WorldWideScience

Sample records for satellite images maps

  1. GRANULOMETRIC MAPS FROM HIGH RESOLUTION SATELLITE IMAGES

    Directory of Open Access Journals (Sweden)

    Catherine Mering

    2011-05-01

    Full Text Available A new method of land cover mapping from satellite images using granulometric analysis is presented here. Discontinuous landscapes such as steppian bushes of semi arid regions and recently growing urban settlements are especially concerned by this study. Spatial organisations of the land cover are quantified by means of the size distribution analysis of the land cover units extracted from high resolution remotely sensed images. A granulometric map is built by automatic classification of every pixel of the image according to the granulometric density inside a sliding neighbourhood. Granulometric mapping brings some advantages over traditional thematic mapping by remote sensing by focusing on fine spatial events and small changes in one peculiar category of the landscape.

  2. Satellite image based methods for fuels maps updating

    Science.gov (United States)

    Alonso-Benito, Alfonso; Hernandez-Leal, Pedro A.; Arbelo, Manuel; Gonzalez-Calvo, Alejandro; Moreno-Ruiz, Jose A.; Garcia-Lazaro, Jose R.

    2016-10-01

    Regular updating of fuels maps is important for forest fire management. Nevertheless complex and time consuming field work is usually necessary for this purpose, which prevents a more frequent update. That is why the assessment of the usefulness of satellite data and the development of remote sensing techniques that enable the automatic updating of these maps, is of vital interest. In this work, we have tested the use of the spectral bands of OLI (Operational Land Imager) sensor on board Landsat 8 satellite, for updating the fuels map of El Hierro Island (Spain). From previously digitized map, a set of 200 reference plots for different fuel types was created. A 50% of the plots were randomly used as a training set and the rest were considered for validation. Six supervised and 2 unsupervised classification methods were applied, considering two levels of detail. A first level with only 5 classes (Meadow, Brushwood, Undergrowth canopy cover >50%, Undergrowth canopy cover <15%, and Xeric formations), and the second one containing 19 fuel types. The level 1 classification methods yielded an overall accuracy ranging from 44% for Parellelepided to an 84% for Maximun Likelihood. Meanwhile, level 2 results showed at best, an unacceptable overall accuracy of 34%, which prevents the use of this data for such a detailed characterization. Anyway it has been demonstrated that in some conditions, images of medium spatial resolution, like Landsat 8-OLI, could be a valid tool for an automatic upgrade of fuels maps, minimizing costs and complementing traditional methodologies.

  3. ANALYSIS OF THE EFFECTS OF IMAGE QUALITY ON DIGITAL MAP GENERATION FROM SATELLITE IMAGES

    Directory of Open Access Journals (Sweden)

    H. Kim

    2012-07-01

    Full Text Available High resolution satellite images are widely used to produce and update a digital map since they became widely available. It is well known that the accuracy of digital map produced from satellite images is decided largely by the accuracy of geometric modelling. However digital maps are made by a series of photogrammetric workflow. Therefore the accuracy of digital maps are also affected by the quality of satellite images, such as image interpretability. For satellite images, parameters such as Modulation Transfer Function(MTF, Signal to Noise Ratio(SNR and Ground Sampling Distance(GSD are used to present images quality. Our previous research stressed that such quality parameters may not represent the quality of image products such as digital maps and that parameters for image interpretability such as Ground Resolved Distance(GRD and National Imagery Interpretability Rating Scale(NIIRS need to be considered. In this study, we analyzed the effects of the image quality on accuracy of digital maps produced by satellite images. QuickBird, IKONOS and KOMPSAT-2 imagery were used to analyze as they have similar GSDs. We measured various image quality parameters mentioned above from these images. Then we produced digital maps from the images using a digital photogrammetric workstation. We analyzed the accuracy of the digital maps in terms of their location accuracy and their level of details. Then we compared the correlation between various image quality parameters and the accuracy of digital maps. The results of this study showed that GRD and NIIRS were more critical for map production then GSD, MTF or SNR.

  4. Accuracy assessment of topographic mapping using UAV image integrated with satellite images

    Science.gov (United States)

    Azmi, S. M.; Ahmad, Baharin; Ahmad, Anuar

    2014-02-01

    Unmanned Aerial Vehicle or UAV is extensively applied in various fields such as military applications, archaeology, agriculture and scientific research. This study focuses on topographic mapping and map updating. UAV is one of the alternative ways to ease the process of acquiring data with lower operating costs, low manufacturing and operational costs, plus it is easy to operate. Furthermore, UAV images will be integrated with QuickBird images that are used as base maps. The objective of this study is to make accuracy assessment and comparison between topographic mapping using UAV images integrated with aerial photograph and satellite image. The main purpose of using UAV image is as a replacement for cloud covered area which normally exists in aerial photograph and satellite image, and for updating topographic map. Meanwhile, spatial resolution, pixel size, scale, geometric accuracy and correction, image quality and information contents are important requirements needed for the generation of topographic map using these kinds of data. In this study, ground control points (GCPs) and check points (CPs) were established using real time kinematic Global Positioning System (RTK-GPS) technique. There are two types of analysis that are carried out in this study which are quantitative and qualitative assessments. Quantitative assessment is carried out by calculating root mean square error (RMSE). The outputs of this study include topographic map and orthophoto. From this study, the accuracy of UAV image is ± 0.460 m. As conclusion, UAV image has the potential to be used for updating of topographic maps.

  5. Mapping soil heterogeneity using RapidEye satellite images

    Science.gov (United States)

    Piccard, Isabelle; Eerens, Herman; Dong, Qinghan; Gobin, Anne; Goffart, Jean-Pierre; Curnel, Yannick; Planchon, Viviane

    2016-04-01

    In the frame of BELCAM, a project funded by the Belgian Science Policy Office (BELSPO), researchers from UCL, ULg, CRA-W and VITO aim to set up a collaborative system to develop and deliver relevant information for agricultural monitoring in Belgium. The main objective is to develop remote sensing methods and processing chains able to ingest crowd sourcing data, provided by farmers or associated partners, and to deliver in return relevant and up-to-date information for crop monitoring at the field and district level based on Sentinel-1 and -2 satellite imagery. One of the developments within BELCAM concerns an automatic procedure to detect soil heterogeneity within a parcel using optical high resolution images. Such heterogeneity maps can be used to adjust farming practices according to the detected heterogeneity. This heterogeneity may for instance be caused by differences in mineral composition of the soil, organic matter content, soil moisture or soil texture. Local differences in plant growth may be indicative for differences in soil characteristics. As such remote sensing derived vegetation indices may be used to reveal soil heterogeneity. VITO started to delineate homogeneous zones within parcels by analyzing a series of RapidEye images acquired in 2015 (as a precursor for Sentinel-2). Both unsupervised classification (ISODATA, K-means) and segmentation techniques were tested. Heterogeneity maps were generated from images acquired at different moments during the season (13 May, 30 June, 17 July, 31 August, 11 September and 1 November 2015). Tests were performed using blue, green, red, red edge and NIR reflectances separately and using derived indices such as NDVI, fAPAR, CIrededge, NDRE2. The results for selected winter wheat, maize and potato fields were evaluated together with experts from the collaborating agricultural research centers. For a few fields UAV images and/or yield measurements were available for comparison.

  6. MORPHOLOGICAL PROFILE AND GRANULOMETRIC MAPS IN EXTRACTION OF BUILDINGS IN VHR SATELLITE IMAGES

    National Research Council Canada - National Science Library

    Kupidura Przemysław; Skulimowska Monika

    2015-01-01

    ...: the morphological profile, and granulometric maps in detecting buildings on satellite images. It briefly explains the theoretical basis for granulometric analysis of image and compares two methods used in research...

  7. 3D mapping from high resolution satellite images

    Science.gov (United States)

    Goulas, D.; Georgopoulos, A.; Sarakenos, A.; Paraschou, Ch.

    2013-08-01

    In recent years 3D information has become more easily available. Users' needs are constantly increasing, adapting to this reality and 3D maps are in more demand. 3D models of the terrain in CAD or other environments have already been common practice; however one is bound by the computer screen. This is why contemporary digital methods have been developed in order to produce portable and, hence, handier 3D maps of various forms. This paper deals with the implementation of the necessary procedures to produce holographic 3D maps and three dimensionally printed maps. The main objective is the production of three dimensional maps from high resolution aerial and/or satellite imagery with the use of holography and but also 3D printing methods. As study area the island of Antiparos was chosen, as there were readily available suitable data. These data were two stereo pairs of Geoeye-1 and a high resolution DTM of the island. Firstly the theoretical bases of holography and 3D printing are described, and the two methods are analyzed and there implementation is explained. In practice a x-axis parallax holographic map of the Antiparos Island is created and a full parallax (x-axis and y-axis) holographic map is created and printed, using the holographic method. Moreover a three dimensional printed map of the study area has been created using 3dp (3d printing) method. The results are evaluated for their usefulness and efficiency.

  8. Higher resolution satellite remote sensing and the impact on image mapping

    Science.gov (United States)

    Watkins, Allen H.; Thormodsgard, June M.

    1987-01-01

    Recent advances in spatial, spectral, and temporal resolution of civil land remote sensing satellite data are presenting new opportunities for image mapping applications. The U.S. Geological Survey's experimental satellite image mapping program is evolving toward larger scale image map products with increased information content as a result of improved image processing techniques and increased resolution. Thematic mapper data are being used to produce experimental image maps at 1:100,000 scale that meet established U.S. and European map accuracy standards. Availability of high quality, cloud-free, 30-meter ground resolution multispectral data from the Landsat thematic mapper sensor, along with 10-meter ground resolution panchromatic and 20-meter ground resolution multispectral data from the recently launched French SPOT satellite, present new cartographic and image processing challenges. The need to fully exploit these higher resolution data increases the complexity of processing the images into large-scale image maps. The removal of radiometric artifacts and noise prior to geometric correction can be accomplished by using a variety of image processing filters and transforms. Sensor modeling and image restoration techniques allow maximum retention of spatial and radiometric information. An optimum combination of spectral information and spatial resolution can be obtained by merging different sensor types. These processing techniques are discussed and examples are presented. 

  9. Higher resolution satellite remote sensing and the impact on image mapping

    Science.gov (United States)

    Watkins, Allen H.; Thormodsgard, June M.

    Recent advances in spatial, spectral, and temporal resolution of civil land remote sensing satellite data are presenting new opportunities for image mapping applications. The U.S. Geological Survey's experimental satellite image mapping program is evolving toward larger scale image map products with increased information content as a result of improved image processing techniques and increased resolution. Thematic mapper data are being used to produce experimental image maps at 1:100,000 scale that meet established U.S. and European map accuracy standards. Availability of high quality, cloud-free, 30-meter ground resolution multispectral data from the Landsat thematic mapper sensor, along with 10-meter ground resolution panchromatic and 20-meter ground resolution multispectral data from the recently launched French SPOT satellite, present new cartographic and image processing challenges. The need to fully exploit these higher resolution data increases the complexity of processing the images into large-scale image maps. The removal of radiometric artifacts and noise prior to geometric correction can be accomplished by using a variety of image processing filters and transforms. Sensor modeling and image restoration techniques allow maximum retention of spatial and radiometric information. An optimum combination of spectral information and spatial resolution can be obtained by merging different sensor types. These processing techniques are discussed and examples are presented.

  10. Mapping land cover from satellite images: A basic, low cost approach

    Science.gov (United States)

    Elifrits, C. D.; Barney, T. W.; Barr, D. J.; Johannsen, C. J.

    1978-01-01

    Simple, inexpensive methodologies developed for mapping general land cover and land use categories from LANDSAT images are reported. One methodology, a stepwise, interpretive, direct tracing technique was developed through working with university students from different disciplines with no previous experience in satellite image interpretation. The technique results in maps that are very accurate in relation to actual land cover and relative to the small investment in skill, time, and money needed to produce the products.

  11. Satellite Image Processing for Land Use and Land Cover Mapping

    Directory of Open Access Journals (Sweden)

    Ashoka Vanjare

    2014-09-01

    Full Text Available In this paper, urban growth of Bangalore region is analyzed and discussed by using multi-temporal and multi-spectral Landsat satellite images. Urban growth analysis helps in understanding the change detection of Bangalore region. The change detection is studied over a period of 39 years and the region of interest covers an area of 2182 km2. The main cause for urban growth is the increase in population. In India, rapid urbanization is witnessed due to an increase in the population, continuous development has affected the existence of natural resources. Therefore observing and monitoring the natural resources (land use plays an important role. To analyze changed detection, researcher’s use remote sensing data. Continuous use of remote sensing data helps researchers to analyze the change detection. The main objective of this study is to monitor land cover changes of Bangalore district which covers rural and urban regions using multi-temporal and multi-sensor Landsat - multi-spectral scanner (MSS, thematic mapper (TM, Enhanced Thematic mapper plus (ETM+ MSS, TM and ETM+ images captured in the years 1973, 1992, 1999, 2002, 2005, 2008 and 2011. Temporal changes were determined by using maximum likelihood classification method. The classification results contain four land cover classes namely, built-up, vegetation, water and barren land. The results indicate that the region is densely developed which has resulted in decrease of water and vegetation regions. The continuous transformation of barren land to built-up region has affected water and vegetation regions. Generally, from 1973 to 2011 the percentage of urban region has increased from 4.6% to 25.43%, mainly due to urbanization.

  12. Thematic mapping from satellite imagery

    CERN Document Server

    Denègre, J

    2013-01-01

    Thematic Mapping from Satellite Imagery: A Guidebook discusses methods in producing maps using satellite images. The book is comprised of five chapters; each chapter covers one stage of the process. Chapter 1 tackles the satellite remote sensing imaging and its cartographic significance. Chapter 2 discusses the production processes for extracting information from satellite data. The next chapter covers the methods for combining satellite-derived information with that obtained from conventional sources. Chapter 4 deals with design and semiology for cartographic representation, and Chapter 5 pre

  13. Collection of road traffic information from satellite images and digital map

    Science.gov (United States)

    Shinmura, Fumito; Saji, Hitoshi

    2010-10-01

    There have been many reports on the analysis of the Earth's surface by remote sensing. The purpose of this study is to analyze traffic information, and we have been studying methods of collecting traffic information by remote sensing. To collect traffic information, sensors installed on the roadside are frequently used. However, methods using sensors only collect information around the positions of the sensors. In this study, we attempt to solve this problem by using satellite images, which have recently become increasingly available. We propose a method of collecting traffic information over a large area using satellite images as well as three-dimensional digital maps. We assess traffic conditions by computing the number of edges of vehicles per road section as follows. First, the edges of vehicles are detected in satellite images. During this processing, three-dimensional digital maps are used to increase the accuracy of vehicle edge detection. The number of vehicles per road section, which is computed from the number of edges of vehicles, is computed and referred to as the vehicle density. Traffic conditions can be assessed from the vehicle density and are considered useful for collecting information on traffic congestion. In this study, we experimentally confirm that congested roads can be extracted from satellite images by our method.

  14. Comparing Manual and Semi-Automated Landslide Mapping Based on Optical Satellite Images from Different Sensors

    Directory of Open Access Journals (Sweden)

    Daniel Hölbling

    2017-05-01

    Full Text Available Object-based image analysis (OBIA has been increasingly used to map geohazards such as landslides on optical satellite images. OBIA shows various advantages over traditional image analysis methods due to its potential for considering various properties of segmentation-derived image objects (spectral, spatial, contextual, and textural for classification. For accurately identifying and mapping landslides, however, visual image interpretation is still the most widely used method. The major question therefore is if semi-automated methods such as OBIA can achieve results of comparable quality in contrast to visual image interpretation. In this paper we apply OBIA for detecting and delineating landslides in five selected study areas in Austria and Italy using optical Earth Observation (EO data from different sensors (Landsat 7, SPOT-5, WorldView-2/3, and Sentinel-2 and compare the OBIA mapping results to outcomes from visual image interpretation. A detailed evaluation of the mapping results per study area and sensor is performed by a number of spatial accuracy metrics, and the advantages and disadvantages of the two approaches for landslide mapping on optical EO data are discussed. The analyses show that both methods produce similar results, whereby the achieved accuracy values vary between the study areas.

  15. MORPHOLOGICAL PROFILE AND GRANULOMETRIC MAPS IN EXTRACTION OF BUILDINGS IN VHR SATELLITE IMAGES

    Directory of Open Access Journals (Sweden)

    Kupidura Przemysław

    2015-12-01

    Full Text Available The article is focused on the analysis of possibilities of using granulometric analysis methods: the morphological profile, and granulometric maps in detecting buildings on satellite images. It briefly explains the theoretical basis for granulometric analysis of image and compares two methods used in research. Tests were carried out on a fragment of QuickBird satellite scene – pansharpened multispectral image. 8 variants of classification differing in terms of the data and the model of classification were compared. Evaluation of the effectiveness of the different options for classification based on the analysis factor kappa values and omission and commission errors. The results indicate the significant potential of the proposed methods, and analysis of the observed imperfections allows to specify the possible fields of their development

  16. Processing of Satellite Digital Images for Mapping Atmospheric Transmissivity in Bangladesh

    Directory of Open Access Journals (Sweden)

    Md Shahjahan Ali

    2013-03-01

    Full Text Available This study investigates the potential of determining atmospheric transmissivity (τ from NOAA-AVHRR satellite images using a simple methodology. Using this method, hourly transmissivity values over the land surface area of Bangladesh has been determined. The spatio-temporal distribution of τ has been studied by constructing monthly average maps for the whole country for one complete year (February 2005 to January 2006. Yearly average map has been prepared by integrating monthly average maps. Geographical distribution of τ exhibits patterns and trends. It is observed that the value of τ varies from 0.3 to 0.65 with the average maximum value in the month of April and minimum value in the month of November. It is also observed that for western parts of the country, which is the drought prone area, transmissivity values are little bit higher than that at the eastern parts. Relatively lower values of τ in the dry months (November to January may be due to the effect of particulate or chemical pollution in the atmosphere.

  17. Digital mapping of loess in Northwest Germany based on satellite images

    Science.gov (United States)

    Wagner, Bianca

    2010-05-01

    Loess maps of various scales are important input data for advanced investigations of spatial loess properties such as variation in grain size, thickness and facies or study of loess provenance. Many representations of loess distribution in Northwest Germany are based on geological maps. Mostly these maps were created at the beginning of the last century. During this time especially thin loess covers were not incorporated in favour of underlying hard rocks or other Quaternary deposits. Due to the change in mapping policy at the end of the last century much more of the unconsolidated rocks, particularly with regard to loess, were displayed on the revised or updated maps. In this study the analysis of optical remote sensing data, ranging from visible light to the infrared, was tested to create a more realistic map of the loess distribution in Northwest Germany. The investigation area includes the loess along the northern loess boundary between Helmstedt and Minden and extends to Kassel and Goettingen in the South. Here, in southern Lower Saxony, northern Hesse and eastern North Rhine-Westphalia, loess and loess derivates are widely distributed apart from river beds, valley flanks, steep slopes and higher mountain ranges. The thickness of the loess cover, that is of Weichselian, sporadic of Saalian or Elsterian age, varies between few centimetres and about 20 m. The hard rocks of the study area were influenced by tectonic and halokinetic processes resulting in a complex and small-scale pattern of folds, depressions, horsts and grabens. Satellite images of the Landsat TM and ETM+ sensors, recorded between 1985 and 2008, were used for this study. After radiometric calibration and atmospheric and geometric correction of every dataset, coniferous forest, water and areas of high urbanization were masked. Then a synthetic file was made up of all remaining pixels, preferring the pixel, displaying the purest soil or bare rock. Various digital mapping techniques e.g. band

  18. The digital mapping of satellite images under no ground control and the distribution of landform, blue ice and meteorites in the Grove Mountains, Antarctica

    Institute of Scientific and Technical Information of China (English)

    孙家抦; 霍东民; 周军其; 孙朝辉

    2001-01-01

    The colorful satellite image maps with the scale of 1∶100 000 were made by processing the parameters-on-satellite under the condition of no data of field surveying. The purpose is to ensure the smooth performance of the choice of expedition route, navigation and research task before the Chinese National Antarctic Research Expedition (CHINARE) first made researches on the Grove Mountains. Moreover, on the basis of the visual interpretation of the satellite image, we preliminarily analyze and discuss the relief and landform, blue ice and meteorite distribution characteristics in the Grove Mountains. Key words Grove Mountains, parameters-on-satellite, satellite image, digital mapping, blue ice, meteorites distribution.

  19. Relasphone—Mobile and Participative In Situ Forest Biomass Measurements Supporting Satellite Image Mapping

    Directory of Open Access Journals (Sweden)

    Matthieu Molinier

    2016-10-01

    Full Text Available Due to the high cost of traditional forest plot measurements, the availability of up-to-date in situ forest inventory data has been a bottleneck for remote sensing image analysis in support of the important global forest biomass mapping. Capitalizing on the proliferation of smartphones, citizen science is a promising approach to increase spatial and temporal coverages of in situ forest observations in a cost-effective way. Digital cameras can be used as a relascope device to measure basal area, a forest density variable that is closely related to biomass. In this paper, we present the Relasphone mobile application with extensive accuracy assessment in two mixed forest sites from different biomes. Basal area measurements in Finland (boreal zone were in good agreement with reference forest inventory plot data on pine ( R 2 = 0 . 75 , R M S E = 5 . 33 m 2 /ha, spruce ( R 2 = 0 . 75 , R M S E = 6 . 73 m 2 /ha and birch ( R 2 = 0 . 71 , R M S E = 4 . 98 m 2 /ha, with total relative R M S E ( % = 29 . 66 % . In Durango, Mexico (temperate zone, Relasphone stem volume measurements were best for pine ( R 2 = 0 . 88 , R M S E = 32 . 46 m 3 /ha and total stem volume ( R 2 = 0 . 87 , R M S E = 35 . 21 m 3 /ha. Relasphone data were then successfully utilized as the only reference data in combination with optical satellite images to produce biomass maps. The Relasphone concept has been validated for future use by citizens in other locations.

  20. Some Methodological Aspects Concerning the Use of Satellite Images and Maps in the Physico-Geographical Regional Determination of the Romania Territory

    Directory of Open Access Journals (Sweden)

    VASILE LOGHIN

    2005-01-01

    Full Text Available This paper presents some methodological aspects concerning the use of satellite images and maps in the physico-geographical region determination of Romania's territory, as well as some results that can be obtained using this method. In order to determine the physico-geographical units and sub-units using satellite maps (Bucharest page, 1:1.500.000 and satellite images (Landsat, IRS we have analyzed, from the geographical point of view, some samples of such documents. The resulting maps were compared with the already existing physico-geographical region determination maps. Our results show that the method under consideration has both advantages and disadvantages. One conclusion is sure: satellite images and maps can be used for this purpose together with traditional maps.

  1. Operational High Resolution Land Cover Map Production at the Country Scale Using Satellite Image Time Series

    Directory of Open Access Journals (Sweden)

    Jordi Inglada

    2017-01-01

    Full Text Available A detailed and accurate knowledge of land cover is crucial for many scientific and operational applications, and as such, it has been identified as an Essential Climate Variable. This accurate knowledge needs frequent updates. This paper presents a methodology for the fully automatic production of land cover maps at country scale using high resolution optical image time series which is based on supervised classification and uses existing databases as reference data for training and validation. The originality of the approach resides in the use of all available image data, a simple pre-processing step leading to a homogeneous set of acquisition dates over the whole area and the use of a supervised classifier which is robust to errors in the reference data. The produced maps have a kappa coefficient of 0.86 with 17 land cover classes. The processing is efficient, allowing a fast delivery of the maps after the acquisition of the image data, does not need expensive field surveys for model calibration and validation, nor human operators for decision making, and uses open and freely available imagery. The land cover maps are provided with a confidence map which gives information at the pixel level about the expected quality of the result.

  2. THE COMPILATION OF A DTM AND A NEW SATELLITE IMAGE MAP FOR KING GEORGE ISLAND,ANTARCTICA

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    An improved topographic database for King George Island,one of the most frequently visited regions in Antarctica,is presented.A first step consisted in combining data from differential GPS surveys gained during the austral summers 1997~1998 and 1999~2000,with the current coastline from a SPOT satellite image mosaic,topographic information from existing maps and from the Antarctic Digital Database.From this data sets,a digital terrain model (DTM) was generated using Arc/Info GIS.In a second step,a satellite image map at the scale 1∶100 000 was assembled from contour lines derived from the DTM and the satellite mosaic.A lack of accurate topographic information in the eastern part of the island was identified.Additional topographic surveying or SAR interferometry should be used to improve the data quality in that area.The GIS integrated database will be indispensable for glaciological and climatological studies and administrative and scientific purposes.In future,the application of GIS techniques will be mandatory for environmental impact studies and environmental monitoring as well as for management plans on King George Island.

  3. Recognization of Satellite Images of Large Scale Data Based on Map- Reduce Framework

    Directory of Open Access Journals (Sweden)

    Vidya Jadhav,

    2014-03-01

    Full Text Available Today in the world of cloud and grid computing integration of data from heterogeneous databases is inevitable.This will become complex when size of the database is very large. M-R is a new framework specifically designed for processing huge datasets on distributed sources. Apache’s Hadoop is an implementation of M-R.Currently Hadoop has been applied successfully for file based datasets. This project proposes to utilize the parallel and distributed processing capability of Hadoop M-R for handling Images on large datasets.The presented methodology of land-cover recognition provides a scalable solution for automatic satellite imagery analysis, especially when GIS data is not readily available, or surface change may occur due to catastrophic events such as flooding, hurricane, and snow storm, etc.Here,we are using algorithms such as Image Differentiation,Image Duplication,Zoom-In,Gray-Scale.

  4. Determining the Suitability of Different Digital Elevation Models and Satellite Images for Fancy Maps. An Example of Cyprus

    Science.gov (United States)

    Drachal, J.; Kawel, A. K.

    2016-06-01

    The article describes the possibility of developing an overall map of the selected area on the basis of publicly available data. Such a map would take the form designed by the author with the colors that meets his expectations and a content, which he considers to be appropriate. Among the data available it was considered the use of satellite images of the terrain in real colors and, in the form of shaded relief, digital terrain models with different resolutions of the terrain mesh. Specifically the considered data were: MODIS, Landsat 8, GTOPO-30, SRTM-30, SRTM-1, SRTM-3, ASTER. For the test area the island of Cyprus was chosen because of the importance in tourism, a relatively small area and a clearly defined boundary. In the paper there are shown and discussed various options of the Cyprus terrain image obtained synthetically from variants of Modis, Landsat and digital elevation models of different resolutions.

  5. Provisional maps of thermal areas in Yellowstone National Park, based on satellite thermal infrared imaging and field observations

    Science.gov (United States)

    Vaughan, R. Greg; Heasler, Henry; Jaworowski, Cheryl; Lowenstern, Jacob B.; Keszthelyi, Laszlo P.

    2014-01-01

    Maps that define the current distribution of geothermally heated ground are useful toward setting a baseline for thermal activity to better detect and understand future anomalous hydrothermal and (or) volcanic activity. Monitoring changes in the dynamic thermal areas also supports decisions regarding the development of Yellowstone National Park infrastructure, preservation and protection of park resources, and ensuring visitor safety. Because of the challenges associated with field-based monitoring of a large, complex geothermal system that is spread out over a large and remote area, satellite-based thermal infrared images from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) were used to map the location and spatial extent of active thermal areas, to generate thermal anomaly maps, and to quantify the radiative component of the total geothermal heat flux. ASTER thermal infrared data acquired during winter nights were used to minimize the contribution of solar heating of the surface. The ASTER thermal infrared mapping results were compared to maps of thermal areas based on field investigations and high-resolution aerial photos. Field validation of the ASTER thermal mapping is an ongoing task. The purpose of this report is to make available ASTER-based maps of Yellowstone’s thermal areas. We include an appendix containing the names and characteristics of Yellowstone’s thermal areas, georeferenced TIFF files containing ASTER thermal imagery, and several spatial data sets in Esri shapefile format.

  6. Georectification and snow classification of webcam images: potential for complementing satellite-derrived snow maps over Switzerland

    Science.gov (United States)

    Dizerens, Céline; Hüsler, Fabia; Wunderle, Stefan

    2016-04-01

    The spatial and temporal variability of snow cover has a significant impact on climate and environment and is of great socio-economic importance for the European Alps. Satellite remote sensing data is widely used to study snow cover variability and can provide spatially comprehensive information on snow cover extent. However, cloud cover strongly impedes the surface view and hence limits the number of useful snow observations. Outdoor webcam images not only offer unique potential for complementing satellite-derived snow retrieval under cloudy conditions but could also serve as a reference for improved validation of satellite-based approaches. Thousands of webcams are currently connected to the Internet and deliver freely available images with high temporal and spatial resolutions. To exploit the untapped potential of these webcams, a semi-automatic procedure was developed to generate snow cover maps based on webcam images. We used daily webcam images of the Swiss alpine region to apply, improve, and extend existing approaches dealing with the positioning of photographs within a terrain model, appropriate georectification, and the automatic snow classification of such photographs. In this presentation, we provide an overview of the implemented procedure and demonstrate how our registration approach automatically resolves the orientation of a webcam by using a high-resolution digital elevation model and the webcam's position. This allows snow-classified pixels of webcam images to be related to their real-world coordinates. We present several examples of resulting snow cover maps, which have the same resolution as the digital elevation model and indicate whether each grid cell is snow-covered, snow-free, or not visible from webcams' positions. The procedure is expected to work under almost any weather condition and demonstrates the feasibility of using webcams for the retrieval of high-resolution snow cover information.

  7. A new tool for supervised classification of satellite images available on web servers: Google Maps as a case study

    Science.gov (United States)

    García-Flores, Agustín.; Paz-Gallardo, Abel; Plaza, Antonio; Li, Jun

    2016-10-01

    This paper describes a new web platform dedicated to the classification of satellite images called Hypergim. The current implementation of this platform enables users to perform classification of satellite images from any part of the world thanks to the worldwide maps provided by Google Maps. To perform this classification, Hypergim uses unsupervised algorithms like Isodata and K-means. Here, we present an extension of the original platform in which we adapt Hypergim in order to use supervised algorithms to improve the classification results. This involves a significant modification of the user interface, providing the user with a way to obtain samples of classes present in the images to use in the training phase of the classification process. Another main goal of this development is to improve the runtime of the image classification process. To achieve this goal, we use a parallel implementation of the Random Forest classification algorithm. This implementation is a modification of the well-known CURFIL software package. The use of this type of algorithms to perform image classification is widespread today thanks to its precision and ease of training. The actual implementation of Random Forest was developed using CUDA platform, which enables us to exploit the potential of several models of NVIDIA graphics processing units using them to execute general purpose computing tasks as image classification algorithms. As well as CUDA, we use other parallel libraries as Intel Boost, taking advantage of the multithreading capabilities of modern CPUs. To ensure the best possible results, the platform is deployed in a cluster of commodity graphics processing units (GPUs), so that multiple users can use the tool in a concurrent way. The experimental results indicate that this new algorithm widely outperform the previous unsupervised algorithms implemented in Hypergim, both in runtime as well as precision of the actual classification of the images.

  8. Biogeography based Satellite Image Classification

    CERN Document Server

    Panchal, V K; Kaur, Navdeep; Kundra, Harish

    2009-01-01

    Biogeography is the study of the geographical distribution of biological organisms. The mindset of the engineer is that we can learn from nature. Biogeography Based Optimization is a burgeoning nature inspired technique to find the optimal solution of the problem. Satellite image classification is an important task because it is the only way we can know about the land cover map of inaccessible areas. Though satellite images have been classified in past by using various techniques, the researchers are always finding alternative strategies for satellite image classification so that they may be prepared to select the most appropriate technique for the feature extraction task in hand. This paper is focused on classification of the satellite image of a particular land cover using the theory of Biogeography based Optimization. The original BBO algorithm does not have the inbuilt property of clustering which is required during image classification. Hence modifications have been proposed to the original algorithm and...

  9. A feed-forward Hopfield neural network algorithm (FHNNA) with a colour satellite image for water quality mapping

    Science.gov (United States)

    Asal Kzar, Ahmed; Mat Jafri, M. Z.; Hwee San, Lim; Al-Zuky, Ali A.; Mutter, Kussay N.; Hassan Al-Saleh, Anwar

    2016-06-01

    There are many techniques that have been given for water quality problem, but the remote sensing techniques have proven their success, especially when the artificial neural networks are used as mathematical models with these techniques. Hopfield neural network is one type of artificial neural networks which is common, fast, simple, and efficient, but it when it deals with images that have more than two colours such as remote sensing images. This work has attempted to solve this problem via modifying the network that deals with colour remote sensing images for water quality mapping. A Feed-forward Hopfield Neural Network Algorithm (FHNNA) was modified and used with a satellite colour image from type of Thailand earth observation system (THEOS) for TSS mapping in the Penang strait, Malaysia, through the classification of TSS concentrations. The new algorithm is based essentially on three modifications: using HNN as feed-forward network, considering the weights of bitplanes, and non-self-architecture or zero diagonal of weight matrix, in addition, it depends on a validation data. The achieved map was colour-coded for visual interpretation. The efficiency of the new algorithm has found out by the higher correlation coefficient (R=0.979) and the lower root mean square error (RMSE=4.301) between the validation data that were divided into two groups. One used for the algorithm and the other used for validating the results. The comparison was with the minimum distance classifier. Therefore, TSS mapping of polluted water in Penang strait, Malaysia, can be performed using FHNNA with remote sensing technique (THEOS). It is a new and useful application of HNN, so it is a new model with remote sensing techniques for water quality mapping which is considered important environmental problem.

  10. Vegetation mapping from high-resolution satellite images in the heterogeneous arid environments of Socotra Island (Yemen)

    Science.gov (United States)

    Malatesta, Luca; Attorre, Fabio; Altobelli, Alfredo; Adeeb, Ahmed; De Sanctis, Michele; Taleb, Nadim M.; Scholte, Paul T.; Vitale, Marcello

    2013-01-01

    Socotra Island (Yemen), a global biodiversity hotspot, is characterized by high geomorphological and biological diversity. In this study, we present a high-resolution vegetation map of the island based on combining vegetation analysis and classification with remote sensing. Two different image classification approaches were tested to assess the most accurate one in mapping the vegetation mosaic of Socotra. Spectral signatures of the vegetation classes were obtained through a Gaussian mixture distribution model, and a sequential maximum a posteriori (SMAP) classification was applied to account for the heterogeneity and the complex spatial pattern of the arid vegetation. This approach was compared to the traditional maximum likelihood (ML) classification. Satellite data were represented by a RapidEye image with 5 m pixel resolution and five spectral bands. Classified vegetation relevés were used to obtain the training and evaluation sets for the main plant communities. Postclassification sorting was performed to adjust the classification through various rule-based operations. Twenty-eight classes were mapped, and SMAP, with an accuracy of 87%, proved to be more effective than ML (accuracy: 66%). The resulting map will represent an important instrument for the elaboration of conservation strategies and the sustainable use of natural resources in the island.

  11. Mapping species of submerged aquatic vegetation with multi-seasonal satellite images and considering life history information

    Science.gov (United States)

    Luo, Juhua; Duan, Hongtao; Ma, Ronghua; Jin, Xiuliang; Li, Fei; Hu, Weiping; Shi, Kun; Huang, Wenjiang

    2017-05-01

    Spatial information of the dominant species of submerged aquatic vegetation (SAV) is essential for restoration projects in eutrophic lakes, especially eutrophic Taihu Lake, China. Mapping the distribution of SAV species is very challenging and difficult using only multispectral satellite remote sensing. In this study, we proposed an approach to map the distribution of seven dominant species of SAV in Taihu Lake. Our approach involved information on the life histories of the seven SAV species and eight distribution maps of SAV from February to October. The life history information of the dominant SAV species was summarized from the literature and field surveys. Eight distribution maps of the SAV were extracted from eight 30 m HJ-CCD images from February to October in 2013 based on the classification tree models, and the overall classification accuracies for the SAV were greater than 80%. Finally, the spatial distribution of the SAV species in Taihu in 2013 was mapped using multilayer erasing approach. Based on validation, the overall classification accuracy for the seven species was 68.4%, and kappa was 0.6306, which suggests that larger differences in life histories between species can produce higher identification accuracies. The classification results show that Potamogeton malaianus was the most widely distributed species in Taihu Lake, followed by Myriophyllum spicatum, Potamogeton maackianus, Potamogeton crispus, Elodea nuttallii, Ceratophyllum demersum and Vallisneria spiralis. The information is useful for planning shallow-water habitat restoration projects.

  12. Structural Mapping of Folded Sedimentary Environments from Satellite Images: an Example from Central Asia

    Science.gov (United States)

    Leith, W.

    1985-01-01

    In the Tadjik Depression, in Soviet Central Asia, in the absence of existing geologic or topographic maps, an enhanced LANDSAT multispectral scanner image was used in combination with field data to produce a 1:250000 geologic map of the Vakhsh fold-and-thrust belt and adjacent autochthon. Several structural conclusions are reached as a result of this mapping. Deformation of the Cretaceous and Tertiary strata of the fold-and-thrust belt is, in the central Tadjik Depression, conspicuously absent north of a buried basement fault that marks the hinge-zone of the Late Mesozoic passive margin. But, in the eastern half of the depression, thrusting has moved coherent sheets northward, over the block fault, these sheets now lie flat atop the autochthon to the north. The crustal structure inherited from the Mesozoic extensional phase has strongly influenced the Late Cenozoic pattern of deformation, producing the fold-and-thrust belt that is markedly asymmetric. The development of the thrust system has included the progressive overlapping of thrust: the later thrusts apparently formed internal to the older thrusts, and subsequently overrode them.

  13. Multitemporal unmixing of medium-spatial-resolution satellite images: A case study using MERIS images for land-cover mapping

    NARCIS (Netherlands)

    Zurita Milla, R.; Gómez-Chova, L.; Guanter, L.; Clevers, J.G.P.W.; Champs-Valls, G.

    2011-01-01

    Data from current medium-spatial-resolution imaging spectroradiometers are used for land-cover mapping and land-cover change detection at regional to global scales. However, few landscapes are homogeneous at these scales, and this creates the so-called mixed-pixel problem. In this context, this

  14. Multitemporal unmixing of medium-spatial-resolution satellite images: a case study using MERIS images for land - cover mapping

    NARCIS (Netherlands)

    Zurita-Milla, R.; Gomez-Chova, L.; Guanter, L.; Clevers, J.G.P.W.; Camps-Valls, G.

    2011-01-01

    Data from current medium-spatial-resolution imaging spectroradiometers are used for land-cover mapping and land-cover change detection at regional to global scales. However, few landscapes are homogeneous at these scales, and this creates the so-called mixed-pixel problem. In this context, this

  15. Multitemporal unmixing of medium-spatial-resolution satellite images: A case study using MERIS images for land-cover mapping

    NARCIS (Netherlands)

    Zurita Milla, R.; Gómez-Chova, L.; Guanter, L.; Clevers, J.G.P.W.; Champs-Valls, G.

    2011-01-01

    Data from current medium-spatial-resolution imaging spectroradiometers are used for land-cover mapping and land-cover change detection at regional to global scales. However, few landscapes are homogeneous at these scales, and this creates the so-called mixed-pixel problem. In this context, this stud

  16. Exploitation of amplitude and phase of satellite SAR images for landslide mapping: the case of Montescaglioso (South Italy)

    Science.gov (United States)

    Raspini, Federico; Ciampalini, Andrea; Lombardi, Luca; Nocentini, Massimiliano; Gigli, Giovanni; Casagli, Nicola; Del Conte, Sara; Ferretti, Alessandro

    2016-04-01

    Pre- event and event landslide deformations have been detected and measured for the landslide that occurred on 3 December 2013 on the south-western slope of the Montescaglioso village (Basilicata Region, southern Italy). The event, triggered by prolonged rainfalls, created significant damage to buildings and local infrastructures. Ground displacements have been mapped through an integrated analysis based on a series of high resolution SAR (Synthetic Aperture Radar) images acquired by the Italian constellation of satellites COSMO-SkyMed. Analysis has been performed by exploiting both phase (through multi-image SAR interferometry) and amplitude information (through speckle tracking techniques) of the satellite images. SAR Interferometry, applied to images taken before the event, revealed a general pre-event movement, in the order of a few mm/yr, in the south-western slope of the Montescaglioso village. Highest pre-event velocities, ranging between 8 and 12 mm/yr, have been recorded in the sector of the slope where the first movement of the landslide took place. Speckle tracking, applied to images acquired before and after the event, allowed the retrieval of the 3D deformation field produced by the landslide. It also showed that ground displacements produced by the landslide have a dominant SSW component, with values exceeding 10 m for large sectors of the landslide area, with local peaks of 20 m in its central and deposit areas. Two minor landslides with a dominant SSE direction, which were detected in the upper parts of the slope, likely also occurred as secondary phenomena as consequence of the SSW movement of the main Montescaglioso landslide. This work demonstrates that this complementary approach, based on the synergistic exploitation of phase and amplitude SAR data, can become a powerful tool for landslide investigation, allowing the detection of slow, precursory deformation patterns as well the retrieval of full 3D surface displacement fields caused by large

  17. Web Based Rapid Mapping of Disaster Areas using Satellite Images, Web Processing Service, Web Mapping Service, Frequency Based Change Detection Algorithm and J-iView

    Science.gov (United States)

    Bandibas, J. C.; Takarada, S.

    2013-12-01

    Timely identification of areas affected by natural disasters is very important for a successful rescue and effective emergency relief efforts. This research focuses on the development of a cost effective and efficient system of identifying areas affected by natural disasters, and the efficient distribution of the information. The developed system is composed of 3 modules which are the Web Processing Service (WPS), Web Map Service (WMS) and the user interface provided by J-iView (fig. 1). WPS is an online system that provides computation, storage and data access services. In this study, the WPS module provides online access of the software implementing the developed frequency based change detection algorithm for the identification of areas affected by natural disasters. It also sends requests to WMS servers to get the remotely sensed data to be used in the computation. WMS is a standard protocol that provides a simple HTTP interface for requesting geo-registered map images from one or more geospatial databases. In this research, the WMS component provides remote access of the satellite images which are used as inputs for land cover change detection. The user interface in this system is provided by J-iView, which is an online mapping system developed at the Geological Survey of Japan (GSJ). The 3 modules are seamlessly integrated into a single package using J-iView, which could rapidly generate a map of disaster areas that is instantaneously viewable online. The developed system was tested using ASTER images covering the areas damaged by the March 11, 2011 tsunami in northeastern Japan. The developed system efficiently generated a map showing areas devastated by the tsunami. Based on the initial results of the study, the developed system proved to be a useful tool for emergency workers to quickly identify areas affected by natural disasters.

  18. Geospatial mapping of Antarctic coastal oasis using geographic object-based image analysis and high resolution satellite imagery

    Science.gov (United States)

    Jawak, Shridhar D.; Luis, Alvarinho J.

    2016-04-01

    An accurate spatial mapping and characterization of land cover features in cryospheric regions is an essential procedure for many geoscientific studies. A novel semi-automated method was devised by coupling spectral index ratios (SIRs) and geographic object-based image analysis (OBIA) to extract cryospheric geospatial information from very high resolution WorldView 2 (WV-2) satellite imagery. The present study addresses development of multiple rule sets for OBIA-based classification of WV-2 imagery to accurately extract land cover features in the Larsemann Hills, east Antarctica. Multilevel segmentation process was applied to WV-2 image to generate different sizes of geographic image objects corresponding to various land cover features with respect to scale parameter. Several SIRs were applied to geographic objects at different segmentation levels to classify land mass, man-made features, snow/ice, and water bodies. We focus on water body class to identify water areas at the image level, considering their uneven appearance on landmass and ice. The results illustrated that synergetic usage of SIRs and OBIA can provide accurate means to identify land cover classes with an overall classification accuracy of ≍97%. In conclusion, our results suggest that OBIA is a powerful tool for carrying out automatic and semiautomatic analysis for most cryospheric remote-sensing applications, and the synergetic coupling with pixel-based SIRs is found to be a superior method for mining geospatial information.

  19. Satellite-based land use mapping: comparative analysis of Landsat-8, Advanced Land Imager, and big data Hyperion imagery

    Science.gov (United States)

    Pervez, Wasim; Uddin, Vali; Khan, Shoab Ahmad; Khan, Junaid Aziz

    2016-04-01

    Until recently, Landsat technology has suffered from low signal-to-noise ratio (SNR) and comparatively poor radiometric resolution, which resulted in limited application for inland water and land use/cover mapping. The new generation of Landsat, the Landsat Data Continuity Mission carrying the Operational Land Imager (OLI), has improved SNR and high radiometric resolution. This study evaluated the utility of orthoimagery from OLI in comparison with the Advanced Land Imager (ALI) and hyperspectral Hyperion (after preprocessing) with respect to spectral profiling of classes, land use/cover classification, classification accuracy assessment, classifier selection, study area selection, and other applications. For each data source, the support vector machine (SVM) model outperformed the spectral angle mapper (SAM) classifier in terms of class discrimination accuracy (i.e., water, built-up area, mixed forest, shrub, and bare soil). Using the SVM classifier, Hyperion hyperspectral orthoimagery achieved higher overall accuracy than OLI and ALI. However, OLI outperformed both hyperspectral Hyperion and multispectral ALI using the SAM classifier, and with the SVM classifier outperformed ALI in terms of overall accuracy and individual classes. The results show that the new generation of Landsat achieved higher accuracies in mapping compared with the previous Landsat multispectral satellite series.

  20. Effect of Training Class Label Noise on Classification Performances for Land Cover Mapping with Satellite Image Time Series

    Directory of Open Access Journals (Sweden)

    Charlotte Pelletier

    2017-02-01

    Full Text Available Supervised classification systems used for land cover mapping require accurate reference databases. These reference data come generally from different sources such as field measurements, thematic maps, or aerial photographs. Due to misregistration, update delay, or land cover complexity, they may contain class label noise, i.e., a wrong label assignment. This study aims at evaluating the impact of mislabeled training data on classification performances for land cover mapping. Particularly, it addresses the random and systematic label noise problem for the classification of high resolution satellite image time series. Experiments are carried out on synthetic and real datasets with two traditional classifiers: Support Vector Machines (SVM and Random Forests (RF. A synthetic dataset has been designed for this study, simulating vegetation profiles over one year. The real dataset is composed of Landsat-8 and SPOT-4 images acquired during one year in the south of France. The results show that both classifiers are little influenced for low random noise levels up to 25%–30%, but their performances drop down for higher noise levels. Different classification configurations are tested by increasing the number of classes, using different input feature vectors, and changing the number of training instances. Algorithm complexities are also analyzed. The RF classifier achieves high robustness to random and systematic label noise for all the tested configurations; whereas the SVM classifier is more sensitive to the kernel choice and to the input feature vectors. Finally, this work reveals that the cross-validation procedure is impacted by the presence of class label noise.

  1. Using satellite data in map design and production

    Science.gov (United States)

    Hutchinson, John A.

    2002-01-01

    Satellite image maps have been produced by the U.S. Geological Survey (USGS) since shortly after the launch of the first Landsat satellite in 1972. Over the years, the use of image data to design and produce maps has developed from a manual and photographic process to one that incorporates geographic information systems, desktop publishing, and digital prepress techniques. At the same time, the content of most image-based maps produced by the USGS has shifted from raw image data to land cover or other information layers derived from satellite imagery, often portrayed in combination with shaded relief.

  2. Mapping shrublands and forests with multispectral satellite images based on spectral unmixing of scene components

    Science.gov (United States)

    Caetano, Mario R.; Oliveira, Tiago; Paul, Jose U.; Vasconcelos, Maria J.; Cardoso Pereira, Jose M.

    1997-12-01

    Linear spectral mixture models (SMM) with image endmembers (IEM) and with reference endmembers (REM) were tested for discriminating maritime pine stands and shrublands in a Landsat-TM image of Central Portugal. For both types of EM, IEM and REM, two types of SMM were tried: SMM with three EM (SMM-3), i.e., green vegetation, soil and shade, and SMM with five EM (SMM-5), where the EM were the components of the landscapes that we were interested on, i.e., pine canopy, shrub, soil, forest litter and shade. Results showed that in the SMM-5, REM need to be used, since IEM were not pure enough. We verified that in the SMM-5, there was not a single set of EM that could be applied to the whole study area, because the shrubs that exist underneath the pine canopy and in the shrublands could not be modeled just by using a shrub EM. Therefore, SMM-5 require a multi-endmember approach, where the set of EM may change from pixel to pixel. In the SMM-3, an accurate discrimination of shrublands and pine stands (90% accuracy) was achieved by thresholding the shade fraction. In these simpler SMM, IEM and REM produced similar results.

  3. Mapping Impervious Surface Expansion using Medium-resolution Satellite Image Time Series: A Case Study in the Yangtze River Delta, China

    Science.gov (United States)

    Gao, Feng; DeColstoun, Eric Brown; Ma, Ronghua; Weng, Qihao; Masek, Jeffrey G.; Chen, Jin; Pan, Yaozhong; Song, Conghe

    2012-01-01

    Cities have been expanding rapidly worldwide, especially over the past few decades. Mapping the dynamic expansion of impervious surface in both space and time is essential for an improved understanding of the urbanization process, land-cover and land-use change, and their impacts on the environment. Landsat and other medium-resolution satellites provide the necessary spatial details and temporal frequency for mapping impervious surface expansion over the past four decades. Since the US Geological Survey opened the historical record of the Landsat image archive for free access in 2008, the decades-old bottleneck of data limitation has gone. Remote-sensing scientists are now rich with data, and the challenge is how to make best use of this precious resource. In this article, we develop an efficient algorithm to map the continuous expansion of impervious surface using a time series of four decades of medium-resolution satellite images. The algorithm is based on a supervised classification of the time-series image stack using a decision tree. Each imerpervious class represents urbanization starting in a different image. The algorithm also allows us to remove inconsistent training samples because impervious expansion is not reversible during the study period. The objective is to extract a time series of complete and consistent impervious surface maps from a corresponding times series of images collected from multiple sensors, and with a minimal amount of image preprocessing effort. The approach was tested in the lower Yangtze River Delta region, one of the fastest urban growth areas in China. Results from nearly four decades of medium-resolution satellite data from the Landsat Multispectral Scanner (MSS), Thematic Mapper (TM), Enhanced Thematic Mapper plus (ETM+) and China-Brazil Earth Resources Satellite (CBERS) show a consistent urbanization process that is consistent with economic development plans and policies. The time-series impervious spatial extent maps derived

  4. Role of Indian remote sensing imaging satellites for the Antarctic monitoring and mapping: a case study around Indian Antarctic research stations

    Science.gov (United States)

    Jayaprasad, P.; Mehra, Raghav; Chawla, Saket; Rajak, D. Ram; Oza, Sandip R.

    2016-05-01

    Antarctic research station's existence largely depend on the supply of fuel, food and other commodities through Antarctic Scientific Expedition using ship voyage. Safer Ship Navigation demands high resolution satellite monitoring of the ice conditions which varies from 30 km to 200 km from the Antarctic coast of Research stations. During the last couple of years Indian Satellites play a major role in safer ship navigation in sea ice regions of the Arctic and the Antarctic. Specifically Indian Scientific Expedition to the Antarctica (ISEA) through National Centre for Antarctic and Oceanic Research (NCAOR) is one of the beneficiaries for safer ship navigation using information derived from Indian Satellite data. Space Applications Centre, Indian Space Research Organisation (SAC-ISRO) is providing Sea Ice Advisories for the safer optimum entry and exit for the expedition ship at two of the Research stations Bharati and Maitri. Two of the Indian Satellites namely Radar Imaging Satellite-1 (RISAT-1) and ResourceSAT-2 (RS-2) are the two major workhorses of ISRO for monitoring and mapping of the Antarctic terrain. The present study demonstrate the utilisation potential of these satellite images for various Polar Science Applications. Mosaic of the Antarctic Terrain was generated from RISAT-1 CRS data. The preliminary results of the mosaic from CRS- circular polarisation data is presented. Demonstration of the study is extended for other applications such as change detection studies, safer ship navigation and extreme events of Antarctica. The use of multi resolution multi sensor data is also shown in the study.

  5. Primena satelitskih snimaka za dopunu sadržaja topografskih karata / An application of satellite images for improving the content of topographic maps

    Directory of Open Access Journals (Sweden)

    Miodrag D. Regodić

    2010-10-01

    Full Text Available Neažurnost sadržaja topografskih karata (TK, uslovljena ponajviše stvarnim ekonomskim teškoćama pri izradi novih i dopuni postojećih izdanja, kao i nedovoljnost i sve teže stanje pri izradi ostalih geotopografskih materijala (GTM, u velikoj meri otežavaju geotopografsko obezbeđenje (GTOb vojske u miru, kao i u svim periodima pripreme i vođenja ratnih dejstava. Rešenje ovog problema je u iznalaženju adekvatnog načina upotrebe proizvoda svih vrsta daljinskih snimanja, a naročito u obradi kvalitetnih satelitskih snimaka. Kao najbolji pokazatelj velikih mogućnosti daljinske detekcije, korišćenjem satelitskih snimaka, u kartografskoj praksi primenom kvalitetnih softverskih rešenja, u radu je predstavljena dopuna topografske karte nedostajućim topografskim sadržajem. / Lack of updated content of topographic maps (TMs, mainly due to economic issues regarding the publishing of existing or revised TMs, substantially affects geo-topographic supply (GTS of the Army both in peace and warfare time, as well as shortage of other geo-topographic materials (GTMs. The solution to this problem is in finding an appropriate method of using products of all types of remote sensing, high quality satellite images in particular. Having shown the best possibilities of remote sensing while using satellite images in mapping through the quality software solutions, the author presents an addition to topographic maps based on missing topographic data. Introduction Numerous natural and social phenomena are constantly observed, surveyed, registered and analyzed. Permanent or periodical satellite surveillance and recording for different purposes are growing in importance. The purposes can range from meteorological issues, through study of large water surfaces to military intelligence, etc. These recording can be used in making topographic, thematic and working maps as well as other geo-topographic material. Processing and analyzing of ikonos2 satellite images

  6. Thermal Mapping Airborne Simulator for Small Satellite Sensor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A high performance, inexpensive, airborne simulator that will serve as the prototype for a small satellite based imaging system capable of mapping thermal anomalies...

  7. Mapping Fish Community Variables by Integrating Field and Satellite Data, Object-Based Image Analysis and Modeling in a Traditional Fijian Fisheries Management Area

    Directory of Open Access Journals (Sweden)

    Stacy Jupiter

    2011-03-01

    Full Text Available The use of marine spatial planning for zoning multi-use areas is growing in both developed and developing countries. Comprehensive maps of marine resources, including those important for local fisheries management and biodiversity conservation, provide a crucial foundation of information for the planning process. Using a combination of field and high spatial resolution satellite data, we use an empirical procedure to create a bathymetric map (RMSE 1.76 m and object-based image analysis to produce accurate maps of geomorphic and benthic coral reef classes (Kappa values of 0.80 and 0.63; 9 and 33 classes, respectively covering a large (>260 km2 traditional fisheries management area in Fiji. From these maps, we derive per-pixel information on habitat richness, structural complexity, coral cover and the distance from land, and use these variables as input in models to predict fish species richness, diversity and biomass. We show that random forest models outperform five other model types, and that all three fish community variables can be satisfactorily predicted from the high spatial resolution satellite data. We also show geomorphic zone to be the most important predictor on average, with secondary contributions from a range of other variables including benthic class, depth, distance from land, and live coral cover mapped at coarse spatial scales, suggesting that data with lower spatial resolution and lower cost may be sufficient for spatial predictions of the three fish community variables.

  8. SPOT satellite mapping of Ice Stream B

    Science.gov (United States)

    Merry, Carolyn J.

    1993-01-01

    Numerous features of glaciological significance appear on two adjoining SPOT High Resolution Visible (HRV) images that cover the onset region of ice stream B. Many small-scale features, such as crevasses and drift plumes, have been previously observed in aerial photography. Subtle features, such as long flow traces that have not been mapped previously, are also clear in the satellite imagery. Newly discovered features include ladder-like runners and rungs within certain shear margins, flow traces that are parallel to ice flow, unusual crevasse patterns, and flow traces originating within shear margins. An objective of our work is to contribute to an understanding of the genesis of the features observed in satellite imagery. The genetic possibilities for flow traces, other lineations, bands of transverse crevasses, shear margins, mottles, and lumps and warps are described.

  9. Geostationary Satellite (GOES) Images

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Visible and Infrared satellite imagery taken from radiometer instruments on SMS (ATS) and GOES satellites in geostationary orbit. These satellites produced...

  10. Flash Flood Hazard Mapping Using Satellite Images and GIS Tools: A case study of Najran City, Kingdom of Saudi Arabia (KSA

    Directory of Open Access Journals (Sweden)

    Ismail Elkhrachy

    2015-12-01

    Full Text Available Flash flood in the cities led to high levels of water in the streets and roads, causing many problems such as bridge collapse, building damage and traffic problems. It is impossible to avoid risks of floods or prevent their occurrence, however it is plausible to work on the reduction of their effects and to reduce the losses which they may cause. Flash flood mapping to identify sites in high risk flood zones is one of the powerful tools for this purpose. Mapping flash flood will be beneficial to urban and infrastructure planners, risk managers and disaster response or emergency services during extreme and intense rainfall events. The objective of this paper is to generate flash flood map for Najran city, Saudi Arabia, using satellite images and GIS tools. To do so, we use SPOT and SRTM DEMs data for which accuracy assessment is achieved by using check points, obtained by GPS observations. Analytical Hierarchical Process (AHP is used to determine relative impact weight of flood causative factors to get a composite flood hazard index (FHI. The causative factors in this study are runoff, soil type, surface slope, surface roughness, drainage density, distance to main channel and land use. All used data are finally integrated in an ArcMap to prepare a final flood hazard map for study area. The areas in high risk flood zones are obtained by overlaying the flood hazard index map with the zone boundaries layer. The affected population number and land area are determined and compared.

  11. Geographic Object-based Image Analysis for Developing Cryospheric Surface Mapping Application using Remotely Sensed High-Resolution Satellite Imagery

    Science.gov (United States)

    Jawak, S. D.; Luis, A. J.

    2015-12-01

    A novel semi-automated method was devised by coupling spectral index ratios (SIRs) and geographic object-based image analysis (GEOBIA) to extract cryospheric geoinformation from very high resolution WorldView 2 (WV-2) satellite imagery. The present study addresses development of multiple rule sets for GEOBIA-based classification of WV-2 imagery to accurately extract land cover features in the Larsemann Hills, Antarctica. Multi-level segmentation process was applied to WV-2 image to generate different sizes of geographic image objects corresponding to various land cover features w.r.t scale parameter. Several SIRs were applied to geographic objects at different segmentation levels to classify landmass, man-made features, snow/ice, and water bodies. A specific attention was paid to water body class to identify water areas at the image level, considering their uneven appearance on landmass and ice. The results illustrated that synergetic usage of SIRs and GEOBIA can provide accurate means to identify land cover classes with an overall classification accuracy of ≈97%. In conclusion, the results suggest that GEOBIA is a powerful tool for carrying out automatic and semiautomatic analysis for most cryospheric remote-sensing applications, and the synergetic coupling with pixel-based SIRs is found to be a superior method for mining geoinformation.

  12. Mapping Typha Domingensis in the Cienega de Santa Clara Using Satellite Images, Global Positioning System, and Spectrometry

    Science.gov (United States)

    Sanchez, Richard D.; Burnett, Earl E.; Croxen, Fred

    2000-01-01

    The Cienega de Santa Clara, Sonora, Mexico, a brackish wetland area created near the delta of the Colorado River from drainage effluent flowing from the United States since 1977, may undergo changes owing to the operation of the Yuma Desalting Plant in the United States. This has become the largest wetland in the delta region containing rare and endangered species, yet little is known about the environmental impact of these changes. The water quality of the marsh is of growing concern to the Bureau of Reclamation (BOR) which operates the Desalting Plant. Consequently, the BOR solicited the U.S. Geological Survey to investigate the limits and usefulness of satellite, global positioning system (GPS), and spectra data to map the Typha domingensis (cattail) of the Cienega de Santa Clara. Typha domingensis was selected by the BOR as the Cienega de Santa Clara indicator species to best predict the environmental effects of effl uent from the Yuma Desalting Plant. The successful base mapping of Typha domingensis will provide a viable tool for long-term monitoring and stress detection in the Cienega de Santa Clara.

  13. Comparison of Object-Based Image Analysis Approaches to Mapping New Buildings in Accra, Ghana Using Multi-Temporal QuickBird Satellite Imagery

    Directory of Open Access Journals (Sweden)

    Yu Hsin Tsai

    2011-12-01

    Full Text Available The goal of this study was to map and quantify the number of newly constructed buildings in Accra, Ghana between 2002 and 2010 based on high spatial resolution satellite image data. Two semi-automated feature detection approaches for detecting and mapping newly constructed buildings based on QuickBird very high spatial resolution satellite imagery were analyzed: (1 post-classification comparison; and (2 bi-temporal layerstack classification. Feature Analyst software based on a spatial contextual classifier and ENVI Feature Extraction that uses a true object-based image analysis approach of image segmentation and segment classification were evaluated. Final map products representing new building objects were compared and assessed for accuracy using two object-based accuracy measures, completeness and correctness. The bi-temporal layerstack method generated more accurate results compared to the post-classification comparison method due to less confusion with background objects. The spectral/spatial contextual approach (Feature Analyst outperformed the true object-based feature delineation approach (ENVI Feature Extraction due to its ability to more reliably delineate individual buildings of various sizes. Semi-automated, object-based detection followed by manual editing appears to be a reliable and efficient approach for detecting and enumerating new building objects. A bivariate regression analysis was performed using neighborhood-level estimates of new building density regressed on a census-derived measure of socio-economic status, yielding an inverse relationship with R2 = 0.31 (n = 27; p = 0.00. The primary utility of the new building delineation results is to support spatial analyses of land cover and land use and demographic change.

  14. Simplified Flood Inundation Mapping Based On Flood Elevation-Discharge Rating Curves Using Satellite Images in Gauged Watersheds

    Directory of Open Access Journals (Sweden)

    Younghun Jung

    2014-05-01

    Full Text Available This study suggests an approach to obtain flood extent boundaries using spatial analysis based on Landsat-5 Thematic Mapper imageries and the digital elevation model. The suggested approach firstly extracts the flood inundation areas using the ISODATA image-processing algorithm from four Landsat 5TM imageries. Then, the ground elevations at the intersections of the extracted flood extent boundaries and the specified river cross sections are read from the digital elevation to estimate the elevation-discharge relationship. Lastly, the flood extent is generated based on the estimated elevation-discharge relationship. The methodology was tested over two river reaches in Indiana, United States. The estimated elevation-discharge relationship showed a good match with the correlation coefficients varying between 0.82 and 0.99. In addition, self-validation was also performed for the estimated spatial extent of the flood by comparing it to the waterbody extracted from the Landsat images used to develop the elevation-discharge relationship. The result indicated that the match between the estimated and the extracted flood extents was better with higher flood magnitude. We expect that the suggested methodology will help under-developed and developing countries to obtain flood maps, which have difficulties getting flood maps through traditional approaches based on computer modeling.

  15. Use of Satellite Images to map Flood Extension around the city of Saint Louis in the Senegal River Estuary

    Directory of Open Access Journals (Sweden)

    Aliou Dia

    2006-04-01

    Full Text Available The traditional method of landsat satellite data combination and the gathering of important information made it possible to produce a Geographical Information System to monitor floods in the lower estuary of the Senegal River valley (Sandholt,I., Fog, B. & Fensholt, R., 2001. This technical approach is a powerful tool for combining important information for a better comprehension of the floods and the characterization of surface qualities on the estuary. By way of a multi-temporal approach, the study team established the qualitative and quantitative impact of floods on the various geographical objects, a detailed cartography of the land use and the surfaces flooded in 1998 and 1999. The study undertaken in Saint Louis made it possible to consider surfaces flooded in 1999, and to understand the extent of these floods compared to those of 1998. The constitution of a tool of decision-making aid makes it possible to have information relating to the extent of the flood, the scope of flooded surfaces and to detect the more exposed zones in order to establish a hierarchical map according to the percentage of exposure to the risk of the geographical objects affected by the floods (populations, road infrastructures and tracks, medical and social infrastructures and perimeters of cultures (agriculture.

  16. Korišćenje satelitskih snimaka za vođenje radne karte / Use of satellite images in situation map design

    Directory of Open Access Journals (Sweden)

    Miodrag D. Regodić

    2010-01-01

    the working map; addition of new data; coding of the working map. Preparation for computer-based map design Computer-added map design demands and implies existence of appropriate programs with proper program tools, as well as adequate scanned or in vector form presented maps. On a suitable memorized base, that shows relevant geographic space, tactical symbols from digital topographic key are entered. USING AERIAL PHOTOS FOR MAKING A WORKING MAP Data going to be entered into a situation map are collected during monitoring and recording by different sensors from the land, air and space. Apart from visual inspection, as the oldest one, today there are various technical monitoring and recording means: photography, air photography, radars, infrared, television, video, radio ones and other. In the process of photo decoding, symbols are used to characterize particular objects, details and phenomena on the relief that disclose them. These symbols can be direct ones, such as shape, size and hue of an object, and indirect ones, such as relation among objects, traces of activities and object shadows. THE EXPERIMENT The subject of this experiment is a satellite photo presenting the area of the city of Belgrade, made by the IKONOS 2 satellite of The European Space Imaging Company. It belongs to the GEO Ortho Kit products category, which means that it is approximately geo-referenced (conveyed into a referent coordinate system and completely ortho- rectified. In order to complete the experiment, besides this satellite image, an appropriate topographic map (TM was provided. For the purpose of creating a working map and its updating by newly detected military objects due to the image interpretation and analysis, TM 50 (a map of the scale of 1:50 000 was selected. MODELS OF COORDINATE TRANSFORMATION Mathematical models of transformation are based on the fact that the Earth represents a three-dimensional object of a spheroidal shape. The crucial problem appears to be a need to properly

  17. Micro satellite mapping of plant genomes

    Directory of Open Access Journals (Sweden)

    Prodanović Slaven

    2001-01-01

    Full Text Available Micro satellites are DNA markers, based on the repeated nucleotide sequences number polymorphism. They belong to a group of PCR markers and are mainly used as an addition to other types of markers. Their characteristics and technical aspects of their application are discussed in the present study. Furthermore, some results obtained by the use of the micro satellite DNA in genetic mapping of plant genomes are also presented. Although micro satellites provide the identification of genotypes within a species, inadequacy of comparative mapping of different species is their serious blemish. .

  18. Investigating the Capability of IRS-P6-LISS IV Satellite Image for Pistachio Forests Density Mapping (case Study: Northeast of Iran)

    Science.gov (United States)

    Hoseini, F.; Darvishsefat, A. A.; Zargham, N.

    2012-07-01

    In order to investigate the capability of satellite images for Pistachio forests density mapping, IRS-P6-LISS IV data were analyzed in an area of 500 ha in Iran. After geometric correction, suitable training areas were determined based on fieldwork. Suitable spectral transformations like NDVI, PVI and PCA were performed. A ground truth map included of 34 plots (each plot 1 ha) were prepared. Hard and soft supervised classifications were performed with 5 density classes (0-5%, 5-10%, 10-15%, 15-20% and > 20%). Because of low separability of classes, some classes were merged and classifications were repeated with 3 classes. Finally, the highest overall accuracy and kappa coefficient of 70% and 0.44, respectively, were obtained with three classes (0-5%, 5-20%, and > 20%) by fuzzy classifier. Considering the low kappa value obtained, it could be concluded that the result of the classification was not desirable. Therefore, this approach is not appropriate for operational mapping of these valuable Pistachio forests.

