SATELLITE GRAVITY SURVEYING TECHNOLOGY AND RESEARCH OF EARTH'S GRAVITY FIELD
Institute of Scientific and Technical Information of China (English)
Ning Jinsheng
2003-01-01
This is a summarized paper. Two topics are discussed: Firstly, the concept, development and application of four kinds of satellite gravity surveying technology are introduced; Secondly, some problems of theory and method, which must be considered in the study of the Earth's gravity field based on satellite gravity data, are expounded.
The Gravity Fields of the Saturnian Satellites
Iess, L.
2011-12-01
In its tour of the Saturnian system, begun on July 1st, 2004, the Cassini spacecraft had many close flybys of Saturn's main satellites. However, due to impossibility to carry out simultaneously remote sensing observations and microwave tracking from ground, only a small fraction of those flybys could be exploited for gravity measurements. So far, the quadrupole field has been mapped only for Titan, Rhea and Enceladus, while for Hyperion and Iapetus the mass was the only accessible parameter. For Titan and Enceladus, the only satellites targeted more than once for gravity observations, also a rough geoid to degree and order 3 has been determined. Satellite gravity investigations rely upon accurate measurements of the spacecraft range rate, enabled by coherent, two-way radio links at X and Ka band (8.4 and 32.5 GHz). The use of hydrogen masers frequency standards at the ground station and the consid-erable suppression of plasma noise at X and Ka band frequen-cies provide range rate accuracies of 10-30 micron/s at integra-tion times of 60 s. Thanks to the higher frequency of the radio link, these measurement accuracies are in the average a factor of 10 better than those attained by Galileo in its tour of the Jovian system. However, in order to attain a reliable determination of the low degree field, good measurements must be combined with appropriate flyby geometries and adequate sampling, a condition that necessarily requires multiple flybys. We review the main results obtained so far by Cassini for Titan, Rhea and Enceladus, and discuss the methods of analysis used by the Radio Science Team.
Satellite orbit determination and gravity field recovery from satellite-to-satellite tracking
Wakker, K. F.; Ambrosius, B. A. C.; Leenman, H.
1989-07-01
Studies on satellite-to-satellite tracking (SST) with POPSAT (a geodetic satellite concept) and a ERS-class (Earth observation) satellite, a Satellite-to-Satellite Tracking (SST) gravity mission, and precise gravity field determination methods and mission requirements are reported. The first two studies primarily address the application of SST between the high altitude POPSAT and an ERS-class or GRM (Geopotential Research Mission) satellite to the orbit determination of the latter two satellites. Activities focussed on the determination of the tracking coverage of the lower altitude satellite by ground based tracking systems and by POPSAT, orbit determination error analysis and the determination of the surface forces acting on GRM. The third study surveys principles of SST, uncertainties of existing drag models, effects of direct luni-solar attraction and tides on orbit and the gravity gradient observable. Detailed ARISTOTELES (which replaced POPSAT) orbit determination error analyses were performed for various ground based tracking networks.
Global gravity field recovery from the ARISTOTELES satellite mission
Visser, P. N. A. M.; Wakker, K. F.; Ambrosius, B. A. C.
1994-02-01
One of the primary objectives of the future ARISTOTELES satellite mission is to map Earth's gravity field with high resolution and accuracy. In order to achieve this objective, the ARISTOTELES satellite will be equipped with a gravity gradiometer and a Global Positioning System (GPS) receiver. Global gravity field error analyses have been performed for several combinations of gradiometer and GPS observations. These analyses indicated that the bandwidth limitation of the gradiometer prevents a stable high-accuracy, high-resolution gravity solution if no additional information is available. However, with the addition of high-accuracy GPS observations, a stable gravity field solution can be obtained. A combination of the measurements acquired by the high-quality GPS receiver and the bandwidth-limited gradiometer on board ARISTOTELES will yield a global gravity field model with a resolution of less than 100 km and with an accuracy of better than 5 mGal for gravity anomalies and 10 cm for geoid undulations.
SATELLITE GRAVITY SURVEYING TECHNOLOGY AND RESEARCH OF EARTH＇S GRAVITY FIELD
Institute of Scientific and Technical Information of China (English)
NingJinsheng
2003-01-01
This is a summarized paper.Two topics are discussed:Firstly,the comcept,development and application of four kinds of satellite gravity surveying technology are introduced；Secondly,some problems of theory and method,which must be considered in the study lf the Earth's gravity field based on satellite gravity data,are expounded.
Gravity Fields and Interiors of the Saturnian Satellites
Rappaport, N. J.; Armstrong, J. W.; Asmar, Sami W.; Iess, L.; Tortora, P.; Somenzi, L.; Zingoni, F.
2006-01-01
This viewgraph presentation reviews the Gravity Science Objectives and accomplishments of the Cassini Radio Science Team: (1) Mass and density of icy satellites (2) Quadrupole field of Titan and Rhea (3) Dynamic Love number of Titan (4) Moment of inertia of Titan (in collaboration with the Radar Team) (5) Gravity field of Saturn. The proposed measurements for the extended tour are: (1) Quadrupole field of Enceladus (2) More accurate measurement of Titan k2 (3) Local gravity/topography correlations for Iapetus (4) Verification/disproof of "Pioneer anomaly".
Time-variable gravity fields from satellite tracking
Bettadpur, Srinivas; Cheng, Minkang; Ries, John
2014-05-01
At the University of Texas Center for Space Research (CSR), we routinely deliver time-series of Earth's gravity field variations, some of it spanning more than two decades. These time-series are derived - in a consistent manner - from satellite laser ranging (SLR) data, from low-Earth orbiters tracked using GPS, and from low-low satellite to satellite tracking data from GRACE. In this paper, we review the information content in the gravity field time-series derived from each of these methods. We provide a comparison of the time-series at the decadal and annual time-scales, and identify the spatial modes of variability that are well or poorly estimated by each of the observing systems. The results have important bearing on the prospects of extending GRACE time-variable gravity time-series in the event of gaps between dedicated gravity missions, and for extending the time-series into the past. Support for this research from joint NASA/DLR GRACE mission, the NASA MEASURs program, and the NASA ROSES/GRACE Science Team is gratefully acknowledged.
The gravity field of the Saturnian satellites Enceladus and Dione
Iess, L.; Jacobson, R.; Ducci, M.; Stevenson, D. J.; Lunine, J. I.; Armstrong, J. W.; Asmar, S.; Racioppa, P.; Rappaport, N. J.; Tortora, P.
2012-12-01
Enceladus and Dione are the innermost moons of the Saturnian system visited by the spacecraft Cassini for gravity investigations. The small surface gravity (0.11 and 0.23 m/s2 respectively for Enceladus and Dione), the short duration of the gravitational interaction and the small number of available flybys (three for Enceladus and just one for Dione) make the determination of their gravity field particularly challenging. In spite of these limitations, we have measured the low degree gravity field of both satellites with sufficient accuracy to draw preliminary geophysical conclusions. The estimation relied primarily on precise range rate data, whose accuracy reached 10 micron/s at 60 s integration times under favorable conditions. In order to disentangle the effects of the spacecraft orbit, the satellite orbit and the satellite gravity, tracking coverage is required not only across closest approach, but also days before and after the flyby. The dynamical model used for the fits includes all relevant gravitational perturbations and the main non-gravitational accelerations (Cassini RTG's anisotropic thermal emission, solar radiation pressure). In addition to the gravity field coefficients a correction to the orbit of the spacecraft and the satellites was also estimated. The first and so far only Dione's flyby with tracking at closest approach occurred on December 12, 2011, at an altitude of 99 km. (A second gravity flyby is scheduled in 2015.) Although the low solar elongation angle caused a significant increase of the plasma noise in Doppler data, the low spacecraft altitude at closest approach and the otherwise favorable geometry allowed an estimation of the harmonic coefficients J2 and C22 to a relative accuracy below 2%. We have produced, in addition to an unconstrained estimate, a second solution where the quadrupole field is constrained by the requirement of hydrostaticity. Doppler residuals are unbiased and consistent with the expected noise in both cases. When
Contribution of satellite laser ranging to combined gravity field models
Maier, A.; Krauss, S.; Hausleitner, W.; Baur, O.
2012-02-01
In the framework of satellite-only gravity field modeling, satellite laser ranging (SLR) data is typically exploited to recover long-wavelength features. This contribution provides a detailed discussion of the SLR component of GOCO02S, the latest release of combined models within the GOCO series. Over a period of five years (January 2006 to December 2010), observations to LAGEOS-1, LAGEOS-2, Ajisai, Stella, and Starlette were analyzed. We conducted a series of closed-loop simulations and found that estimating monthly sets of spherical harmonic coefficients beyond degree five leads to exceedingly ill-posed normal equation systems. Therefore, we adopted degree five as the spectral resolution for real data analysis. We compared our monthly coefficient estimates of degree two with SLR and Gravity Recovery and Climate Experiment (GRACE) time series provided by the Center for Space Research (CSR) at Austin, Texas. Significant deviations in C20 were noted between SLR and GRACE; the agreement is better for the non-zonal coefficients. Fitting sinusoids together with a linear trend to our C20 time series yielded a rate of (-1.75 ± 0.6) × 10-11/yr; this drift is equivalent to a geoid change from pole to equator of 0.35 ± 0.12 mm/yr or an apparent Greenland mass loss of 178.5 ± 61.2 km3/yr. The mean of all monthly solutions, averaged over the five-year period, served as input for the satellite-only model GOCO02S. The contribution of SLR to the combined gravity field model is highest for C20, and hence is essential for the determination of the Earth's oblateness.
The use of satellites in gravity field determination and model adjustment
Visser, Petrus Nicolaas Anna Maria
1992-06-01
Methods to improve gravity field models of the Earth with available data from satellite observations are proposed and discussed. In principle, all types of satellite observations mentioned give information of the satellite orbit perturbations and in conjunction the Earth's gravity field, because the satellite orbits are affected most by the Earth's gravity field. Therefore, two subjects are addressed: representation forms of the gravity field of the Earth and the theory of satellite orbit perturbations. An analytical orbit perturbation theory is presented and shown to be sufficiently accurate for describing satellite orbit perturbations if certain conditions are fulfilled. Gravity field adjustment experiments using the analytical orbit perturbation theory are discussed using real satellite observations. These observations consisted of Seasat laser range measurements and crossover differences, and of Geosat altimeter measurements and crossover differences. A look into the future, particularly relating to the ARISTOTELES (Applications and Research Involving Space Techniques for the Observation of the Earth's field from Low Earth Orbit Spacecraft) mission, is given.
The role of satellite altimetry in gravity field modelling in coastal areas
DEFF Research Database (Denmark)
Andersen, Ole Baltazar; Knudsen, Per
2000-01-01
During recent years altimetry from the two geodetic missions of GEOSAT and ERS-1 has enabled the derivation of high resolution near global gravity field from altimetry [Andersen and Knudsen, 1995, 1996; Sandwell and Smith, 1997]. Altimetric gravity fields are unique in the sense that they provide...... global uniform gravity information with very high resolution, and these global marine gravity fields are registered on a two by two minute grid corresponding to 4 by 4 kilometres at the equator. In this presentation several coastal complications in deriving the marine gravity field from satellite...... altimetry will be investigated using the KMS98 gravity field. Comparison with other sources of gravity field information like airborne and marine gravity observations will be carried out and two fundamentally different test areas (Azores and Skagerak) will be studied to investigated the different role...
The Earth's gravity field from satellite geodesy - a 30 year adventure.
Rapp, R. H.
1991-12-01
The first information on the Earth's gravitational field from artificial satellite observations was published in 1958. The next years have seen a dramatic improvement in the resolution and accuracy of the series representation of the Earth's gravity field. The improvements have taken place slowly taking advantage of improved measurement accuracy and the increasing number of satellites. The proposed ARISTOTELES mission would provide the opportunity to take a significant leap in improving our knowledge of the Earth's gravity field.
Efficient GOCE satellite gravity field recovery based on least-squares using QR decomposition
Baur, O.; Austen, G.; Kusche, J.
2007-01-01
We develop and apply an efficient strategy for Earth gravity field recovery from satellite gravity gradiometry data. Our approach is based upon the Paige-Saunders iterative least-squares method using QR decomposition (LSQR). We modify the original algorithm for space-geodetic applications: firstly,
Antarctic marine gravity field from high-density satellite altimetry
Sandwell, David T.
1992-01-01
High-density (about 2-km profile spacing) Geosat/GM altimetry profiles were obtained for Antarctic waters (6-deg S to 72 deg S) and converted to vertical gravity gradient, using Laplace's equation to directly calculate gravity gradient from vertical deflection grids and Fourier analysis to construct gravity anomalies from two vertical deflection grids. The resultant gravity grids have resolution and accuracy comparable to shipboard gravity profiles. The obtained gravity maps display many interesting and previously uncharted features, such as a propagating rift wake and a large 'leaky transform' along the Pacific-Antarctic Rise.
The Earth's gravity field from satellite geodesy: A 30 year adventure
Rapp, Richard H.
1991-12-01
The history of research in the Earth's gravity field from satellite geodesy is described and limitations of existing geopotential models are indicated. Although current solutions have made outstanding achievements, their limited accuracy restricts their use for some oceanographic applications. An example is discussed where there appears to be an incompatibility of the long wavelength geoid undulation obtained through satellite analysis with independent estimates that have become available. The future Aristoteles mission is seen as providing a significant leap in Earth gravity field knowledge improvement.
Drag-Free Motion Control of Satellite for High-Precision Gravity Field Mapping
DEFF Research Database (Denmark)
2002-01-01
, sensors, actuators and environmental disturbances to the required micro-Newton accuracy. A control system is designed to compensate the non-gravitational disturbances on the satellite in three axes using an H∞-design. Performance is validated against mission requirements. Keywords: Spacecraft Attitude......High precision mapping of the geoid and the Earth's gravity field are of importance to a wide range of ongoing studies in areas like ocean circulation, solid Earth physics and ice sheet dynamics. Using a satellite in orbit around the Earth gives the opportunity to map the Earth's gravity field in 3...... dimensions with much better accuracy and spatial resolution than ever accomplished. To reach the desired quality of measurements, the satellite must fly in a low Earth orbit where disturbances from atmospheric drag and the Earth's magnetic field will perturb the satellite's motion. These effects...
The DNSC08GRA global marine gravity field from double retracked satellite altimetry
DEFF Research Database (Denmark)
Andersen, Ole Baltazar; Knudsen, Per; Berry, P.A.M.
2010-01-01
Satellite radar altimetry has been monitoring the earth's oceans from space for several decades. However, only the GEOSAT and ERS-1 geodetic mission data recorded more than a decade ago provide altimetry with adequate spatial coverage to derive a high-resolution marine gravity field. The original...
Energy integral method for gravity field determination from satellite orbit coordinates
Visser, P.N.A.M.; Sneeuw, N.; Gerlach, C.
2003-01-01
A fast iterative method for gravity field determination from low Earth satellite orbit coordinates has been developed and implemented successfully. The method is based on energy conservation and avoids problems related to orbit dynamics and initial state. In addition, the particular geometry of a re
Error analysis for satellite gravity field determination based on two-dimensional Fourier methods
Cai, Lin; Hsu, Houtse; Gao, Fang; Zhu, Zhu; Luo, Jun
2012-01-01
The time-wise and space-wise approaches are generally applied to data processing and error analysis for satellite gravimetry missions. But both the approaches, which are based on least-squares collocation, address the whole effect of measurement errors and estimate the resolution of gravity field models mainly from a numerical point of indirect view. Moreover, requirement for higher accuracy and resolution gravity field models could make the computation more difficult, and serious numerical instabilities arise. In order to overcome the problems, this study focuses on constructing a direct relationship between power spectral density of the satellite gravimetry measurements and coefficients of the Earth's gravity potential. Based on two-dimensional Fourier transform, the relationship is analytically concluded. By taking advantage of the analytical expression, it is efficient and distinct for parameter estimation and error analysis of missions. From the relationship and the simulations, it is analytically confir...
Directory of Open Access Journals (Sweden)
ZHOU Hao
2015-08-01
Full Text Available In order to solve the intensive computing tasks and high memory demand problem in satellite gravity field model inversion on the basis of huge amounts of satellite gravity observations, the parallel algorithm for high truncated order and degree satellite gravity field model inversion with least square method on the basis of MPI was introduced. After analyzing the time and space complexity of each step in the solving flow, the parallel I/O, block-organized storage and block-organized computation algorithm on the basis of MPI are introduced to design the parallel algorithm for building design matrix, establishing and solving normal equation, and the simulation results indicate that the parallel efficiency of building design matrix, establishing and solving normal equation can reach to 95%, 68%and 63% respectively. In addition, on the basis of GOCE simulated orbits and radial disturbance gravity gradient data(518 400 epochs in total, two earth gravity models truncated to degree and order 120, 240 are inversed, and the relative computation time and memory demand are only about 40 minutes and 7 hours, 290 MB and 1.57 GB respectively. Eventually, a simulation numerical calculation for earth gravity field model inversion with the simulation data, which has the equivalent noise level with GRACE and GOCE mission, is conducted. The accuracy of inversion model has a good consistent with current released model, and the combined mode can complement the spectral information of each individual mission, which indicates that the parallel algorithm in this paper can be applied to inverse the high truncated degree and order earth gravity model efficiently and stably.
Guo, X.; Ditmar, P.; Zhao, Q.; Klees, R.; Farahani, H. H.
2017-09-01
GPS data collected by satellite gravity missions can be used for extracting the long-wavelength part of the Earth's gravity field. We propose a new data processing method which makes use of the `average acceleration' approach to gravity field modelling. In this method, satellite accelerations are directly derived from GPS carrier phase measurements with an epoch-differenced scheme. As a result, no ambiguity solutions are needed and the systematic errors that do not change much from epoch to epoch are largely eliminated. The GPS data collected by the Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) satellite mission are used to demonstrate the added value of the proposed method. An analysis of the residual accelerations shows that accelerations derived in this way are more precise, with noise being reduced by about 20 and 5% at the cross-track component and the other two components, respectively, as compared to those based on kinematic orbits. The accelerations obtained in this way allow the recovery of the gravity field to a slightly higher maximum degree compared to the solution based on kinematic orbits. Furthermore, the gravity field solution has an overall better performance. Errors in spherical harmonic coefficients are smaller, especially at low degrees. The cumulative geoid height error is reduced by about 15 and 5% up to degree 50 and 150, respectively. An analysis in the spatial domain shows that large errors along the geomagnetic equator, which are caused by a high electron density coupled with large short-term variations, are substantially reduced. Finally, the new method allows for a better observation of mass transport signals. In particular, sufficiently realistic signatures of regional mass anomalies in North America and south-west Africa are obtained.
Guo, X.; Ditmar, P.; Zhao, Q.; Klees, R.; Farahani, H. H.
2017-02-01
GPS data collected by satellite gravity missions can be used for extracting the long-wavelength part of the Earth's gravity field. We propose a new data processing method which makes use of the `average acceleration' approach to gravity field modelling. In this method, satellite accelerations are directly derived from GPS carrier phase measurements with an epoch-differenced scheme. As a result, no ambiguity solutions are needed and the systematic errors that do not change much from epoch to epoch are largely eliminated. The GPS data collected by the Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) satellite mission are used to demonstrate the added value of the proposed method. An analysis of the residual accelerations shows that accelerations derived in this way are more precise, with noise being reduced by about 20 and 5% at the cross-track component and the other two components, respectively, as compared to those based on kinematic orbits. The accelerations obtained in this way allow the recovery of the gravity field to a slightly higher maximum degree compared to the solution based on kinematic orbits. Furthermore, the gravity field solution has an overall better performance. Errors in spherical harmonic coefficients are smaller, especially at low degrees. The cumulative geoid height error is reduced by about 15 and 5% up to degree 50 and 150, respectively. An analysis in the spatial domain shows that large errors along the geomagnetic equator, which are caused by a high electron density coupled with large short-term variations, are substantially reduced. Finally, the new method allows for a better observation of mass transport signals. In particular, sufficiently realistic signatures of regional mass anomalies in North America and south-west Africa are obtained.
Goossens, S.; Matsumoto, K.; Noda, H.; Araki, H.; Rowlands, D. D.; Lemoine, F. G.
2011-01-01
The SELENE mission, consisting of three separate satellites that use different terrestrial-based tracking systems, presents a unique opportunity to evaluate the contribution of these tracking systems to orbit determination precision. The tracking data consist of four-way Doppler between the main orbiter and one of the two sub-satellites while the former is over the far side, and of same-beam differential VLBI tracking between the two sub-satellites. Laser altimeter data are also used for orbit determination. The contribution to orbit precision of these different data types is investigated through orbit overlap analysis. It is shown that using four-way and VLBI data improves orbit consistency for all satellites involved by reducing peak values in orbit overlap differences that exist when only standard two-way Doppler and range data are used. Including laser altimeter data improves the orbit precision of the SELENE main satellite further, resulting in very smooth total orbit errors at an average level of 18m. The multi-satellite data have also resulted in improved lunar gravity field models, which are assessed through orbit overlap analysis using Lunar Prospector tracking data. Improvements over a pre-SELENE model are shown to be mostly in the along-track and cross-track directions. Orbit overlap differences are at a level between 13 and 21 m with the SELENE models, depending on whether l-day data overlaps or I-day predictions are used.
Rudenko, Sergei; Gruber, Christian
2016-04-01
This study makes use of current GFZ monthly and daily gravity field products from 2002 to 2014 based on radial basis functions (RBF) instead of time variable gravity field modeling for precise orbit determination of altimetry satellites. Since some monthly solutions are missing in the GFZ GRACE RL05a solution and in order to reach a better quality for the precise orbit determination, daily generated RBF solutions obtained from Kalman filtered GRACE data processing and interpolated in case of gaps have been used. Moreover, since the geopotential coefficients of low degrees are better determined using SLR observations to geodetic satellites like Lageos, Stella, Starlette and Ajisai than from GRACE observations, these terms are co-estimated in the RBF solutions by using apriori SLR-derived values up to degree and order 4. Precise orbits for altimetry satellites Envisat (2002-2012), Jason-1 (2002-2013) and Jason-2 (2008-2014) are then computed over the given time intervals using this approach and compared with the orbits obtained when using other models such as EIGEN-6S4. An analysis of the root-mean-square values of the observation fits of SLR and DORIS observations and the orbit arcs overlaps will allow us to draw a conclusion on the quality of the RBF solution and to use these new trajectories for sea level trend estimates and geophysical application.
Ditmar, P.; Teixeira da Encarnacao, J.; Hashemi Farahani, H.
2012-01-01
Spectral analysis of data noise is performed in the context of gravity field recovery from inter-satellite ranging measurements acquired by the satellite gravimetry mission GRACE. The motivation of the study is two-fold: (i) to promote a further improvement of GRACE data processing techniques and
Analysis of the Lunar Gravity Field by Using GL0660B Model and Its Effect on Lunar Satellite Orbit
Directory of Open Access Journals (Sweden)
HUANG Kunxue
2016-07-01
Full Text Available The lunar gravity field provides a way to research moon's evolution and probes the interior structure of the moon. It is an important factor influencing the lunar satellite precise orbit determination as well. The new lunar gravity model GL0660B from GRAIL mission dramatically improves the gravity spectrum and spectral ranges. Using the model GL0660B, it can be computed that the corresponding degree-wise RMS and correlation of topography, with which the quality of model GL0660B can be analyzed. Then different characters of the lunar gravity field comparing with other lunar gravity fields are analyzed. Besides, gravity anomaly distribution figures at different height of the models are given, and the character and difference of the lunar gravity models at different height are compared. In addition, lunar satellite orbit revolutionary at different height are modeled by GEODYN. The result shows that the trend of lunar satellite eccentricity changes is a complex and long cycle of change trend. It is different affected by the perturbation of the mascons of different height, which causes different changes of apolune, perilune and eccentricity.
Global gravity field models from the GPS positions of CHAMP, GRACE and GOCE satellites
Bezděk, A.; Sebera, J.; Klokočník, J.; Kostelecký, J.
2012-04-01
The aim of our work is to generate Earth's gravity field models from the GPS positions of low Earth orbiters. We will present our inversion method and numerical results based on the real-world data of CHAMP, GRACE and GOCE satellites. The presented inversion method is based on Newton's second law of motion, which relates the observed acceleration of the satellite with the forces acting on it. The vector of the observed acceleration is obtained through a numerical second-derivative filter applied to the time series of the kinematic positions. Forces other than those due to the geopotential are either modelled (lunisolar perturbations, tides) or provided by the onboard measurements (nongravitational perturbations). Then the observation equations are formulated using the gradient of the spherical harmonic expansion of the geopotential. From this linear system the harmonic coefficients are directly obtained. We do not use any a priori gravity field model. Although the basic scheme of the acceleration approach is straightforward, the implementation details play a crucial role in obtaining reasonable results. The numerical derivative of noisy data (here the GPS positions) strongly amplifies the high frequency noise and creates autocorrelation in the observation errors. We successfully solve both of these problems by using the generalized least squares method, which defines a linear transformation of the observation equations. In the transformed variables the errors become uncorrelated, so the ordinary least squares estimation may be used to find the regression parameters with correct estimates of their uncertainties. The digital filter of the second derivative is an approximation to the analytical operation. We will show how different the results might be depending on the particular choice of the parameters defining the filter. Another problem is the correlation of the errors in the GPS positions. Here we use the tools from time series analysis. The systematic behaviour
Burla, Santoshkumar; Mueller, Vitali; Flury, Jakob; Jovanovic, Nemanja
2016-04-01
CHAMP, GRACE and GOCE missions have been successful in the field of satellite geodesy (especially to improve Earth's gravity field models) and have established the necessity towards the next generation gravity field missions. Especially, GRACE has shown its capabilities beyond any other gravity field missions. GRACE Follow-On mission is going to continue GRACE's legacy which is almost identical to GRACE mission with addition of laser interferometry. But these missions are not only quite expensive but also takes quite an effort to plan and to execute. Still there are few drawbacks such as under-sampling and incapability of exploring new ideas within a single mission (ex: to perform different orbit configurations with multi satellite mission(s) at different altitudes). The budget is the major limiting factor to build multi satellite mission(s). Here, we offer a solution to overcome these drawbacks using cubesat/ nanosatellite mission. Cubesats are widely used in research because they are cheaper, smaller in size and building them is easy and faster than bigger satellites. Here, we design a 3D model of GRACE like mission with available sensors and explain how the Attitude and Orbit Control System (AOCS) works. The expected accuracies on final results of gravity field are also explained here.
Gravity field modelling and gravimetry
Directory of Open Access Journals (Sweden)
Krynski Jan
2015-12-01
Full Text Available The summary of research activities concerning gravity field modelling and gravimetric works performed in Poland in the period of 2011-2014 is presented. It contains the results of research on geoid modelling in Poland and other countries, evaluation of global geopotential models, determination of temporal variations of the gravity field with the use of data from satellite gravity space missions, absolute gravity surveys for the maintenance and modernization of the gravity control in Poland and overseas, metrological aspects in gravimetry, maintenance of gravimetric calibration baselines, and investigations of the nontidal gravity changes. The bibliography of the related works is given in references.
DEFF Research Database (Denmark)
Forsberg, René; Sideris, M.G.; Shum, C.K.
2005-01-01
The gravity field of the earth is a natural element of the Global Geodetic Observing System (GGOS). Gravity field quantities are like spatial geodetic observations of potential very high accuracy, with measurements, currently at part-per-billion (ppb) accuracy, but gravity field quantities are also...... unique as they can be globally represented by harmonic functions (long-wavelength geopotential model primarily from satellite gravity field missions), or based on point sampling (airborne and in situ absolute and superconducting gravimetry). From a GGOS global perspective, one of the main challenges...... is to ensure the consistency of the global and regional geopotential and geoid models, and the temporal changes of the gravity field at large spatial scales. The International Gravity Field Service, an umbrella "level-2" IAG service (incorporating the International Gravity Bureau, International Geoid Service...
Ditmar, P.G.; Kuznetsov, V.; Van Eck van der Sluis, A.A.; Schrama, E.; Klees, R.
2005-01-01
Performance of a recently proposed technique for gravity field modeling has been assessed with data from the CHAMP satellite. The modeling technique is a variant of the acceleration approach. It makes use of the satellite accelerations that are derived from the kinematic orbit with the 3-point
Institute of Scientific and Technical Information of China (English)
Zheng Wei; Hsu Hou-Tse; Zhong Min; Yun Mei-Juan
2012-01-01
The accuracy of the Earth's gravitational field measured from the gravity field and steady-state ocean circulation explorer (GOCE),up to 250 degrees,influenced by the radial gravity gradient Vzz and three-dimensional gravity gradient Vij from the satellite gravity gradiometry (SGG) are contrastively demonstrated based on the analytical error model and numerical simulation,respectively.Firstly,the new analytical error model of the cumulative geoid height,influenced by the radial gravity gradient Vzz and three-dimensional gravity gradient Vij are established,respectively.In 250 degrees,the GOCE cumulative geoid height error measured by the radial gravity gradient Vzz is about 21/2 times higher than that measured by the three-dimensional gravity gradient Vij. Secondly,the Earth's gravitational field from GOCE completely up to 250 degrees is recovered using the radial gravity gradient Vzz and three-dimensional gravity gradient Vij by numerical simulation,respectively.The study results show that when the measurement errorof the gravity gradient is 3 × 10-12/s2,the cumulative geoid height errors using the radial gravity gradient Vzz and three-dimensional gravity gradient Vij are 12.319 cm and 9.295 cm at 250 degrees,respectively.The accuracy of the cumulative geoid height using the three-dimensional gravity gradient Vij is improved by 30％-40％ on average compared with that using the radial gravity gradient Vzz in 250 degrees.Finally,by mutual verification of the analytical error model and numerical simulation,the orders of magnitude from the accuracies of the Earth's gravitational field recovery make no substantial differences based on the radial and three-dimensional gravity gradients,respectively.Therefore,it is feasible to develop in advance a radial cold-atom interferometric gradiometer with a measurement accuracy of 10-13/s2-10-15/s2 for precisely producing the next-generation GOCE Follow-On Earth gravity field model with a high spatial resolution.
DEFF Research Database (Denmark)
Forsberg, René; Sideris, M.G.; Shum, C.K.
2005-01-01
unique as they can be globally represented by harmonic functions (long-wavelength geopotential model primarily from satellite gravity field missions), or based on point sampling (airborne and in situ absolute and superconducting gravimetry). From a GGOS global perspective, one of the main challenges...
Huang, N. E.; Parsons, C. L.; Long, S. R.; Bliven, L. F.
1983-01-01
Wave breaking is proposed as the primary energy dissipation mechanism for the gravity wave field. The energy dissipation rate is calculated based on the statistical model proposed by Longuet-Higgins (1969) with a modification of the breaking criterion incorporating the surface stress according to Phillips and Banner (1974). From this modified model, an analytic expression is found for the wave attenuation rate and the half-life time of the wave field which depend only on the significant slope of the wave field and the ratio of friction velocity to initial wave phase velocity. These expressions explain why the freshly generated wave field does not last long, but why swells are capable of propagating long distances without substantial change in energy density. It is shown that breaking is many orders of magnitude more effective in dissipating wave energy than the molecular viscosity, if the significant slope is higher than 0.01. Limited observational data from satellite and laboratory are used to compare with the analytic results, and show good agreement.
Satellite gravity gradient grids for geophysics.
Bouman, Johannes; Ebbing, Jörg; Fuchs, Martin; Sebera, Josef; Lieb, Verena; Szwillus, Wolfgang; Haagmans, Roger; Novak, Pavel
2016-02-11
The Gravity field and steady-state Ocean Circulation Explorer (GOCE) satellite aimed at determining the Earth's mean gravity field. GOCE delivered gravity gradients containing directional information, which are complicated to use because of their error characteristics and because they are given in a rotating instrument frame indirectly related to the Earth. We compute gravity gradients in grids at 225 km and 255 km altitude above the reference ellipsoid corresponding to the GOCE nominal and lower orbit phases respectively, and find that the grids may contain additional high-frequency content compared with GOCE-based global models. We discuss the gradient sensitivity for crustal depth slices using a 3D lithospheric model of the North-East Atlantic region, which shows that the depth sensitivity differs from gradient to gradient. In addition, the relative signal power for the individual gradient component changes comparing the 225 km and 255 km grids, implying that using all components at different heights reduces parameter uncertainties in geophysical modelling. Furthermore, since gravity gradients contain complementary information to gravity, we foresee the use of the grids in a wide range of applications from lithospheric modelling to studies on dynamic topography, and glacial isostatic adjustment, to bedrock geometry determination under ice sheets.
Polar gravity fields from GOCE and airborne gravity
DEFF Research Database (Denmark)
Forsberg, René; Olesen, Arne Vestergaard; Yidiz, Hasan
2011-01-01
Airborne gravity, together with high-quality surface data and ocean satellite altimetric gravity, may supplement GOCE to make consistent, accurate high resolution global gravity field models. In the polar regions, the special challenge of the GOCE polar gap make the error characteristics...... of combination models especially sensitive to the correct merging of satellite and surface data. We outline comparisons of GOCE to recent airborne gravity surveys in both the Arctic and the Antarctic. The comparison is done to new 8-month GOCE solutions, as well as to a collocation prediction from GOCE gradients...... in Antarctica. It is shown how the enhanced gravity field solutions improve the determination of ocean dynamic topography in both the Arctic and in across the Drake Passage. For the interior of Antarctica, major airborne gravity programs are currently being carried out, and there is an urgent need...
Shallow-earth rheology from glacial isostasy and satellite gravity: a sensitivity analysis for GOCE
Schotman, H.H.A.
2008-01-01
In recent years, satellite gravity missions have been launched that probe the earth's long- to mediumwavelength (1000 - 500 km) gravity field. The upcoming ESA satellite gravity mission GOCE is predicted to measure the gravity field with an accuracy of a few centimeters at spatial scales of 100 km.
Global Lunar Gravity Field Recovery from SELENE
Matsumoto, Koji; Heki, Kosuke; Hanada, Hideo
2002-01-01
Results of numerical simulation are presented to examine the global gravity field recovery capability of the Japanese lunar exploration project SELENE (Selenological and Engineering Explorer) which will be launched in 2005. New characteristics of the SELENE lunar gravimetry include four-way satellite-to-satellite Doppler tracking of main orbiter and differential VLBI tracking of two small free-flier satellites. It is shown that planned satellites configuration will improve lunar gravity field in wide range of wavelength as well as far-side selenoid.
Chameleon gravity and satellite geodesy
Morris, J R
2014-01-01
We consider the possibility of the detection of a chameleon effect by an earth orbiting satellite such as LAGEOS, and possible constraints that might be placed on chameleon model parameters. Approximate constraints presented here result from using a simple monopole approximation for the gravitational field of the earth, along with results from the Khoury-Weltman chameleon model, solar system constraints obtained from the Cassini mission, and parameter bounds obtained from the LAGEOS satellite. It is furthermore suggested that a comparison of ground-based and space-based multipole moments of the geopotential could reveal a possible chameleon effect.
Comparison of Present SST Gravity Field Models
Institute of Scientific and Technical Information of China (English)
LUO Jia; SHI Chuang; ZOU Xiancai; WANG Haihong
2006-01-01
Taking the main land of Europe as the region to be studied, the potential of the new satellite gravity technique: satellite-to-satellite tracking (SST) and improving the accuracy of regional gravity field model with the SST models are investigated. The drawbacks of these models are discussed. With GPM98C as the reference, the gravity anomaly residuals of several other models, the latest SST global gravity field models (EIGEN series and GGM series), were computed and compared. The results of the comparison show that in the selected region, some systematic errors with periodical properties exist in the EIGEN and GGM's S series models in the high degree and order. Some information that was not shown in the classic gravity models is detected in the low and middle degree and order of EIGEN and GGM's S series models. At last, the effective maximum degrees and orders of SST models are suggested.
Gravity field determination and error assessment techniques
Yuan, D. N.; Shum, C. K.; Tapley, B. D.
1989-01-01
Linear estimation theory, along with a new technique to compute relative data weights, was applied to the determination of the Earth's geopotential field and other geophysical model parameters using a combination of satellite ground-based tracking data, satellite altimetry data, and the surface gravimetry data. The relative data weights for the inhomogeneous data sets are estimated simultaneously with the gravity field and other geophysical and orbit parameters in a least squares approach to produce the University of Texas gravity field models. New techniques to perform calibration of the formal covariance matrix for the geopotential solution were developed to obtain a reliable gravity field error estimate. Different techniques, which include orbit residual analysis, surface gravity anomaly residual analysis, subset gravity solution comparisons and consider covariance analysis, were applied to investigate the reliability of the calibration.
CSR Gravity Field Data Products
Bettadpur, Srinivas
2014-05-01
The joint NASA/DLR GRACE mission has successfully operated for nearly 12 years, and has provided a remarkable record of global mass flux due to a large variety of geophysical and climate processes at various spatio-temporal scales. The University of Texas Center for Space Research (CSR) hosts the mission PI, and is responsible for delivery of operational (presently denoted as Release-05 or RL05) gravity field data products. In addition, CSR generates and distributes a variety of other gravity field data products, including products generated from the use of satellite laser ranging data. This poster will provide an overview of all these data products, their relative quality, potential applications, and future plans for their development and delivery.
Validation of GOCE Satellite Gravity Gradient Observations by Orbital Analysis
Visser, P.
The upcoming European Space Agency ESA Gravity Field and Steady-State Ocean Circular Explorer GOCE mission foreseen to be launched in 2007 will carry a highly sensitive gradiometer consisting of 3 orthogonal pairs of ultra-sensitive accelerometers A challenging calibration procedure has been developed to calibrate the gradiometer not only before launch by a series of on-ground tests but also after launch by making use of on-board cold-gas thrusters to provoke a long series of gradiometer shaking events which will provide observations for its calibration This calibration can be checked by a combined analysis of GPS Satellite-to-Satellite Tracking SST and Satellite Gravity Gradient SGG observations An assessment has been made of how well SGG calibration parameters can be estimated in a combined orbit and gravity field estimation from these observations
Updated Hungarian Gravity Field Solution Based on Fifth Generation GOCE Gravity Field Models
Toth, Gyula; Foldvary, Lorant
2015-03-01
With the completion of the ESA's GOCE satellite's mission fifth generation gravity field models are available from the ESA's GOCE High Processing Facility. Our contribution is an updated gravity field solution for Hungary using the latest DIR R05 GOCE gravity field model. The solution methodology is least squares gravity field parameter estimation using Spherical Radial Base Functions (SRBF). Regional datasets include deflections of the vertical (DOV), gravity anomalies and quasigeoid heights by GPS/levelling. The GOCE DIR R05 model has been combined with the EGM20008 model and has been evaluated in comparison with the EGM2008 and EIGEN-6C3stat models to assess the performance of our regional gravity field solution.
Gravitacijske satelitske misije : Satellite gravity missions
Directory of Open Access Journals (Sweden)
Medžida Mulić
2012-12-01
Full Text Available Sila teže se smatra osnovnom fizikalnom silom u prirodi. Savremene satelitske misije: CHAMP, GRACE i GOCE omogućile su dobivanje globalnih modela polja sile teže s veoma visokom tačnošću, kao i njegovih prostornih i temporalnih varijacija. U ovom radu istaknuti su ciljevi, karakteristike i rezultati navedenih misija, te iznesena očekivanja u budućnosti, kao i njihov značaj i doprinos za geodetsku praksu kao i istraživanja u oblasti geodezije, geofizike i hidrologije. : Gravity is considered as the basic physical force in the nature. Modern satellite missions: CHAMP, GRACE and GOCE allowed modeling of the global gravity field with very high accuracy, as well as its spatial and temporal variations. This paper describes the main objectives, characteristics, the latest results of these missions, as well as the expectations of the future observations, and their importance and contributions for the surveying and geodetic practice, and scientific achievements as well, in geodesy, geophysics and hydrology.
Gravity field, geoid and ocean surface by space techniques
Anderle, R. J.
1978-01-01
Knowledge of the earth's gravity field continued to increase during the last four years. Altimetry data from the GEOS-3 satellite has provided the geoid over most of the ocean to an accuracy of about one meter. Increasing amounts of laser data has permitted the solution for 566 terms in the gravity field with which orbits of the GEOS-3 satellite have been computed to an accuracy of about one to two meters. The combination of satellite tracking data, altimetry and gravimetry has yielded a solution for 1360 terms in the earth's gravity field. A number of problems remain to be solved to increase the accuracy of the gravity field determination. New satellite systems would provide gravity data in unsurveyed areas and correction for topographic features of the ocean and improved computational procedures together with a more extensive laser network will considerably improve the accuracy of the results.
Energy Technology Data Exchange (ETDEWEB)
Jacobson, R. A., E-mail: robert.jacobson@jpl.nasa.gov [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109-8099 (United States)
2014-11-01
French et al. determined the orbits of the Uranian rings, the orientation of the pole of Uranus, and the gravity harmonics of Uranus from Earth-based and Voyager ring occultations. Jacobson et al. determined the orbits of the Uranian satellites and the masses of Uranus and its satellites from Earth-based astrometry and observations acquired with the Voyager 2 spacecraft; they used the gravity harmonics and pole from French et al. Jacobson and Rush reconstructed the Voyager 2 trajectory and redetermined the Uranian system gravity parameters, satellite orbits, and ring orbits in a combined analysis of the data used previously augmented with additional Earth-based astrometry. Here we report on an extension of that work that incorporates additional astrometry and ring occultations together with improved data processing techniques.
Accuracy Analysis for SST Gravity Field Model in China
Institute of Scientific and Technical Information of China (English)
LUO Jia; LUO Zhicai; ZOU Xiancai; WANG Haihong
2006-01-01
Taking China as the region for test, the potential of the new satellite gravity technique, satellite-to-satellite tracking for improving the accuracy of regional gravity field model is studied. With WDM94 as reference, the gravity anomaly residuals of three models, the latest two GRACE global gravity field model (EIGEN_GRACE02S, GGM02S) and EGM96, are computed and compared. The causes for the differences among the residuals of the three models are discussed. The comparison between the residuals shows that in the selected region, EIGEN_GRACE02S or GGM02S is better than EGM96 in lower degree part (less than 110 degree). Additionally, through the analysis of the model gravity anomaly residuals, it is found that some systematic errors with periodical properties exist in the higher degree part of EIGEN and GGM models, the results can also be taken as references in the validation of the SST gravity data.
Parameter sensitivity in satellite-gravity-constrained geothermal modelling
Pastorutti, Alberto; Braitenberg, Carla
2017-04-01
The use of satellite gravity data in thermal structure estimates require identifying the factors that affect the gravity field and are related to the thermal characteristics of the lithosphere. We propose a set of forward-modelled synthetics, investigating the model response in terms of heat flow, temperature, and gravity effect at satellite altitude. The sensitivity analysis concerns the parameters involved, as heat production, thermal conductivity, density and their temperature dependence. We discuss the effect of the horizontal smoothing due to heat conduction, the superposition of the bulk thermal effect of near-surface processes (e.g. advection in ground-water and permeable faults, paleoclimatic effects, blanketing by sediments), and the out-of equilibrium conditions due to tectonic transients. All of them have the potential to distort the gravity-derived estimates.We find that the temperature-conductivity relationship has a small effect with respect to other parameter uncertainties on the modelled temperature depth variation, surface heat flow, thermal lithosphere thickness. We conclude that the global gravity is useful for geothermal studies.
Antarctic outlet glacier mass change resolved at basin scale from satellite gravity gradiometry
Bouman, J.; Fuchs, M.; Ivins, E.; Van der Wal, W.; Schrama, E.J.O.; Visser, P.N.A.M.; Horwath, M.
2014-01-01
The orbit and instrumental measurement of the Gravity Field and Steady State Ocean Circulation Explorer (GOCE) satellite mission offer the highest ever resolution capabilities for mapping Earth's gravity field from space. However, past analysis predicted that GOCE would not detect changes in ice
Antarctic outlet glacier mass change resolved at basin scale from satellite gravity gradiometry
Bouman, J.; Fuchs, M.; Ivins, E.; Van der Wal, W.; Schrama, E.J.O.; Visser, P.N.A.M.; Horwath, M.
2014-01-01
The orbit and instrumental measurement of the Gravity Field and Steady State Ocean Circulation Explorer (GOCE) satellite mission offer the highest ever resolution capabilities for mapping Earth's gravity field from space. However, past analysis predicted that GOCE would not detect changes in ice she
Emadi, S. R.; Najafi-Alamardi, M.; Toosi, K. N.; Sedighi, M.; Nankali, H. R.
2006-07-01
Satellite altimetry provides continuous, accur ate, and homogenous data ser ies in marine areas .Th e Sea Surf ace Heigh ts (SSH) ex tracted from altimetry data w as used in a method sear ching for the least squares of the sea surface topography to simultaneously d etermine the geoidal height and the sea surface topography as well in the Persian Gulf and the Oman sea. This is contrary to th e methods wh ich r equire the knowledge of one parameter to estimate the other. The North and East componen ts of the deflections of vertical w ere also estimated by differentiating the der ived geoid al heights in the corresponding directions, and finally the free- air grav ity anomalies w ere computed utilizing the inverse V ening- Meinesz integral.
High resolution gravity models combining terrestrial and satellite data
Rapp, Richard H.; Pavlis, Nikolaos K.; Wang, Yan M.
1992-01-01
Spherical harmonic expansions to degree 360 have been developed that combine satellite potential coefficient information, terrestrial gravity data, satellite altimeter information as a direct tracking data type and topographic information. These models define improved representations of the Earth's gravitational potential beyond that available from just satellite or terrestrial data. The development of the degree 360 models, however, does not imply a uniform accuracy in the determination of the gravity field as numerous geographic areas are devoid of terrestrial data or the resolution of such data is limited to, for example, 100 km. This paper will consider theoretical and numerical questions related to the combination of the various data types. Various models of the combination process are discussed with a discussion of various correction terms for the different models. Various sources of gravity data will be described. The new OSU91 360 model will be discussed with comparisons made to previous 360 models and to other potential coefficient models that are complete to degree 50. Future directions in high degree potential coefficient models will be discussed.
The German joint research project "concepts for future gravity satellite missions"
Reubelt, Tilo; Sneeuw, Nico; Fichter, Walter; Müller, Jürgen
2010-05-01
Within the German joint research project "concepts for future gravity satellite missions", funded by the Geotechnologies programme of the German Federal Ministry of Education and Research, options and concepts for future satellite missions for precise (time-variable) gravity field recovery are investigated. The project team is composed of members from science and industry, bringing together experts in geodesy, satellite systems, metrology, sensor technology and control systems. The majority of team members already contributed to former gravity missions. The composition of the team guarantees that not only geodetic aspects and objectives are investigated, but also technological and financial constraints are considered. Conversely, satellite, sensor and system concepts are developed and improved in a direct exchange with geodetic and scientific claims. The project aims to develop concepts for both near and mid-term future satellite missions, taking into account e.g. advanced satellite formations and constellations, improved orbit design, innovative metrology and sensor systems and advances in satellite systems.
Changing inclination of earth satellites using the gravity of the moon
Karla de Souza Torres; Prado, A. F. B. A.
2006-01-01
We analyze the problem of the orbital control of an Earth's satellite using the gravity of the Moon. The main objective is to study a technique to decrease the fuel consumption of a plane change maneuver to be performed in a satellite that is in orbit around the Earth. The main idea of this approach is to send the satellite to the Moon using a single-impulsive maneuver, use the gravity field of the Moon to make the desired plane change of the trajectory, and then return the satellite to its n...
Retrieving hydrological signals from current and future gravity field missions
Pail, Roland; Horvath, Alexander
2017-04-01
The Global Geodetic Observing System is formed by three pillars: Changes in Earth's shape, gravity field and rotation. Dedicated satellite missions are crucial in the determination and monitoring of the Earth's gravity field. Monitoring the gravity field and studying mass transport phenomena, responsible for the temporal variability of the gravity field, are of high interest. Especially the hydrology is of importance since the mechanisms of water redistribution and unexpected events like floods and droughts can have significant socio-economic impact. The presented study investigates in the possibilities and limits of current space geodetic missions like GRACE to observe such effects. The main target of the study is to determine the potential gain in accuracy as well as spatial and temporal resolution of target signals like hydrological events, whilst operating future mission scenarios. The results from a series of comprehensive simulation runs are presented to demonstrate the benefits to society operating dedicated future space geodetic gravity field missions.
Goon, Garrett
2017-01-01
We study the effects of heavy fields on 4D spacetimes with flat, de Sitter and anti-de Sitter asymptotics. At low energies, matter generates specific, calculable higher derivative corrections to the GR action which perturbatively alter the Schwarzschild-( A) dS family of solutions. The effects of massive scalars, Dirac spinors and gauge fields are each considered. The six-derivative operators they produce, such as ˜ R 3 terms, generate the leading corrections. The induced changes to horizon radii, Hawking temperatures and entropies are found. Modifications to the energy of large AdS black holes are derived by imposing the first law. An explicit demonstration of the replica trick is provided, as it is used to derive black hole and cosmological horizon entropies. Considering entropy bounds, it's found that scalars and fermions increase the entropy one can store inside a region bounded by a sphere of fixed size, but vectors lead to a decrease, oddly. We also demonstrate, however, that many of the corrections fall below the resolving power of the effective field theory and are therefore untrustworthy. Defining properties of black holes, such as the horizon area and Hawking temperature, prove to be remarkably robust against higher derivative gravitational corrections.
Goon, Garrett
2016-01-01
We study the effects of heavy fields on 4D spacetimes with flat, de Sitter and anti-de Sitter asymptotics. At low energies, matter generates specific, calculable higher derivative corrections to the GR action which perturbatively alter the Schwarzschild-$(A)dS$ family of solutions. The effects of massive scalars, Dirac spinors and gauge fields are each considered. The six-derivative operators they produce, such as $\\sim R^{3}$ terms, generate the leading corrections. The induced changes to horizon radii, Hawking temperatures and entropies are found. Modifications to the energy of large $AdS$ black holes are derived by imposing the first law. An explicit demonstration of the replica trick is provided, as it is used to derive black hole and cosmological horizon entropies. Considering entropy bounds, it's found that scalars and fermions increase the entropy one can store inside a region bounded by a sphere of fixed size, but vectors lead to a decrease, oddly. We also demonstrate, however, that many of the correc...
