A. K.; Li, Y.

    2016-12-01

    Knowledge of Cloud Base Height (CBH) is critical to describing cloud radiative feedbacks in numerical models and is of practical significance to aviation communities. We have developed a new CBH algorithm constrained by Cloud Top Height (CTH) and Cloud Water Path (CWP) by performing a statistical analysis of A-Train satellite data. It includes an extinction-based method for thin cirrus. In the algorithm, cloud geometric thickness is derived with upstream CTH and CWP input and subtracted from CTH to generate the topmost layer CBH. The CBH information is a key parameter for an improved Cloud Cover/Layers product. The algorithm has been applied to the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi NPP spacecraft. Nighttime cloud optical properties for CWP are retrieved from the nighttime lunar cloud optical and microphysical properties (NLCOMP) algorithm based on a lunar reflectance model for the VIIRS Day/Night Band (DNB) measuring nighttime visible light such as moonlight. The DNB has innovative capabilities to fill the polar winter and nighttime gap of cloud observations which has been an important shortfall from conventional radiometers. The CBH products have been intensively evaluated against CloudSat data. The results showed the new algorithm yields significantly improved performance over the original VIIRS CBH algorithm. However, since CloudSat is now operational during daytime only due to a battery anomaly, the nighttime performance has not been fully assessed. This presentation will show our approach to assess the performance of the CBH algorithm at night. VIIRS CBHs are retrieved over the Alaska region from October 2015 to April 2016 using the Clouds from AVHRR Extended (CLAVR-x) processing system. Ground-based measurements from ceilometer and micropulse lidar at the Atmospheric Radiation Measurement (ARM) site on the North Slope of Alaska are used for the analysis. Local weather conditions are checked using temperature and precipitation

  8. First results of measurements of extreme ultraviolet radiation onboard a geostationary satellite "ELECTRO-L"

    Science.gov (United States)

    Nusinov, Anatoliy; Kazachevskaya, Tamara; Gonjukh, David

    Measurements of the intensity of EUV emission in the hydrogen Lyman-alpha line were conducted by a broadband photometer VUSS-E onboard geostationary Hydrometeorological satellite "Electro" since March 2011. The solar hydrogen Lyman-alpha line (lambda = 121.6 nm) was monitored. The photomultiplier with LiF window used as a detector insensitive to visible light. Long-wavelength limit of the spectral band sensitivity of the instrument is about 200 nm, so the signal of the device is defined as the flux of solar radiation in the region of 123-200 nm. Its exclusion was carried out by calculation. Since the satellite "Electro" designed for remote sensing of the Earth, its line of sight focused on Earth. Alignment of instrument in the Sun direction was achieved by installing it on the solar panel, periodically moved in the solar direction. Correction of instrument readings, reduced due to the deviation of its axis from the Sun direction, carried out by calculation. Measurements were carried out every second. The first results of the measurements are presented. The difference in absolute calibration Electro-L/VUSS-E is within 5% of corresponding values for measurements TIMED satellite in those days, that is in agreement with laboratory calibrations. It is useful to measure the temperature of the instrument, as its variation on a small interval of time makes change the value of the output signal about 1-2 %. During first year of operation, the sensitivity of the apparatus remained within ± 2% of measured value, significant degradation of sensitivity was not observed. Over time of observation there have been several large flares of X class. The increase of the signal in the ultraviolet range does not exceed a few percent during these flares.

  9. Secular Gravity Gradients in Non-Dynamical Chern-Simons Modified Gravity for Satellite Gradiometry Measurements

    CERN Document Server

    Qiang, Li-E

    2016-01-01

    With continuous advances in related technologies, relativistic gravitational experiments with orbiting gradiometers becomes feasible, which could naturally be incorporated into future satellite gravity missions. Tests of Chern-Simons modified gravity are meaningful since such a modification gives us insights into (possible) parity-violations in gravitation. In this work, we derive, at the post-Newtonian level, the new observables of secular gradients from the non-dynamical Chern-Simons modified gravity, which will greatly improve the constraint on the mass scale $M_{CS}$ that may be drawn from satellite gradiometry measurements. For superconducting gradiometers, a strong bound $M_{CS}\\geq 10^{-7}\\ eV$ could in principle be obtained. For future optical gradiometers based on similar technologies from the LISA PathFinder mission, a even stronger bound $M_{CS}\\geq 10^{-5}\\ eV$ might be expected.

  10. Ionizing radiation fluxes and dose measurements during the Kosmos 1887 satellite flight.

    Science.gov (United States)

    Charvat, J; Spurny, F; Kopecka, B; Votockova, I

    1990-01-01

    The results of dosimetric experiments performed during the flight of Kosmos 1887 biosatellite are presented. Two kinds of measurements were performed on the external surface of the satellite. First, the fluences and spectra of low energy charged particles were established. It was found that most of the particles registered by means of solid state nuclear track detectors are helium nuclei. Tracks of oxygen nuclei and some heavier charged particles were also observed. Thermoluminescent detectors were used to establish absorbed doses in open space on the satellite's surface and behind thin shielding. It was found that these doses were rather high; nevertheless, their decrease with shielding thickness is very rapid. Dosimetric and other consequences of the results obtained are analyzed and discussed.

  11. Absorbed dose measurements on external surface of Kosmos-satellites with glass thermoluminescent detectors.

    Science.gov (United States)

    Akatov YuA; Arkhangelsky, V V; Kovalev, E E; Spurny, F; Votochkova, I

    1989-01-01

    In this paper we present absorbed dose measurements with glass thermoluminescent detectors on external surface of satellites of Kosmos-serie flying in 1983-87. Experiments were performed with thermoluminescent aluminophosphate glasses of thicknesses 0.1, 0.3, 0.4, 0.5, and 1 mm. They were exposed in sets of total thickness between 5 and 20 mm, which were protected against sunlight with thin aluminized foils. In all missions, extremely high absorbed dose values were observed in the first layers of detectors, up to the thickness of 0.2 to 0.5 gcm-2. These experimental results confirm that, during flights at 250 to 400 km, doses on the surface of the satellites are very high, due to the low energy component of the proton and electron radiation.

  12. Distribution and composition of suspended particulate matter in the Atlantic Ocean: Direct measurements and satellite data

    Science.gov (United States)

    Lisitzin, A. P.; Klyuvitkin, A. A.; Burenkov, V. I.; Kravchishina, M. D.; Politova, N. V.; Novigatsky, A. N.; Shevchenko, V. P.; Klyuvitkina, T. S.

    2016-01-01

    The main purpose of this work is to study the real distribution and spatial-temporal variations of suspended particulate matter and its main components in surface waters of the Atlantic Ocean on the basis of direct and satellite measurements for development of new and perfection of available algorithms for converting satellite data. The distribution fields of suspended particulate matter were calculated and plotted for the entire Atlantic Ocean. It is established that its distribution in the open ocean is subordinate to the latitudinal climatic zonality. The areas with maximum concentrations form latitudinal belts corresponding to high-productivity eutrophic and mesotrophic waters of the northern and southern temperate humid belts and with the equatorial humid zone. Phytoplankton, the productivity of which depends primarily on the climatic zonality, is the main producer of suspended particulate matter in the surface water layer.

  13. Quantum-limited measurements of optical signals from a geostationary satellite

    CERN Document Server

    Günthner, Kevin; Elser, Dominique; Stiller, Birgit; Bayraktar, Ömer; Müller, Christian R; Saucke, Karen; Tröndle, Daniel; Heine, Frank; Seel, Stefan; Greulich, Peter; Zech, Herwig; Gütlich, Björn; Richter, Ines; Lutzer, Michael; Philipp-May, Sabine; Meyer, Rolf; Marquardt, Christoph; Leuchs, Gerd

    2016-01-01

    The measurement of quantum signals that traveled through long distances is of fundamental and technical interest. We present quantum-limited coherent measurements of optical signals, sent from a satellite in geostationary Earth orbit to an optical ground station. We bound the excess noise that the quantum states could have acquired after having propagated 38600 km through Earth's gravitational potential as well as its turbulent atmosphere. Our results indicate that quantum communication is feasible in principle in such a scenario, highlighting the possibility of a global quantum key distribution network for secure communication.

  14. "Cloud Slicing" : A New Technique to Derive Tropospheric Ozone Profile Information from Satellite Measurements

    Science.gov (United States)

    Ziemke, J. R.; Chandra, S.; Bhartia, P. K.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    A new technique denoted cloud slicing has been developed for estimating tropospheric ozone profile information. All previous methods using satellite data were only capable of estimating the total column of ozone in the troposphere. Cloud slicing takes advantage of the opaque property of water vapor clouds to ultraviolet wavelength radiation. Measurements of above-cloud column ozone from the Nimbus 7 total ozone mapping spectrometer (TOMS) instrument are combined together with Nimbus 7 temperature humidity and infrared radiometer (THIR) cloud-top pressure data to derive ozone column amounts in the upper troposphere. In this study tropical TOMS and THIR data for the period 1979-1984 are analyzed. By combining total tropospheric column ozone (denoted TCO) measurements from the convective cloud differential (CCD) method with 100-400 hPa upper tropospheric column ozone amounts from cloud slicing, it is possible to estimate 400-1000 hPa lower tropospheric column ozone and evaluate its spatial and temporal variability. Results for both the upper and lower tropical troposphere show a year-round zonal wavenumber 1 pattern in column ozone with largest amounts in the Atlantic region (up to approx. 15 DU in the 100-400 hPa pressure band and approx. 25-30 DU in the 400-1000 hPa pressure band). Upper tropospheric ozone derived from cloud slicing shows maximum column amounts in the Atlantic region in the June-August and September-November seasons which is similar to the seasonal variability of CCD derived TCO in the region. For the lower troposphere, largest column amounts occur in the September-November season over Brazil in South America and also southern Africa. Localized increases in the tropics in lower tropospheric ozone are found over the northern region of South America around August and off the west coast of equatorial Africa in the March-May season. Time series analysis for several regions in South America and Africa show an anomalous increase in ozone in the lower

  15. Improved Forest Biomass and Carbon Estimations Using Texture Measures from WorldView-2 Satellite Data

    Directory of Open Access Journals (Sweden)

    Sandra Eckert

    2012-03-01

    Full Text Available Accurate estimation of aboveground biomass and carbon stock has gained importance in the context of the United Nations Framework Convention on Climate Change (UNFCCC and the Kyoto Protocol. In order to develop improved forest stratum–specific aboveground biomass and carbon estimation models for humid rainforest in northeast Madagascar, this study analyzed texture measures derived from WorldView-2 satellite data. A forest inventory was conducted to develop stratum-specific allometric equations for dry biomass. On this basis, carbon was calculated by applying a conversion factor. After satellite data preprocessing, vegetation indices, principal components, and texture measures were calculated. The strength of their relationships with the stratum-specific plot data was analyzed using Pearson’s correlation. Biomass and carbon estimation models were developed by performing stepwise multiple linear regression. Pearson’s correlation coefficients revealed that (a texture measures correlated more with biomass and carbon than spectral parameters, and (b correlations were stronger for degraded forest than for non-degraded forest. For degraded forest, the texture measures of Correlation, Angular Second Moment, and Contrast, derived from the red band, contributed to the best estimation model, which explained 84% of the variability in the field data (relative RMSE = 6.8%. For non-degraded forest, the vegetation index EVI and the texture measures of Variance, Mean, and Correlation, derived from the newly introduced coastal blue band, both NIR bands, and the red band, contributed to the best model, which explained 81% of the variability in the field data (relative RMSE = 11.8%. These results indicate that estimation of tropical rainforest biomass/carbon, based on very high resolution satellite data, can be improved by (a developing and applying forest stratum–specific models, and (b including textural information in addition to spectral information.

  16. Processing the data of measurements of angular velocity and microaccelerations onboard the Foton-12 satellite

    Science.gov (United States)

    Sazonov, V. V.

    2011-10-01

    The results of reconstruction of uncontrolled rotational motion of the Foton-12 satellite using the measurement data of onboard sensors are presented. This problem has already been solved successfully several years ago. The satellite motion was reconstructed using the data of measuring the Earth's magnetic field. The data of measuring the angular velocity and microaccelerations by the QSAM system were actually not used for this purpose, since these data include a clearly seen additional component whose origin was at that time unclear. This component prevented one from using these data directly for reconstruction of the angular motion. Later it became clear that the additional component was caused by the Earth's magnetic field. Discovery of this fact allowed us to make necessary corrections when processing the QSAM system data and to use them for reconstruction of rotational motion of Foton-12. Below, a modified method of processing the QSAM system data is described together with the results of its application. The main result is obtained by comparing the motion reconstructed from measurements of angular velocity or acceleration with that found by way of processing the measurements of the Earth's magnetic field. Their coincidence turned out to be rather accurate.

  17. Surface radiation at sea validation of satellite-derived data with shipboard measurements

    Directory of Open Access Journals (Sweden)

    Hein Dieter Behr

    2009-03-01

    Full Text Available Quality-controlled and validated radiation products are the basis for their ability to serve the climate and solar energy community. Satellite-derived radiation fluxes are well preferred for this task as they cover the whole research area in time and space. In order to monitor the accuracy of these data, validation with well maintained and calibrated ground based measurements is necessary. Over sea, however, long-term accurate reference data sets from calibrated instruments recording radiation are scarce. Therefore data from research vessels operating at sea are used to perform a reasonable validation. A prerequisite is that the instruments on board are maintained as well as land borne stations. This paper focuses on the comparison of radiation data recorded on board of the German Research Vessel "Meteor" during her 13 months cruise across the Mediterranean and the Black Sea with CM-SAF products using NOAA- and MSG-data (August 2006-August 2007: surface incoming short-wave radiation (SIS and surface downward long-wave radiation (SDL. Measuring radiation fluxes at sea causes inevitable errors, e.g.shadowing of fields of view of the radiometers by parts of the ship. These ship-inherent difficulties are discussed at first. A comparison of pairs of ship-recorded and satellite-derived mean fluxes for the complete measuring period delivers a good agreement: the mean bias deviation (MBD for SIS daily means is −7.6 W/m2 with a median bias of −4 W/m2 and consistently the MBD for monthly means is −7.3 W/m2, for SDL daily means the MBD is 8.1 and 6 W/m2 median bias respectively. The MBD for monthly means is 8.2 W/m2. The variances of the daily means (ship and satellite have the same annual courses for both fluxes. No significant dependence of the bias on the total cloud cover recorded according to WMO (1969 has been found. The results of the comparison between ship-based observations and satellite retrieved surface radiation reveal the good accuracy

  18. Snow thickness retrieval using SMOS satellite data: Comparison with airborne IceBridge and buoy measurements

    Science.gov (United States)

    Maaß, N.; Kaleschke, L.; Tian-Kunze, X.

    2015-12-01

    The passive microwave mission SMOS (Soil Moisture and Ocean Salinity) provides daily coverage of the polar regions and its data have been used to retrieve thin sea ice thickness up to about one meter. In addition, there has been an attempt to retrieve snow thickness over thick Arctic multi-year ice, which is a crucial parameter for the freeboard-based estimation of (thick) sea ice thickness from lidar and radar altimetry. SMOS provides measurements at a frequency of 1.4 GHz (L-band) at horizontal and vertical polarization for a range of incidence angles (0 to 60°). The retrieval of ice or snow parameters from SMOS measurements is based on an emission model that describes the 1.4 GHz brightness temperature of (snow-covered) sea ice as a function of the ice and snow thicknesses and the permittivities of these media, which are mainly determined by ice temperature and salinity and snow density, respectively. In the first attempts to retrieve snow thickness from SMOS data, these parameters were assumed to be constant in the emission model, and the resulting maps were compared with airborne ice and snow thickness measurements taken during NASA's Operation IceBridge mission in spring 2012. The present approach to produce SMOS snow thickness maps is more elaborate. For example, available information on the ice surface temperature from MODIS (MODerate resolution Imaging Spectroradiometer) satellite images or from the IceBridge campaign itself are used, and the ice in the retrieval model is described by temperature and salinity profiles instead of using bulk values. As a first step we have produced (winter/spring) snow thickness maps of the Arctic, from 3-day-averages up to monthly means, using the available SMOS data from 2010 on. Here, we show how our spatial snow thickness distributions compare with IceBridge campaign data in the western Arctic from spring 2011 to 2015. In addition, we show how the temporal evolution of SMOS-retrieved snow thickness compares with snow

  19. Studies on aerosol properties during ICARB–2006 campaign period at Hyderabad, India using ground-based measurements and satellite data

    Indian Academy of Sciences (India)

    K V S Badarinath; Shailesh Kumar Kharol

    2008-07-01

    Continuous and campaign-based aerosol field measurements are essential in understanding fundamental atmospheric aerosol processes and for evaluating their effect on global climate, environment and human life. Synchronous measurements of Aerosol Optical Depth (AOD), Black Carbon (BC) aerosol mass concentration and aerosol particle size distribution were carried out during the campaign period at tropical urban regions of Hyderabad, India. Daily satellite datasets of DMSP-OLS were processed for night-time forest fires over the Indian region in order to understand the additional sources (forest fires) of aerosol. The higher values in black carbon aerosol mass concentration and aerosol optical depth correlated well with forest fires occurring over the region. Ozone Monitoring Instrument (OMI) aerosol index (AI) variations showed absorbing aerosols over the region and correlated with ground measurements.

  20. Estimation of snow cover distribution in Beas basin, Indian Himalaya using satellite data and ground measurements

    Indian Academy of Sciences (India)

    H S Negi; A V Kulkarni; B S Semwal

    2009-10-01

    In the present paper,a methodology has been developed for the mapping of snow cover in Beas basin,Indian Himalaya using AWiFS (IRS-P6)satellite data.The complexities in the mapping of snow cover in the study area are snow under vegetation,contaminated snow and patchy snow. To overcome these problems,field measurements using spectroradiometer were carried out and reflectance/snow indices trend were studied.By evaluation and validation of different topographic correction models,it was observed that,the normalized difference snow index (NDSI)values remain constant with the variations in slope and aspect and thus NDSI can take care of topography effects.Different snow cover mapping methods using snow indices are compared to find the suitable mapping technique.The proposed methodology for snow cover mapping uses the NDSI (estimated using planetary re flectance),NIR band reflectance and forest/vegetation cover information.The satellite estimated snow or non-snow pixel information using proposed methodology was validated with the snow cover information collected at three observatory locations and it was found that the algorithm classify all the sample points correctly,once that pixel is cloud free.The snow cover distribution was estimated using one year (2004 –05)cloud free satellite data and good correlation was observed between increase/decrease areal extent of seasonal snow cover and ground observed fresh snowfall and standing snow data.

  1. Correlating Global Precipitation Measurement satellite data with karst spring hydrographs for rapid catchment delineation

    Science.gov (United States)

    Longenecker, Jake; Bechtel, Timothy; Chen, Zhao; Goldscheider, Nico; Liesch, Tanja; Walter, Robert

    2017-05-01

    To protect karst spring water resources, catchments must be known. We have developed a method for correlating spring hydrographs with newly available, high-resolution, satellite-based Global Precipitation Measurement data to rapidly and remotely locate recharge areas. We verify the method using a synthetic comparison of ground-based rain gage data with the satellite precipitation data set. Application to karst springs is proven by correlating satellite data with hydrographs from well-known springs with published catchments in Europe and North America. Application to an unknown-catchment spring in Pennsylvania suggests distant recharge, requiring a flow path that crosses topographic divides, as well as multiple lithologies, physiographic provinces, and tectonic boundaries. Although surprising, this latter result is consistent with published geologic/geophysical, monitoring well, and stream gage data. We conclude that the method has considerable potential to improve the speed and accuracy of catchment identification and hydrodynamic characterization, with applications to water resource protection and groundwater exploration, among others.

  2. First comparison between ground-based and satellite-borne measurements of tropospheric nitrogen dioxide in the Po basin

    Science.gov (United States)

    Petritoli, Andrea; Bonasoni, Paolo; Giovanelli, Giorgio; Ravegnani, Fabrizio; Kostadinov, Ivan; Bortoli, Daniele; Weiss, Andrea; Schaub, Daniel; Richter, Andreas; Fortezza, Francesco

    2004-08-01

    In this paper we present in situ and tropospheric column measurements of NO2 in the Po river basin (northern Italy). The aim of the work is to provide a quantitative comparison between ground-based and satellite measurements in order to assess the validity of spaceborne measurements for estimating NO2 emissions and evaluate possible climatic effects. The study is carried out using in situ chemiluminescent instrumentation installed in the Po valley, a UV/Vis spectrometer installed at Mount Cimone (44.2°N, 10.7°E, 2165 m asl), and tropospheric column measurements obtained from the Global Ozone Monitoring Experiment (GOME) spectrometer. Results show that the annual cycle in surface concentrations and also some specific pollution periods observed by the air quality network are well reproduced by the GOME measurements. However, tropospheric columns derived from the surface measurements assuming a well-mixed planetary boundary layer (PBL) are much larger than the GOME columns and also have a different seasonal cycle. This is interpreted as indication of a smaller and less variable mixing height for NO2 in the boundary layer. Under particular meteorological conditions the agreement between UV/Vis tropospheric column observations and GOME measurements in the Mount Cimone area is good (R2 = 0.9) with the mixing properties of the atmosphere being the most important parameter for a valid comparison of the measurements. However, even when the atmospheric mixing properties are optimal for comparison, the ratio between GOME and ground-based tropospheric column data may not be unity. It is demonstrated that the values obtained (less than 1) are related to the fraction of the satellite ground pixel occupied by the NO2 hot spot.

  3. Exploring the relationship between monitored ground-based and satellite aerosol measurements over the City of Johannesburg

    CSIR Research Space (South Africa)

    Garland, Rebecca M

    2012-09-01

    Full Text Available This project studied the relationship between aerosol optical depth (AOD) from the Multi-angle Imaging SpectroRadiometer (MISR) instrument on the Terra satellite, and ground-based monitored particulate matter (PM) mass concentrations measured...

  4. Online data base of satellite sounder and insitu measurements covering two solar cycles

    Science.gov (United States)

    Bilitza, D.; Reinisch, B.; Benson, R.; Grebowsky, J.; Papitashvili, N.; Huang, X.; Schar, W.; Hills, K.

    Accurate descriptions of the solar cycle variations of ionospheric parameters are an important goal of ionospheric modeling. Reliable predictions of these variations are of essential importance for almost all applications of ionospheric models. Unfortunately there are very few global data sources that cover a solar cycle or more. In an effort to expand the solar cycle coverage of data readily available for ionospheric modeling, we have processed a large number of satellite data sets from the sixties, seventies, and early eighties and have made them online accessible as part of NSSDC's ftp archive (http://nssdcftp.gsfc.nasa.gov/spacecraft data/) and it's ATMOWeb retrieval and plotting system (http://nssdc.gsfc.nasa.gov/atmoweb/). We report about two data restoration efforts supported through NASA's Applied Information Systems Research Program (AISRP). The first project deals with insitu data from a large number of US, Canadian, Japanese and German satellites that measured ionospheric densities and temperatures from 1964 to 1983. The accumulated data base includes data from the BE-B, DME-A, AE-B, Alouette 2, ISIS 1, 2, OGO-6, AEROS A, AE-C, -D, -E, Hinotori, ISS-b and DE-2 satellite missions. The second project involves the production of digital topside sounder ionograms from the ISIS 1 and 2 satellites and their subsequent inversion to produce electron-density profiles. Approximately 340,000 ionograms are available from NSSDC as of July 2002. An automatic topside ionogram scaler with true height algorithm (TOPIST) was developed as part of this project and is now being used to obtain electron density profiles from these ionograms. Providing global coverage over more than two solar cycles the database established by this two projects is a valuable asset for improvements of the International Reference Ionosphere model and for ionospheric research.

  5. The wildgeographer avatar shows how to measure soil erosion rates by means of a rainfall simulator

    Science.gov (United States)

    Cerdà, Artemi; González Pelayo, Óscar; Pereira, Paulo; Novara, Agata; Iserloh, Thomas; Prosdocimi, Massimo

    2015-04-01

    This contribution to the immersed worlds wish to develop the avatar that will teach the students and other scientists how to develop measurements of soil erosion, surface runoff and wetting fronts by means of simulated rainfall experiments. Rainfall simulation is a well established and knows methodology to measure the soil erosion rates and soil hydrology under controlled conditions (Cerdà 1998a; Cerdà, 1998b; Cerdà and Jurgensen, 2011; Dunkerley, 2012; Iserloh et al., 2012; Iserloh et al., 2013; Ziadat and Taimeh, 2013; Butzen et al., 2014). However, is a method that requires a long training and expertise to avoid mismanagement and mistaken. To use and avatar can help in the teaching of the technique and the dissemination of the findings. This contribution will show to other avatars how to develop an experiment with simulated rainfall and will help to take the right decision in the design of the experiments. Following the main parts of the experiments and measurements the Wildgeographer avatar must develop: 1. Determine the objectives and decide which rainfall intensity and distribution, and which plot size to be used. Choose between a laboratory or a field rainfall simulation. 2. Design of the rainfall simulator to achieve the objectives: type of rainfall simulator (sprayer or drop former) and calibrate. 3. The experiments are carried out. 4. The results are show. Acknowledgements To the "Ministerio de Economía and Competitividad" of Spanish Government for finance the POSTFIRE project (CGL2013- 47862-C2-1-R). The research projects GL2008-02879/BTE, LEDDRA 243857 and PREVENTING AND REMEDIATING DEGRADATION OF SOILS IN EUROPE THROUGH LAND CARE (RECARE)FP7-ENV-2013- supported this research. References Butzen, V., Seeger, M., Wirtz, S., Huemann, M., Mueller, C., Casper, M., Ries, J. B. 2014. Quantification of Hortonian overland flow generation and soil erosion in a Central European low mountain range using rainfall experiments. Catena, 113, 202-212. Cerdà, A

  6. Determination of Foton M-2 satellite attitude motion by the data of microacceleration measurements

    Science.gov (United States)

    Beuselinck, T.; van Bavinchove, C.; Sazonov, V. V.; Chebukov, S. Yu.

    2009-12-01

    The results of reconstruction of uncontrolled attitude motion of the Foton M-2 satellite using measurements with the accelerometer TAS-3 are presented. The attitude motion of this satellite has been previously determined by the measurement data of the Earth’s magnetic field and the angular velocity. The TAS-3 data for this purpose are used for the first time. These data contain a well-pronounced additional component which made impossible their direct employment for the reconstruction of the attitude motion and whose origin was unknown several years ago. Later it has become known that the additional component is caused by the influence of the Earth’s magnetic field. The disclosure of this fact allowed us to take into account a necessary correction in processing of TAS-3 data and to use them for the reconstruction of the attitude motion of Foton M-2. Here, a modified method of processing TAS-3 data is described, as well as results of its testing and employing. The testing consisted in the direct comparison of the motion reconstructed by the new method with the motion constructed by the magnetic measurements. The new method allowed us to find the actual motion of Foton M-2 in the period June 9, 2005-June 14, 2005, when no magnetic measurements were carried out.

  7. Modeling Navigation System Performance of a Satellite-Observing Star Tracker Tightly Integrated with an Inertial Measurement Unit

    Science.gov (United States)

    2015-03-26

    Hancock, R.C. Stirbl, and B. Pain. “ Active pixel sensor (APS) based star tracker ”. Aerospace Conference, 1998 IEEE, volume 1, 119–127 vol.1. 1998...Modeling Navigation System Performance of a Satellite-Observing Star Tracker Tightly Integrated with an Inertial Measurement Unit DISSERTATION Scott...Navigation System Performance of a Satellite-Observing Star Tracker Tightly Integrated with an Inertial Measurement Unit DISSERTATION Presented to the

  8. REKF and RUKF for pico satellite attitude estimation in the presence of measurement faults

    Institute of Scientific and Technical Information of China (English)

    Halil Ersin Söken; Chingiz Hajiyev

    2014-01-01

    When a pico satel ite is under normal operational condi-tions, whether it is extended or unscented, a conventional Kalman filter gives sufficiently good estimation results. However, if the measurements are not reliable because of any kind of malfunc-tions in the estimation system, the Kalman filter gives inaccurate results and diverges by time. This study compares two different robust Kalman filtering algorithms, robust extended Kalman filter (REKF) and robust unscented Kalman filter (RUKF), for the case of measurement malfunctions. In both filters, by the use of de-fined variables named as the measurement noise scale factor, the faulty measurements are taken into the consideration with a smal weight, and the estimations are corrected without affecting the characteristic of the accurate ones. The proposed robust Kalman filters are applied for the attitude estimation process of a pico satel-lite, and the results are compared.

  9. Airborne Sunphotometer Measurements of Aerosol Optical Depth and Columnar Water Vapor During the Puerto Rico Dust Experiment, and Comparison with Land, Aircraft, and Satellite Measurements

    Science.gov (United States)

    Livingston, John M.; Russell, Philip B.; Reid, Jeffrey; Redemann, Jens; Schmid, Beat; Allen, Duane A.; Torres, Omar; Levy, Robert C.; Remer, Lorraine A.; Holben, Brent N.; Hipskind, R. Stephen (Technical Monitor)

    2002-01-01

    Analyses of aerosol optical depth (AOD) and columnar water vapor (CWV) measurements obtained with the six-channel NASA Ames Airborne Tracking Sunphotometer (AATS-6) mounted on a twin-engine aircraft during the summer 2000 Puerto Rico Dust Experiment are presented. In general, aerosol extinction values calculated from AATS-6 AOD measurements acquired during aircraft profiles up to 5 km ASL reproduce the vertical structure measured by coincident aircraft in-situ measurements of total aerosol number and surface area concentration. Calculations show that the spectral dependence of AOD was small (mean Angstrom wavelength exponents of approximately 0.20) within three atmospheric layers defined as the total column beneath the top of each aircraft profile, the region beneath the trade wind inversion, and the region within the Saharan Air Layer (SAL) above the trade inversion. This spectral behavior is consistent with attenuation of incoming solar radiation by large dust particles or by dust plus sea salt. Values of CWV calculated from profile measurements by AATS-6 at 941.9 nm and from aircraft in-situ measurements by a chilled mirror dewpoint hygrometer agree to within approximately 4% (0.13 g/sq cm). AATS-6 AOD values measured on the ground at Roosevelt Roads Naval Air Station and during low altitude aircraft runs over the adjacent Cabras Island aerosol/radiation ground site agree to within 0.004 to 0.030 with coincident data obtained with an AERONET Sun/sky Cimel radiometer located at Cabras Island. For the same observation times, AERONET retrievals of CWV exceed AATS-6 values by a mean of 0.74 g/sq cm (approximately 21 %) for the 2.9-3.9 g/sq cm measured by AATS-6. Comparison of AATS-6 aerosol extinction values obtained during four aircraft ascents over Cabras Island with corresponding values calculated from coincident aerosol backscatter measurements by a ground-based micro-pulse lidar (MPL-Net) located at Cabras yields a similar vertical structure above the trade

  10. Retrieval of ozone column content from airborne Sun photometer measurements during SOLVE II: comparison with coincident satellite and aircraft measurements

    Directory of Open Access Journals (Sweden)

    J. M. Livingston

    2005-01-01

    Full Text Available During the 2003 SAGE (Stratospheric Aerosol and Gas Experiment III Ozone Loss and Validation Experiment (SOLVE II, the fourteen-channel NASA Ames Airborne Tracking Sunphotometer (AATS-14 was mounted on the NASA DC-8 aircraft and measured spectra of total and aerosol optical depth (TOD and AOD during the sunlit portions of eight science flights. Values of ozone column content above the aircraft have been derived from the AATS-14 measurements by using a linear least squares method that exploits the differential ozone absorption in the seven AATS-14 channels located within the Chappuis band. We compare AATS-14 columnar ozone retrievals with temporally and spatially near-coincident measurements acquired by the SAGE III and the Polar Ozone and Aerosol Measurement (POAM III satellite sensors during four solar occultation events observed by each satellite. RMS differences are 19 DU (7% of the AATS value for AATS-SAGE and 10 DU (3% of the AATS value for AATS-POAM. In these checks of consistency between AATS-14 and SAGE III or POAM III ozone results, the AATS-14 analyses use airmass factors derived from the relative vertical profiles of ozone and aerosol extinction obtained by SAGE III or POAM III. We also compare AATS-14 ozone retrievals for measurements obtained during three DC-8 flights that included extended horizontal transects with total column ozone data acquired by the Total Ozone Mapping Spectrometer (TOMS and the Global Ozone Monitoring Experiment (GOME satellite sensors. To enable these comparisons, the amount of ozone in the column below the aircraft is estimated either by assuming a climatological model or by combining SAGE and/or POAM data with high resolution in-situ ozone measurements acquired by the NASA Langley Research Center chemiluminescent ozone sensor, FASTOZ, during the aircraft vertical profile at the start or end of each flight. Resultant total column ozone values agree with corresponding TOMS and GOME measurements to within 10

  11. Retrieval of ozone column content from airborne Sun photometer measurements during SOLVE II: comparison with coincident satellite and aircraft measurements

    Directory of Open Access Journals (Sweden)

    J. M. Livingston

    2005-01-01

    Full Text Available During the 2003 SAGE (Stratospheric Aerosol and Gas Experiment III Ozone Loss and Validation Experiment (SOLVE II, the fourteen-channel NASA Ames Airborne Tracking Sunphotometer (AATS-14 was mounted on the NASA DC-8 aircraft and measured spectra of total and aerosol optical depth (TOD and AOD during the sunlit portions of eight science flights. Values of ozone column content above the aircraft have been derived from the AATS-14 measurements by using a linear least squares method that exploits the differential ozone absorption in the seven AATS-14 channels located within the Chappuis band. We compare AATS-14 columnar ozone retrievals with temporally and spatially near-coincident measurements acquired by the SAGE III and the Polar Ozone and Aerosol Measurement (POAM III satellite sensors during four solar occultation events observed by each satellite. RMS differences are 19 DU (6% of the AATS value for AATS-SAGE and 10 DU (3% of the AATS value for AATS-POAM. In these checks of consistency between AATS-14 and SAGE III or POAM III ozone results, the AATS-14 analyses use airmass factors derived from the relative vertical profiles of ozone and aerosol extinction obtained by SAGE III or POAM III.

    We also compare AATS-14 ozone retrievals for measurements obtained during three DC-8 flights that included extended horizontal transects with total column ozone data acquired by the Total Ozone Mapping Spectrometer (TOMS and the Global Ozone Monitoring Experiment (GOME satellite sensors. To enable these comparisons, the amount of ozone in the column below the aircraft is estimated either by assuming a climatological model or by combining SAGE and/or POAM data with high resolution in-situ ozone measurements acquired by the NASA Langley Research Center chemiluminescent ozone sensor, FASTOZ, during the aircraft vertical profile at the start or end of each flight. Resultant total column ozone values agree with corresponding TOMS and GOME measurements to

  12. From quiescence to unrest: 20 years of satellite geodetic measurements at Santorini volcano, Greece

    Science.gov (United States)

    Parks, Michelle M.; Moore, James D. P.; Papanikolaou, Xanthos; Biggs, Juliet; Mather, Tamsin A.; Pyle, David M.; Raptakis, Costas; Paradissis, Demitris; Hooper, Andrew; Parsons, Barry; Nomikou, Paraskevi

    2015-02-01

    Periods of unrest at caldera-forming volcanic systems characterized by increased rates of seismicity and deformation are well documented. Some can be linked to eventual eruptive activity, while others are followed by a return to quiescence. Here we use a 20 year record of interferometric synthetic aperture radar (InSAR) and GPS measurements from Santorini volcano to further our understanding of geodetic signals at a caldera-forming volcano during the periods of both quiescence and unrest, with measurements spanning a phase of quiescence and slow subsidence (1993-2010), followed by a phase of unrest (January 2011 to April 2012) with caldera-wide inflation and seismicity. Mean InSAR velocity maps from 1993-2010 indicate an average subsidence rate of 6 mm/yr over the southern half of the intracaldera island Nea Kameni. This subsidence can be accounted for by a combination of thermal contraction of the 1866-1870 lava flows and load-induced relaxation of the substrate. For the period of unrest, we use a joint inversion technique to convert InSAR measurements from three separate satellite tracks and GPS observations from 10 continuous sites into a time series of subsurface volume change. The optimal location of the inflating source is consistent with previous studies, situated north of Nea Kameni at a depth of 4 km. However, the time series reveals two distinct pressure pulses. The first pulse corresponds to a volume change (ΔV) within the shallow magma chamber of (11.56 ± 0.14) × 106 m3, and the second pulse has a ΔV of (9.73 ± 0.10) × 106 m3. The relationship between the timing of these pulses and microseismicity observations suggests that these pulses may be driven by two separate batches of magma supplied to a shallow reservoir. We find no evidence suggesting a change in source location between the two pulses. The decline in the rates of volume change at the end of both pulses and the observed lag of the deformation signal behind cumulative seismicity, suggest

  13. Monolithic sensors for low frequency motion measurement and control of spacecrafts and satellites

    Science.gov (United States)

    Barone, F.; Giordano, G.; Acernese, F.; Romano, R.

    2016-10-01

    In this paper we describe the characteristics and performances of a monolithic sensor designed for low frequency motion measurement and control of spacecrafts and satellites, whose mechanics is based on the UNISA Folded Pendulum. The latter, developed for ground-based applications, exhibits unique features (compactness, lightness, scalability, low resonance frequency and high quality factor), consequence of the action of the gravitational force on its inertial mass. In this paper we introduce and discuss the general methodology used to extend the application of ground-based folded pendulums to space, also in total absence of gravity, still keeping all their peculiar features and characteristics.

  14. Multiple disadvantages among older citizens: what a multidimensional measure of poverty can show.

    Science.gov (United States)

    Callander, Emily J; Schofield, Deborah J; Shrestha, Rupendra N

    2012-01-01

    Using the newly created Freedom Poverty Measure, a multidimensional measure of poverty, it can be seen that there were 534,700 individuals who were in freedom poverty, who had either poor health or poor education in addition to having low incomes. This multidimensional disadvantage would not normally be captured by single measures of poverty, such as income poverty measures. Men were significantly less likely to be in freedom poverty than women (OR = 0.63, 95% CI: 0.54-0.74, p poverty increased with age, with those older than 85 being 2.3 times more likely to be in freedom poverty than those aged 65 to 69 years (95% CI: 1.73-3.11, p < .0001). Policy responses to address the marginalization of disadvantaged older people should take a multidisciplinary approach, addressing health inequalities in particular, not just low income.

  15. A study of Asian dust plumes using satellite, surface, and aircraft measurements during the INTEX-B field experiment

    Science.gov (United States)

    Logan, Timothy; Xi, Baike; Dong, Xiquan; Obrecht, Rebecca; Li, Zhanqing; Cribb, Maureen

    2010-04-01

    Asian dust events occur frequently during the boreal spring season. Their optical properties have been analyzed by using a combination of source region (ground-based and satellite) and remote Pacific Ocean (aircraft) measurements during the Intercontinental Chemical Transport Experiment-Phase B (INTEX-B) field campaign which lasted from 7 April to 15 May 2006. A strong dust event originating from the Gobi Desert and passing over the Xianghe surface site on 17 April 2006 has been extensively analyzed. The surface averaged aerosol optical depth (AOD) values increased from 0.17 (clear sky) to 4.0 (strong dust), and the Angström exponent (α) dropped from 1.26 (clear sky) to below 0.1. Its total downwelling SW flux over the Xianghe site (thousands of kilometers away from the dust source region) is only 46% of the clear-sky value with almost no direct transmission and nearly double the diffuse SW clear-sky value. This event was also captured 6 days later by satellite observations as well as the UND/NASA DC-8 aircraft over the eastern Pacific Ocean. The DC-8 measurements in the remote Pacific region further classified the plumes into dust dominant, pollution dominant, and a mixture of dust and pollution events. HYSPLIT backward trajectories not only verified the origins of each case we selected but also showed (1) two possible origins for the dust: the Gobi and Taklimakan deserts; and (2) pollution: urban areas in eastern China, Japan, and other industrialized cities east of the two deserts. Based on the averaged satellite retrieved AOD data (0.5° × 0.5° grid box), declining AOD values with respect to longitude demonstrated the evolution of the transpacific transport pathway of Asian dust and pollution over the period of the field campaign.

  16. Formaldehyde (HCHO) column measurements from airborne instruments: Comparison with airborne in-situ measurements, model, and satellites

    Science.gov (United States)

    Kwon, Hyeong-Ahn; Park, Rokjin; Nowlan, Caroline; González Abad, Gonzalo; Chance, Kelly; Janz, Scott

    2017-04-01

    Trace gas measurements from airborne instruments are useful to evaluate and improve a retrieval algorithm developed for the Geostationary Environment Monitoring Spectrometer (GEMS). We used radiances measured from two airborne 2D array sensors, the GeoCAPE Airborne Simulator (GCAS) and the Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) for DISCOVER-AQ Texas in 2013 and for KORUS-AQ in 2016 to retrieve formaldehyde (HCHO) columns and to evaluate the GEMS retrieval algorithm. In addition, we used simulated aerosol concentrations constrained by airborne LIDAR observations for AMF calculation to convert slant columns to vertical columns. We compared retrieved HCHO columns with vertical columns obtained from in-situ airborne HCHO measurements. Optical properties and distributions of aerosols are found to be important factors, affecting HCHO retrievals. Finally, additional comparisons of retrieved results with model simulations and low-orbiting satellites provides quantitative information for improving bottom-up emission estimates of volatile organic carbon emissions.

  17. SIDRA instrument for measurements of particle fluxes at satellite altitudes. Laboratory prototype

    Science.gov (United States)

    Dudnik, O. V.; Prieto, M.; Kurbatov, E. V.; Sanchez, S.; Timakova, T. G.; Spassky, A. V.; Dubina, V. N.; Parra, P.

    2013-01-01

    The design concept and first set of results are presented for electronic modules of a laboratory prototype of the small-size satellite instrument SIDRA intended for measurements of charged particle fluxes in outer space. The working prototype consists of a detector assembly based on high-purity silicon and fast scintillation detectors, modules of analogue and digital processing, and a secondary power supply module. The first results are discussed of a Monte-Carlo simulation of the instrument with the use of the GEANT4 toolkit and of measurements of the main parameters of charge-sensitive pre-amplifiers, shapers, and peak detectors. Results of calibration measurements with the use of radioactive sources and beams of accelerated charged particles are presented.

  18. Measuring QoS in an Aeronautical Opportunistic Network Architecture with Limited Access to a Satellite Communications Backhaul

    Directory of Open Access Journals (Sweden)

    Rubén Martínez-Vidal

    2016-01-01

    Full Text Available We measure quality of service (QoS in a wireless network architecture of transoceanic aircraft. A distinguishing characteristic of the network scheme we analyze is that it mixes the concept of Delay Tolerant Networking (DTN through the exploitation of opportunistic contacts, together with direct satellite access in a limited number of the nodes. We provide a graph sparsification technique for deriving a network model that satisfies the key properties of a real aeronautical opportunistic network while enabling scalable simulation. This reduced model allows us to analyze the impact regarding QoS of introducing Internet-like traffic in the form of outgoing data from passengers. Promoting QoS in DTNs is usually really challenging due to their long delays and scarce resources. The availability of satellite communication links offers a chance to provide an improved degree of service regarding a pure opportunistic approach, and therefore it needs to be properly measured and quantified. Our analysis focuses on several QoS indicators such as delivery time, delivery ratio, and bandwidth allocation fairness. Obtained results show significant improvements in all metric indicators regarding QoS, not usually achievable on the field of DTNs.

  19. Feasibility of a Constellation of Miniature Satellites for Performing Measurements of the Magnetic Field of the Earth

    DEFF Research Database (Denmark)

    Thomsen, Michael; Merayo, José M.G.; Brauer, Peter

    2008-01-01

    This paper studies the requirements for a small constellation of satellites to perform measurements of the magnetic field of the Earth and a payload and boom design for such a mission is discussed. After studying communication, power and mass requirements it is found that it is feasible to develop...... a 10 x 10 x 30 cm(3) satellite with a mass of about 2.5 kg, which can fulfill such a mission. We also study the feasibility of controlling a constellation of such small satellites by means of air drag by extracting one or more flaps. It is found that it is indeed possible, but for best performance...

  20. Upper tropospheric water vapour variability over tropical latitudes observed using radiosonde and satellite measurements

    Indian Academy of Sciences (India)

    Ghouse Basha; M Venkat Ratnam; B V Krishna Murthy

    2013-12-01

    The present study deals with using long-term database for upper tropospheric water vapour (UTWV) variability studies over three tropical stations (Gadanki, Singapore and Truk), where different climatic conditions prevail. Over Gadanki (13.5°N, 79.2°E) strong seasonal variation in UTWV is revealed but not over Singapore (1.37°N, 103.98°E) and Truk (7.46°N, 151.85°E) except at 100 hPa. It is examined whether high resolution radiosonde measurements represent well the UTWV by comparing with different satellite based (Atmospheric Infrared Sounder (AIRS), Advanced Microwave Sounding Unit-B (AMSUB) and Microwave Limb Sounder (MLS)) water vapour measurements. Very good comparison in the nature of variations of UTWV is observed between radiosonde data and satellite data, except over Singapore particularly with AIRS and MLS data, on long-term basis. An attempt is also made to examine the source for UTWV. A close relationship is found between UTWV and deep convection over Gadanki indicating that the source for UTWV is convection particularly during the summer monsoon season.

  1. Modeling of solar irradiance using satellite images and direct terrestrial measurements with PV modules

    Science.gov (United States)

    Tyukhov, Igor; Schakhramanyan, Michael; Strebkov, Dmitry; Tikhonov, Anton; Vignola, Frank

    2009-08-01

    A simple, affordable and efficient multifaceted system with technical software programs, "Kosmos 3M", was developed for taking images of the Earth from NOAA satellites and for handling this images and analyzing many geographical and meteorological parameters. Technical software programs have been developed that utilize the "Kosmos 3M" Receiver system. Basic capabilities of the multifaceted "Kosmos 3M" system include: receiving signal from NOAA satellites; digital processing of space images with geographical fixing, superposition of maps of cities and coordinate grid; finding of geographical coordinates at any point of space image; finding of temperature of underlying surface at given points; finding of albedo (reflection coefficient) at any point of space image; finding of upper boundary of clouds (cloudiness); forecasting of dangerous weather phenomena; defining wind fields in cyclones; precipitations forecast; measuring distances between given points; measuring surfaces (areas); and forming of electronic library of images of the Earth. Work is underway to use the "Kosmos 3M" cloudiness images to estimate the incident solar radiation values for evaluating terrestrial solar energy performance in real time. Such kind of system would have a wide variety of uses from the classroom to the field.