  19. Internal waves and vortices in satellite images

    CERN Document Server

    Sparavigna, Amelia Carolina

    2012-01-01

    Some recent papers proposed the use of the satellite images of Google Earth in teaching physics, in particular to see some behaviours of waves. Reflection, refraction, diffraction and interference are easy to be found in these satellite maps. Besides Google Earth, other sites exist, such as Earth Observatory or Earth Snapshot, suitable for illustrating the large-scale phenomena in atmosphere and oceans In this paper, we will see some examples for teaching surface and internal sea waves, and internal waves and the K\\'arm\\'an vortices in the atmosphere. Aim of this proposal is attracting the interest of students of engineering schools to the physics of waves.

  20. Shadow imaging of geosynchronous satellites

    Science.gov (United States)

    Douglas, Dennis Michael

    Geosynchronous (GEO) satellites are essential for modern communication networks. If communication to a GEO satellite is lost and a malfunction occurs upon orbit insertion such as a solar panel not deploying there is no direct way to observe it from Earth. Due to the GEO orbit distance of ~36,000 km from Earth's surface, the Rayleigh criteria dictates that a 14 m telescope is required to conventionally image a satellite with spatial resolution down to 1 m using visible light. Furthermore, a telescope larger than 30 m is required under ideal conditions to obtain spatial resolution down to 0.4 m. This dissertation evaluates a method for obtaining high spatial resolution images of GEO satellites from an Earth based system by measuring the irradiance distribution on the ground resulting from the occultation of the satellite passing in front of a star. The representative size of a GEO satellite combined with the orbital distance results in the ground shadow being consistent with a Fresnel diffraction pattern when observed at visible wavelengths. A measurement of the ground shadow irradiance is used as an amplitude constraint in a Gerchberg-Saxton phase retrieval algorithm that produces a reconstruction of the satellite's 2D transmission function which is analogous to a reverse contrast image of the satellite. The advantage of shadow imaging is that a terrestrial based redundant set of linearly distributed inexpensive small telescopes, each coupled to high speed detectors, is a more effective resolved imaging system for GEO satellites than a very large telescope under ideal conditions. Modeling and simulation efforts indicate sub-meter spatial resolution can be readily achieved using collection apertures of less than 1 meter in diameter. A mathematical basis is established for the treatment of the physical phenomena involved in the shadow imaging process. This includes the source star brightness and angular extent, and the diffraction of starlight from the satellite

  1. Flood-threat zoning map of the urban area of Chocó (Quibdó. A study based on interpreting radar, satellite and aerial photograph images

    Directory of Open Access Journals (Sweden)

    Zamir Maturana Córdoba

    2010-04-01

    Full Text Available A zoning map of areas which flood due to the Atrato River and its tributaries (the Cabí, Caraño and Yesca over-flowing in the urban area of Chocó (Quibdo was drawn up to be used by aid authorities and Quibdó city as a planning and control tool. This research relied on CIAF (Centro Interamericano de Fotointerpretación support and assessment. This entity is a subsidiary institution of the Instituto Geográfico Agustín Codazzi which provided their installations and the required geographical material. This research was initially based on interpreting radar (INTERA, satellite (LANDSAT and aerial photographic images; this was verified by field verification of the in-terpreted data. Other variables such as climatic, geological, temperature, topographic conditions, historic and hydrological series and facts regarding the region were studied as additional information required for drawing conclusions. Aerial photographs provided the most reliable images due to their scales, quantity and quality and the date of when they were taken. Radar images (INTERA were also important when visually analysing a sector’s topography as they were produced by an active microwave sensor (totally eliminating climatic obstacles. On the contrary, satellite images did not have great relevance due to the amount of clouds hampering any kind of analysis. Complementing these results, a calibration curve for analysing this section’s maximum flow values was based on historical series data regarding the Atrato River’s flows and maximum levels recorded at the Quibdo hydrographical station and the river-bed’s cross-section. Implications that the river would overflow or has over-flowed were statistically estimated on these results, thereby setting the limits (supported by cartographic data for the corresponding areas at risk of flooding. A map marking areas at risk of flooding in the urban zone of Quibdó was then designed and a document prepared concluding that

  2. Analysis of the Structural Lineaments in the Domo de Lages, State of Santa Catarina, Using Satellite Images and Shaded Relief Maps

    Directory of Open Access Journals (Sweden)

    Luis Fernando Roldan

    2010-07-01

    Full Text Available This work focuses on the study of structural lineaments in the Domo de Lages region, central-south area of SantaCatarina State, and their relationship with the different stratigraphic units of the Paraná Basin that are present in this area.The lineaments were interpreted from Landsat and shaded relief images, using geoprocessing techniques. The results showstructural lineaments with NW, NNE, NE, ENE and E-W trends. The larger lineaments (4 - 50 km were interpreted usingshaded relief maps, whereas the smaller lineaments were interpreted using satellite images (1 - 3 km. According to fielddata, these lineaments affect the volcanic rocks of Serra Geral Formation (Paraná Basin and alkaline rocks associatedwith the dome. In all these structural trends, evidences of transcurrent faults were found. The formation of transcurrentfaults with NNE trend has been related to compressive NE-SW stress. Late Cretaceous/Paleogene is the maximum ageconsidered for the development of these structural trends associated with transcurrent faults. The formation of this structuralpattern has been linked to the reactivation of older structures present in the basin and its basement.

  3. Mapping the bathymetry of supraglacial lakes and streams on the Greenland Ice Sheet using field measurements and high resolution satellite images

    Directory of Open Access Journals (Sweden)

    C. J. Legleiter

    2013-09-01

    Full Text Available Recent melt events on the Greenland Ice Sheet (GrIS accentuate the need to constrain estimates of sea level rise through improved characterization of meltwater pathways. This effort will require more precise estimates of the volume of water stored on the surface of the GrIS. We assessed the potential to obtain such information by mapping the bathymetry of supraglacial lakes and streams from WorldView2 (WV2 satellite images. Simultaneous {in situ} observations of depth and reflectance from two streams and a lake with measured depths up to 10.45 m were used to test a spectrally-based depth retrieval algorithm. We performed Optimal Band Ratio Analysis (OBRA of continuous field spectra and spectra convolved to the bands of the WV2, Landsat, MODIS, and ASTER sensors. The field spectra yielded a strong relationship with depth (R2 = 0.94, and OBRA R2 values were nearly as high (0.87–0.92 for convolved spectra, suggesting that these sensors' broader bands would be sufficient for depth retrieval. Our field measurements thus indicated that remote sensing of supraglacial bathymetry is not only feasible but potentially highly accurate. OBRA of spectra from 2 m-pixel WV2 images acquired within 3–72 h of our field observations produced an optimal R2 value of 0.92 and unbiased, precise depth estimates, with mean and root-mean square errors < 1% and 10–25% of the mean depth. Bathymetric maps produced by applying OBRA relations revealed subtle features of lake and channel morphology. In addition to providing refined storage volume estimates for lakes of various sizes, this approach can help provide estimates of the transient flux of meltwater through streams.

  4. Smoothing of Fused Spectral Consistent Satellite Images

    DEFF Research Database (Denmark)

    Sveinsson, Johannes; Aanæs, Henrik; Benediktsson, Jon Atli

    2006-01-01

    on satellite data. Additionally, most conventional methods are loosely connected to the image forming physics of the satellite image, giving these methods an ad hoc feel. Vesteinsson et al. (2005) proposed a method of fusion of satellite images that is based on the properties of imaging physics...

  5. Rice crop mapping and change prediction using multi-temporal satellite images in the Mekong Delta, Vietnam

    Science.gov (United States)

    Chen, C. R.; Chen, C. F.; Nguyen, S. T.

    2014-12-01

    The rice cropping systems in the Vietnamese Mekong Delta (VMD) has been undergoing major changes to cope with developing agro-economics, increasing population and changing climate. Information on rice cropping practices and changes in cropping systems is critical for policymakers to devise successful strategies to ensure food security and rice grain exports for the country. The primary objective of this research is to map rice cropping systems and predict future dynamics of rice cropping systems using the MODIS time-series data of 2002, 2006, and 2010. First, a phenology-based classification approach was applied for the classification and assessment of rice cropping systems in study region. Second, the Cellular Automata-Markov (CA-Markov) models was used to simulate the rice-cropping system map of VMD for 2010. The comparisons between the classification maps and the ground reference data indicated satisfactory results with overall accuracies and Kappa coefficients, respectively, of 81.4% and 0.75 for 2002, 80.6% and 0.74 for 2006 and 85.5% and 0.81 for 2010. The simulated map of rice cropping system for 2010 was extrapolated by CA-Markov model based on the trend of rice cropping systems during 2002~2006. The comparison between predicted scenario and classification map for 2010 presents a reasonably closer agreement. In conclusion, the CA-Markov model performs a powerful tool for the dynamic modeling of changes in rice cropping systems, and the results obtained demonstrate that the approach produces satisfactory results in terms of accuracy, quantitative forecast and spatial pattern changes. Meanwhile, the projections of the future changes would provide useful inputs to the agricultural policy for effective management of the rice cropping practices in VMD.

  6. Towards an Automatic Framework for Urban Settlement Mapping from Satellite Images: Applications of Geo-referenced Social Media and One Class Classification

    Science.gov (United States)

    Miao, Zelang

    2017-04-01

    Currently, urban dwellers comprise more than half of the world's population and this percentage is still dramatically increasing. The explosive urban growth over the next two decades poses long-term profound impact on people as well as the environment. Accurate and up-to-date delineation of urban settlements plays a fundamental role in defining planning strategies and in supporting sustainable development of urban settlements. In order to provide adequate data about urban extents and land covers, classifying satellite data has become a common practice, usually with accurate enough results. Indeed, a number of supervised learning methods have proven effective in urban area classification, but they usually depend on a large amount of training samples, whose collection is a time and labor expensive task. This issue becomes particularly serious when classifying large areas at the regional/global level. As an alternative to manual ground truth collection, in this work we use geo-referenced social media data. Cities and densely populated areas are an extremely fertile land for the production of individual geo-referenced data (such as GPS and social network data). Training samples derived from geo-referenced social media have several advantages: they are easy to collect, usually they are freely exploitable; and, finally, data from social media are spatially available in many locations, and with no doubt in most urban areas around the world. Despite these advantages, the selection of training samples from social media meets two challenges: 1) there are many duplicated points; 2) method is required to automatically label them as "urban/non-urban". The objective of this research is to validate automatic sample selection from geo-referenced social media and its applicability in one class classification for urban extent mapping from satellite images. The findings in this study shed new light on social media applications in the field of remote sensing.

  7. Application of Satellite Image Auxiliary Mapping Technique in Port Engineering Topographic Survey%卫星图像辅助测绘技术在港口工程地形测量中的应用

    Institute of Scientific and Technical Information of China (English)

    胡志渠; 王建峰

    2011-01-01

    With the development of satellite remote sensing technology, the precision and definition of satellite image is higher than before. Therefore, public satellite image may be used an assistance to map small scale topographic plan. A port project is taken as an example to research the method to map small scale topographic plan with satellite images auxiliary mapping technique, discuss the operation process and major technical puzzles, and put forward practical advice.%随着卫星遥感技术的不断发展,卫星图像的精度和清晰度越来越高,利用公用卫星图像辅助测绘小比例尺地形图成为可能.以某港口工程项目为例,研究利用卫星图像辅助测绘技术绘制小比例尺地形图的方法,探讨其具体操作流程和主要技术问题,提出相关实用性建议.

  8. An intercomparison of Satellite Burned Area Maps derived from MODIS, MERIS, SPOT-VEGETATION, and ATSR images. An application to the August 2006 Galicia (Spain forest fires

    Directory of Open Access Journals (Sweden)

    M. Huesca

    2013-07-01

    Full Text Available Aim of study: The following paper presents an inter-comparison of three global products: MCD45A1 (MODIS - MODerate resolution Imaging Spectrometer - Burned Area Product, L3JRC (Terrestrial Ecosystem Monitoring Global Burnt Area Product, and GLOBCARBON Burnt Area Estimate (BAE Product; and three local products, two of them based on MODIS data and the other one based on MERIS (MEdium Resolution Imaging Spectrometer data.Area of study: The study was applied to the Galician forest fires occurred in 2006.Materials and Methods: Materials used involved the three already mentioned global products together with two MODIS and one MERIS reflectance images, and MODIS thermal anomalies. The algorithm we used, which is based on the determination of thresholds values on infrared bands, allowed the identification of burned pixels. The determination of such threshold values was based on the maximum spatial correlation between MODIS thermal anomalies, and infrared reflectance values. This methodology was applied to MODIS and MERIS reflectance bands, and to the NBR (Normalized Burn Ratio. Burned area validation was evaluated using burned area polygons as derived from an AWiFS (Advanced Wide Field Sensor image of 60m pixel size.Main results: Best results were reached when using the MERIS infrared bands, followed by the MODIS infrared bands. Worst results were reached when using the MCD45A1 product, which clearly overestimated; and when using the L3JRC product, which clearly underestimated.Research highlights: Since the efficiency of the performance of the available burned area products is highly variable, much work is needed in terms of comparison among the available sensors, the burned area mapping algorithms and the resulting products.Keywords: forest fires; MODIS; MERIS; MCD45A1; L3JRC; GLOBCARBON-BAE; SPOT-VEGETATION; ATSR.Abbreviations used: ATSR: Along Scanning Radiometer; AVHRR: Advanced Very High Resolution Radiometer; AWiFS: Advanced Wide Field Sensor; EOS

  9. Geologic mapping using thermal images

    Science.gov (United States)

    Abrams, M. J.; Kahle, A. B.; Palluconi, F. D.; Schieldge, J. P.

    1984-01-01

    Thermal radiance data from the Heat Capacity Mapping Mission (HCMM) satellite has been used to measure surface reflectance data and to provide additional material composition information through remote sensing. The primary goal was to investigate the utility of HCMM data for geologic applications. Three techniques were used for displaying and combining thermal and visible near infrared (VNIR) data for two desert areas in southern California (Trona and Pisgah): color additive composites (CAC) for day and night IR and day VNIR, principal components, and calculation of thermal inertia images. The HCMM thermal data were more effective than Landsat data in producing separation of compositionally different areas including volcanic and intrusive rocks. The satellite CAC data produced an image for a 1 x 2 degree area, and the color picture was enlarged to a scale of 1:250,000. Playa composition, moisture content, presence of standing water, and vegetation cover were displayed in a variety of colors according to physical characteristics. Areas such as sand dunes were not distinguishable because of the coarse 500-mm HCMM resolution. HCMM thermal data have shown a new dimension to geologic remote sensing, and future satellite missions should allow the continued development of the thermal infrared data for geology.

  10. Geometric calibration of ERS satellite SAR images

    DEFF Research Database (Denmark)

    Mohr, Johan Jacob; Madsen, Søren Nørvang

    2001-01-01

    Geometric calibration of the European Remote Sensing (ERS) Satellite synthetic aperture radar (SAR) slant range images is important in relation to mapping areas without ground reference points and also in relation to automated processing. The relevant SAR system parameters are discussed...... on a seven-year ERS-1 and a four-year ERS-2 time series, the long term stability is found to be sufficient to allow a single calibration covering the entire mission period. A descending and an ascending orbit tandem pair of the ESA calibration site on Flevoland, suitable for calibration of ERS SAR processors...

  11. 10 years of mapping the icy saturnian satellites

    Science.gov (United States)

    Roatsch, Thomas; Kersten, Elke; Matz, Klaus-Dieter; Porco, Carolyn

    2014-05-01

    The Cassini spacecraft started its tour through the Saturnian system in July 2004. The Imaging Science Subsystem onboard the orbiter con-sists of a high-resolution Narrow Angle Camera (NAC) with a focal length of 2000 mm and a Wide Angle Camera (WAC) with a focal length of 200 mm [1]. One of the main objectives of the Cassini mission is to investigate the icy Saturnian satellites. These satellites were imaged in many flybys during the no-minal mission between 2004 and 2008. The imaging campaign continued during the first extended mission (''Equinox mission'') between 2008 and 2010 and continues during the current second extended mission (''Solstice mission''). It is now possible to image also the Northern parts of the Icy satellites which were not illuminated during the nominal mission. Mosaicking: The image data processing chain con-sists of the same steps as described in [2]: radiometric calibration, geometric correction, map projection, and mosaicking. Spacecraft position and camera pointing data are available in the form of SPICE kernels (http://naif.jpl.nasa.gov). While the orbit information is sufficiently accurate to be used directly for mapping purposes, the pointing information must be corrected using limb fits (semi-controlled mosaics) or by photo-grammetric bundle adjustment (controlled mosaics). The coordinate system adopted by the Cassini mis-sion for satellite mapping is the IAU ''planetographic'' system, consisting of planetographic latitude and posi-tive West longitude. The surface position of the prime meridian as defined by the IAU cartography working group [3] is defined by small craters. New values for the rotational parameter W0 which defines the location of the prime meridian at January 1, 2000 were calcula-ted based on the high-resolution mosaics to be consis-tent with this definition [4] and approved by the IAU [3]. Cartographic maps: Three different quadrangle schemes were used for the generation of the maps and the atlases [5]: • A

  12. Monitoring of wetlands Ecosystems using satellite images

    Science.gov (United States)

    Dabrowska-Zielinska, K.; Gruszczynska, M.; Yesou, H.; Hoscilo, A.

    Wetlands are very sensitive ecosystems, functioning as habitat for many organisms. Protection and regeneration of wetlands has been the crucial importance in ecological research and in nature conservation. Knowledge on biophysical properties of wetlands vegetation retrieved from satellite images will enable us to improve monitoring of these unique areas, very often impenetrable. The study covers Biebrza wetland situated in the Northeast part of Poland and is considered as Ramsar Convention test site. The research aims at establishing of changes in biophysical parameters as the scrub encroachment, lowering of the water table, and changes of the farming activity caused ecological changes at these areas. Data from the optical and microwave satellite images collected for the area of Biebrza marshland ecosystem have been analysed and compared with the detailed soil-vegetation ground measurements conducted in conjunction with the overflights. Satellite data include Landsat ETM, ERS-2 ATSR and SAR, SPOT VEGETATION, ENVISAT MERIS and ASAR, and NOAA AVHRR. From the optical data various vegetation indices have been calculated, which characterize the vegetation surface roughness, its moisture conditions and stage of development. Landsat ETM image has been used for classification of wetlands vegetation. For each class of vegetation various moisture indices have been developed. Ground data collected include wet and dry biomass, LAI, vegetation height, and TDR soil moisture. The water cloud model has been applied for retrieval of soil vegetation parameters taking into account microwave satellite images acquired at VV, HV and HH polarisations at different viewing angles. The vegetation parameters have been used for to distinguish changes, which occurred at the area. For each of the vegetation class the soil moisture was calculated from microwave data using developed algorithms. Results of this study will help mapping and monitoring wetlands with the high spatial and temporal

  13. High-Cadence, High-Contrast Imaging for Exoplanet Mapping: Observations of the HR 8799 Planets with VLT/SPHERE Satellite Spot-Corrected Relative Photometry

    CERN Document Server

    Apai, Daniel; Skemer, Andrew; Hanson, Jake R; Lagrange, Anne-Marie; Biller, Beth A; Bonnefoy, Mickael; Buenzli, Esther; Vigan, Arthur

    2016-01-01

    Time-resolved photometry is an important new probe of the physics of condensate clouds in extrasolar planets and brown dwarfs. Extreme adaptive optics systems can directly image planets, but precise brightness measurements are challenging. We present VLT/SPHERE high-contrast, time-resolved broad H-band near-infrared photometry for four exoplanets in the HR 8799 system, sampling changes from night to night over five nights with relatively short integrations. The photospheres of these four planets are often modeled by patchy clouds and may show large-amplitude rotational brightness modulations. Our observations provide high-quality images of the system. We present a detailed performance analysis of different data analysis approaches to accurately measure the relative brightnesses of the four exoplanets. We explore the information in satellite spots and demonstrate their use as a proxy for image quality. While the brightness variations of the satellite spots are strongly correlated, we also identify a second-ord...

  14. Estimated Depth Maps of the Northwestern Hawaiian Islands Derived from High Resolution IKONOS Satellite Imagery (Draft)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Estimated shallow-water, depth maps were produced using rule-based, semi-automated image analysis of high-resolution satellite imagery for nine locations in the...

  15. Estimated Depth Maps of the Northwestern Hawaiian Islands Derived from High Resolution IKONOS Satellite Imagery

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Estimated shallow-water, depth maps were produced using rule-based, semi-automated image analysis of high-resolution satellite imagery for nine locations in the...

  16. Estimation and Mapping Forest Attributes Using “k Nearest Neighbor” Method on IRS-P6 LISS III Satellite Image Data

    Directory of Open Access Journals (Sweden)

    Amir Eslam Bonyad

    2015-06-01

    Full Text Available In this study, we explored the utility of k Nearest Neighbor (kNN algorithm to integrate IRS-P6 LISS III satellite imagery data and ground inventory data for application in forest attributes (DBH, trees height, volume, basal area, density and forest cover type estimation and mapping. The ground inventory data was based on a systematic-random sampling grid and the numbers of sampling plots were 408 circular plots in a plantation in Guilan province, north of Iran. We concluded that kNN method was useful tool for mapping at a fine accuracy between 80% and 93.94%. Values of k between 5 and 8 seemed appropriate. The best distance metrics were found Euclidean, Fuzzy and Mahalanobis. Results showed that kNN was accurate enough for practical applicability for mapping forest areas.

  17. Forecasting Hurricane by Satellite Image

    Science.gov (United States)

    Liu, M. Y.

    Earth is an endanger planet. Severe weather, especially hurricanes, results in great disaster all the world. World Meteorology Organization and United Nations Environment Program established intergovernment Panel on Climate Change (IPCC) to offer warnings about the present and future disasters of the Earth. It is the mission for scientists to design warning system to predict the severe weather system and to reduce the damage of the Earth. Hurricanes invade all the world every year and made millions damage to all the people. Scientists in weather service applied satellite images and synoptic data to forecast the information for the next hours for warning purposes. Regularly, hurricane hits on Taiwan island directly will pass through her domain and neighbor within 10 hours. In this study, we are going to demonstrate a tricky hurricane NARI invaded Taiwan on September 16, 2000. She wandered in the neighborhood of the island more than 72 hours and brought heavy rainfall over the island. Her track is so tricky that scientists can not forecast her path using the regular method. Fortunately, all scientists in the Central Weather Bureau paid their best effort to fight against the tricky hurricane. Applying the new developed technique to analysis the satellite images with synoptic data and radar echo, scientists forecasted the track, intensity and rainfall excellently. Thus the damage of the severe weather reduced significantly.

  18. Using satellite image-based maps and ground inventory data to estimate the area of the remaining Atlantic forest in the Brazilian state of Santa Catarina

    Science.gov (United States)

    Alexander C. Vibrans; Ronald E. McRoberts; Paolo Moser; Adilson L. Nicoletti

    2013-01-01

    Estimation of large area forest attributes, such as area of forest cover, from remote sensing-based maps is challenging because of image processing, logistical, and data acquisition constraints. In addition, techniques for estimating and compensating for misclassification and estimating uncertainty are often unfamiliar. Forest area for the state of Santa Catarina in...

  19. A proposal to use satellite-based air pollution mapping for standardising the siting of bioindicators

    Energy Technology Data Exchange (ETDEWEB)

    Sifakis, N.I. [National Observatory of Athens, Pendeli (Greece). Inst. for Space Applications and Remote Sensing

    2002-07-01

    Satellite Earth observation (EO) data, providing synoptic and repetitive views of environmental phenomena, can be used to detect pollution palls, assess the pollution load and map its dispersion around urban areas. The pollution assessment by EO is carried out in terms of 'optical thickness' quantifiable by optical atmospheric effects on the satellite imagery. Visual photointerpretation and digital processing of satellite images of the Greater Athens Area allowed obtaining, for the first time, synoptic views of the pollution dispersion in an around the Athens basin. These 'satellite pollution maps' matched very well with the results from bioindication studies carried out in the same area. (orig.)

  20. HIGH-CADENCE, HIGH-CONTRAST IMAGING FOR EXOPLANET MAPPING: OBSERVATIONS OF THE HR 8799 PLANETS WITH VLT/SPHERE SATELLITE-SPOT-CORRECTED RELATIVE PHOTOMETRY

    Energy Technology Data Exchange (ETDEWEB)

    Apai, Dániel; Skemer, Andrew; Hanson, Jake R. [Steward Observatory, The University of Arizona, Tucson, AZ 85721 (United States); Kasper, Markus [European Southern Observatory, Garching (Germany); Lagrange, Anne-Marie; Bonnefoy, Mickaël [Université Grenoble Alpes, IPAG, F-38000 Grenoble (France); Biller, Beth A. [Institute for Astronomy, University of Edinburgh, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Buenzli, Esther [Max Planck Institute for Astronomy, Königstuhl 17, Heidelberg, D-69117 (Germany); Vigan, Arthur, E-mail: apai@arizona.edu [Aix-Marseille Université, CNRS, Laboratoire d’ Astrophysique de Marseille, UMR 7326, F-13388 Marseille (France)

    2016-03-20

    Time-resolved photometry is an important new probe of the physics of condensate clouds in extrasolar planets and brown dwarfs. Extreme adaptive optics systems can directly image planets, but precise brightness measurements are challenging. We present VLT/SPHERE high-contrast, time-resolved broad H-band near-infrared photometry for four exoplanets in the HR 8799 system, sampling changes from night to night over five nights with relatively short integrations. The photospheres of these four planets are often modeled by patchy clouds and may show large-amplitude rotational brightness modulations. Our observations provide high-quality images of the system. We present a detailed performance analysis of different data analysis approaches to accurately measure the relative brightnesses of the four exoplanets. We explore the information in satellite spots and demonstrate their use as a proxy for image quality. While the brightness variations of the satellite spots are strongly correlated, we also identify a second-order anti-correlation pattern between the different spots. Our study finds that KLIP reduction based on principal components analysis with satellite-spot-modulated artificial-planet-injection-based photometry leads to a significant (∼3×) gain in photometric accuracy over standard aperture-based photometry and reaches 0.1 mag per point accuracy for our data set, the signal-to-noise ratio of which is limited by small field rotation. Relative planet-to-planet photometry can be compared between nights, enabling observations spanning multiple nights to probe variability. Recent high-quality relative H-band photometry of the b–c planet pair agrees to about 1%.

  1. AUTOMATIC APPROACH TO VHR SATELLITE IMAGE CLASSIFICATION

    Directory of Open Access Journals (Sweden)

    P. Kupidura

    2016-06-01

    Full Text Available In this paper, we present a proposition of a fully automatic classification of VHR satellite images. Unlike the most widespread approaches: supervised classification, which requires prior defining of class signatures, or unsupervised classification, which must be followed by an interpretation of its results, the proposed method requires no human intervention except for the setting of the initial parameters. The presented approach bases on both spectral and textural analysis of the image and consists of 3 steps. The first step, the analysis of spectral data, relies on NDVI values. Its purpose is to distinguish between basic classes, such as water, vegetation and non-vegetation, which all differ significantly spectrally, thus they can be easily extracted basing on spectral analysis. The second step relies on granulometric maps. These are the product of local granulometric analysis of an image and present information on the texture of each pixel neighbourhood, depending on the texture grain. The purpose of texture analysis is to distinguish between different classes, spectrally similar, but yet of different texture, e.g. bare soil from a built-up area, or low vegetation from a wooded area. Due to the use of granulometric analysis, based on mathematical morphology opening and closing, the results are resistant to the border effect (qualifying borders of objects in an image as spaces of high texture, which affect other methods of texture analysis like GLCM statistics or fractal analysis. Therefore, the effectiveness of the analysis is relatively high. Several indices based on values of different granulometric maps have been developed to simplify the extraction of classes of different texture. The third and final step of the process relies on a vegetation index, based on near infrared and blue bands. Its purpose is to correct partially misclassified pixels. All the indices used in the classification model developed relate to reflectance values, so the

  2. Automatic Approach to Vhr Satellite Image Classification

    Science.gov (United States)

    Kupidura, P.; Osińska-Skotak, K.; Pluto-Kossakowska, J.

    2016-06-01

    In this paper, we present a proposition of a fully automatic classification of VHR satellite images. Unlike the most widespread approaches: supervised classification, which requires prior defining of class signatures, or unsupervised classification, which must be followed by an interpretation of its results, the proposed method requires no human intervention except for the setting of the initial parameters. The presented approach bases on both spectral and textural analysis of the image and consists of 3 steps. The first step, the analysis of spectral data, relies on NDVI values. Its purpose is to distinguish between basic classes, such as water, vegetation and non-vegetation, which all differ significantly spectrally, thus they can be easily extracted basing on spectral analysis. The second step relies on granulometric maps. These are the product of local granulometric analysis of an image and present information on the texture of each pixel neighbourhood, depending on the texture grain. The purpose of texture analysis is to distinguish between different classes, spectrally similar, but yet of different texture, e.g. bare soil from a built-up area, or low vegetation from a wooded area. Due to the use of granulometric analysis, based on mathematical morphology opening and closing, the results are resistant to the border effect (qualifying borders of objects in an image as spaces of high texture), which affect other methods of texture analysis like GLCM statistics or fractal analysis. Therefore, the effectiveness of the analysis is relatively high. Several indices based on values of different granulometric maps have been developed to simplify the extraction of classes of different texture. The third and final step of the process relies on a vegetation index, based on near infrared and blue bands. Its purpose is to correct partially misclassified pixels. All the indices used in the classification model developed relate to reflectance values, so the preliminary step

  3. Egypt satellite images for land surface characterization

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay

    Satellite images provide information on the land surface properties. From optical remote sensing images in the blue, green, red and near-infrared part of the electromagnetic spectrum it is possible to identify a large number of surface features. The report briefly describes different satellite...

  4. Autonomous Planetary 3-D Reconstruction From Satellite Images

    DEFF Research Database (Denmark)

    Denver, Troelz

    1999-01-01

    is discussed.Based on such features, 3-D representations may be compiled from two or more 2-D satellite images. The main purposes of such a mapping system are extraction of landing sites, objects of scientific interest and general planetary surveying. All data processing is performed autonomously onboard...

  5. Inexpensive land-use maps extracted from satellite data

    Science.gov (United States)

    Barney, T. W.; Barr, D. J.; Elifrits, C. D.; Johannsen, C. J.

    1979-01-01

    Satellite images are interpretable with minimal skill and equipment by employing method which uses false color composite print of image of area transmitted from Landsat satellite. Method is effective for those who have little experience with satellite imagery, little time, and little money available.

  6. Image processing for optical mapping.

    Science.gov (United States)

    Ravindran, Prabu; Gupta, Aditya

    2015-01-01

    Optical Mapping is an established single-molecule, whole-genome analysis system, which has been used to gain a comprehensive understanding of genomic structure and to study structural variation of complex genomes. A critical component of Optical Mapping system is the image processing module, which extracts single molecule restriction maps from image datasets of immobilized, restriction digested and fluorescently stained large DNA molecules. In this review, we describe robust and efficient image processing techniques to process these massive datasets and extract accurate restriction maps in the presence of noise, ambiguity and confounding artifacts. We also highlight a few applications of the Optical Mapping system.

  7. Satellite Map of Port-au-Prince, Haiti-2010-Infrared

    Science.gov (United States)

    Cole, Christopher J.; Sloan, Jeff

    2010-01-01

    The U.S. Geological Survey produced 1:24,000-scale post-earthquake image base maps incorporating high- and medium-resolution remotely sensed imagery following the 7.0 magnitude earthquake near the capital city of Port au Prince, Haiti, on January 12, 2010. Commercial 2.4-meter multispectral QuickBird imagery was acquired by DigitalGlobe on January 15, 2010, following the initial earthquake. Ten-meter multispectral ALOS AVNIR-2 imagery was collected by the Japanese Space Agency (JAXA) on January 12, 2010. These data were acquired under the Remote Sensing International Charter, a global team of space and satellite agencies that provide timely imagery in support of emergency response efforts worldwide. The images shown on this map were employed to support earthquake response efforts, specifically for use in determining ground deformation, damage assessment, and emergency management decisions. The raw, unprocessed imagery was geo-corrected, mosaicked, and reproduced onto a cartographic 1:24,000-scale base map. These maps are intended to provide a temporally current representation of post-earthquake ground conditions, which may be of use to decision makers and to the general public.

  8. Generation of seismic base map using satellite images in the southern deltaic area, People`s Republic of Bangladesh; Eisei data ni motozuku jishin tansa base map no sakusei (Bangladesh nanbu delta no rei)

    Energy Technology Data Exchange (ETDEWEB)

    Kotera, Y. [Japan Energy Corp., Tokyo (Japan); Ochi, M. [Nikko Exploration and Development Co. Ltd., Tokyo (Japan); Hato, M. [Earth Remote Sensing Data Analysis Center, Tokyo (Japan)

    1997-05-27

    Assuming a two-dimensional seismic survey in a mangrove jungle in the southeast part of People`s Republic of Bangladesh and trially making a basemap for the survey plan from images of satellites such as LANDSAT, the paper considered the use and marginal use in the case of using satellite remote sensing for such a use field. When utilizing water channels in the mangrove jungle in the southwest of Bangladesh and using the seismic survey method for shallow sea, it is important to grasp the distribution of channels in the planning stage of the survey. Satellite remote sensing data are extremely important for knowing the wide-regional information including factors of hourly variations. In the area for this survey, for directly recognizing the channel, it is good only if the difference in reflectance between water and substances except water is indicated in the image because of flatness of the topography. There was seen few difference in accuracy between the passive multispectral image and the active SAR image which is sensitive to topographical changes. 2 figs.

  9. An Image Matching Algorithm Integrating Global SRTM and Image Segmentation for Multi-Source Satellite Imagery

    Directory of Open Access Journals (Sweden)

    Xiao Ling

    2016-08-01

    Full Text Available This paper presents a novel image matching method for multi-source satellite images, which integrates global Shuttle Radar Topography Mission (SRTM data and image segmentation to achieve robust and numerous correspondences. This method first generates the epipolar lines as a geometric constraint assisted by global SRTM data, after which the seed points are selected and matched. To produce more reliable matching results, a region segmentation-based matching propagation is proposed in this paper, whereby the region segmentations are extracted by image segmentation and are considered to be a spatial constraint. Moreover, a similarity measure integrating Distance, Angle and Normalized Cross-Correlation (DANCC, which considers geometric similarity and radiometric similarity, is introduced to find the optimal correspondences. Experiments using typical satellite images acquired from Resources Satellite-3 (ZY-3, Mapping Satellite-1, SPOT-5 and Google Earth demonstrated that the proposed method is able to produce reliable and accurate matching results.

  10. An easy to use ArcMap based texture analysis program for extraction of flooded areas from TerraSAR-X satellite image

    Science.gov (United States)

    Pradhan, Biswajeet; Hagemann, Ulrike; Shafapour Tehrany, Mahyat; Prechtel, Nikolas

    2014-02-01

    Extraction of the flooded areas from synthetic aperture radar (SAR) and especially TerraSAR-X data is one of the most challenging tasks in the flood management and planning. SAR data due to its high spatial resolution and its capability of all weather conditions makes a proper choice for tropical countries. Texture is considered as an effective factor in distinguishing the classes especially in SAR imagery which records the backscatters that carry information of kind, direction, heterogeneity and relationship of the features. This paper put forward a computer program for texture analysis for high resolution radar data. Texture analysis program is introduced and discussed using the gray-level co-occurrence matrix (GLCM). To demonstrate the ability and correctness of this program, a test subset of TerraSAR-X imagery from Terengganu area, Malaysia was analyzed and pixel-based and object-based classification were attempted. The thematic maps derived by pixel-based method could not achieve acceptable visual interpretation and for that reason no accuracy assessment was performed on them. The overall accuracy achieved by object-based method was 83.63% with kappa coefficient of 0.8. Results on image texture classification showed that the proposed program is capable for texture analysis in TerraSAR-X image and the obtained textural analysis resulted in high classification accuracy. The proposed texture analysis program can be used in many applications such as land use/cover (LULC) mapping, hazard studies and many other applications.

  11. Updating Maps Using High Resolution Satellite Imagery

    Science.gov (United States)

    Alrajhi, Muhamad; Shahzad Janjua, Khurram; Afroz Khan, Mohammad; Alobeid, Abdalla

    2016-06-01

    Kingdom of Saudi Arabia is one of the most dynamic countries of the world. We have witnessed a very rapid urban development's which are altering Kingdom's landscape on daily basis. In recent years a substantial increase in urban populations is observed which results in the formation of large cities. Considering this fast paced growth, it has become necessary to monitor these changes, in consideration with challenges faced by aerial photography projects. It has been observed that data obtained through aerial photography has a lifecycle of 5-years because of delay caused by extreme weather conditions and dust storms which acts as hindrances or barriers during aerial imagery acquisition, which has increased the costs of aerial survey projects. All of these circumstances require that we must consider some alternatives that can provide us easy and better ways of image acquisition in short span of time for achieving reliable accuracy and cost effectiveness. The approach of this study is to conduct an extensive comparison between different resolutions of data sets which include: Orthophoto of (10 cm) GSD, Stereo images of (50 cm) GSD and Stereo images of (1 m) GSD, for map updating. Different approaches have been applied for digitizing buildings, roads, tracks, airport, roof level changes, filling stations, buildings under construction, property boundaries, mosques buildings and parking places.

  12. Global trends in satellite-based emergency mapping.

    Science.gov (United States)

    Voigt, Stefan; Giulio-Tonolo, Fabio; Lyons, Josh; Kučera, Jan; Jones, Brenda; Schneiderhan, Tobias; Platzeck, Gabriel; Kaku, Kazuya; Hazarika, Manzul Kumar; Czaran, Lorant; Li, Suju; Pedersen, Wendi; James, Godstime Kadiri; Proy, Catherine; Muthike, Denis Macharia; Bequignon, Jerome; Guha-Sapir, Debarati

    2016-07-15

    Over the past 15 years, scientists and disaster responders have increasingly used satellite-based Earth observations for global rapid assessment of disaster situations. We review global trends in satellite rapid response and emergency mapping from 2000 to 2014, analyzing more than 1000 incidents in which satellite monitoring was used for assessing major disaster situations. We provide a synthesis of spatial patterns and temporal trends in global satellite emergency mapping efforts and show that satellite-based emergency mapping is most intensively deployed in Asia and Europe and follows well the geographic, physical, and temporal distributions of global natural disasters. We present an outlook on the future use of Earth observation technology for disaster response and mitigation by putting past and current developments into context and perspective.

  13. Global trends in satellite-based emergency mapping

    Science.gov (United States)

    Voigt, Stefan; Giulio-Tonolo, Fabio; Lyons, Josh; Kučera, Jan; Jones, Brenda; Schneiderhan, Tobias; Platzeck, Gabriel; Kaku, Kazuya; Hazarika, Manzul Kumar; Czaran, Lorant; Li, Suju; Pedersen, Wendi; James, Godstime Kadiri; Proy, Catherine; Muthike, Denis Macharia; Bequignon, Jerome; Guha-Sapir, Debarati

    2016-01-01

    Over the past 15 years, scientists and disaster responders have increasingly used satellite-based Earth observations for global rapid assessment of disaster situations. We review global trends in satellite rapid response and emergency mapping from 2000 to 2014, analyzing more than 1000 incidents in which satellite monitoring was used for assessing major disaster situations. We provide a synthesis of spatial patterns and temporal trends in global satellite emergency mapping efforts and show that satellite-based emergency mapping is most intensively deployed in Asia and Europe and follows well the geographic, physical, and temporal distributions of global natural disasters. We present an outlook on the future use of Earth observation technology for disaster response and mitigation by putting past and current developments into context and perspective.

  14. Global trends in satellite-based emergency mapping

    Science.gov (United States)

    Voigt, Stefan; Giulio-Tonolo, Fabio; Lyons, Josh; Kučera, Jan; Jones, Brenda; Schneiderhan, Tobias; Platzeck, Gabriel; Kaku, Kazuya; Hazarika, Manzul Kumar; Czaran, Lorant; Li, Suju; Pedersen, Wendi; James, Godstime Kadiri; Proy, Catherine; Muthike, Denis Macharia; Bequignon, Jerome; Guha-Sapir, Debarati

    2016-07-01

    Over the past 15 years, scientists and disaster responders have increasingly used satellite-based Earth observations for global rapid assessment of disaster situations. We review global trends in satellite rapid response and emergency mapping from 2000 to 2014, analyzing more than 1000 incidents in which satellite monitoring was used for assessing major disaster situations. We provide a synthesis of spatial patterns and temporal trends in global satellite emergency mapping efforts and show that satellite-based emergency mapping is most intensively deployed in Asia and Europe and follows well the geographic, physical, and temporal distributions of global natural disasters. We present an outlook on the future use of Earth observation technology for disaster response and mitigation by putting past and current developments into context and perspective.

  15. Forest Cover Mapping in Iskandar Malaysia Using Satellite Data

    Science.gov (United States)

    Kanniah, K. D.; Mohd Najib, N. E.; Vu, T. T.

    2016-09-01

    Malaysia is the third largest country in the world that had lost forest cover. Therefore, timely information on forest cover is required to help the government to ensure that the remaining forest resources are managed in a sustainable manner. This study aims to map and detect changes of forest cover (deforestation and disturbance) in Iskandar Malaysia region in the south of Peninsular Malaysia between years 1990 and 2010 using Landsat satellite images. The Carnegie Landsat Analysis System-Lite (CLASlite) programme was used to classify forest cover using Landsat images. This software is able to mask out clouds, cloud shadows, terrain shadows, and water bodies and atmospherically correct the images using 6S radiative transfer model. An Automated Monte Carlo Unmixing technique embedded in CLASlite was used to unmix each Landsat pixel into fractions of photosynthetic vegetation (PV), non photosynthetic vegetation (NPV) and soil surface (S). Forest and non-forest areas were produced from the fractional cover images using appropriate threshold values of PV, NPV and S. CLASlite software was found to be able to classify forest cover in Iskandar Malaysia with only a difference between 14% (1990) and 5% (2010) compared to the forest land use map produced by the Department of Agriculture, Malaysia. Nevertheless, the CLASlite automated software used in this study was found not to exclude other vegetation types especially rubber and oil palm that has similar reflectance to forest. Currently rubber and oil palm were discriminated from forest manually using land use maps. Therefore, CLASlite algorithm needs further adjustment to exclude these vegetation and classify only forest cover.

  16. FOREST COVER MAPPING IN ISKANDAR MALAYSIA USING SATELLITE DATA

    Directory of Open Access Journals (Sweden)

    K. D. Kanniah

    2016-09-01

    Full Text Available Malaysia is the third largest country in the world that had lost forest cover. Therefore, timely information on forest cover is required to help the government to ensure that the remaining forest resources are managed in a sustainable manner. This study aims to map and detect changes of forest cover (deforestation and disturbance in Iskandar Malaysia region in the south of Peninsular Malaysia between years 1990 and 2010 using Landsat satellite images. The Carnegie Landsat Analysis System-Lite (CLASlite programme was used to classify forest cover using Landsat images. This software is able to mask out clouds, cloud shadows, terrain shadows, and water bodies and atmospherically correct the images using 6S radiative transfer model. An Automated Monte Carlo Unmixing technique embedded in CLASlite was used to unmix each Landsat pixel into fractions of photosynthetic vegetation (PV, non photosynthetic vegetation (NPV and soil surface (S. Forest and non-forest areas were produced from the fractional cover images using appropriate threshold values of PV, NPV and S. CLASlite software was found to be able to classify forest cover in Iskandar Malaysia with only a difference between 14% (1990 and 5% (2010 compared to the forest land use map produced by the Department of Agriculture, Malaysia. Nevertheless, the CLASlite automated software used in this study was found not to exclude other vegetation types especially rubber and oil palm that has similar reflectance to forest. Currently rubber and oil palm were discriminated from forest manually using land use maps. Therefore, CLASlite algorithm needs further adjustment to exclude these vegetation and classify only forest cover.

  17. Using satellite imagery for crime mapping in South Africa.

    CSIR Research Space (South Africa)

    Schmitz, Peter MU

    2002-12-01

    Full Text Available . Increasingly, technologies such as digital orthophotographs, high-resolution satellite imagery and the global positioning system (GPS) are being used for these areas to provide base mapping and application data for geographical information systems (GIS...

  18. Structural High-resolution Satellite Image Indexing

    OpenAIRE

    Xia, Gui-Song; YANG, WEN; Delon, Julie; Gousseau, Yann; Sun, Hong; Maître, Henri

    2010-01-01

    International audience; Satellite images with high spatial resolution raise many challenging issues in image understanding and pattern recognition. First, they allow measurement of small objects maybe up to 0.5 m, and both texture and geometrical structures emerge simultaneously. Second, objects in the same type of scenes might appear at different scales and orientations. Consequently, image indexing methods should combine the structure and texture information of images and comply with some i...

  19. Convolutional neural network features based change detection in satellite images

    Science.gov (United States)

    Mohammed El Amin, Arabi; Liu, Qingjie; Wang, Yunhong

    2016-07-01

    With the popular use of high resolution remote sensing (HRRS) satellite images, a huge research efforts have been placed on change detection (CD) problem. An effective feature selection method can significantly boost the final result. While hand-designed features have proven difficulties to design features that effectively capture high and mid-level representations, the recent developments in machine learning (Deep Learning) omit this problem by learning hierarchical representation in an unsupervised manner directly from data without human intervention. In this letter, we propose approaching the change detection problem from a feature learning perspective. A novel deep Convolutional Neural Networks (CNN) features based HR satellite images change detection method is proposed. The main guideline is to produce a change detection map directly from two images using a pretrained CNN. This method can omit the limited performance of hand-crafted features. Firstly, CNN features are extracted through different convolutional layers. Then, a concatenation step is evaluated after an normalization step, resulting in a unique higher dimensional feature map. Finally, a change map was computed using pixel-wise Euclidean distance. Our method has been validated on real bitemporal HRRS satellite images according to qualitative and quantitative analyses. The results obtained confirm the interest of the proposed method.

  20. Alteration zone Mapping in the Meiduk and Sar Cheshmeh Porphyry Copper Mining Districts of Iran using Advanced Land Imager (ALI Satellite Data

    Directory of Open Access Journals (Sweden)

    A. Beiranvand Pour

    2015-10-01

    Full Text Available This study evaluates the capability of Earth Observing-1 (EO1 Advanced Land Imager (ALI data for hydrothermal alteration mapping in the Meiduk and Sar Cheshmeh porphyry copper mining districts, SE Iran. Feature-oriented principal components selection, 4/2, 8/9, 5/4 band ratioing were applied to ALI data for enhancing the hydrothermally altered rocks associated with porphyry copper mineralization, lithological units and vegetation. Mixture-tuned matched-filtering (MTMF was tested to discriminate the hydrothermal alteration areas of porphyry copper mineralization from surrounding environment using the shortwave infrared bands of ALI. Results indicate that the tested methods are able to yield spectral information for identifying vegetation, iron oxide/hydroxide and clay minerals, lithological units and the discrimination of hydrothermally altered rocks from unaltered rocks using ALI data.

  1. Alteration zone Mapping in the Meiduk and Sar Cheshmeh Porphyry Copper Mining Districts of Iran using Advanced Land Imager (ALI) Satellite Data

    Science.gov (United States)

    Beiranvand Pour, A.; Hashim, M.

    2015-10-01

    This study evaluates the capability of Earth Observing-1 (EO1) Advanced Land Imager (ALI) data for hydrothermal alteration mapping in the Meiduk and Sar Cheshmeh porphyry copper mining districts, SE Iran. Feature-oriented principal components selection, 4/2, 8/9, 5/4 band ratioing were applied to ALI data for enhancing the hydrothermally altered rocks associated with porphyry copper mineralization, lithological units and vegetation. Mixture-tuned matched-filtering (MTMF) was tested to discriminate the hydrothermal alteration areas of porphyry copper mineralization from surrounding environment using the shortwave infrared bands of ALI. Results indicate that the tested methods are able to yield spectral information for identifying vegetation, iron oxide/hydroxide and clay minerals, lithological units and the discrimination of hydrothermally altered rocks from unaltered rocks using ALI data.

  2. Satellite imager calibration and validation

    CSIR Research Space (South Africa)

    Vhengani, L

    2010-10-01

    Full Text Available The success or failure of any earth observation mission depends on the quality of its data. Data quality is assessed by determining the radiometric, spatial, spectral and geometric fidelity of the satellite sensor. The process is termed calval...

  3. Model-based satellite image fusion

    DEFF Research Database (Denmark)

    Aanæs, Henrik; Sveinsson, J. R.; Nielsen, Allan Aasbjerg

    2008-01-01

    A method is proposed for pixel-level satellite image fusion derived directly from a model of the imaging sensor. By design, the proposed method is spectrally consistent. It is argued that the proposed method needs regularization, as is the case for any method for this problem. A framework for pixel...

  4. Integrating satellite imagery with simulation modeling to improve burn severity mapping.

    Science.gov (United States)

    Karau, Eva C; Sikkink, Pamela G; Keane, Robert E; Dillon, Gregory K

    2014-07-01

    Both satellite imagery and spatial fire effects models are valuable tools for generating burn severity maps that are useful to fire scientists and resource managers. The purpose of this study was to test a new mapping approach that integrates imagery and modeling to create more accurate burn severity maps. We developed and assessed a statistical model that combines the Relative differenced Normalized Burn Ratio, a satellite image-based change detection procedure commonly used to map burn severity, with output from the Fire Hazard and Risk Model, a simulation model that estimates fire effects at a landscape scale. Using 285 Composite Burn Index (CBI) plots in Washington and Montana as ground reference, we found that an integrated model explained more variability in CBI (R (2) = 0.47) and had lower mean squared error (MSE = 0.28) than image (R (2) = 0.42 and MSE = 0.30) or simulation-based models (R (2) = 0.07 and MSE = 0.49) alone. Overall map accuracy was also highest for maps created with the Integrated Model (63 %). We suspect that Simulation Model performance would greatly improve with higher quality and more accurate spatial input data. Results of this study indicate the potential benefit of combining satellite image-based methods with a fire effects simulation model to create improved burn severity maps.

  5. Using satellite image-based maps to improve sugarcane straw burning emission estimates in the state of São Paulo, Brazil

    Science.gov (United States)

    França, D.; Longo, K.; Rudorff, B.; Aguiar, D.; Freitas, S. R.; Stockler, R.; Pereira, G.

    2014-12-01

    Since the last decade, the global demand for biofuel production has been increasing every year due to the growing need for energy supply security and mitigation of greenhouse gases (GHG). Currently, sugarcane ethanol is one of the most widely used biofuels and Brazil is already the world's largest sugarcane producer, devoting almost 50% of it to ethanol production. The state of São Paulo is the major sugarcane producer in this country, with a cultivated area of about 5.4 Mha in 2011. Approximately 2 million hectares were harvested annually from 2006 to 2011 with the pre-harvest straw burning practice, which emits trace gases and particulate material to the atmosphere. The assessment and monitoring of sugarcane burning impacts are fundamental in order to mitigate the negative impacts of pre-harvest burning and consolidate the environmental benefits of sugarcane ethanol. Although some official inventories created by the Brazilian government have indicated the prevalence of emissions from sugarcane straw burning in total agricultural residue emissions, specific information about emissions of gases and aerosols during pre-harvest burning of sugarcane is still scarce in Brazil. This study aimed to contribute to the improvement of estimates of emissions from sugarcane burning through the use of specific parameters for sugarcane straw burning and a method which has avoided underestimations resulting from the unique characteristics of this type of biomass fire. In this investigation, emissions of several air pollutants released by sugarcane burning during the harvest season were estimated through the integrated use of remote sensing based maps of sugarcane burned area and a numerical tool for the state of São Paulo from 2006 to 2011. Average estimated emissions (Gg/year) were 1,130 ± 152 for CO, 26 ± 4 for NOX, 16 ± 2 for CH4, 45 ± 6 for PM2.5, 120 ± 16 for PM10 and 154 ± 21 for NMHC (non-methane hydrocarbons). An intercomparison among annual emissions from this

  6. Mapping reference evapotranspiration from meteorological satellite data and applications

    Directory of Open Access Journals (Sweden)

    Ming-Hwi Yao

    2017-01-01

    Full Text Available Reference evapotranspiration (ETo is an agrometeorological variable widely used in hydrology and agriculture. The FAO-56 Penman-Monteith combination method (PM method is a standard for computing ETo for water management. However, this scheme is limited to areas where climatic data with good quality are available. Maps of 10-day averaged ETo at 5 km × 5 km grid spacing for the Taiwan region were produced by multiplying pan evaporation (Epan, derived from ground solar radiation (GSR retrieved from satellite images using the Heliosat-3 method, by a fixed pan coefficient (Kp. Validation results indicated that the overall mean absolute percentage error (MAPE and normalized root-mean-square deviation (NRMSD were 6.2 and 7.7%, respectively, when compared with ETo computed by the PM method using spatially interpolated 10-day averaged daily maximum and minimum temperature datasets and GSR derived from satellite inputs. Land coefficient (KL values based on the derived ETo estimates and long term latent heat flux measurements, were determined for the following landscapes: Paddy rice (Oryza sativa, subtropical cypress forest (Chamaecyparis obtusa var. formosana and Chamaecyparis formosensis, warm-to-temperate mixed rainforest (Cryptocarya chinensis, Engelhardtia roxburghiana, Tutcheria shinkoensis, and Helicia formosana, and grass marsh (Brachiaria mutica and Phragmites australis. The determined land coefficients are indispensable to scale ETo in estimating regional evapotranspiration.

  7. Wind Statistics Offshore based on Satellite Images

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Mouche, Alexis; Badger, Merete

    2009-01-01

    Ocean wind maps from satellites are routinely processed both at Risø DTU and CLS based on the European Space Agency Envisat ASAR data. At Risø the a priori wind direction is taken from the atmospheric model NOGAPS (Navel Operational Global Atmospheric Prediction System) provided by the U.S. Navy......’s Master Environmental Library. At CLS the a priori wind direction is taken from the ECMWF (European Centre of Medium-range Weather Forecasting). It is also possible to use other sources of wind direction e.g. the satellite-based ASCAT wind directions as demonstrated by CLS. The wind direction has to known...

  8. Offshore winds mapped from satellite remote sensing

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay

    2014-01-01

    the uncertainty on the model results on the offshore wind resource, it is necessary to compare model results with observations. Observations from ground-based wind lidar and satellite remote sensing are the two main technologies that can provide new types of offshore wind data at relatively low cost....... The advantages of microwave satellite remote sensing are 1) horizontal spatial coverage, 2) long data archives and 3) high spatial detail both in the coastal zone and of far-field wind farm wake. Passive microwave ocean wind speed data are available since 1987 with up to 6 observations per day with near...

  9. Spectrally Consistent Satellite Image Fusion with Improved Image Priors

    DEFF Research Database (Denmark)

    Nielsen, Allan Aasbjerg; Aanæs, Henrik; Jensen, Thomas B.S.;

    2006-01-01

    Here an improvement to our previous framework for satellite image fusion is presented. A framework purely based on the sensor physics and on prior assumptions on the fused image. The contributions of this paper are two fold. Firstly, a method for ensuring 100% spectrally consistency is proposed......, even when more sophisticated image priors are applied. Secondly, a better image prior is introduced, via data-dependent image smoothing....

  10. Low-Cost Satellite Infrared Imager Study

    Science.gov (United States)

    2007-11-02

    2,297.00 10 MATLAB , Simulink , Symbolic Math Toolbox (2 ea @ £894) £1,788.00 11 MATLAB Image Processing Toolbox (2 ea at £192) £384.00 12 MATLAB ...Figure 1: MWIR and TIR satellite imagery. On the left is a BIRD image of forest fires on the Portuguese/ Spanish border3 and the image on right is...space-borne MWIR and TIR imagers, instrument engineers are continually evaluating advances in the miniaturization of detector technology. One

  11. Haystack Ultrawideband Satellite Imaging Radar

    Science.gov (United States)

    2014-09-01

    enable long-range imaging. In 2013, a major upgrade to the facility was completed, adding a millimeter - wave W-band radar capability to Haystack’s X...diameter antenna was completely rebuilt to provide a 100 μm root-mean-square (rms) surface accuracy to support operation at the 3 mm wave - length (W...electromagnetic wave propagation through the troposphere. − The signal processing system lev- eraged Lincoln Laboratory‘s Radar Open Systems

  12. Change detection in satellite images

    Science.gov (United States)

    Thonnessen, U.; Hofele, G.; Middelmann, W.

    2005-05-01

    Change detection plays an important role in different military areas as strategic reconnaissance, verification of armament and disarmament control and damage assessment. It is the process of identifying differences in the state of an object or phenomenon by observing it at different times. The availability of spaceborne reconnaissance systems with high spatial resolution, multi spectral capabilities, and short revisit times offer new perspectives for change detection. Before performing any kind of change detection it is necessary to separate changes of interest from changes caused by differences in data acquisition parameters. In these cases it is necessary to perform a pre-processing to correct the data or to normalize it. Image registration and, corresponding to this task, the ortho-rectification of the image data is a further prerequisite for change detection. If feasible, a 1-to-1 geometric correspondence should be aspired for. Change detection on an iconic level with a succeeding interpretation of the changes by the observer is often proposed; nevertheless an automatic knowledge-based analysis delivering the interpretation of the changes on a semantic level should be the aim of the future. We present first results of change detection on a structural level concerning urban areas. After pre-processing, the images are segmented in areas of interest and structural analysis is applied to these regions to extract descriptions of urban infrastructure like buildings, roads and tanks of refineries. These descriptions are matched to detect changes and similarities.

  13. The Cartographic Concept of the Image Map

    Science.gov (United States)

    Vozenilek, V.; Belka, L.

    2016-06-01

    Image maps have become very popular and frequently produced cartographical outputs during recent years. However, the unambiguous terminology, definitions, content and appearance specification have not been widely researched. The paper deals with the new definition of image map, its components delineation, and basic classification. The authors understand the image map as a special map portraying geographic space in a particular cartographical projection and map scale, where its content consists of two basic components - image and symbol components. Image component is represented by remote sensing image(s), while symbol component is represented by cartographical symbols. An image map has to have three essential attributes: cartographical projection, map scale and symbol component by means of map language. The authors also present aspects of topographic and thematic image maps.

  14. Satellite-derived mineral mapping and monitoring of weathering, deposition and erosion

    Science.gov (United States)

    Cudahy, Thomas; Caccetta, Mike; Thomas, Matilda; Hewson, Robert; Abrams, Michael; Kato, Masatane; Kashimura, Osamu; Ninomiya, Yoshiki; Yamaguchi, Yasushi; Collings, Simon; Laukamp, Carsten; Ong, Cindy; Lau, Ian; Rodger, Andrew; Chia, Joanne; Warren, Peter; Woodcock, Robert; Fraser, Ryan; Rankine, Terry; Vote, Josh; de Caritat, Patrice; English, Pauline; Meyer, Dave; Doescher, Chris; Fu, Bihong; Shi, Pilong; Mitchell, Ross

    2016-01-01

    The Earth’s surface comprises minerals diagnostic of weathering, deposition and erosion. The first continental-scale mineral maps generated from an imaging satellite with spectral bands designed to measure clays, quartz and other minerals were released in 2012 for Australia. Here we show how these satellite mineral maps improve our understanding of weathering, erosional and depositional processes in the context of changing weather, climate and tectonics. The clay composition map shows how kaolinite has developed over tectonically stable continental crust in response to deep weathering during northwardly migrating tropical conditions from 45 to 10 Ma. The same clay composition map, in combination with one sensitive to water content, enables the discrimination of illite from montmorillonite clays that typically develop in large depositional environments over thin (sinking) continental crust such as the Lake Eyre Basin. Cutting across these clay patterns are sandy deserts that developed <10 Ma and are well mapped using another satellite product sensitive to the particle size of silicate minerals. This product can also be used to measure temporal gains/losses of surface clay caused by periodic wind erosion (dust) and rainfall inundation (flood) events. The accuracy and information content of these satellite mineral maps are validated using published data. PMID:27025192

  15. Satellite-derived mineral mapping and monitoring of weathering, deposition and erosion.

    Science.gov (United States)

    Cudahy, Thomas; Caccetta, Mike; Thomas, Matilda; Hewson, Robert; Abrams, Michael; Kato, Masatane; Kashimura, Osamu; Ninomiya, Yoshiki; Yamaguchi, Yasushi; Collings, Simon; Laukamp, Carsten; Ong, Cindy; Lau, Ian; Rodger, Andrew; Chia, Joanne; Warren, Peter; Woodcock, Robert; Fraser, Ryan; Rankine, Terry; Vote, Josh; de Caritat, Patrice; English, Pauline; Meyer, Dave; Doescher, Chris; Fu, Bihong; Shi, Pilong; Mitchell, Ross

    2016-03-30

    The Earth's surface comprises minerals diagnostic of weathering, deposition and erosion. The first continental-scale mineral maps generated from an imaging satellite with spectral bands designed to measure clays, quartz and other minerals were released in 2012 for Australia. Here we show how these satellite mineral maps improve our understanding of weathering, erosional and depositional processes in the context of changing weather, climate and tectonics. The clay composition map shows how kaolinite has developed over tectonically stable continental crust in response to deep weathering during northwardly migrating tropical conditions from 45 to 10 Ma. The same clay composition map, in combination with one sensitive to water content, enables the discrimination of illite from montmorillonite clays that typically develop in large depositional environments over thin (sinking) continental crust such as the Lake Eyre Basin. Cutting across these clay patterns are sandy deserts that developed <10 Ma and are well mapped using another satellite product sensitive to the particle size of silicate minerals. This product can also be used to measure temporal gains/losses of surface clay caused by periodic wind erosion (dust) and rainfall inundation (flood) events. The accuracy and information content of these satellite mineral maps are validated using published data.

  16. AO corrected satellite imaging from Mount Stromlo

    Science.gov (United States)

    Bennet, F.; Rigaut, F.; Price, I.; Herrald, N.; Ritchie, I.; Smith, C.

    2016-07-01

    The Research School of Astronomy and Astrophysics have been developing adaptive optics systems for space situational awareness. As part of this program we have developed satellite imaging using compact adaptive optics systems for small (1-2 m) telescopes such as those operated by Electro Optic Systems (EOS) from the Mount Stromlo Observatory. We have focused on making compact, simple, and high performance AO systems using modern high stroke high speed deformable mirrors and EMCCD cameras. We are able to track satellites down to magnitude 10 with a Strehl in excess of 20% in median seeing.

  17. Satellite Maps Deliver More Realistic Gaming

    Science.gov (United States)

    2013-01-01

    When Redwood City, California-based Electronic Arts (EA) decided to make SSX, its latest snowboarding video game, it faced challenges in creating realistic-looking mountains. The solution was NASA's ASTER Global Digital Elevation Map, made available by the Jet Propulsion Laboratory, which EA used to create 28 real-life mountains from 9 different ranges for its award-winning game.

  18. Antarctica: measuring glacier velocity from satellite images.

    Science.gov (United States)

    Lucchitta, B K; Ferguson, H M

    1986-11-28

    Many Landsat images of Antarctica show distinctive flow and crevasse features in the floating part of ice streams and outlet glaciers immediately below their grounding zones. Some of the features, which move with the glacier or ice stream, remain visible over many years and thus allow time-lapse measurements of ice velocities. Measurements taken from Landsat images of features on Byrd Glacier agree well with detailed ground and aerial observations. The satellite-image technique thus offers a rapid and cost-effective method of obtaining average velocities, to a first order of accuracy, of many ice streams and outlet glaciers near their termini.

  19. A neuromorphic approach to satellite image understanding

    Science.gov (United States)

    Partsinevelos, Panagiotis; Perakakis, Manolis

    2014-05-01

    Remote sensing satellite imagery provides high altitude, top viewing aspects of large geographic regions and as such the depicted features are not always easily recognizable. Nevertheless, geoscientists familiar to remote sensing data, gradually gain experience and enhance their satellite image interpretation skills. The aim of this study is to devise a novel computational neuro-centered classification approach for feature extraction and image understanding. Object recognition through image processing practices is related to a series of known image/feature based attributes including size, shape, association, texture, etc. The objective of the study is to weight these attribute values towards the enhancement of feature recognition. The key cognitive experimentation concern is to define the point when a user recognizes a feature as it varies in terms of the above mentioned attributes and relate it with their corresponding values. Towards this end, we have set up an experimentation methodology that utilizes cognitive data from brain signals (EEG) and eye gaze data (eye tracking) of subjects watching satellite images of varying attributes; this allows the collection of rich real-time data that will be used for designing the image classifier. Since the data are already labeled by users (using an input device) a first step is to compare the performance of various machine-learning algorithms on the collected data. On the long-run, the aim of this work would be to investigate the automatic classification of unlabeled images (unsupervised learning) based purely on image attributes. The outcome of this innovative process is twofold: First, in an abundance of remote sensing image datasets we may define the essential image specifications in order to collect the appropriate data for each application and improve processing and resource efficiency. E.g. for a fault extraction application in a given scale a medium resolution 4-band image, may be more effective than costly

  20. Active spectral imaging and mapping

    Science.gov (United States)

    Steinvall, Ove

    2014-04-01

    Active imaging and mapping using lasers as illumination sources have been of increasing interest during the last decades. Applications range from defense and security, remote sensing, medicine, robotics, and others. So far, these laser systems have mostly been based on a fix wavelength laser. Recent advances in lasers enable emission of tunable, multiline, or broadband emission, which together with the development of array detectors will extend the capabilities of active imaging and mapping. This paper will review some of the recent work on active imaging mainly for defense and security and remote sensing applications. A short survey of basic lidar relations and present fix wavelength laser systems is followed by a review of the benefits of adding the spectral dimension to active and/or passive electro-optical systems.

  1. A Mapping Approach for Large Area Wind Farm Based on Geoeye-1 Satellite Stereo Images%基于GeoEye-1立体像对的风电场大范围地形测量方法

    Institute of Scientific and Technical Information of China (English)

    张雅楠; 宋志勇

    2013-01-01

    Based on Geoeye-1 satellite stereo images,the mapping works for a wind farm which covers 200 square kilometers area in Huan County,Gansu province have been completed in this paper.A new fast and efficient way is provided for the large area surveying of wind power project.Compared with traditional methods,the new mapping approach would satisfy the demand of wind power projects for the tight schedule and large area.The mapping accuracy of this method is between 1∶2000 scale and 1:5000 scale.Meanwhile,high resolution DOM and high precision DEM can also be provided for the wind farm design.The digital productions can meet the demands of design changing and reduce the engineering cost.%基于Geoeye-1卫星影像立体像对完成了甘肃环县地区某风电场约200km2的测图工作,为风力发电项目大范围地形测量提供了一种新的快速高效的作业模式.相较于传统测量方法,该作业模式能够更好地满足风力发电项目测图范围大、设计工期紧的需求,成图精度介于1∶2000比例尺测图及1∶5000比例尺测图之间,并可提供高分辨率的DOM及高精度的DEM产品,更好地辅助风电场设计.其提供的大范围地形,可极大程度地满足设计变更的需要,降低工程成本.

  2. Albedo and color maps of the Saturnian satellites

    Science.gov (United States)

    Buratti, Bonnie J.; Mosher, Joel A.; Johnson, Torrence V.

    1990-01-01

    The paper discusses the production of maps of the albedos and colors of Mimas, Enceladus, Tethys, Dione, and Rhea over the full range of their imaged surfaces. Voyager images were used to prepare maps of the normal reflectances and color ratios (0.58/0.41 micron) of these satelites.

  3. Albedo and color maps of the Saturnian satellites

    Energy Technology Data Exchange (ETDEWEB)

    Buratti, B.J.; Mosher, J.A.; Johnson, T.V. (JPL, Pasadena, CA (USA))

    1990-10-01

    The paper discusses the production of maps of the albedos and colors of Mimas, Enceladus, Tethys, Dione, and Rhea over the full range of their imaged surfaces. Voyager images were used to prepare maps of the normal reflectances and color ratios (0.58/0.41 micron) of these satelites. 67 refs.