CHAMP gravity field recovery using the energy balance approach
Directory of Open Access Journals (Sweden)
Ch. Gerlach
2003-01-01
Full Text Available Since the early days of satellite geodesy energy balance based methods for gravity field determination have been considered. If non-conservative forces are known the Hamiltonian along the orbit is a constant of the motion. Thus the gravity field can be determined if position and velocity of the satellite are known and accelerometer measurements are available to model the non-conservative part. CHAMP is the first satellite that provides the user with those three kinds of data nearly continuously. Numerical investigations using real CHAMP data are presented to show the feasibility of the method. Using a semi-analytical approach the gravity field can be determined efficiently by a 2D-Fourier method. Those fast computations also give way to application of the method not only to a full gravity field recovery but also, e.g. for quick-look and validation of SST observations for satellite missions like CHAMP, GRACE or GOCE. The method can also be used for estimation of accelerometer calibration parameters.Key words. gravity field, energy balance, Jacobi-integral, non-conservative forces, accelerometer calibration, CHAMP
Colombo, Oscar L. (Editor)
1992-01-01
This symposium on space and airborne techniques for measuring gravity fields, and related theory, contains papers on gravity modeling of Mars and Venus at NASA/GSFC, an integrated laser Doppler method for measuring planetary gravity fields, observed temporal variations in the earth's gravity field from 16-year Starlette orbit analysis, high-resolution gravity models combining terrestrial and satellite data, the effect of water vapor corrections for satellite altimeter measurements of the geoid, and laboratory demonstrations of superconducting gravity and inertial sensors for space and airborne gravity measurements. Other papers are on airborne gravity measurements over the Kelvin Seamount; the accuracy of GPS-derived acceleration from moving platform tests; airborne gravimetry, altimetry, and GPS navigation errors; controlling common mode stabilization errors in airborne gravity gradiometry, GPS/INS gravity measurements in space and on a balloon, and Walsh-Fourier series expansion of the earth's gravitational potential.
Quantum gravity and scalar fields
Energy Technology Data Exchange (ETDEWEB)
Mackay, Paul T. [School of Mathematics and Statistics, Newcastle University, Newcastle upon Tyne, NE1 7RU (United Kingdom); Toms, David J., E-mail: d.j.toms@newcastle.ac.u [School of Mathematics and Statistics, Newcastle University, Newcastle upon Tyne, NE1 7RU (United Kingdom)
2010-02-15
In this Letter we consider the quantization of a scalar field coupled to gravity at one loop order. We investigate the divergences appearing in the mass (i.e. phi{sup 2}) term in the effective action. We use the Vilkovisky-DeWitt effective action technique which guarantees that the result is gauge invariant as well as gauge condition independent in contrast to traditional calculations. Our final result is to identify the complete pole part of the effective action.
Multi-scale gravity field modeling in space and time
Wang, Shuo; Panet, Isabelle; Ramillien, Guillaume; Guilloux, Frédéric
2016-04-01
The Earth constantly deforms as it undergoes dynamic phenomena, such as earthquakes, post-glacial rebound and water displacement in its fluid envelopes. These processes have different spatial and temporal scales and are accompanied by mass displacements, which create temporal variations of the gravity field. Since 2002, the GRACE satellite missions provide an unprecedented view of the gravity field spatial and temporal variations. Gravity models built from these satellite data are essential to study the Earth's dynamic processes (Tapley et al., 2004). Up to present, time variations of the gravity field are often modelled using spatial spherical harmonics functions averaged over a fixed period, as 10 days or 1 month. This approach is well suited for modeling global phenomena. To better estimate gravity related to local and/or transient processes, such as earthquakes or floods, and adapt the temporal resolution of the model to its spatial resolution, we propose to model the gravity field using localized functions in space and time. For that, we build a model of the gravity field in space and time with a four-dimensional wavelet basis, well localized in space and time. First we design the 4D basis, then, we study the inverse problem to model the gravity field from the potential differences between the twin GRACE satellites, and its regularization using prior knowledge on the water cycle. Our demonstration of surface water mass signals decomposition in time and space is based on the use of synthetic along-track gravitational potential data. We test the developed approach on one year of 4D gravity modeling and compare the reconstructed water heights to those of the input hydrological model. Perspectives of this work is to apply the approach on real GRACE data, addressing the challenge of a realistic noise, to better describe and understand physical processus with high temporal resolution/low spatial resolution or the contrary.
Local gravity disturbance estimation from multiple-high-single-low satellite-to-satellite tracking
Jekeli, Christopher
1989-01-01
The idea of satellite-to-satellite tracking in the high-low mode has received renewed attention in light of the uncertain future of NASA's proposed low-low mission, Geopotential Research Mission (GRM). The principal disadvantage with a high-low system is the increased time interval required to obtain global coverage since the intersatellite visibility is often obscured by Earth. The U.S. Air Force has begun to investigate high-low satellite-to-satellite tracking between the Global Positioning System (GPS) of satellites (high component) and NASA's Space Transportation System (STS), the shuttle (low component). Because the GPS satellites form, or will form, a constellation enabling continuous three-dimensional tracking of a low-altitude orbiter, there will be no data gaps due to lack of intervisibility. Furthermore, all three components of the gravitation vector are estimable at altitude, a given grid of which gives a stronger estimate of gravity on Earth's surface than a similar grid of line-of-sight gravitation components. The proposed Air Force mission is STAGE (Shuttle-GPS Tracking for Anomalous Gravitation Estimation) and is designed for local gravity field determinations since the shuttle will likely not achieve polar orbits. The motivation for STAGE was the feasibility to obtain reasonable accuracies with absolutely minimal cost. Instead of simulating drag-free orbits, STAGE uses direct measurements of the nongravitational forces obtained by an inertial package onboard the shuttle. The sort of accuracies that would be achievable from STAGE vis-a-vis other satellite tracking missions such as GRM and European Space Agency's POPSAT-GRM are analyzed.
Studies of GRACE Gravity Field Inversion Techniques
Wang, L.; Shum, C.; Duan, J.; Schmidt, M.; Yuan, D.; Watkins, M. M.
2008-12-01
The geophysical inverse problem using satellite observations, such as GRACE, to estimate gravity change and mass variations at the Earth's surface is a well-known ill-posed problem. Different methods using different basis function (representing the gravity field) for different purposes (global or regional inversion) have been employed to obtain a stable solution, such as Bayesian estimation with prior information, the repro-BIQUUE of variance components and iterative least-squares estimation with simultaneous updating of a prior covariance, and to achieve enhanced spatial resolutions. The gravity field representation methods include spherical harmonics, regional gridded data (including mascons), and various wavelet representations (Poisson wavelets, Blackman band-limited regional wavelets with global representation). Finally, the use of data types (KBR range, range-rate, range-rate-rate) and data-generation methods (e.g., nonlinear orbit determination and geophysical inverse approach, energy conservation principle, etc) could also reflect relative inversion accuracy and the content of signal spectra in the resulting solution. In this contribution, we present results of a simulation experiment, which used various solution techniques and data types to attempt to quantify the relative advantage and disadvantage of each of the techniques.
Tsoulis, Dimitrios; Patlakis, Konstantinos
2014-08-01
The availability of digital elevation databases representing the topographic and bathymetric relief with global homogeneous coverage and increasing resolution permits the computation of crust-related Earth gravity models, the so-called topographic/isostatic Earth gravity models (henceforth T/I models). Although expressing the spherical harmonic content of the topographic masses, the interpretation purpose of T/I models has not been given the attention it deserves, apart from the fact that they express some degree of compensation to the observed spectrum of the topographic heights, depending on the kind of the applied compensation mechanism. The present contribution attempts to improve the interpretation aspects of T/I Earth gravity models. To this end, a rigorous spectral assessment is performed to a standard Airy/Heiskanen T/I model against different CHAllenging Minisatellite Payload (CHAMP), Gravity Recovery and Climate Experiment (GRACE), Gravity field and steadystate Ocean Circulation Explorer (GOCE) satellite-only, and combined gravity models. Different correlation bandwidths emerge for these four groups of satellite-based gravity models. The band-limited forward computation of the models using these bandwidths reproduces nicely the main features of the applied T/I model.
GRACE Gravity Field Product Description and Mission Profile
Bettadpur, S.; Flechtner, F.; Watkins, M. M.
2003-12-01
A time sequence of approximately monthly estimates of the Earth's gravity field, derived from the Gravity Recovery And Climate Mission (GRACE) science data, have been recently made available to the user community. In addition to these monthly estimates, a long-term mean gravity field has also been made available. These gravity field products are generated by the GRACE Science Data System team elements at the UT-CSR, Jet Propulsion Laboratory and at GFZ-Potsdam. In this presentation, we briefly describe the gravity field processing standards and methodology in use at UT-CSR. The traditional linearized least-squares implementation of gravity field determination from GRACE tracking data is reviewed with particular attention the to a-priori gravitational force models in use. The evolution of GRACE mission since its launch in March 2002 is then discussed. The main mission events, and the flight dynamic profile (pointing, inter-satellite separation, ground-track evolution, etc) are presented - with the purpose of aiding the interpretation and assessment of the gravity field product quality. The presentation closes with the description of the likely future evolution of the flight profile.
Towards combined global monthly gravity field solutions
Jaeggi, Adrian; Meyer, Ulrich; Beutler, Gerhard; Weigelt, Matthias; van Dam, Tonie; Mayer-Gürr, Torsten; Flury, Jakob; Flechtner, Frank; Dahle, Christoph; Lemoine, Jean-Michel; Bruinsma, Sean
2014-05-01
Currently, official GRACE Science Data System (SDS) monthly gravity field solutions are generated independently by the Centre for Space Research (CSR) and the German Research Centre for Geosciences (GFZ). Additional GRACE SDS monthly fields are provided by the Jet Propulsion Laboratory (JPL) for validation and outside the SDS by a number of other institutions worldwide. Although the adopted background models and processing standards have been harmonized more and more by the various processing centers during the past years, notable differences still exist and the users are more or less left alone with a decision which model to choose for their individual applications. This procedure seriously limits the accessibility of these valuable data. Combinations are well established in the area of other space geodetic techniques, such as the Global Navigation Satellite Systems (GNSS), Satellite Laser Ranging (SLR), and Very Long Baseline Interferometry (VLBI). Regularly comparing and combining space-geodetic products has tremendously increased the usefulness of the products in a wide range of disciplines and scientific applications. Therefore, we propose in a first step to mutually compare the large variety of available monthly GRACE gravity field solutions, e.g., by assessing the signal content over selected regions, by estimating the noise over the oceans, and by performing significance tests. We make the attempt to assign different solution characteristics to different processing strategies in order to identify subsets of solutions, which are based on similar processing strategies. Using these subsets we will in a second step explore ways to generate combined solutions, e.g., based on a weighted average of the individual solutions using empirical weights derived from pair-wise comparisons. We will also assess the quality of such a combined solution and discuss the potential benefits for the GRACE and GRACE-FO user community, but also address minimum processing
Developments in Lunar Gravity Field Recovery Within the Project GRAZIL
Wirnsberger, Harald; Klinger, Beate; Krauss, Sandro; Mayer-Gürr, Torsten
2016-10-01
The project GRAZIL addresses the highly accurate recovery of the lunar gravity field using intersatellite Ka-band ranging (KBR) measurements collected by the Lunar Gravity Ranging System (LGRS) of the Gravity Recovery And Interior Laboratory (GRAIL) mission. Dynamic precise orbit determination is an indispensable task in order to recover the lunar gravity field based on LGRS measurements. The concept of variational equations is adopted to determine the orbit of the two GRAIL satellites based on radio science data. In this contribution we focus on the S-band two-way Doppler data collected by the Deep Space Network.As far as lunar gravity field recovery is concerned, we apply an integral equation approach using short orbital arcs. In this contribution we demonstrate the progress of Graz lunar gravity field models (GrazLGM) from the beginning, till the end of the projet GRAZIL. For the latest GrazLGM version special attention is given to the refinement of our processing strategy in conjunction with an increase of the spectral resolution. Furthermore, we present the first GrazLGM based on KBR observations during the primary and the extended mission phase. Our results are validated against state of the art lunar gravity field models computed at NASA-GSFC and NASA-JPL.
Vincent, S.; Marsh, J. G.
1973-01-01
A global detailed gravimetric geoid has been computed by combining the Goddard Space Flight Center GEM-4 gravity model derived from satellite and surface gravity data and surface 1 deg-by-1 deg mean free air gravity anomaly data. The accuracy of the geoid is + or - 2 meters on continents, 5 to 7 meters in areas where surface gravity data are sparse, and 10 to 15 meters in areas where no surface gravity data are available. Comparisons have been made with the astrogeodetic data provided by Rice (United States), Bomford (Europe), and Mather (Australia). Comparisons have also been carried out with geoid heights derived from satellite solutions for geocentric station coordinates in North America, the Caribbean, Europe, and Australia.
Regional gravity field modelling from GOCE observables
Pitoňák, Martin; Šprlák, Michal; Novák, Pavel; Tenzer, Robert
2017-01-01
In this article we discuss a regional recovery of gravity disturbances at the mean geocentric sphere approximating the Earth over the area of Central Europe from satellite gravitational gradients. For this purpose, we derive integral formulas which allow converting the gravity disturbances onto the disturbing gravitational gradients in the local north-oriented frame (LNOF). The derived formulas are free of singularities in case of r ≠ R . We then investigate three numerical approaches for solving their inverses. In the initial approach, the integral formulas are firstly modified for solving individually the near- and distant-zone contributions. While the effect of the near-zone gravitational gradients is solved as an inverse problem, the effect of the distant-zone gravitational gradients is computed by numerical integration from the global gravitational model (GGM) TIM-r4. In the second approach, we further elaborate the first scenario by reducing measured gravitational gradients for gravitational effects of topographic masses. In the third approach, we apply additional modification by reducing gravitational gradients for the reference GGM. In all approaches we determine the gravity disturbances from each of the four accurately measured gravitational gradients separately as well as from their combination. Our regional gravitational field solutions are based on the GOCE EGG_TRF_2 gravitational gradients collected within the period from November 1 2009 until January 11 2010. Obtained results are compared with EGM2008, DIR-r1, TIM-r1 and SPW-r1. The best fit, in terms of RMS (2.9 mGal), is achieved for EGM2008 while using the third approach which combine all four well-measured gravitational gradients. This is explained by the fact that a-priori information about the Earth's gravitational field up to the degree and order 180 was used.
Aristoteles - An ESA mission to study the earth's gravity field
Lambeck, K.
In preparing for its first Solid-Earth Program, ESA has studied a satellite concept for a mission dedicated to the precise determination of the earth's geopotential (gravitational and magnetic) fields. Data from such a mission are expected to make substantial contributions to a number of research and applications fields in solid-earth geophysics, oceanography and global-change monitoring. The impact of a high-resolution gravity-field mission on studies of the various earth-science problems is assessed. The current state of our knowledge in this area is discussed and the ability of low-orbit satellite gradiometry to contribute to their solution is demonstrated.
The zero gravity curve and surface and radii for geostationary and geosynchronous satellite orbits
Directory of Open Access Journals (Sweden)
Sjöberg L.E.
2017-02-01
Full Text Available A geosynchronous satellite orbits the Earth along a constant longitude. A special case is the geostationary satellite that is located at a constant position above the equator. The ideal position of a geostationary satellite is at the level of zero gravity, i.e. at the geocentric radius where the gravitational force of the Earth equals the centrifugal force. These forces must be compensated for several perturbing forces, in particular for the lunisolar tides. Considering that the gravity field of the Earth varies not only radially but also laterally, this study focuses on the variations of zero gravity not only on the equator (for geostationary satellites but also for various latitudes. It is found that the radius of a geostationary satellite deviates from its mean value of 42164.2 km only within ±2 m, mainly due to the spherical harmonic coefficient J22, which is related with the equatorial flattening of the Earth. Away from the equator the zero gravity surface deviates from the ideal radius of a geosynchronous satellite, and more so for higher latitudes. While the radius of the former surface increases towards infinity towards the poles, the latter decreases about 520 m from the equator to the pole. Tidal effects vary these radii within ±2.3 km.
High-Resolution Gravity and Time-Varying Gravity Field Recovery using GRACE and CHAMP
Shum, C. K.
2002-01-01
This progress report summarizes the research work conducted under NASA's Solid Earth and Natural Hazards Program 1998 (SENH98) entitled High Resolution Gravity and Time Varying Gravity Field Recovery Using GRACE (Gravity Recovery and Climate Experiment) and CHAMP (Challenging Mini-satellite Package for Geophysical Research and Applications), which included a no-cost extension time period. The investigation has conducted pilot studies to use the simulated GRACE and CHAMP data and other in situ and space geodetic observable, satellite altimeter data, and ocean mass variation data to study the dynamic processes of the Earth which affect climate change. Results from this investigation include: (1) a new method to use the energy approach for expressing gravity mission data as in situ measurements with the possibility to enhance the spatial resolution of the gravity signal; (2) the method was tested using CHAMP and validated with the development of a mean gravity field model using CHAMP data, (3) elaborate simulation to quantify errors of tides and atmosphere and to recover hydrological and oceanic signals using GRACE, results show that there are significant aliasing effect and errors being amplified in the GRACE resonant geopotential and it is not trivial to remove these errors, and (4) quantification of oceanic and ice sheet mass changes in a geophysical constraint study to assess their contributions to global sea level change, while the results improved significant over the use of previous studies using only the SLR (Satellite Laser Ranging)-determined zonal gravity change data, the constraint could be further improved with additional information on mantle rheology, PGR (Post-Glacial Rebound) and ice loading history. A list of relevant presentations and publications is attached, along with a summary of the SENH investigation generated in 2000.
Future missions for observing Earth's changing gravity field: a closed-loop simulation tool
Visser, P. N.
2008-12-01
The GRACE mission has successfully demonstrated the observation from space of the changing Earth's gravity field at length and time scales of typically 1000 km and 10-30 days, respectively. Many scientific communities strongly advertise the need for continuity of observing Earth's gravity field from space. Moreover, a strong interest is being expressed to have gravity missions that allow a more detailed sampling of the Earth's gravity field both in time and in space. Designing a gravity field mission for the future is a complicated process that involves making many trade-offs, such as trade-offs between spatial, temporal resolution and financial budget. Moreover, it involves the optimization of many parameters, such as orbital parameters (height, inclination), distinction between which gravity sources to observe or correct for (for example are gravity changes due to ocean currents a nuisance or a signal to be retrieved?), observation techniques (low-low satellite-to-satellite tracking, satellite gravity gradiometry, accelerometers), and satellite control systems (drag-free?). A comprehensive tool has been developed and implemented that allows the closed-loop simulation of gravity field retrievals for different satellite mission scenarios. This paper provides a description of this tool. Moreover, its capabilities are demonstrated by a few case studies. Acknowledgments. The research that is being done with the closed-loop simulation tool is partially funded by the European Space Agency (ESA). An important component of the tool is the GEODYN software, kindly provided by NASA Goddard Space Flight Center in Greenbelt, Maryland.
Satellite Gravity Transforms Unmask Tectonic Pattern of Arabian-African Region
Eppelbaum, Lev; Katz, Youri
2017-04-01
Satellite derived geophysical gravity data are the modern powerful tool of regional tectono-geophysical examination of the Earth's crust and upper mantle. It is well known that regional long-term seismological prognosis, strategy of searching economic deposits and many other important geological-geophysical problems are based mainly on constructions derived from the combined tectono-geophysical zonation. Some authors' experience of the tectono-geophysical zonation in the Eastern Mediterranean (both sea and land) with satellite derived gravity field (Eppelbaum and Katz, 2015a, 2015b) indicates a high effectiveness of the data employment for delineation of different tectono-structural units. Therefore, on the basis of the previous successive application, satellite derived gravity field analysis was applied for a giant (covering > 10 mln. km2) and complex Arabian-African region (including Zagros Mts.). The gravity field retracked from the Geosat and ERS-1 altimetry (e.g., Sandwell and Smith, 2009) was processed by the use of different mathematical apparatus employment enabling to underline these or those tectonic (geodynamic) features of the region under study. The main goals of present investigation are following: (1) employment of a new powerful regional geophysical tool - satellite derived gravity data and its transforms for unmasking some buried tectonic and geodynamic peculiarities of the study area, (2) finding definite relationships between the novel tectonic map and the gravity field transformations, (3) development of a novel tectonic map of this area (on the basis of careful examination of and generalization of available geological and geophysical (mostly satellite gravity) data). The compiled gravity map (for the map compiling more than 4 mln. observations were utilized) with the main tectonic features shows the intricate gravity pattern of the investigated area. An initial analysis of the gravity field behavior enabled to separate two main types of
Institute of Scientific and Technical Information of China (English)
姜永涛; 张永志; 王帅; 刘国仕
2014-01-01
In this paper,we calculate annual satellite gravity changes in the eastern margin of the Tibetan Plateau from 2003 to 2012 by using the Gravity Recovery and Climate Experiment (GRACE)time-variable gravity field models with decorrelated filtering.By contraposing the three strong earthquakes that occurred recently in this region,including the Wenchuan MS8.0,Yushu MS 7.1,and Ya’an MS 7.0 earthquakes,we analyze the changes in satellite gravity field features re-lated to the strong earthquakes with the annual gravity changes before and after each earthquake. For analyzing the relationship between these earthquakes and the gravity change mode in detail, we also caculate the monthly gravity change for the Wenchuan MS 8.0 and Yushu MS 7.1 earth-quakes.Moreover,we use the recently relesed weekly GRACE gravity models to caculate the point-wise gravity change near Longmenshan fault for the Wenchuan MS 8.0 earthquake.The re-gional annual differentiated dynamic gravity changes image indicates that all three earthquakes oc-curred in a period of small gravity change,which means a small migration of crust-mantle material occurred according to the mantle convection theory.The same feature is indicated in the regional annual cumulative dynamic gravity changes image.These gravity changes likely indicate a medi-um-short term earthquake precursor.In the monthly differentiated dynamic gravity changes im-age,the gravity change mode shows significant changes in both the Wenchuan MS 8.0 earthquake and the Yushu MS 7.1 earthquake,which indicates that the gravity gradient change direction al-tered from perpendicular to the plane of a fault to parallel.These change in the gravity change mode may confirm the theory of post-earthquake potential field restoration.The nine points of the weekly gravity change sequences in Longmenshan fault area that occurred during 2008 indicate that a nearly nine-week contrary gravity change trend occurred between the eastern and western areas of the fault
Advancements in satellite gravity gradient data for crustal studies
Ebbing, J.; Bauman, J.; Fuchs, M.; Lieb, V.; Haagmans, R.; Meekes, J.A.C.; Abdul Fattah, R.
2013-01-01
In recent years, global gravity models, both based only on satellite data and from combination with terrestrial data, are increasingly available and particularly useful to construct regional models before more local interpretations on the exploration scale are carried out. Often it is challenging to
Advancements in satellite gravity gradient data for crustal studies
Ebbing, J.; Bauman, J.; Fuchs, M.; Lieb, V.; Haagmans, R.; Meekes, J.A.C.; Abdul Fattah, R.
2013-01-01
In recent years, global gravity models, both based only on satellite data and from combination with terrestrial data, are increasingly available and particularly useful to construct regional models before more local interpretations on the exploration scale are carried out. Often it is challenging to
Progress on the use of satellite technology for gravity exploration
Directory of Open Access Journals (Sweden)
Yanwei Ding
2015-07-01
Full Text Available In this paper, the technological progress on Chinese gravity exploration satellites is presented. Novel features such as ultra-stable structure, high accurate thermal control, drag-free and attitude control, micro-thrusters, aerodynamic configuration, the ability to perform micro-vibration analyses, microwave ranging system and mass center trimmer are described.
Hauk, Markus; Pail, Roland; Murböck, Michael; Schlicht, Anja
2016-04-01
For the determination of temporal gravity fields satellite missions such as GRACE (Gravity Recovery and Climate Experiment) or CHAMP (Challenging Minisatellite Payload) were used in the last decade. These missions improved the knowledge of atmospheric, oceanic and tidal mass variations. The most limiting factor of temporal gravity retrieval quality is temporal aliasing due to the undersampling of high frequency signals, especially in the atmosphere and oceans. This kind of error causes the typical stripes in spatial representations of global gravity fields such as from GRACE. As part of the GETRIS (Geodesy and Time Reference in Space) mission, that aims to establish a geodetic reference station and precise time- and frequency reference in space by using optical two-way communication links between geostationary (GEO) and low Earth orbiting (LEO) satellites, a possible future gravity field mission can be set up. By expanding the GETRIS space segment to the global satellite navigation systems (GNSS) the optical two-way links also connect the GALILEO satellites among themselves and to LEO satellites. From these links between GALILEO and LEO satellites gravitational information can be extracted. In our simulations inter-satellite links between GALILEO and LEO satellites are used to determine temporal changes in the Earth's gravitational field. One of the main goals of this work is to find a suitable constellation together with the best analysis method to reduce temporal aliasing errors. Concerning non-tidal aliasing, it could be shown that the co-estimation of short-period long-wavelength gravity field signals, the so-called Wiese approach, is a powerful method for aliasing reduction (Wiese et al. 2013). By means of a closed loop mission simulator using inter-satellite observations as acceleration differences along the line-of-sight, different mission scenarios for GALILEO-LEO inter-satellite links and different functional models like the Wiese approach are analysed.
Zhao, Qile; Guo, Jing; Hu, Zhigang; Shi, Chuang; Liu, Jingnan; Cai, Hua; Liu, Xianglin
2011-05-01
The GRACE (Gravity Recovery And Climate Experiment) monthly gravity models have been independently produced and published by several research institutions, such as Center for Space Research (CSR), GeoForschungsZentrum (GFZ), Jet Propulsion Laboratory (JPL), Centre National d’Etudes Spatiales (CNES) and Delft Institute of Earth Observation and Space Systems (DEOS). According to their processing standards, above institutions use the traditional variational approach except that the DEOS exploits the acceleration approach. The background force models employed are rather similar. The produced gravity field models generally agree with one another in the spatial pattern. However, there are some discrepancies in the gravity signal amplitude between solutions produced by different institutions. In particular, 10%-30% signal amplitude differences in some river basins can be observed. In this paper, we implemented a variant of the traditional variational approach and computed two sets of monthly gravity field solutions using the data from January 2005 to December 2006. The input data are K-band range-rates (KBRR) and kinematic orbits of GRACE satellites. The main difference in the production of our two types of models is how to deal with nuisance parameters. This type of parameters is necessary to absorb low-frequency errors in the data, which are mainly the aliasing and instrument errors. One way is to remove the nuisance parameters before estimating the geopotential coefficients, called NPARB approach in the paper. The other way is to estimate the nuisance parameters and geopotential coefficients simultaneously, called NPESS approach. These two types of solutions mainly differ in geopotential coefficients from degree 2 to 5. This can be explained by the fact that the nuisance parameters and the gravity field coefficients are highly correlated, particularly at low degrees. We compare these solutions with the official and published ones by means of spectral analysis. It is
New Views of Earth's Gravity Field from GRACE
2003-01-01
[figure removed for brevity, see original site] [figure removed for brevity, see original site] Map 1Map 2Gravity and the Earth's Shape Gravity is the force that is responsible for the weight of an object and is determined by how the material that makes up the Earth is distributed throughout the Earth. Because gravity changes over the surface of the Earth, the weight of an object changes along with it. One can define standard gravity as the value of gravity for an perfectly smooth 'idealized' Earth, and the gravity 'anomaly' is a measure of how actual gravity deviates from this standard. Gravity reflects the Earth's surface topography to a high degree and is associated with features that most people are familiar with such as large mountains and deep ocean trenches.Progress in Measuring the Earth's Gravity Field Through GRACE Prior to GRACE, the Earth's gravity field was determined using measurements of varying quality from different satellites and of incomplete coverage. Consequently the accuracy and resolution of the gravity field were limited. As is shown in Figure 1, the long wavelength components of the gravity field determined from satellite tracking were limited to a resolution of approximately 700 km. At shorter wavelengths, the errors were too large to be useful. Only broad geophysical features of the Earth's structure could be detected (see map 1).In contrast, GRACE, by itself, has provided accurate gravity information with a resolution of 200 km. Now, much more detail is clearly evident in the Earth's geophysical features (see map 2). High resolution features detected by GRACE that are representative of geophysical phenomena include the Tonga/Kermadec region (a zone where one tectonic plate slides under another), the Himalayan/Tibetan Plateau region (an area of uplift due to colliding plates), and the mid-Atlantic ridge (an active spreading center in the middle of the Atlantic ocean where new crust is being created). Future GRACE gravity models are
Performance analysis of satellite constellations for the next generation of gravity missions
Raimondo, J.; Flechtner, F.; Löcher, A.; Kusche, J.
2011-12-01
The GOCE and GRACE gravity missions have dramatically improved the knowledge of the Earth's static and time-variable gravity field due to their highly precise on-board instrumentation. This resulted in new information about the mass distribution and transport within or around the Earth system to be used in solid Earth geophysics, oceanography and sea level studies, hydrology, ice mass budget investigations and geodesy. GFZ Potsdam and IGG Bonn, with partners from German industry and universities, have conducted several studies in order to develop a concept for a future gravity mission based on low-low satellite-to-satellite tracking, but realized with laser metrology. In our poster we summarize the performance of different mission scenarios through full-scale simulations and their capacity to reach the science objectives.
Qiang, Li-E
2016-01-01
With continuous advances in related technologies, relativistic gravitational experiments with orbiting gradiometers becomes feasible, which could naturally be incorporated into future satellite gravity missions. Tests of Chern-Simons modified gravity are meaningful since such a modification gives us insights into (possible) parity-violations in gravitation. In this work, we derive, at the post-Newtonian level, the new observables of secular gradients from the non-dynamical Chern-Simons modified gravity, which will greatly improve the constraint on the mass scale $M_{CS}$ that may be drawn from satellite gradiometry measurements. For superconducting gradiometers, a strong bound $M_{CS}\\geq 10^{-7}\\ eV$ could in principle be obtained. For future optical gradiometers based on similar technologies from the LISA PathFinder mission, a even stronger bound $M_{CS}\\geq 10^{-5}\\ eV$ might be expected.
Dirac field in topologically massive gravity
Sert, Özcan; Adak, Muzaffer
2013-01-01
We consider a Dirac field coupled minimally to the Mielke-Baekler model of gravity and investigate cosmological solutions in three dimensions. We arrive at a family of solutions which exists even in the limit of vanishing cosmological constant.
Toward a gauge field theory of gravity.
Yilmaz, H.
Joint use of two differential identities (Bianchi and Freud) permits a gauge field theory of gravity in which the gravitational energy is localizable. The theory is compatible with quantum mechanics and is experimentally viable.
Probing Strong Field Gravity Through Numerical Simulations
Choptuik, Matthew W; Pretorius, Frans
2015-01-01
This article is an overview of the contributions numerical relativity has made to our understanding of strong field gravity, to be published in the book "General Relativity and Gravitation: A Centennial Perspective", commemorating the 100th anniversary of general relativity.
Gravity Field Atlas of the S. Ocean
National Oceanic and Atmospheric Administration, Department of Commerce — This Gravity Field Atlas of the Southern Ocean from GEOSAT is MGG Report 7. In many areas of the global ocean, the depth of the seafloor is not well known because...
A geopotential model from satellite tracking, altimeter, and surface gravity data: GEM-T3
Lerch, F. J.; Nerem, R. S.; Putney, B. H.; Felsentreger, T. L.; Sanchez, B. V.; Marshall, J. A.; Klosko, S. M.; Patel, G. B.; Williamson, R. G.; Chinn, D. S.
1994-01-01
An improved model of Earth's gravitational field, Goddard Earth Model T-3 (GEM-T3), has been developed from a combination of satellite tracking, satellite altimeter, and surface gravimetric data. GEM-T3 provides a significant improvement in the modeling of the gravity field at half wavelengths of 400 km and longer. This model, complete to degree and order 50, yields more accurate satellite orbits and an improved geoid representation than previous Goddard Earth Models. GEM-T3 uses altimeter data from GEOS 3 (1975-1976), Seasat (1978) and Geosat (1986-1987). Tracking information used in the solution includes more than 1300 arcs of data encompassing 31 different satellites. The recovery of the long-wavelength components of the solution relies mostly on highly precise satellite laser ranging (SLR) data, but also includes Tracking Network (TRANET) Doppler, optical, and satellite-to-satellite tracking acquired between the ATS 6 and GEOS 3 satellites. The main advances over GEM-T2 (beyond the inclusion of altimeter and surface gravity information which is essential for the resolution of the shorter wavelength geoid) are some improved tracking data analysis approaches and additional SLR data. Although the use of altimeter data has greatly enhanced the modeling of the ocean geoid between 65 deg N and 60 deg S latitudes in GEM-T3, the lack of accurate detailed surface gravimetry leaves poor geoid resolution over many continental regions of great tectonic interest (e.g., Himalayas, Andes). Estimates of polar motion, tracking station coordinates, and long-wavelength ocean tidal terms were also made (accounting for 6330 parameters). GEM-T3 has undergone error calibration using a technique based on subset solutions to produce reliable error estimates. The calibration is based on the condition that the expected mean square deviation of a subset gravity solution from the full set values is predicted by the solutions' error covariances. Data weights are iteratively adjusted until
Gravity with background fields and diffeomorphism breaking
Bluhm, Robert
2016-01-01
Effective gravitational field theories with background fields break local Lorentz symmetry and diffeomorphism invariance. Examples include Chern-Simons gravity, massive gravity, and the Standard-Model Extension (SME). The physical properties and behavior of these theories depend greatly on whether the spacetime symmetry breaking is explicit or spontaneous. With explicit breaking, the background fields are fixed and nondynamical, and the resulting theories are fundamentally different from Einstein's General Relativity (GR). However, when the symmetry breaking is spontaneous, the background fields are dynamical in origin, and many of the usual features of Einstein's GR still apply.
Gravity and the Tenacious Scalar Field
Brans, C H
1997-01-01
Scalar fields have had a long and controversial life in gravity theories, having progressed through many deaths and resurrections. The first scientific gravity theory, Newton's, was that of a scalar potential field, so it was natural for Einstein and others to consider the possibility of incorporating gravity into special relativity as a scalar theory. This effort, though fruitless in its original intent, nevertheless was useful in leading the way to Einstein's general relativity, a purely two-tensor field theory. However, a universally coupled scalar field again appeared, both in the context of Dirac's large number hypothesis and in five dimensional unified field theories as studied by Fierz, Jordan, and others. While later experimentation seems to indicate that if such a scalar exists its influence on solar system size interactions is negligible, other reincarnations have been proposed under the guise of dilatons in string theory and inflatons in cosmology. This paper presents a brief overview of this histo...
A GOCE only gravity model GOSG01S and the validation of GOCE related satellite gravity models
Directory of Open Access Journals (Sweden)
Xinyu Xu
2017-07-01
Full Text Available We compile the GOCE-only satellite model GOSG01S complete to spherical harmonic degree of 220 using Satellite Gravity Gradiometry (SGG data and the Satellite-to-Satellite Tracking (SST observations along the GOCE orbit based on applying a least-squares analysis. The diagonal components (Vxx, Vyy, Vzz of the gravitational gradient tensor are used to form the system of observation equations with the band-pass ARMA filter. The point-wise acceleration observations (ax, ay, az along the orbit are used to form the system of observation equations up to the maximum spherical harmonic degree/order 130. The analysis of spectral accuracy characteristics of the newly derived gravitational model GOSG01S and the existing models GOTIM04S, GODIR04S, GOSPW04S and JYY_GOCE02S based on their comparison with the ultra-high degree model EIGEN-6C2 reveals a significant consistency at the spectral window approximately between 80 and 190 due to the same period SGG data used to compile these models. The GOCE related satellite gravity models GOSG01S, GOTIM05S, GODIR05S, GOTIM04S, GODIR04S, GOSPW04S, JYY_GOCE02S, EIGEN-6C2 and EGM2008 are also validated by using GPS-leveling data in China and USA. According to the truncation at degree 200, the statistic results show that all GGMs have very similar differences at GPS-leveling points in USA, and all GOCE related gravity models have better performance than EGM2008 in China. This suggests that all these models provide much more information on the gravity field than EGM2008 in areas with low terrestrial gravity coverage. And STDs of height anomaly differences in China for the selected truncation degrees show that GOCE has improved the accuracy of the global models beyond degree 90 and the accuracies of the models improve from 24 cm to 16 cm. STDs of geoid height differences in USA show that GOSG01S model has best consistency comparing with GPS-leveling data for the frequency band of the degree between 20 and 160.
Changing inclination of earth satellites using the gravity of the moon
Directory of Open Access Journals (Sweden)
Karla de Souza Torres
2006-01-01
Full Text Available We analyze the problem of the orbital control of an Earth's satellite using the gravity of the Moon. The main objective is to study a technique to decrease the fuel consumption of a plane change maneuver to be performed in a satellite that is in orbit around the Earth. The main idea of this approach is to send the satellite to the Moon using a single-impulsive maneuver, use the gravity field of the Moon to make the desired plane change of the trajectory, and then return the satellite to its nominal semimajor axis and eccentricity using a bi-impulsive Hohmann-type maneuver. The satellite is assumed to start in a Keplerian orbit in the plane of the lunar orbit around the Earth and the goal is to put it in a similar orbit that differs from the initial orbit only by the inclination. A description of the close-approach maneuver is made in the three-dimensional space. Analytical equations based on the patched conics approach are used to calculate the variation in velocity, angular momentum, energy, and inclination of the satellite. Then, several simulations are made to evaluate the savings involved. The time required by those transfers is also calculated and shown.
Torsion Gravity for Dirac Fields
Fabbri, Luca
2016-01-01
In this article we will take into account the most complete back-ground with torsion and curvature, providing the most exhaustive coupling for the Dirac field: we will discuss the integrability of the interaction of the matter field and the reduction of the matter field equations.
DEFF Research Database (Denmark)
Olesen, Arne Vestergaard; Andersen, Ole Baltazar; Tscherning, C.C.
2002-01-01
for the use of gravity data especially, when computing geoid models in coastal regions. The presence of reliable marine gravity data for independent control offers an opportunity to study procedures for the merging of airborne and satellite data around Greenland. Two different merging techniques, both based...... on collocation, are investigated in this paper. Collocation offers a way of combining the individual airborne gravity observation with either the residual geoid observations derived from satellite altimetry or with gravity derived from these data using the inverse Stokes method implemented by Fast Fourier...
A gravity gradient stabilized solar power satellite design
Bowden, M. L.
1981-01-01
The concept of a solar power satellite (SPS) is reviewed, and a design proposed for such a satellite taking advantage of solar radiation pressure and gravity gradient forces to eliminate much of the structure from the baseline configuration. The SPS design consists of a solar cell array lying in the orbital plane and a free floating mirror above to reflect sunlight down onto it. The structural modes of the solar cell array are analyzed and found to be well within control limitations. Preliminary calculations concerning the free floating mirror and its position-keeping propellant requirements are also performed. A numerical example is presented, which shows that, even in terms of mass only, this configuration is a competitive design when compared to the conventional Department of Energy reference design. Other advantages, such as easier assembly in orbit, lower position-keeping propellant requirements, possibilities for decreasing necessary solar cell area, and longer solar cell life, may make this design superior.
The weak gravity conjecture and scalar fields
Palti, Eran
2017-08-01
We propose a generalisation of the Weak Gravity Conjecture in the presence of scalar fields. The proposal is guided by properties of extremal black holes in N=2 supergravity, but can be understood more generally in terms of forbidding towers of stable gravitationally bound states. It amounts to the statement that there must exist a particle on which the gauge force acts more strongly than gravity and the scalar forces combined. We also propose that the scalar force itself should act on this particle stronger than gravity. This implies that generically the mass of this particle decreases exponentially as a function of the scalar field expectation value for super-Planckian variations, which is behaviour predicted by the Refined Swampland Conjecture. In the context of N=2 supergravity the Weak Gravity Conjecture bound can be tied to bounds on scalar field distances in field space. Guided by this, we present a general proof that for any linear combination of moduli in any Calabi-Yau compactification of string theory the proper field distance grows at best logarithmically with the moduli values for super-Planckian distances.
Recent developments in high-resolution global altimetric gravity field modeling
DEFF Research Database (Denmark)
Andersen, Ole Baltazar; Knudsen, Per; Berry, P. A .M.
2010-01-01
older gravity fields show accuracy improvement of the order of 20-40% due to a combination of retracking, enhanced processing, and the use of the new EGM2008 geoid model. In coastal and polar regions, accuracy improved in many places by 40-50% (or more) compared with older global marine gravity fields.......In recent years, dedicated effort has been made to improve high-resolution global marine gravity fields. One new global field is the Danish National Space Center (DNSC) 1-minute grid called DNSC08GRA, released in 2008. DNSC08GRA was derived from double-retracked satellite altimetry, mainly from...... the ERS-1 geodetic mission data, augmented with new retracked GEOSAT data which have significantly enhanced the range and hence the gravity field accuracy. DNSC08GRA is the first high-resolution global gravity field to cover the entire Arctic Ocean all the way to the North Pole. Comparisons with other...
Next Generation Gravity Mission: a Step Forward in the Earth's Gravity Field Determination
Silvestrin, P.; Aguirre, M.; Massotti, L.; Cesare, S.
2009-04-01
This paper concerns with the "System Support to Laser Interferometry Tracking Technology Development for Gravity Field Monitoring" study of the European Space Agency, a mission study for monitoring the variations of Earth's gravity field at high resolution (up to harmonic degree 200) over a long time period (>5 years). The mission exploits the use of a heterodyne laser interferometer for the high-resolution measurement of the displacement between two satellites flying at low altitude (around 325 km). More in details, employing a formation of two co-orbiting satellites at 10 km relative distance, a resolution of about 1 nm rms is needed in the inter-satellite distance measurement, and the non gravitational accelerations must be measured with a resolution of about 10-10 m/s2 rms to achieve geoid height variation rate error equal to 0.1 mm/year at degree 200. Starting from the geophysical phenomena to be investigated, a detailed derivation of the mission requirements on the orbit, satellite formation and control, measurement instruments (laser interferometer and accelerometer) was performed using analytical models and numerical simulations, and the satellite GNC (Guidance, Navigation & Control) was approached through different techniques. A possible solution for the optical metrology suitable for the realization of a Next-Generation Gravimetric Mission has been identified, designed, breadboarded and tested to a level of detail sufficient to assess its feasibility. The main elements of this optical metrology are: 1) a Michelson-type heterodyne laser interferometer for measuring the distance variation between the retro-reflectors installed on two satellites. The innovative feature of the interferometer consists in chopping the laser beam with a frequency related to the satellite distance. This enables its proper functioning with a retro-reflector placed at large distances (around 10 km) from the source; 2) an optical device consisting of three small telescopes endowed
The Gravity Field of Enceladus from the three Cassini Flybys
Iess, L.; Parisi, M.; Ducci, M.; Jacobson, R. A.; Armstrong, J. W.; Asmar, S. W.; Lunine, J. I.; Stevenson, D. J.; Tortora, P.
2013-12-01
The Cassini spacecraft carried out gravity measurements of the small Saturnian moon Enceladus during three close flybys on April 28, 2010, November 30, 2010 and May 2, 2012 (designated E9, E12 and E19), at the low altitudes of 100, 48 and 70 km to maximize the accelerations exerted by the moon on the spacecraft. The goals of these observations were the determination of the gravitational quadrupole and the search for a North-South asymmetry in the gravity field, controlled primarily by the spherical harmonic coefficient C30. The estimation of Enceladus' gravity field is especially complex because of the small surface gravity (0.11 m/s2), the short duration of the gravitational interaction and the small number of available flybys. In addition to the gravitational accelerations, the spacecraft was also subject to small but non-negligible drag when it flew through the plume emitted from the south pole of the satellite. This effect occurred during the two south polar flybys E9 and E19. The inclusion of these non-gravitational accelerations proved to be crucial to attain a stable solution for the gravity field. Our estimation relied entirely on precise range rate measurements enabled by a coherent, two-way, microwave link at X-band (7.2-8.4 GHz). Measurement accuracies of 10 micron/s at 60 s integration times were attained under favorable conditions, thanks also to an advanced tropospheric calibration system. The data were fitted using the MONTE orbit determination code, recently developed by JPL for deep space navigation. In addition to the satellite degree 2 gravity field and C30, the solution included the state vector of the spacecraft (one for each flyby) and corrections to the mass and the initial orbital elements of Enceladus. The effect of the drag in E9 and E19 was modeled either as an unknown, impulsive, vectorial delta-V at closest approach, or by using density profiles from models of the plume and solving for the aerodynamic coefficient of the spacecraft. Both
Rhea gravity field and interior modeling from Cassini data analysis
Tortora, Paolo; Zannoni, Marco; Hemingway, Doug; Nimmo, Francis; Jacobson, Robert A.; Iess, Luciano; Parisi, Marzia
2016-01-01
During its tour of the Saturn system, Cassini performed two close flybys of Rhea dedicated to gravity investigations, the first in November 2005 and the second in March 2013. This paper presents an estimation of Rhea's fully unconstrained quadrupole gravity field obtained from a joint multi-arc analysis of the two Cassini flybys. Our best estimates of the main gravity quadrupole unnormalized coefficients are J2 × 106 = 946.0 ± 13.9, C22 × 106 = 242.1 ± 4.0 (uncertainties are 1-σ). Their resulting ratio is J2/C22 = 3.91 ± 0.10, statistically not compatible (at a 5-σ level) with the theoretical value of 10/3, predicted for a hydrostatic satellite in slow, synchronous rotation around a planet. Therefore, it is not possible to infer the moment of inertia factor directly using the Radau-Darwin approximation. The observed excess J2 (gravity oblateness) was investigated using a combined analysis of gravity and topography, under different plausible geophysical assumptions. The observed gravity is consistent with that generated by the observed shape for an undifferentiated (uniform density) body. However, because the surface is more likely to be water ice, a two-layer model may be a better approximation. In this case, and assuming a mantle density of 920 kg/m3, some 1-3 km of excess core oblateness is consistent with the observed gravity. A wide range of moments of inertia is allowed, but models with low moments of inertia (i.e., more differentiation) require greater magnitudes of excess core topography to satisfy the observations.
Zhang, Shengjun; Sandwell, David T.; Jin, Taoyong; Li, Dawei
2017-02-01
The accuracy and resolution of marine gravity field derived from satellite altimetry mainly depends on the range precision and dense spatial distribution. This paper aims at modeling a regional marine gravity field with improved accuracy and higher resolution (1‧ × 1‧) over Southeastern China Seas using additional data from CryoSat-2 as well as new data from AltiKa. Three approaches are used to enhance the precision level of satellite-derived gravity anomalies. Firstly we evaluate a suite of published retracking algorithms and find the two-step retracker is optimal for open ocean waveforms. Secondly, we evaluate the filtering and resampling procedure used to reduce the full 20 or 40 Hz data to a lower rate having lower noise. We adopt a uniform low-pass filter for all altimeter missions and resample at 5 Hz and then perform a second editing based on sea surface slope estimates from previous models. Thirdly, we selected WHU12 model to update the corrections provided in geophysical data record. We finally calculated the 1‧ × 1‧ marine gravity field model by using EGM2008 model as reference field during the remove/restore procedure. The root mean squares of the discrepancies between the new result and DTU10, DTU13, V23.1, EGM2008 are within the range of 1.8- 3.9 mGal, while the verification with respect to shipboard gravity data shows that the accuracy of the new result reached a comparable level with DTU13 and was slightly superior to V23.1, DTU10 and EGM2008 models. Moreover, the new result has a 2 mGal better accuracy over open seas than coastal areas with shallow water depth.
Jiang, Tao; Wang, Yan Ming
2016-12-01
One of the challenges for geoid determination is the combination of heterogeneous gravity data. Because of the distinctive spectral content of different data sets, spectral combination is a suitable candidate for its solution. The key to have a successful combination is to determine the proper spectral weights, or the error degree variances of each data set. In this paper, the error degree variances of terrestrial and airborne gravity data at low degrees are estimated by the aid of a satellite gravity model using harmonic analysis. For higher degrees, the error covariances are estimated from local gravity data first, and then used to compute the error degree variances. The white and colored noise models are also used to estimate the error degree variances of local gravity data for comparisons. Based on the error degree variances, the spectral weights of satellite gravity models, terrestrial and airborne gravity data are determined and applied for geoid computation in Texas area. The computed gravimetric geoid models are tested against an independent, highly accurate geoid profile of the Geoid Slope Validation Survey 2011 (GSVS11). The geoid computed by combining satellite gravity model GOCO03S and terrestrial (land and DTU13 altimetric) gravity data agrees with GSVS11 to ±1.1 cm in terms of standard deviation along a line of 325 km. After incorporating the airborne gravity data collected at 11 km altitude, the standard deviation is reduced to ±0.8 cm. Numerical tests demonstrate the feasibility of spectral combination in geoid computation and the contribution of airborne gravity in an area of high quality terrestrial gravity data. Using the GSVS11 data and the spectral combination, the degree of correctness of the error spectra and the quality of satellite gravity models can also be revealed.
Induced Gravity I: Real Scalar Field
Einhorn, Martin B
2016-01-01
We show that classically scale invariant gravity coupled to a single scalar field can undergo dimensional transmutation and generate an effective Einstein-Hilbert action for gravity, coupled to a massive dilaton. The same theory has an ultraviolet fixed point for coupling constant ratios such that all couplings are asymptotically free. However the catchment basin of this fixed point does not include regions of coupling constant parameter space compatible with locally stable dimensional transmutation. We believe that the desirable outcome may obtain in more complicated theories with non-Abelian gauge interactions.
Induced gravity I: real scalar field
Energy Technology Data Exchange (ETDEWEB)
Einhorn, Martin B. [Kavli Institute for Theoretical Physics, University of California,Santa Barbara, CA 93106-4030 (United States); Jones, D.R. Timothy [Kavli Institute for Theoretical Physics, University of California,Santa Barbara, CA 93106-4030 (United States); Department of Mathematical Sciences,University of Liverpool, Liverpool L69 3BX (United Kingdom)
2016-01-05
We show that classically scale invariant gravity coupled to a single scalar field can undergo dimensional transmutation and generate an effective Einstein-Hilbert action for gravity, coupled to a massive dilaton. The same theory has an ultraviolet fixed point for coupling constant ratios such that all couplings are asymptotically free. However the catchment basin of this fixed point does not include regions of coupling constant parameter space compatible with locally stable dimensional transmutation. In a companion paper, we will explore whether this more desirable outcome does obtain in more complicated theories with non-Abelian gauge interactions.
DEFF Research Database (Denmark)
Olesen, Arne Vestergaard; Andersen, Ole Baltazar; Tscherning, C.C.