  2. Evapotranspiration Estimation over Yangtze River Basin from GRACE satellite measurement and in situ data

    Science.gov (United States)

    Li, Qiong; Luo, Zhicai; Zhong, Bo; Wang, Haihong; Zhou, Zebing

    2016-04-01

    As the critical component of hydrologic cycle, evapotranspiration (ET) plays an important role in global water exchanges and energy flow across the hydrosphere, atmosphere and biosphere. Influenced by the Asian monsoon, the Yangtze River Basin (YRB) suffer from the several severe floods and droughts over the last decades due to the significant difference between temporal and spatial distribution terrestrial water storages. As an indispensable part, it is practically important to assessment ET in the YRB accompany with increased population and rapid economic and agriculture development. Average ET over the YRB is computed as the residual of terrestrial water budget using the Gravity Recovery and Climate Experiment (GRACE) satellite-based measurements and the ground-based observations. The GRACE-based ET were well coincidence with the ET from MODIS, with the correlation coefficient of 0.853, and the correlation coefficient is 0.696 while comparing with the ET ground-based observation. The mean monthly average of ET from these various estimates is 56.9 mm/month over the whole YRB, and peak between June and August. Monthly variations of ET reach a maximum in Wujiang with 69.11 mm/month and a minimum in Jinshajiang with 39.01 mm/month. Based on the correlation between ET and independent estimates of near-surface temperature and soil moisture, it is showed that as the temperature increased, the ET of the seven sub-catchment were rising except for the Poyang Lake and Donting Lake. And we also can infer that the midstream of YRB is significant correlated with ESON especially in the Hanjiang basin. The Surface Humidity Index over the YRB was gradually decreased and its variations in each sub-catchment showed a significant decreasing trend in Jinshajiang and Mingjiang. This research has important potential for use in large-scale water budget assessments and intercomparison studies. Acknowledgements: This research is supported by the National Natural Science Foundation of

  3. Measuring snow cover using satellite imagery during 1973 and 1974 melt season: North Santiam, Boise, and Upper Snake Basins, phase 1. [LANDSAT satellites, imaging techniques

    Science.gov (United States)

    Wiegman, E. J.; Evans, W. E.; Hadfield, R.

    1975-01-01

    Measurements are examined of snow coverage during the snow-melt season in 1973 and 1974 from LANDSAT imagery for the three Columbia River Subbasins. Satellite derived snow cover inventories for the three test basins were obtained as an alternative to inventories performed with the current operational practice of using small aircraft flights over selected snow fields. The accuracy and precision versus cost for several different interactive image analysis procedures was investigated using a display device, the Electronic Satellite Image Analysis Console. Single-band radiance thresholding was the principal technique employed in the snow detection, although this technique was supplemented by an editing procedure involving reference to hand-generated elevation contours. For each data and view measured, a binary thematic map or "mask" depicting the snow cover was generated by a combination of objective and subjective procedures. Photographs of data analysis equipment (displays) are shown.

  4. Global Fine Particulate Matter Concentrations and Trends Inferred from Satellite Observations, Modeling, and Ground-Based Measurements

    Science.gov (United States)

    Martin, Randall; van Donkelaar, Aaron; Boys, Brian; Philip, Sajeev; Lee, Colin; Snider, Graydon; Weagle, Crystal

    2014-05-01

    Outdoor fine particulate matter (PM2.5) is a leading environmentally-related cause of premature mortality worldwide. However, ground-level PM2.5 monitors remain sparse in many regions of the world. Satellite remote sensing from MODIS, MISR, and SeaWiFS yields a powerful global data source to address this issue. Global modeling (GEOS-Chem) plays a critical role in relating these observations to ground-level concentrations. The resultant satellite-based estimates of PM2.5 indicate dramatic variation around the world, with implications for global public health. A new ground-based aerosol network (SPARTAN) offers valuable measurements to understand the relationship between satellite observations of aerosol optical depth and ground-level PM2.5 concentrations. This talk will highlight recent advances in combining satellite remote sensing, global modeling, and ground-based measurements to improve understanding of global population exposure to outdoor fine particulate matter.

  5. Evaluation of Aerosol Pollution Determination From MODIS Satellite Retrievals for Semi-Arid Reno, NV, USA with In-Situ Measurements

    Science.gov (United States)

    Loria-Salazar, S. Marcela

    The aim of the present work is to carry out a detailed analysis of ground and columnar aerosol properties obtained by in-situ Photoacoustic and Integrated Nephelometer (PIN), Cimel CE-318 sunphotometer and MODIS instrument onboard Aqua and Terra satellites, for semi-arid Reno, Nevada, USA in the local summer months of 2012. Satellite determination of local aerosol pollution is desirable because of the potential for broad spatial and temporal coverage. However, retrieval of quantitative measures of air pollution such as Aerosol Optical Depth (AOD) from satellite measurements is challenging because of the underlying surface albedo being heterogeneous in space and time. Therefore, comparisons of satellite retrievals with measurements from ground-based sun photometers are crucial for validation, testing, and further development of instruments and retrieval algorithms. Ground-based sunphotometry and in-situ ground observations show that seasonal weather changes and fire plumes have great influence on the atmosphere aerosol optics. The Apparent Optical Height (AOH) follows the shape of the development of the Convective Boundary Layer (CBL) when fire conditions were not present. However, significant fine particle optical depth was inferred beyond the CBL thereby complicating the use of remote sensing measurements for near-ground aerosol pollution measurements. A meteorological analysis was performed to help diagnose the nature of the aerosols above Reno. The calculation of a Zephyr index and back trajectory analysis demonstrated that a local circulation often induces aerosol transport from Northern CA over the Sierra Nevada Mountains that doubles the Aerosol Optical Depth (AOD) at 500 nm. Sunphotometer measurements were used as a `ground truth' for satellite retrievals to evaluate the current state of the science retrievals in this challenging location. Satellite retrieved for AOD showed the presence of wild fires in Northern CA during August. AOD retrieved using the

  6. Direct measurements of laser light aberration from the ARTEMIS geostationary satellite through thin clouds

    CERN Document Server

    Kuzkov, Volodymyr; Sodnik, Zoran

    2015-01-01

    A precise ground based telescope system was developed for laser communication experiments with the geostationary satellite ARTEMIS of ESA. Precise tracking of the satellite was realized by using time resolved coordinates of the satellite. During the experiments, the time propagation of laser signal from the satellite and the point-ahead angle for the laser beam were calculated. Some laser experiments though thin clouds were performed. A splitting of some images of the laser beam from the satellite along declination and right ascension coordinates of telescope could be observed through thin clouds. The splitting along the declination coordinate may be interpreted as refraction in the atmosphere. The splitting along the right ascension coordinate is equivalent to the calculated point-ahead angle for the satellite. We find out that a small part of laser beam was observed ahead of the velocity vector in the point where the satellite would be after the laser light from the satellite reaches the telescope. These re...

  7. The contribution of satellite SAR-derived displacement measurements in landslide risk management practices

    Science.gov (United States)

    Raspini, Federico; Bardi, Federica; Bianchini, Silvia; Ciampalini, Andrea; Del Ventisette, Chiara; Farina, Paolo; Ferrigno, Federica; Solari, Lorenzo; Casagli, Nicola

    2017-04-01

    Landslides are common phenomena that occur worldwide and are a main cause of loss of life and damage to property. The hazards associated with landslides are a challenging concern in many countries, including Italy. With 13% of the territory prone to landslides, Italy is one of the European countries with the highest landslide hazard, and on a worldwide scale, it is second only to Japan among the technologically advanced countries. Over the last 15 years, an increasing number of applications have aimed to demonstrate the applicability of images captured by space-borne Synthetic Aperture Radar (SAR) sensors in slope instability investigations. InSAR (SAR Interferometry) is currently one of the most exploited techniques for the assessment of ground displacements, and it is becoming a consolidated tool for Civil Protection institutions in addressing landslide risk. We present a subset of the results obtained in Italy within the framework of SAR-based programmes and applications intended to test the potential application of C- and X-band satellite interferometry during different Civil Protection activities (namely, prevention, prevision, emergency response and post-emergency phases) performed to manage landslide risk. In all phases, different benefits can be derived from the use of SAR-based measurements, which were demonstrated to be effective in the field of landslide analysis. Analysis of satellite-SAR data is demonstrated to play a major role in the investigation of landslide-related events at different stages, including detection, mapping, monitoring, characterization and prediction. Interferometric approaches are widely consolidated for analysis of slow-moving slope deformations in a variety of environments, and exploitation of the amplitude data in SAR images is a somewhat natural complement for rapid-moving landslides. In addition, we discuss the limitations that still exist and must be overcome in the coming years to manage the transition of satellite SAR

  8. Comprehensive Comparisons of Satellite Data, Signals, and Measurements between the BeiDou Navigation Satellite System and the Global Positioning System

    Directory of Open Access Journals (Sweden)

    Shau-Shiun Jan

    2016-05-01

    Full Text Available The Chinese BeiDou navigation satellite system (BDS aims to provide global positioning service by 2020. The combined use of BDS and Global Positioning System (GPS is proposed to provide navigation service with more stringent requirements. Actual satellite data, signals and measurements were collected for more than one month to analyze the positioning service qualities from both BDS and GPS. In addition to the conversions of coordinate and timing system, five data quality analysis (DQA methods, three signal quality analysis (SQA methods, and four measurement quality analysis (MQA methods are proposed in this paper to improve the integrated positioning performance of BDS and GPS. As shown in the experiment results, issues related to BDS and GPS are resolved by the above proposed quality analysis methods. Thus, the anomalies in satellite data, signals and measurements can be detected by following the suggested resolutions to enhance the positioning performance of the combined use of BDS and GPS in the Asia Pacific region.

  9. Validation of three satellite-derived databases of surface solar radiation using measurements performed at 42 stations in Brazil

    Science.gov (United States)

    Thomas, Claire; Wey, Etienne; Blanc, Philippe; Wald, Lucien

    2016-06-01

    The SoDa website (www.soda-pro.com) is populated with numerous solar-related Web services. Among them, three satellite-derived irradiation databases can be manually or automatically accessed to retrieve radiation values within the geographical coverage of the Meteosat Second Generation (MSG) satellite: the two most advanced versions of the HelioClim-3 database (versions 4 and 5, respectively HC3v4 and HC3v5), and the CAMS radiation service. So far, these databases have been validated against measurements of several stations in Europe and North Africa only. As the quality of such databases depends on the geographical regions and the climates, this paper extends this validation campaign and proposes an extensive comparison on Brazil and global irradiation received on a horizontal surface. Eleven stations from the Brazilian Institute of Space Research (INPE) network offer 1 min observations, and thirty-one stations from the Instituto Nacional de Meteorologia (INMET) network offer hourly observations. The satellite-derived estimates have been compared to the corresponding observations on hourly, daily and monthly basis. The bias relative to the mean of the measurements for HC3v5 is mostly comprised between 1 and 3 %, and that for HC3v4 between 2 and 5 %. These are very satisfactory results and they demonstrate that HC3v5, and to a lesser extent HC3v4, may be used in studies of long-term changes in SSI in Brazil. The situation is not so good with CAMS radiation service for which the relative bias is mostly comprised between 5 and 10 %. For hourly irradiation, the relative RMSE ranges from 15 to 33 %. The correlation coefficient is very large for all stations and the three databases, with an average of 0.96. The three databases reproduce well the hour from hour changes in SSI. The errors show a tendency to increase with the viewing angle of the MSG satellite. They are greater in tropical areas where the relative humidity in the atmosphere is important. It is concluded

  10. Sixth generation lithospheric magnetic field model, MF6, from CHAMP satellite magnetic measurements

    Science.gov (United States)

    Maus, S.; Fan, Y.; Manoj, C.; Rother, M.; Rauberg, J.; Stolle, C.; Luhr, H.

    2007-12-01

    The CHAMP satellite continues to provide highly accurate magnetic field measurements with decreasing orbital altitudes (<350km) at solar minimum conditions. A promising new CHAMP data product has become available, which provides the total field with one order of magnitude smaller noise amplitudes. The product is inferred from suitably merged Fluxgate and Overhauser magnetometer data. While the low-noise Fluxgate measurements are used in the short-period range (<900sec, or <6000km wavelength), we take advantage of the high stability provided by the Overhauser for the longer periods. The new data set is used for generating an improved lithospheric magnetic field model (MF6). Although MF6 is still in production at the time of writing this abstract, we anticipate significant benefits in terms of resolving small- scale low-amplitude crustal features from the new data. Further improvements include a new correction for steady ocean circulation and an expansion to higher spherical harmonic degrees of the model.

  11. Night sky brightness at sites from DMSP-OLS satellite measurements

    CERN Document Server

    Cinzano, P

    2004-01-01

    We apply the sky brightness modelling technique introduced and developed by Roy Garstang to high-resolution DMSP-OLS satellite measurements of upward artificial light flux and to GTOPO30 digital elevation data in order to predict the brightness distribution of the night sky at a given site in the primary astronomical photometric bands for a range of atmospheric aerosol contents. This method, based on global data and accounting for elevation, Earth curvature and mountain screening, allows the evaluation of sky glow conditions over the entire sky for any site in the World, to evaluate its evolution, to disentangle the contribution of individual sources in the surrounding territory, and to identify main contributing sources. Sky brightness, naked eye stellar visibility and telescope limiting magnitude are produced as 3-dimensional arrays whose axes are the position on the sky and the atmospheric clarity. We compared our results to available measurements.

  12. Measurements of Ocean Spectral Irradiance for Correlation with Satellite Remote Sensing

    Science.gov (United States)

    1980-05-01

    PRT "E02="YR2; , +R9R15+R25;1+R9 36; SPCF R6+R26F PRT LOG f1E6R6)l- 7’I 22:1 37-o PRT "RA I) SI G ~-R:3R10R21+R3;R4RI IF R’?0OPRT 0; 8: 0R22+R4...Listings . ......... C-I APPENDIX D. Log Sheets ................ ............... D-1 (1) Daily Log (2) Data Printout Supplement APPENDIX E. XBT Trace...taken. --q a Estimated from XBT log ; between stations 17 and 18. X Measurement made or action taken. 0 No measurement or action. Table 2-1. Satellite

  13. Observation operator for the assimilation of aerosol type resolving satellite measurements into a chemical transport model

    Directory of Open Access Journals (Sweden)

    M. Schroedter-Homscheidt

    2010-11-01

    Full Text Available Modelling of aerosol particles with chemical transport models is still based mainly on static emission databases while episodic emissions cannot be treated sufficiently. To overcome this situation, a coupling of chemical mass concentration modelling with satellite-based measurements relying on physical and optical principles has been developed. This study deals with the observation operator for a component-wise assimilation of satellite measurements. It treats aerosol particles classified into water soluble, water insoluble, soot, sea salt and mineral dust containing aerosol particles in the atmospheric boundary layer as separately assimilated aerosol components. It builds on a mapping of aerosol classes used both in observation and model space taking their optical and chemical properties into account. Refractive indices for primary organic carbon particles, anthropogenic particles, and secondary organic species have been defined based on a literature review. Together with a treatment of different size distributions in observations and model state, this allows transforming the background from mass concentrations into aerosol optical depths. A two-dimensional, variational assimilation is applied for component-wise aerosol optical depths. Error covariance matrices are defined based on a validation against AERONET sun photometer measurements. Analysis fields are assessed threefold: (1 through validation against AERONET especially in Saharan dust outbreak situations, (2 through comparison with the British Black Smoke and Sulphur Dioxide Network for soot-containing particles, and (3 through comparison with measurements of the water soluble components SO4, NH4, and NO3 conducted by the EMEP (European Monitoring and Evaluation Programme network. Separately, for the water soluble, the soot and the mineral dust aerosol components a bias reduction and subsequent a root mean square error reduction is observed in the

  14. CLAIRE: a Canadian Small Satellite Mission for Measurement of Greenhouse Gases

    Science.gov (United States)

    Sloan, James; Grant, Cordell; Germain, Stephane; Durak, Berke; McKeever, Jason; Latendresse, Vincent

    2016-07-01

    CLAIRE, a Canadian mission operated by GHGSat Inc. of Montreal, is the world's first satellite designed to measure greenhouse gas emissions from single targeted industrial facilities. Claire was launched earlier this year into a 500 km polar sun-synchronous orbit selected to provide an acceptable balance between return frequency and spatial resolution. Extensive simulations of oil & gas facilities, power plants, hydro reservoirs and even animal feedlots were used to predict the mission performance. The principal goal is to measure the emission rates of carbon dioxide and methane from selected targets with greater precision and lower cost than ground-based alternatives. CLAIRE will measure sources having surface areas less than 10 x 10 km2 with a spatial resolution better than 50 m, thereby providing industrial site operators and government regulators with the information they need to understand, manage and ultimately to reduce greenhouse gas emissions more economically. The sensor is based on a Fabry-Perot interferometer, coupled with a 2D InGaAs focal plane array operating in the short-wave infrared with a spectral resolution of about 0.1 nm. The patented, high étendue, instrument design provides signal to noise ratios that permit quantification of emission rates with accuracies adequate for most regulatory reporting thresholds. The very high spatial resolution of the density maps produced by the CLAIRE mission resolves plume shapes and emitter locations so that advanced dispersion models can derive accurate emission rates of multiple sources within the field of view. The satellite bus, provided by the University of Toronto's Space Flight Laboratory, is based on the well-characterized NEMO architecture, including hardware that has significant spaceflight heritage. The mission is currently undergoing initial test and validation measurements in preparation for commercial operation later this year.

  15. Atmospheric influences on infrared-laser signals used for occultation measurements between Low Earth Orbit satellites

    Directory of Open Access Journals (Sweden)

    S. Schweitzer

    2011-10-01

    Full Text Available LEO-LEO infrared-laser occultation (LIO is a new occultation technique between Low Earth Orbit (LEO satellites, which applies signals in the short wave infrared spectral range (SWIR within 2 μm to 2.5 μm. It is part of the LEO-LEO microwave and infrared-laser occultation (LMIO method that enables to retrieve thermodynamic profiles (pressure, temperature, humidity and altitude levels from microwave signals and profiles of greenhouse gases and further variables such as line-of-sight wind speed from simultaneously measured LIO signals. Due to the novelty of the LMIO method, detailed knowledge of atmospheric influences on LIO signals and of their suitability for accurate trace species retrieval did not yet exist. Here we discuss these influences, assessing effects from refraction, trace species absorption, aerosol extinction and Rayleigh scattering in detail, and addressing clouds, turbulence, wind, scattered solar radiation and terrestrial thermal radiation as well. We show that the influence of refractive defocusing, foreign species absorption, aerosols and turbulence is observable, but can be rendered small to negligible by use of the differential transmission principle with a close frequency spacing of LIO absorption and reference signals within 0.5%. The influences of Rayleigh scattering and terrestrial thermal radiation are found negligible. Cloud-scattered solar radiation can be observable under bright-day conditions, but this influence can be made negligible by a close time spacing (within 5 ms of interleaved laser-pulse and background signals. Cloud extinction loss generally blocks SWIR signals, except very thin or sub-visible cirrus clouds, which can be addressed by retrieving a cloud layering profile and exploiting it in the trace species retrieval. Wind can have a small influence on the trace species absorption, which can be made negligible by using a simultaneously retrieved or a moderately accurate background wind speed profile. We

  16. Estimation of fossil-fuel CO2 emissions using satellite measurements of "proxy" species

    Science.gov (United States)

    Konovalov, Igor B.; Berezin, Evgeny V.; Ciais, Philippe; Broquet, Grégoire; Zhuravlev, Ruslan V.; Janssens-Maenhout, Greet

    2016-11-01

    Fossil-fuel (FF) burning releases carbon dioxide (CO2) together with many other chemical species, some of which, such as nitrogen dioxide (NO2) and carbon monoxide (CO), are routinely monitored from space. This study examines the feasibility of estimation of FF CO2 emissions from large industrial regions by using NO2 and CO column retrievals from satellite measurements in combination with simulations by a mesoscale chemistry transport model (CTM). To this end, an inverse modeling method is developed that allows estimating FF CO2 emissions from different sectors of the economy, as well as the total CO2 emissions, in a given region. The key steps of the method are (1) inferring "top-down" estimates of the regional budget of anthropogenic NOx and CO emissions from satellite measurements of proxy species (NO2 and CO in the case considered) without using formal a priori constraints on these budgets, (2) the application of emission factors (the NOx-to-CO2 and CO-to-CO2 emission ratios in each sector) that relate FF CO2 emissions to the proxy species emissions and are evaluated by using data of "bottom-up" emission inventories, and (3) cross-validation and optimal combination of the estimates of CO2 emission budgets derived from measurements of the different proxy species. Uncertainties in the top-down estimates of the NOx and CO emissions are evaluated and systematic differences between the measured and simulated data are taken into account by using original robust techniques validated with synthetic data. To examine the potential of the method, it was applied to the budget of emissions for a western European region including 12 countries by using NO2 and CO column amounts retrieved from, respectively, the OMI and IASI satellite measurements and simulated by the CHIMERE mesoscale CTM, along with the emission conversion factors based on the EDGAR v4.2 emission inventory. The analysis was focused on evaluation of the uncertainty levels for the top-down NOx and CO emission

  17. An Ad-hoc Satellite Network to Measure Filamentary Current Structures in the Auroral Zone

    Science.gov (United States)

    Nabong, C.; Fritz, T. A.; Semeter, J. L.

    2014-12-01

    An ad-hoc cubesat-based satellite network project known as ANDESITE is under development at Boston University. It aims to develop a dense constellation of easy-to-use, rapidly-deployable low-cost wireless sensor nodes in space. The objectives of the project are threefold: 1) Demonstrate viability of satellite based sensor networks by deploying an 8-node miniature sensor network to study the filamentation of the field aligned currents in the auroral zones of the Earth's magnetosphere. 2) Test the scalability of proposed protocols, including localization techniques, tracking, data aggregation, and routing, for a 3 dimensional wireless sensor network using a "flock" of nodes. 3) Construct a 6U Cube-sat running the Android OS as an integrated constellation manager, data mule and sensor node deplorer. This small network of sensor nodes will resolve current densities at different spatial resolutions in the near-Earth magnetosphere using measurements from magnetometers with 1-nT sensitivities and 0.2 nT/√Hz self-noise. Mapping of these currents will provide new constraints for models of auroral particle acceleration, wave-particle interactions, ionospheric destabilization, and other kinetic processes operating in the low-beta plasma of the near Earth magnetosphere.

  18. Surface Emissivity Retrieved with Satellite Ultraspectral IR Measurements for Monitoring Global Change

    Science.gov (United States)

    Zhou, Daniel K.; Larar, Allen M.; Liu, Xu; Smith, William L.; Schluessel, Peter

    2009-01-01

    Surface and atmospheric thermodynamic parameters retrieved with advanced ultraspectral remote sensors aboard Earth observing satellites are critical to general atmospheric and Earth science research, climate monitoring, and weather prediction. Ultraspectral resolution infrared radiance obtained from nadir observations provide atmospheric, surface, and cloud information. Presented here is the global surface IR emissivity retrieved from Infrared Atmospheric Sounding Interferometer (IASI) measurements under "clear-sky" conditions. Fast radiative transfer models, applied to the cloud-free (or clouded) atmosphere, are used for atmospheric profile and surface parameter (or cloud parameter) retrieval. The inversion scheme, dealing with cloudy as well as cloud-free radiances observed with ultraspectral infrared sounders, has been developed to simultaneously retrieve atmospheric thermodynamic and surface (or cloud microphysical) parameters. Rapidly produced surface emissivity is initially evaluated through quality control checks on the retrievals of other impacted atmospheric and surface parameters. Surface emissivity and surface skin temperature from the current and future operational satellites can and will reveal critical information on the Earth s ecosystem and land surface type properties, which can be utilized as part of long-term monitoring for the Earth s environment and global climate change.

  19. MONS on the Danish Roemer satellite Measuring Oscillations in Nearby Stars

    CERN Document Server

    Christensen-Dalsgaard, J

    2001-01-01

    MONS is the scientific project on the Danish Roemer satellite mission, which is being developed as part of the Danish Small Satellite Programme. The principal goal is to study solar-like oscillations in around 20 bright stars, with a precision that in the best cases will be limited only by the intrinsic stellar `noise'. The baseline orbit, a so-called Molniya orbit, allows access to essentially the entire sky during the planned 2-year mission. The main instrument is a short-focus reflecting telescope with an aperture of 32 cm, making two-colour measurements. A focused Field Monitor will be used to detect and correct for possible faint variable stars of substantial amplitude near the main target. In addition the Field Monitor, and the Star Trackers on the platform, may be used to observe a broad range of variable phenomena. The project has concluded the Systems Definition Phase by a successful review, and launch is scheduled for the middle of 2005.

  20. Direct mass measurements of Cd isotopes show strong shell gap at N=82

    CERN Document Server

    Knöbel, R; Bosch, F; Boutin, D; Chen, L; Dimopoulou, C; Dolinskii, A; Franczak, B; Franzke, B; Geissel, H; Hausmann, M; Kozhuharov, C; Kurcewicz, J; Litvinova, S A; Martínez-Pinedo, G; Matoš, M; Mazzocco, M; Münzenberg, G; Nakajima, S; Nociforo, C; Nolden, F; Ohtsubo, T; Ozawa, A; Patyk, Z; Plaß, W R; Scheidenberger, C; Stadlmann, J; Steck, M; Sun, B; Suzuki, T; Walker, P; Weick, H; Wu, M -R; Winkler, M; Yamaguchi, T

    2015-01-01

    A $^{238}$U projectile beam was used to create cadmium isotopes via abrasion-fission at 410 MeV/u in a beryllium target at the entrance of the in-flight separator FRS at GSI. The fission fragments were separated with the FRS and injected into the isochronous storage ring ESR for mass measurements. The Isochronous Mass Spectrometry (IMS) was performed under two different experimental conditions, with and without B$\\rho$-tagging at the dispersive central focal plane of the FRS. In the experiment with B$\\rho$-tagging the magnetic rigidity of the injected fragments was determined by an accuracy of $2\\times 10^{-4}$. A new method of data analysis, using a correlation matrix for the combined data set from both experiments, has provided mass values for 25 different isotopes for the first time. The high selectivity and sensitivity of the experiment and analysis has given access even to rare isotopes detected with a few atoms per week. In this letter we present for the $^{129,130,131}$Cd isotopes mass values directly ...

  1. Optical volume and mass measurements show that mammalian cells swell during mitosis.

    Science.gov (United States)

    Zlotek-Zlotkiewicz, Ewa; Monnier, Sylvain; Cappello, Giovanni; Le Berre, Mael; Piel, Matthieu

    2015-11-23

    The extent, mechanism, and function of cell volume changes during specific cellular events, such as cell migration and cell division, have been poorly studied, mostly because of a lack of adequate techniques. Here we unambiguously report that a large range of mammalian cell types display a significant increase in volume during mitosis (up to 30%). We further show that this increase in volume is tightly linked to the mitotic state of the cell and not to its spread or rounded shape and is independent of the presence of an intact actomyosin cortex. Importantly, this volume increase is not accompanied by an increase in dry mass and thus corresponds to a decrease in cell density. This mitotic swelling might have important consequences for mitotic progression: it might contribute to produce strong pushing forces, allowing mitotic cells to round up; it might also, by lowering cytoplasmic density, contribute to the large change of physicochemical properties observed in mitotic cells.

  2. Snow chemistry measurements on James Ross Island (Antarctic Peninsula) showing sea-salt aerosol modifications

    Energy Technology Data Exchange (ETDEWEB)

    Aristarain, A.J. [Instituto Antartico Argentino (Argentina). Lab. de Estratigrafia Glaciar y Geoquimica de la Nieve; Consejo Nacional de Investigaciones Cientificas y Tecnicas, Mendoza (Argentina); Delmas, R.J. [Laboratoire de Glaciologie et Geophysique de l' Environnement du CNRS, St Martin d' Heres (France)

    2002-07-01

    The fractionation of atmospheric sea-salt has been investigated by glaciochemical analysis of the sea-salt deposited on the snow covering the small ice cap of James Ross Island, Antarctic Peninsula, at an elevation of 1640m. The data show that, generally, but not always, the sea-salt deposited at this location most likely originates directly from seawater, as is the case at lower latitudes. It is found that the original chemical composition of the sea-salt aerosol is significantly modified, in particular by the reaction of sea-salt particles in the atmosphere with acid species. A ternary diagram (sodium, chloride, sulfate) is used to enlighten the involved modification processes. The study points out the frequent formation of HCl in the regional atmosphere. (Author)

  3. Direct Radiative Forcing from Saharan Mineral Dust Layers from In-situ Measurements and Satellite Retrievals

    Science.gov (United States)

    Sauer, D. N.; Vázquez-Navarro, M.; Gasteiger, J.; Chouza, F.; Weinzierl, B.

    2016-12-01

    Mineral dust is the major species of airborne particulate matter by mass in the atmosphere. Each year an estimated 200-3000 Tg of dust are emitted from the North African desert and arid regions alone. A large fraction of the dust is lifted into the free troposphere and gets transported in extended dust layers westward over the Atlantic Ocean into the Caribbean Sea. Especially over the dark surface of the ocean, those dust layers exert a significant effect on the atmospheric radiative balance though aerosol-radiation interactions. During the Saharan Aerosol Long-range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE) in summer 2013 airborne in-situ aerosol measurements on both sides of the Atlantic Ocean, near the African coast and the Caribbean were performed. In this study we use data about aerosol microphysical properties acquired between Cabo Verde and Senegal to derive the aerosol optical properties and the resulting radiative forcing using the radiative transfer package libRadtran. We compare the results to values retrieved from MSG/SEVIRI data using the RRUMS algorithm. The RRUMS algorithm can derive shortwave and longwave top-of-atmosphere outgoing fluxes using only information issued from the narrow-band MSG/SEVIRI channels. A specific calibration based on collocated Terra/CERES measurements ensures a correct retrieval of the upwelling flux from the dust covered pixels. The comparison of radiative forcings based on in-situ data to satellite-retrieved values enables us to extend the radiative forcing estimates from small-scale in-situ measurements to large scale satellite coverage over the Atlantic Ocean.

  4. Analysis of rain fade duration models for Earth-to-satellite path based on data measured in Malaysia

    Science.gov (United States)

    Dao, Hassan; Rafiqul, Islam Md; Al-Khateeb, Khalid A. S.

    2013-12-01

    Statistical analysis of rain fade duration is crucial information for system engineer to design and plan a fade mitigation technique (FMT) for the satellite communication system. An investigation is carried out based on data measured of one year period in Kuala Lumpur, Malaysia from satellite path of MEASAT3. This paper presents statistical analysis of measured fade duration on high elevation angle (77.4°) in Ku-band compared to three prediction models of fade duration. It is found that none of the models could predict measured fade duration distribution accurately.

  5. Characterisation of Central-African emissions based on MAX-DOAS measurements, satellite observations and model simulations over Bujumbura, Burundi.

    Science.gov (United States)

    Gielen, Clio; Hendrick, Francois; Pinardi, Gaia; De Smedt, Isabelle; Stavrakou, Trissevgeni; Yu, Huan; Fayt, Caroline; Hermans, Christian; Bauwens, Maité; Ndenzako, Eugene; Nzohabonayo, Pierre; Akimana, Rachel; Niyonzima, Sébastien; Müller, Jean-Francois; Van Roozendael, Michel

    2016-04-01

    Central Africa is known for its strong biogenic, pyrogenic, and to a lesser extent anthropogenic emissions. Satellite observations of species like nitrogen dioxide (NO2) and formaldehyde (HCHO), as well as inverse modelling results have shown that there are large uncertainties associated with the emissions in this region. There is thus a need for additional measurements, especially from the ground, in order to better characterise the biomass-burning and biogenic products emitted in this area. We present MAX-DOAS measurements of NO2, HCHO, and aerosols performed in Central Africa, in the city of Bujumbura, Burundi (3°S, 29°E, 850m). A MAX-DOAS instrument has been operating at this location by BIRA-IASB since late 2013. Aerosol-extinction and trace-gases vertical profiles are retrieved by applying the optimal-estimation-based profiling tool bePRO to the measured O4, NO2 and HCHO slant-column densities. The MAX-DOAS vertical columns and profiles are used for investigating the diurnal and seasonal cycles of NO2, HCHO, and aerosols. Regarding the aerosols, the retrieved AODs are compared to co-located AERONET sun photometer measurements for verification purpose, while in the case of NO2 and HCHO, the MAX-DOAS vertical columns and profiles are used for validating GOME-2 and OMI satellite observations. To characterise the biomass-burning and biogenic emissions in the Bujumbura region, the trace gases and aerosol MAX-DOAS retrievals are used in combination to MODIS fire counts/radiative-power and GOME-2/OMI NO2 and HCHO satellite data, as well as simulations from the NOAA backward trajectory model HYSPLIT. First results show that HCHO seasonal variation around local noon is driven by the alternation of rain and dry periods, the latter being associated with intense biomass-burning agricultural activities and forest fires in the south/south-east and transport from this region to Bujumbura. In contrast, NO2 is seen to depend mainly on local emissions close to the city, due

  6. Earth's lithospheric magnetic field determined to spherical harmonic degree 90 from CHAMP satellite measurements

    DEFF Research Database (Denmark)

    Maus, S.; Rother, M.; Hemant, K.;

    2006-01-01

    The CHAMP magnetic field mission is providing highly reliable measurements from which the global lithospheric magnetic field can be determined in unprecedented resolution and accuracy. Using almost 5 yr of data, we derive our fourth generation lithospheric field model termed MF4, which is expanded...... to spherical harmonic degree and order 90. After subtracting from the full magnetic field observations predicted fields from an internal field model up to degree 15, an external field model up to degree two, and the predicted magnetic field signatures for the eight dominant ocean tidal constituents, we fit...... of the lithospheric field down to an altitude of about 50 km at lower latitudes, with reduced accuracy in the polar regions. Crustal features come out significantly sharper than in previous models. In particular, bands of magnetic anomalies along subduction zones become visible by satellite for the first time....

  7. Equatorial ionosphere semiannual oscillation investigated from Schumann resonance measurements on board the C/NOFS satellite

    Science.gov (United States)

    Simões, Fernando; Pfaff, Robert; Freudenreich, Henry; Klenzing, Jeffrey; Rowland, Douglas; Bromund, Kenneth; Kepko, Larry; Le, Guan; Liebrecht, Maria Carmen; Martin, Steven; Uribe, Paulo

    2013-11-01

    of Schumann resonance signatures in the equatorial ionosphere offers remote sensing capabilities for the investigation of tropospheric and space weather effects in the ionosphere. Schumann resonances are electromagnetic oscillations in the earth-ionosphere cavity produced by lightning activity. Analysis of AC electric field measurements gathered by the Communications/Navigation Outage Forecasting System satellite reveals a semiannual pattern in Schumann resonance data recorded during nighttime in the equatorial ionosphere. This pattern observed in the Schumann resonance amplitude is expected to help validate—or at least constrain—potential mechanisms proposed to explain the semiannual oscillation observed in different geophysical records, such as those reported in a variety of tropospheric, ionospheric/thermospheric, and magnetospheric observations.

  8. Reconstructing ozone chemistry from Asian wild fires using models, satellite and aircraft measurements during the ARCTAS campaign

    Directory of Open Access Journals (Sweden)

    R. Dupont

    2010-11-01

    Full Text Available We use ozone (O3 and carbon monoxide (CO satellite measurements from the Tropospheric Emission Spectrometer (TES, simulations from the Real-time Air Quality Modeling System (RAQMS and aircraft data from the NASA DC8 aircraft to characterize the chemical and dynamical evolution of Asian wildfire plumes during the spring ARCTAS campaign 2008. On the 19 April, NASA DC8 O3 and aerosol Differential Absorption Lidar (DIAL observed two biomass burning plumes originating from North-Western Asia (Kazakhstan and South-Eastern Asia (Thailand that advected eastward over the Pacific reaching North America in 10 to 12 days. Using both TES observations and RAQMS chemical analyses, we track the wildfire plumes from their source to the ARCTAS DC8 platform. Comparison between satellite O3 and CO measurements and model results show consistency when the TES averaging kernel and constraint vector are applied to the model. However, RAQMS CO simulations suggest that TES observations do not capture the full range of CO variability in the plume due to low sensitivity. In both plumes, exchanges between the stratosphere and the troposphere tend to be a major factor influencing O3 concentrations. However, fire emissions of ozone precursors increase photochemical ozone production, particularly in the Thailand wildfire plume. Analysis shows that the Kazakhstan plume is responsible for increases of O3 and CO mixing ratios up to 6.4 ppbv and 38 ppbv in the lower troposphere, and the Thailand plume is responsible for increases of O3 and CO mixing ratios up to 11 ppbv and 71 ppbv in the upper troposphere.

  9. Methods of Evaluating Thermodynamic Properties of Landscape Cover Using Multispectral Reflected Radiation Measurements by the Landsat Satellite

    Directory of Open Access Journals (Sweden)

    Yuriy Puzachenko

    2013-09-01

    Full Text Available The paper discusses methods of evaluating thermodynamic properties of landscape cover based on multi-spectral measurements by the Landsat satellites. Authors demonstrate how these methods could be used for studying functionality of landscapes and for spatial interpolation of Flux NET system measurements.

  10. An Analysis of Satellite, Radiosonde, and Lidar Observations of Upper Tropospheric Water Vapor from the Atmospheric Radiation Measurement Program

    Energy Technology Data Exchange (ETDEWEB)

    Soden, Brian J.; Turner, David D.; Lesht, B. M.; Miloshevich, Larry M.

    2004-02-25

    To improve our understanding of the distribution and radiative effects of water vapor, the U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) program has conducted a series of coordinated water vapor Intensive Observational Periods (IOPs). This study uses observations collected from four ARM IOPs to accomplish two goals: first, we compare radiosonde and Raman lidar observations of upper tropospheric water vapor with co-located geostationary satellite radiances at 6.7 micrometers. During all four IOPs, we find excellent agreement between the satellite and Raman lidar observations of upper tropospheric humidity with systematic differences of ~10%. In contrast, radiosondes equipped with Vaisala sensors are shown to be systematically drier in the upper troposphere by ~40% relative to both the lidar and satellite measurements. Second, we assess the performance of various "correction" strategies designed to rectify known deficiencies in the radiosonde measurements. It is shown that existing methods for correcting the radiosonde dry bias, while effective in the lower troposphere, offer little improvement in the upper troposphere. An alternative method based on variational assimilation of satellite radiances is presented and, when applied to the radiosonde measurements, is shown to significantly improve their agreement with coincident Raman lidar observations. It is suggested that a similar strategy could be used to improve the quality of the global historical record of radiosonde water vapor observations during the satellite era.

  11. Geophysical interpretation of satellite laser ranging measurements of crustal movement in California

    Science.gov (United States)

    Cohen, Steven C.

    1985-12-01

    As determined by satellite laser ranging the rate of contraction of a 900 km baseline between sites located near Quincy in northern California and San Diego in southern California is about 61-65 mm/yr with a formal uncertainty of about 10 mm/yr (Christodoulidis et al., 1985). The measured changes in baseline length are a manifestation of the relative motion between the North America and Pacific tectonic plates. This long baseline result is compared to measurements made by more conventional means on shorter baselines. Additional information based on seismiscity, geology, and theoretical modelling is also analyzed. Deformation lying within a few tens of kilometers about the major faults in southern California accounts for most, but not all, of the observed motion. Further motion is attributable to a broader-scale deformation in southern California. Data suggesting crustal movements north of the Garlock fault, in and near the southern Sierra Nevada and local motion at an observatory are also critically reviewed. The best estimates of overall motion indicated by ground observations lie between 40 and 60 mm/yr. This lies within one or two standard deviations of that deduced from satellite ranging but the possibility of some unresolved deficit cannot be entirely dismissed. The long time scale RM2 plate tectonic model of Minster and Jordan (1978) predicts a contraction between 47 and 53 mm/yr depending on the extension rate of the Basin and Range. Thus the ground based observations, SLR results, and RM2 rates differ at about the 10 mm/yr level but are not inconsistent with one another within the data and model uncertainties.

  12. Low-cost Citizen Science Balloon Platform for Measuring Air Pollutants to Improve Satellite Retrieval Algorithms

    Science.gov (United States)

    Potosnak, M. J.; Beck-Winchatz, B.; Ritter, P.

    2016-12-01

    High-altitude balloons (HABs) are an engaging platform for citizen science and formal and informal STEM education. However, the logistics of launching, chasing and recovering a payload on a 1200 g or 1500 g balloon can be daunting for many novice school groups and citizen scientists, and the cost can be prohibitive. In addition, there are many interesting scientific applications that do not require reaching the stratosphere, including measuring atmospheric pollutants in the planetary boundary layer. With a large number of citizen scientist flights, these data can be used to constrain satellite retrieval algorithms. In this poster presentation, we discuss a novel approach based on small (30 g) balloons that are cheap and easy to handle, and low-cost tracking devices (SPOT trackers for hikers) that do not require a radio license. Our scientific goal is to measure air quality in the lower troposphere. For example, particulate matter (PM) is an air pollutant that varies on small spatial scales and has sources in rural areas like biomass burning and farming practices such as tilling. Our HAB platform test flight incorporates an optical PM sensor, an integrated single board computer that records the PM sensor signal in addition to flight parameters (pressure, location and altitude), and a low-cost tracking system. Our goal is for the entire platform to cost less than $500. While the datasets generated by these flights are typically small, integrating a network of flight data from citizen scientists into a form usable for comparison to satellite data will require big data techniques.

  13. Some results on the upper atmosphere deduced from satellite occultation measurements

    Energy Technology Data Exchange (ETDEWEB)

    Felske, D.; Knuth, R.; Martini, L.; Ohle, K.H.; Sonnemann, G.; Stark, B.

    1980-08-01

    Measurements of neutral gas densities in the upper atmosphere deduced from extinction profiles from the Intercosmos 1, 4, 7, 11 and 16 and SOLRAD 9 and 10 solar radiation satellites at sunrise and sunset are presented. Occultation measurements in the Lyman alpha range have revealed the presence of an anomalously high absorption above 110 km in winter, which may be explained by high densities of water in the thermosphere. Calculations of oxygen densities based on extinction profiles measured in Lyman alpha and the Schumann-Runge range also indicate the presence of high densities of NO, and an unknown Lyman alpha absorber of molecular weight corresponding to that of water. Observations obtained for the D-region winter anomaly indicate that the wavelike ionization variations have counterparts in similar neutral thermosphere density variations, which may influence the ion production and/or loss processes. Finally, short-term neutral density fluctuations between 90 and 300 km measured during a strong F-region disturbance are presented which demonstrate sharp rises in O density and decreases in O2 density accompanied by increases in electron concentration during the first phase of the disturbance, the opposite changes during the second phase, and complex mixing variations between O and O2 and their plasma counterparts in the recovery phase.

  14. Retrieval and satellite intercomparison of O3 measurements from ground-based FTIR Spectrometer at Equatorial Station: Addis Ababa, Ethiopia

    Directory of Open Access Journals (Sweden)

    T. von Clarmann

    2013-02-01

    Full Text Available Since May 2009, high-resolution Fourier Transform Infrared (FTIR solar absorption spectra have been recorded at Addis Ababa (9.01° N latitude, 38.76° E longitude, 2443 m altitude above sea level, Ethiopia. The vertical profiles and total column amounts of ozone (O3 are deduced from the spectra by using the retrieval code PROFFIT (V9.5 and regularly determined instrumental line shape (ILS. A detailed error analysis of the O3 retrieval is performed. Averaging kernels of the target gas shows that the major contribution to the retrieved information comes from the measurement. The degrees of freedom for signals is found to be 2.1 on average for the retrieval of O3 from the observed FTIR spectra. The ozone Volume Mixing Ratio (VMR profiles and column amounts retrieved from FTIR spectra are compared with the coincident satellite observations of Microwave Limb Sounding (MLS, Michelson Interferometer for Passive Atmospheric Sounding (MIPAS, Tropospheric Emission Spectrometer (TES, Ozone Monitoring Instrument (OMI, Atmospheric Infrared Sounding (AIRS and Global Ozone Monitoring Experiment (GOME-2 instruments. The mean relative differences in ozone profiles of FTIR from MLS and MIPAS are generally lower than 15% within the altitude range of 27 to 36 km, whereas difference from TES is lower than 1%. Comparisons of measurements of column amounts from the satellite and the ground-based FTIR show very good agreement as exhibited by relative differences within +0.2% to +2.8% for FTIR versus MLS and GOME-2; and −0.9 to −9.0% for FTIR versus OMI, TES and AIRS. The corresponding standard deviations are within 2.0 to 2.8% for FTIR versus MLS and GOME-2 comparisons whereas that of FTIR versus OMI, TES and AIRS are within 3.5 to 7.3%. Thus, the retrieved O3 VMR and column amounts from a tropical site, Addis Ababa, is found to exhibit very good agreement with all coincident satellite observations over an approximate 3-yr period.

  15. Retrieval and satellite intercomparison of O3 measurements from ground-based FTIR Spectrometer at Equatorial Station: Addis Ababa, Ethiopia

    Science.gov (United States)

    Takele Kenea, S.; Mengistu Tsidu, G.; Blumenstock, T.; Hase, F.; von Clarmann, T.; Stiller, G. P.

    2013-02-01

    Since May 2009, high-resolution Fourier Transform Infrared (FTIR) solar absorption spectra have been recorded at Addis Ababa (9.01° N latitude, 38.76° E longitude, 2443 m altitude above sea level), Ethiopia. The vertical profiles and total column amounts of ozone (O3) are deduced from the spectra by using the retrieval code PROFFIT (V9.5) and regularly determined instrumental line shape (ILS). A detailed error analysis of the O3 retrieval is performed. Averaging kernels of the target gas shows that the major contribution to the retrieved information comes from the measurement. The degrees of freedom for signals is found to be 2.1 on average for the retrieval of O3 from the observed FTIR spectra. The ozone Volume Mixing Ratio (VMR) profiles and column amounts retrieved from FTIR spectra are compared with the coincident satellite observations of Microwave Limb Sounding (MLS), Michelson Interferometer for Passive Atmospheric Sounding (MIPAS), Tropospheric Emission Spectrometer (TES), Ozone Monitoring Instrument (OMI), Atmospheric Infrared Sounding (AIRS) and Global Ozone Monitoring Experiment (GOME-2) instruments. The mean relative differences in ozone profiles of FTIR from MLS and MIPAS are generally lower than 15% within the altitude range of 27 to 36 km, whereas difference from TES is lower than 1%. Comparisons of measurements of column amounts from the satellite and the ground-based FTIR show very good agreement as exhibited by relative differences within +0.2% to +2.8% for FTIR versus MLS and GOME-2; and -0.9 to -9.0% for FTIR versus OMI, TES and AIRS. The corresponding standard deviations are within 2.0 to 2.8% for FTIR versus MLS and GOME-2 comparisons whereas that of FTIR versus OMI, TES and AIRS are within 3.5 to 7.3%. Thus, the retrieved O3 VMR and column amounts from a tropical site, Addis Ababa, is found to exhibit very good agreement with all coincident satellite observations over an approximate 3-yr period.