  4. Imaging artificial satellites: An observational challenge

    Science.gov (United States)

    Smith, D. A.; Hill, D. C.

    2016-10-01

    According to the Union of Concerned Scientists, as of the beginning of 2016 there are 1381 active satellites orbiting the Earth, and the United States' Space Surveillance Network tracks about 8000 manmade orbiting objects of baseball-size and larger. NASA estimates debris larger than 1 cm to number more than half a million. The largest ones can be seen by eye—unresolved dots of light that move across the sky in minutes. For most astrophotographers, satellites are annoying streaks that can ruin hours of work. However, capturing a resolved image of an artificial satellite can pose an interesting challenge for a student, and such a project can provide connections between objects in the sky and commercial and political activities here on Earth.

  5. Flash Flood Hazard Mapping Using Satellite Images and GIS Tools: A case study of Najran City, Kingdom of Saudi Arabia (KSA)

    OpenAIRE

    Ismail Elkhrachy

    2015-01-01

    Flash flood in the cities led to high levels of water in the streets and roads, causing many problems such as bridge collapse, building damage and traffic problems. It is impossible to avoid risks of floods or prevent their occurrence, however it is plausible to work on the reduction of their effects and to reduce the losses which they may cause. Flash flood mapping to identify sites in high risk flood zones is one of the powerful tools for this purpose. Mapping flash flood will be beneficial...

  6. A Global Poverty Map Derived from Satellite Data

    Energy Technology Data Exchange (ETDEWEB)

    Elvidge, Christopher D. [NOAA National Geophysical Data Center,; Sutton, Paul S. [University of Denver; Ghosh, Tilottama [University of Denver; Tuttle, Benjamin T. [NOAA National Geophysical Data Center,; Baugh, Kimberly E. [NOAA National Geophysical Data Center,; Bhaduri, Budhendra L [ORNL; Bright, Eddie A [ORNL

    2009-01-01

    A global poverty map has been produced at 30 arc sec resolution using a poverty index calculated by dividing population count (LandScan2004) by the brightness of satellite observed lighting (DMSP nighttimelights). Inputs to the LandScan product include satellite-derived landcover and topography, plus human settlement outlines derived from high-resolution imagery. The poverty estimates have been calibrated using national level poverty data from the World Development Indicators (WDI) 2006 edition. The total estimate of the numbers of individuals living in poverty is 2.2billion, slightly under the WDI estimate of 2.6 billion. We have demonstrated a new class of poverty map that should improve over time through the inclusion of new reference data for calibration of poverty estimates and as improvements are made in the satellite observation of human activities related to economic activity and technology access.

  7. A global poverty map derived from satellite data

    Science.gov (United States)

    Elvidge, Christopher D.; Sutton, Paul C.; Ghosh, Tilottama; Tuttle, Benjamin T.; Baugh, Kimberly E.; Bhaduri, Budhendra; Bright, Edward

    2009-08-01

    A global poverty map has been produced at 30 arcsec resolution using a poverty index calculated by dividing population count (LandScan 2004) by the brightness of satellite observed lighting (DMSP nighttime lights). Inputs to the LandScan product include satellite-derived land cover and topography, plus human settlement outlines derived from high-resolution imagery. The poverty estimates have been calibrated using national level poverty data from the World Development Indicators (WDI) 2006 edition. The total estimate of the numbers of individuals living in poverty is 2.2 billion, slightly under the WDI estimate of 2.6 billion. We have demonstrated a new class of poverty map that should improve over time through the inclusion of new reference data for calibration of poverty estimates and as improvements are made in the satellite observation of human activities related to economic activity and technology access.

  8. Iridium satellites help map electrical currents in space

    Science.gov (United States)

    Showstack, Randy

    The satellite constellation of Iridium LLC, which filed for Chapter 11 bankruptcy in 1999 after it failed to win enough business for its commercial satellite communications services, is still orbiting at an altitude of about 780 kilometers. Now, however, the satellites are helping to write a new chapter in understanding space weather.Magnetometers onboard each of the system's 66 polar-orbiting satellites are working in conjunction with the high-frequency, multinational Super Dual Auroral Radar Network, or SuperDARN, to provide the first continuous measurements of electrical currents between Earth's upper atmosphere and space. These tools also are generating the first global maps of electrical power flowing into the polar upper atmosphere.

  9. Combining forest inventory, satellite remote sensing, and geospatial data for mapping forest attributes of the conterminous United States

    Science.gov (United States)

    Mark Nelson; Greg Liknes; Charles H. Perry

    2009-01-01

    Analysis and display of forest composition, structure, and pattern provides information for a variety of assessments and management decision support. The objective of this study was to produce geospatial datasets and maps of conterminous United States forest land ownership, forest site productivity, timberland, and reserved forest land. Satellite image-based maps of...

  10. Geological lineament mapping in arid area by semi-automatic extraction from satellite images: example at the El Kseïbat region (Algerian Sahara)

    Energy Technology Data Exchange (ETDEWEB)

    Hammad, N.; Djidel, M.; Maabedi, N.

    2016-07-01

    Geologists in charge of a detailed lineament mapping in arid and desert area, face the extent of the land and the abundance of eolian deposits. This study presents a semi-automatic approach of extraction of lineament, different from other methods, such as the automatic extraction and manual extraction, by being both fast and objective. It consists of a series of digital processing (textural and spatial filtering, binarization by thresholding and mathematic morphology ... etc.) applied to a Landsat 7 ETM+scene. This semi-automatic approach has produced a detailed map of lineaments, while taking account of tectonic directions recognized in the region. It helps mitigate the effect of dune deposits meet the specifications of arid environment. The visual validation of these linear structures, by geoscientists and field data, allowed the identification of the majority of structural lineaments or at least those tried geological. (Author)

  11. Map Classification In Image Data

    Science.gov (United States)

    2015-09-25

    classes by manually or even semi-supervised automatically annotated labels (Guillaumin et al., 2010). By contrast, content-based image retrieval is...areas, vineyards and orchards . (Geo- science Australia, 2015) Geographical maps include a broad spectrum of sub-classes, differentiated by vegetation...International Conference on Multimedia, (pp. 83–92). Beijing, China: ACM. Maron, M. E. (1961). Automatic indexing: An experimental inquiry. Journal of the ACM

  12. Mapping of satellite Earth observations using moving window block kriging

    Science.gov (United States)

    Tadić, J. M.; Qiu, X.; Yadav, V.; Michalak, A. M.

    2015-10-01

    Global gridded maps (a.k.a. Level 3 products) of Earth system properties observed by satellites are central to understanding the spatiotemporal variability of these properties. They also typically serve either as inputs into biogeochemical models or as independent data for evaluating such models. Spatial binning is a common method for generating contiguous maps, but this approach results in a loss of information, especially when the measurement noise is low relative to the degree of spatiotemporal variability. Such "binned" fields typically also lack a quantitative measure of uncertainty. Geostatistical mapping has previously been shown to make higher spatiotemporal resolution maps possible, and also provides a measure uncertainty associated with the gridded products. This study proposes a flexible moving window block kriging method that can be used as a tool for creating high spatiotemporal resolution maps from satellite data. It relies only on the assumption that the observed physical quantity exhibits spatial correlation that can be inferred from the observations. The method has several innovations relative to previously applied methods: (1) it provides flexibility in the spatial resolution of the contiguous maps, (2) it is applicable for physical quantities with varying spatiotemporal coverage (i.e., density of measurements) by utilizing a more general and versatile data sampling approach, and (3) it provides rigorous assessments of the uncertainty associated with the gridded products. The method is demonstrated by creating Level 3 products from observations of column-integrated carbon dioxide (XCO2) from the GOSAT (Greenhouse Gases Observing Satellite) satellite, and solar induced fluorescence (SIF) from the GOME-2 (Global Ozone Monitoring Experiment-2) instrument.

  13. Developing Geostationary Satellite Imaging at Lowell Observatory

    Science.gov (United States)

    van Belle, G.

    2016-09-01

    Lowell Observatory operates the Navy Precision Optical Interferometer (NPOI), and owns & operates the Discovery Channel Telescope (DCT). This unique & necessary combination of facilities positions Lowell to develop a robust program of observing geostationary, GPS-plane, and other high-altitude (&1000mi) satellites. NPOI is a six-beam long-baseline optical interferometer, located in Flagstaff, Arizona; the facility is supported by a partnership between Lowell Observatory, the US Naval Observatory, and the Naval Research Laboratory. NPOI operates year-round in the visible with baselines between 8 and 100 meters (up to 432m is available), conducting programs of astronomical research and imaging technology development. NPOI is the only such facility as yet to directly observe geostationary satellites, enabling milliarcsecond resolution of these objects. To enhance this capability towards true imaging of geosats, an ongoing program of facility upgrades will be outlined. These upgrades include AO-assisted 1.0-m apertures feeding each beam line, and new near-infrared instrumentation on the back end. The large apertures will enable `at-will' observations of objects brighter than mK = 8:3 in the near-IR, corresponding to brighter than mV = 11:3 in the visible. At its core, the system is enabled by a `wavelength-baseline bootstrapping' approach discussed herein. A complementary pilot imaging study of visible speckle and aperture masked imaging at Lowell's 4.3-m DCT, for constraining the low-spatial frequency imaging information, is also outlined.

  14. Path planning on satellite images for unmanned surface vehicles

    Directory of Open Access Journals (Sweden)

    Joe-Ming Yang

    2015-01-01

    Full Text Available In recent years, the development of autonomous surface vehicles has been a field of increasing research interest. There are two major areas in this field: control theory and path planning. This study focuses on path planning, and two objectives are discussed: path planning for Unmanned Surface Vehicles (USVs and implementation of path planning in a real map. In this paper, satellite thermal images are converted into binary images which are used as the maps for the Finite Angle A * algorithm (FAA *, an advanced A * algorithm that is used to determine safer and suboptimal paths for USVs. To plan a collision-free path, the algorithm proposed in this article considers the dimensions of surface vehicles. Furthermore, the turning ability of a surface vehicle is also considered, and a constraint condition is introduced to improve the quality of the path planning algorithm, which makes the traveled path smoother. This study also shows a path planning experiment performed on a real satellite thermal image, and the path planning results can be used by an USV

  15. The cradle of pyramids in satellite images

    CERN Document Server

    Sparavigna, Amelia Carolina

    2011-01-01

    We propose the use of image processing to enhance the Google Maps of some archaeological areas of Egypt. In particular we analyse that place which is considered the cradle of pyramids, where it was announced the discovery of a new pyramid by means of an infrared remote sensing.

  16. Embedded Implementation of VHR Satellite Image Segmentation.

    Science.gov (United States)

    Li, Chao; Balla-Arabé, Souleymane; Ginhac, Dominique; Yang, Fan

    2016-05-27

    Processing and analysis of Very High Resolution (VHR) satellite images provide a mass of crucial information, which can be used for urban planning, security issues or environmental monitoring. However, they are computationally expensive and, thus, time consuming, while some of the applications, such as natural disaster monitoring and prevention, require high efficiency performance. Fortunately, parallel computing techniques and embedded systems have made great progress in recent years, and a series of massively parallel image processing devices, such as digital signal processors or Field Programmable Gate Arrays (FPGAs), have been made available to engineers at a very convenient price and demonstrate significant advantages in terms of running-cost, embeddability, power consumption flexibility, etc. In this work, we designed a texture region segmentation method for very high resolution satellite images by using the level set algorithm and the multi-kernel theory in a high-abstraction C environment and realize its register-transfer level implementation with the help of a new proposed high-level synthesis-based design flow. The evaluation experiments demonstrate that the proposed design can produce high quality image segmentation with a significant running-cost advantage.

  17. Visual interpretation of ASTER satellite data, Part II: Land use mapping in Mpumalanga,South Africa

    Directory of Open Access Journals (Sweden)

    Elna van Niekerk

    2007-09-01

    Full Text Available Since the initiation in 1960 of the era of satellite remote sensing to detect the different characteristics of the earth, a powerful tool was created to aid researchers. Many land-use studies were undertaken using Landsat MSS, Landsat TM and ETM, as well as SPOT satellite data. The application of these data to the mapping of land use and land cover at smaller scales was constrained by the limited spectral and/or spatial resolution of the data provided by these satellite sensors. In view of the relatively high cost of SPOT data, and uncertainty regarding the future continuation of the Landsat series, alternative data sources need to be investigated. In the absence of published previous research on this issue in South Africa, the purpose of this article is to investigate the value of visual interpretation of ASTER satellite images for the identification and mapping of land-use in an area in South Africa. The study area is situated in Mpumalanga, in the area of Witbank, around the Witbank and Doorndraai dams. This area is characterised by a variety of urban, rural and industrial land uses. Digital image processing of one Landsat 5 TM, one Landsat 7 ETM and one ASTER satellite image was undertaken, including atmospheric correction and georeferencing, natural colour composites, photo infrared colour composites (or false colour satellite images, band ratios, Normalised Difference Indices, as well as the Brightness, Greenness and Wetness Indices. The efficacy with which land use could be identified through the visual interpretation of the processed Landsat 5 TM, Landsat 7 TM and ASTER satellite images was compared. The published 1:50 000 topographical maps of the area were used for the purpose of initial verification. Findings of the visual interpretation process were verified by field visits to the study area. The study found that the ASTER satellite data produced clearer results and therefore have a higher mapping ability and capacity than the

  18. System refinement for content based satellite image retrieval

    Directory of Open Access Journals (Sweden)

    NourElDin Laban

    2012-06-01

    Full Text Available We are witnessing a large increase in satellite generated data especially in the form of images. Hence intelligent processing of the huge amount of data received by dozens of earth observing satellites, with specific satellite image oriented approaches, presents itself as a pressing need. Content based satellite image retrieval (CBSIR approaches have mainly been driven so far by approaches dealing with traditional images. In this paper we introduce a novel approach that refines image retrieval process using the unique properties to satellite images. Our approach uses a Query by polygon (QBP paradigm for the content of interest instead of using the more conventional rectangular query by image approach. First, we extract features from the satellite images using multiple tiling sizes. Accordingly the system uses these multilevel features within a multilevel retrieval system that refines the retrieval process. Our multilevel refinement approach has been experimentally validated against the conventional one yielding enhanced precision and recall rates.

  19. Mapping species distribution of Canarian Monteverde forest by field spectroradiometry and satellite imagery

    Science.gov (United States)

    Martín-Luis, Antonio; Arbelo, Manuel; Hernández-Leal, Pedro; Arbelo-Bayó, Manuel

    2016-10-01

    Reliable and updated maps of vegetation in protected natural areas are essential for a proper management and conservation. Remote sensing is a valid tool for this purpose. In this study, a methodology based on a WorldView-2 (WV-2) satellite image and in situ spectral signatures measurements was applied to map the Canarian Monteverde ecosystem located in the north of the Tenerife Island (Canary Islands, Spain). Due to the high spectral similarity of vegetation species in the study zone, a Multiple Endmember Spectral Mixture Analysis (MESMA) was performed. MESMA determines the fractional cover of different components within one pixel and it allows for a pixel-by-pixel variation of endmembers. Two libraries of endmembers were collected for the most abundant species in the test area. The first library was collected from in situ spectral signatures measured with an ASD spectroradiometer during a field campaign in June 2015. The second library was obtained from pure pixels identified in the satellite image for the same species. The accuracy of the mapping process was assessed from a set of independent validation plots. The overall accuracy for the ASD-based method was 60.51 % compared to the 86.67 % reached for the WV-2 based mapping. The results suggest the possibility of using WV-2 images for monitoring and regularly updating the maps of the Monteverde forest on the island of Tenerife.

  20. Mapping of satellite Earth observations using moving window block kriging

    Directory of Open Access Journals (Sweden)

    J. M. Tadić

    2014-08-01

    Full Text Available Global gridded maps (a.k.a. Level 3 products of Earth system properties observed by satellites are central to understanding the spatiotemporal variability of these properties. They also typically serve either as inputs into biogeochemical models, or as independent data for evaluating such models. Spatial binning is a common method for generating contiguous maps, but this approach results in a loss of information, especially when the measurement noise is low relative to the degree of spatiotemporal variability. Such "binned" fields typically also lack a quantitative measure of uncertainty. Geostatistical mapping has previously been shown to make higher spatiotemporal resolution maps possible, and also provides a measure of the uncertainty associated with the gridded products. This study proposes a flexible moving window block kriging method that can be used as a tool for creating high spatiotemporal resolution maps from satellite data. It relies only on the assumption that the observed physical quantity exhibits spatial correlation that can be inferred from the observations. The method has several innovations relative to previously applied methods: (1 it provides flexibility in the spatial resolution of the contiguous maps (2 it is applicable for physical quantities with varying spatiotemporal coverage (i.e., density of measurements by utilizing a more general and versatile data sampling approach, and (3 it provides rigorous assessments of the uncertainty associated with the gridded products. The method is demonstrated by creating Level 3 products from observations of column-integrated carbon dioxide (XCO2 from the GOSAT satellite, and solar induced fluorescence (SIF from the GOME-2 instrument.

  1. MODIS 2002-2003 Kansas Satellite Image Database (KSID)

    Data.gov (United States)

    Kansas Data Access and Support Center — The Kansas Satellite Image Database (KSID):2002-2003 consists of image data gathered by three sensors. The first image data are terrain-corrected, precision...

  2. ASTER 2002-2003 Kansas Satellite Image Database (KSID)

    Data.gov (United States)

    Kansas Data Access and Support Center — The Kansas Satellite Image Database (KSID):2002-2003 consists of image data gathered by three sensors. The first image data are terrain-corrected, precision...

  3. Use of satellite images for the monitoring of water systems

    Science.gov (United States)

    Hillebrand, Gudrun; Winterscheid, Axel; Baschek, Björn; Wolf, Thomas

    2015-04-01

    Satellite images are a proven source of information for monitoring ecological indicators in coastal waters and inland river systems. This potential of remote sensing products was demonstrated by recent research projects (e.g. EU-funded project Freshmon - www.freshmon.eu) and other activities by national institutions. Among indicators for water quality, a particular focus was set on the temporal and spatial dynamics of suspended particulate matter (SPM) and Chlorophyll-a (Chl-a). The German Federal Institute of Hydrology (BfG) was using the Weser and Elbe estuaries as test cases to compare in-situ measurements with results obtained from a temporal series of automatically generated maps of SPM distributions based on remote sensing data. Maps of SPM and Chl-a distributions in European inland rivers and alpine lakes were generated by the Freshmon Project. Earth observation based products are a valuable source for additional data that can well supplement in-situ monitoring. For 2015, the BfG and the Institute for Lake Research of the State Institute for the Environment, Measurements and Nature Conservation of Baden-Wuerttemberg, Germany (LUBW) are in the process to start implementing an operational service for monitoring SPM and Chl-a based on satellite images (Landsat 7 & 8, Sentinel 2, and if required other systems with higher spatial resolution, e.g. Rapid Eye). In this 2-years project, which is part of the European Copernicus Programme, the operational service will be set up for - the inland rivers of Rhine and Elbe - the North Sea estuaries of Elbe, Weser and Ems. Furthermore - Lake Constance and other lakes located within the Federal State of Baden-Wuerttemberg. In future, the service can be implemented for other rivers and lakes as well. Key feature of the project is a data base that holds the stock of geo-referenced maps of SPM and Chl-a distributions. Via web-based portals (e.g. GGInA - geo-portal of the BfG; UIS - environmental information system of the

  4. INTEGRATION OF PALSAR AND ASTER SATELLITE DATA FOR GEOLOGICAL MAPPING IN TROPICS

    Directory of Open Access Journals (Sweden)

    A. Beiranvand Pour

    2015-10-01

    Full Text Available This research investigates the integration of the Phased Array type L-band Synthetic Aperture Radar (PALSAR and the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER satellite data for geological mapping applications in tropical environments. The eastern part of the central belt of peninsular Malaysia has been investigated to identify structural features and mineral mapping using PALSAR and ASTER data. Adaptive local sigma and directional filters were applied to PALSAR data for detecting geological structure elements in the study area. The vegetation, mineralogic and lithologic indices for ASTER bands were tested in tropical climate. Lineaments (fault and fractures and curvilinear (anticline or syncline were detected using PALSAR fused image of directional filters (N-S, NE-SW, and NW-SE.Vegetation index image map show vegetation cover by fusing ASTER VNIR bands. High concentration of clay minerals zone was detected using fused image map derived from ASTER SWIR bands. Fusion of ASTER TIR bands produced image map of the lithological units. Results indicate that data integration and data fusion from PALSAR and ASTER sources enhanced information extraction for geological mapping in tropical environments.

  5. 3-D Reconstruction From Satellite Images

    DEFF Research Database (Denmark)

    Denver, Troelz

    1999-01-01

    The aim of this project has been to implement a software system, that is able to create a 3-D reconstruction from two or more 2-D photographic images made from different positions. The height is determined from the disparity difference of the images. The general purpose of the system is mapping o......, where various methods have been tested in order to optimize the performance. The match results are used in the reconstruction part to establish a 3-D digital representation and finally, different presentation forms are discussed....

  6. Region of Interest Detection Based on Histogram Segmentation for Satellite Image

    Science.gov (United States)

    Kiadtikornthaweeyot, Warinthorn; Tatnall, Adrian R. L.

    2016-06-01

    High resolution satellite imaging is considered as the outstanding applicant to extract the Earth's surface information. Extraction of a feature of an image is very difficult due to having to find the appropriate image segmentation techniques and combine different methods to detect the Region of Interest (ROI) most effectively. This paper proposes techniques to classify objects in the satellite image by using image processing methods on high-resolution satellite images. The systems to identify the ROI focus on forests, urban and agriculture areas. The proposed system is based on histograms of the image to classify objects using thresholding. The thresholding is performed by considering the behaviour of the histogram mapping to a particular region in the satellite image. The proposed model is based on histogram segmentation and morphology techniques. There are five main steps supporting each other; Histogram classification, Histogram segmentation, Morphological dilation, Morphological fill image area and holes and ROI management. The methods to detect the ROI of the satellite images based on histogram classification have been studied, implemented and tested. The algorithm is be able to detect the area of forests, urban and agriculture separately. The image segmentation methods can detect the ROI and reduce the size of the original image by discarding the unnecessary parts.

  7. Japanese Global Precipitation Measurement (GPM) mission status and application of satellite-based global rainfall map

    Science.gov (United States)

    Kachi, Misako; Shimizu, Shuji; Kubota, Takuji; Yoshida, Naofumi; Oki, Riko; Kojima, Masahiro; Iguchi, Toshio; Nakamura, Kenji

    2010-05-01

    . Collaboration with GCOM-W is not only limited to its participation to GPM constellation but also coordination in areas of algorithm development and validation in Japan. Generation of high-temporal and high-accurate global rainfall map is one of targets of the GPM mission. As a proto-type for GPM era, JAXA has developed and operates the Global Precipitation Map algorithm in near-real-time since October 2008, and hourly and 0.1-degree resolution binary data and images available at http://sharaku.eorc.jaxa.jp/GSMaP/ four hours after observation. The algorithms are based on outcomes from the Global Satellite Mapping for Precipitation (GSMaP) project, which was sponsored by the Japan Science and Technology Agency (JST) under the Core Research for Evolutional Science and Technology (CREST) framework between 2002 and 2007 (Okamoto et al., 2005; Aonashi et al., 2009; Ushio et al., 2009). Target of GSMaP project is to produce global rainfall maps that are highly accurate and in high temporal and spatial resolution through the development of rain rate retrieval algorithms based on reliable precipitation physical models by using several microwave radiometer data, and comprehensive use of precipitation radar and geostationary infrared imager data. Near-real-time GSMaP data is distributed via internet and utilized by end users. Purpose of data utilization by each user covers broad areas and in world wide; Science researches (model validation, data assimilation, typhoon study, etc.), weather forecast/service, flood warning and rain analysis over river basin, oceanographic condition forecast, agriculture, and education. Toward the GPM era, operational application should be further emphasized as well as science application. JAXA continues collaboration with hydrological communities to utilize satellite-based precipitation data as inputs to future flood prediction and warning system, as well as with meteorological agencies to proceed further data utilization in numerical weather prediction

  8. Polar-Orbiting Satellite (POES) Images

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Visible and Infrared satellite imagery taken from camera systems or radiometer instruments on satellites in orbit around the poles. Satellite campaigns include...

  9. SAT-MAP-CLIMATE project results[SATellite base bio-geophysical parameter MAPping and aggregation modelling for CLIMATE models

    Energy Technology Data Exchange (ETDEWEB)

    Bay Hasager, C.; Woetmann Nielsen, N.; Soegaard, H.; Boegh, E.; Hesselbjerg Christensen, J.; Jensen, N.O.; Schultz Rasmussen, M.; Astrup, P.; Dellwik, E.

    2002-08-01

    Earth Observation (EO) data from imaging satellites are analysed with respect to albedo, land and sea surface temperatures, land cover types and vegetation parameters such as the Normalized Difference Vegetation Index (NDVI) and the leaf area index (LAI). The observed parameters are used in the DMI-HIRLAM-D05 weather prediction model in order to improve the forecasting. The effect of introducing actual sea surface temperatures from NOAA AVHHR compared to climatological mean values, shows a more pronounced land-sea breeze effect which is also observable in field observations. The albedo maps from NOAA AVHRR are rather similar to the climatological mean values so for the HIRLAM model this is insignicant, yet most likely of some importance in the HIRHAM regional climate model. Land cover type maps are assigned local roughness values determined from meteorological field observations. Only maps with a spatial resolution around 25 m can adequately map the roughness variations of the typical patch size distribution in Denmark. A roughness map covering Denmark is aggregated (ie area-average non-linearly) by a microscale aggregation model that takes the non-linear turbulent responses of each roughness step change between patches in an arbitrary pattern into account. The effective roughnesses are calculated into a 15 km by 15 km grid for the HIRLAM model. The effect of hedgerows is included as an added roughness effect as a function of hedge density mapped from a digital vector map. Introducing the new effective roughness maps into the HIRLAM model appears to remedy on the seasonal wind speed bias over land and sea in spring. A new parameterisation on the effective roughness for scalar surface fluxes is developed and tested on synthetic data. Further is a method for the estimation the evapotranspiration from albedo, surface temperatures and NDVI succesfully compared to field observations. The HIRLAM predictions of water vapour at 12 GMT are used for atmospheric correction of

  10. User Preferences in Image Map Using

    Science.gov (United States)

    Vondráková, A.; Vozenilek, V.

    2016-06-01

    In the process of map making, the attention is given to the resulting image map (to be accurate, readable, and suit the primary purpose) and its user aspects. Current cartography understands the user issues as all matters relating to user perception, map use and also user preferences. Most commercial cartographic production is strongly connected to economic circumstances. Companies are discovering user's interests and market demands. However, is it sufficient to focus just on the user's preferences? Recent research on user aspects at Palacký University Olomouc addresses a much wider scope of user aspects. The user's preferences are very often distorting - the users think that the particular image map is kind, beautiful, and useful and they wants to buy it (or use it - it depends on the form of the map production). But when the same user gets the task to use practically this particular map (such as finding the shortest way), so the user concludes that initially preferred map is useless, and uses a map, that was worse evaluated according to his preferences. It is, therefore, necessary to evaluate not only the correctness of image maps and their aesthetics but also to assess the user perception and other user issues. For the accomplishment of such testing, eye-tracking technology is a useful tool. The research analysed how users read image maps, or if they prefer image maps over traditional maps. The eye tracking experiment on the comparison of the conventional and image map reading was conducted. The map readers were asked to solve few simple tasks with either conventional or image map. The readers' choice of the map to solve the task was one of investigated aspect of user preferences. Results demonstrate that the user preferences and user needs are often quite different issues. The research outcomes show that it is crucial to implement map user testing into the cartographic production process.

  11. Detailed Maps Depicting the Shallow-Water Benthic Habitats of the Northwestern Hawaiian Islands Derived from High Resolution IKONOS Satellite Imagery (Draft)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Detailed, shallow-water coral reef ecosystem maps were generated by rule-based, semi-automated image analysis of high-resolution satellite imagery for nine locations...

  12. Detailed Maps Depicting the Shallow-Water Benthic Habitats of the Northwestern Hawaiian Islands Derived from High Resolution IKONOS Satellite Imagery

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Detailed, shallow-water coral reef ecosystem maps were generated by rule-based, semi-automated image analysis of high-resolution satellite imagery for nine locations...

  13. Extracting cosmic microwave background polarisation from satellite astrophysical maps

    CERN Document Server

    Baccigalupi, C; De Zotti, G; Smoot, G F; Burigana, C; Maino, D; Bedini, L; Salerno, E

    2002-01-01

    We present the application of the Fast Independent Component Analysis technique for blind component separation to polarised astrophysical emission. We study how the Cosmic Microwave Background (CMB) polarised signal, consisting of $E$ and $B$ modes, can be extracted from maps affected by substantial contamination from diffuse Galactic foregrounds and instrumental noise. We perform the analysis of all sky maps simulated accordingly to the nominal performances of the Low Frequency Instrument (LFI) aboard the Planck satellite; the sky signal is modeled as a superposition of CMB, generated by a Gaussian, nearly scale invariant cosmological perturbation spectrum, and the existing simulated polarisation templates of Galactic synchrotron. Our results indicate that the angular power spectrum of CMB $E$ modes can be recovered on all scales up to $\\ell\\simeq 1000$, corresponding to the fourth acoustic oscillation, while $B$ modes can be detected, up to their turnover at $\\ell\\simeq 100$ if cosmological tensor amplitude...

  14. Satellite image blind restoration based on surface fitting and multivariate model

    Institute of Scientific and Technical Information of China (English)

    CHEN Xin-bing; YANG Shi-zhi; WANG Xian-hua; QIAO Yan-li

    2009-01-01

    Owing to the blurring effect from atmosphere and camera system in the satellite imaging a blind image restoration algo-rithm is proposed which includes the modulation transfer function (MTF) estimation and the image restoration. In the MTF estimation stage, based on every degradation process of satellite imaging-chain, a combined parametric model of MTF is given and used to fit the surface of normalized logarithmic amplitude spectrum of degraded image. In the image restoration stage, a maximum a posteriori (MAP) based edge-preserving image restoration method is presented which introduces multivariate Laplacian model to characterize the prior distribution of wavelet coefficients of original image. During the image restoration, in order to avoid solving high nonlinear equations, optimization transfer algorithm is adopted to decom-pose the image restoration procedure into two simple steps: Landweber iteration and wavelet thresholding denoising. In the numerical experiment, the satellite image restoration results from SPOT-5 and high resolution camera (HR) of China & Brazil earth resource satellite (CBERS-02B) ane compared, and the proposed algorithm is superior in the image edge preservation and noise inhibition.

  15. Moving Target Information Extraction Based on Single Satellite Image

    Directory of Open Access Journals (Sweden)

    ZHAO Shihu

    2015-03-01

    Full Text Available The spatial and time variant effects in high resolution satellite push broom imaging are analyzed. A spatial and time variant imaging model is established. A moving target information extraction method is proposed based on a single satellite remote sensing image. The experiment computes two airplanes' flying speed using ZY-3 multispectral image and proves the validity of spatial and time variant model and moving information extracting method.

  16. THERMAL AND VISIBLE SATELLITE IMAGE FUSION USING WAVELET IN REMOTE SENSING AND SATELLITE IMAGE PROCESSING

    Directory of Open Access Journals (Sweden)

    A. H. Ahrari

    2017-09-01

    Full Text Available Multimodal remote sensing approach is based on merging different data in different portions of electromagnetic radiation that improves the accuracy in satellite image processing and interpretations. Remote Sensing Visible and thermal infrared bands independently contain valuable spatial and spectral information. Visible bands make enough information spatially and thermal makes more different radiometric and spectral information than visible. However low spatial resolution is the most important limitation in thermal infrared bands. Using satellite image fusion, it is possible to merge them as a single thermal image that contains high spectral and spatial information at the same time. The aim of this study is a performance assessment of thermal and visible image fusion quantitatively and qualitatively with wavelet transform and different filters. In this research, wavelet algorithm (Haar and different decomposition filters (mean.linear,ma,min and rand for thermal and panchromatic bands of Landast8 Satellite were applied as shortwave and longwave fusion method . Finally, quality assessment has been done with quantitative and qualitative approaches. Quantitative parameters such as Entropy, Standard Deviation, Cross Correlation, Q Factor and Mutual Information were used. For thermal and visible image fusion accuracy assessment, all parameters (quantitative and qualitative must be analysed with respect to each other. Among all relevant statistical factors, correlation has the most meaningful result and similarity to the qualitative assessment. Results showed that mean and linear filters make better fused images against the other filters in Haar algorithm. Linear and mean filters have same performance and there is not any difference between their qualitative and quantitative results.

  17. MAPPING DIRECTLY IMAGED GIANT EXOPLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Kostov, Veselin [Department of Physics and Astronomy, Johns Hopkins University, 366 Bloomberg Center, 3400 North Charles Street, Baltimore, MD 21218 (United States); Apai, Daniel, E-mail: vkostov@pha.jhu.edu [Department of Astronomy, The University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85718 (United States)

    2013-01-01

    With the increasing number of directly imaged giant exoplanets, the current atmosphere models are often not capable of fully explaining the spectra and luminosity of the sources. A particularly challenging component of the atmosphere models is the formation and properties of condensate cloud layers, which fundamentally impact the energetics, opacity, and evolution of the planets. Here we present a suite of techniques that can be used to estimate the level of rotational modulations these planets may show. We propose that the time-resolved observations of such periodic photometric and spectroscopic variations of extrasolar planets due to their rotation can be used as a powerful tool to probe the heterogeneity of their optical surfaces. In this paper, we develop simulations to explore the capabilities of current and next-generation ground- and space-based instruments for this technique. We address and discuss the following questions: (1) what planet properties can be deduced from the light curve and/or spectra, and in particular can we determine rotation periods, spot coverage, spot colors, and spot spectra?; (2) what is the optimal configuration of instrument/wavelength/temporal sampling required for these measurements?; and (3) can principal component analysis be used to invert the light curve and deduce the surface map of the planet? Our simulations describe the expected spectral differences between homogeneous (clear or cloudy) and patchy atmospheres, outline the significance of the dominant absorption features of H{sub 2}O, CH{sub 4}, and CO, and provide a method to distinguish these two types of atmospheres. Assuming surfaces with and without clouds for most currently imaged planets the current models predict the largest variations in the J band. Simulated photometry from current and future instruments is used to estimate the level of detectable photometric variations. We conclude that future instruments will be able to recover not only the rotation periods

  18. Using Satellite Images for Wireless Network Planing in Baku City

    Science.gov (United States)

    Gojamanov, M.; Ismayilov, J.

    2013-04-01

    It is a well known fact that the Information-Telecommunication and Space research technologies are the fields getting much more benefits from the achievements of the scientific and technical progress. In many cases, these areas supporting each other have improved the conditions for their further development. For instance, the intensive development in the field of the mobile communication has caused the rapid progress of the Space research technologies and vice versa.Today it is impossible to solve one of the most important tasks of the mobile communication as Radio Frecance planning without the 2D and 3D digital maps. The compiling of such maps is much more efficient by means of the space images. Because the quality of the space images has been improved and developed, especially at the both spectral and spatial resolution points. It has been possible to to use 8 Band images with the spatial resolution of 50 sm. At present, in relation to the function 3G of mobile communications one of the main issues facing mobile operator companies is a high-precision 3D digital maps. It should be noted that the number of mobile phone users in the Republic of Azerbaijan went forward other Community of Independent States Countries. Of course, using of aerial images for 3D mapping would be optimal. However, depending on a number of technical and administrative problems aerial photography cannot be used. Therefore, the experience of many countries shows that it will be more effective to use the space images with the higher resolution for these issues. Concerning the fact that the mobile communication within the city of Baku has included 3G function there were ordered stereo images wih the spatial resolution of 50 cm for the 150 sq.km territory occupying the central part of the city in order to compile 3D digital maps. The images collected from the WorldView-2 satellite are 4-Band Bundle(Pan+MS1) stereo images. Such kind of imagery enable to automatically classificate some required

  19. Spectral Characterization of Agricultural Burned Areas for Satellite Mapping

    Science.gov (United States)

    Boren, Erik J.

    Burned area detection with remotely sensed satellite data in agricultural landscapes is not only necessary for the estimation of global biomass burning emissions, but also has gained attention from managers interested in improved methods for the quantification of local scale emissions which affect air quality and human health. Mapping agricultural burned areas accurately, precisely and reliably, with methods that can be applied globally, is difficult because of the spectral and temporal characteristics of agricultural regions and prescribed cropland fires. These challenges have not been fully addressed by the scientific literature. Chapter 1 of this thesis presents an extensive literature review on the methods currently used for agricultural burned area mapping. Chapter 2 presents original research on the spectral characterization of agricultural burned areas, using field data and mixture models to analyze the response of spectral indices to the changes induced by fire and agricultural practices. The conclusions summarize the significance of the presented research for understanding the potential and limits of satellite data for agricultural burned area monitoring, and outline the directions for future work.

  20. Identifying potential solar power generation sites using satellite apt images

    Science.gov (United States)

    Fawz-Ul-Haq, K. R.; Siddiqui, Z. R.

    1994-01-01

    In this paper, satellite APT images have been used to study cloud-cover over Pakistan, so as to determine those areas which have the least frequency of cloudiness. Such areas are likely to receive maximum insolation, and have been shown on a contour map of Pakistan. It is observed that more than half of Pakistan is highly sunny, and has many promising areas for establishing large scale solar electric power generation stations. It is further observed that, some of the productive mineral-rich areas in remote parts, such as Chagai, are highly cloud-free, therefore, it may be possible to meet their mining needs through solar energy. Thus Pakistan, on the threshold of industrialization, has high prospects of obtaining `clean' energy, free of greenhouse gases.

  1. Mapping Neglected Swimming Pools from Satellite Data for Urban Vector Control

    Science.gov (United States)

    Barker, C. M.; Melton, F. S.; Reisen, W. K.

    2010-12-01

    Neglected swimming pools provide suitable breeding habit for mosquitoes, can contain thousands of mosquito larvae, and present both a significant nuisance and public health risk due to their inherent proximity to urban and suburban populations. The rapid increase and sustained rate of foreclosures in California associated with the recent recession presents a challenge for vector control districts seeking to identify, treat, and monitor neglected pools. Commercial high resolution satellite imagery offers some promise for mapping potential neglected pools, and for mapping pools for which routine maintenance has been reestablished. We present progress on unsupervised classification techniques for mapping both neglected pools and clean pools using high resolution commercial satellite data and discuss the potential uses and limitations of this data source in support of vector control efforts. An unsupervised classification scheme that utilizes image segmentation, band thresholds, and a change detection approach was implemented for sample regions in Coachella Valley, CA and the greater Los Angeles area. Comparison with field data collected by vector control personal was used to assess the accuracy of the estimates. The results suggest that the current system may provide some utility for early detection, or cost effective and time efficient annual monitoring, but additional work is required to address spectral and spatial limitations of current commercial satellite sensors for this purpose.

  2. Assessing Usefulness of High-Resolution Satellite Imagery (HRSI) for Re-Survey of Cadastral Maps

    Science.gov (United States)

    Rao, S. S.; Sharma, J. R.; Rajashekar, S. S.; Rao, D. S. P.; Arepalli, A.; Arora, V.; Kuldeep; Singh, R. P.; Kanaparthi, M.

    2014-11-01

    The Government of India has initiated "National Land Records Modernization Programme (NLRMP)" with emphasis to modernize management of land records, minimize scope of land/property disputes, enhance transparency in the land records maintenance system, and facilitate moving eventually towards guaranteed conclusive titles to immovable properties in the country. One of the major components of the programme is survey/re-survey and updating of all survey and settlement records including creation of original cadastral records wherever necessary. The use of ETS/GPS, Aerial or High Resolution Satellite Images (HRSI) and hybrid method of images are suggested for re-survey in the guidelines. The emerging new satellite technologies enabling earth observation at a spatial resolution of 1.0m or 0.5m or even 0.41m have brought revolutionary changes in the field of cadastral survey. The highresolution satellite imagery (HRSI) is showing its usefulness for cadastral surveys in terms of clear identification of parcel boundaries and other cultural features due to which traditional cadastre and land registration systems have been undergoing major changes worldwide. In the present research study, cadastral maps are derived from ETS/GPS, HRSI of 1.0m and 0.5m and used for comparison. The differences in areas, perimeter and position of parcels derived from HRSI are compared vis-a-vis ETS/GPS boundaries. An assessment has been made on the usefulness of HRSI for re-survey of cadastral maps vis-a-vis conventional ground survey.

  3. Building damage scale proposal from VHR satellite image

    Science.gov (United States)

    Sandu, Constantin; Giulio Tonolo, Fabio; Cotrufo, Silvana; Boccardo, Piero

    2017-04-01

    Natural hazards have a huge impact in terms of economic losses, affected and killed people. Current exploitation of remote sensed images play a fundamental role in the delineation of damages generated by catastrophic events. Institutions like the United Nations and the European Commission designed services that provide information about the impact of disasters rapidly. One of the approach currently used to carry out the damage assessment is based on very high resolution remote sensing imagery (including both aerial and satellite platforms). One of the main focus of the responders, especially in case of events like earthquakes, is on buildings and infrastructures. As far as the buildings are concerned, to date international standard guidelines that provide essential information on how to assess building damages using VHR images still does not exist. The aim of this study is to develop a building damage scale tailored for analyses based on VHR vertical imagery and to propose a standard for the related interpretation guidelines. The task is carried out by comparing the current scales used for damage assessment by the main satellite based emergency mapping services. The study will analyze the datasets produced after the Ecuador (April 2016) and Central Italy(August and October 2016) earthquakes. The results suggest that by using VHR remotely sensed images it is not possible to directly use damage classification scales addressing structural damages (e.g the 5 grades proposed by EMS-98). A fine-tuning of existing damage classes is therefore required and the adoption of an internationally agreed standard should be encouraged, to streamline the use of SEM products generated by different services.

  4. Triple Linear-array Imaging Geometry Model of ZiYuan-3 Surveying Satellite and its Validation

    Directory of Open Access Journals (Sweden)

    TANG Xinming

    2012-04-01

    Full Text Available The ZiYuan-3 (ZY-3 surveying satellite is the first civilian high-resolution stereo mapping satellite of China. Its objective is oriented to plot the 1:50,000 and 1:25,000 topographic maps. Comparing with foreign commercial mapping satellite imagery, the establishment of our own imaging geometry model is the core technical problem for different products and various applications of ZY-3 surveying satellite. This paper analyses the key problem on precision geometry processing based on the overall design, and proposes the ZY-3 Surveying satellite imaging geometry model with the technology of virtual CCD line-array imaging. In addition, this paper utilizes the first orbit imagery of ZY-3 satellite with coverage of the region of Dalian, and produces forward, backward and nadir cameras calibration products. Different ground control points are selected for the block adjustment experiment, and the Digital Surface Model (DSM, Digital Ortho Map (DOM are generated. The accuracy is validated by check points. It can be seen from the experiment that the planar and vertical accuracy are better than 3 meters and 2 meters, respectively. The experiment demonstrates the effectiveness of ZY-3 surveying satellite imaging geometry model

  5. Decision Fusion Based on Hyperspectral and Multispectral Satellite Imagery for Accurate Forest Species Mapping

    Directory of Open Access Journals (Sweden)

    Dimitris G. Stavrakoudis

    2014-07-01

    Full Text Available This study investigates the effectiveness of combining multispectral very high resolution (VHR and hyperspectral satellite imagery through a decision fusion approach, for accurate forest species mapping. Initially, two fuzzy classifications are conducted, one for each satellite image, using a fuzzy output support vector machine (SVM. The classification result from the hyperspectral image is then resampled to the multispectral’s spatial resolution and the two sources are combined using a simple yet efficient fusion operator. Thus, the complementary information provided from the two sources is effectively exploited, without having to resort to computationally demanding and time-consuming typical data fusion or vector stacking approaches. The effectiveness of the proposed methodology is validated in a complex Mediterranean forest landscape, comprising spectrally similar and spatially intermingled species. The decision fusion scheme resulted in an accuracy increase of 8% compared to the classification using only the multispectral imagery, whereas the increase was even higher compared to the classification using only the hyperspectral satellite image. Perhaps most importantly, its accuracy was significantly higher than alternative multisource fusion approaches, although the latter are characterized by much higher computation, storage, and time requirements.

  6. New false color mapping for image fusion

    NARCIS (Netherlands)

    Toet, A.; Walraven, J.

    1996-01-01

    A pixel based colour mapping algorithm is presented that produces a fused false colour rendering of two gray level images representing different sensor modalities. The result-ing fused false colour images have a higher information content than each of the original images and retain sensor-specific i

  7. New false color mapping for image fusion

    NARCIS (Netherlands)

    Toet, A.; Walraven, J.

    1996-01-01

    A pixel based colour mapping algorithm is presented that produces a fused false colour rendering of two gray level images representing different sensor modalities. The result-ing fused false colour images have a higher information content than each of the original images and retain sensor-specific i

  8. Nonreference Medical Image Edge Map Measure

    Directory of Open Access Journals (Sweden)

    Karen Panetta

    2014-01-01

    Full Text Available Edge detection is a key step in medical image processing. It is widely used to extract features, perform segmentation, and further assist in diagnosis. A poor quality edge map can result in false alarms and misses in cancer detection algorithms. Therefore, it is necessary to have a reliable edge measure to assist in selecting the optimal edge map. Existing reference based edge measures require a ground truth edge map to evaluate the similarity between the generated edge map and the ground truth. However, the ground truth images are not available for medical images. Therefore, a nonreference edge measure is ideal for medical image processing applications. In this paper, a nonreference reconstruction based edge map evaluation (NREM is proposed. The theoretical basis is that a good edge map keeps the structure and details of the original image thus would yield a good reconstructed image. The NREM is based on comparing the similarity between the reconstructed image with the original image using this concept. The edge measure is used for selecting the optimal edge detection algorithm and optimal parameters for the algorithm. Experimental results show that the quantitative evaluations given by the edge measure have good correlations with human visual analysis.

  9. Image Clustering Method Based on Density Maps Derived from Self-Organizing Mapping: SOM

    Directory of Open Access Journals (Sweden)

    Kohei Arai

    2012-07-01

    Full Text Available A new method for image clustering with density maps derived from Self-Organizing Maps (SOM is proposed together with a clarification of learning processes during a construction of clusters. It is found that the proposed SOM based image clustering method shows much better clustered result for both simulation and real satellite imagery data. It is also found that the separability among clusters of the proposed method is 16% longer than the existing k-mean clustering. It is also found that the separability among clusters of the proposed method is 16% longer than the existing k-mean clustering. In accordance with the experimental results with Landsat-5 TM image, it takes more than 20000 of iteration for convergence of the SOM learning processes.

  10. Satellite image eavesdropping: a multidisciplinary science education project

    Energy Technology Data Exchange (ETDEWEB)

    Friedt, Jean-Michel [Association Projet Aurore, UFR-ST La Bouloie, 16, route de Gray, 25030 Besancon Cedex (France)

    2005-11-01

    Amateur reception of satellite images gathers a wide number of concepts and technologies which makes it attractive as an educational tool. We here introduce the reception of images emitted from NOAA series low-altitude Earth-orbiting satellites. We tackle various issues including the identification and prediction of the pass time of visible satellites, the building of the radio-frequency receiver and antenna after modelling their radiation pattern, and then the demodulation of the resulting audio signal for finally displaying an image of the Earth as seen from space.

  11. Satellite image time series simulation for environmental monitoring

    Science.gov (United States)

    Guo, Tao

    2014-11-01

    The performance of environmental monitoring heavily depends on the availability of consecutive observation data and it turns out an increasing demand in remote sensing community for satellite image data in the sufficient resolution with respect to both spatial and temporal requirements, which appear to be conflictive and hard to tune tradeoffs. Multiple constellations could be a solution if without concerning cost, and thus it is so far interesting but very challenging to develop a method which can simultaneously improve both spatial and temporal details. There are some research efforts to deal with the problem from various aspects, a type of approaches is to enhance the spatial resolution using techniques of super resolution, pan-sharpen etc. which can produce good visual effects, but mostly cannot preserve spectral signatures and result in losing analytical value. Another type is to fill temporal frequency gaps by adopting time interpolation, which actually doesn't increase informative context at all. In this paper we presented a novel method to generate satellite images in higher spatial and temporal details, which further enables satellite image time series simulation. Our method starts with a pair of high-low resolution data set, and then a spatial registration is done by introducing LDA model to map high and low resolution pixels correspondingly. Afterwards, temporal change information is captured through a comparison of low resolution time series data, and the temporal change is then projected onto high resolution data plane and assigned to each high resolution pixel referring the predefined temporal change patterns of each type of ground objects to generate a simulated high resolution data. A preliminary experiment shows that our method can simulate a high resolution data with a good accuracy. We consider the contribution of our method is to enable timely monitoring of temporal changes through analysis of low resolution images time series only, and usage of

  12. High spatial resolution mapping of malaria transmission risk in the Gambia, west Africa, using LANDSAT TM satellite imagery.

    Science.gov (United States)

    Bøgh, Claus; Lindsay, Steven W; Clarke, Siân E; Dean, Andy; Jawara, Musa; Pinder, Margaret; Thomas, Christopher J

    2007-05-01

    Understanding local variability in malaria transmission risk is critically important when designing intervention or vaccine trials. Using a combination of field data, satellite image analysis, and GIS modeling, we developed a high-resolution map of malaria entomological inoculation rates (EIR) in The Gambia, West Africa. The analyses are based on the variation in exposure to malaria parasites experienced in 48 villages in 1996 and 21 villages in 1997. The entomological inoculation rate (EIR) varied from 0 to 166 infective bites per person per rainy season. Detailed field surveys identified the major Anopheles gambiae s.l. breeding habitats. These habitats were mapped by classification of a LANDSAT TM satellite image with an overall accuracy of 85%. Village EIRs decreased as a power function based on the breeding areas size and proximity. We use this relationship and the breeding habitats to map the variation in EIR over the entire 2500-km(2) study area.

  13. Digital image encryption with chaotic map lattices

    Institute of Scientific and Technical Information of China (English)

    Sun Fu-Yan; Lü Zong-Wang

    2011-01-01

    This paper proposes a secure approach for encryption and decryption of digital images with chaotic map lattices.In the proposed encryption process, eight different types of operations are used to encrypt the pixels of an image and one of them will be used for particular pixels decided by the outcome of the chaotic map lattices. To make the cipher more robust against any attacks, the secret key is modified after encrypting each block of sixteen pixels of the image.The experimental results and security analysis show that the proposed image encryption scheme achieves high security and efficiency.

  14. Velocity estimation of an airplane through a single satellite image

    Institute of Scientific and Technical Information of China (English)

    Zhuxin Zhao; Gongjian Wen; Bingwei Hui; Deren Li

    2012-01-01

    The motion information of a moving target can be recorded in a single image by a push-broom satellite. A push-broom satellite image is composed of many image lines sensed at different time instants. A method to estimate the velocity of a flying airplane from a single image based on the imagery model of the linear push-broom sensor is proposed. Some key points on the high-resolution image of the plane are chosen to determine the velocity (speed and direction). The performance of the method is tested and verified by experiments using a WorldView-1 image.%The motion information of a moving target can be recorded in a single image by a push-broom satellite.A push-broom satellite image is composed of many image lines sensed at different time instants.A method to estimate the velocity of a flying airplane from a single image based on the imagery model of the linear push-broom sensor is proposed.Some key points on the high-resolution image of the plane are chosen to determine the velocity (speed and direction).The performance of the method is tested and verified by experiments using a WorldView-1 image.

  15. Satellite image collection modeling for large area hazard emergency response

    Science.gov (United States)

    Liu, Shufan; Hodgson, Michael E.

    2016-08-01

    Timely collection of critical hazard information is the key to intelligent and effective hazard emergency response decisions. Satellite remote sensing imagery provides an effective way to collect critical information. Natural hazards, however, often have large impact areas - larger than a single satellite scene. Additionally, the hazard impact area may be discontinuous, particularly in flooding or tornado hazard events. In this paper, a spatial optimization model is proposed to solve the large area satellite image acquisition planning problem in the context of hazard emergency response. In the model, a large hazard impact area is represented as multiple polygons and image collection priorities for different portion of impact area are addressed. The optimization problem is solved with an exact algorithm. Application results demonstrate that the proposed method can address the satellite image acquisition planning problem. A spatial decision support system supporting the optimization model was developed. Several examples of image acquisition problems are used to demonstrate the complexity of the problem and derive optimized solutions.

  16. Landsat TM and ETM+ Kansas Satellite Image Database (KSID)

    Data.gov (United States)

    Kansas Data Access and Support Center — The Kansas Satellite Image Database (KSID):2000-2001 consists of terrain-corrected, precision rectified spring, summer, and fall Landsat 5 Thematic Mapper (TM) and...

  17. Kansas Satellite Image Database (KSID) 2004-2005

    Data.gov (United States)

    Kansas Data Access and Support Center — The Kansas Satellite Image Database (KSID) 2004-2005 consists of terrain-corrected, precision rectified spring, summer, and fall Landsat 5 Thematic Mapper (TM)...

  18. Satellite Map of Port-au-Prince, Haiti-2010-Natural Color

    Science.gov (United States)

    Cole, Christopher J.; Sloan, Jeff

    2010-01-01

    The U.S. Geological Survey produced 1:24,000-scale post-earthquake image base maps incorporating high- and medium-resolution remotely sensed imagery following the 7.0 magnitude earthquake near the capital city of Port au Prince, Haiti, on January 12, 2010. Commercial 2.4-meter multispectral QuickBird imagery was acquired by DigitalGlobe on January 15, 2010, following the initial earthquake. Ten-meter multispectral ALOS AVNIR-2 imagery was collected by the Japanese Space Agency (JAXA) on January 12, 2010. These data were acquired under the Remote Sensing International Charter, a global team of space and satellite agencies that provide timely imagery in support of emergency response efforts worldwide. The images shown on this map were employed to support earthquake response efforts, specifically for use in determining ground deformation, damage assessment, and emergency management decisions. The raw, unprocessed imagery was geo-corrected, mosaicked, and reproduced onto a cartographic 1:24,000-scale base map. These maps are intended to provide a temporally current representation of post-earthquake ground conditions, which may be of use to decision makers and to the general public.

  19. Spatial Cloud Detection and Retrieval System for Satellite Images

    Directory of Open Access Journals (Sweden)

    Ayman Nasr

    2013-01-01

    Full Text Available In last the decade we witnessed a large increase in data generated by earth observing satellites. Hence, intelligent processing of the huge amount of data received by hundreds of earth receiving stations, with specific satellite image oriented approaches, presents itself as a pressing need. One of the most important steps in earlier stages of satellite image processing is cloud detection. Satellite images having a large percentage of cloud cannot be used in further analysis. While there are many approaches that deal with different semantic meaning, there are rarely approaches that deal specifically with cloud detection and retrieval. In this paper we introduce a novel approach that spatially detect and retrieve clouds in satellite images using their unique properties .Our approach is developed as spatial cloud detection and retrieval system (SCDRS that introduce a complete framework for specific semantic retrieval system. It uses a Query by polygon (QBP paradigm for the content of interest instead of using the more conventional rectangular query by image approach. First, we extract features from the satellite images using multiple tile sizes using spatial and textural properties of cloud regions. Second, we retrieve our tiles using a parametric statistical approach within a multilevel refinement process. Our approach has been experimentally validated against the conventional ones yielding enhanced precision and recall rates in the same time it gives more precise detection of cloud coverage regions.

  20. Satellite mapping of areas evaporating river and groundwater flows

    Science.gov (United States)

    van Dijk, Albert I. J. M.; Guerschman, Juan Pablo; Warren, Garth A.

    2010-05-01

    The 500m resolution CSIRO MODIS reflectance scaling evapotranspiration product (CMRSET) was combined with a gridded rainfall product to determine where in the landscape evapotranspiration exceeds rainfall over longer time periods, and by implication, where lateral inflows of river or groundwater are received and evaporated. This procedure produces valuable information for hydrological applications, including the spatial distribution of water use, the temporal distribution, and the absolute magnitude of (net) evaporation across the landscape. Practical uses that have been tested in Australia include evaluating the realism of simulated water use components in river models, attributing apparent losses from river reaches to processes and spatial locations, and identifying river and groundwater dependent ecosystems. Satellite observed inundation patterns have been used to separate surface water from groundwater use. Higher resolution Landsat imagery has been used for image enhancement, allowing smaller irrigation and wetland areas to be detected. Satellite-based land use classification helps to separate agricultural from environmental water use. The information produced is used in the Australian Water Resources Assessment (AWRA) system under development by CSIRO and the Australian Bureau of Meteorology to underpin operational delivery of water resources information.

  1. The Advanced X-ray Imaging Satellite (AXIS)

    Science.gov (United States)

    Reynolds, Christopher S.; Mushotzky, Richard

    2017-08-01

    The Advanced X-ray Imaging Satellite (AXIS) will follow in the footsteps of the spectacularly successful Chandra X-ray Observatory with similar or higher angular resolution and an order of magnitude more collecting area in the 0.3-10keV band. These capabilities will enable major advances in many of the most active areas of astrophysics, including (i) mapping event horizon scale structure in AGN accretion disks and the determination of supermassive black hole (SMBH) spins through monitoring of gravitationally-microlensed quasars; (ii) dramatically deepening our understanding of AGN feedback in galaxies and galaxy clusters out to high-z through the direct imaging of AGN winds and the interaction of jets with the hot interstellar/intracluster medium; (iii) understanding the fueling of AGN by probing hot flows inside of the SMBH sphere of influence; (iv) obtaining geometric distance measurements using dust scattering halos. With a nominal 2028 launch, AXIS will be enormously synergistic with LSST, ALMA, WFIRST and ATHENA, and will be a valuable precursor to Lynx. AXIS is enabled by breakthroughs in the construction of light-weight X-ray optics from mono-crystalline silicon blocks, building on recent developments in the semiconductor industry. Here, we describe the straw-man concept for AXIS, some of the high profile science that this observatory will address, and how you can become involved.

  2. Mapping plastic greenhouse with medium spatial resolution satellite data: Development of a new spectral index

    Science.gov (United States)

    Yang, Dedi; Chen, Jin; Zhou, Yuan; Chen, Xiang; Chen, Xuehong; Cao, Xin

    2017-06-01

    Plastic greenhouses (PGs) are an important agriculture development technique to protect and control the growing environment for food crops. The extensive use of PGs can change the agriculture landscape and affects the local environment. Accurately mapping and estimating the coverage of PGs is a necessity to the strategic planning of modern agriculture. Unfortunately, PG mapping over large areas is methodologically challenging, as the medium spatial resolution satellite imagery (such as Landsat data) used for analysis lacks spatial details and spectral variations. To fill the gap, the paper proposes a new plastic greenhouse index (PGI) based on the spectral, sensitivity, and separability analysis of PGs using medium spatial resolution images. In the context of the Landsat Enhanced Thematic Mapper Plus (ETM+) imagery, the paper examines the effectiveness and capability of the proposed PGI. The results indicate that PGs in Landsat ETM+ image can be successfully detected by the PGI if the PG fraction is greater than 12% in a mixed pixel. A kappa coefficient of 0.83 and overall accuracy of 91.2% were achieved when applying the proposed PGI in the case of Weifang District, Shandong, China. These results show that the proposed index can be applied to identifying transparent PGs in atmospheric corrected Landsat image and has the potential for the digital mapping of plastic greenhouse coverage over a large area.

  3. Multispectral Image Road Extraction Based Upon Automated Map Conflation

    Science.gov (United States)

    Chen, Bin

    Road network extraction from remotely sensed imagery enables many important and diverse applications such as vehicle tracking, drone navigation, and intelligent transportation studies. There are, however, a number of challenges to road detection from an image. Road pavement material, width, direction, and topology vary across a scene. Complete or partial occlusions caused by nearby buildings, trees, and the shadows cast by them, make maintaining road connectivity difficult. The problems posed by occlusions are exacerbated with the increasing use of oblique imagery from aerial and satellite platforms. Further, common objects such as rooftops and parking lots are made of materials similar or identical to road pavements. This problem of common materials is a classic case of a single land cover material existing for different land use scenarios. This work addresses these problems in road extraction from geo-referenced imagery by leveraging the OpenStreetMap digital road map to guide image-based road extraction. The crowd-sourced cartography has the advantages of worldwide coverage that is constantly updated. The derived road vectors follow only roads and so can serve to guide image-based road extraction with minimal confusion from occlusions and changes in road material. On the other hand, the vector road map has no information on road widths and misalignments between the vector map and the geo-referenced image are small but nonsystematic. Properly correcting misalignment between two geospatial datasets, also known as map conflation, is an essential step. A generic framework requiring minimal human intervention is described for multispectral image road extraction and automatic road map conflation. The approach relies on the road feature generation of a binary mask and a corresponding curvilinear image. A method for generating the binary road mask from the image by applying a spectral measure is presented. The spectral measure, called anisotropy-tunable distance (ATD

  4. Thermal mapping of Hawaiian volcanoes with ASTER satellite data

    Science.gov (United States)

    Patrick, Matthew R.; Witzke, Coral-Nadine

    2011-01-01

    Thermal mapping of volcanoes is important to determine baseline thermal behavior in order to judge future thermal activity that may precede an eruption. We used cloud-free kinetic temperature images from the ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) sensor obtained between 2000 and 2010 to produce thermal maps for all five subaerial volcanoes in Hawai‘i that have had eruptions in the Holocene (Kīlauea, Mauna Loa, Hualālai, Mauna Kea, and Haleakalā). We stacked the images to provide time-averaged thermal maps, as well as to analyze temperature trends through time. Thermal areas are conspicuous at the summits and rift zones of Kīlauea and Mauna Loa, and the summit calderas of these volcanoes contain obvious arcuate, concentric linear thermal areas that probably result from channeling of rising gas along buried, historical intracaldera scarps. The only significant change in thermal activity noted in the study period is the opening of the Halema‘uma‘u vent at Kīlauea's summit in 2008. Several small thermal anomalies are coincident with pit craters on Hualālai. We suspect that these simply result from the sheltered nature of the depression, but closer inspection is warranted to determine if genuine thermal activity exists in the craters. Thermal areas were not detected on Haleakalā or Mauna Kea. The main limitation of the study is the large pixel size (90 m) of the ASTER images, which reduces our ability to detect subtle changes or to identify small, low-temperature thermal activity. This study, therefore, is meant to characterize the broad, large-scale thermal features on these volcanoes. Future work should study these thermal areas with thermal cameras and thermocouples, which have a greater ability to detect small, low-temperature thermal features.

  5. Ground mapping resolution accuracy of a scanning radiometer from a geostationary satellite.

    Science.gov (United States)

    Stremler, F G; Khalil, M A; Parent, R J

    1977-06-01

    Measures of the spatial and spatial rate (frequency) mapping of scanned visual imagery from an earth reference system to a spin-scan geostationary satellite are examined. Mapping distortions and coordinate inversions to correct for these distortions are formulated in terms of geometric transformations between earth and satellite frames of reference. Probabilistic methods are used to develop relations for obtainable mapping resolution when coordinate inversions are employed.

  6. China's Stereo Surveying And Mapping Satellite ZY-3 And Its Applications

    Institute of Scientific and Technical Information of China (English)

    Sun Chengzhi; Tang Xinming

    2009-01-01

    @@ CHINA URGENTLY NEEDS TO DEVELOP INDEPENDENT SURVEYING AND MAPPING SATELLITE Surveying and mapping is indispensable for economic and social development and widely applied in various fields in economic construction and social development. Modern surveying and mapping technology, taking satellite navigation and positioning, airborne and space remote sensing and geographical information system technologies as its core, represents a nation's science and technology development level and comprehensive state power.

  7. Chromatic Image Analysis For Quantitative Thermal Mapping

    Science.gov (United States)

    Buck, Gregory M.

    1995-01-01

    Chromatic image analysis system (CIAS) developed for use in noncontact measurements of temperatures on aerothermodynamic models in hypersonic wind tunnels. Based on concept of temperature coupled to shift in color spectrum for optical measurement. Video camera images fluorescence emitted by phosphor-coated model at two wavelengths. Temperature map of model then computed from relative brightnesses in video images of model at those wavelengths. Eliminates need for intrusive, time-consuming, contact temperature measurements by gauges, making it possible to map temperatures on complex surfaces in timely manner and at reduced cost.

  8. Shadow imaging of geosynchronous satellites: simulation, image reconstruction, and shadow prediction

    Science.gov (United States)

    Douglas, Dennis M.; Hunt, Bobby R.; Sheppard, David G.

    2016-09-01

    Shadow imaging is a technique to obtain highly resolved silhouettes of resident space objects (RSOs) which would otherwise be unattainable using conventional terrestrial based imaging approaches. This is done by post processing the measured irradiance pattern (shadow) cast onto the Earth as the RSO occults a star. The research presented here focuses on shadow imaging of geosynchronous (GEO) satellites with near stationary orbits approximately 36,000 km from the Earth. Shadows pertaining to a set of diverse observing scenarios are simulated and used as inputs to a Fresnel based phase retrieval algorithm. Spatial resolution limits are evaluated and correlated to signal to noise (SNR) metrics. Resolvable feature sizes of less than 1 m are shown to be readily achievable using foreseeable observing scenarios. Initial output from a shadow prediction tool indicates that there are, on average, over 1000 shadows on the Earth on any given time from a single GEO satellite for stars brighter than mv=10. Shadow ground track uncertainties are correlated to stellar astrometric errors. Global and localized shadow track maps are presented demonstrating a high feasibility for future shadow collections.

  9. Integrated approach using data mining-based decision tree and object-based image analysis for high-resolution urban mapping of WorldView-2 satellite sensor data

    Science.gov (United States)

    Hamedianfar, Alireza; Shafri, Helmi Zulhaidi Mohd

    2016-04-01

    This paper integrates decision tree-based data mining (DM) and object-based image analysis (OBIA) to provide a transferable model for the detailed characterization of urban land-cover classes using WorldView-2 (WV-2) satellite images. Many articles have been published on OBIA in recent years based on DM for different applications. However, less attention has been paid to the generation of a transferable model for characterizing detailed urban land cover features. Three subsets of WV-2 images were used in this paper to generate transferable OBIA rule-sets. Many features were explored by using a DM algorithm, which created the classification rules as a decision tree (DT) structure from the first study area. The developed DT algorithm was applied to object-based classifications in the first study area. After this process, we validated the capability and transferability of the classification rules into second and third subsets. Detailed ground truth samples were collected to assess the classification results. The first, second, and third study areas achieved 88%, 85%, and 85% overall accuracies, respectively. Results from the investigation indicate that DM was an efficient method to provide the optimal and transferable classification rules for OBIA, which accelerates the rule-sets creation stage in the OBIA classification domain.

  10. Determination of the Impact of Urbanization on Agricultural Lands using Multi-temporal Satellite Sensor Images

    Science.gov (United States)

    Kaya, S.; Alganci, U.; Sertel, E.; Ustundag, B.

    2015-12-01

    Throughout the history, agricultural activities have been performed close to urban areas. Main reason behind this phenomenon is the need of fast marketing of the agricultural production to urban residents and financial provision. Thus, using the areas nearby cities for agricultural activities brings out advantage of easy transportation of productions and fast marketing. For decades, heavy migration to cities has directly and negatively affected natural grasslands, forests and agricultural lands. This pressure has caused agricultural lands to be changed into urban areas. Dense urbanization causes increase in impervious surfaces, heat islands and many other problems in addition to destruction of agricultural lands. Considering the negative impacts of urbanization on agricultural lands and natural resources, a periodic monitoring of these changes becomes indisputably important. At this point, satellite images are known to be good data sources for land cover / use change monitoring with their fast data acquisition, large area coverages and temporal resolution properties. Classification of the satellite images provides thematic the land cover / use maps of the earth surface and changes can be determined with GIS based analysis multi-temporal maps. In this study, effects of heavy urbanization over agricultural lands in Istanbul, metropolitan city of Turkey, were investigated with use of multi-temporal Landsat TM satellite images acquired between 1984 and 2011. Images were geometrically registered to each other and classified using supervised maximum likelihood classification algorithm. Resulting thematic maps were exported to GIS environment and destructed agricultural lands by urbanization were determined using spatial analysis.