2002-01-01
The National Survey and Cadastre - Denmark (KMS) has for several years produced gravity anomaly maps over the oceans derived from satellite altimetry. During the last four years, KMS has also conducted airborne gravity surveys along the coast of Greenland dedicated to complement the existing onsh...
Gravity field data products from the ARISTOTELES mission.
Balmino, G.
1991-12-01
The ARISTOTELES mission will bring a wealth of homogeneous information about the Earth gravity field enabling new direct and inverse modeling of geophysical structures at various scales, yielding a reference geoid surface of great quality for oceanographic studies, leading to global models of high resolution for versatile applications and in particular precise orbit determination of artificial satellites. The author's purpose is to review the different types of measurements involved in these investigations, the various levels of processing and how they can be phased with the scientific activities, and the expected products. Also, some general schemes are proposed along which the different tasks can be undertaken.
Estimating signal loss in regularized GRACE gravity field solutions
Swenson, S. C.; Wahr, J. M.
2011-05-01
Gravity field solutions produced using data from the Gravity Recovery and Climate Experiment (GRACE) satellite mission are subject to errors that increase as a function of increasing spatial resolution. Two commonly used techniques to improve the signal-to-noise ratio in the gravity field solutions are post-processing, via spectral filters, and regularization, which occurs within the least-squares inversion process used to create the solutions. One advantage of post-processing methods is the ability to easily estimate the signal loss resulting from the application of the spectral filter by applying the filter to synthetic gravity field coefficients derived from models of mass variation. This is a critical step in the construction of an accurate error budget. Estimating the amount of signal loss due to regularization, however, requires the execution of the full gravity field determination process to create synthetic instrument data; this leads to a significant cost in computation and expertise relative to post-processing techniques, and inhibits the rapid development of optimal regularization weighting schemes. Thus, while a number of studies have quantified the effects of spectral filtering, signal modification in regularized GRACE gravity field solutions has not yet been estimated. In this study, we examine the effect of one regularization method. First, we demonstrate that regularization can in fact be performed as a post-processing step if the solution covariance matrix is available. Regularization then is applied as a post-processing step to unconstrained solutions from the Center for Space Research (CSR), using weights reported by the Centre National d'Etudes Spatiales/Groupe de Recherches de geodesie spatiale (CNES/GRGS). After regularization, the power spectra of the CSR solutions agree well with those of the CNES/GRGS solutions. Finally, regularization is performed on synthetic gravity field solutions derived from a land surface model, revealing that in
Encoding field theories into gravities
Aoki, Sinya; Onogi, Tetsuya
2016-01-01
We propose a method to give a $d+1$ geometry from a $d$ dimensional quantum field theory in the large N expansion. We first construct a $d+1$ dimensional field from the $d$ dimensional one using the gradient flow equation, whose flow time $t$ represents the energy scale of the system such that $t\\rightarrow 0$ corresponds to the ultra-violet (UV) while $t\\rightarrow\\infty$ to the infra-red (IR). We define the induced metric using $d+1$ dimensional field operators. We show that the metric defined in this way becomes classical in the large N limit: quantum fluctuations of the metric are suppressed as 1/N due to the large $N$ factorization property. As a concrete example, we apply our method to the O(N) non-linear $\\sigma$ model in two dimensions. We calculate the three dimensional induced metric, which describes an AdS space in the massless limit. We finally discuss several open issues for future investigations.
Emergent Abelian Gauge Fields from Noncommutative Gravity
Directory of Open Access Journals (Sweden)
Allen Stern
2010-02-01
Full Text Available We construct exact solutions to noncommutative gravity following the formulation of Chamseddine and show that they are in general accompanied by Abelian gauge fields which are first order in the noncommutative scale. This provides a mechanism for generating cosmological electromagnetic fields in an expanding space-time background, and also leads to multipole-like fields surrounding black holes. Exact solutions to noncommutative Einstein-Maxwell theory can give rise to first order corrections to the metric tensor, as well as to the electromagnetic fields. This leads to first order shifts in the horizons of charged black holes.
Weak gravity conjecture and effective field theory
Saraswat, Prashant
2017-01-01
The weak gravity conjecture (WGC) is a proposed constraint on theories with gauge fields and gravity, requiring the existence of light charged particles and/or imposing an upper bound on the field theory cutoff Λ . If taken as a consistency requirement for effective field theories (EFTs), it rules out possibilities for model building including some models of inflation. I demonstrate simple models which satisfy all forms of the WGC, but which through Higgsing of the original gauge fields produce low-energy EFTs with gauge forces that badly violate the WGC. These models illustrate specific loopholes in arguments that motivate the WGC from a bottom-up perspective; for example the arguments based on magnetic monopoles are evaded when the magnetic confinement that occurs in a Higgs phase is accounted for. This indicates that the WGC should not be taken as a veto on EFTs, even if it turns out to be a robust property of UV quantum gravity theories. However, if the latter is true, then parametric violation of the WGC at low energy comes at the cost of nonminimal field content in the UV. I propose that only a very weak constraint is applicable to EFTs, Λ ≲(log 1/g )-1 /2Mpl , where g is the gauge coupling, motivated by entropy bounds. Remarkably, EFTs produced by Higgsing a theory that satisfies the WGC can saturate but not violate this bound.
High-resolution gravity field modeling using GRAIL mission data
Lemoine, F. G.; Goossens, S. J.; Sabaka, T. J.; Nicholas, J. B.; Mazarico, E.; Rowlands, D. D.; Neumann, G. A.; Loomis, B.; Chinn, D. S.; Smith, D. E.; Zuber, M. T.
2015-12-01
The Gravity Recovery and Interior Laboratory (GRAIL) spacecraft were designed to map the structure of the Moon through high-precision global gravity mapping. The mission consisted of two spacecraft with Ka-band inter-satellite tracking complemented by tracking from Earth. The mission had two phases: a primary mapping mission from March 1 until May 29, 2012 at an average altitude of 50 km, and an extended mission from August 30 until December 14, 2012, with an average altitude of 23 km before November 18, and 20 and 11 km after. High-resolution gravity field models using both these data sets have been estimated, with the current resolution being degree and order 1080 in spherical harmonics. Here, we focus on aspects of the analysis of the GRAIL data: we investigate eclipse modeling, the influence of empirical accelerations on the results, and we discuss the inversion of large-scale systems. In addition to global models we also estimated local gravity adjustments in areas of particular interest such as Mare Orientale, the south pole area, and the farside. We investigate the use of Ka-band Range Rate (KBRR) data versus numerical derivatives of KBRR data, and show that the latter have the capability to locally improve correlations with topography.
Mapping the earth's magnetic and gravity fields from space Current status and future prospects
Settle, M.; Taranik, J. V.
1983-01-01
The principal magnetic fields encountered by earth orbiting spacecraft include the main (core) field, external fields produced by electrical currents within the ionosphere and magnetosphere, and the crustal (anomaly) field generated by variations in the magnetization of the outermost portions of the earth. The first orbital field measurements which proved to be of use for global studies of crustal magnetization were obtained by a series of three satellites launched and operated from 1965 to 1971. Each of the satellites, known as a Polar Orbiting Geophysical Observatory (POGO), carried a rubidium vapor magnetometer. Attention is also given to Magsat launched in 1979, the scalar anomaly field derived from the Magsat measurements, satellite tracking studies in connection with gravity field surveys, radar altimetry, the belt of positive free air gravity anomalies situated along the edge of the Pacific Ocean basin, future technological capabilities, and information concerning data availability.
Directory of Open Access Journals (Sweden)
Khaled H. Zahran
2012-06-01
Results show important zones of mass discontinuity in this region correlated with the seismological activities and temporal gravity variations agree with the crustal deformation obtained from GPS observations. The current study indicates that satellite gravity data is a valuable source of data in understanding the geodynamical behavior of the studied region and that satellite gravity data is an important contemporary source of data in the geodynamical studies.
Periodic orbits around areostationary points in the Martian gravity field
Liu, Xiaodong; Ma, Xingrui
2012-01-01
This study investigates the problem of areostationary orbits around Mars in the three-dimensional space. Areostationary orbits are expected to be used to establish a future telecommunication network for the exploration of Mars. However, no artificial satellites have been placed in these orbits thus far. In this paper, the characteristics of the Martian gravity field are presented, and areostationary points and their linear stability are calculated. By taking linearized solutions in the planar case as the initial guesses and utilizing the Levenberg-Marquardt method, families of periodic orbits around areostationary points are shown to exist. Short-period orbits and long-period orbits are found around linearly stable areostationary points, and only short-period orbits are found around unstable areostationary points. Vertical periodic orbits around both linearly stable and unstable areostationary points are also examined. Satellites in these periodic orbits could depart from areostationary points by a few degree...
Gravity field recovery in the framework of a Geodesy and Time Reference in Space (GETRIS)
Hauk, Markus; Schlicht, Anja; Pail, Roland; Murböck, Michael
2017-04-01
The study ;Geodesy and Time Reference in Space; (GETRIS), funded by European Space Agency (ESA), evaluates the potential and opportunities coming along with a global space-borne infrastructure for data transfer, clock synchronization and ranging. Gravity field recovery could be one of the first beneficiary applications of such an infrastructure. This paper analyzes and evaluates the two-way high-low satellite-to-satellite-tracking as a novel method and as a long-term perspective for the determination of the Earth's gravitational field, using it as a synergy of one-way high-low combined with low-low satellite-to-satellite-tracking, in order to generate adequate de-aliasing products. First planned as a constellation of geostationary satellites, it turned out, that an integration of European Union Global Navigation Satellite System (Galileo) satellites (equipped with inter-Galileo links) into a Geostationary Earth Orbit (GEO) constellation would extend the capability of such a mission constellation remarkably. We report about simulations of different Galileo and Low Earth Orbiter (LEO) satellite constellations, computed using time variable geophysical background models, to determine temporal changes in the Earth's gravitational field. Our work aims at an error analysis of this new satellite/instrument scenario by investigating the impact of different error sources. Compared to a low-low satellite-to-satellite-tracking mission, results show reduced temporal aliasing errors due to a more isotropic error behavior caused by an improved observation geometry, predominantly in near-radial direction within the inter-satellite-links, as well as the potential of an improved gravity recovery with higher spatial and temporal resolution. The major error contributors of temporal gravity retrieval are aliasing errors due to undersampling of high frequency signals (mainly atmosphere, ocean and ocean tides). In this context, we investigate adequate methods to reduce these errors. We
Fluid/Gravity Correspondence with Scalar Field and Electromagnetic Field
Chou, Chia-Jui; Yang, Yi; Yuan, Pei-Hung
2016-01-01
We consider fluid/gravity correspondence in a general rotating black hole background with scalar and electromagnetic fields. Using the method of Petrov-like boundary condition, we show that the scalar and the electromagnetic fields contribute external forces to the dual Navier-Stokes equation and the rotation of black hole induces the Coriolis force.
Quantum gravity, effective fields and string theory
Bjerrum-Bohr, N E J
2004-01-01
We look at the various aspects of treating general relativity as a quantum theory. It is briefly studied how to consistently quantize general relativity as an effective field theory. A key achievement here is the long-range low-energy leading quantum corrections to both the Schwarzschild and Kerr metrics. The leading quantum corrections to the pure gravitational potential between two sources are also calculated, both in the mixed theory of scalar QED and quantum gravity and in the pure gravitational theory. The (Kawai-Lewellen-Tye) string theory gauge/gravity relations is next dealt with. We investigate if the KLT-operator mapping extends to the case of higher derivative effective operators. The KLT-relations are generalized, taking the effective field theory viewpoint, and remarkable tree-level amplitude relations between the field theory operators are derived. Quantum gravity is finally looked at from the the perspective of taking the limit of infinitely many spatial dimensions. It is verified that only a c...
GRAIL gravity field determination using the Celestial Mechanics Approach - status report
Bertone, S.; Arnold, D.; Jäggi, A.; Beutler, G.; Mervart, L.
2015-10-01
The NASA mission GRAIL (Gravity Recovery And Interior Laboratory [1]) inherits its concept from the GRACE (Gravity Recovery And Climate Experiment)mission to determine the gravity field of the Moon. The use of inter-satellite Ka-band range-rate (KBRR) observations enables data aquisition even when the spacecraft are not tracked from the Earth [2]. The data allows for a highly accurate estimation of the lunar gravity field on both sides of the Moon, which is crucial to improve the understanding of its internal structure and thermal evolution. In this presentation we dis- cuss our latest GRAIL-based lunar gravity fields generated with the Celestial Mechanics Approach using the Bernese Software.
Neumann, Gregory A.; Forsyth, Donald W.; Sandwell, David
1993-01-01
We compare new marine gravity fields derived from satellite altimetry with shipboard measurements over a region of more than 120,000 sq km in the central South Atlantic. Newly declassified satellite data were employed to construct free-air anomaly maps on 0.05 degree grids. An extensive gravity and bathymetry data set from four cruises along the Mid-Atlantic Ridge from 30.5-35.5 deg S provides a benchmark for testing the 2D resolution and accuracy of the satellite measurements where their crosstrack spacing is near their widest. The satellite gravity signal is coherent with bathymetry in this region down to wavelengths of 26 km, compared to 12.5 km for shipboard gravity. Residuals between the shipboard and satellite data sets have a roughly normal distribution. The standard deviation of satellite gravity with respect to shipboard measurements is nearly 7 mGal in a region of 140 mGal total variation, whereas the internal standard deviation at crossovers for GPS-navigated shipboard data is 1.8 mGal. The differences between shipboard and satellite data are too large to use satellite gravity to determine crustal thickness variations within a typical ridge segment.
Topographic/isostatic evaluation of new-generation GOCE gravity field models
Hirt, C.; Kuhn, M.; Featherstone, W. E.; GöTtl, F.
2012-05-01
We use gravity implied by the Earth's rock-equivalent topography (RET) and modeled isostatic compensation masses to evaluate the new global gravity field models (GGMs) from European Space Agency (ESA)'s Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) satellite gravimetry mission. The topography is now reasonably well-known over most of the Earth's landmasses, and also where conventional GGM evaluation is prohibitive due to the lack (or unavailability) of ground-truth gravity data. We construct a spherical harmonic representation of Earth's RET to derive band-limited topography-implied gravity, and test the somewhat simplistic Airy/Heiskanen and Pratt/Hayford hypotheses of isostatic compensation, but which did not improve the agreement between gravity from the uncompensated RET and GOCE. The third-generation GOCE GGMs (based on 12 months of space gravimetry) resolve the Earth's gravity field effectively up to spherical harmonic degree ˜200-220 (˜90-100 km resolution). Such scales could not be resolved from satellites before GOCE. From the three different GOCE processing philosophies currently in use by ESA, the time-wise and direct approaches exhibit the highest sensitivity to short-scale gravity recovery, being better than the space-wise approach. Our topography-implied gravity comparisons bring evidence of improvements from GOCE to gravity field knowledge over the Himalayas, Africa, the Andes, Papua New Guinea and Antarctic regions. In attenuated form, GOCE captures topography-implied gravity signals up to degree ˜250 (˜80 km resolution), suggesting that other signals (originating, e.g., from the crust-mantle boundary and buried loads) are captured as well, which might now improve our knowledge on the Earth's lithosphere structure at previously unresolved spatial scales.
Propagation peculiarities of mean field massive gravity
Directory of Open Access Journals (Sweden)
S. Deser
2015-10-01
Full Text Available Massive gravity (mGR describes a dynamical “metric” on a fiducial, background one. We investigate fluctuations of the dynamics about mGR solutions, that is about its “mean field theory”. Analyzing mean field massive gravity (m‾GR propagation characteristics is not only equivalent to studying those of the full non-linear theory, but also in direct correspondence with earlier analyses of charged higher spin systems, the oldest example being the charged, massive spin 3/2 Rarita–Schwinger (RS theory. The fiducial and mGR mean field background metrics in the m‾GR model correspond to the RS Minkowski metric and external EM field. The common implications in both systems are that hyperbolicity holds only in a weak background-mean-field limit, immediately ruling both theories out as fundamental theories; a situation in stark contrast with general relativity (GR which is at least a consistent classical theory. Moreover, even though both m‾GR and RS theories can still in principle be considered as predictive effective models in the weak regime, their lower helicities then exhibit superluminal behavior: lower helicity gravitons are superluminal as compared to photons propagating on either the fiducial or background metric. Thus our approach has uncovered a novel, dispersive, “crystal-like” phenomenon of differing helicities having differing propagation speeds. This applies both to m‾GR and mGR, and is a peculiar feature that is also problematic for consistent coupling to matter.
GRACE Orbit and Gravity Field Recovery at GFZ Potsdam - First Experiences and Perspectives
Reigber, C.; Flechtner, F.; Koenig, R.; Meyer, U.; Neumayer, K.; Schmidt, R.; Schwintzer, P.; Zhu, S.
2002-12-01
Since the launch of the two GRACE satellites on March 17, 2002, both satellites follow each other in a distance of about 220 km in an almost polar, circular and 500 km high orbit. For orbit and long-wavelength gravity field recovery the GRACE mission concept follows CHAMP's configuration, i.e., GPS satellite-to-satellite tracking and accelerometry on each of the two satellites. The essentially new element is the K-band microwave link measuring the relative distance of one satellite with respect to the other in both directions with an ultra-high precision (few æm). To fully exploit this high precision, the requirements on the performance and precision of the accelerometers to measure non-gravitational orbit perturbations are one order of magnitude more stringent than on CHAMP. The goal of GRACE is a distinct progress in global gravity field recovery from space with respect to accuracy and spatial as well as temporal resolution. First experiences of the GFZ project team with the instrument and sensor performance on the GRACE satellites, the parametrization of the data in precise orbit determination and first tentative gravity field solutions are discussed and compared with CHAMP related results. GRACE data processing at GFZ Potsdam is part of the GRACE level-2 product generation and validation, which is shared with UTEX/CSR and NASA/JPL. On level-1, GFZ Potsdam is responsible for providing high frequency atmosphere and ocean mass variation models to avoid alias effects in GRACE's envisaged sequence of monthly gravity field solutions. Gravity de-aliasing products quality will be discussed.
Mapping the mass distribution of Earth's mantle using satellite-derived gravity gradients
Panet, Isabelle; Pajot-Métivier, Gwendoline; Greff-Lefftz, Marianne; Métivier, Laurent; Diament, Michel; Mandea, Mioara
2014-02-01
The dynamics of Earth's mantle are not well known. Deciphering mantle flow patterns requires an understanding of the global distribution of mantle density. Seismic tomography has been used to derive mantle density distributions, but converting seismic velocities into densities is not straightforward. Here we show that data from the GOCE (Gravity field and steady-state Ocean Circulation Explorer) mission can be used to probe our planet's deep mass structure. We construct global anomaly maps of the Earth's gravitational gradients at satellite altitude and use a sensitivity analysis to show that these gravitational gradients image the geometry of mantle mass down to mid-mantle depths. Our maps highlight north-south-elongated gravity gradient anomalies over Asia and America that follow a belt of ancient subduction boundaries, as well as gravity gradient anomalies over the central Pacific Ocean and south of Africa that coincide with the locations of deep mantle plumes. We interpret these anomalies as sinking tectonic plates and convective instabilities between 1,000 and 2,500km depth, consistent with seismic tomography results. Along the former Tethyan Margin, our data also identify an east-west-oriented mass anomaly likely in the upper mantle. We suggest that by combining gravity gradients with seismic and geodynamic data, an integrated dynamic model for Earth can be achieved.
Status of the fifth generation GOCE time-wise Earth gravity field model
Mayer-Guerr, Torsten; Brockmann, Jan Martin; Krasbutter, Ina; Höck, Eduard; Zehentner, Norbert; Pail, Roland; Schuh, Wolf-Dieter
2014-05-01
Since the launch of the European Space Agency's (ESA) Gravity field and Ocean Circulation Explorer (GOCE) satellite in 2009, four releases of the so called time-wise gravity field models were computed within the ESA funded High-level Processing Facility (HPF). The observations are the gravity gradients measured by the gradiometer and the satellite orbit determined via GPS. These gravity field models were released as a set of spherical harmonic coefficients and a corresponding full variance covariance matrix. As a lot of effort is put into the modeling of the original observation errors, these covariance matrix realistically presents the errors of the gravity field models. The fifth generation called TIM5 is in preparation. The new solution will consider the GOCE data from the complete lifetime. This includes also data from lower orbit phases, which provides higher sensitivity, especially for the detailed structures of the gravity field. To account for the higher sensitivity the complete data set has been reprocessed. The preprocessing was needed as the spatial resolution is increased from maximum degree/order 250 to degree/order 280 in terms of spherical harmonic coefficients. This means additional 16,000 parameters were estimated. Within this presentation first results of the new model TIM5 are presented.
Directory of Open Access Journals (Sweden)
Liu Xiaogang
2013-02-01
Full Text Available Combining with the exigent demand of the development of satellite gravimetry system in China, aiming at the determination of technical indexes of gravity satellite orbit parameters, on the basis of the numerical experiments and results analysis, the design indexes of gravity satellite orbit height, inter-satellite range and the orbit inclination are analyzed and calculated, and the issues towards twin gravity satellites such as coherence requirement of the orbit semi-major axes, control requirement of the pitch angle and time interval requirement to keep twin satellites formation in mobility are discussed. Results show that the satellite orbit height is 400 km to 500 km, the inter-satellite range is about 220 km, the satellite orbit inclination is between polar orbit and sun-synchronous orbit, the semi-major axes difference of twin satellites orbit is within ±70. 146 m, the pitch angle of twin satellites is about 0.9 degree, and the time interval to keep twin satellites formation in mobility is 7 days to 15 days.
Institute of Scientific and Technical Information of China (English)
徐新禹; 李建成; 邹贤才; 褚永海
2007-01-01
The principle and method for solving three types of satellite gravity gradient boundary value problems by least-squares are discussed in detail. Also, kernel function expressions of the least-squares solution of three geodetic boundary value problems with the observations {Γzz},{Γxz,Γyz} and {Γzz -Γyy,2Γxy} are presented. From the results of recovering gravity field using simulated gravity gradient tensor data, we can draw a conclusion that satellite gravity gradient integral formulas derived from least-squares are valid and rigorous for recovering the gravity field.
EVALUATION OF ERRORS IN PARAMETERS DETERMINATION FOR THE EARTH HIGHLY ANOMALOUS GRAVITY FIELD
Directory of Open Access Journals (Sweden)
L. P. Staroseltsev
2016-05-01
Full Text Available Subject of Research.The paper presents research results and the simulation of errors caused by determining the Earth gravity field parameters for regions with high segmentation of gravity field. The Kalman filtering estimation of determining errors is shown. Method. Simulation model for the realization of inertial geodetic method for determining the Earth gravity field parameters is proposed. The model is based on high-precision inertial navigation system (INS at the free gyro and high-accuracy satellite system. The possibility of finding the conformity between the determined and stochastic approaches in gravity potential modeling is shown with the example of a point-mass model. Main Results. Computer simulation shows that for determining the Earth gravity field parameters gyro error model can be reduced to two significant indexes, one for each gyro. It is also shown that for regions with high segmentation of gravity field point-mass model can be used. This model is a superposition of attractive and repulsive masses - the so-called gravitational dipole. Practical Relevance. The reduction of gyro error model can reduce the dimension of the Kalman filter used in the integrated system, which decreases the computation time and increases the visibility of the state vector. Finding the conformity between the determined and stochastic approaches allows the application of determined and statistical terminology. Also it helps to create a simulation model for regions with high segmentation of gravity field.
On field theory from gravity duals
Hockings, J R
2002-01-01
We review strings and branes in general, and then introduce the AdS/CFT Correspondence. The original work begins with an examination of the geometry for N = 4 on moduli space. We find a neat prescription for the encoding of the gravity solution in terms of the dual gauge theory. We next try to extend this to the N = 2* scenario, but encounter problems due to the gravity solution giving unexpected renormalization. Then we consider the correspondence applied to two field theories off their moduli spaces. We encounter unexpected problems with N = 2* again, but are successful in interpreting the Leigh-Strassler case. Finally, we apply the AdS/CFT correspondence to examine N = 4 super Yang-Mills at finite U(1) sub R charge density, using the supergravity backgrounds around spinning D3 branes. We complete the interpretation of the field theory duals of these backgrounds by interpreting the non-supersymmetric naked singularity class of the solutions. We find that these naked spinning D-brane distributions describe t...
Gravity duals for nonrelativistic conformal field theories.
Balasubramanian, Koushik; McGreevy, John
2008-08-08
We attempt to generalize the anti-de Sitter/conformal field theory correspondence to nonrelativistic conformal field theories which are invariant under Galilean transformations. Such systems govern ultracold atoms at unitarity, nucleon scattering in some channels, and, more generally, a family of universality classes of quantum critical behavior. We construct a family of metrics which realize these symmetries as isometries. They are solutions of gravity with a negative cosmological constant coupled to pressureless dust. We discuss realizations of the dust, which include a bulk superconductor. We develop the holographic dictionary and find two-point correlators of the correct form. A strange aspect of the correspondence is that the bulk geometry has two extra noncompact dimensions.
The scientific case for magnetic field satellites
Backus, George E. (Editor); Benton, Edward R.; Harrison, Christopher G. A.; Heirtzler, James R.
1987-01-01
To make full use of modern magnetic data and the paleomagnetic record, we must greatly improve our understanding of how the geodynamo system works. It is clearly nonlinear, probably chaotic, and its dimensionless parameters cannot yet be reproduced on a laboratory scale. It is accessible only to theory and to measurements made at and above the earth's surface. These measurements include essentially all geophysical types. Gravity and seismology give evidence for undulations in the core-mantle boundary (CMB) and for temperature variations in the lower mantle which can affect core convection and hence the dynamo. VLBI measurements of the variations in the Chandler wobble and length of day are affected by, among other things, the electromagnetic and mechanical transfer of angular momentum across the CMB. Finally, measurements of the vector magnetic field, its intensity, or its direction, give the most direct access to the core dynamo and the electrical conductivity of the lower mantle. The 120 gauss coefficients of degrees up to 10 probably come from the core, with only modest interference by mantle conductivity and crustal magnetization. By contrast, only three angular accelerations enter the problem of angular momentum transfer across the CMB. Satellite measurements of the vector magnetic field are uniquely able to provide the spatial coverage required for extrapolation to the CMB, and to isolate and measure certain magnetic signals which to the student of the geodynamo represent noise, but which are of great interest elsewhere in geophysics. Here, these claims are justified and the mission parameters likely to be scientifically most useful for observing the geodynamo system are described.
Measuring the Earth's gravity field with cold atom interferometers
Carraz, Olivier; Massotti, Luca; Haagmans, Roger; Silvestrin, Pierluigi
2015-01-01
The scope of the paper is to propose different concepts for future space gravity missions using Cold Atom Interferometers (CAI) for measuring the diagonal elements of the gravity gradient tensor, the spacecraft angular velocity and the spacecraft acceleration. The aim is to achieve better performance than previous space gravity missions due to a very low white noise spectral behaviour of the CAI instrument and a very high common mode rejection, with the ultimate goals of determining the fine structures of the gravity field with higher accuracy than GOCE and detecting time-variable signals in the gravity field.
The equilibrium of dense plasma in a gravity field
Vasilev, B V
2000-01-01
The equilibrium of dense plasma in a gravity field and problem of a gravity-induced electric polarization in this matter are discussed. The calculation for metals performed before shows that both - the gravity-induced compressive strain and the gravity-induced electric field - are inversely proportional to their Young moduli. The calculation for high dense plasma, where Young modulus is equal to zero, shows that there is another effect: each cell of this plasma inside a celestial body in own gravity field obtains the small positive electric charge. It happens as heavy ions sag on to light electron clouds. A celestial body stays electrically neutral as a whole, because the negative electric charge concentrates on its surface. The gravity-induced positive volume charge is very small, its order of magnitude equals to $10^{-18}e$ per atom only. But it is sufficient for the complete conterbalancing of the gravity force.
Modeling of Earth's Gravity Fields Visualization Based on Quad Tree
Institute of Scientific and Technical Information of China (English)
LUO Zhicai; LI Zhenhai; ZHONG Bo
2010-01-01
The problems of the earth's gravity fields' visualization are both focus and puzzle currently. Aiming at multiresolution rendering, modeling of the Earth's gravity fields' data is discussed in the paper by using LOD algorithm based on Quad Tree. First,this paper employed the method of LOD based on Quad Tree to divide up the regional gravity anomaly data, introduced the combined node evaluation system that was composed of viewpoint related and roughness related systems, and then eliminated the T-cracks that appeared among the gravity anomaly data grids with different resolutions. The test results demonstrated that the gravity anomaly data grids' rendering effects were living, and the computational power was low. Therefore, the proposed algorithm was a suitable method for modeling the gravity anomaly data and has potential applications in visualization of the earth's gravity fields.
Braitenberg, C. F.; Pivetta, T.; Mariani, P.
2011-12-01
The gravity satellite missions GRACE and GOCE have boosted the resolution of the global Earth gravity models (EGM), opening new possibilities of investigation. The EGMs must be distinguished in models based on pure satellite or mixed satellite-terrestrial observations. Satellite-only models are truly global, whereas satellite-terrestrial models have inhomogeneous quality, depending on availability and accuracy of the terrestrial data set. The advantage of the mixed models (e.g. EGM2008 by Pavlis et al. 2008) is their greater spatial resolution, reaching nominally 9 km, against the 80 km of the pure satellite models of satellite GOCE. The disadvantage is the geographically varying reliability due to problems in the terrestrial data, compiled from different measuring campaigns, using various acquisition methods, and different national geodetic reference systems. We present a method for quality assessment of the higher-resolution fields through the lower-resolution GOCE-field and apply it to northern Africa. We find that the errors locally are as great as 40 mGal, but can be flagged as "bad areas" by our method, leaving the "good areas" for reliable geophysical modeling and investigation. We analyze gravity and gravity gradients and their invariants over North-Central Africa derived from the EGM2008 and GOCE (e.g. Migliaccio et al., 2010) and quantify the resolution in terms of density variations associated to crustal thickness variations, rifts and magmatic underplating. We focus on the Benue rift and the Chad lineament, a 1300 km arcuate feature which links the Benue to the Tibesti Volcanic province. The existing seismological investigations are integrated to constrain the lithosphere structure in terms of seismic velocities, crustal thickness and top asthenosphere boundary, together with physical constraints based on thermal and isostatic considerations (McKenzie stretching model). Our modeling shows that the gravity signal can only be explained if the Benue rift
Status of GRAIL Gravity Field Determination Using the Celestial Mechanics Approach
Arnold, Daniel; Beutler, Gerhard; Jäggi, Adrian; Bock, Heike; Mervart, Leos; Meyer, Ulrich; Bertone, Stefano
To determine the gravity field of the Moon, the NASA mission GRAIL (Gravity Recovery And Interior Laboratory) inherits its concept from the Earth orbiting GRACE (Gravity Recovery and Climate Experiment) mission. The use of ultra-precise inter-satellite Ka-band ranging observations enables data acquisition even when the spacecraft are not tracked from the Earth. The data allows for a highly accurate estimation of the lunar gravity field with unprecedented resolution on both sides of the Moon, which is crucial to improve the understanding of its internal structure and thermal evolution. In this presentation we discuss GRAIL-based lunar gravity fields generated with the Celestial Mechanics Approach. Ka-band range-rate (KBRR) observations and position data (GNI1B products) are used to solve for the lunar gravity field parameters in a generalized orbit determination problem. Apart from normalized spherical harmonic coefficients up to degrees n≤ 200, also arc- and satellite-specific parameters, like initial state vectors and pseudo-stochastic pulses, are set up as common parameters for all measurement types. The latter shall compensate for imperfect models of non-gravitational accelerations, e.g., caused by solar radiation pressure. In addition, especially for the data of the primary mission phase, it is essential to estimate time bias parameters for the KBRR observations. We compare our results from the nominal mission phase with the official Level 2 gravity field models first released in October 2013. Our results demonstrate that the lunar gravity field can be recovered with a high quality by adapting the Celestial Mechanics Approach, even when using pre-GRAIL or pre-SELENE gravity field models as a priori fields and when replacing sophisticated models of non-gravitational accelerations by appropriately spaced and constrained pseudo-stochastic pulses. Yet, the usage of preprocessed position data as pseudo observations is not fully satisfying and is potentially
A space-time multiscale modelling of Earth's gravity field variations
Wang, Shuo; Panet, Isabelle; Ramillien, Guillaume; Guilloux, Frédéric
2017-04-01
The mass distribution within the Earth varies over a wide range of spatial and temporal scales, generating variations in the Earth's gravity field in space and time. These variations are monitored by satellites as the GRACE mission, with a 400 km spatial resolution and 10 days to 1 month temporal resolution. They are expressed in the form of gravity field models, often with a fixed spatial or temporal resolution. The analysis of these models allows us to study the mass transfers within the Earth system. Here, we have developed space-time multi-scale models of the gravity field, in order to optimize the estimation of gravity signals resulting from local processes at different spatial and temporal scales, and to adapt the time resolution of the model to its spatial resolution according to the satellites sampling. For that, we first build a 4D wavelet family combining spatial Poisson wavelets with temporal Haar wavelets. Then, we set-up a regularized inversion of inter-satellites gravity potential differences in a bayesian framework, to estimate the model parameters. To build the prior, we develop a spectral analysis, localized in time and space, of geophysical models of mass transport and associated gravity variations. Finally, we test our approach to the reconstruction of space-time variations of the gravity field due to hydrology. We first consider a global distribution of observations along the orbit, from a simplified synthetic hydrology signal comprising only annual variations at large spatial scales. Then, we consider a regional distribution of observations in Africa, and a larger number of spatial and temporal scales. We test the influence of an imperfect prior and discuss our results.
Fine orbit tuning to increase the accuracy of the gravity-field modelling
Bezdek, A.; Klokocnik, J.; Kostelecky, J.; Floberghagen, R.; Sebera, J.
2010-12-01
Fine orbit tuning will be presented as a tool to enhance the accuracy of the gravity-field parameters based on the data from satellite missions around the Earth or other planetary bodies. A slight variation in the satellite altitude of a few hundred metres or kilometres may dramatically change the pattern and density of the groundtracks, thus leading to a significant difference in the quality of the derived gravity-field parameters. This aspect is important not only to missions dedicated to the gravity-field mapping, but it can be applied to any planetary mission, whose orbital data may yield useful information on the particular gravity field. The geometry of satellite groundtracks is closely connected with the term orbital resonance or repeat orbit, which was intensively studied by the satellite geodesy community since the 1970s. In a systematic way, fine orbit tuning was first applied to altimetry missions for oceanographic purposes in the early 1990s, when it became clear that small changes in the satellite altitude might substantially influence the utility of the data from the onboard instruments. The monthly geopotential solutions from the GRACE mission (in orbit since 2002) displayed apparently worse precision in August-September 2004, which was later found to be caused by a sparser groundtrack pattern due to the passage of the GRACE satellites through the 61/4 orbit resonance. The lessons learned from GRACE were applied by ESA to its gravity field mission GOCE (in orbit since 2009). Here, the situation is different, as the GOCE onboard thrusters are capable of maintaining the satellite at a constant altitude. In order to fully use the measurement potential of the first space gradiometer ever flown, in the GOCE mission planning the influence of orbit geometry was taken into account, and a minimum 2-month repeat period for the orbit was specified. We analysed several orbital configurations of GOCE, as possible candidates for the gravity mapping phases. We
A climatology of gravity wave parameters based on satellite limb soundings
Ern, Manfred; Trinh, Quang Thai; Preusse, Peter; Riese, Martin
2017-04-01
Gravity waves are one of the main drivers of atmospheric dynamics. The resolution of most global circulation models (GCMs) and chemistry climate models (CCMs), however, is too coarse to properly resolve the small scales of gravity waves. Horizontal scales of gravity waves are in the range of tens to a few thousand kilometers. Gravity wave source processes involve even smaller scales. Therefore GCMs/CCMs usually parametrize the effect of gravity waves on the global circulation. These parametrizations are very simplified, and comparisons with global observations of gravity waves are needed for an improvement of parametrizations and an alleviation of model biases. In our study, we present a global data set of gravity wave distributions observed in the stratosphere and the mesosphere by the infrared limb sounding satellite instruments High Resolution Dynamics Limb Sounder (HIRDLS) and Sounding of the Atmosphere using Broadband Emission Radiometry (SABER). We provide various gravity wave parameters (for example, gravity variances, potential energies and absolute momentum fluxes). This comprehensive climatological data set can serve for comparison with other instruments (ground based, airborne, or other satellite instruments), as well as for comparison with gravity wave distributions, both resolved and parametrized, in GCMs and CCMs. The purpose of providing various different parameters is to make our data set useful for a large number of potential users and to overcome limitations of other observation techniques, or of models, that may be able to provide only one of those parameters. We present a climatology of typical average global distributions and of zonal averages, as well as their natural range of variations. In addition, we discuss seasonal variations of the global distribution of gravity waves, as well as limitations of our method of deriving gravity wave parameters from satellite data.
Quantum reduced loop gravity: extension to gauge vector field
Bilski, Jakub; Cianfrani, Francesco; Donà, Pietro; Marciano, Antonino
2016-01-01
Within the framework of Quantum Reduced Loop Gravity we quantize the Hamiltonian for a gauge vector field. The regularization can be performed using tools analogous to the ones adopted in full Loop Quantum Gravity, while the matrix elements of the resulting operator between basis states are analytic coefficients. This analysis is the first step towards deriving the full quantum gravity corrections to the vector field semiclassical dynamics.
Braneworld gravity: influence of the moduli fields
Barceló, Carlos; Visser, Matt
2000-10-01
We consider the case of a generic braneworld geometry in the presence of one or more moduli fields (e.g. the dilaton) that vary throughout the bulk spacetime. Working in an arbitrary conformal frame, using the generalized junction conditions of gr-qc/0008008 and the Gauss-Codazzi equations, we derive the effective ``induced'' on-brane gravitational equations. As usual in braneworld scenarios, these equations do not form a closed system in that the bulk can exchange both information and stress-energy with the braneworld. We work with an arbitrary number of moduli fields described by an arbitrary sigma model, with arbitrary curvature couplings, arbitrary self interactions, and arbitrary dimension for the bulk. (The braneworld is always codimension one.) Among the novelties we encounter are modifications of the on-brane stress-energy conservation law, anomalous couplings between on-brane gravity and the trace of the on-brane stress-energy tensor, and additional possibilities for modifying the on-brane effective cosmological constant. After obtaining the general stress-energy ``conservation'' law and the ``induced Einstein equations'' we particularize the discussion to two particularly attractive cases: for a (n-2)-brane in ([n-1] + 1) dimensions we discuss both the effect of (1) generic variable moduli fields in the Einstein frame, and (2) the effect of a varying dilaton in the string frame.
String Field Theory from Quantum Gravity
Crane, Louis
2012-01-01
Recent work on neutrino oscillations suggests that the three generations of fermions in the standard model are related by representations of the finite group A(4), the group of symmetries of the tetrahedron. Motivated by this, we explore models which extend the EPRL model for quantum gravity by coupling it to a bosonic quantum field of representations of A(4). This coupling is possible because the representation category of A(4) is a module category over the representation categories used to construct the EPRL model. The vertex operators which interchange vacua in the resulting quantum field theory reproduce the bosons and fermions of the standard model, up to issues of symmetry breaking which we do not resolve. We are led to the hypothesis that physical particles in nature represent vacuum changing operators on a sea of invisible excitations which are only observable in the A(4) representation labels which govern the horizontal symmetry revealed in neutrino oscillations. The quantum field theory of the A(4) ...
Explaining the thick crust in Paraná basin, Brazil, with satellite GOCE gravity observations
Mariani, Patrizia; Braitenberg, Carla; Ussami, Naomi
2013-08-01
Seismologic observations in the last decades have shown that the crustal thickness in Paraná basin locally is over 40 km thick, which is a greater value than expected by the simple isostatic model considering the topographic load. The goal of this work is to explain this apparent discrepancy by modeling the internal crustal density anomalies through the gravity field. We use the latest Earth Gravity Model derived from the observations of the GOCE satellite mission, to retrieve the gravity anomaly and correct it for topographic effects, thus obtaining the Bouguer field. We then model the gravity effect of known stratigraphic units and of the seismological crustal thickness. The large Paraná basin comprises over 3500 m of Paleozoic sedimentary sequence with density between 2400 and 2600 kg/m3. During the Early Cretaceous the same basin was affected by a large amount of igneous activity with a volume of over 0.1 Mkm3. The flood basalt volcanism is known as the Serra Geral Formation, and has a maximum thickness of 1500 m. The stratigraphic units of the basin are topped by post-volcanic deposits of the Bauru Group, of about 300 m thickness, located in the northern part of the basin. The density and thickness of the sedimentary sequence are constrained by sonic logs of drill-holes and exploration seismic. We use the crustal thickness estimated from the newest seismological results for South America to calculate its gravity effect. Further we model the isostatic crustal thickness variation, allowing the comparison between a seismological Moho, an isostatic Moho, and a gravity-based Moho. We find that there is a clear positive Bouguer residual anomaly located in the northern and southern part of the Paraná basin, indicating the presence of a hidden mass, not considered up to now. We propose a model that explains this mass as magmatic rock, probably gabbro in lower crust, with density contrast of 200 kg/m3 and thickness of more than 10 km, thus demonstrating that the
Simulation of the time-variable gravity field by means of coupled geophysical models
Directory of Open Access Journals (Sweden)
Th. Gruber
2011-07-01
Full Text Available Time variable gravity fields, reflecting variations of mass distribution in the system Earth is one of the key parameters to understand the changing Earth. Mass variations are caused either by redistribution of mass in, on or above the Earth's surface or by geophysical processes in the Earth's interior. The first set of observations of monthly variations of the Earth gravity field was provided by the US/German GRACE satellite mission beginning in 2002. This mission is still providing valuable information to the science community. However, as GRACE has outlived its expected lifetime, the geoscience community is currently seeking successor missions in order to maintain the long time series of climate change that was begun by GRACE. Several studies on science requirements and technical feasibility have been conducted in the recent years. These studies required a realistic model of the time variable gravity field in order to perform simulation studies on sensitivity of satellites and their instrumentation. This was the primary reason for the European Space Agency (ESA to initiate a study on "Monitoring and Modelling individual Sources of Mass Distribution and Transport in the Earth System by Means of Satellites". The goal of this interdisciplinary study was to create as realistic as possible simulated time variable gravity fields based on coupled geophysical models, which could be used in the simulation processes in a controlled environment. For this purpose global atmosphere, ocean, continental hydrology and ice models were used. The coupling was performed by using consistent forcing throughout the models and by including water flow between the different domains of the Earth system. In addition gravity field changes due to solid Earth processes like continuous glacial isostatic adjustment (GIA and a sudden earthquake with co-seismic and post-seismic signals were modelled. All individual model results were combined and converted to gravity field
The study of gravity gradient effect on attitude of low earth orbit satellite
Hamzah, Nor Hazadura; Yaacob, Sazali; Muthusamy, Hariharan; Hamzah, Norhizam; Ghazali, Najah
2013-04-01
Simulations and mathematical models are increasingly used to assist the process of decision making in engineering design. The objective of this paper is to simulate the linear attitude dynamics of small satellites under gravity gradient torque which is inherent in low earth orbit. The equations were first derived in their nonlinear form, and then manipulated and simulated in their linear form. Simulation results demonstrate the importance of choosing the appropriate values of satellite's moment of inertia in designing phase of a satellite.
The Near Side: Regional Lunar Gravity Field Determination
Goossens, S.
2005-01-01
In the past ten years the Moon has come fully back into focus, resulting in missions such as Clementine and Lunar Prospector. Data from these missions resulted in a boost in lunar gravity field modelling. Until this date, the lunar gravity field has mainly been expressed in a global representation,
Rexer, Moritz; Hirt, Christian; Pail, Roland; Claessens, Sten
2014-04-01
In March 2013, the fourth generation of European Space Agency's (ESA) global gravity field models, DIR4 (Bruinsma et al. in Proceedings of the ESA living planet symposium, 28 June-2 July, Bergen, ESA, Publication SP-686, 2010b) and TIM4 (Migliaccio et al. in Proceedings of the ESA living planet symposium, 28 June-2 July, Bergen, ESA, Publication SP-686, 2010), generated from the Gravity field and steady-state Ocean Circulation Explorer (GOCE) gravity observation satellite was released. We evaluate the models using an independent ground truth data set of gravity anomalies over Australia. Combined with Gravity Recovery and Climate Experiment (GRACE) satellite gravity, a new gravity model is obtained that is used to perform comparisons with GOCE models in spherical harmonics. Over Australia, the new gravity model proves to have significantly higher accuracy in the degrees below 120 as compared to EGM2008 and seems to be at least comparable to the accuracy of this model between degree 150 and degree 260. Comparisons in terms of residual quasi-geoid heights, gravity disturbances, and radial gravity gradients evaluated on the ellipsoid and at approximate GOCE mean satellite altitude ( km) show both fourth generation models to improve significantly w.r.t. their predecessors. Relatively, we find a root-mean-square improvement of 39 % for the DIR4 and 23 % for TIM4 over the respective third release models at a spatial scale of 100 km (degree 200). In terms of absolute errors, TIM4 is found to perform slightly better in the bands from degree 120 up to degree 160 and DIR4 is found to perform slightly better than TIM4 from degree 170 up to degree 250. Our analyses cannot confirm the DIR4 formal error of 1 cm geoid height (0.35 mGal in terms of gravity) at degree 200. The formal errors of TIM4, with 3.2 cm geoid height (0.9 mGal in terms of gravity) at degree 200, seem to be realistic. Due to combination with GRACE and SLR data, the DIR models, at satellite altitude, clearly
Braneworld gravity Influence of the moduli fields
Barcelo, C; Barcelo, Carlos; Visser, Matt
2000-01-01
We consider the case of a generic braneworld geometry in the presence of one or more moduli fields (e.g., the dilaton) that vary throughout the bulk spacetime. Working in an arbitrary conformal frame, using the generalized junction conditions of gr-qc/0008008 and the Gauss--Codazzi equations, we derive the effective ``induced'' on-brane gravitational equations. As usual in braneworld scenarios, these equations do not form a closed system in that the bulk can exchange both information and stress-energy with the braneworld. We work with an arbitrary number of moduli fields described by an arbitrary sigma model, with arbitrary curvature couplings, arbitrary self interactions, and arbitrary dimension for the bulk. (The braneworld is always codimension one.) Among the novelties we encounter are modifications of the on-brane stress-energy conservation law, anomalous couplings between on-brane gravity and the trace of the on-brane stress-energy tensor, and additional possibilities for modifying the on-brane effectiv...
Periodic orbits around areostationary points in the Martian gravity field
Liu, Xiao-Dong; Baoyin, Hexi; Ma, Xing-Rui
2012-05-01
This study investigates the problem of areostationary orbits around Mars in three-dimensional space. Areostationary orbits are expected to be used to establish a future telecommunication network for the exploration of Mars. However, no artificial satellites have been placed in these orbits thus far. The characteristics of the Martian gravity field are presented, and areostationary points and their linear stability are calculated. By taking linearized solutions in the planar case as the initial guesses and utilizing the Levenberg-Marquardt method, families of periodic orbits around areostationary points are shown to exist. Short-period orbits and long-period orbits are found around linearly stable areostationary points, but only short-period orbits are found around unstable areostationary points. Vertical periodic orbits around both linearly stable and unstable areostationary points are also examined. Satellites in these periodic orbits could depart from areostationary points by a few degrees in longitude, which would facilitate observation of the Martian topography. Based on the eigenvalues of the monodromy matrix, the evolution of the stability index of periodic orbits is determined. Finally, heteroclinic orbits connecting the two unstable areostationary points are found, providing the possibility for orbital transfer with minimal energy consumption.
Periodic orbits around areostationary points in the Martian gravity field
Institute of Scientific and Technical Information of China (English)
Xiao-Dong Liu; Hexi Baoyin; Xing-Rui Ma
2012-01-01
This study investigates the problem of areostationary orbits around Mars in three-dimensional space.Areostationary orbits are expected to be used to establish a future telecommunication network for the exploration of Mars.However,no artificial satellites have been placed in these orbits thus far.The characteristics of the Martian gravity field are presented,and areostationary points and their linear stability are calculated.By taking linearized solutions in the planar case as the initial guesses and utilizing the Levenberg-Marquardt method,families of periodic orbits around areostationary points are shown to exist.Short-period orbits and long-period orbits are found around linearly stable areostationary points,but only short-period orbits are found around unstable areostationary points.Vertical periodic orbits around both linearly stable and unstable areostationary points are also examined.Satellites in these periodic orbits could depart from areostationary points by a few degrees in longitude,which would facilitate observation of the Martian topography.Based on the eigenvalues of the monodromy matrix,the evolution of the stability index of periodic orbits is determined.Finally,heteroclinic orbits connecting the two unstable areostationary points are found,providing the possibility for orbital transfer with minimal energy consumption.
Length of day and polar motion, with respect to temporal variations of the Earth gravity field
Bourda, G
2007-01-01
The masses distribution inside the Earth governs the behaviour of the rotation axis in the Earth (polar motion), as well as the Earth rotation rate (or equivalently, length of day). This masses distribution can be measured from space owing to artificial satellites, the orbitography of which provides the Earth gravity field determination. Then, the temporal variations of the Earth gravity field can be related to the variations of the Earth Orientation Parameters (EOP) (with the Inertia Tensor). Nowadays, owing to the satellite laser ranging (SLR) technique and to the new gravimetric satellite missions (such as CHAMP or GRACE), the temporal variations of the low degree coefficients of the Earth gravity field (i.e. Stokes coefficients) can be determined. This paper is one of the first study using gravity variations data in the equations already established (e.g. Lambeck 1988) and linking the variations of the length of day and of the C20 Stokes coefficient (or, linking the polar motion and the C21 and S21 coeffi...