  16. A preliminary measurement of the cosmic microwave background spectrum by the Cosmic Background Explorer (COBE) satellite

    Energy Technology Data Exchange (ETDEWEB)

    Mather, J.C.; Cheng, E.S.; Shafer, R.A.; Bennett, C.L.; Boggess, N.W.; Dwek, E.; Hauser, M.G.; Kelsall, T.; Moseley, S.H. Jr.; Silverberg, R.F. (NASA, Goddard Space Flight Center, Greenbelt, MD (USA))

    1990-05-01

    A preliminary spectrum is presented of the background radiation between 1 and 20/cm from regions near the north Galactic pole, as observed by the FIRAS instrument on the COBE satellite. The spectral resolution is 1/cm. The spectrum is well fitted by a blackbody with a temperature of 2.735 + or - 0.06 K, and the deviation from a blackbody is less than 1 percent of the peak intensity over the range 1-20/cm. These new data show no evidence for the submillimeter excess previously reported by Matsumoto et al. (1988) in the cosmic microwave background. Further analysis and additional data are expected to improve the sensitivity to deviations from a blackbody spectrum by an order of magnitude. 31 refs.

  17. A preliminary measurement of the cosmic microwave background spectrum by the Cosmic Background Explorer (COBE) satellite

    Science.gov (United States)

    Mather, J. C.; Cheng, E. S.; Shafer, R. A.; Bennett, C. L.; Boggess, N. W.; Dwek, E.; Hauser, M. G.; Kelsall, T.; Moseley, S. H., Jr.; Silverberg, R. F.

    1990-01-01

    A preliminary spectrum is presented of the background radiation between 1 and 20/cm from regions near the north Galactic pole, as observed by the FIRAS instrument on the COBE satellite. The spectral resolution is 1/cm. The spectrum is well fitted by a blackbody with a temperature of 2.735 + or - 0.06 K, and the deviation from a blackbody is less than 1 percent of the peak intensity over the range 1-20/cm. These new data show no evidence for the submillimeter excess previously reported by Matsumoto et al. (1988) in the cosmic microwave background. Further analysis and additional data are expected to improve the sensitivity to deviations from a blackbody spectrum by an order of magnitude.

  18. A preliminary measurement of the cosmic microwave background spectrum by the Cosmic Background Explorer (COBE) satellite

    Science.gov (United States)

    Mather, J. C.; Cheng, E. S.; Shafer, R. A.; Bennett, C. L.; Boggess, N. W.; Dwek, E.; Hauser, M. G.; Kelsall, T.; Moseley, S. H., Jr.; Silverberg, R. F.

    1990-01-01

    A preliminary spectrum is presented of the background radiation between 1 and 20/cm from regions near the north Galactic pole, as observed by the FIRAS instrument on the COBE satellite. The spectral resolution is 1/cm. The spectrum is well fitted by a blackbody with a temperature of 2.735 + or - 0.06 K, and the deviation from a blackbody is less than 1 percent of the peak intensity over the range 1-20/cm. These new data show no evidence for the submillimeter excess previously reported by Matsumoto et al. (1988) in the cosmic microwave background. Further analysis and additional data are expected to improve the sensitivity to deviations from a blackbody spectrum by an order of magnitude.

  19. A Methodology For Measuring Resilience in a Satellite-Based Communication Network

    Science.gov (United States)

    2014-03-27

    In the cyber realm, most satellite operators were in compliance with the National Security Agency’s (NSA) approved encryptions for transmissions...and more continue to meet compliance as new satellites are placed in orbit. Along with the encryptions , many 17 satellite operators utilize “deaf...nation at war may be of higher concern than the nation providing backdoor support which is higher than a neutral nation, and so on until a region not

  20. Far from thunderstorm UV transient events in the atmosphere measured by Vernov satellite

    Science.gov (United States)

    Morozenko, Violetta; Klimov, Pavel; Khrenov, Boris; Gali, Garipov; Margarita, Kaznacheeva; Mikhail, Panasyuk; Sergei, Svertilov; Robert, Holzworth

    2016-04-01

    The steady self-contained classification of events such as sprites, elves, blue jets emerged for the period of transient luminous events (TLE) observation. In accordance with TLE origin theories the presence of the thunderstorm region where the lightnings with the large peak current generating in is necessary. However, some far-from-thunderstorm region events were also detected and revealed to us another TLE generating mechanisms. For the discovering of the TLE nature the Universitetsky-Tatiana-2 and Vernov satellites were equipped with ultraviolet (240-400 nm) and red-infrared ( >610 nm) detectors. In both detector it was carried out regardless the lightnings with the guidance by the flashes in the UV wavelength where lightning's emitting is quite faint. The lowered threshold on the Vernov satellite allowed to select the great amount of TLE with the numerous far-from-thunderstorm region events examples. such events were not conjuncted with lightning activity measured by global lightning location network (WWLLN) on the large area of approximately 107 km2 for 30 minutes before and after the time of registration. The characteristic features of this type of event are: the absence of significant signal in the red-infrared detector's channel; a relatively small number of photons (less than 5 ṡ 1021). A large number of without lightning flash were detected at high latitudes over the ocean (30°S - 60°S). Lightning activity in the magnetic conjugate point also was analyzed. The relationship of far-from-thunderstorm region events with the specific lightning discharges didn't confirmed. Far-from-thunderstorm events - a new type of transient phenomena in the upper atmosphere is not associated with the thunderstorm activity. The mechanism of such discharges is not clear, though it was accumulated a sufficient amount of experimental facts of the existence of such flashes. According to the data of Vernov satellite the temporal profile, duration, location with earth

  1. ALGORITHM OF SAR SATELLITE ATTITUDE MEASUREMENT USING GPS AIDED BY KINEMATIC VECTOR

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In this paper, in order to improve the accuracy of the Synthetic Aperture Radar (SAR)satellite attitude using Global Positioning System (GPS) wide-band carrier phase, the SAR satellite attitude kinematic vector and Kalman filter are introduced. Introducing the state variable function of GPS attitude determination algorithm in SAR satellite by means of kinematic vector and describing the observation function by the GPS wide-band carrier phase, the paper uses the Kalman filter algorithm to obtian the attitude variables of SAR satellite. Compared the simulation results of Kalman filter algorithm with the least square algorithm and explicit solution, it is indicated that the Kalman filter algorithm is the best.

  2. Cosmic radiation measurements on the Foton-M4 satellite by passive detectors

    Science.gov (United States)

    Strádi, Andrea; Pálfalvi, József K.; Szabó, Julianna; Pázmándi, Tamás; Ivanova, Olga A.; Shurshakov, Vyacheslav A.

    2017-02-01

    The Russian Foton spacecraft was designed to deliver scientific experiments to low Earth orbit and return them safely to the ground for further analysis. During the 44-d Foton-M4 satellite mission in 2014 several passive cosmic ray detectors were exposed outside (in a single holder) and inside (in 4 locations) the recoverable capsule to study the radiation field. The applied thermoluminescent detectors (TLDs) are more sensitive to the particles with LET under 10 keV μm-1, while the solid state nuclear track detectors (SSNTDs) measure the particles having LET over this value. According to our measurements the average internal absorbed dose rate varied between 374-562 μGy/day for low LET radiation and 40-52 μGy/day for high LET radiation. Outside the capsule the dose rate was much higher, 1078 μGy/day for low LET radiation and 75 μGy/day for high LET radiation. Within the paper the obtained absorbed dose rates has been compared to those measured on the previous Foton-M flights, during the Bion-M1 mission and in the Columbus module of the International Space Station.

  3. Comprehensive Spectral Signal Investigation of a Larch Forest Combining - and Satellite-Based Measurements

    Science.gov (United States)

    Landmann, J. M.; Rutzinger, M.; Bremer, M.; chmidtner, K.

    2016-06-01

    Collecting comprehensive knowledge about spectral signals in areas composed by complex structured objects is a challenging task in remote sensing. In the case of vegetation, shadow effects on reflectance are especially difficult to determine. This work analyzes a larch forest stand (Larix decidua MILL.) in Pinnis Valley (Tyrol, Austria). The main goal is extracting the larch spectral signal on Landsat 8 (LS8) Operational Land Imager (OLI) images using ground measurements with the Cropscan Multispectral Radiometer with five bands (MSR5) simultaneously to satellite overpasses in summer 2015. First, the relationship between field spectrometer and OLI data on a cultivated grassland area next to the forest stand is investigated. Median ground measurements for each of the grassland parcels serve for calculation of the mean difference between the two sensors. Differences are used as "bias correction" for field spectrometer values. In the main step, spectral unmixing of the OLI images is applied to the larch forest, specifying the larch tree spectral signal based on corrected field spectrometer measurements of the larch understory. In order to determine larch tree and shadow fractions on OLI pixels, a representative 3D tree shape is used to construct a digital forest. Benefits of this approach are the computational savings compared to a radiative transfer modeling. Remaining shortcomings are the limited capability to consider exact tree shapes and nonlinear processes. Different methods to implement shadows are tested and spectral vegetation indices like the Normalized Difference Vegetation Index (NDVI) and Greenness Index (GI) can be computed even without considering shadows.

  4. Scientific - Educational Micro-satellite "kolibri-2000": First Results of Measurements

    Science.gov (United States)

    Klimov, S. I.; Nozdrachev, M. N.; Tamkovich, G. M.; Grushin, V. A.; Grachov, Ye. A.; Grigoryan, O. R.; Afanasyev, Yu. V.; Zaitzev, A. N.; Farnakeev, I. V.; Parrot, M.

    Space today is an environment with intensive practical activity of mankind. The results of mastering of space are used in many ways, including education. School is a natural way to inform a broad public about space research. In this paper we will present the Program of Scientific - Educational Micro-satellite http://www.iki.rssi.ru/kollibri/mission1_e.htm. The space science and technologies that can be used as teaching tools in Program are: 1) The space systems of teleme- try, television, operational meteorological observations, remote exploration of the ground, and high-precision navigational systems which have become necessary and economically feasible parts of our life. 2) The space environment also attracts at- tention, as actively influencing many highly technological systems and the biosphere of the Earth, including the health of man. Space weather is becoming as well- known as (meteorological) weather. The first project of the Program is the Russian- Australian micro-satellite "Kolibri-2000" (total mass 22 kg) which start the oper- ation at the end of February 2002. In the project, several schools participate, in- cluding Russian schools sponsored by the Institute of Atomic Energy and Tech- nology (IAET, Obninsk www.obninsk.org) and two Australian schools in Sydney, Knox Grammar School www.knox.nsw.edu.au and Ravenswood School for Girls www.ravenswood.nsw.edu.au. "Kolibri-2000" is equipped with instruments to mea- sure and study the magnetic and electric field, and the radiation belts of the Earth. In this paper we will present the first measurements on the orbit near International Space Station.

  5. Improving the Accuracy of Satellite Sea Surface Temperature Measurements by Explicitly Accounting for the Bulk-Skin Temperature Difference

    Science.gov (United States)

    Castro, Sandra L.; Emery, William J.

    2002-01-01

    The focus of this research was to determine whether the accuracy of satellite measurements of sea surface temperature (SST) could be improved by explicitly accounting for the complex temperature gradients at the surface of the ocean associated with the cool skin and diurnal warm layers. To achieve this goal, work centered on the development and deployment of low-cost infrared radiometers to enable the direct validation of satellite measurements of skin temperature. During this one year grant, design and construction of an improved infrared radiometer was completed and testing was initiated. In addition, development of an improved parametric model for the bulk-skin temperature difference was completed using data from the previous version of the radiometer. This model will comprise a key component of an improved procedure for estimating the bulk SST from satellites. The results comprised a significant portion of the Ph.D. thesis completed by one graduate student and they are currently being converted into a journal publication.

  6. New astrometric measurement and reduction of USNO photographic observations of the main Saturnian satellites: 1974-1998

    Science.gov (United States)

    Robert, V.; Pascu, D.; Lainey, V.; Arlot, J.-E.; De Cuyper, J.-P.; Dehant, V.; Thuillot, W.

    2016-11-01

    Context. Accurate positional measurements of planets and satellites are used to improve our knowledge of their orbits and dynamics, and to infer the accuracy of the planet and satellite ephemerides. Aims: In the framework of the European FP7 ESPaCE program, we provide the positions of Saturn and its main satellites taken with the US Naval Observatory 26-inch refractor from 1974 to 1998. Methods: We measured 526 astrophotographic plates with the digitizer of the Royal Observatory of Belgium and reduced them through an optimal process that includes image, instrumental, and spherical corrections using the UCAC4 catalog to provide the most accurate equatorial (RA, Dec) positions. Results: We compared the observed positions of the satellites with the theoretical positions from INPOP13c and DE432 planetary ephemerides and from NOE-6-2015-SAT and SAT375 satellite ephemerides. The mean post-fit rms residuals in equatorial positions range from ±68 mas for the Titan observations or 400 km at Saturn, to ±100 mas for the Hyperion observations or 600 km at Saturn. The mean post-fit rms intersatellite residuals range from ±46 mas for the Rhea-Titan observations or 280 km at Saturn, to ±72 mas for the Hyperion-Titan observations or 430 km at Saturn. Full Table 1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/596/A37 , at the Natural Satellites DataBase and Natural Satellites Data Center services of IMCCE via http://nsdb.imcce.fr/ or http://www.imcce.fr/nsdc/

  7. Signature of range observable in non-dynamical Chern-Simons modified gravity and the measurements with satellite-satellite tracking missions. Theoretical Studies

    CERN Document Server

    Qiang, Li-E

    2014-01-01

    Having great accuracy in the range and range rate measurements, the operating GRACE mission and the planed GRACE Follow On mission can in principle be employed to place strong constraints on certain relativistic gravity theories. In this paper, we work out in details the range observable in the non-dynamical Chern-Simons modified gravity for these Satellite-Satellite Tracking measurements. We find out that an characteristic time accumulating signal appears in the range observable in the non-dynamical Chern-Simons gravity, which has no analogy found in the standard metric theories of gravity. The magnitude of this Chern-Simons range signal will reach to a few times of $(\\frac{\\dot{\\theta}}{100r})meters$ for each free flight of these SST missions, here $\\dot{\\theta}$ measures the length scale of the theory and $r$ denotes the orbital radius of the SST mission. Therefore, with the 12 years data from the GRACE mission and the proper data analysis methods, one expects that the mass scale of the non-dynamical CS gr...

  8. Long-term analysis of aerosol optical depth over Northeast Asia using a satellite-based measurement: MI Yonsei Aerosol Retrieval Algorithm (YAER)

    Science.gov (United States)

    Kim, Mijin; Kim, Jhoon; Yoon, Jongmin; Chung, Chu-Yong; Chung, Sung-Rae

    2017-04-01

    In 2010, the Korean geostationary earth orbit (GEO) satellite, the Communication, Ocean, and Meteorological Satellite (COMS), was launched including the Meteorological Imager (MI). The MI measures atmospheric condition over Northeast Asia (NEA) using a single visible channel centered at 0.675 μm and four IR channels at 3.75, 6.75, 10.8, 12.0 μm. The visible measurement can also be utilized for the retrieval of aerosol optical properties (AOPs). Since the GEO satellite measurement has an advantage for continuous monitoring of AOPs, we can analyze the spatiotemporal variation of the aerosol using the MI observations over NEA. Therefore, we developed an algorithm to retrieve aerosol optical depth (AOD) using the visible observation of MI, and named as MI Yonsei Aerosol Retrieval Algorithm (YAER). In this study, we investigated the accuracy of MI YAER AOD by comparing the values with the long-term products of AERONET sun-photometer. The result showed that the MI AODs were significantly overestimated than the AERONET values over bright surface in low AOD case. Because the MI visible channel centered at red color range, contribution of aerosol signal to the measured reflectance is relatively lower than the surface contribution. Therefore, the AOD error in low AOD case over bright surface can be a fundamental limitation of the algorithm. Meanwhile, an assumption of background aerosol optical depth (BAOD) could result in the retrieval uncertainty, also. To estimate the surface reflectance by considering polluted air condition over the NEA, we estimated the BAOD from the MODIS dark target (DT) aerosol products by pixel. The satellite-based AOD retrieval, however, largely depends on the accuracy of the surface reflectance estimation especially in low AOD case, and thus, the BAOD could include the uncertainty in surface reflectance estimation of the satellite-based retrieval. Therefore, we re-estimated the BAOD using the ground-based sun-photometer measurement, and

  9. Atmospheric influences on infrared-laser signals used for occultation measurements between Low Earth Orbit satellites

    Directory of Open Access Journals (Sweden)

    S. Schweitzer

    2011-05-01

    Full Text Available LEO-LEO infrared-laser occultation (LIO is a new occultation technique between Low Earth Orbit (LEO satellites, which applies signals in the short wave infrared spectral range (SWIR within 2 μm to 2.5 μm. It is part of the LEO-LEO microwave and infrared-laser occultation (LMIO method, recently introduced by Kirchengast and Schweitzer (2011, that enables to retrieve thermodynamic profiles (pressure, temperature, humidity and accurate altitude levels from microwave signals and profiles of greenhouse gases and further variables such as line-of-sight wind speed from simultaneously measured LIO signals. For enabling trace species retrieval based on differential transmission, the LIO signals are spectrally located as pairs, one in the centre of a suitable absorption line of a target species (absorption signal and one close by but outside of any absorption lines (reference signal. Due to the novelty of the LMIO method, detailed knowledge of atmospheric influences on LIO signals and of their suitability for accurate trace species retrieval did not yet exist. Here we discuss the atmospheric influences on the transmission and differential transmission of LIO signals. Refraction effects, trace species absorption (by target species, and cross-sensitivity to foreign species, aerosol extinction and Rayleigh scattering are studied in detail. The influences of clouds, turbulence, wind, scattered solar radiation and terrestrial thermal radiation are discussed as well. We show that the influence of defocusing, foreign species absorption, aerosols and turbulence is observable, but can be rendered small to negligible by use of the differential transmission principle and by a design with close frequency spacing of absorption and reference signals within 0.5 %. The influences of Rayleigh scattering and thermal radiation on the received signal intensities are found negligible. Cloud-scattered solar radiation can be observable under bright-day conditions but this

  10. Comparison of Historical Satellite-Based Estimates of Solar Radiation Resources with Recent Rotating Shadowband Radiometer Measurements: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Myers, D. R.

    2009-03-01

    The availability of rotating shadow band radiometer measurement data at several new stations provides an opportunity to compare historical satellite-based estimates of solar resources with measurements. We compare mean monthly daily total (MMDT) solar radiation data from eight years of NSRDB and 22 years of NASA hourly global horizontal and direct beam solar estimates with measured data from three stations, collected after the end of the available resource estimates.

  11. The Surface Water and Ocean Topography Satellite Mission - An Assessment of Swath Altimetry Measurements of River Hydrodynamics

    Science.gov (United States)

    Wilson, Matthew D.; Durand, Michael; Alsdorf, Douglas; Chul-Jung, Hahn; Andreadis, Konstantinos M.; Lee, Hyongki

    2012-01-01

    The Surface Water and Ocean Topography (SWOT) satellite mission, scheduled for launch in 2020 with development commencing in 2015, will provide a step-change improvement in the measurement of terrestrial surface water storage and dynamics. In particular, it will provide the first, routine two-dimensional measurements of water surface elevations, which will allow for the estimation of river and floodplain flows via the water surface slope. In this paper, we characterize the measurements which may be obtained from SWOT and illustrate how they may be used to derive estimates of river discharge. In particular, we show (i) the spatia-temporal sampling scheme of SWOT, (ii) the errors which maybe expected in swath altimetry measurements of the terrestrial surface water, and (iii) the impacts such errors may have on estimates of water surface slope and river discharge, We illustrate this through a "virtual mission" study for a approximately 300 km reach of the central Amazon river, using a hydraulic model to provide water surface elevations according to the SWOT spatia-temporal sampling scheme (orbit with 78 degree inclination, 22 day repeat and 140 km swath width) to which errors were added based on a two-dimension height error spectrum derived from the SWOT design requirements. Water surface elevation measurements for the Amazon mainstem as may be observed by SWOT were thereby obtained. Using these measurements, estimates of river slope and discharge were derived and compared to those which may be obtained without error, and those obtained directly from the hydraulic model. It was found that discharge can be reproduced highly accurately from the water height, without knowledge of the detailed channel bathymetry using a modified Manning's equation, if friction, depth, width and slope are known. Increasing reach length was found to be an effective method to reduce systematic height error in SWOT measurements.

  12. Solar absorption estimated from surface radiation measurements and collocated satellite products over Europe

    Science.gov (United States)

    Zyta Hakuba, Maria; Folini, Doris; Wild, Martin; Sanchez-Lorenzo, Arturo

    2013-04-01

    Anthropogenic climate change is physically speaking a perturbation of the atmospheric energy budget through the insertion of constituents such as greenhouse gases or aerosols. Changes in the atmospheric energy budget largely affect the global climate and hydrological cycle, but the quantification of the different energy balance components is still afflicted with large uncertainties. The overall aim of the present study is the assessment of the mean state and the spatio-temporal variations in the solar energy disposition, in which we focus on obtaining an accurate partitioning of absorbed solar radiation between the surface and the atmosphere. Surface based measurements of solar radiation (GEBA, BSRN) are combined with collocated satellite-retrieved surface albedo (MODIS, CERES FSW, or CM SAF GAC-SAL) and top-of-atmosphere net incoming solar radiation (CERES EBAF) to quantify the absorbed solar radiation (ASR) at the surface and within the atmosphere over Europe for the period 2001-2005. In a first step, we examine the quality and temporal homogeneity of the monthly time series beyond 2000 provided by GEBA in order to identify a subset of sufficient quality. We find the vast majority of monthly time series to be suitable for our purposes. Using the satellite-derived CM SAF surface solar radiation product at 0.03° spatial resolution, we assess the spatial representativeness of the GEBA and BSRN sites for their collocated 1° grid cells as we intend to combine the point measurements with the coarser resolved CERES EBAF products (1° resolution), and we find spatial sampling errors of on average 3 Wm-2 or 2% (normalized by point values). Based on the combination of 134 GEBA surface solar radiation (SSR) time series with MODIS white-sky albedo and CERES EBAF top-of-atmosphere net radiation (TOAnet), we obtain a European mean partitioning (2001-2005) of absorbed solar radiation (relative to total incoming radiation) of: ASRsurf= 41% and ASRatm= 25%, together equaling

  13. Relasphone—Mobile and Participative In Situ Forest Biomass Measurements Supporting Satellite Image Mapping

    Directory of Open Access Journals (Sweden)

    Matthieu Molinier

    2016-10-01

    Full Text Available Due to the high cost of traditional forest plot measurements, the availability of up-to-date in situ forest inventory data has been a bottleneck for remote sensing image analysis in support of the important global forest biomass mapping. Capitalizing on the proliferation of smartphones, citizen science is a promising approach to increase spatial and temporal coverages of in situ forest observations in a cost-effective way. Digital cameras can be used as a relascope device to measure basal area, a forest density variable that is closely related to biomass. In this paper, we present the Relasphone mobile application with extensive accuracy assessment in two mixed forest sites from different biomes. Basal area measurements in Finland (boreal zone were in good agreement with reference forest inventory plot data on pine ( R 2 = 0 . 75 , R M S E = 5 . 33 m 2 /ha, spruce ( R 2 = 0 . 75 , R M S E = 6 . 73 m 2 /ha and birch ( R 2 = 0 . 71 , R M S E = 4 . 98 m 2 /ha, with total relative R M S E ( % = 29 . 66 % . In Durango, Mexico (temperate zone, Relasphone stem volume measurements were best for pine ( R 2 = 0 . 88 , R M S E = 32 . 46 m 3 /ha and total stem volume ( R 2 = 0 . 87 , R M S E = 35 . 21 m 3 /ha. Relasphone data were then successfully utilized as the only reference data in combination with optical satellite images to produce biomass maps. The Relasphone concept has been validated for future use by citizens in other locations.

  14. Feasibility of a Constellation of Miniature Satellites for Performing Measurements of the Magnetic Field of the Earth

    DEFF Research Database (Denmark)

    Thomsen, Michael; Merayo, José M.G.; Brauer, Peter;

    2008-01-01

    This paper studies the requirements for a small constellation of satellites to perform measurements of the magnetic field of the Earth and a payload and boom design for such a mission is discussed. After studying communication, power and mass requirements it is found that it is feasible to develop...

  15. Surface energy balance and actual evapotranspiration of the transboundary Indus Basin estimated from satellite measurements and the ETLook model

    NARCIS (Netherlands)

    Bastiaansen, W.G.M.; Cheema, M.J.M.; Immerzeel, W.W.; Miltenburg, I.J.; Pelgrum, H.

    2012-01-01

    The surface energy fluxes and related evapotranspiration processes across the Indus Basin were estimated for the hydrological year 2007 using satellite measurements. The new ETLook remote sensing model (version 1) infers information on actual Evaporation (E) and actual Transpiration (T) from combine

  16. A New Time Measurement Method Using a High-End Global Navigation Satellite System to Analyze Alpine Skiing

    Science.gov (United States)

    Supej, Matej; Holmberg, Hans-Christer

    2011-01-01

    Accurate time measurement is essential to temporal analysis in sport. This study aimed to (a) develop a new method for time computation from surveyed trajectories using a high-end global navigation satellite system (GNSS), (b) validate its precision by comparing GNSS with photocells, and (c) examine whether gate-to-gate times can provide more…

  17. SAM-2 ground-truth plan: Correlative measurements for the Stratospheric Aerosol Measurement-2 (SAM 2) sensor on the Nimbus G satellite

    Science.gov (United States)

    Russell, P. B.; Mccormick, M. P.; Mcmaster, L. R.; Pepin, T. J.; Chu, W. P.; Swissler, T. J.

    1978-01-01

    The SAM-2 will fly aboard the Nimbus-G satellite for launch in the fall of 1978 and measure stratospheric vertical profiles of aerosol extinction in high latitude bands. The plan gives details of the location and times for the simultaneous satellite/correlative measurements for the nominal launch time, the rationale and choice of the correlative sensors, their characteristics and expected accuracies, and the conversion of their data to extinction profiles. The SAM-2 expected instrument performance and data inversion results are presented. Various atmospheric models representative of polar stratospheric aerosols are used in the SAM-2 and correlative sensor analyses.

  18. Comparisons of ground-based tropospheric NO2 MAX-DOAS measurements to satellite observations with the aid of an air quality model over the Thessaloniki area, Greece

    Science.gov (United States)

    Drosoglou, Theano; Bais, Alkiviadis F.; Zyrichidou, Irene; Kouremeti, Natalia; Poupkou, Anastasia; Liora, Natalia; Giannaros, Christos; Elissavet Koukouli, Maria; Balis, Dimitris; Melas, Dimitrios

    2017-05-01

    One of the main issues arising from the comparison of ground-based and satellite measurements is the difference in spatial representativeness, which for locations with inhomogeneous spatial distribution of pollutants may lead to significant differences between the two data sets. In order to investigate the spatial variability of tropospheric NO2 within a sub-satellite pixel, a campaign which lasted for about 6 months was held in the greater area of Thessaloniki, Greece. Three multi-axial differential optical absorption spectroscopy (MAX-DOAS) systems performed measurements of tropospheric NO2 columns at different sites representative of urban, suburban and rural conditions. The direct comparison of these ground-based measurements with corresponding products from the Ozone Monitoring Instrument onboard NASA's Aura satellite (OMI/Aura) showed good agreement over the rural and suburban areas, while the comparison with the Global Ozone Monitoring Experiment-2 (GOME-2) onboard EUMETSAT's Meteorological Operational satellites' (MetOp-A and MetOp-B) observations is good only over the rural area. GOME-2A and GOME-2B sensors show an average underestimation of tropospheric NO2 over the urban area of about 10.51 ± 8.32 × 1015 and 10.21 ± 8.87 × 1015 molecules cm-2, respectively. The mean difference between ground-based and OMI observations is significantly lower (6.60 ± 5.71 × 1015 molecules cm-2). The differences found in the comparisons of MAX-DOAS data with the different satellite sensors can be attributed to the higher spatial resolution of OMI, as well as the different overpass times and NO2 retrieval algorithms of the satellites. OMI data were adjusted using factors calculated by an air quality modeling tool, consisting of the Weather Research and Forecasting (WRF) mesoscale meteorological model and the Comprehensive Air Quality Model with Extensions (CAMx) multiscale photochemical transport model. This approach resulted in significant improvement of the

  19. Characterization of the CTS 12 and 14 GHz communications links - Preliminary measurements and evaluation. [Communications Technology Satellite

    Science.gov (United States)

    Ippolito, L. J.

    1976-01-01

    The Communications Link Characterization Experiment is designed to characterize the radio frequency links of the Communications Technology Satellite. The experiment is twofold: (1) it will study the natural characteristics in the CTS frequency bands (14 GHz uplink, and 12 GHz downlink) including attenuation and signal degradation due primarily to absorption and scattering induced by precipitation, and (2) it will perform environmental measurements for the characterization of man-made, earth-based signals which could interfere with the uplink frequency bands of the satellite.

  20. Global Lithospheric Apparent Susceptibility Distribution Converted from Geomagnetic Models by CHAMP and Swarm Satellite Magnetic Measurements

    Science.gov (United States)

    Du, Jinsong; Chen, Chao; Xiong, Xiong; Li, Yongdong; Liang, Qing

    2016-04-01

    Recently, because of continually accumulated magnetic measurements by CHAMP satellite and Swarm constellation of three satellites and well developed methodologies and techniques of data processing and geomagnetic field modeling etc., global lithospheric magnetic anomaly field models become more and more reliable. This makes the quantitative interpretation of lithospheric magnetic anomaly field possible for having an insight into large-scale magnetic structures in the crust and uppermost mantle. Many different approaches have been utilized to understand the magnetized sources, such as forward, inversion, statistics, correlation analysis, Euler deconvolution, signal transformations etc. Among all quantitative interpretation methods, the directly converting a magnetic anomaly map into a magnetic susceptibility anomaly map proposed by Arkani-Hamed & Strangway (1985) is, we think, the most fast quantitative interpretation tool for global studies. We just call this method AS85 hereinafter for short. Although Gubbins et al. (2011) provided a formula to directly calculate the apparent magnetic vector distribution, the AS85 method introduced constraints of magnetized direction and thus corresponding results are expected to be more robust especially in world-wide continents. Therefore, in this study, we first improved the AS85 method further considering non-axial dipolar inducing field using formulae by Nolte & Siebert (1987), initial model or priori information for starting coefficients in the apparent susceptibility conversion, hidden longest-wavelength components of lithospheric magnetic field and field contaminations from global oceanic remanent magnetization. Then, we used the vertically integrated susceptibility model by Hemant & Maus (2005) and vertically integrated remanent magnetization model by Masterton et al. (2013) to test the validity of our improved method. Subsequently, we applied the conversion method to geomagnetic field models by CHAMP and Swarm satellite

  1. Long-term groundwater variations in Northwest India from satellite gravity measurements

    Science.gov (United States)

    Chen, Jianli; Li, Jin; Zhang, Zizhan; Ni, Shengnan

    2014-05-01

    Satellite gravity data from the Gravity Recovery and Climate Experiment (GRACE) provides quantitative measures of terrestrial water storage (TWS) change at large spatial scales. Combining GRACE-observed TWS changes and model estimates of water storage changes in soil and snow at the surface offers a means for measuring groundwater storage change. In this study, we re-assess long-term groundwater storage variation in the Northwest India (NWI) region using an extended record of GRACE time-variable gravity measurements, and a fully unconstrained global forward modeling method. Our new assessments based on the GRACE release-5 (RL05) gravity solutions indicate that during the 10 year period January 2003 to December 2012, the NWI groundwater depletion remains pronounced, especially during the first 5 years (01/2003-12/2007). The newly estimated depletion rates are ~ 20.4 ± 7.1 Gigatonne (Gt)/yr averaged over the 10 year period, and 29.4 ± 8.4 Gt/yr during the first 5 years. The yearly groundwater storage changes in the NWI region are strongly correlated with yearly precipitation anomalies. In 2009, the driest season of the decade, the groundwater depletion reaches nearly 80 Gt, while in the two relatively wet seasons, 2008 and 2011, the groundwater storages even see net increases of about 24 and 35 Gt, respectively. The estimated mean groundwater depletion rates for the first 5 years are significantly higher than previous assessments. The larger depletion rates may reflect the benefits from improved data quality of GRACE RL05 gravity solutions, and improved data processing method, which can more effectively reduce leakage error in GRACE estimates. Our analysis indicates that the neighboring Punjab Province of Pakistan (especially Northern Punjab) apparently also experiences significant groundwater depletion during the same period, which has partly contributed to the new regional groundwater depletion estimates.

  2. Direct Measurements of Laser Communication Point-Ahead Angles from the ARTEMIS Geostationary Satellite Through Clouds

    Science.gov (United States)

    Kuzkov, V.; Sodnik, Z.; Kuzkov, S.

    2017-01-01

    Laser experiments with ARTEMIS geostationary satellite have been performed in partly cloudy weather using the developed system for the telescope. It has been found that the part of the laser beam is observed simultaneously at the points in direction of the velocity vector where the satellite would arrive at when the laser light reaches the telescope. These results agree with the theory of relativity for light aberration in transition from fixed to moving coordinate system.Observation results open the way for research and development of systems to compensate atmospheric turbulence in laser communications between ground stations and satellites through the atmosphere.

  3. Direct Measurements of Laser Communication Point-Ahead Angles from the Artemis Geostationary Satellite Through Clouds

    Directory of Open Access Journals (Sweden)

    Kuzkov, V.P.

    2017-01-01

    Full Text Available Laser experiments with ARTEMIS geostationary satellite have been performed in partly cloudy weather using the developed system for the telescope. It has been found that the part of the laser beam is observed simultaneously at the points in direction of the velocity vector where the satellite would arrive at when the laser light reaches the telescope. These results agree with the theory of relativity for light aberration in transition from fixed to moving coordinate system. Observation results open the way for research and development of systems to compensate atmospheric turbulence in laser communications between ground stations and satellites through the atmosphere.

  4. Communications satellite business ventures - Measuring the impact of technology programmes and related policies

    Science.gov (United States)

    Greenberg, J. S.

    1986-01-01

    An economic evaluation and planning procedure which assesses the effects of various policies on fixed satellite business ventures is described. The procedure is based on a stochastic financial simulation model, the Domsat II, which evaluates spacecraft reliability, market performance, and cost uncertainties. The application of the Domsat II model to the assessment of NASA's ion thrusters for on-orbit propulsion and GaAs solar cell technology is discussed. The effects of insurance rates and the self-insurance option on the financial performance of communication satellite business ventures are investigated. The selection of a transportation system for placing the satellites into GEO is analyzed.

  5. Communications satellite business ventures - Measuring the impact of technology programmes and related policies

    Science.gov (United States)

    Greenberg, J. S.

    1986-01-01

    An economic evaluation and planning procedure which assesses the effects of various policies on fixed satellite business ventures is described. The procedure is based on a stochastic financial simulation model, the Domsat II, which evaluates spacecraft reliability, market performance, and cost uncertainties. The application of the Domsat II model to the assessment of NASA's ion thrusters for on-orbit propulsion and GaAs solar cell technology is discussed. The effects of insurance rates and the self-insurance option on the financial performance of communication satellite business ventures are investigated. The selection of a transportation system for placing the satellites into GEO is analyzed.

  6. Satellite observation of lowermost tropospheric ozone by multispectral synergism of IASI thermal infrared and GOME-2 ultraviolet measurements over Europe

    Science.gov (United States)

    Cuesta, J.; Eremenko, M.; Liu, X.; Dufour, G.; Cai, Z.; Hoepfner, M.; von Clarmann, T.; Sellitto, P.; Foret, G.; Gaubert, B.; Beekmann, M.; Orphal, J. J.; Chance, K.; Spurr, R. J.; Flaud, J.

    2013-12-01

    Lowermost tropospheric ozone is a major factor determining air quality, which directly affects human health in megacities and causes damages to ecosystems. Monitoring tropospheric ozone is a key societal issue which can be addressed at the regional scale by spaceborne observation. However, current satellite retrievals of tropospheric ozone using uncoupled either ultraviolet (UV) or thermal infrared (TIR) observations show limited sensitivity to ozone at the lowermost troposphere (LMT, up to 3 km asl of altitude above sea level), which is the major concern for air quality. In this framework, we have developed a new multispectral approach for observing lowermost tropospheric ozone from space by synergism of atmospheric TIR radiances observed by IASI and earth UV reflectances measured by GOME-2. Both instruments are onboard the series of MetOp satellites (in orbit since 2006 and expected until 2022) and their scanning capabilities offer global coverage every day, with a relatively fine ground pixel resolution (12-km-diameter pixels spaced by 25 km for IASI at nadir). Our technique uses altitude-dependent Tikhonov-Phillips-type constraints, which optimize sensitivity to lower tropospheric ozone. It integrates the VLIDORT and KOPRA radiative transfer codes for simulating UV reflectance and TIR radiance, respectively. We have used our method to analyze real observations over Europe during an ozone pollution episode in the summer of 2009. The results show that the multispectral synergism of IASI (TIR) and GOME-2 (UV) enables the observation of the spatial distribution of ozone plumes in the LMT, in good agreement with the CHIMERE regional chemistry-transport model. In this case study, when high ozone concentrations extend vertically above 3 km asl, they are similarly observed over land by both the multispectral and IASI retrievals. On the other hand, ozone plumes located below 3 km asl are only clearly depicted by the multispectral retrieval (both over land and over ocean

  7. Comparative Study of Ground Measured, Satellite-Derived, and Estimated Global Solar Radiation Data in Nigeria

    Directory of Open Access Journals (Sweden)

    Boluwaji M. Olomiyesan

    2016-01-01

    Full Text Available In this study, the performance of three global solar radiation models and the accuracy of global solar radiation data derived from three sources were compared. Twenty-two years (1984–2005 of surface meteorological data consisting of monthly mean daily sunshine duration, minimum and maximum temperatures, and global solar radiation collected from the Nigerian Meteorological (NIMET Agency, Oshodi, Lagos, and the National Aeronautics Space Agency (NASA for three locations in North-Western region of Nigeria were used. A new model incorporating Garcia model into Angstrom-Prescott model was proposed for estimating global radiation in Nigeria. The performances of the models used were determined by using mean bias error (MBE, mean percentage error (MPE, root mean square error (RMSE, and coefficient of determination (R2. Based on the statistical error indices, the proposed model was found to have the best accuracy with the least RMSE values (0.376 for Sokoto, 0.463 for Kaduna, and 0.449 for Kano and highest coefficient of determination, R2 values of 0.922, 0.938, and 0.961 for Sokoto, Kano, and Kaduna, respectively. Also, the comparative study result indicates that the estimated global radiation from the proposed model has a better error range and fits the ground measured data better than the satellite-derived data.

  8. Dose Measurements on the BION-M1 satellite applying passive detector packages

    Science.gov (United States)

    Stradi, Andrea; Berger, Thomas; Kodaira, Satoshi; Kubancak, Jan; Palfalvi, Jozsef K.; Ambrozova, Iva; Tolochek, Raisa; Shurshakov, Vyacheslav; Szabo, Julianna

    A passive detector package was developed in the past years in the Centre for Energy Research, Hungarian Academy of Science to detect cosmic ray particles, to determine their flux and dose. It consists of thermoluminescent detectors (TLD) and plastic solid state nuclear track detectors (SSNTD). In the frame of a scientific co-operation between the Institute for Biomedical Problems (IBMP) fourteen packages were flow within the new BION-M1 satellite program together with biological samples and detector packages from other participants. Two packages were located outside and the rest ones inside the recoverable capsule. Comparing to the previous BION and similar FOTON experiments, (all together 17 successful ones), this flight was a “champion” with the highest altitude (575 km), orbital inclination (64.9°) and flight duration (30 days). The external exposure provided a unique possibility to study not only the elevated level of cosmic rays but also the behavior of the detector packages in extreme circumstances as low temperature and pressure. The paper will summarize the construction of the detector packages, the calibration and evaluation processes, as well as, the linear energy transfer (LET) spectra, the absorbed dose and the mean quality factor. These quantities will be compared taking into consideration their location inside and outside the capsule and to the results of other participants. Also some comparison of results to the previous BION and FOTON flights and contemporary measurements on the ISS will be presented.

  9. High-precision measurement of satellite velocity using the EISCAT radar

    Directory of Open Access Journals (Sweden)

    T. Nygrén

    2012-10-01

    Full Text Available This paper presents a method of measuring the velocity of a hard target using radar pulses reflected from the target flying through the radar beam. The method has two stages. First, the Doppler shifts of the echo pulses are calculated at a high accuracy with an algorithm which largely improves the accuracy given by the Fourier transform. The algorithm also calculates the standard deviations of the Doppler frequencies with Monte Carlo simulation. The second step is to fit the results from a sequence of radar pulses to a velocity model allowing linear variation of the second time derivative of target range. The achieved accuracies are demonstrated using radio pulses reflected by a satellite passing through the beam of the EISCAT UHF radar working at 930-MHz frequency. At high SNR levels, the standard deviations of the frequency from a single pulse reach typically down to 0.2 Hz. The best standard deviations of velocity fit are below 5 mm s−1 while those of the second time derivative of range are below 1 cm s−2.

  10. Satellite gravity measurement monitoring terrestrial water storage change and drought in the continental United States

    Science.gov (United States)

    Yi, Hang; Wen, Lianxing

    2016-01-01

    We use satellite gravity measurements in the Gravity Recovery and Climate Experiment (GRACE) to estimate terrestrial water storage (TWS) change in the continental United States (US) from 2003 to 2012, and establish a GRACE-based Hydrological Drought Index (GHDI) for drought monitoring. GRACE-inferred TWS exhibits opposite patterns between north and south of the continental US from 2003 to 2012, with the equivalent water thickness increasing from -4.0 to 9.4 cm in the north and decreasing from 4.1 to -6.7 cm in the south. The equivalent water thickness also decreases by -5.1 cm in the middle south in 2006. GHDI is established to represent the extent of GRACE-inferred TWS anomaly departing from its historical average and is calibrated to resemble traditional Palmer Hydrological Drought Index (PHDI) in the continental US. GHDI exhibits good correlations with PHDI in the continental US, indicating its feasibility for drought monitoring. Since GHDI is GRACE-based and has minimal dependence of hydrological parameters on the ground, it can be extended for global drought monitoring, particularly useful for the countries that lack sufficient hydrological monitoring infrastructures on the ground.

  11. Ground truth measurements plan for the Multispectral Thermal Imager (MTI) satellite

    Energy Technology Data Exchange (ETDEWEB)

    Garrett, A.J.

    2000-01-03

    Sandia National Laboratories (SNL), Los Alamos National Laboratory (LANL), and the Savannah River Technology Center (SRTC) have developed a diverse group of algorithms for processing and analyzing the data that will be collected by the Multispectral Thermal Imager (MTI) after launch late in 1999. Each of these algorithms must be verified by comparison to independent surface and atmospheric measurements. SRTC has selected 13 sites in the continental U.S. for ground truth data collections. These sites include a high altitude cold water target (Crater Lake), cooling lakes and towers in the warm, humid southeastern US, Department of Energy (DOE) climate research sites, the NASA Stennis satellite Validation and Verification (V and V) target array, waste sites at the Savannah River Site, mining sites in the Four Corners area and dry lake beds in the southwestern US. SRTC has established mutually beneficial relationships with the organizations that manage these sites to make use of their operating and research data and to install additional instrumentation needed for MTI algorithm V and V.

  12. Statistical theory for estimating sampling errors of regional radiation averages based on satellite measurements

    Science.gov (United States)

    Smith, G. L.; Bess, T. D.; Minnis, P.

    1983-01-01

    The processes which determine the weather and climate are driven by the radiation received by the earth and the radiation subsequently emitted. A knowledge of the absorbed and emitted components of radiation is thus fundamental for the study of these processes. In connection with the desire to improve the quality of long-range forecasting, NASA is developing the Earth Radiation Budget Experiment (ERBE), consisting of a three-channel scanning radiometer and a package of nonscanning radiometers. A set of these instruments is to be flown on both the NOAA-F and NOAA-G spacecraft, in sun-synchronous orbits, and on an Earth Radiation Budget Satellite. The purpose of the scanning radiometer is to obtain measurements from which the average reflected solar radiant exitance and the average earth-emitted radiant exitance at a reference level can be established. The estimate of regional average exitance obtained will not exactly equal the true value of the regional average exitance, but will differ due to spatial sampling. A method is presented for evaluating this spatial sampling error.

  13. Measuring Phased-Array Antenna Beampatterns with High Dynamic Range for the Murchison Widefield Array using 137 MHz ORBCOMM Satellites

    CERN Document Server

    Neben, A R; Hewitt, J N; Bernardi, G; Bowman, J D; Briggs, F; Cappallo, R J; Deshpande, A A; Goeke, R; Greenhill, L J; Hazelton, B J; Johnston-Hollitt, M; Kaplan, D L; Lonsdale, C J; McWhirter, S R; Mitchell, D A; Morales, M F; Morgan, E; Oberoi, D; Ord, S M; Prabu, T; Shankar, N Udaya; Srivani, K S; Subrahmanyan, R; Tingay, S J; Wayth, R B; Webster, R L; Williams, A; Williams, C L

    2015-01-01

    Detection of the fluctuations in 21 cm line emission from neutral hydrogen during the Epoch of Reionization in thousand hour integrations poses stringent requirements on calibration and image quality, both of which necessitate accurate primary beam models. The Murchison Widefield Array (MWA) uses phased array antenna elements which maximize collecting area at the cost of complexity. To quantify their performance, we have developed a novel beam measurement system using the 137 MHz ORBCOMM satellite constellation and a reference dipole antenna. Using power ratio measurements, we measure the {\\it in situ} beampattern of the MWA antenna tile relative to that of the reference antenna, canceling the variation of satellite flux or polarization with time. We employ angular averaging to mitigate multipath effects (ground scattering), and assess environmental systematics with a null experiment in which the MWA tile is replaced with a second reference dipole. We achieve beam measurements over 30 dB dynamic range in beam...