  11. SHADOW DETECTION FROM VERY HIGH RESOLUTON SATELLITE IMAGE USING GRABCUT SEGMENTATION AND RATIO-BAND ALGORITHMS

    Directory of Open Access Journals (Sweden)

    N. M. S. M. Kadhim

    2015-03-01

    Full Text Available Very-High-Resolution (VHR satellite imagery is a powerful source of data for detecting and extracting information about urban constructions. Shadow in the VHR satellite imageries provides vital information on urban construction forms, illumination direction, and the spatial distribution of the objects that can help to further understanding of the built environment. However, to extract shadows, the automated detection of shadows from images must be accurate. This paper reviews current automatic approaches that have been used for shadow detection from VHR satellite images and comprises two main parts. In the first part, shadow concepts are presented in terms of shadow appearance in the VHR satellite imageries, current shadow detection methods, and the usefulness of shadow detection in urban environments. In the second part, we adopted two approaches which are considered current state-of-the-art shadow detection, and segmentation algorithms using WorldView-3 and Quickbird images. In the first approach, the ratios between the NIR and visible bands were computed on a pixel-by-pixel basis, which allows for disambiguation between shadows and dark objects. To obtain an accurate shadow candidate map, we further refine the shadow map after applying the ratio algorithm on the Quickbird image. The second selected approach is the GrabCut segmentation approach for examining its performance in detecting the shadow regions of urban objects using the true colour image from WorldView-3. Further refinement was applied to attain a segmented shadow map. Although the detection of shadow regions is a very difficult task when they are derived from a VHR satellite image that comprises a visible spectrum range (RGB true colour, the results demonstrate that the detection of shadow regions in the WorldView-3 image is a reasonable separation from other objects by applying the GrabCut algorithm. In addition, the derived shadow map from the Quickbird image indicates

  12. Mapping snow depth in open alpine terrain from stereo satellite imagery

    Science.gov (United States)

    Marti, R.; Gascoin, S.; Berthier, E.; de Pinel, M.; Houet, T.; Laffly, D.

    2016-07-01

    To date, there is no definitive approach to map snow depth in mountainous areas from spaceborne sensors. Here, we examine the potential of very-high-resolution (VHR) optical stereo satellites to this purpose. Two triplets of 0.70 m resolution images were acquired by the Pléiades satellite over an open alpine catchment (14.5 km2) under snow-free and snow-covered conditions. The open-source software Ame's Stereo Pipeline (ASP) was used to match the stereo pairs without ground control points to generate raw photogrammetric clouds and to convert them into high-resolution digital elevation models (DEMs) at 1, 2, and 4 m resolutions. The DEM differences (dDEMs) were computed after 3-D coregistration, including a correction of a -0.48 m vertical bias. The bias-corrected dDEM maps were compared to 451 snow-probe measurements. The results show a decimetric accuracy and precision in the Pléiades-derived snow depths. The median of the residuals is -0.16 m, with a standard deviation (SD) of 0.58 m at a pixel size of 2 m. We compared the 2 m Pléiades dDEM to a 2 m dDEM that was based on a winged unmanned aircraft vehicle (UAV) photogrammetric survey that was performed on the same winter date over a portion of the catchment (3.1 km2). The UAV-derived snow depth map exhibits the same patterns as the Pléiades-derived snow map, with a median of -0.11 m and a SD of 0.62 m when compared to the snow-probe measurements. The Pléiades images benefit from a very broad radiometric range (12 bits), allowing a high correlation success rate over the snow-covered areas. This study demonstrates the value of VHR stereo satellite imagery to map snow depth in remote mountainous areas even when no field data are available.

  13. Updating Object for GIS Database Information Using High Resolution Satellite Images: a Case Study Zonguldak

    Science.gov (United States)

    Alkan, M.; Arca, D.; Bayik, Ç.; Marangoz, A. M.

    2011-09-01

    Nowadays Geographic Information Systems (GIS) uses Remote Sensing (RS) data for a lot of applications. One of the application areas is the updating of the GIS database using high resolution imagery. In this context high resolution satellite imagery data is very important for many applications areas today's and future. And also, high resolution satellite imagery data will be used in many applications for different purposes. Information systems needs to high resolution imagery data for updating. Updating is very important component for the any of the GIS systems. One of this area will be updated and kept alive GIS database information. High resolution satellite imagery is used with different data base which serve map information via internet and different aims of information systems applications in future topographic and cartographic information systems will very important in our country in this sense use of the satellite images will be unavoidable. In this study explain to how is acquired to satellite images and how is use this images in information systems for object and roads. Firstly, pan-sharpened two of the IKONOS's images have been produced by fusion of high resolution PAN and MS images using PCI Geomatica v9.1 software package. Automatic object extraction has been made using eCognition v4.0.6. On the other hand, these objects have been manually digitized from high resolution images using ArcGIS v9.3. software package. Application section of in this study, satellite images data will be compared each other and GIS objects and road database. It is also determined which data is useful in Geographic Information Systems. Finally, this article explains that integration of remote sensing technology and GIS applications.

  14. Very high resolution satellite data: New challenges in image analysis

    Digital Repository Service at National Institute of Oceanography (India)

    Sathe, P.V.; Muraleedharan, P.M.

    with the exception that a ground-based view covers the entire optical range from 400 to 700 nm while satellite images will be wavelength-specific. Although the images will not surpass details observed by a human eye, they will, in principle, be comparable with aerial...

  15. Flood mapping using VHR satellite imagery: a comparison between different classification approaches

    Science.gov (United States)

    Franci, Francesca; Boccardo, Piero; Mandanici, Emanuele; Roveri, Elena; Bitelli, Gabriele

    2016-10-01

    Various regions in Europe have suffered from severe flooding over the last decades. Flood disasters often have a broad extent and a high frequency. They are considered the most devastating natural hazards because of the tremendous fatalities, injuries, property damages, economic and social disruption that they cause. In this context, Earth Observation techniques have become a key tool for flood risk and damage assessment. In particular, remote sensing facilitates flood surveying, providing valuable information, e.g. flood occurrence, intensity and progress of flood inundation, spurs and embankments affected/threatened. The present work aims to investigate the use of Very High Resolution satellite imagery for mapping flood-affected areas. The case study is the November 2013 flood event which occurred in Sardinia region (Italy), affecting a total of 2,700 people and killing 18 persons. The investigated zone extends for 28 km2 along the Posada river, from the Maccheronis dam to the mouth in the Tyrrhenian sea. A post-event SPOT6 image was processed by means of different classification methods, in order to produce the flood map of the analysed area. The unsupervised classification algorithm ISODATA was tested. A pixel-based supervised technique was applied using the Maximum Likelihood algorithm; moreover, the SPOT 6 image was processed by means of object-oriented approaches. The produced flood maps were compared among each other and with an independent data source, in order to evaluate the performance of each method, also in terms of time demand.

  16. Application of Multispectral Satellite Data for Geological Mapping in Antarctic Environments

    Science.gov (United States)

    Pour, A. B.; Hashim, M.; Hong, J. K.

    2016-09-01

    Remote sensing imagery is capable to provide a solution to overcome the difficulties associated with geological field mapping in the Antarctic. Advanced optical and radar satellite imagery is the most applicable tool for mapping and identification of inaccessible regions in Antarctic. Consequently, an improved scientific research using remote sensing technology would be essential to provide new and more complete lithological and structural data to fill the numerous knowledge gaps on Antarctica's geology. In this investigation, Oscar coast area in Graham Land, Antarctic Peninsula (AP) was selected to conduct a remote sensing study using Landsat-7 Thematic Mapper (TM), Landsat-8 and the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data. Contrast-enhanced Red-Green-Blue (RGB) composites, band ratios and Relative Band Depth (RBD) image processing techniques were applied to Landsat-8 and ASTER dataset for establishing the spectral separation of the main lithologic groups exposed in the study area. The outcomes of this investigation demonstrated the applications of SWIR and TIR bands of the multispectral remote sensing datasets to identify lithological units and producing geological maps with suitable accuracy of ice-free rock regions in the Antarctic Peninsula. The results could be extended to map coverage of non-investigated regions further east and validated previously inferred geological observations concerning other rocks and mineral deposits throughout the Antarctica.

  17. APPLICATION OF MULTISPECTRAL SATELLITE DATA FOR GEOLOGICAL MAPPING IN ANTARCTIC ENVIRONMENTS

    Directory of Open Access Journals (Sweden)

    A. B. Pour

    2016-09-01

    Full Text Available Remote sensing imagery is capable to provide a solution to overcome the difficulties associated with geological field mapping in the Antarctic. Advanced optical and radar satellite imagery is the most applicable tool for mapping and identification of inaccessible regions in Antarctic. Consequently, an improved scientific research using remote sensing technology would be essential to provide new and more complete lithological and structural data to fill the numerous knowledge gaps on Antarctica’s geology. In this investigation, Oscar coast area in Graham Land, Antarctic Peninsula (AP was selected to conduct a remote sensing study using Landsat-7 Thematic Mapper (TM, Landsat-8 and the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER data. Contrast-enhanced Red-Green-Blue (RGB composites, band ratios and Relative Band Depth (RBD image processing techniques were applied to Landsat-8 and ASTER dataset for establishing the spectral separation of the main lithologic groups exposed in the study area. The outcomes of this investigation demonstrated the applications of SWIR and TIR bands of the multispectral remote sensing datasets to identify lithological units and producing geological maps with suitable accuracy of ice-free rock regions in the Antarctic Peninsula. The results could be extended to map coverage of non-investigated regions further east and validated previously inferred geological observations concerning other rocks and mineral deposits throughout the Antarctica.

  18. Algorithms of Expert Classification Applied in Quickbird Satellite Images for Land Use Mapping Algoritmos de Clasificación Experta Aplicados en Imágenes Satelitales Quickbird para el Mapeo de la Cobertura de la Tierra

    Directory of Open Access Journals (Sweden)

    Alberto Jesús Perea

    2009-09-01

    Full Text Available The objective of this paper was the development of a methodology for the classification of digital aerial images, which, with the aid of object-based classification and the Normalized Difference Vegetation Index (NDVI, can quantify agricultural areas, by using algorithms of expert classification, with the aim of improving the final results of thematic classifications. QuickBird satellite images and data of 2532 plots in Hinojosa del Duque, Spain, were used to validate the different classifications, obtaining an overall classification accuracy of 91.9% and an excellent Kappa statistic (87.6% for the algorithm of expert classification.El objetivo del presente trabajo fue poner a punto una metodología de clasificación de imágenes de satélite, que auxiliada por la clasificación orientada a objetos y el índice de vegetación de diferencia normalizada (normalized difference vegetation index, NDVI, permita cuantificar las áreas agrícolas de la región utilizando algoritmos de clasificación experta, con vistas a mejorar los resultados finales de las clasificaciones temáticas. Se utilizaron imágenes satelitales Quickbird y datos de 2532 parcelas en Hinojosa del Duque, España, para validar las clasificaciones, consiguiendo una precisión total del 91,9% y un excelente estadístico Kappa (87,6% para el algoritmo de clasificación experta.

  19. MAP-based infrared image expansion

    Institute of Scientific and Technical Information of China (English)

    Nan Zhang; Weiqi Jin; Binghua Su; Yangyang Liu; Hua Chen

    2005-01-01

    @@ Image expansion plays a very important role in image analysis. Common methods of image expansion, such as the zero-order hold method, may generate a visual mosaic to the expanded image, linear and cubic spline interpolation may blur the image data at peripheral regions. Since infrared images have the characteristics of low contrast and low signal-to-noise ratio (SNR), the expanded images derived from common methods are not satisfactory. As shown in the analysis of the course from images with low resolution to those with high resolution, the expansion of image is found to be an ill-posed inverse problem. An image interpolation algorithm based on MAP estimation under Bayesian framework is proposed in this paper,which can effectively preserve the discontinuities in the original image. Experimental results demonstrate that the expanded images by this method are visually and quantitatively (analyzed by using the criteria of mean squared error (MSE) and mean absolute error (MAE)) superior to the images expanded by common methods of linear interpolation. Even in expansion of infrared images, this method can also give good results. An analysis about choosing regularization parameter α in this algorithm is given.

  20. Geospatial Visualization of Global Satellite Images with Vis-EROS

    Energy Technology Data Exchange (ETDEWEB)

    Standart, G. D.; Stulken, K. R.; Zhang, Xuesong; Zong, Ziliang

    2011-04-13

    The Earth Resources Observation and Science (EROS) Center of U.S. Geological Survey is currently managing and maintaining the world largest satellite images distribution system, which provides 24/7 free download service for researchers all over the globe in many areas such as Geology, Hydrology, Climate Modeling, and Earth Sciences. A large amount of geospatial data contained in satellite images maintained by EROS is generated every day. However, this data is not well utilized due to the lack of efficient data visualization tools. This software implements a method for visualizing various characteristics of the global satellite image download requests. More specifically, Keyhole Markup Language (KML) files are generated which can be loaded into an earth browser such as Google Earth. Colored rectangles associated with stored satellite scenes are painted onto the earth browser; and the color and opacity of each rectangle is varied as a function of the popularity of the corresponding satellite image. An analysis of the geospatial information obtained relative to specified time constraints provides an ability to relate image download requests to environmental, political, and social events.

  1. Spatial Mapping of NEO 2008 EV5 Using Small Satellite Formation Flying and Steresoscopic Technology

    Science.gov (United States)

    Gonzalez, Juan; Singh Derewa, Chrishma

    2016-10-01

    NASA is currently developing the first-ever robotic Asteroid Redirect Robotic Mission (ARRM) to the near-Earth asteroid 2008 EV5 with the objective to capture a multi-ton boulder from the asteroids surface and use its mass to redirect its parent into a CIS lunar orbit where astronauts will study its physical and chemical composition.A critical step towards achieving this mission is to effectively map the target asteroid, identify the candidate boulder for retrieval and characterize its critical parameters. Currently, ARRM utilizes a laser altimeter to characterize the height of the boulders and mapping for final autonomous control of the capture. The proposed Lava-Kusha mission provides the increased of stereoscopic imaging and mapping, not only the Earthward side of the asteroid which has been observed for possible landing sites, but mapping the whole asteroid. LKM will enhance the fidelity of the data collected by the laser altimeter and gather improved topographic data for future Orion missions to 2008 EV5 once in cis lunar space.LKM consists of two low cost small satellites (6U) as a part of the ARRM. They will launch with ARRM as an integrated part of the system. Once at the target, this formation of pathfinder satellites will image the mission critical boulder to ensure the system design can support its removal. LKM will conduct a series of flybys prior to ARRM's rendezvous. LKMs stereoscopic cameras will provide detailed surveys of the boulder's terrain and environment to ensure ARRM can operate safely, reach the location and interface with the boulder. The LKM attitude control and cold gas propulsion system will enable formation maintenance maneuvers for global mapping of asteroid 2008 EV5 at an altitude of 100 km to a high-spatial resolution imaging altitude of 5 km.LKM will demonstrate formation flying in deep space and the reliability of stereoscopic cameras to precisely identify a specific target and provide physical characterization of an asteroid. An

  2. Entropy-Based Block Processing for Satellite Image Registration

    Directory of Open Access Journals (Sweden)

    Ikhyun Lee

    2012-11-01

    Full Text Available Image registration is an important task in many computer vision applications such as fusion systems, 3D shape recovery and earth observation. Particularly, registering satellite images is challenging and time-consuming due to limited resources and large image size. In such scenario, state-of-the-art image registration methods such as scale-invariant feature transform (SIFT may not be suitable due to high processing time. In this paper, we propose an algorithm based on block processing via entropy to register satellite images. The performance of the proposed method is evaluated using different real images. The comparative analysis shows that it not only reduces the processing time but also enhances the accuracy.

  3. Soil moisture and evapotranspiration of wetlands vegetation habitats retrieved from satellite images

    Science.gov (United States)

    Dabrowska-Zielinska, K.; Budzynska, M.; Kowalik, W.; Turlej, K.

    2010-08-01

    The research has been carried out in Biebrza Ramsar Convention test site situated in the N-E part of Poland. Data from optical and microwave satellite images have been analysed and compared to the detailed soil-vegetation ground truth measurements conducted during the satellite overpasses. Satellite data applied for the study include: ENVISAT.ASAR, ENVISAT.MERIS, ALOS.PALSAR, ALOS.AVNIR-2, ALOS.PRISM, TERRA.ASTER, and NOAA.AVHRR. Optical images have been used for classification of wetlands vegetation habitats and vegetation surface roughness expressed by LAI. Also, heat fluxes have been calculated using NOAA.AVHRR data and meteorological data. Microwave images have been used for the assessment of soil moisture. For each of the classified wetlands vegetation habitats the relationship between soil moisture and backscattering coefficient has been examined, and the best combination of microwave variables (wave length, incidence angle, polarization) has been used for mapping and monitoring of soil moisture. The results of this study give possibility to improve models of water cycle over wetlands ecosystems by adding information about soil moisture and surface heat fluxes derived from satellite images. Such information is very essential for better protection of the European sensitive wetland ecosystems. ENVISAT and ALOS images have been obtained from ESA for AO ID 122 and AOALO.3742 projects.

  4. Flood hazard and flood risk assessment using a time series of satellite images: a case study in Namibia.

    Science.gov (United States)

    Skakun, Sergii; Kussul, Nataliia; Shelestov, Andrii; Kussul, Olga

    2014-08-01

    In this article, the use of time series of satellite imagery to flood hazard mapping and flood risk assessment is presented. Flooded areas are extracted from satellite images for the flood-prone territory, and a maximum flood extent image for each flood event is produced. These maps are further fused to determine relative frequency of inundation (RFI). The study shows that RFI values and relative water depth exhibit the same probabilistic distribution, which is confirmed by Kolmogorov-Smirnov test. The produced RFI map can be used as a flood hazard map, especially in cases when flood modeling is complicated by lack of available data and high uncertainties. The derived RFI map is further used for flood risk assessment. Efficiency of the presented approach is demonstrated for the Katima Mulilo region (Namibia). A time series of Landsat-5/7 satellite images acquired from 1989 to 2012 is processed to derive RFI map using the presented approach. The following direct damage categories are considered in the study for flood risk assessment: dwelling units, roads, health facilities, and schools. The produced flood risk map shows that the risk is distributed uniformly all over the region. The cities and villages with the highest risk are identified. The proposed approach has minimum data requirements, and RFI maps can be generated rapidly to assist rescuers and decisionmakers in case of emergencies. On the other hand, limitations include: strong dependence on the available data sets, and limitations in simulations with extrapolated water depth values.

  5. The best printing methods to print satellite images

    Directory of Open Access Journals (Sweden)

    G.A. Yousif

    2011-12-01

    In this paper different printing systems were used to print an image of SPOT-4 satellite, caver part of Sharm Elshekh area, Sinai, Egypt, on the same type of paper as much as possible, especially in the photography. This step is followed by measuring the experimental data, and analyzed colors to determine the best printing systems for satellite image printing data. The laser system is the more printing system where produce a wider range of color and highest densities of ink and access much color detail. Followed by the offset system which it recorded the best dot gain. Moreover, the study shows that it can use the advantages of each method according to the satellite image color and quantity to be produced.

  6. Vehicle Detection and Classification from High Resolution Satellite Images

    Science.gov (United States)

    Abraham, L.; Sasikumar, M.

    2014-11-01

    In the past decades satellite imagery has been used successfully for weather forecasting, geographical and geological applications. Low resolution satellite images are sufficient for these sorts of applications. But the technological developments in the field of satellite imaging provide high resolution sensors which expands its field of application. Thus the High Resolution Satellite Imagery (HRSI) proved to be a suitable alternative to aerial photogrammetric data to provide a new data source for object detection. Since the traffic rates in developing countries are enormously increasing, vehicle detection from satellite data will be a better choice for automating such systems. In this work, a novel technique for vehicle detection from the images obtained from high resolution sensors is proposed. Though we are using high resolution images, vehicles are seen only as tiny spots, difficult to distinguish from the background. But we are able to obtain a detection rate not less than 0.9. Thereafter we classify the detected vehicles into cars and trucks and find the count of them.

  7. Pre-processing Algorithm for Rectification of Geometric Distortions in Satellite Images

    Directory of Open Access Journals (Sweden)

    Narayan Panigrahi

    2011-02-01

    Full Text Available A number of algorithms have been reported to process and remove geometric distortions in satellite images. Ortho-correction, geometric error correction, radiometric error removal, etc are a few important examples. These algorithm require supplementary meta-information of the satellite images such as ground control points and correspondence, sensor orientation details, elevation profile of the terrain, etc to establish corresponding transformations. In this paper, a pre-processing algorithm has been proposed which removes systematic distortions of a satellite image and thereby removes the blank portion of the image. It is an input-to-output mapping of image pixels, where the transformation computes the coordinate of each output pixel corresponding to the input pixel of an image. The transformation is established by the exact amount of scaling, rotation and translation needed for each pixel in the input image so that the distortion induced during the recording stage is corrected.Defence Science Journal, 2011, 61(2, pp.174-179, DOI:http://dx.doi.org/10.14429/dsj.61.421

  8. Topic Modelling for Object-Based Unsupervised Classification of VHR Panchromatic Satellite Images Based on Multiscale Image Segmentation

    Directory of Open Access Journals (Sweden)

    Li Shen

    2017-08-01

    Full Text Available Image segmentation is a key prerequisite for object-based classification. However, it is often difficult, or even impossible, to determine a unique optimal segmentation scale due to the fact that various geo-objects, and even an identical geo-object, present at multiple scales in very high resolution (VHR satellite images. To address this problem, this paper presents a novel unsupervised object-based classification for VHR panchromatic satellite images using multiple segmentations via the latent Dirichlet allocation (LDA model. Firstly, multiple segmentation maps of the original satellite image are produced by means of a common multiscale segmentation technique. Then, the LDA model is utilized to learn the grayscale histogram distribution for each geo-object and the mixture distribution of geo-objects within each segment. Thirdly, the histogram distribution of each segment is compared with that of each geo-object using the Kullback-Leibler (KL divergence measure, which is weighted with a constraint specified by the mixture distribution of geo-objects. Each segment is allocated a geo-object category label with the minimum KL divergence. Finally, the final classification map is achieved by integrating the multiple classification results at different scales. Extensive experimental evaluations are designed to compare the performance of our method with those of some state-of-the-art methods for three different types of images. The experimental results over three different types of VHR panchromatic satellite images demonstrate the proposed method is able to achieve scale-adaptive classification results, and improve the ability to differentiate the geo-objects with spectral overlap, such as water and grass, and water and shadow, in terms of both spatial consistency and semantic consistency.

  9. Use of satellite imagery to map and monitor vegetation in New Zealand

    OpenAIRE

    Stephens, P. R.; Dymond, J. R.; Brown, L J

    1995-01-01

    研究概要:Land resource and environmental decision makers require quantitative information on the spatial distribution of vegetation types and their condition, and changes in these over time. Such vegetation mapping and monitoring is often required to be undertaken quickly. Remotely-sensed satellite imagery, in conjunction with other data sources, have been used to satisfy this need. This paper describes the uses of satellite imagery by reference to three regional mapping projects in New Zealand. ...

  10. Optimization of post-classification processing of high-resolution satellite image: A case study

    Institute of Scientific and Technical Information of China (English)

    DONG; Rencai; DONG; Jiajia; WU; Gang; DENG; Hongbing

    2006-01-01

    The application of remote sensing monitoring techniques plays a crucial role in evaluating and governing the vast amount of ecological construction projects in China. However, extracting information of ecological engineering target through high-resolution satellite image is arduous due to the unique topography and complicated spatial pattern on the Loess Plateau of China. As a result, enhancing classification accuracy is a huge challenge to high-resolution image processing techniques. Image processing techniques have a definitive effect on image properties and the selection of different parameters may change the final classification accuracy during post-classification processing. The common method of eliminating noise and smoothing image is majority filtering. However, the filter function may modify the original classified image and the final accuracy. The aim of this study is to develop an efficient and accurate post-processing technique for acquiring information of soil and water conservation engineering, on the Loess Plateau of China, using SPOT image with 2.5 rn resolution. We argue that it is vital to optimize satellite image filtering parameters for special areas and purposes, which focus on monitoring ecological construction projects. We want to know how image filtering influences final classified results and which filtering kernel is optimum. The study design used a series of window sizes to filter the original classified image, and then assess the accuracy of each output map and image quality. We measured the relationship between filtering window size and classification accuracy, and optimized the post-processing techniques of SPOT5satellite images. We conclude that (1) smoothing with the majority filter is sensitive to the information accuracy of soil and water conservation engineering, and (2) for SPOT5 2.5 m image, the 5×5 pixel majority filter is most suitable kernel for extracting information of ecological construction sites in the Loess Plateau of

  11. Comparison of Satellite Image Enhancement Techniques in Wavelet Domain

    Directory of Open Access Journals (Sweden)

    K. Narasimhan

    2012-12-01

    Full Text Available In this study, a comparison of various existing satellite image resolution enhancement techniques in wavelet domain is done. Each method is analysed quantitatively and visually. There are various wavelet domain based methods such as Wavelet Zero Padding, Dual Tree-Complex Wavelet Transform, Discrete Wavelet Transform, Cycle Spinning and Undecimated Wavelet Transform. On the basis of analysis, the most efficient method is proposed. The algorithms take the low resolution image as the input image and then wavelet transformation using daubechies (db3 is used to decompose the input image into different sub band images containing high and low frequency component. Then these subband images along with the input image are interpolated followed by combining all these images to generate a new resolution enhanced image by an inverse process.

  12. Mapping dynamics of deforestation and forest degradation in tropical forests using radar satellite data

    DEFF Research Database (Denmark)

    Joshi, Neha; Mitchard, Edward TA; Woo, Natalia

    2015-01-01

    Mapping anthropogenic forest disturbances has largely been focused on distinct delineations of events of deforestation using optical satellite images. In the tropics, frequent cloud cover and the challenge of quantifying forest degradation remain problematic. In this study, we detect processes...... of deforestation, forest degradation and successional dynamics, using long-wavelength radar (L-band from ALOS PALSAR) backscatter. We present a detection algorithm that allows for repeated disturbances on the same land, and identifies areas with slow- and fast-recovering changes in backscatter in close spatial...... along the tri-national Interoceanic Highway, as well as in mining areas and areas under no land use allocation. A continuous spatial gradient of disturbance was observed, highlighting artefacts arising from imposing discrete boundaries on deforestation events. The magnitude of initial radar backscatter...

  13. Mapping dynamics of deforestation and forest degradation in tropical forests using radar satellite data

    DEFF Research Database (Denmark)

    Joshi, Neha; Mitchard, Edward TA; Woo, Natalia;

    2015-01-01

    Mapping anthropogenic forest disturbances has largely been focused on distinct delineations of events of deforestation using optical satellite images. In the tropics, frequent cloud cover and the challenge of quantifying forest degradation remain problematic. In this study, we detect processes...... of deforestation, forest degradation and successional dynamics, using long-wavelength radar (L-band from ALOS PALSAR) backscatter. We present a detection algorithm that allows for repeated disturbances on the same land, and identifies areas with slow- and fast-recovering changes in backscatter in close spatial...... along the tri-national Interoceanic Highway, as well as in mining areas and areas under no land use allocation. A continuous spatial gradient of disturbance was observed, highlighting artefacts arising from imposing discrete boundaries on deforestation events. The magnitude of initial radar backscatter...

  14. Satellite Imaging with Adaptive Optics on a 1 M Telescope

    Science.gov (United States)

    Bennet, F.; Price, I.; Rigaut, F.; Copeland, M.

    2016-09-01

    The Research School of Astronomy and Astrophysics at the Mount Stromlo Observatory in Canberra, Australia, have been developing adaptive optic (AO) systems for space situational awareness applications. We report on the development and demonstration of an AO system for satellite imaging using a 1 m telescope. The system uses the orbiting object as a natural guide star to measure atmospheric turbulence, and a deformable mirror to provide an optical correction. The AO system utilised modern, high speed and low noise EMCCD technology on both the wavefront sensor and imaging camera to achieve high performance, achieving a Strehl ratio in excess of 30% at 870 nm. Images are post processed with lucky imaging algorithms to further improve the final image quality. We demonstrate the AO system on stellar targets and Iridium satellites, achieving a near diffraction limited full width at half maximum. A specialised realtime controller allows our system to achieve a bandwidth above 100 Hz, with the wavefront sensor and control loop running at 2 kHz. The AO systems we are developing show how ground-based optical sensors can be used to manage the space environment. AO imaging systems can be used for satellite surveillance, while laser ranging can be used to determine precise orbital data used in the critical conjunction analysis required to maintain a safe space environment. We have focused on making this system compact, expandable, and versatile. We are continuing to develop this platform for other space situational awareness applications such as geosynchronous satellite astrometry, space debris characterisation, satellite imaging, and ground-to-space laser communication.

  15. Mapping of land cover in northern California with simulated hyperspectral satellite imagery

    Science.gov (United States)

    Clark, Matthew L.; Kilham, Nina E.

    2016-09-01

    Land-cover maps are important science products needed for natural resource and ecosystem service management, biodiversity conservation planning, and assessing human-induced and natural drivers of land change. Analysis of hyperspectral, or imaging spectrometer, imagery has shown an impressive capacity to map a wide range of natural and anthropogenic land cover. Applications have been mostly with single-date imagery from relatively small spatial extents. Future hyperspectral satellites will provide imagery at greater spatial and temporal scales, and there is a need to assess techniques for mapping land cover with these data. Here we used simulated multi-temporal HyspIRI satellite imagery over a 30,000 km2 area in the San Francisco Bay Area, California to assess its capabilities for mapping classes defined by the international Land Cover Classification System (LCCS). We employed a mapping methodology and analysis framework that is applicable to regional and global scales. We used the Random Forests classifier with three sets of predictor variables (reflectance, MNF, hyperspectral metrics), two temporal resolutions (summer, spring-summer-fall), two sample scales (pixel, polygon) and two levels of classification complexity (12, 20 classes). Hyperspectral metrics provided a 16.4-21.8% and 3.1-6.7% increase in overall accuracy relative to MNF and reflectance bands, respectively, depending on pixel or polygon scales of analysis. Multi-temporal metrics improved overall accuracy by 0.9-3.1% over summer metrics, yet increases were only significant at the pixel scale of analysis. Overall accuracy at pixel scales was 72.2% (Kappa 0.70) with three seasons of metrics. Anthropogenic and homogenous natural vegetation classes had relatively high confidence and producer and user accuracies were over 70%; in comparison, woodland and forest classes had considerable confusion. We next focused on plant functional types with relatively pure spectra by removing open-canopy shrublands

  16. Simultaneous Fusion and Denoising of Panchromatic and Multispectral Satellite Images

    Science.gov (United States)

    Ragheb, Amr M.; Osman, Heba; Abbas, Alaa M.; Elkaffas, Saleh M.; El-Tobely, Tarek A.; Khamis, S.; Elhalawany, Mohamed E.; Nasr, Mohamed E.; Dessouky, Moawad I.; Al-Nuaimy, Waleed; Abd El-Samie, Fathi E.

    2012-12-01

    To identify objects in satellite images, multispectral (MS) images with high spectral resolution and low spatial resolution, and panchromatic (Pan) images with high spatial resolution and low spectral resolution need to be fused. Several fusion methods such as the intensity-hue-saturation (IHS), the discrete wavelet transform, the discrete wavelet frame transform (DWFT), and the principal component analysis have been proposed in recent years to obtain images with both high spectral and spatial resolutions. In this paper, a hybrid fusion method for satellite images comprising both the IHS transform and the DWFT is proposed. This method tries to achieve the highest possible spectral and spatial resolutions with as small distortion in the fused image as possible. A comparison study between the proposed hybrid method and the traditional methods is presented in this paper. Different MS and Pan images from Landsat-5, Spot, Landsat-7, and IKONOS satellites are used in this comparison. The effect of noise on the proposed hybrid fusion method as well as the traditional fusion methods is studied. Experimental results show the superiority of the proposed hybrid method to the traditional methods. The results show also that a wavelet denoising step is required when fusion is performed at low signal-to-noise ratios.

  17. Image Dodging Algorithm for GF-1 Satellite WFV Imagery

    Directory of Open Access Journals (Sweden)

    HAN Jie

    2016-12-01

    Full Text Available Image dodging method is one of the important processes that determines whether the mosaicking image can be used for remote sensing quantitative application. GF-1 satellite is the first satellite in CHEOS (Chinese high-resolution earth observation system. WFV multispectral sensor is one of the instruments onboard GF-1 satellite which consist of four cameras to mosaic imaging. According to the characteristics of WFV sensor, this paper proposes an image dodging algorithm based on cross/inter-radiometric calibration method. First, the traditional cross calibration method is applied to obtain the calibration coefficients of one WFV camera. Then statistical analysis and simulation methods are adopted to build the correlation models of DN and TOA (top of atmosphere radiances between adjacent cameras. The proposed method can not only accomplish the radiation performance transfer, but also can fulfill the image dodging. The experimental results show the cross/inter-radiometric calibration coefficients in this paper can effectively eliminate the radiation inconsistency problem of the adjacent camera image which realizes the image dodging. So our proposed dodging method can provide an important reference for other similar sensor in future.

  18. A Satellite Based Method for Wetland Inundation Mapping

    Science.gov (United States)

    Di Vittorio, C.; Georgakakos, A. P.

    2016-12-01

    Hydrologic models of wetlands enable hydrologists and water resources managers to appreciate the environmental and societal roles of wetlands and manage them in ways that preserve their integrity and sustain their valuable services. However, wetland model reliability and accuracy are often unsatisfactory due to the complexity of the underlying processes and the lack of adequate in-situ data. In this research, we demonstrate how MODIS satellite imagery can be used to characterize wetland flooding over time and to support the development of more reliable wetland models. We apply this method to the Sudd, a seasonal wetland in South Sudan that is part of the Nile River Basin. The database consists of 16 years of 8-day composite ground surface reflectance data with a 500 m spatial resolution downloaded from Earth Explorer. After masking poor quality pixels, monthly mean NDWI and NDVI values were extracted. Based on literature and personal accounts describing the Sudd as well as Google Earth imagery, a set of ground truth locations were identified for each land class and monthly distributions of the indices were derived. The indices were then combined in a unique way and statistics of the new distributions were used to classify land types present in the full area of interest. Subsequently, annual statistics were derived from the same indices and used to identify pixels that undergo flooding as well as the timing and duration of flooding for each year (2000-2015). An independent set of ground truth locations were selected for method validation. The combined indices demonstrate high land classification accuracy and outperform the individual indices as well as other existing land classification algorithms. The derived monthly inundation series agrees well with literature and anecdotal observations. This information is currently being used to develop wetland models as part of a comprehensive modeling system for the Nile River Basin. The new method is general and can be used

  19. Effect of satellite formations and imaging modes on global albedo estimation

    Science.gov (United States)

    Nag, Sreeja; Gatebe, Charles K.; Miller, David W.; de Weck, Olivier L.

    2016-05-01

    We confirm the applicability of using small satellite formation flight for multi-angular earth observation to retrieve global, narrow band, narrow field-of-view albedo. The value of formation flight is assessed using a coupled systems engineering and science evaluation model, driven by Model Based Systems Engineering and Observing System Simulation Experiments. Albedo errors are calculated against bi-directional reflectance data obtained from NASA airborne campaigns made by the Cloud Absorption Radiometer for the seven major surface types, binned using MODIS' land cover map - water, forest, cropland, grassland, snow, desert and cities. A full tradespace of architectures with three to eight satellites, maintainable orbits and imaging modes (collective payload pointing strategies) are assessed. For an arbitrary 4-sat formation, changing the reference, nadir-pointing satellite dynamically reduces the average albedo error to 0.003, from 0.006 found in the static referencecase. Tracking pre-selected waypoints with all the satellites reduces the average error further to 0.001, allows better polar imaging and continued operations even with a broken formation. An albedo error of 0.001 translates to 1.36 W/m2 or 0.4% in Earth's outgoing radiation error. Estimation errors are found to be independent of the satellites' altitude and inclination, if the nadir-looking is changed dynamically. The formation satellites are restricted to differ in only right ascension of planes and mean anomalies within slotted bounds. Three satellites in some specific formations show average albedo errors of less than 2% with respect to airborne, ground data and seven satellites in any slotted formation outperform the monolithic error of 3.6%. In fact, the maximum possible albedo error, purely based on angular sampling, of 12% for monoliths is outperformed by a five-satellite formation in any slotted arrangement and an eight satellite formation can bring that error down four fold to 3%. More than

  20. Classification of Pansharpened Urban Satellite Images

    DEFF Research Database (Denmark)

    Palsson, Frosti; Sveinsson, Johannes R.; Benediktsson, Jon Atli

    2012-01-01

    The classification of high resolution urban remote sensing imagery is addressed with the focus on classification of imagery that has been pansharpened by a number of different pansharpening methods. The pansharpening process introduces some spectral and spatial distortions in the resulting fused...... multispectral image, the amount of which highly varies depending on which pansharpening technique is used. In the majority of the pansharpening techniques that have been proposed, there is a compromise between the spatial enhancement and the spectral consistency. Here we study the effects of the spectral...... information from the panchromatic data. Random Forests (RF) and Support Vector Machines (SVM) will be used as classifiers. Experiments are done for three different datasets that have been obtained by two different imaging sensors, IKONOS and QuickBird. These sensors deliver multispectral images that have four...

  1. Analytical models integrated with satellite images for optimized pest management

    Science.gov (United States)

    The global field protection (GFP) was developed to protect and optimize pest management resources integrating satellite images for precise field demarcation with physical models of controlled release devices of pesticides to protect large fields. The GFP was implemented using a graphical user interf...

  2. Interferometric Imaging of Geostationary Satellites: Signal-to-Noise Considerations

    Science.gov (United States)

    2011-09-01

    and the extent to which they cover the necessary portions of the UV plane . Once the photon counting noise becomes smaller than the UV coverage noise, ad...satellites,” in Proc. SPIE 4091, Imaging Technology and Telescopes, J. W. Bilbro, J. B. Breckinridge, R. A. Carreras , S. R. Czyzak, M. J. Eckart, R. D...SPIE 4091, Imaging Technology and Telescopes, J. W. Bilbro, J. B. Breckinridge, R. A. Carreras , S. R. Czyzak, M. J. Eckart, R. D. Fiete, and P. S

  3. Mapping cultivable land from satellite imagery with clustering algorithms

    Science.gov (United States)

    Arango, R. B.; Campos, A. M.; Combarro, E. F.; Canas, E. R.; Díaz, I.

    2016-07-01

    Open data satellite imagery provides valuable data for the planning and decision-making processes related with environmental domains. Specifically, agriculture uses remote sensing in a wide range of services, ranging from monitoring the health of the crops to forecasting the spread of crop diseases. In particular, this paper focuses on a methodology for the automatic delimitation of cultivable land by means of machine learning algorithms and satellite data. The method uses a partition clustering algorithm called Partitioning Around Medoids and considers the quality of the clusters obtained for each satellite band in order to evaluate which one better identifies cultivable land. The proposed method was tested with vineyards using as input the spectral and thermal bands of the Landsat 8 satellite. The experimental results show the great potential of this method for cultivable land monitoring from remote-sensed multispectral imagery.

  4. Analysis of engineering drawings and raster map images

    CERN Document Server

    Henderson, Thomas C

    2013-01-01

    Presents up-to-date methods and algorithms for the automated analysis of engineering drawings and digital cartographic maps Discusses automatic engineering drawing and map analysis techniques Covers detailed accounts of the use of unsupervised segmentation algorithms to map images

  5. Satellite images analysis for shadow detection and building height estimation

    Science.gov (United States)

    Liasis, Gregoris; Stavrou, Stavros

    2016-09-01

    Satellite images can provide valuable information about the presented urban landscape scenes to remote sensing and telecommunication applications. Obtaining information from satellite images is difficult since all the objects and their surroundings are presented with feature complexity. The shadows cast by buildings in urban scenes can be processed and used for estimating building heights. Thus, a robust and accurate building shadow detection process is important. Region-based active contour models can be used for satellite image segmentation. However, spectral heterogeneity that usually exists in satellite images and the feature similarity representing the shadow and several non-shadow regions makes building shadow detection challenging. In this work, a new automated method for delineating building shadows is proposed. Initially, spectral and spatial features of the satellite image are utilized for designing a custom filter to enhance shadows and reduce intensity heterogeneity. An effective iterative procedure using intensity differences is developed for tuning and subsequently selecting the most appropriate filter settings, able to highlight the building shadows. The response of the filter is then used for automatically estimating the radiometric property of the shadows. The customized filter and the radiometric feature are utilized to form an optimized active contour model where the contours are biased to delineate shadow regions. Post-processing morphological operations are also developed and applied for removing misleading artefacts. Finally, building heights are approximated using shadow length and the predefined or estimated solar elevation angle. Qualitative and quantitative measures are used for evaluating the performance of the proposed method for both shadow detection and building height estimation.

  6. Disparity map estimation using image pyramid

    Science.gov (United States)

    Roszkowski, Mikołaj

    2013-10-01

    The task of a short baseline stereo matching algorithm is to calculate the disparity map given two rectified images of one scene. Most algorithms assume that a maximal possible disparity exists and search all disparities in the range from 1 to this maximal disparity. In the case of large images and wide disparity search range this can be very computationally demanding. In this article a simple coarse to fine hierarchical matching method based on the Gaussian pyramid and local stereo matching is investigated. Such an approach allows significant reduction of the number of disparities searched compared to the full search algorithm. Moreover it is shown, that grouping pixels into simple square regions is in most cases sufficient to avoid significant errors that typically appear at disparity map discontinuities when hierarchical schemes are used. Finally, it is presented that in most cases the quality of the disparity map obtained using the investigated algorithm is of comparable quality to a disparity map obtained using full-search local stereo algorithm.

  7. Soil salinity detection from satellite image analysis: an integrated approach of salinity indices and field data.

    Science.gov (United States)

    Morshed, Md Manjur; Islam, Md Tazmul; Jamil, Raihan

    2016-02-01

    This paper attempts to detect soil salinity from satellite image analysis using remote sensing and geographic information system. Salinity intrusion is a common problem for the coastal regions of the world. Traditional salinity detection techniques by field survey and sampling are time-consuming and expensive. Remote sensing and geographic information system offer economic and efficient salinity detection, monitoring, and mapping. To predict soil salinity, an integrated approach of salinity indices and field data was used to develop a multiple regression equation. The correlations between different indices and field data of soil salinity were calculated to find out the highly correlated indices. The best regression model was selected considering the high R (2) value, low P value, and low Akaike's Information Criterion. About 20% variation was observed between the field data and predicted EC from the satellite image analysis. The precision of this salinity detection technique depends on the accuracy and uniform distribution of field data.

  8. Use of multispectral satellite imagery and hyperspectral endmember libraries for urban land cover mapping at the metropolitan scale

    Science.gov (United States)

    Priem, Frederik; Okujeni, Akpona; van der Linden, Sebastian; Canters, Frank

    2016-10-01

    The value of characteristic reflectance features for mapping urban materials has been demonstrated in many experiments with airborne imaging spectrometry. Analysis of larger areas requires satellite-based multispectral imagery, which typically lacks the spatial and spectral detail of airborne data. Consequently the need arises to develop mapping methods that exploit the complementary strengths of both data sources. In this paper a workflow for sub-pixel quantification of Vegetation-Impervious-Soil urban land cover is presented, using medium resolution multispectral satellite imagery, hyperspectral endmember libraries and Support Vector Regression. A Landsat 8 Operational Land Imager surface reflectance image covering the greater metropolitan area of Brussels is selected for mapping. Two spectral libraries developed for the cities of Brussels and Berlin based on airborne hyperspectral APEX and HyMap data are used. First the combined endmember library is resampled to match the spectral response of the Landsat sensor. The library is then optimized to avoid spectral redundancy and confusion. Subsequently the spectra of the endmember library are synthetically mixed to produce training data for unmixing. Mapping is carried out using Support Vector Regression models trained with spectra selected through stratified sampling of the mixed library. Validation on building block level (mean size = 46.8 Landsat pixels) yields an overall good fit between reference data and estimation with Mean Absolute Errors of 0.06, 0.06 and 0.08 for vegetation, impervious and soil respectively. Findings of this work may contribute to the use of universal spectral libraries for regional scale land cover fraction mapping using regression approaches.

  9. Mapping stand-age distribution of Russian forests from satellite data

    Science.gov (United States)

    Chen, D.; Loboda, T. V.; Hall, A.; Channan, S.; Weber, C. Y.

    2013-12-01

    Russian boreal forest is a critical component of the global boreal biome as approximately two thirds of the boreal forest is located in Russia. Numerous studies have shown that wildfire and logging have led to extensive modifications of forest cover in the region since 2000. Forest disturbance and subsequent regrowth influences carbon and energy budgets and, in turn, affect climate. Several global and regional satellite-based data products have been developed from coarse (>100m) and moderate (10-100m) resolution imagery to monitor forest cover change over the past decade, record of forest cover change pre-dating year 2000 is very fragmented. Although by using stacks of Landsat images, some information regarding the past disturbances can be obtained, the quantity and locations of such stacks with sufficient number of images are extremely limited, especially in Eastern Siberia. This paper describes a modified method which is built upon previous work to hindcast the disturbance history and map stand-age distribution in the Russian boreal forest. Utilizing data from both Landsat and the Moderate Resolution Imaging Spectroradiometer (MODIS), a wall-to-wall map indicating the estimated age of forest in the Russian boreal forest is created. Our previous work has shown that disturbances can be mapped successfully up to 30 years in the past as the spectral signature of regrowing forests is statistically significantly different from that of mature forests. The presented algorithm ingests 55 multi-temporal stacks of Landsat imagery available over Russian forest before 2001 and processes through a standardized and semi-automated approach to extract training and validation data samples. Landsat data, dating back to 1984, are used to generate maps of forest disturbance using temporal shifts in Disturbance Index through the multi-temporal stack of imagery in selected locations. These maps are then used as reference data to train a decision tree classifier on 50 MODIS

  10. Integrated use of satellite images, DEMs, soil and substrate data in studying mountainous lands

    Science.gov (United States)

    Giannetti, Fabio; Montanarella, Luca; Salandin, Roberto

    A method based on the integration into a GIS of satellite images of different spatial resolution (Landsat TM and SPOT), Digital Elevation Models, geo-lithological maps and some soil-landscape data was developed and applied to a test area on a sector of the Italian northwestern Alps in the Piemonte region (Pellice, Po, Varaita and Maira valleys southwest of Torino). The main working steps performed (using GIS software) in this area were: (1) acquisition of geo-lithological and geomorphological maps available and a first definition of homogeneous zones obtained by joining different classes with pedogenic criteria; (2) processing and classification of satellite images to define homogeneous areas with reference to prevailing land cover, land use pattern, relief shape and spectral characters; (3) integration of the previous two layers to obtain a first set of cartographic units showing a distinctive and often repetitive pattern of land form, land cover and parent material; and (4) processing DEMs (slope and aspect), soil or soil-landscape data in order to refine data and characterise the units. The resulting cartographic units were superimposed on a soil-landscape map realised by means of stereoscopic interpretation of aerial photographs by IPLA at the same scale (1:250,000). This comparison was used to verify the correctness of the satellite image processing steps and consistency with the map scale used. A larger scale application was also developed for grassland at 1:50,000 scale to demonstrate the practical use of remote sensing and GIS data in assisting mountainous land development.

  11. COMPARATIVE ANALYSIS OF SATELLITE IMAGE PRE-PROCESSING TECHNIQUES

    Directory of Open Access Journals (Sweden)

    T. Sree Sharmila

    2013-01-01

    Full Text Available Satellite images are corrupted by noise in its acquisition and transmission. The removal of noise from the image by attenuating the high frequency image components, removes some important details as well. In order to retain the useful information and improve the visual appearance, an effective denoising and resolution enhancement techniques are required. In this research, Hybrid Directional Lifting (HDL technique is proposed to retain the important details of the image and improve the visual appearance. The Discrete Wavelet Transform (DWT based interpolation technique is developed for enhancing the resolution of the denoised image. The performance of the proposed techniques are tested by Land Remote-Sensing Satellite (LANDSAT images, using the quantitative performance measure, Peak Signal to Noise Ratio (PSNR and computation time to show the significance of the proposed techniques. The PSNR of the HDL technique increases 1.02 dB compared to the standard denoising technique and the DWT based interpolation technique increases 3.94 dB. From the experimental results it reveals that newly developed image denoising and resolution enhancement techniques improve the image visual quality with rich textures.

  12. Fingerprint image mosaicking by recursive ridge mapping.

    Science.gov (United States)

    Choi, Kyoungtaek; Choi, Heeseung; Lee, Sangyoun; Kim, Jaihie

    2007-10-01

    To obtain a large fingerprint image from several small partial images, mosaicking of fingerprint images has been recently researched. However, existing approaches cannot provide accurate transformations for mosaics when it comes to aligning images because of the plastic distortion that may occur due to the nonuniform contact between a finger and a sensor or the deficiency of the correspondences in the images. In this paper, we propose a new scheme for mosaicking fingerprint images, which iteratively matches ridges to overcome the deficiency of the correspondences and compensates for the amount of plastic distortion between two partial images by using a thin-plate spline model. The proposed method also effectively eliminates erroneous correspondences and decides how well the transformation is estimated by calculating the registration error with a normalized distance map. The proposed method consists of three phases: feature extraction, transform estimation, and mosaicking. Transform is initially estimated with matched minutia and the ridges attached to them. Unpaired ridges in the overlapping area between two images are iteratively matched by minimizing the registration error, which consists of the ridge matching error and the inverse consistency error. During the estimation, erroneous correspondences are eliminated by considering the geometric relationship between the correspondences and checking if the registration error is minimized or not. In our experiments, the proposed method was compared with three existing methods in terms of registration accuracy, image quality, minutia extraction rate, processing time, reject to fuse rate, and verification performance. The average registration error of the proposed method was less than three pixels, and the maximum error was not more than seven pixels. In a verification test, the equal error rate was reduced from 10% to 2.7% when five images were combined by our proposed method. The proposed method was superior to other

  13. Mapping sub-antarctic cushion plants using random forests to combine very high resolution satellite imagery and terrain modelling.

    Directory of Open Access Journals (Sweden)

    Phillippa K Bricher

    Full Text Available Monitoring changes in the distribution and density of plant species often requires accurate and high-resolution baseline maps of those species. Detecting such change at the landscape scale is often problematic, particularly in remote areas. We examine a new technique to improve accuracy and objectivity in mapping vegetation, combining species distribution modelling and satellite image classification on a remote sub-Antarctic island. In this study, we combine spectral data from very high resolution WorldView-2 satellite imagery and terrain variables from a high resolution digital elevation model to improve mapping accuracy, in both pixel- and object-based classifications. Random forest classification was used to explore the effectiveness of these approaches on mapping the distribution of the critically endangered cushion plant Azorella macquariensis Orchard (Apiaceae on sub-Antarctic Macquarie Island. Both pixel- and object-based classifications of the distribution of Azorella achieved very high overall validation accuracies (91.6-96.3%, κ = 0.849-0.924. Both two-class and three-class classifications were able to accurately and consistently identify the areas where Azorella was absent, indicating that these maps provide a suitable baseline for monitoring expected change in the distribution of the cushion plants. Detecting such change is critical given the threats this species is currently facing under altering environmental conditions. The method presented here has applications to monitoring a range of species, particularly in remote and isolated environments.

  14. Identification of geostationary satellites using polarization data from unresolved images

    Science.gov (United States)

    Speicher, Andy

    In order to protect critical military and commercial space assets, the United States Space Surveillance Network must have the ability to positively identify and characterize all space objects. Unfortunately, positive identification and characterization of space objects is a manual and labor intensive process today since even large telescopes cannot provide resolved images of most space objects. Since resolved images of geosynchronous satellites are not technically feasible with current technology, another method of distinguishing space objects was explored that exploits the polarization signature from unresolved images. The objective of this study was to collect and analyze visible-spectrum polarization data from unresolved images of geosynchronous satellites taken over various solar phase angles. Different collection geometries were used to evaluate the polarization contribution of solar arrays, thermal control materials, antennas, and the satellite bus as the solar phase angle changed. Since materials on space objects age due to the space environment, it was postulated that their polarization signature may change enough to allow discrimination of identical satellites launched at different times. The instrumentation used in this experiment was a United States Air Force Academy (USAFA) Department of Physics system that consists of a 20-inch Ritchey-Chretien telescope and a dual focal plane optical train fed with a polarizing beam splitter. A rigorous calibration of the system was performed that included corrections for pixel bias, dark current, and response. Additionally, the two channel polarimeter was calibrated by experimentally determining the Mueller matrix for the system and relating image intensity at the two cameras to Stokes parameters S0 and S1. After the system calibration, polarization data was collected during three nights on eight geosynchronous satellites built by various manufacturers and launched several years apart. Three pairs of the eight

  15. Geodetic imaging: Reservoir monitoring using satellite interferometry

    Science.gov (United States)

    Vasco, D.W.; Wicks, C.; Karasaki, K.; Marques, O.

    2002-01-01

    Fluid fluxes within subsurface reservoirs give rise to surface displacements, particularly over periods of a year or more. Observations of such deformation provide a powerful tool for mapping fluid migration within the Earth, providing new insights into reservoir dynamics. In this paper we use Interferometric Synthetic Aperture Radar (InSAR) range changes to infer subsurface fluid volume strain at the Coso geothermal field. Furthermore, we conduct a complete model assessment, using an iterative approach to compute model parameter resolution and covariance matrices. The method is a generalization of a Lanczos-based technique which allows us to include fairly general regularization, such as roughness penalties. We find that we can resolve quite detailed lateral variations in volume strain both within the reservoir depth range (0.4-2.5 km) and below the geothermal production zone (2.5-5.0 km). The fractional volume change in all three layers of the model exceeds the estimated model parameter uncertainly by a factor of two or more. In the reservoir depth interval (0.4-2.5 km), the predominant volume change is associated with northerly and westerly oriented faults and their intersections. However, below the geothermal production zone proper [the depth range 2.5-5.0 km], there is the suggestion that both north- and northeast-trending faults may act as conduits for fluid flow.

  16. Mapping Soil Organic Matter with Hyperspectral Imaging

    Science.gov (United States)

    Moni, Christophe; Burud, Ingunn; Flø, Andreas; Rasse, Daniel

    2014-05-01

    Soil organic matter (SOM) plays a central role for both food security and the global environment. Soil organic matter is the 'glue' that binds soil particles together, leading to positive effects on soil water and nutrient availability for plant growth and helping to counteract the effects of erosion, runoff, compaction and crusting. Hyperspectral measurements of samples of soil profiles have been conducted with the aim of mapping soil organic matter on a macroscopic scale (millimeters and centimeters). Two soil profiles have been selected from the same experimental site, one from a plot amended with biochar and another one from a control plot, with the specific objective to quantify and map the distribution of biochar in the amended profile. The soil profiles were of size (30 x 10 x 10) cm3 and were scanned with two pushbroomtype hyperspectral cameras, one which is sensitive in the visible wavelength region (400 - 1000 nm) and one in the near infrared region (1000 - 2500 nm). The images from the two detectors were merged together into one full dataset covering the whole wavelength region. Layers of 15 mm were removed from the 10 cm high sample such that a total of 7 hyperspectral images were obtained from the samples. Each layer was analyzed with multivariate statistical techniques in order to map the different components in the soil profile. Moreover, a 3-dimensional visalization of the components through the depth of the sample was also obtained by combining the hyperspectral images from all the layers. Mid-infrared spectroscopy of selected samples of the measured soil profiles was conducted in order to correlate the chemical constituents with the hyperspectral results. The results show that hyperspectral imaging is a fast, non-destructive technique, well suited to characterize soil profiles on a macroscopic scale and hence to map elements and different organic matter quality present in a complete pedon. As such, we were able to map and quantify biochar in our

  17. Modeling of solar irradiance using satellite images and direct terrestrial measurements with PV modules

    Science.gov (United States)

    Tyukhov, Igor; Schakhramanyan, Michael; Strebkov, Dmitry; Tikhonov, Anton; Vignola, Frank

    2009-08-01

    A simple, affordable and efficient multifaceted system with technical software programs, "Kosmos 3M", was developed for taking images of the Earth from NOAA satellites and for handling this images and analyzing many geographical and meteorological parameters. Technical software programs have been developed that utilize the "Kosmos 3M" Receiver system. Basic capabilities of the multifaceted "Kosmos 3M" system include: receiving signal from NOAA satellites; digital processing of space images with geographical fixing, superposition of maps of cities and coordinate grid; finding of geographical coordinates at any point of space image; finding of temperature of underlying surface at given points; finding of albedo (reflection coefficient) at any point of space image; finding of upper boundary of clouds (cloudiness); forecasting of dangerous weather phenomena; defining wind fields in cyclones; precipitations forecast; measuring distances between given points; measuring surfaces (areas); and forming of electronic library of images of the Earth. Work is underway to use the "Kosmos 3M" cloudiness images to estimate the incident solar radiation values for evaluating terrestrial solar energy performance in real time. Such kind of system would have a wide variety of uses from the classroom to the field.

  18. Evaluation of World View-2 Satellite Data for Mapping Seaweed Beds Along Karachi Coast

    Science.gov (United States)

    Danish Siddiqui, Muhammad; Abdullah, Muhammad

    2016-07-01

    study. STUDY AREA Buleji, a small coastal village along Karachi coast in the country of Pakistan, is selected for this study. At this side seaweed resources are present. Its center lies at a latitude of 24o 51' 20" and a longitude of 66o 48' 24.2" METHODOLOGY In this research, high-resolution Worldview -2 satellite data have been used.WorldView-2 delivers 1.85 meter multispectral and 0.46 meter panchromatic images. A 0.5 meter multispectral pan sharpened image was developed by fusing these two images. Indices, such as normalized difference vegetative index (NDVI) and another index developed through spectral signatures, have been applied on worldview-2 imagery. Image enhancement technique, principal component analysis (PCA) is applied on the same image. Bathymetry map of the study area has been composed by relative bathymetry remote sensing technique. This map is later verified by the depth nautical chart and found satisfactory. For assessment of environmental parameters, freely available MODIS daily SST product has been acquired. MODIS product was converted to tiff (Tagged Image File Format) format and projected for further processing. SST image was reclassified using GIS technique and was overlaid on satellite images to detect the favorable temperature range for seaweed growth. CONCLUSION Since the macro-habitats and benthic communities around Pakistan coastline have not yet been properly mapped and defined, this study will be an outline for the protection of marine biodiversity and habitat of many sea species which rely on seaweeds for their sustenance. Regular monitoring and mapping are important to regulate the growth of seaweeds and their dependent species to maintain their biological associations which will eventually maintain the equilibrium among various species in the marine ecosystem. Seaweed is also important for the production of many consumable items and with proper import/export policies its marketing can ultimately help strengthen the country's economy

  19. Object-based locust habitat mapping using high-resolution multispectral satellite data in the southern Aral Sea basin

    Science.gov (United States)

    Navratil, Peter; Wilps, Hans

    2013-01-01

    Three different object-based image classification techniques are applied to high-resolution satellite data for the mapping of the habitats of Asian migratory locust (Locusta migratoria migratoria) in the southern Aral Sea basin, Uzbekistan. A set of panchromatic and multispectral Système Pour l'Observation de la Terre-5 satellite images was spectrally enhanced by normalized difference vegetation index and tasseled cap transformation and segmented into image objects, which were then classified by three different classification approaches: a rule-based hierarchical fuzzy threshold (HFT) classification method was compared to a supervised nearest neighbor classifier and classification tree analysis by the quick, unbiased, efficient statistical trees algorithm. Special emphasis was laid on the discrimination of locust feeding and breeding habitats due to the significance of this discrimination for practical locust control. Field data on vegetation and land cover, collected at the time of satellite image acquisition, was used to evaluate classification accuracy. The results show that a robust HFT classifier outperformed the two automated procedures by 13% overall accuracy. The classification method allowed a reliable discrimination of locust feeding and breeding habitats, which is of significant importance for the application of the resulting data for an economically and environmentally sound control of locust pests because exact spatial knowledge on the habitat types allows a more effective surveying and use of pesticides.

  20. Mapping of land cover in Northern California with simulated HyspIRI images

    Science.gov (United States)

    Clark, M. L.; Kilham, N. E.

    2014-12-01

    Land-cover maps are important science products needed for natural resource and ecosystem service management, biodiversity conservation planning, and assessing human-induced and natural drivers of land change. Most land-cover maps at regional to global scales are produced with remote sensing techniques applied to multispectral satellite imagery with 30-500 m pixel sizes (e.g., Landsat, MODIS). Hyperspectral, or imaging spectrometer, imagery measuring the visible to shortwave infrared regions (i.e., full range) of the spectrum have shown improved capacity to map plant species and coarser land-cover associations, yet techniques have not been widely tested at regional and greater spatial scales. The Hyperspectral Infrared Imager (HyspIRI) mission is a full-range hyperspectral and thermal satellite being considered for development by NASA (hyspiri.jpl.nasa.gov). A hyperspectral satellite, such as HyspIRI, will provide detailed spectral and temporal information at global scales that could greatly improve our ability to map land cover with greater class detail and spatial and temporal accuracy than possible with conventional multispectral satellites. The broad goal of our research is to assess multi-temporal, HyspIRI-like satellite imagery for improved land cover mapping across a range of environmental and anthropogenic gradients in California. In this study, we mapped FAO Land Cover Classification System (LCCS) classes over 30,000 km2 in Northern California using multi-temporal HyspIRI imagery simulated from the AVIRIS airborne sensor. The Random Forests classification was applied to predictor variables derived from the multi-temporal hyperspectral data and accuracies were compared to that from Landsat 8 OLI. Results indicate increased mapping accuracy using HyspIRI multi-temporal imagery, particularly in discriminating different forest life-form types, such as mixed conifer and broadleaf forests and open- and closed-canopy forests.

  1. Object-based approach to national land cover mapping using HJ satellite imagery

    Science.gov (United States)

    Zhang, Lei; Li, Xiaosong; Yuan, Quanzhi; Liu, Yu

    2014-01-01

    To meet the carbon storage estimate in ecosystems for a national carbon strategy, we introduce a consistent database of China land cover. The Chinese Huan Jing (HJ) satellite is proven efficient in the cloud-free acquisition of seasonal image series in a monsoon region and in vegetation identification for mesoscale land cover mapping. Thirty-eight classes of level II land cover are generated based on the Land Cover Classification System of the United Nations Food and Agriculture Organization that follows a standard and quantitative definition. Twenty-four layers of derivative spectral, environmental, and spatial features compose the classification database. Object-based approach characterizing additional nonspectral features is conducted through mapping, and multiscale segmentations are applied on object boundary match to target real-world conditions. This method sufficiently employs spatial information, in addition to spectral characteristics, to improve classification accuracy. The algorithm of hierarchical classification is employed to follow step-by-step procedures that effectively control classification quality. This algorithm divides the dual structures of universal and local trees. Consistent universal trees suitable to most regions are performed first, followed by local trees that depend on specific features of nine climate stratifications. The independent validation indicates the overall accuracy reaches 86%.

  2. Mapping the mass distribution of Earth's mantle using satellite-derived gravity gradients

    Science.gov (United States)

    Panet, Isabelle; Pajot-Métivier, Gwendoline; Greff-Lefftz, Marianne; Métivier, Laurent; Diament, Michel; Mandea, Mioara

    2014-02-01

    The dynamics of Earth's mantle are not well known. Deciphering mantle flow patterns requires an understanding of the global distribution of mantle density. Seismic tomography has been used to derive mantle density distributions, but converting seismic velocities into densities is not straightforward. Here we show that data from the GOCE (Gravity field and steady-state Ocean Circulation Explorer) mission can be used to probe our planet's deep mass structure. We construct global anomaly maps of the Earth's gravitational gradients at satellite altitude and use a sensitivity analysis to show that these gravitational gradients image the geometry of mantle mass down to mid-mantle depths. Our maps highlight north-south-elongated gravity gradient anomalies over Asia and America that follow a belt of ancient subduction boundaries, as well as gravity gradient anomalies over the central Pacific Ocean and south of Africa that coincide with the locations of deep mantle plumes. We interpret these anomalies as sinking tectonic plates and convective instabilities between 1,000 and 2,500km depth, consistent with seismic tomography results. Along the former Tethyan Margin, our data also identify an east-west-oriented mass anomaly likely in the upper mantle. We suggest that by combining gravity gradients with seismic and geodynamic data, an integrated dynamic model for Earth can be achieved.

  3. Correction of ZY-3 image distortion caused by satellite jitter via virtual steady reimaging using attitude data

    Science.gov (United States)

    Wang, Mi; Zhu, Ying; Jin, Shuying; Pan, Jun; Zhu, Quansheng

    2016-09-01

    ZiYuan-3 (ZY-3), the first Chinese civilian stereo mapping satellite, suffers from 0.67 Hz satellite jitter that deteriorates its geometric performance in mapping, resource monitoring and other applications. This paper proposes a distortion correction method based on virtual steady reimaging (VSRI) using attitude data to eliminate the negative influence caused by satellite jitter in satellite data preprocessing. VSRI helps linear array pushbroom cameras rescan the ground with a uniform integral time and smooth attitude. In this method, a VSRI model is proposed, and the geometric relationship between the original and corrected image is determined in terms of geolocation consistency based on a rigorous geometric model. Thus, the corrected image is obtained by resampling from the original one. Three areas of ZY-3 three-line images suffering from satellite jitter were used to validate the accuracy and efficiency of the proposed method. First, different attitude interpolation methods were compared. It is found that the Lagrange polynomial model and the cubic piecewise polynomial model have higher interpolation accuracy for original imagery. Then, the replacement accuracy of the rational function model (RFM) for ZY-3 was analyzed with 0.67 Hz satellite jitter. The results indicate that attitude oscillation reduces the fitting precision of the RFM for the rigorous imaging model. Finally, the relative orientation accuracy of the three-line images and the geo-positioning accuracy with ground control points (GCPs) before and after distortion correction were compared. The results show that the distortion caused by satellite jitter is corrected efficiently, and the accuracy of the three experimental datasets is improved in both the image space and the ground space.

  4. The use of thermal infrared images in geologic mapping

    Science.gov (United States)

    Kahle, A. B.

    1982-01-01

    Thermal infrared image data can be used as an aid to geologic mapping. Broadband thermal data between 8 and 13 microns is used to measure surface temperature, from which surface thermal properties can be inferred. Data from aircraft multispectral scanners at Pisgah, California which include a broadband thermal channel along with several visible and near-IR spectral channels permit better discrimination between rock type units than the same data set without the thermal data. Data from the HCMM satellite and from aircraft thermal scanners also make it possible to monitor moisture changes in Death Valley, California. Multispectral data in the same 8-13 micron wavelength range can be used to discriminate between surface materials with different spectral emission characteristics, as demonstrated with both aircraft scanner and ground spectrometer data.

  5. High-Resolution Imaging of Asteroids/Satellites with AO

    Science.gov (United States)

    Merline, William

    2012-02-01

    We propose to make high-resolution observations of asteroids using AO, to measure size, shape, and pole position (spin vectors), and/or to search for satellites. We have demonstrated that AO imaging allows determination of the pole/dimensions in 1 or 2 nights on a single target, rather than the years of observations with lightcurve inversion techniques that only yield poles and axial ratios, not true dimensions. Our new technique (KOALA) combines AO imaging with lightcurve and occultation data for optimum size/shape determinations. We request that LGS be available for faint targets, but using NGS AO, we will measure several large and intermediate asteroids that are favorably placed in spring/summer of 2012 for size/shape/pole. Accurately determining the volume from the often-irregular shape allows us to derive densities to much greater precision in cases where the mass is known, e.g., from the presence of a satellite. We will search several d! ozen asteroids for the presence of satellites, particularly in under-studied populations, particularly NEOs (we have recently achieved the first-ever optical image of an NEO binary [Merline et al. 2008b, IAUC 8977]). Satellites provide a real-life lab for testing collisional models. We will search for satellites around special objects at the request of lightcurve observers, and we will make a search for debris in the vicinity of Pluto, in support of the New Horizons mission. Our shape/size work requires observations over most of a full rotation period (typically several hours).