Latest developments in lunar gravity field recovery within the project GRAZIL
Krauss, Sandro; Wirnsberger, Harald; Klinger, Beate; Mayer-Gürr, Torsten; Baur, Oliver
2016-04-01
The project GRAZIL addresses the highly accurate recovery of the lunar gravity field using intersatellite Ka-band ranging (KBR) measurements collected by the Lunar Gravity Ranging System (LGRS) of the Gravity Recovery And Interior Laboratory (GRAIL) mission. Dynamic precise orbit determination is an indispensable task in order to recover the lunar gravity field based on LGRS measurements. The concept of variational equations is adopted to determine the orbit of the two GRAIL satellites based on radio science data. In this contribution we focus on the S-band two-way Doppler data collected by the Deep Space Network. As far as lunar gravity field recovery is concerned, we apply an integral equation approach using short orbital arcs in the order of one hour. In this contribution special attention is given to the refinement of our processing strategy in conjunction with an increase of the spectral resolution. Based on these considerations we present the latest version of a lunar gravity field model developed in Graz which is based on KBR observations during the primary mission phase (March 1 to May 29, 2012). Our results are validated against GRAIL models computed at NASA-GSFC and NASA-JPL.
Institute of Scientific and Technical Information of China (English)
黄昆学; 常晓涛; 朱广彬; 李武东
2016-01-01
The lunar gravity field provides a way to research moon’s evolution and probes the interior structure of the moon.It is an important factor influencing the lunar satellite precise orbit determination as well.The new lunar gravity model GL0660B from GRAIL mission dramatically improves the gravity spectrum and spectral ranges.Using the model GL0660B,it can be computed that the corresponding degree-wise RMS and correlation of topography,with which the quality of model GL0660B can be analyzed.Then different characters of the lunar gravity field comparing with other lunar gravity fields are analyzed. Besides,gravity anomaly distribution figures at different height of the models are given,and the character and difference of the lunar gravity models at different height are compared.In addition,lunar satellite orbit revolutionary at different height are modeled by GEODYN.The result shows that the trend of lunar satellite eccentricity changes is a complex and long cycle of change trend.It is different affected by the perturbation of the mascons of different height,which causes different changes of apolune,perilune and eccentricity.%月球重力场可用来研究月球演化过程和内部结构，是影响绕月卫星精密定轨的重要因素。基于GRAIL任务数据解算的GL0660B重力场模型，极大提高了月球重力场空间频谱信号的强度和范围。本文首先通过计算相应重力场的阶方差和地形相关性分析，对GL0660B模型进行了精度分析；其次，利用GL0660B模型和其他几个月球重力场模型进行比较，对月球重力场的特征进行了分析；然后通过绘制GL0660B模型和 LP150Q模型在月球外部不同高度处的重力异常图，分析比较了月球重力场模型在不同高度上所反映的月球重力场的特征和差异；最后，利用 GEODYN 软件模拟计算了不同高度卫星的轨道变化。可以看出绕月卫星离心率随时间的变化，以及周期性变化趋势，而且
A GOCE-only global gravity field model by the space-wise approach
DEFF Research Database (Denmark)
Migliaccio, Federica; Reguzzoni, Mirko; Gatti, Andrea
2011-01-01
The global gravity field model computed by the spacewise approach is one of three official solutions delivered by ESA from the analysis of the GOCE data. The model consists of a set of spherical harmonic coefficients and the corresponding error covariance matrix. The main idea behind this approach...... is to exploit the spatial correlation of the gravity field to estimate grids of potential and its second order radial derivatives at mean satellite altitude; from these grids, spherical harmonic coefficients are then derived by numerical integration. The filtering strategy includes also a Wiener filter along...... the orbit to reduce the noise variance and correlation before gridding the data. In the first release of the space-wise approach, based on a period of about two months, some prior information coming from existing gravity field models entered into the solution especially at low degrees and low orders...
The Impact of Geological Structures On The Gravity Field
Marti, U.
In general, a uniform standard density value is used for the calculation of topographic effects for gravity field modelling in Switzerland. Only a limited number of promi- nent mass anomalies is treated with an individual density. In some regions this causes problems in predicting the surface gravity or the deflections of the vertical. An actual example is the construction of a new 57 km railway tunnel, where accurate deflec- tions of the vertical are needed for the orientation of gyroscope measurements. It was rather doubtful if our standard national gravity field model would fulfil the accuracy demands. Therefore, a refinement of the gravity field model was performed by digi- tising all the relevant geological structures in the vicinity of the planned tunnel. This lead to a 3D density model of irregularly shaped polyhedrons. Their influence on the gravity field (potential, gravity, deflections of the vertical and their first derivatives) are calculated rigorously. First results of this study are now available and reveal that the influences of the geological structures on the deflections of the vertical and on gravity are rather small (1 - 2 arcsec, 3 - 5 mgal) in the investigated region and they are at the limit of significance for the technical applications of levelling or gyroscope mea- surements. The largest effects are caused by quaternary sediments with a large density contrast and by some gneiss structures, which show only a small density contrast but their total mass can cause considerable anomalies in the gravity field.
GRAIL gravity field determination using the Celestial Mechanics Approach - status report
Arnold, Daniel; Bertone, Stefano; Jäggi, Adrian; Beutler, Gerhard; Mervart, Leos
2015-04-01
The NASA mission GRAIL (Gravity Recovery And Interior Laboratory) inherits its concept from the GRACE (Gravity Recovery And Climate Experiment) mission to determine the gravity field of the Moon. The use of inter-satellite Ka-band range-rate (KBRR) observations enables data aquisition even when the spacecraft are not tracked from the Earth. The data allows for a highly accurate estimation of the lunar gravity field on both sides of the Moon, which is crucial to improve the understanding of its internal structure and thermal evolution. In this presentation we discuss GRAIL-based lunar gravity fields generated with the Celestial Mechanics Approach using the Bernese Software. Currently, KBRR observations and position data (GNI1B products) are used to solve for the lunar gravity field parameters in a generalized orbit determination problem. Apart from normalized spherical harmonic coefficients up to degree n = 200, also arc-specific parameters like initial state vectors and appropriately spaced empirical parameters (pseudo-stochastic pulses and empirical accelerations) are set up as common parameters for all measurement types. The latter shall compensate for imperfect models of non-gravitational forces. In this respect, we present our advances towards a more realistic model of solar radiation pressure using empirical accelerations in appropriate directions. We compare our results from the nominal and from the extended mission phase with the most recent lunar gravity field models released by other groups, as well as their consistency with topography-induced gravity. We show that the lunar gravity field can be recovered with a high quality by adapting the Celestial Mechanics Approach, even when using pre-GRAIL or pre-SELENE gravity field models as a priori fields. As a further extension of our processing, the GNI1B positions are replaced by the original Doppler observations of the Deep Space Network (DSN) to allow for a completely independent determination of the lunar
NRL Satellite Support for DYNAMO Field Program
2012-09-30
1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NRL Satellite Support for DYNAMO Field Program Jeffrey...Jeff.Hawkins@nrlmry.navy.mil Document Number: N0001412WX20870 LONG-TERM GOALS To provide the ONR-sponsored DYNAMO field program with a...the Indian Ocean. OBJECTIVES Develop a NRL-MRY near real-time web page that enables DYNAMO field program participants to view the evolving
AIUB-CHAMP02S: The influence of GNSS model changes on gravity field recovery using spaceborne GPS
Prange, L.; Jäggi, A.; Dach, R.; Bock, H.; Beutler, G.; Mervart, L.
2010-01-01
The gravity field model AIUB-CHAMP02S, which is based on six years of CHAMP GPS data, is presented here. The gravity field parameters were derived using a two step procedure: In a first step a kinematic trajectory of a low Earth orbiting (LEO) satellite is computed using the GPS data from the on-board receiver. In this step the orbits and clock corrections of the GPS satellites as well as the Earth rotation parameters (ERPs) are introduced as known. In the second step this kinematic orbit is represented by a gravitational force model and orbit parameters. In order to ensure full model consistency the GPS satellite orbits and clock corrections, which have been used for the generation of the kinematic LEO trajectories, were taken from the Center for Orbit Determination in Europe (CODE), located at AIUB (Dach et al., 2009). In recent years many changes have taken place in the processing chain of global navigation satellite system (GNSS) data, e.g., the implementation of absolute antenna phase center modeling. Therefore a reprocessing of the GPS data to obtain state-of-the-art GPS satellite orbits and clock corrections was performed. From these updated GPS products new kinematic orbits of the CHAMP satellite were derived for the years 2002-2007. From the updated CHAMP trajectories spherical harmonic (SH) coefficients of the Earth’s gravity field were determined in exactly the same way as from the original LEO orbit. This allowed us to study the impact of the improved LEO orbits on the derived gravity field parameters and the generation of the multi-year gravity field model AIUB-CHAMP02S. The change of the IGS standards creates an inconsistency to existing global gravity field models, which mainly affects the zonal coefficients of low even degrees. The inconsistency is caused by the change to the absolute antenna phase center model and can be reduced by estimating the phase center variation of the CHAMP GPS antenna.
Experiments to investigate particulate materials in reduced gravity fields
Bowden, M.; Eden, H. F.; Felsenthal, P.; Glaser, P. E.; Wechsler, A. E.
1967-01-01
Study investigates agglomeration and macroscopic behavior in reduced gravity fields of particles of known properties by measuring and correlating thermal and acoustical properties of particulate materials. Experiment evaluations provide a basis for a particle behavior theory and measure bulk properties of particulate materials in reduced gravity.
GRACE Data-based High Accuracy Global Static Earth's Gravity Field Model
Directory of Open Access Journals (Sweden)
CHEN Qiujie
2016-04-01
Full Text Available To recover the highly accurate static earth's gravity field by using GRACE satellite data is one of the hot topics in geodesy. Since linearization errors of dynamic approach quickly increase when extending satellite arc length, we established a modified dynamic approach for processing GRACE orbit and range-rate measurements in this paper, which treated orbit observations of the twin GRACE satellites as approximate values for linearization. Using the GRACE data spanning the period Jan. 2003 to Dec. 2010, containing satellite attitudes, orbits, range-rate, and non-conservative forces, we developed two global static gravity field models. One is the unconstrained solution called Tongji-Dyn01s complete to degree and order 180; the other one is the Tongji-Dyn01k model computed by using Kaula constraint. The comparisons between our models and those latest GRACE-only models (including the AIUB-GRACE03, the GGM05S, the ITSG-Grace2014k and the Tongji-GRACE01 published by different international groups, and the external validations with marine gravity anomalies from DTU13 product and height anomalies from GPS/levelling data, were performed in this study. The results demonstrate that the Tongji-Dyn01s has the same accuracy level with those of the latest GRACE-only models, while the Tongji-Dyn01k model is closer to the EIGEN6C2 than the other GRACE-only models as a whole.
Gravity field models derived from Swarm GPS data
Teixeira da Encarnação, João; Arnold, Daniel; Bezděk, Aleš; Dahle, Christoph; Doornbos, Eelco; van den IJssel, Jose; Jäggi, Adrian; Mayer-Gürr, Torsten; Sebera, Josef; Visser, Pieter; Zehentner, Norbert
2016-07-01
It is of great interest to numerous geophysical studies that the time series of global gravity field models derived from Gravity Recovery and Climate Experiment (GRACE) data remains uninterrupted after the end of this mission. With this in mind, some institutes have been spending efforts to estimate gravity field models from alternative sources of gravimetric data. This study focuses on the gravity field solutions estimated from Swarm global positioning system (GPS) data, produced by the Astronomical Institute of the University of Bern, the Astronomical Institute (ASU, Czech Academy of Sciences) and Institute of Geodesy (IfG, Graz University of Technology). The three sets of solutions are based on different approaches, namely the celestial mechanics approach, the acceleration approach and the short-arc approach, respectively. We derive the maximum spatial resolution of the time-varying gravity signal in the Swarm gravity field models to be degree 12, in comparison with the more accurate models obtained from K-band ranging data of GRACE. We demonstrate that the combination of the GPS-driven models produced with the three different approaches improves the accuracy in all analysed monthly solutions, with respect to any of them. In other words, the combined gravity field model consistently benefits from the individual strengths of each separate solution. The improved accuracy of the combined model is expected to bring benefits to the geophysical studies during the period when no dedicated gravimetric mission is operational.
Determination of Antarctic geoid by using global gravity field
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
With Chinese latest global gravity field model WDM94, the authors providethe geoid height and mean free-air gravity anomaly of Antarctica (The range of latitude is from—60° to—90°). In order to conclude and analyze the characters of Antarctic geoid roundly, the authors collect the latest oversea global gravity field model OSU91 (to degree and order 360) and JGMOSU (to degree and order 360), get the corresponding geoid height and mean free-air gravity anomaly. The results arecompared with the results got from WDM94, thus we get the difference. The standard deviation of geoid height between WDM94 and OSU91 is ± 1.90 re;the deviation of geoid between WDM9 and JGMOSU is ± 2.09 m. The standard deviation of mean gravity anomaly are±8.97 mGal and ± 9.32 mGal respectively.
Gravity Anomalies and Estimated Topography Derived from Satellite Altimetry
National Oceanic and Atmospheric Administration, Department of Commerce — In many areas of the global ocean, the depth of the seafloor is not well known because survey lines by ships are hundreds of kilometers apart. Satellites carrying...
Behaviour of the low degree terms of the Earth gravity field over the last 30 years
Biancale, R.; Lemoine, J.-M.; Reinquin, F.; Deleflie, F.; Ramillien, G.; Gégout, P.
2012-04-01
The GRACE mission has revealed since 2002 the recent evolution of the Earth's gravity field with a resolution down to 400 km, equivalent to degree and order 50 in spherical harmonics. Precise orbit computation for altimetric satellites can obviously gain by applying these variations, which are classically given, as in recent EIGEN models, as drifts and periodic terms (yearly and semi-yearly). However extrapolating these variations to pre-GRACE periods, mainly the drifts, can be problematic for orbit computation performances on former altimetric satellites. One option is to analyse older satellite data, in particular SLR data on geodetic satellites, in order to assess the very low degree variations of the gravity field and compare it to the GRACE determination. This can be done over the last 30 years, using for instance the Lageos and Lageos-2, Starlette and Stella satellites. The spherical harmonic degrees that can be accessed in this way are degrees 2 to 4. Additional information on degree 2 can be derived from the analysis of the Earth orientation parameters, pole coordinates and length of day (LOD), which have been observed over a long period with great accuracy by astrometric, satellite geodetic and extra-galactic means. Once corrected for atmospheric and oceanic load and velocity variations, the pole coordinates will principally bring information on the C(2,1) and S(2,1) coefficients, while the LOD will principally be connected with the C(2,0). Combining these two approaches allows a better observation of the temporal evolution of the gravity field over a long time span and a more realistic modelling of it for the precise orbit computation of past altimeter missions.
Directory of Open Access Journals (Sweden)
Changqing Wang
2015-07-01
Full Text Available The Gravity Recovery and Climate Experiment (GRACE mission can significantly improve our knowledge of the temporal variability of the Earth's gravity field. We obtained monthly gravity field solutions based on variational equations approach from GPS-derived positions of GRACE satellites and K-band range-rate measurements. The impact of different fixed data weighting ratios in temporal gravity field recovery while combining the two types of data was investigated for the purpose of deriving the best combined solution. The monthly gravity field solution obtained through above procedures was named as the Institute of Geodesy and Geophysics (IGG temporal gravity field models. IGG temporal gravity field models were compared with GRACE Release05 (RL05 products in following aspects: (i the trend of the mass anomaly in China and its nearby regions within 2005–2010; (ii the root mean squares of the global mass anomaly during 2005–2010; (iii time-series changes in the mean water storage in the region of the Amazon Basin and the Sahara Desert between 2005 and 2010. The results showed that IGG solutions were almost consistent with GRACE RL05 products in above aspects (i–(iii. Changes in the annual amplitude of mean water storage in the Amazon Basin were 14.7 ± 1.2 cm for IGG, 17.1 ± 1.3 cm for the Centre for Space Research (CSR, 16.4 ± 0.9 cm for the GeoForschungsZentrum (GFZ and 16.9 ± 1.2 cm for the Jet Propulsion Laboratory (JPL in terms of equivalent water height (EWH, respectively. The root mean squares of the mean mass anomaly in Sahara were 1.2 cm, 0.9 cm, 0.9 cm and 1.2 cm for temporal gravity field models of IGG, CSR, GFZ and JPL, respectively. Comparison suggested that IGG temporal gravity field solutions were at the same accuracy level with the latest temporal gravity field solutions published by CSR, GFZ and JPL.
High Degree and Order Gravity Fields of the Moon Derived from GRAIL Data
Lemoine, F. G.; Goossens, S. J.; Sabaka, T. J.; Nicholas, J. B.; Mazarico, E.; Rowlands, D. D.; Loomis, B. D.; Chinn, D. S.; Caprette, D. S.; McCarthy, J. J.; Neumann, G. A.; Zuber, M. T.; Smith, D. E.
2012-01-01
The Gravity Recovery and Interior Laboratory (GRAIL) spacecraft conducted the mapping of the gravity field of the Moon from March 1, 2012 to May 29, 2012. The twin spacecraft acquired highly precise K Band range-rate (KBRR) intersatellite ranging data and Deep Space Network (DSN) data during this prime mission phase from altitudes of 15 to 75 km above the lunar surface over three lunar months. We have processed these data using the NASA GSFC GEODYN orbit determination and geodetic parameter estimation program, and we have determined gravity fields up to degree and order 420 in spherical harmonics. The new gravity solutions show improved correlations with LOLA-derived topography to high degree and order and resolve many lunar features in the geopotential with a resolution of less than 30 km, including for example the central peak of the crater Tycho. We discuss the methodology used for the processing of the GRAIL data, the quality of the orbit determination on the GRAIL satellites and the derivation of the solutions, and their evaluation with independent data, including Lunar Prospector. We show that with these new GRAIL gravity solutions, we can now fit the low altitude, extended mission Lunar Prospector tracking data better than with any previous gravity model that included the LP data.
Impact Of GOCE On The Nordic Gravity Field Modelling
DEFF Research Database (Denmark)
Yidiz, Hasan; Forsberg, René; Tscherning, C. C.
2011-01-01
GOCE level-2 Tzz and Txx gravity gradients at satellite altitude are used in combination as input data to predict surface free air gravity anomalies over the Nordic region using Least Square Collocation. We test the performance of using covariance functions created separately from Tzz gradients a...... Surface model, both the NKG-2004 quasi-geoid model of the Nordic and Baltic Area and the one obtained using second generation GOCE spherical harmonic coefficients based on time-wise method can successfully reproduce the higher level of the Baltic Sea relative to the Atlantic Ocean....
Ern, Manfred; Trinh, Quang Thai; Kaufmann, Martin; Krisch, Isabell; Preusse, Peter; Ungermann, Jörn; Zhu, Yajun; Gille, John C.; Mlynczak, Martin G.; Russell, James M., III; Schwartz, Michael J.; Riese, Martin
2016-08-01
Sudden stratospheric warmings (SSWs) are circulation anomalies in the polar region during winter. They mostly occur in the Northern Hemisphere and affect also surface weather and climate. Both planetary waves and gravity waves contribute to the onset and evolution of SSWs. While the role of planetary waves for SSW evolution has been recognized, the effect of gravity waves is still not fully understood, and has not been comprehensively analyzed based on global observations. In particular, information on the gravity wave driving of the background winds during SSWs is still missing.We investigate the boreal winters from 2001/2002 until 2013/2014. Absolute gravity wave momentum fluxes and gravity wave dissipation (potential drag) are estimated from temperature observations of the satellite instruments HIRDLS and SABER. In agreement with previous work, we find that sometimes gravity wave activity is enhanced before or around the central date of major SSWs, particularly during vortex-split events. Often, SSWs are associated with polar-night jet oscillation (PJO) events. For these events, we find that gravity wave activity is strongly suppressed when the wind has reversed from eastward to westward (usually after the central date of a major SSW). In addition, gravity wave potential drag at the bottom of the newly forming eastward-directed jet is remarkably weak, while considerable potential drag at the top of the jet likely contributes to the downward propagation of both the jet and the new elevated stratopause. During PJO events, we also find some indication for poleward propagation of gravity waves. Another striking finding is that obviously localized gravity wave sources, likely mountain waves and jet-generated gravity waves, play an important role during the evolution of SSWs and potentially contribute to the triggering of SSWs by preconditioning the shape of the polar vortex. The distribution of these hot spots is highly variable and strongly depends on the zonal and
Nerem, R. S.; Tapley, B. D.; Shum, C. K.; Yuan, D. N.
1989-01-01
If the geoid and the satellite position are known accurately, satellite altimetry can be used to determine the geostrophic velocity of the surface ocean currents. The purpose of this investigation is to simultaneously estimate the sea surface topography, zeta, the model for the gravity field, and the satellite orbit. Satellite tracking data from fourteen satellites were used; along with Seasat and Geosat altimeter data as well as surface gravity data for the solution. The estimated model of zeta compares well at long wavelengths with the hydrographic model of zeta. Covariance studies show that the geoid is separable from zeta up to degree 9, at which point geoid error becomes comparable to the signal of zeta.
Investigating High Field Gravity using Astrophysical Techniques
Energy Technology Data Exchange (ETDEWEB)
Bloom, Elliott D.; /SLAC
2008-02-01
The purpose of these lectures is to introduce particle physicists to astrophysical techniques. These techniques can help us understand certain phenomena important to particle physics that are currently impossible to address using standard particle physics experimental techniques. As the subject matter is vast, compromises are necessary in order to convey the central ideas to the reader. Many general references are included for those who want to learn more. The paragraphs below elaborate on the structure of these lectures. I hope this discussion will clarify my motivation and make the lectures easier to follow. The lectures begin with a brief review of more theoretical ideas. First, elements of general relativity are reviewed, concentrating on those aspects that are needed to understand compact stellar objects (white dwarf stars, neutron stars, and black holes). I then review the equations of state of these objects, concentrating on the simplest standard models from astrophysics. After these mathematical preliminaries, Sec. 2(c) discusses 'The End State of Stars'. Most of this section also uses the simplest standard models. However, as these lectures are for particle physicists, I also discuss some of the more recent approaches to the equation of state of very dense compact objects. These particle-physics-motivated equations of state can dramatically change how we view the formation of black holes. Section 3 focuses on the properties of the objects that we want to characterize and measure. X-ray binary systems and Active Galactic Nuclei (AGN) are stressed because the lectures center on understanding very dense stellar objects, black hole candidates (BHCs), and their accompanying high gravitational fields. The use of x-ray timing and gamma-ray experiments is also introduced in this section. Sections 4 and 5 review information from x-ray and gamma-ray experiments. These sections also discuss the current state of the art in x-ray and gamma-ray satellite
Gravity-field determination from laser observations
Gaposchkin, E. M.
1977-01-01
The paper obtains a global representation of the geopotential in spherical harmonics with sufficient detail to determine both a satellite trajectory and the geocentric coordinates of all the tracking stations in a well-defined coordinate system to an accuracy of a few centimeters or better. Laser tracking data on nine satellites are combined with terrestrial gravimetry to obtain a spherical-harmonics representation of the geopotential complete through degree and order 24.
Detailed gravity anomalies from GEOS-3 satellite altimetry data
Gopalapillai, G. S.; Mourad, A. G.
1978-01-01
A technique for deriving mean gravity anomalies from dense altimetry data was developed. A combination of both deterministic and statistical techniques was used. The basic mathematical model was based on the Stokes' equation which describes the analytical relationship between mean gravity anomalies and geoid undulations at a point; this undulation is a linear function of the altimetry data at that point. The overdetermined problem resulting from the excessive altimetry data available was solved using Least-Squares principles. These principles enable the simultaneous estimation of the associated standard deviations reflecting the internal consistency based on the accuracy estimates provided for the altimetry data as well as for the terrestrial anomaly data. Several test computations were made of the anomalies and their accuracy estimates using GOES-3 data.
Seasonal Gravity Field Variations from GRACE and Hydrological Models
DEFF Research Database (Denmark)
Andersen, Ole Baltazar; Hinderer, Jacques; Lemoine, Frank G.
2004-01-01
This study present an investigation of the newly released 18 monthly gravity field solutions from the GRACE twin space-crafts with emphasis on the global scale annual gravity field variations observed from GRACE and modeled from hydrological models as annual changes in terrestrial water storage....... Four global hydrological models covering the same period in 2002–2003 as the GRACE observations were investigated to for their mutual consistency in estimates of annual variation in terrestrial water storage and related temporal changes in gravity field. The hydrological models differ by a maximum of 2...... variation in gravity from GRACE is around 0.4 µGal (0.9 cm water layer thickness) on 2000 km length scales. This makes the GRACE observations of terrestrial water storage on global annual scales more accurate than present-day hydrological models....
Satellite Elevation Magnetic and Gravity Models of Major South American Plate Tectonic Features
Vonfrese, R. R. B.; Hinze, W. J.; Braile, L. W.; Lidiak, E. G.; Keller, G. R. (Principal Investigator); Longacre, M. B.
1984-01-01
Some MAGSAT scalar and vector magnetic anomaly data together with regional gravity anomaly data are being used to investigate the regional tectonic features of the South American Plate. An initial step in this analysis is three dimensional modeling of magnetic and gravity anomalies of major structures such as the Andean subduction zone and the Amazon River Aulacogen at satellite elevations over an appropriate range of physical properties using Gaus-Legendre quadrature integration method. In addition, one degree average free-air gravity anomalies of South America and adjacent marine areas are projected to satellite elevations assuming a spherical Earth and available MAGSAT data are processed to obtain compatible data sets for correlation. Correlation of these data sets is enhanced by reduction of the MAGSAT data to radial polarization because of the profound effect of the variation of the magnetic inclination over South America.
Talpe, Matthieu J.; Nerem, R. Steven; Forootan, Ehsan; Schmidt, Michael; Lemoine, Frank G.; Enderlin, Ellyn M.; Landerer, Felix W.
2017-01-01
We construct long-term time series of Greenland and Antarctic ice sheet mass change from satellite gravity measurements. A statistical reconstruction approach is developed based on a principal component analysis (PCA) to combine high-resolution spatial modes from the Gravity Recovery and Climate Experiment (GRACE) mission with the gravity information from conventional satellite tracking data. Uncertainties of this reconstruction are rigorously assessed; they include temporal limitations for short GRACE measurements, spatial limitations for the low-resolution conventional tracking data measurements, and limitations of the estimated statistical relationships between low- and high-degree potential coefficients reflected in the PCA modes. Trends of mass variations in Greenland and Antarctica are assessed against a number of previous studies. The resulting time series for Greenland show a higher rate of mass loss than other methods before 2000, while the Antarctic ice sheet appears heavily influenced by interannual variations.
Satellite Elevation Magnetic and Gravity Models of Major South American Plate Tectonic Features
Vonfrese, R. R. B.; Hinze, W. J.; Braile, L. W.; Lidiak, E. G.; Keller, G. R. (Principal Investigator); Longacre, M. B.
1984-01-01
Some MAGSAT scalar and vector magnetic anomaly data together with regional gravity anomaly data are being used to investigate the regional tectonic features of the South American Plate. An initial step in this analysis is three dimensional modeling of magnetic and gravity anomalies of major structures such as the Andean subduction zone and the Amazon River Aulacogen at satellite elevations over an appropriate range of physical properties using Gaus-Legendre quadrature integration method. In addition, one degree average free-air gravity anomalies of South America and adjacent marine areas are projected to satellite elevations assuming a spherical Earth and available MAGSAT data are processed to obtain compatible data sets for correlation. Correlation of these data sets is enhanced by reduction of the MAGSAT data to radial polarization because of the profound effect of the variation of the magnetic inclination over South America.
Quantum Gravity Effects in Scalar, Vector and Tensor Field Propagation
Dutta, Anindita
Quantum theory of gravity deals with the physics of the gravitational field at Planck length scale (10-35 m). Even though it is experimentally hard to reach the Planck length scale, on can look for evidence of quantum gravity that is detectable in astrophysics. In this thesis, we try to find effects of loop quantum gravity corrections on observable phenomena. We show that the quantum fluctuation strain for LIGO data would be 10 -125 on the Earth. Th correction is, however, substantial near the black hole horizon. We discuss the effect of this for scalar field propagation followed by vector and tensor fields. For the scalar field, the correction introduces a new asymmetry; for the vector field, we found a new perturbation solution and for the tensor field, we found the corrected Einstein equations which are yet to solve. These will affect phenomena like Hawking radiation, black hole entropy and gravitational waves.
BF gravity with Immirzi parameter and matter fields
Montesinos, Merced
2011-01-01
We perform the coupling of the scalar, Maxwell, and Yang-Mills as well as the cosmological constant to BF gravity with Immirzi parameter. The proposed action principles employ auxiliary fields in order to keep a polynomial dependence on the two-forms. By handling the equations of motion for the B field and for the auxiliary fields, the latter can be expressed in terms of the physical fields and by substituting these expressions into the original action principles we recover the first-order (Holst) and second-order actions for gravity coupled to the physical matter fields. We consider these results a relevant step towards the understanding of the coupling of matter fields to gravity in the theoretical framework of BF theory.
Directory of Open Access Journals (Sweden)
Jan Kostelecký
2015-06-01
Full Text Available The combined gravity field model EIGEN-6C4 (Förste et al., 2014 is the latest combined global gravity field model of GFZ Potsdam and GRGS Toulouse. EIGEN-6C4 has been generated including the satellite gravity gradiometry data of the entire GOCE mission (November 2009 till October 2013 and is of maximum spherical degree and order 2190. In this study EIGEN-6C4 has been compared with EGM2008 to its maximum degree and order via gravity disturbances and Tzz part of the Marussi tensor of the second derivatives of the disturbing potential. The emphasis is put on such areas where GOCE data (complete set of gradiometry measurements after reductions in EIGEN-6C4 obviously contributes to an improvement of the gravity field description. GNSS/levelling geoid heights are independent data source for the evaluation of gravity field models. Therefore, we use the GNSS/levelling data sets over the territories of Europe, Czech Republic and Slovakia for the evaluation of EIGEN-6C4 w.r.t. EGM2008.
Particlelike distributions of the Higgs field nonminimally coupled to gravity.
Füzfa, André; Rinaldi, Massimiliano; Schlögel, Sandrine
2013-09-20
When the Higgs field is nonminimally coupled to gravity, there exists a family of spherically symmetric particlelike solutions to the field equations. These monopoles are the only globally regular and asymptotically flat distributions with finite energy of the Higgs field around compact objects. Moreover, spontaneous scalarization is strongly amplified for specific values of their mass and compactness.
On the use of airborne gravimetry in gravity field modelling: Experiences from the AGMASCO project
DEFF Research Database (Denmark)
Bastos, L.; Cunha, S.; Forsberg, René
2000-01-01
of the vertical accelerations acting on the airborne platform from the natural gravity signal. With the advances in DGPS techniques new prospects arise for gravity field recovery which are of great importance for geodesy, geophysics oceanography and satellite navigation. Furthermore, airborne gravimetric...... parameters play a major role in airborne measurements. Within AGMASCO the airborne system was applied both in a close and an open ocean (Skagerrak, Fram Strait and Azores) areas. The system proved to be a powerful tool in a variety of conditions. The results obtained showed that an accuracy better than 2m......Gal over 5 to 6 kilometres can be achieved. This was proven by comparison of the airborne data with ground truth and satellite data. This accuracy makes the system interesting for use in various applications including geophysical exploitation. Different hardware installations were experienced...
Key techniques of the high precision gravity field system
Xu, Weimin; Chen, Shi; Lu, Hongyan; Shi, Lei
2017-04-01
Ground-based gravity time series provide a direct method to monitor all sources of mass changes from local to global scale. But the effectively infinite spatial sensitivity of gravity measurements make it difficult to isolate the signal of interest. The high precision gravity field system is an alternative approach of modeling mass changes under-ground. The field system, consists of absolute gravity, gravity and gravity gradient, GNSS, leveling and climate hydrology measurements, can improve the signal-to-noise ratio for many applications by removing contributions of unwanted signal from elevation changes, air pressure changes, local hydrology, and others. The networks of field system combination, such as field-profile in more than 100 kilometers, can be used in critical zone with high seismic risk for monitoring earth dynamics, volcanic and seismic phenomena. The system is constituted by 9 typical observation stations in 3*3 array (or 4 in 2*2 array) in 60 square meters field, each station is designed for integrated measurements, including absolute gravity, gravity gradient, elevation changes, air pressure and hydrology. Time-lapse gravity changes resulting from absolute gravimeter (FG5 or A10) with standard deviation less than 2 μGal, without the contributions of Earth tides, loading and polar motion. Additional measurements such as air pressure change, local hydrology and soil moisture are indispensable. The elevation changes resulting from GNSS (on the base station) and leveling (between stations) with precision less than 10 mm. The gravity gradient is the significant measurement for delimiting the location of the related mass changes underground the station, which is measured by Scintrex CG-5 gravimeters in different height (80cm in the test field), with precision less than 10 E. It is necessary to improve the precision of gravity gradient measurements by certain method in field experiment for the high precision measurement system. Acknowledgment: This
Capturing the fingerprint of Etna volcano activity in gravity and satellite radar data.
Del Negro, Ciro; Currenti, Gilda; Solaro, Giuseppe; Greco, Filippo; Pepe, Antonio; Napoli, Rosalba; Pepe, Susi; Casu, Francesco; Sansosti, Eugenio
2013-10-30
Long-term and high temporal resolution gravity and deformation data move us toward a better understanding of the behavior of Mt Etna during the June 1995 - December 2011 period in which the volcano exhibited magma charging phases, flank eruptions and summit crater activity. Monthly repeated gravity measurements were coupled with deformation time series using the Differential Synthetic Aperture Radar Interferometry (DInSAR) technique on two sequences of interferograms from ERS/ENVISAT and COSMO-SkyMed satellites. Combining spatiotemporal gravity and DInSAR observations provides the signature of three underlying processes at Etna: (i) magma accumulation in intermediate storage zones, (ii) magmatic intrusions at shallow depth in the South Rift area, and (iii) the seaward sliding of the volcano's eastern flank. Here we demonstrate the strength of the complementary gravity and DInSAR analysis in discerning among different processes and, thus, in detecting deep magma uprising in months to years before the onset of a new Etna eruption.
Willberg, Martin; Lieb, Verena; Pail, Roland; Schmidt, Michael
2017-04-01
The analysis of the Earth's gravity field plays an important role in various disciplines of geosciences. While modern satellite gravity missions make it possible to define a globally consistent geoid with centimeter accuracy and a spatial resolution of 80-100km, it stays a major challenge to consistently combine global low-resolution data with regional high-resolution gravity information. Therefore, a variety of different regional gravity field modelling methods have been established during the last decades. In our analysis, we investigate the spectral combination of heterogeneous gravity data within two different calculation methods: First, the statistical approach of Least Squares Collocation (LSC) which uses the covariance information of input and output data to result in a full variance-covariance matrix. Second, the Multi-Resolution Representation (MRR) based on spherical radial basis functions. The MRR combines a low-pass filtered global geopotential model with satellite gradiometer and/or terrestrial gravity data by means of band-pass filtering. We examine the theoretical concepts and the computational differences and similarities between both approaches. Through fast changing topography, mountains as well as oceanic regions, our study area in the South American Andes is challenging and perfectly suitable for this examination. The use of synthetic data in closed-loop tests enables us to a very detailed investigation of predicted and actual accuracies of geoid determination. Furthermore, we point out respective advantages and disadvantages and link them to the calculation concepts of the two methods. The results contribute to the project "Optimally combined regional geoid models for the realization of height systems in developing countries (ORG4heights)" and, thus, aim to finally integrate the regional solutions into a global vertical reference frame.
A Test of General Relativity Using the LARES and LAGEOS Satellites and a GRACE Earth's Gravity Model
Ciufolini, Ignazio; Pavlis, Erricos C; Koenig, Rolf; Ries, John; Gurzadyan, Vahe; Matzner, Richard; Penrose, Roger; Sindoni, Giampiero; Paris, Claudio; Khachatryan, Harutyun; Mirzoyan, Sergey
2016-01-01
We present a test of General Relativity, the measurement of the Earth's dragging of inertial frames. Our result is obtained using about 3.5 years of laser-ranged observations of the LARES, LAGEOS and LAGEOS 2 laser-ranged satellites together with the Earth's gravity field model GGM05S produced by the space geodesy mission GRACE. We measure $\\mu = (0.994 \\pm 0.002) \\pm 0.05$, where $\\mu$ is the Earth's dragging of inertial frames normalized to its General Relativity value, 0.002 is the 1-sigma formal error and 0.05 is the estimated systematic error mainly due to the uncertainties in the Earth's gravity model GGM05S. Our result is in agreement with the prediction of General Relativity.
Gravity Fields from CHAMP Mission Data
Lemoine, Frank G.; Luthcke, S. B.; Cox, C. M.; Rowlands, D. D.; Thompson, B. F.; Chinn, D. S.; Williams, T. A.; Nerem, R. S.
2002-01-01
The CHAMP mission, launched in July 2000, is the first in a series of missions that will revolutionize our ability to model the Earth s geopotential. The CHAMP spacecraft is equipped for precision tracking by the Global Positioning System (GPS) and Satellite Laser Ranging (SLR) along with a precision accelerometer to provide measurements of the surface forces. Preliminary satellite-only geopotential solutions with only 30 days of CHAMP data are, by some criteria, as strong as solutions made from tracking data collected over the previous 30 years of the space age. Compared to EGM96, CHAMP makes notable contributions in regions where the terrestrial data (surface gravimetry and altimetry) were weak, for example in the polar regions, in the Amazon and the Himalayas. The CHAMP data allow us to separate the geoid from the dynamic ocean topography (DOT) up to at least degree 25 rather than just under degree 20 as in EGM96. We report on satellite-only and combination models that incorporate up to 100 days of CHAMP data as well as other satellite data. We report on our updated processing of the CHAMP tracking and accelerometer data and evaluate the performance of the geopotential models using a variety of tests.
Gravity Effects of Solar Eclipse and Inducted Gravitational Field
Tang, K.; Wang, Q.; Zhang, H.; Hua, C.; Peng, F.; Hu, K.
2003-12-01
During solar eclipses in recent decades, gravity anomalies were observed and difficult to be explained by Newton's gravitational theory. During the solar eclipse of 1995, India scientists Mishra et al. recorded a gravity valley in amplitude of 12 μ Gal; they interpreted that qualitatively as atmospheric effects. During the total solar eclipse of March 1997, we conducted a comprehensive geophysical observation at Mohe geophysical observatory of China (with latitude of 53.490 N and longitude of 122.340 E. From the data we recorded, we found two valleys about 5 to 7 μ Gal. Unnikrishnan et al. inferred this gravity anomaly was caused by the environment changes. We know that the observation had been conducting in a room inside a small building with a stable coal heating system; the temperature variation inside the experimental room was less 10C during the eclipse. Moreover, the measured atmospheric pressure change was less 1hPa during the eclipse. It is reasonable to believe that surrounding environment of the observatory excluded the significant gravity variations caused by temperature, pressure variation and local moving of persons and vehicles. To further study the gravity effects related to solar eclipses, our scientific team took more observations during Zambia total solar eclipse of June 2001 and Australia total solar eclipse of December 2002. After data corrections, we found respectively two gravity anomalies, with 3 to 4μ Gal for Zambia eclipse and 1.5μ Gal for Australia eclipse. As many scientists have pointed out that pressure-gravity factor is lower than 0.3μ Gal/hPa, it means that any gravity anomaly great than 0.5μ Gal could not be inferred as the results of atmospheric pressure change. The two more gravity anomalies recorded during the solar eclipses provided us strong evidences that some gravity anomalies could not simply be inferred as atmospheric pressure change. We have tried to explain those anomalies by the induced gravitational field.
Marsh, B. D.; Marsh, J. G.; Williamson, R. G.
1984-01-01
Data from an additional 50 satellite-to-satellite tracking (SST) passes were combined with earlier measurements of the high degree and order (n, m, 12) gravity in the central Pacific. A composite map was produced which shows good agreement with conventional GEM models. Data from the Seasat altimeter was reduced and found to agree well with both the SST and the GEM fields. The maps are dominated especially in the east, by a pattern of roughly east-west anomalies with a transverse wavelength of about 2000 km. Further comparison with regional bathymetric data shows a remarkably close correlation with plate age. Each anomaly band is framed by those major fracture zones having large offsets. The regular spacing of these fractures seems to account for the fabric in the gravity fields. Other anomalies are accounted for by hot spots. The source of part of these anomalies is in the lithosphere itself. The possible plume size and ascent velocity necessary to supply deep mantle material to the upper mantle without complete thermal equilibration is considered. Previously announced in STAR as N84-11559
Fuchs, M.J.; Bouman, J.; Broerse, D.B.T.; Visser, P.N.A.M.; Vermeersen, L.L.A.
2013-01-01
The Japan Tohoku-Oki earthquake (9.0 Mw) of 11 March 2011 has left signatures in the Earth's gravity field that are detectable by data of the Gravity field Recovery and Climate Experiment (GRACE) mission. Because the European Space Agency's (ESA) satellite gravity mission Gravity field and
Fuchs, M.J.; Bouman, J.; Broerse, T.; Visser, P.; Vermeersen, B.
2013-01-01
The Japan Tohoku-Oki earthquake (9.0 Mw) of 11 March 2011 has left signatures in the Earth's gravity field that are detectable by data of the Gravity field Recovery and Climate Experiment (GRACE) mission. Because the European Space Agency's (ESA) satellite gravity mission Gravity field and steady-st
Fuchs, M.J.; Bouman, J.; Broerse, D.B.T.; Visser, P.N.A.M.; Vermeersen, L.L.A.
2013-01-01
The Japan Tohoku-Oki earthquake (9.0 Mw) of 11 March 2011 has left signatures in the Earth's gravity field that are detectable by data of the Gravity field Recovery and Climate Experiment (GRACE) mission. Because the European Space Agency's (ESA) satellite gravity mission Gravity field and steady-st
Satellite data for geomagnetic field modeling
Langel, R. A.; Baldwin, R. T.
1992-06-01
Satellite measurements of the geomagnetic fields began with the launch of Sputnik 3 in May of 1958 and have continued sporadically. Spacecraft making significant contributions to main field geomagnetism will be reviewed and the characteristics of their data discussed, including coverage, accuracy, resolution and data availability. Of particular interest are Vanguard 3; Cosmos 49, Ogo's -2, -4, and -6; Magsat; DE-2; and POGS. Spacecraft make measurements on a moving platfrom above the ionosphere as opposed to measurements from fixed observatories and surveys, both below the ionosphere. Possible future missions, such as Aristoteles and GOS are reviewed.
Satellite Data for Geomagnetic Field Modeling
Langel, R. A.; Baldwin, R. T.
1992-01-01
Satellite measurements of the geomagnetic fields began with the launch of Sputnik 3 in May of 1958 and have continued sporadically. Spacecraft making significant contributions to main field geomagnetism will be reviewed and the characteristics of their data discussed, including coverage, accuracy, resolution and data availability. Of particular interest are Vanguard 3; Cosmos 49, Ogo's -2, -4, and -6; Magsat; DE-2; and POGS. Spacecraft make measurements on a moving platfrom above the ionosphere as opposed to measurements from fixed observatories and surveys, both below the ionosphere. Possible future missions, such as Aristoteles and GOS are reviewed.
Ryu, K.; Oyama, K. I.; Sun, Y. Y.; Liu, T. J. Y.
2016-12-01
Some examples of the equatorial plasma density measured by DEMETER (Detection of Electro-Magnetic Emissions Transmitted from Earthquake Regions) increased before some large earthquakes are introduced. Previous examples of the pre-seismic equatorial ionization anomalies (EIA) associated with the northern Sumatra earthquake of 2005, Wenchuan earthquake of 2008, Pisco earthquake of 2007, and Kuril Island earthquake of 2007, commonly accompanied conspicuous precursory EIA enhancements distinct from the longitudinal asymmetric variation which is known as a result of ionospheric interaction with the thermospheric tidal modulation generating wave structure in the global ionospheric density profile in the dayside local time. The physical mechanisms of the seismo-ionospheric coupling manifested as the enhanced EIA intensity can be ascribed either to the gravity wave or static electric field generated by the lithosphere-atmosphere-ionosphere coupling, which is still in debate because of lack in confident observational evidences. Molucca sea earthquake of 2007 which accompanied dominant-ever precursory EIA enhancement was selected as a case study to investigate whether the seismo-ionospheric coupling was originated from the gravity wave propagating from the mesosphere to the thermosphere using the SABER satellite data. The gravity wave intensity according to the frequency was derived by applying the s-transform to the atmospheric neutral temperature profile measured by SABER limb-scanning method. The initial analysis results of the ionospheric plasma condition and thermospheric gravity wave derived from DEMETER, CHAMP, and SABER are introduced and the possible association between the physical conditions are discussed.
Cartan gravity, matter fields, and the gauge principle
Energy Technology Data Exchange (ETDEWEB)
Westman, Hans F., E-mail: hwestman74@gmail.com [Imperial College Theoretical Physics, Huxley Building, London, SW7 2AZ (United Kingdom); Zlosnik, Tom G., E-mail: t.zlosnik@imperial.ac.uk [Instituto de Física Fundamental, CSIC, Serrano 113-B, 28006 Madrid (Spain)
2013-07-15
Gravity is commonly thought of as one of the four force fields in nature. However, in standard formulations its mathematical structure is rather different from the Yang–Mills fields of particle physics that govern the electromagnetic, weak, and strong interactions. This paper explores this dissonance with particular focus on how gravity couples to matter from the perspective of the Cartan-geometric formulation of gravity. There the gravitational field is represented by a pair of variables: (1) a ‘contact vector’ V{sup A} which is geometrically visualized as the contact point between the spacetime manifold and a model spacetime being ‘rolled’ on top of it, and (2) a gauge connection A{sub μ}{sup AB}, here taken to be valued in the Lie algebra of SO(2,3) or SO(1,4), which mathematically determines how much the model spacetime is rotated when rolled. By insisting on two principles, the gauge principle and polynomial simplicity, we shall show how one can reformulate matter field actions in a way that is harmonious with Cartan’s geometric construction. This yields a formulation of all matter fields in terms of first order partial differential equations. We show in detail how the standard second order formulation can be recovered. In particular, the Hodge dual, which characterizes the structure of bosonic field equations, pops up automatically. Furthermore, the energy–momentum and spin-density three-forms are naturally combined into a single object here denoted the spin-energy–momentum three-form. Finally, we highlight a peculiarity in the mathematical structure of our first-order formulation of Yang–Mills fields. This suggests a way to unify a U(1) gauge field with gravity into a SO(1,5)-valued gauge field using a natural generalization of Cartan geometry in which the larger symmetry group is spontaneously broken down to SO(1,3)×U(1). The coupling of this unified theory to matter fields and possible extensions to non-Abelian gauge fields are left as
Scalar fields in (2+1) dimensions coupled to gravity
Özçelik, H T; Hortaçsu, M
2016-01-01
We couple a conformal scalar field in (2+1) dimensions to Einstein-Cartan gravity. The field equations are obtained by a variational principle. Einstein-Cartan equations are not solved analytically. These equations are solved numerically with 4th order Runge-Kutta method.
Reduction of ocean tide aliasing in the context of a next generation gravity field mission
Hauk, Markus; Daras, Ilias; Pail, Roland
2017-04-01
Ocean tide aliasing is currently one of the main limiting factors for temporal gravity field determination and the derivation of mass transport processes in the Earth system. This will be true even more for future gravity field missions with improved measurement technology, which cannot be fully exploited due to this dominant systematic error source. In several previous studies it has been shown that temporal aliasing, related to tidal and non-tidal sources, can be significantly reduced by double-pair formations, e.g., in a so-called Bender configuration, and its effects can be migrated to higher frequencies by an optimum orbit choice, especially the orbit altitude (Murböck et al. 2013). Improved processing strategies and extended parameter models should be able to further reduce the problem. Concerning non-tidal aliasing, it could be shown that the parameterization of short-period long-wavelength gravity field signals, the so-called Wiese approach, is a powerful method for aliasing reduction (Wiese et al. 2013), but it does not really work for the very short-period signals of ocean tides with mainly semi-diurnal and diurnal periods (Daras 2015). In this contribution, several methods dealing with the reduction of ocean tide aliasing are investigated both from a methodological and a numerical point of view. One of the promising strategies is the co-estimation of selected tidal constituents over long time periods, also considering the basic orbit frequencies of the satellites. These improved estimates for ocean tide signals can then be used in a second step as an enhanced de-aliasing product for the computation of short-period temporal gravity fields. From a number of theoretical considerations and numerical case-studies, recommendations for an optimum orbit selection with respect to reduction of ocean tide aliasing shall be derived for two main mission scenarios. The first one is a classical Bender configuration being composed of a (near-) polar and an inclined in
Shear waves in inhomogeneous, compressible fluids in a gravity field.
Godin, Oleg A
2014-03-01
While elastic solids support compressional and shear waves, waves in ideal compressible fluids are usually thought of as compressional waves. Here, a class of acoustic-gravity waves is studied in which the dilatation is identically zero, and the pressure and density remain constant in each fluid particle. These shear waves are described by an exact analytic solution of linearized hydrodynamics equations in inhomogeneous, quiescent, inviscid, compressible fluids with piecewise continuous parameters in a uniform gravity field. It is demonstrated that the shear acoustic-gravity waves also can be supported by moving fluids as well as quiescent, viscous fluids with and without thermal conductivity. Excitation of a shear-wave normal mode by a point source and the normal mode distortion in realistic environmental models are considered. The shear acoustic-gravity waves are likely to play a significant role in coupling wave processes in the ocean and atmosphere.
Validation of the EGSIEM combined monthly GRACE gravity fields
Li, Zhao; van Dam, Tonie; Chen, Qiang; Weigelt, Matthias; Güntner, Andreas; Jäggi, Adrian; Meyer, Ulrich; Jean, Yoomin; Altamimi, Zuheir; Rebischung, Paul
2016-04-01
Observations indicate that global warming is affecting the water cycle. Here in Europe predictions are for more frequent high precipitation events, wetter winters, and longer and dryer summers. The consequences of these changes include the decreasing availability of fresh water resources in some regions as well as flooding and erosion of coastal and low-lying areas in other regions. These weather related effects impose heavy costs on society and the economy. We cannot stop the immediate effects global warming on the water cycle. But there may be measures that we can take to mitigate the costs to society. The Horizon2020 supported project, European Gravity Service for Improved Emergency Management (EGSIEM), will add value to EO observations of variations in the Earth's gravity field. In particular, the EGSIEM project will interpret the observations of gravity field changes in terms of changes in continental water storage. The project team will develop tools to alert the public water storage conditions could indicate the onset of regional flooding or drought. As part of the EGSIEM project, a combined GRACE gravity product is generated, using various monthly GRACE solutions from associated processing centers (ACs). Since each AC follows a set of common processing standards but applies its own independent analysis method, the quality, robustness, and reliability of the monthly combined gravity fields should be significantly improved as compared to any individual solution. In this study, we present detailed and updated comparisons of the combined EGSIEM GRACE gravity product with GPS position time series, hydrological models, and existing GRACE gravity fields. The GPS residuals are latest REPRO2 station position residuals, obtained by rigorously stacking the IGS Repro 2 , daily solutions, estimating, and then restoring the annual and semi-annual signals.