  14. The 2010 Russian Drought Impact on Satellite Measurements of Solar-Induced Chlorophyll Fluorescence: Insights from Modeling and Comparisons with the Normalized Differential Vegetation Index (NDVI)

    Science.gov (United States)

    Yoshida, Y.; Joiner, J.; Tucker, C.; Berry, J.; Lee, J. -E.; Walker, G.; Reichle, R.; Koster, R.; Lyapustin, A.; Wang, Y.

    2015-01-01

    We examine satellite-based measurements of chlorophyll solar-induced fluorescence (SIF) over the region impacted by the Russian drought and heat wave of 2010. Like the popular Normalized Difference Vegetation Index (NDVI) that has been used for decades to measure photosynthetic capacity, SIF measurements are sensitive to the fraction of absorbed photosynthetically-active radiation (fPAR). However, in addition, SIF is sensitive to the fluorescence yield that is related to the photosynthetic yield. Both SIF and NDVI from satellite data show drought-related declines early in the growing season in 2010 as compared to other years between 2007 and 2013 for areas dominated by crops and grasslands. This suggests an early manifestation of the dry conditions on fPAR. We also simulated SIF using a global land surface model driven by observation-based meteorological fields. The model provides a reasonable simulation of the drought and heat impacts on SIF in terms of the timing and spatial extents of anomalies, but there are some differences between modeled and observed SIF. The model may potentially be improved through data assimilation or parameter estimation using satellite observations of SIF (as well as NDVI). The model simulations also offer the opportunity to examine separately the different components of the SIF signal and relationships with Gross Primary Productivity (GPP).

  15. Characteristics of tropospheric ozone depletion events in the Arctic spring: analysis of the ARCTAS, ARCPAC, and ARCIONS measurements and satellite BrO observations

    Directory of Open Access Journals (Sweden)

    J.-H. Koo

    2012-07-01

    Full Text Available Arctic ozone depletion events (ODEs are due to catalytic ozone loss driven by halogen chemistry. The presence of ODEs is affected not only by in situ chemistry but also by transport including advection of ozone-poor air mass and vertical mixing. To better characterize the ODEs, we analyze the combined set of surface, ozonesonde, and aircraft in situ measurements of ozone and bromine compounds during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS and the Aerosol, Radiation, and Cloud Processes affecting Arctic Climate (ARCPAC experiments (April 2008. Tropospheric BrO columns retrieved from satellite measurements and back trajectories calculations are used to investigate the characteristics of observed ODEs. The implications of the analysis results for the validation of the retrieval of tropospheric column BrO are also discussed. Time-lagged correlation analysis between in situ (surface and ozonesonde measurements of ozone and satellite derived tropospheric BrO indicates that the ODEs are due to either local halogen-driven ozone loss or short-range (~1 day transport from nearby regions with ozone depletion. The effect of in situ halogen-driven loss is also evident in the diurnal variation of surface ozone concentrations at Alert, Canada. High-BrO regions revealed by satellite measurements tend to be collocated with first-year sea ice, particularly over the Chukchi Sea. Aircraft observations indicate low-ozone air mass transported from these high-BrO regions. Correlation analyses of ozone with potential temperature and time-lagged tropospheric BrO column show that the vertical extent of local ozone loss is surprisingly deep (1–2 km at Resolute and Churchill, Canada. The unstable boundary layer during ODEs at Churchill could potentially provide a source of free tropospheric BrO through convective transport and explain the significant negative correlation between free tropospheric ozone and

  16. Visual analysis as a method of interpretation of the results of satellite ionospheric measurements for exploratory problems

    Science.gov (United States)

    Korneva, N. N.; Mogilevskii, M. M.; Nazarov, V. N.

    2016-05-01

    Traditional methods of time series analysis of satellite ionospheric measurements have some limitations and disadvantages that are mainly associated with the complex nonstationary signal structure. In this paper, the possibility of identifying and studying the temporal characteristics of signals via visual analysis is considered. The proposed approach is illustrated by the example of the visual analysis of wave measurements on the DEMETER microsatellite during its passage over the HAARP facility.

  17. Satellite Imagery Measures of the Astronomically Aligned Megaliths at Nabta Playa

    Science.gov (United States)

    Brophy, T. G.; Rosen, P. A.

    2003-12-01

    Astronomically aligned megalithic structures described in field reports (Wendorf, F. and Malville, J.M., The Megalith Alignments, pp.489-502 in Holocene Settlement of the Egyptian Sahara, Vol.I, 2001.) are identified in newly acquired georectified 60 cm panchromatic satellite imagery of Nabta Playa, southern Egypt. The satellite images allow refinement, often significant, of the reported locations of the megaliths. The report that the primary megalithic alignment was constructed to point to the bright star Sirius, circa 4,820 BC, is reconsidered in light of the satellite data, new field data, radiocarbon, lithostratigraphic and geochronologic data, and the playa sedimentation history. Other possible archaeoastronomical interpretations are considered for that alignment, including the three stars of Orion's Belt circa 6,270 BC that are also implicated in the small Nabta Playa `calendar circle'. Other new features apparent in the satellite imagery are also considered.

  18. Investigation of tropospheric-space weather coupling using Schumann resonance measurements on board the C/NOFS satellite

    Science.gov (United States)

    Simoes, F.; Pfaff, R. F.; Freudenreich, H.; Klenzing, J.; Rowland, D. E.

    2012-12-01

    Detection of Schumann Resonance spectral features of the earth-ionosphere cavity from outside the cavity offers new remote sensing capabilities to assess tropospheric-space weather connections, namely periodic patterns observed in tropospheric, ionospheric, and magnetospheric data. Semiannual oscillations have been identified in a variety of hydrodynamic and electrodynamic processes, but the mechanism (or mechanisms) responsible for such effect remains elusive. Analysis of AC electric field measurements made by the Vector Electric Field Instrument (VEFI) on board the Communications/Navigation Outage Forecasting System (C/NOFS) satellite also shows a semiannual pattern in Schumann resonance data recorded during nighttime in the equatorial ionosphere. In this work we present C/NOFS data and outline future developments involving low frequency electric and magnetic field measurements. We discuss how patterns observed in the Schumann resonance amplitude are expected to contribute to validate - or at least constrain - mechanisms previously proposed to explain the semiannual oscillation, as well as their implications for investigating coupling between layers of the Earth gaseous envelope.

  19. Moist processes during MJO events as diagnosed from water isotopic measurements from the IASI satellite

    Science.gov (United States)

    Tuinenburg, O. A.; Risi, C.; Lacour, J. L.; Schneider, M.; Wiegele, A.; Worden, J.; Kurita, N.; Duvel, J. P.; Deutscher, N.; Bony, S.; Coheur, P. F.; Clerbaux, C.

    2015-10-01

    This study aims to investigate some characteristics of the moist processes of the Madden-Julian oscillation (MJO), by making use of joint HDO (or δD) and H2O vapor measurements. The MJO is the main intraseasonal mode of the tropical climate but is hard to properly simulate in global atmospheric models. The joint use of δD-H2O diagnostics yields additional information compared to sole humidity measurements. We use midtropospheric Infrared Atmospheric Sounding Interferometer (IASI) satellite δD and H2O measurements to determine the mean MJO humidity and δD evolution. Moreover, by making use of high temporal resolution data, we determine the variability in this evolution during about eight MJO events from 2010 to 2012 (including those monitored during the DYNAMO (the Dynamics of the MJO), CINDY (Cooperative Indian Ocean Experiment in Y2011) campaign). These data have a higher spatiotemporal coverage than previous δD measurements, enabling the sampling of individual MJO events. IASI measurements over the Indian Ocean confirm earlier findings that the moistening before the precipitation peak of an MJO event is due to water vapor slightly enriched in HDO. There is then a HDO depletion around the precipitation peak that also corresponds to the moister environment. Most interevent variability determined in the current study occurs 5 to 10 days after the MJO event. In 75% of the events, humidity decreases while the atmosphere remains depleted. In a quarter of the events, humidity increases simultaneously with an increase in δD. After this, the advection of relatively dry and enriched air brings back the state to the mean. Over the maritime continent, δD-H2O cycles are more variable on time scales shorter than the MJO and the interevent variability is larger than over the Indian Ocean. The sequence of moistening and drying processes as revealed by the q-δD cycles can be used as a benchmark to evaluate the representation of moist processes in models. This is done here

  20. Harmonized dataset of ozone profiles from satellite limb and occultation measurements

    Directory of Open Access Journals (Sweden)

    V. F. Sofieva

    2013-06-01

    Full Text Available In this paper, we present a HARMonized dataset of OZone profiles (HARMOZ based on limb and occultation measurements from Envisat (GOMOS, MIPAS and SCIAMACHY, Odin (OSIRIS, SMR and SCISAT (ACE-FTS satellite instruments. These measurements provide high-vertical-resolution ozone profiles covering the altitude range from the upper troposphere up to the mesosphere in years 2001–2012. HARMOZ has been created in the framework of European Space Agency Climate Change Initiative project. The harmonized dataset consists of original retrieved ozone profiles from each instrument, which are screened for invalid data by the instrument teams. While the original ozone profiles are presented in different units and on different vertical grids, the harmonized dataset is given on a common pressure grid in netcdf format. The pressure grid corresponds to vertical sampling of ~ 1 km below 20 km and 2–3 km above 20 km. The vertical range of the ozone profiles is specific for each instrument, thus all information contained in the original data is preserved. Provided altitude and temperature profiles allow the representation of ozone profiles in number density or mixing ratio on a pressure or altitude vertical grids. Geolocation, uncertainty estimates and vertical resolution are provided for each profile. For each instrument, optional parameters, which might be related to the data quality, are also included. For convenience of users, tables of biases between each pair of instruments for each month, as well as bias uncertainties, are provided. These tables characterize the data consistency and can be used in various bias and drift analyses, which are needed, for instance, for combining several datasets to obtain a long-term climate dataset. This user-friendly dataset can be interesting and useful for various analyses and applications, such as data merging, data validation, assimilation and scientific research. Dataset is available at: http

  1. Satellite Geomagnetism

    DEFF Research Database (Denmark)

    Olsen, Nils; Stolle, Claudia

    2012-01-01

    Observations of Earth’s magnetic field from space began more than 50 years ago. A continuous monitoring of the field using low Earth orbit (LEO) satellites, however, started only in 1999, and three satellites have taken highprecision measurements of the geomagnetic field during the past decade...... ability to characterize and understand the many sources that contribute to Earth’s magnetic field. In this review, we summarize investigations of Earth’s interior and environment that have been possible through the analysis of high-precision magnetic field observations taken by LEO satellites........ The unprecedented time-space coverage of their data opened revolutionary new possibilities for monitoring, understanding, and exploring Earth’s magnetic field. In the near future, the three-satellite constellation Swarm will ensure continuity of such measurement and provide enhanced possibilities to improve our...

  2. A technique for measurement of earth station antenna G/T by radio stars and Applications Technology Satellites.

    Science.gov (United States)

    Kochevar, H. J.

    1972-01-01

    A new technique has been developed to accurately measure the G/T of a small aperture antenna using geostationary satellites and the well established radio star method. A large aperture antenna having the capability of accurately measuring its G/T by using a radio star of known power density is used to obtain an accurate G/T to use as a reference. The CNR of both the large and small aperture antennas are then measured using an Applications Technology Satellite (ATS). After normalizing the two C/N ratios to the large antenna system noise temperature the G/T or the gain G of the small aperture antenna can then be determined.

  3. CHASER: An Innovative Satellite Mission Concept to Measure the Effects of Aerosols on Clouds and Climate

    Science.gov (United States)

    Renno, N.; Williams, E.; Rosenfeld, D.; Fischer, D.; Fischer, J.; Kremic, T.; Agrawal, A.; Andreae, M.; Bierbaum, R.; Blakeslee, R.; Boerner, A.; Bowles, N.; Christian, H.; Dunion, J.; Horvath, A.; Huang, X.; Khain, A.; Kinne, S.; Lemos, M.-C.; Penner, J.

    2012-04-01

    The formation of cloud droplets on aerosol particles, technically known as the activation of cloud condensation nuclei (CCN), is the fundamental process driving the interactions of aerosols with clouds and precipitation. Knowledge of these interactions is foundational to our understanding of weather and climate. The Intergovernmental Panel on Climate Change (IPCC) and the Decadal Survey (NRC 2007) indicate that the uncertainty in how clouds adjust to aerosol perturbations dominates the uncertainty in the overall quantification of the radiative forcing attributable to human activities. The Clouds, Hazards, and Aerosols Survey for Earth Researchers (CHASER) mission concept responds to the IPCC and Decadal Survey concerns by studying the activation of CCN and their interactions with clouds and storms. CHASER proposes to revolutionize our understanding of the interactions of aerosols with clouds by making the first global measurements of the fundamental physical entity linking them: activated cloud condensation nuclei. The CHASER mission was conceptualized to measure all quantities necessary for determining the interactions of aerosols with clouds and storms. Measurements by current satellites allow the determination of crude profiles of cloud particle size but not of the activated CCN that seed them. CHASER uses a new technique (Freud et al. 2011; Rosenfeld et al. 2012) and high-heritage instruments to produce the first global maps of activated CCN and the properties of the clouds associated with them. CHASER measures the CCN concentration and cloud thermodynamic forcing simultaneously, allowing their effects to be distinguished. Changes in the behavior of a group of weather systems in which only one of the quantities varies (a partial derivative of the intensity with the desirable quantity) allow the determination of each effect statistically. The high uncertainties of current climate predictions limit their much-needed use in decision-making. CHASER mitigates this

  4. MAX-DOAS measurements and satellite validation of tropospheric NO2 and SO2 vertical column densities at a rural site of North China

    Science.gov (United States)

    Jin, Junli; Ma, Jianzhong; Lin, Weili; Zhao, Huarong; Shaiganfar, Reza; Beirle, Steffen; Wagner, Thomas

    2016-05-01

    North China (NC), namely Huabei in Chinese, is one of the most severely polluted regions in China, and the air pollution issues in this region have received a worldwide attention. We performed ground-based Multi Axis Differential Absorption Spectroscopy (MAX-DOAS) measurements at Gucheng, (39°08‧N, 115°40‧E), a rural site of North China about 110 km southwest of Beijing, from September 2008 to September 2010. The tropospheric vertical column densities (VCDs) of NO2 and SO2 were retrieved using the so-called geometric approximation. The results show that the tropospheric NO2 and SO2 VCDs over NC have nearly the same seasonal variation pattern, with the maximum in winter and minimum in summer, while their diurnal variations are different. We also compared the tropospheric NO2 and SO2 VCDs from our MAX-DOAS measurements with several products of corresponding OMI (Ozone Monitoring Instrument) satellite observations. While in summer good agreement is found, the satellite observations systematically underestimate the tropospheric NO2 in winter over the polluted rural area of NC, probably mostly due to the so called aerosol shielding effect. In contrast, for SO2 no such clear conclusion can be drawn, probably owing to the larger uncertainties from MAX-DOAS and in particular satellite retrievals. This indicates that improvements of the retrieval algorithm for MAX-DOAS and off-line corrections of satellite measurements for the tropospheric SO2 VCDs should be given more emphasis in the future.

  5. Incorporation of star measurements for the determination of orbit and attitude parameters of a geosynchronous satellite: An iterative application of linear regression

    Science.gov (United States)

    Phillips, D.

    1980-01-01

    Currently on NOAA/NESS's VIRGS system at the World Weather Building star images are being ingested on a daily basis. The image coordinates of the star locations are measured and stored. Subsequently, the information is used to determine the attitude, the misalignment angles between the spin axis and the principal axis of the satellite, and the precession rate and direction. This is done for both the 'East' and 'West' operational geosynchronous satellites. This orientation information is then combined with image measurements of earth based landmarks to determine the orbit of each satellite. The method for determining the orbit is simple. For each landmark measurement one determines a nominal position vector for the satellite by extending a ray from the landmark's position towards the satellite and intersecting the ray with a sphere with center coinciding with the Earth's center and with radius equal to the nominal height for a geosynchronous satellite. The apparent motion of the satellite around the Earth's center is then approximated with a Keplerian model. In turn the variations of the satellite's height, as a function of time found by using this model, are used to redetermine the successive satellite positions by again using the Earth based landmark measurements and intersecting rays from these landmarks with the newly determined spheres. This process is performed iteratively until convergence is achieved. Only three iterations are required.

  6. Tropospheric BrO column densities in the Arctic derived from satellite: retrieval and comparison to ground-based measurements

    Directory of Open Access Journals (Sweden)

    H. Sihler

    2012-11-01

    Full Text Available During polar spring, halogen radicals like bromine monoxide (BrO play an important role in the chemistry of tropospheric ozone destruction. Satellite measurements of the BrO distribution have become a particularly useful tool to investigate this probably natural phenomenon, but the separation of stratospheric and tropospheric partial columns of BrO is challenging. In this study, an algorithm was developed to retrieve tropospheric vertical column densities of BrO from data of high-resolution spectroscopic satellite instruments such as the second Global Ozone Monitoring Experiment (GOME-2. Unlike recently published approaches, the presented algorithm is capable of separating the fraction of BrO in the activated troposphere from the total BrO column solely based on remotely measured properties. The presented algorithm furthermore allows to estimate a realistic measurement error of the tropospheric BrO column. The sensitivity of each satellite pixel to BrO in the boundary layer is quantified using the measured UV radiance and the column density of the oxygen collision complex O4. A comparison of the sensitivities with CALIPSO LIDAR observations demonstrates that clouds shielding near-surface trace-gas columns can be reliably detected even over ice and snow. Retrieved tropospheric BrO columns are then compared to ground-based BrO measurements from two Arctic field campaigns in the Amundsen Gulf and at Barrow in 2008 and 2009, respectively. Our algorithm was found to be capable of retrieving enhanced near-surface BrO during both campaigns in good agreement with ground-based data. Some differences between ground-based and satellite measurements observed at Barrow can be explained by both elevated and shallow surface layers of BrO. The observations strongly suggest that surface release processes are the dominating source of BrO and that boundary layer meteorology influences the vertical distribution.

  7. Plate measurement techniques and reduction methods used by the West German satellite observers, and resulting consequences for the observation

    Science.gov (United States)

    Deker, H.

    1971-01-01

    The West German tracking stations are equipped with ballistic cameras. Plate measurement and plate reduction must therefore follow photogrammetric methods. Approximately 100 star positions and 200 satellite positions are measured on each plate. The mathematical model for spatial rotation of the bundle of rays is extended by including terms for distortion and internal orientation of the camera as well as by providing terms for refraction which are computed for the measured coordinates of the star positions on the plate. From the measuring accuracy of the plate coordinates it follows that the timing accuracy for the exposures has to be about one millisecond, in order to obtain a homogeneous system.

  8. Developments and applications of the Global Satellite Mapping of Precipitation (GSMaP) for the Global Precipitation Measurement (GPM)

    Science.gov (United States)

    Kachi, Misako; Aonashi, Kazumasa; Kubota, Takuji; Shige, Shoichi; Ushio, Tomoo; Mega, Tomoaki; Yamamoto, Munehisa; Hamada, Atsushi; Seto, Shinta; Takayabu, Yukari N.; Oki, Riko

    2016-04-01

    The Global Satellite Mapping of Precipitation (GSMaP) is a global rainfall map based on a blended Microwave-Infrared product and has been developed in Japan for the Global Precipitation Measurement (GPM) mission. To fulfill gaps of passive microwave observations, we developed a method to interpolate observations between each microwave imager by utilizing information from the Infrared imagers on board the geostationary satellites, and achieved production of an hourly global rainfall map in 0.1-degree latitude/longitude grid. The latest GSMaP version 6 product was released in September 2014 to the public as one of Japanese GPM products after the launch of the GPM Core Observatory, which is Japan and U.S. joint mission and carrying both the Dual-frequency Precipitation Radar (DPR) and GPM Microwave Imager (GMI), in February 2014. In the next version (version 7), which is scheduled to be released in the summer 2016, we plan to apply databases produced from DPR instead of those from PR, and to introduce snow retrieval algorithm for the passive microwave instruments that have higher frequency channels. The GSMaP near-real-time version (GSMaP_NRT) product is available 4-hour after observation through the "JAXA Global Rainfall Watch" web site (http://sharaku.eorc.jaxa.jp/GSMaP) since 2008. To assure near-real-time data availability, the GSMaP_NRT system simplified part of the algorithm and its processing procedure. Therefore, the GSMaP_NRT product gives higher priority to data latency than accuracy. Since its data release, GSMaP_NRT data has been used by various users for various purposes, such as rainfall monitoring, flood alert and warning, drought monitoring, crop yield forecast, and agricultural insurance. There are, however, several requirements from users for GSMaP improvements not only for accuracy but also specification. Among those requests for data specification, the most popular ones are shortening of data latency time and higher horizontal resolution. To reduce

  9. Spatial and temporal variability of ground and satellite column measurements of NO2 and O3 over the Atlantic Ocean during the Deposition of Atmospheric Nitrogen to Coastal Ecosystems Experiment

    Science.gov (United States)

    Martins, Douglas K.; Najjar, Raymond G.; Tzortziou, Maria; Abuhassan, Nader; Thompson, Anne M.; Kollonige, Debra E.

    2016-12-01

    In situ measurements of O3 and nitrogen oxides (NO + NO2 ≡ NOx) and remote sensing measurements of total column NO2 and O3 were collected on a ship in the North Atlantic Ocean as part of the Deposition of Atmospheric Nitrogen to Coastal Ecosystems (DANCE) campaign in July-August 2014, 100 km east of the mid-Atlantic United States. Relatively clean conditions for both surface in situ mixing ratio and total column O3 and NO2 measurements were observed throughout the campaign. Increased surface and column NO2 and O3 amounts were observed when a terrestrial air mass was advected over the study region. Relative to ship-based total column measurements using a Pandora over the entire study, satellite measurements overestimated total column NO2 under these relatively clean atmospheric conditions over offshore waters by an average of 16%. Differences are most likely due to proximity, or lack thereof, to surface emissions; spatial averaging due to the field of view of the satellite instrument; and the lack of sensitivity of satellite measurements to the surface concentrations of pollutants. Total column O3 measurements from the shipboard Pandora showed good correlation with the satellite measurements (r = 0.96), but satellite measurements were 3% systematically higher than the ship measurements, in agreement with previous studies. Derived values of boundary layer height using the surface in situ and total column measurements of NO2 are much lower than modeled and satellite-retrieved boundary layer heights, which highlight the differences in the vertical distribution between terrestrial and marine environments.

  10. Soil moisture on Polish territory - comparison of satellite and ground-based measurements

    Science.gov (United States)

    Rojek, Edyta; Łukowski, Mateusz; Marczewski, Wojciech; Usowicz, Bogusław

    2014-05-01

    Assessment of water resources due to changing climatic conditions in time and space is still very uncertain. The territory of Poland has a limited resource of waters, occasionally resulting in small agricultural droughts. From the other side intense rainfalls, floods or run-offs, causing soil erosion are observed. Therefore, it is important to predict and prevent of this adverse phenomena. Huge spatial variability of soil moisture does not allow for accurate estimation of its distribution using ground-based measurements. SMOS soil moisture data are quite much inherently consistent in time and space, but their validation is still a challenge for further use in the climate and hydrology studies. This is the motivation for the research: to examine soil moisture from SMOS and ground based stations of the SWEX network held over eastern Poland. The presented results are related to changes of the soil moisture on regional scales for Poland in the period 2010-2013. Some results with SMOS L2 data are extended on continental scales for Europe. Time series from ground and satellite SMOS data sources were compared by regression methods. The region of Poland indicates clearly some genetic spatial distributions in weekly averaged values. In continental scales, the country territory contrasts evidently to Lithuania and in Polesie, and indicates seasonal cycling observed in archives and well known traditional records. The central part of Poland is repeatedly susceptible on droughts with soil moisture values ranging from about 0.02 to 0.20 m3 m-3. SMOS data allows on creating systematic drought data for Poland and watching annual changes, and differences to other drought services kept on national scales for agricultural purposes. We bound that drought susceptibility to the content of sand clay components and the land use there. Lack of rainfall in the late 2011 summer, caused a significant deficit of water in soil moisture content (below 0.05 m3 m-3) throughout the entire country

  11. Assess the Galileo IOV satellites measurement accuracy%Galileo在轨验证卫星的性能研究

    Institute of Scientific and Technical Information of China (English)

    宋玉石; 张云; 袁国良

    2015-01-01

    Galileo卫星导航系统当前处于在轨验证阶段,对在轨验证卫星性能的分析能洞察Galileo系统的性能。本文从信噪比、伪距多路径误差和单点定位精度等方面进行分析并同GPS卫星进行对比,在计算伪距多路径误差时本文提出了能简化计算的处理四频信号伪距多路径误差的数学模型。通过分析可知Galileo 在轨验证卫星的信号强度要强于GPS信号,Galileo信号的多路径误差小于GPS信号的多路径误差并且 Galileo/GPS 组合系统的定位精度也优于GPS系统。%The Galileo satellite navigation system is in In-Orbit Validation phase currently and the analysis of the IOV satellites'smeasurements provides insight on the performanceof the Galileo system.In order to compare the positioning performance with GPS system,this paper analyzes potentialities of the Galileo system from SNR, multipath error and the accuracy of single point positioning.At the same time,this research supplements the algorithm of calculating the multipath error. The experiment results showed thatGalileo IOV satellites'ssignal strength is stronger than GPS satellites.Galileo IOV satellites'smultipath error is smaller than GPS satellites.Thepositioning accuracy of combined Galileo/GPSsystemis better than GPS system.

  12. On the scale estimation using truncated swath measurements from low Earth orbiting satellites

    Science.gov (United States)

    Liu, Qi

    2013-05-01

    Truncation effect caused by limited swath width of low Earth orbiting (LEO) satellites results in inevitable underestimation of object scale when using pixel-counting methods. A new approach is proposed to obtain more accurate object scale through truncated measurements. The approach is based upon the mean object area fraction (MOAF), which depicts the relative population of object points in a varying-size domain and proves to be less sensitive to truncation effect. The MOAF-equivalent radius (MER) is deduced by comparing the actual MOAF with the standard one inferred from a circle object. Numerical simulations are implemented to demonstrate the MER characteristics. In contrast to area-equivalent radius (AER) that is merely determined by the absolute amount of object points, MER relies on the overall spatial structure of the object. For objects with irregular shapes, the MER value is generally smaller than AER in the absence of truncation. Nevertheless, taking the actual AER as true scale, MER has significantly reduced biases compared to AER once the object is truncated. This advantage can be reinforced when focusing on size statistics of analogous objects, because negative and positive biases associated with various truncation situations coexist in MER, against the uniform negative biases of AER. When applied to MODIS cloud mask data that are restricted in individual granules, MER has consistently larger values than AER for most truncated clouds. Compared with the explicitly problematic estimation from AER due to truncation, MER offers a notable elevation on the estimated cloud size and gets closer to the truth.

  13. Spatio-temporal variability of satellite derived aerosol optical thickness and ground measurements over East China

    Science.gov (United States)

    Meng, Fei; Shi, Tongguang

    2016-04-01

    Two-year records of Visible Infrared Imaging Radiometer Suite (VIIRS) Intermediate Product (IP) data on the aerosol optical thickness (AOT) at 550 nm were evaluated by comparing them with sun-sky radiometer measurements from the Chinese sun hazemeter network (CSHNET) and the aerosol robotic network (AERONET). The monthly and seasonal variations in the aerosol optical properties over eastern China were then investigated using collocated VIIRS IP data and CSHNET and AERONET measurements.Results show that the performances of the current VIIRS IP AOT retrievals at the provisional stage were consistent with ground measurements. Similar characteristics of seasonal and monthly variations were found among the measurements, though the observational methodologies were different, showing maxima in the summer and spring and minima in the winter and autumn.

  14. Assessing satellite sea surface salinity from ocean color radiometric measurements for coastal hydrodynamic model data assimilation

    Science.gov (United States)

    Vogel, Ronald L.; Brown, Christopher W.

    2016-07-01

    Improving forecasts of salinity from coastal hydrodynamic models would further our predictive capacity of physical, chemical, and biological processes in the coastal ocean. However, salinity is difficult to estimate in coastal and estuarine waters at the temporal and spatial resolution required. Retrieving sea surface salinity (SSS) using satellite ocean color radiometry may provide estimates with reasonable accuracy and resolution for coastal waters that could be assimilated into hydrodynamic models to improve SSS forecasts. We evaluated the applicability of satellite SSS retrievals from two algorithms for potential assimilation into National Oceanic and Atmospheric Administration's Chesapeake Bay Operational Forecast System (CBOFS) hydrodynamic model. Of the two satellite algorithms, a generalized additive model (GAM) outperformed that of an artificial neural network (ANN), with mean bias and root-mean-square error (RMSE) of 1.27 and 3.71 for the GAM and 3.44 and 5.01 for the ANN. However, the RMSE for the SSS predicted by CBOFS (2.47) was lower than that of both satellite algorithms. Given the better precision of the CBOFS model, assimilation of satellite ocean color SSS retrievals will not improve CBOFS forecasts of SSS in Chesapeake Bay. The bias in the GAM SSS retrievals suggests that adding a variable related to precipitation may improve its performance.

  15. Tropospheric BrO column densities in the Arctic from satellite: retrieval and comparison to ground-based measurements

    Directory of Open Access Journals (Sweden)

    H. Sihler

    2012-05-01

    Full Text Available During polar spring, halogen radicals like bromine monoxide (BrO play an important role in the chemistry of tropospheric ozone destruction. Satellite measurements of the BrO-distribution have become a particularly useful tool to investigate this probably natural phenomenon, but the separation of stratospheric and tropospheric partial columns of BrO is challenging. In this study, an algorithm was developed to retrieve tropospheric vertical column densities of BrO from data of high-resolution spectroscopic satellite instruments such as the second Global Ozone Monitoring Experiment (GOME-2. Unlike recently published approaches, the presented algorithm is capable of separating the fraction of BrO in the activated troposphere from the total BrO column solely based on remotely measured properties. The sensitivity of each satellite pixel to BrO in the boundary-layer is quantified using the measured UV-radiance and the column density of the oxygen collision complex O4. A comparison of the sensitivities with CALIPSO LIDAR observations demonstrates that clouds shielding near-surface trace-gas columns can be reliably detected even over ice and snow. Retrieved tropospheric BrO columns are then compared to ground-based BrO measurements from two Arctic field campaigns in the Amundsen Gulf and at Barrow in 2008 and 2009, respectively. Our algorithm was found to be capable of retrieving enhanced near-surface BrO during both campaigns in good agreement to ground-based data. Some differences between ground-based and satellite measurements observed at Barrow can be explained by both, elevated and shallow surface layers of BrO. The observations strongly suggest that surface release processes are the dominating source of BrO and that boundary-layer meteorology influences the vertical distribution.

  16. Nature of the Venus thermosphere derived from satellite drag measurements (solicited paper)

    Science.gov (United States)

    Keating, G.; Theriot, M.; Bougher, S.

    2008-09-01

    From drag measurements obtained by Pioneer Venus and Magellan, the Venus upper atmosphere was discovered to be much colder than Earth's, even though Venus is much closer to the Sun than the Earth. On the dayside, exospheric temperatures are near 300K compared to Earth's of near 1200K [1]. This is thought to result principally from 15 micron excitation of carbon dioxide by atomic oxygen resulting in very strong 15 micron emission to space, cooling off the upper atmosphere [2]. On the nightside the Venus upper atmosphere is near 100K [3], compared to Earth where temperatures are near 900K. The nightside Venus temperatures drop with altitude contrary to a thermosphere where temperatures rise with altitude. As a result, the very cold nightside is called a "cryosphere" rather than a thermosphere. This is the first cryosphere discovered in the solar system [1]. Temperatures sharply drop near the terminator. Apparently, heat is somehow blocked near the terminator from being significantly transported to the nightside [4]. Recently, drag studies were performed on a number of Earth satellites to establish whether the rise of carbon dioxide on Earth was cooling the Earth's thermosphere similar to the dayside of Venus. Keating et al. [5] discovered that a 10 percent drop in density near 350km at solar minimum occurred globally over a period of 20 years with a 10 per cent rise in carbon dioxide. This should result in about a factor of 2 decline in density from 1976 values, by the end of the 21st century brought on by thermospheric cooling. Subsequent studies have confirmed these results. Thus we are beginning to see the cooling of Earth's upper atmosphere apparently from the same process cooling the Venus thermosphere. Fig. 1 VIRA Exospheric Temperatures Atmospheric drag data from the Pioneer Venus Orbiter and Magellan were combined to generate an improved version of the Venus International Reference Atmosphere (VIRA) [6], [7]. A "fountain effect" was discovered where the

  17. Characteristics of tropospheric ozone depletion events in the Arctic spring: analysis of the ARCTAS, ARCPAC, and ARCIONS measurements and satellite BrO observations

    Directory of Open Access Journals (Sweden)

    J.-H. Koo

    2012-10-01

    Full Text Available Arctic ozone depletion events (ODEs are caused by halogen catalyzed ozone loss. In situ chemistry, advection of ozone-poor air mass, and vertical mixing in the lower troposphere are important factors affecting ODEs. To better characterize the ODEs, we analyze the combined set of surface, ozonesonde, and aircraft in situ measurements of ozone and bromine compounds during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS, the Aerosol, Radiation, and Cloud Processes affecting Arctic Climate (ARCPAC, and the Arctic Intensive Ozonesonde Network Study (ARCIONS experiments (April 2008. Tropospheric BrO columns retrieved from satellite measurements and back trajectory calculations are also used to investigate the characteristics of observed ODEs. In situ observations from these field experiments are inadequate to validate tropospheric BrO columns derived from satellite measurements. In view of this difficulty, we construct an ensemble of tropospheric column BrO estimates from two satellite (OMI and GOME-2 measurements and with three independent methods of calculating stratospheric BrO columns. Furthermore, we select analysis methods that do not depend on the absolute magnitude of column BrO, such as time-lagged correlation analysis of ozone and tropospheric column BrO, to understand characteristics of ODEs. Time-lagged correlation analysis between in situ (surface and ozonesonde measurements of ozone and satellite derived tropospheric BrO columns indicates that the ODEs are due to either local halogen-driven ozone loss or short-range (∼1 day transport from nearby regions with ozone depletion. The effect of in situ ozone loss is also evident in the diurnal variation difference between low (10th and 25th percentiles and higher percentiles of surface ozone concentrations at Alert, Canada. Aircraft observations indicate low-ozone air mass transported from adjacent high-BrO regions. Correlation analyses of ozone

  18. Flood modelling with global precipitation measurement (GPM) satellite rainfall data: a case study of Dehradun, Uttarakhand, India

    Science.gov (United States)

    Sai Krishna, V. V.; Dikshit, Anil Kumar; Pandey, Kamal

    2016-05-01

    Urban expansion, water bodies and climate change are inextricably linked with each other. The macro and micro level climate changes are leading to extreme precipitation events which have severe consequences on flooding in urban areas. Flood simulations shall be helpful in demarcation of flooded areas and effective flood planning and preparedness. The temporal availability of satellite rainfall data at varying spatial scale of 0.10 to 0.50 is helpful in near real time flood simulations. The present research aims at analysing stream flow and runoff to monitor flood condition using satellite rainfall data in a hydrologic model. The satellite rainfall data used in the research was NASA's Integrated Multi-satellite Retrievals for Global Precipitation Measurement (IMERG), which is available at 30 minutes temporal resolution. Landsat data was used for mapping the water bodies in the study area. Land use land cover (LULC) data was prepared using Landsat 8 data with maximum likelihood technique that was provided as an input to the HEC-HMS hydrological model. The research was applied to one of the urbanized cities of India, viz. Dehradun, which is the capital of Uttarakhand State. The research helped in identifying the flood vulnerability at the basin level on the basis of the runoff and various socio economic parameters using multi criteria analysis.

  19. Combining Satellite and Ground Magnetic Measurements to Improve Estimates of Electromagnetic Induction Transfer Functions

    Science.gov (United States)

    Balasis, G.; Egbert, G. D.

    2005-12-01

    Electromagnetic (EM) induction studies using satellite and ground-based magnetic data may ultimately provide critical new constraints on the electrical conductivity of Earth's mantle. Unlike ground-based observatories, which leave large areas of the Earth (especially the ocean basins) unsampled, satellites have the potential for nearly complete global coverage. However, because the number of operating satellites is limited, spatially complex (especially non-zonal) external current sources are sampled relatively poorly by satellites at any fixed time. The comparatively much larger number of ground-based observatories provides more complete synoptic sampling of external source structure. By combining data from both satellites and observatories models of external sources can be improved, leading to more reliable global mapping of Earth conductivity. For example, estimates of EM induction transfer functions estimated from night-side CHAMP data have been previously shown to have biases which depend systematically on local time (LT). This pattern of biases suggests that a purely zonal model does not adequately describe magnetospheric sources. As a first step toward improved modeling of spatial complexity in sources, we have applied empirical orthogonal function (EOF) methods to exploratory analysis of night-side observatory data. After subtraction of the predictions of the CM4 comprehensive model, which includes a zonally symmetric storm-time correction based on Dst, we find significant non-axisymmetric, but large scale coherent variability in the mid-latitude night-side observatory residuals. Over the restricted range of local times (18:00-6:00) and latitudes (50°S to 50°N) considered, the dominant spatial mode of variability is reasonably approximated by a q21 quadrupole spherical harmonic. Temporal variability of this leading EOF mode is well correlated with Dst. Strategies for moving beyond this initial exploratory EOF analysis to combine observatory data with

  20. MIPAS database: new HNO3 line parameters at 7.6 μm validated with MIPAS satellite measurements

    Directory of Open Access Journals (Sweden)

    A. Perrin

    2015-11-01

    Full Text Available Improved line positions and intensities have been generated for the 7.6 μm spectral region of nitric acid. They were obtained relying on a recent reinvestigation of the nitric acid band system at 7.6 μm and comparisons of HNO3 volume mixing ratio profiles retrieved from the "Michelson Interferometer for Passive Atmospheric Sounding" (MIPAS limb emission radiances in the 11 and 7.6 μm domains. This has led to an improved database called "MIPAS-2015". Comparisons with available laboratory information (individual line intensities, integrated absorption cross sections, and absorption cross sections show that MIPAS-2015 provides an improved description of the 7.6 μm region of nitric acid. This study should help to improve HNO3 satellite retrievals by allowing measurements to be performed simultaneously in the 11 and 7.6 μm micro-windows. In particular, it should be useful to analyze existing MIPAS and IASI spectra as well as spectra to be recorded by the forthcoming "Infrared Atmospheric Sounding Interferometer – New Generation" (IASI-NG instrument.

  1. Assessing net ecosystem carbon exchange of U S terrestrial ecosystems by integrating eddy covariance flux measurements and satellite observations

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Qianlai [Purdue University; Law, Beverly E. [Oregon State University; Baldocchi, Dennis [University of California, Berkeley; Ma, Siyan [University of California, Berkeley; Chen, Jiquan [University of Toledo, Toledo, OH; Richardson, Andrew [Harvard University; Melillo, Jerry [Marine Biological Laboratory; Davis, Ken J. [Pennsylvania State University; Hollinger, D. [USDA Forest Service; Wharton, Sonia [University of California, Davis; Falk, Matthias [University of California, Davis; Paw, U. Kyaw Tha [University of California, Davis; Oren, Ram [Duke University; Katulk, Gabriel G. [Duke University; Noormets, Asko [North Carolina State University; Fischer, Marc [Lawrence Berkeley National Laboratory (LBNL); Verma, Shashi [University of Nebraska; Suyker, A. E. [University of Nebraska, Lincoln; Cook, David R. [Argonne National Laboratory (ANL); Sun, G. [USDA Forest Service; McNulty, Steven G. [USDA Forest Service; Wofsy, Steve [Harvard University; Bolstad, Paul V [University of Minnesota; Burns, Sean [University of Colorado, Boulder; Monson, Russell K. [University of Colorado, Boulder; Curtis, Peter [Ohio State University, The, Columbus; Drake, Bert G. [Smithsonian Environmental Research Center, Edgewater, MD; Foster, David R. [Harvard University; Gu, Lianhong [ORNL; Hadley, Julian L. [Harvard University; Litvak, Marcy [University of New Mexico, Albuquerque; Martin, Timothy A. [University of Florida, Gainesville; Matamala, Roser [Argonne National Laboratory (ANL); Meyers, Tilden [NOAA, Oak Ridge, TN; Oechel, Walter C. [San Diego State University; Schmid, H. P. [Indiana University; Scott, Russell L. [USDA ARS; Torn, Margaret S. [Lawrence Berkeley National Laboratory (LBNL)

    2011-01-01

    More accurate projections of future carbon dioxide concentrations in the atmosphere and associated climate change depend on improved scientific understanding of the terrestrial carbon cycle. Despite the consensus that U.S. terrestrial ecosystems provide a carbon sink, the size, distribution, and interannual variability of this sink remain uncertain. Here we report a terrestrial carbon sink in the conterminous U.S. at 0.63 pg C yr 1 with the majority of the sink in regions dominated by evergreen and deciduous forests and savannas. This estimate is based on our continuous estimates of net ecosystem carbon exchange (NEE) with high spatial (1 km) and temporal (8-day) resolutions derived from NEE measurements from eddy covariance flux towers and wall-to-wall satellite observations from Moderate Resolution Imaging Spectroradiometer (MODIS). We find that the U.S. terrestrial ecosystems could offset a maximum of 40% of the fossil-fuel carbon emissions. Our results show that the U.S. terrestrial carbon sink varied between 0.51 and 0.70 pg C yr 1 over the period 2001 2006. The dominant sources of interannual variation of the carbon sink included extreme climate events and disturbances. Droughts in 2002 and 2006 reduced the U.S. carbon sink by 20% relative to a normal year. Disturbances including wildfires and hurricanes reduced carbon uptake or resulted in carbon release at regional scales. Our results provide an alternative, independent, and novel constraint to the U.S. terrestrial carbon sink.

  2. Enhancement in electron and ion temperatures due to solar flares as measured by SROSS-C2 satellite

    Directory of Open Access Journals (Sweden)

    D. K. Sharma

    2004-06-01

    Full Text Available The observations on the ionospheric electron and ion temperatures (Te and Ti measured by the RPA payload aboard the SROSS-C2 satellite have been used to study the effect of solar flares on ionospheric heating. The data on solar flare has been obtained from the National Geophysical Data Center (NGDC Boulder, Colorado (USA. It has been found that the electron and ion temperatures have a consistent enhancement during the solar flares on the dayside Earth's ionosphere. The estimated enhancement for the average electron temperature is from 1.3 to 1.9 times whereas for ion temperature it is from 1.2 to 1.4 times to the normal days average temperature. The enhancement of ionospheric temperatures due to solar flares is correlated with the diurnal variation of normal days' ionospheric temperatures. The solar flare does not have any significant effect on the nightside ionosphere. A comparison with the temperature obtained from the IRI-95 model also shows a similar enhancement.

  3. Tropospheric BrO column densities in the Arctic derived from satellite: retrieval and comparison to ground-based measurements

    OpenAIRE

    H Sihler; Platt, U.; Beirle, S.; Marbach, T.; S. Kühl; S. Dörner; Verschaeve, J.; Frieß, U.; Pöhler, D.; Vogel, L.; Sander, R.; T. Wagner

    2012-01-01

    During polar spring, halogen radicals like bromine monoxide (BrO) play an important role in the chemistry of tropospheric ozone destruction. Satellite measurements of the BrO distribution have become a particularly useful tool to investigate this probably natural phenomenon, but the separation of stratospheric and tropospheric partial columns of BrO is challenging. In this study, an algorithm was developed to retrieve tropospheric vertical...

  4. Analysis of satellite-derived Arctic tropospheric BrO columns in conjunction with aircraft measurements during ARCTAS and ARCPAC

    Directory of Open Access Journals (Sweden)

    S. Choi

    2011-09-01

    Full Text Available We derive estimates of tropospheric BrO column amounts during two Arctic field campaigns in 2008 using information from the satellite UV nadir sensors Ozone Monitoring Instrument (OMI and the second Global Ozone Monitoring Experiment (GOME-2 as well as estimates of stratospheric BrO columns from a model simulation. The sensitivity of the satellite-derived tropospheric BrO columns to various parameters is investigated using a radiative transfer model. We conduct a comprehensive analysis of satellite-derived tropospheric BrO columns including a detailed comparison with aircraft in-situ observations of BrO and related species obtained during the field campaigns. In contrast to prior expectation, tropospheric BrO, when present, existed over a broad range of altitudes. Our results show reasonable agreement between tropospheric BrO columns derived from the satellite observations and columns found using aircraft in-situ BrO. After accounting for the stratospheric contribution to total BrO column, several events of rapid BrO activation due to surface processes in the Arctic are apparent in both the OMI and GOME-2 based tropospheric columns. The wide orbital swath of OMI allows examination of the evolution of tropospheric BrO on about hourly time intervals near the pole. Low pressure systems, strong surface winds, and high planetary boundary layer heights are associated with the observed tropospheric BrO activation events.

  5. Validation of ACE-FTS satellite data in the upper troposphere/lower stratosphere (UTLS using non-coincident measurements

    Directory of Open Access Journals (Sweden)

    M. I. Hegglin

    2007-09-01

    Full Text Available CO, O3, and H2O data in the upper troposphere/lower stratosphere (UTLS measured by the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS on Canada's SCISAT-1 satellite are validated using aircraft measurements. In the UTLS, validation of chemical trace gas measurements is a challenging task due to small-scale variability in the tracer fields, strong gradients of the tracers across the tropopause, and scarcity of measurements suitable for validation purposes. Two alternative methods for the validation of the satellite data are introduced, which avoid the usual need for coincident measurements: tracer-tracer correlations, and vertical profiles relative to the tropopause height. Both largely reduce geophysical variability and thereby provide an "instantaneous climatology", allowing measurement comparison with non-coincident data which yields information about the precision, and a statistically meaningful error-assessment of the ACE-FTS satellite data. We found that the ACE-FTS CO and lower stratospheric O3 agree with the aircraft measurements within ±10% and ±5%, respectively. The ACE-FTS O3 in the UT exhibits a high bias of up to 40%. H2O indicates a low bias with relative differences of around 20% in the LS and 40% in the UT, respectively. When taking into account the smearing effect of the vertically limited spacing between measurements of the ACE-FTS instrument, the errors decrease by 5–15% around the tropopause. The ACE-FTS instrument hence offers unprecedented precision and vertical resolution in the UTLS, that will allow a new global perspective on UTLS tracer distributions.