  6. Fusion between Satellite and Geophysical images in the study of Archaeological Sites

    Science.gov (United States)

    Karamitrou, A. A.; Tsokas, G. N.; Petrou, M.; Maggidis, C.

    2012-12-01

    In this work various image fusion techniques are used between one satellite (Quickbird) and one geophysical (electric resistivity) image to create various combinations with higher information content than the two original images independently. The resultant images provide more information about possible buried archaeological relics. The examined archaeological area is located in mainland Greece near the city of Boetia at the acropolis of Gla. The acropolis was built on a flat-topped bedrock outcrop at the north-eastern edge of the Kopais basin. When Kopais was filled with water, Glas was emerging as an island. At the end of 14th century the two palaces of Thebes and Orchomenos jointly utilized a large scale engineering project in order to transform the Kopais basin into a fertile plain. They used the acropolis to monitor the project, and as a warehouse to storage the harvest. To examine the Acropolis for potential archaeological remnants we use one Quickbird satellite image that covers the surrounding area of Gla. The satellite image includes one panchromatic (8532x8528 pixels) and one multispectral (2133x2132 pixels) image, collected on 30th of August 2011, covering an area of 20 square kilometers. On the other hand, geophysical measurements were performed using the electric resistivity method to the south west part of the Acropolis. To combine these images we investigate mean-value fusion, wavelets fusion, and curvelet fusion. In the cases of wavelet and curvelet fusion we apply as the fusion criterion the maximum frequency rule. Furthermore, the two original images, and excavations near the area suggest that the dominant orientations of the buried features are north-south and east-west. Therefore, in curvelet fusion method, in curvelet domain we enhance the image details along these specific orientations, additionally to the fusion. The resultant fused images succeed to map linear and rectangular features that were not easily visible in the original images

  7. Mapping abandoned agriculture with multi-temporal MODIS satellite data

    DEFF Research Database (Denmark)

    Alcantara, Camilo; Kuemmerle, Tobias; Prishchepov, Alexander;

    2012-01-01

    , especially with the frequent observations provided by coarser-resolution sensors and new classification techniques. Past efforts to map abandoned agriculture relied mainly on Landsat data, making it hard to map large regions, and precluding the use of phenology information to identify abandoned agriculture...... with Support Vector Machines (SVM). Training data were derived from several Landsat classifications of agricultural abandonment in the study area. A validation was conducted based on independently collected data. Our results showed that it is possible to map abandoned agriculture for large areas from MODIS...

  8. The remote sensing image segmentation mean shift algorithm parallel processing based on MapReduce

    Science.gov (United States)

    Chen, Xi; Zhou, Liqing

    2015-12-01

    With the development of satellite remote sensing technology and the remote sensing image data, traditional remote sensing image segmentation technology cannot meet the massive remote sensing image processing and storage requirements. This article put cloud computing and parallel computing technology in remote sensing image segmentation process, and build a cheap and efficient computer cluster system that uses parallel processing to achieve MeanShift algorithm of remote sensing image segmentation based on the MapReduce model, not only to ensure the quality of remote sensing image segmentation, improved split speed, and better meet the real-time requirements. The remote sensing image segmentation MeanShift algorithm parallel processing algorithm based on MapReduce shows certain significance and a realization of value.

  9. Drag-Free Motion Control of Satellite for High-Precision Gravity Field Mapping

    DEFF Research Database (Denmark)

    2002-01-01

    , sensors, actuators and environmental disturbances to the required micro-Newton accuracy. A control system is designed to compensate the non-gravitational disturbances on the satellite in three axes using an H∞-design. Performance is validated against mission requirements. Keywords: Spacecraft Attitude......High precision mapping of the geoid and the Earth's gravity field are of importance to a wide range of ongoing studies in areas like ocean circulation, solid Earth physics and ice sheet dynamics. Using a satellite in orbit around the Earth gives the opportunity to map the Earth's gravity field in 3...... dimensions with much better accuracy and spatial resolution than ever accomplished. To reach the desired quality of measurements, the satellite must fly in a low Earth orbit where disturbances from atmospheric drag and the Earth's magnetic field will perturb the satellite's motion. These effects...

  10. Mineral mapping and applications of imaging spectroscopy

    Science.gov (United States)

    Clark, R.N.; Boardman, J.; Mustard, J.; Kruse, F.; Ong, C.; Pieters, C.; Swayze, G.A.

    2006-01-01

    Spectroscopy is a tool that has been used for decades to identify, understand, and quantify solid, liquid, or gaseous materials, especially in the laboratory. In disciplines ranging from astronomy to chemistry, spectroscopic measurements are used to detect absorption and emission features due to specific chemical bonds, and detailed analyses are used to determine the abundance and physical state of the detected absorbing/emitting species. Spectroscopic measurements have a long history in the study of the Earth and planets. Up to the 1990s remote spectroscopic measurements of Earth and planets were dominated by multispectral imaging experiments that collect high-quality images in a few, usually broad, spectral bands or with point spectrometers that obtained good spectral resolution but at only a few spatial positions. However, a new generation of sensors is now available that combines imaging with spectroscopy to create the new discipline of imaging spectroscopy. Imaging spectrometers acquire data with enough spectral range, resolution, and sampling at every pixel in a raster image so that individual absorption features can be identified and spatially mapped (Goetz et al., 1985).

  11. Mapping seagrass and colonized hard bottom in Springs Coast, Florida using WorldView-2 satellite imagery

    Science.gov (United States)

    Baumstark, René; Duffey, Renee; Pu, Ruiliang

    2016-11-01

    The offshore extent of seagrass habitat along the West Florida (USA) coast represents an important corridor for inshore-offshore migration of economically important fish and shellfish. Surviving at the fringe of light requirements, offshore seagrass beds are sensitive to changes in water clarity. Beyond and intermingled with the offshore seagrass areas are large swaths of colonized hard bottom. These offshore habitats of the West Florida coast have lacked mapping efforts needed for status and trends monitoring. The objective of this study was to propose an object-based classification method for mapping offshore habitats and to compare results to traditional photo-interpreted maps. Benthic maps were created from WorldView-2 satellite imagery using an Object Based Image Analysis (OBIA) method and a visual photo-interpretation method. A logistic regression analysis identified depth and distance from shore as significant parameters for discriminating spectrally similar seagrass and colonized hard bottom features. Seagrass, colonized hard bottom and unconsolidated sediment (sand) were mapped with 78% overall accuracy using the OBIA method compared to 71% overall accuracy using the photo-interpretation method. This study suggests an alternative for mapping deeper, offshore habitats capable of producing higher thematic and spatial resolution maps compared to those created with the traditional photo-interpretation method.

  12. Application of satellite infrared measurements to mapping sea ice

    Science.gov (United States)

    Barnes, J. C.

    1972-01-01

    The application of the ITOS-SR (scanning radiometer) infrared measurements for mapping sea ice was examined. The work included detailed mapping of ice features visible in the ITOS nighttime DRSR (direct readout scanning radiometer) pictorial data and in Nimbus summertime film strip data. Analyses of digital temperature values from computer printouts of ITOS stored data and from Nimbus data listings were also undertaken, and densitometric measurements of both ITOS and Nimbus data were initiated.

  13. Panchromatic Satellite Image Classification for Flood Hazard Assessment

    Directory of Open Access Journals (Sweden)

    Ahmed Shaker

    2012-11-01

    Full Text Available The study aims to investigate the use of panchromatic (PAN satellite image data for flood hazard assessment with anaid of various digital image processing techniques. Two SPOT PAN satellite images covering part of the Nile River inEgypt were used to delineate the flood extent during the years 1997 and 1998 (before and after a high flood. Threeclassification techniques, including the contextual classifier, maximum likelihood classifier and minimum distanceclassifier, were applied to the following: 1 the original PAN image data, 2 the original PAN image data and grey-levelco-occurrence matrix texture created from the PAN data, and 3 the enhanced PAN image data using an edgesharpeningfilter. The classification results were assessed with reference to the results derived from manualdigitization and random checkpoints. Generally, the results showed improvement of the calculation of flood area whenan edge-sharpening filter was used. In addition, the maximum likelihood classifier yielded the best classificationaccuracy (up to 97% compared to the other two classifiers. The research demonstrates the benefits of using PANsatellite imagery as a potential data source for flood hazard assessment.

  14. Satellites vs. fiber optics based networks and services - Road map to strategic planning

    Science.gov (United States)

    Marandi, James H. R.

    An overview of a generic telecommunications network and its components is presented, and the current developments in satellite and fiber optics technologies are discussed with an eye on the trends in industry. A baseline model is proposed, and a cost comparison of fiber- vs satellite-based networks is made. A step-by-step 'road map' to the successful strategic planning of telecommunications services and facilities is presented. This road map provides for optimization of the current and future networks and services through effective utilization of both satellites and fiber optics. The road map is then applied to different segments of the telecommunications industry and market place, to show its effectiveness for the strategic planning of executives of three types: (1) those heading telecommunications manufacturing concerns, (2) those leading communication service companies, and (3) managers of telecommunication/MIS departments of major corporations. Future networking issues, such as developments in integrated-services digital network standards and technologies, are addressed.

  15. Spacecraft design project: High temperature superconducting infrared imaging satellite

    Science.gov (United States)

    1991-01-01

    The High Temperature Superconductor Infrared Imaging Satellite (HTSCIRIS) is designed to perform the space based infrared imaging and surveillance mission. The design of the satellite follows the black box approach. The payload is a stand alone unit, with the spacecraft bus designed to meet the requirements of the payload as listed in the statement of work. Specifications influencing the design of the spacecraft bus were originated by the Naval Research Lab. A description of the following systems is included: spacecraft configuration, orbital dynamics, radio frequency communication subsystem, electrical power system, propulsion, attitude control system, thermal control, and structural design. The issues of testing and cost analysis are also addressed. This design project was part of the course Advanced Spacecraft Design taught at the Naval Postgraduate School.

  16. Validation of satellite SAR offshore wind speed maps to in-situ data, microscala and mesoscale model results

    Energy Technology Data Exchange (ETDEWEB)

    Hasager, C.B.; Astrup, P.; Barthelmie, R.; Dellwik, E.; Hoffmann Joergensen, B.; Gylling Mortensen, N.; Nielsen, M.; Pryor, S.; Rathmann, O.

    2002-05-01

    captured the local wind speeds very well especially near the coast and up to around 5 km offshore. Further offshore the KAMM2 model results seemed more reliable than the WAsP model. This is likely due to the effect of high orography of the island Corsica located North of the study area. The mountains were included in the KAMM2 model domain but not in the WAsP model domain. The mountains had a significant impact on the wind field far offshore. In the Gulf of Suez the winds are very strong but there exists large spatial wind speed gradients and this makes the site challenging for SAR wind speed validation studies. Only three cases were analyzed for the Gulf of Suez in Egypt. A study on how many wind speed maps would be needed for wind resource estimation showed that around 60-70 randomly selected satellite images are required to characterize the mean wind speed and Weibull c parameter, while of the order of 150 images are required to obtain a variance estimate, and nearly 2000 are needed to obtain a robust estimate of energy density (or Weibull k). This is under the assumption of no error in the SAR wind speed maps and for an uncertainty of {+-} 10% at a confidence level of 90%. Around 100 satellite SAR scenes may be available for some sites on Earth but far few at other sites. Currently the number of available satellite SAR scenes is increasing rapidly with ERS-2, RADARSAT-1 and ENVISAT in orbit. Hence the technique holds promise for future utilization in offshore wind resource assessment. (au)

  17. The SUMO Ship Detector Algorithm for Satellite Radar Images

    Directory of Open Access Journals (Sweden)

    Harm Greidanus

    2017-03-01

    Full Text Available Search for Unidentified Maritime Objects (SUMO is an algorithm for ship detection in satellite Synthetic Aperture Radar (SAR images. It has been developed over the course of more than 15 years, using a large amount of SAR images from almost all available SAR satellites operating in L-, C- and X-band. As validated by benchmark tests, it performs very well on a wide range of SAR image modes (from Spotlight to ScanSAR and resolutions (from 1–100 m and for all types and sizes of ships, within the physical limits imposed by the radar imaging. This paper describes, in detail, the algorithmic approach in all of the steps of the ship detection: land masking, clutter estimation, detection thresholding, target clustering, ship attribute estimation and false alarm suppression. SUMO is a pixel-based CFAR (Constant False Alarm Rate detector for multi-look radar images. It assumes a K distribution for the sea clutter, corrected however for deviations of the actual sea clutter from this distribution, implementing a fast and robust method for the clutter background estimation. The clustering of detected pixels into targets (ships uses several thresholds to deal with the typically irregular distribution of the radar backscatter over a ship. In a multi-polarization image, the different channels are fused. Azimuth ambiguities, a common source of false alarms in ship detection, are removed. A reliability indicator is computed for each target. In post-processing, using the results of a series of images, additional false alarms from recurrent (fixed targets including range ambiguities are also removed. SUMO can run in semi-automatic mode, where an operator can verify each detected target. It can also run in fully automatic mode, where batches of over 10,000 images have successfully been processed in less than two hours. The number of satellite SAR systems keeps increasing, as does their application to maritime surveillance. The open data policy of the EU

  18. Mapeamento de áreas aluvionares no semiárido brasileiro por meio de dados colaterais e imagens orbitais Mapping alluvial areas in semi-arid region of Brazil through collateral data and satellite images

    Directory of Open Access Journals (Sweden)

    Helio L. Lopes

    2013-07-01

    Full Text Available A região semiárida do Brasil possui grande potencial para armazenamento de água em áreas aluvionares, podendo potencializar a pequena agricultura. Verifica-se a necessidade de uma metodologia para mapeamento dessas áreas, com o objetivo de futuros estudos in loco para implantação de barragens subterrâneas e manejo correto dos solos aluvionares. Neste sentido, objetivou-se a aplicação de imagens Landsat- Mapeador Temático 5 em conjunto com dados colaterais, como a rede de drenagem, mapa de classes de solo e mapa de relevo para auxiliar na classificação de terraços aluviais. Teve-se, como área de estudo, a bacia do Rio Pajeú, no sertão do estado de Pernambuco. Buscou-se também, por meio de dados SRTM (Shuttle Radar Topography Mission, a avaliação topográfica das áreas classificadas. Verifica-se que a utilização única de dados orbitais traz classificação incongruente mas com a inserção de dados colaterais é possível obter melhores resultados na classificação. A rede de drenagem é fundamental no mascaramento de classificações espúrias. Quando procede à análise topográfica por meio de dados do SRTM das áreas classificadas como terraços aluvionares, observa-se a inconsistência desses dados.The semi-arid region of Brazil has great potential for storing water in alluvial areas, and may give support to small-scale family farming. There is a need to establish a methodology for mapping these areas with the objective of future studies to implement underground dams and suitable management of the soils that occur on alluvial terraces. In this way, the aim of this study was to apply Landsat-Thematic Mapper images together with collateral data such as the drainage network, map of soil classes and elevation data to assist in the classification of alluvial terraces. The study area was Pajeú River basin located in the 'Caatinga' ecosystem of the Pernambuco state. Topographic assessment of the alluvial areas was done by

  19. A new strategic sampling for offshore wind assessment using radar satellite images

    Energy Technology Data Exchange (ETDEWEB)

    Beaucage, P.; Lafrance, G.; Bernier, M.; Lafrance, J. [Institut National de la Recherche Scientifique, Varennes, PQ (Canada); Choisnard, J. [Hydro-Quebec, Varennes, PQ (Canada)

    2007-07-01

    Synthetic Aperture Radar (SAR) satellite images have been used for offshore wind assessment. Several offshore wind farms are in operation or under construction in northern Europe. The European target for 2030 is 300 GW, of which half is intended for onshore and half for offshore development. Offshore projects in the east coast United States, the Gulf of Mexico and west coast of Canada are in the planning stage. Information obtained from SAR can be used to supplement current mapping methods of offshore wind energy resources. SAR is a useful tool to localize wind pattern over water surfaces. Other sources of offshore wind observations include meteorological stations such as buoys and masts; remote sensing instruments onboard satellites such as scatterometers (QuikSCAT, ASCAT) or passive microwave radiometers; and numerical weather prediction models. The synergy between scatterometers and SAR was discussed. The SAR system has been used for microscale resolution wind mapping in the Gaspe Peninsula. Strategic sampling zones were chosen in proximity to the QuikSCAT grid. It was concluded that 270 and 570 SAR images are needed to calculate average wind speed (U) and mean power output of a 3 MW wind turbine (P) over the Gaspe Peninsula region, respectively. It was concluded that microscale regional wind mapping can be produced at a lower cost with strategic sampling compared to random sampling. refs., tabs., figs.

  20. METEOROLOGICAL SATELLITE IMAGES IN GEOGRAPHY CLASSES: a didactic possibility

    Directory of Open Access Journals (Sweden)

    Diego Correia Maia

    2016-01-01

    Full Text Available ABSTRACT: The satellite images are still largely unexplored as didactic resource in geography classes, particularly about meteorology. This article aims to contribute to the development of new methodologies of interpretation and understanding, beyond the construction of pedagogical practices involving meteorological satellite images, concepts and issues related to climate issues. The aim of this paper is to present possibilities for the use of meteorological satellite images in the Teaching of Geography, aiming the promoting and the understanding of contents of air masses and fronts and climatic factors. RESUMO: As imagens de satélite ainda são pouco exploradas como recurso didático nas aulas de Geografia, principalmente aquelas relativas à meteorologia. Este artigo visa contribuir com o desenvolvimento de novas metodologias de interpretação e compreensão, além da construção de práticas pedagógicas envolvendo imagens de satélite meteorológico, conceitos e temas ligados às questões climáticas. Seu objetivo é apresentar possibilidades de utilização das imagens de satélite meteorológico no Ensino de Geografia, visando à promoção e ao entendimento dos conteúdos de massas de ar e frentes e de elementos climáticos. Palavras chave

  1. Detection of Burn Area and Severity with MODIS Satellite Images and Spatial Autocorrelation Techniques

    Science.gov (United States)

    Kaya, S.; Kavzoglu, T.; Tonbul, H.

    2014-12-01

    Effects of forest fires and implications are one of the most important natural disasters all over the world. Statistical data observed that forest fires had a variable structure in the last century in Turkey, but correspondingly the population growth amount of forest fires and burn area increase widely in recent years. Depending on this, erosion, landslides, desertification and mass loss come into existence. In addition; after forest fires, renewal of forests and vegetation are very important for land management. Classic methods used for detection of burn area and severity requires a long and challenging process due to time and cost factors. Thanks to advanced techniques used in the field of Remote Sensing, burn area and severity can be determined with high detail and precision. The purpose of this study based on blending MODIS (Moderate Resolution Imaging Spectradiometer) satellite images and spatial autocorrelation techniques together, thus detect burn area and severity absolutely. In this context, spatial autocorrelation statistics like Moran's I and Get is-Ord Local Gi indexes were used to measure and analyze to burned area characteristics. Prefire and postfire satellite images were used to determine fire severity depending on spectral indexes corresponding to biomass loss and carbon emissivity intensities. Satellite images have used for identification of fire damages and risks in terms of fire management for a long time. This study was performed using prefire and postfire satellite images and spatial autocorrelation techniques to determining and analyzing forest fires in Antalya, Turkey region which serious fires occurred. In this context, this approach enables the characterization of distinctive texture of burned area and helps forecasting more precisely. Finally, it is observed that mapping of burned area and severity could be performed from local scale to national scale. Key Words: Spatial autocorrelation, MODIS, Fire, Burn Severity

  2. Assessment of Satellite Images for Soil Salinity Studies

    Directory of Open Access Journals (Sweden)

    S.H. Sanaeinejad

    2012-04-01

    Full Text Available Soil salinity is one of the main environmental problems affecting extensive area in the world. There are some problems with traditional data collection methods for soil studies. Using the new methods and techniques such as remote sensing could overcome most of these problems. However using these data in areas with uncommon usages needed some researches to find the best calibration between the data and real situations in soil. This research was carried out using Landsat satellite images in Neyshabour area, North East of Iran. In order to prepare suitable learning samples for the image processing in this study, 300 locations were randomly selected in the area, among which 273 locations were finally selected as suitable surface soil samples. All samples were moved to laboratory and their electrical conductivity was measured. Six reflective bands of ETM+ satellite images taken from the study area in 2002 were used for the image processing analysis. Classification of different soil salinities was carried out using common algorithms of image classification based on the best composition bands and using statistical methods between soil salinity variables and digital numbers of the images to represent a suitable method. the research results showed that the reflective bands 7, 3, 4 and 1 are the best band composition for preparing the color composite images and for the classification of the salinity in this area. The highest coefficient of determination was R2=0.311 and R2=0.44 for saline and non-saline soil respectively using band 2 and 3 of the images at 5% significant level. Based on the results, it can be concluded that the potential of ETM+ images for delineation and identification of different soil salinity are limited.

  3. From Satellite Imagery to Peatland Vegetation Diversity: How Reliable Are Habitat Maps?

    Directory of Open Access Journals (Sweden)

    Monique F. Poulin

    2002-12-01

    Full Text Available Although satellite imagery is becoming a basic component of the work of ecologists and conservationists, its potential and reliability are still relatively unknown for a large number of ecosystems. Using Landsat 7/ETM+ (Enhanced Thematic Mapper Plus data, we tested the accuracy of two types of supervised classifications for mapping 13 peatland habitats in southern Quebec, Canada. Before classifying peatland habitats, we applied a mask procedure that revealed 629 peatlands covering a total of 18,103 ha; 26% of them were larger than 20 ha. We applied both a simple maximum likelihood (ML function and a weighted maximum likelihood (WML function that took into account the proportion of each habitat class within each peatland when classifying the habitats on the image. By validating 626 Global Positioning System locations within 92 peatlands, we showed that both classification procedures provided an accurate representation of the 13 peatland habitat classes. For all habitat classes except lawn with pools, the predominant classified habitat within 45 m of the center of the validation location was of the same type as the one observed in the field. There were differences in the performance of the two classification procedures: ML was a better tool for mapping rare habitats, whereas WML favored the most common habitats. Based on ordinations, peatland habitat classes were as effective as environmental variables such as humidity indicators and water chemistry components at explaining the distribution of plant species and performed 1.6 times better when it came to accounting for vegetation structure patterns. Peatland habitats with pools had the most distinct plant assemblages, and the habitats dominated by herbs were moderately distinct from those characterized by ericaceous shrubs. Habitats dominated by herbs were the most variable in terms of plant species assemblages. Because peatlands are economically valuable wetlands, the maps resulting from the new

  4. High-spatial resolution multispectral and panchromatic satellite imagery for mapping perennial desert plants

    Science.gov (United States)

    Alsharrah, Saad A.; Bruce, David A.; Bouabid, Rachid; Somenahalli, Sekhar; Corcoran, Paul A.

    2015-10-01

    The use of remote sensing techniques to extract vegetation cover information for the assessment and monitoring of land degradation in arid environments has gained increased interest in recent years. However, such a task can be challenging, especially for medium-spatial resolution satellite sensors, due to soil background effects and the distribution and structure of perennial desert vegetation. In this study, we utilised Pleiades high-spatial resolution, multispectral (2m) and panchromatic (0.5m) imagery and focused on mapping small shrubs and low-lying trees using three classification techniques: 1) vegetation indices (VI) threshold analysis, 2) pre-built object-oriented image analysis (OBIA), and 3) a developed vegetation shadow model (VSM). We evaluated the success of each approach using a root of the sum of the squares (RSS) metric, which incorporated field data as control and three error metrics relating to commission, omission, and percent cover. Results showed that optimum VI performers returned good vegetation cover estimates at certain thresholds, but failed to accurately map the distribution of the desert plants. Using the pre-built IMAGINE Objective OBIA approach, we improved the vegetation distribution mapping accuracy, but this came at the cost of over classification, similar to results of lowering VI thresholds. We further introduced the VSM which takes into account shadow for further refining vegetation cover classification derived from VI. The results showed significant improvements in vegetation cover and distribution accuracy compared to the other techniques. We argue that the VSM approach using high-spatial resolution imagery provides a more accurate representation of desert landscape vegetation and should be considered in assessments of desertification.

  5. Evaluating Landsat 8 Satellite Sensor Data for Improved Vegetation Mapping Accuracy of the New Hampshire Coastal Watershed Area

    Science.gov (United States)

    Ledoux, Lindsay

    Remote sensing is a technology that has been used for many years to generate land cover maps. These maps provide insight as to the landscape, and features that are on the ground. One way in which this is useful is through the visualization of forest cover types. The forests of New England have been notoriously difficult to map, due to their high complexity and fine-scale heterogeneity. In order to be able to better map these features, the newest satellite imagery available may be the best technology to use. Landsat 8 is the newest satellite created by a team of scientists and engineers from the United States Geological Survey and the National Aeronautics and Space Administration, and was launched in February of 2013. The Landsat 8 satellite sensor is considered an improvement over previous Landsat sensors, as it has three additional bands: (1) a coastal/ aerosol band, band 1, that senses light in deep blue, (2) a cirrus band, band 9, that provides detection of wispy clouds that may interfere with analysis, and (3) a Quality Assessment band whose bits contain information regarding conditions that may affect the quality and applicability of certain image pixels. In addition to these added bands, the data generated by Landsat 8 are delivered at an increased radiometric resolution compared with previous Landsat sensors, increasing the dynamic range of the data the sensor can retrieve. In order to investigate the satellite sensor data, a novel approach to classifying Landsat 8 imagery was used. Object-Based Image Analysis was employed, along with the random forest machine learning classifier, to segment and classify the land cover of the Coastal Watershed of southeastern New Hampshire. In order to account strictly for band improvements, supervised classification using the maximum likelihood classifier was completed, on imagery created: (1) using all of the original bands provided by Landsat 8, and (2) an image created using Landsat 8 bands that were only available on

  6. Authentication Scheme Based on Principal Component Analysis for Satellite Images

    Directory of Open Access Journals (Sweden)

    Ashraf. K. Helmy

    2009-09-01

    Full Text Available This paper presents a multi-band wavelet image content authentication scheme for satellite images by incorporating the principal component analysis (PCA. The proposed schemeachieves higher perceptual transparency and stronger robustness. Specifically, the developed watermarking scheme can successfully resist common signal processing such as JPEG compression and geometric distortions such as cropping. In addition, the proposed scheme can be parameterized, thus resulting in more security. That is, an attacker may not be able to extract the embedded watermark if the attacker does not know the parameter.In an order to meet these requirements, the host image is transformed to YIQ to decrease the correlation between different bands, Then Multi-band Wavelet transform (M-WT is applied to each channel separately obtaining one approximate sub band and fifteen detail sub bands. PCA is then applied to the coefficients corresponding to the same spatial location in all detail sub bands. The last principle component band represents an excellent domain forinserting the water mark since it represents lowest correlated features in high frequency area of host image.One of the most important aspects of satellite images is spectral signature, the behavior of different features in different spectral bands, the results of proposed algorithm shows that the spectral stamp for different features doesn't tainted after inserting the watermark.

  7. Mapping Arctic sea ice from the Earth Resources Technology Satellite

    Science.gov (United States)

    Barnes, J. C. (Principal Investigator); Bowley, C. J.

    1973-01-01

    The author has identified the following significant results. Methods of detecting ice and for distinguishing between ice and clouds are discussed, and examples of ERTS-1 data showing ice distributions in northern Hudson Bay, M'Clure Strait, the eastern Beaufort Sea, and the Greenland Sea are presented. The results of the initial analysis of ERTS-1 data indicate that the locations of ice edges and ice concentrations can be accurately mapped, and that considerable information on ice type can be derived through use of the various spectral bands. Ice features as small as 80 to 100 m width can be mapped.

  8. A Bayesian approach for solar resource potential assessment using satellite images

    Science.gov (United States)

    Linguet, L.; Atif, J.

    2014-03-01

    The need for a more sustainable and more protective development opens new possibilities for renewable energy. Among the different renewable energy sources, the direct conversion of sunlight into electricity by solar photovoltaic (PV) technology seems to be the most promising and represents a technically viable solution to energy demands. But implantation and deployment of PV energy need solar resource data for utility planning, accommodating grid capacity, and formulating future adaptive policies. Currently, the best approach to determine the solar resource at a given site is based on the use of satellite images. However, the computation of solar resource (non-linear process) from satellite images is unfortunately not straightforward. From a signal processing point of view, it falls within non-stationary, non-linear/non-Gaussian dynamical inverse problems. In this paper, we propose a Bayesian approach combining satellite images and in situ data. We propose original observation and transition functions taking advantages of the characteristics of both the involved type of data. A simulation study of solar irradiance is carried along with this method and a French Guiana solar resource potential map for year 2010 is given.

  9. GNSS Carrier Phase Integer Ambiguity Resolution with Camera and Satellite images

    Science.gov (United States)

    Henkel, Patrick

    2015-04-01

    Ambiguity Resolution is the key to high precision position and attitude determination with GNSS. However, ambiguity resolution of kinematic receivers becomes challenging in environments with substantial multipath, limited satellite availability and erroneous cycle slip corrections. There is a need for other sensors, e.g. inertial sensors that allow an independent prediction of the position. The change of the predicted position over time can then be used for cycle slip detection and correction. In this paper, we provide a method to improve the initial ambiguity resolution for RTK and PPP with vision-based position information. Camera images are correlated with geo-referenced aerial/ satellite images to obtain an independent absolute position information. This absolute position information is then coupled with the GNSS and INS measurements in an extended Kalman filter to estimate the position, velocity, acceleration, attitude, angular rates, code multipath and biases of the accelerometers and gyroscopes. The camera and satellite images are matched based on some characteristic image points (e.g. corners of street markers). We extract these characteristic image points from the camera images by performing the following steps: An inverse mapping (homogenous projection) is applied to transform the camera images from the driver's perspective to bird view. Subsequently, we detect the street markers by performing (a) a color transformation and reduction with adaptive brightness correction to focus on relevant features, (b) a subsequent morphological operation to enhance the structure recognition, (c) an edge and corner detection to extract feature points, and (d) a point matching of the corner points with a template to recognize the street markers. We verified the proposed method with two low-cost u-blox LEA 6T GPS receivers, the MPU9150 from Invensense, the ASCOS RTK corrections and a PointGrey camera. The results show very precise and seamless position and attitude

  10. Use of MODIS satellite images for detailed lake morphometry: Application to basins with large water level fluctuations

    Science.gov (United States)

    Ovakoglou, George; Alexandridis, Thomas K.; Crisman, Thomas L.; Skoulikaris, Charalampos; Vergos, George S.

    2016-09-01

    Lake morphometry is essential for managing water resources and limnetic ecosystems. For reservoirs that receive high sediment loads, frequent morphometric mapping is necessary to define both the effective life of the reservoir and its water storage capacity for irrigation, power generation, flood control and domestic water supply. The current study presents a methodology for updating the digital depth model (DDM) of lakes and reservoirs with wide intra and interannual fluctuations of water levels using satellite remote sensing. A time series of Terra MODIS satellite images was used to map shorelines formed during the annual water level change cycle, and were validated with concurrent Landsat ETM+ satellite images. The shorelines were connected with in-situ observation of water levels and were treated as elevation contours to produce the DDM using spatial interpolation. The accuracy of the digitized shorelines is within the mapping accuracy of the satellite images, while the resulting DDM is validated using in-situ elevation measurements. Two versions of the DDM were produced to assess the influence of seasonal water fluctuation. Finally, the methodology was applied to Lake Kerkini (Greece) to produce an updated DDM, which was compared with the last available bathymetric survey (1991) and revealed changes in sediment distribution within the lake.

  11. Mapping the Space Radiation Environment in LEO Orbit by the SATRAM Timepix Payload On Board the Proba-V Satellite

    Science.gov (United States)

    Granja, Carlos; Polansky, Stepan; Sospisil, Stanislav; Owens, Alan; Mellab, Karim

    2016-08-01

    The compact spacecraft payload SATRAM is operating in LEO orbit since 2013 on board the Proba-V satellite from ESA and provides high-resolution wide-range radiation monitoring of the satellite environment. Equipped with the pixel detector Timepix, the technology demonstration payload determines the composition (particle types) and spectral characterization (stopping power) of the mixed radiation field with quantum imaging sensitivity, charged particle tracking, energy loss and directionality capability. With a polar orbit (sun synchronous, 98° inclination) and altitude of 820 km the space radiation field is continuously sampled over the entire planet every few days. Results are given in the form of spatial- and time- correlated maps of dose rate and particle flux. Comparison is made between quiescent and geomagnetic storm activity periods.

  12. Integrating Radar Image Data with Google Maps

    Science.gov (United States)

    Chapman, Bruce D.; Gibas, Sarah

    2010-01-01

    A public Web site has been developed as a method for displaying the multitude of radar imagery collected by NASA s Airborne Synthetic Aperture Radar (AIRSAR) instrument during its 16-year mission. Utilizing NASA s internal AIRSAR site, the new Web site features more sophisticated visualization tools that enable the general public to have access to these images. The site was originally maintained at NASA on six computers: one that held the Oracle database, two that took care of the software for the interactive map, and three that were for the Web site itself. Several tasks were involved in moving this complicated setup to just one computer. First, the AIRSAR database was migrated from Oracle to MySQL. Then the back-end of the AIRSAR Web site was updated in order to access the MySQL database. To do this, a few of the scripts needed to be modified; specifically three Perl scripts that query that database. The database connections were then updated from Oracle to MySQL, numerous syntax errors were corrected, and a query was implemented that replaced one of the stored Oracle procedures. Lastly, the interactive map was designed, implemented, and tested so that users could easily browse and access the radar imagery through the Google Maps interface.

  13. Upper Atmosphere Research Satellite (UARS) Microwave Limb Sounder (MLS) mapping - Validation, early results and applications

    Science.gov (United States)

    Elson, Lee S.; Froidevaux, Lucien; Waters, Joe

    1992-01-01

    The results of limitation studies performed with the UARS MLS are presented. A consistent set of algorithms allows the extraction of the spectral coefficients in time and longitude from asynoptically sampled satellite data and the subsequent reconstruction of synoptic maps from that spectral information. In addition to providing synoptic maps, the asynoptic technique allows the use of standard spectral analysis tools such as autocorrelation and cross correlation.

  14. Online self-service processing system of ZY-3 satellite: a prospective study of image cloud services

    Science.gov (United States)

    Wang, Hongyan; Wang, Huabin; Shi, Shaoyu

    2015-12-01

    The strong demands for satellite images are increasing not only in professional fields, but also in the non-professionals. But the online map services with up-to-date satellite images can serve few demands. One challenge is how to provide online processing service, which need to handle real-time online data-intensive geospatial computation and visualization. Under the background of the development of cloud computing technology, the problem can be figured out partly. The other challenge is how to implement user-customized online processing without professional background and knowledge. An online self-service processing system of ZY-3 Satellite images is designed to implement an on-demand service mode in this paper. It will work with only some simple parameters being set up for the non-professionals without having to care about the specific processing steps. And the professionals can assemble the basic processing services to a service chain, which can work out a more complex processing and a better result. This intelligent self-service online system for satellite images processing, which is called the prototype of satellite image cloud service in this paper, is accelerated under the development of cloud computing technology and researches on data-intensive computing. To realize the goal, the service mode and framework of the online self-service processing system of ZY-3 Satellite images are figured out in this paper. The details of key technologies are also discussed, including user space virtualization management, algorithm-level parallel image processing, image service chain construction, etc. And the experimental system is built up as a prospective study of image cloud services.

  15. Computing dynamic classification images from correlation maps.

    Science.gov (United States)

    Lu, Hongjing; Liu, Zili

    2006-05-22

    We used Pearson's correlation to compute dynamic classification images of biological motion in a point-light display. Observers discriminated whether a human figure that was embedded in dynamic white Gaussian noise was walking forward or backward. Their responses were correlated with the Gaussian noise fields frame by frame, across trials. The resultant correlation map gave rise to a sequence of dynamic classification images that were clearer than either the standard method of A. J. Ahumada and J. Lovell (1971) or the optimal weighting method of R. F. Murray, P. J. Bennett, and A. B. Sekuler (2002). Further, the correlation coefficients of all the point lights were similar to each other when overlapping pixels between forward and backward walkers were excluded. This pattern is consistent with the hypothesis that the point-light walker is represented in a global manner, as opposed to a fixed subset of point lights being more important than others. We conjecture that the superior performance of the correlation map may reflect inherent nonlinearities in processing biological motion, which are incompatible with the assumptions underlying the previous methods.

  16. A New Burst of Seafloor Mapping and Discovery Driven By Advances in Satellite Altimetry

    Science.gov (United States)

    Müller, D.; Matthews, K. J.; Sandwell, D. T.

    2014-12-01

    Radar altimetry measurements of the ocean surface topography from two satellites have recently been used to construct a new global marine gravity model that is twice as accurate as previous models. The model reveals previously invisible abyssal hill (AH) fabric in many parts of the ocean basins, placing valuable additional constraints on tectonic events reflected in changes in the orientation of linear AHs, and thus in spreading direction. AH fabric, if dated via marine magnetic anomalies, puts much tighter temporal constraints on changes in seafloor spreading directions than fracture zones, which, depending on their offset, often take many millions of years to adjust to major plate motion events. The new data also reveal previously unmapped microplates in the Pacific and Indian oceans. They preferentially form in spreading corridors where spreading rates were very high, reaching plate tectonic speed limits, or in response to plate reorganization stresses. The mapping of previously unknown or poorly mapped ridge propagation events during the Cretaceous Normal Superchron (CNS), leading to pseudofaults and extinct ridges, is relevant for interpreting marine magnetic anomaly sequences during the CNS in terms of magnetic field variability. The new grid provides breathtakingly detailed views of individual fault structures, previously only mapped via expensive seismic surveys, in the North Falkland Basin. Here narrow vertical gravity gradient highs and lows can be shown to correspond to seismically imaged horsts and grabens bounded by normal faults. The new gravity field allows us to create a detailed regional fault map outside of existing seismic coverage. The fault network that emerges illustrates that this eastern region of the Falkland Plateau is characterised by broadly distributed faulting, reflecting a wide rift that typically occurs in regions of higher than normal heat flow with relatively thick crust, where local crustal buoyancy effects dominate localising

  17. Comparision of Clustering Algorithms usingNeural Network Classifier for Satellite Image Classification

    Directory of Open Access Journals (Sweden)

    S.Praveena

    2015-06-01

    Full Text Available This paper presents a hybrid clustering algorithm and feed-forward neural network classifier for land-cover mapping of trees, shade, building and road. It starts with the single step preprocessing procedure to make the image suitable for segmentation. The pre-processed image is segmented using the hybrid genetic-Artificial Bee Colony(ABC algorithm that is developed by hybridizing the ABC and FCM to obtain the effective segmentation in satellite image and classified using neural network . The performance of the proposed hybrid algorithm is compared with the algorithms like, k-means, Fuzzy C means(FCM, Moving K-means, Artificial Bee Colony(ABC algorithm, ABC-GA algorithm, Moving KFCM and KFCM algorithm.

  18. Effects of Per-Pixel Variability on Uncertainties in Bathymetric Retrievals from High-Resolution Satellite Images

    Directory of Open Access Journals (Sweden)

    Elizabeth J. Botha

    2016-05-01

    Full Text Available Increased sophistication of high spatial resolution multispectral satellite sensors provides enhanced bathymetric mapping capability. However, the enhancements are counter-acted by per-pixel variability in sunglint, atmospheric path length and directional effects. This case-study highlights retrieval errors from images acquired at non-optimal geometrical combinations. The effects of variations in the environmental noise on water surface reflectance and the accuracy of environmental variable retrievals were quantified. Two WorldView-2 satellite images were acquired, within one minute of each other, with Image 1 placed in a near-optimal sun-sensor geometric configuration and Image 2 placed close to the specular point of the Bidirectional Reflectance Distribution Function (BRDF. Image 2 had higher total environmental noise due to increased surface glint and higher atmospheric path-scattering. Generally, depths were under-estimated from Image 2, compared to Image 1. A partial improvement in retrieval error after glint correction of Image 2 resulted in an increase of the maximum depth to which accurate depth estimations were returned. This case-study indicates that critical analysis of individual images, accounting for the entire sun elevation and azimuth and satellite sensor pointing and geometry as well as anticipated wave height and direction, is required to ensure an image is fit for purpose for aquatic data analysis.

  19. Analysis of Galileo Style Geostationary Satellite Imaging: Image Reconstruction

    Science.gov (United States)

    2012-09-01

    obtained using only baselines longer than 8 m does not sample the short spacial frequencies, and the image reconstruction is not able to recover the...the long spacial frequencies sampled in a shorter baseline overlap the short spacial frequencies sampled in a longer baseline. This technique will

  20. MAPPING OF INNER AND OUTER CELESTIAL BODIES USING NEW GLOBAL AND LOCAL TOPOGRAPHIC DATA DERIVED FROM PHOTOGRAMMETRIC IMAGE PROCESSING

    Directory of Open Access Journals (Sweden)

    I. P. Karachevtseva

    2016-06-01

    Full Text Available New estimation of fundamental geodetic parameters and global and local topography of planets and satellites provide basic coordinate systems for mapping as well as opportunities for studies of processes on their surfaces. The main targets of our study are Europa, Ganymede, Calisto and Io (satellites of Jupiter, Enceladus (a satellite of Saturn, terrestrial planetary bodies, including Mercury, the Moon and Phobos, one of the Martian satellites. In particular, based on new global shape models derived from three-dimensional control point networks and processing of high-resolution stereo images, we have carried out studies of topography and morphology. As a visual representation of the results, various planetary maps with different scale and thematic direction were created. For example, for Phobos we have produced a new atlas with 43 maps, as well as various wall maps (different from the maps in the atlas by their format and design: basemap, topography and geomorphological maps. In addition, we compiled geomorphologic maps of Ganymede on local level, and a global hypsometric Enceladus map. Mercury’s topography was represented as a hypsometric globe for the first time. Mapping of the Moon was carried out using new images with super resolution (0.5-1 m/pixel for activity regions of the first Soviet planetary rovers (Lunokhod-1 and -2. New results of planetary mapping have been demonstrated to the scientific community at planetary map exhibitions (Planetary Maps Exhibitions, 2015, organized by MExLab team in frame of the International Map Year, which is celebrated in 2015-2016. Cartographic products have multipurpose applications: for example, the Mercury globe is popular for teaching and public outreach, the maps like those for the Moon and Phobos provide cartographic support for Solar system exploration.

  1. Mapping of Inner and Outer Celestial Bodies Using New Global and Local Topographic Data Derived from Photogrammetric Image Processing

    Science.gov (United States)

    Karachevtseva, I. P.; Kokhanov, A. A.; Rodionova, J. F.; Zharkova, A. Yu.; Lazareva, M. S.

    2016-06-01

    New estimation of fundamental geodetic parameters and global and local topography of planets and satellites provide basic coordinate systems for mapping as well as opportunities for studies of processes on their surfaces. The main targets of our study are Europa, Ganymede, Calisto and Io (satellites of Jupiter), Enceladus (a satellite of Saturn), terrestrial planetary bodies, including Mercury, the Moon and Phobos, one of the Martian satellites. In particular, based on new global shape models derived from three-dimensional control point networks and processing of high-resolution stereo images, we have carried out studies of topography and morphology. As a visual representation of the results, various planetary maps with different scale and thematic direction were created. For example, for Phobos we have produced a new atlas with 43 maps, as well as various wall maps (different from the maps in the atlas by their format and design): basemap, topography and geomorphological maps. In addition, we compiled geomorphologic maps of Ganymede on local level, and a global hypsometric Enceladus map. Mercury's topography was represented as a hypsometric globe for the first time. Mapping of the Moon was carried out using new images with super resolution (0.5-1 m/pixel) for activity regions of the first Soviet planetary rovers (Lunokhod-1 and -2). New results of planetary mapping have been demonstrated to the scientific community at planetary map exhibitions (Planetary Maps Exhibitions, 2015), organized by MExLab team in frame of the International Map Year, which is celebrated in 2015-2016. Cartographic products have multipurpose applications: for example, the Mercury globe is popular for teaching and public outreach, the maps like those for the Moon and Phobos provide cartographic support for Solar system exploration.

  2. Great Lakes Ice Cover Classification and Mapping Using Satellite Synthetic Aperture Radar (SAR) Data

    Science.gov (United States)

    Nghiem, S.; Leshkevich, G.; Kwok, R.

    1998-01-01

    Owing to the size and extent of the Great Lakes and the variety of ice types features found there, the timely and objective qualities inherent in computer processing of satellite data make it well suited for monitoring and mapping ice cover.

  3. Cadastral Resurvey using High Resolution Satellite Ortho Image - challenges: A case study in Odisha, India

    Science.gov (United States)

    Parida, P. K.; Sanabada, M. K.; Tripathi, S.

    2014-11-01

    Advancements in satellite sensor technology enabling capturing of geometrically accurate images of earth's surface coupled with DGPS/ETS and GIS technology holds the capability of large scale mapping of land resources at cadastral level. High Resolution Satellite Images depict field bunds distinctly. Thus plot parcels are to be delineated from cloud free ortho-images and obscured/difficult areas are to be surveyed using DGPS and ETS. The vector datasets thus derived through RS/DGPS/ETS survey are to be integrated in GIS environment to generate the base cadastral vector datasets for further settlement/title confirmation activities. The objective of this paper is to illustrate the efficacy of a hybrid methodology employed in Pitambarpur Sasana village under Digapahandi Tahasil of Ganjam district, as a pilot project, particularly in Odisha scenario where the land parcel size is very small. One of the significant observations of the study is matching of Cadastral map area i.e. 315.454 Acres, the image map area i.e. 314.887 Acres and RoR area i.e. 313.815 Acre. It was revealed that 79 % of plots derived by high-tech survey method show acceptable level of accuracy despite the fact that the mode of area measurement by ground and automated method has significant variability. The variations are more in case of Government lands, Temple/Trust lands, Common Property Resources and plots near to river/nalas etc. The study indicates that the adopted technology can be extended to other districts and cadastral resurvey and updating work can be done for larger areas of the country using this methodology.

  4. Measuring snow cover using satellite imagery during 1973 and 1974 melt season: North Santiam, Boise, and Upper Snake Basins, phase 1. [LANDSAT satellites, imaging techniques

    Science.gov (United States)

    Wiegman, E. J.; Evans, W. E.; Hadfield, R.

    1975-01-01

    Measurements are examined of snow coverage during the snow-melt season in 1973 and 1974 from LANDSAT imagery for the three Columbia River Subbasins. Satellite derived snow cover inventories for the three test basins were obtained as an alternative to inventories performed with the current operational practice of using small aircraft flights over selected snow fields. The accuracy and precision versus cost for several different interactive image analysis procedures was investigated using a display device, the Electronic Satellite Image Analysis Console. Single-band radiance thresholding was the principal technique employed in the snow detection, although this technique was supplemented by an editing procedure involving reference to hand-generated elevation contours. For each data and view measured, a binary thematic map or "mask" depicting the snow cover was generated by a combination of objective and subjective procedures. Photographs of data analysis equipment (displays) are shown.

  5. Satellite SAR wind resource mapping in China (SAR-China)

    DEFF Research Database (Denmark)

    Badger, Merete

    The project ‘Off-Shore Wind Energy Resource Assessment and Feasibility Study of Off-Shore Wind Farm Development in China’ is funded by the EU-China Energy and Environment Programme (EEP) and runs for one year (August 2008 - August 2009). The project is lead by the China Meteorological Administrat...... offshore at a high spatial resolution (1 km). The detailed wind resource maps will be used, in combination with other data sets, for an assessment of potential sites for offshore wind farm development along the coastline from Fujian to Shandong in China....

  6. NNIC—neural network image compressor for satellite positioning system

    Science.gov (United States)

    Danchenko, Pavel; Lifshits, Feodor; Orion, Itzhak; Koren, Sion; Solomon, Alan D.; Mark, Shlomo

    2007-04-01

    We have developed an algorithm, based on novel techniques of data compression and neural networks for the optimal positioning of a satellite. The algorithm is described in detail, and examples of its application are given. The heart of this algorithm is the program NNIC—neural network image compressor. This program was developed for compression color and grayscale images with artificial neural networks (ANNs). NNIC applies three different methods for compression. Two of them are based on neural networks architectures—multilayer perceptron and kohonen network. The third is based on a widely used method of discrete cosine transform, the basis for the JPEG standard. The program also serves as a tool for determining numerical and visual quality parameters of compression and comparison between different methods. A number of advantages and disadvantages of the compression using ANNs were discovered in the course of the present research, some of them presented in this report. The thrust of the report is the discussion of ANNs implementation problems for modern platforms, such as a satellite positioning system that include intensive image flowing and processing.

  7. Fully automated extraction and analysis of surface Urban Heat Island patterns from moderate resolution satellite images

    Science.gov (United States)

    Keramitsoglou, I.; Kiranoudis, C. T.

    2012-04-01

    Comparison of thermal patterns across different cities is hampered by the lack of an appropriate methodology to extract the patterns and characterize them. What is more, increased attention by the urban climate community has been expressed to assess the magnitude and dynamics of the surface Urban Heat Island effect and to identify environmental impacts of large cities and "megacities". Motivated by this need, we propose an innovative object-based image analysis procedure to extract thermal patterns for the quantitative analysis of satellite-derived land surface temperature maps. The spatial and thermal attributes associated with these objects are then calculated and used for the analyses of the intensity, the position and the spatial extent of SUHIs. The output eventually builds up and populates a database with comparable and consistent attributes, allowing comparisons between cities as well as urban climate studies. The methodology is demonstrated over the Greater Athens Area, Greece, with more than 3000 LST images acquired by MODIS over a decade being analyzed. The approach can be potentially applied to current and future (e.g. Sentinel-3) level-2 satellite-derived land surface temperature maps of 1km spatial resolution acquired over continental and coastal cities.

  8. Mapping the nonstationary internal tide with satellite altimetry

    Science.gov (United States)

    Zaron, Edward D.

    2017-01-01

    Temporal variability of the internal tide has been inferred from the 23 year long combined records of the TOPEX/Poseidon, Jason-1, and Jason-2 satellite altimeters by combining harmonic analysis with an analysis of along-track wavenumber spectra of sea-surface height (SSH). Conventional harmonic analysis is first applied to estimate and remove the stationary components of the tide at each point along the reference ground tracks. The wavenumber spectrum of the residual SSH is then computed, and the variance in a neighborhood around the wavenumber of the mode-1 baroclinic M2 tide is interpreted as the sum of noise, broadband nontidal processes, and the nonstationary tide. At many sites a bump in the spectrum associated with the internal tide is noted, and an empirical model for the noise and nontidal processes is used to estimate the nonstationary semidiurnal tidal variance. The results indicate a spatially inhomogeneous pattern of tidal variability. Nonstationary tides are larger than stationary tides throughout much of the equatorial Pacific and Indian Oceans.

  9. An entropy-based approach to automatic image segmentation of satellite images

    CERN Document Server

    Barbieri, A L; Rodrigues, F A; Bruno, O M; Costa, L da F

    2009-01-01

    An entropy-based image segmentation approach is introduced and applied to color images obtained from Google Earth. Segmentation refers to the process of partitioning a digital image in order to locate different objects and regions of interest. The application to satellite images paves the way to automated monitoring of ecological catastrophes, urban growth, agricultural activity, maritime pollution, climate changing and general surveillance. Regions representing aquatic, rural and urban areas are identified and the accuracy of the proposed segmentation methodology is evaluated. The comparison with gray level images revealed that the color information is fundamental to obtain an accurate segmentation.

  10. Image Processing Technique for Automatic Detection of Satellite Streaks

    Science.gov (United States)

    2007-02-01

    satellites actifs et d’autres débris doivent être contrôlées. Dans ces cas, les paramètres orbitaux sont connus, mais après un certain temps cette...artéfacts de capteur (tel que des pixels morts, gradient de fond, bruit) et dégradation du signal (coulage, éblouissement, saturation, etc...Cette étude explique comment les artéfacts du capteur peuvent être corrigés, le fond de l’image enlevé et le bruit partiellement effacé. Puis, elle

  11. Landsat TM and ETM+ 2002-2003 Kansas Satellite Image Database (KSID)

    Data.gov (United States)

    Kansas Data Access and Support Center — The Kansas Satellite Image Database (KSID):2002-2003 consists of image data gathered by three sensors. The first image data are terrain-corrected, precision...

  12. Satellite-based damage mapping following the 2006 Indonesia earthquake—How accurate was it?

    Science.gov (United States)

    Kerle, Norman

    2010-12-01

    The Yogyakarta area in Indonesia suffered a devastating earthquake on 27 May 2006. There was an immediate international response, and the International Charter "Space and Major Disasters" was activated, leading to a rapid production of image-based damage maps and other assistance. Most of the acquired images were processed by UNOSAT and DLR-ZKI, while substantial damage mapping also occurred on the ground. This paper assesses the accuracy and completeness of the damage maps produced based on Charter data, using ground damage information collected during an extensive survey by Yogyakarta's Gadjah Mada University in the weeks following the earthquake and that has recently become available. More than 54,000 buildings or their remains were surveyed, resulting in an exceptional validation database. The UNOSAT damage maps outlining clusters of severe damage are very accurate, while earlier, more detailed results underestimated damage and missed larger areas. Damage maps produced by DLR-ZKI, using a damage-grid approach, were found to underestimate the extent and severity of the devastation. Both mapping results also suffer from limited image coverage and extensive cloud contamination. The ground mapping gives a more accurate picture of the extent of the damage, but also illustrates the challenge of mapping a vast area. The paper concludes with a discussion on ways to improve Charter-based damage maps by integration of local knowledge, and to create a wider impact through generation of customised mapping products using web map services.

  13. Summit-to-sea mapping and change detection using satellite imagery: tools for conservation and management of coral reefs.

    Science.gov (United States)

    Shapiro, A C; Rohmann, S O

    2005-05-01

    Continuous summit-to-sea maps showing both land features and shallow-water coral reefs have been completed in Puerto Rico and the U.S. Virgin Islands, using circa 2000 Landsat 7 Enhanced Thematic Mapper (ETM+) Imagery. Continuous land/sea terrain was mapped by merging Digital Elevation Models (DEM) with satellite-derived bathymetry. Benthic habitat characterizations were created by unsupervised classifications of Landsat imagery clustered using field data, and produced maps with an estimated overall accuracy of>75% (Tau coefficient >0.65). These were merged with Geocover-LC (land use/land cover) data to create continuous land/ sea cover maps. Image pairs from different dates were analyzed using Principle Components Analysis (PCA) in order to detect areas of change in the marine environment over two different time intervals: 2000 to 2001, and 1991 to 2003. This activity demonstrates the capabilities of Landsat imagery to produce continuous summit-to-sea maps, as well as detect certain changes in the shallow-water marine environment, providing a valuable tool for efficient coastal zone monitoring and effective management and conservation.

  14. Mapping invasive Phragmites australis in the coastal Great Lakes with ALOS PALSAR satellite imagery for decision support

    Science.gov (United States)

    Bourgeau-Chavez, Laura L.; Kowalski, Kurt P.; Carlson Mazur, Martha L.; Scarbrough, Kirk A.; Powell, Richard B.; Brooks, Colin N.; Huberty, Brian; Jenkins, Liza K.; Banda, Elizabeth C.; Galbraith, David M.; Laubach, Zachary M.; Riordan, Kevin

    2013-01-01

    The invasive variety of Phragmites australis (common reed) forms dense stands that can cause negative impacts on coastal Great Lakes wetlands including habitat degradation and reduced biological diversity. Early treatment is key to controlling Phragmites, therefore a map of the current distribution is needed. ALOS PALSAR imagery was used to produce the first basin-wide distribution map showing the extent of large, dense invasive Phragmites-dominated habitats in wetlands and other coastal ecosystems along the U.S. shore of the Great Lakes. PALSAR is a satellite imaging radar sensor that is sensitive to differences in plant biomass and inundation patterns, allowing for the detection and delineation of these tall (up to 5 m), high density, high biomass invasive Phragmites stands. Classification was based on multi-season ALOS PALSAR L-band (23 cm wavelength) HH and HV polarization data. Seasonal (spring, summer, and fall) datasets were used to improve discrimination of Phragmites by taking advantage of phenological changes in vegetation and inundation patterns over the seasons. Extensive field collections of training and randomly selected validation data were conducted in 2010–2011 to aid in mapping and for accuracy assessments. Overall basin-wide map accuracy was 87%, with 86% producer's accuracy and 43% user's accuracy for invasive Phragmites. The invasive Phragmites maps are being used to identify major environmental drivers of this invader's distribution, to assess areas vulnerable to new invasion, and to provide information to regional stakeholders through a decision support tool.

  15. Airborne laser-guided imaging spectroscopy to map forest trait diversity and guide conservation.

    Science.gov (United States)

    Asner, G P; Martin, R E; Knapp, D E; Tupayachi, R; Anderson, C B; Sinca, F; Vaughn, N R; Llactayo, W

    2017-01-27

    Functional biogeography may bridge a gap between field-based biodiversity information and satellite-based Earth system studies, thereby supporting conservation plans to protect more species and their contributions to ecosystem functioning. We used airborne laser-guided imaging spectroscopy with environmental modeling to derive large-scale, multivariate forest canopy functional trait maps of the Peruvian Andes-to-Amazon biodiversity hotspot. Seven mapped canopy traits revealed functional variation in a geospatial pattern explained by geology, topography, hydrology, and climate. Clustering of canopy traits yielded a map of forest beta functional diversity for land-use analysis. Up to 53% of each mapped, functionally distinct forest presents an opportunity for new conservation action. Mapping functional diversity advances our understanding of the biosphere to conserve more biodiversity in the face of land use and climate change. Copyright © 2017, American Association for the Advancement of Science.

  16. DESERT ECOSYSTEMS: MAPPING, MONITORING & ASSESSMENT USING SATELLITE REMOTE SENSING

    Directory of Open Access Journals (Sweden)

    A. S. Arya

    2012-09-01

    Full Text Available Desert ecosystems are unique but fragile ecosystems , mostly vulnerable to a variety of degradational processes like water erosion, vegetal degradation, salinity, wind erosion , water logging etc. Some researchers consider desertification to be a process of change, while others view it as the end result of a process of change. There is an urgent need to arrest the process of desertification and combat land degradation. Under the auspices of the United Nations Convention to Combat Desertification (UNCCD, Space Applications Centre, Ahmedabad has undertaken the task of mapping, monitoring and assessment of desertification carrying out pilot project in hot and cold desert regions in drylands on 1:50,000 scale followed by systematic Desertification Status Mappaing (DSM of India on 1:500,000 scale.

  17. G-MAP: a novel night vision system for satellites

    Science.gov (United States)

    Miletti, Thomas; Maresi, Luca; Zuccaro Marchi, Alessandro; Pontetti, Giorgia

    2015-10-01

    The recent developments of single-photon counting array detectors opens the door to a novel type of systems that could be used on satellites in low Earth orbit. One possible application is the detection of non-cooperative vessels or illegal fishing activities. Currently only surveillance operations conducted by Navy or coast guard address this topic, operations by nature costly and with limited coverage. This paper aims to describe the architectural design of a system based on a novel single-photon counting detector, which works mainly in the visible and features fast readout, low noise and a 256x256 matrix of 64 μm-pixels. This detector is positioned in the focal plane of a fully aspheric reflective f/6 telescope, to guarantee state of the art performance. The combination of the two grants optimal ground sampling distance, compatible with the average dimension of a vessel, and overall performance. A radiative analysis of the light transmitted from emission to detection is presented, starting from models of lamps used for attracting fishes and illuminating the deck of the boats. A radiative transfer model is used to estimate the amount of photons emitted by such vessels reaching the detector. Since the novel detector features high framerate and low noise, the system as it is envisaged is able to properly serve the proposed goal. The paper shows the results of a trade-off between instrument parameters and spacecraft operations to maximize the detection probability and the covered sea surface. The status of development of both detector and telescope are also described.

  18. An Atlas of Original and Mercator-Transformed Satellite-Data Images of the Alboran Sea, August-October 1983,

    Science.gov (United States)

    1985-08-01

    identifiable points on the coast. This was done on an HP-1000 computer using a "Navigation Subsystem" software and a library of "Ground Control Points" (GCP...European, Middle Eastern and N. African coastal ground control points for mapping satellite images, SACLANTCEN SM-170. La Spezia, Italy, SACLANT ASW...DETERMINATE L’UMIDITA’ RELATIVA E LA TEMPERATURA DI RUGIADA 0 DI BRINA MEDIANTE LO PSICROMETRO. AERONAUTICA MILITARE Italiana. Ispettorato delle

  19. Prospects of using the k-NN method of classification of satellite images for the forest inventory in Ukraine

    OpenAIRE

    V. Myroniuk

    2015-01-01

    This paper deals with modern experience of statistical inventory of forests using ground-based inventory and remote sensing data (RSD). A detailed analysis of the k-NN method of classification of satellite images is given and features of its applying for thematic mapping of forest fund under the statistical forest inventory defined. The algorithm for calculating the stock of plantings for the statistical software with R open source is shown on the example of local research material.

  20. System and method for image mapping and visual attention

    Science.gov (United States)

    Peters, II, Richard A. (Inventor)

    2011-01-01

    A method is described for mapping dense sensory data to a Sensory Ego Sphere (SES). Methods are also described for finding and ranking areas of interest in the images that form a complete visual scene on an SES. Further, attentional processing of image data is best done by performing attentional processing on individual full-size images from the image sequence, mapping each attentional location to the nearest node, and then summing all attentional locations at each node.

  1. A low cost thermal infrared hyperspectral imager for small satellites

    Science.gov (United States)

    Crites, S. T.; Lucey, P. G.; Wright, R.; Garbeil, H.; Horton, K. A.

    2011-06-01

    The traditional model for space-based earth observations involves long mission times, high cost, and long development time. Because of the significant time and monetary investment required, riskier instrument development missions or those with very specific scientific goals are unlikely to successfully obtain funding. However, a niche for earth observations exploiting new technologies in focused, short lifetime missions is opening with the growth of the small satellite market and launch opportunities for these satellites. These low-cost, short-lived missions provide an experimental platform for testing new sensor technologies that may transition to larger, more long-lived platforms. The low costs and short lifetimes also increase acceptable risk to sensors, enabling large decreases in cost using commercial off the shelf (COTS) parts and allowing early-career scientists and engineers to gain experience with these projects. We are building a low-cost long-wave infrared spectral sensor, funded by the NASA Experimental Project to Stimulate Competitive Research program (EPSCOR), to demonstrate the ways in which a university's scientific and instrument development programs can fit into this niche. The sensor is a low-mass, power efficient thermal hyperspectral imager with electronics contained in a pressure vessel to enable the use of COTS electronics, and will be compatible with small satellite platforms. The sensor, called Thermal Hyperspectral Imager (THI), is based on a Sagnac interferometer and uses an uncooled 320x256 microbolometer array. The sensor will collect calibrated radiance data at long-wave infrared (LWIR, 8-14 microns) wavelengths in 230-meter pixels with 20 wavenumber spectral resolution from a 400-km orbit.

  2. A low cost thermal infrared hyperspectral imager for small satellites

    Science.gov (United States)

    Crites, S. T.; Lucey, P. G.; Wright, R.; Garbeil, H.; Horton, K. A.; Wood, M.

    2012-06-01

    The growth of the small satellite market and launch opportunities for these satellites is creating a new niche for earth observations that contrasts with the long mission durations, high costs, and long development times associated with traditional space-based earth observations. Low-cost, short-lived missions made possible by this new approach provide an experimental platform for testing new sensor technologies that may transition to larger, more long-lived platforms. The low costs and short lifetimes also increase acceptable risk to sensors, enabling large decreases in cost using commercial off-the-shelf (COTS) parts and allowing early-career scientists and engineers to gain experience with these projects. We are building a low-cost long-wave infrared spectral sensor, funded by the NASA Experimental Project to Stimulate Competitive Research program (EPSCoR), to demonstrate ways in which a university's scientific and instrument development programs can fit into this niche. The sensor is a low-mass, power-efficient thermal hyperspectral imager with electronics contained in a pressure vessel to enable use of COTS electronics and will be compatible with small satellite platforms. The sensor, called Thermal Hyperspectral Imager (THI), is based on a Sagnac interferometer and uses an uncooled 320x256 microbolometer array. The sensor will collect calibrated radiance data at long-wave infrared (LWIR, 8-14 microns) wavelengths in 230 meter pixels with 20 wavenumber spectral resolution from a 400 km orbit. We are currently in the laboratory and airborne testing stage in order to demonstrate the spectro-radiometric quality of data that the instrument provides.

  3. Application of Geostatistical Simulation to Enhance Satellite Image Products

    Science.gov (United States)

    Hlavka, Christine A.; Dungan, Jennifer L.; Thirulanambi, Rajkumar; Roy, David

    2004-01-01

    With the deployment of Earth Observing System (EOS) satellites that provide daily, global imagery, there is increasing interest in defining the limitations of the data and derived products due to its coarse spatial resolution. Much of the detail, i.e. small fragments and notches in boundaries, is lost with coarse resolution imagery such as the EOS MODerate-Resolution Imaging Spectroradiometer (MODIS) data. Higher spatial resolution data such as the EOS Advanced Spaceborn Thermal Emission and Reflection Radiometer (ASTER), Landsat and airborne sensor imagery provide more detailed information but are less frequently available. There are, however, both theoretical and analytical evidence that burn scars and other fragmented types of land covers form self-similar or self-affine patterns, that is, patterns that look similar when viewed at widely differing spatial scales. Therefore small features of the patterns should be predictable, at least in a statistical sense, with knowledge about the large features. Recent developments in fractal modeling for characterizing the spatial distribution of undiscovered petroleum deposits are thus applicable to generating simulations of finer resolution satellite image products. We will present example EOS products, analysis to investigate self-similarity, and simulation results.

  4. Airport runway detection in satellite images by Adaboost learning

    Science.gov (United States)

    Zongur, Ugur; Halici, Ugur; Aytekin, Orsan; Ulusoy, Ilkay

    2009-09-01

    Advances in hardware and pattern recognition techniques, along with the widespread utilization of remote sensing satellites, have urged the development of automatic target detection systems in satellite images. Automatic detection of airports is particularly essential, due to the strategic importance of these targets. In this paper, a runway detection method using a segmentation process based on textural properties is proposed for the detection of airport runways, which is the most distinguishing element of an airport. Several local textural features are extracted including not only low level features such as mean, standard deviation of image intensity and gradient, but also Zernike Moments, Circular-Mellin Features, Haralick Features, as well as features involving Gabor Filters, Wavelets and Fourier Power Spectrum Analysis. Since the subset of the mentioned features, which have a role in the discrimination of airport runways from other structures and landforms, cannot be predicted trivially, Adaboost learning algorithm is employed for both classification and determining the feature subset, due to its feature selector nature. By means of the features chosen in this way, a coarse representation of possible runway locations is obtained. Promising experimental results are achieved and given.