Seasonal Gravity Field Variations from GRACE and Hydrological Models
DEFF Research Database (Denmark)
Andersen, Ole Baltazar; Hinderer, Jacques; Lemoine, Frank G.
2004-01-01
This study present an investigation of the newly released 18 monthly gravity field solutions from the GRACE twin space-crafts with emphasis on the global scale annual gravity field variations observed from GRACE and modeled from hydrological models as annual changes in terrestrial water storage....... Four global hydrological models covering the same period in 2002–2003 as the GRACE observations were investigated to for their mutual consistency in estimates of annual variation in terrestrial water storage and related temporal changes in gravity field. The hydrological models differ by a maximum of 2...... µGal or nearly 5 cm equivalent water storage in selected regions. Integrated over all land masses the standard deviation among the annual signal from the four hydrological models are 0.6 µGal equivalent to around 1.4 cm in equivalent water layer thickness. The estimated accuracy of the annual...
Periodic Orbits in Rotating Second Degree and Order Gravity Fields
Institute of Scientific and Technical Information of China (English)
Wei-Duo Hu; Daniel J.Scheeres
2008-01-01
Periodic orbits in an arbitrary 2nd degree and order uniformly rotating gravity field are studied. We investigate the four equilibrium points in this gravity field. We see that close relation exists between the stability of these equilibria and the existence and stability of their nearby periodic orbits. We check the periodic orbits with non-zero periods. In our searching procedure for these periodic orbits, we remove the two unity eigenvalues from the state transition matrix to find a robust, non-singular linear map to solve for the periodic orbits. The algorithm converges well, especially for stable periodic orbits. Using the searching procedure, which is relatively automatic, we find five basic families of periodic orbits in the rotating second degree and order gravity field for planar motion, and discuss their existence and stability at different central body rotation rates.
A data-driven approach to local gravity field modelling using spherical radial basis functions
Klees, R.; Tenzer, R.; Prutkin, I.; Wittwer, T.
2008-01-01
We propose a methodology for local gravity field modelling from gravity data using spherical radial basis functions. The methodology comprises two steps: in step 1, gravity data (gravity anomalies and/or gravity disturbances) are used to estimate the disturbing potential using least-squares techniqu
Gradio - Earth gravity field measurement on Aristoteles
Pawlak, D.; Meyer, Ph.; Bernard, A.; Touboul, P.
1991-10-01
The design and operation of Gradio, the instrument that was specifically designed for precise gradiometry measurements during the Aristoteles mission, are described. The Gradio is based on simultaneous measurements by four three-axis ultrasensitive accelerometers performed in several locations on a rigid stable structure, called gradio plate, which are then used to compute g gradients. The operational phase of Gradio will last 6 months; the orbit will be circular, near polar, and heliosynchronous, at an altitude of 200 km. It is estimated that Gradio will measure the two main components T(yy) and T(zz) of the gravity gradient tensor in the (0.005, 0.125) Hz frequency bandwidth with an accuracy of 0.01 E.U.
DEFF Research Database (Denmark)
Herceg, Matija; Artemieva, Irina; Thybo, Hans
2014-01-01
and by introducing variations into the crustal structure which corresponds to the uncertainty of its resolution by highquality and low-quality seismic models. We examine the propagation of these uncertainties into determinations of lithospheric mantle density. Given a relatively small range of expected density......We present a regional model for the density structure of the North American upper mantle. The residual mantle gravity anomalies are based on gravity data derived from the GOCE geopotential models with crustal correction to the gravity field being calculated from a regional crustal model. We analyze...... how uncertainties and errors in the crustal model propagate from crustal densities to mantle residual gravity anomalies and the density model of the upper mantle. Uncertainties in the residual upper (lithospheric) mantle gravity anomalies result from several sources: (i) uncertainties in the velocity-density...
Zwei-Dreibein Gravity : A Two-Frame-Field Model of 3D Massive Gravity
Bergshoeff, Eric A.; de Haan, Sjoerd; Hohm, Olaf; Merbis, Wout; Townsend, Paul K.
2013-01-01
We present a generally covariant and parity-invariant two-frame field ("zwei-dreibein") action for gravity in three space-time dimensions that propagates two massive spin-2 modes, unitarily, and we use Hamiltonian methods to confirm the absence of unphysical degrees of freedom. We show how
Pavlis, Erricos C.
Accurate knowledge of the gravity field is a firm requirement in any study of Planet Earth. Space techniques have so far demonstrated their superiority in the global mapping of the gravity field based on ground tracking and altimeter data mostly. Numerical and analytical simulation studies of the upcoming geophysically relevant missions that will most likely carry GPS receivers, indicate significant improvements in the accuracy as well as the resolution of the gravity field. TOPEX will improve by some two orders of magnitude the long wavelength part (to degree about 20), while GP-B will contribute in the long as well as medium wavelength part of the spectrum (up to degree about 60). The gradiometer measurements on ARISTOTELES will contribute in the medium and short wavelength regions (from degree 30 up); GPS tracking of the spacecraft though will provide additional information for the long wavelength gravity and will help resolve it to accuracies comparable to those obtained from GP-B. With the mean rms coefficient error per degree kept below 10 exp -10, geophysical signals such as the post-glacial rebound, tidal variations, and secular and periodic variations of the zonal field rise above the noise level and become readily observable processes.
Zwei-Dreibein Gravity : A Two-Frame-Field Model of 3D Massive Gravity
Bergshoeff, Eric A.; de Haan, Sjoerd; Hohm, Olaf; Merbis, Wout; Townsend, Paul K.
2013-01-01
We present a generally covariant and parity-invariant two-frame field ("zwei-dreibein") action for gravity in three space-time dimensions that propagates two massive spin-2 modes, unitarily, and we use Hamiltonian methods to confirm the absence of unphysical degrees of freedom. We show how zwei-drei
Dark energy cosmology with tachyon field in teleparallel gravity
Motavalli, H.; Akbarieh, A. Rezaei; Nasiry, M.
2016-07-01
We construct a tachyon teleparallel dark energy model for a homogeneous and isotropic flat universe in which a tachyon as a non-canonical scalar field is non-minimally coupled to gravity in the framework of teleparallel gravity. The explicit form of potential and coupling functions are obtained under the assumption that the Lagrangian admits the Noether symmetry approach. The dynamical behavior of the basic cosmological observables is compared to recent observational data, which implies that the tachyon field may serve as a candidate for dark energy.
A short note on gravity with tensor auxiliary fields
Bañados, Máximo
2013-01-01
We consider gravity coupled to a second metric in the strong coupling limit, where the second kinetic term is absent. This system belongs to the recently discussed class of models of "gravity with auxiliary fields" by Pani et al. We prove that, in vacuum, these theories are always equivalent to GR with a cosmological constant, even in the case where the auxiliary field equations contain identities leaving undetermined functions. In the situation where some functions are undetermined, the actual value of the cosmological constant is dictated by an initial condition, and not by the parameters in the action.
The Fourth Gravity Test and Quintessence Matter Field
Liu, Molin; Yu, Benhai; Yu, Fei; Gui, Yuanxing
2010-01-01
After the previous work on gravitational frequency shift, light deflection (arXiv:1003.5296) and perihelion advance (arXiv:0812.2332), we calculate carefully the fourth gravity test, i.e. radar echo delay in a central gravity field surrounded by static free quintessence matter, in this paper. Through the Lagrangian method, we find the influence of the quintessence matter on the time delay of null particle is presence by means of an additional integral term. When the quintessence field vanishe...
Comparison and validation of combined GRACE/GOCE models of the Earth's gravity field
Hashemi Farahani, H.; Ditmar, P.
2012-04-01
Accurate global models of the Earth's gravity field are needed in various applications: in geodesy - to facilitate the production of a unified global height system; in oceanography - as a source of information about the reference equipotential surface (geoid); in geophysics - to draw conclusions about the structure and composition of the Earth's interiors, etc. A global and (nearly) homogeneous set of gravimetric measurements is being provided by the dedicated satellite mission Gravity Field and Steady-State Ocean Circulation Explorer (GOCE). In particular, Satellite Gravity Gradiometry (SGG) data acquired by this mission are characterized by an unprecedented accuracy/resolution: according to the mission objectives, they must ensure global geoid modeling with an accuracy of 1 - 2 cm at the spatial scale of 100 km (spherical harmonic degree 200). A number of new models of the Earth's gravity field have been compiled on the basis of GOCE data in the course of the last 1 - 2 years. The best of them take into account also the data from the satellite gravimetry mission Gravity Recovery And Climate Experiment (GRACE), which offers an unbeatable accuracy in the range of relatively low degrees. Such combined models contain state-of-the-art information about the Earth's gravity field up to degree 200 - 250. In the present study, we compare and validate such models, including GOCO02, EIGEN-6S, and a model compiled in-house. In addition, the EGM2008 model produced in the pre-GOCE era is considered as a reference. The validation is based on the ability of the models to: (i) predict GRACE K-Band Ranging (KBR) and GOCE SGG data (not used in the production of the models under consideration), and (ii) synthesize a mean dynamic topography model, which is compared with the CNES-CLS09 model derived from in situ oceanographic data. The results of the analysis demonstrate that the GOCE SGG data lead not only to significant improvements over continental areas with a poor coverage with
Global thermochemical inversion of seismic waveforms, gravity satellite data, and topography
Fullea, J.; Lebedev, S.; Martinec, Z.
2016-12-01
Conventional methods of seismic tomography, topography, gravity and electromagnetic data analysis and geodynamic modelling constrain distributions of seismic velocity, density, electrical conductivity, and viscosity at depth, all depending on temperature and composition of Earth's rocks. However, modelling and interpretation of multiple data provide a multifaceted image of the true thermochemical structure of the Earth that needs to be consistently integrated. A simple combination of gravity, electromagnetic, geodynamics, petrological and seismic models alone is insufficient due to the non-uniqueness and different sensitivities of these models, and the internal consistency relationships that must connect all the intermediate parameters describing the Earth. In fact, global Earth models based on different observables often lead to rather different images of the Earth. A breakthrough in global and consistent imaging of the fine-scale thermochemical hydrous and rheological structure of the Earth's lithosphere and underlying mantle is needed. Thermodynamic and petrological links between seismic velocities, density, electrical conductivity, viscosity, melt, water, temperature, pressure and composition within the Earth can now be modelled accurately using new methods of computational petrology and data from laboratory experiments. The growth of very large terrestrial and satellite geophysical data over the last few years, together with the advancement of petrological and geophysical modelling techniques, now present an opportunity for global, thermochemical and deformation 3D imaging of the lithosphere and underlying upper mantle with unprecedented resolution. Here we present a method for self-consistent joint inversion of multiple data sets, including seismic, satellite gravity and surface topography data, applied to obtain a detailed and robust global thermochemical image of the lithosphere and underlying upper mantle. This project combines state-of-the-art seismic
Douch, Karim; Panet, Isabelle; Foulon, Bernard; Christophe, Bruno; Pajot-Métivier, Gwendoline; Diament, Michel
2014-05-01
Satellite missions such as CHAMP, GRACE and GOCE have led to an unprecedented improvement of global gravity field models during the past decade. However, for many applications these global models are not sufficiently accurate when dealing with wavelengths shorter than 100 km. This is all the more true in areas where gravity data are scarce and uneven as for instance in the poorly covered land-sea transition area. We suggest here, in line with spatial gravity gradiometry, airborne gravity gradiometry as a convenient way to amplify the sensitivity to short wavelengths and to cover homogeneously coastal region. Moreover, the directionality of the gravity gradients gives new information on the geometry of the gravity field and therefore of the causative bodies. In this respect, we analyze here the performances of a new airborne electrostatic acceleration gradiometer, GREMLIT, which permits along with ancillary measurements to determine the horizontal gradients of the horizontal components of the gravitational field in the instrumental frame. GREMLIT is composed of a compact assembly of 4 planar electrostatic accelerometers inheriting from technologies developed by ONERA for spatial accelerometers. After an overview of the functionals of the gravity field that are of interest for coastal oceanography, passive navigation and hydrocarbon exploration, we present the corresponding required precision and resolution. Then, we investigate the influence of the different parameters of the survey, such as altitude or cross-track distance, on the resolution and precision of the final measurements. To do so, we design numerical simulations of airborne survey performed with GREMLIT and compute the total error budget on the gravity gradients. Based on this error analysis, we infer by a method of error propagation the uncertainty on the different functionals of the gravity potential used for each application. This finally enables us to conclude on the requirements for a high
Field-theoretical formulation of Regge–Teitelboim gravity
Energy Technology Data Exchange (ETDEWEB)
Sheykin, A. A., E-mail: a.sheykin@spbu.ru; Paston, S. A., E-mail: s.paston@spbu.ru [St. Petersburg State University (Russian Federation)
2016-12-15
Theory of gravity is considered in the Regge–Teitelboim approach in which the pseudo-Rimannian space is treated as a surface isometrically embedded in an ambient Minkowski space of higher dimension. This approach is formulated in terms of a field theory in which the original pseudo-Rimannian space is defined by the field constant-value surfaces. The symmetry properties of the proposed theory are investigated, and possible structure of the field-theoretical Lagrangian is discussed.
Titan’s internal structure inferred from its gravity field, shape, and rotation state
Baland, Rose-Marie; Tobie, Gabriel; Lefèvre, Axel; Van Hoolst, Tim
2014-07-01
Several quantities measured by the Cassini-Huygens mission provide insight into the interior of Titan: the second-degree gravity field coefficients, the shape, the tidal Love number, the electric field, and the orientation of its rotation axis. The measured obliquity and tides, as well as the electric field, are evidence for the presence of an internal global ocean beneath the icy shell of Titan. Here we use these different observations together to constrain the density profile assuming a four-layer interior model (ice I shell, liquid water ocean, high pressure ice mantle, and rock core). Even though the observed second degree gravity field is consistent with the hydrostatic relation J2=10C22/3, which is a necessary but not sufficient condition for a synchronous satellite to be in hydrostatic equilibrium, the observed shape of the surface as well as the non-zero degree-three gravity signal indicate some departure from hydrostaticity. Therefore, we do not restrain our range of assumed density profiles to those corresponding to the hydrostatic value of the moment of inertia (0.34). From a range of density profiles consistent with the radius and mass of the satellite, we compute the obliquity of the Cassini state and the tidal Love number k2. The obliquity is computed from a Cassini state model for a satellite with an internal liquid layer, each layer having an ellipsoidal shape consistent with the measured surface shape and gravity field. The observed (nearly hydrostatic) gravity field is obtained by an additional deflection of the ocean-ice I shell interface, assuming that the layers have uniform densities. We show that the measured obliquity can be reproduced only for internal models with a dense ocean (between 1275 and 1350 kg m-3) above a differentiated interior with a full separation of rock and ice. We obtain normalized moments of inertia between 0.31 and 0.33, significantly lower than the expected hydrostatic value (0.34). Evolutionary mechanisms leading to a
Higher derivative gravity: Field equation as the equation of state
Dey, Ramit; Liberati, Stefano; Mohd, Arif
2016-08-01
One of the striking features of general relativity is that the Einstein equation is implied by the Clausius relation imposed on a small patch of locally constructed causal horizon. The extension of this thermodynamic derivation of the field equation to more general theories of gravity has been attempted many times in the last two decades. In particular, equations of motion for minimally coupled higher-curvature theories of gravity, but without the derivatives of curvature, have previously been derived using a thermodynamic reasoning. In that derivation the horizon slices were endowed with an entropy density whose form resembles that of the Noether charge for diffeomorphisms, and was dubbed the Noetheresque entropy. In this paper, we propose a new entropy density, closely related to the Noetheresque form, such that the field equation of any diffeomorphism-invariant metric theory of gravity can be derived by imposing the Clausius relation on a small patch of local causal horizon.
Higher derivative gravity: field equation as the equation of state
Dey, Ramit; Mohd, Arif
2016-01-01
One of the striking features of general relativity is that the Einstein equation is implied by the Clausius relation imposed on a small patch of locally constructed causal horizon. Extension of this thermodynamic derivation of the field equation to more general theories of gravity has been attempted many times in the last two decades. In particular, equations of motion for minimally coupled higher curvature theories of gravity, but without the derivatives of curvature, have previously been derived using a thermodynamic reasoning. In that derivation the horizon slices were endowed with an entropy density whose form resembles that of the Noether charge for diffeomorphisms, and was dubbed the Noetheresque entropy. In this paper, we propose a new entropy density, closely related to the Noetheresque form, such that the field equation of any diffeomorphism invariant metric theory of gravity can be derived by imposing the Clausius relation on a small patch of local causal horizon.
Gravity field and internal structure of Mercury from MESSENGER.
Smith, David E; Zuber, Maria T; Phillips, Roger J; Solomon, Sean C; Hauck, Steven A; Lemoine, Frank G; Mazarico, Erwan; Neumann, Gregory A; Peale, Stanton J; Margot, Jean-Luc; Johnson, Catherine L; Torrence, Mark H; Perry, Mark E; Rowlands, David D; Goossens, Sander; Head, James W; Taylor, Anthony H
2012-04-13
Radio tracking of the MESSENGER spacecraft has provided a model of Mercury's gravity field. In the northern hemisphere, several large gravity anomalies, including candidate mass concentrations (mascons), exceed 100 milli-Galileos (mgal). Mercury's northern hemisphere crust is thicker at low latitudes and thinner in the polar region and shows evidence for thinning beneath some impact basins. The low-degree gravity field, combined with planetary spin parameters, yields the moment of inertia C/MR(2) = 0.353 ± 0.017, where M and R are Mercury's mass and radius, and a ratio of the moment of inertia of Mercury's solid outer shell to that of the planet of C(m)/C = 0.452 ± 0.035. A model for Mercury's radial density distribution consistent with these results includes a solid silicate crust and mantle overlying a solid iron-sulfide layer and an iron-rich liquid outer core and perhaps a solid inner core.
Noncommutative gravity and quantum field theory on noncummutative curved spacetimes
Energy Technology Data Exchange (ETDEWEB)
Schenkel, Alexander
2011-10-24
The purpose of the first part of this thesis is to understand symmetry reduction in noncommutative gravity, which then allows us to find exact solutions of the noncommutative Einstein equations. We propose an extension of the usual symmetry reduction procedure, which is frequently applied to the construction of exact solutions of Einstein's field equations, to noncommutative gravity and show that this leads to preferred choices of noncommutative deformations of a given symmetric system. We classify in the case of abelian Drinfel'd twists all consistent deformations of spatially flat Friedmann-Robertson-Walker cosmologies and of the Schwarzschild black hole. The deformed symmetry structure allows us to obtain exact solutions of the noncommutative Einstein equations in many of our models, for which the noncommutative metric field coincides with the classical one. In the second part we focus on quantum field theory on noncommutative curved spacetimes. We develop a new formalism by combining methods from the algebraic approach to quantum field theory with noncommutative differential geometry. The result is an algebra of observables for scalar quantum field theories on a large class of noncommutative curved spacetimes. A precise relation to the algebra of observables of the corresponding undeformed quantum field theory is established. We focus on explicit examples of deformed wave operators and find that there can be noncommutative corrections even on the level of free field theories, which is not the case in the simplest example of the Moyal-Weyl deformed Minkowski spacetime. The convergent deformation of simple toy-models is investigated and it is shown that these quantum field theories have many new features compared to formal deformation quantization. In addition to the expected nonlocality, we obtain that the relation between the deformed and the undeformed quantum field theory is affected in a nontrivial way, leading to an improved behavior of the
Glacial isostatic adjustment in the static gravity field of Fennoscandia
Root, B.C.; Van der Wal, W.; Novak, P.; Ebbing, J.; Vermeersen, L.L.A.
2015-01-01
In the central part of Fennoscandia, the crust is currently rising, because of the delayed response of the viscous mantle to melting of the Late Pleistocene ice sheet. This process, called Glacial Isostatic Adjustment (GIA), causes a negative anomaly in the present-day static gravity field as isosta
Directory of Open Access Journals (Sweden)
Alexander N. Marchenko
2017-01-01
Full Text Available The GOCE satellite mission is one of the main achievements of the satellite geodesy for the Earth’s gravitational field recovery. Three different approaches have been developed for the estimation of harmonic coefficients from gradiometry data measured on board of GOCE-satellite. In this paper a special version of the space-wise method based on the second method of Neumann for fast determination of the harmonic coefficients Cnm, Snm of the Earth’s gravitational potential is given based on the radial gravity gradients of the EGG_TRF_2 product, except of two polar gaps filled by radial gradients from the EGM2008 gravity model. In the pre-processing stage GOCE-based second degree radial derivatives were averaged to the regular grid through Kalman static filter with additional Gaussean smoothing of residual radial derivatives. All computations are made by iterations. As the first step the determination of the preliminary NULP-01S model up to degree/order 220 derived from the Gaussean grid of the GOCE radial derivatives with respect to the WGS-84 reference field was developed based only one of the radial gradients EGG_TRF_2 in the EFRF-frame. In the second iteration the same algorithm is applied to build the NULP-02S gravity field model up to degree/order 250 using the same Gaussean grid with respect to the NULP-01S reference field. The NULP-02S model was verified by means of applying various approaches for the construction of the gridded gravity anomalies and geoid heights in the Black sea area using processing of datasets from six altimetry satellite missions. Comparison of different models with GNSS-levelling data in the USA area demonstrates the independent verification of achieved accuracy of the constructed NULP-02S Earth’s gravity field model.
AIUB-RL02: an improved time-series of monthly gravity fields from GRACE data
Meyer, U.; Jäggi, A.; Jean, Y.; Beutler, G.
2016-05-01
The new release AIUB-RL02 of monthly gravity models from GRACE GPS and K-Band range-rate data is based on reprocessed satellite orbits referring to the reference frame IGb08. The release is consistent with the IERS2010 conventions. Improvements with respect to its predecessor AIUB-RL01 include the use of reprocessed (RL02) GRACE observations, new atmosphere and ocean dealiasing products (RL05), an upgraded ocean tide model (EOT11A), and the interpolation of shallow ocean tides (admittances). The stochastic parametrization of AIUB-RL02 was adapted to include daily accelerometer scale factors, which drastically reduces spurious signal at the 161 d period in C20 and at other low degree and order gravity field coefficients. Moreover, the correlation between the noise in the monthly gravity models and solar activity is considerably reduced in the new release. The signal and the noise content of the new AIUB-RL02 monthly gravity fields are studied and calibrated errors are derived from their non-secular and non-seasonal variability. The short-period time-variable signal over the oceans, mostly representing noise, is reduced by 50 per cent with respect to AIUB-RL01. Compared to the official GFZ-RL05a and CSR-RL05 monthly models, the AIUB-RL02 stands out by its low noise at high degrees, a fact emerging from the estimation of seasonal variations for selected river basins and of mass trends in polar regions. Two versions of the monthly AIUB-RL02 gravity models, with spherical harmonics resolution of degree and order 60 and 90, respectively, are available for the time period from March 2003 to March 2014 at the International Center for Global Earth Models or from ftp://ftp.unibe.ch/aiub/GRAVITY/GRACE (last accessed 22 March 2016).
Satellite Galaxy Velocity Dispersions in the SDSS and Modified Gravity Models
Directory of Open Access Journals (Sweden)
John W. Moffat
2014-05-01
Full Text Available The Sloan Digital Sky Survey (SDSS provides data on several hundred thousand galaxies. The precise location of these galaxies in the sky, along with information about their luminosities and line-of-sight (Doppler velocities, allows one to construct a three-dimensional map of their location and estimate their line-of-sight velocity dispersion. This information, in principle, allows one to test dynamical gravity models, specifically models of satellite galaxy velocity dispersions near massive hosts. A key difficulty is the separation of true satellites from interlopers. We sidestep this problem by not attempting to derive satellite galaxy velocity dispersions from the data, but instead incorporate an interloper background into the mathematical models and compare the result to the actual data. We find that due to the presence of interlopers, it is not possible to exclude several gravitational theories on the basis of the SDSS data.
Complex Relativity: Gravity and Electromagnetic Fields
Teisseyre, R; Teisseyre, Roman; Bialecki, Mariusz
2005-01-01
We present new aspects of the electromagnetic field by introducting the natural potentials. These natural potentials are suitable for constructing the first order distortions of the metric tensor of Complex Relativity - the theory combining the General Relativity with the electromagnetic equations. A transition from antisymmetric tensors to the symmetric ones helps to define the natural potentials; their form fits a system of the Dirac matrices and this representation leads to distortion of the metric tensor. Our considerations have originated from the recent progresses in the asymmetric continuum theories. One version of such theories assumes an existence of the antisymmetric strain and stress fields; these fields originate due to some kind of internal friction in a continuum medium which have elastic bonds related to rotations of the particles.
The Fourth Gravity Test and Quintessence Matter Field
Liu, Molin; Yu, Fei; Gui, Yuanxing
2010-01-01
After the previous work on gravitational frequency shift, light deflection (arXiv:1003.5296) and perihelion advance (arXiv:0812.2332), we calculate carefully the fourth gravity test, i.e. radar echo delay in a central gravity field surrounded by static free quintessence matter, in this paper. Through the Lagrangian method, we find the influence of the quintessence matter on the time delay of null particle is presence by means of an additional integral term. When the quintessence field vanishes, it reduces to the usual Schwarzschild case naturally. Meanwhile, we also use the data of the Viking lander from the Mars and Cassini spacecraft to Saturn to constrain the quintessence field. For the Viking case, the field parameter $\\alpha$ is under the order of $10^{-9}$. However, $\\alpha$ is under $10^{-18}$ for the Cassini case.
The fourth gravity test and quintessence matter field
Energy Technology Data Exchange (ETDEWEB)
Liu, Molin; Yu, Benhai [Xinyang Normal University, College of Physics and Electronic Engineering, Xinyang (China); Yu, Fei; Gui, Yuanxing [Dalian University of Technology, School of Physics and Optoelectronic Technology, Dalian (China)
2010-06-15
After the previous work on gravitational frequency shift, light deflection (Eur. Phys. J. C 59: 107-116, 2009) and perihelion advance (Eur. Phys. J. C 60: 175-179, 2009), we calculate carefully the fourth gravity test, i.e. radar echo delay in a central gravity field surrounded by static free quintessence matter, in this paper. Through the Lagrangian method, we find the influence of the quintessence matter on the time delay of null particle is presence by means of an additional integral term. When the quintessence field vanishes, it reduces to the usual Schwarzschild case naturally. Meanwhile, we also use the data of the Viking lander from the Mars and Cassini spacecraft to Saturn to constrain the quintessence field. For the Viking case, the field parameter {alpha} is under the order of 10{sup -9}. However, {alpha} is under 10{sup -18} for the Cassini case. (orig.)
DYNAMICS OF THE GEOMAGNETIC FIELD AND REVERSALS IN THE SATELLITE MODEL
Directory of Open Access Journals (Sweden)
Trunev A. P.
2016-09-01
Full Text Available The article deals with the problem of changing the polarity of the geomagnetic field in the satellite model. It is assumed that the central core of the earth magnetized and surrounded by a number of satellites, each of which has a magnetic moment. Satellites interact with a central core and one another by means of gravity and through a magnetic field. It is shown that satellites distributed in orbit around a central core in such a system. It displays two models, one of which on the outer orbit satellites interact with each other and with a central body - the core and satellites, located on the inner orbit. The central body can make sudden upheavals in the fall at the core of one or more satellites, which leads to the excitation of vibrations in the satellite system, located on the outer orbit. It is shown that the duration of phase with constant polarity and upheaval time depends on the magnitude of the disturbance torque and core asymmetry. The second model contains two magnets subsystems and the central core. The rapid change of the geomagnetic field polarity detected on the basis of paleomagnetic data is modeled based on the Euler theory describing the rigid body rotation. In this model, there are modes with a quick flip of the body while maintaining the angular momentum. If the body has a magnetic moment, when there is a change coup magnetic field polarity. This leads to the excitation of vibrations in the satellite subsystems that are on the inner and outer orbits. Numerical simulation of the dynamics of the system consisting of the core and 10-13 satellites was run to determine the period of constant polarity magnetic field
Perturbative quantum gravity in double field theory
Boels, Rutger H.; Horst, Christoph
2016-04-01
We study perturbative general relativity with a two-form and a dilaton using the double field theory formulation which features explicit index factorisation at the Lagrangian level. Explicit checks to known tree level results are performed. In a natural covariant gauge a ghost-like scalar which contributes even at tree level is shown to decouple consistently as required by perturbative unitarity. In addition, a lightcone gauge is explored which bypasses the problem altogether. Using this gauge to study BCFW on-shell recursion, we can show that most of the D-dimensional tree level S-matrix of the theory, including all pure graviton scattering amplitudes, is reproduced by the double field theory. More generally, we argue that the integrand may be reconstructed from its single cuts and provide limited evidence for off-shell cancellations in the Feynman graphs. As a straightforward application of the developed technology double field theory-like expressions for four field string corrections are derived.
Perturbative quantum gravity in double field theory
Boels, Rutger H
2015-01-01
We study perturbative general relativity with a two-form and a dilaton using the double field theory formulation which features explicit index factorisation at the Lagrangian level. Explicit checks to known tree level results are performed. In a natural covariant gauge a ghost-like scalar which contributes even at tree level is shown to decouple consistently as required by perturbative unitarity. In addition, a lightcone gauge is explored which bypasses the problem altogether. Using this gauge to study BCFW on-shell recursion, we can show that most of the D-dimensional tree level S-matrix of the theory, including all pure graviton scattering amplitudes, is reproduced by the double field theory. More generally, we argue that the integrand may be reconstructed from its single cuts and provide limited evidence for off-shell cancellations in the Feynman graphs. As a straightforward application of the developed technology double field theory-like expressions for four field string corrections are derived.
The gravity field observations and products at IGFS
Barzaghi, Riccardo; Vergos, George; Bonvalot, Sylvain; Barthelmes, Franz; Reguzzoni, Mirko; Wziontek, Hartmut; Kelly, Kevin
2017-04-01
The International Gravity Field Service (IGFS) is a service of the International Association of Geodesy (IAG) that was established in 2003 at the IAG/IUGG General Assembly in Sapporo (Japan). This service aims at coordinating the actions of the IAG services related to the Earth gravity field, i.e. the Bureau Gravimétrique International (BGI), the International Service for the Geoid (ISG), the International Geodynamics and Earth Tides Service (IGETS), the International Center for Global Earth Models (ICGEM) and the International Digital Elevation Model Service (IDEMS). Also, via its Central Bureau hosted at the Aristotle University of Thessaloniki (Greece), IGFS provides a link to the Global Geodetic Observing System (GGOS) bureaus in order to communicate their requirements and recommendations to the IGFS-Centers. In this work, a presentation is given on the recent activities of the service, namely those related to the contributions to the implementation of: the International Height Reference System/Frame; the Global Geodetic Reference System/Frame; the new Global Absolute Gravity Reference System/Frame. Particularly, the impact that these activities have in improving the estimation of the Earth's gravity field, either at global and local scale, is highlighted also in the framework of GGOS.
GravityCam: Higher Resolution Visible Wide-Field Imaging
Mackay, Craig; Steele, Iain
2016-01-01
The limits to the angular resolution achievable with conventional ground-based telescopes are unchanged over 70 years. Atmospheric turbulence limits image quality to typically ~1 arcsec in practice. We have developed a new concept of ground-based imaging instrument called GravityCam capable of delivering significantly sharper images from the ground than is normally possible without adaptive optics. The acquisition of visible images at high speed without significant noise penalty has been made possible by advances in optical and near IR imaging technologies. Images are recorded at high speed and then aligned before combination and can yield a 3-5 fold improvement in image resolution. Very wide survey fields are possible with widefield telescope optics. We describe GravityCam and detail its application to accelerate greatly the rate of detection of Earth size planets by gravitational microlensing. GravityCam will also improve substantially the quality of weak shear studies of dark matter distribution in distant...
Global and Local Gravity Field Models of the Moon Using GRAIL Primary and Extended Mission Data
Goossens, Sander; Lemoine, Frank G.; Sabaka, Terence J.; Nicholas, Joseph B.; Mazarico, Erwan; Rowlands, David D.; Loomis, Bryant D.; Chinn, Douglas S.; Neumann, Gregory A.; Smith, David E.; Zuber, Maria T.
2015-01-01
The Gravity Recovery and Interior Laboratory (GRAIL) mission was designed to map the structure of the lunar interior from crust to core and to advance the understanding of the Moon's thermal evolution by producing a high-quality, high-resolution map of the gravitational field of the Moon. The mission consisted of two spacecraft, which were launched in September 2011 on a Discovery-class NASA mission. Ka-band tracking between the two satellites was the single science instrument, augmented by tracking from Earth using the Deep Space Network (DSN).
New isostatic model of the lithosphere and gravity field
Kaban, M. K.; Schwintzer, P.; Reigber, Ch.
2003-04-01
A new global model of the isostatic gravity field based on the up-to-date data sets is computed in terms of gravity and geoid. The initial gravity field model is improved using the new CHAMP data. For a construction of the isostatic model of the lithosphere we use the latest compilation of crustal data. Globally this is the CRUST2.0 model, which is supplemented by detailed original data for large parts of North America and North Eurasia. The long-wavelengths of the computed isostatic anomalies up to spherical harmonic degree 20 reflect deep density heterogeneities and the influence of mantle convection through the dynamic topography. The signal contribution of the isostatically balanced lithosphere to the observed gravity or geoid is still significant also for the long-wavelengths: -30- +60 mGal and -15- +40 m peak-to-peak, respectively. Generally the long-wavelength isostaticaly reduced gravity field has much less correlation with the lithosphere patterns than the observed field. This demonstrates that the long-wavelength isostatic gravity field is more appropriate for a modelling of mantle convection than the observed one. The smaller scale isostatic anomalies (wavelengths less than 2000 km) on the other hand are highly sensitive to the quality of the input data used for their computation. To a large extent they reflect internal crustal density inhomogeneities, not included in the isostatic compensation scheme, and uncertainties in the initial crustal data. Thus, small-scale isostatic anomalies may not be always interpreted as a measure of the disturbances of isostatic balance of the lithosphere. Instead we suggest to compute for the smaller scale spectral part the non-isostatic residual topography. The initial crust - upper mantle density model is corrected by gravity inversion in a least squares adjustment. Then, the residual (unbalanced) topography computed with the corrected density distribution represents the isostatic state of the lithosphere. The maximum
Diffraction patterns in ferrofluids: Effect of magnetic field and gravity
Energy Technology Data Exchange (ETDEWEB)
Radha, S., E-mail: radhasri12@gmail.com [Department of Physics, University of Mumbai, Mumbai 400098 (India); Mohan, Shalini [Department of Physics, University of Mumbai, Mumbai 400098 (India); UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Mumbai 400098 (India); Pai, Chintamani [Department of Physics, University of Mumbai, Mumbai 400098 (India)
2014-09-01
In this paper, we report the experimental observation of diffraction patterns in a ferrofluid comprising of Fe{sub 3}O{sub 4} nanoparticles in hexane by a 10 mW He–Ne laser beam. An external dc magnetic field (0–2 kG) was applied perpendicular to the beam. The diffraction pattern showed a variation at different depths of the sample in both zero and applied magnetic field. The patterns also exhibit a change in shape and size as the external field is varied. This effect arises due to thermally induced self-diffraction under the influence of gravity and external magnetic field.
Large-scale magnetic fields from inflation in teleparallel gravity
Bamba, Kazuharu; Luo, Ling-Wei
2013-01-01
Generation of large-scale magnetic fields in inflationary cosmology is studied in teleparallelism, where instead of the scalar curvature in general relativity, the torsion scalar describes the gravity theory. In particular, we investigate a coupling of the electromagnetic field to the torsion scalar during inflation, which leads to the breaking of conformal invariance of the electromagnetic field. We demonstrate that for a power-law type coupling, the current magnetic field strength of $\\sim 10^{-9}$ G on 1 Mpc scale can be generated, if the backreaction effects and strong coupling problem are not taken into consideration.
Rapid 3-D forward modeling of gravity and gravity gradient tensor fields
Longwei, C.; Dai, S.; Zhang, Q.
2014-12-01
Three-dimensional inversion are the key process in gravity exploration. In the commonly used scheme of inversion, the subsurface of the earth is usually divided into many small prism blocks (or grids) with variable density values. A key task in gravity inversion is to calculate the composite fields (gravity and gravity gradient tensor) generated by all these grids, this is known as forward modeling. In general forward modeling is memory-demanding and time-consuming. One scheme to rapidly calculate the fields is to implement it in Fourier domain and use fast Fourier transform algorithm. The advantage of the Fourier domain method is, obviously, much faster. However, the intrinsic edge effect of the Fourier domain method degrades the precision of the calculated fields. We have developed an innovative scheme to directly calculate the fields in spatial domain. There are two key points in this scheme. One key point is spatial discretization. Spatial convolution formula is discretized using an approach similar to normal difference method. A key idea during discretization is to use the analytical formula of a cubic prism, and this makes the resultant discrete formula have clear physical meaning: it embodies the superposition principle of the fields and is the exact formula to calculate the fields generated by all grids. The discretization only requires the grids have the same dimension in horizontal directions, and grids in different layers may have different dimension in vertical direction, and this offers more flexibility for inversion. Another key point is discrete convolution calculation. We invoke a high efficient two-dimensional discrete convolution algorithm, and it guarantees both time-saving and memory-saving. Its memory cost has the same order as the number of grids. Numerical test result shows that for a model with a dimension of 1000x1000x201 grids, it takes about 300s to calculate the fields on 1000x1000 field points in a personal computer with 3.4-GHz CPU
Eppelbaum, Lev; Katz, Youri
2017-07-01
Satellite gravimetry is a powerful and reliable tool for regional tectono-geodynamic zonation. The studied region contains intricate geodynamical features (high seismological indicators, active rift systems and collision processes), richest structural arrangement (existence of mosaic blocks of oceanic and continental Earth's crust of various age), and a number of high-amplitude gravity anomalies and complex magnetic pattern. The most hydrocarbon reserves of the world and other important economic deposits occur in this region. Comprehensive analysis of satellite gravity data with application of different approaches was used to develop a sequence of maps specifying crucial properties of the region deep structure. Careful examination of numerous geological sources and their combined examination with satellite gravity (main), magnetic, GPS, seismic, seismological and some other geophysical data enabled to develop a new tectonic map of the Arabian-African region. Integrated analysis of series of gravity map transformations and certain geological indicators allowed to reveal significant geodynamic features of the region.
Griggs, C. E.; Paik, H. J.; Moody, M. V.; Han, S.-C.; Rowlands, D. D.; Lemoine, F. G.; Shirron, P. J.
2015-01-01
We are developing a compact tensor superconducting gravity gradiometer (SGG) for obtaining gravimetric measurements from planetary orbits. A new and innovative design gives a potential sensitivity of approximately 10(sup -4) E Hz(sup - 1/2)( 1 E = 10(sup -9 S(sup -2) in the measurement band up to 0.1 Hz (suitale for short wavelength static gravity) and of approximately 10(sup -4) E Hz(sup - 1/2) in the frequency band less than 1 mHz (for long wavelength time-variable gravity) from the same device with a baseline just over 10 cm. The measurement band and sensitiy can be optimally tuned in-flight during the mission by changing resonance frequencies, which allows meaurements of both static and time-variable gravity fields from the same mission. Significant advances in the technologies needed for space-based cryogenic instruments have been made in the last decade. In particular, the use of cryocoolers will alleviate the previously severe constraint on mission lifetime imposed by the use of liquid helium, enabling mission durations in the 5 - 10 year range.
DEFF Research Database (Denmark)
Hinderer, J.; Andersen, Ole Baltazar; Lemoine, F.
2006-01-01
This paper is devoted to the investigation of seasonal changes of the Earth's gravity field from GRACE satellites and the comparison with surface gravity measurements in Europe from the Global Geodynamics Project (GGP) sub-network, as well as with recent hydrology models for continental soil......-derived and ground gravity changes due to continental hydrology is studied and we also compute the theoretical ratio of gravity versus radial displacement (in mu Gal/mm) involved in the hydrological loading process. The 'mean' value (averaged in time and in space over Europe) from hydrologic forward modeling...... is found to be close to - 1.0 mu Gal/mm and we show that this value can be explained by a strong low degree (n = 5-6) peak in the hydrology amplitude spectrum. The dominant time-variable signal from GRACE is found to be annual with an amplitude and a phase both of which are in fair agreement...
DEFF Research Database (Denmark)
Hinderer, J.; Andersen, Ole Baltazar; Lemoine, F.
2006-01-01
is found to be close to - 1.0 mu Gal/mm and we show that this value can be explained by a strong low degree (n = 5-6) peak in the hydrology amplitude spectrum. The dominant time-variable signal from GRACE is found to be annual with an amplitude and a phase both of which are in fair agreement......This paper is devoted to the investigation of seasonal changes of the Earth's gravity field from GRACE satellites and the comparison with surface gravity measurements in Europe from the Global Geodynamics Project (GGP) sub-network, as well as with recent hydrology models for continental soil......-derived and ground gravity changes due to continental hydrology is studied and we also compute the theoretical ratio of gravity versus radial displacement (in mu Gal/mm) involved in the hydrological loading process. The 'mean' value (averaged in time and in space over Europe) from hydrologic forward modeling...
Production of centrifugal fields greater than 100 million times gravity.
Katano, R; Shimizu, S
1979-07-01
A high-speed rotation instrument to produce centrifugal fields greater than 100 million times gravity has been constructed. Small, solid, spherical high-carbon chromium steel rotors are suspended magnetically in high vacuum and spun by a rotating magnetic field. It is found that the spinning rotor explodes when the calculated average value of stress in the meridian plane reaches about 1.2 times the tensile strength of the material. The maximum speed of rotation so far achieved for more than a few days without bursting was obtained with a rotor of 1.50 mm diameter. The speed of 2.11 x 10(5) rev/s corresponded to a centrifugal field of 1.34 x 10(8) times gravity. Our instrument will find application in the study of nuclear atomic phenomena.
Noncommutative Gravity and Quantum Field Theory on Noncommutative Curved Spacetimes
Schenkel, Alexander
2012-01-01
The focus of this PhD thesis is on applications, new developments and extensions of the noncommutative gravity theory proposed by Julius Wess and his group. In part one we propose an extension of the usual symmetry reduction procedure to noncommutative gravity. We classify in the case of abelian Drinfel'd twists all consistent deformations of spatially flat Friedmann-Robertson-Walker cosmologies and of the Schwarzschild black hole. The deformed symmetry structure allows us to obtain exact solutions of the noncommutative Einstein equations in many of our models. In part two we develop a new formalism for quantum field theory on noncommutative curved spacetimes by combining methods from the algebraic approach to quantum field theory with noncommutative differential geometry. We also study explicit examples of deformed wave operators and find that there can be noncommutative corrections even on the level of free field theories. The convergent deformation of simple toy models is investigated and it is found that ...
Lithospheric bending at subduction zones based on depth soundings and satellite gravity
Levitt, Daniel A.; Sandwell, David T.
1995-01-01
A global study of trench flexure was performed by simultaneously modeling 117 bathymetric profiles (original depth soundings) and satellite-derived gravity profiles. A thin, elastic plate flexure model was fit to each bathymetry/gravity profile by minimization of the L(sub 1) norm. The six model parameters were regional depth, regional gravity, trench axis location, flexural wavelength, flexural amplitude, and lithospheric density. A regional tilt parameter was not required after correcting for age-related trend using a new high-resolution age map. Estimates of the density parameter confirm that most outer rises are uncompensated. We find that flexural wavelength is not an accurate estimate of plate thickness because of the high curvatures observed at a majority of trenches. As in previous studies, we find that the gravity data favor a longer-wavelength flexure than the bathymetry data. A joint topography-gravity modeling scheme and fit criteria are used to limit acceptable parameter values to models for which topography and gravity yield consistent results. Even after the elastic thicknesses are converted to mechanical thicknesses using the yield strength envelope model, residual scatter obscures the systematic increase of mechanical thickness with age; perhaps this reflects the combination of uncertainties inherent in estimating flexural wavelength, such as extreme inelastic bending and accumulated thermoelastic stress. The bending moment needed to support the trench and outer rise topography increases by a factor of 10 as lithospheric age increases from 20 to 150 Ma; this reflects the increase in saturation bending moment that the lithosphere can maintain. Using a stiff, dry-olivine rheology, we find that the lithosphere of the GDH1 thermal model (Stein and Stein, 1992) is too hot and thin to maintain the observed bending moments. Moreover, the regional depth seaward of the oldest trenches (approximately 150 Ma) exceeds the GDH1 model depths by about 400 m.
Detection of co-seismic earthquake gravity field signals using GRACE-like mission simulations
Sharifi, Mohammad Ali; Shahamat, Abolfazl
2017-05-01
After launching the GRACE satellite mission in 2002, the earth's gravity field and its temporal variations are measured with a closer inspection. Although these variations are mainly because of the mass transfer of land water storage, they can also happen due to mass movements related to some natural phenomena including earthquakes, volcanic eruptions, melting of polar ice caps and glacial isostatic adjustment. Therefore this paper shows which parameters of an earthquake are more sensitive to GRACE-Like satellite missions. For this purpose, the parameters of the Maule earthquake that occurred in recent years and Alaska earthquake that occurred in 1964 have been chosen. Then we changed their several parameters to serve our purpose. The GRACE-Like sensitivity is observed by using the simulation of the earthquakes along with gravity changes they caused, as well as using dislocation theory under a half space earth. This observation affects the various faulting parameters which include fault length, width, depth and average slip. These changes were therefore evaluated and the result shows that the GRACE satellite missions tend to be more sensitive to Width among the Length and Width, the other parameter is Dip variations than other parameters. This article can be useful to the upcoming scenario designers and seismologists in their quest to study fault parameters.
Deep and shallow structures in the Arctic region imaged by satellite magnetic and gravity data
Gaina, Carmen; Panet, Isabelle; Shephard, Grace
2016-07-01
The last decade has seen an increase in geoscientific data collection, which, together with available and older classified data made publicly available, is contributing to increasing our knowledge about Earth's structure and evolution. Despite this development, there are many gaps in data coverage in remote, hard-to-access regions. Satellite data have the advantage of acquiring measurements steadily and covering the entire globe. From a tectonics point of view, the specific heights of various satellites allow for the identification of moderate to large tectonic features, and can shed light on Earth's lower crust and lithosphere structure. In this contribution I discuss the use of magnetic and gravity models based on satellite data in deciphering the tectonic structure of remote areas. The present day Circum-Arctic region comprises a variety of tectonic settings: from active seafloor spreading in the North Atlantic and Eurasian Basin, and subduction in the North Pacific, to long-lived stable continental platforms in North America and Asia. A series of rifted margins, abandoned rifted areas and presumably extinct oceanic basins fringe these regions. Moreover, rifting- and seafloor spreading-related processes formed many continental splinters and terranes that were transported and docked at higher latitudes. Volcanic provinces of different ages have also been identified, from the Permian-Triassic Siberian traps at ca. 251 Ma to the (presumably) Cretaceous HALIP and smaller Cenozoic provinces in northern Greenland and the Barents Sea. We inspect global lithospheric magnetic data in order to identify the signature of the main volcanic provinces in the High Arctic. One of the most striking features in the Arctic domain is the strong magnetic anomaly close to the North Pole that correlates with a large, igneous oceanic plateau called the Alpha Mendeleev Ridge. The intensity and extent of the magnetic anomalies recorded by aircraft or satellites point towards a very thick
Gravity wave driving of the QBO estimated from satellite observations and ERA-Interim
Ern, Manfred; Preusse, Peter; Kalisch, Silvio; Ploeger, Felix; Riese, Martin
2015-04-01
The quasi-biennial oscillation (QBO) of the zonal wind in the tropical stratosphere is an important process in atmospheric dynamics. The QBO has effect on atmospheric dynamics over a large range of altitudes and latitudes. Effects of the QBO are found, for example, in the mesosphere, and selective filtering of upward propagating waves plays an important role for the stratopause semiannual oscillation (SAO). The QBO also influences the extratropics and even surface weather and climate. Still, climate models have large difficulties in reproducing a realistic QBO. Atmospheric waves play an important role in the driving of the QBO. Both global scale waves and mesoscale gravity waves (GWs) contribute. We derive GW temperature variances, GW momentum fluxes and potential GW drag from three years of High Resolution Dynamics Limb Sounder (HIRDLS) and from 11 years of Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) satellite data. These observations are compared with the drag that is still missing in the tropical momentum budget of the ECMWF ERA-Interim (ERAI) reanalysis after considering zonal wind tendency, Coriolis force, advection terms, and the drag due to resolved global-scale waves. Being strongly constrained by data assimilation, the meteorological fields of ERAI are quite realistic. Therefore this missing drag can be attributed to small scale GWs not resolved by the model. We find good qualitative agreement between observed GW drag and the missing drag due to waves not resolved in ERAI. During eastward QBO wind shear even the magnitude of observed and ERAI missing drag are in good agreement. During westward shear, however, observed drag is much weaker than the ERAI missing drag. This asymmetry might hint at uncertainties in the advection terms of ERAI. Further, observed GW spectra indicate that QBO-related GW dissipation is mainly due to critical level filtering.
Latitude variability of acoustic-gravity waves in the upper atmosphere based on satellite data
Fedorenko, A. K.; Bespalova, A. V.; Zhuk, I. T.; Kryuchkov, E. I.
2017-07-01
Based on satellite measurements, we investigated the properties of acoustic-gravity waves in different geographical areas of the Earth's upper atmosphere. To study wave activity at high latitudes, we used the concentration of neutral particles measured by the low-altitude polar satellite Dynamic Explorer 2 and measurements from the equatorial satellite Atmosphere Explorer-E for analysis of waves at low latitudes. In the range of heights 250-400 km, there are observed latitudinal variations of amplitudes, together with variations in the morphological and spectral properties of acoustic-gravity waves. In the polar regions of thermosphere, the wave amplitudes amount to 3-10% in terms of relative variations of density and do not exceed 3% at low and middle latitudes. At low latitudes, regular fluctuations induced by the solar terminator are clearly seen with a predominant wave mode moving synchronously with terminator. Moreover, at low and middle latitudes, there are observed sporadic local wave packets of small amplitudes (1-2%) that can have origins of various natures. We also investigated the relation between some of the observed wave trains and the earthquakes.