  6. Assessment of the global monthly mean surface insolation estimated from satellite measurements using global energy balance archive data

    Science.gov (United States)

    Li, Zhanqing; Whitlock, Charles H.; Charlock, Thomas P.

    1995-01-01

    Global sets of surface radiation budget (SRB) have been obtained from satellite programs. These satellite-based estimates need validation with ground-truth observations. This study validates the estimates of monthly mean surface insolation contained in two satellite-based SRB datasets with the surface measurements made at worldwide radiation stations from the Global Energy Balance Archive (GEBA). One dataset was developed from the Earth Radiation Budget Experiment (ERBE) using the algorithm of Li et al. (ERBE/SRB), and the other from the International Satellite Cloud Climatology Project (ISCCP) using the algorithm of Pinker and Laszlo and that of Staylor (GEWEX/SRB). Since the ERBE/SRB data contain the surface net solar radiation only, the values of surface insolation were derived by making use of the surface albedo data contained GEWEX/SRB product. The resulting surface insolation has a bias error near zero and a root-mean-square error (RMSE) between 8 and 28 W/sq m. The RMSE is mainly associated with poor representation of surface observations within a grid cell. When the number of surface observations are sufficient, the random error is estimated to be about 5 W/sq m with present satellite-based estimates. In addition to demonstrating the strength of the retrieving method, the small random error demonstrates how well the ERBE derives from the monthly mean fluxes at the top of the atmosphere (TOA). A larger scatter is found for the comparison of transmissivity than for that of insolation. Month to month comparison of insolation reveals a weak seasonal trend in bias error with an amplitude of about 3 W/sq m. As for the insolation data from the GEWEX/SRB, larger bias errors of 5-10 W/sq m are evident with stronger seasonal trends and almost identical RMSEs.

  7. Satellite Imagery Measures of the Astronomically Aligned Megalithis at Nabta Playa.

    Science.gov (United States)

    Brophy, T.; Rosen, P.

    The Nabta Playa megalithic complex consists of two types of features: first are the large stones, many of them shaped, placed on or in the sediments of an ancient seasonal lake bed that is now hyper-ariad, second are large sculpted bedrocks features underneath the sediments and associated with the surface megaliths (Wendorf et al. 1992). The astronomically aligned surface megalithic structures described in field reports (Wendorf and Malville, 2001) are identified in recent georectified 60cm panchromatic satellite imagery of Nabta Playa, Southern Egypt. The satellite images allow refinement, often significant of the reported locations of the megaliths (Malville et al 1998, and Wendorf and Malville 2001). The report that a primary megalithic alignment was constructed to point to the bright star Sirius, circa 4820BC, is reconsidered in light of the satellite data, new field, data, radiocarbon, lithostratigraphic and geochronological data, and the playa sedimentation history. Other possible archaeoastronomical interpretations are considered for that alignment, including the three star asterism (of Alnitak, Alniham and Mintaka) circa 6270BC that is also implicated in the small Nebta Playa "calendar circle". Signatures of other possible features apparent in the satellite imagery and a recent field study are also considered. Only a small number of the subsurface bedrock sculptures have been excavated. We recommend the use of ground penetrating imaging methods to illuminate the known but not yet excavated subsurface features. The problem of determining the astronomical intent of the builders of the megalithic structures is approached by considering the complex of features as a whole.

  8. Next-generation satellite gravimetry for measuring mass transport in the Earth system

    NARCIS (Netherlands)

    Teixeira Encarnação, J.

    2015-01-01

    The main objective of the thesis is to identify the optimal set-up for future satellite gravimetry missions aimed at monitoring mass transport in the Earth’s system.The recent variability of climatic patterns, the spread of arid regions and associ- ated changes in the hydrological cycle, and vigorou

  9. Fluorescence-based measurement of cystine uptake through xCT shows requirement for ROS detoxification in activated lymphocytes.

    Science.gov (United States)

    Siska, Peter J; Kim, Bumki; Ji, Xiangming; Hoeksema, Megan D; Massion, Pierre P; Beckermann, Kathryn E; Wu, Jianli; Chi, Jen-Tsan; Hong, Jiyong; Rathmell, Jeffrey C

    2016-11-01

    T and B lymphocytes undergo metabolic re-programming upon activation that is essential to allow bioenergetics, cell survival, and intermediates for cell proliferation and function. To support changes in the activity of signaling pathways and to provide sufficient and necessary intracellular metabolites, uptake of extracellular nutrients increases sharply with metabolic re-programming. One result of increased metabolic activity can be reactive oxygen species (ROS), which can be toxic when accumulated in excess. Uptake of cystine allows accumulation of cysteine that is necessary for glutathione synthesis and ROS detoxification. Cystine uptake is required for T cell activation and function but measurements based on radioactive labeling do not allow analysis on single cell level. Here we show the critical role for cystine uptake in T cells using a method for measurement of cystine uptake using a novel CystineFITC probe. T cell receptor stimulation lead to upregulation of the cystine transporter xCT (SLC7a11) and increased cystine uptake in CD4+ and CD8+ human T cells. Similarly, lipopolysaccharide stimulation increased cystine uptake in human B cells. The CystineFITC probe was not toxic and could be metabolized to prevent cystine starvation induced cell death. Furthermore, blockade of xCT or competition with natural cystine decreased uptake of CystineFITC. CystineFITC is thus a versatile tool that allows measurement of cystine uptake on single cell level and shows the critical role for cystine uptake for T cell ROS regulation and activation.

  10. Dome growth, collapse, and valley fill at Soufrière Hills Volcano, Montserrat, from 1995 to 2013: Contributions from satellite radar measurements of topographic change

    Science.gov (United States)

    Arnold, D. W. D.; Biggs, J.; Wadge, G.; Ebmeier, S. K.; Odbert, H. M.; Poland, Michael P.

    2016-01-01

    Frequent high-resolution measurements of topography at active volcanoes can provide important information for assessing the distribution and rate of emplacement of volcanic deposits and their influence on hazard. At dome-building volcanoes, monitoring techniques such as LiDAR and photogrammetry often provide a limited view of the area affected by the eruption. Here, we show the ability of satellite radar observations to image the lava dome and pyroclastic density current deposits that resulted from 15 years of eruptive activity at Soufrière Hills Volcano, Montserrat, from 1995 to 2010. We present the first geodetic measurements of the complete subaerial deposition field on Montserrat, including the lava dome. Synthetic aperture radar observations from the Advanced Land Observation Satellite (ALOS) and TanDEM-X mission are used to map the distribution and magnitude of elevation changes. We estimate a net dense-rock equivalent volume increase of 108 ± 15M m3 of the lava dome and 300 ± 220M m3 of talus and subaerial pyroclastic density current deposits. We also show variations in deposit distribution during different phases of the eruption, with greatest on-land deposition to the south and west, from 1995 to 2005, and the thickest deposits to the west and north after 2005. We conclude by assessing the potential of using radar-derived topographic measurements as a tool for monitoring and hazard assessment during eruptions at dome-building volcanoes.

  11. Comparative Analysis of Satellite Measurements Calculation Results Using the Postprocessing Services: Asg-Eupos (Poland), Apps (USA) and CSRS (Canada)

    Science.gov (United States)

    Mika, Monika; Kudach, Jakub

    2014-06-01

    The publication has a cognitive research character. It presents a comparative analysis of free Internet services in Poland and abroad, used to adjust the data obtained using satellite measurement techniques. The main aim of this work is to describe and compare free tools for satellite data processing and to examine them for possible use in the surveying works in Poland. Among the many European and global services three of them dedicated to satellite measurements were selected: ASG-EUPOS (Poland), APPS (USA) and CSRS (Canada). The publication contains the results of calculations using these systems. Calculations were based on RINEX files obtained via postprocessing service (ASG-EUPOS network) POZGEO D for 12 reference stations in the South Poland. In order to examine differences in results between the ASG-EUPOS, APPS and CSRS the transformation points coordinate to a single coordinate system ETRF 2000 (in force in Poland) was made. Studies have shown the possibility of the calculation in Poland (in postprocessing mode) using the analyzed applications with global coverage.

  12. Investigating the error budget of tropical rainfall accumulations derived from combined passive microwave and infrared satellite measurements

    Science.gov (United States)

    Roca, R.; Chambon, P.; jobard, I.; Viltard, N.

    2012-04-01

    Measuring rainfall requires a high density of observations, which, over the whole tropical elt, can only be provided from space. For several decades, the availability of satellite observations has greatly increased; thanks to newly implemented missions like the Megha-Tropiques mission and the forthcoming GPM constellation, measurements from space become available from a set of observing systems. In this work, we focus on rainfall error estimations at the 1 °/1-day accumulated scale, key scale of meteorological and hydrological studies. A novel methodology for quantitative precipitation estimation is introduced; its name is TAPEER (Tropical Amount of Precipitation with an Estimate of ERrors) and it aims to provide 1 °/1-day rain accumulations and associated errors over the whole Tropical belt. This approach is based on a combination of infrared imagery from a fleet of geostationary satellites and passive microwave derived rain rates from a constellation of low earth orbiting satellites. A three-stage disaggregation of error into sampling, algorithmic and calibration errors is performed; the magnitudes of the three terms are then estimated separately. A dedicated error model is used to evaluate sampling errors and a forward error propagation approach is used for an estimation of algorithmic and calibration errors. One of the main findings in this study is the large contribution of the sampling errors and the algorithmic errors of BRAIN on medium rain rates (2 mm h-1 to 10 mm h-1) in the total error budget.

  13. Monitoring agricultural crop growth: comparison of high spatial-temporal satellite imagery versus UAV-based imaging spectrometer time series measurements

    Science.gov (United States)

    Mucher, Sander; Roerink, Gerbert; Franke, Jappe; Suomalainen, Juha; Kooistra, Lammert

    2014-05-01

    In 2012, the Dutch National Satellite Data Portal (NSD) was launched as a preparation to the launch of the European SENTINEL satellites in the framework of the Copernicus Programme. At the same time the Unmanned Aerial Remote Sensing Facility (UARSF: www.wageningenUR.nl/uarsf) has been established as research facility at Wageningen University and Research Centre. The NSD became available for the development of services and advice through an investment from the Dutch government in collaboration with the Netherlands Space Office (NSO) in order to develop new services for precision agriculture. The NSD contains Formosat, Radarsat as well as DMC satellite imagery. The processing of the DMC imagery resulted in the Greenmonitor service (www.groenmonitor.nl). The Greenmonitor is an unique product that covers the Netherlands with a high spatial and temporal resolution. The Greenmonitor is now being exploited for various applications, amongst others crop identification, crop phenology, and identification of management activities. The UARSF of Wageningen UR has three objectives: 1) to develop innovation in the field of remote sensing science using Unmanned Aerial Vehicles (UAV) by providing a platform for dedicated and high-quality experiments; 2) to support high quality UAV services by providing calibration facilities and disseminating processing procedures to the UAV user community; 3) to promote and test the use of UAV in a broad range of application fields such as precision agriculture and habitat monitoring. Through this coincidence of new developments the goal of our study was to compare the information for the measurements of spatial variation in crops and soils as derived from high spatial-temporal satellite imagery from the national data portal compared to the exploitation of UAVs, in our case an Altura octocopter with a hyperspectral camera. As such, the focus is on the applications in precision agriculture. Both primary producers and chain partners and service

  14. Comparison of long term series of total ozone and NO2 column measurements in the southern tropics by SAOZ/NDACC UV-Vis spectrometers and satellites

    Directory of Open Access Journals (Sweden)

    M. Pastel

    2013-05-01

    Full Text Available Long series of ozone and NO2 total column measurements at the Southern tropics are available from two ground-based SAOZ (Système d'Analyse par Observation Zenithale UV-visible spectrometers operated within the NDACC (Network for the Detection of Amtospheric Composition Change deployed in Bauru in S-E Brazil and Reunion Island in the S-W Indian Ocean in 1995 and 1993 respectively. Although at the same latitude, the data show larger columns of both species above the South American continent than above the Indian Ocean. For verifying the reliability of these data before carrying out trend analysis, they have been compared to satellites observations available during the same period. However, since no single satellite was operating from 1995 until present, the comparison requires the building of a composite, called merged satellites series. As systematic differences exist between the individual data sets because of the many differences between instruments, spectral ranges, absorption cross-sections, and retrieval procedures used, the building of such a composite requires thorough evaluation and normalisation of each. From comparisons with SAOZ, the merged satellite data set build with EP-TOMS from 1995 to 2004 and OMI-TOMS from 2005 to 2012 are found best for ozone in the Southern tropics. After correction for biases with SAOZ, both are confirming the larger ozone columns reported by SAOZ above South America compared to the Indian Ocean shown to origin from ozone production by lightning NOx (LNOx over the continent in the summer and the advection from Africa of ozone produced by biomass burning emissions in the winter. For NO2, best matching the SAOZ is a combination of GOME GDP4 1996–2003 and SCIAMACHY 2003–2012 products, after correction for the photochemical diurnal change of the concentration of the species between the SAOZ twilight observations and the time of satellites overpasses. The merged data series built from the data of these two

  15. Satellite measurement of sulfur dioxide from the Redoubt eruptions of 1989 1990

    Science.gov (United States)

    Schnetzler, C. C.; Doiron, S. D.; Walter, L. S.; Krueger, A. J.

    1994-08-01

    The mass of SO 2 emitted by the 16 major explosive eruptions of Redoubt Volcano between December 1989 and April 1990 have been examined by the Total Ozone Mapping Spectrometer (TOMS) carried on the Nimbus 7 satellite. Because of low light levels during the winter months, TOMS could not detect SO 2 at high northern latitudes. Thus, the major eruptions from December through February could not be monitored unless winds brought the clouds to latitudes lower than about 58°N. Only two SO 2 clouds were observed in the satellite data — an approximately 100-kiloton (kt) cloud on December 16 over Nevada and eastern California, and a 10-kt cloud on March 9 directly over the volcano. We speculate that the major eruption on December 15 at 1015 hour produced the 100-kt cloud seen on December 16, and the mass of SO 2 injected into the atmosphere at that time was 175 ± 50 kt.

  16. Performance Measurements of the Submillimeter Wave Astronomy Satellite (SWAS) Solar Array Deployment System

    OpenAIRE

    Sneiderman, Gary

    1995-01-01

    This paper discusses some unique features of the solar array deployment system used on the Submillimeter Wave Astronomy Satellite (SWAS). The mechanism system is highly optimized, incorporates no single-use components, and is fully testable in a one-"g" environment. A single High Output Paraffin (HOP) linear actuator drives the mechanisms used to deploy and lock each wing of solar array panels. The solar arrays open slowly, requiring only enough force to overcome inefficiencies and friction. ...

  17. Search for Best Astronomical Observatory Sites in the MENA Region using Satellite Measurements

    Science.gov (United States)

    Abdelaziz, G.; Guebsi, R.; Guessoum, N.; Flamant, C.

    2017-06-01

    We perform a systematic search for astronomical observatory sites in the MENA (Middle-East and North Africa) region using space-based data for all the relevant factors, i.e. altitude (DEM), cloud fraction (CF), light pollution (NTL), precipitable water vapor (PWV), aerosol optical depth (AOD), relative humidity (RH), wind speed (WS), Richardson Number (RN), and diurnal temperature range (DTR). We look for the best locations overall even where altitudes are low (the threshold that we normally consider being 1,500 m) or where the combination of the afore-mentioned determining factors had previously excluded all locations in a given country. In this aim, we use the rich data that Earth-observing satellites provide, e.g. the Terra and Aqua multi-national NASA research satellites, with their MODIS (Moderate Resolution Imaging Spectroradiometer) and AIRS (Atmospheric Infrared Sounder) instruments, the Defense Meteorological Satellite Program’s Operational Linescan System (DMSP-OLS), and other products from climate diagnostics archives (e.g. MERRA). We present preliminary results on the best locations for the region.

  18. The first estimates of global nucleation mode aerosol concentrations based on satellite measurements

    Directory of Open Access Journals (Sweden)

    M. Kulmala

    2011-11-01

    Full Text Available Atmospheric aerosols play a key role in the Earth's climate system by scattering and absorbing solar radiation and by acting as cloud condensation nuclei. Satellites are increasingly used to obtain information on properties of aerosol particles with a diameter larger than about 100 nm. However, new aerosol particles formed by nucleation are initially much smaller and grow into the optically active size range on time scales of many hours. In this paper we derive proxies, based on process understanding and ground-based observations, to determine the concentrations of these new particles and their spatial distribution using satellite data. The results are applied to provide seasonal variation of nucleation mode concentration. The proxies describe the concentration of nucleation mode particles over continents. The source rates are related to both regional nucleation and nucleation associated with more restricted sources. The global pattern of nucleation mode particle number concentration predicted by satellite data using our proxies is compared qualitatively against both observations and global model simulations.

  19. Evaluation of balloon and satellite water vapour measurements in the Southern tropical and subtropical UTLS during the HIBISCUS campaign

    Directory of Open Access Journals (Sweden)

    N. Montoux

    2009-07-01

    Full Text Available Balloon water vapour in situ and remote measurements in the tropical upper troposphere and lower stratosphere (UTLS obtained during the HIBISCUS campaign around 20° S in Brazil in February–March 2004 using a tunable diode laser (μSDLA, a surface acoustic wave (SAW and a Vis-NIR solar occultation spectrometer (SAOZ on a long duration balloon, have been used for evaluating the performances of satellite borne remote water vapour instruments available at the same latitude and measurement period. In the stratosphere, HALOE displays the best precision (2.5%, followed by SAGE II (7%, MIPAS (10%, SAOZ (20–25% and SCIAMACHY (35%, all of which show approximately constant H2O mixing ratios between 20–25 km. Compared to HALOE of ±10% accuracy between 0.1–100 hPa, SAGE II and SAOZ show insignificant biases, MIPAS is wetter by 10% and SCIAMACHY dryer by 20%. The currently available GOMOS profiles of 25% precision show a positive vertical gradient in error for identified reasons. Compared to these, the water vapour of the Reprobus Chemistry Transport Model, forced at pressures higher than 95 hPa by the ECMWF analyses, is dryer by about 1 ppmv (20%.

    In the lower stratosphere between 16–20 km, most notable features are the steep degradation of MIPAS precision below 18 km, and the appearance of biases between instruments far larger than their quoted total uncertainty. HALOE and SAGE II (after spectral adjustment for reducing the bias with HALOE at northern mid-latitudes both show decreases of water vapour with a minimum at the tropopause not seen by other instruments or the model, possibly attributable to an increasing error in the HALOE altitude registration. Between 16–18 km where the water vapour concentration shows little horizontal variability, and where the μSDLA balloon measurements are not perturbed by outgassing, the average mixing ratios reported by the remote sensing instruments are substantially lower than the 4–5

  20. Surface energy balance and actual evapotranspiration of the transboundary Indus Basin estimated from satellite measurements and the ETLook model

    Science.gov (United States)

    Bastiaanssen, W. G. M.; Cheema, M. J. M.; Immerzeel, W. W.; Miltenburg, I. J.; Pelgrum, H.

    2012-11-01

    The surface energy fluxes and related evapotranspiration processes across the Indus Basin were estimated for the hydrological year 2007 using satellite measurements. The new ETLook remote sensing model (version 1) infers information on actual Evaporation (E) and actual Transpiration (T) from combined optical and passive microwave sensors, which can observe the land-surface even under persistent overcast conditions. A two-layer Penman-Monteith equation was applied for quantifying soil and canopy evaporation. The novelty of the paper is the computation of E and T across a vast area (116.2 million ha) by using public domain microwave data that can be applied under all weather conditions, and for which no advanced input data are required. The average net radiation for the basin was estimated as being 112 Wm-2. The basin average sensible, latent and soil heat fluxes were estimated to be 80, 32, and 0 Wm-2, respectively. The average evapotranspiration (ET) and evaporative fraction were 1.2 mm d-1 and 0.28, respectively. The basin wide ET was 496 ± 16.8 km3 yr-1. Monte Carlo analysis have indicated 3.4% error at 95% confidence interval for a dominant land use class. Results compared well with previously conducted soil moisture, lysimeter and Bowen ratio measurements at field scale (R2 = 0.70; RMSE = 0.45 mm d-1; RE = -11.5% for annual ET). ET results were also compared against earlier remote sensing and modeling studies for various regions and provinces in Pakistan (R2 = 0.76; RMSE = 0.29 mmd-1; RE = 6.5% for annual ET). The water balance for all irrigated areas together as one total system in Pakistan and India (26.02 million ha) show a total ET value that is congruent with the ET value from the ETLook surface energy balance computations. An unpublished validation of the same ETLook model for 23 jurisdictional areas covering the entire Australian continent showed satisfactory results given the quality of the watershed data and the diverging physiographic and climatic

  1. Transport of NOx in East Asia identified by satellite and in situ measurements and Lagrangian particle dispersion model simulations

    Science.gov (United States)

    Lee, H.-J.; Kim, S.-W.; Brioude, J.; Cooper, O. R.; Frost, G. J.; Kim, C.-H.; Park, R. J.; Trainer, M.; Woo, J.-H.

    2014-03-01

    Nitrogen dioxide (NO2) columns observed from space have been useful in detecting the increase of nitrogen oxides (NOx) emissions in East Asia, particularly China, coinciding with rapid economic growth during the past several decades. NO2 columns retrieved above a particular location reflect a combination of local NOx emissions and transported NOx from upwind sources. In this study, we demonstrate the transport of NOx emitted in East Asia using satellite and surface in situ measurements and Lagrangian particle dispersion model simulations. Enhanced satellite NO2 columns in the Yellow Sea (between China and South Korea) and the East Sea (between South Korea and Japan), and different seasonal variations of NO2 in China, North and South Korea, and Japan, suggest the importance of NOx transport in understanding the local NOx budget. Lagrangian transport model simulations with tracers of different chemical lifetimes identify source-receptor relationships that explain high NO2 over the oceans and springtime peaks in Korea and Japan, with China being the most likely source region. Our results have important implications for studies using satellite NO2 retrievals to derive NOx emissions at local scales in regions adjacent to large sources, such as in East Asia, Europe, and the Eastern U.S.

  2. A possible experiment with two counter-orbiting drag-free satellites to obtain a new test of Einstein's general theory of relativity and improved measurements in geodesy

    Science.gov (United States)

    Van Patten, R. A.; Everitt, C. W. F.

    1976-01-01

    In 1918, Lense and Thirring calculated that a moon in orbit around a massive rotating planet would experience a nodal dragging effect due to general relativity. We describe an experiment to measure this effect by means of two counter-orbiting drag-free satellites in polar orbit about the earth. For a 2-1/2 year experiment, the measurement should approach an accuracy of 1%. An independent measurement of the geodetic precession of the orbit plane due to the motion about the sun may also be possible to about 10% accuracy. In addition to precision tracking data from existing ground stations, satellite-to-satellite Doppler data are taken at points of passing near the poles to yield an accurate measurement of the separation distance between the two satellites. New geophysical information on both earth harmonics and tidal effects is inherent in this polar ranging data.

  3. An Investigation of Widespread Ozone Damage to the Soybean Crop in the Upper Midwest Determined From Ground-Based and Satellite Measurements

    Science.gov (United States)

    Fishman, Jack; Creilson, John K.; Parker, Peter A.; Ainsworth, Elizabeth A.; Vining, G. Geoffrey; Szarka, John; Booker, Fitzgerald L.; Xu, Xiaojing

    2010-01-01

    Elevated concentrations of ground-level ozone (O3) are frequently measured over farmland regions in many parts of the world. While numerous experimental studies show that O3 can significantly decrease crop productivity, independent verifications of yield losses at current ambient O3 concentrations in rural locations are sparse. In this study, soybean crop yield data during a 5-year period over the Midwest of the United States were combined with ground and satellite O3 measurements to provide evidence that yield losses on the order of 10% could be estimated through the use of a multiple linear regression model. Yield loss trends based on both conventional ground-based instrumentation and satellite-derived tropospheric O3 measurements were statistically significant and were consistent with results obtained from open-top chamber experiments and an open-air experimental facility (SoyFACE, Soybean Free Air Concentration Enrichment) in central Illinois. Our analysis suggests that such losses are a relatively new phenomenon due to the increase in background tropospheric O3 levels over recent decades. Extrapolation of these findings supports previous studies that estimate the global economic loss to the farming community of more than $10 billion annually.

  4. Joint Polar Satellite System (JPSS) Common Ground System (CGS) Technical Performance Measures of the Block 2 Architecture

    Science.gov (United States)

    Grant, K. D.; Panas, M.

    2016-12-01

    NOAA and NASA are jointly acquiring the next-generation civilian weather satellite system: the Joint Polar Satellite System (JPSS). JPSS replaced the afternoon orbit component and ground processing of NOAA's old POES system. JPSS satellites carry sensors that collect meteorological, oceanographic, climatological, and solar-geophysical observations of the earth, atmosphere, and space. The ground processing system for JPSS is known as the JPSS Common Ground System (JPSS CGS). Developed and maintained by Raytheon Intelligence, Information and Services (IIS), the CGS is a globally distributed, multi-mission system serving NOAA, NASA and their national and international partners. The CGS has demonstrated its scalability and flexibility to incorporate multiple missions efficiently and with minimal cost, schedule and risk, while strengthening global partnerships in weather and environmental monitoring. The CGS architecture has been upgraded to Block 2.0 to satisfy several key objectives, including: "operationalizing" the first satellite, Suomi NPP, which originally was a risk reduction mission; leveraging lessons learned in multi-mission support, taking advantage of newer, more reliable and efficient technologies and satisfying constraints due of the continually evolving budgetary environment. To ensure the CGS meets these needs, we have developed 48 Technical Performance Measures (TPMs) across 9 categories: Data Availability, Data Latency, Operational Availability, Margin, Scalability, Situational Awareness, Transition (between environments and sites), WAN Efficiency, and Data Recovery Processing. This paper will provide an overview of the CGS Block 2.0 architecture, with particular focus on the 9 TPM categories listed above. We will describe how we ensure the deployed architecture meets these TPMs to satisfy our multi-mission objectives with the deployment of Block 2.0.

  5. Identification of tropospheric emissions sources from satellite observations: Synergistic use of HCHO, NO2, and SO2 trace gas measurements

    Science.gov (United States)

    Marbach, T.; Beirle, S.; Khokhar, F.; Platt, U.

    2005-12-01

    We present case studies for combined HCHO, NO2, and SO2 satellite observations, derived from GOME measurements. Launched on the ERS-2 satellite in April 1995, GOME has already performed continuous operations over 8 years providing global observations of the different trace gases. In this way, satellite observations provide unique opportunities for the identifications of trace gas sources. The satellite HCHO observations provide information concerning the localization of biomass burning (intense source of HCHO). The principal biomass burning areas can be observed in the Amazon basin region and in central Africa Weaker HCHO sources (south east of the United States, northern part of the Amazon basin, and over the African tropical forest), not correlated with biomass burning, could be due to biogenic isoprene emissions. The HCHO data can be compared with NO2 and SO2 results to identify more precisely the tropospheric sources (biomass burning events, human activities, additional sources like volcanic emissions). Biomass burning are important tropospheric sources for both HCHO and NO2. Nevertheless HCHO reflects more precisely the biomass burning as it appears in all biomass burning events. NO2 correlate with HCHO over Africa (grassland fires) but not over Indonesia (forest fires). In south America, an augmentation of the NO2 concentrations can be observed with the fire shift from the forest to grassland vegetation. So there seems to be a dependence between the NO2 emissions during biomass burning and the vegetation type. Other high HCHO, SO2, and NO2 emissions can be correlated with climatic events like the El Nino in 1997, which induced dry conditions in Indonesia causing many forest fires.

  6. The 2010 Eyja eruption evolution by using IR satellite sensors measurements: retrieval comparison and insights into explosive volcanic processes

    Science.gov (United States)

    Piscini, A.; Corradini, S.; Merucci, L.; Scollo, S.

    2010-12-01

    The 2010 April-May Eyja eruption caused an unprecedented disruption to economic, political and cultural activities in Europe and across the world. Because of the harming effects of fine ash particles on aircrafts, many European airports were in fact closed causing millions of passengers to be stranded, and with a worldwide airline industry loss estimated of about 2.5 billion Euros. Both security and economical issues require robust and affordable volcanic cloud retrievals that may be really improved through the intercomparison among different remote sensing instruments. In this work the Thermal InfraRed (TIR) measurements of different polar and geostationary satellites instruments as the Moderate Resolution Imaging Spectroradiometer (MODIS), the Advanced Very High Resolution Radiometer (AVHRR) and the Spin Enhanced Visible and Infrared Imager (SEVIRI), have been used to retrieve the volcanic ash and SO2 in the entire eruption period over Iceland. The ash retrievals (mass, AOD and effective radius) have been carried out by means of the split window BTD technique using the channels centered around 11 and 12 micron. The least square fit procedure is used for the SO2 retrieval by using the 7.3 and 8.7 micron channels. The simulated TOA radiance Look-Up Table (LUT) needed for both the ash and SO2 column abundance retrievals have been computed using the MODTRAN 4 Radiative Transfer Model. Further, the volcanic plume column altitude and ash density have been computed and compared, when available, with ground observations. The results coming from the retrieval of different IR sensors show a good agreement over the entire eruption period. The column height, the volcanic ash and the SO2 emission trend confirm the indentified different phases occurred during the Eyja eruption. We remark that the retrieved volcanic plume evolution can give important insights into eruptive dynamics during long-lived explosive activity.

  7. An automated fog monitoring system for the Indo-Gangetic Plains based on satellite measurements

    Science.gov (United States)

    Patil, Dinesh; Chourey, Reema; Rizvi, Sarwar; Singh, Manoj; Gautam, Ritesh

    2016-05-01

    Fog is a meteorological phenomenon that causes reduction in regional visibility and affects air quality, thus leading to various societal and economic implications, especially disrupting air and rail transportation. The persistent and widespread winter fog impacts the entire the Indo-Gangetic Plains (IGP), as frequently observed in satellite imagery. The IGP is a densely populated region in south Asia, inhabiting about 1/6th of the world's population, with a strong upward pollution trend. In this study, we have used multi-spectral radiances and aerosol/cloud retrievals from Terra/Aqua MODIS data for developing an automated web-based fog monitoring system over the IGP. Using our previous and existing methodologies, and ongoing algorithm development for the detection of fog and retrieval of associated microphysical properties (e.g. fog droplet effective radius), we characterize the widespread fog detection during both daytime and nighttime. Specifically, for the night time fog detection, the algorithm employs a satellite-based bi-spectral brightness temperature difference technique between two spectral channels: MODIS band-22 (3.9μm) and band-31 (10.75μm). Further, we are extending our algorithm development to geostationary satellites, for providing continuous monitoring of the spatial-temporal variation of fog. We anticipate that the ongoing and future development of a fog monitoring system would be of assistance to air, rail and vehicular transportation management, as well as for dissemination of fog information to government agencies and general public. The outputs of fog detection algorithm and related aerosol/cloud parameters are operationally disseminated via http://fogsouthasia.com/.

  8. Applications of asynoptic space - Time Fourier transform methods to scanning satellite measurements

    Science.gov (United States)

    Lait, Leslie R.; Stanford, John L.

    1988-01-01

    A method proposed by Salby (1982) for computing the zonal space-time Fourier transform of asynoptically acquired satellite data is discussed. The method and its relationship to other techniques are briefly described, and possible problems in applying it to real data are outlined. Examples of results obtained using this technique are given which demonstrate its sensitivity to small-amplitude signals. A number of waves are found which have previously been observed as well as two not heretofore reported. A possible extension of the method which could increase temporal and longitudinal resolution is described.

  9. Measurement of the gravitational redshift effect with RadioAstron satellite

    CERN Document Server

    Birukov, A V; Litvinov, D A; Porayko, N K; Rudenko, V N

    2015-01-01

    RadioAstron satellite admits in principle a testing the gravitational redshift effect with an accuracy of better than $10^{-5}$. It would surpass the result of Gravity Probe A mission at least an order of magnitude. However, RadioAstron's communications and frequency transfer systems are not adapted for a direct application of the non relativistic Doppler and troposphere compensation scheme used in the Gravity Probe A experiment. This leads to degradation of the redshift test accuracy approximately to the level 0.01. We discuss the way to overcome this difficulty and present preliminary results based on data obtained during special observing sessions scheduled for testing the new techniques.

  10. Oil Pollution Of The Southeastern Baltic Sea By Satellite Remote Sensing Data And In-Situ Measurements

    Directory of Open Access Journals (Sweden)

    Bulycheva Elena V.

    2015-12-01

    Full Text Available Results of operational satellite monitoring of oil pollution of the sea surface together with in-situ measurements of the oil products concentration in the water column for the first time allowed to establish relation between the surface pollution originated from ships, and the general characteristics of spatial and temporal distribution of oil products in the water column in the Southeastern Baltic Sea. Areas with heightened concentrations of oil products in the surface and bottom layers were determined for the study area. The main directions of the contamination propagation are agreed with the main direction of annual mean transport of substances in the Gdansk Basin.

  11. Fade measurements at L-band and UHF in mountainous terrain for land mobile satellite systems

    Science.gov (United States)

    Vogel, Wolfhard J.; Goldhirsh, Julius

    1988-01-01

    Fading results related to land mobile satellite communications at L-band (1502 MHz) and UHF (870 MHz) are described. These results were derived from an experiment performed in a series of canyon passes in the Boulder, Colorado region of the US. The experimental configuration involved a helicopter as the source platform, which maintained a relatively fixed geometry with a mobile van containing the receiver and data-acquisition system. An unobstructed line of sight between the radiating sources and the receiving van was, for the most part, also maintained. In this configuration, the dominant mechanism causing signal fading (or enhancement) is a result of multipath. The resulting fade distributions demonstrated that at the 1 percent and 5 percent levels, 5.5- and 2.6-dB fades were on the average exceeded at L-band and 4.8- and 2.4-dB at UHF, respectively, for a path elevation angle of 45 deg. The canyon results as compared with previous roadside-tree-shadowing results demonstrate that the deciding factor dictating fade margin for future land mobile satellite systems is tree shadowing rather than fades caused by multipath.

  12. Statistical interpolation of ozone measurements from satellite data (TOMS, SBUV and SAGE II) using the kriging method

    Energy Technology Data Exchange (ETDEWEB)

    Tranchant, B.J.S.; Vincent, A.P. [Montreal Univ., PQ (Canada). Dept. of Physics; Centre for Research on Computation and its Applications (CERCA), Montreal, PQ (Canada)

    2000-06-01

    This study demonstrates that ordinary kriging in spherical coordinates using experimental semivariograms provides highly usable results, especially near the pole in winter and/or where there could be data missing over large areas. In addition, kriging allows display of the spatial variability of daily ozone measurements at different pressure levels. Three satellite data sets were used: total ozone mapping spectrometer (TOMS) data, solar backscattered ultra violet (SBUV), and the stratospheric aerosol and gas experiment (SAGE II) ozone profiles. Since SBUV is a nadir-viewing instrument, measurements are only taken along the sun-synchronous polar orbits of the satellite. SAGE II is a limb-viewing solar occulation instrument, and measurements have high vertical resolution but poor daily coverage. TOMS has wider coverage with equidistant distribution of data (resolution 1 x 1.25 ) but provides no vertical information. Comparisons of the resulting SBUV-interpolated (column-integrated) ozone field with TOMS data are strongly in agreement, with a global correlation of close to 98%. Comparisons of SBUV-interpolated ozone profiles with daily SAGE II profiles are relatively good, and comparable to those found in the literature. The interpolated ozone layers at different pressure levels are shown. (orig.)

  13. Comparison of 7 years of satellite-borne and ground-based tropospheric NO2 measurements around Milan, Italy

    Science.gov (United States)

    OrdóñEz, C.; Richter, A.; Steinbacher, M.; Zellweger, C.; Nüß, H.; Burrows, J. P.; PréVôT, A. S. H.

    2006-03-01

    Tropospheric NO2 vertical column densities (VCDs) over the Lombardy region were retrieved from measurements of the Global Ozone Monitoring Experiment (GOME) spectrometer for the period 1996-2002 using a differential optical absorption method. This data set was compared with in situ measurements of NO2 at around 100 ground stations in the Lombardy region, northern Italy. The tropospheric NO2 VCDs are reasonably well correlated with the near-surface measurements under cloud-free conditions. However, the slope of the tropospheric VCDs versus ground measurements is higher in autumn-winter than in spring-summer. This effect is clearly reduced when the peroxyacetyl nitrate and nitric acid (HNO3) interferences of conventional NOx analyzers are taken into account. For a more quantitative comparison, the NO2 ground measurements were scaled to tropospheric VCDs using a seasonal NO2 vertical profile over northern Italy calculated by the Model of Ozone and Related Tracers 2 (MOZART-2). The tropospheric VCDs retrieved from satellite and those determined from ground measurements agree well, with a correlation coefficient R = 0.78 and a slope close to 1 for slightly polluted stations. GOME cannot reproduce the high NO2 amounts over the most polluted stations, mainly because of the large spatial variability in the distribution of pollution within the GOME footprint. The yearly and weekly cycles of the tropospheric NO2 VCDs are similar for both data sets, with significantly lower values in the summer months and on Sundays, respectively. Considering the pollution level and high aerosol concentrations of this region, the agreement is very good. Furthermore, uncertainties in the ground-based measurements, including the extrapolation to NO2 VCDs, might be as important as those of the NO2 satellite retrieval itself.

  14. Characteristics of total column ozone and nitrogen dioxide amount over Korea during the 2015 MAPS campaign: Pandora spectrometer, satellite and in-situ measurement

    Science.gov (United States)

    Go, S.; Chong, H. S.; Kim, W.; Kim, J.; Lee, H.; Kim, J. H.; KIM, J.; Herman, J. R.; Abuhassan, N.; Park, J. H.

    2015-12-01

    To improve the performances of satellite retrieval of surface pollution and air quality models, NIER (National Institute of Environmental Research) and NASA are planning the KORUS-AQ campaign over the Korean Peninsula in May-June, 2016. As a pre-campaign of the KORUS-AQ, MAPS (Megacity Air Pollution Studies)-Seoul was conducted from May to July, 2015. During this campaign, six Pandora instruments continuously provided total column density of O3 and NO2 over Korea. These measurements will be continued until the end of 2016 covering the KORUS-AQ campaign period and beyond for the initial validation of TROPOMI measurements. To assess the variation of O3 and NO2, data were collected from Pandora, Dobson spectrophotometer, Brewer spectrophotometer, other ground-based in situ measurements and Ozone Monitoring Instrument (OMI). Ozone column density from Pandora exhibited significantly high correlation (R2 > 0.8) with the ground-based Dobson and Brewer spectrophotometers. Due to the detector anomaly and wide spatial pixel coverage, O3 values from OMI showed lower correlation (R2 > 0.6) with the Pandora. Even though six Pandoras were scattered across the country, O3 data showed similar distribution, in accordance with the low spatial variability of ozone. On the contrary, NO2 distribution pattern showed large difference at each site, which showed peak at around 10 a.m., with larger diurnal variability in urban area than that in rural area by more than 5 times. As most of Pandora sites do not have on-site in situ NO2 measurements, other in situ data from the nearest Air Korea stations were used for the comparison. The comparison result showed significant correlation, although, the correlation coefficient was relatively lower than that of O3. Pandora measurements agreed well with the ground based instruments and OMI satellite data with averaged residuals less than 2% in O3. In case of NO2 Pandora measurements showed similar trend with in situ measurements.

  15. A comparative study of satellite estimation for solar insolation in Albania with ground measurements

    Energy Technology Data Exchange (ETDEWEB)

    Mitrushi, Driada, E-mail: driadamitrushi@yahoo.com; Berberi, Pëllumb, E-mail: pellumb.berberi@gmail.com; Muda, Valbona, E-mail: vmuda@hotmail.com; Buzra, Urim, E-mail: rimibuzra@yahoo.com [Department of Engineering Physics, Faculty of Engineering Mathematics and Engineering Physics, Polytechnic University of Tirana, Tirana (Albania); Bërdufi, Irma, E-mail: irmaberdufi@gmail.com [Institute of Applied Nuclear Physics, Tirana University, Street “Th. Filipeu”, Tirana (Albania); Topçiu, Daniela, E-mail: topciudaniela@yahoo.com [Department of Physics, Faculty of Natural Physics, “Aleksander Xhuvani” University, Elbasan (Albania)

    2016-03-25

    The main objective of this study is to compare data provided by Database of NASA with available ground data for regions covered by national meteorological net NASA estimates that their measurements of average daily solar radiation have a root-mean-square deviation RMSD error of 35 W/m{sup 2} (roughly 20% inaccuracy). Unfortunately valid data from meteorological stations for regions of interest are quite rare in Albania. In these cases, use of Solar Radiation Database of NASA would be a satisfactory solution for different case studies. Using a statistical method allows to determine most probable margins between to sources of data. Comparison of mean insulation data provided by NASA with ground data of mean insulation provided by meteorological stations show that ground data for mean insolation results, in all cases, to be underestimated compared with data provided by Database of NASA. Converting factor is 1.149.

  16. Retrieving the availability of light in the ocean utilising spectral signatures of Vibrational Raman Scattering in hyper-spectral satellite measurements

    Science.gov (United States)

    Dinter, T.; Rozanov, V. V.; Burrows, J. P.; Bracher, A.

    2015-01-01

    The availability of light in the ocean is an important parameter for the determination of phytoplankton photosynthesis processes and primary production from satellite data. It is also a useful parameter for other applications, e.g. the determination of heat fluxes. In this study, a method was developed utilising the vibrational Raman scattering (VRS) effect of water molecules to determine the amount of photons available in the ocean water, which is expressed by the depth integrated scalar irradiance text-decoration:overline">E0. Radiative transfer simulations with the fully coupled ocean-atmosphere Radiative Transfer Model (RTM) SCIATRAN show clearly the relationship of text-decoration:overline">E0 to the strength of the VRS signal measured at the top of the atmosphere (TOA). Taking advantage of VRS structures in hyper-spectral satellite measurements a retrieval technique to derive text-decoration:overline"> E0 in the wavelength region from 390 to 444.5 nm was developed. This approach uses the Weighting Function Differential Optical Absorption Spectroscopy (WF-DOAS) technique, applied to TOA radiances, measured by the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY). Based on the approach of Vountas et al. (2007), where the DOAS method was used to fit modelled spectra of VRS, the method was improved by using the weighting function of VRS (VRS-WF) in the DOAS fit. This was combined with a look-up table (LUT) technique, where the text-decoration:overline"> E0 value was obtained for each VRS satellite fit directly. The VRS-WF and the LUT were derived from calculations with the RTM SCIATRAN (Rozanov et al., 2014). RTM simulations for different chlorophyll a concentrations and illumination conditions clearly show, that low fit factors of VRS retrieval results correspond to low amounts of light in the water column and vice versa. Exemplary, one month of SCIAMACHY data were processed and a global map of the depth integrated scalar

  17. Insolation data for solar energy conversion derived from satellite measurements of earth radiance

    Science.gov (United States)

    Thekaekara, M. P.

    1976-01-01

    Detailed knowledge of the irradiance of the sun at ground locations is essential for the design and evaluation of solar energy conversion systems. The primary source of such data is the global network of weather stations. Such stations are often too far apart and for most locations the data available are only daily total irradiance or monthly averages. Solar energy conversion programs require insolation data with considerably higher geographical and temporal resolution. Meteorological satellites gather routinely extensive data on the energy reflected and scattered into space by the earth-atmosphere system. A program has been initiated to use such data for deriving ground insolation for energy conversion. Some of the preliminary results of this program will be discussed.

  18. Multi-day convective-environmental evolution prior to tropical cyclone formation from geostationary satellite measurements

    Science.gov (United States)

    Chang, Minhee; Ho, Chang-Hoi; Park, Myung-Sook

    2016-04-01

    Tropical cyclones (TCs) are developed through persistent latent heating taken from deep convective process. By analyzing aircraft and polar-orbit satellite observations, distinct upper-level warm-core induced by strong updraft was found in pre-TCs while vertically uniform temperature profile is found in non-developers. Precipitation is also broader and more frequent in developing disturbances than in nondeveloping ones. However, large uncertainties remain in determining which disturbance will develop into TC by using observation snap-shots. Here, five-day systematic evolution of deep convection and environments in developing (80) and non-developing (491) disturbances are examined over the western North Pacific for 20072009 by using geostationary satellite observation. Daily, positive tendencies in the hourly time series of the area of the MTSAT-1R infrared (IR) and water vapor (WV) brightness temperature difference intensification was driven only after from Day 3 with rapid increase in relative vorticity and abrupt convective burst. There also exist many non-developing cases with mCB (54 %), which appear to candidates of TC formation as gradually increasing their convective area from Day 1 to Day 4. Due to the initially weak large-scale vorticity, they eventually decay on Day 5. For nondeveloping disturbances without mCB (46%), initially weak large-scale vorticity as well as dry atmosphere resulted in one-time deep convection and decay. Thus, this study suggests that the multiple days of convective burst, which initially accompanies strong low- to mid-troposphere large-scale vorticity, is important in TC formation.

  19. A Statistical Correlation Between Low L-shell Electrons Measured by NOAA Satellites and Strong Earthquakes

    Science.gov (United States)

    Fidani, C.