  5. Land Cover Mapping in Northern High Latitude Permafrost Regions with Satellite Data: Achievements and Remaining Challenges

    Directory of Open Access Journals (Sweden)

    Annett Bartsch

    2016-11-01

    Full Text Available Most applications of land cover maps that have been derived from satellite data over the Arctic require higher thematic detail than available in current global maps. A range of application studies has been reviewed, including up-scaling of carbon fluxes and pools, permafrost feature mapping and transition monitoring. Early land cover mapping studies were driven by the demand to characterize wildlife habitats. Later, in the 1990s, up-scaling of in situ measurements became central to the discipline of land cover mapping on local to regional scales at several sites across the Arctic. This includes the Kuparuk basin in Alaska, the Usa basin and the Lena Delta in Russia. All of these multi-purpose land cover maps have been derived from Landsat data. High resolution maps (from optical satellite data serve frequently as input for the characterization of periglacial features and also flux tower footprints in recent studies. The most used map to address circumpolar issues is the CAVM (Circum Arctic Vegetation Map based on AVHRR (1 km and has been manually derived. It provides the required thematic detail for many applications, but is confined to areas north of the treeline, and it is limited in spatial detail. A higher spatial resolution circumpolar land cover map with sufficient thematic content would be beneficial for a range of applications. Such a land cover classification should be compatible with existing global maps and applicable for multiple purposes. The thematic content of existing global maps has been assessed by comparison to the CAVM and regional maps. None of the maps provides the required thematic detail. Spatial resolution has been compared to used classes for local to regional applications. The required thematic detail increases with spatial resolution since coarser datasets are usually applied over larger areas covering more relevant landscape units. This is especially of concern when the entire Arctic is addressed. A spatial

  6. Determination of Destructed and Infracted Forest Areas with Multi-temporal High Resolution Satellite Images

    Science.gov (United States)

    Seker, D. Z.; Unal, A.; Kaya, S.; Alganci, U.

    2015-12-01

    multi-temporal vegetation index data derived from satellite images. Determined changes were exported to GIS environment and spatial overlay and intersection analyses were performed with use of forest type maps and authorized area maps in order to demonstrate the actual situation of destructions and infractions.

  7. Spatial, Temporal and Spectral Satellite Image Fusion via Sparse Representation

    Science.gov (United States)

    Song, Huihui

    Remote sensing provides good measurements for monitoring and further analyzing the climate change, dynamics of ecosystem, and human activities in global or regional scales. Over the past two decades, the number of launched satellite sensors has been increasing with the development of aerospace technologies and the growing requirements on remote sensing data in a vast amount of application fields. However, a key technological challenge confronting these sensors is that they tradeoff between spatial resolution and other properties, including temporal resolution, spectral resolution, swath width, etc., due to the limitations of hardware technology and budget constraints. To increase the spatial resolution of data with other good properties, one possible cost-effective solution is to explore data integration methods that can fuse multi-resolution data from multiple sensors, thereby enhancing the application capabilities of available remote sensing data. In this thesis, we propose to fuse the spatial resolution with temporal resolution and spectral resolution, respectively, based on sparse representation theory. Taking the study case of Landsat ETM+ (with spatial resolution of 30m and temporal resolution of 16 days) and MODIS (with spatial resolution of 250m ~ 1km and daily temporal resolution) reflectance, we propose two spatial-temporal fusion methods to combine the fine spatial information of Landsat image and the daily temporal resolution of MODIS image. Motivated by that the images from these two sensors are comparable on corresponding bands, we propose to link their spatial information on available Landsat- MODIS image pair (captured on prior date) and then predict the Landsat image from the MODIS counterpart on prediction date. To well-learn the spatial details from the prior images, we use a redundant dictionary to extract the basic representation atoms for both Landsat and MODIS images based on sparse representation. Under the scenario of two prior Landsat

  8. CLOUD DETECTION OF OPTICAL SATELLITE IMAGES USING SUPPORT VECTOR MACHINE

    Directory of Open Access Journals (Sweden)

    K.-Y. Lee

    2016-06-01

    Full Text Available Cloud covers are generally present in optical remote-sensing images, which limit the usage of acquired images and increase the difficulty of data analysis, such as image compositing, correction of atmosphere effects, calculations of vegetation induces, land cover classification, and land cover change detection. In previous studies, thresholding is a common and useful method in cloud detection. However, a selected threshold is usually suitable for certain cases or local study areas, and it may be failed in other cases. In other words, thresholding-based methods are data-sensitive. Besides, there are many exceptions to control, and the environment is changed dynamically. Using the same threshold value on various data is not effective. In this study, a threshold-free method based on Support Vector Machine (SVM is proposed, which can avoid the abovementioned problems. A statistical model is adopted to detect clouds instead of a subjective thresholding-based method, which is the main idea of this study. The features used in a classifier is the key to a successful classification. As a result, Automatic Cloud Cover Assessment (ACCA algorithm, which is based on physical characteristics of clouds, is used to distinguish the clouds and other objects. In the same way, the algorithm called Fmask (Zhu et al., 2012 uses a lot of thresholds and criteria to screen clouds, cloud shadows, and snow. Therefore, the algorithm of feature extraction is based on the ACCA algorithm and Fmask. Spatial and temporal information are also important for satellite images. Consequently, co-occurrence matrix and temporal variance with uniformity of the major principal axis are used in proposed method. We aim to classify images into three groups: cloud, non-cloud and the others. In experiments, images acquired by the Landsat 7 Enhanced Thematic Mapper Plus (ETM+ and images containing the landscapes of agriculture, snow area, and island are tested. Experiment results demonstrate

  9. Cloud Detection of Optical Satellite Images Using Support Vector Machine

    Science.gov (United States)

    Lee, Kuan-Yi; Lin, Chao-Hung

    2016-06-01

    Cloud covers are generally present in optical remote-sensing images, which limit the usage of acquired images and increase the difficulty of data analysis, such as image compositing, correction of atmosphere effects, calculations of vegetation induces, land cover classification, and land cover change detection. In previous studies, thresholding is a common and useful method in cloud detection. However, a selected threshold is usually suitable for certain cases or local study areas, and it may be failed in other cases. In other words, thresholding-based methods are data-sensitive. Besides, there are many exceptions to control, and the environment is changed dynamically. Using the same threshold value on various data is not effective. In this study, a threshold-free method based on Support Vector Machine (SVM) is proposed, which can avoid the abovementioned problems. A statistical model is adopted to detect clouds instead of a subjective thresholding-based method, which is the main idea of this study. The features used in a classifier is the key to a successful classification. As a result, Automatic Cloud Cover Assessment (ACCA) algorithm, which is based on physical characteristics of clouds, is used to distinguish the clouds and other objects. In the same way, the algorithm called Fmask (Zhu et al., 2012) uses a lot of thresholds and criteria to screen clouds, cloud shadows, and snow. Therefore, the algorithm of feature extraction is based on the ACCA algorithm and Fmask. Spatial and temporal information are also important for satellite images. Consequently, co-occurrence matrix and temporal variance with uniformity of the major principal axis are used in proposed method. We aim to classify images into three groups: cloud, non-cloud and the others. In experiments, images acquired by the Landsat 7 Enhanced Thematic Mapper Plus (ETM+) and images containing the landscapes of agriculture, snow area, and island are tested. Experiment results demonstrate the detection

  10. A Modified Hopfield Neural Network Algorithm (MHNNA Using ALOS Image for Water Quality Mapping

    Directory of Open Access Journals (Sweden)

    Ahmed Asal Kzar

    2015-12-01

    Full Text Available Decreasing water pollution is a big problem in coastal waters. Coastal health of ecosystems can be affected by high concentrations of suspended sediment. In this work, a Modified Hopfield Neural Network Algorithm (MHNNA was used with remote sensing imagery to classify the total suspended solids (TSS concentrations in the waters of coastal Langkawi Island, Malaysia. The adopted remote sensing image is the Advanced Land Observation Satellite (ALOS image acquired on 18 January 2010. Our modification allows the Hopfield neural network to convert and classify color satellite images. The samples were collected from the study area simultaneously with the acquiring of satellite imagery. The sample locations were determined using a handheld global positioning system (GPS. The TSS concentration measurements were conducted in a lab and used for validation (real data, classification, and accuracy assessments. Mapping was achieved by using the MHNNA to classify the concentrations according to their reflectance values in band 1, band 2, and band 3. The TSS map was color-coded for visual interpretation. The efficiency of the proposed algorithm was investigated by dividing the validation data into two groups. The first group was used as source samples for supervisor classification via the MHNNA. The second group was used to test the MHNNA efficiency. After mapping, the locations of the second group in the produced classes were detected. Next, the correlation coefficient (R and root mean square error (RMSE were calculated between the two groups, according to their corresponding locations in the classes. The MHNNA exhibited a higher R (0.977 and lower RMSE (2.887. In addition, we test the MHNNA with noise, where it proves its accuracy with noisy images over a range of noise levels. All results have been compared with a minimum distance classifier (Min-Dis. Therefore, TSS mapping of polluted water in the coastal Langkawi Island, Malaysia can be performed using the

  11. A Modified Hopfield Neural Network Algorithm (MHNNA) Using ALOS Image for Water Quality Mapping.

    Science.gov (United States)

    Kzar, Ahmed Asal; Mat Jafri, Mohd Zubir; Mutter, Kussay N; Syahreza, Saumi

    2015-12-30

    Decreasing water pollution is a big problem in coastal waters. Coastal health of ecosystems can be affected by high concentrations of suspended sediment. In this work, a Modified Hopfield Neural Network Algorithm (MHNNA) was used with remote sensing imagery to classify the total suspended solids (TSS) concentrations in the waters of coastal Langkawi Island, Malaysia. The adopted remote sensing image is the Advanced Land Observation Satellite (ALOS) image acquired on 18 January 2010. Our modification allows the Hopfield neural network to convert and classify color satellite images. The samples were collected from the study area simultaneously with the acquiring of satellite imagery. The sample locations were determined using a handheld global positioning system (GPS). The TSS concentration measurements were conducted in a lab and used for validation (real data), classification, and accuracy assessments. Mapping was achieved by using the MHNNA to classify the concentrations according to their reflectance values in band 1, band 2, and band 3. The TSS map was color-coded for visual interpretation. The efficiency of the proposed algorithm was investigated by dividing the validation data into two groups. The first group was used as source samples for supervisor classification via the MHNNA. The second group was used to test the MHNNA efficiency. After mapping, the locations of the second group in the produced classes were detected. Next, the correlation coefficient (R) and root mean square error (RMSE) were calculated between the two groups, according to their corresponding locations in the classes. The MHNNA exhibited a higher R (0.977) and lower RMSE (2.887). In addition, we test the MHNNA with noise, where it proves its accuracy with noisy images over a range of noise levels. All results have been compared with a minimum distance classifier (Min-Dis). Therefore, TSS mapping of polluted water in the coastal Langkawi Island, Malaysia can be performed using the adopted

  12. The multifractal structure of satellite sea surface temperature maps can be used to obtain global maps of streamlines

    Directory of Open Access Journals (Sweden)

    A. Turiel

    2009-01-01

    Full Text Available Nowadays Earth observation satellites provide information about many relevant variables of the ocean-climate system, such as temperature, moisture, aerosols, etc. However, to retrieve the velocity field, which is the most relevant dynamical variable, is still a technological challenge, specially in the case of oceans. New processing techniques, emerged from the theory of turbulent flows, have come to assist us in this task. In this paper, we show that multifractal techniques applied to new Sea Surface Temperature satellite products opens the way to build maps of ocean currents with unprecedented accuracy. With the application of singularity analysis, we show that global ocean circulation patterns can be retrieved in a daily basis. We compare these results with high-quality altimetry-derived geostrophic velocities, finding a quite good correspondence of the observed patterns both qualitatively and quantitatively. The implications of this findings from the perspective both of theory and of operational applications are discussed.

  13. Technique of Embedding Depth Maps into 2D Images

    Institute of Scientific and Technical Information of China (English)

    Kazutake Uehira; Hiroshi Unno; Youichi Takashima

    2014-01-01

    This paper proposes a new technique that is used to embed depth maps into corresponding 2-dimensional (2D) images. Since a 2D image and its depth map are integrated into one type of image format, they can be treated as if they were one 2D image. Thereby, it can reduce the amount of data in 3D images by half and simplify the processes for sending them through networks because the synchronization between images for the left and right eyes becomes unnecessary. We embed depth maps in the quantized discrete cosine transform (DCT) data of 2D images. The key to this technique is whether the depth maps could be embedded into 2D images without perceivably deteriorating their quality. We try to reduce their deterioration by compressing the depth map data by using the differences from the next pixel to the left. We assume that there is only one non-zero pixel at most on one horizontal line in the DCT block because the depth map values change abruptly. We conduct an experiment to evaluate the quality of the 2D images embedded with depth maps and find that satisfactory quality could be achieved.

  14. Evaluation of algorithms for fire detection and mapping across North America from satellite

    Science.gov (United States)

    Li, Zhanqing; Fraser, R.; Jin, J.; Abuelgasim, A. A.; Csiszar, I.; Gong, P.; Pu, R.; Hao, W.

    2003-01-01

    This paper presents an evaluation of advanced very high resolution radiometer (AVHRR)-based remote sensing algorithms for detecting active vegetation fires [, 2000a] and mapping burned areas [, 2000] throughout North America. The procedures were originally designed for application in Canada with AVHRR data aboard the NOAA 14 satellite. They were tested here with both NOAA 11 and NOAA 14 covering the period 1989-2000. It was found that the active fire detection algorithm performs well with low commission and omission error rates over forested regions in the absence of cloud cover. Moderate errors were found over semi-arid areas covered by thin clouds, as well as along rivers and around lakes observed from sun-glint angles. A modification to a fire algorithm threshold and the addition of a new test can significantly improve the detection accuracy. Burned areas mapped by satellite were compared against extensive fire polygon data acquired by U.S. forest agencies in five western states. The satellite-based mapping matches nearly 90% of total forested burned area, with the difference being mainly attributable to omission of some nonburned islands and patches within the fire polygons. In addition, it maps a significant area of burning outside the fire polygons that appear to be true fires. The 10% omission error was found to be caused mainly by three factors: lack or insufficient number of active fires, partial burning, and vegetation recovery after early season burning. In addition to total area, the location and shapes of burned scars are consistent with the ground-based maps. Overall, the two algorithms are competent for detecting and mapping forest fires in North America north of Mexico with minor modifications.

  15. Mapping and interpretation of satellite magnetic anomalies from POGO data over the Antarctic region

    Directory of Open Access Journals (Sweden)

    P. T. Taylor

    1999-06-01

    Full Text Available A satellite magnetic anomaly map made using the POGO magnetic field data is compared to three maps made using Magsat data. A total of 14 anomalies with magnitudes greater than 3 nT can be identified in all four of the maps poleward of 60°S latitude. Forward models of the Antarctic continental and oceanic lithosphere are produced which use magnetic crustal thickness based on seismic and heat flow data, and which also use the distribution of the Cretaceous Quiet Zone from marine geophysics. These simple models can explain significant parts of eight of the 14 identified anomalies. The remaining anomalies may be caused by lateral variations of magnetization, inadequate models of the magnetic crustal thickness, or remanent magnetizations in directions other than the present field. In addition, contamination of the magnetic anomaly maps by fields of time-varying external origin (and their corresponding internal parts is still a significant problem in the Antarctic region.

  16. First scalar magnetic anomaly map from CHAMP satellite data indicates weak lithospheric field

    DEFF Research Database (Denmark)

    Maus, S.; Rother, M.; Holme, R.;

    2002-01-01

    Satellite magnetic anomaly maps derived by different techniques from Magsat/POGO data vary by more than a factor of 2 in the deduced strength of the lithospheric magnetic field. Here, we present a first anomaly map from new CHAMP scalar magnetic field data. After subtracting a recent Ørsted main...... and external field model, we remove remaining unmodeled large-scale external contributions from 120 track segments by subtracting a best-fitting uniform field. In order to preserve N/S trending features, the data are not filtered along-track. Direct integration of the spherically gridded data yields the final...

  17. Satellite imagery and airborne geophysics for geologic mapping of the Edembo area, Eastern Hoggar (Algerian Sahara)

    Science.gov (United States)

    Lamri, Takfarinas; Djemaï, Safouane; Hamoudi, Mohamed; Zoheir, Basem; Bendaoud, Abderrahmane; Ouzegane, Khadidja; Amara, Massinissa

    2016-03-01

    Satellite imagery combined with airborne geophysical data and field observations were employed for new geologic mapping of the Edembo area in the Eastern Hoggar (Tuareg Shield, Sahara). Multi-spectral band fusion, filtering, and transformation techniques, i.e., band combination, band-rationing and principal component analysis of ETM+ and ASTER data are used for better spectral discrimination of the different rocks units. A thematic map assessed by field data and available geologic information is compiled by supervised classification of satellite data with high overall accuracy (>90%). The automated extraction technique efficiently aided the detection of the structural lineaments, i.e., faults, shear zones, and joints. Airborne magnetic and Gamma-ray spectrometry data showed the pervasiveness of the large structures beneath the Paleozoic sedimentary cover and aeolian sands. The aeroradiometric K-range is used for discrimination of the high-K granitoids of Djanet from the peralumineous granites of Edembo, and to verify the Silurian sediments with their high K-bearing minerals. The new geological map is considered to be a high resolution improvement on all pre-existing maps of this hardly accessible area in the Tuareg Shield. Integration of the airborne geophysical and space-borne imagery data can hence provide a rapid means of geologically mapping areas hitherto poorly known or difficult to access.

  18. Image Mining in Remote Sensing for Coastal Wetlands Mapping: from Pixel Based to Object Based Approach

    Science.gov (United States)

    Farda, N. M.; Danoedoro, P.; Hartono; Harjoko, A.

    2016-11-01

    The availably of remote sensing image data is numerous now, and with a large amount of data it makes “knowledge gap” in extraction of selected information, especially coastal wetlands. Coastal wetlands provide ecosystem services essential to people and the environment. The aim of this research is to extract coastal wetlands information from satellite data using pixel based and object based image mining approach. Landsat MSS, Landsat 5 TM, Landsat 7 ETM+, and Landsat 8 OLI images located in Segara Anakan lagoon are selected to represent data at various multi temporal images. The input for image mining are visible and near infrared bands, PCA band, invers PCA bands, mean shift segmentation bands, bare soil index, vegetation index, wetness index, elevation from SRTM and ASTER GDEM, and GLCM (Harralick) or variability texture. There is three methods were applied to extract coastal wetlands using image mining: pixel based - Decision Tree C4.5, pixel based - Back Propagation Neural Network, and object based - Mean Shift segmentation and Decision Tree C4.5. The results show that remote sensing image mining can be used to map coastal wetlands ecosystem. Decision Tree C4.5 can be mapped with highest accuracy (0.75 overall kappa). The availability of remote sensing image mining for mapping coastal wetlands is very important to provide better understanding about their spatiotemporal coastal wetlands dynamics distribution.

  19. Use of Satellite Remote Sensing Data in the Mapping of Global Landslide Susceptibility

    Science.gov (United States)

    Hong, Yang; Adler, Robert F.; Huffman, George J.

    2007-01-01

    Satellite remote sensing data has significant potential use in analysis of natural hazards such as landslides. Relying on the recent advances in satellite remote sensing and geographic information system (GIS) techniques, this paper aims to map landslide susceptibility over most of the globe using a GIs-based weighted linear combination method. First , six relevant landslide-controlling factors are derived from geospatial remote sensing data and coded into a GIS system. Next, continuous susceptibility values from low to high are assigned to each of the six factors. Second, a continuous scale of a global landslide susceptibility index is derived using GIS weighted linear combination based on each factor's relative significance to the process of landslide occurrence (e.g., slope is the most important factor, soil types and soil texture are also primary-level parameters, while elevation, land cover types, and drainage density are secondary in importance). Finally, the continuous index map is further classified into six susceptibility categories. Results show the hot spots of landslide-prone regions include the Pacific Rim, the Himalayas and South Asia, Rocky Mountains, Appalachian Mountains, Alps, and parts of the Middle East and Africa. India, China, Nepal, Japan, the USA, and Peru are shown to have landslide-prone areas. This first-cut global landslide susceptibility map forms a starting point to provide a global view of landslide risks and may be used in conjunction with satellite-based precipitation information to potentially detect areas with significant landslide potential due to heavy rainfall. 1

  20. Heuristic Scheduling Algorithm Oriented Dynamic Tasks for Imaging Satellites

    Directory of Open Access Journals (Sweden)

    Maocai Wang

    2014-01-01

    Full Text Available Imaging satellite scheduling is an NP-hard problem with many complex constraints. This paper researches the scheduling problem for dynamic tasks oriented to some emergency cases. After the dynamic properties of satellite scheduling were analyzed, the optimization model is proposed in this paper. Based on the model, two heuristic algorithms are proposed to solve the problem. The first heuristic algorithm arranges new tasks by inserting or deleting them, then inserting them repeatedly according to the priority from low to high, which is named IDI algorithm. The second one called ISDR adopts four steps: insert directly, insert by shifting, insert by deleting, and reinsert the tasks deleted. Moreover, two heuristic factors, congestion degree of a time window and the overlapping degree of a task, are employed to improve the algorithm’s performance. Finally, a case is given to test the algorithms. The results show that the IDI algorithm is better than ISDR from the running time point of view while ISDR algorithm with heuristic factors is more effective with regard to algorithm performance. Moreover, the results also show that our method has good performance for the larger size of the dynamic tasks in comparison with the other two methods.

  1. Urban Land Use Change Detection Using Multisensor Satellite Images

    Institute of Scientific and Technical Information of China (English)

    DENG Jin-Song; WANG Ke; LI Jun; DENG Yan-Hua

    2009-01-01

    Due to inappropriate planning and management, accelerated urban growth and tremendous loss in land, especially cropland, have become a great challenge for sustainable urban development in China, especially in developed urban area in the coastal regions; therefore, there is an urgent need to effectively detect and monitor the land use changes and provide accurate and timely information for planning and management. In this study a method combining principal component analysis (PCA) of multiseusor satellite images from SPOT (systeme pour l'observation de la terre or earth observation satellite)-5 muttispectral (XS) and Landsat-7 enhanced thematic mapper (ETM) panchromatic (PAN) data, and supervised classification was used to detect and analyze the dynamics of land use changes in the city proper of Hangzhou. The overall accuracy of the land use change detection was 90.67% and Kappa index was 0.89. The results indicated that there was a considerable land use change (10.03% of the total area) in the study area from 2001 to 2003, with three major types of land use conversions: from cropland into bnilt-up land, construction site, and water area (fish pond). Changes from orchard land into built-up land were also detected. The method described in this study is feasible and useful for detecting rapid land use change in the urban area.

  2. Solar irradiance assessment in insular areas using Himawari-8 satellite images

    Science.gov (United States)

    Liandrat, O.; Cros, S.; Turpin, M.; Pineau, J. F.

    2016-12-01

    The high amount of surface solar irradiance (SSI) in the tropics is an advantage for a profitable PV production. It will allow many tropical islands to pursue their economic growth with a clean, affordable and locally produced energy. However, the local meteorological conditions induce a very high variability which is problematic for a safe and gainful injection into the power grid. This issue is even more critical in non-interconnected territories where network stability is an absolute necessity. Therefore, the injection of PV power is legally limited in some European oversea territories. In this context, intraday irradiance forecasting (several hours ahead) is particularly useful to mitigate the production variability by reducing the cost of power storage management. At this time scale, cloud cover evolves with a stochastic behaviour not properly represented in numerical weather prediction (NWP) models. Analysing cloud motion using images from geostationary meteorological satellites is a well-known alternative to forecasting SSI up to 6 hours ahead with a better accuracy than NWP models. In this study, we present and apply our satellite-based solar irradiance forecasting methods over two measurement sites located in the field of view of the satellite Himawari-8: Cocos (Keeling) Islands (Australia) and New Caledonia (France). In particular, we converted 4 months of images from Himawari-8 visible channel into cloud index maps. Then, we applied an algorithm computing a cloud motion vector field from a short sequence of consecutive images. Comparisons between forecasted SSI at 1 hour of time horizon and collocated pyranometric measurements show a relative RMSE between 20 and 27%. Error sources related to the tropic insular context (coastal area heterogeneity, sub-pixel scale orographic cloud appearance, convective situation…) are discussed at every implementation step for the different methods.

  3. Images of war: using satellite images for human rights monitoring in Turkish Kurdistan.

    Science.gov (United States)

    de Vos, Hugo; Jongerden, Joost; van Etten, Jacob

    2008-09-01

    In areas of war and armed conflict it is difficult to get trustworthy and coherent information. Civil society and human rights groups often face problems of dealing with fragmented witness reports, disinformation of war propaganda, and difficult direct access to these areas. Turkish Kurdistan was used as a case study of armed conflict to evaluate the potential use of satellite images for verification of witness reports collected by human rights groups. The Turkish army was reported to be burning forests, fields and villages as a strategy in the conflict against guerrilla uprising. This paper concludes that satellite images are useful to validate witness reports of forest fires. Even though the use of this technology for human rights groups will depend on some feasibility factors such as prices, access and expertise, the images proved to be key for analysis of spatial aspects of conflict and valuable for reconstructing a more trustworthy picture.

  4. TIRCIS: thermal infrared compact imaging spectrometer for small satellite applications

    Science.gov (United States)

    Wright, Robert; Lucey, Paul; Crites, Sarah; Garbeil, Harold; Wood, Mark; Pilger, Eric; Gabrieli, Andrea; Honniball, Casey

    2016-10-01

    Measurements of reflectance or emittance in tens of narrow, contiguous wavebands, allow for the derivation of laboratory quality spectra remotely, from which the chemical composition and physical properties of targets can be determined. Although spaceborne (e.g. EO-1 Hyperion) hyperspectral data in the 0.4-2.5 micron (VSWIR) region are available, the provision of equivalent data in the log-wave infrared has lagged behind, there being no currently operational high spatial resolution LWIR imaging spectrometer on orbit. TIRCIS (Thermal Infra-Red Compact Imaging Spectrometer), uses a Fabry-Perot interferometer, an uncooled microbolometer array, and push-broom scanning to acquire hyperspectral image data. Radiometric calibration is provided by blackbody targets while spectral calibration is achieved using monochromatic light sources. The instrument has a mass of <15 kg and dimensions of 53 cm × 25 cm ♢ 22 cm, and has been designed to be compatible with integration into a micro-satellite platform. (A precursor to this instrument was launched onboard a 55 kg microsatellite in October 2015). The optical design yields a 120 m ground sample size given an orbit of 500 km. Over the wavelength interval of 7.5 to 14 microns up to 50 spectral samples are possible. Measured signal-to-noise ratios range from peak values of 500:1 to 1500:1, for source temperature of 10 to 100°C.

  5. A System to Detect Residential Area in Multispectral Satellite Images

    Directory of Open Access Journals (Sweden)

    Seyfallah Bouraoui

    2011-11-01

    Full Text Available In this paper, we propose a new solution to extract complex structures from High-Resolution (HR remote-sensing images. We propose to represent shapes and there relations by using region adjacency graphs. They are generated automatically from the segmented images. Thus, the nodes of the graph represent shape like houses, streets or trees, while arcs describe the adjacency relation between them. In order to be invariant to transformations such as rotation and scaling, the extraction of objects of interest is done by combining two techniques: one based on roof color to detect the bounding boxes of houses, and one based on mathematical morphology notions to detect streets. To recognize residential areas, a model described by a regular language is built. The detection is achieved by looking for a path in the region adjacency graph, which can be recognized as a word belonging to the description language. Our algorithm was tested with success on images from the French satellite SPOT 5 representing the urban area of Strasbourg (France at different spatial resolution.

  6. Dsm Based Orientation of Large Stereo Satellite Image Blocks

    Science.gov (United States)

    d'Angelo, P.; Reinartz, P.

    2012-07-01

    High resolution stereo satellite imagery is well suited for the creation of digital surface models (DSM). A system for highly automated and operational DSM and orthoimage generation based on CARTOSAT-1 imagery is presented, with emphasis on fully automated georeferencing. The proposed system processes level-1 stereo scenes using the rational polynomial coefficients (RPC) universal sensor model. The RPC are derived from orbit and attitude information and have a much lower accuracy than the ground resolution of approximately 2.5 m. In order to use the images for orthorectification or DSM generation, an affine RPC correction is required. In this paper, GCP are automatically derived from lower resolution reference datasets (Landsat ETM+ Geocover and SRTM DSM). The traditional method of collecting the lateral position from a reference image and interpolating the corresponding height from the DEM ignores the higher lateral accuracy of the SRTM dataset. Our method avoids this drawback by using a RPC correction based on DSM alignment, resulting in improved geolocation of both DSM and ortho images. Scene based method and a bundle block adjustment based correction are developed and evaluated for a test site covering the nothern part of Italy, for which 405 Cartosat-1 Stereopairs are available. Both methods are tested against independent ground truth. Checks against this ground truth indicate a lateral error of 10 meters.

  7. Galileo's first images of Jupiter and the Galilean satellites

    Science.gov (United States)

    Belton, M.J.S.; Head, J. W.; Ingersoll, A.P.; Greeley, R.; McEwen, A.S.; Klaasen, K.P.; Senske, D.; Pappalardo, R.; Collins, G.; Vasavada, A.R.; Sullivan, R.; Simonelli, D.; Geissler, P.; Carr, M.H.; Davies, M.E.; Veverka, J.; Gierasch, P.J.; Banfield, D.; Bell, M.; Chapman, C.R.; Anger, C.; Greenberg, R.; Neukum, G.; Pilcher, C.B.; Beebe, R.F.; Burns, J.A.; Fanale, F.; Ip, W.; Johnson, T.V.; Morrison, D.; Moore, J.; Orton, G.S.; Thomas, P.; West, R.A.

    1996-01-01

    The first images of Jupiter, Io, Europa, and Ganymede from the Galileo spacecraft reveal new information about Jupiter's Great Red Spot (GRS) and the surfaces of the Galilean satellites. Features similar to clusters of thunderstorms were found in the GRS. Nearby wave structures suggest that the GRS may be a shallow atmospheric feature. Changes in surface color and plume distribution indicate differences in resurfacing processes near hot spots on lo. Patchy emissions were seen while Io was in eclipse by Jupiter. The outer margins of prominent linear markings (triple bands) on Europa are diffuse, suggesting that material has been vented from fractures. Numerous small circular craters indicate localized areas of relatively old surface. Pervasive brittle deformation of an ice layer appears to have formed grooves on Ganymede. Dark terrain unexpectedly shows distinctive albedo variations to the limit of resolution.

  8. Image of the World on polyhedral maps and globes

    Directory of Open Access Journals (Sweden)

    Pędzich Paweł

    2016-12-01

    Full Text Available Application of polyhedrons as image surface in cartographic projections has a tradition of more than 200 years. The first maps relying on polyhedrons appeared in the 19th century. One of the first maps which based on an original polyhedral projection using a regular octahedron was constructed by the Californian architect Bernard Cahill in 1909. Other well known polyhedral projections and maps included Buckminster Fuller’s projection and map into icosahedron from 1954 and S. Waterman’s projection into truncated octahedron from 1996, which resulted in the “butterfly” map. Polyhedrons as image surface have the advantage of allowing a continuous image of continents of the Earth with low projection distortion. Such maps can be used for many purposes, such as presentation of tectonic plates or geographic discoveries.

  9. Satellite Image Security Improvement by Combining DWT-DCT Watermarking and AES Encryption

    Directory of Open Access Journals (Sweden)

    Naida.H.Nazmudeen

    2014-06-01

    Full Text Available With the large-scale research in space sciences and technologies, there is a great demand of satellite image security system for providing secure storage and transmission of satellite images. As the demand to protect the sensitive and valuable data from satellites has increased and hence proposed a new method for satellite image security by combining DWT-DCT watermarking and AES encryption. Watermarking techniques developed for multimedia data cannot be directly applied to the satellite images because here the analytic integrity of the data, rather than perceptual quality, is of primary importance. To improve performance, combine discrete wavelet transform (DWT with another equally powerful transform; the discrete cosine transform (DCT. The combined DWT-DCT watermarking algorithm’s imperceptibility was better than the performance of the DWT approach. Modified decision based unsymmetrical trimmed median filter (MDBUTMF algorithm is proposed for the restoration of satellite images that are highly corrupted by salt and pepper noise. Satellite images desire not only the watermarking for copyright protection but also encryption during storage and transmission for preventing information leakage. Hence this paper investigates the security and performance level of joint DWT-DCT watermarking and Advanced Encryption Standard (AES for satellite imagery. Theoretical analysis can be done by calculating PSNR and MSE. The experimental results demonstrate the efficiency of the proposed scheme, which fulfils the strict requirements concerning alterations of satellite images.

  10. Satellite image analysis for surveillance, vegetation and climate change

    Energy Technology Data Exchange (ETDEWEB)

    Cai, D Michael [Los Alamos National Laboratory

    2011-01-18

    Recently, many studies have provided abundant evidence to show the trend of tree mortality is increasing in many regions, and the cause of tree mortality is associated with drought, insect outbreak, or fire. Unfortunately, there is no current capability available to monitor vegetation changes, and correlate and predict tree mortality with CO{sub 2} change, and climate change on the global scale. Different survey platforms (methods) have been used for forest management. Typical ground-based forest surveys measure tree stem diameter, species, and alive or dead. The measurements are low-tech and time consuming, but the sample sizes are large, running into millions of trees, covering large areas, and spanning many years. These field surveys provide powerful ground validation for other survey methods such as photo survey, helicopter GPS survey, and aerial overview survey. The satellite imagery has much larger coverage. It is easier to tile the different images together, and more important, the spatial resolution has been improved such that close to or even higher than aerial survey platforms. Today, the remote sensing satellite data have reached sub-meter spatial resolution for panchromatic channels (IKONOS 2: 1 m; Quickbird-2: 0.61 m; Worldview-2: 0.5 m) and meter spatial resolution for multi-spectral channels (IKONOS 2: 4 meter; Quickbird-2: 2.44 m; Worldview-2: 2 m). Therefore, high resolution satellite imagery can allow foresters to discern individual trees. This vital information should allow us to quantify physiological states of trees, e.g. healthy or dead, shape and size of tree crowns, as well as species and functional compositions of trees. This is a powerful data resource, however, due to the vast amount of the data collected daily, it is impossible for human analysts to review the imagery in detail to identify the vital biodiversity information. Thus, in this talk, we will discuss the opportunities and challenges to use high resolution satellite imagery and

  11. GIO-EMS and International Collaboration in Satellite based Emergency Mapping

    Science.gov (United States)

    Kucera, Jan; Lemoine, Guido; Broglia, Marco

    2013-04-01

    During the last decade, satellite based emergency mapping has developed into a mature operational stage. The European Union's GMES Initial Operations - Emergency Management Service (GIO-EMS), is operational since April 2012. It's set up differs from other mechanisms (for example from the International Charter "Space and Major Disasters"), as it extends fast satellite tasking and delivery with the value adding map production as a single service, which is available, free of charge, to the authorized users of the service. Maps and vector datasets with standard characteristics and formats ranging from post-disaster damage assessment to recovery and disaster prevention are covered by this initiative. Main users of the service are European civil protection authorities and international organizations active in humanitarian aid. All non-sensitive outputs of the service are accessible to the public. The European Commission's in-house science service Joint Research Centre (JRC) is the technical and administrative supervisor of the GIO-EMS. The EC's DG ECHO Monitoring and Information Centre acts as the service's focal point and DG ENTR is responsible for overall service governance. GIO-EMS also aims to contribute to the synergy with similar existing mechanisms at national and international level. The usage of satellite data for emergency mapping has increased during the last years and this trend is expected to continue because of easier accessibility to suitable satellite and other relevant data in the near future. Furthermore, the data and analyses coming from volunteer emergency mapping communities are expected to further enrich the content of such cartographic products. In the case of major disasters the parallel activity of more providers is likely to generate non-optimal use of resources, e.g. unnecessary duplication; whereas coordination may lead to reduced time needed to cover the disaster area. Furthermore the abundant number of geospatial products of different

  12. Satellite SAR applied in offhore wind resource mapping: possibilities and limitations

    Science.gov (United States)

    Hasager, C. B.

    Satellite remote sensing of ocean wind fields from Synthetic Aperture Radar (SAR) observations is presented. The study is based on a series of more than 60 ERS-2 SAR satellite scenes from the Horns Rev in the North Sea. The wind climate from the coastline and 80 km offshore is mapped in detail with a resolution of 400 m by 400 m grid cells. Spatial variations in wind speed as a function of wind direction and fetch are observed and discussed. The satellite wind fields are compared to in-situ observations from a tall offshore meteorological mast at which wind speed at 4 levels are analysed. The mast is located 14 km offshore and the wind climate is observed continously since May 1999. For offshore wind resource mapping the SAR-based wind field maps can constitute an alternative to in-situ observations and a practical method is developed for applied use in WAsP (Wind Atlas Analysis and Application Program). The software is the de facto world standard tool used for prediction of wind climate and power production from wind turbines and wind farms. The possibilities and limitations on achieving offshore wind resource estimates using SAR-based wind fields in lieu of in-situ data are discussed. It includes a presentation of the footprint area-averaging techniques tailored for SAR-based wind field maps. Averaging techniques are relevant for the reduction of noise apparent in SAR wind speed maps. Acknowledgments: Danish Research Agency (SAT-WIND Sagsnr. 2058-03-0006) for funding, ESA (EO-1356, AO-153) for ERS-2 SAR scenes, and Elsam Engineering A/S for in-situ met-data.

  13. Assessing the Suitability of Future Multi- and Hyperspectral Satellite Systems for Mapping the Spatial Distribution of Norway Spruce Timber Volume

    Directory of Open Access Journals (Sweden)

    Sascha Nink

    2015-09-01

    Full Text Available The availability of accurate and timely information on timber volume is important for supporting operational forest management. One option is to combine statistical concepts (e.g., small area estimates with specifically designed terrestrial sampling strategies to provide estimations also on the level of administrative units such as forest districts. This may suffice for economic assessments, but still fails to provide spatially explicit information on the distribution of timber volume within these management units. This type of information, however, is needed for decision-makers to design and implement appropriate management operations. The German federal state of Rhineland-Palatinate is currently implementing an object-oriented database that will also allow the direct integration of Earth observation data products. This work analyzes the suitability of forthcoming multi- and hyperspectral satellite imaging systems for producing local distribution maps for timber volume of Norway spruce, one of the most economically important tree species. In combination with site-specific inventory data, fully processed hyperspectral data sets (HyMap were used to simulate datasets of the forthcoming EnMAP and Sentinel-2 systems to establish adequate models for estimating timber volume maps. The analysis included PLS regression and the k-NN method. Root Mean Square Errors between 21.6% and 26.5% were obtained, where k-NN performed slightly better than PLSR. It was concluded that the datasets of both simulated sensor systems fulfill accuracy requirements to support local forest management operations and could be used in synergy. Sentinel-2 can provide meaningful volume distribution maps in higher geometric resolution, while EnMAP, due to its hyperspectral coverage, can contribute complementary information, e.g., on biophysical conditions.

  14. AUTOMATIC URBAN ILLEGAL BUILDING DETECTION USING MULTI-TEMPORAL SATELLITE IMAGES AND GEOSPATIAL INFORMATION SYSTEMS

    Directory of Open Access Journals (Sweden)

    N. Khalili Moghadam

    2015-12-01

    Full Text Available With the unprecedented growth of urban population and urban development, we are faced with the growing trend of illegal building (IB construction. Field visit, as the currently used method of IB detection, is time and man power consuming, in addition to its high cost. Therefore, an automatic IB detection is required. Acquiring multi-temporal satellite images and using image processing techniques for automatic change detection is one of the optimum methods which can be used in IB monitoring. In this research an automatic method of IB detection has been proposed. Two-temporal panchromatic satellite images of IRS-P5 of the study area in a part of Tehran, the city map and an updated spatial database of existing buildings were used to detect the suspected IBs. In the pre-processing step, the images were geometrically and radiometrically corrected. In the next step, the changed pixels were detected using K-means clustering technique because of its quickness and less user’s intervention required. Then, all the changed pixels of each building were identified and the change percentage of each building with the standard threshold of changes was compared to detect the buildings which are under construction. Finally, the IBs were detected by checking the municipality database. The unmatched constructed buildings with municipal database will be field checked to identify the IBs. The results show that out of 343 buildings appeared in the images; only 19 buildings were detected as under construction and three of them as unlicensed buildings. Furthermore, the overall accuracies of 83%, 79% and 75% were obtained for K-means change detection, detection of under construction buildings and IBs detection, respectively.

  15. Genetic Optimization for Associative Semantic Ranking Models of Satellite Images by Land Cover

    Directory of Open Access Journals (Sweden)

    Nil Kilicay-Ergin

    2013-06-01

    Full Text Available Associative methods for content-based image ranking by semantics are attractive due to the similarity of generated models to human models of understanding. Although they tend to return results that are better understood by image analysts, the induction of these models is difficult to build due to factors that affect training complexity, such as coexistence of visual patterns in same images, over-fitting or under-fitting and semantic representation differences among image analysts. This article proposes a methodology to reduce the complexity of ranking satellite images for associative methods. Our approach employs genetic operations to provide faster and more accurate models for ranking by semantic using low level features. The added accuracy is provided by a reduction in the likelihood to reach local minima or to overfit. The experiments show that, using genetic optimization, associative methods perform better or at similar levels as state-of-the-art ensemble methods for ranking. The mean average precision (MAP of ranking by semantic was improved by 14% over similar associative methods that use other optimization techniques while maintaining smaller size for each semantic model.

  16. A methodology for near real-time change detection between Unmanned Aerial Vehicle and wide area satellite images

    Science.gov (United States)

    Fytsilis, Anastasios L.; Prokos, Anthony; Koutroumbas, Konstantinos D.; Michail, Dimitrios; Kontoes, Charalambos C.

    2016-09-01

    In this paper a novel integrated hybrid methodology for unsupervised change detection between Unmanned Aerial Vehicle (UAV) and satellite images, which can be utilized in various fields like security applications (e.g. border surveillance) and damage assessment, is proposed. This is a challenging problem mainly due to the difference in geographic coverage and the spatial resolution of the two images, as well as to the acquisition modes which lead to misregistration errors. The methodology consists of the following steps: (a) pre-processing, where the part of the satellite image that corresponds to the UAV image is determined and the UAV image is ortho-rectified using information provided by a Digital Terrain Model, (b) the detection of potential changes, which is based exclusively on intensity and image gradient information, (c) the generation of the region map, where homogeneous regions are produced by the previous potential changes via a seeded region growing algorithm and placed on the region map, and (d) the evaluation of the above regions, in order to characterize them as true changes or not. The methodology has been applied on demanding real datasets with very encouraging results. Finally, its robustness to the misregistration errors is assessed via extensive experimentation.

  17. Smoothing of Fused Spectral Consistent Satellite Images with TV-based Edge Detection

    DEFF Research Database (Denmark)

    Sveinsson, Johannes; Aanæs, Henrik; Benediktsson, Jon Atli

    2007-01-01

    Several widely used methods have been proposed for fusing high resolution panchromatic data and lower resolution multi-channel data. However, many of these methods fail to maintain the spectral consistency of the fused high resolution image, which is of high importance to many of the applications...... based on satellite data. Additionally, most conventional methods are loosely connected to the image forming physics of the satellite image, giving these methods an ad hoc feel. Vesteinsson et al. [1] proposed a method of fusion of satellite images that is based on the properties of imaging physics...... in a statistically meaningful way and was called spectral consistent panshapening (SCP). In this paper we improve this framework for satellite image fusion by introducing a better image prior, via data-dependent image smoothing. The dependency is obtained via total variation edge detection method....

  18. Use of shadow for enhancing mapping of perennial desert plants from high-spatial resolution multispectral and panchromatic satellite imagery

    Science.gov (United States)

    Alsharrah, Saad A.; Bouabid, Rachid; Bruce, David A.; Somenahalli, Sekhar; Corcoran, Paul A.

    2016-07-01

    Satellite remote-sensing techniques face challenges in extracting vegetation-cover information in desert environments. The limitations in detection are attributed to three major factors: (1) soil background effect, (2) distribution and structure of perennial desert vegetation, and (3) tradeoff between spatial and spectral resolutions of the satellite sensor. In this study, a modified vegetation shadow model (VSM-2) is proposed, which utilizes vegetation shadow as a contextual classifier to counter the limiting factors. Pleiades high spatial resolution, multispectral (2 m), and panchromatic (0.5 m) images were utilized to map small and scattered perennial arid shrubs and trees. We investigated the VSM-2 method in addition to conventional techniques, such as vegetation indices and prebuilt object-based image analysis. The success of each approach was evaluated using a root sum square error metric, which incorporated field data as control and three error metrics related to commission, omission, and percent cover. Results of the VSM-2 revealed significant improvements in perennial vegetation cover and distribution accuracy compared with the other techniques and its predecessor VSM-1. Findings demonstrated that the VSM-2 approach, using high-spatial resolution imagery, can be employed to provide a more accurate representation of perennial arid vegetation and, consequently, should be considered in assessments of desertification.

  19. A lossless encryption method for medical images using edge maps.

    Science.gov (United States)

    Zhou, Yicong; Panetta, Karen; Agaian, Sos

    2009-01-01

    Image encryption is an effective approach for providing security and privacy protection for medical images. This paper introduces a new lossless approach, called EdgeCrypt, to encrypt medical images using the information contained within an edge map. The algorithm can fully protect the selected objects/regions within medical images or the entire medical images. It can also encrypt other types of images such as grayscale images or color images. The algorithm can be used for privacy protection in the real-time medical applications such as wireless medical networking and mobile medical services.

  20. NOAA NESDIS global automated satellite-based snow mapping system and products

    Science.gov (United States)

    Romanov, Peter

    2016-05-01

    Accurate, timely and spatially detailed information on the snow cover distribution and on the snow pack properties is needed in various research and practical applications including numerical weather prediction, climate modeling, river runoff estimates and flood forecasts. Owing to the wide area coverage, high spatial resolution and short repeat cycle of observations satellites present one of the key components of the global snow and ice cover monitoring system. The Global Multisensor Automated Snow and Ice Mapping System (GMASI) has been developed at the request of NOAA National Weather Service (NWS) and NOAA National Ice Center (NIC) to facilitate NOAA operational monitoring of snow and ice cover and to provide information on snow and ice for use in NWP models. Since 2006 the system has been routinely generating daily snow and ice cover maps using combined observations in the visible/infrared and in the microwave from operational meteorological satellites. The output product provides continuous (gap free) characterization of the global snow and ice cover distribution at 4 km spatial resolution. The paper presents a basic description of the snow and ice mapping algorithms incorporated in the system as well as of the product generated with GMASI. It explains the approach used to validate the derived snow and ice maps and provides the results of their accuracy assessment.

  1. A METHOD OF GENERATING PANORAMIC STREET STRIP IMAGE MAP WITH MOBILE MAPPING SYSTEM

    Directory of Open Access Journals (Sweden)

    C. Tianen

    2016-06-01

    Full Text Available This paper explores a method of generating panoramic street strip image map which is called as “Pano-Street” here and contains both sides, ground surface and overhead part of a street with a sequence of 360° panoramic images captured with Point Grey’s Ladybug3 mounted on the top of Mitsubishi MMS-X 220 at 2m intervals along the streets in urban environment. On-board GPS/IMU, speedometer and post sequence image analysis technology such as bundle adjustment provided much more accuracy level position and attitude data for these panoramic images, and laser data. The principle for generating panoramic street strip image map is similar to that of the traditional aero ortho-images. A special 3D DEM(3D-Mesh called here was firstly generated with laser data, the depth map generated from dense image matching with the sequence of 360° panoramic images, or the existing GIS spatial data along the MMS trajectory, then all 360° panoramic images were projected and stitched on the 3D-Mesh with the position and attitude data. This makes it possible to make large scale panoramic street strip image maps for most types of cities, and provides another kind of street view way to view the 360° scene along the street by avoiding the switch of image bubbles like Google Street View and Bing Maps Streetside.

  2. a Method of Generating Panoramic Street Strip Image Map with Mobile Mapping System

    Science.gov (United States)

    Tianen, Chen; Yamamoto, Kohei; Tachibana, Kikuo

    2016-06-01

    This paper explores a method of generating panoramic street strip image map which is called as "Pano-Street" here and contains both sides, ground surface and overhead part of a street with a sequence of 360° panoramic images captured with Point Grey's Ladybug3 mounted on the top of Mitsubishi MMS-X 220 at 2m intervals along the streets in urban environment. On-board GPS/IMU, speedometer and post sequence image analysis technology such as bundle adjustment provided much more accuracy level position and attitude data for these panoramic images, and laser data. The principle for generating panoramic street strip image map is similar to that of the traditional aero ortho-images. A special 3D DEM(3D-Mesh called here) was firstly generated with laser data, the depth map generated from dense image matching with the sequence of 360° panoramic images, or the existing GIS spatial data along the MMS trajectory, then all 360° panoramic images were projected and stitched on the 3D-Mesh with the position and attitude data. This makes it possible to make large scale panoramic street strip image maps for most types of cities, and provides another kind of street view way to view the 360° scene along the street by avoiding the switch of image bubbles like Google Street View and Bing Maps Streetside.

  3. Object-based illumination normalization for multi-temporal satellite images in urban area

    Science.gov (United States)

    Su, Nan; Zhang, Ye; Tian, Shu; Yan, Yiming

    2016-09-01

    Multi-temporal satellite images acquisition with different illumination conditions cause radiometric difference to have a huge effect on image quality during remote sensing image processing. In particular, image matching of satellite stereo images with great difference between acquisition dates is very difficult for the high-precision DSM generation in the field of satellite photogrammetry. Therefore, illumination normalization is one of the greatest application technology to eliminate radiometric difference for image matching and other image applications. In this paper, we proposed a novel method of object-based illumination normalization to improve image matching of different temporal satellite stereo images in urban area. Our proposed method include two main steps: 1) the object extraction 2) multi-level illumination normalization. Firstly, we proposed a object extraction method for the same objects extraction among the multi-temporal satellite images, which can keep the object structural attribute. Moreover, the multi-level illumination normalization is proposed by combining gradient domain method and singular value decomposition (SVD) according to characteristic information of relevant objects. Our proposed method has great improvement for the illumination of object area to be benefit for image matching in urban area with multiple objects. And the histogram similarity parameter and matching rate are used for illumination consistency quantitative evaluation. The experiments have been conducted on different satellite images with different acquisition dates in the same urban area to verify the effectiveness of our proposed method. The experimental results demonstrate a good performance by comparing other methods.

  4. Satellite Image Time Series Decomposition Based on EEMD

    Directory of Open Access Journals (Sweden)

    Yun-long Kong

    2015-11-01

    Full Text Available Satellite Image Time Series (SITS have recently been of great interest due to the emerging remote sensing capabilities for Earth observation. Trend and seasonal components are two crucial elements of SITS. In this paper, a novel framework of SITS decomposition based on Ensemble Empirical Mode Decomposition (EEMD is proposed. EEMD is achieved by sifting an ensemble of adaptive orthogonal components called Intrinsic Mode Functions (IMFs. EEMD is noise-assisted and overcomes the drawback of mode mixing in conventional Empirical Mode Decomposition (EMD. Inspired by these advantages, the aim of this work is to employ EEMD to decompose SITS into IMFs and to choose relevant IMFs for the separation of seasonal and trend components. In a series of simulations, IMFs extracted by EEMD achieved a clear representation with physical meaning. The experimental results of 16-day compositions of Moderate Resolution Imaging Spectroradiometer (MODIS, Normalized Difference Vegetation Index (NDVI, and Global Environment Monitoring Index (GEMI time series with disturbance illustrated the effectiveness and stability of the proposed approach to monitoring tasks, such as applications for the detection of abrupt changes.

  5. Monitoring the Water Quality of Lake Koronia Using Long Time-Series of Multispectral Satellite Images

    Science.gov (United States)

    Perivolioti, Triantafyllia-Maria; Mouratidis, Antonios; Doxani, Georgia; Bobori, Dimitra

    2016-08-01

    In this study, a comprehensive 30-year (1984-2016) water quality parameter database for lake Koronia - one of the most important Ramsar wetlands of Greece - was compiled from Landsat imagery. The reliability of the data was evaluated by comparing water Quality Element (QE) values computed from Landsat data against in-situ data. Water quality algorithms developed from previous studies, specifically for the determination of Water Temperature, pH, Transparency/Secchi Disk Depth (SDD), Chlorophyll a and Conductivity, were applied to Landsat images. In addition, Water Depth, as well as the distribution of floating vegetation and cyanobacterial blooms were mapped. The performed comprehensive analysis posed certain questions, regarding the applicability of single empirical models across multi- temporal, multi-sensor datasets, towards the accurate prediction of key water quality indicators for shallow inland systems. This assessment demonstrates that satellite imagery can provide an accurate method for obtaining comprehensive spatial and temporal coverage of key water quality characteristics.

  6. High Resolution Imaging of Satellites with Ground-Based 10-m Astronomical Telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Marois, C

    2007-01-04

    High resolution imaging of artificial satellites can play an important role in current and future space endeavors. One such use is acquiring detailed images that can be used to identify or confirm damage and aid repair plans. It is shown that a 10-m astronomical telescope equipped with an adaptive optics system (AO) to correct for atmospheric turbulence using a natural guide star can acquire high resolution images of satellites in low-orbits using a fast shutter and a near-infrared camera even if the telescope is not capable of tracking satellites. With the telescope pointing towards the satellite projected orbit and less than 30 arcsec away from a guide star, multiple images of the satellite are acquired on the detector using the fast shutter. Images can then be shifted and coadded by post processing to increase the satellite signal to noise ratio. Using the Keck telescope typical Strehl ratio and anisoplanatism angle as well as a simple diffusion/reflection model for a satellite 400 km away observed near Zenith at sunset or sunrise, it is expected that such system will produced > 10{sigma} K-band images at a resolution of 10 cm inside a 60 arcsec diameter field of view. If implemented, such camera could deliver the highest resolution satellite images ever acquired from the ground.

  7. High Resolution Imaging of Satellites with Ground-Based 10-m Astronomical Telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Marois, C

    2007-01-04

    High resolution imaging of artificial satellites can play an important role in current and future space endeavors. One such use is acquiring detailed images that can be used to identify or confirm damage and aid repair plans. It is shown that a 10-m astronomical telescope equipped with an adaptive optics system (AO) to correct for atmospheric turbulence using a natural guide star can acquire high resolution images of satellites in low-orbits using a fast shutter and a near-infrared camera even if the telescope is not capable of tracking satellites. With the telescope pointing towards the satellite projected orbit and less than 30 arcsec away from a guide star, multiple images of the satellite are acquired on the detector using the fast shutter. Images can then be shifted and coadded by post processing to increase the satellite signal to noise ratio. Using the Keck telescope typical Strehl ratio and anisoplanatism angle as well as a simple diffusion/reflection model for a satellite 400 km away observed near Zenith at sunset or sunrise, it is expected that such system will produced > 10{sigma} K-band images at a resolution of 10 cm inside a 60 arcsec diameter field of view. If implemented, such camera could deliver the highest resolution satellite images ever acquired from the ground.

  8. Using very high resolution satellite images to identify coastal zone dynamics at North Western Black Sea

    Science.gov (United States)

    Florin Zoran, Liviu; Ionescu Golovanov, Carmen; Zoran, Maria

    2010-05-01

    The availability of updated information about the extension and characteristics of land cover is a crucial issue in the perspective of a correct landscape planning and management of marine coastal zones. Satellite remote sensing data can provide accurate information about land coverage at different scales and the recent availability of very high resolution images definitely improved the precision of coastal zone spatio-temporal changes. The Romanian North Western coastal and shelf zones of the Black Sea and Danube delta are a mosaic of complex, interacting ecosystems, rich natural resources and socio-economic activity. Dramatic changes in the Black Sea's ecosystem and resources are due to natural and anthropogenic causes (increase in the nutrient and pollutant load of rivers input, industrial and municipal wastewater pollution along the coast, and dumping on the open sea). A scientific management system for protection, conservation and restoration must be based on reliable information on bio-geophysical and geomorphologic processes, coastal erosion, sedimentation dynamics, mapping of macrophyte fields, water quality, and climatic change effects. Use of satellite images is of great help for coastal zone monitoring and environmental impact assessment. Synergetic use of in situ measurements with multisensors satellite data could provide a complex assessment of spatio-temporal changes. In this study was developed a method for extracting coastal zone features information as well as landcover dynamics from IKONOS, very high resolution images for North-Western Black Sea marine coastal zone. The main objective was obtaining reliable data about the spatio-temporal coastal zone changes in two study areas located in Constanta urban area and Danube Delta area. We used an object-oriented approach based on preliminary segmentation and classification of the resulting object. First of all, segmentation parameters were tested and selected comparing segmented polygons with

  9. Fast terrain modelling for hydrogeological risk mapping and emergency management: the contribution of high-resolution satellite SAR imagery

    Directory of Open Access Journals (Sweden)

    A. Nascetti

    2015-07-01

    Full Text Available Geomatic tools fast terrain modelling play a relevant role in hydrogeological risk mapping and emergency management. Given their complete independence from logistic constraints on the ground (as for airborne data collection, illumination (daylight, and weather (clouds conditions, synthetic aperture radar (SAR satellite systems may provide important contributions in terms of digital surface models (DSMs and digital elevation models (DEMs. For this work we focused on the potential of high-resolution SAR satellite imagery for DSM generation using an interferometric (InSAR technique and using a revitalized radargrammetric stereomapping approach. The goal of this work was just methodological. Our goal was to illustrate both the fundamental advantages and drawbacks of the radargrammetric approach with respect to the InSAR technique for DSM generation, and to outline their possible joint role in hydrogeological risk mapping and emergency management. Here, it is worth mentioning that radargrammetry procedures are independent of image coherence (unlike the interferometric approach and phase unwrapping, as well as of parsimony (only a few images are necessary. Therefore, a short time is required for image collection (from tens of minutes to a few hours, thanks to the independence from illumination and weather. The most relevant obstacles of the technique are speckle and the lack of texture impact on image matching, as well as the well-known deformations of SAR imagery (layover and foreshortening, which may produce remarkable difficulties with complex morphologies and that must be accounted for during acquisition planning. Here, we discuss results obtained with InSAR and radargrammetry applied to a COSMO-SkyMed SpotLight triplet (two stereopairs suited for radargrammetry and InSAR, sharing one common image acquired over suburbs of San Francisco (United States, which are characterized by mixed morphology and land cover. We mainly focused on urban areas and

  10. The Potential of Sentinel Satellites for Burnt Area Mapping and Monitoring in the Congo Basin Forests

    Directory of Open Access Journals (Sweden)

    Astrid Verhegghen

    2016-11-01

    Full Text Available In this study, the recently launched Sentinel-2 (S2 optical satellite and the active radar Sentinel-1 (S1 satellite supported by active fire data from the MODIS sensor were used to detect and monitor forest fires in the Congo Basin. In the context of a very strong El Niño event, an unprecedented outbreak of fires was observed during the first months of 2016 in open forests formations in the north of the Republic of Congo. The anomalies of the recent fires and meteorological situation compared to historical data show the severity of the drought. Burnt areas mapped by the S1 SAR and S2 Multi Spectral Instrument (MSI sensors highlight that the fires occurred mainly in Marantaceae forests, characterized by open tree canopy cover and an extensive tall herbaceous layer. The maps show that the origin of the fires correlates with accessibility to the forest, suggesting an anthropogenic origin. The combined use of the two independent and fundamentally different satellite systems of S2 and S1 captured an extent of 36,000 ha of burnt areas, with each sensor compensating for the weakness (cloud perturbations for S2, and sensitivity to ground moisture for S1 of the other.

  11. Habitat Mapping and Change Assessment of Coastal Environments: An Examination of WorldView-2, QuickBird, and IKONOS Satellite Imagery and Airborne LiDAR for Mapping Barrier Island Habitats

    Directory of Open Access Journals (Sweden)

    Matthew J. McCarthy

    2014-03-01

    Full Text Available Habitat mapping can be accomplished using many techniques and types of data. There are pros and cons for each technique and dataset, therefore, the goal of this project was to investigate the capabilities of new satellite sensor technology and to assess map accuracy for a variety of image classification techniques based on hundreds of field-work sites. The study area was Masonboro Island, an undeveloped area in coastal North Carolina, USA. Using the best map results, a habitat change assessment was conducted between 2002 and 2010. WorldView-2, QuickBird, and IKONOS satellite sensors were tested using unsupervised and supervised methods using a variety of spectral band combinations. Light Detection and Ranging (LiDAR elevation and texture data pan-sharpening, and spatial filtering were also tested. In total, 200 maps were generated and results indicated that WorldView-2 was consistently more accurate than QuickBird and IKONOS. Supervised maps were more accurate than unsupervised in 80% of the maps. Pan-sharpening the images did not consistently improve map accuracy but using a majority filter generally increased map accuracy. During the relatively short eight-year period, 20% of the coastal study area changed with intertidal marsh experiencing the most change. Smaller habitat classes changed substantially as well. For example, 84% of upland scrub-shrub experienced change. These results document the dynamic nature of coastal habitats, validate the use of the relatively new Worldview-2 sensor, and may be used to guide future coastal habitat mapping.

  12. An image encryption scheme based on quantum logistic map

    Science.gov (United States)

    Akhshani, A.; Akhavan, A.; Lim, S.-C.; Hassan, Z.

    2012-12-01

    The topic of quantum chaos has begun to draw increasing attention in recent years. While a satisfactory definition for it is not settled yet in order to differentiate between its classical counterparts. Dissipative quantum maps can be characterized by sensitive dependence on initial conditions, like classical maps. Considering this property, an implementation of image encryption scheme based on the quantum logistic map is proposed. The security and performance analysis of the proposed image encryption is performed using well-known methods. The results of the reliability analysis are encouraging and it can be concluded that, the proposed scheme is efficient and secure. The results of this study also suggest application of other quantum maps such as quantum standard map and quantum baker map in cryptography and other aspects of security and privacy.

  13. Image and geometry processing with Oriented and Scalable Map.

    Science.gov (United States)

    Hua, Hao

    2016-05-01

    We turn the Self-organizing Map (SOM) into an Oriented and Scalable Map (OS-Map) by generalizing the neighborhood function and the winner selection. The homogeneous Gaussian neighborhood function is replaced with the matrix exponential. Thus we can specify the orientation either in the map space or in the data space. Moreover, we associate the map's global scale with the locality of winner selection. Our model is suited for a number of graphical applications such as texture/image synthesis, surface parameterization, and solid texture synthesis. OS-Map is more generic and versatile than the task-specific algorithms for these applications. Our work reveals the overlooked strength of SOMs in processing images and geometries. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Surface mineral maps of Afghanistan derived from HyMap imaging spectrometer data, version 2

    Science.gov (United States)

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.

    2013-01-01

    This report presents a new version of surface mineral maps derived from HyMap imaging spectrometer data collected over Afghanistan in the fall of 2007. This report also describes the processing steps applied to the imaging spectrometer data. The 218 individual flight lines composing the Afghanistan dataset, covering more than 438,000 square kilometers, were georeferenced to a mosaic of orthorectified Landsat images. The HyMap data were converted from radiance to reflectance using a radiative transfer program in combination with ground-calibration sites and a network of cross-cutting calibration flight lines. The U.S. Geological Survey Material Identification and Characterization Algorithm (MICA) was used to generate two thematic maps of surface minerals: a map of iron-bearing minerals and other materials, which have their primary absorption features at the shorter wavelengths of the reflected solar wavelength range, and a map of carbonates, phyllosilicates, sulfates, altered minerals, and other materials, which have their primary absorption features at the longer wavelengths of the reflected solar wavelength range. In contrast to the original version, version 2 of these maps is provided at full resolution of 23-meter pixel size. The thematic maps, MICA summary images, and the material fit and depth images are distributed in digital files linked to this report, in a format readable by remote sensing software and Geographic Information Systems (GIS). The digital files can be downloaded from http://pubs.usgs.gov/ds/787/downloads/.

  15. Spectral and spatial resolution analysis of multi sensor satellite data for coral reef mapping: Tioman Island, Malaysia

    Science.gov (United States)

    Pradhan, Biswajeet; Kabiri, Keivan

    2012-07-01

    This paper describes an assessment of coral reef mapping using multi sensor satellite images such as Landsat ETM, SPOT and IKONOS images for Tioman Island, Malaysia. The study area is known to be one of the best Islands in South East Asia for its unique collection of diversified coral reefs and serves host to thousands of tourists every year. For the coral reef identification, classification and analysis, Landsat ETM, SPOT and IKONOS images were collected processed and classified using hierarchical classification schemes. At first, Decision tree classification method was implemented to separate three main land cover classes i.e. water, rural and vegetation and then maximum likelihood supervised classification method was used to classify these main classes. The accuracy of the classification result is evaluated by a separated test sample set, which is selected based on the fieldwork survey and view interpretation from IKONOS image. Few types of ancillary data in used are: (a) DGPS ground control points; (b) Water quality parameters measured by Hydrolab DS4a; (c) Sea-bed substrates spectrum measured by Unispec and; (d) Landcover observation photos along Tioman island coastal area. The overall accuracy of the final classification result obtained was 92.25% with the kappa coefficient is 0.8940. Key words: Coral reef, Multi-spectral Segmentation, Pixel-Based Classification, Decision Tree, Tioman Island

  16. Mapping Surface Broadband Albedo from Satellite Observations: A Review of Literatures on Algorithms and Products

    Directory of Open Access Journals (Sweden)

    Ying Qu

    2015-01-01

    Full Text Available Surface albedo is one of the key controlling geophysical parameters in the surface energy budget studies, and its temporal and spatial variation is closely related to the global climate change and regional weather system due to the albedo feedback mechanism. As an efficient tool for monitoring the surfaces of the Earth, remote sensing is widely used for deriving long-term surface broadband albedo with various geostationary and polar-orbit satellite platforms in recent decades. Moreover, the algorithms for estimating surface broadband albedo from satellite observations, including narrow-to-broadband conversions, bidirectional reflectance distribution function (BRDF angular modeling, direct-estimation algorithm and the algorithms for estimating albedo from geostationary satellite data, are developed and improved. In this paper, we present a comprehensive literature review on algorithms and products for mapping surface broadband albedo with satellite observations and provide a discussion of different algorithms and products in a historical perspective based on citation analysis of the published literature. This paper shows that the observation technologies and accuracy requirement of applications are important, and long-term, global fully-covered (including land, ocean, and sea-ice surfaces, gap-free, surface broadband albedo products with higher spatial and temporal resolution are required for climate change, surface energy budget, and hydrological studies.

  17. On the Use of Machine Vision Techniques to Detect Human Settlements in Satellite Images

    Energy Technology Data Exchange (ETDEWEB)

    Kamath, C; Sengupta, S K; Poland, D; Futterman, J A H

    2003-01-10

    The automated production of maps of human settlement from recent satellite images is essential to studies of urbanization, population movement, and the like. The spectral and spatial resolution of such imagery is often high enough to successfully apply computer vision techniques. However, vast amounts of data have to be processed quickly. In this paper, we propose an approach that processes the data in several different stages. At each stage, using features appropriate to that stage, we identify the portion of the data likely to contain information relevant to the identification of human settlements. This data is used as input to the next stage of processing. Since the size of the data has reduced, we can now use more complex features in this next stage. These features can be more representative of human settlements, and also more time consuming to extract from the image data. Such a hierarchical approach enables us to process large amounts of data in a reasonable time, while maintaining the accuracy of human settlement identification. We illustrate our multi-stage approach using IKONOS 4-band and panchromatic images, and compare it with the straight-forward processing of the entire image.

  18. Effective System for Automatic Bundle Block Adjustment and Ortho Image Generation from Multi Sensor Satellite Imagery

    Science.gov (United States)

    Akilan, A.; Nagasubramanian, V.; Chaudhry, A.; Reddy, D. Rajesh; Sudheer Reddy, D.; Usha Devi, R.; Tirupati, T.; Radhadevi, P. V.; Varadan, G.