Claret, A.
2017-03-01
Aims: We present new gravity and limb-darkening coefficients for a wide range of effective temperatures, gravities, metallicities, and microturbulent velocities. These coefficients can be used in many different fields of stellar physics as synthetic light curves of eclipsing binaries and planetary transits, stellar diameters, line profiles in rotating stars, and others. Methods: The limb-darkening coefficients were computed specifically for the photometric system of the space mission tess and were performed by adopting the least-square method. In addition, the linear and bi-parametric coefficients, by adopting the flux conservation method, are also available. On the other hand, to take into account the effects of tidal and rotational distortions, we computed the passband gravity-darkening coefficients y(λ) using a general differential equation in which we consider the effects of convection and of the partial derivative (∂lnI(λ) /∂lng)Teff. Results: To generate the limb-darkening coefficients we adopt two stellar atmosphere models: atlas (plane-parallel) and phoenix (spherical, quasi-spherical, and r-method). The specific intensity distribution was fitted using five approaches: linear, quadratic, square root, logarithmic, and a more general one with four terms. These grids cover together 19 metallicities ranging from 10-5 up to 10+1 solar abundances, 0 ≤ log g ≤ 6.0 and 1500 K ≤Teff ≤ 50 000 K. The calculations of the gravity-darkening coefficients were performed for all plane-parallel ATLAS models. Tables 2-29 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/600/A30
Capturing the fingerprint of Etna volcano activity in gravity and satellite radar data
Negro, Ciro Del; Currenti, Gilda; Solaro, Giuseppe; Greco, Filippo; Pepe, Antonio; Napoli, Rosalba; Pepe, Susi; Casu, Francesco; Sansosti, Eugenio
2013-01-01
Long-term and high temporal resolution gravity and deformation data move us toward a better understanding of the behavior of Mt Etna during the June 1995 – December 2011 period in which the volcano exhibited magma charging phases, flank eruptions and summit crater activity. Monthly repeated gravity measurements were coupled with deformation time series using the Differential Synthetic Aperture Radar Interferometry (DInSAR) technique on two sequences of interferograms from ERS/ENVISAT and COSMO-SkyMed satellites. Combining spatiotemporal gravity and DInSAR observations provides the signature of three underlying processes at Etna: (i) magma accumulation in intermediate storage zones, (ii) magmatic intrusions at shallow depth in the South Rift area, and (iii) the seaward sliding of the volcano's eastern flank. Here we demonstrate the strength of the complementary gravity and DInSAR analysis in discerning among different processes and, thus, in detecting deep magma uprising in months to years before the onset of a new Etna eruption. PMID:24169569
Institute of Scientific and Technical Information of China (English)
段建锋; 张宇; 陈明; 曹建峰; 王健
2014-01-01
嫦娥三号(CE-3)利用发动机力偶模式下喷气进行姿态控制,这对轨道的影响具有累积效应.GRAIL (Gravity Recovery And Interior Laboratory,重力恢复与内部实验室)月球重力场模型是美国国家航空航天局进行GRAIL探月计划的科学成果.为与LP(Lunar Prospector,月球勘探者)等月球重力场模型的定轨精度进行比较,利用重叠弧段法,分别选取CE-3环月段100 km×100 km圆轨道及100 km×15 km椭圆轨道各约1d的重叠弧段,使用LP重力场模型及GRAIL重力场模型进行定轨分析,比较重叠弧段精度.结果表明:使用GRAIL重力场模型可以明显降低定轨测距残差RMS(Root Mean Square,均方根)值,同时可以使重叠弧段精度提高1个量级.
On the use of airborne gravimetry in gravity field modelling: Experiences from the AGMASCO project
DEFF Research Database (Denmark)
Bastos, L.; Cunha, S.; Forsberg, René
2000-01-01
Important areas of the earth are still not covered by accurate gravity measurements. The gravity field may be determined by using different techniques but airborne gravity surveying is becoming the most powerful tool available today. One of the main problems in airborne gravity is the separation ...
The Weak Gravity Conjecture and Effective Field Theory
Saraswat, Prashant
2016-01-01
The Weak Gravity Conjecture (WGC) is a proposed constraint on theories with gauge fields and gravity, requiring the existence of light charged particles and/or imposing an upper bound on the field theory cutoff $\\Lambda$. If taken as a consistency requirement for effective field theories (EFTs), it rules out possibilities for model-building including some models of inflation. I demonstrate simple models which satisfy all forms of the WGC, but which through Higgsing of the original gauge fields produce low-energy EFTs with gauge forces that badly violate the WGC. These models illustrate specific loopholes in arguments that motivate the WGC from a bottom-up perspective; for example the arguments based on magnetic monopoles are evaded when the magnetic confinement that occurs in a Higgs phase is accounted for. This indicates that the WGC should not be taken as a veto on EFTs, even if it turns out to be a robust property of UV quantum gravity theories. However, if the latter is true then parametric violation of t...
Loop quantum gravity coupled to a scalar field
Lewandowski, Jerzy
2015-01-01
We reconsider the Rovelli-Smolin model of gravity coupled to the Klein-Gordon time field with an eye towards capturing the degrees of freedom of the scalar field lost in the framework in which time is deparametrized by the scalar field. Several new results for loop quantum gravity are obtained: (i) a Hilbert space for the gravity-matter system and a non-standard representation of the scalar field thereon is constructed, (ii) a new operator for the scalar constraint of the coupled system is defined and investigated, (iii) methods for solving the constraint are developed. Commutators of the new constraint do not vanish, but seem to reproduce a part of the Dirac algebra. This, however, poses problems for finding solutions. Hence the states we consider -- and perhaps the whole setup -- still needs some improvement. As a side result we describe a representation of the gravitational degrees of freedom in which the flux is diagonal. This representation bears a strong resemblance to the BF vacuum of Dittrich and Geil...
Einstein gravity 3-point functions from conformal field theory
Afkhami-Jeddi, Nima; Kundu, Sandipan; Tajdini, Amirhossein
2016-01-01
We study stress tensor correlation functions in four-dimensional conformal field theories with large $N$ and a sparse spectrum. Theories in this class are expected to have local holographic duals, so effective field theory in anti-de Sitter suggests that the stress tensor sector should exhibit universal, gravity-like behavior. At the linearized level, the hallmark of locality in the emergent geometry is that stress tensor three-point functions $\\langle TTT\\rangle$, normally specified by three constants, should approach a universal structure controlled by a single parameter as the gap to higher spin operators is increased. We demonstrate this phenomenon by a direct CFT calculation. Stress tensor exchange, by itself, violates causality and unitarity unless the three-point functions are carefully tuned, and the unique consistent choice exactly matches the prediction of Einstein gravity. Under some assumptions about the other potential contributions, we conclude that this structure is universal, and in particular...
Ocean tides in GRACE monthly averaged gravity fields
DEFF Research Database (Denmark)
Knudsen, Per
2003-01-01
aims at. In this analysis the results of Knudsen and Andersen (2002) have been verified using actual post-launch orbit parameter of the GRACE mission. The current ocean tide models are not accurate enough to correct GRACE data at harmonic degrees lower than 47. The accumulated tidal errors may affect......The GRACE mission will map the Earth's gravity fields and its variations with unprecedented accuracy during its 5-year lifetime. Unless ocean tide signals and their load upon the solid earth are removed from the GRACE data, their long period aliases obscure more subtle climate signals which GRACE...... the GRACE data up to harmonic degree 60. A study of the revised alias frequencies confirm that the ocean tide errors will not cancel in the GRACE monthly averaged temporal gravity fields. The S-2 and the K-2 terms have alias frequencies much longer than 30 days, so they remain almost unreduced...
Gouweleeuw, B.; Kvas, A.; Gruber, C.; Schumacher, M.; Mayer-Gürr, T.; Flechtner, F.; Kusche, J.; Guntner, A.
2016-12-01
Water storage anomalies from the Gravity Recovery and Climate Experiment (GRACE) satellite mission (2002-present) have been shown to be a unique descriptor of large-scale hydrological extreme events. However, possibly due to its coarse temporal (weekly to monthly), spatial (> 150.000 km2) resolution and the latency of standard products of about 2 months, the comprehensive information from GRACE on total water storage variations has rarely been evaluated for near-real time flood or drought monitoring or forecasting so far. The Horizon 2020 funded EGSIEM (European Gravity Service for Improved Emergency Management) project is scheduled to launch a near-real time test run of GRACE gravity field data, which will provide daily solutions with a latency of 5 days. This fast availability allows the monitoring of total water storage variations related to hydrological extreme events as they occur, as opposed to a 'confirmation after occurrence', which is the current situation. A first hydrological evaluation of daily GRACE gravity field solutions for floods in the Ganges-Brahmaputra Delta in 2004 and 2007 confirms their potential for gravity-based large-scale flood monitoring. This particularly applies to short-lived, high-volume floods, as they occur in Bangladesh with a 4-5 year return period. The subsequent assimilation of daily GRACE data into a (global) hydrological model - carried out jointly within the framework of the Belmont Forum funded BanD-AID project - decomposes total water storage into its individual components (e.g., surface water), increases the spatial resolution and opens up the possibility of flood early warning and forecasting.
Bertone, Stefano; Arnold, Daniel; Jäggi, Adrian; Mervart, Leos
2016-10-01
The NASA mission GRAIL inherits its concept from the GRACE mission to determine the gravity field of the Moon. Beside one-way and two-way Doppler tracking from Earth, GRAIL uses inter-satellite Ka-band range-rate (KBRR) observations to enable data acquisition even when the spacecraft are not tracked from the Earth. The data allows for a highly accurate estimation of the lunar gravity field on both sides of the Moon, which is leading to huge improvements in our understanding of its internal structure and thermal evolution. This led to a spectacular resolution of as few as 7 km for the gravity field in the latest solutions by NASA JPL and GSFC teams.The Astronomical Institute of the University of Bern (AIUB) recently started the development of deep space Doppler data processing within the Bernese GNSS Software, which has been long used in orbit determination of low Earth orbiting satellites and Earth gravity field determination. In this presentation we discuss the latest GRAIL-based orbit and gravity field solutions generated with the Celestial Mechanics Approach using the Bernese GNSS Software.Based on Doppler data, we perform orbit determination by solving six initial orbital elements, dynamical parameters, and stochastic parameters in daily arcs using least-squares adjustment. The pseudo-stochastic parameters are estimated to absorb deficiencies in our dynamical modeling (e.g. due to non-gravitational forces). Doppler and KBRR data are then used together with an appropriate weighting for a combined orbit and gravity field determination process.We present our independent solutions of the lunar gravity field up to d/o 300, where KBRR data and Doppler 1-way and 2-way observations from the primary mission phase (PM, March-May 2012) are used. We compare and evaluate the impact of 1-way and 2-way Doppler data on our results. Moreover, we present our first solution for the Moon tidal Love number k2.We compare all of our results from the PM with the most recent lunar
Flight results from the gravity-gradient-controlled RAE-1 satellite
Blanchard, D. L.
1986-01-01
The in-orbit dynamics of a large, flexible spacecraft has been modeled with a computer simulation, which was used for designing the control system, developing a deployment and gravity-gradient capture procedure, predicting the steady-state behavior, and designing a series of dynamics experiments for the Radio Astronomy Explorer (RAE) satellite. This flexible body dynamics simulator permits three-dimensional, large-angle rotation of the total spacecraft and includes effects of orbit eccentricity, thermal bending, solar pressure, gravitational accelerations, and the damper system. Flight results are consistent with the simulator predictions and are presented for the deployment and capture phases, the steady-state mission, and the dynamics experiments.
Inflation in pure gravity with only massless spin-2 fields
Tekin, Bayram
2016-01-01
We show that without introducing additional fields or extra degrees of freedom, a specific higher derivative extension of Einstein's gravity that has only a massless spin-2 excitation in its perturbative spectrum, has an inflationary period, a quasi-de Sitter phase with enough number of e-foldings required to solve the horizon and related problems. The crucial ingredient in the construction is the curvature dependence of the effective Newton's constant.
Dynamics of Generalized Tachyon Field in Teleparallel Gravity
Directory of Open Access Journals (Sweden)
Behnaz Fazlpour
2015-01-01
Full Text Available We study dynamics of generalized tachyon scalar field in the framework of teleparallel gravity. This model is an extension of tachyonic teleparallel dark energy model which has been proposed by Banijamali and Fazlpour (2012. In contrast with tachyonic teleparallel dark energy model that has no scaling attractors, here we find some scaling attractors which means that the cosmological coincidence problem can be alleviated. Scaling attractors are presented for both interacting and noninteracting dark energy and dark matter cases.
Hirt, Christian; Rexer, Moritz; Scheinert, Mirko; Pail, Roland; Claessens, Sten; Holmes, Simon
2016-02-01
The current high-degree global geopotential models EGM2008 and EIGEN-6C4 resolve gravity field structures to ˜ 10 km spatial scales over most parts of the of Earth's surface. However, a notable exception is continental Antarctica, where the gravity information in these and other recent models is based on satellite gravimetry observations only, and thus limited to about ˜ 80-120 km spatial scales. Here, we present a new degree-2190 global gravity model (GGM) that for the first time improves the spatial resolution of the gravity field over the whole of continental Antarctica to ˜ 10 km spatial scales. The new model called SatGravRET2014 is a combination of recent Gravity Recovery and Climate Experiment (GRACE) and Gravity field and steady-state Ocean Circulation Explorer (GOCE) satellite gravimetry with gravitational signals derived from the 2013 Bedmap2 topography/ice thickness/bedrock model with gravity forward modelling in ellipsoidal approximation. Bedmap2 is a significantly improved description of the topographic mass distribution over the Antarctic region based on a multitude of topographic surveys, and a well-suited source for modelling short-scale gravity signals as we show in our study. We describe the development of SatGravRET2014 which entirely relies on spherical harmonic modelling techniques. Details are provided on the least-squares combination procedures and on the conversion of topography to implied gravitational potential. The main outcome of our work is the SatGravRET2014 spherical harmonic series expansion to degree 2190, and derived high-resolution grids of 3D-synthesized gravity and quasigeoid effects over the whole of Antarctica. For validation, six data sets from the IAG Subcommission 2.4f "Gravity and Geoid in Antarctica" (AntGG) database were used comprising a total of 1,092,981 airborne gravimetric observations. All subsets consistently show that the Bedmap2-based short-scale gravity modelling improves the agreement over satellite
Energy Technology Data Exchange (ETDEWEB)
Cabrera, M.A. [Universidad Tecnologica Nacional, Tucuman (Argentina). CIASUR, Facultad Regional Tucuman; Universidad Nacional de Tucuman (Argentina). Lab. de Ionosfera; Pezzopane, M.; Zuccheretti, E. [Istituto Nazionale di Geofisica e Vulcanologia, Rome (Italy); Ezquer, R.G. [Universidad Tecnologica Nacional, Tucuman (Argentina). CIASUR, Facultad Regional Tucuman; Universidad Nacional de Tucuman (Argentina). Lab. de Ionosfera; Consejo Nacional de Investigaciones Cientificas y Tecnicas, Buenos Aires (Argentina)
2010-07-01
Range spread-F (RSF) and occurrence of ''satellite'' traces prior to RSF onset were studied at the southern peak of the ionospheric equatorial anomaly (EA). Ionograms recorded in September 2007 at the new ionospheric station of Tucuman, Argentina (26.9 S, 294.6 E, dip latitude 15.5 S), by the Advanced Ionospheric Sounder (AIS) developed at the Istituto Nazionale di Geofisica e Vulcanologia (INGV), were considered. Satellite traces (STs) are confirmed to be a necessary precursor to the appearance of an RSF trace on the ionograms. Moreover, an analysis of isoheight contours of electron density seems to suggest a relationship between RSF occurrence and gravity wave (GW) propagation. (orig.)
Long-term groundwater variations in Northwest India from satellite gravity measurements
Chen, Jianli; Li, Jin; Zhang, Zizhan; Ni, Shengnan
2014-05-01
Satellite gravity data from the Gravity Recovery and Climate Experiment (GRACE) provides quantitative measures of terrestrial water storage (TWS) change at large spatial scales. Combining GRACE-observed TWS changes and model estimates of water storage changes in soil and snow at the surface offers a means for measuring groundwater storage change. In this study, we re-assess long-term groundwater storage variation in the Northwest India (NWI) region using an extended record of GRACE time-variable gravity measurements, and a fully unconstrained global forward modeling method. Our new assessments based on the GRACE release-5 (RL05) gravity solutions indicate that during the 10 year period January 2003 to December 2012, the NWI groundwater depletion remains pronounced, especially during the first 5 years (01/2003-12/2007). The newly estimated depletion rates are ~ 20.4 ± 7.1 Gigatonne (Gt)/yr averaged over the 10 year period, and 29.4 ± 8.4 Gt/yr during the first 5 years. The yearly groundwater storage changes in the NWI region are strongly correlated with yearly precipitation anomalies. In 2009, the driest season of the decade, the groundwater depletion reaches nearly 80 Gt, while in the two relatively wet seasons, 2008 and 2011, the groundwater storages even see net increases of about 24 and 35 Gt, respectively. The estimated mean groundwater depletion rates for the first 5 years are significantly higher than previous assessments. The larger depletion rates may reflect the benefits from improved data quality of GRACE RL05 gravity solutions, and improved data processing method, which can more effectively reduce leakage error in GRACE estimates. Our analysis indicates that the neighboring Punjab Province of Pakistan (especially Northern Punjab) apparently also experiences significant groundwater depletion during the same period, which has partly contributed to the new regional groundwater depletion estimates.
Phantom collapse of electrically charged scalar field in dilaton gravity
Nakonieczna, Anna
2013-01-01
Our research focus on gravitational collapse of electrically charged scalar field in dilaton gravity and in the presence of phantom coupling. We examine dynamical behaviour of the scalar field coupled to Maxwell field when gravitational interactions have form consistent with the low-energy limit of the string theory. Moreover, we allow the evolving fields to have negative sign in front of the respective kinetic term of the Lagrangian. The main aim of our studies is to investigate in what manner does the phantom nature of either Maxwell or dilaton fields (or both of them) affect the outcomes of the collapse. It turns out that the influence is crucial to the obtained spacetime structures. Negative kinetic energy of one (or both) of the fields delays, changes the course or even prevents the collapse.
Decoding the hologram: Scalar fields interacting with gravity
Kabat, Daniel
2013-01-01
We construct smeared CFT operators which represent a scalar field in AdS interacting with gravity. The guiding principle is micro-causality: scalar fields should commute with themselves at spacelike separation. To O(1/N) we show that a correct and convenient criterion for constructing the appropriate CFT operators is to demand micro-causality in a three-point function with a boundary Weyl tensor and another boundary scalar. The resulting bulk observables transform in the correct way under AdS isometries and commute with boundary scalar operators at spacelike separation, even in the presence of metric perturbations.
Massive gravitons from Extended Gravity to Effective Field Theories
Capozziello, Salvatore; Paolella, Mariacristina; Ricciardi, Giulia
2013-01-01
Massive gravitons in effective field theories can be recovered by extending General Relativity and taking into account generic functions of the curvature invariants not necessarily linear in the Ricci scalar R. In particular, adopting the minimal extension of f(R) gravity, an effective field theory with a massive state is straightforwardly recovered. This approach allows to evade shortcomings like ghosts and discontinuities if a suitable choice of expansion parameters is performed. We show that the massive state can be identified with a massive graviton.
Bimetric Gravity From Adjoint Frame Field In Four Dimensions
Guo, Zhi-Qiang
2015-01-01
We provide a novel model of gravity by using adjoint frame fields in four dimensions. It has a natural interpretation as a gravitational theory of a complex metric field, which describes interactions between two real metrics. The classical solutions establish three appealing features. The spherical symmetric black hole solution has an additional hair, which includes the Schwarzschild solution as a special case. The de Sitter solution is realized without introducing a cosmological constant. The constant flat background breaks the Lorentz invariance spontaneously, although the Lorentz breaking effect can be localized to the second metric while the first metric still respects the Lorentz invariance.
Noncommutative scalar field minimally coupled to nonsymmetric gravity
Energy Technology Data Exchange (ETDEWEB)
Kouadik, S.; Sefai, D. [Laboratory of Mechanic, Physics and Mathematical Modeling Medea University (Algeria)
2012-06-27
We construct a non-commutative non symmetric gravity minimally coupled model (the star product only couples matter). We introduce the action for the system considered namely a non-commutative scalar field propagating in a nontrivial gravitational background. We expand the action in powers of the anti-symmetric field and the graviton to second order adopting the assumption that the scalar is weekly coupled to the graviton. We compute the one loop radiative corrections to the self-energy of a scalar particle.
Gravity Field and Internal Structure of Mercury from MESSENGER
Smith, David E.; Zuber, Maria T.; Phillips, Roger J.; Solomon, Sean C.; Hauck, Steven A., II; Lemoine, Frank G.; Mazarico, Erwan; Neumann, Gregory A.; Peale, Stanton J.; Margot, Jean-Luc; Johnson, Catherine L.; Torrence, Mark H.; Perry, Mark E.; Rowlands, David D.; Goossens, Sander; Head, James W.; Taylor, Anthony H.
2012-01-01
Radio tracking of the MESSENGER spacecraft has provided a model of Mercury's gravity field. In the northern hemisphere, several large gravity anomalies, including candidate mass concentrations (mascons), exceed 100 milli-Galileos (mgal). Mercury's northern hemisphere crust is thicker at low latitudes and thinner in the polar region and shows evidence for thinning beneath some impact basins. The low-degree gravity field, combined with planetary spin parameters, yields the moment of inertia C/M(R(exp 2) = 0.353 +/- 0.017, where M and R are Mercury's mass and radius, and a ratio of the moment of inertia of Mercury's solid outer shell to that of the planet of C(sub m)/C = 0.452 +/- 0.035. A model for Mercury s radial density distribution consistent with these results includes a solid silicate crust and mantle overlying a solid iron-sulfide layer and an iron-rich liquid outer core and perhaps a solid inner core.
Directory of Open Access Journals (Sweden)
E. W. Grafarend
1997-06-01
Full Text Available The length of the gravitational field lines/of the orthogonal trajectories of a family of gravity equipotential surfaces/of the plumbline between a terrestrial topographic point and a point on a reference equipotential surface like the geoid í also known as the orthometric height í plays a central role in Satellite Geodesy as well as in Physical Geodesy. As soon as we determine the geometry of the Earth pointwise by means of a satellite GPS (Global Positioning System: «global problem solver» we are left with the problem of converting ellipsoidal heights (geometric heights into orthometric heights (physical heights. For the computation of the plumbline we derive its three differential equations of first order as well as the three geodesic equations of second order. The three differential equations of second order take the form of a Newton differential equation when we introduce the parameter time via the Marussi gauge on a conformally flat three-dimensional Riemann manifold and the generalized force field, the gradient of the superpotential, namely the modulus of gravity squared and taken half. In particular, we compute curvature and torsion of the plumbline and prove their functional relationship to the second and third derivatives of the gravity potential. For a spherically symmetric gravity field, curvature and torsion of the plumbline are zero, the plumbline is straight. Finally we derive the three Lagrangean as well as the six Hamiltonian differential equations of the plumbline, in particular in their star form with respect to Marussi gauge.
Gravitomagnetic effects in quadratic gravity with a scalar field
Finch, Andrew
2016-01-01
The two gravitomagnetic effects which influence bodies orbiting around a gravitational source are the geodetic effect and the Lense-Thirring effect. The former describes the precession angle of the axis of a spinning gyroscope while in orbit around a nonrotating gravitational source whereas the latter provides a correction for this angle in the case of a spinning source. In this paper we derive the relevant equations in quadratic gravity and relate them to their equivalents in general relativity. Starting with an investigation into Kepler's third law in quadratic gravity with a scalar field, the effects of an axisymmetric and rotating gravitational source on an orbiting body in a circular, equatorial orbit are introduced.
Action and entanglement in gravity and field theory.
Neiman, Yasha
2013-12-27
In nongravitational quantum field theory, the entanglement entropy across a surface depends on the short-distance regularization. Quantum gravity should not require such regularization, and it has been conjectured that the entanglement entropy there is always given by the black hole entropy formula evaluated on the entangling surface. We show that these statements have precise classical counterparts at the level of the action. Specifically, we point out that the action can have a nonadditive imaginary part. In gravity, the latter is fixed by the black hole entropy formula, while in nongravitating theories it is arbitrary. From these classical facts, the entanglement entropy conjecture follows by heuristically applying the relation between actions and wave functions.
Conserved Charges of Minimal Massive Gravity Coupled to Scalar Field
Setare, M R
2016-01-01
Recently, the theory of Topologically massive gravity non-minimally coupled to a scalar field has been proposed which comes from Lorentz-Chern-Simons theory \\cite{1}. That theory is a torsion free one. We extend that theory by adding an extra term which makes torsion to be non-zero. The extended theory can be regarded as an extension of Minimal massive gravity such that it is non-minimally coupled to a scalar field. We obtain equations of motion of extended theory such that they are expressed in terms of usual torsion free spin-connection. We show that BTZ spacetime is a solution of this theory when scalar field is constant. We define quasi-local conserved charge by the concept of generalized off-shell ADT current which both are conserved for any asymptotically Killing vector field as well as a Killing vector field which is admitted by spacetime everywhere. Also we find general formula for entropy of stationary black hole solution in the context of considered theory. We apply the obtained formulas on BTZ blac...
Wormholes, emergent gauge fields, and the weak gravity conjecture
Energy Technology Data Exchange (ETDEWEB)
Harlow, Daniel [Center for the Fundamental Laws of Nature, Physics Department, Harvard University,Cambridge MA, 02138 (United States)
2016-01-20
This paper revisits the question of reconstructing bulk gauge fields as boundary operators in AdS/CFT. In the presence of the wormhole dual to the thermofield double state of two CFTs, the existence of bulk gauge fields is in some tension with the microscopic tensor factorization of the Hilbert space. I explain how this tension can be resolved by splitting the gauge field into charged constituents, and I argue that this leads to a new argument for the “principle of completeness”, which states that the charge lattice of a gauge theory coupled to gravity must be fully populated. I also claim that it leads to a new motivation for (and a clarification of) the “weak gravity conjecture”, which I interpret as a strengthening of this principle. This setup gives a simple example of a situation where describing low-energy bulk physics in CFT language requires knowledge of high-energy bulk physics. This contradicts to some extent the notion of “effective conformal field theory”, but in fact is an expected feature of the resolution of the black hole information problem. An analogous factorization issue exists also for the gravitational field, and I comment on several of its implications for reconstructing black hole interiors and the emergence of spacetime more generally.
A new class of group field theories for 1st order discrete quantum gravity
Oriti, D.; Tlas, T.
2008-01-01
Group Field Theories, a generalization of matrix models for 2d gravity, represent a 2nd quantization of both loop quantum gravity and simplicial quantum gravity. In this paper, we construct a new class of Group Field Theory models, for any choice of spacetime dimension and signature, whose Feynman
A new class of group field theories for 1st order discrete quantum gravity
Oriti, D.; Tlas, T.
2008-01-01
Group Field Theories, a generalization of matrix models for 2d gravity, represent a 2nd quantization of both loop quantum gravity and simplicial quantum gravity. In this paper, we construct a new class of Group Field Theory models, for any choice of spacetime dimension and signature, whose Feynman a
A new class of group field theories for 1st order discrete quantum gravity
Oriti, D.; Tlas, T.
2008-01-01
Group Field Theories, a generalization of matrix models for 2d gravity, represent a 2nd quantization of both loop quantum gravity and simplicial quantum gravity. In this paper, we construct a new class of Group Field Theory models, for any choice of spacetime dimension and signature, whose Feynman a
Satellites Seek Gravity Signals for Remote Sensing the Seismotectonic Stresses in Earth
Liu, H.; Chen, J.; Li, J.
2003-12-01
The ability of the mantle to withstand stress-difference due to superimposed loads would appear to argue against flow in the Earth's mantle, but the ironic fact is that the satellite determined gravity variations are the evidence of density differences associated with mantle flow. The type of flow which is most likely to be involved concerns convection currents. For the past 4 decades, models of mantle convection have made remarkable advancements. Although a large body of evidence regarding the seafloor depth, heat flow, lithospheric strength and forces of slab-pull and swell-push has been obtained, the global seismotectonic stresses in the Earth are yet to be determined. The problem is that no one has been able to come up with a satisfactory scenario that must characterize the stresses in the Earth which cause earthquakes and create tectonic features. The stress generated by mantle convection under the crust are inferable from high degree (n>=13) spherical harmonics of the geopotential. Therefore, satellite gravity missions may be able to seek the Earth's gravity signals for investigating the seismotectonic effect of these subcrustal stresses. It is well known that subcrustal stress patterns for (137.0 from 1976 to 2000 is also given for reference. The intense seismicity in the subcrustal stress concentration belt (the ring of fire around the Pacific) is expected. A broad band of seismicity extends from southern Europe to southeast Europe to southeast Asia; this is associated with the subcrustal stress concentration belts in Europe, Africa, Arabian, and Asia. These results seem to provide significant insights into the origin of the earthquakes and formation of the world.
A Unified Field Theory of Gravity, Electromagnetism, and the Yang-Mills Gauge Field
Directory of Open Access Journals (Sweden)
Suhendro I.
2008-01-01
Full Text Available In this work, we attempt at constructing a comprehensive four-dimensional unified field theory of gravity, electromagnetism, and the non-Abelian Yang-Mills gauge field in which the gravitational, electromagnetic, and material spin fields are unified as intrinsic geometric objects of the space-time manifold S4 via the connection, with the general- ized non-Abelian Yang-Mills gauge field appearing in particular as a sub-field of the geometrized electromagnetic interaction.
Directory of Open Access Journals (Sweden)
Suhendro I.
2008-01-01
Full Text Available In this work, we attempt at constructing a comprehensive four-dimensional unified field theory of gravity, electromagnetism, and the non-Abelian Yang-Mills gauge field in which the gravitational, electromagnetic, and material spin fields are unified as intrinsic geometric objects of the space-time manifold $S_4$ via the connection, with the generalized non-Abelian Yang-Mills gauge field appearing in particular as a sub-field of the geometrized electromagnetic interaction.
Gravity, Topography, and Magnetic Field of Mercury from Messenger
Neumann, Gregory A.; Solomon, Sean C.; Zuber, Maria T.; Phillips, Roger J.; Barnouin, Olivier; Ernst, Carolyn; Goosens, Sander; Hauck, Steven A., II; Head, James W., III; Johnson, Catherine L.; Lemoine, Frank G.; Margot, Jean-Luc; McNutt, Ralph; Mazarico, Erwan M.; Oberst, Jurgen; Peale, Stanley J.; Perry, Mark; Purucker, Michael E.; Rowlands, David D.; Torrence, Mark H.
2012-01-01
On 18 March 2011, the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft was inserted into a 12-hour, near-polar orbit around Mercury, with an initial periapsis altitude of 200 km, initial periapse latitude of 60 deg N, and apoapsis at approximately 15,200 km altitude in the southern hemisphere. This orbit has permitted the mapping of regional gravitational structure in the northern hemisphere, and laser altimetry from the MESSENGER spacecraft has yielded a geodetically controlled elevation model for the same hemisphere. The shape of a planet combined with gravity provides fundamental information regarding its internal structure and geologic and thermal evolution. Elevations in the northern hemisphere exhibit a unimodal distribution with a dynamic range of 9.63 km, less than that of the Moon (19.9 km), but consistent with Mercury's higher surface gravitational acceleration. After one Earth-year in orbit, refined models of gravity and topography have revealed several large positive gravity anomalies that coincide with major impact basins. These candidate mascons have anomalies that exceed 100 mGal and indicate substantial crustal thinning and superisostatic uplift of underlying mantle. An additional uncompensated 1000-km-diameter gravity and topographic high at 68 deg N, 33 deg E lies within Mercury's northern volcanic plains. Mercury's northern hemisphere crust is generally thicker at low latitudes than in the polar region. The low-degree gravity field, combined with planetary spin parameters, yields the moment of inertia C/MR2 = 0.353 +/- 0.017, where M=3.30 x 10(exp 23) kg and R=2440 km are Mercury's mass and radius, and a ratio of the moment of inertia of Mercury's solid outer shell to that of the planet of Cm/C = 0.452 +/- 0.035. One proposed model for Mercury's radial density distribution consistent with these results includes silicate crust and mantle layers overlying a dense solid (possibly Fe-S) layer, a liquid Fe
Control of colloids with gravity, temperature gradients, and electric fields
Sullivan, M; Harrison, C; Austin, R H; Megens, M; Hollingsworth, A; Russel, W B; Cheng Zhen; Mason, T; Chaikin, P M
2003-01-01
We have used a variety of different applied fields to control the density, growth, and structure of colloidal crystals. Gravity exerts a body force proportional to the buoyant mass and in equilibrium produces a height-dependent concentration profile. A similar body force can be obtained with electric fields on charged particles (electrophoresis), a temperature gradient on all particles, or an electric field gradient on uncharged particles (dielectrophoresis). The last is particularly interesting since its magnitude and sign can be changed by tuning the applied frequency. We study these effects in bulk (making 'dielectrophoretic bottles' or traps), to control concentration profiles during nucleation and growth and near surfaces. We also study control of non-spherical and optically anisotropic particles with the light field from laser tweezers.
Grid preparation for magnetic and gravity data using fractal fields
Directory of Open Access Journals (Sweden)
M. Pilkington
2012-04-01
Full Text Available Most interpretive methods for potential field (magnetic and gravity measurements require data in a gridded format. Many are also based on using fast Fourier transforms to improve their computational efficiency. As such, grids need to be full (no undefined values, rectangular and periodic. Since potential field surveys do not usually provide data sets in this form, grids must first be prepared to satisfy these three requirements before any interpretive method can be used. Here, we use a method for grid preparation based on a fractal model for predicting field values where necessary. Using fractal field values ensures that the statistical and spectral character of the measured data is preserved, and that unwanted discontinuities at survey boundaries are minimized. The fractal method compares well with standard extrapolation methods using gridding and maximum entropy filtering. The procedure is demonstrated on a portion of a recently flown aeromagnetic survey over a volcanic terrane in southern British Columbia, Canada.
Gravity effects on thick brane formation from scalar field dynamics
Energy Technology Data Exchange (ETDEWEB)
Andrianov, Alexander A. [Saint-Petersburg State University, V.A. Fock Department of Theoretical Physics, St. Petersburg (Russian Federation); Universitat de Barcelona, Institut de Ciencies del Cosmos, Barcelona (Spain); Andrianov, Vladimir A.; Novikov, Oleg O. [Saint-Petersburg State University, V.A. Fock Department of Theoretical Physics, St. Petersburg (Russian Federation)
2013-12-15
The formation of a thick brane in five-dimensional space-time is investigated when warp geometries of AdS{sub 5} type are induced by scalar matter dynamics and triggered by a thin-brane defect. The scalar matter is taken to consist of two fields with O(2) symmetric self-interaction and with manifest O(2) symmetry breaking by terms quadratic in fields. One of them serves as a thick brane formation mode around a kink background and another one is of a Higgs-field type which may develop a classical background as well. Scalar matter interacts with gravity in the minimal form and gravity effects on (quasi)localized scalar fluctuations are calculated with usage of gauge invariant variables suitable for perturbation expansion. The calculations are performed in the vicinity of the critical point of spontaneous breaking of the combined parity symmetry where a non-trivial v.e.v. of the Higgs-type scalar field is generated. The non-perturbative discontinuous gravitational effects in the mass spectrum of light localized scalar states are studied in the presence of a thin-brane defect. The thin brane with negative tension happens to be the most curious case when the singular barriers form a potential well with two infinitely tall walls and the discrete spectrum of localized states arises completely isolated from the bulk. (orig.)
Bertone, S.; Arnold, D.; Jaeggi, A.; Hosseini, A.
2016-12-01
The Astronomical Institute of the University of Bern (AIUB) recently started the development of deep space Doppler data processing within the Bernese GNSS Software, which has been long used in orbit determination of low Earth orbiting satellites and Earth gravity field determination. These developments allowed us to process data from the NASA mission GRAIL, which inherits its concept from the GRACE mission to determine the gravity field of the Moon. Beside Doppler tracking from Earth, GRAIL uses inter-satellite Ka-band range-rate (KBRR) observations to enable data acquisition even when the spacecraft are not tracked from the Earth. The data allows for a highly accurate estimation of the lunar gravity field on both sides of the Moon, which is leading to huge improvements in our understanding of its internal structure and thermal evolution.In this presentation we discuss our latest GRAIL-based orbit and gravity field solutions generated with the Celestial Mechanics Approach using the Bernese GNSS Software.Based on Doppler data, we perform orbit determination by solving six initial orbital elements, dynamical parameters, and stochastic parameters in daily arcs using least-squares adjustment. The pseudo-stochastic parameters are estimated to absorb deficiencies in our dynamical modeling (e.g. due to non-gravitational forces). Doppler and KBRR data are then used together with an appropriate weighting for a combined orbit and gravity field determination process.We present our independent solutions of the lunar gravity field up to d/o 300, where KBRR data and Doppler 1-way and 2-way observations from the primary mission phase (PM, March-May 2012) are used. We compare and evaluate the impact of 1-way and 2-way Doppler data on our results. Moreover, we present our first solution for the Moon tidal Love number k2. We compare all of our results from the PM with the most recent lunar gravity field models released by other groups, as well as their consistency with topography
Potential-field estimation from satellite data using scalar and vector Slepian functions
Plattner, Alain
2013-01-01
In the last few decades a series of increasingly sophisticated satellite missions has brought us gravity and magnetometry data of ever improving quality. To make optimal use of this rich source of information on the structure of Earth and other celestial bodies, our computational algorithms should be well matched to the specific properties of the data. In particular, inversion methods require specialized adaptation if the data are only locally available, their quality varies spatially, or if we are interested in model recovery only for a specific spatial region. Here, we present two approaches to estimate potential fields on a spherical Earth, from gradient data collected at satellite altitude. Our context is that of the estimation of the gravitational or magnetic potential from vector-valued measurements. Both of our approaches utilize spherical Slepian functions to produce an approximation of local data at satellite altitude, which is subsequently transformed to the Earth's spherical reference surface. The ...
A New Class of Group Field Theories for 1st Order Discrete Quantum Gravity
Oriti, D; Tlas, T.
2007-01-01
Group Field Theories, a generalization of matrix models for 2d gravity, represent a 2nd quantization of both loop quantum gravity and simplicial quantum gravity. In this paper, we construct a new class of Group Field Theory models, for any choice of spacetime dimension and signature, whose Feynman amplitudes are given by path integrals for clearly identified discrete gravity actions, in 1st order variables. In the 3-dimensional case, the corresponding discrete action is that of 1st order Regg...
Noever, David A.; Koczor, Ronald J.; Roberson, Rick
1998-01-01
We have previously reported results using a high precision gravimeter to probe local gravity changes in the neighborhood of large bulk-processed high-temperature superconductors. Podkietnov, et al (Podkietnov, E. and Nieminen, R. (1992) A Possibility of Gravitational Force Shielding by Bulk YBa2 Cu3 O7-x Superconductor, Physica C, C203:441-444.) have indicated that rotating AC fields play an essential role in their observed distortion of combined gravity and barometric pressure readings. We report experiments on large (15 cm diameter) bulk YBCO ceramic superconductors placed in the core of a three-phase, AC motor stator. The applied rotating field produces up to a 12,000 revolutions per minute magnetic field. The field intensity decays rapidly from the maximum at the outer diameter of the superconducting disk (less than 60 Gauss) to the center (less than 10 Gauss). This configuration was applied with and without a permanent DC magnetic field levitating the superconducting disk, with corresponding gravity readings indicating an apparent increase in observed gravity of less than 1 x 10(exp -6)/sq cm, measured above the superconductor. No effect of the rotating magnetic field or thermal environment on the gravimeter readings or on rotating the superconducting disk was noted within the high precision of the observation. Implications for propulsion initiatives and power storage flywheel technologies for high temperature superconductors will be discussed for various spacecraft and satellite applications.
Localization of gravity on a thick braneworld without scalar fields
Herrera-Aguilar, Alfredo; Mora-Luna, Refugio Rigel
2010-01-01
In this work we present a simple thick braneworld model that is generated by an intriguing interplay between a 5D cosmological constant with a de Sitter metric induced in the 3-brane without the inclusion of scalar fields. We show that 4D gravity is localized on this brane, provide analytic expressions for the massive Kaluza-Klein (KK) fluctuation modes and also show that the spectrum of metric excitations displays a mass gap. We finally present the corrections to Newton's law due to these massive modes. This model has no naked singularities along the fifth dimension despite the existence of a mass gap in the graviton spectrum as it happens in thick branes with 4D Poincare symmetry, providing a simple model with very good features: the curvature is completely smooth along the fifth dimension, it localizes 4D gravity and the spectrum of gravity fluctuations presents a mass gap, a fact that rules out the existence of phenomenologically dangerous ultralight KK excitations in the model.
The gravity fields of Ganymede, Callisto and Europa: how well can JUICE do?
Parisi, Marzia; Iess, Luciano; Finocchiaro, Stefano
2014-05-01
With 20 flybys of Callisto, 2 of Europa and an extended orbital phase around Ganymede, ESA's JUICE mission offers an excellent opportunity to investigate the interiors of the three Galilean satellites. All of these moons can host an internal ocean, but the evidence is compelling only for Europa, where Galileo's measurements of the induced magnetic field are not marred by an intrinsic field as for Ganymede. However, both Europa's and Ganymede's appear to be differentiated (Showman and Malhotra, 1999), and probably hosting a subsurface liquid water ocean underneath the icy surface (Khurana et al., 1998; Kivelson et al., 2002). But even for Callisto, which appears as an undifferentiated body of ice and rock (Showman and Malhotra, 1999), a global or partial subsurface ocean cannot be ruled out (Khurana et al., 1998). The determination of the interior structure of the Galilean satellites, one of the main goal of the JUICE mission, can be accomplished by a combination of gravity, altimetric and magnetic measurements. Gravity measurements are addressed by the 3GM (Geodesy and Geophysics of Jupiter and the Galilean Moons) by means of highly accurate Doppler tracking of the spacecraft from ground antennas. Precise range rate measurements are enabled by a dedicated Ka-band (32-34 GHz) transponder, heritage from the Juno and BepiColombo missions. The expected range rate accuracies are around 0.01 mm/s at 60 s integration time, at nearly all solar elongation angles. A complete cancellation of the interplanetary plasma noise is indeed possible by operating simultaneously the links at X and Ka band. The current mission profile envisages two, low altitude, orbital phases around Ganymede: a circular polar, orbit at an altitude of 500 km for the first 102 days, and circular polar orbit at an altitude of 200 km for the last 30 days. The low altitude will permit the determination of Ganymede's gravity field with a relative accuracy of about 10^-5 for both J2 and C22. The 18 tidal
Directory of Open Access Journals (Sweden)
R. Pail
2003-01-01
Full Text Available The recovery of a full set of gravity field parameters from satellite gravity gradiometry (SGG is a huge numerical and computational task. In practice, parallel computing has to be applied to estimate the more than 90 000 harmonic coefficients parameterizing the Earth’s gravity field up to a maximum spherical harmonic degree of 300. Three independent solution strategies, i.e. two iterative methods (preconditioned conjugate gradient method, semi-analytic approach and a strict solver (Distributed Non-approximative Adjustment, which are operational on a parallel platform (‘Graz Beowulf Cluster’, are assessed and compared both theoretically and on the basis of a realistic-as-possible numerical simulation, regarding the accuracy of the results, as well as the computational effort. Special concern is given to the correct treatment of the coloured noise characteristics of the gradiometer. The numerical simulations show that there are no significant discrepancies among the solutions of the three methods. The newly proposed Distributed Nonapproximative Adjustment approach, which is the only one of the three methods that solves the inverse problem in a strict sense, also turns out to be a feasible method for practical applications.Key words. Spherical harmonics – satellite gravity gradiometry – GOCE – parallel computing – Beowulf cluster
Gravity Field, Topography, and Interior Structure of Amalthea
Anderson, J. D.; Anabtawi, A.; Jacobson, R. A.; Johnson, T. V.; Lau, E. L.; Moore, W. B.; Schubert, G.; Taylor, A. H.; Thomas, P. C.; Weinwurm, G.
2002-12-01
A close Galileo flyby of Jupiter's inner moon Amalthea (JV) occurred on 5 November 2002. The final aimpoint was selected by the Galileo Radio Science Team on 5 July 2002. The closest approach distance for the selected aimpoint was 221 km from the center of mass, the latitude was - 45.23 Deg and the west longitude was 266.41 Deg (IAU/IAG/COSPAR cartographic coordinate system). In order to achieve an acceptable impact probability (0.15%), and yet fly close to Amalthea, the trajectory was selected from a class of trajectories running parallel to Amalthea's long axis. The Deep Space Network (DSN) had the capability to generate continuous coherent radio Doppler data during the flyby. Such data can be inverted to obtain information on Amalthea's gravity field. Amalthea is irregular and neither a triaxial ellipsoid nor an equilibrium body. It has a volume of about 2.4 x 106 km3, and its best-fit ellipsoid has dimensions 131x73x67 km. Its mass can be determined from the 2002 flyby, and in combination with the volume, a density can be obtained accurate to about 5%, where the error is dominated by the volume uncertainty. Similarly, gravity coefficients (Cnm Snm) can be detected up to fourth degree and order, and the second degree field (quadrupole) can be measured. Topography data are available from Voyager imaging and from images taken with Galileo's solid state imaging system at various times between February and June 1997. By combining the gravity and topography data, new information can be obtained on Amalthea's interior. For example if the gravity coefficients agree with those calculated from the topography, assuming constant density, we can conclude that Amalthea is homogeneous. On the other hand, if the gravity coefficients are smaller than predicted from topography, we can conclude that there is a concentration of mass toward Amalthea's center. We are presenting preliminary pre-publication results at the Fall meeting. This work was sponsored by the Galileo Project
The determination of Dione's gravity field after four Cassini flybys
Zannoni, Marco; Tortora, Paolo; Iess, Luciano; Jacobson, Robert A.; Armstrong, John W.; Asmar, Sami W.
2015-04-01
We present the expected accuracy in the determination of Dione's gravity field obtained through numerical simulations of all radio science flybys currently planned in the entire Cassini mission. During its tour of the Saturn system, Cassini already performed two flybys of Dione dedicated to the determination of its mass and gravity field, in October 2005 and December 2011, respectively. Two additional radio science flybys are planned in June 2015 and August 2015. The analysis of the Doppler data acquired during the closest approach of the second flyby allowed the first estimation of Dione's J2 and C22 but, given the limited amount of data, their estimation has a large correlation and cannot be considered fully reliable. Here we infer the expected final accuracy in the determination of Dione's J2 and C22 by combining the available results from the already performed experiments with numerical simulations of future flybys. The main observables considered in the analysis are two-way and three-way Doppler data obtained from the frequency shift of a highly stable microwave carrier between the spacecraft and the stations of NASA's Deep Space Network. White Gaussian noise was added to the simulated data, with a constant standard deviation for each tracking pass, obtained from an accurate noise budget of the Cassini mission. For the two flybys to be carried out in 2015, we consider a continuous coverage during +/-18 hours around the closest approach, plus one tracking pass 36 hours before and after it. The data analysis is carried out using a global, multi-arc fit, and comparing the independent solutions obtained from each flyby and different multi-arc solutions. The analysis of all four flybys is expected to provide the best, unconstrained, reliable estimation of the full quadrupole gravity field of Dione.
Revisiting the quantum scalar field in spherically symmetric quantum gravity
Borja, Enrique F; Strobel, Eckhard
2012-01-01
We extend previous results in spherically symmetric gravitational systems coupled with a massless scalar field within the loop quantum gravity framework. As starting point, we take the Schwarzschild spacetime. The results presented here rely on the uniform discretization method. We are able to minimize the associated discrete master constraint using a variational method. The trial state for the vacuum consists of a direct product of a Fock vacuum for the matter part and a Gaussian centered around the classical Schwarzschild solution. This paper follows the line of research presented by Gambini, Pullin and Rastgoo and a comparison between their result and the one given in this work is made.
A new class of group field theories for first order discrete quantum gravity
Energy Technology Data Exchange (ETDEWEB)
Oriti, D [Institute for Theoretical Physics and Spinoza Institute, Utrecht University, Leuvenlaan 4, Utrecht 3584 TD (Netherlands); Tlas, T [Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom)], E-mail: d.oriti@phys.uu.nl, E-mail: t.tlas@damtp.cam.ac.uk
2008-04-21
Group field theories, a generalization of matrix models for 2D gravity, represent a second quantization of both loop quantum gravity and simplicial quantum gravity. In this paper, we construct a new class of group field theory models, for any choice of spacetime dimension and signature, whose Feynman amplitudes are given by path integrals for clearly identified discrete gravity actions, in first order variables. In the three-dimensional case, the corresponding discrete action is that of first order Regge calculus for gravity (generalized to include higher order corrections), while in higher dimensions, they correspond to a discrete BF theory (again, generalized to higher order) with an imposed orientation restriction on hinge volumes, similar to that characterizing discrete gravity. This new class of group field theories may represent a concrete unifying framework for loop quantum gravity and simplicial quantum gravity approaches.
Perturbations of single-field inflation in modified gravity theory
Directory of Open Access Journals (Sweden)
Taotao Qiu
2015-05-01
Full Text Available In this paper, we study the case of single field inflation within the framework of modified gravity theory where the gravity part has an arbitrary form f(R. Via a conformal transformation, this case can be transformed into its Einstein frame where it looks like a two-field inflation model. However, due to the existence of the isocurvature modes in such a multi-degree-of-freedom (m.d.o.f. system, the (curvature perturbations are not equivalent in two frames, so despite of its convenience, it is illegal to treat the perturbations in its Einstein frame as the “real” ones as we always do for pure f(R theory or single field with nonminimal coupling. Here by pulling the results of curvature perturbations back into its original Jordan frame, we show explicitly the power spectrum and spectral index of the perturbations in the Jordan frame, as well as how it differs from the Einstein frame. We also fit our results with the newest Planck data. Since there is large parameter space in these models, we show that it is easy to fit the data very well.