    2015-12-01

    More than 11 years of the Medium Energy Protons Electrons Detector data from the NOAA polar orbiting satellites were analyzed. Significant electron counting rate fluctuations were evidenced during geomagnetic quiet periods by using a set of adiabatic coordinates. Electron counting rates were compared to earthquakes by defining a seismic event L-shell obtained radially projecting the epicenter geographical positions to a given altitude. Counting rate fluctuations were grouped in every satellite semi-orbit together with strong seismic events and these were chosen with the L-shell coordinates close to each other. Electron data from July 1998 to December 2011 were compared for nearly 1,800 earthquakes with magnitudes larger than or equal to 6, occurring worldwide. When considering 30 - 100 keV energy channels by the vertical NOAA telescopes and earthquake epicenter projections at altitudes greater that 1,300 km, a 4 sigma correlation appeared where time of particle precipitations Tpp occurred 2 - 3 hour prior time of large seismic events Teq. This was in physical agreement with different correlation times obtained from past studies that considered particles with greater energies. The correlation suggested a 4-8 hour advance in preparedness of strong earthquakes influencing the ionosphere. Considering this strong correlation between earthquakes and electron rate fluctuations, and the hypothesis that such fluctuations originated with magnetic disturbances generated underground, a small scale experiment with low cost at ground level is advisable. Plans exists to perform one or more unconventional experiments around an earthquake affected area by private investor in Italy.

  20. Retrieval of SO2 from thermal infrared satellite measurements: correction procedures for the effects of volcanic ash

    Directory of Open Access Journals (Sweden)

    S. Corradini

    2009-05-01

    Full Text Available The simultaneous presence of SO2 and ash in a volcanic plume can lead to a significant error in the SO2 column abundance retrieval when multispectral Thermal InfraRed (TIR data are used. The ash particles within the plume with effective radii from 1 to 10 μm reduce the Top Of Atmosphere (TOA radiance in the entire TIR spectral range, including the channels used for SO2 retrieval. The net effect is a significant SO2 overestimation. In this work the interference of ash is discussed and two correction procedures for satellite SO2 volcanic plume retrieval in the TIR spectral range are developed to achieve an higher computational speed and a better accuracy. The ash correction can be applied when the sensor spectral range includes the 7.3 and/or 8.7 μm SO2 absorption bands, and the split window bands centered around 11 and 12 μm required for ash retrieval. This allows the possibility of simultaneous estimation of both volcanic SO2 and ash in the same data set. The proposed ash correction procedures have been applied to the Moderate Resolution Imaging Spectroradiometer (MODIS and the Spin Enhanced Visible and Infrared Imager (SEVIRI measurements. Data collected during the 24 November 2006 Mt. Etna eruption have been used to illustrate the technique. The SO2 and ash estimation is carried out by using a best weighted least squares fit method and the Brightness Temperature Difference (BTD procedures, respectively. The simulated TOA radiance Look-Up Table (LUT needed for the SO2 column abundance and the ash retrievals have been computed using the MODTRAN 4 Radiative Transfer Model. The results show the importance of the ash correction on SO2 retrievals at 8.7 μm, where the corrected SO2 column abundance values are less than 50% of the uncorrected values. The ash correction on SO2 retrieval at 7.3 μm is much less important and only significant for low SO2 column abundances. Results also show that the simplified and faster correction procedure

  1. Retrieval of SO2 from thermal infrared satellite measurements: correction procedures for the effects of volcanic ash

    Directory of Open Access Journals (Sweden)

    A. J. Prata

    2009-02-01

    Full Text Available The simultaneous presence of SO2 and ash in a volcanic plume can lead to a significant error in the SO2 columnar abundance retrieval when multispectral Thermal InfraRed (TIR data are used. The ash particles within the plume with effective radii (from 1 to 10 μm reduce the Top Of Atmosphere (TOA radiance in the entire TIR spectral range, including the channels used for SO2 retrieval. The net effect is a significant SO2 overestimation. In this work the interference of ash is discussed and two correction procedures for satellite SO2 volcanic plume retrieval in the TIR spectral range are developed to achieve an higher computation speed and a better accuracy. The ash correction can be applied when the sensor spectral range includes the 7.3 and/or 8.7 μm SO2 absorption bands, and the split window bands centered around 11 and 12 μm required for ash retrieval. This allows the possibility of a simultaneous estimation of both volcanic SO2 and ash in the same data set. The proposed ash correction procedures have been applied to the Moderate Resolution Imaging Spectroradiometer (MODIS and the Spin Enhanced Visible and Infrared Imager (SEVIRI measurements. Data collected during the 24 November 2006 Mt. Etna eruption have been used to illustrate the technique. The SO2 and ash estimations are carried out by using a least squares fit method and the Brightness Temperature Difference (BTD procedures, respectively. The simulated TOA radiance Look-Up Table (LUT needed for the SO2 columnar abundance and the ash retrievals have been computed using the MODTRAN 4 Radiative Transfer Model. The results show the importance of the ash correction on SO2 retrieval at 8.7 μm – the SO2 columnar abundance corrected by the ash influence is less than one half of the values retrieved without the correction. The ash correction on SO2 retrieval at 7.3 μm is much less important and only significant for low SO2 columnar abundances. Results also show that the simplified and

  2. POD improvements of GALILEO satellites through the measurement of their non-gravitational accelerations by means of an onboard accelerometer

    Science.gov (United States)

    Peron, Roberto; Lucchesi, David M.; Santoli, Francesco; Iafolla, Valerio; Fiorenza, Emiliano; Lefevre, Carlo; Lucente, Marco; Magnafico, Carmelo; Kalarus, Maciej; Zielinski, Janusz

    2016-04-01

    The Precise Orbit Determination (POD) of the satellites of the Global Navigation Satellite Systems (GNSS) represents the basic prerequisite in order to provide refined ephemerides for their orbit, aimed at providing a precise and accurate positioning on the Earth. An important factor that impacts negatively in the POD of these satellites is the limited modeling of the accelerations produced by the non-gravitational accelerations. These, indeed, are subtle and generally complex to model properly, especially in the case of a complex in shape spacecraft, with solar panels and antennae for microwave link and the mutual shadowing effects among the many surfaces involved. We have to notice that their modeling has an important impact in the determination of a number of geophysical parameters of interest, such as stations coordinates, Earth's geocenter and orientation parameters. In the case of GNSS satellites, the main NGP acceleration is the one produced by the direct solar radiation pressure, with non-negligible contributions due to Earth's albedo, thermal effects and power radiated by the antennae. The models developed so far for these perturbative effects have shown many limits, as pointed out in the literature. Currently, the models developed for the NGPs are mainly based on empirical blind models (with the goal of absorb unknowns quantities) and more recently with the use of wing-box models, that try to provide a finite-elements approach to the modeling. The European Space Agency (ESA) - in the context of the development of the GALILEO constellation, and especially in view of the next generation of GALILEO spacecraft - besides being interested in possible improvements of the NGPs models, is also envisaging the use of an onboard accelerometer to directly measure them in order to improve the POD of each spacecraft of the constellation. We have been involved in this study by means of a proposal to ESA denominated GALileo and ACcelerometry (GALAC) led by the Space

  3. Probing into the aging dynamics of biomass burning aerosol by using satellite measurements of aerosol optical depth and carbon monoxide

    Science.gov (United States)

    Konovalov, Igor B.; Beekmann, Matthias; Berezin, Evgeny V.; Formenti, Paola; Andreae, Meinrat O.

    2017-04-01

    Carbonaceous aerosol released into the atmosphere from open biomass burning (BB) is known to undergo considerable chemical and physical transformations (aging). However, there is substantial controversy about the nature and observable effects of these transformations. A shortage of consistent observational evidence on BB aerosol aging processes under different environmental conditions and at various temporal scales hinders development of their adequate representations in chemistry transport models (CTMs). In this study, we obtain insights into the BB aerosol dynamics by using available satellite measurements of aerosol optical depth (AOD) and carbon monoxide (CO). The basic concept of our method is to consider AOD as a function of the BB aerosol photochemical age (that is, the time period characterizing the exposure of BB aerosol emissions to atmospheric oxidation reactions) predicted by means of model tracers. We evaluate the AOD enhancement ratio (ER) defined as the ratio of optical depth of actual BB aerosol with respect to that of a modeled aerosol tracer that is assumed to originate from the same fires as the real BB aerosol but that is not affected by any aging processes. To limit possible effects of model transport errors, the AOD measurements are normalized to CO column amounts that are also retrieved from satellite measurements. The method is applied to the analysis of the meso- and synoptic-scale evolution of aerosol in smoke plumes from major wildfires that occurred in Siberia in summer 2012. AOD and CO retrievals from MODIS and IASI measurements, respectively, are used in combination with simulations performed with the CHIMERE CTM. The analysis indicates that aging processes strongly affected the evolution of BB aerosol in the situation considered, especially in dense plumes (with spatial average PM2. 5 concentration exceeding 100 µg m-3). For such plumes, the ER is found to increase almost 2-fold on the scale of ˜ 10 h of daytime aerosol evolution

  4. Measuring radon flux across active faults: Relevance of excavating and possibility of satellite discharges

    Energy Technology Data Exchange (ETDEWEB)

    Richon, Patrick, E-mail: patrick.richon@cea.f [CEA, DAM, DIF, F-91297 Arpajon (France); Institut de Physique du Globe de Paris, Equipe Geologie des Systemes Volcaniques, 4 place Jussieu, UMR-7154 CNRS, F-75005 Paris (France); Klinger, Yann; Tapponnier, Paul [Institut de Physique du Globe de Paris, Equipe de Seismotectonique, 4 place Jussieu, UMR-7154 CNRS, F-75005 Paris (France); Li Chenxia [Institute of Geology, Chinese Earthquake Administration, P.O. Box 9803, 100029 Beijing (China); Van Der Woerd, Jerome [Institut de Physique du Globe de Strasbourg, CNRS, UMR-7516, INSU, Universite Louis Pasteur, Strasbourg I, 5 Rue Rene Descartes, F-67084 Strasbourg Cedex (France); Perrier, Frederic [Institut de Physique du Globe de Paris, Equipe de Geomagnetisme, 4 place Jussieu, UMR-7154 CNRS et Universite Paris 7 Denis-Diderot, F-75005 Paris (France)

    2010-02-15

    Searching for gas exhalation around major tectonic contacts raises important methodological issues such as the role of the superficial soil and the possible long distance transport. These effects have been studied on the Xidatan segment of the Kunlun Fault, Qinghai Province, China, using measurement of the radon-222 and carbon dioxide exhalation flux. A significant radon flux, reaching up to 538 +- 33 mBq m{sup -2} s{sup -1} was observed in a 2-3 m deep trench excavated across the fault. On the soil surface, the radon flux varied from 7 to 38 mBq m{sup -2} s{sup -1}, including on the fault trace, with an average value of 14.1 +- 1.0 mBq m{sup -2} s{sup -1}, similar to the world average. The carbon dioxide flux on the soil surface, with an average value of 12.9 +- 3.3 g m{sup -2} day{sup -1}, also remained similar to regular background values. It showed no systematic spatial variation up to a distance of 1 km from the fault, and no clear enhancement in the trench. However, a high carbon dioxide flux of 421 +- 130 g m{sup -2} day{sup -1} was observed near subvertical fractured phyllite outcrops on a hill located about 3 km north of the fault, at the boundary of the large-scale pull-apart basin associated with the fault. This high carbon dioxide flux was associated with a high radon flux of 607 +- 35 mBq m{sup -2} s{sup -1}. These preliminary results indicate that, at the fault trace, it can be important to measure gas flux at the bottom of a trench to remove superficial soil layers. In addition, gas discharges need to be investigated also at some distance from the main fault, in zones where morphotectonics features support associated secondary fractures.

  5. Vertical profiles of pollutant gases measured with passive DOAS in the Po Valley devoted to satellite and chemical model data comparison

    Science.gov (United States)

    Masieri, S.; Petritoli, A.; Kostadinov, I.; Bortoli, D.; Premuda, M.; Ravegnani, F.; Giovanelli, G.

    2009-04-01

    In the frame of QUITSAT Italian pilot project (Air QUality with InTegration of ground-based and SAtellite measurement and chemical Transport model), two field campaigns were made in S.Pietro Capofiume (44.65˚ N; 11.37˚ E) and Bologna (44.52˚ N; 11.34˚ E) to provide concentration of ground particular matter and gaseous pollutants, namely nitrogen dioxide (NO2), formaldehyde (HCHO), sulphur dioxide (SO2) and ozone (O3). The aim of the campaigns was to provide experimental data need for tests and improvement of algorithms developed for integration of satellite and ground-based data together with chemical transport model data in order to retrieve air quality in the QUITSAT domain. Ground based measurements were carried out within a network of in-situ analyser in the Po Valley and with a scanning multi-axis DOAS (Differential Optical Absorption Spectroscopy) spectrometer system developed at ISAC-CNR institute [1], in collaboration with Geophysics Center of Evora [2]. TropoGAS (TROPOspheric Gas Analyser Spectrometer) spectrometer permits active and passive DOAS measurements at the chosen angles: α =1,2,3,6,10,15,20,90 and another measurement was taken along the sun direction. A Xenon lamp installed at 1km of distance from spectrometer was used as a reference concentration measured in the same place, and these values shows good agreement with in-situ analyser concentration. Gas spectral absorption was evaluated with DOAS [3] algorithms from 430 to 500 nm in two different windows: first from 436 to 460 nm for NO2 retrieval; second from 460 to 500 nm for O4 (best line at 477 nm) and NO2. Air Mass Factor (AMF) was calculated using PROMSAR (PROcessing of Multi-Scattered Atmospheric Radiation) model [4], that is a backward Montecarlo Radiative Transfer Model (RTM). An apposite inversion method [5][6], was applied to retrieve profiles of the target gases from their Slant Column Densities (SCD), using advanced approaches involving measurement of the atmospheric O4

  6. Evaluation of Hyperspectral Multi-Band Indices to Estimate Chlorophyll-A Concentration Using Field Spectral Measurements and Satellite Data in Dianshan Lake, China

    Directory of Open Access Journals (Sweden)

    Linna Li

    2013-04-01

    Full Text Available Chlorophyll-a (Chl-a concentration is considered as a key indicator of the eutrophic status of inland water bodies. Various algorithms have been developed for estimating Chl-a in order to improve the accuracy of predictive models. The objective of this study is to assess the potential of hyperspectral multi-band indices to estimate the Chl-a concentration in Dianshan Lake, which is the largest lake in Shanghai, an international metropolis of China. Based on field spectral measurements and in-situ Chl-a concentration collected on 7–8 September 2010, hyperspectral multi-band indices were calibrated to estimate the Chl-a concentration with optimal wavelengths selected by model tuning. A three-band index accounts for 87.36% (R2 = 0.8736 of the Chl-a variation. A four-band index, which adds a wavelength in the near infrared (NIR region, results in a higher R2 (0.8997 by removing the absorption and backscattering effects of suspended solids. To test the applicability of the proposed indices for routinely monitoring of Chl-a in inland lakes, simulated Hyperion and real HJ-1A satellite data were selected to estimate the Chl-a concentration. The results show that the explanatory powers of these satellite hyperspectral multi-band indices are relatively high with R2 = 0.8559, 0.8945, 0.7969, and 0.8241 for simulated Hyperion and real HJ-1A satellite data, respectively. All of the results provide strong evidence that hyperspectral multi-band indices are promising and applicable to estimate Chl-a in eutrophic inland lakes.

  7. Ground-satellite measurement of Direct Normal Irradiance in South Portugal and its interaction with local atmospheric effects

    Science.gov (United States)

    Cavaco, Afonso; Canhoto, Paulo; Gonçalves da Silva, Hugo; Collares Pereira, Manuel

    2016-04-01

    Direct Normal Irradiance (DNI) is of crucial importance for the performance of Solar Thermal Plants (STP) and their use of solar concentrators. This has triggered a worldwide interest in the evaluation of this resource that started around 40 years ago (Collares-Pereira and Rabl, 1979). This is especially relevant in regions that have exceptional good solar resources, as it is the case of the South of Portugal (Cavaco et al, 2016). For that reason a network of seven meteorological stations measuring Direct (DNI), Global and Diffuse Solar Irradiance has been installed in this region, one year ago. This study presents the first results from that initial effort. First, this network will be used in correlating ground-based measurements with satellite data, in order to improve data calibration of remote acquisition. This will allow the extension of the results to other locations. The long-term validity of the present time-series will be secured by statistical correlation with previous local Global and Diffuse Solar Irradiance data. Second, new insights are expected to emerge on the complex relation between DNI and local meteorological variables (namely, relative humidity, optical thickness, and atmospheric turbidity), in order to improve the selection of possible locations for STP. These relations will be connected to the calibration of satellite data and to the statistical weighting of the various atmospheric elements in the TMY algorithm, thus giving a physical meaning to those different weights. Collares-Pereira, M. and Rabl, A. (1979). The average distribution of solar radiation correlations between Diffuse and hemispherical and between daily and hourly insolation values. Solar Energy 22(2), 155-164. Cavaco, A., Canhoto, P., Costa, M.J., and Collares-Pereira, M. (2016). DNI measurements in the South of Portugal: Long term results through direct comparison with global and diffuse radiation measurements and existing time series. Energy Procedia (in press).

  8. Multiannual changes of CO2 emissions in China: indirect estimates derived from satellite measurements of tropospheric NO2 columns

    Directory of Open Access Journals (Sweden)

    M. Beekmann

    2013-01-01

    Full Text Available Multi-annual satellite measurements of tropospheric NO2 columns are used for evaluation of CO2 emission changes in China in the period from 1996 to 2008. Indirect annual top-down estimates of CO2 emissions are derived from the satellite NO2 columns measurements by means of a simple inverse modeling procedure involving simulations performed with the CHIMERE mesoscale chemistry transport model and the CO2 to NOx emission ratios from the Emission Database for Global Atmospheric Research version 4.2 (EDGAR v4.2 global anthropogenic emission inventory. Exponential trends in the normalized time series of annual emission are evaluated separately for the periods from 1996 to 2001 and from 2001 to 2008. The results indicate that the both periods manifest strong positive trends in the CO2 emissions, and that the trend in the second period was significantly larger than the trend in the first period. Specifically, the trends in the first and second periods are estimated to be in the range from 3.7 to 8.0 and from 9.5 to 13.0 percent per year, respectively, taking into account both statistical and probable systematic uncertainties. Comparison of our top-down estimates of the CO2 emission changes with the corresponding bottom-up estimates provided by EDGAR v4.2 and Global Carbon Project (GCP emission inventories reveals that while acceleration of the CO2 emission growth in the considered period is a common feature of the both kinds of estimates, nonlinearity in the CO2 emission changes may be strongly exaggerated in the emission inventories. Specifically, the atmospheric NO2 observations do not confirm the existence of a sharp bend in the emission inventory data time series in the period from 2000 to 2002. A significant quantitative difference is revealed between the bottom-up and top-down estimates of the CO2 emission trend in the period from 1996 to 2001 (specifically, the trend was not positive according to the emission inventories, but is strongly

  9. Ground measurements of the hemispherical-directional reflectance of Arctic snow covered tundra for the validation of satellite remote sensing products

    Science.gov (United States)

    Ball, C. P.; Marks, A. A.; Green, P.; Mac Arthur, A.; Fox, N.; King, M. D.

    2013-12-01

    Surface albedo is the hemispherical and wavelength integrated reflectance over the visible, near infrared and shortwave infrared regions of the solar spectrum. The albedo of Arctic snow can be in excess of 0.8 and it is a critical component in the global radiation budget because it determines the proportion of solar radiation absorbed, and reflected, over a large part of the Earth's surface. We present here our first results of the angularly resolved surface reflectance of Arctic snow at high solar zenith angles (~80°) suitable for the validation of satellite remote sensing products. The hemispherical directional reflectance factor (HDRF) of Arctic snow covered tundra was measured using the GonioRAdiometric Spectrometer System (GRASS) during a three-week field campaign in Ny-Ålesund, Svalbard, in March/April 2013. The measurements provide one of few existing HDRF datasets at high solar zenith angles for wind-blown Arctic snow covered tundra (conditions typical of the Arctic region), and the first ground-based measure of HDRF at Ny-Ålesund. The HDRF was recorded under clear sky conditions with 10° intervals in view zenith, and 30° intervals in view azimuth, for several typical sites over a wavelength range of 400-1500 nm at 1 nm resolution. Satellite sensors such as MODIS, AVHRR and VIIRS offer a method to monitor the surface albedo with high spatial and temporal resolution. However, snow reflectance is anisotropic and is dependent on view and illumination angle and the wavelength of the incident light. Spaceborne sensors subtend a discrete angle to the target surface and measure radiance over a limited number of narrow spectral bands. Therefore, the derivation of the surface albedo requires accurate knowledge of the surfaces bidirectional reflectance as a function of wavelength. The ultimate accuracy to which satellite sensors are able to measure snow surface properties such as albedo is dependant on the accuracy of the BRDF model, which can only be assessed

  10. Diurnal variation of stratospheric and lower mesospheric HOCl, ClO and HO2 at the equator: comparison of 1-D model calculations with measurements by satellite instruments

    Directory of Open Access Journals (Sweden)

    M. Khosravi

    2013-08-01

    Full Text Available The diurnal variation of HOCl and the related species ClO, HO2 and HCl measured by satellites has been compared with the results of a one-dimensional photochemical model. The study compares the data from various limb-viewing instruments with model simulations from the middle stratosphere to the lower mesosphere. Data from three sub-millimetre instruments and two infrared spectrometers are used, namely from the Sub-Millimetre Radiometer (SMR on board Odin, the Microwave Limb Sounder (MLS on board Aura, the Superconducting Submillimeter-wave Limb-Emission Sounder (SMILES on the International Space Station, the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS on board ENVISAT, and the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS on board SCISAT. Inter-comparison of the measurements from instruments on sun-synchronous satellites (SMR, MLS, MIPAS and measurements from solar occultation instruments (ACE-FTS is challenging since the measurements correspond to different solar zenith angles (or local times. However, using a model which covers all solar zenith angles and data from the SMILES instrument which measured at all local times over a period of several months provides the possibility to verify the model and to indirectly compare the diurnally variable species. The satellite data were averaged for latitudes of 20° S to 20° N for the SMILES observation period from November 2009 to April 2010 and were compared at three altitudes: 35, 45 and 55 km. Besides presenting the SMILES data, the study also shows a first comparison of the latest MLS data (version 3.3 of HOCl, ClO, and HO2 with other satellite observations, as well as a first evaluation of HO2 observations made by Odin/SMR. The MISU-1D model has been carefully initialised and run for conditions and locations of the observations. The diurnal cycle features for the species investigated here are generally well reproduced by the model. The satellite

  11. The PAMELA experiment on satellite and its capability in cosmic rays measurements

    CERN Document Server

    Adriani, O; Barbarino, G C; Barbier, L M; Bartalucci, S; Bazilevskaja, G; Bellotti, R; Bertazzoni, S; Bidoli, V; Boezio, M; Bogomolov, E A; Bonechi, L; Bonvicini, V; Boscherini, M; Bravar, U; Cafagna, F; Campana, D; Carlson, Per J; Casolino, M; Castellano, M; Castellini, G; Christian, E R; Ciacio, F; Circella, M; D'Alessandro, R; De Marzo, C N; De Pascale, M P; Finetti, N; Furano, G; Gabbanini, A; Galper, A M; Giglietto, N; Grandi, M; Grigorieva, A; Guarino, F; Hof, M; Koldashov, S V; Korotkov, M G; Krizmanic, J F; Krutkov, S; Lund, J; Marangelli, B; Marino, L; Menn, W; Mikhailov, V V; Mirizzi, N; Mitchell, J W; Mocchiutti, E; Moiseev, A A; Morselli, A; Mukhametshin, R; Ormes, J F; Osteria, G; Ozerov, J V; Papini, P; Pearce, M; Perego, A; Piccardi, S; Picozza, P; Ricci, M; Salsano, A; Schiavon, Paolo; Scian, G; Simon, M; Sparvoli, R; Spataro, B; Spillantini, P; Spinelli, P; Stephens, S A; Stochaj, S J; Stozhkov, Yu I; Straulino, S; Streitmatter, R E; Taccetti, F; Tesi, M; Vacchi, A; Vannuccini, E; Vasiljev, G; Vignoli, V; Voronov, S A; Yurkin, Y; Zampa, G; Zampa, N

    2002-01-01

    The PAMELA equipment will be assembled in 2001 and installed on board the Russian satellite Resurs. PAMELA is conceived mainly to study the antiproton and positron fluxes in cosmic rays up to high energy (190 GeV for p-bar and 270 GeV for e sup +) and to search antinuclei, up to 30 GeV/n, with a sensitivity of 10 sup - sup 7 in the He-bar/He ratio. The PAMELA telescope consists of: a magnetic spectrometer made up of a permanent magnet system equipped with double sided microstrip silicon detectors; a transition radiation detector made up of active layers of proportional straw tubes interleaved with carbon fibre radiators; and a silicon-tungsten imaging calorimeter made up of layers of tungsten absorbers and silicon detector planes. A time-of-flight system and anti-coincidence counters complete the PAMELA equipment. In the past years, tests have been done on each subdetector of PAMELA; the main results are presented and their implications on the anti-particles identification capability in cosmic rays are discus...

  12. The PAMELA experiment on satellite and its capability in cosmic rays measurements

    Energy Technology Data Exchange (ETDEWEB)

    Adriani, O.; Ambriola, M.; Barbarino, G.; Barbier, L.M.; Bartalucci, S.; Bazilevskaja, G.; Bellotti, R.; Bertazzoni, S.; Bidoli, V.; Boezio, M.; Bogomolov, E.; Bonechi, L.; Bonvicini, V.; Boscherini, M.; Bravar, U.; Cafagna, F.; Campana, D.; Carlson, P.; Casolino, M.; Castellano, M.; Castellini, G.; Christian, E.R.; Ciacio, F.; Circella, M.; D' Alessandro, R.; De Marzo, C.N.; De Pascale, M.P.; Finetti, N.; Furano, G.; Gabbanini, A.; Galper, A.M.; Giglietto, N.; Grandi, M.; Grigorjeva, A.; Guarino, F.; Hof, M.; Koldashov, S.V.; Korotkov, M.G.; Krizmanic, J.F.; Krutkov, S.; Lund, J.; Marangelli, B.; Marino, L.; Menn, W.; Mikhailov, V.V.; Mirizzi, N.; Mitchell, J.W.; Mocchiutti, E.; Moiseev, A.A.; Morselli, A.; Mukhametshin, R.; Ormes, J.F.; Osteria, G.; Ozerov, J.V.; Papini, P.; Pearce, M.; Perego, A.; Piccardi, S.; Picozza, P.; Ricci, M.; Salsano, A.; Schiavon, P.; Scian, G.; Simon, M.; Sparvoli, R.; Spataro, B.; Spillantini, P.; Spinelli, P.; Stephens, S.A.; Stochaj, S.J.; Stozhkov, Y.; Straulino, S. E-mail: straulino@fi.infi.it; Streitmatter, R.E.; Taccetti, F.; Tesi, M.; Vacchi, A.; Vannuccini, E.; Vasiljev, G.; Vignoli, V.; Voronov, S.A.; Yurkin, Y.; Zampa, G.; Zampa, N

    2002-02-01

    The PAMELA equipment will be assembled in 2001 and installed on board the Russian satellite Resurs. PAMELA is conceived mainly to study the antiproton and positron fluxes in cosmic rays up to high energy (190 GeV for p-bar and 270 GeV for e{sup +}) and to search antinuclei, up to 30 GeV/n, with a sensitivity of 10{sup -7} in the He-bar/He ratio. The PAMELA telescope consists of: a magnetic spectrometer made up of a permanent magnet system equipped with double sided microstrip silicon detectors; a transition radiation detector made up of active layers of proportional straw tubes interleaved with carbon fibre radiators; and a silicon-tungsten imaging calorimeter made up of layers of tungsten absorbers and silicon detector planes. A time-of-flight system and anti-coincidence counters complete the PAMELA equipment. In the past years, tests have been done on each subdetector of PAMELA; the main results are presented and their implications on the anti-particles identification capability in cosmic rays are discussed here.

  13. Impacts of elevated-aerosol-layer and aerosol type on the correlation of AOD and particulate matter with ground-based and satellite measurements in Nanjing, southeast China.

    Science.gov (United States)

    Han, Yong; Wu, Yonghua; Wang, Tijian; Zhuang, Bingliang; Li, Shu; Zhao, Kun

    2015-11-01

    Assessment of the correlation between aerosol optical depth (AOD) and particulate matter (PM) is critical to satellite remote sensing of air quality, e.g. ground PM10 and ground PM2.5. This study evaluates the impacts of aloft-aerosol-plume and aerosol-type on the correlation of AOD-PM by using synergistic measurement of a polarization-sensitive Raman-Mie lidar, CIMEL sunphotometer (SP) and TEOM PM samplers, as well as the satellite MODIS and CALIPSO, during April to July 2011 in Nanjing city (32.05(○)N/118.77(○)E), southeast China. Aloft-aerosol-layer and aerosol types (e.g. dust and non-dust or urban aerosol) are identified with the range-resolved polarization lidar and SP measurements. The results indicate that the correlations for AOD-PM10 and AOD-PM2.5 can be much improved when screening out the aloft-aerosol-layer. The linear regression slopes show significant differences for the dust and non-dust dominant aerosols in the planetary boundary layer (PBL). In addition, we evaluate the recent released MODIS-AOD product (Collection 6) from the "dark-target" (DT) and "deep-blue" (DB) algorithms and their correlation with the PM in Nanjing urban area. The results verify that the MODIS-DT AODs show a good correlation (R = 0.89) with the SP-AOD but with a systematic overestimate. In contrast, the MODIS-DB AOD shows a moderate correlation (R = 0.66) with the SP-AOD but with a smaller regression intercept (0.07). Furthermore, the moderately high correlations between the MODIS-AOD and PM10 (PM2.5) are indicated, which suggests the feasibility of PM estimate using the MODIS-AOD in Nanjing city.

  14. Global Monitoring of Terrestrial Chlorophyll Fluorescence from Moderate-spectral-resolution Near-infrared Satellite Measurements: Methodology, Simulations, and Application to GOME-2

    Science.gov (United States)

    Joiner, J.; Gaunter, L.; Lindstrot, R.; Voigt, M.; Vasilkov, A. P.; Middleton, E. M.; Huemmrich, K. F.; Yoshida, Y.; Frankenberg, C.

    2013-01-01

    Globally mapped terrestrial chlorophyll fluorescence retrievals are of high interest because they can provide information on the functional status of vegetation including light-use efficiency and global primary productivity that can be used for global carbon cycle modeling and agricultural applications. Previous satellite retrievals of fluorescence have relied solely upon the filling-in of solar Fraunhofer lines that are not significantly affected by atmospheric absorption. Although these measurements provide near-global coverage on a monthly basis, they suffer from relatively low precision and sparse spatial sampling. Here, we describe a new methodology to retrieve global far-red fluorescence information; we use hyperspectral data with a simplified radiative transfer model to disentangle the spectral signatures of three basic components: atmospheric absorption, surface reflectance, and fluorescence radiance. An empirically based principal component analysis approach is employed, primarily using cloudy data over ocean, to model and solve for the atmospheric absorption. Through detailed simulations, we demonstrate the feasibility of the approach and show that moderate-spectral-resolution measurements with a relatively high signal-to-noise ratio can be used to retrieve far-red fluorescence information with good precision and accuracy. The method is then applied to data from the Global Ozone Monitoring Instrument 2 (GOME-2). The GOME-2 fluorescence retrievals display similar spatial structure as compared with those from a simpler technique applied to the Greenhouse gases Observing SATellite (GOSAT). GOME-2 enables global mapping of far-red fluorescence with higher precision over smaller spatial and temporal scales than is possible with GOSAT. Near-global coverage is provided within a few days. We are able to show clearly for the first time physically plausible variations in fluorescence over the course of a single month at a spatial resolution of 0.5 deg × 0.5 deg

  15. Coastal ocean research in sub-Saharan Africa: towards operational oceanography using satellites, in situ measurements and numerical models

    Science.gov (United States)

    Shillington, Frank

    Sub-Saharan Africa is greatly influenced by major western boundary currents of the Indian Ocean, Agulhas Current and the Somali Current (for six months of the year), and the major eastern boundary upwelling current systems of the Atlantic Ocean, with their concomitant nu-trient rich upwelling ecosystems which support large fisheries: the Benguela Upwelling System and the Canary Upwelling System. The location of the tip of placecountry-regionSouth Africa is unique in the world oceans, since it is such the only place where a warm western boundary current can interact with a cold upwelling ecosystem. In addition, the Agulhas Current is unique in that it retroflects 80% of its large volume flux back into the placeIndian Ocean. The interocean transport of warm thermocline water from the Indian to the placeAtlantic ocean is of global importance. Satellite observations of temperature, chlorophyll, sea surface height, and wind and waves have elucidated many of these first order processes. Numerical ocean models forced and constrained by satellite measurements are being increasingly used to place operational oceanography on a sound footing. Partnerships with African and northern hemisphere collaborators (e.g. the new Norwegian Nansen-Tutu Centre for Marine Research, PlaceNamePrinceton PlaceTypeUniversity) will enhance operational oceanography around placeAfrica to the benefit of all its inhabitants. All of the above aspects will be discussed, with specific examples of local innovative space borne techniques.

  16. First evidence for correlations between electron fluxes measured by NOAA-POES satellites and large seismic events

    Energy Technology Data Exchange (ETDEWEB)

    Battiston, Roberto [Dipartimento di Fisica and INFN-Trento Center for Fundamental Physics and Applications (TIPFA), Povo (Italy); Vitale, Vincenzo [Istituto Nazionale di Fisica Nucleare, sez. Perugia and ASI Science Data Center, Frascati (Italy)

    2013-10-15

    We present the result for the search of correlations between the precipitation of low energy electrons (E>0.3MeV) trapped within the Van Allen Belts and earthquakes with magnitude above 5 Richter scale. We used the electron data measured by the NOAA POES 15,16,17 and 18 satellites collected during a period of 13 years, corresponding to about 18 thousands M>5 earthquakes registered in the NEIC catalog of the U.S. Geological Survey. We defined Particle Burst (PB) the fluctuations of electrons counting rate having a probability <1% to be a background fluctuation. Within a time window of ±36 hours, we observe a clear correlation peak at −1.25±0.25 hours. This result is obtained using data driven algorithms independent from specific modelling of the lithosphere-ionosphere coupling and adding the data collected by each POES satellite. The significance of the observed correlation peak is 5.7 s.d. corresponding to a probability of 1.210{sup −6} of being a statistical fluctuation. The observed correlation involves about 1.410{sup −3} of the earthquakes in that period of time. It provides the first statistically convincing evidence for the existence of a detectable coupling mechanism between the lithosphere and the magnetosphere having well defined time characteristics.

  17. Inter-Calibration of Satellite Passive Microwave Land Observations from AMSR-E and AMSR2 Using Overlapping FY3B-MWRI Sensor Measurements

    Directory of Open Access Journals (Sweden)

    Jinyang Du

    2014-09-01

    Full Text Available The development and continuity of consistent long-term data records from similar overlapping satellite observations is critical for global monitoring and environmental change assessments. We developed an empirical approach for inter-calibration of satellite microwave brightness temperature (Tb records over land from the Advanced Microwave Scanning Radiometer for EOS (AMSR-E and Microwave Scanning Radiometer 2 (AMSR2 using overlapping Tb observations from the Microwave Radiation Imager (MWRI. Double Differencing (DD calculations revealed significant AMSR2 and MWRI biases relative to AMSR-E. Pixel-wise linear relationships were established from overlapping Tb records and used for calibrating MWRI and AMSR2 records to the AMSR-E baseline. The integrated multi-sensor Tb record was largely consistent over the major global vegetation and climate zones; sensor biases were generally well calibrated, though residual Tb differences inherent to different sensor configurations were still present. Daily surface air temperature estimates from the calibrated AMSR2 Tb inputs also showed favorable accuracy against independent measurements from 142 global weather stations (R2 ≥ 0.75, RMSE ≤ 3.64 °C, but with slightly lower accuracy than the AMSR-E baseline (R2 ≥ 0.78, RMSE ≤ 3.46 °C. The proposed method is promising for generating consistent, uninterrupted global land parameter records spanning the AMSR-E and continuing AMSR2 missions.

  18. Inverse modeling of CO2 sources and sinks using satellite observations of CO2 from TES and surface flask measurements

    Directory of Open Access Journals (Sweden)

    C. A. M. Brenninkmeijer

    2011-02-01

    Full Text Available We infer CO2 surface fluxes using satellite observations of mid-tropospheric CO2 from the Tropospheric Emission Spectrometer (TES and measurements of CO2 from surface flasks in a time-independent inversion analysis based on the GEOS-Chem model. Using TES CO2 observations over oceans, spanning 40° S–40° N, we find that the horizontal and vertical coverage of the TES and flask data are complementary. This complementarity is demonstrated by combining the datasets in a joint inversion, which provides better constraints than from either dataset alone, when a posteriori CO2 distributions are evaluated against independent ship and aircraft CO2 data. In particular, the joint inversion offers improved constraints in the tropics where surface measurements are sparse, such as the tropical forests of South America, which the joint inversion suggests was a weak sink of −0.17 ± 0.20 Pg C in 2006. Aggregating the annual surface-to-atmosphere fluxes from the joint inversion yields −1.13 ± 0.21 Pg C for the global ocean, −2.77 ± 0.20 Pg C for the global land biosphere and −3.90 ± 0.29 Pg C for the total global natural flux (defined as the sum of all biospheric, oceanic, and biomass burning contributions but excluding CO2 emissions from fossil fuel combustion. These global ocean, global land and total global fluxes are shown to be in the range of other inversion results for 2006. To achieve these results, a latitude dependent bias in TES CO2 in the Southern Hemisphere was assessed and corrected using aircraft flask data, and we demonstrate that our results have low sensitivity to variations in the bias correction approach. Overall, this analysis suggests that future carbon data assimilation systems can benefit by integrating in situ and satellite observations of CO2 and that the vertical information provided by satellite observations of mid-tropospheric CO2 combined with measurements of surface CO2, provides an important additional constraint for

  19. Ground-based & satellite DOAS measurements integration for air quality evaluation/forecast management in the frame of QUITSAT Project.

    Science.gov (United States)

    Kostadinov, Ivan; Petritoli, Andrea; Giovanelli, Giorgio; Masieri, Samuele; Premuda, Margarita; Bortoli, Daniele; Ravegnani, Fabrizio; Palazzi, Elisa

    The observations of the Earth's atmosphere from space provide excellent opportunities for the exploration of the sophisticated physical-chemical processes on both global and regional scales. The major interest during the last three decades was focused mainly on the stratosphere and the ozone depletion. More recently the continuous improvements of satellite sensors have revealed new opportunities for larger applications of space observations, attracting scientific interest to the lower troposphere and air quality issues. The air quality depends strongly on the anthropogenic activity and therefore regional environmental agencies along with policy makers are in need of appropriate means for its continuous monitoring and control to ensure the adoption of the most appropriate actions. The goal of the pilot project QUITSAT, funded by the Italian Space Agency, is to develop algorithms and procedures for the evaluation and prediction of the air quality in Lombardia and Emilia-Romagna regions (Italy) by means of integrating satellite observations with ground-based in-situ and remote sensing measurements. This work presents dedicated Differential Optical Absorption Spectroscopy (DOAS) measurements performed during the summer of 2007 and the winter of 2008. One of the DOAS instruments operate at Mt.Cimone station (2165m a.s.l) and the other two instruments conducted measurements in/near Bologna (90 m. a.s.l). Different observational geometry was adopted (zenith-sky, multi-axis and long-path) aimed to provide tropospheric NO2 columns and O3, SO2 and HCHO concentrations at ground level as an input data for QUITSAT procedures. Details of the instruments, the radiative transfer model used and the algorithms for retrieving and calculation of the target gases concentrations are presented. The obtained experimental results are correlated with the corresponding ones retrieved from SCIAMACHY /ENVISAT observations during the overpasses above the ground-based instruments. The analysis

  20. Inverse modeling of CO2 sources and sinks using satellite observations of CO2 from TES and surface flask measurements

    Directory of Open Access Journals (Sweden)

    C. A. M. Brenninkmeijer

    2011-06-01

    Full Text Available We infer CO2 surface fluxes using satellite observations of mid-tropospheric CO2 from the Tropospheric Emission Spectrometer (TES and measurements of CO2 from surface flasks in a time-independent inversion analysis based on the GEOS-Chem model. Using TES CO2 observations over oceans, spanning 40° S–40° N, we find that the horizontal and vertical coverage of the TES and flask data are complementary. This complementarity is demonstrated by combining the datasets in a joint inversion, which provides better constraints than from either dataset alone, when a posteriori CO2 distributions are evaluated against independent ship and aircraft CO2 data. In particular, the joint inversion offers improved constraints in the tropics where surface measurements are sparse, such as the tropical forests of South America. Aggregating the annual surface-to-atmosphere fluxes from the joint inversion for the year 2006 yields −1.13±0.21 Pg C for the global ocean, −2.77±0.20 Pg C for the global land biosphere and −3.90±0.29 Pg C for the total global natural flux (defined as the sum of all biospheric, oceanic, and biomass burning contributions but excluding CO2 emissions from fossil fuel combustion. These global ocean and global land fluxes are shown to be near the median of the broad range of values from other inversion results for 2006. To achieve these results, a bias in TES CO2 in the Southern Hemisphere was assessed and corrected using aircraft flask data, and we demonstrate that our results have low sensitivity to variations in the bias correction approach. Overall, this analysis suggests that future carbon data assimilation systems can benefit by integrating in situ and satellite observations of CO2 and that the vertical information provided by satellite observations of mid-tropospheric CO2 combined with measurements of surface CO2, provides an important additional constraint for flux inversions.

  1. Propagation Measurement on Earth-Sky Signal Effects for High Speed Train Satellite Channel in Tropical Region at Ku-Band

    Directory of Open Access Journals (Sweden)

    Abdulmajeed H. J. Al-Jumaily

    2015-01-01

    Full Text Available Recent advances in satellite communication technologies in the tropical regions have led to significant increase in the demand for services and applications that require high channel quality for mobile satellite terminals. Determination and quantification of these requirements are important to optimize service quality, particularly in the Malaysian region. Moreover, the tests on current satellite propagation models were carried out at temperate regions whose environmental characteristics are much different from those in Malaysia. This difference renders these propagation models inapplicable and irrelevant to tropical regions in general. This paper presents the link characteristics observations and performance analysis with propagation measurements done in tropical region to provide an accurate database regarding rain and power arches supply (PAs attenuations in the tropics for mobile scenarios. Hence, an extension for improving the performance assessment and analysis of satellite/transmission has been achieved. The Malaysia propagation measurement for mobile scenario (Malaysia-PMMS enables first-hand coarse estimation and attenuation analysis, because the attenuation resulting from rain and PAs becomes easily amenable for measurement. Parallel to that, the measured attenuation has been compared with that of the simulated output at noise floor level. The underlying analytical tool is validated by measurements specific at tropical region, for dynamic model of mobile satellite links operating at higher than 10 GHz.

  2. High-resolution shipboard measurements of phytoplankton: a way forward for enhancing the utility of satellite SST and chlorophyll for mapping microscale features and frontal zones in coastal waters

    Science.gov (United States)

    Jenkins, Christy A.; Goes, Joaquim I.; McKee, Kali; Gomes, Helga do R.; Arnone, Robert; Wang, Menghua; Ondrusek, Michael; Nagamani, P. V.; Preethi Latha, T.; Rao, K. H.; Dadhwal, V. K.

    2016-05-01

    Coastal eddies, frontal zones and microscale oceanographic features are now easily observable from satellite measurements of SST and Chl a. Enhancing the utility of these space-borne measurements for biological productivity, biogeochemical cycling and fisheries investigations will require novel bio-optical methods capable of providing information on the community structure, biomass and photo-physiology of phytoplankton associated on spatial scales that match these features. This study showcases high-resolution in-situ measurements of sea water hydrography (SeaBird CTD®), CDOM (WetLabs ALF®), phytoplankton functional types (PFTs, FlowCAM®), biomass (bbe Moldaenke AlgaeOnlineAnalyzer® and WetLabs ALF®) and phytoplankton photosynthetic competency (mini-FIRe) across microscale features encountered during a recent (Nov. 2014) cruise in support of NOAA's VIIRS ocean color satellite calibration and validation activities. When mapped against binned daily, Level 2 satellite images of Chl a, Kd490 and SST over the cruise period, these high-resolution in-situ data showed great correspondence with the satellite data, but more importantly allowed for identification of PFTs and water types associated with microscale features. Large assemblages of phytoplankton communities comprising of diatoms and diatom-diazotroph associations (DDAs), were found in mesohaline frontal zones. Despite their high biomass, these populations were characterized by low photosynthetic competency, indicative of a bloom at the end of its active growth possibly due to nitrogen depletion in the water. Other prominent PFTs such as Trichodesmium spp., Synechococcus spp. and cryptophytes, were also associated with specific water masses offering the promise and potential that ocean remote sensing reflectance bands when examined in the context of water types also measurable from space, could greatly enhance the utility of satellite measurements for biological oceanographic, carbon cycling and fisheries

  3. Half-life of the electron-capture decay of 97Ru: Precision measurement shows no temperature dependence

    CERN Document Server

    Goodwin, J R; Iacob, V E; Hardy, J C; 10.1103/PhysRevC.80.045501

    2009-01-01

    We have measured the half-life of the electron-capture (ec) decay of 97Ru in a metallic environment, both at low temperature (19K), and also at room temperature. We find the half-lives at both temperatures to be the same within 0.1%. This demonstrates that a recent claim that the ec decay half-life for 7Be changes by $0.9% +/- 0.2% under similar circumstances certainly cannot be generalized to other ec decays. Our results for the half-life of 97Ru, 2.8370(14)d at room temperature and 2.8382(14)d at 19K, are consistent with, but much more precise than, previous room-temperature measurements. In addition, we have also measured the half-lives of the beta-emitters 103Ru and 105Rh at both temperatures, and found them also to be unchanged.

  4. Satellite tagging of Mediterranean fin whales: working towards the identification of critical habitats and the focussing of mitigation measures.

    Science.gov (United States)

    Panigada, Simone; Donovan, Gregory P; Druon, Jean-Noël; Lauriano, Giancarlo; Pierantonio, Nino; Pirotta, Enrico; Zanardelli, Margherita; Zerbini, Alexandre N; di Sciara, Giuseppe Notarbartolo

    2017-06-13

    Mediterranean fin whales comprise a genetically distinct population, listed as Vulnerable (VU) in the IUCN Red List. Collisions with vessels are believed to represent the main cause of human-induced mortality. The identification of critical habitats (including migration routes) incorporating satellite telemetry data is therefore crucial to develop focussed conservation efforts. Between 2012 and 2015 thirteen fin whales were equipped with satellite transmitters, 8 in the Pelagos Sanctuary (although two ceased within two days) and 5 in the Strait of Sicily, to evaluate movements and habitat use. A hierarchical switching state-space model was used to identify transiting and area-restricted search (ARS) behaviours, believed to indicate foraging activities. All whales undertook mid- to long-distance migrations, crossing some of the world's busiest maritime routes. Areas where the animals predominantly engaged in ARS behaviour were identified in both study areas. The telemetry data were compared with results from ecosystem niche modelling, and showed that 80% of tagged whale positions was near (habitat. The results contribute to the view that precautionary management should include establishment of a coordinated and dynamic basin-wide management scheme; if appropriate, this may include the establishment of protected areas by specific regional Conventions.