    2014-11-01

    Block Adjustment is a technique for large area mapping for images obtained from different remote sensingsatellites.The challenge in this process is to handle huge number of satellite imageries from different sources with different resolution and accuracies at the system level. This paper explains a system with various tools and techniques to effectively handle the end-to-end chain in large area mapping and production with good level of automation and the provisions for intuitive analysis of final results in 3D and 2D environment. In addition, the interface for using open source ortho and DEM references viz., ETM, SRTM etc. and displaying ESRI shapes for the image foot-prints are explained. Rigorous theory, mathematical modelling, workflow automation and sophisticated software engineering tools are included to ensure high photogrammetric accuracy and productivity. Major building blocks like Georeferencing, Geo-capturing and Geo-Modelling tools included in the block adjustment solution are explained in this paper. To provide optimal bundle block adjustment solution with high precision results, the system has been optimized in many stages to exploit the full utilization of hardware resources. The robustness of the system is ensured by handling failure in automatic procedure and saving the process state in every stage for subsequent restoration from the point of interruption. The results obtained from various stages of the system are presented in the paper.

  19. First Satellite Imaging of Auroral Pulsations by the Fast Auroral Imager on e-POP

    Science.gov (United States)

    Lui, A.; Cogger, L.; Howarth, A. D.; Yau, A. W.

    2015-12-01

    We report the first satellite imaging of auroral pulsations by the Fast Auroral Imager (FAI) onboard the Enhanced Polar Outflow Probe (e-POP) satellite. The near-infrared camera of FAI is capable of providing up to two auroral images per second, ideal for investigation of pulsating auroras. The auroral pulsations were observed within the auroral bulge formed during a substorm interval on 2014 February 19. This first satellite view of these pulsations from FAI reveals that (1) several pulsating auroral channels (PACs) occur within the auroral bulge, (2) periods of the intensity pulsations span over one decade within the auroral bulge, and (3) there is no apparent trend of longer pulsation periods associated with higher latitudes for these PACs. Although PACs resemble in some respect stable pulsating auroras reported previously but they have several important differences in characteristics.PACs are not embedded in or emerging from omega bands or torches and are located at significant distances from the equatorward boundary of the auroral oval, unlike the characteristics of stable pulsating auroras.

  20. Estimate Landslide Volume with Genetic Algorithms and Image Similarity Method from Single Satellite Image

    Science.gov (United States)

    Yu, Ting-To

    2013-04-01

    It is important to acquire the volume of landslide in short period of time. For hazard mitigation and also emergency response purpose, the traditional method takes much longer time than expected. Due to the weather limit, traffic accessibility and many regulations of law, it take months to handle these process before the actual carry out of filed work. Remote sensing imagery can get the data as long as the visibility allowed, which happened only few day after the event. While traditional photometry requires a stereo pairs images to produce the post event DEM for calculating the change of volume. Usually have to wait weeks or even months for gathering such data, LiDAR or ground GPS measurement might take even longer period of time with much higher cost. In this study we use one post event satellite image and pre-event DTM to compare the similarity between these by alter the DTM with genetic algorithms. The outcome of smartest guess from GAs shall remove or add exact values of height at each location, which been converted into shadow relief viewgraph to compare with satellite image. Once the similarity threshold been make then the guessing work stop. It takes only few hours to finish the entire task, the computed accuracy is around 70% by comparing to the high resolution LiDAR survey at a landslide, southern Taiwan. With extra GCPs, the estimate accuracy can improve to 85% and also within few hours after the receiving of satellite image. Data of this demonstration case is a 5 m DTM at 2005, 2M resolution FormoSat optical image at 2009 and 5M LiDAR at 2010. The GAs and image similarity code is developed on Matlab at windows PC.

  1. Mapping Sub-Saharan African Agriculture in High-Resolution Satellite Imagery with Computer Vision & Machine Learning

    Science.gov (United States)

    Debats, Stephanie Renee

    Smallholder farms dominate in many parts of the world, including Sub-Saharan Africa. These systems are characterized by small, heterogeneous, and often indistinct field patterns, requiring a specialized methodology to map agricultural landcover. In this thesis, we developed a benchmark labeled data set of high-resolution satellite imagery of agricultural fields in South Africa. We presented a new approach to mapping agricultural fields, based on efficient extraction of a vast set of simple, highly correlated, and interdependent features, followed by a random forest classifier. The algorithm achieved similar high performance across agricultural types, including spectrally indistinct smallholder fields, and demonstrated the ability to generalize across large geographic areas. In sensitivity analyses, we determined multi-temporal images provided greater performance gains than the addition of multi-spectral bands. We also demonstrated how active learning can be incorporated in the algorithm to create smaller, more efficient training data sets, which reduced computational resources, minimized the need for humans to hand-label data, and boosted performance. We designed a patch-based uncertainty metric to drive the active learning framework, based on the regular grid of a crowdsourcing platform, and demonstrated how subject matter experts can be replaced with fleets of crowdsourcing workers. Our active learning algorithm achieved similar performance as an algorithm trained with randomly selected data, but with 62% less data samples. This thesis furthers the goal of providing accurate agricultural landcover maps, at a scale that is relevant for the dominant smallholder class. Accurate maps are crucial for monitoring and promoting agricultural production. Furthermore, improved agricultural landcover maps will aid a host of other applications, including landcover change assessments, cadastral surveys to strengthen smallholder land rights, and constraints for crop modeling

  2. Airborne Wide Area Imager for Wildfire Mapping and Detection Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An advanced airborne imaging system for fire detection/mapping is proposed. The goal of the project is to improve control and management of wildfires in order to...

  3. IMPACT OF TONE MAPPING IN HIGH DYNAMIC RANGE IMAGE COMPRESSION

    OpenAIRE

    Narwaria, Manish; Perreira Da Silva, Matthieu; Le Callet, Patrick; Pépion, Romuald

    2014-01-01

    International audience; Tone mapping or range reduction is often used in High Dynamic Range (HDR) visual signal compression to take advantage of the existing image/video coding architectures. Thus, it is important to study the impact of tone mapping on the visual quality of decompressed HDR visual signals. To our knowledge, most of the existing studies focus only on the quality loss in the resultant low dynamic range (LDR) signal (obtained via tone mapping) and typically employ LDR displays f...

  4. Automated thermal mapping techniques using chromatic image analysis

    Science.gov (United States)

    Buck, Gregory M.

    1989-01-01

    Thermal imaging techniques are introduced using a chromatic image analysis system and temperature sensitive coatings. These techniques are used for thermal mapping and surface heat transfer measurements on aerothermodynamic test models in hypersonic wind tunnels. Measurements are made on complex vehicle configurations in a timely manner and at minimal expense. The image analysis system uses separate wavelength filtered images to analyze surface spectral intensity data. The system was initially developed for quantitative surface temperature mapping using two-color thermographic phosphors but was found useful in interpreting phase change paint and liquid crystal data as well.

  5. Mapping of CO2 at High Spatiotemporal Resolution using Satellite Observations: Global distributions from OCO-2

    Science.gov (United States)

    Hammerling, Dorit M.; Michalak, Anna M.; Kawa, S. Randolph

    2012-01-01

    Satellite observations of CO2 offer new opportunities to improve our understanding of the global carbon cycle. Using such observations to infer global maps of atmospheric CO2 and their associated uncertainties can provide key information about the distribution and dynamic behavior of CO2, through comparison to atmospheric CO2 distributions predicted from biospheric, oceanic, or fossil fuel flux emissions estimates coupled with atmospheric transport models. Ideally, these maps should be at temporal resolutions that are short enough to represent and capture the synoptic dynamics of atmospheric CO2. This study presents a geostatistical method that accomplishes this goal. The method can extract information about the spatial covariance structure of the CO2 field from the available CO2 retrievals, yields full coverage (Level 3) maps at high spatial resolutions, and provides estimates of the uncertainties associated with these maps. The method does not require information about CO2 fluxes or atmospheric transport, such that the Level 3 maps are informed entirely by available retrievals. The approach is assessed by investigating its performance using synthetic OCO-2 data generated from the PCTM/ GEOS-4/CASA-GFED model, for time periods ranging from 1 to 16 days and a target spatial resolution of 1deg latitude x 1.25deg longitude. Results show that global CO2 fields from OCO-2 observations can be predicted well at surprisingly high temporal resolutions. Even one-day Level 3 maps reproduce the large-scale features of the atmospheric CO2 distribution, and yield realistic uncertainty bounds. Temporal resolutions of two to four days result in the best performance for a wide range of investigated scenarios, providing maps at an order of magnitude higher temporal resolution relative to the monthly or seasonal Level 3 maps typically reported in the literature.

  6. On-orbit Geometric Parameters Refinement of Mapping Satellite-1 Triple Line Array Camera

    Directory of Open Access Journals (Sweden)

    GENG Hongyi

    2016-03-01

    Full Text Available To find the model and method of on-orbit geometric refinement suitable for the triple line array camera of Mapping Satellite-1, this paper first analyzed the impact of the exterior orientation line element error on the geometric parameters refinement, then eliminated the high-frequency noise by the preprocessing of the attitude data, and compensated the low-frequency flutter of satellite platform in the course of flying by sine function and designed the constant angular error model for the lens of the triple line array camera. In addition, an interior orientation model, using directly pixel coordinates as observations, was constructed based on conventional additional parameter model and the combination of the best refinement model parameters and the solution strategy were determined by the unilateral control extrapolative location. The experiments show that the planar accuracy and vertical accuracy are about 1 GSD and 0.8 GSD by the proposed refinement plan and the rational distribution of GCPS.

  7. Offshore wind resource mapping for Europe by Synthetic Aperture Radar (SAR) satellite data

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Badger, Merete

    2015-01-01

    For the New European Wind Atlas (NEWA) project with 8 participating countries during5 years (March 2015 – March 2020) we will develop a new wind atlas covering most of the European countries as well as most of the offshore areas in Europe. For the offshore atlas we will rely on a combination...... of satellite remote sensing observations and atmospheric modelling. The satellite data include Synthetic Aperture Radar (SAR) from the European Space Agency from Envisat and the Copernicus mission Sentinel-1. SAR has the advantage of high spatial resolution such that we can cover near-coastal areas where many...... wind farms are planned. In the Danish RUNE project near-shore offshore winds are investigate from SAR, atmospheric modelling and ground-based remote sensing lidar. In the European Space Agency project ResGrow SAR wind resource maps at various locations in the European Seas are used to estimate the wind...

  8. Mapping Urban Tree Canopy Cover Using Fused Airborne LIDAR and Satellite Imagery Data

    Science.gov (United States)

    Parmehr, Ebadat G.; Amati, Marco; Fraser, Clive S.

    2016-06-01

    Urban green spaces, particularly urban trees, play a key role in enhancing the liveability of cities. The availability of accurate and up-to-date maps of tree canopy cover is important for sustainable development of urban green spaces. LiDAR point clouds are widely used for the mapping of buildings and trees, and several LiDAR point cloud classification techniques have been proposed for automatic mapping. However, the effectiveness of point cloud classification techniques for automated tree extraction from LiDAR data can be impacted to the point of failure by the complexity of tree canopy shapes in urban areas. Multispectral imagery, which provides complementary information to LiDAR data, can improve point cloud classification quality. This paper proposes a reliable method for the extraction of tree canopy cover from fused LiDAR point cloud and multispectral satellite imagery data. The proposed method initially associates each LiDAR point with spectral information from the co-registered satellite imagery data. It calculates the normalised difference vegetation index (NDVI) value for each LiDAR point and corrects tree points which have been misclassified as buildings. Then, region growing of tree points, taking the NDVI value into account, is applied. Finally, the LiDAR points classified as tree points are utilised to generate a canopy cover map. The performance of the proposed tree canopy cover mapping method is experimentally evaluated on a data set of airborne LiDAR and WorldView 2 imagery covering a suburb in Melbourne, Australia.

  9. The Application of the Technology of 3D Satellite Cloud Imaging in Virtual Reality Simulation

    Directory of Open Access Journals (Sweden)

    Xiao-fang Xie

    2007-05-01

    Full Text Available Using satellite cloud images to simulate clouds is one of the new visual simulation technologies in Virtual Reality (VR. Taking the original data of satellite cloud images as the source, this paper depicts specifically the technology of 3D satellite cloud imaging through the transforming of coordinates and projection, creating a DEM (Digital Elevation Model of cloud imaging and 3D simulation. A Mercator projection was introduced to create a cloud image DEM, while solutions for geodetic problems were introduced to calculate distances, and the outer-trajectory science of rockets was introduced to obtain the elevation of clouds. For demonstration, we report on a computer program to simulate the 3D satellite cloud images.

  10. Fast Fractal Compression of Satellite and Medical Images Based on Domain-Range Entropy

    Directory of Open Access Journals (Sweden)

    Ramesh Babu Inampudi

    2010-01-01

    Full Text Available Fractal image Compression is a lossy compression technique developed in the early 1990s. It makes use of the local self-similarity property existing in an image and finds a contractive mapping affine transformation (fractal transformT, such that the fixed point of T is close to the given image in a suitable metric. It has generated much interest due to its promise of high compression ratios with good decompression quality. The other advantage is its multi resolution property, i.e. an image can be decoded at higher or lower resolutions than the original without much degradation in quality. However, the encoding time is computationally intensive. In this paper, a fast fractal image compression method based on the domain-range entropy is proposed to reduce the encoding time, while maintaining the fidelity and compression ratio of the decoded image. The method is a two-step process. First, domains that are similar i.e. domains having nearly equal variances are eliminated from the domain pool. Second, during the encoding phase, only domains and ranges having equal entropies (with an adaptive error threshold, λdepth for each quadtree depth are compared for a match within the rms error tolerance. As a result, many unqualified domains are removed from comparison and a significant reduction in encoding time is expected. The method is applied for compression of satellite and medical images (512x512, 8-bit gray scale. Experimental results show that the proposed method yields superior performance over Fisher’s classified search and other methods.

  11. Vegetation mapping with satellite data of the Forsmark and Tierp regions

    Energy Technology Data Exchange (ETDEWEB)

    Boresjoe-Bronge, Laine; Wester, Kjell [SwedPower, Stockholm (Sweden)

    2002-04-01

    SKB (Swedish Nuclear Fuel and Waste Management Co) performs a siting program for deep repository of spent nuclear fuel that includes survey of three potential sites. The SKB siting process has now reached the site investigation phase. There are several fields of investigations performed in this phase. One of them is description of the surface ecosystems. The surface ecosystems are mapped both on a regional (50-100 km{sup 2} ) and a local level (1 km{sup 2} ). Two inventory methods are used, remote sensing (satellite data/aerial photographs) for the regional level, and field inventory for the detailed level. As a part of the surface ecosystem characterisation on the regional level vegetation mapping using satellite data has been performed over the three potential deep depository sites, Forsmark, Tierp and Oskarshamn. The user requirements for the vegetation mapping of the potential sites are the following: Dominated species in the tree layer, shrub layer, field layer and ground layer shall be described both on regional and local level; Dominated species in all layers shall be quantified regarding share and percentage of ground cover, or absence of cover (vegetation free ground); The regional and the local inventory shall have identical or comparable classification systems; The classification system and the method used shall make it possible to scale the results from local to regional level and vice versa; The produced layers shall be presented in digital form and make it possible to model biomass and turnover of organic matter (carbon, nutrients, water); The produced information shall in a first phase be of use for planning and for making nature and environmental considerations. Data sources used in the study include geo-referenced SPOT4 XI data (20 m ground resolution), geo-referenced Landsat TM data (30 m ground resolution), soil type data, topographic map data and colour infrared aerial photographs. The production of vegetation layers has been carried out in two

  12. Spatio-temporal multi-modality ontology for indexing and retrieving satellite images

    OpenAIRE

    MESSOUDI, Wassim; FARAH, Imed Riadh; SAHEB ETTABAA, Karim; Ben Ghezala, Henda; SOLAIMAN, Basel

    2009-01-01

    International audience; This paper presents spatio-temporal multi-modality ontology for indexing and retrieving satellite images in the high level to improve the quality of the system retrieval and to perform semantic in the retrieval process.Our approach is based on three modules: (1) regions and features extraction, (2) ontological indexing and (3) semantic image retrieval. The first module allows extracting regions from the satellite image using the fuzzy c-means FCM) segmentation algorith...

  13. Revealing glacier flow and surge dynamics from animated satellite image sequences: examples from the Karakoram

    OpenAIRE

    Paul, F

    2015-01-01

    Although animated images are very popular on the internet, they have so far found only limited use for glaciological applications. With long time series of satellite images becoming increasingly available and glaciers being well recognized for their rapid changes and variable flow dynamics, animated sequences of multiple satellite images reveal glacier dynamics in a time-lapse mode, making the otherwise slow changes of glacier movement visible and understandable to the wider...

  14. Object-based image analysis for mapping geomorphic zones of coral reefs in the Xisha Islands, China

    Institute of Scientific and Technical Information of China (English)

    XU Jingping; ZHAO Jianhua; LI Fang; WANG Lin; SONG Derui; WEN Shiyong; WANG Fei; GAO Ning

    2016-01-01

    Mapping regional spatial patterns of coral reef geomorphology provides the primary information to understand the constructive processes in the reef ecosystem. However, this work is challenged by the pixel-based image classification method for its comparatively low accuracy. In this paper, an object-based image analysis (OBIA) method was presented to map intra-reef geomorphology of coral reefs in the Xisha Islands, China using Landsat 8 satellite imagery. Following the work of the Millennium Coral Reef Mapping Project, a regional reef class hierarchy with ten geomorphic classes was first defined. Then, incorporating the hierarchical concept and integrating the spectral and additional spatial information such as context, shape and contextual relationships, a large-scale geomorphic map was produced by OBIA with accuracies generally more than 80%. Although the robustness of OBIA has been validated in the applications of coral reef mapping from individual reefs to reef system in this paper, further work is still required to improve its transferability.

  15. Assessing the accuracy of hyperspectral and multispectral satellite imagery for categorical and Quantitative mapping of salinity stress in sugarcane fields

    Science.gov (United States)

    Hamzeh, Saeid; Naseri, Abd Ali; AlaviPanah, Seyed Kazem; Bartholomeus, Harm; Herold, Martin

    2016-10-01

    This study evaluates the feasibility of hyperspectral and multispectral satellite imagery for categorical and quantitative mapping of salinity stress in sugarcane fields located in the southwest of Iran. For this purpose a Hyperion image acquired on September 2, 2010 and a Landsat7 ETM+ image acquired on September 7, 2010 were used as hyperspectral and multispectral satellite imagery. Field data including soil salinity in the sugarcane root zone was collected at 191 locations in 25 fields during September 2010. In the first section of the paper, based on the yield potential of sugarcane as influenced by different soil salinity levels provided by FAO, soil salinity was classified into three classes, low salinity (1.7-3.4 dS/m), moderate salinity (3.5-5.9 dS/m) and high salinity (6-9.5) by applying different classification methods including Support Vector Machine (SVM), Spectral Angle Mapper (SAM), Minimum Distance (MD) and Maximum Likelihood (ML) on Hyperion and Landsat images. In the second part of the paper the performance of nine vegetation indices (eight indices from literature and a new developed index in this study) extracted from Hyperion and Landsat data was evaluated for quantitative mapping of salinity stress. The experimental results indicated that for categorical classification of salinity stress, Landsat data resulted in a higher overall accuracy (OA) and Kappa coefficient (KC) than Hyperion, of which the MD classifier using all bands or PCA (1-5) as an input performed best with an overall accuracy and kappa coefficient of 84.84% and 0.77 respectively. Vice versa for the quantitative estimation of salinity stress, Hyperion outperformed Landsat. In this case, the salinity and water stress index (SWSI) has the best prediction of salinity stress with an R2 of 0.68 and RMSE of 1.15 dS/m for Hyperion followed by Landsat data with an R2 and RMSE of 0.56 and 1.75 dS/m respectively. It was concluded that categorical mapping of salinity stress is the best option

  16. An Object-Based Image Analysis Approach for Detecting Penguin Guano in very High Spatial Resolution Satellite Images

    Directory of Open Access Journals (Sweden)

    Chandi Witharana

    2016-04-01

    Full Text Available The logistical challenges of Antarctic field work and the increasing availability of very high resolution commercial imagery have driven an interest in more efficient search and classification of remotely sensed imagery. This exploratory study employed geographic object-based analysis (GEOBIA methods to classify guano stains, indicative of chinstrap and Adélie penguin breeding areas, from very high spatial resolution (VHSR satellite imagery and closely examined the transferability of knowledge-based GEOBIA rules across different study sites focusing on the same semantic class. We systematically gauged the segmentation quality, classification accuracy, and the reproducibility of fuzzy rules. A master ruleset was developed based on one study site and it was re-tasked “without adaptation” and “with adaptation” on candidate image scenes comprising guano stains. Our results suggest that object-based methods incorporating the spectral, textural, spatial, and contextual characteristics of guano are capable of successfully detecting guano stains. Reapplication of the master ruleset on candidate scenes without modifications produced inferior classification results, while adapted rules produced comparable or superior results compared to the reference image. This work provides a road map to an operational “image-to-assessment pipeline” that will enable Antarctic wildlife researchers to seamlessly integrate VHSR imagery into on-demand penguin population census.

  17. Prototype of Partial Cutting Tool of Geological Map Images Distributed by Geological Web Map Service

    Science.gov (United States)

    Nonogaki, S.; Nemoto, T.

    2014-12-01

    Geological maps and topographical maps play an important role in disaster assessment, resource management, and environmental preservation. These map information have been distributed in accordance with Web services standards such as Web Map Service (WMS) and Web Map Tile Service (WMTS) recently. In this study, a partial cutting tool of geological map images distributed by geological WMTS was implemented with Free and Open Source Software. The tool mainly consists of two functions: display function and cutting function. The former function was implemented using OpenLayers. The latter function was implemented using Geospatial Data Abstraction Library (GDAL). All other small functions were implemented by PHP and Python. As a result, this tool allows not only displaying WMTS layer on web browser but also generating a geological map image of intended area and zoom level. At this moment, available WTMS layers are limited to the ones distributed by WMTS for the Seamless Digital Geological Map of Japan. The geological map image can be saved as GeoTIFF format and WebGL format. GeoTIFF is one of the georeferenced raster formats that is available in many kinds of Geographical Information System. WebGL is useful for confirming a relationship between geology and geography in 3D. In conclusion, the partial cutting tool developed in this study would contribute to create better conditions for promoting utilization of geological information. Future work is to increase the number of available WMTS layers and the types of output file format.

  18. Mapping Urban Tree Canopy Coverage and Structure using Data Fusion of High Resolution Satellite Imagery and Aerial Lidar

    Science.gov (United States)

    Elmes, A.; Rogan, J.; Williams, C. A.; Martin, D. G.; Ratick, S.; Nowak, D.

    2015-12-01

    Urban tree canopy (UTC) coverage is a critical component of sustainable urban areas. Trees provide a number of important ecosystem services, including air pollution mitigation, water runoff control, and aesthetic and cultural values. Critically, urban trees also act to mitigate the urban heat island (UHI) effect by shading impervious surfaces and via evaporative cooling. The cooling effect of urban trees can be seen locally, with individual trees reducing home HVAC costs, and at a citywide scale, reducing the extent and magnitude of an urban areas UHI. In order to accurately model the ecosystem services of a given urban forest, it is essential to map in detail the condition and composition of these trees at a fine scale, capturing individual tree crowns and their vertical structure. This paper presents methods for delineating UTC and measuring canopy structure at fine spatial resolution (HVAC benefits from UTC for individual homes, and for assessing the ecosystem services for entire urban areas. Such maps have previously been made using a variety of methods, typically relying on high resolution aerial or satellite imagery. This paper seeks to contribute to this growing body of methods, relying on a data fusion method to combine the information contained in high resolution WorldView-3 satellite imagery and aerial lidar data using an object-based image classification approach. The study area, Worcester, MA, has recently undergone a large-scale tree removal and reforestation program, following a pest eradication effort. Therefore, the urban canopy in this location provides a wide mix of tree age class and functional type, ideal for illustrating the effectiveness of the proposed methods. Early results show that the object-based classifier is indeed capable of identifying individual tree crowns, while continued research will focus on extracting crown structural characteristics using lidar-derived metrics. Ultimately, the resulting fine resolution UTC map will be

  19. In-vehicle navigation system and map database. [Position on map determined by satellite and then use of detailed map]. Car navigation to chizu joho

    Energy Technology Data Exchange (ETDEWEB)

    Mito, K. (Sumitomo Electric Industries, Ltd., Osaka (Japan))

    1991-09-10

    Firstly, an indication is made that most functions of an in-vehicle navigation system relate to the use of a road map data, and on the conditions the map database therefor should provide depending on the intended usage. Secondly, an explanation is given on the self-contained navigation system and a combination of the self-contained navigation system and wireless navigation system to detect a position of the vehicle. In regaeds to the former, a method is introduced that the present location is estimated by means of adding the displacement vector per unit time derived from azimuth and distance sensors, and the error therefrom is cancelled by comparing it with the road map data. In regards to the latter, the wireless navigation aided by an orbital satellite and the proximity wireless navigation are described. Thirdly, functions to indicate the vehicle location on a map, retrieve and set the destination, and retrieve and indicate the facility guidance information are explained. Fourthly, a description is given on an automotive traffic information communicating system which indicates traffic information on a map and guide a recommended course to the destination. 10 refs., 7 figs., 2 tabs.

  20. Integrating multisensor satellite data merging and image reconstruction in support of machine learning for better water quality management.

    Science.gov (United States)

    Chang, Ni-Bin; Bai, Kaixu; Chen, Chi-Farn

    2017-10-01

    Monitoring water quality changes in lakes, reservoirs, estuaries, and coastal waters is critical in response to the needs for sustainable development. This study develops a remote sensing-based multiscale modeling system by integrating multi-sensor satellite data merging and image reconstruction algorithms in support of feature extraction with machine learning leading to automate continuous water quality monitoring in environmentally sensitive regions. This new Earth observation platform, termed "cross-mission data merging and image reconstruction with machine learning" (CDMIM), is capable of merging multiple satellite imageries to provide daily water quality monitoring through a series of image processing, enhancement, reconstruction, and data mining/machine learning techniques. Two existing key algorithms, including Spectral Information Adaptation and Synthesis Scheme (SIASS) and SMart Information Reconstruction (SMIR), are highlighted to support feature extraction and content-based mapping. Whereas SIASS can support various data merging efforts to merge images collected from cross-mission satellite sensors, SMIR can overcome data gaps by reconstructing the information of value-missing pixels due to impacts such as cloud obstruction. Practical implementation of CDMIM was assessed by predicting the water quality over seasons in terms of the concentrations of nutrients and chlorophyll-a, as well as water clarity in Lake Nicaragua, providing synergistic efforts to better monitor the aquatic environment and offer insightful lake watershed management strategies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Detecting Anomaly Regions in Satellite Image Time Series Based on Sesaonal Autocorrelation Analysis

    Science.gov (United States)

    Zhou, Z.-G.; Tang, P.; Zhou, M.

    2016-06-01

    Anomaly regions in satellite images can reflect unexpected changes of land cover caused by flood, fire, landslide, etc. Detecting anomaly regions in satellite image time series is important for studying the dynamic processes of land cover changes as well as for disaster monitoring. Although several methods have been developed to detect land cover changes using satellite image time series, they are generally designed for detecting inter-annual or abrupt land cover changes, but are not focusing on detecting spatial-temporal changes in continuous images. In order to identify spatial-temporal dynamic processes of unexpected changes of land cover, this study proposes a method for detecting anomaly regions in each image of satellite image time series based on seasonal autocorrelation analysis. The method was validated with a case study to detect spatial-temporal processes of a severe flooding using Terra/MODIS image time series. Experiments demonstrated the advantages of the method that (1) it can effectively detect anomaly regions in each of satellite image time series, showing spatial-temporal varying process of anomaly regions, (2) it is flexible to meet some requirement (e.g., z-value or significance level) of detection accuracies with overall accuracy being up to 89% and precision above than 90%, and (3) it does not need time series smoothing and can detect anomaly regions in noisy satellite images with a high reliability.

  2. DETECTING ANOMALY REGIONS IN SATELLITE IMAGE TIME SERIES BASED ON SESAONAL AUTOCORRELATION ANALYSIS

    Directory of Open Access Journals (Sweden)

    Z.-G. Zhou

    2016-06-01

    Full Text Available Anomaly regions in satellite images can reflect unexpected changes of land cover caused by flood, fire, landslide, etc. Detecting anomaly regions in satellite image time series is important for studying the dynamic processes of land cover changes as well as for disaster monitoring. Although several methods have been developed to detect land cover changes using satellite image time series, they are generally designed for detecting inter-annual or abrupt land cover changes, but are not focusing on detecting spatial-temporal changes in continuous images. In order to identify spatial-temporal dynamic processes of unexpected changes of land cover, this study proposes a method for detecting anomaly regions in each image of satellite image time series based on seasonal autocorrelation analysis. The method was validated with a case study to detect spatial-temporal processes of a severe flooding using Terra/MODIS image time series. Experiments demonstrated the advantages of the method that (1 it can effectively detect anomaly regions in each of satellite image time series, showing spatial-temporal varying process of anomaly regions, (2 it is flexible to meet some requirement (e.g., z-value or significance level of detection accuracies with overall accuracy being up to 89% and precision above than 90%, and (3 it does not need time series smoothing and can detect anomaly regions in noisy satellite images with a high reliability.

  3. Super-Resolution Reconstruction of High-Resolution Satellite ZY-3 TLC Images.

    Science.gov (United States)

    Li, Lin; Wang, Wei; Luo, Heng; Ying, Shen

    2017-05-07

    Super-resolution (SR) image reconstruction is a technique used to recover a high-resolution image using the cumulative information provided by several low-resolution images. With the help of SR techniques, satellite remotely sensed images can be combined to achieve a higher-resolution image, which is especially useful for a two- or three-line camera satellite, e.g., the ZY-3 high-resolution Three Line Camera (TLC) satellite. In this paper, we introduce the application of the SR reconstruction method, including motion estimation and the robust super-resolution technique, to ZY-3 TLC images. The results show that SR reconstruction can significantly improve both the resolution and image quality of ZY-3 TLC images.

  4. High resolution Doppler imager on the Upper Atmosphere Research Satellite

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, W.R.; Hays, P.B.; Grassl, H.J.; Gell, D.A.; Burrage, M.D.; Marshall, A.R.; Ortland, D.A. [Univ. of Michigan, Ann Arbor, MI (United States)

    1994-12-31

    The High Resolution Doppler Imager (HRDI) on the Upper Atmosphere Research Satellite has been providing measurements of the wind field in the stratosphere, mesosphere and lower thermosphere since November 1991. Examination of various calibration data indicates the instrument has remained remarkably stable since launch. The instrument has a thermal drift of about 30 m/s/{degree}C (slightly dependent on wavelength) and a long-term temporal drift that has amounted to about 80 m/s since launch. These effects are removed in the data processing leaving an uncertainty in the instrument stability of {minus}2 nVs. The temperature control of the instrument has improved significantly since launch as a new method was implemented. The initial temperature control held the instrument temperature at about {+-}1{degree}C. The improved method, which holds constant the temperature of the optical bench instead of the radiator, keeps the instrument temperature at about 0.2{degree}C. The calibrations indicate very little change in the sensitivity of the instrument. The detector response has shown no degradation and the optics have not changed their transmittance.

  5. Decision making based on global flood forecasts and satellite-derived inundation maps in data-sparse regions

    Science.gov (United States)

    Revilla-Romero, Beatriz; Hirpa, Feyera A.; Thielen-del Pozo, Jutta; Salamon, Peter; Brakenridge, G. Robert; Pappenberger, Florian; De Groeve, Tom

    2016-04-01

    Early flood warning and real-time monitoring systems play a key role in flood risk reduction and disaster response decisions. Global-scale flood forecasting and satellite-based flood detection systems are currently operating, however their reliability for decision making applications needs to be assessed. In this study, we performed comparative evaluations of several operational global flood forecasting and flood detection systems, using major flood events recorded over 2012-2014. Specifically, we evaluated the spatial extent and temporal characteristics of flood detections from the Global Flood Detection System (GFDS) and the Global Flood Awareness System (GloFAS). Furthermore, we compared the GFDS flood maps with those from NASA's two Moderate Resolution Imaging Spectroradiometer (MODIS) sensors. Results reveal that: 1) general agreement was found between the GFDS and MODIS flood detection systems, 2) large differences exist in the spatio-temporal characteristics of the GFDS detections and GloFAS forecasts, and 3) the quantitative validation of global flood disasters in data-sparse regions is highly challenging. Overall, the satellite remote sensing provides useful near real-time flood information that can be useful for risk management. We highlight the known limitations of global flood detection and forecasting systems, and propose ways forward to improve the reliability of large scale flood monitoring tools.

  6. Mapping Submerged Habitats and Mangroves of Lampi Island Marine National Park (Myanmar from in Situ and Satellite Observations

    Directory of Open Access Journals (Sweden)

    Claudia Giardino

    2015-12-01

    Full Text Available In this study we produced the first thematic maps of submerged and coastal habitats of Lampi Island (Myanmar from in situ and satellite data. To focus on key elements of bio-diversity typically existing in tropical islands the detection of corals, seagrass, and mangrove forests was addressed. Satellite data were acquired from Landsat-8; for the purpose of validation Rapid-Eye data were also used. In situ data supporting image processing were collected in a field campaign performed from 28 February to 4 March 2015 at the time of sensors overpasses. A hybrid approach based on bio-optical modeling and supervised classification techniques was applied to atmospherically-corrected Landsat-8 data. Bottom depth estimations, to be used in the classification process of shallow waters, were in good agreement with depth soundings (R2 = 0.87. Corals were classified with producer and user accuracies of 58% and 77%, while a lower accuracy (producer and user accuracies of 50% was found for the seagrass due to the patchy distribution of meadows; accuracies more than 88% were obtained for mangrove forests. The classification indicated the presence of 18 mangroves sites with extension larger than 5 km2; for 15 of those the coexistence of corals and seagrass were also found in the fronting bays, suggesting a significant rate of biodiversity for the study area.

  7. Improving multispectral satellite image compression using onboard subpixel registration

    Science.gov (United States)

    Albinet, Mathieu; Camarero, Roberto; Isnard, Maxime; Poulet, Christophe; Perret, Jokin

    2013-09-01

    Future CNES earth observation missions will have to deal with an ever increasing telemetry data rate due to improvements in resolution and addition of spectral bands. Current CNES image compressors implement a discrete wavelet transform (DWT) followed by a bit plane encoding (BPE) but only on a mono spectral basis and do not profit from the multispectral redundancy of the observed scenes. Recent CNES studies have proven a substantial gain on the achievable compression ratio, +20% to +40% on selected scenarios, by implementing a multispectral compression scheme based on a Karhunen Loeve transform (KLT) followed by the classical DWT+BPE. But such results can be achieved only on perfectly registered bands; a default of registration as low as 0.5 pixel ruins all the benefits of multispectral compression. In this work, we first study the possibility to implement a multi-bands subpixel onboard registration based on registration grids generated on-the-fly by the satellite attitude control system and simplified resampling and interpolation techniques. Indeed bands registration is usually performed on ground using sophisticated techniques too computationally intensive for onboard use. This fully quantized algorithm is tuned to meet acceptable registration performances within stringent image quality criteria, with the objective of onboard real-time processing. In a second part, we describe a FPGA implementation developed to evaluate the design complexity and, by extrapolation, the data rate achievable on a spacequalified ASIC. Finally, we present the impact of this approach on the processing chain not only onboard but also on ground and the impacts on the design of the instrument.

  8. The multifractal structure of satellite sea surface temperature maps can be used to obtain global maps of streamlines

    Directory of Open Access Journals (Sweden)

    A. Turiel

    2009-10-01

    Full Text Available Nowadays Earth observation satellites provide information about many relevant variables of the ocean-climate system, such as temperature, moisture, aerosols, etc. However, to retrieve the velocity field, which is the most relevant dynamical variable, is still a technological challenge, specially in the case of oceans. New processing techniques, emerged from the theory of turbulent flows, have come to assist us in this task. In this paper, we show that multifractal techniques applied to new Sea Surface Temperature satellite products opens the way to build maps of ocean currents with unprecedented accuracy. With the application of singularity analysis, we show that global ocean circulation patterns can be retrieved in a daily basis. We compare these results with high-quality altimetry-derived geostrophic velocities, finding a quite good correspondence of the observed patterns both qualitatively and quantitatively; and this is done for the first time on a global basis, even for less active areas. The implications of this findings from the perspective both of theory and of operational applications are discussed.

  9. Deep subspace mapping in hyperspectral imaging

    Science.gov (United States)

    Wadströmer, Niclas; Gustafsson, David; Perersson, Henrik; Bergström, David

    2016-10-01

    We propose a novel Deep learning approach using autoencoders to map spectral bands to a space of lower dimensionality while preserving the information that makes it possible to discriminate different materials. Deep learning is a relatively new pattern recognition approach which has given promising result in many applications. In Deep learning a hierarchical representation of increasing level of abstraction of the features is learned. Autoencoder is an important unsupervised technique frequently used in Deep learning for extracting important properties of the data. The learned latent representation is a non-linear mapping of the original data which potentially preserve the discrimination capacity.

  10. A fast image encryption algorithm based on chaotic map

    Science.gov (United States)

    Liu, Wenhao; Sun, Kehui; Zhu, Congxu

    2016-09-01

    Derived from Sine map and iterative chaotic map with infinite collapse (ICMIC), a new two-dimensional Sine ICMIC modulation map (2D-SIMM) is proposed based on a close-loop modulation coupling (CMC) model, and its chaotic performance is analyzed by means of phase diagram, Lyapunov exponent spectrum and complexity. It shows that this map has good ergodicity, hyperchaotic behavior, large maximum Lyapunov exponent and high complexity. Based on this map, a fast image encryption algorithm is proposed. In this algorithm, the confusion and diffusion processes are combined for one stage. Chaotic shift transform (CST) is proposed to efficiently change the image pixel positions, and the row and column substitutions are applied to scramble the pixel values simultaneously. The simulation and analysis results show that this algorithm has high security, low time complexity, and the abilities of resisting statistical analysis, differential, brute-force, known-plaintext and chosen-plaintext attacks.

  11. Advancing Coastal Climate Adaptation in Denmark by Land Subsidence Mapping using Sentinel-1 Satellite Imagery

    DEFF Research Database (Denmark)

    Sørensen, Carlo Sass; Broge, Niels H.; Mølgaard, Mads R.

    2016-01-01

    There are still large uncertainties in projections of climate change and sea level rise. Here, land subsidence is an additional factor that may adversely affect the vulnerability towards floods in low-lying coastal communities. The presented study performs an initial assessment of subsidence...... mapping using Sentinel-1 satellite imagery and leveling at two coastal locations in Denmark. Within both investigated areas current subsidence rates of 5-10 millimeters per year are found. This subsidence is related to the local geology, and challenges and potentials in bringing land subsidence mapping...... and geology into climate adaptation are discussed in relation to perspectives of a national subsidence monitoring system partly based on the findings from the two coastal locations. The current lack of subsidence data and a fragmentation of geotechnical information are considered as hindrances to optimal...

  12. Progressive Coding of Palette Images and Digital Maps

    DEFF Research Database (Denmark)

    Forchhammer, Søren; Salinas, J. Martin

    2002-01-01

    for the images with more colors. For street maps the 2D PPM is slightly better. The PPM based resolution progressive coding provides a better result than coding the resolution layers as individual images. Compared to GIF the resolution progressive 2D PPM's coding efficiency is significantly better. An example...

  13. A novel gridding algorithm to create regional trace gas maps from satellite observations

    Directory of Open Access Journals (Sweden)

    G. Kuhlmann

    2014-02-01

    Full Text Available The recent increase in spatial resolution for satellite instruments has made it feasible to study distributions of trace gas column densities on a regional scale. For this application a new gridding algorithm was developed to map measurements from the instrument's frame of reference (level 2 onto a longitude–latitude grid (level 3. The algorithm is designed for the Ozone Monitoring Instrument (OMI and can easily be employed for similar instruments – for example, the upcoming TROPOspheric Monitoring Instrument (TROPOMI. Trace gas distributions are reconstructed by a continuous parabolic spline surface. The algorithm explicitly considers the spatially varying sensitivity of the sensor resulting from the instrument function. At the swath edge, the inverse problem of computing the spline coefficients is very sensitive to measurement errors and is regularised by a second-order difference matrix. Since this regularisation corresponds to the penalty term for smoothing splines, it similarly attenuates the effect of measurement noise over the entire swath width. Monte Carlo simulations are conducted to study the performance of the algorithm for different distributions of trace gas column densities. The optimal weight of the penalty term is found to be proportional to the measurement uncertainty and the width of the instrument function. A comparison with an established gridding algorithm shows improved performance for small to moderate measurement errors due to better parametrisation of the distribution. The resulting maps are smoother and extreme values are more accurately reconstructed. The performance improvement is further illustrated with high-resolution distributions obtained from a regional chemistry model. The new algorithm is applied to tropospheric NO2 column densities measured by OMI. Examples of regional NO2 maps are shown for densely populated areas in China, Europe and the United States of America. This work demonstrates that the newly

  14. A novel gridding algorithm to create regional trace gas maps from satellite observations

    Directory of Open Access Journals (Sweden)

    G. Kuhlmann

    2013-08-01

    Full Text Available Recent increase of spatial resolution for satellite instruments has it made feasible to study distributions of trace gas column densities on a regional scale. For this application a new gridding algorithm was developed to map measurements from the instrument's frame of reference (Level 2 onto a longitude-latitude grid (Level 3. The algorithm is designed for the Ozone Monitoring Instrument (OMI and can be employed easily to similar instruments, for example, the upcoming TROPOspheric Monitoring Instrument (TROPOMI. Trace gas distributions are reconstructed by a continuous parabolic spline surface. The algorithm explicitly considers the spatially varying sensitivity of the sensor resulting from the instrument function. At the swath edge, the inverse problem of computing the spline coefficients is very sensitive to measurement errors and is regularised by a second-order difference matrix. Since this regularisation corresponds to the penalty term for smoothing splines, it similarly attenuates the effect of measurement noise over the entire swath width. Monte Carlo simulations are conducted to study the performance of the algorithm for different distributions of trace gas column densities. The optimal weight of the penalty term is found to be proportional to the measurement uncertainty and the width of the instrument function. A comparison with an established gridding algorithm shows improved performance for small to moderate measurement errors due to better parametrization of the distribution. The resulting maps are smoother and extreme values are more accurately reconstructed. The performance improvement is further illustrated with high-resolution distributions obtained from a regional chemistry model. The new algorithm is applied to tropospheric NO2 column densities measured by OMI. Examples of regional NO2 maps are shown for densely populated areas in China, Europe and the United States of America. This work demonstrates that the newly developed

  15. Imaging-Duration Embedded Dynamic Scheduling of Earth Observation Satellites for Emergent Events

    Directory of Open Access Journals (Sweden)

    Xiaonan Niu

    2015-01-01

    Full Text Available We present novel two-stage dynamic scheduling of earth observation satellites to provide emergency response by making full use of the duration of the imaging task execution. In the first stage, the multiobjective genetic algorithm NSGA-II is used to produce an optimal satellite imaging schedule schema, which is robust to dynamic adjustment as possible emergent events occur in the future. In the second stage, when certain emergent events do occur, a dynamic adjusting heuristic algorithm (CTM-DAHA is applied to arrange new tasks into the robust imaging schedule. Different from the existing dynamic scheduling methods, the imaging duration is embedded in the two stages to make full use of current satellite resources. In the stage of robust satellite scheduling, total task execution time is used as a robust indicator to obtain a satellite schedule with less imaging time. In other words, more imaging time is preserved for future emergent events. In the stage of dynamic adjustment, a compact task merging strategy is applied to combine both of existing tasks and emergency tasks into a composite task with least imaging time. Simulated experiments indicate that the proposed method can produce a more robust and effective satellite imaging schedule.

  16. Rapid damage mapping for the 2015 M7.8 Gorkha earthquake using synthetic aperture radar data from COSMO-SkyMed and ALOS-2 satellites

    Science.gov (United States)

    Yun, Sang-Ho; Hudnut, Kenneth W.; Owen, Susan; Webb, Frank; Simons, Mark; Sacco, Patrizia; Gurrola, Eric; Manipon, Gerald; Liang, Cunren; Fielding, Eric; Milillo, Pietro; Hua, Hook; Coletta, Alessandro

    2015-01-01

    The 25 April 2015 Mw 7.8 Gorkha earthquake caused more than 8000 fatalities and widespread building damage in central Nepal. The Italian Space Agency’s COSMO–SkyMed Synthetic Aperture Radar (SAR) satellite acquired data over Kathmandu area four days after the earthquake and the Japan Aerospace Exploration Agency’s Advanced Land Observing Satellite-2 SAR satellite for larger area nine days after the mainshock. We used these radar observations and rapidly produced damage proxy maps (DPMs) derived from temporal changes in Interferometric SAR coherence. Our DPMs were qualitatively validated through comparison with independent damage analyses by the National Geospatial-Intelligence Agency and the United Nations Institute for Training and Research’s United Nations Operational Satellite Applications Programme, and based on our own visual inspection of DigitalGlobe’s WorldView optical pre- versus postevent imagery. Our maps were quickly released to responding agencies and the public, and used for damage assessment, determining inspection/imaging priorities, and reconnaissance fieldwork.

  17. Developments and applications of the Global Satellite Mapping of Precipitation (GSMaP) for the Global Precipitation Measurement (GPM)

    Science.gov (United States)

    Kachi, Misako; Aonashi, Kazumasa; Kubota, Takuji; Shige, Shoichi; Ushio, Tomoo; Mega, Tomoaki; Yamamoto, Munehisa; Hamada, Atsushi; Seto, Shinta; Takayabu, Yukari N.; Oki, Riko

    2016-04-01

    The Global Satellite Mapping of Precipitation (GSMaP) is a global rainfall map based on a blended Microwave-Infrared product and has been developed in Japan for the Global Precipitation Measurement (GPM) mission. To fulfill gaps of passive microwave observations, we developed a method to interpolate observations between each microwave imager by utilizing information from the Infrared imagers on board the geostationary satellites, and achieved production of an hourly global rainfall map in 0.1-degree latitude/longitude grid. The latest GSMaP version 6 product was released in September 2014 to the public as one of Japanese GPM products after the launch of the GPM Core Observatory, which is Japan and U.S. joint mission and carrying both the Dual-frequency Precipitation Radar (DPR) and GPM Microwave Imager (GMI), in February 2014. In the next version (version 7), which is scheduled to be released in the summer 2016, we plan to apply databases produced from DPR instead of those from PR, and to introduce snow retrieval algorithm for the passive microwave instruments that have higher frequency channels. The GSMaP near-real-time version (GSMaP_NRT) product is available 4-hour after observation through the "JAXA Global Rainfall Watch" web site (http://sharaku.eorc.jaxa.jp/GSMaP) since 2008. To assure near-real-time data availability, the GSMaP_NRT system simplified part of the algorithm and its processing procedure. Therefore, the GSMaP_NRT product gives higher priority to data latency than accuracy. Since its data release, GSMaP_NRT data has been used by various users for various purposes, such as rainfall monitoring, flood alert and warning, drought monitoring, crop yield forecast, and agricultural insurance. There are, however, several requirements from users for GSMaP improvements not only for accuracy but also specification. Among those requests for data specification, the most popular ones are shortening of data latency time and higher horizontal resolution. To reduce

  18. Saturn's icy satellites investigated by Cassini - VIMS. IV. Daytime temperature maps

    CERN Document Server

    Filacchione, Gianrico; Capaccioni, Fabrizio; Clark, Roger N; Cruikshank, Dale P; Ciarniello, Mauro; Cerroni, Priscilla; Bellucci, Giancarlo; Brown, Robert H; Buratti, Bonnie J; Nicholson, Phillip D; Jaumann, Ralf; McCord, Thomas B; Sotin, Christophe; Stephan, Katrin; Ore, Cristina M Dalle

    2016-01-01

    The spectral position of the 3.6 micron continuum peak measured on Cassini-VIMS I/F spectra is used as a marker to infer the temperature of the regolith particles covering the surfaces of Saturn's icy satellites. This feature is characterizing the crystalline water ice spectrum which is the dominant compositional endmember of the satellites' surfaces. Laboratory measurements indicate that the position of the 3.6 micron peak of pure water ice is temperature-dependent, shifting towards shorter wavelengths when the sample is cooled, from about 3.65 micron at T=123 K to about 3.55 micron at T=88 K. A similar method was already applied to VIMS Saturn's rings mosaics to retrieve ring particles temperature (Filacchione et al., 2014). We report here about the daytime temperature variations observed on the icy satellites as derived from three different VIMS observation types. Temperature maps are built by mining the complete VIMS dataset collected in years 2004-2009 (pre-equinox) and in 2009-2012 (post equinox) by sel...

  19. Coseismic displacements from SAR image offsets between different satellite sensors: Application to the 2001 Bhuj (India) earthquake

    KAUST Repository

    Wang, Teng

    2015-09-05

    Synthetic aperture radar (SAR) image offset tracking is increasingly being used for measuring ground displacements, e.g., due to earthquakes and landslide movement. However, this technique has been applied only to images acquired by the same or identical satellites. Here we propose a novel approach for determining offsets between images acquired by different satellite sensors, extending the usability of existing SAR image archives. The offsets are measured between two multiimage reflectivity maps obtained from different SAR data sets, which provide significantly better results than with single preevent and postevent images. Application to the 2001 Mw7.6 Bhuj earthquake reveals, for the first time, its near-field deformation using multiple preearthquake ERS and postearthquake Envisat images. The rupture model estimated from these cross-sensor offsets and teleseismic waveforms shows a compact fault slip pattern with fairly short rise times (<3 s) and a large stress drop (20 MPa), explaining the intense shaking observed in the earthquake.

  20. Mapping Smallholder Wheat Yields and Sowing Dates Using Micro-Satellite Data

    Directory of Open Access Journals (Sweden)

    Meha Jain

    2016-10-01

    Full Text Available Remote sensing offers a low-cost method for developing spatially continuous crop production statistics across large areas and through time. Nevertheless, it has been difficult to characterize the production of individual smallholder farms, given that the land-holding size in most areas of South Asia (<2 ha is smaller than the spatial resolution of most freely available satellite imagery, like Landsat and MODIS. In addition, existing methods to map yield require field-level data to develop and parameterize predictive algorithms that translate satellite vegetation indices to yield, yet these data are costly or difficult to obtain in many smallholder systems. To overcome these challenges, this study explores two issues. First, we employ new high spatial (2 m and temporal (bi-weekly resolution micro-satellite SkySat data to map sowing dates and yields of smallholder wheat fields in Bihar, India in the 2014–2015 and 2015–2016 growing seasons. Second, we compare how well we predict sowing date and yield when using ground data, like crop cuts and self-reports, versus using crop models, which require no on-the-ground data, to develop and parameterize prediction models. Overall, sow dates were predicted well (R2 = 0.41 in 2014–2015 and R2 = 0.62 in 2015–2016, particularly when using models that were parameterized using self-report sow dates collected close to the time of planting and when using imagery that spanned the entire growing season. We were also able to map yields fairly well (R2 = 0.27 in 2014–2015 and R2 = 0.33 in 2015–2016, with crop cut parameterized models resulting in the highest accuracies. While less accurate, we were able to capture the large range in sow dates and yields across farms when using models parameterized with crop model data and these estimates were able to detect known relationships between management factors (e.g., sow date, fertilizer, and irrigation and yield. While these results are specific to our study

  1. Wind class sampling of satellite SAR imagery for offshore wind resource mapping

    DEFF Research Database (Denmark)

    Badger, Merete; Badger, Jake; Nielsen, Morten

    2010-01-01

    High-resolution wind fields retrieved from satellite synthetic aperture radar (SAR) imagery are combined for mapping of wind resources offshore where site measurements are costly and sparse. A new sampling strategy for the SAR scenes is introduced, based on a method for statistical-dynamical down......High-resolution wind fields retrieved from satellite synthetic aperture radar (SAR) imagery are combined for mapping of wind resources offshore where site measurements are costly and sparse. A new sampling strategy for the SAR scenes is introduced, based on a method for statistical......-dynamical downscaling of large-scale wind conditions using a set of wind classes that describe representative wind situations. One or more SAR scenes are then selected to represent each wind class and the classes are weighted according to their frequency of occurrence. The wind class methodology was originally...... developed for mesoscale modeling of wind resources. Its performance in connection with sampling of SAR scenes is tested against two sets of random SAR samples and meteorological observations at three sites in the North Sea during 2005–08. Predictions of the mean wind speed and the Weibull scale parameter...

  2. Reconstruction of Sub-Surface Velocities from Satellite Observations Using Iterative Self-Organizing Maps

    CERN Document Server

    Chapman, Christopher

    2016-01-01

    In this letter a new method based on modified self-organizing maps is presented for the reconstruction of deep ocean current velocities from surface information provided by satellites. This method takes advantage of local correlations in the data-space to improve the accuracy of the reconstructed deep velocities. Unlike previous attempts to reconstruct deep velocities from surface data, our method makes no assumptions regarding the structure of the water column, nor the underlying dynamics of the flow field. Using satellite observations of surface velocity, sea-surface height and sea-surface temperature, as well as observations of the deep current velocity from autonomous Argo floats to train the map, we are able to reconstruct realistic high--resolution velocity fields at a depth of 1000m. Validation reveals extremely promising results, with a speed root mean squared error of ~2.8cm/s, a factor more than a factor of two smaller than competing methods, and direction errors consistently smaller than 30 degrees...

  3. Mapping Russian forest biomass with data from satellites and forest inventories

    Energy Technology Data Exchange (ETDEWEB)

    Houghton, R A [Woods Hole Research Center, 149 Woods Hole Road, Falmouth, MA 02540 (United States); Butman, D [Yale School of Forestry and Environmental Science, Yale University, New Haven, CT 06511 (United States); Bunn, A G [Department of Environmental Sciences, Huxley College of the Environment, Western Washington University, 516 High Street, Bellingham, WA 98225-9181 (United States); Krankina, O N [Department of Forest Science, Oregon State University, 202 Richardson Hall, Corvallis, OR 97331-5752 (United States); Schlesinger, P [Woods Hole Research Center, 149 Woods Hole Road, Falmouth, MA 02540 (United States); Stone, T A [Woods Hole Research Center, 149 Woods Hole Road, Falmouth, MA 02540 (United States)

    2007-10-15

    The forests of Russia cover a larger area and hold more carbon than the forests of any other nation and thus have the potential for a major role in global warming. Despite a systematic inventory of these forests, however, estimates of total carbon stocks vary, and spatial variations in the stocks within large aggregated units of land are unknown, thus hampering measurement of sources and sinks of carbon. We mapped the distribution of living forest biomass for the year 2000 by developing a relationship between ground measurements of wood volume at 12 sites throughout the Russian Federation and data from the MODIS satellite bidirectional reflectance distribution function (BRDF) product (MOD43B4). Based on the results of regression-tree analyses, we used the MOD43B4 product to assign biomass values to individual 500 m x 500 m cells in areas identified as forest by two satellite-based maps of land cover. According to the analysis, the total living biomass varied between 46 and 67 Pg, largely because of different estimates of forest area. Although optical data are limited in distinguishing differences in biomass in closed canopy forests, the estimates of total living biomass obtained here varied more in response to different definitions of forest than to saturation of the optical sensing of biomass.

  4. SAT-WIND project. Final report[Winds from satellites for offshore and coastal wind energy mapping and wind-indexing

    Energy Technology Data Exchange (ETDEWEB)

    Hasager, C.B.; Astrup, P.; Nielsen, M. (and others)

    2007-04-15

    The SAT-WIND project 'Winds from satellites for offshore and coastal wind energy mapping and wind-indexing' was a research project funded by STVF/DSF in the years 2003 to 2006 (Sagsnr. 2058-03-0006). The goal of the project was to verify the applicability of satellite wind maps derived from passive microwave, altimeter, scatterometer and imaging Synthetic Aperture Radar (SAR) technologies for wind energy tools for wind resources and wind-indexing. The study area was the Danish Seas including the North Sea, interior seas and the Baltic Sea. The report describes technical details on the satellite data sources including: 1) passive microwave (SSM/I, AMSR-E), 2) passive microwave polarimetric (WindSat), 3) scatterometer (ERS, QuikSCAT, Midori-2 and NSCAT), 4) altimeter (ERS, Topex, Poseidon, GFO-1, Jason-1), 5) SAR (ERS, Envisat). The SAR wind maps were treated in S-WAsP developed by Risoe National Laboratory in cooperation with GRAS A/S in the innovative project SAT-WIND-SMV (Sagsnr. 2104-05-0084) in the years 2005 and 2006 in parallel with SAT-WIND. The results from the SAT-WIND project are presented. These include ocean wind statistics, offshore wind resource estimates and comparison results for wind-indexing. (au)

  5. Correction of geometrically distorted underwater images using shift map analysis.

    Science.gov (United States)

    Halder, Kalyan Kumar; Paul, Manoranjan; Tahtali, Murat; Anavatti, Sreenatha G; Murshed, Manzur

    2017-04-01

    In underwater imaging, water waves cause severe geometric distortions and blurring of the acquired short-exposure images. Corrections for these distortions have been tackled reasonably well by previous efforts but still need improvement in the estimation of pixel shift maps to increase restoration accuracy. This paper presents a new algorithm that efficiently estimates the shift maps from geometrically distorted video sequences and uses those maps to restore the sequences. A nonrigid image registration method is employed to estimate the shift maps of the distorted frames against a reference frame. The sharpest frame of the sequence, determined using a sharpness metric, is chosen as the reference frame. A k-means clustering technique is employed to discard too-blurry frames that could result in inaccuracy in the shift maps' estimation. The estimated pixel shift maps are processed to generate the accurate shift map that is used to dewarp the input frames into their nondistorted forms. The proposed method is applied on several synthetic and real-world video sequences, and the obtained results exhibit significant improvements over the state-of-the-art methods.

  6. Image Encryption Based on Diffusion and Multiple Chaotic Maps

    CERN Document Server

    Sathishkumar, G A; Sriraam, Dr N; 10.5121/ijnsa.2011.3214

    2011-01-01

    In the recent world, security is a prime important issue, and encryption is one of the best alternative way to ensure security. More over, there are many image encryption schemes have been proposed, each one of them has its own strength and weakness. This paper presents a new algorithm for the image encryption/decryption scheme. This paper is devoted to provide a secured image encryption technique using multiple chaotic based circular mapping. In this paper, first, a pair of sub keys is given by using chaotic logistic maps. Second, the image is encrypted using logistic map sub key and in its transformation leads to diffusion process. Third, sub keys are generated by four different chaotic maps. Based on the initial conditions, each map may produce various random numbers from various orbits of the maps. Among those random numbers, a particular number and from a particular orbit are selected as a key for the encryption algorithm. Based on the key, a binary sequence is generated to control the encryption algorit...

  7. Facilitating Image Search With a Scalable and Compact Semantic Mapping.

    Science.gov (United States)

    Wang, Meng; Li, Weisheng; Liu, Dong; Ni, Bingbing; Shen, Jialie; Yan, Shuicheng

    2015-08-01

    This paper introduces a novel approach to facilitating image search based on a compact semantic embedding. A novel method is developed to explicitly map concepts and image contents into a unified latent semantic space for the representation of semantic concept prototypes. Then, a linear embedding matrix is learned that maps images into the semantic space, such that each image is closer to its relevant concept prototype than other prototypes. In our approach, the semantic concepts equated with query keywords and the images mapped into the vicinity of the prototype are retrieved by our scheme. In addition, a computationally efficient method is introduced to incorporate new semantic concept prototypes into the semantic space by updating the embedding matrix. This novelty improves the scalability of the method and allows it to be applied to dynamic image repositories. Therefore, the proposed approach not only narrows semantic gap but also supports an efficient image search process. We have carried out extensive experiments on various cross-modality image search tasks over three widely-used benchmark image datasets. Results demonstrate the superior effectiveness, efficiency, and scalability of our proposed approach.

  8. Featured Image: Mapping Jupiter with Hubble

    Science.gov (United States)

    Kohler, Susanna

    2016-07-01

    Zonal wind profile for Jupiter, describing the speed and direction of its winds at each latitude. [Simon et al. 2015]This global map of Jupiters surface (click for the full view!) was generated by the Hubble Outer Planet Atmospheres Legacy (OPAL) program, which aims to createnew yearly global maps for each of the outer planets. Presented in a study led by Amy Simon (NASA Goddard Space Flight Center), the map above is the first generated for Jupiter in the first year of the OPAL campaign. It provides a detailed look at Jupiters atmospheric structure including the Great Red Spot and allowed the authors to measure the speed and direction of the wind across Jupiters latitudes, constructing an updated zonal wind profile for Jupiter.In contrast to this study, the Juno mission (which will be captured into Jupiters orbit today after a 5-year journey to Jupiter!) will be focusing more on the features below Jupiters surface, studying its deep atmosphere and winds. Some of Junos primary goals are to learn about Jupiters composition, gravitational field, magnetic field, and polar magnetosphere. You can follow along with the NASATV livestream as Juno arrives at Jupiter tonight; orbit insertion coverage starts at 10:30 EDT.CitationAmy A. Simon et al 2015 ApJ 812 55. doi:10.1088/0004-637X/812/1/55

  9. 7 CFR 611.22 - Availability of satellite imagery.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Availability of satellite imagery. 611.22 Section 611... § 611.22 Availability of satellite imagery. Cloud-free maps of the United States based on imagery received from a satellite are prepared and released to the pubic by NRCS. The maps offer the first image...

  10. Mapping man-made CO2 emissions using satellite-observed nighttime lights

    Science.gov (United States)

    Oda, T.; Maksyutov, S. S.; Andres, R. J.; Elvidge, C.; Baugh, K.; Hsu, F. C.; Roman, M. O.

    2015-12-01

    The Open-Data Inventory for Anthropogenic Carbon dioxide (ODIAC) is a global high spatial resolution (1x1km) emission dataset for CO2 emissions from fossil fuel combustion. The original version of ODIAC was developed at the Japanese Greenhouse Gas Observing Satellite (GOSAT) project to prescribe their inverse model. ODIAC first introduced the combined use of satellite-observed nighttime light data and individual power plant emission/geolocation information to estimate the spatial extent of fossil fuel CO2. The ODIAC emission data has been widely used by the international carbon cycle research community and appeared in a number of publications in the literature. Since its original publication in 2011, we have made numerous modifications to the ODIAC emission model and the emission data have been updated on annual basis. We are switching from BP statistical data based emission estimates to estimates made by Carbon Dioxide Information Analysis Center (CDIAC) at Oak Ridge National Laboratory. In recent versions of ODIAC data, the emission seasonality has been adopted from the CDIAC monthly emission dataset. The emissions from international bunkers, which are not included in the CDIAC gridded emission data, are estimated using the UN Energy Database and included with the spatial distributions. In the next version of ODIAC emission model, we will explore the use of satellite data collected by the NASA's Suomi National Polar-orbiting Partnership (NPP) satellite. We will estimate emission spatial distributions using global 500x500m nighttime lights data created from VIIRS data. We will also utilize a combustion detection algorithm Nightfire developed at NOAA National Geophysical Data Center to map gas flaring emissions. We also plan to expand our two emission sector emission distributing approach (power plant emission and non-point source emissions) by introducing a transportation emission sector which should improve emission distributions in urban and rural areas.

  11. A method of using commercial virtual satellite image to check the pattern painting spot effect

    Science.gov (United States)

    Wang, Zheng-gang; Kang, Qing; Shen, Zhi-qiang; Cui, Chang-bin

    2014-02-01

    A method of using commercial virtual satellite image to check the pattern painting spot effect contrast with the satellite images before painting and after painting have been discussed. Using a housetop as the testing platform analyses and discusses the factors' influence such as resolution of satellite image, spot size and color of pattern painting spot and pattern painting camouflage method choosing to the plan implement. The pattern painting design and spot size used in the testing has been ensured, and housetop pattern painting has been painted. Finally, the small spot pattern painting camouflage effect of engineering using upon painting pattern size, color and texture have been checked, contrasting with the satellite image before painting and after painting.

  12. A study on quality and availability of COCTS images of HY- 1 satellite by simulation

    Institute of Scientific and Technical Information of China (English)

    李淑菁; 毛天明; 潘德炉

    2002-01-01

    Hy-1 is a first China's ocean color satellite which will be launched as a piggyback satellite on FY- 1 satellite using Long March rocket. On the satellite there are two sensors: one is the China's ocean color and temperature scanner (COCTS), the other is CCD coastal zone imager (CZI).The COCTS is considered to be a main sensor to play a key role. In order to understand the characteristics of future ocean color images observed, a simulation and evaluation study on the quality and availability of the COCTS image has been done. First, the simulation models are introduced briefly, and typical simulated cases of radiance images at visible bands are introduced, in which the radiance distribution is based on geographic location, the satellite orbital parameters and sensor properties, the simulated method to evaluate the image quality and availability is developed by using the characteristics of image called the complex signal noise ratio ( CSNR ). Meanwhile, a series of the CSNR images are generated from the simulated radiance components for different cases, which can be used to evaluate the quality and availability of the COCTS images before the HY - 1 is placed in orbit. Finally, the quality and availability of the COCTS images are quantitatively analyzed with the simulated CSNR data. The results will be beneficial to all scientists who are in charge of the COCTS mission and to those who plan to use the data from the COCTS.

  13. Flood occurrence mapping of the middle Mahakam lowland area using satellite radar

    Directory of Open Access Journals (Sweden)

    H. Hidayat

    2012-07-01

    Full Text Available Floodplain lakes and peatlands in the middle Mahakam lowland area are considered as ecologically important wetland in East Kalimantan, Indonesia. However, due to a lack of data, the hydrological functioning of the region is still poorly understood. Among remote sensing techniques that can increase data availability, radar is well-suitable for the identification, mapping, and measurement of tropical wetlands, for its cloud unimpeded sensing and night and day operation. Here we aim to extract flood extent and flood occurrence information from a series of radar images of the middle Mahakam lowland area. We explore the use of Phased Array L-band Synthetic Aperture Radar (PALSAR imagery for observing flood inundation dynamics by incorporating field water level measurements. Water level measurements were carried out along the river, in lakes and in peatlands, using pressure transducers. For validation of the open water flood occurrence map, bathymetry measurements were carried out in the main lakes. A series of PALSAR images covering the middle and lower Mahakam area in the years 2007 through 2010 were collected. A fully inundated region can be easily recognized on radar images from a dark signature. Open water flood occurrence was mapped using a threshold value taken from radar backscatter of the permanently inundated river and lakes areas. Radar backscatter intensity analysis of the vegetated floodplain area revealed consistently high backscatter values, indicating flood inundation under forest canopy. We used those values as the threshold for flood occurrence mapping in the vegetated area.

  14. Global thermochemical imaging of the lithosphere using satellite and terrestrial observations

    Science.gov (United States)

    Fullea, Javier; Lebedev, Sergei; Martinec, Zdenek; Celli, Nicolas

    2017-04-01

    Conventional methods of seismic tomography, topography, gravity and electromagnetic data analysis and geodynamic modelling constrain distributions of seismic velocity, density, electrical conductivity, and viscosity at depth, all depending on temperature and composition of the rocks within the Earth. However, modelling and interpretation of multiple data sets provide a multifaceted image of the true thermochemical structure of the Earth that needs to be appropriately and consistently integrated. A simple combination of gravity, electromagnetic, geodynamics, petrological and seismic models alone is insufficient due to the non-uniqueness and different sensitivities of these models, and the internal consistency relationships that must connect all the intermediate parameters describing the Earth involved. Thermodynamic and petrological links between seismic velocities, density, electrical conductivity, viscosity, melt, water, temperature, pressure and composition within the Earth can now be modelled accurately using new methods of computational petrology and data from laboratory experiments. The growth of very large terrestrial and satellite (e.g., Swarm and GOCE ESA missions) geophysical data sets over the last few years, together with the advancement of petrological and geophysical modelling techniques, now present an opportunity for global, thermochemical and deformation 3D imaging of the lithosphere and underlying upper mantle with unprecedented resolution. This project combines state-of-the-art seismic waveform tomography (using both surface and body waves), newly available global gravity satellite data (geoid and gravity anomalies and new gradiometric measurements from ESA's GOCE mission) and surface heat flow and elevation within a self-consistent thermodynamic framework. The aim is to develop a method for detailed and robust global thermochemical image of the lithosphere and underlying upper mantle. In a preliminary study, we convert a state-of-the-art global

  15. Geometric description of images as topographic maps

    CERN Document Server

    Caselles, Vicent

    2010-01-01

    This volume discusses the basic geometric contents of an image and presents a tree data structure to handle those contents efficiently. The nodes of the tree are derived from connected components of level sets of the intensity, while the edges represent inclusion information. Grain filters, morphological operators simplifying these geometric contents, are analyzed and several applications to image comparison and registration, and to edge and corner detection, are presented. The mathematically inclined reader may be most interested in Chapters 2 to 6, which generalize the topological Morse description to continuous or semicontinuous functions, while mathematical morphologists may more closely consider grain filters in Chapter 3. Computer scientists will find algorithmic considerations in Chapters 6 and 7, the full justification of which may be found in Chapters 2 and 4 respectively. Lastly, all readers can learn more about the motivation for this work in the image processing applications presented in Chapter 8...