Plasma-satellite interaction driven magnetic field perturbations
Energy Technology Data Exchange (ETDEWEB)
Saeed-ur-Rehman, E-mail: surehman@ualberta.ca [Department of Physics, University of Alberta, Edmonton, Alberta T6G 2E1 (Canada); Theoretical Physics Division, PINSTECH, Nilore Islamabad 44000 (Pakistan); Marchand, Richard, E-mail: Richard.Marchand@ualberta.ca [Department of Physics, University of Alberta, Edmonton, Alberta T6G 2E1 (Canada)
2014-09-15
We report the first fully kinetic quantitative estimate of magnetic field perturbations caused by the interaction of a spacecraft with space environment. Such perturbations could affect measurements of geophysical magnetic fields made with very sensitive magnetometers on-board satellites. Our approach is illustrated with a calculation of perturbed magnetic fields near the recently launched Swarm satellites. In this case, magnetic field perturbations do not exceed 20 pT, and they are below the sensitivity threshold of the on-board magnetometers. Anticipating future missions in which satellites and instruments would be subject to more intense solar UV radiation, however, it appears that magnetic field perturbations associated with satellite interaction with space environment, might approach or exceed instruments' sensitivity thresholds.
Directory of Open Access Journals (Sweden)
HUANG Motao
2016-11-01
Full Text Available Centred on the support requirement of flying track control for a long range spacecraft, a detail research is made on the computation of external disturbing gravity field, the survey accuracy of gravity anomaly on the earth' surface and the program of surveying line layout for marine gravity survey. Firstly, the solution expression of navigation error for a long range spacecraft is analyzed and modified, and the influence of the earth's gravity field on flying track of spacecraft is evaluated. Then with a given limited quota of biased error of spacecraft drop point, the accuracy requirement for calculating the external disturbing gravity field is discussed and researched. Secondly, the data truncation error and the propagated data error are studied and estimated, and the quotas of survey resolution and computation accuracy for gravity anomaly on the earth' surface are determined. Finally, based on the above quotas, a corresponding program of surveying line layout for marine gravity survey is proposed. A numerical test has been made to prove the reasonableness and validity of the suggested program.
Gravity as a Higgs field; 2, fermion-gravitation complex
Sardanashvily, G
1994-01-01
Gravitation theory meets spontaneous symmetry breaking when the structure group of the principal linear frame bundle LX over a world manifold X^4 is reducible to the Lorentz group SO(3,1). The physical underlying reason of this reduction is Dirac fermion matter possessing only exact Lorentz symmetries. The associated Higgs field is a tetrad gravitational field h represented by a section of the quotient \\Si of LX by SO(3,1). The feature of gravity as a Higgs field issues from the fact that, in the presence of different tetrad fields, there are nonequivalent representations of cotangent vectors to X^4 by Dirac's matrices. It follows that fermion fields must be regarded only in a pair with a certain tetrad field. These pairs constitute the so-called fermion-gravitation complex and are represented by sections of the composite spinor bundle S\\to\\Si\\to X^4 where values of tetrad gravitational fields play the role of coordinate parameters, besides familiar world coordinates. In Part I of the work [gr-qc:9405013], ge...
Eshagh, Mehdi; Bagherbandi, Mohammad
2011-10-01
The effects of topographic masses on satellite gradiometric data are large and in order to reduce the magnitude of these effects some compensation mechanisms should be considered. Here we use the isostatic hypotheses of Airy-Heiskanen and the recent Vening Meinesz-Moritz for compensating these effects and to smooth the data prior to their downward continuation to gravity anomaly. The second-order partial derivatives of extended Stokes' formula are used for the continuations over a topographically rough territory like Persia. The inversions are performed and compared based on two schemes of the remove-compute-restore technique and direct downward continuation. Numerical results show that the topographic-isostatic effect based on Vening Meinesz-Mortiz's hypothesis smoothes the data better than that based on Airy-Heiskanen's hypothesis. Also the quality of inversions of the smoothed data by this mechanism is twice better than that of the nonsmoothed ones.
A Revolution in Mars Topography and Gravity and Magnetic Fields
Smith, David E.
2002-01-01
Since the arrival of the Mars Global Surveyor (MGS) at Mars in September 1997 and the subsequent beginning of observations of the planet there has been a constant stream of surprises and puzzling observations that have kept scientists looking at new 'out of the box' explanations. Observations of the shape and topography have shown a planet with one hemisphere, the southern, several kilometers higher than the north and a northern hemisphere that is so flat and smooth in places that it's difficult to imagine it was not once the bottom of an ocean. And yet the ocean idea presents some enormous difficulties. The measurements of gravity derived from the tracking of MGS have shown that several Mars volcanoes are enormous positive gravity anomalies much larger than we see on Earth and revealed small errors in the orbit of Mars and or Earth. And the magnetic field is found to be composed of a number of extremely large crustal anomalies; but as far as can be ascertained there is no main dipole field such as we have on Earth. Understanding these diverse observations and placing them in the sequence of the evolution of the planet will be a long, challenging but rewarding task.
The use of high-resolution terrain data in gravity field prediction
Groten, E.; Becker, M.; Euler, H.-J.; Hausch, W.; Kling, TH.
1989-01-01
Different types of gravity prediction methods for local and regional gravity evaluation are developed, tested, and compared. Four different test areas were particularly selected in view of different prediction requirements. Also different parts of the spectrum of the gravity field were considered.
Offset of a Drag-Free Sensor from the Center of Gravity of Its Satellite
Starin, Scott R.
2003-01-01
The drag-free satellite is one that encloses a proof mass, shielding it from atmospheric drag and solar radiation pressure (SRP). By sensing the location of the proof mass in the body and using thrusters to force the spacecraft to follow the proof mass in a closed-loop fashion, the effects of drag and SRP may be eliminated from the spacecraft orbit. Thus, several benefits may be gained, including improved ephemeris propagation and reduced operational costs. The package including the proof mass and the location sensing equipment may be considered as a single sensor; if generalized, such a sensor could be manufactured and used more easily in satellite designs, similar to how current missions use, for example, rate gyros and magnetometers. The flight heritage of the technology has been such that the proof mass sensor is a primary facet of the mission, allowing it to dominate design considerations. In particular, this paper discusses the effects that may be expected if a generalized drag-free sensor is placed some distance away from the spacecraft center of gravity. The proof mass will follow a given gravitational orbit, and a separation from the spacecraft center of gravity places the spacecraft itself in a different orbit from the proof mass, requiring additional fuel just to maintain function of the drag- free sensor. Conclusions include some guiding principles for determining whether certain mission characteristics may restrict or preclude the use of drag-free sensors for that mission. These principles may be used both by mission planners considering drag-free missions and by hardware designers considering or pursuing the development of such generalized sensors.
Bathymetry Prediction in Shallow Water by the Satellite Altimetry-Derived Gravity Anomalies
Kim, Kwang Bae; Yun, Hong Sik
2017-04-01
The satellite altimetry-derived free-air gravity anomalies (SAFAGAs) are correlated with undulations of crustal density variations under the seafloor. In this study, shipborne bathymetry from the Korea Rural Community Corporation (KRC) and the SAFAGAs from Scripps Institution of Oceanography were combined to predict bathymetry in shallow water. Density contrast of 5.0 g/cm3 estimated by the check points method of the gravity-geologic method (GGM) between seawater and the seafloor topographic mass was applied to predict bathymetry in shallow water areas outside of the Saemangeum Seawall located on the southwest coast of the Korean peninsula. Bathymetry predicted by the GGM was compared with depth measurements on the shipborne locations to analyze the bathymetry accuracy. The root mean square error (RMSE) of the differences of bathymetry between GGM and KRC on the KRC shipborne tracks in shallow water around the Saemangeum Seawall is 0.55 m. The topographic effects in off-tracks extracted from SAFAGAs in the GGM can be effectively utilized to predict bathymetry by combining with shipborne depth data in shallow water where shipborne depth data are limited. In addition, bathymetry and the SAFAGAs have a linear correlation in the 20 160 km wavelength. The coherency analysis was performed by computing the cross-spectral coherence between satellite altimetry derived bathymetry and the SAFAGAs. Acknowledgement This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2016R1A6A3A11931032).
Terrestrial Gravity Fluctuations
Harms, Jan
2015-12-01
Different forms of fluctuations of the terrestrial gravity field are observed by gravity experiments. For example, atmospheric pressure fluctuations generate a gravity-noise foreground in measurements with super-conducting gravimeters. Gravity changes caused by high-magnitude earthquakes have been detected with the satellite gravity experiment GRACE, and we expect high-frequency terrestrial gravity fluctuations produced by ambient seismic fields to limit the sensitivity of ground-based gravitational-wave (GW) detectors. Accordingly, terrestrial gravity fluctuations are considered noise and signal depending on the experiment. Here, we will focus on ground-based gravimetry. This field is rapidly progressing through the development of GW detectors. The technology is pushed to its current limits in the advanced generation of the LIGO and Virgo detectors, targeting gravity strain sensitivities better than 10-23 Hz-1/2 above a few tens of a Hz. Alternative designs for GW detectors evolving from traditional gravity gradiometers such as torsion bars, atom interferometers, and superconducting gradiometers are currently being developed to extend the detection band to frequencies below 1 Hz. The goal of this article is to provide the analytical framework to describe terrestrial gravity perturbations in these experiments. Models of terrestrial gravity perturbations related to seismic fields, atmospheric disturbances, and vibrating, rotating or moving objects, are derived and analyzed. The models are then used to evaluate passive and active gravity noise mitigation strategies in GW detectors, or alternatively, to describe their potential use in geophysics. The article reviews the current state of the field, and also presents new analyses especially with respect to the impact of seismic scattering on gravity perturbations, active gravity noise cancellation, and time-domain models of gravity perturbations from atmospheric and seismic point sources. Our understanding of
Terrestrial Gravity Fluctuations.
Harms, Jan
2015-01-01
Different forms of fluctuations of the terrestrial gravity field are observed by gravity experiments. For example, atmospheric pressure fluctuations generate a gravity-noise foreground in measurements with super-conducting gravimeters. Gravity changes caused by high-magnitude earthquakes have been detected with the satellite gravity experiment GRACE, and we expect high-frequency terrestrial gravity fluctuations produced by ambient seismic fields to limit the sensitivity of ground-based gravitational-wave (GW) detectors. Accordingly, terrestrial gravity fluctuations are considered noise and signal depending on the experiment. Here, we will focus on ground-based gravimetry. This field is rapidly progressing through the development of GW detectors. The technology is pushed to its current limits in the advanced generation of the LIGO and Virgo detectors, targeting gravity strain sensitivities better than 10(-23) Hz(-1/2) above a few tens of a Hz. Alternative designs for GW detectors evolving from traditional gravity gradiometers such as torsion bars, atom interferometers, and superconducting gradiometers are currently being developed to extend the detection band to frequencies below 1 Hz. The goal of this article is to provide the analytical framework to describe terrestrial gravity perturbations in these experiments. Models of terrestrial gravity perturbations related to seismic fields, atmospheric disturbances, and vibrating, rotating or moving objects, are derived and analyzed. The models are then used to evaluate passive and active gravity noise mitigation strategies in GW detectors, or alternatively, to describe their potential use in geophysics. The article reviews the current state of the field, and also presents new analyses especially with respect to the impact of seismic scattering on gravity perturbations, active gravity noise cancellation, and time-domain models of gravity perturbations from atmospheric and seismic point sources. Our understanding of
Terrestrial Gravity Fluctuations
Directory of Open Access Journals (Sweden)
Jan Harms
2015-12-01
Full Text Available Different forms of fluctuations of the terrestrial gravity field are observed by gravity experiments. For example, atmospheric pressure fluctuations generate a gravity-noise foreground in measurements with super-conducting gravimeters. Gravity changes caused by high-magnitude earthquakes have been detected with the satellite gravity experiment GRACE, and we expect high-frequency terrestrial gravity fluctuations produced by ambient seismic fields to limit the sensitivity of ground-based gravitational-wave (GW detectors. Accordingly, terrestrial gravity fluctuations are considered noise and signal depending on the experiment. Here, we will focus on ground-based gravimetry. This field is rapidly progressing through the development of GW detectors. The technology is pushed to its current limits in the advanced generation of the LIGO and Virgo detectors, targeting gravity strain sensitivities better than 10^–23 Hz^–1/2 above a few tens of a Hz. Alternative designs for GW detectors evolving from traditional gravity gradiometers such as torsion bars, atom interferometers, and superconducting gradiometers are currently being developed to extend the detection band to frequencies below 1 Hz. The goal of this article is to provide the analytical framework to describe terrestrial gravity perturbations in these experiments. Models of terrestrial gravity perturbations related to seismic fields, atmospheric disturbances, and vibrating, rotating or moving objects, are derived and analyzed. The models are then used to evaluate passive and active gravity noise mitigation strategies in GW detectors, or alternatively, to describe their potential use in geophysics. The article reviews the current state of the field, and also presents new analyses especially with respect to the impact of seismic scattering on gravity perturbations, active gravity noise cancellation, and time-domain models of gravity perturbations from atmospheric and seismic point sources. Our
Ramillien, Guillaume; Frappart, Frédéric; Seoane, Lucia
2016-04-01
We propose a new method to produce time series of global maps of surface mass variations by progressive integration of daily geopotential variations measured by orbiting satellites. In the case of the GRACE mission, these geopotential variations can be determined from very accurate inter-satellite K-Band Range Rate (KBRR) measurements of 5-second daily orbits. In particular, the along-track gravity contribution of hydrological mass changes is extracted by removing de-aliasing models for static field, atmosphere, oceans mass variations (including periodical tides), as well as polar movements. Our determination of surface mass sources is composed of two successive dependent Kalman filter stages. The first one consists of reducing the satellite-based potential anomalies by adjusting the longest spatial wavelengths (i.e., low-degree spherical harmonics lower than 2). In the second stage, the residual potential anomalies from the previous stage are used to recover surface mass density changes - in terms of Equivalent-Water Height (EWH) - over a global network of juxtaposed triangular elements. These surface tiles of ~100,000 km x km (or equivalently 330 km by 330 km) are defined to be of equal areas over the terrestrial sphere. However they can be adapted to the local geometry of the surface mass. Our global approach was tested by inverting geopotential data, and successfully applied to estimate time-varying surface mass densities from real GRACE-based residuals. This strategy of combined Kalman filter-type inversions can also be useful for exploring the possibility of improving time and space resolutions for ocean and land studies that would be hopefully brought by future low altitude geodetic missions.
Entropy of Egypt's virtual water trade gravity field
Karakatsanis, Georgios; Bierbach, Sandra
2016-04-01
's 20 trading partner countries, for a time frame from 1995 to 2013. The calculations -implemented for each country and each crop- display a network that illustrates the gravity of virtual water trade. It is then possible for us to model the entropy of Egypt's virtual water trade gravity field, via the statistical examination of its spatial fragmentation or continuity for each traded crop and for each water footprint type. Hence, with the distribution's entropy we may conduct a targeted analysis on the comparative advantages of the Egyptian agriculture. Keywords: entropy, virtual water trade, gravity model, agricultural trade, water footprint, water subsidies, comparative advantage References 1. Antonelli, Marta and Martina Sartori (2014), Unfolding the potential of the Virtual Water concept. What is still under debate?, MPRA Paper No. 60501, http://mpra.ub.uni-muenchen.de/60501/ 2. Fracasso, Andrea (2014), A gravity model of virtual water trade, Ecological Economics, Vol. 108, p. 215-228 3. Fracasso, Andrea; Martina Sartori and Stefano Schiavo (2014), Determinants of virtual water flows in the Mediterranean, MPRA Paper No. 60500, https://mpra.ub.uni-muenchen.de/60500/ 4. Yang, H. et al. (2006), Virtual water trade: An assessment of water use efficiency in the international food trade, Hydrology and Earth System Sciences 10, p. 443-454
Davis, John H.
1993-01-01
Lunar spherical harmonic gravity coefficients are estimated from simulated observations of a near-circular low altitude polar orbiter disturbed by lunar mascons. Lunar gravity sensing missions using earth-based nearside observations with and without satellite-based far-side observations are simulated and least squares maximum likelihood estimates are developed for spherical harmonic expansion fit models. Simulations and parameter estimations are performed by a modified version of the Smithsonian Astrophysical Observatory's Planetary Ephemeris Program. Two different lunar spacecraft mission phases are simulated to evaluate the estimated fit models. Results for predicting state covariances one orbit ahead are presented along with the state errors resulting from the mismodeled gravity field. The position errors from planning a lunar landing maneuver with a mismodeled gravity field are also presented. These simulations clearly demonstrate the need to include observations of satellite motion over the far side in estimating the lunar gravity field. The simulations also illustrate that the eighth degree and order expansions used in the simulated fits were unable to adequately model lunar mascons.
Yi, Hang; Wen, Lianxing
2016-01-01
We use satellite gravity measurements in the Gravity Recovery and Climate Experiment (GRACE) to estimate terrestrial water storage (TWS) change in the continental United States (US) from 2003 to 2012, and establish a GRACE-based Hydrological Drought Index (GHDI) for drought monitoring. GRACE-inferred TWS exhibits opposite patterns between north and south of the continental US from 2003 to 2012, with the equivalent water thickness increasing from -4.0 to 9.4 cm in the north and decreasing from 4.1 to -6.7 cm in the south. The equivalent water thickness also decreases by -5.1 cm in the middle south in 2006. GHDI is established to represent the extent of GRACE-inferred TWS anomaly departing from its historical average and is calibrated to resemble traditional Palmer Hydrological Drought Index (PHDI) in the continental US. GHDI exhibits good correlations with PHDI in the continental US, indicating its feasibility for drought monitoring. Since GHDI is GRACE-based and has minimal dependence of hydrological parameters on the ground, it can be extended for global drought monitoring, particularly useful for the countries that lack sufficient hydrological monitoring infrastructures on the ground.
Fifth generation lithospheric magnetic field model from CHAMP satellite measurements
Maus, S.; Hermann Lühr; Martin Rother; Hemant, K.; Balasis, G.; Patricia Ritter; Claudia Stolle
2007-01-01
Six years of low-orbit CHAMP satellite magnetic measurements have provided an exceptionally high-quality data resource for lithospheric magnetic field modeling and interpretation. Here we describe the fifth-generation satellite-only magnetic field model MF5. The model extends to spherical harmonic degree 100. As a result of careful data selection, extensive corrections, filtering, and line leveling, the model has low noise levels, even if evaluated at the Earth's surface. The model is particu...
Generation of magnetic fields in Einstein-Aether gravity
Saga, Shohei; Ichiki, Kiyotomo; Sugiyama, Naoshi
2013-01-01
Recently the lower bounds of the intergalactic magnetic fields $10^{-16} \\sim 10^{-20}$ Gauss are set by gamma-ray observations while it is unlikely to generate such large scale magnetic fields through astrophysical processes. It is known that large scale magnetic fields could be generated if there exist cosmological vector mode perturbations in the primordial plasma. The vector mode, however, has only a decaying solution in General Relativity if the plasma consists of perfect fluids. In order to investigate a possible mechanism of magnetogenesis in the primordial plasma, here we consider cosmological perturbations in the Einstein-Aether gravity model, in which the aether field can act as a new source of vector metric perturbations and thus of magnetic fields. We estimate the angular power spectra of temperature and B-mode polarization of the Cosmic Microwave Background (CMB) Anisotropies in this model and put a rough constraint on the aether field parameters from latest observations. We then estimate the pow...
Satellite measurements of the earth's crustal magnetic field
Schnetzler, C. C.
1989-01-01
The literature associated with the Magsat mission has evaluated the capabilities and limitations of satellite measurements of the earth's crustal magnetic field, and demonstrated that there exists a 300-3000 km magnetic field, related to major features in the earth's crust, which is primarily caused by induction. Due to its scale and sensitivity, satellite data have been useful in the development of models for such large crustal features as subduction zones, submarine platforms, continental accretion boundaries, and rifts. Attention is presently given to the lack of agreement between laboratory and satellite estimates of lower crustal magnetization.
Panet, I.; Mikhailov, V.; Diament, M.; Pollitz, F.; King, G.; de Viron, O.; Holschneider, M.; Biancale, R.; Lemoine, J.-M.
2007-01-01
The GRACE satellite mission has been measuring the Earth's gravity field and its temporal variations since 2002 April. Although these variations are mainly due to mass transfer within the geofluid envelops, they also result from mass displacements associated with phenomena including glacial isostatic adjustment and earthquakes. However, these last contributions are difficult to isolate because of the presence of noise and of geofluid signals, and because of GRACE's coarse spatial resolution (>400 km half-wavelength). In this paper, we show that a wavelet analysis on the sphere helps to retrieve earthquake signatures from GRACE geoid products. Using a wavelet analysis of GRACE geoids products, we show that the geoid variations caused by the 2004 December (Mw = 9.2) and 2005 March (Mw = 8.7) Sumatra earthquakes can be detected. At GRACE resolution, the 2004 December earthquake produced a strong coseismic decrease of the gravity field in the Andaman Sea, followed by relaxation in the area affected by both the Andaman 2004 and the Nias 2005 earthquakes. We find two characteristic timescales for the relaxation, with a fast variation occurring in the vicinity of the Central Andaman ridge. We discuss our coseismic observations in terms of density changes of crustal and upper-mantle rocks, and of the vertical displacements in the Andaman Sea. We interpret the post-seismic signal in terms of the viscoelastic response of the Earth's mantle. The transient component of the relaxation may indicate the presence of hot, viscous material beneath the active Central Andaman Basin. ?? 2007 The Authors Journal compilation ?? 2007 RAS.
The finite element method for the global gravity field modelling
Kollár, Michal; Macák, Marek; Mikula, Karol; Minarechová, Zuzana
2014-05-01
We present a finite element approach for solving the fixed gravimetric boundary-value problem on a global level. To that goal, we have defined the computational domain bounded by the real topography and a chosen satellite level. The boundary-value problem consists of the Laplace equation for the disturbing potential and the Neumann boundary condition given by the gravity disturbances applied on the bottom boundary, and the Dirichlet boundary condition given by the disturbing potential applied on the upper boundary. Afterwards, the computational domain is meshed with several different meshes chosen to avoid the problem of simple spherical meshes that contain a singularity at poles. Our aim has been to show how the right mesh can improve results as well as significantly reduce the computational time. The practical implementation has been done in the FEM software ANSYS using 3D linear elements SOLID70 and for solving the linear system of equations, the preconditioned conjugate gradients method has been chosen. The obtained disturbing potential has been applied to calculate the geopotential value W0.
A New Class of Group Field Theories for 1st Order Discrete Quantum Gravity
Oriti, Daniele
2007-01-01
Group Field Theories, a generalization of matrix models for 2d gravity, represent a 2nd quantization of both loop quantum gravity and simplicial quantum gravity. In this paper, we construct a new class of Group Field Theory models, for any choice of spacetime dimension and signature, whose Feynman amplitudes are given by path integrals for clearly identified discrete gravity actions, in 1st order variables. In the 3-dimensional case, the corresponding discrete action is that of 1st order Regge calculus for gravity (generalized to include higher order corrections), while in higher dimensions, they correspond to a discrete BF-theory (again, generalized to higher order) with an imposed orientation restriction on hinge volumes, similar to that characterizing discrete gravity. The new models shed also light on the large distance or semi-classical approximation of spin foam models. This new class of group field theories may represent a concrete unifying framework for loop quantum gravity and simplicial quantum grav...
Generation of magnetic fields in Einstein-aether gravity
Saga, Shohei; Shiraishi, Maresuke; Ichiki, Kiyotomo; Sugiyama, Naoshi
2013-05-01
Recently the lower bounds of the intergalactic magnetic fields 10-16˜10-20G are set by gamma-ray observations while it is unlikely to generate such large scale magnetic fields through astrophysical processes. It is known that large scale magnetic fields could be generated if there exist cosmological vector-mode perturbations in the primordial plasma. The vector mode, however, has only a decaying solution in general relativity if the plasma consists of perfect fluids. In order to investigate a possible mechanism of magnetogenesis in the primordial plasma, here we consider cosmological perturbations in the Einstein-aether gravity model, in which the aether field can act as a new source of vector metric perturbations. The vector metric perturbations induce the velocity difference between baryons and photons which then generate magnetic fields. This velocity difference arises from effects at the second order in the tight-coupling approximation. We estimate the angular power spectra of temperature and B-mode polarization of the cosmic microwave background anisotropies in this model and put a rough constraint on the aether field parameters from latest observations. We then estimate the power spectrum of associated magnetic fields around the recombination epoch within this limit. It is found that the spectrum has a characteristic peak at k=0.1hMpc-1, and at that scale the amplitude can be as large as B˜10-22G where the upper bound comes from cosmic microwave background temperature anisotropies. The magnetic fields with this amplitude can be seeds of large scale magnetic fields observed today if the sufficient dynamo mechanism takes place. Analytic interpretation for the power spectra is also given.
Earth Gravity Field Recovered from CHAMP Science Orbit and Accelerometer Data
Institute of Scientific and Technical Information of China (English)
ZHOU Xuhua; WU Bin; PENG Bibo; XU Houze
2006-01-01
The earth gravity field model CDS01S of degree and order 36 has been recovered from the post processed Science Orbits and on-board accelerometer data of GFZ's CHAMP satellite. The model resolves the geoid with an accuracy of better than 4 cm at a resolution of 700 km half-wavelength. By using the degree difference variances of geopotential coefficients to compare the model CDS01S with EIGEN3P, EIGEN1S and EGM96, the result indicates that the coefficients of CDS01S are most close to those of EIGEN3P. The result of the comparison between the accuracies of geopotential coefficients in the above models, indicates that the accuracy of coefficients in CDS01S is higher than that in EGM96.The geoid undulations of CDS01S and GGM01C up to 30 degrees are calculated and the standard deviation is 4.7 cm between them.
Edge detection in gravity field of the Gheshm sedimentary basin
Directory of Open Access Journals (Sweden)
Ali Akbar Hosseini
2013-06-01
Full Text Available Edge detection and edge enhancement techniques play an essential role in interpreting potential field data. This paper describes the application of various edge detection techniques to gravity data in order to delineate the edges of subsurface structures. The edge detection methods comprise analytic signal, total horizontal derivative (THDR, theta angle, tilt angle, hyperbolic of tilt angle (HTA, normalised total horizontal gradient (TDX and normalised horizontal derivative (NTHD. The results showed that almost all filters delineated edges of anomalies successfully. However, the capability of these filters in edge detection decreased as the depth of sources increased. Of the edge enhancement filters, normalized standard deviation filter provided much better results in delineating deeper sources. The edge detection techniques were further applied on a real gravity data from the Gheshm sedimentary basin in the Persian Gulf in Iran. All filters specified a northeast-southwest structural trend. The THDR better outlined the structural morphology and trend. Moreover, it indicated the salt plugs much better than other filters. Analytic signal and THDR successfully enhanced the edges of the shorter wavelength residual structures. Normalized standard deviation (NSTD, TDX and hyperbolic of tilt angle (HTA filters highlighted the likely fault pattern and lineaments, with a dominant northeast-southwest structural trend. This case study shows that the edge detection techniques provides valuable information for geologists and petroleum engineers to outline the horizontal location of geological sources including salt plugs and stand out buried faults, contacts and other tectonic and geological features.
Dark energy or modified gravity? An effective field theory approach
Energy Technology Data Exchange (ETDEWEB)
Bloomfield, Jolyon; Flanagan, Éanna É. [Center for Radiophysics and Space Research, Cornell University, Ithaca, NY 14853 (United States); Park, Minjoon [Department of Physics, University of Massachusetts, Amherst, MA 01003 (United States); Watson, Scott, E-mail: jkb84@cornell.edu, E-mail: eef3@cornell.edu, E-mail: minjoonp@physics.umass.edu, E-mail: gswatson@syr.edu [Department of Physics, Syracuse University, Syracuse, NY 13244 (United States)
2013-08-01
We take an Effective Field Theory (EFT) approach to unifying existing proposals for the origin of cosmic acceleration and its connection to cosmological observations. Building on earlier work where EFT methods were used with observations to constrain the background evolution, we extend this program to the level of the EFT of the cosmological perturbations — following the example from the EFT of Inflation. Within this framework, we construct the general theory around an assumed background which will typically be chosen to mimic ΛCDM, and identify the parameters of interest for constraining dark energy and modified gravity models with observations. We discuss the similarities to the EFT of Inflation, but we also identify a number of subtleties including the relationship between the scalar perturbations and the Goldstone boson of the spontaneously broken time translations. We present formulae that relate the parameters of the fundamental Lagrangian to the speed of sound, anisotropic shear stress, effective Newtonian constant, and Caldwell's varpi parameter, emphasizing the connection to observations. It is anticipated that this framework will be of use in constraining individual models, as well as for placing model-independent constraints on dark energy and modified gravity model building.
Observations of gravity waves from satellite and implications for the wave driving of the SAO
Ern, Manfred; Preusse, Peter; Riese, Martin
2015-04-01
The dynamics at low latitudes in the stratosphere and lower mesosphere is governed by an interplay of the quasi-biennial oscillation (QBO) and the semiannual oscillation (SAO) of the zonal wind. It is known that tropical dynamics has significant influence on the atmosphere over a large range of altitudes and latitudes. For example, QBO and SAO effects are seen in the MLT region, and there is a significant influence of the QBO on surface weather and climate in the Northern Hemisphere during winter. Still, global models have large difficulties in simulating a realistic QBO and SAO. One main uncertainty is the wave driving of these oscillations, in particular the driving by gravity waves (GWs). We derive GW temperature variances, GW momentum fluxes and potential GW drag from over three years of High Resolution Dynamics Limb Sounder (HIRDLS) satellite data in the stratopause region. These observations are compared with the SAO driving due to planetary waves, as well as the zonal wind tendencies, both determined from the ECMWF ERA-Interim (ERAI) reanalysis. HIRDLS satellite observations and ERAI support the general assumption that, due to selective filtering of the GW spectrum by the QBO in the stratosphere, GWs mainly contribute to the SAO momentum budget during SAO eastward wind shear. However, during SAO westward wind shear the GW contribution is usually smaller, and the wave driving is dominated by planetary waves, probably of extratropical origin. Still, we find indications in both satellite observations and ERAI that sometimes GW drag is important also during SAO westward wind shear.
Gamow, George
2003-01-01
A distinguished physicist and teacher, George Gamow also possessed a special gift for making the intricacies of science accessible to a wide audience. In Gravity, he takes an enlightening look at three of the towering figures of science who unlocked many of the mysteries behind the laws of physics: Galileo, the first to take a close look at the process of free and restricted fall; Newton, originator of the concept of gravity as a universal force; and Einstein, who proposed that gravity is no more than the curvature of the four-dimensional space-time continuum.Graced with the author's own draw
Energy Technology Data Exchange (ETDEWEB)
Ciufolini, Ignazio [Universita del Salento, Dipartimento Ingegneria dell' Innovazione, Lecce (Italy); Sapienza Universita di Roma, Scuola di Ingegneria Aerospaziale, Rome (Italy); Paolozzi, Antonio; Paris, Claudio [Sapienza Universita di Roma, Scuola di Ingegneria Aerospaziale, Rome (Italy); Museo della Fisica e Centro Studi e Ricerche Enrico Fermi, Rome (Italy); Pavlis, Erricos C. [University of Maryland, Joint Center for Earth Systems Technology (JCET), Baltimore County (United States); Koenig, Rolf [GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Potsdam (Germany); Ries, John [University of Texas at Austin, Center for Space Research, Austin (United States); Gurzadyan, Vahe; Khachatryan, Harutyun; Mirzoyan, Sergey [Alikhanian National Laboratory and Yerevan State University, Center for Cosmology and Astrophysics, Yerevan (Armenia); Matzner, Richard [University of Texas at Austin, Theory Center, Austin (United States); Penrose, Roger [University of Oxford, Mathematical Institute, Oxford (United Kingdom); Sindoni, Giampiero [Sapienza Universita di Roma, DIAEE, Rome (Italy)
2016-03-15
We present a test of general relativity, the measurement of the Earth's dragging of inertial frames. Our result is obtained using about 3.5 years of laser-ranged observations of the LARES, LAGEOS, and LAGEOS 2 laser-ranged satellites together with the Earth gravity field model GGM05S produced by the space geodesy mission GRACE. We measure μ = (0.994 ± 0.002) ± 0.05, where μ is the Earth's dragging of inertial frames normalized to its general relativity value, 0.002 is the 1-sigma formal error and 0.05 is our preliminary estimate of systematic error mainly due to the uncertainties in the Earth gravity model GGM05S. Our result is in agreement with the prediction of general relativity. (orig.)
Ciufolini, Ignazio; Paolozzi, Antonio; Pavlis, Erricos C; Koenig, Rolf; Ries, John; Gurzadyan, Vahe; Matzner, Richard; Penrose, Roger; Sindoni, Giampiero; Paris, Claudio; Khachatryan, Harutyun; Mirzoyan, Sergey
2016-01-01
We present a test of general relativity, the measurement of the Earth's dragging of inertial frames. Our result is obtained using about 3.5 years of laser-ranged observations of the LARES, LAGEOS, and LAGEOS 2 laser-ranged satellites together with the Earth gravity field model GGM05S produced by the space geodesy mission GRACE. We measure [Formula: see text], where [Formula: see text] is the Earth's dragging of inertial frames normalized to its general relativity value, 0.002 is the 1-sigma formal error and 0.05 is our preliminary estimate of systematic error mainly due to the uncertainties in the Earth gravity model GGM05S. Our result is in agreement with the prediction of general relativity.
Fecher, T.; Pail, R.; Gruber, T.
2017-05-01
GOCO05c is a gravity field model computed as a combined solution of a satellite-only model and a global data set of gravity anomalies. It is resolved up to degree and order 720. It is the first model applying regionally varying weighting. Since this causes strong correlations among all gravity field parameters, the resulting full normal equation system with a size of 2 TB had to be solved rigorously by applying high-performance computing. GOCO05c is the first combined gravity field model independent of EGM2008 that contains GOCE data of the whole mission period. The performance of GOCO05c is externally validated by GNSS-levelling comparisons, orbit tests, and computation of the mean dynamic topography, achieving at least the quality of existing high-resolution models. Results show that the additional GOCE information is highly beneficial in insufficiently observed areas, and that due to the weighting scheme of individual data the spectral and spatial consistency of the model is significantly improved. Due to usage of fill-in data in specific regions, the model cannot be used for physical interpretations in these regions.
The Determination of Titan Gravity Field from Doppler Tracking of the Cassini Spacecraft
Iess, L.; Armstrong, J. W.; Aamar, S. W.; DiBenedetto, M.; Graziani, A.; Mackenzie, R.; Racioppa, P.; Rappaport, N.; Tortora, P.
2007-01-01
In its tour of the Saturnian system, the spacecraft Cassini is carrying out measurements of the gravity field of Titan, whose knowledge is crucial for constraining the internal structure of the satellite. In the five flybys devoted to gravity science, the spacecraft is tracked in X (8.4 GHz) and Ka band (32.5 GHz) from the antennas of NASA's Deep Space Network. The use of a dual frequency downlink is used to mitigate the effects of interplanetary plasma, the largest noise source affecting Doppler measurements. Variations in the wet path delay are effectively compensated by means of advanced water vapor radiometers placed close to the ground antennas. The first three flybys occurred on February 27, 2006, December 28, 2006, and June 29, 2007. Two additional flybys are planned in July 2008 and May 2010. This paper presents the estimation of the mass and quadrupole field of Titan from the first two flybys, carried out by the Cassini Radio Science Team using a short arc orbit determination. The data from the two flybys are first independently fit using a dynamical model of the spacecraft and the bodies of the Saturnian system, and then combined in a multi-arc solution. Under the assumption that the higher degree harmonics are negligible, the estimated values of the gravity parameters from the combined, multi-arc solution are GM = 8978.1337 +/- 0.0025 km(exp 3) / s(exp 2), J (sub 2) = (2.7221 +/- 0.0185) 10 (exp -5) and C (sub 22) = (1.1159 +/- 0.0040) 10 (exp -5) The excellent agreement (within 1.7 sigma) of the results from the two flybys further increases the confidence in the solution and provides an a posteriori validation of the dynamical model.
Cosmology from group field theory formalism for quantum gravity.
Gielen, Steffen; Oriti, Daniele; Sindoni, Lorenzo
2013-07-19
We identify a class of condensate states in the group field theory (GFT) formulation of quantum gravity that can be interpreted as macroscopic homogeneous spatial geometries. We then extract the dynamics of such condensate states directly from the fundamental quantum GFT dynamics, following the procedure used in ordinary quantum fluids. The effective dynamics is a nonlinear and nonlocal extension of quantum cosmology. We also show that any GFT model with a kinetic term of Laplacian type gives rise, in a semiclassical (WKB) approximation and in the isotropic case, to a modified Friedmann equation. This is the first concrete, general procedure for extracting an effective cosmological dynamics directly from a fundamental theory of quantum geometry.
Revisiting the quantum scalar field in spherically symmetric quantum gravity
Borja, Enrique F.; Garay, Iñaki; Strobel, Eckhard
2012-07-01
We extend previous results in spherically symmetric gravitational systems coupled with a massless scalar field within the loop quantum gravity framework. As a starting point, we take the Schwarzschild spacetime. The results presented here rely on the uniform discretization method. We are able to minimize the associated discrete master constraint using a variational method. The trial state for the vacuum consists of a direct product of a Fock vacuum for the matter part and a Gaussian centered around the classical Schwarzschild solution. This paper follows the line of research presented by Gambini et al (2009 Class. Quantum Grav. 26 215011 (arXiv:0906.1774v1)) and a comparison between their result and the one given in this work is made.
Gravity field, shape, and moment of inertia of Titan.
Iess, Luciano; Rappaport, Nicole J; Jacobson, Robert A; Racioppa, Paolo; Stevenson, David J; Tortora, Paolo; Armstrong, John W; Asmar, Sami W
2010-03-12
Precise radio tracking of the spacecraft Cassini has provided a determination of Titan's mass and gravity harmonics to degree 3. The quadrupole field is consistent with a hydrostatically relaxed body shaped by tidal and rotational effects. The inferred moment of inertia factor is about 0.34, implying incomplete differentiation, either in the sense of imperfect separation of rock from ice or a core in which a large amount of water remains chemically bound in silicates. The equilibrium figure is a triaxial ellipsoid whose semi-axes a, b, and c differ by 410 meters (a-c) and 103 meters (b-c). The nonhydrostatic geoid height variations (up to 19 meters) are small compared to the observed topographic anomalies of hundreds of meters, suggesting a high degree of compensation appropriate to a body that has warm ice at depth.
Quantum Gravity as a Deformed Topological Quantum Field Theory
Energy Technology Data Exchange (ETDEWEB)
Mikovic, Aleksandar [Departamento de Matematica, Universidade Lusofona de Humanidades e Tecnologias, Av. do Campo Grande, 376, 1749-024 Lisbon (Portugal)
2006-03-01
It is known that the Einstein-Hilbert action with a positive cosmological constant can be represented as a perturbation of the SO(4, 1) BF theory by a symmetry-breaking term quadratic in the B field. Introducing fermionic matter generates additional terms in the action which are polynomial in the tetrads and the spin connection. We describe how to construct the generating functional in the spin foam formalism for a generic BF theory when the sources for the B and the gaugefield are present. This functional can be used to obtain a path integral for General Relativity with matter as a perturbative series whose the lowest order term is a path integral for a topological gravity coupled to matter.
Correcting GRACE gravity fields for ocean tide effects
DEFF Research Database (Denmark)
Knudsen, Per; Andersen, Ole Baltazar
2002-01-01
subtle climate signals which GRACE aims at. The difference between two existing ocean tide models can be used as an estimate of current tidal model error for the M-2,S-2,K-1, and O-1 constituents. When compared with the expected accuracy of the GRACE system, both expressed as spherical harmonic degree...... variances, we find that the current ocean tide models are not accurate enough to correct GRACE data at harmonic degrees lower that 35. The accumulated tidal errors may affect the GRACE data up to harmonic degree 56. Furthermore, the atmospheric (radiation) tides may cause significant errors in the ocean......[1] The GRACE mission will be launch in early 2002 and will map the Earth's gravity fields and its variations with unprecedented accuracy during its 5-year lifetime. Unless ocean tide signals and their load upon the solid earth are removed from the GRACE data, their long period aliases obscure more...
Gravity and nonabelian gauge fields in noncommutative space-time
Nguyen, Viet Ai
2015-01-01
Noncommutative geometric constructions of gravity in the spacetime extended by an extra dimension of two points can be viewed as a discretized version of a Kaluza-Klein theory \\cite{LVW,VW1,VW2}. In this paper, we show that it is possible to generalize the framework to incorporate the nonabelian gauge fields. However, the generalized Hilbert-Einstein action is gauge invariant only in two cases. In the first case, the gauge group must be abelian on one sheet of spacetime and nonabelian on the other one. In the second case, the gauge group must be the same on two sheets of spacetime. Accidentally, the theories of electroweak and strong interactions are exactly these two cases.
Pitonak, Martin; Sprlak, Michal; Novak, Pavel; Tenzer, Robert
2016-04-01
Recently realized gravity-dedicated satellite missions allow for measuring values of scalar, vectorial (Gravity Recovery And Climate Experiment - GRACE) and second-order tensorial (Gravity field and steady-state Ocean Circulation Explorer - GOCE) parameters of the Earth's gravitational potential. Theoretical aspects related to using moving sensors for measuring elements of the third-order gravitational tensor are currently under investigation, e.g., the gravity field-dedicated satellite mission OPTIMA (OPTical Interferometry for global Mass change detection from space) should measure third-order derivatives of the Earth's gravitational potential. This contribution investigates regional recovery of the disturbing gravitational potential on the Earth's surface from satellite and aerial observations of the first-, second- and third-order radial derivatives of the disturbing gravitational potential. Synthetic measurements along a satellite orbit at the altitude of 250 km and along an aircraft track at the altitude of 10 km are synthetized from the global gravitational model EGM2008 and polluted by the Gaussian noise. The process of downward continuation is stabilized by the Tikhonov regularization. Estimated values of the disturbing gravitational potential are compared with the same quantity synthesized directly from EGM2008.
Kalman Filtered Daily GRACE Gravity Field Solutions in Near Real-Time- First Steps
Kvas, Andreas; Mayer-Gurr, Torsten
2016-08-01
As part of the EGSIEM (European Gravity Service for Improved Emergency Management) project, a technology demonstrator for a near real-time (NRT) gravity field service will be established. In preparation of the operational phase, several aspects of the daily gravity field processing chain at Graz University of Technology have been inspected in order to improve the gravity field solutions and move towards NRT. The effect of these adaptions is investigated by comparison with post-processing and forward-only filtered solutions and evaluated using in-situ data.
Qiang, Li-E
2014-01-01
Having great accuracy in the range and range rate measurements, the operating GRACE mission and the planed GRACE Follow On mission can in principle be employed to place strong constraints on certain relativistic gravity theories. In this paper, we work out in details the range observable in the non-dynamical Chern-Simons modified gravity for these Satellite-Satellite Tracking measurements. We find out that an characteristic time accumulating signal appears in the range observable in the non-dynamical Chern-Simons gravity, which has no analogy found in the standard metric theories of gravity. The magnitude of this Chern-Simons range signal will reach to a few times of $(\\frac{\\dot{\\theta}}{100r})meters$ for each free flight of these SST missions, here $\\dot{\\theta}$ measures the length scale of the theory and $r$ denotes the orbital radius of the SST mission. Therefore, with the 12 years data from the GRACE mission and the proper data analysis methods, one expects that the mass scale of the non-dynamical CS gr...
Jena, B.; Kurian, P. J.; Swain, D.; Tyagi, A.; Ravindra, R.
2012-06-01
This work attempts to predict bathymetry from satellite altimeter based gravity in the Arabian Sea. A collocated match-up database (n = 17,016) was created on Multibeam Echosounder (MBES) bathymetry and satellite gravity values (˜1 min spatial resolution) derived from remote sensing satellites. A Radial Basis Function (RBF) based Artificial Neural Network (ANN) model was developed to predict bathymetry from satellite gravity values. The ANN model was trained with variable undersea features such as seamount, knoll, abyssal plain, hill, etc. to familiarize the network with all possible geomorphic features as inputs through learning and the corresponding target outputs. The performance of the predictive model was evaluated by comparing bathymetric values with MBES datasets that were not used during the training and verification steps of the ANN model formulation. The model was then compared with MBES surveyed seamount observations (those were not used during ANN analysis) and global model bathymetry products. Results demonstrate better performance of ANN model compared to global model products for mapping of two unnamed seamounts in the Arabian Sea. These two unnamed seamounts have been predicted, mapped and their morphology is reported for the first time through this work.
Petrovskaya, M. S.
The conventional approach to the recovery of the Earth's gravitational field from satellite gradiometry observations is based on constructing, from the start, several boundary value (BV) relations, each of them corresponding to a separate observable component of the gravity gradient (GG) tensor or a certain combination of them. In particular, one of such projects, the ARISTOTELES mission, assumes that only the radial and across-track components are accessible (by technical reasons). The purpose of the present paper is mainly to discuss the principle aspects of the problem of the Earth's potential recovering from satellite gradiometry, to give an optimal formulation of the problem and derive the basic boundary value equation in different forms.
Hocke, Klemens; Lainer, Martin; Moreira, Lorena; Hagen, Jonas; Fernandez Vidal, Susana; Schranz, Franziska
2016-09-01
The temperature profiles of the satellite experiment Aura/MLS are horizontally spaced by 1.5° or 165 km along the satellite orbit. These level-2 data contain valuable information about horizontal fluctuations in temperature, which are mainly induced by inertia-gravity waves. Wave periods of 2-12 h, horizontal wavelengths of 200-1500 km, and vertical wavelengths of 6-30 km efficiently contribute to the standard deviation of the horizontal temperature fluctuations. The study retrieves and discusses the global distributions of inertia-gravity waves in the stratosphere and mesosphere during July 2015 and January 2016. We find many patterns that were previously present in data of TIMED/SABER, Aura/HIRDLS, and ECMWF analysis. However, it seems that Aura/MLS achieves a higher vertical resolution in the gravity wave maps since the maps are derived from the analysis of horizontal fluctuations along the orbit of the sounding volume. The zonal mean of the inertia-gravity wave distribution shows vertical modulations with scales of 10-20 km. Enhanced wave amplitudes occur in regions of increased zonal wind or in the vicinity of strong wind gradients. Further, we find a banana-like shape of enhanced inertia-gravity waves above the Andes in the winter mesosphere. We find areas of enhanced inertia-gravity wave activity above tropical deep convection zones at 100 hPa (z ˜ 13 km). Finally, we study the temporal evolution of inertia-gravity wave activity at 100 hPa in the African longitude sector from December 2015 to February 2016.
Computing Black Hole entropy in Loop Quantum Gravity from a Conformal Field Theory perspective
Agullo, Ivan; Diaz-Polo, Jacobo
2009-01-01
Motivated by the analogy proposed by Witten between Chern-Simons and Conformal Field Theories, we explore an alternative way of computing the entropy of a black hole starting from the isolated horizon framework in Loop Quantum Gravity. The consistency of the result opens a window for the interplay between Conformal Field Theory and the description of black holes in Loop Quantum Gravity.
Computing black hole entropy in loop quantum gravity from a conformal field theory perspective
Energy Technology Data Exchange (ETDEWEB)
Agulló, Iván [Enrico Fermi Institute and Department of Physics, University of Chicago, Chicago, IL 60637 (United States); Borja, Enrique F. [Departamento de Física Teórica and IFIC, Centro Mixto Universidad de Valencia-CSIC, Facultad de Física, Universidad de Valencia, Burjassot-46100, Valencia (Spain); Díaz-Polo, Jacobo, E-mail: Ivan.Agullo@uv.es, E-mail: Enrique.Fernandez@uv.es, E-mail: Jacobo.Diaz@uv.es [Institute for Gravitation and the Cosmos, Physics Department, Penn State, University Park, PA 16802 (United States)
2009-07-01
Motivated by the analogy proposed by Witten between Chern-Simons and conformal field theories, we explore an alternative way of computing the entropy of a black hole starting from the isolated horizon framework in loop quantum gravity. The consistency of the result opens a window for the interplay between conformal field theory and the description of black holes in loop quantum gravity.
Kusznir, Nick; Gozzard, Simon; Alvey, Andy
2016-04-01
The distribution of ocean crust and lithosphere within the South China Sea (SCS) are controversial. Sea-floor spreading re-orientation and ridge jumps during the Oligocene-Miocene formation of the South China Sea led to the present complex distribution of oceanic crust, thinned continental crust, micro-continents and volcanic ridges. We determine Moho depth, crustal thickness and continental lithosphere thinning (1- 1/beta) for the South China Sea using a gravity inversion method which incorporates a lithosphere thermal gravity anomaly correction (Chappell & Kusznir, 2008). The gravity inversion method provides a prediction of ocean-continent transition structure and continent-ocean boundary location which is independent of ocean isochron information. A correction is required for the lithosphere thermal gravity anomaly in order to determine Moho depth accurately from gravity inversion; the elevated lithosphere geotherm of the young oceanic and rifted continental margin lithosphere of the South China Sea produces a large lithosphere thermal gravity anomaly which in places exceeds -150 mGal. The gravity anomaly inversion is carried out in the 3D spectral domain (using Parker 1972) to determine 3D Moho geometry and invokes Smith's uniqueness theorem. The gravity anomaly contribution from sediments assumes a compaction controlled sediment density increase with depth. The gravity inversion includes a parameterization of the decompression melting model of White & McKenzie (1999) to predict volcanic addition generated during continental breakup lithosphere thinning and seafloor spreading. Public domain free air gravity anomaly, bathymetry and sediment thickness data are used in this gravity inversion. Using crustal thickness and continental lithosphere thinning factor maps with superimposed shaded-relief free-air gravity anomaly, we improve the determination of pre-breakup rifted margin conjugacy, rift orientation and sea-floor spreading trajectory. SCS conjugate margins
Friis-Christensen, E.