  5. Measurement of ground displacement from optical satellite image correlation using the free open-source software MicMac

    Science.gov (United States)

    Rosu, Ana-Maria; Pierrot-Deseilligny, Marc; Delorme, Arthur; Binet, Renaud; Klinger, Yann

    2015-02-01

    Image correlation is one of the most efficient techniques to determine horizontal ground displacements due to earthquakes, landslides, ice flows or sand dune migrations. Analyzing these deformations allows a better understanding of the causes and mechanisms of the events. By using sub-pixel correlation on before- and after-event ortho-images obtained from high resolution satellite images it is possible to compute the displacement field with high planimetric resolution. In this paper, we focus on measuring the ground displacements due to seismotectonic events. The three sub-pixel correlators used are: COSI-Corr - developed by Caltech, a free, closed-source correlator, dependent on commercial software (ENVI) and widely used by the geoscience community for measuring ground displacement; Medicis - developed by CNES, also a closed-source correlator capable of measuring this type of deformation; and MicMac - developed by IGN, the free open-source correlator we study and tune for measuring fine ground displacements. We measured horizontal ground deformation using these three correlators on SPOT images in three study cases: the 2001 Kokoxili earthquake, the 2005 dyke intrusion in the Afar depression and the 2008 Yutian earthquake.

  6. Satellite Communication.

    Science.gov (United States)

    Technology Teacher, 1985

    1985-01-01

    Presents a discussion of communication satellites: explains the principles of satellite communication, describes examples of how governments and industries are currently applying communication satellites, analyzes issues confronting satellite communication, links mathematics and science to the study of satellite communication, and applies…

  7. Shipboard Sunphotometer Measurements of Aerosol Optical Depth During ACE-2 and Comparison with Selected Ship, Aircraft and Satellite Measurements

    Science.gov (United States)

    Livingston, J. M.; Kapustin, V. N.; Schmid, B.; Russell, P. B.; Quinn, P. K.; Bates, T. S.; Durkee, P. A.; Nielsen, K.; Freudenthaler, V.; Wiegner, M.; Covert, D. S.

    2000-01-01

    We present analyses of aerosol optical depth (AOD) measurements taken with a shipboard six-channel tracking sunphotometer during ACE-2. For 10 July 1997, results are also shown for measurements acquired 70 km from the ship with a fourteen-channel airborne tracking sunphotometer.

  8. Show Time

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    <正> Story: Show Time!The whole class presents the story"Under the Sea".Everyone is so excited and happy.Both Leo and Kathy show their parentsthe characters of the play."Who’s he?"asks Kathy’s mom."He’s the prince."Kathy replies."Who’s she?"asks Leo’s dad."She’s the queen."Leo replieswith a smile.

  9. Snobbish Show

    Institute of Scientific and Technical Information of China (English)

    YIN PUMIN

    2010-01-01

    @@ The State Administration of Radio,Film and Television (SARFT),China's media watchdog,issued a new set of mles on June 9 that strictly regulate TV match-making shows,which have been sweeping the country's primetime programming. "Improper social and love values such as money worship should not be presented in these shows.Humiliation,verbal attacks and sex-implied vulgar content are not allowed" the new roles said.

  10. An analysis of low-frequency component in microacceleration measurements made onboard the Foton M-2 satellite

    Science.gov (United States)

    Beuselinck, T.; van Bavinchove, C.; Sazonov, V. V.; Chebukov, S. Yu.

    2008-10-01

    The low-frequency component is investigated in the data of measurements performed onboard the Foton M-2 satellite with the three-component accelerometer TAS-3. Investigations consisted in comparison of this component with its calculated analog found from a reconstruction of the satellite’s attitude motion. The influence of the Earth’s magnetic field on the accelerometer readings is discovered by way of spectral analysis of the functions representing the results of determining the low-frequency microacceleration by two methods. After making correction for this influence, the results obtained by these two methods coincided within a root-mean-square error of less than 10-6 m/s2.

  11. Satellite-based measurements of surface deformation reveal fluid flow associated with the geological storage of carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Vasco, D.W.; Rucci, A.; Ferretti, A.; Novali, F.; Bissell, R.; Ringrose, P.; Mathieson, A.; Wright, I.

    2009-10-15

    Interferometric Synthetic Aperture Radar (InSAR), gathered over the In Salah CO{sub 2} storage project in Algeria, provides an early indication that satellite-based geodetic methods can be effective in monitoring the geological storage of carbon dioxide. An injected volume of 3 million tons of carbon dioxide, from one of the first large-scale carbon sequestration efforts, produces a measurable surface displacement of approximately 5 mm/year. Using geophysical inverse techniques we are able to infer flow within the reservoir layer and within a seismically detected fracture/ fault zone intersecting the reservoir. We find that, if we use the best available elastic Earth model, the fluid flow need only occur in the vicinity of the reservoir layer. However, flow associated with the injection of the carbon dioxide does appear to extend several kilometers laterally within the reservoir, following the fracture/fault zone.

  12. A Birth Cohort Analysis to Study Dog Walking in Adolescence Shows No Relationship with Objectively Measured Physical Activity

    Directory of Open Access Journals (Sweden)

    Carri Westgarth

    2017-05-01

    Full Text Available Physical inactivity during childhood and adolescence is a serious health concern. There are few studies of the activity undertaken by adolescents when walking with the family dog, and the effect of this on objectively measured physical activity levels. Objective measures of physical activity using accelerometers were recorded at age 11–12, 13–14, and 15–16 years in the Avon Longitudinal Study of Parents and Children (ALSPAC (ALSPAC, UK birth cohort during the 2000s. Family pet ownership was collected retrospectively using a questionnaire at age 18 years, for the ages 7, 11, 13, and 15 years. In addition, approximate frequency per week of walks undertaken with dogs were also reported. Multilevel, multivariable modeling was used to investigate the relationship between dog ownership and dog walking status, and physical activity outcomes. There were a total of 4,373 complete data observations for use in 2,055 children. Reported participation in dog walking tended to increase during adolescence, as did dog ownership. The majority of who own dogs reported walking them either 2–6 times/week (range 39–46% or never (range 27–37%. A small minority (7–8% reported walking their dog every day. Most reported never walking any other dog either (94–87%. We found no evidence for an association between dog ownership or reported dog walking, and objectively measured physical activity (counts per minute, P = 0.3, or minutes of moderate-to-vigorous physical activity, P = 0.7 during adolescence. This study provides no evidence to support a relationship between adolescent dog ownership and physical activity, and demonstrates the importance of using objective activity measures and considering dog walking rather than just dog ownership.

  13. Variation in the stratospheric aerosol associated with the North Cyclonic Polar Vortex as measured by the SAM II satellite sensor. [Stratospheric Aerosol Measurement

    Science.gov (United States)

    Kent, G. S.; Farrukh, U. O.; Trepte, C. R.; Mccormick, M. P.

    1985-01-01

    Optical depth data gathered by the stratospheric aerosol measurement (SAM II) satellite during the 1979-80 winter season are analyzed to study mean atmospheric motions. The spacecraft photometer yielded extinction rates over the Northern Hemisphere in the 8-30 km altitude interval. Filtering was performed to remove the effects of high clouds and polar stratospheric clouds. Free horizontal mixing was prevalent below 14 km, as was a systematic difference across the polar jet stream above that altitude. The aerosol declined in altitude as the winter progressed. The polar vortex is concluded to have a base at the 14 km altitude and an outer boundary which coincides with the jet stream axis. The model accords with atmospheric tracer measurements made during the open-air nuclear testing programs in the 1950s.

  14. Multi-annual changes of NOx emissions in megacity regions: nonlinear trend analysis of satellite measurement based estimates

    Directory of Open Access Journals (Sweden)

    J. P. Burrows

    2010-09-01

    Full Text Available Hazardous impact of air pollutant emissions from megacities on atmospheric composition on regional and global scales is currently an important issue in atmospheric research. However, the quantification of emissions and related effects is frequently a difficult task, especially in the case of developing countries, due to the lack of reliable data and information. This study examines possibilities to retrieve multi-annual NOx emissions changes in megacity regions from satellite measurements of nitrogen dioxide and to quantify them in terms of linear and nonlinear trends. By combining the retrievals of the GOME and SCIAMACHY satellite instrument data with simulations performed by the CHIMERE chemistry transport model, we obtain the time series of NOx emission estimates for the 12 largest urban agglomerations in Europe and the Middle East in the period from 1996 to 2008. We employ then a novel method allowing estimation of a nonlinear trend in a noisy time series of an observed variable. The method is based on the probabilistic approach and the use of artificial neural networks; it does not involve any quantitative a priori assumptions. As a result, statistically significant nonlinearities in the estimated NOx emission trends are detected in 5 megacities (Bagdad, Madrid, Milan, Moscow and Paris. Statistically significant upward linear trends are detected in Istanbul and Tehran, while downward linear trends are revealed in Berlin, London and the Ruhr agglomeration. The presence of nonlinearities in NOx emission changes in Milan, Paris and Madrid is confirmed by comparison of simulated NOx concentrations with independent air quality monitoring data. A good quantitative agreement between the linear trends in the simulated and measured near surface NOx concentrations is found in London.

  15. Satellite images and geodetic measurements applied to the monitoring of the Horcones Inferior Glacier, Mendoza, Argentina

    Directory of Open Access Journals (Sweden)

    M. Gabriela Lenzano

    2011-06-01

    Full Text Available This work analyzes the monitoring of the covered and regenerated Horcones Inferior Glacier (HIG since the implementation of a semi-permanent GNSS station (HISS on its surface during the summer seasons of 2009 and 2010. The glacier is located at 32° 41's and 69° 57'w, at the foot of the south wall of Mt. Aconcagua, Aconcagua Provincial Park, Mendoza, Argentina. The average velocities obtained from the HISS station were of 1.3 cm/d and 3.5 cm/d during the 2009 and 2010 seasons respectively. The data procured using satellite images during the last surges (1984 and 2003 gave average velocities for the HIG front of 8.7 m/d for the first event and 11.5 m/d for the second one. These results allowed getting accurate and reliable movement tendency at the terminal part of the HIG during the 1984-2010 period.El presente trabajo realiza el monitoreo del glaciar Horcones Inferior, cubierto y regenerado a partir de la implementación de una estación GNSS semi-permanente (HISS, instalada sobre su superficie durante las temporadas de verano de 2009 y 2010 respectivamente. El glaciar se encuentra ubicado a los 32° 41's y 69° 57'w, al pie de la pared sur del C° Aconcagua, en el Parque Provincial Aconcagua, Mendoza, Argentina. La estación HISS registró valores de velocidades medias de 1.3 cm/d y 3.5 cm/d durante las temporadas de 2009 y 2010. Se utilizaron imágenes satelitales para el seguimiento del frente del glaciar durante los últimos surges (1984 y 2003, cuyas velocidades medias fueron de 8.7 m/d para el primero y de 11.5 m/d para el segundo evento. Estos resultados permitieron obtener de manera precisa y confiable la tendencia de movimiento de la parte terminal del GHI durante el periodo 1984-2010.

  16. Assimilation of IASI satellite CO fields into a global chemistry transport model for validation against aircraft measurements

    Directory of Open Access Journals (Sweden)

    A. Klonecki

    2011-12-01

    Full Text Available A modelling system for assimilation of CO total columns measured by the IASI/MetOp was developed. The system, based on a sub-optimal Kalman filter coupled with the LMDz-INCA chemistry transport model, allows both assimilating long periods of historical data and making rapid forecasts of the CO concentrations in the middle troposphere based on latest available measurements. Tests of the forecast system were conducted during the international POLARCAT campaigns. A specific treatment that takes into account the representativeness of observations at the scale of the model grid is applied to the IASI CO columns and associated errors before their assimilation in the model. This paper presents the results of assimilation of eight months of historical satellite data measured in 2008. Comparisons of the assimilated CO profiles with independent in situ CO measurements from the MOZAIC program and the POLARCAT aircraft campaigns indicate that the assimilation leads to a considerable improvement of the model simulations in the middle troposphere as compared with a control run with no assimilation. Model biases in the simulation of background values are reduced and improvement in the simulation of very high concentrations is observed. The improvement is due to the transport by the model of the information present in the IASI CO retrievals. The consistency of the improvement contributes to the validation of the IASI CO data.

  17. Application of image cross-correlation to the measurement of glacier velocity using satellite image data

    Science.gov (United States)

    Scambos, Theodore A.; Dutkiewicz, Melanie J.; Wison, Jeremy C.; Bindschadler, Robert A.

    1992-01-01

    A high-resolution map of the velocity field of the central portion of Ice Stream E in West Antarctica, generated by the displacement-measuring technique, is presented. The use of cross-correlation software is found to be a significant improvement over previous manually based photogrammetric methods for velocity measurement, and is far more cost-effective than in situ methods in remote polar areas. A hue-intensity-saturation image of Ice Stream E and its velocity field is shown.

  18. EROBATIC SHOW

    Institute of Scientific and Technical Information of China (English)

    2016-01-01

    Visitors look at plane models of the Commercial Aircraft Corp. of China, developer of the count,s first homegrown large passenger jet C919, during the Singapore Airshow on February 16. The biennial event is the largest airshow in Asia and one of the most important aviation and defense shows worldwide. A number of Chinese companies took part in the event during which Okay Airways, the first privately owned aidine in China, signed a deal to acquire 12 Boeing 737 jets.

  19. Spectrally Enhanced Cloud Objects—A generalized framework for automated detection of volcanic ash and dust clouds using passive satellite measurements: 1. Multispectral analysis

    Science.gov (United States)

    Pavolonis, Michael J.; Sieglaff, Justin; Cintineo, John

    2015-08-01

    While satellites are a proven resource for detecting and tracking volcanic ash and dust clouds, existing algorithms for automatically detecting volcanic ash and dust either exhibit poor overall skill or can only be applied to a limited number of sensors and/or geographic regions. As such, existing techniques are not optimized for use in real-time applications like volcanic eruption alerting and data assimilation. In an effort to significantly improve upon existing capabilities, the Spectrally Enhanced Cloud Objects (SECO) algorithm was developed. The SECO algorithm utilizes a combination of radiative transfer theory, a statistical model, and image processing techniques to identify volcanic ash and dust clouds in satellite imagery with a very low false alarm rate. This fully automated technique is globally applicable (day and night) and can be adapted to a wide range of low earth orbit and geostationary satellite sensors or even combinations of satellite sensors. The SECO algorithm consists of four primary components: conversion of satellite measurements into robust spectral metrics, application of a Bayesian method to estimate the probability that a given satellite pixel contains volcanic ash and/or dust, construction of cloud objects, and the selection of cloud objects deemed to have the physical attributes consistent with volcanic ash and/or dust clouds. The first two components of the SECO algorithm are described in this paper, while the final two components are described in a companion paper.

  20. The neutral atmosphere temperature experiment. [for thermospheric nitrogen measurement on AEROS satellite

    Science.gov (United States)

    Spencer, N. W.; Pelz, D. T.; Niemann, H. B.; Carignan, G. R.; Caldwell, J. R.

    1974-01-01

    The AEROS Neutral Atmosphere Temperature Experiment (NATE) is designed to measure the kinetic temperature of molecular nitrogen in the thermosphere. A quadrupole mass spectrometer tuned to N2 measures the N2 density variation in a small spherical antechamber having a knife-edged orifice which is exposed to the atmosphere at the outer surface of the spacecraft. The changing density of N2 due to the spinning motion of the spacecraft permits determination of the velocity distribution of the N2 from which the temperature is calculated. An alternate mode of operation of the instrument allows measurement of the other gases in the atmosphere as well as N2 permitting determination of the neutral particle composition of the atmosphere.

  1. Shipboard Sunphotometer Measurements of Aerosol Optical Depth Spectra and Columnar Water Vapor During ACE-2 and Comparison with Selected Land, Ship, Aircraft, and Satellite Measurements

    Science.gov (United States)

    Livingston, John M.; Kapustin, Vladimir N.; Schmid, Beat; Russell, Philip B.; Quinn, Patricia K.; Bates, Timothy S.; Durkee, Philip A.; Smith, Peter J.; Freudenthaler, Volker; Wiegner, Matthias; Covert, Dave S.; Gasso, Santiago; Hegg, Dean; Collins, Donald R.; Flagan, Richard C.; Seinfeld, John H.; Vitale, Vito; Tomasi, Claudio

    2000-01-01

    Analyses of aerosol optical depth (AOD) and colurnmn water vapor (CWV) measurements acquired with NASA Ames Research Center's 6-channel Airborne Tracking Sunphotometer (AATS-6) operated aboard the R/V Professor Vodyanitskiy during the 2nd Aerosol Characterization Experiment (ACE-2) are discussed. Data are compared with various in situ and remote measurements for selected cases. The focus is on 10 July, when the Pelican airplane flew within 70 km of the ship near the time of a NOAA-14/AVHRR satellite overpass and AOD measurements with the 14-channel Ames Airborne Tracking Sunphotometer (AATS-14) above the marine boundary layer (MBL) permitted calculation of AOD within the MBL from the AATS-6 measurements. A detailed column closure test is performed for MBL AOD on 10 July by comparing the AATS-6 MBL AODs with corresponding values calculated by combining shipboard particle size distribution measurements with models of hygroscopic growth and radiosonde humidity profiles (plus assumptions on the vertical profile of the dry particle size distribution and composition). Large differences (30-80% in the mid-visible) between measured and reconstructed AODs are obtained, in large part because of the high sensitivity of the closure methodology to hygroscopic growth models, which vary considerably and have not been validated over the necessary range of particle size/composition distributions. The wavelength dependence of AATS-6 AODs is compared with the corresponding dependence of aerosol extinction calculated from shipboard measurements of aerosol size distribution and of total scattering mearured by a shipboard integrating nephelometer for several days. Results are highly variable, illustrating further the great difficulty of deriving column values from point measurements. AATS-6 CWV values are shown to agree well with corresponding values derived from radiosonde measurements during 8 soundings on 7 days and also with values calculated from measurements taken on 10 July with

  2. Measurement and proper equalization of range sidelobes using a spherical satellite as a reflector

    Science.gov (United States)

    Kramer, A. G.

    1994-08-01

    We have investigated the problems of measuring range sidelobes by using a small sphere (ka 15) as a target. This measurement scheme requires coherent integration to increase the signal-to-noise ratio at the sidelobes to a level where accurate estimation is possible. We determined that two pathologic coherent responses can occur in this situation. A wave creeping around the sphere causes the formation of an asymmetric range sidelobe that lags the main response. We find that the relative level of coherent errors, whose magnitude is below the noise on a single plus basis, is invariant with coherent integration.

  3. Evaluating the design of satellite scanning radiometers for earth radiation budget measurements with system simulations. Part 1: Instantaneous estimates

    Science.gov (United States)

    Stowe, Larry; Ardanuy, Philip; Hucek, Richard; Abel, Peter; Jacobowitz, Herbert

    1991-10-01

    A set of system simulations was performed to evaluate candidate scanner configurations to fly as a part of the Earth Radiation Budget Instrument (ERBI) on the polar platforms during the 1990's. The simulation is considered of instantaneous sampling (without diurnal averaging) of the longwave and shortwave fluxes at the top of the atmosphere (TOA). After measurement and subsequent inversion to the TOA, the measured fluxes were compared to the reference fluxes for 2.5 deg lat/long resolution targets. The reference fluxes at this resolution are obtained by integrating over the 25 x 25 = 625 grid elements in each target. The differences between each of these two resultant spatially averaged sets of target measurements (errors) are taken and then statistically summarized. Five instruments are considered: (1) the Conically Scanning Radiometer (CSR); (2) the ERBE Cross Track Scanner; (3) the Nimbus-7 Biaxial Scanner; (4) the Clouds and Earth's Radiant Energy System Instrument (CERES-1); and (5) the Active Cavity Array (ACA). Identical studies of instantaneous error were completed for many days, two seasons, and several satellite equator crossing longitudes. The longwave flux errors were found to have the same space and time characteristics as for the shortwave fluxes, but the errors are only about 25 pct. of the shortwave errors.

  4. A Model For The Use Of Satellite Remote Sensing For The Measurement Of Primary Production In The Ocean

    Science.gov (United States)

    Collins, Donald J.; Kiefer, Dale A.; SooHoo, Janice B.; Stallings, Casson; Yang, Wei-Liang

    1986-08-01

    The estimation of oceanic primary production on a global scale is the focus of efforts in remote sensing using the Coastal Zone Color Scanner (CZCS). The goal of this research is to provide a measure of the primary production using only satellite data for the estimate. This estimate requires the measurement of surface pigments (chlorophyll a + phaeophytin a) using the CZCS, an estimate of the sea-surface temperature using the AVHRR and determination of the incident solar irradiance using GOES imagery. In this paper, we describe a model of primary production based upon the responses of phytoplankton to differing light and nutrient fields. This model includes the effects on production of variations in surface pigment concentration, the mixed layer depth and the dependence on the incident solar irradiance. The model has been tested using in situ data provided by the Southern California Bight Studies (Eppley, et al., 1979), California Cooperative Fisheries Investigations (CalCOFI), Organization of Persistent Upwelling Structures (J.B. Soolloo in OPUS Data Report) and other data sets. A synoptic measure of the distribution of surface pigments is derived from the West Coast Chlorophyll and Temperature Time Series (West Coast Time Series Advisory Group, 1985). The features and behavior of the model will be presented together with the results of the model verification.

  5. Comparison of measured and satellite-derived spectral diffuse attenuation coefficients for the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Suresh, T.; Talaulikar, M.; Desa, E.; Matondkar, S.G.P.; Mascarenhas, A.

    bands. The performance of the data-driven empirical methods was found to be consistent in all the bands, except at the red band of 670 nm, which is uncorrelated with the measured values and has large errors. The performances of the empirical methods...

  6. Comparisons of LASE, aircraft, and satellite measurements of aerosol optical properties and water vapor during TARFOX

    NARCIS (Netherlands)

    Ferrare, R.; Ismail, S.; Browell, E.; Brackett, V.; Kooi, S.; Clayton, M.; Hobbs, P.V.; Hartley, S.; Veefkind, J.P.; Russell, P.; Livingston, J.; Tanré, D.; Hignett, P.

    2000-01-01

    We examine aerosol extinction and optical thickness from the Lidar Atmospheric Sensing Experiment (LASE), the in situ nephelometer and absorption photometer on the University of Washington C-131A aircraft, and the NASA Ames Airborne Tracking Sun Photometer (AATS-6) on the C-131A measured during the

  7. Comparisons of LASE, aircraft, and satellite measurements of aerosol optical properties and water vapor during TARFOX

    NARCIS (Netherlands)

    Ferrare, R.; Ismail, S.; Browell, E.; Brackett, V.; Kooi, S.; Clayton, M.; Hobbs, P.V.; Hartley, S.; Veefkind, J.P.; Russell, P.; Livingston, J.; Tanré, D.; Hignett, P.

    2000-01-01

    We examine aerosol extinction and optical thickness from the Lidar Atmospheric Sensing Experiment (LASE), the in situ nephelometer and absorption photometer on the University of Washington C-131A aircraft, and the NASA Ames Airborne Tracking Sun Photometer (AATS-6) on the C-131A measured during the

  8. Arctic total ozone trend and variability during 2004 - 2012 based on Brewer revised data, Ozonesonde and satellite measurements

    Science.gov (United States)

    Moeini, Omid; Vaziri, Zahra; McElroy, Tom; Tarasick, David; Savastiouk, Vladimir; Barton, David

    2015-04-01

    It is now known that Single-Monochromator Brewer Spectrophotometer ozone measurements suffer from non-linearity due to the presence of instrumental stray light caused by scattering from the optics within the instrument. Stray light is unwanted radiation from different wavelengths that arrives at the detector during the measurements. Since the gradient of ozone absorption is large in the ultraviolet spectral region, the stray light contribution becomes significant between 300 and 325 nm where the Brewer measures, especially when the amount of ozone in the light path becomes more than 1000 Dobson Units (D.U.). Stray light results in an underestimated ozone column at larger air masses. As the light path (air mass) increases, stray-light effects in the measurements also increase. An ozone column of 600 D.U. with at an air mass factor of 3 (1800 D.U.) can measure as much as 8% lower than the ozone actual amount. These are conditions commonly seen during the Arctic spring. A new method to account for stray light effects is being developed for the Brewer ozone measurements. This method is based on a mathematical model of the instrument response and a non-linear retrieval which calculates the best values for the model parameters. The parameterization used is validated by an instrument physical model simulation. Using the mathematical model in reverse provides correct ozone values. This paper presents the method and the results of a trend analysis based of the re-evaluated data of three Brewers which are located in the Arctic (Alert Lat. 82.44, Lon. -62.55, Eureka Lat. 79.96, Lon. -86.45 and Resolute Lat. 74.69, and Lon. -95.01) from 2004 to 2012. Gaps in the Brewer data are filled with ozonesonde reanalysis data obtained from WOUDC (World Ozone and Ultraviolet radiation Data Centre) and the results will be compared with MLS (Microwave Limb Sounder) satellite data.

  9. An Empirical Approach to Determining the Boundary Layer Bromine Monoxide (BrO) Abundance from Satellite Total Column Measurements

    Science.gov (United States)

    Simpson, W. R.; Donohoue, D.; Carlson, D. A.

    2009-12-01

    Unique chemistry in the Arctic boundary layer during springtime liberates bromine from sea salt, producing reactive halogen gases (e.g. atomic bromine and bromine monoxide radicals) that then drastically alter atmospheric oxidation pathways. This phenomenon causes ozone depletion events and affects mercury deposition to the snowpack. Satellite remote sensing (e.g. OMI and GOME2 observations) techniques can detect the total column abundance of BrO, which is generally the primary species of the reactive bromine family. However, BrO is also present in the stratosphere, so it is necessary to partition the satellite-observed BrO column abundance into boundary layer and non-boundary layer (primarily stratospheric) partial columns to be able to infer boundary layer abundances and hence chemical affects near the Earth's surface (i.e. ozone and mercury impacts). In this presentation, we describe an empirical method for partitioning the BrO total column and apply it globally during spring 2008. The method indicates that some BrO total column enhancements ("hotspots") are not actually enhancements in the boundary layer BrO abundance but occur aloft. Movies and a statistical analysis of the inferred boundary layer BrO abundance are presented. The method has been tested and performs well at the Barrow field site. However, in areas that lack routine ground truth BrO measurements (e.g. Hudson Bay, Canada), large tropospheric BrO abundances are indicated. It is not clear if these inferred boundary layer BrO events are real or if the simple empirical method described here is failing in those locations. Verification of this method over large spatial regions of the Arctic is needed.

  10. Rainfall measurements from cellular networks microwave links : an alternative ground reference for satellite validation and hydrology in Africa .

    Science.gov (United States)

    Gosset, Marielle; cazenave, frederic; Zougmore, françois; Doumounia, Ali; kacou, Modeste

    2015-04-01

    In many part of the Tropics the ground based gauge networks are sparse, often degrading and accessing this data for monitoring rainfall or for validating satellite products is sometime difficult. Here, an alternative rainfall measuring technique is proposed and tested in West Africa. It is based on using commercial microwave links from cellular telephone networks to detect and quantify rainfall. Rainfall monitoring based on commercial terrestrial microwave links has been tested for the first time in Burkina Faso, in Sahel. The rainfall regime is characterized by intense rainfall intensities brought by mesoscale Convective systems (MCS), generated by deep organized convection. The region is subjected to drought as well as dramatic floods associated with the intense rainfall provided by a few MCSs. The hydrometeorological risk is increasing and need to be monitored. In collaboration with the national cellular phone operator, Telecel Faso, the attenuation on 29 km long microwave links operating at 7 GHz was monitored at 1s time rate for the monsoon season 2012. The time series of attenuation is transformed into rain rates and compared with rain gauge data. The method is successful in quantifying rainfall: 95% of the rainy days are detected. The correlation with the daily raingauge series is 0.8 and the season bias is 5%. The correlation at the 5 min time step within each event is also high. We will present the quantitative results, discuss the uncertainties and compare the time series and the 2D maps with those derived from a polarimetric radar. The results demonstrate the potential interest of exploiting national and regional wireless telecommunication networks to provide rainfall maps for various applications : urban hydrology, agro-hydrological risk monitoring, satellite validation and development of combined rainfall products. We will also present the outcome of the first international Rain Cell Africa workshop held in Ouagadougou early 2015.

  11. Estimated total emissions of trace gases from the Canberra Wildfires of 2003: a new method using satellite measurements of aerosol optical depth & the MOZART chemical transport model

    Directory of Open Access Journals (Sweden)

    C. Paton-Walsh

    2010-06-01

    Full Text Available In this paper we describe a new method for estimating trace gas emissions from large vegetation fires using satellite measurements of aerosol optical depth (AOD at 550 nm, combined with an atmospheric chemical transport model. The method uses a threshold value to screen out normal levels of AOD that may be caused by raised dust, sea salt aerosols or diffuse smoke transported from distant fires. Using this method we infer an estimated total emission of 15±5 Tg of carbon monoxide, 0.05±0.02 Tg of hydrogen cyanide, 0.11±0.03 Tg of ammonia, 0.25±0.07 Tg of formaldehyde, 0.03±0.01 of acetylene, 0.10±0.03 Tg of ethylene, 0.03±0.01 Tg of ethane, 0.21±0.06 Tg of formic acid and 0.28±0.09 Tg of methanol released to the atmosphere from the Canberra fires of 2003. An assessment of the uncertainties in the new method is made and we show that our estimate agrees (within expected uncertainties with estimates made using current conventional methods of multiplying together factors for the area burned, fuel load, the combustion efficiency and the emission factor for carbon monoxide. A simpler estimate derived directly from the satellite AOD measurements is also shown to be in agreement with conventional estimates, suggesting that the method may, under certain meteorological conditions, be applied without the complication of using a chemical transport model. The new method is suitable for estimating emissions from distinct large fire episodes and although it has some significant uncertainties, these are largely independent of the uncertainties inherent in conventional techniques. Thus we conclude that the new method is a useful additional tool for characterising emissions from vegetation fires.

  12. Analysis of Aerosol Distribution over North East Asia Using a Geostationary Satellite Measurement during Filed Campaigns of DRAGON-Asia 2012 and MAPS-Seoul 2015

    Science.gov (United States)

    KIM, M.; Kim, J.; Jeong, U.; Kim, W.; Choi, M.; Holben, B. N.; Eck, T. F.; Lim, J.; Ahn, J.

    2015-12-01

    Considering diverse source and high concentration of aerosol, numerous manners have been applied to detect aerosol properties in North East Asia (NEA). Above all, a geostationary orbit satellite, COMS has monitored atmosphere and ocean conditions over the NEA using two payloads of Meteorological Imager (MI) and Geostationary Ocean Color Imager (GOCI) since 2010. By using the MI measurements, an AOD retrieval algorithm was developed (Kim et al., 2014). Additionally, a number of ground-based network such as Aerosol Robotic Network (AERONET), Sky Radiometer Network (SKYNET), and Mie-scattering Light Detector and Ranging (LIDAR) Network have been in operation to capture aerosol variability. And, occasionally, field campaigns were conducted. In 2012 (March to May), the DRAGON-Asia campaign was performed by AERONET science team and NIER (National Institute of Environmental Research), and 40 sun/sky-radiometer was deployed. Subsequently, MAPS-Seoul campaign for detecting air quality was performed with 8 AERONET sites and 6 Pandora instruments in Korea. Those ground-based measurements provide validation dataset for satellite retrieval algorithm, as well as detect detail of aerosol characteristics at each local point. Thus, in this study, the AODs obtained from the aforementioned campaigns were applied to assess and improve the accuracy of MI AOD. For the DRAGON-Asia 2012, the comparison between MI AOD and AERONET AOD shows correlation coefficient of 0.85, regression slope of 1.00 and RMSE of 0.18. Furthermore, AOPs obtained from those field campaign results and the MI AOD were analyzed to understand temporal and spatial variance of aerosol in NEA during spring.

  13. Measure, Then Show: Grasping Human Evolution Through an Inquiry-Based, Data-driven Hominin Skulls Lab.

    Science.gov (United States)

    Bayer, Chris N; Luberda, Michael

    2016-01-01

    Incomprehension and denial of the theory of evolution among high school students has been observed to also occur when teachers are not equipped to deliver a compelling case also for human evolution based on fossil evidence. This paper assesses the outcomes of a novel inquiry-based paleoanthropology lab teaching human evolution to high-school students. The inquiry-based Be a Paleoanthropologist for a Day lab placed a dozen hominin skulls into the hands of high-school students. Upon measuring three variables of human evolution, students explain what they have observed and discuss findings. In the 2013/14 school year, 11 biology classes in 7 schools in the Greater New Orleans area participated in this lab. The interviewed teacher cohort unanimously agreed that the lab featuring hominin skull replicas and stimulating student inquiry was a pedagogically excellent method of delivering the subject of human evolution. First, the lab's learning path of transforming facts to data, information to knowledge, and knowledge to acceptance empowered students to themselves execute part of the science that underpins our understanding of deep time hominin evolution. Second, although challenging, the hands-on format of the lab was accessible to high-school students, most of whom were readily able to engage the lab's scientific process. Third, the lab's exciting and compelling pedagogy unlocked higher order thinking skills, effectively activating the cognitive, psychomotor and affected learning domains as defined in Bloom's taxonomy. Lastly, the lab afforded students a formative experience with a high degree of retention and epistemic depth. Further study is warranted to gauge the degree of these effects.

  14. An Autonomous System to Take Angular Thermal-Infrared Measurements for Validating Satellite Products

    OpenAIRE

    Raquel Niclòs; José A. Valiente; Maria J. Barberà; César Coll

    2015-01-01

    An autonomous system for field land surface temperature (LST) measurements taken at different observation angles was developed to be deployed easily at any conventional meteorological tower station. The system permits ground-truth data to be acquired on a continuous basis, and angularly scans land and sky hemispheres with a single thermal-infrared (TIR) radiometer. This paper describes the autonomous angular system and the methodology to assess ground-truth LST and relative-to-nadir emissivit...

  15. Development of a Standard Maritime C2N Profile Using Satellite Measurements

    Science.gov (United States)

    2015-03-01

    MEASUREMENTS THESIS Gregory M. Anderson, B.S. Second Lieutenant, USAF Committee Membership: Dr. Steven T. Fiorino Chair Lt Col Kevin S. Bartlett, Ph.D...Standard turbulence profile, Model fitting iv Acknowledgements I would like to thank the following people for their contributions: Dr. Steven Fiorino for...Journal of Geophysical Research: Atmospheres (1984–2012), vol. 111, no. D9, 2006. 10. G. K. Rutledge , J. Alpert, and W. Ebisuzaki, “NOMADS: A climate

  16. Satellite Carbon Monoxide Measurements as Top-Down Constraints on Fire Trace Gas Emissions

    Science.gov (United States)

    Kasibhatla, P.; Randerson, J.; van der Werf, G.; Giglio, L.; Collatz, J.; Defries, R.; Morton, D.

    2008-12-01

    There has been considerable progress in recent years in characterizing trace gas emissions from vegetation fires on a global scale. This progress has been driven by the availability of remotely-sensed vegetation and fire products, combined with the development of global-scale, process-based terrestrial biogeochemistry models that explicitly include fire. Nevertheless, significant uncertainties remain in our understanding of the spatial and temporal variability of trace gas emissions from fires, and in the underlying climatic and human factors that drive this variability. Here, we examine the extent to which remote sensing measurements of atmospheric trace gas concentrations can provide additional constraints of emissions from fires. Specifically, we focus on using the multi-year record of carbon monoxide measurements from the MOPITT instrument on the Terra platform in an inverse modeling framework to elucidate the reduction in uncertainty in fire emissions at regional scales afforded by these measurements. We further examine the sensitivity of our estimates to various aspects of the inverse modeling set-up in an attempt to characterize the robustness of the derived uncertainty estimates, with a specific emphasis on regions with high deforestation rates in South America and Equatorial Asia.

  17. The introduction to GNOS instrument for FY-3 satellite

    Science.gov (United States)

    Du, Qifei

    2016-07-01

    Global Navigation Satellite System (GNSS) Radio occultation (RO) has become a major atmospheric and ionospheric remote sensing technique and been widely used for numerical weather prediction and global climate monitoring applications. The first GNSS Occultation Sounder (GNOS) developed and manufactured by National Space Science Center (NSSC), Chinese Academy of Science is a RO payload, which has been onboard Fengyun-3 C (FY-3C) satellite and been launched on September 23, 2013. FY-3 series satellites are the Chinese second generation polar-orbiting meteorological satellites with sun-synchronous orbits. During RO events, the GNOS instruments measure the phase delay caused by the Earth's atmospheric and ionospheric refraction between the GNSS satellites and FY-3 satellites, as the relative position between the GNSS satellites and the FY-3 satellites varying, vertical profiles of RO observations (i.e. phase and amplitude) will be obtained, which can be used to derived the atmospheric and ionospheric physical properties such as press, temperature, humidity and ionospheric electron density. In my presentation, we present the characteristics of GNOS instruments for FY-3 series satellites and the result by the instrument in orbit. Firstly, we present the characteristics of GNOS instrument for FY-3C satellite and its precision of atmosphere occultation data. Additionally, we introduce the characteristics of GNOS instrument for FY-3D satellite which will be launched in 2016. Finally, we show the next generation GNOS instrument and its characteristics for the following FY-3 satellites.

  18. Potential of multispectral synergism for observing tropospheric ozone by combining IR and UV measurements from incoming LEO (EPS-SG) and GEO (MTG) satellite sensors

    Science.gov (United States)

    Costantino, Lorenzo; Cuesta, Juan; Emili, Emanuele; Coman, Adriana; Foret, Gilles; Dufour, Gaëlle; Eremenko, Maxim; Chailleux, Yohann; Beekmann, Matthias; Flaud, Jean-Marie

    2017-04-01

    Satellite observations offer a great potential for monitoring air quality on daily and global basis. However, measurements from currently in orbit sensors do not allow to probe surface concentrations of gaseous pollutants such as tropospheric ozone (Liu et al., 2010). Using single-band approaches based on spaceborne measurements of either thermal infrared radiance (TIR, Eremenko et al., 2008) or ultraviolet reflectance (UV, Liu et al., 2010) only ozone down to the lower troposphere (3 km) may be observed. A recent multispectral method (referred to as IASI+GOME-2) combining the information of IASI and GOME-2 (both onboard MetOp satellites) spectra, respectively from the TIR and UV, has shown enhanced sensitivity for probing ozone at the lowermost troposphere (LMT, below 3 km of altitude) with maximum sensitivity down to 2.20 km a.s.l. over land, while sensitivity for IASI or GOME-2 only peaks at 3 to 4 km at lowest (Cuesta et al., 2013). Future spatial missions will be launched in the upcoming years on both low and geostationary orbits, such as EPS-SG (EUMETSAT Polar System Second Generation) and MTG (Meteosat Third Generation), carrying respectively IASI-NG (for IR) and UVNS (for UV), and IRS (for IR) and UVN (Sentinel 4, for UV). This new-generation sensors will enhance the capacity to observe ozone pollution and particularly by synergism of multispectral measurements. In this work we develop a pseudo-observation simulator and evaluate the potential of future EPS-SG and MTG satellite observations, through IASI-NG+UVNS and IRS+UVN multispectral methods to observe near-surface O3. The pseudo-real state of atmosphere (nature run) is provided by MOCAGE (MOdèle de Chimie Atmosphérique à Grande Échelle) chemical transport model. Simulations are calibrated by careful comparisons with real data, to ensure the best coherence between pseudo-reality and reality, as well as between the pseudo-observation simulator and existing satellite products. We perform full and

  19. NDACC UV-visible total ozone measurements: improved retrieval and comparison with correlative satellite and ground-based observations

    Directory of Open Access Journals (Sweden)

    F. Hendrick

    2010-08-01

    Full Text Available Accurate long-term monitoring of total ozone is one of the most important requirements for identifying possible natural or anthropogenic changes in the composition of the stratosphere. For this purpose, the NDACC (Network for the Detection of Atmospheric Composition Change UV-visible Working Group has made recommendations for improving and homogenizing the retrieval of total ozone columns from twilight zenith-sky visible spectrometers. These instruments, deployed all over the world in about 35 stations, allow measurements of total ozone twice daily with little sensitivity to stratospheric temperature and cloud cover. The NDACC recommendations address both the DOAS retrieval parameters and the calculation of air mass factors (AMF needed for the conversion of O3 slant column densities into vertical column amounts. The most important improvement is the use of O3 AMF look-up tables calculated using the TOMS V8 O3 profile climatology, that allows accounting for the dependence of the O3 AMF on the seasonal and latitudinal variations of the O3 vertical distribution. To investigate their impact on the retrieved ozone columns, the recommendations have been applied to measurements from the NDACC/SAOZ (Système d'Analyse par Observation Zénithale network. The revised SAOZ ozone data from eight stations covering all latitude regions have been compared to TOMS, GOME-GDP4, SCIAMACHY-TOSOMI, OMI-TOMS, and OMI-DOAS satellite overpass observations, as well as to those of collocated Dobson and Brewer instruments. A significant improvement is obtained after applying the new O3 AMFs, although systematic seasonal differences between SAOZ and all other instruments remain. These are shown to mainly originate from i the temperature dependence of the ozone absorption cross sections in the UV being not or improperly corrected by some retrieval algorithms, and ii the longitudinal differences in

  20. Inference of stratospheric aerosol composition and size distribution from SAGE II satellite measurements

    Science.gov (United States)

    Wang, Pi-Huan; Mccormick, M. P.; Fuller, W. H.; Yue, G. K.; Swissler, T. J.; Osborn, M. T.

    1989-01-01

    A method for inferring stratospheric aerosol composition and size distribution from the water vapor concentration and aerosol extinction measurements obtained in the Stratospheric Aerosol and Gas Experiment (SAGE) II and the associated temperature from the NMC. The aerosols are assumed to be sulfuric acid-water droplets. A modified Levenberg-Marquardt algorithm is used to determine model size distribution parameters based on the SAGE II multiwavelength aerosol extinctions. It is found that the best aerosol size information is contained in the aerosol radius range between about 0.25 and 0.80 micron.

  1. Quantum efficiency measurement of the Transiting Exoplanet Survey Satellite (TESS) CCD detectors

    Science.gov (United States)

    Krishnamurthy, A.; Villasenor, J.; Thayer, C.; Kissel, S.; Ricker, G.; Seager, S.; Lyle, R.; Deline, A.; Morgan, E.; Sauerwein, T.; Vanderspek, R.

    2016-07-01

    Very precise on-ground characterization and calibration of TESS CCD detectors will significantly assist in the analysis of the science data from the mission. An accurate optical test bench with very high photometric stability has been developed to perform precise measurements of the absolute quantum efficiency. The setup consists of a vacuum dewar with a single MIT Lincoln Lab CCID-80 device mounted on a cold plate with the calibrated reference photodiode mounted next to the CCD. A very stable laser-driven light source is integrated with a closed-loop intensity stabilization unit to control variations of the light source down to a few parts-per-million when averaged over 60 s. Light from the stabilization unit enters a 20 inch integrating sphere. The output light from the sphere produces near-uniform illumination on the cold CCD and on the calibrated reference photodiode inside the dewar. The ratio of the CCD and photodiode signals provides the absolute quantum efficiency measurement. The design, key features, error analysis, and results from the test campaign are presented.

  2. Tropospheric NO2 Columns over Northeastern North America:Comparison of CMAQ Model Simulations with GOME Satellite Measurements

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    We present comparisons of the NO2 regional Chemical Transport Model (CTM) simulations over Northeastern North America during the time period from May to September, 1998 with hourly surface NO2 observations and the NO2 columns retrieved from the GOME (Global Ozone Monitoring Experiment) satellite instrument. The model calculations were performed using the Mesoscale Meteorological Model 5 (MM5),Sparse Matrix Operator Kernal Emissions (SMOKE), and Community Multiscale Air Quality (CMAQ)modeling systems, using the emission data from the National Emissions Inventory (NEI) databases of 1996 (U.S.) and 1995 (Canada). The major objectives were to assess the performance of the CMAQ model and the accuracy of the emissions inventories as they affected the simulations of this important short-lived atmospheric species. The modeled (NCMAQ) and measured (NGOME) NO2 column amounts, as well as their temporal variations, agreed reasonably well. The absolute differences (NCMAQ-NGOME) across the domain were between ±3.0×1015 molecules cm-2, but they were less than ±1.0 × 1015 molecules cm-2 over the majority (80%) of the domain studied. The overall correlation coefficient between the measurements and the simulations was 0.75. The differences were mainly ascribed to a combination of inaccurate emission data for the CTM and the uncertainties in the GOME retrievals. Of these, the former were the more easily identifiable.

  3. Comparing multiple model-derived aerosol optical properties to spatially collocated ground-based and satellite measurements

    Science.gov (United States)

    Ocko, Ilissa B.; Ginoux, Paul A.

    2017-04-01

    Anthropogenic aerosols are a key factor governing Earth's climate and play a central role in human-caused climate change. However, because of aerosols' complex physical, optical, and dynamical properties, aerosols are one of the most uncertain aspects of climate modeling. Fortunately, aerosol measurement networks over the past few decades have led to the establishment of long-term observations for numerous locations worldwide. Further, the availability of datasets from several different measurement techniques (such as ground-based and satellite instruments) can help scientists increasingly improve modeling efforts. This study explores the value of evaluating several model-simulated aerosol properties with data from spatially collocated instruments. We compare aerosol optical depth (AOD; total, scattering, and absorption), single-scattering albedo (SSA), Ångström exponent (α), and extinction vertical profiles in two prominent global climate models (Geophysical Fluid Dynamics Laboratory, GFDL, CM2.1 and CM3) to seasonal observations from collocated instruments (AErosol RObotic NETwork, AERONET, and Cloud-Aerosol Lidar with Orthogonal Polarization, CALIOP) at seven polluted and biomass burning regions worldwide. We find that a multi-parameter evaluation provides key insights on model biases, data from collocated instruments can reveal underlying aerosol-governing physics, column properties wash out important vertical distinctions, and improved models does not mean all aspects are improved. We conclude that it is important to make use of all available data (parameters and instruments) when evaluating aerosol properties derived by models.