  16. Automatic Image Segmentation based on MRF-MAP

    CERN Document Server

    Qiyang, Zhao

    2012-01-01

    Solving the Maximum a Posteriori on Markov Random Field, MRF-MAP, is a prevailing method in recent interactive image segmentation tools. Although mathematically explicit in its computational targets, and impressive for the segmentation quality, MRF-MAP is hard to accomplish without the interactive information from users. So it is rarely adopted in the automatic style up to today. In this paper, we present an automatic image segmentation algorithm, NegCut, based on the approximation to MRF-MAP. First we prove MRF-MAP is NP-hard when the probabilistic models are unknown, and then present an approximation function in the form of minimum cuts on graphs with negative weights. Finally, the binary segmentation is taken from the largest eigenvector of the target matrix, with a tuned version of the Lanczos eigensolver. It is shown competitive at the segmentation quality in our experiments.

  17. Description and validation of an automated methodology for mapping mineralogy, vegetation, and hydrothermal alteration type from ASTER satellite imagery with examples from the San Juan Mountains, Colorado

    Science.gov (United States)

    Rockwell, Barnaby W.

    2012-01-01

    The efficacy of airborne spectroscopic, or "hyperspectral," remote sensing for geoenvironmental watershed evaluations and deposit-scale mapping of exposed mineral deposits has been demonstrated. However, the acquisition, processing, and analysis of such airborne data at regional and national scales can be time and cost prohibitive. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sensor carried by the NASA Earth Observing System Terra satellite was designed for mineral mapping and the acquired data can be efficiently used to generate uniform mineral maps over very large areas. Multispectral remote sensing data acquired by the ASTER sensor were analyzed to identify and map minerals, mineral groups, hydrothermal alteration types, and vegetation groups in the western San Juan Mountains, Colorado, including the Silverton and Lake City calderas. This mapping was performed in support of multidisciplinary studies involving the predictive modeling of surface water geochemistry at watershed and regional scales. Detailed maps of minerals, vegetation groups, and water were produced from an ASTER scene using spectroscopic, expert system-based analysis techniques which have been previously described. New methodologies are presented for the modeling of hydrothermal alteration type based on the Boolean combination of the detailed mineral maps, and for the entirely automated mapping of alteration types, mineral groups, and green vegetation. Results of these methodologies are compared with the more detailed maps and with previously published mineral mapping results derived from analysis of high-resolution spectroscopic data acquired by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor. Such comparisons are also presented for other mineralized and (or) altered areas including the Goldfield and Cuprite mining districts, Nevada and the central Marysvale volcanic field, Wah Wah Mountains, and San Francisco Mountains, Utah. The automated

  18. A new regard on the tectonic map of the Arabian-African region inferred from the satellite gravity analysis

    Science.gov (United States)

    Eppelbaum, Lev; Katz, Youri

    2017-07-01

    Satellite gravimetry is a powerful and reliable tool for regional tectono-geodynamic zonation. The studied region contains intricate geodynamical features (high seismological indicators, active rift systems and collision processes), richest structural arrangement (existence of mosaic blocks of oceanic and continental Earth's crust of various age), and a number of high-amplitude gravity anomalies and complex magnetic pattern. The most hydrocarbon reserves of the world and other important economic deposits occur in this region. Comprehensive analysis of satellite gravity data with application of different approaches was used to develop a sequence of maps specifying crucial properties of the region deep structure. Careful examination of numerous geological sources and their combined examination with satellite gravity (main), magnetic, GPS, seismic, seismological and some other geophysical data enabled to develop a new tectonic map of the Arabian-African region. Integrated analysis of series of gravity map transformations and certain geological indicators allowed to reveal significant geodynamic features of the region.

  19. Feature Extraction in Sequential Multimedia Images: with Applications in Satellite Images and On-line Videos

    Science.gov (United States)

    Liang, Yu-Li

    Multimedia data is increasingly important in scientific discovery and people's daily lives. Content of massive multimedia is often diverse and noisy, and motion between frames is sometimes crucial in analyzing those data. Among all, still images and videos are commonly used formats. Images are compact in size but do not contain motion information. Videos record motion but are sometimes too big to be analyzed. Sequential images, which are a set of continuous images with low frame rate, stand out because they are smaller than videos and still maintain motion information. This thesis investigates features in different types of noisy sequential images, and the proposed solutions that intelligently combined multiple features to successfully retrieve visual information from on-line videos and cloudy satellite images. The first task is detecting supraglacial lakes above ice sheet in sequential satellite images. The dynamics of supraglacial lakes on the Greenland ice sheet deeply affect glacier movement, which is directly related to sea level rise and global environment change. Detecting lakes above ice is suffering from diverse image qualities and unexpected clouds. A new method is proposed to efficiently extract prominent lake candidates with irregular shapes, heterogeneous backgrounds, and in cloudy images. The proposed system fully automatize the procedure that track lakes with high accuracy. We further cooperated with geoscientists to examine the tracked lakes and found new scientific findings. The second one is detecting obscene content in on-line video chat services, such as Chatroulette, that randomly match pairs of users in video chat sessions. A big problem encountered in such systems is the presence of flashers and obscene content. Because of various obscene content and unstable qualities of videos capture by home web-camera, detecting misbehaving users is a highly challenging task. We propose SafeVchat, which is the first solution that achieves satisfactory

  20. Crop Investigation Using High-Resolution Worldview-1 and Quickbird-2 Satellite Images on a Test Site in Bulgaria

    Science.gov (United States)

    Vassilev, Vassil

    2013-12-01

    "salt and pepper effect" (common for coarse and low resolution satellite images), As a result it is making the map products much more useful thus making more accurate crop area estimates when pixel counting methods are used. 155 1. I

  1. NOAA Geostationary Operational Environmental Satellite (GOES) Imager Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Geostationary Operational Environmental Satellite (GOES) series provides continuous measurements of the atmosphere and surface over the Western Hemisphere....

  2. NEPR World View 2 Satellite Mosaic - NOAA TIFF Image

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This GeoTiff is a mosaic of World View 2 panchromatic satellite imagery of Northeast Puerto Rico that contains the shallow water area (0-35m deep) surrounding...

  3. Selecting Appropriate Spatial Scale for Mapping Plastic-Mulched Farmland with Satellite Remote Sensing Imagery

    Directory of Open Access Journals (Sweden)

    Hasituya

    2017-03-01

    Full Text Available In recent years, the area of plastic-mulched farmland (PMF has undergone rapid growth and raised remarkable environmental problems. Therefore, mapping the PMF plays a crucial role in agricultural production, environmental protection and resource management. However, appropriate data selection criteria are currently lacking. Thus, this study was carried out in two main plastic-mulching practice regions, Jizhou and Guyuan, to look for an appropriate spatial scale for mapping PMF with remote sensing. The average local variance (ALV function was used to obtain the appropriate spatial scale for mapping PMF based on the GaoFen-1 (GF-1 satellite imagery. Afterwards, in order to validate the effectiveness of the selected method and to interpret the relationship between the appropriate spatial scale derived from the ALV and the spatial scale with the highest classification accuracy, we classified the imagery with varying spatial resolution by the Support Vector Machine (SVM algorithm using the spectral features, textural features and the combined spectral and textural features respectively. The results indicated that the appropriate spatial scales from the ALV lie between 8 m and 20 m for mapping the PMF both in Jizhou and Guyuan. However, there is a proportional relation: the spatial scale with the highest classification accuracy is at the 1/2 location of the appropriate spatial scale generated from the ALV in Jizhou and at the 2/3 location of the appropriate spatial scale generated from the ALV in Guyuan. Therefore, the ALV method for quantitatively selecting the appropriate spatial scale for mapping PMF with remote sensing imagery has theoretical and practical significance.

  4. Transmittance spectroscopy and transmitted multispectral imaging to map covered paints

    Directory of Open Access Journals (Sweden)

    Antonino Cosentino

    2016-01-01

    Full Text Available Transmitted spectroscopy and transmitted multispectral imaging in the 400-900 nm range have been applied for the mapping and tentative identification of paints covered by a white preparation as in the case of a ground laid for reusing a canvas for another painting. These methods can be applied to polychrome works of art, as long as their support and new preparation are sufficiently translucent. This work presents the transmittance spectra acquired from a test board consisting of a prepared canvas with swatches of 54 pigments covered with titanium white and the multispectral images realized with transmitted light to map covered paints on a mock-up painting. It was observed that 18 out of 54 historical pigments provide characteristic transmittance spectra even underneath a titanium white preparation layer and that transmitted light multispectral imaging can map hidden paint layers.

  5. An Image-Based Sensor System for Autonomous Rendez-Vous with Uncooperative Satellites

    CERN Document Server

    Miravet, Carlos; Krouch, Eloise; del Cura, Juan Manuel

    2008-01-01

    In this paper are described the image processing algorithms developed by SENER, Ingenieria y Sistemas to cope with the problem of image-based, autonomous rendez-vous (RV) with an orbiting satellite. The methods developed have a direct application in the OLEV (Orbital Life Extension Extension Vehicle) mission. OLEV is a commercial mission under development by a consortium formed by Swedish Space Corporation, Kayser-Threde and SENER, aimed to extend the operational life of geostationary telecommunication satellites by supplying them control, navigation and guidance services. OLEV is planned to use a set of cameras to determine the angular position and distance to the client satellite during the complete phases of rendez-vous and docking, thus enabling the operation with satellites not equipped with any specific navigational aid to provide support during the approach. The ability to operate with un-equipped client satellites significantly expands the range of applicability of the system under development, compar...

  6. Application of image cross-correlation to the measurement of glacier velocity using satellite image data

    Science.gov (United States)

    Scambos, Theodore A.; Dutkiewicz, Melanie J.; Wison, Jeremy C.; Bindschadler, Robert A.

    1992-01-01

    A high-resolution map of the velocity field of the central portion of Ice Stream E in West Antarctica, generated by the displacement-measuring technique, is presented. The use of cross-correlation software is found to be a significant improvement over previous manually based photogrammetric methods for velocity measurement, and is far more cost-effective than in situ methods in remote polar areas. A hue-intensity-saturation image of Ice Stream E and its velocity field is shown.

  7. Worldwide widespread decadal-scale decrease of glacier speed revealed using repeat optical satellite images

    Directory of Open Access Journals (Sweden)

    T. Heid

    2011-10-01

    Full Text Available Matching of repeat optical satellite images to derive glacier velocities is an approach that is much used within glaciology. Lately, focus has been put into developing, improving, automating and comparing different image matching methods. This makes it now possible to investigate glacier dynamics within large regions of the world and also between regions to improve knowledge about glacier dynamics in space and time. In this study we investigate whether the negative glacier mass balance seen over large parts of the world has caused the glaciers to change their speeds. The studied regions are Pamir, Caucasus, Penny Ice Cap, Alaska Range and Patagonia. In addition we derive speed changes for Karakoram, a region assumed to have positive mass balance and that contains many surge-type glaciers. We find that the mapped glaciers in the five regions with negative mass balance have decreased their speeds over the last decades, Pamir by 43 % in average per decade, Caucasus by 8 % in average per decade, Penny Ice Cap by 25 % in average per decade, Alaska Range by 11 % in average per decade and Patagonia by 20 % in average per decade. Glaciers in Karakoram have generally increased their speeds, but surging glaciers and glaciers with flow instabilities are most prominent in this area.

  8. Cassini Imaging of Auroral Emissions on the Galilean Satellites

    Science.gov (United States)

    Geissler, P.; McEwen, A.; Porco, C.

    2001-05-01

    Cassini captured several sequences of images showing Io, Europa and Ganymede while the moons were eclipsed by Jupiter. Io was the best studied of the satellites, with 4 eclipses successfully recorded. Earlier eclipse imaging by Galileo (Geissler et al., Science 295, 870-874) had shown colorful atmospheric emissions from Io and raised questions concerning their temporal variability and the identity of the emitting species. With its high data rate and numerous filter combinations, Cassini was able to fill some of the gaps in our knowledge of Io's visible aurorae. Io's bright equatorial glows were detected at previously unknown wavelengths and were also seen in motion. One eclipse took place on 12/29/2000 while Io was far from the plasma torus center. The pair of equatorial glows near the sub-Jupiter and anti-Jupiter points appeared about equal in brightness and changed little in location or intensity over a two hour period. Io crossed the plasma torus center during the next eclipse on 1/01/2001, as it passed through System III magnetic longitudes from 250 to 303 degrees. The equatorial glows were seen to shift in latitude during this eclipse, tracking the tangent points of the jovian magnetic field lines. This behaviour is similar to that observed for ultraviolet and other atomic emissions, and confirms that these visible glows are powered by Birkeland currents connecting Io and Jupiter. The eclipse on 1/05/2001 provided the best spectral measurements of the aurorae. The equatorial glows were detected at near ultraviolet wavelengths, consistent with their interpretation as molecular SO2 emissions. More than 100 kR were recorded in the ISS UV3 filter (300-380 nm) along with a similar intensity in BL1 (290-500 nm), comparable to Galileo estimates. At least 50 kR were detected in UV2 images (265-330 nm). No detection was made in UV1 (235-280 nm), allowing us to place an upper limit of about 100 kR. A new detection of the equatorial glows was made in the IR1 band (670

  9. Image encryption based on new Beta chaotic maps

    Science.gov (United States)

    Zahmoul, Rim; Ejbali, Ridha; Zaied, Mourad

    2017-09-01

    In this paper, we created new chaotic maps based on Beta function. The use of these maps is to generate chaotic sequences. Those sequences were used in the encryption scheme. The proposed process is divided into three stages: Permutation, Diffusion and Substitution. The generation of different pseudo random sequences was carried out to shuffle the position of the image pixels and to confuse the relationship between the encrypted the original image, so that significantly increasing the resistance to attacks. The acquired results of the different types of analysis indicate that the proposed method has high sensitivity and security compared to previous schemes.

  10. Inter-nesting habitat-use patterns of loggerhead sea turtles: Enhancing satellite tracking with benthic mapping

    Science.gov (United States)

    Hart, Kristen M.; Zawada, David G.; Fujisaki, Ikuko; Lidz, Barbara H.

    2010-01-01

    The loggerhead sea turtle Caretta caretta faces declining nest numbers and bycatches from commercial longline fishing in the southeastern USA. Understanding spatial and temporal habitat-use patterns of these turtles, especially reproductive females in the neritic zone, is critical for guiding management decisions. To assess marine turtle habitat use within the Dry Tortugas National Park (DRTO), we used satellite telemetry to identify core-use areas for 7 loggerhead females inter-nesting and tracked in 2008 and 2009. This effort represents the first tracking of DRTO loggerheads, a distinct subpopulation that is 1 of 7 recently proposed for upgrading from threatened to endangered under the US Endangered Species Act. We also used a rapid, high-resolution, digital imaging system to map benthic habitats in turtle core-use areas (i.e. 50% kernel density zones). Loggerhead females were seasonal residents of DRTO for 19 to 51 d, and individual inter-nesting habitats were located within 1.9 km (2008) and 2.3 km (2009) of the nesting beach and tagging site. The core area common to all tagged turtles was 4.2 km2 in size and spanned a depth range of 7.6 to 11.5 m. Mapping results revealed the diversity and distributions of benthic cover available in the core-use area, as well as a heavily used corridor to/from the nesting beach. This combined tagging-mapping approach shows potential for planning and improving the effectiveness of marine protected areas and for developing spatially explicit conservation plans.

  11. Real-time mapping of combustion sources using Suomi NPP satellite VIIRS and CrIMSS data

    Science.gov (United States)

    Zhizhin, M.; Elvidge, C.; Baugh, K.; Hsu, F.

    2012-12-01

    Night-time images from the Suomi NPP satellite VIIRS scanning radiometer in visible and infrared spectral bands provide invaluable data for real-time detection of natural and technological combustion sources on the surface of the Earth, such as forest fires, gas flares, steel mills or active volcanoes. Point sources detected at night in 1.6 micron near-infrared M10 channel are most likely to be large fires or gas flares. Their temperature and radiative power can be estimated by simultaneous fitting of two Planck black-body spectral curves to the observed radiances of all VIIRS infrared M-channels, one curve for the temperature and power of the combustion, another for the background. VIIRS instrument is sensitive to the IR sources with temperature range from 800 to 2000 degrees K. This method can discriminate low temperature sources such as volcanoes and forest fires from the high temperature gas flares with 300 m average location error. Global real-time mapping of the IR sources on the Earth requires correction of the M-channels for bow tie effect, atmospheric correction and filtering of the false detections resulting from sensor bombardment by the cosmic rays, especially at the aurora rings and at the South Atlantic anomaly. MODTRAN atmospheric radiative transfer mode is used with temperature and moisture profiles provided by the CrIMSS onboard sensor suite. False detections can be removed by correlating of the observed bright spots in M10 channel with other infrared and the visible day-night band. After geometry correction and denoising, the IR point sources are mapped on Google Earth and listed in a table. NOAA NGDC provides global daily detection products for thousands of IR sources as KML vector maps and as CSV tables.

  12. Fingerprint Image Segmentation Using Haar Wavelet and Self Organizing Map

    Directory of Open Access Journals (Sweden)

    Sri Suwarno

    2013-10-01

    Full Text Available Fingerprint image segmentation is one of the important preprocessing steps in Automatic Fingerprint Identification Systems (AFIS. Segmentation separates image background from image foreground, removing unnecessary information from the image. This paper proposes a new fingerprint segmentation method using Haar wavelet and Kohonen’s Self Organizing Map (SOM. Fingerprint image was decomposed using 2D Haar wavelet in two levels. To generate features vectors, the decomposed image was divided into nonoverlapping blocks of 2x2 pixels and converted into four elements vectors. These vectors were then fed into SOM network that grouped them into foreground and background clusters. Finally, blocks in the background area were removed based on indexes of blocks in the background cluster. From the research that has been carried out, we conclude that the proposed method is effective to segment background from fingerprint images.

  13. Multi-Mode GF-3 Satellite Image Geometric Accuracy Verification Using the RPC Model.

    Science.gov (United States)

    Wang, Taoyang; Zhang, Guo; Yu, Lei; Zhao, Ruishan; Deng, Mingjun; Xu, Kai

    2017-09-01

    The GaoFen-3 (GF-3) satellite is the first C-band multi-polarization synthetic aperture radar (SAR) imaging satellite with a resolution up to 1 m in China. It is also the only SAR satellite of the High-Resolution Earth Observation System designed for civilian use. There are 12 different imaging models to meet the needs of different industry users. However, to use SAR satellite images for related applications, they must possess high geometric accuracy. In order to verify the geometric accuracy achieved by the different modes of GF-3 images, we analyze the SAR geometric error source and perform geometric correction tests based on the RPC model with and without ground control points (GCPs) for five imaging modes. These include the spotlight (SL), ultra-fine strip (UFS), Fine Strip I (FSI), Full polarized Strip I (QPSI), and standard strip (SS) modes. Experimental results show that the check point residuals are large and consistent without GCPs, but the root mean square error of the independent checkpoints for the case of four corner control points is better than 1.5 pixels, achieving a similar level of geometric positioning accuracy to that of international satellites. We conclude that the GF-3 satellite can be used for high-accuracy geometric processing and related industry applications.

  14. Wind mapping offshore in coastal Mediterranean area using SAR images

    DEFF Research Database (Denmark)

    Calaudi, Rosamaria; Arena, Felice; Badger, Merete

    Satellite observations of the ocean surface from Synthetic Aperture Radars (SAR) provide information about the spatial wind variability over large areas. This is of special interest in the Mediterranean, where spatial wind information is only provided by sparse buoys, often with long periods...... of missing data. Here, we focus on evaluating the use of SAR for offshore wind mapping. Preliminary results from the analysis of SAR-based ocean winds in Mediterranean areas show interesting large scale wind flow features consistent with results from previous studies using numerical models and space borne...

  15. Digital Image Encryption Based On Multiple Chaotic Maps

    Directory of Open Access Journals (Sweden)

    Amir Houshang Arab Avval

    2016-01-01

    Full Text Available A novel and robust chaos-based digital image encryption is proposed. The present paper presents a cipher block image encryption using multiple chaotic maps to lead increased security. An image block is encrypted by the block-based permutation process and cipher block encryption process. In the proposed scheme, secret key includes nineteen control and initial conditions parameter of the four chaotic maps and the calculated key space is 2883. The effectiveness and security of the proposed encryption scheme has been performed using the histograms, correlation coefficients, information entropy, differential analysis, key space analysis, etc. It can be concluded that the proposed image encryption technique is a suitable choice for practical applications.

  16. Satellite Image Edge Detection for Population Distribution Pattern Identification using Levelset with Morphological Filtering Process

    Science.gov (United States)

    Harsiti; Munandar, T. A.; Suhendar, A.; Abdullah, A. G.; Rohendi, D.

    2017-03-01

    Population distribution pattern is directly related with economic gap of a region. Analysis of population distribution pattern is usually performed by studying statistical data on population. This study aimed to analyze population distribution pattern using image analysis concept, i.e. using satellite images. Levelset and morphological image filtering methods were used to analyze images to see distribution pattern. The research result showed that Levelset and morphological image filtering could remove a lot of noises in analysis result images and form object edge contours very clearly. The detected object contours were used as references to recognize population distribution pattern based on satellite image analysis. The pattern made based on the research result didn’t show optimal result because Levelset performed image segmentation based on the contours of the analyzed objects. Other segmentation methods should be combined with it to produce clearer population distribution pattern.

  17. Coastal erosion and accretion in Pak Phanang, Thailand by GIS analysis of maps and satellite imagery

    Directory of Open Access Journals (Sweden)

    Sayedur Rahman Chowdhury

    2013-12-01

    Full Text Available Coastal erosion and accretion in Pak Phanang of southern Thailand between 1973 and 2003 was measured using multi-temporal topographic maps and Landsat satellite imageries. Within a GIS environment landward and seaward movements of shoreline was estimated by a transect-based analysis, and amounts of land accretion and erosion were estimated by a parcel-based geoprocessing. The whole longitudinal extent of the 58 kilometer coast was classified based on the erosion and accretion trends during this period using agglomerative hierarchical clustering approach. Erosion and accretion were found variable over time and space, and periodic reversal of status was also noticed in many places. Estimates of erosion were evaluated against field-survey based data, and found reasonably accurate where the rates were relatively great. Smoothing of shoreline datasets was found desirable as its impacts on the estimates remained within tolerable limits.

  18. Rapid Texture Mapping from Image Sequences for Building Geometry Model

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zuxun; WU Jun; ZHANG Jianqing

    2003-01-01

    An effective approach,mapping the texture for building model based on the digital photogrammetric theory, is proposed. The easily-acquired image sequences from digital video camera on helicopter are used astexture resource, and the correspon-dence between the space edge in building geometry model and its line feature in image sequences is determined semiautomatically. The experimental results in production of three-dimensional data for car navigation show us an attractive future both in efficiency and effect.

  19. Bridging scales from satellite to grains: Structural mapping aided by tablet and photogrammetry

    Science.gov (United States)

    Hawemann, Friedrich; Mancktelow, Neil; Pennacchioni, Giorgio; Wex, Sebastian; Camacho, Alfredo

    2016-04-01

    Bridging scales from satellite to grains: Structural mapping aided by tablet and photogrammetry A fundamental problem in small-scale mapping is linking outcrop observations to the large scale deformation pattern. The evolution of handheld devices such as tablets with integrated GPS and the availability of airborne imagery allows a precise localization of outcrops. Detailed structural geometries can be analyzed through ortho-rectified photo mosaics generated by photogrammetry software. In this study, we use a cheap standard Samsung-tablet (individual, up to 60 m long shear zones with the tracking option offered by the program Locus Map. Even though GPS accuracy is about 3 m, the relative error from one point to another during tracking is on the order of only about 1 dm. Parts of the shear zone with excellent outcrop are photographed with a standard camera with a relatively wide angle in a mosaic array. An area of about 30 sqm needs about 50 photographs with enough overlap to be used for photogrammetry. The software PhotoScan from Agisoft matches the photographs in a fully automated manner, calculates a 3D model of the outcrop, and has the option to project this as an orthophoto onto a flat surface. This allows original orientations of grain-scale structures to be recorded over areas on a scale up to tens to hundreds of metres. The photo mosaics can then be georeferenced with the aid of the GPS-tracks of the shear zones and included in a GIS. This provides a cheap recording of the structures in high detail. The great advantages over mapping with UAVs (drones) is the resolution (1cm), the independence from weather and energy source, and the low cost.

  20. Mapping bathymetry in an active surf zone with the WorldView2 multispectral satellite

    Science.gov (United States)

    Trimble, S. M.; Houser, C.; Brander, R.; Chirico, P.

    2015-12-01

    Rip currents are strong, narrow seaward flows of water that originate in the surf zones of many global beaches. They are related to hundreds of international drownings each year, but exact numbers are difficult to calculate due to logistical difficulties in obtaining accurate incident reports. Annual average rip current fatalities are estimated to be ~100, 53 and 21 in the United States (US), Costa Rica, and Australia respectively. Current warning systems (e.g. National Weather Service) do not account for fine resolution nearshore bathymetry because it is difficult to capture. The method shown here could provide frequent, high resolution maps of nearshore bathymetry at a scale required for improved rip prediction and warning. This study demonstrates a method for mapping bathymetry in the surf zone (20m deep and less), specifically within rip channels, because rips form at topographically low spots in the bathymetry as a result of feedback amongst waves, substrate, and antecedent bathymetry. The methods employ the Digital Globe WorldView2 (WV2) multispectral satellite and field measurements of depth to generate maps of the changing bathymetry at two embayed, rip-prone beaches: Playa Cocles, Puerto Viejo de Talamanca, Costa Rica, and Bondi Beach, Sydney, Australia. WV2 has a 1.1 day pass-over rate with 1.84m ground pixel resolution of 8 bands, including 'yellow' (585-625 nm) and 'coastal blue' (400-450 nm). The data is used to classify bottom type and to map depth to the return in multiple bands. The methodology is tested at each site for algorithm consistency between dates, and again for applicability between sites.

  1. Land cover mapping based on random forest classification of multitemporal spectral and thermal images.

    Science.gov (United States)

    Eisavi, Vahid; Homayouni, Saeid; Yazdi, Ahmad Maleknezhad; Alimohammadi, Abbas

    2015-05-01

    Thematic mapping of complex landscapes, with various phenological patterns from satellite imagery, is a particularly challenging task. However, supplementary information, such as multitemporal data and/or land surface temperature (LST), has the potential to improve the land cover classification accuracy and efficiency. In this paper, in order to map land covers, we evaluated the potential of multitemporal Landsat 8's spectral and thermal imageries using a random forest (RF) classifier. We used a grid search approach based on the out-of-bag (OOB) estimate of error to optimize the RF parameters. Four different scenarios were considered in this research: (1) RF classification of multitemporal spectral images, (2) RF classification of multitemporal LST images, (3) RF classification of all multitemporal LST and spectral images, and (4) RF classification of selected important or optimum features. The study area in this research was Naghadeh city and its surrounding region, located in West Azerbaijan Province, northwest of Iran. The overall accuracies of first, second, third, and fourth scenarios were equal to 86.48, 82.26, 90.63, and 91.82%, respectively. The quantitative assessments of the results demonstrated that the most important or optimum features increase the class separability, while the spectral and thermal features produced a more moderate increase in the land cover mapping accuracy. In addition, the contribution of the multitemporal thermal information led to a considerable increase in the user and producer accuracies of classes with a rapid temporal change behavior, such as crops and vegetation.

  2. Autonomous Sub-Pixel Satellite Track Endpoint Determination for Space Based Images

    Energy Technology Data Exchange (ETDEWEB)

    Simms, L M

    2011-03-07

    An algorithm for determining satellite track endpoints with sub-pixel resolution in spaced-based images is presented. The algorithm allows for significant curvature in the imaged track due to rotation of the spacecraft capturing the image. The motivation behind the subpixel endpoint determination is first presented, followed by a description of the methodology used. Results from running the algorithm on real ground-based and simulated spaced-based images are shown to highlight its effectiveness.

  3. Three attempts of earthquake prediction with satellite cloud images

    Directory of Open Access Journals (Sweden)

    G. Guangmeng

    2013-01-01

    Full Text Available Thermal anomalies detected from satellite data are widely reported. Nearly all the anomalies are reported after the quake. Here we report three earthquake predictions in Italy and Iran according to satellite cloud anomalies. These cloud anomalies usually show a linear pattern, stay there for hours and do not move with winds. According to these anomalies, we can give a rough estimation about impending earthquake activities. All the estimated dates and magnitudes are in good agreement with the earthquake facts, and the only unsatisfactory point is that the distance error is 100–300 km. Because the cloud anomaly is long, we can not reduce the distance error further. A possible way is to combine geophysical data and satellite data together to estimate the epicenter and this will increase the prediction accuracy.

  4. Dust indicator maps for improving solar radiation estimation from satellite data

    Science.gov (United States)

    Marpu, P. R.; Eissa, Y.; Al Meqbali, N.; Ghedira, H.

    2012-12-01

    Measurement of solar radiation from ground-based sensors is an expensive process as it requires large number of ground measurement stations to account for the spatial variability. Moreover, the instruments require regular maintenance. Satellite data can be used to model solar radiation and produce maps in regular intervals, which can be used for solar resource assessment. The models can either be empirical, physics-based or statistical models. However, in environments such as the United Arab Emirates (UAE) which are characterized by heavy dust, the results obtained by the models will lead to lower accuracies. In this study, we build on the model developed in [1], where ensembles of ANNs are used separately for cloudy and cloud-free pixels to derive solar radiation maps using the data acquired in the thermal channels of the Meteosat SEVIRI instrument. The model showed good accuracies for the estimation of direct normal irradiance (DNI), diffuse horizontal irradiance (DHI) and global horizontal irradiance (GHI); where the relative root mean square error (rRMSE) values for the DNI, DHI and GHI were 15.7, 23.6 and 7.2%, respectively, while the relative mean bias error (rMBE) values were +0.8, +8.3 and +1.9%, respectively. However, an analysis of the results on different dusty days showed varying accuracy. To further improve the model, we propose to use the dust indicator maps as inputs to the model. An interception index was proposed in [2] to detect dust over desert regions using visible channels of the SEVIRI instrument. The index has a range of 0 to 1 where the value of 1 corresponds to heavy dust and 0 corresponds to clear conditions. There is ongoing work to use the measurements from AERONET stations to derive dust indicator maps based on canonical correlation analysis, which relates the thermal channels to the aerosol optical depth (AOD) derived at different wavelengths from the AERONET measurements. There is also an ongoing work to analyze the time series of the

  5. Mapping Synaptic Inputs of Developing Neurons Using Calcium Imaging

    NARCIS (Netherlands)

    Winnubst, Johan; Lohmann, C.

    2017-01-01

    Studying changing synaptic activity patterns during development provides a wealth of information on how activity-dependent processes shape synaptic connectivity. In this chapter we introduce a method that combines whole-cell electrophysiology with calcium imaging to map functional synaptic sites on

  6. Velocity Map Imaging the Scattering Plane of Gas Surface Collisions

    CERN Document Server

    Hadden, David J; Leng, Joseph G; Greaves, Stuart J

    2016-01-01

    The ability of gas-surface dynamics studies to resolve the velocity distribution of the scattered species in the 2D sacattering plane has been limited by technical capabilities and only a few different approaches have been explored in recent years. In comparison, gas-phase scattering studies have been transformed by the near ubiquitous use of velocity map imaging. We describe an innovative means of introducing a surface within the electric field of a typical velocity map imaging experiment. The retention of optimum velocity mapping conditions was demonstrated by measurements of iodomethane-d3 photodissociation and SIMION calculations. To demonstrate the systems capabilities the velocity distributions of ammonia molecules scattered from a PTFE surface have been measured for multiple product rotational states.

  7. Meteo-marine parameters for highly variable environment in coastal regions from satellite radar images

    Science.gov (United States)

    Pleskachevsky, A. L.; Rosenthal, W.; Lehner, S.

    2016-09-01

    The German Bight of the North Sea is the area with highly variable sea state conditions, intensive ship traffic and with a high density of offshore installations, e.g. wind farms in use and under construction. Ship navigation and the docking on offshore constructions is impeded by significant wave heights HS > 1.3 m. For these reasons, improvements are required in recognition and forecasting of sea state HS in the range 0-3 m. Thus, this necessitates the development of new methods to determine the distribution of meteo-marine parameters from remote sensing data with an accuracy of decimetres for HS. The operationalization of these methods then allows the robust automatic processing in near real time (NRT) to support forecast agencies by providing validations for model results. A new empirical algorithm XWAVE_C (C = coastal) for estimation of significant wave height from X-band satellite-borne Synthetic Aperture Radar (SAR) data has been developed, adopted for coastal applications using TerraSAR-X (TS-X) and Tandem-X (TD-X) satellites in the German Bight and implemented into the Sea Sate Processor (SSP) for fully automatic processing for NRT services. The algorithm is based on the spectral analysis of subscenes and the model function uses integrated image spectra parameters as well as local wind information from the analyzed subscene. The algorithm is able to recognize and remove the influence of non-sea state produced signals in the Wadden Sea areas such as dry sandbars as well as nonlinear SAR image distortions produced by e.g. short wind waves and breaking waves. Also parameters of very short waves, which are not visible in SAR images and produce only unsystematic clutter, can be accurately estimated. The SSP includes XWAVE_C, a pre-filtering procedure for removing artefacts such as ships, seamarks, buoys, offshore constructions and slicks, and an additional procedure performing a check of results based on the statistics of the whole scene. The SSP allows an

  8. Retrieval and intercomparison of volcanic SO2 injection height and eruption time from satellite maps and ground-based observations

    Science.gov (United States)

    Pardini, Federica; Burton, Mike; de'Michieli Vitturi, Mattia; Corradini, Stefano; Salerno, Giuseppe; Merucci, Luca; Di Grazia, Giuseppe

    2017-02-01

    Syneruptive gas flux time series can, in principle, be retrieved from satellite maps of SO2 collected during and immediately after volcanic eruptions, and used to gain insights into the volcanic processes which drive the volcanic activity. Determination of the age and height of volcanic plumes are key prerequisites for such calculations. However, these parameters are challenging to constrain using satellite-based techniques. Here, we use imagery from OMI and GOME-2 satellite sensors and a novel numerical procedure based on back-trajectory analysis to calculate plume height as a function of position at the satellite measurement time together with plume injection height and time at a volcanic vent location. We applied this new procedure to three Etna eruptions (12 August 2011, 18 March 2012 and 12 April 2013) and compared our results with independent satellite and ground-based estimations. We also compare our injection height time-series with measurements of volcanic tremor, which reflects the eruption intensity, showing a good match between these two datasets. Our results are a milestone in progressing towards reliable determination of gas flux data from satellite-derived SO2 maps during volcanic eruptions, which would be of great value for operational management of explosive eruptions.

  9. Wildfire monitoring using satellite images, ontologies and linked geospatial data

    NARCIS (Netherlands)

    Kyzirakos, K.; Karpathiotakis, M.; Garbis, G.; Nikolaou, C.; Bereta, K.; Papoutsis, I.; Herekakis, T.; Michail, D.; Koubarakis, M.; Kontoes, C.

    2014-01-01

    Advances in remote sensing technologies have allowed us to send an ever-increasing number of satellites in orbit around Earth. As a result, Earth Observation data archives have been constantly increasing in size in the last few years, and have become a valuable source of data for many scientific and

  10. Remote sensing place : Satellite images as visual spatial imaginaries

    NARCIS (Netherlands)

    Shim, David

    How do people come to know the world? How do they get a sense of place and space? Arguably, one of the ways in which they do this is through the practice of remote sensing, among which satellite imagery is one of the most widespread and potent tools of engaging, representing and constructing space.

  11. Glacier changes in the Karakoram region mapped by multi-mission satellite imagery

    Directory of Open Access Journals (Sweden)

    M. Rankl

    2013-08-01

    Full Text Available Glaciers in the Karakoram region are known to show stable and advancing terminus positions or surging behavior, which contrasts the worldwide retreat of many mountain glaciers. The present study uses Landsat imagery to derive an updated and extended glacier inventory. Surging and advancing glaciers and their annual termini position changes are mapped in addition. Out of 1334 glaciers, 134 show advancing or surging behavior, with a marked increase since 2000. The length distribution of surging glaciers differs significantly from non-surging glaciers. More than 50% of the advancing/surging glaciers are shorter than 10 km. Besides a regional spatial coverage of ice dynamics, high-resolution SAR data allows to investigate very small and comparably fast flowing glaciers (up to 1.8 m day−1. Such data enables mapping of temporal changes of ice dynamics of individual small surging or advancing glaciers. In a further case study, glacier volume changes of three glaciers around Braldu Glacier are quantified during a surge event comparing digital elevation models from the Shuttle Radar Topography Mission (SRTM and the new TerraSAR-X add-on for Digital Elevation Measurement (TanDEM-X Mission. We recommend regular acquisitions of high resolution (bi-static SAR satellite data and further exploitation of the archives in order to generate an improved database for monitoring changes, and to at least partially compensate for the lack of in-situ and long-term climatological measurements in the Karakoram region.

  12. Spot-5 multispectral image for 60-75 days of rice mapping

    Science.gov (United States)

    Amiruddin Ramli, Mohd; Shariff, Abdul Rashid Mohamed; Khairunniza Bejo, Siti

    2014-06-01

    The objective of this study is to investigate the potential application of Spot-5 multispectral satellite data in monitoring rice cultivation areas in IADA (Integrated Agriculture Development Area) located at Kerian District, Perak Malaysia. Information of the rice cultivation areas is a global economic and environmental significance. Multi-spectral images acquired at high spatial resolution are an important tool, especially in agricultural applications. This paper addresses the relationship between normalize difference vegetation index (NDVI) and ancillary data acquired from Farmers Organization Authority (PPK) for 217 farmer's field in IADA Kerian. The results indicated that NDVI range 0.62 - 0.75 has a strong positive relationship with the ground survey area estimation with (r = 0.85; p Malaysia. The results appear promising and rice mapping operations using SPOT-5 multispectral image data can be foreseen.

  13. Relaxation-based viscosity mapping for magnetic particle imaging

    Science.gov (United States)

    Utkur, M.; Muslu, Y.; Saritas, E. U.

    2017-05-01

    Magnetic particle imaging (MPI) has been shown to provide remarkable contrast for imaging applications such as angiography, stem cell tracking, and cancer imaging. Recently, there is growing interest in the functional imaging capabilities of MPI, where ‘color MPI’ techniques have explored separating different nanoparticles, which could potentially be used to distinguish nanoparticles in different states or environments. Viscosity mapping is a promising functional imaging application for MPI, as increased viscosity levels in vivo have been associated with numerous diseases such as hypertension, atherosclerosis, and cancer. In this work, we propose a viscosity mapping technique for MPI through the estimation of the relaxation time constant of the nanoparticles. Importantly, the proposed time constant estimation scheme does not require any prior information regarding the nanoparticles. We validate this method with extensive experiments in an in-house magnetic particle spectroscopy (MPS) setup at four different frequencies (between 250 Hz and 10.8 kHz) and at three different field strengths (between 5 mT and 15 mT) for viscosities ranging between 0.89 mPa · s-15.33 mPa · s. Our results demonstrate the viscosity mapping ability of MPI in the biologically relevant viscosity range.

  14. Mapping Foliar Traits Across Biomes Using Imaging Spectroscopy: A Synthesis

    Science.gov (United States)

    Townsend, P. A.; Singh, A.; Wang, Z.

    2016-12-01

    One of the great promises of imaging spectroscopy - also known as hyperspectral remote sensing - is the ability to map the spatial variation in foliar functional traits, such as nitrogen concentration, pigments, leaf structure, photosynthetic capacity and secondary biochemistry, that drive terrestrial ecosystem processes. A remote-sensing approach enables characterization of within- and between-biome variations that may be crucial to understanding ecosystem responses to pests, pathogens and environmental change. We provide a synthesis of the foliar traits that can be mapped from imaging spectroscopy, as well as an overview of both the major applications of trait maps derived from hyperspectral imagery and current gaps in our knowledge and capacity. Specifically, we make the case that a global imaging spectroscopy mission will provide unique and urgent measurements necessary to understand the response of agricultural and natural systems to rapid global changes. Finally, we present a quantitative framework to utilize imaging spectroscopy to characterize spatial and temporal variation in foliar traits within and between biomes. From this we can infer the dynamics of vegetation function across ecosystems, especially in transition zones and environmentally sensitive systems. Eventual launch of a global imaging spectroscopy mission will enable collection of narrowband VSWIR measurements that will help close major gaps in our understanding of biogeochemical cycles and improve representation of vegetated biomes in Earth system process models.

  15. Image encryption using eight dimensional chaotic cat map

    Science.gov (United States)

    Ganesan, K.; Murali, K.

    2014-06-01

    In recent years, a large number of discrete chaotic cryptographic algorithms have been proposed. However, most of them encounter some problems such as lack of robustness and security. In this paper, we introduce a new image encryption algorithm based on eight-dimensional (nonlinear) chaotic cat map. Encryption of image is different from that of texts due to some intrinsic features of image such as bulk data capacity and high redundancy, which are generally difficult to handle by traditional methods. In traditional methods the key space is small and the security is weak. The proposed algorithm tries to address these problems and also tries to enhance the encryption speed. In this paper an eight dimensional chaotic cat map is used to encrypt the intensity values of pixels using lookup table method thereby significantly increasing the speed and security of encryption. The proposed algorithm is found to be resistive against chosen/known-plaintext attacks, statistical and differential attacks.

  16. The Peak Pairs algorithm for strain mapping from HRTEM images

    Energy Technology Data Exchange (ETDEWEB)

    Galindo, Pedro L. [Departamento de Lenguajes y Sistemas Informaticos, CASEM, Universidad de Cadiz, Pol. Rio San Pedro s/n. 11510, Puerto Real, Cadiz (Spain)], E-mail: pedro.galindo@uca.es; Kret, Slawomir [Institute of Physics, PAS, AL. Lotnikow 32/46, 02-668 Warsaw (Poland); Sanchez, Ana M. [Departamento de Ciencia de los Materiales e Ing. Metalurgica y Q. Inorganica, Facultad de Ciencias, Universidad de Cadiz, Pol. Rio San Pedro s/n. 11510, Puerto Real, Cadiz (Spain); Laval, Jean-Yves [Laboratoire de Physique du Solide, UPR5 CNRS-ESPCI, Paris (France); Yanez, Andres; Pizarro, Joaquin; Guerrero, Elisa [Departamento de Lenguajes y Sistemas Informaticos, CASEM, Universidad de Cadiz, Pol. Rio San Pedro s/n. 11510, Puerto Real, Cadiz (Spain); Ben, Teresa; Molina, Sergio I. [Departamento de Ciencia de los Materiales e Ing. Metalurgica y Q. Inorganica, Facultad de Ciencias, Universidad de Cadiz, Pol. Rio San Pedro s/n. 11510, Puerto Real, Cadiz (Spain)

    2007-11-15

    Strain mapping is defined as a numerical image-processing technique that measures the local shifts of image details around a crystal defect with respect to the ideal, defect-free, positions in the bulk. Algorithms to map elastic strains from high-resolution transmission electron microscopy (HRTEM) images may be classified into two categories: those based on the detection of peaks of intensity in real space and the Geometric Phase approach, calculated in Fourier space. In this paper, we discuss both categories and propose an alternative real space algorithm (Peak Pairs) based on the detection of pairs of intensity maxima in an affine transformed space dependent on the reference area. In spite of the fact that it is a real space approach, the Peak Pairs algorithm exhibits good behaviour at heavily distorted defect cores, e.g. interfaces and dislocations. Quantitative results are reported from experiments to determine local strain in different types of semiconductor heterostructures.

  17. Images of accretion discs. 1. The eclipse mapping method

    Energy Technology Data Exchange (ETDEWEB)

    Horne, K.

    1985-03-01

    A method of mapping the surface brightness distributions of accretion discs in eclipsing cataclysmic binaries is described and tested with synthetic eclipse data. Accurate synthetic light curves are computed by numerical simulation of the accretion disc eclipse, and images of the disc are reconstructed by maximum entropy methods. The conventional definition of entropy leads to a distorted image of the disc. A modified form of entropy, sensitive to the aximuthal structure of the image but not to its radial profile, suppresses azimuthal structure but correctly recovers the radial structure of the accretion disc. This eclipse mapping method permits powerful tests of accretion disc theory by deriving the spatial structure of discs from observational data with a minimum of model-dependent assumptions.

  18. Investigation of the recent recolonisation of Beech on Mont Ventoux using historical records, vegetation analyses from satellite image and landscape genetics

    OpenAIRE

    Prouillet-Leplat, Hélène

    2009-01-01

    In this study, we investigated the genetic structure and the recolonisation process of the European beech (Fagus sylvatica) over the north face of the Mont Ventoux Mountain, using of combination of historical record investigation, vegetation mapping from satellite image and unsupervised classification process, and a landscape genetic approach. Mont Ventoux has undergone large deforestation phases until the XIXth century due to over-grazing and over-logging for woof supply. Historical records ...

  19. Exploration of mineral resource deposits based on analysis of aerial and satellite image data employing artificial intelligence methods

    Science.gov (United States)

    Osipov, Gennady

    2013-04-01

    We propose a solution to the problem of exploration of various mineral resource deposits, determination of their forms / classification of types (oil, gas, minerals, gold, etc.) with the help of satellite photography of the region of interest. Images received from satellite are processed and analyzed to reveal the presence of specific signs of deposits of various minerals. Course of data processing and making forecast can be divided into some stages: Pre-processing of images. Normalization of color and luminosity characteristics, determination of the necessary contrast level and integration of a great number of separate photos into a single map of the region are performed. Construction of semantic map image. Recognition of bitmapped image and allocation of objects and primitives known to system are realized. Intelligent analysis. At this stage acquired information is analyzed with the help of a knowledge base, which contain so-called "attention landscapes" of experts. Used methods of recognition and identification of images: a) combined method of image recognition, b)semantic analysis of posterized images, c) reconstruction of three-dimensional objects from bitmapped images, d)cognitive technology of processing and interpretation of images. This stage is fundamentally new and it distinguishes suggested technology from all others. Automatic registration of allocation of experts` attention - registration of so-called "attention landscape" of experts - is the base of the technology. Landscapes of attention are, essentially, highly effective filters that cut off unnecessary information and emphasize exactly the factors used by an expert for making a decision. The technology based on denoted principles involves the next stages, which are implemented in corresponding program agents. Training mode -> Creation of base of ophthalmologic images (OI) -> Processing and making generalized OI (GOI) -> Mode of recognition and interpretation of unknown images. Training mode

  20. GROUND SURFACE VISUALIZATION USING RED RELIEF IMAGE MAP FOR A VARIETY OF MAP SCALES

    Directory of Open Access Journals (Sweden)

    T. Chiba

    2016-06-01

    Full Text Available There are many methods to express topographical features of ground surface. In which, contour map has been the traditional method and along with development of digital data, surface model such as shaded relief map has been using for ground surface expression. Recently, data acquisition has been developed very much quick, demanding more advanced visualization method to express ground surface so as to effectively use the high quality data. In this study, the authors using the Red Relief Image Map (RRIM, Chiba et al., 2008 to express ground surface visualization for a variety of map scales. The authors used 30 m mesh data of SRTM to show the topographical features of western Mongolian and micro-topographical features of ground surface in tectonically active regions of Japan. The results show that, compared to traditional and other similar methods, the RRIM can express ground surface more precisely and 3-dimensionally, suggested its advanced usage for many fields of topographical visualization.

  1. Ground Surface Visualization Using Red Relief Image Map for a Variety of Map Scales

    Science.gov (United States)

    Chiba, T.; Hasi, B.

    2016-06-01

    There are many methods to express topographical features of ground surface. In which, contour map has been the traditional method and along with development of digital data, surface model such as shaded relief map has been using for ground surface expression. Recently, data acquisition has been developed very much quick, demanding more advanced visualization method to express ground surface so as to effectively use the high quality data. In this study, the authors using the Red Relief Image Map (RRIM, Chiba et al., 2008) to express ground surface visualization for a variety of map scales. The authors used 30 m mesh data of SRTM to show the topographical features of western Mongolian and micro-topographical features of ground surface in tectonically active regions of Japan. The results show that, compared to traditional and other similar methods, the RRIM can express ground surface more precisely and 3-dimensionally, suggested its advanced usage for many fields of topographical visualization.

  2. Color image encryption based on Coupled Nonlinear Chaotic Map

    Energy Technology Data Exchange (ETDEWEB)

    Mazloom, Sahar [Faculty of Electrical, Computer and IT Engineering, Qazvin Islamic Azad University, Qazvin (Iran, Islamic Republic of)], E-mail: sahar.mazloom@gmail.com; Eftekhari-Moghadam, Amir Masud [Faculty of Electrical, Computer and IT Engineering, Qazvin Islamic Azad University, Qazvin (Iran, Islamic Republic of)], E-mail: eftekhari@qazviniau.ac.ir

    2009-11-15

    Image encryption is somehow different from text encryption due to some inherent features of image such as bulk data capacity and high correlation among pixels, which are generally difficult to handle by conventional methods. The desirable cryptographic properties of the chaotic maps such as sensitivity to initial conditions and random-like behavior have attracted the attention of cryptographers to develop new encryption algorithms. Therefore, recent researches of image encryption algorithms have been increasingly based on chaotic systems, though the drawbacks of small key space and weak security in one-dimensional chaotic cryptosystems are obvious. This paper proposes a Coupled Nonlinear Chaotic Map, called CNCM, and a novel chaos-based image encryption algorithm to encrypt color images by using CNCM. The chaotic cryptography technique which used in this paper is a symmetric key cryptography with a stream cipher structure. In order to increase the security of the proposed algorithm, 240 bit-long secret key is used to generate the initial conditions and parameters of the chaotic map by making some algebraic transformations to the key. These transformations as well as the nonlinearity and coupling structure of the CNCM have enhanced the cryptosystem security. For getting higher security and higher complexity, the current paper employs the image size and color components to cryptosystem, thereby significantly increasing the resistance to known/chosen-plaintext attacks. The results of several experimental, statistical analysis and key sensitivity tests show that the proposed image encryption scheme provides an efficient and secure way for real-time image encryption and transmission.

  3. CMOS Imaging Sensor Technology for Aerial Mapping Cameras

    Science.gov (United States)

    Neumann, Klaus; Welzenbach, Martin; Timm, Martin

    2016-06-01

    In June 2015 Leica Geosystems launched the first large format aerial mapping camera using CMOS sensor technology, the Leica DMC III. This paper describes the motivation to change from CCD sensor technology to CMOS for the development of this new aerial mapping camera. In 2002 the DMC first generation was developed by Z/I Imaging. It was the first large format digital frame sensor designed for mapping applications. In 2009 Z/I Imaging designed the DMC II which was the first digital aerial mapping camera using a single ultra large CCD sensor to avoid stitching of smaller CCDs. The DMC III is now the third generation of large format frame sensor developed by Z/I Imaging and Leica Geosystems for the DMC camera family. It is an evolution of the DMC II using the same system design with one large monolithic PAN sensor and four multi spectral camera heads for R,G, B and NIR. For the first time a 391 Megapixel large CMOS sensor had been used as PAN chromatic sensor, which is an industry record. Along with CMOS technology goes a range of technical benefits. The dynamic range of the CMOS sensor is approx. twice the range of a comparable CCD sensor and the signal to noise ratio is significantly better than with CCDs. Finally results from the first DMC III customer installations and test flights will be presented and compared with other CCD based aerial sensors.

  4. AUTOMATED CONSTRUCTION OF COVERAGE CATALOGUES OF ASTER SATELLITE IMAGE FOR URBAN AREAS OF THE WORLD

    Directory of Open Access Journals (Sweden)

    H. Miyazaki

    2012-07-01

    Full Text Available We developed an algorithm to determine a combination of satellite images according to observation extent and image quality. The algorithm was for testing necessity for completing coverage of the search extent. The tests excluded unnecessary images with low quality and preserve necessary images with good quality. The search conditions of the satellite images could be extended, indicating the catalogue could be constructed with specified periods required for time series analysis. We applied the method to a database of metadata of ASTER satellite images archived in GEO Grid of National Institute of Advanced Industrial Science and Technology (AIST, Japan. As indexes of populated places with geographical coordinates, we used a database of 3372 populated place of more than 0.1 million populations retrieved from GRUMP Settlement Points, a global gazetteer of cities, which has geographical names of populated places associated with geographical coordinates and population data. From the coordinates of populated places, 3372 extents were generated with radiuses of 30 km, a half of swath of ASTER satellite images. By merging extents overlapping each other, they were assembled into 2214 extents. As a result, we acquired combinations of good quality for 1244 extents, those of low quality for 96 extents, incomplete combinations for 611 extents. Further improvements would be expected by introducing pixel-based cloud assessment and pixel value correction over seasonal variations.

  5. Bottom Topographic Changes of Poyang Lake During Past Decade Using Multi-temporal Satellite Images

    Science.gov (United States)

    Zhang, S.

    2015-12-01

    Poyang Lake, as a well-known international wetland in the Ramsar Convention List, is the largest freshwater lake in China. It plays crucial ecological role in flood storage and biological diversity. Poyang Lake is facing increasingly serious water crises, including seasonal dry-up, decreased wetland area, and water resource shortage, all of which are closely related to progressive bottom topographic changes over recent years. Time-series of bottom topography would contribute to our understanding of the lake's evolution during the past several decades. However, commonly used methods for mapping bottom topography fail to frequently update quality bathymetric data for Poyang Lake restricted by weather and accessibility. These deficiencies have limited our ability to characterize the bottom topographic changes and understanding lake erosion or deposition trend. To fill the gap, we construct a decadal bottom topography of Poyang Lake with a total of 146 time series medium resolution satellite images based on the Waterline Method. It was found that Poyang Lake has eroded with a rate of -14.4 cm/ yr from 2000 to 2010. The erosion trend was attributed to the impacts of human activities, especially the operation of the Three Gorge Dams, sand excavation, and the implementation of water conservancy project. A decadal quantitative understanding bottom topography of Poyang Lake might provide a foundation to model the lake evolutionary processes and assist both researchers and local policymakers in ecological management, wetland protection and lake navigation safety.

  6. Retreat of glaciers on Puncak Jaya, Irian Jaya, determined from 2000 and 2002 IKONOS satellite images

    Science.gov (United States)

    Klein, Andrew G.; Kincaid, Joni L.

    Puncak Jaya, Irian Jaya, Indonesia, contains the only remaining tropical glaciers in East Asia. The extent of the ice masses on Puncak Jaya has been mapped from high-resolution IKONOS satellite images acquired on 8 June 2000 and 11 June 2002. Exclusive of Southwall Hanging Glacier, the ice extent on Puncak Jaya was 2.326 km2 and 2.152 km2 in 2000 and 2002, respectively. From 2000 to 2002, the Puncak Jaya glaciers lost a surface area of 0.174 km2 or 7.48% of their 2000 ice extent. Comparison of the IKONOS-based glacier extents with previous glacier extents demonstrates a continuing reduction of ice area on Puncak Jaya. By 2000, ice extent on Puncak Jaya had reduced by 88% of its maximum neoglacial extent. Between 1992 and 2000 Meren Glacier disappeared entirely. All remaining ice masses on Puncak Jaya continue their retreat from their neoglacial maxima. Comparison of 2000/2002 ice extents with previous extents suggests that these glaciers have not experienced accelerating rates of retreat during the last half of the 20th century. If the recession rates observed from 2000 to 2002 continue, the remaining ice masses on Puncak Jaya will melt within 50 years.

  7. Repeat optical satellite images reveal widespread and long term decrease in land-terminating glacier speeds

    Directory of Open Access Journals (Sweden)

    T. Heid

    2012-04-01

    Full Text Available By matching of repeat optical satellite images it is now possible to investigate glacier dynamics within large regions of the world and also between regions to improve knowledge about glacier dynamics in space and time. In this study we investigate whether the negative glacier mass balance seen over large parts of the world has caused the glaciers to change their speeds. The studied regions are Pamir, Caucasus, Penny Ice Cap, Alaska Range and Patagonia. In addition we derive speed changes for Karakoram, a region assumed to have positive mass balance and that contains many surge-type glaciers. We find that the mapped glaciers in the five regions with negative mass balance have over the last decades decreased their velocity at an average rate per decade of: 43 % in the Pamir, 8 % in the Caucasus, 25 % on Penny Ice Cap, 11 % in the Alaska Range and 20 % in Patagonia. Glaciers in Karakoram have generally increased their speeds, but surging glaciers and glaciers with flow instabilities are most prominent in this area. Therefore the calculated average speed change is not representative for this area.

  8. The Compact High Resolution Imaging Spectrometer (CHRIS): the future of hyperspectral satellite sensors. Imagery of Oostende coastal and inland waters

    OpenAIRE

    B. De Mol; Ruddick, K

    2004-01-01

    The gap between airborne imaging spectroscopy and traditional multi spectral satellite sensors is decreasing thanks to a new generation of satellite sensors of which CHRIS mounted on the small and low-cost PROBA satellite is the prototype. Although image acquisition and analysis are still in a test phase, the high spatial and spectral resolution and pointability have proved their potential. Because of the high resolution small features, which were before only visible on airborne images, becom...

  9. Adaptive Optics for Satellite and Debris Imaging in LEO and GEO

    Science.gov (United States)

    Copeland, M.; Bennet, F.; Zovaro, A.; Riguat, F.; Piatrou, P.; Korkiakoski, V.; Smith, C.

    2016-09-01

    The Research School of Astronomy and Astrophysics (RSAA) at the Australian National University has developed and Adaptive Optics (AO) system for satellite and debris imaging in low Earth orbit (LEO) and geostationary orbit (GEO). In LEO the size, shape and orientation of objects will be measured with resolution of 50 cm for objects at 800 km range at an 800 nm imaging wavelength. In GEO satellite position will be measured using precision astrometry of nearby stars. We use an AO system with a deformable mirror (DM) of 277 actuators and Shack-Hartmann wavefront sensor operating at 2 kHz. Imaging is performed at a rate of >30 Hz to reduce image blur due to tip-tilt and rotation. We use two imaging modes; a high resolution mode to obtain Nyquist sampled images and a acquisition mode with 75 arcsecond field of view to aid in finding targets.

  10. Biomass prediction model in maize based on satellite images

    Science.gov (United States)

    Mihai, Herbei; Florin, Sala

    2016-06-01

    Monitoring of crops by satellite techniques is very useful in the context of precision agriculture, regarding crops management and agricultural production. The present study has evaluated the interrelationship between maize biomass production and satellite indices (NDVI and NDBR) during five development stages (BBCH code), highlighting different levels of correlation. Biomass production recorded was between 2.39±0.005 t ha-1 (12-13 BBCH code) and 51.92±0.028 t ha-1 (83-85 BBCH code), in relation to vegetation stages studied. Values of chlorophyll content ranged from 24.1±0.25 SPAD unit (12-13 BBCH code) to 58.63±0.47 SPAD unit (71-73 BBCH code), and the obtained satellite indices ranged from 0.035641±0.002 and 0.320839±0.002 for NDVI indices respectively 0.035095±0.034 and 0.491038±0.018 in the case of NDBR indices. By regression analysis it was possible to obtain predictive models of biomass in maize based on the satellite indices, in statistical accurate conditions. The most accurate prediction was possible based on NDBR index (R2 = 0.986, F = 144.23, p<0.001, RMSE = 1.446), then based on chlorophyll content (R2 = 0.834, F = 16.14, p = 0.012, RMSE = 6.927) and NDVI index (R2 = 0.682, F = 3.869, p = 0.116, RMSE = 12.178).

  11. Surface rupture and slip distribution of the 2016 Mw7.8 Kaikoura earthquake (New Zealand) from optical satellite image correlation using MicMac

    Science.gov (United States)

    Champenois, Johann; Klinger, Yann; Grandin, Raphaël; Satriano, Claudio; Baize, Stéphane; Delorme, Arthur; Scotti, Oona

    2017-04-01

    Remote sensing techniques, like optical satellite image correlation, are very efficient methods to localize and quantify surface displacements due to earthquakes. In this study, we use the french sub-pixel correlator MicMac (Multi Images Correspondances par Méthodes Automatiques de Corrélation). This free open-source software, developed by IGN, was recently adapted to process satellite images. This correlator uses regularization, and that provides good results especially in near-fault area with a high spatial resolution. We use co-seismic pair of ortho-images to measure the horizontal displacement field during the recent 2016 Mw7.8 Kaikoura earthquake. Optical satellite images from different satellites are processed (Sentinel-2A, Landsat8, etc.) to present a dense map of the surface ruptures and to analyze high density slip distribution along all major ruptures. We also provide a detail pattern of deformation along these main surface ruptures. Moreover, 2D displacement from optical correlation is compared to co-seismic measurements from GPS, static displacement from accelerometric records, geodetic marks and field investigations. Last but not least, we investigate the reconstruction of 3D displacement from combining InSAR, GPS and optic.

  12. Nightfire method to track volcanic eruptions from multispectral satellite images

    Science.gov (United States)

    Trifonov, Grigory; Zhizhin, Mikhail; Melnikov, Dmitry

    2016-04-01

    This work presents the first results of an application of the Nightfire hotspot algorithm towards volcano activity detection. Nightfire algorithm have been developed to play along with a Suomi-NPP polar satellite launched in 2011, which has a new generation multispectral VIIRS thermal sensor on board, to detect gas flares related to the upstream and downstream production of oil and natural gas. Simultaneously using of nighttime data in SWIR, MWIR, and LWIR sensor bands the algorithm is able to estimate the hotspot temperature, size and radiant heat. Four years of non-filtered observations have been accumulated in a spatio-temporal detection database, which currently totals 125 GB in size. The first part of this work presents results of retrospective cross-match of the detection database with the publicly available observed eruptions databases. The second part discusses how an approximate 3D shape of a lava lake could be modeled based on the apparent source size and satellite zenith angle. The third part presents the results of fusion Landsat-8 and Himawari-8 satellites data with the VIIRS Nightfire for several active volcanoes.

  13. Forest Tree Species Distribution Mapping Using Landsat Satellite Imagery and Topographic Variables with the Maximum Entropy Method in Mongolia

    Science.gov (United States)

    Hao Chiang, Shou; Valdez, Miguel; Chen, Chi-Farn

    2016-06-01

    Forest is a very important ecosystem and natural resource for living things. Based on forest inventories, government is able to make decisions to converse, improve and manage forests in a sustainable way. Field work for forestry investigation is difficult and time consuming, because it needs intensive physical labor and the costs are high, especially surveying in remote mountainous regions. A reliable forest inventory can give us a more accurate and timely information to develop new and efficient approaches of forest management. The remote sensing technology has been recently used for forest investigation at a large scale. To produce an informative forest inventory, forest attributes, including tree species are unavoidably required to be considered. In this study the aim is to classify forest tree species in Erdenebulgan County, Huwsgul province in Mongolia, using Maximum Entropy method. The study area is covered by a dense forest which is almost 70% of total territorial extension of Erdenebulgan County and is located in a high mountain region in northern Mongolia. For this study, Landsat satellite imagery and a Digital Elevation Model (DEM) were acquired to perform tree species mapping. The forest tree species inventory map was collected from the Forest Division of the Mongolian Ministry of Nature and Environment as training data and also used as ground truth to perform the accuracy assessment of the tree species classification. Landsat images and DEM were processed for maximum entropy modeling, and this study applied the model with two experiments. The first one is to use Landsat surface reflectance for tree species classification; and the second experiment incorporates terrain variables in addition to the Landsat surface reflectance to perform the tree species classification. All experimental results were compared with the tree species inventory to assess the classification accuracy. Results show that the second one which uses Landsat surface reflectance coupled

  14. FOREST TREE SPECIES DISTRIBUTION MAPPING USING LANDSAT SATELLITE IMAGERY AND TOPOGRAPHIC VARIABLES WITH THE MAXIMUM ENTROPY METHOD IN MONGOLIA

    Directory of Open Access Journals (Sweden)

    S. H. Chiang

    2016-06-01

    Full Text Available Forest is a very important ecosystem and natural resource for living things. Based on forest inventories, government is able to make decisions to converse, improve and manage forests in a sustainable way. Field work for forestry investigation is difficult and time consuming, because it needs intensive physical labor and the costs are high, especially surveying in remote mountainous regions. A reliable forest inventory can give us a more accurate and timely information to develop new and efficient approaches of forest management. The remote sensing technology has been recently used for forest investigation at a large scale. To produce an informative forest inventory, forest attributes, including tree species are unavoidably required to be considered. In this study the aim is to classify forest tree species in Erdenebulgan County, Huwsgul province in Mongolia, using Maximum Entropy method. The study area is covered by a dense forest which is almost 70% of total territorial extension of Erdenebulgan County and is located in a high mountain region in northern Mongolia. For this study, Landsat satellite imagery and a Digital Elevation Model (DEM were acquired to perform tree species mapping. The forest tree species inventory map was collected from the Forest Division of the Mongolian Ministry of Nature and Environment as training data and also used as ground truth to perform the accuracy assessment of the tree species classification. Landsat images and DEM were processed for maximum entropy modeling, and this study applied the model with two experiments. The first one is to use Landsat surface reflectance for tree species classification; and the second experiment incorporates terrain variables in addition to the Landsat surface reflectance to perform the tree species classification. All experimental results were compared with the tree species inventory to assess the classification accuracy. Results show that the second one which uses Landsat surface

  15. Satellite Imagery Cadastral Features Extractions using Image Processing Algorithms: A Viable Option for Cadastral Science

    Directory of Open Access Journals (Sweden)

    Usman Babawuro

    2012-07-01

    Full Text Available Satellite images are used for feature extraction among other functions. They are used to extract linear features, like roads, etc. These linear features extractions are important operations in computer vision. Computer vision has varied applications in photogrammetric, hydrographic, cartographic and remote sensing tasks. The extraction of linear features or boundaries defining the extents of lands, land covers features are equally important in Cadastral Surveying. Cadastral Surveying is the cornerstone of any Cadastral System. A two dimensional cadastral plan is a model which represents both the cadastral and geometrical information of a two dimensional labeled Image. This paper aims at using and widening the concepts of high resolution Satellite imagery data for extracting representations of cadastral boundaries using image processing algorithms, hence minimizing the human interventions. The Satellite imagery is firstly rectified hence establishing the satellite imagery in the correct orientation and spatial location for further analysis. We, then employ the much available Satellite imagery to extract the relevant cadastral features using computer vision and image processing algorithms. We evaluate the potential of using high resolution Satellite imagery to achieve Cadastral goals of boundary detection and extraction of farmlands using image processing algorithms. This method proves effective as it minimizes the human demerits associated with the Cadastral surveying method, hence providing another perspective of achieving cadastral goals as emphasized b