  4. Investigation on pre-seismic equatorial ionospheric anomaly and its possible association with the gravity wave using satellite measurements

    Science.gov (United States)

    Ryu, K.; Oyama, K. I.; Sun, Y. Y.; Liu, T. J. Y.

    2016-12-01

    Some examples of the equatorial plasma density measured by DEMETER (Detection of Electro-Magnetic Emissions Transmitted from Earthquake Regions) increased before some large earthquakes are introduced. Previous examples of the pre-seismic equatorial ionization anomalies (EIA) associated with the northern Sumatra earthquake of 2005, Wenchuan earthquake of 2008, Pisco earthquake of 2007, and Kuril Island earthquake of 2007, commonly accompanied conspicuous precursory EIA enhancements distinct from the longitudinal asymmetric variation which is known as a result of ionospheric interaction with the thermospheric tidal modulation generating wave structure in the global ionospheric density profile in the dayside local time. The physical mechanisms of the seismo-ionospheric coupling manifested as the enhanced EIA intensity can be ascribed either to the gravity wave or static electric field generated by the lithosphere-atmosphere-ionosphere coupling, which is still in debate because of lack in confident observational evidences. Molucca sea earthquake of 2007 which accompanied dominant-ever precursory EIA enhancement was selected as a case study to investigate whether the seismo-ionospheric coupling was originated from the gravity wave propagating from the mesosphere to the thermosphere using the SABER satellite data. The gravity wave intensity according to the frequency was derived by applying the s-transform to the atmospheric neutral temperature profile measured by SABER limb-scanning method. The initial analysis results of the ionospheric plasma condition and thermospheric gravity wave derived from DEMETER, CHAMP, and SABER are introduced and the possible association between the physical conditions are discussed.

  5. Multi-Element Abundance Measurements from Medium-Resolution Spectra. III. Metallicity Distributions of Milky Way Dwarf Satellite Galaxies

    CERN Document Server

    Kirby, Evan N; Simon, Joshua D; Cohen, Judith G; Guhathakurta, Puragra

    2010-01-01

    We present metallicity distribution functions (MDFs) for the central regions of eight dwarf satellite galaxies of the Milky Way: Fornax, Leo I and II, Sculptor, Sextans, Draco, Canes Venatici I, and Ursa Minor. We use the published catalog of abundance measurements from the previous paper in this series. The measurements are based on spectral synthesis of iron absorption lines. For each MDF, we determine maximum likelihood fits for Leaky Box, Pre-Enriched, and Extra Gas (wherein the gas supply available for star formation increases before it decreases to zero) analytic models of chemical evolution. Although the models are too simplistic to describe any MDF in detail, a Leaky Box starting from zero metallicity gas fits none of the galaxies except Canes Venatici I well. The MDFs of some galaxies, particularly the more luminous ones, strongly prefer the Extra Gas Model to the other models. Only for Canes Venatici I does the Pre-Enriched Model fit significantly better than the Extra Gas Model. The best-fit effect...

  6. Aerosol optical properties over the Svalbard region of Arctic: ground-based measurements and satellite remote sensing

    Science.gov (United States)

    Gogoi, Mukunda M.; Babu, S. Suresh

    2016-05-01

    In view of the increasing anthropogenic presence and influence of aerosols in the northern polar regions, long-term continuous measurements of aerosol optical parameters have been investigated over the Svalbard region of Norwegian Arctic (Ny-Ålesund, 79°N, 12°E, 8 m ASL). This study has shown a consistent enhancement in the aerosol scattering and absorption coefficients during spring. The relative dominance of absorbing aerosols is more near the surface (lower single scattering albedo), compared to that at the higher altitude. This is indicative of the presence of local anthropogenic activities. In addition, long-range transported biomass burning aerosols (inferred from the spectral variation of absorption coefficient) also contribute significantly to the higher aerosol absorption in the Arctic spring. Aerosol optical depth (AOD) estimates from ground based Microtop sun-photometer measurements reveals that the columnar abundance of aerosols reaches the peak during spring season. Comparison of AODs between ground based and satellite remote sensing indicates that deep blue algorithm of Moderate Resolution Imaging Spectroradiometer (MODIS) retrievals over Arctic snow surfaces overestimate the columnar AOD.

  7. Evaluation of NOx emission inventories in California using multi-satellite data sets, in-situ airborne measurements, and regional model simulations during the CalNex 2010 field campaign

    Science.gov (United States)

    Kim, S.; Ahmadov, R.; Angevine, W. M.; Boersma, F. F.; Brioude, J.; Browne, E. C.; Bucsela, E. J.; Burrows, J. P.; Celarier, E. A.; Cohen, R. C.; Frost, G. J.; Krotkov, N. A.; Lamsal, L.; Lee, S.; Martin, R. V.; McKeen, S. A.; Pollack, I. B.; Richter, A.; Russell, A. R.; Ryerson, T. B.; Trainer, M.; Valin, L. C.

    2011-12-01

    Satellite NO2 column measurements indicate large NOx emissions from urban and agricultural sources in California. In this presentation, we highlight the NOx sources identified in California using the satellite measurements. Comparison of regional model-simulated NO2 columns with satellite retrievals has proven useful in evaluating emission inventories for various sectors. We compare the NO2 columns from the WRF-Chem model with the multi-satellite data sets from different instruments and retrieval groups for a variety of California sources. Use of multiple satellite data sets help to define the uncertainties in the satellite retrievals. In addition, the CalNex 2010 intensive field campaign provides a unique opportunity to independently assess California's emission inventories. The in-situ airborne observations from CalNex 2010 and fine-resolution model simulations are used to estimate the accuracy of the satellite NO2 column retrievals.

  8. Measuring the Value of Earth Observation Information with the Gravity Research and Climate Experiment (GRACE) Satellite

    Science.gov (United States)

    Bernknopf, R.; Kuwayama, Y.; Brookshire, D.; Macauley, M.; Zaitchik, B.; Pesko, S.; Vail, P.

    2014-12-01

    Determining how much to invest in earth observation technology depends in part on the value of information (VOI) that can be derived from the observations. We design a framework and then evaluate the value-in-use of the NASA Gravity Research and Climate Experiment (GRACE) for regional water use and reliability in the presence of drought. As a technology that allows measurement of water storage, the GRACE Data Assimilation System (DAS) provides information that is qualitatively different from that generated by other water data sources. It provides a global, reproducible grid of changes in surface and subsurface water resources on a frequent and regular basis. Major damages from recent events such as the 2012 Midwest drought and the ongoing drought in California motivate the need to understand the VOI from remotely sensed data such as that derived from GRACE DAS. Our conceptual framework models a dynamic risk management problem in agriculture. We base the framework on information from stakeholders and subject experts. The economic case for GRACE DAS involves providing better water availability information. In the model, individuals have a "willingness to pay" (wtp) for GRACE DAS - essentially, wtp is an expression of savings in reduced agricultural input costs and for costs that are influenced by regional policy decisions. Our hypothesis is that improvements in decision making can be achieved with GRACE DAS measurements of water storage relative to data collected from groundwater monitoring wells and soil moisture monitors that would be relied on in the absence of GRACE DAS. The VOI is estimated as a comparison of outcomes. The California wine grape industry has features that allow it to be a good case study and a basis for extrapolation to other economic sectors. We model water use in this sector as a sequential decision highlighting the attributes of GRACE DAS input as information for within-season production decisions as well as for longer-term water reliability.

  9. Measurement of Surface Displacement and Deformation of Mass Movements Using Least Squares Matching of Repeat High Resolution Satellite and Aerial Images

    Directory of Open Access Journals (Sweden)

    Misganu Debella-Gilo

    2012-01-01

    Full Text Available Displacement and deformation are fundamental measures of Earth surface mass movements such as glacier flow, rockglacier creep and rockslides. Ground-based methods of monitoring such mass movements can be costly, time consuming and limited in spatial and temporal coverage. Remote sensing techniques, here matching of repeat optical images, are increasingly used to obtain displacement and deformation fields. Strain rates are usually computed in a post-processing step based on the gradients of the measured velocity field. This study explores the potential of automatically and directly computing velocity, rotation and strain rates on Earth surface mass movements simultaneously from the matching positions and the parameters of the geometric transformation models using the least squares matching (LSM approach. The procedures are exemplified using bi-temporal high resolution satellite and aerial images of glacier flow, rockglacier creep and land sliding. The results show that LSM matches the images and computes longitudinal strain rates, transverse strain rates and shear strain rates reliably with mean absolute deviations in the order of 10−4 (one level of significance below the measured values as evaluated on stable grounds. The LSM also improves the accuracy of displacement estimation of the pixel-precision normalized cross-correlation by over 90% under ideal (simulated circumstances and by about 25% for real multi-temporal images of mass movements.

  10. Investigating the nitrogen dioxide concentrations in the boundary layer by using multi-axis spectroscopic measurements and comparison with satellite observations.

    Science.gov (United States)

    Khokhar, Muhammad Fahim; Nisar, Munazza; Noreen, Asma; Khan, Waseem Razzaq; Hakeem, Khalid Rehman

    2017-01-01

    This study emphasizes on near surface observation of chemically active trace gases such as nitrogen dioxide (NO2) over Islamabad on a regular basis. Absorption spectroscopy using backscattered extraterrestrial light source technique was used to retrieve NO2 differential slant column densities (dSCDs). Mini multi-axis-differential optical absorption spectroscopy (MAX-DOAS) instrument was used to perform ground-based measurements at Institute of Environmental Sciences and Engineering (IESE), National University of Sciences and Technology (NUST) Islamabad, Pakistan. Tropospheric vertical column densities (VCDs) of NO2 were derived from measured dSCDs by using geometric air mass factor approach. A case study was conducted to identify the impact of different materials (glass, tinted glass, and acrylic sheet of various thicknesses used to cover the instrument) on the retrieval of dSCDs. Acrylic sheet of thickness 5 mm was found most viable option for casing material as it exhibited negligible impact in the visible wavelength range. Tropospheric NO2 VCD derived from ground-based mini MAX-DOAS measurements exceeded two times the Pak-NEQS levels and showed a reasonable comparison (r (2) = 0.65, r = 0.81) with satellite observations (root mean square bias of 39 %) over Islamabad, Pakistan.

  11. Application of spectral analysis techniques to the intercomparison of aerosol data - Part 4: Combined maximum covariance analysis to bridge the gap between multi-sensor satellite retrievals and ground-based measurements

    Science.gov (United States)

    Li, J.; Carlson, B. E.; Lacis, A. A.

    2014-04-01

    The development of remote sensing techniques has greatly advanced our knowledge of atmospheric aerosols. Various satellite sensors and the associated retrieval algorithms all add to the information of global aerosol variability, while well-designed surface networks provide time series of highly accurate measurements at specific locations. In studying the variability of aerosol properties, aerosol climate effects, and constraining aerosol fields in climate models, it is essential to make the best use of all of the available information. In the previous three parts of this series, we demonstrated the usefulness of several spectral decomposition techniques in the analysis and comparison of temporal and spatial variability of aerosol optical depth using satellite and ground-based measurements. Specifically, Principal Component Analysis (PCA) successfully captures and isolates seasonal and interannual variability from different aerosol source regions, Maximum Covariance Analysis (MCA) provides a means to verify the variability in one satellite dataset against Aerosol Robotic Network (AERONET) data, and Combined Principal Component Analysis (CPCA) realized parallel comparison among multi-satellite, multi-sensor datasets. As the final part of the study, this paper introduces a novel technique that integrates both multi-sensor datasets and ground observations, and thus effectively bridges the gap between these two types of measurements. The Combined Maximum Covariance Analysis (CMCA) decomposes the cross covariance matrix between the combined multi-sensor satellite data field and AERONET station data. We show that this new method not only confirms the seasonal and interannual variability of aerosol optical depth, aerosol source regions and events represented by different satellite datasets, but also identifies the strengths and weaknesses of each dataset in capturing the variability associated with sources, events or aerosol types. Furthermore, by examining the spread of

  12. Estimation of surface insolation using sun-synchronous satellite data

    Science.gov (United States)

    Darnell, Wayne L.; Staylor, W. Frank; Gupta, Shashi K.; Denn, Fred M.

    1988-01-01

    A technique is presented for estimating insolation at the earth's surface using only sun-synchronous satellite data. The technique was tested by comparing the insolation results from year-long satellite data sets with simultaneous ground-measured insolation taken at five continental United States sites. Monthly average insolation values derived from the satellite data showed a standard error of 4.2 W/sq m, or 2.7 percent of the average ground insolation value.

  13. Determination of Ionospheric Electron Density Profiles from Satellite UV (Ultraviolet) Emission Measurements.

    Science.gov (United States)

    1984-05-17

    events , but the mid- and low- [titude requirements of D.ISP and AWS were also satisfied by this instrument. In fact, even the actual instrument...ledge in the E region. Figure 5 from Takacs and Feldman 1 2 shows the type of airglow spectrum in the far UV (FUV) that can be detected in the daytime...Planck theory, Planet. Space. Sci. 25:743. 16. Anderson, D. N. (1973) A theoretical study of the ionospheric F region. equatorial anamoly , 1, Theory

  14. Electron and Ion Distributions at High Latitudes as Measured by the Air Force Polar Orbiting Satellites.

    Science.gov (United States)

    1985-02-26

    that instability occurs if the analytic function for "he disner- sion relation is undulatory about zero. Their results show that node coupling is a...the argument. ) is now the summation from N-1 to-. Since ANx is undulatory about zero, unstable solutions are anticipated (Tataronis and Crawford...AN/W- n) (12) where: * - ArNy (N2/s2)exp(-s?/2)IN(S?/2) +(nb/nP)GN )2 + (sxb/2)Jt4N~ The function Ayis undulatory about zero, therefore, mleeting the

  15. Measurements of total and tropospheric ozone from IASI: comparison with correlative satellite, ground-based and ozonesonde observations

    Directory of Open Access Journals (Sweden)

    A. Boynard

    2009-08-01

    Full Text Available In this paper, we present measurements of total and tropospheric ozone, retrieved from infrared radiance spectra recorded by the Infrared Atmospheric Sounding Interferometer (IASI, which was launched on board the MetOp-A European satellite in October 2006. We compare IASI total ozone columns to Global Ozone Monitoring Experiment-2 (GOME-2 observations and ground-based measurements from the Dobson and Brewer network for one full year of observations (2008. The IASI total ozone columns are shown to be in good agreement with both GOME-2 and ground-based data, with correlation coefficients of about 0.9 and 0.85, respectively. On average, IASI ozone retrievals exhibit a positive bias of about 9 DU (3.3% compared to both GOME-2 and ground-based measurements. In addition to total ozone columns, the good spectral resolution of IASI enables the retrieval of tropospheric ozone concentrations. Comparisons of IASI tropospheric columns to 490 collocated ozone soundings available from several stations around the globe have been performed for the period of June 2007–August 2008. IASI tropospheric ozone columns compare well with sonde observations, with correlation coefficients of 0.95 and 0.77 for the [surface–6 km] and [surface–12 km] partial columns, respectively. IASI retrievals tend to overestimate the tropospheric ozone columns in comparison with ozonesonde measurements. Positive average biases of 0.15 DU (1.2% and 3 DU (11% are found for the [surface–6 km] and for the [surface–12 km] partial columns respectively.

  16. Active, passive and satellite borne spectroscopic measurements of tropospheric BrO during the OASIS 2009 campaign in Barrow, Alaska

    Science.gov (United States)

    Friess, U.; Sihler, H.; Wagner, T.; Platt, U.

    2009-12-01

    Bromine activation plays an important role in the chemistry of the springtime Arctic boundary layer. The presence of elevated BrO levels, leading to the destruction of near-surface ozone down to undetectable concentrations, is a widespread phenomenon over the sea-ice covered Arctic Ocean. BrO is thought to be released from saline surfaces, such as brine and frost flowers, by autocatalytic reaction cycles leading to the exponential increase of reactive bromine in the gas phase - the so-called bromine explosion. However, the direct sources of reactive bromine and the recycling mechanisms taking place at aerosol particles and snow surfaces are still not entirely understood, and the current knowledge on the BrO vertical distribution is very limited. Here we present synergistic multi-platform spectroscopic measurements of BrO performed during the OASIS 2009 field campaign in Barrow, Alaska. Active Long-Path Differential Optical Absorption Spectroscopy (DOAS) measurements of BrO and other trace gases (e.g., ozone, NO2, SO2, formaldehyde) directly yield the average near-surface concentration along a light path of several kilometers along the coast using an artificial light source. Simultaneously a passive Multi-Axis DOAS instrument collected scattered skylight from different viewing directions between zenith and close to the horizon, making it very sensitive for the overall tropospheric BrO vertical column density. Furthermore, Multi-Axis DOAS measurements contain information on the vertical distribution of trace gases, allowing the retrieval of BrO vertical profiles. Our ground-based measurements will be compared with BrO vertical column densities from the GOME-2 instrument onboard the MetOp satellite. At high latitudes, this instrument has the capability to scan each location several times a day, allowing for the comparison of the diurnal variation of BrO with the ground-based observations.

  17. Autonomous satellite constellation orbit determination using the star sensor and inter-satellite links data

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A method of autonomous orbit determination for a satellite constellation using a star sensor combined with inter satellite links(ISLs) is studied.Two types of simulated observation data,Three-Satellite Constellation ISLs and background stellar observations by a CCD star sensor,are first produced.Based on these data,an observation equation is built for the constellation joint autonomous orbit determination,in which the simulations are run.The accuracy of this method with different orbital determination models are analyzed and compared with regard to the effect of potential measurement errors.The results show that autonomous satellite constellation orbit determination using star sensor measurement and ISLs data is feasible.Finally,this paper arrives at several conclusions which contribute to extending this method to a more general satellite constellation.

  18. Single-event and total-dose effects in geo-stationary transfer orbit during solar-activity maximum period measured by the Tsubasa satellite

    Science.gov (United States)

    Koshiishi, H.; Kimoto, Y.; Matsumoto, H.; Goka, T.

    The Tsubasa satellite developed by the Japan Aerospace Exploration Agency was launched in Feb 2002 into Geo-stationary Transfer Orbit GTO Perigee 500km Apogee 36000km and had been operated well until Sep 2003 The objective of this satellite was to verify the function of commercial parts and new technologies of bus-system components in space Thus the on-board experiments were conducted in the more severe radiation environment of GTO rather than in Geo-stationary Earth Orbit GEO or Low Earth Orbit LEO The Space Environment Data Acquisition equipment SEDA on board the Tsubasa satellite had the Single-event Upset Monitor SUM and the DOSimeter DOS to evaluate influences on electronic devices caused by radiation environment that was also measured by the particle detectors of the SEDA the Standard DOse Monitor SDOM for measurements of light particles and the Heavy Ion Telescope HIT for measurements of heavy ions The SUM monitored single-event upsets and single-event latch-ups occurred in the test sample of two 64-Mbit DRAMs The DOS measured accumulated radiation dose at fifty-six locations in the body of the Tsubasa satellite Using the data obtained by these instruments single-event and total-dose effects in GTO during solar-activity maximum period especially their rapid changes due to solar flares and CMEs in the region from L 1 1 through L 11 is discussed in this paper

  19. Question No. 5: What Role Can Satellites Take, as a Complement to Ground Based Measurement Systems, to Provide Sustained Observations to Monitor GHG Emissions?

    Science.gov (United States)

    Chahine, Moustafa; Olsen, Edward

    2011-01-01

    What role can satellites take, as a complement to ground based measurement systems, to provide sustained observations to monitor GHG emissions (e.g., CO2, CH4, O3, N2O, CFC s, NH3, and NF3) that contribute to global warming?

  20. On the determination of the global cloud feedback from satellite measurements

    Directory of Open Access Journals (Sweden)

    T. Masters

    2012-08-01

    Full Text Available A detailed analysis is presented in order to determine the sensitivity of the estimated short-term cloud feedback to choices of temperature datasets, sources of top-of-atmosphere (TOA clear-sky radiative flux data, and temporal averaging. It is shown that the results of a previous analysis, which suggested a likely positive value for the short-term cloud feedback, depended upon combining all-sky radiative fluxes from NASA's Clouds and Earth's Radiant Energy System (CERES with reanalysis clear-sky forecast fluxes when determining the cloud radiative forcing (CRF. These results are contradicted when ΔCRF is derived using both all-sky and clear-sky measurements from CERES over the same period. The differences between the radiative flux data sources are thus explored, along with the potential problems in each. The largest discrepancy is found when including the first two years (2000–2002, and the diagnosed cloud feedback from each method is sensitive to the time period over which the regressions are run. Overall, there is little correlation between the changes in the ΔCRF and surface temperatures on these timescales, suggesting that the net effect of clouds varies during this time period quite apart from global temperature changes. Given the large uncertainties generated from this method, the limited data over this period are insufficient to rule out either the positive feedback present in most climate models or a strong negative cloud feedback.

  1. Urban Visible/SWIR surface reflectance ratios from satellite and sun photometer measurements in Mexico City

    Directory of Open Access Journals (Sweden)

    A. D. de Almeida Castanho

    2007-06-01

    Full Text Available The surface reflectance ratio between the visible (VIS and shortwave infrared (SWIR radiation is an important quantity for the retrieval of the aerosol optical depth (τa from the MODIS sensor data. Based on empirically determined VIS/SWIR ratios, MODIS τa retrieval uses the surface reflectance in the SWIR band (2.1 μm, where the interaction between solar radiation and the aerosol layer is small, to predict the visible reflectances in the blue (0.47 μm and red (0.66 μm bands. Therefore, accurate knowledge of the VIS/SWIR ratio is essential for achieving accurate retrieval of aerosol optical depth from MODIS. The heterogeneity of the surface cover in an urban environment increases the uncertainties in the estimation of the surface reflectance and, consequently, τa. We analyzed the surface reflectance over some distinct surface covers in and around the Mexico City metropolitan area (MCMA using MODIS radiances at 0.66 μm and 2.1 μm. The analysis was performed at 1.5 km×1.5 km spatial resolution. Also, ground-based AERONET sun-photometer data acquired in Mexico City from 2002 to 2005 were analyzed for aerosol optical thickness and other aerosol optical properties. In addition, a network of hand-held sun-photometers deployed in Mexico City, as part of the MCMA-2006 Study during the MILAGRO Campaign, provided an unprecedented measurement of τa in 5 different sites well distributed in the city. We found that the average RED/SWIR ratio representative of the urbanized sites analyzed is 0.73±0.06. This average ratio was significantly different for non-urban sites, which was approximately 0.55. The aerosol optical thickness retrieved from MODIS radiances at a spatial resolution of 1.5 km×1.5 km and averaged within 10 x 10 km boxes were compared with collocated 1-h τa averaged from sun-photometer measurements. The use of the new RED/SWIR ratio of 0.73 in

  2. Satellite measurements of glacier recession on Punak Jaya, Papua Province, Indonesia, from 2006 to 2015

    Science.gov (United States)

    Klein, A. G.; Dong, X.; Kincaid, J. L.

    2016-12-01

    Punak Jaya contains the last remaining tropical glaciers in East Asia. Here we report updated areas of the glaciers of Punak Jaya focusing on the 2006-2015 period which builds upon our previously reported glaciers areas through 2005. Glacier extents within the 2006-2015 period have been mapped using Google's Earth Engine (GEE) API from five suitable Landsat 5 and 8 cloud-free images. All images were orthorectified and image classification utilized calibrated top-of-atmosphere (TOA) reflectances. As of 13 October 2015, the total area of glaciers on Punak Jaya was reduced to a measured areal extent of 0.586 km2 from a historical neoglacial extent of 3.6 km2 (circa 1850). Over the 2006-2015 period, the total glacier area on Puncak Jaya decreased from 1.509 to 0.586 km2. The average annual rate of ice loss over the period was 0.103 km2/ann. This nine-year study period saw two of the Punak Jaya's four major glacier, the Southwall Hanging Glacier and W. Northwall Firn, disappear leaving on only Carstensz Glacier and the E. Northwall Firn extant in 2015. The Southwall Hanging Glacier disappeared in the first half of 2007 while the W. Northwall Firn completely melted between 2014 and 2015. Of the two remaining glaciers, the Carstensz exhibited the slowest ice loss rate (0.03 km2/ann) while the once contiguous E. Northwall Firn disintegrated into three large ice masses and several small ones by 2015. If the current recession continues at the average 2006-2015 rate, it is estimated that all Puncak Jaya glaciers will disappear by 2025.

  3. On the Global Water Productivity Distribution for Major Cereal Crops: some First Results from Satellite Measurements

    Science.gov (United States)

    Bastiaanssen, W. G.; Verstegen, J. A.; Steduto, P.; Goudriaan, R.; Wada, Y.

    2014-12-01

    Feeding the world requires 70 percent more food for an additional 2.3 billion people by 2050. The increasing competition for water resources prompts the modern consumer society to become more efficient with scarce water resources. The water footprint of agriculture is hundred times more than the footprint for domestic water use, yet we do not fully know how much water is used in relation to the amount of food being produced. Water Productivity describes the crop yield per unit of water consumed and is the ultimate indicator for the efficiency of water use in agriculture. Our basic understanding of actual and benchmark values for Water Productivity is limited, partially because operational measurements and guidelines for Water Productivity do not currently exist. Remote sensing algorithms have been developed over the last 20 years to compute crop yield Y and evapotranspiration ET, often in an independent manner. The new WatPro and GlobWat algorithms are based on directly solving the Y/ET ratio. Several biophysical parameter and processes such as solar radiation, Leaf Area Index, stomatal aperture and soil moisture affect biomass production and crop transpiration simultaneously, and this enabled us to simplify the schematization of a Y/ET model. Global maps of wheat, rice and maize were prepared from various open-access data sources, and Y/ET was computed across a period of 10 years. The global distribution demonstrates that 66 percent of the world's agricultural land cultivated with wheat, rice and corn performs below average. Furthermore, Water Productivity in most countries exhibits a significant spatial variability. Therefore, there is significant scope to produce the same food - or more food - from less water resources if packages with good practices are locally implemented. The global maps of water productivity will be demonstrated, along with some country examples.

  4. Applications of two-way satellite time and frequency transfer in the BeiDou navigation satellite system

    Science.gov (United States)

    Zhou, ShanShi; Hu, XiaoGong; Liu, Li; Guo, Rui; Zhu, LingFeng; Chang, ZhiQiao; Tang, ChengPan; Gong, XiuQiang; Li, Ran; Yu, Yang

    2016-10-01

    A two-way satellite time and frequency transfer (TWSTFT) device equipped in the BeiDou navigation satellite system (BDS) can calculate clock error between satellite and ground master clock. TWSTFT is a real-time method with high accuracy because most system errors such as orbital error, station position error, and tropospheric and ionospheric delay error can be eliminated by calculating the two-way pseudorange difference. Another method, the multi-satellite precision orbit determination (MPOD) method, can be applied to estimate satellite clock errors. By comparison with MPOD clock estimations, this paper discusses the applications of the BDS TWSTFT clock observations in satellite clock measurement, satellite clock prediction, navigation system time monitor, and satellite clock performance assessment in orbit. The results show that with TWSTFT clock observations, the accuracy of satellite clock prediction is higher than MPOD. Five continuous weeks of comparisons with three international GNSS Service (IGS) analysis centers (ACs) show that the reference time difference between BeiDou time (BDT) and golbal positoning system (GPS) time (GPST) realized IGS ACs is in the tens of nanoseconds. Applying the TWSTFT clock error observations may obtain more accurate satellite clock performance evaluation in the 104 s interval because the accuracy of the MPOD clock estimation is not sufficiently high. By comparing the BDS and GPS satellite clock performance, we found that the BDS clock stability at the 103 s interval is approximately 10-12, which is similar to the GPS IIR.

  5. Satellite and lunar laser ranging in infrared

    Science.gov (United States)

    Courde, Clement; Torre, Jean-Marie; Samain, Etienne; Martinot-Lagarde, Gregoire; Aimar, Mourad; Albanese, Dominique; Maurice, Nicolas; Mariey, Hervé; Viot, Hervé; Exertier, Pierre; Fienga, Agnes; Viswanathan, Vishnu

    2017-05-01

    We report on the implementation of a new infrared detection at the Grasse lunar laser ranging station and describe how infrared telemetry improves the situation. We present our first results on the lunar reflectors and show that infrared detection permits us to densify the observations and allows measurements during the new and the full moon periods. We also present the benefit obtained on the ranging of Global Navigation Satellite System (GNSS) satellites and on RadioAstron which have a very elliptic orbit.

  6. Analysis of BeiDou Satellite Measurements with Code Multipath and Geometry-Free Ionosphere-Free Combinations.

    Science.gov (United States)

    Zhao, Qile; Wang, Guangxing; Liu, Zhizhao; Hu, Zhigang; Dai, Zhiqiang; Liu, Jingnan

    2016-01-20

    Using GNSS observable from some stations in the Asia-Pacific area, the carrier-to-noise ratio (CNR) and multipath combinations of BeiDou Navigation Satellite System (BDS), as well as their variations with time and/or elevation were investigated and compared with those of GPS and Galileo. Provided the same elevation, the CNR of B1 observables is the lowest among the three BDS frequencies, while B3 is the highest. The code multipath combinations of BDS inclined geosynchronous orbit (IGSO) and medium Earth orbit (MEO) satellites are remarkably correlated with elevation, and the systematic "V" shape trends could be eliminated through between-station-differencing or modeling correction. Daily periodicity was found in the geometry-free ionosphere-free (GFIF) combinations of both BDS geostationary Earth orbit (GEO) and IGSO satellites. The variation range of carrier phase GFIF combinations of GEO satellites is -2.0 to 2.0 cm. The periodicity of carrier phase GFIF combination could be significantly mitigated through between-station differencing. Carrier phase GFIF combinations of BDS GEO and IGSO satellites might also contain delays related to satellites. Cross-correlation suggests that the GFIF combinations' time series of some GEO satellites might vary according to their relative geometries with the sun.

  7. Analysis of BeiDou Satellite Measurements with Code Multipath and Geometry-Free Ionosphere-Free Combinations

    Directory of Open Access Journals (Sweden)

    Qile Zhao

    2016-01-01

    Full Text Available Using GNSS observable from some stations in the Asia-Pacific area, the carrier-to-noise ratio (CNR and multipath combinations of BeiDou Navigation Satellite System (BDS, as well as their variations with time and/or elevation were investigated and compared with those of GPS and Galileo. Provided the same elevation, the CNR of B1 observables is the lowest among the three BDS frequencies, while B3 is the highest. The code multipath combinations of BDS inclined geosynchronous orbit (IGSO and medium Earth orbit (MEO satellites are remarkably correlated with elevation, and the systematic “V” shape trends could be eliminated through between-station-differencing or modeling correction. Daily periodicity was found in the geometry-free ionosphere-free (GFIF combinations of both BDS geostationary Earth orbit (GEO and IGSO satellites. The variation range of carrier phase GFIF combinations of GEO satellites is −2.0 to 2.0 cm. The periodicity of carrier phase GFIF combination could be significantly mitigated through between-station differencing. Carrier phase GFIF combinations of BDS GEO and IGSO satellites might also contain delays related to satellites. Cross-correlation suggests that the GFIF combinations’ time series of some GEO satellites might vary according to their relative geometries with the sun.

  8. Measurement of the half-life of 198Au in a non-metal: High-precision measurement shows no host-material dependence

    CERN Document Server

    Goodwin, J R; Iacob, V E; Dibidad, A; Hardy, J C

    2010-01-01

    We have measured the half-life of the beta decay of 198Au to be 2.6948(9) d, with the nuclide sited in an insulating environment. Comparing this result with the half-life we measured previously with a metallic environment, we find the half-lives in both environments to be the same within 0.04%, thus contradicting a prediction that screening from a "plasma" of quasi-free electrons in a metal increases the half-life by as much as 7%.

  9. Fine-scale features on the sea surface in SAR satellite imagery – Part 1: Simultaneous in-situ measurements

    Directory of Open Access Journals (Sweden)

    S. Brusch

    2012-09-01

    Full Text Available This work is aimed at identifying the origin of fine-scale features on the sea surface in synthetic aperture radar (SAR imagery with the help of in-situ measurements as well as numerical models (presented in a companion paper. We are interested in natural and artificial features starting from the horizontal scale of the upper ocean mixed layer, around 30–50 m. These features are often associated with three-dimensional upper ocean dynamics. We have conducted a number of studies involving in-situ observations in the Straits of Florida during SAR satellite overpass. The data include examples of sharp frontal interfaces, wakes of surface ships, internal wave signatures, as well as slicks of artificial and natural origin. Atmospheric processes, such as squall lines and rain cells, produced prominent signatures on the sea surface. This data has allowed us to test an approach for distinguishing between natural and artificial features and atmospheric influences in SAR images that is based on a co-polarized phase difference filter.

  10. Citizen Bio-Optical Observations from Coast- and Ocean and Their Compatibility with Ocean Colour Satellite Measurements

    Directory of Open Access Journals (Sweden)

    Julia A. Busch

    2016-10-01

    Full Text Available Marine processes are observed with sensors from both the ground and space over large spatio-temporal scales. Citizen-based contributions can fill observational gaps and increase environmental stewardship amongst the public. For this purpose, tools and methods for citizen science need to (1 complement existing datasets; and (2 be affordable, while appealing to different user and developer groups. In this article, tools and methods developed in the 7th Framework Programme of European Union (EU FP 7 funded project Citclops (citizens’ observatories for coast and ocean optical monitoring are reviewed. Tools range from a stand-alone smartphone app to devices with Arduino and 3-D printing, and hence are attractive to a diversity of users; from the general public to more specified maker- and open labware movements. Standardization to common water quality parameters and methods allows long-term storage in regular marine data repositories, such as SeaDataNet and EMODnet, thereby providing open data access. Due to the given intercomparability to existing remote sensing datasets, these tools are ready to complement the marine datapool. In the future, such combined satellite and citizen observations may set measurements by the engaged public in a larger context and hence increase their individual meaning. In a wider sense, a synoptic use can support research, management authorities, and societies at large.

  11. A simplified technique for determining the rotational motion of a satellite based on the onboard measurements of the angular velocity and magnetic field of the Earth

    Science.gov (United States)

    Abrashkin, V. I.; Voronov, K. E.; Piyakov, I. V.; Puzin, Yu. Ya.; Sazonov, V. V.; Syomkin, N. D.; Chebukov, S. Yu.

    2016-09-01

    The mathematical model, which allowed us to reconstruct the rotational motion of the Bion M-1 and Foton M-4 satellites by processing the measurements of onboard magnetometers and the angular velocity sensor, is sufficiently detailed and accurate. If we slightly lower the requirements for accuracy and transfer to a rougher model, i.e., we will not update the biases in measurements of the angular velocity component, then the measurement processing technique can be significantly simplified. The volume of calculations in minimizing the functional of the least-square technique is reduced; the most complicated part of calculations is performed using the standard procedure of computational linear algebra. This simplified technique is described below, and the examples of its application for reconstructing the rotational motion of the Foton M-4 satellite are presented. A noticeable distinction in the reconstructions of motion, constructed by simplified and more exact techniques, is revealed in processing the measurements over time intervals longer than 4 hours.

  12. Global Electric Circuit Implications of Combined Aircraft Storm Electric Current Measurements and Satellite-Based Diurnal Lightning Statistics

    Science.gov (United States)

    Mach, Douglas M.; Blakeslee, Richard J.; Bateman, Monte G.

    2011-01-01

    Using rotating vane electric field mills and Gerdien capacitors, we measured the electric field profile and conductivity during 850 overflights of thunderstorms and electrified shower clouds (ESCs) spanning regions including the Southeastern United States, the Western Atlantic Ocean, the Gulf of Mexico, Central America and adjacent oceans, Central Brazil, and the South Pacific. The overflights include storms over land and ocean, and with positive and negative fields above the storms. Over three-quarters (78%) of the land storms had detectable lightning, while less than half (43%) of the oceanic storms had lightning. Integrating our electric field and conductivity data, we determined total conduction currents and flash rates for each overpass. With knowledge of the storm location (land or ocean) and type (with or without lightning), we determine the mean currents by location and type. The mean current for ocean thunderstorms is 1.7 A while the mean current for land thunderstorms is 1.0 A. The mean current for ocean ESCs 0.41 A and the mean current for land ESCs is 0.13 A. We did not find any significant regional or latitudinal based patterns in our total conduction currents. By combining the aircraft derived storm currents and flash rates with diurnal flash rate statistics derived from the Lightning Imaging Sensor (LIS) and Optical Transient Detector (OTD) low Earth orbiting satellites, we reproduce the diurnal variation in the global electric circuit (i.e., the Carnegie curve) to within 4% for all but two short periods of time. The agreement with the Carnegie curve was obtained without any tuning or adjustment of the satellite or aircraft data. Given our data and assumptions, mean contributions to the global electric circuit are 1.1 kA (land) and 0.7 kA (ocean) from thunderstorms, and 0.22 kA (ocean) and 0.04 (land) from ESCs, resulting in a mean total conduction current estimate for the global electric circuit of 2.0 kA. Mean storm counts are 1100 for land

  13. Inverse modeling of CO2 sources and sinks using satellite data: A synthetic inter-comparison of measurement techniques and their performance as a function of space and time

    Directory of Open Access Journals (Sweden)

    M. Heimann

    2003-10-01

    Full Text Available Currently two polar orbiting satellite instruments measure CO2 concentrations in the Earth's atmosphere, while other missions are planned for the coming years. In the future such instruments might become powerful tools for monitoring changes in the atmospheric CO2 abundance and to improve our quantitative understanding of the leading processes controlling this. At the moment, however, we are still in an exploratory phase where first experiences are collected and promising new space-based measurement concepts are investigated. This study assesses the potential of some of these concepts to improve CO2 source and sink estimates obtained from inverse modelling. For this purpose the performance of existing and planned satellite instruments is quantified by synthetic simulations of their ability to reduce the uncertainty of the current source and sink estimates in comparison with the existing ground-based network of sampling sites. Our high resolution inversion of sources and sinks (at 8º x 10º allows us to investigate the variation of instrument performance in space and time and at various temporal and spatial scales. The results of our synthetic tests clearly indicate that the satellite performance increases with increasing sensitivity of the instrument to CO2 near the Earth's surface, favoring the near infra-red technique. Thermal infrared instruments, on the contrary, reach a better global coverage, because the performance in the near infrared is reduced over the oceans owing to a low surface albedo. Near infra-red sounders can compensate for this by measuring in sun-glint, which will allow accurate measurements over the oceans, at the cost, however, of a lower measurement density. Overall, the sun-glint pointing near infrared instrument is the most promising concept of those tested. We show that the ability of satellite instruments to resolve fluxes at smaller temporal and spatial scales is also related to surface sensitivity. All the satellite

  14. Inverse modeling of CO2 sources and sinks using satellite data: a synthetic inter-comparison of measurement techniques and their performance as a function of space and time

    Directory of Open Access Journals (Sweden)

    S. Houweling

    2004-01-01

    Full Text Available Currently two polar orbiting satellite instruments measure CO2 concentrations in the Earth's atmosphere, while other missions are planned for the coming years. In the future such instruments might become powerful tools for monitoring changes in the atmospheric CO2 abundance and to improve our quantitative understanding of the leading processes controlling this. At the moment, however, we are still in an exploratory phase where first experiences are collected and promising new space-based measurement concepts are investigated. This study assesses the potential of some of these concepts to improve CO2 source and sink estimates obtained from inverse modelling. For this purpose the performance of existing and planned satellite instruments is quantified by synthetic simulations of their ability to reduce the uncertainty of the current source and sink estimates in comparison with the existing ground-based network of sampling sites. Our high resolution inversion of sources and sinks (at 8°x10° allows us to investigate the variation of instrument performance in space and time and at various temporal and spatial scales. The results of our synthetic tests clearly indicate that the satellite performance increases with increasing sensitivity of the instrument to CO2 near the Earth's surface, favoring the near infra-red technique. Thermal infrared instruments, on the contrary, reach a better global coverage, because the performance in the near infrared is reduced over the oceans owing to a low surface albedo. Near infra-red sounders can compensate for this by measuring in sun-glint, which will allow accurate measurements over the oceans, at the cost, however, of a lower measurement density. Overall, the sun-glint pointing near infrared instrument is the most promising concept of those tested. We show that the ability of satellite instruments to resolve fluxes at smaller temporal and spatial scales is also related to surface sensitivity. All the satellite

  15. Satellite communication antenna technology

    Science.gov (United States)

    Mittra, R. (Editor); Imbriale, W. A. (Editor); Maanders, E. J. (Editor)

    1983-01-01

    A general overview of current technology in the field of communication satellite antennas is presented. Among the topics discussed are: the design of multiple beam systems; frequency reuse; and polarization control of antenna measurements. Consideration is also given to: contour beam synthesis; dual shaped reflector synthesis; beam shaping; and offset reflector design. The applications of the above technologies to present and future generations of communications satellites is considered, with emphasis given to such systems as: the Intelsats; the Defense Satellite Communications System, (DSCS-III); Satellite Business System (SBS), and Comstar.

  16. Methods of satellite oceanography

    Science.gov (United States)

    Stewart, R. H.

    1985-01-01

    The theoretical basis for remote sensing measurements of climate and ocean dynamics is examined. Consideration is given to: the absorption of electromagnetic radiation in the atmosphere; scattering in the atmosphere; and satellite observations using visible light. Consideration is also given to: the theory of radio scatter from the sea; scatter of centimeter waves from the sea; and the theory of operation of synthetic aperture radars. Additional topics include: the coordinate systems of satellite orbits for oceanographic remote sensing applications; the operating features of the major U.S. satellite systems for viewing the ocean; and satellite altimetry.

  17. CO measurements from the ACE-FTS satellite instrument: data analysis and validation using ground-based, airborne and spaceborne observations

    Directory of Open Access Journals (Sweden)

    C. Clerbaux

    2007-10-01

    Full Text Available The Atmospheric Chemistry Experiment (ACE mission was launched in August 2003 to sound the atmosphere by solar occultation. Carbon monoxide (CO, a good tracer of pollution plumes and atmospheric dynamics, is one of the key species provided by the primary instrument, the ACE-Fourier Transform Spectrometer (ACE-FTS. This instrument performs measurements in both the CO 1-0 and 2-0 ro-vibrational bands, from which vertically resolved CO concentration profiles are retrieved, from the mid-troposphere to the thermosphere. This paper presents an updated description of the ACE-FTS version 2.2 CO data product, along with a comprehensive validation of these profiles using available observations (February 2004 to December 2006. We have compared the CO partial columns with ground-based measurements using Fourier transform infrared spectroscopy and millimeter wave radiometry, and the volume mixing ratio profiles with airborne (both high-altitude balloon flight and airplane observations. CO satellite observations provided by nadir-looking instruments (MOPITT and TES as well as limb-viewing remote sensors (MIPAS, SMR and MLS were also compared with the ACE-FTS CO products. We show that the ACE-FTS measurements provide CO profiles with small retrieval errors (better than 5% from the upper troposphere to 40 km, and better than 10% above. These observations agree well with the correlative measurements, considering the rather loose coincidence criteria in some cases. Based on the validation exercise we assess the following uncertainties to the ACE-FTS measurement data: better than 15% in the upper troposphere (8–12 km, than 30% in the lower stratosphere (12–30 km, and than 25% from 30 to 100 km.

  18. CO measurements from the ACE-FTS satellite instrument: data analysis and validation using ground-based, airborne and spaceborne observations

    Directory of Open Access Journals (Sweden)

    C. Clerbaux

    2008-05-01

    Full Text Available The Atmospheric Chemistry Experiment (ACE mission was launched in August 2003 to sound the atmosphere by solar occultation. Carbon monoxide (CO, a good tracer of pollution plumes and atmospheric dynamics, is one of the key species provided by the primary instrument, the ACE-Fourier Transform Spectrometer (ACE-FTS. This instrument performs measurements in both the CO 1-0 and 2-0 ro-vibrational bands, from which vertically resolved CO concentration profiles are retrieved, from the mid-troposphere to the thermosphere. This paper presents an updated description of the ACE-FTS version 2.2 CO data product, along with a comprehensive validation of these profiles using available observations (February 2004 to December 2006. We have compared the CO partial columns with ground-based measurements using Fourier transform infrared spectroscopy and millimeter wave radiometry, and the volume mixing ratio profiles with airborne (both high-altitude balloon flight and airplane observations. CO satellite observations provided by nadir-looking instruments (MOPITT and TES as well as limb-viewing remote sensors (MIPAS, SMR and MLS were also compared with the ACE-FTS CO products. We show that the ACE-FTS measurements provide CO profiles with small retrieval errors (better than 5% from the upper troposphere to 40 km, and better than 10% above. These observations agree well with the correlative measurements, considering the rather loose coincidence criteria in some cases. Based on the validation exercise we assess the following uncertainties to the ACE-FTS measurement data: better than 15% in the upper troposphere (8–12 km, than 30% in the lower stratosphere (12–30 km, and than 25% from 30 to 100 km.

  19. Peak Satellite-to-Earth Data Rates Derived From Measurements of a 20 Gbps Bread-Board Modem

    Science.gov (United States)

    Landon, David G.; Simons, Rainee N.; Wintucky, Edwin G.; Sun, Jun Y.; Winn, James S.; Laraway, Stephen A.; McIntire, William K.; Metz, John L.; Smith, Francis J.

    2011-01-01

    A prototype data link using a Ka-band space qualified, high efficiency 200 W TWT amplifier and a bread-board modem emulator were created to explore the feasibility of very high speed communications in satellite-to-earth applications. Experiments were conducted using a DVB-S2-like waveform with modifications to support up to 20 Gbps through the addition of 128-Quadrature Amplitude Modulation (QAM). Limited by the bandwidth of the amplifier, a constant peak symbol rate of 3.2 Giga-symbols/sec was selected and the modulation order was varied to explore what peak data rate might be supported by an RF link through this amplifier. Using 128-QAM, an implementation loss of 3 dB was observed at 20 Gbps, and the loss decreased as data rate or bandwidth were reduced. Building on this measured data, realistic link budget calculations were completed. Low-Earth orbit (LEO) missions based on this TWTA with reasonable hardware assumptions and antenna sizing are found to be ba