2009-04-01
The launch of the Danish satellite Ørsted on 23 February, 1999 marked the beginning of the "Decade of Geopotential Field Research", an international effort to promote and coordinate a continuous monitoring of the geopotential (magnetic and gravity) field variability in the near-Earth environment. Already the first years of Ørsted magnetic field observations showed that dramatic changes had taken place, in particular in the South Atlantic / South African continent during the 20 years that had elapsed without satellite data after the NASA MAGSAT satellite mapping of the Earth's magnetic field. Although only designed with a life time of 14 months, the Ørsted satellite has still been providing valuable data, 10 years after launch, and has during this time been accompanied by two other geomagnetic satellite missions, the German CHAMP and the Argentinean SAC-C, both with similar instrumentation as the Ørsted satellite. This long period of continuous satellite observations of the magnetic field brought a number of scientific results including the detection of rapidly changing flows at the top of the core and crucial contribution to the derivation of the first World Digital Magnetic Anomaly Map. Furthermore, the high quality of the observations made it possible to identify completely new satellite magnetic signatures related to oceanic tides, ionospheric pressure gradient currents, and magnetic signatures of plasma bubbles. As often in science, new observations trigger new questions, which need to be answered with even more sophisticated measurements. This challenge was taken up by ESA by its selection of Swarm as the 5th mission in the Earth Explorer Programme. The three satellite constellation mission Swarm will be launched in 2010-11 with the objective to provide the best ever survey of the geomagnetic field and its temporal evolution in order to improve our understanding of the Earth's interior and the Geospace environment including the Sun-Earth connection
Unification of gravity and quantum field theory from extended noncommutative geometry
Yu, Hefu; Ma, Bo-Qiang
2017-02-01
We make biframe and quaternion extensions on the noncommutative geometry, and construct the biframe spacetime for the unification of gravity and quantum field theory (QFT). The extended geometry distinguishes between the ordinary spacetime based on the frame bundle and an extra non-coordinate spacetime based on the biframe bundle constructed by our extensions. The ordinary spacetime frame is globally flat and plays the role as the spacetime frame in which the fields of the Standard Model are defined. The non-coordinate frame is locally flat and is the gravity spacetime frame. The field defined in both frames of such “flat” biframe spacetime can be quantized and plays the role as the gravity field which couples with all the fields to connect the gravity effect with the Standard Model. Thus, we provide a geometric paradigm in which gravity and QFT can be unified.
The Weak Field Limit of Higher Order Gravity
Stabile, Arturo
2008-01-01
The Higher Order Theories of Gravity - $f(R, R_{\\alpha\\beta}R^{\\alpha\\beta})$ - theory, where $R$ is the Ricci scalar, $R_{\\alpha\\beta}$ is the Ricci tensor and $f$ is any analytic function - have recently attracted a lot of interest as alternative candidates to explain the observed cosmic acceleration, the flatness of the rotation curves of spiral galaxies and other relevant astrophysical phenomena. It is a crucial point testing these alternative theories in the so called weak field and newtonian limit of a $f(R, R_{\\alpha\\beta}R^{\\alpha\\beta})$ - theory. With this "perturbation technique" it is possible to find spherically symmetric solutions and compare them with the ones of General Relativity. On both approaches we found a modification of General Relativity: the behaviour of gravitational potential presents a modification Yukawa - like in the newtonian case and a massive propagation in the weak field case. When the modification of the theory is removed (i.e. $f(R, R_{\\alpha\\beta}R^{\\alpha\\beta}) = R$, Hil...
A clear and measurable signature of modified gravity in the galaxy velocity field
Hellwing, Wojciech A; Frenk, Carlos S; Li, Baojiu; Cole, Shaun
2014-01-01
The velocity field of dark matter and galaxies reflects the continued action of gravity throughout cosmic history. We show that the low-order moments of the pairwise velocity distribution, $v_{12}$, are a powerful diagnostic of the laws of gravity on cosmological scales. In particular, the projected line-of-sight galaxy pairwise velocity dispersion, $\\sigma_{12}(r)$, is very sensitive to the presence of modified gravity. Using a set of high-resolution N-body simulations we compute the pairwise velocity distribution and its projected line-of-sight dispersion for a class of modified gravity theories: the chameleon $f(R)$ gravity and Galileon gravity (cubic and quartic). The velocities of dark matter halos with a wide range of masses exhibit deviations from General Relativity at the 5 to 10 $\\sigma$ level. We examine strategies for detecting these deviations in galaxy redshift and peculiar velocity surveys. If detected, this signature would be a smoking gun for modified gravity.
Clear and measurable signature of modified gravity in the galaxy velocity field.
Hellwing, Wojciech A; Barreira, Alexandre; Frenk, Carlos S; Li, Baojiu; Cole, Shaun
2014-06-06
The velocity field of dark matter and galaxies reflects the continued action of gravity throughout cosmic history. We show that the low-order moments of the pairwise velocity distribution v_{12} are a powerful diagnostic of the laws of gravity on cosmological scales. In particular, the projected line-of-sight galaxy pairwise velocity dispersion σ_{12}(r) is very sensitive to the presence of modified gravity. Using a set of high-resolution N-body simulations, we compute the pairwise velocity distribution and its projected line-of-sight dispersion for a class of modified gravity theories: the chameleon f(R) gravity and Galileon gravity (cubic and quartic). The velocities of dark matter halos with a wide range of masses would exhibit deviations from general relativity at the (5-10)σ level. We examine strategies for detecting these deviations in galaxy redshift and peculiar velocity surveys. If detected, this signature would be a "smoking gun" for modified gravity.
REDUCTION AND GRIDDED PROCESSING OF SATELLITE GRAVITY GRADIENT DATA%卫星重力梯度数据的归算与格网化处理
Institute of Scientific and Technical Information of China (English)
钟波; 刘华亮; 罗志才; 李振海
2011-01-01
Satellite gravity gradient data reduction and gridding are indispensable steps for recovering the Earth' s gravity field with space-wise method. The second-order radial correction formula for gravity gradient data reduction is given, and the results show that the use of high-precision reference gravity field model can effectively reduce the reduction errors. The gridding accuracy and applicability of weighted average method, Shepard surface fitting and least squares collocation method are compared. As a test, the radial gravity gradient data that added with different types of noises are gridded with the above three gridding methods. The results show that the LSC method has obvious advantages compared with the weighted average and Shepard surface fitting methods, and it can be used for high-accuracy Earth' s gravity field recovery, so the LSC method is recommended for GOCE gravity gradient data gridded processing.%给出引力梯度数据归算的二阶径向改正公式,计算结果表明选用高精度参考重力场模型可以有效控制归算误差的影响.比较加权平均法、Shepard曲面拟合法和最小二乘配置法用于卫星重力梯度数据格网化处理的精度和适用性,采用不同噪声背景的径向引力梯度数据进行格网化处理,计算结果表明:最小二乘配置法相比加权平均法和Shepard曲面拟合法具有明显优势,其格网化精度可满足高精度重力场恢复的需要,建议在实际计算中采用最小二乘配置法进行格网化处理.
Hoffmann, Lars; Spang, Reinhold; Orr, Andrew; Alexander, M. Joan; Holt, Laura A.; Stein, Olaf
2017-02-01
Atmospheric gravity waves yield substantial small-scale temperature fluctuations that can trigger the formation of polar stratospheric clouds (PSCs). This paper introduces a new satellite record of gravity wave activity in the polar lower stratosphere to investigate this process. The record is comprised of observations of the Atmospheric Infrared Sounder (AIRS) aboard NASA's Aqua satellite from January 2003 to December 2012. Gravity wave activity is measured in terms of detrended and noise-corrected 15 µm brightness temperature variances, which are calculated from AIRS channels that are the most sensitive to temperature fluctuations at about 17-32 km of altitude. The analysis of temporal patterns in the data set revealed a strong seasonal cycle in wave activity with wintertime maxima at mid- and high latitudes. The analysis of spatial patterns indicated that orography as well as jet and storm sources are the main causes of the observed waves. Wave activity is closely correlated with 30 hPa zonal winds, which is attributed to the AIRS observational filter. We used the new data set to evaluate explicitly resolved temperature fluctuations due to gravity waves in the European Centre for Medium-Range Weather Forecasts (ECMWF) operational analysis. It was found that the analysis reproduces orographic and non-orographic wave patterns in the right places, but that wave amplitudes are typically underestimated by a factor of 2-3. Furthermore, in a first survey of joint AIRS and Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) satellite observations, nearly 50 gravity-wave-induced PSC formation events were identified. The survey shows that the new AIRS data set can help to better identify such events and more generally highlights the importance of the process for polar ozone chemistry.
Institute of Scientific and Technical Information of China (English)
陈光
2001-01-01
The static spherically symmetric solution of Einstein gravity coupled to electromagnetic and scalar fields is obtained under the consideration of the self-gravitational interaction of the electromagnetic and scalar fields, which is singularityfree and stable.
Directory of Open Access Journals (Sweden)
M.A. Sharaf
2013-06-01
Full Text Available In this paper, initial value problem for dynamical astronomy will be established using Bispherical coordinates. A computational algorithm is developed for the final state predictions for J2 gravity perturbed motion of the Earth’s artificial satellites. This algorithm is important in targeting, rendezvous maneuvers as well for scientific researches. The applications of the algorithm are illustrated by numerical examples of some test orbits of different eccentricities. The numerical results are extremely accurate and efficient.
Xiang, Longwei; Wang, Hansheng; Steffen, Holger; Wu, Patrick; Jia, Lulu; Jiang, Liming; Shen, Qiang
2016-09-01
Understanding groundwater storage (GWS) changes is vital to the utilization and control of water resources in the Tibetan Plateau. However, well level observations are rare in this big area, and reliable hydrology models including GWS are not available. We use hydro-geodesy to quantitate GWS changes in the Tibetan Plateau and surroundings from 2003 to 2009 using a combined analysis of satellite gravity and satellite altimetry data, hydrology models as well as a model of glacial isostatic adjustment (GIA). Release-5 GRACE gravity data are jointly used in a mascon fitting method to estimate the terrestrial water storage (TWS) changes during the period, from which the hydrology contributions and the GIA effects are effectively deducted to give the estimates of GWS changes for 12 selected regions of interest. The hydrology contributions are carefully calculated from glaciers and lakes by ICESat-1 satellite altimetry data, permafrost degradation by an Active-Layer Depth (ALD) model, soil moisture and snow water equivalent by multiple hydrology models, and the GIA effects are calculated with the new ICE-6G_C (VM5a) model. Taking into account the measurement errors and the variability of the models, the uncertainties are rigorously estimated for the TWS changes, the hydrology contributions (including GWS changes) and the GIA effect. For the first time, we show explicitly separated GWS changes in the Tibetan Plateau and adjacent areas except for those to the south of the Himalayas. We find increasing trend rates for eight basins: + 2.46 ± 2.24 Gt/yr for the Jinsha River basin, + 1.77 ± 2.09 Gt/yr for the Nujiang-Lancangjiang Rivers Source Region, + 1.86 ± 1.69 Gt/yr for the Yangtze River Source Region, + 1.14 ± 1.39 Gt/yr for the Yellow River Source Region, + 1.52 ± 0.95 Gt/yr for the Qaidam basin, + 1.66 ± 1.52 Gt/yr for the central Qiangtang Nature Reserve, + 5.37 ± 2.17 Gt/yr for the Upper Indus basin and + 2.77 ± 0.99 Gt/yr for the Aksu River basin. All these
Electrochemical studies of nickel deposition from aqueous solution in super-gravity field
Institute of Scientific and Technical Information of China (English)
2007-01-01
The effect of super-gravity on electrochemical deposition of nickel from aqueous solution was studied. The SEM pictures show that the microstructure of nickel film deposited under the super-gravity condition is finer and more uniform compared with that obtained in normal gravity condition, and the crystal grains diminish with the increase of super-gravity coefficient. The XRD patterns indicate that the ar-rangement of crystalline grains of nickel film deposited under the super-gravity field is more regular, and the crystalline grain sizes decrease with the increase of super-gravity coefficient. Toughness, tensile stress and hardness of the nickel film are markedly raised with the increase of super-gravity coefficient, and hydrogen content in the nickel film decreases with the increase of super-gravity coefficient. From the polarization curves of hydrogen evolution reaction under the su-per-gravity condition, a significant reduction of over-potential on electrode was found when current density increased. The process of hydrogen evolution reaction was enhanced under the super-gravity condition. The electro-deposition rate, the microstructure and properties of deposited nickel film under super-gravity condi-tion were still affected by the relative orientation between inertia force and depos-iting surface. It is favorable to gain the nickel film with better mechanic properties when inertia force orientates vertically towards depositing surface.
Electrochemical studies of nickel deposition from aqueous solution in super-gravity field
Institute of Scientific and Technical Information of China (English)
GUO ZhanCheng; GONG YingPeng; LU WeiChang
2007-01-01
The effect of super-gravity on electrochemical deposition of nickel from aqueous solution was studied. The SEM pictures show that the microstructure of nickel film deposited under the super-gravity condition is finer and more uniform compared with that obtained in normal gravity condition, and the crystal grains diminish with the increase of super-gravity coefficient. The XRD patterns indicate that the arrangement of crystalline grains of nickel film deposited under the super-gravity field is more regular, and the crystalline grain sizes decrease with the increase of super-gravity coefficient. Toughness, tensile stress and hardness of the nickel film are markedly raised with the increase of super-gravity coefficient, and hydrogen content in the nickel film decreases with the increase of super-gravity coefficient. From the polarization curves of hydrogen evolution reaction under the super-gravity condition, a significant reduction of over-potential on electrode was found when current density increased. The process of hydrogen evolution reaction was enhanced under the super-gravity condition. The electro-deposition rate, the microstructure and properties of deposited nickel film under super-gravity condition were still affected by the relative orientation between inertia force and depositing surface. It is favorable to gain the nickel film with better mechanic properties when inertia force orientates vertically towards depositing surface.
Chen, C.; Hu, Z.; Du, J.; Wang, Q.
2011-12-01
The Philippine Sea, situated in the northwestern Pacific, is one of the largest marginal seas on the Earth. Analysis of the Philippine Sea's intraplate fault tectonic systems and lithosphere's density and magnetism structures has a significant contribution to understanding not only the dynamic principles of subduction and convergence zones but also effect of plate subduction on back-arc area. It is also important to have cognizance for structure evolution of the ocean crust, the tension and extending progress of marginal sea basins and the mechanisms of geodynamics. Meanwhile, it can be a significant approach for researching the evolution of the East China Sea and the South China Sea. Using high-precision gravity forwarding method based on spatial domain in spherical coordinate, we have calculated the Bouguer gravity disturbance (BGD) in the Philippine Sea based on the ETOPO1 1 arc-minute topography & bathymetry data and the gravity field model EIGEN-6C. After removing the gravity effect of the sediments and deep abnormal materials, we make spherical cap harmonic analysis of the residual anomaly and obtain the topography of Moho and apparent-density's distribution of our study area by alternate iteration inversion method. Then, we calculate the distributions of the study area's magnetic anomalies based on the Earth magnetic model NGDC720, reduce to the pole of the study area's magnetic anomalies by the equivalent source method based on spherical prism magnetic forwarding, inverse the processed magnetic anomalies with spherical cap harmonic analysis to obtain the topography of Curie surface and the apparent magnetic susceptibility distribution. Finally, we divide the Philippine Sea block into tectonic units and derive the faults distributions through the analysis of gravity magnetic anomalies' linear characteristics. The results show that West Philippine Basin is divided by Central Basin Ridge into two block units, the tectonic trend of the north block is south
Digital Repository Service at National Institute of Oceanography (India)
Sreejith, K.M.; Chaubey, A; Mishra, A; Kumar, S.; Rajawat, A
is characterized by a gravity low and rugged basement. The refined satellite gravity image of the Arabian Basin also revealed three seamounts in close proximity to the pseudofaults, which were not reported earlier. In the Eastern Somali Basin, seamounts are aligned...
The Gravity Field and Interior Structure of Enceladus
Iess, L.; Stevenson, D. J.; Parisi, M.; Hemingway, D.; Jacobson, R. A.; Lunine, J. I.; Nimmo, F.; Armstrong, J. W.; Asmar, S. W.; Ducci, M.; Tortora, P.
2014-04-01
The small and active Saturnian moon Enceladus is one of the primary targets of the Cassini mission. We determined the quadrupole gravity field of Enceladus and its hemispherical asymmetry using Doppler data from three spacecraft flybys. Our results indicate the presence of a negative mass anomaly in the south-polar region, largely compensated by a positive subsurface anomaly compatible with the presence of a regional subsurface sea at depths of 30 to 40 kilometers and extending up to south latitudes of about 50°. The estimated values for the largest quadrupole harmonic coefficients (106J2 = 5435.2 ± 34.9, 106C22 = 1549.8 ± 15.6, 1σ) and their ratio (J2/C22 = 3.51 ± 0.05) indicate that the body deviates mildly from hydrostatic equilibrium. The moment of inertia is around 0.335MR2, where M is the mass and R is the radius, suggesting a differentiated body with a low-density core.
Gravity field error analysis for pendulum formations by a semi-analytical approach
Li, Huishu; Reubelt, Tilo; Antoni, Markus; Sneeuw, Nico
2017-03-01
Many geoscience disciplines push for ever higher requirements on accuracy, homogeneity and time- and space-resolution of the Earth's gravity field. Apart from better instruments or new observables, alternative satellite formations could improve the signal and error structure compared to Grace. One possibility to increase the sensitivity and isotropy by adding cross-track information is a pair of satellites flying in a pendulum formation. This formation contains two satellites which have different ascending nodes and arguments of latitude, but have the same orbital height and inclination. In this study, the semi-analytical approach for efficient pre-mission error assessment is presented, and the transfer coefficients of range, range-rate and range-acceleration gravitational perturbations are derived analytically for the pendulum formation considering a set of opening angles. The new challenge is the time variations of the opening angle and the range, leading to temporally variable transfer coefficients. This is solved by Fourier expansion of the sine/cosine of the opening angle and the central angle. The transfer coefficients are further applied to assess the error patterns which are caused by different orbital parameters. The simulation results indicate that a significant improvement in accuracy and isotropy is obtained for small and medium initial opening angles of single polar pendulums, compared to Grace. The optimal initial opening angles are 45° and 15° for accuracy and isotropy, respectively. For a Bender configuration, which is constituted by a polar Grace and an inclined pendulum in this paper, the behaviour of results is dependent on the inclination (prograde vs. retrograde) and on the relative baseline orientation (left or right leading). The simulation for a sun-synchronous orbit shows better results for the left leading case.
Gravity field error analysis for pendulum formations by a semi-analytical approach
Li, Huishu; Reubelt, Tilo; Antoni, Markus; Sneeuw, Nico
2016-10-01
Many geoscience disciplines push for ever higher requirements on accuracy, homogeneity and time- and space-resolution of the Earth's gravity field. Apart from better instruments or new observables, alternative satellite formations could improve the signal and error structure compared to uc(Grace). One possibility to increase the sensitivity and isotropy by adding cross-track information is a pair of satellites flying in a pendulum formation. This formation contains two satellites which have different ascending nodes and arguments of latitude, but have the same orbital height and inclination. In this study, the semi-analytical approach for efficient pre-mission error assessment is presented, and the transfer coefficients of range, range-rate and range-acceleration gravitational perturbations are derived analytically for the pendulum formation considering a set of opening angles. The new challenge is the time variations of the opening angle and the range, leading to temporally variable transfer coefficients. This is solved by Fourier expansion of the sine/cosine of the opening angle and the central angle. The transfer coefficients are further applied to assess the error patterns which are caused by different orbital parameters. The simulation results indicate that a significant improvement in accuracy and isotropy is obtained for small and medium initial opening angles of single polar pendulums, compared to uc(Grace). The optimal initial opening angles are 45° and 15° for accuracy and isotropy, respectively. For a Bender configuration, which is constituted by a polar uc(Grace) and an inclined pendulum in this paper, the behaviour of results is dependent on the inclination (prograde vs. retrograde) and on the relative baseline orientation (left or right leading). The simulation for a sun-synchronous orbit shows better results for the left leading case.
Satellite observations of ground water changes in New Mexico
In 2002 NASA launched the Gravity Recovery and Climate Experiment (GRACE) satellite mission. GRACE consists of two satellites with a separation of about 200 km. By accurately measuring the separation between the twin satellites, the differences in the gravity field can be determined. Monthly observ...
Institute of Scientific and Technical Information of China (English)
宋雷; 陈晓华; 胡伍生; 王德宝; 王牧龙
2013-01-01
为改善地面重力数据缺乏区域似大地水准面的精度和分辨率，提出利用神经网络融合卫星重力信息应用于似大地水准面精化的方法，通过融合不同时期CHAMP卫星数据计算的重力场模型和GPS/水准数据中区域重力场信息，进行区域似大地水准面精化并进行精度统计，结果表明：融合卫星重力信息将区域似大地水准面模型的精度由0.4702 m提高至0.2038 m，验证了神经网络技术融合卫星重力信息并应用于区域似大地水准面精化是有效的．%In order to improve the precision and resolution of quasi-geoid in the region of lacking ground gravity data, the method of satellite gravity information fusion using neural network to refine regional quasi-geoid is proposed.The regional quasi-geoid is refined by fusing the gravity informa-tion of CHAMP ( challenging mini-satellite payload ) gravity field models at different periods and GPS/leveling, and then the precision of quasi-geoid is estimated.The results show that the satellite gravity information fusion can improve the precision of regional quasi-geoid from 0.470 2 m to 0.203 8 m, which verify that satellite gravity information fusion using neural network to refine re-gional quasi-geoid is effective.
Institute of Scientific and Technical Information of China (English)
HWANG; CheinWay
2010-01-01
The quality of satellite radar altimetric data is very important in studies of geodesy,geophysics,and oceanography.Over coastal oceans,altimeter waveforms are contaminated by the terrain and physical environments so that the accuracy of altimeter data is lower than that over open oceans.Here we develop a new multi-subwaveform parametric retracker(MSPR) to improve the quality of altimeter data for the recovery of gravity anomaly in coastal oceans.The least squares collocation method is used to recover the residual gravity anomaly over the coastal water from altimetric data.The waveform data records from Geosat/GM around Taiwan Island are practically retracked with MSPR.When compared with the Taiwan geoid height,the results retracked by MSPR are more accurate than those retracked by the well-known β-5-parmeter method and from the geophysical data records(GDRs).The gravity anomalies over Taiwan coastal waters are calculated from the retracked altimeter data with the least squares collocation.When we compared gravity anomalies computed using altimeter GDRs with the ship-borne gravity data over Taiwan coastal ocean,we found that the results from retracked data are more accurate than those from GDRs.
Bourda, G
2007-01-01
The "Descartes-Nutation" Project is devoted to the "understanding of the next decimal of precession-nutation, from the theoretical point of view as well as from the observational point of view". In this framework, we made a proposal in order to contribute to the study of (i) the dynamical flattening of the Earth, (ii) the coupling effects of the lunisolar forcing, (iii) the effect of the geophysical fluids on the EOP and (iv) the Nutation observations. We investigate further the links between Earth Orientation and Gravity Field Variations. Indeed, the masses distributions inside the Earth govern the behaviour of the rotation axis in space (precession-nutation) and in the Earth (polar motion), as well as the Earth rotation rate (or equivalently, length of the day). These distributions of masses can be measured by space owing to artificial satellites, the orbitography of which provides the Earth gravity field determination. Then, the temporal variations of the Earth gravity field can be related to the variation...
Mozaffar, M R Mohammadi; Sheikh-Jabbari, M M; Vahidinia, M H
2016-01-01
It is established that physical observables in local quantum field theories should be invariant under invertible field redefinitions. It is then expected that this statement should be true for the entanglement entropy and moreover that, via the gauge/gravity correspondence, the recipe for computing entanglement entropy holographically should also be invariant under field redefinitions in the gravity side. We use this fact to fix the recipe for computing holographic entanglement entropy (HEE) for $f(R,R_{\\mu\
The impact of using jason-1 and cryosat-2 geodetic mission altimetry for gravity field modeling
DEFF Research Database (Denmark)
Andersen, Ole Baltazar; Jain, Maulik; Knudsen, Per
2016-01-01
operating in a geodetic mission as part its end of life mission. In this presentation, we perform an investigation of the impact of the Cryosat-2 and Jason-1 geodetic missions on high resolution marine gravity field mapping through comparison with recent high quality marine gravity measured by the United...
Torsion gravity with non-minimally coupled fermionic field: some cosmological models
Vignolo, Stefano; Fabbri, Luca
2014-01-01
We investigate some cosmological models arising from a non-minimal coupling of a fermionic field to gravity in the geometrical setting of Einstein-Cartan-Sciama-Kibble gravity. The role played by the non-minimal coupling together with torsion in facing problems such as cosmological singularity, inflation and dark energy is discussed.
A 10 km-resolution synthetic Venus gravity field model based on topography
Li, Fei; Yan, Jianguo; Xu, Luyuan; Jin, Shuanggen; Rodriguez, J. Alexis P.; Dohm, James H.
2015-02-01
A high resolution gravity field model is extremely important in the exploration of Venus. In this paper, we present a 3-dimensional Venus gravity field VGM2014 constructed by using the latest gravity and topography models, residual terrain model (RTM) and the Airy-Heiskanen isostatic compensation model. The VGM2014 is the first 10 km scale Venus gravity field model; the final results are representations of the 3-dimensional surface gravity accelerations and gravity disturbances for Venus. We found that the optimal global compensation depth of Venus is about 60 km, and the crustal density is potentially less than the commonly accepted value of 2700-2900 kg m-3. This model will be potentially beneficial for the precise orbit determination and landing navigation of spacecraft around Venus, and may be utilized as a priori model for Venus gravity field simulation and inversion studies. The VGM2014 does not incorporate direct gravity information beyond degree 70 and it is not recommended for small-scale geophysical interpretation.
Regional Gravity Field Modeling with Abel-Poisson Radial Basis Functions
Directory of Open Access Journals (Sweden)
MA Zhiwei
2016-09-01
Full Text Available With the increasing number of various types of high-resolution gravity observations, earth gravity models can be regionally refined. We use Abel-Poisson kernel to represent the gravity as the linear summation of finite radial basis functions and combine the multiple gravity data to build a regional gravity model with high resolution. The minimum root mean square criterion based on the data adaptive algorithm is proposed to calculate the base function, which promote the speed of computation significantly. Taking the central South China Sea as an example, two different types of gravity data, namely geoid undulations with resolution of 6'×6' and gravity anomaly with resolution of 2'×2', are used to construct the high-resolution regional gravity model. The model has a resolution of 2'×2', and has a great agreement with original gravity anomaly, reaching to ±0.8×10-5m/s2.Our results show that using radial basis functions to construct the regional gravity field can avoid the problem of slow convergence of spherical harmonic functions, and can improve the resolution remarkably.
Barriot, J. P.; Balmino, G.
1992-09-01
A novel method is presented for mapping line-of-sight gravity data (LOSGD) joining planetary probes and observers during Doppler tracking operations, with a view to geodetic and geophysical applications. LOSGD are in this case mapped as gravity anomalies along a radial direction, at constant altitude, using an inversion procedure in conjunction with a Tikhonov-Arsenine regularization method. The application of different regularization-parameter choices to a synthetic case is followed by application to the real case of Pioneer-Venus orbiter data for Venus' Gula Mons.
Relation between Gravity Field Feature and Tectonics and Earthquakes in Taiwan and Its Adjacent Seas
Institute of Scientific and Technical Information of China (English)
张赤军; 方剑
2001-01-01
Short wave gravity anomaly is correlated to sea floor topography in the gravity field of Taiwan and its adjacent seas. Gravity values of 200 × 10-5ms-2 at Yushang and -160 × 10-5ms-2 at Liuqiu sea trench are respectively the maximum and minimum gravity values in this area.Bouguer gravity anomaly reflects not only Moho interface undulation, but also fault distribution.The inflexion of gradient belt of Bouguer gravity anomaly is a spot liable to earthquakes. Middlelong wave geoid is the best data to invert crustal thickness. We calculate crustal thickness by using geoid data, and the maximum value is 38km; the minimum value is 12km in Taiwan and its adjacent seas.
Effect of force fields on pool boiling flow patterns in normal and reduced gravity
di Marco, P.; Grassi, W.
2009-05-01
This paper reports the observations of boiling flow patterns in FC-72, performed during a microgravity experiment, recently flown aboard of Foton-M2 satellite, in some instances with the additional aid of an electrostatic field to replace the buoyancy force. The heater consisted of a flat plate, 20 × 20 mm2, directly heated by direct current. Several levels of liquid subcooling (from 20 to 6 K) and heat fluxes up to 200 kW/m2 were tested. A complete counterpart test, carried out on ground before the mission, allowed direct comparison with terrestrial data. The void fraction in microgravity revealed much larger than in normal gravity condition: this may be attributed to increased bubble coalescence that hinders vapor condensation in the bulk of the subcooled fluid. In several cases, an oscillatory boiling behavior was detected, leading to periodical variation of average wall overheating of some degrees. The electric field confirmed to be very effective, even at low values of applied voltage, in reducing bubble size, thus improving their condensation rate in the bulk fluid, and in enhancing heat transfer performance, suppressing the boiling oscillations and preventing surface dryout.
Satellite observations of atmosphere-ionosphere vertical coupling by gravity waves
Trinh, Thai; Ern, Manfred; Preusse, Peter; Riese, Martin
2017-04-01
The Earth's thermosphere/ionosphere (T/I) is strongly influenced by various processes from above as well as from below. One of the most important processes from below is vertical coupling by atmospheric waves. Among these waves, gravity waves (GWs) excited in the lower atmosphere, mainly in the troposphere and tropopause region, are likely essential for the mean state of the T/I system. The penetration of GWs into the T/I system is however not well understood in modeling as well as observations. In this work, we analyze the correlation between different GW parameters at lower altitudes (below 90 km) and GW induced perturbations in the T/I. At lower altitudes, GW parameters are derived from temperature observations of the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER). In the T/I, GW induced perturbations of neutral density measured by Gravity field and Ocean Circulation Explorer (GOCE) and CHAllenging Minisatellite Payload (CHAMP) are analyzed. Interestingly, we find positive correlations between the spatial distributions at low altitudes (i.e. below 90km) and the spatial distributions of GW-induced density fluctuations in the T/I (at 200km and above), which suggests that many waves seen in the T/I have their origins in the troposphere or lower stratosphere. It is also indicated that mountain waves generated near the Andes and Antarctic Peninsula propagate up to the T/I. Strong positive correlations between GW perturbations in the T/I and GW parameters at 30 km are mainly found at mid latitudes, which may be an indicator of propagation of convectively generated GWs. Increase of correlation starting from 70 km in many cases shows that filtering of the GW distribution by the background atmosphere is very important. Processes that are likely involved are GW dissipation, generation of secondary GWs, as well as horizontal propagation of GWs. Limitations of our method and of the observations are also discussed.
Garcia, Emmanuel S.; Sandwell, David T.; Smith, Walter H. F.
2014-03-01
Improving the accuracy of the marine gravity field requires both improved altimeter range precision and dense track coverage. After a hiatus of more than 15 yr, a wealth of suitable data is now available from the CryoSat-2, Envisat and Jason-1 satellites. The range precision of these data is significantly improved with respect to the conventional techniques used in operational oceanography by retracking the altimeter waveforms using an algorithm that is optimized for the recovery of the short-wavelength geodetic signal. We caution that this new approach, which provides optimal range precision, may introduce large-scale errors that would be unacceptable for other applications. In addition, CryoSat-2 has a new synthetic aperture radar (SAR) mode that should result in higher range precision. For this new mode we derived a simple, but approximate, analytic model for the shape of the SAR waveform that could be used in an iterative least-squares algorithm for estimating range. For the conventional waveforms, we demonstrate that a two-step retracking algorithm that was originally designed for data from prior missions (ERS-1 and Geosat) also improves precision on all three of the new satellites by about a factor of 1.5. The improved range precision and dense coverage from CryoSat-2, Envisat and Jason-1 should lead to a significant increase in the accuracy of the marine gravity field.
Aeronautical satellite antenna steering using magnetic field sensors
Sydor, John; Dufour, Martial
1993-01-01
Designers of aeronautical satellite terminals are often faced with the problem of steering a directive antenna from an airplane or helicopter. This problem is usually solved by using aircraft orientation information derived from inertial sensors on-board the aircraft in combination with satellite ephemeris information calculated from geographic coordinates. This procedure works well but relies heavily on avionics that are external to the terminal. For the majority of small aircraft and helicopters which will form the bulk of future aeronautical satcom users, such avionics either do not exist or are difficult for the satellite terminal to interface with. At the Communications Research Center (CRC), work has been undertaken to develop techniques that use the geomagnetic field and satellite antenna pointing vectors (both of which are stationary in a local geographical area) to track the position of a satellite relative to a moving platform such as an aircraft. The performance of this technique is examined and a mathematical steering transformation is developed within this paper. Details are given regarding the experimental program that will be undertaken to test the concepts proposed herein.
Zingerle, Philipp; Fecher, Thomas; Pail, Roland; Gruber, Thomas
2016-04-01
One of the major obstacles in modern global gravity field modelling is the seamless combination of lower degree inhomogeneous gravity field observations (e.g. data from satellite missions) with (very) high degree homogeneous information (e.g. gridded and reduced gravity anomalies, beyond d/o 1000). Actual approaches mostly combine such data only on the basis of the coefficients, meaning that previously for both observation classes (resp. models) a spherical harmonic analysis is done independently, solving dense normal equations (NEQ) for the inhomogeneous model and block-diagonal NEQs for the homogeneous. Obviously those methods are unable to identify or eliminate effects as spectral leakage due to band limitations of the models and non-orthogonality of the spherical harmonic base functions. To antagonize such problems a combination of both models on NEQ-basis is desirable. Theoretically this can be achieved using NEQ-stacking. Because of the higher maximum degree of the homogeneous model a reordering of the coefficient is needed which leads inevitably to the destruction of the block diagonal structure of the appropriate NEQ-matrix and therefore also to the destruction of simple sparsity. Hence, a special coefficient ordering is needed to create some new favorable sparsity pattern leading to a later efficient computational solving method. Such pattern can be found in the so called kite-structure (Bosch, 1993), achieving when applying the kite-ordering to the stacked NEQ-matrix. In a first step it is shown what is needed to attain the kite-(NEQ)system, how to solve it efficiently and also how to calculate the appropriate variance information from it. Further, because of the massive computational workload when operating on large kite-systems (theoretically possible up to about max. d/o 100.000), the main emphasis is put on to the presentation of special distributed algorithms which may solve those systems parallel on an indeterminate number of processes and are
Krauss, S.; Klinger, B.; Baur, O.; Mayr-Guerr, T.
2015-10-01
We present an updated version of the lunar gravity field model GrazLGM300a,b [1,2] based on intersatellite Ka-band ranging (KBR) observations collected by the GRAIL mission. We propose to exploit the ranging measurements by an integral equation approach using short orbital arcs [4].Compared to the predecessor model we increase the spectral resolution to degree and order 450 and refined the parameterization. Validation shows that the applied technique is well suited to recover the lunar gravity field.
Minimally Coupled Dirac Field to the Mielke-Baekler Model of Gravity
Sert, Özcan
2013-01-01
We consider a Dirac field coupled minimally to the Mielke-Baekler model of gravity and investigate cosmological solutions in three dimensions. We arrive at a family of solution which is valid even the case of zero cosmological constant.
A field-theoretic approach to Spin Foam models in Quantum Gravity
Vitale, Patrizia
2011-01-01
We present an introduction to Group Field Theory models, motivating them on the basis of their relationship with discretized BF models of gravity. We derive the Feynmann rules and compute quantum corrections in the coherent states basis.
Brissaud, Quentin; Garcia, Raphael; Martin, Roland; Komatitsch, Dimitri; Sladen, Anthony
2016-04-01
Acoustic and gravity waves propagating in planetary atmospheres have been studied intensively as markers of specific phenomena (tectonic events, explosions) or as contributors to atmosphere dynamics. To get a better understanding of the physics behind these dynamic processes, both acoustic and gravity waves propagation should be modeled in an attenuating and windy 3D atmosphere from the ground all the way to the upper thermosphere. Thus, in order to provide an efficient numerical tool at the regional or global scale we introduce a high-order finite- difference time domain (FDTD) approach that relies on the linearized compressible Navier-Stokes equations with non constant physical parameters (density, viscosities and speed of sound) and background velocities (wind). We present applications of these simulations to the propagation of gravity waves generated by tsunamis for realistic cases for which atmospheric models are extracted from empirical models including 3D variations of atmospheric parameters, and tsunami forcing at the ocean surface is extracted from finite-fault dislocation simulations. We describe the specific difficulties induced by the size of the simulation, the boundary conditions and the spherical geometry and compare the simulation outputs to data gathered by gravimetric satellites crossing gravity waves generated by tsunamis.
The 4th Release of GOCE Gravity Field Models - Overview and Performance Analysis
Gruber, Thomas; Rummel, Reiner
2013-04-01
New GOCE gravity field models based on about 2 years of completely reprocessed gradiometer data have been recently released to the user community. They were obtained based on different processing strategies and reflect the state-of-the-art of GOCE gravity field models. With the improved gravity gradients resulting from a number of updates implemented in the level 1B processor and with the additional data set the performance of the resulting GOCE based models could be significantly improved as compared to the previous solutions. The paper provides an overview of the available GOCE models and presents the results of their validation by different means.
Spin-Gauge Theory of Gravity with Higgs-field Mechanism
Dehnen, H
2013-01-01
We propose a Lorentz-covariant Yang-Mills spin-gauge theory, where the function valued Dirac matrices play the role of a non-scalar Higgs-field. As symmetry group we choose $SU(2) \\times U(1)$. After symmetry breaking a non-scalar Lorentz-covariant Higgs-field gravity appears, which can be interpreted within a classical limit as Einstein's metrical theory of gravity, where we restrict ourselves in a first step to its linearized version.
Farahani, H.H.
2013-01-01
The main focus of the thesis is modelling the static and time-varying parts of the Earth's gravity field at the global scale based on data acquired by the Gravity Recovery And Climate Experiment (GRACE) and Gravity field and steady-state Ocean Circulation Explorer (GOCE). In addition, a new
Farahani, H.H.
2013-01-01
The main focus of the thesis is modelling the static and time-varying parts of the Earth's gravity field at the global scale based on data acquired by the Gravity Recovery And Climate Experiment (GRACE) and Gravity field and steady-state Ocean Circulation Explorer (GOCE). In addition, a new methodol
The Weak Field Limit of Fourth Order Gravity
Capozziello, Salvatore
2010-01-01
We discuss Newtonian and the post-Newtonian limits of Fourth Order Gravity Theories pointing out, in details, their resemblances and differences with respect to General Relativity. Particular emphasis is placed on the exact solutions and methods used to obtain them.
The Weak Field Limit of Fourth Order Gravity
Capozziello, Salvatore; Stabile, Arturo
2010-01-01
We discuss Newtonian and the post-Newtonian limits of Fourth Order Gravity Theories pointing out, in details, their resemblances and differences with respect to General Relativity. Particular emphasis is placed on the exact solutions and methods used to obtain them.
ARISTOTELES: A European approach for an Earth gravity field recovery mission
Benz, R.; Faulks, H.; Langemann, M.
1989-06-01
Under contract of the European Space Agency a system study for a spaceborne gravity field recovery mission was performed, covering as a secondary mission objective geodetic point positioning in the cm range as well. It was demonstrated that under the given programmatic constraints including dual launch and a very tight development schedule, a six months gravity field mission in a 200 km near polar, dawn-dusk orbit is adequate to determine gravity anomalies to better than 5 mgal with a spatial resolution of 100 x 100 km half wavelength. This will enable scientists to determine improved spherical harmonic coefficients of the Earth gravity field equation to the order and degree of 180 or better.
An Experimental Study of Boiling in Reduced and Zero Gravity Fields
Usiskin, C. M.; Siegel, R.
1961-01-01
A pool boiling apparatus was mounted on a counterweighted platform which could be dropped a distance of nine feet. By varying the size of the counterweight, the effective gravity field on the equipment was adjusted between zero and unity. A study of boiling burnout in water indicated that a variation in the critical heat flux according to the one quarter power of gravity was reasonable. A consideration of the transient burnout process was necessary in order to properly interpret the data. A photographic study of nucleate boiling showed how the velocity of freely rising vapor bubbles decreased as gravity was reduced. The bubble diameters at the time of breakoff from the heated surface were found to vary inversely as gravity to the 1/3.5 power. Motion pictures were taken to illustrate both nucleate and film boiling in the low gravity range.
Near real-time GRACE gravity field solutions for hydrological monitoring applications
Kvas, Andreas; Gouweleeuw, Ben; Mayer-Gürr, Torsten; Güntner, Andreas
2016-04-01
Within the EGSIEM (European Gravity Service for Improved Emergency Management) project, a demonstrator for a near real-time (NRT) gravity field service which provides daily GRACE gravity field solutions will be established. Compared to the official GRACE gravity products, these NRT solutions will increase the temporal resolution from one month to one day and reduce the latency from currently two months to five days. This fast availability allows the monitoring of total water storage variations and of hydrological extreme events as they occur, in contrast to a 'confirmation after occurrence' as is the situation today. The service will be jointly run by GFZ (German Research Centre for Geosciences) and Graz University of Technology, with each analysis center providing an independent solution. A Kalman filter framework, in which GRACE data is combined with prior information, serves as basis for the gravity field recovery in order to increase the redundancy of the gravity field estimates. The on-line nature of the NRT service necessitates a tailored smoothing algorithm as opposed to post-processing applications, where forward-backward smoothing can be applied. This contribution gives an overview on the near real-time processing chain and highlights differences between the computed NRT solutions and the standard GRACE products. We discuss the special characteristics of the Kalman filtered gravity field models as well as derived products and give an estimate of the expected error levels. Additionally, we show the added value of the NRT solutions through comparison of the first results of the pre-operational phase with in-situ data and monthly GRACE gravity field models.
Impact of CryoSat-2 for marine gravity field - globally and in the Arctic Ocean
DEFF Research Database (Denmark)
Andersen, Ole Baltazar; Stenseng, Lars; Knudsen, Per
days repeat offered by CryoSat-2 provides denser coverage than older geodetic mission data set like ERS-1. Thirdly, the 92 degree inclination of CryoSat-2 is designed to map more of the Arctic Ocean than previous altimetric satellites. Finally, CryoSat-2 is able to operate in two new modes (SAR and SAR...... GDR data, NOAA LRM data, but also Level1b (LRM, SAR and SAR-in waveforms) data have been analyzed. A suite of eight different empirical retrackers have been developed and investigated for their ability to predict marine gravity in the Arctic Ocean. The impact of the various improvement offered by Cryo......Sat-2 in comparison with conventional satellite altimetry have been studied and quantified both globally but particularly for the Arctic Ocean using a large number of marine and airborne surveys providing “ground truth” marine gravity....
Thermodynamics of charged rotating solutions in Brans-Dicke gravity with Born-Infeld field
Pakravan, J.; Takook, M. V.
2017-09-01
We derive new exact charged rotating solutions of (n+1)-dimensional Brans-Dicke theory in the presence of Born-Infeld field and investigated their properties. Because of the coupling between scalar field and curvature, the field equations cannot to be solved directly. Using a new conformal transformation, which transforms the Einstein-dilaton-Born-Infeld gravity Lagrangian to the Brans-Dicke-Born-Infeld gravity one, the field equations are solved. We also compute temperature, charge, mass, electric potential, and entropy; entropy, however, does not obey the area law. These quantities are invariant under conformal transformation and satisfy the first law of thermodynamics.
Antunes, V.; Novello, M.
2017-04-01
In the present work we revisit a model consisting of a scalar field with a quartic self-interaction potential non-minimally (conformally) coupled to gravity (Novello in Phys Lett 90A:347 1980). When the scalar field vacuum is in a broken symmetry state, an effective gravitational constant emerges which, in certain regimes, can lead to gravitational repulsive effects when only ordinary radiation is coupled to gravity. In this case, a bouncing universe is shown to be the only cosmological solution admissible by the field equations when the scalar field is in such broken symmetry state.
Gravitational collapse of massless scalar field in $f(R)$ gravity
Zhang, Cheng-Yong; Wang, Bin
2016-01-01
We study the spherically symmetric gravitational collapse of massless scalar matter field in asymptotic flat spacetime in $f(R)$ gravity. In the Einstein frame of $f(R)$ gravity, an additional scalar field arises due to the conformal transformation. We find that besides the usual competition between gravitational energy and kinetic energy in the process of gravitational collapse, the new scalar field brought by the conformal transformation adds one more competing force in the dynamical system. The dynamical competition can be controlled by tuning the amplitudes of the initial perturbations of the new scalar field and the matter field. To understand the physical reasons behind these phenomena, we analyze the gravitational potential behavior and calculate the Ricci scalar at center with the change of initial amplitudes of perturbations. We find rich physics on the formation of black holes through gravitational collapse in $f(R)$ gravity.
Decomposition of gravity field and grade separation structure in Qinling-Dabie area
Institute of Scientific and Technical Information of China (English)
袁惟正; 刘寿彭; 袁学诚
1996-01-01
The regional gravity field and residual gravity anomaly in the Qinling-Dabie area were separated for the first time, which might be produced by the relief of the Moho and the inhomogeneity of crust, separately. The residual anomalies show that there are two Mesozoic subducting magmatic rocks belts. The northern belt includes West Qinling magmatic rock belt and East Qinling magmatic rock belt and extends through Nanyang Basin and dies out to the west of Fuyang. The southern belt coincides with Tongbai-Dabie area. To the west of East Qinling there is also a residual gravity low which might coincide with early Paleozoic depression.
Localized four-dimensional gravity in the D-brane background with NS $B$ field
Fonseca, R C; Losano, L
2016-01-01
We calculate small correction terms to gravitational potential near $p$-branes embedded in a constant NS $B$ field background in the context of M-theory or string theory. The normalizable wave functions of gravity fluctuations around the brane describe only massive modes. We compute such wave functions analytically. We estimate the correction to gravitational potential for small and long distances, and show that there is an intermediate range of distances in which we can identify $4D$ gravity on the brane below a crossover scale given in terms of components of the $B$ field. The $4D$ gravity is metastable and for distances much larger than the crossover scale the $5D$ gravity is recovered.
Geomagnetic core field models in the satellite era
DEFF Research Database (Denmark)
Lesur, Vincent; Olsen, Nils; Thomson, Alan W. P.
2011-01-01
After a brief review of the theoretical basis and difficulties that modelers are facing, we present three recent models of the geomagnetic field originating in the Earth’s core. All three modeling approaches are using recent observatory and near-Earth orbiting survey satellite data. In each case ...... only up to degree 8 or 9. For higher time derivatives of core field models, only the very first degrees are robustly derived.......After a brief review of the theoretical basis and difficulties that modelers are facing, we present three recent models of the geomagnetic field originating in the Earth’s core. All three modeling approaches are using recent observatory and near-Earth orbiting survey satellite data. In each case...... the specific aims and techniques used by the modelers are described together with a presentation of the main results achieved. The three different modeling approaches are giving similar results. For a snap shot of the core magnetic field at a given epoch and observed at the Earth’s surface, the differences...
Relativistic gravity fields and electromagnetic fields generated by flows of matter
Bogdan, Victor M
2009-01-01
One of the highlight of this note is that the author presents the relativistic gravity field that Einstein was looking for. The field is a byproduct of the matter in motion. This field can include both the discrete and continuous components. In free space the waves produced in this field propagate with velocity of light. Another highlight is the proof of amended Feynman's formulas for electromagnetic potentials. This makes the formulas mathematically complete and precise. The main result can be stated as follows. In a fixed Lorentzian frame given is a trajectory $r_2(t,r_0)$ of flow of matter. The parameter $r_0$ changes in a compact set $F$ representing the position of the matter at some initial time $t_0.$ The flow must satisfy certain conditions of regularity. Given any signed measure $q(Q)$ of finite variation defined on Borel subsets of $F,$ representing total charge contained in the set $Q\\subset F,$ such a flow determines the scalar $\\phi$ and the vector $A$ potentials for a pair $(E,B)$ of fields sati...
Seasonal and static gravity field of Mars from MGS, Mars Odyssey and MRO radio science
Genova, Antonio; Goossens, Sander; Lemoine, Frank G.; Mazarico, Erwan; Neumann, Gregory A.; Smith, David E.; Zuber, Maria T.
2016-07-01
We present a spherical harmonic solution of the static gravity field of Mars to degree and order 120, GMM-3, that has been calculated using the Deep Space Network tracking data of the NASA Mars missions, Mars Global Surveyor (MGS), Mars Odyssey (ODY), and the Mars Reconnaissance Orbiter (MRO). We have also jointly determined spherical harmonic solutions for the static and time-variable gravity field of Mars, and the Mars k2 Love numbers, exclusive of the gravity contribution of the atmosphere. Consequently, the retrieved time-varying gravity coefficients and the Love number k2 solely yield seasonal variations in the mass of the polar caps and the solid tides of Mars, respectively. We obtain a Mars Love number k2 of 0.1697 ± 0.0027 (3-σ). The inclusion of MRO tracking data results in improved seasonal gravity field coefficients C30 and, for the first time, C50. Refinements of the atmospheric model in our orbit determination program have allowed us to monitor the odd zonal harmonic C30 for ∼1.5 solar cycles (16 years). This gravity model shows improved correlations with MOLA topography up to 15% larger at higher harmonics (l = 60-80) than previous solutions.
López, Oliver; Houborg, Rasmus; McCabe, Matthew Francis
2017-01-01
Advances in space-based observations have provided the capacity to develop regional- to global-scale estimates of evaporation, offering insights into this key component of the hydrological cycle. However, the evaluation of large-scale evaporation retrievals is not a straightforward task. While a number of studies have intercompared a range of these evaporation products by examining the variance amongst them, or by comparison of pixel-scale retrievals against ground-based observations, there is a need to explore more appropriate techniques to comprehensively evaluate remote-sensing-based estimates. One possible approach is to establish the level of product agreement between related hydrological components: for instance, how well do evaporation patterns and response match with precipitation or water storage changes? To assess the suitability of this consistency-based approach for evaluating evaporation products, we focused our investigation on four globally distributed basins in arid and semi-arid environments, comprising the Colorado River basin, Niger River basin, Aral Sea basin, and Lake Eyre basin. In an effort to assess retrieval quality, three satellite-based global evaporation products based on different methodologies and input data, including CSIRO-PML, the MODIS Global Evapotranspiration product (MOD16), and Global Land Evaporation: the Amsterdam Methodology (GLEAM), were evaluated against rainfall data from the Global Precipitation Climatology Project (GPCP) along with Gravity Recovery and Climate Experiment (GRACE) water storage anomalies. To ensure a fair comparison, we evaluated consistency using a degree correlation approach after transforming both evaporation and precipitation data into spherical harmonics. Overall we found no persistent hydrological consistency in these dryland environments. Indeed, the degree correlation showed oscillating values between periods of low and high water storage changes, with a phase difference of about 2-3 months
Geomagnetic core field models in the satellite era
DEFF Research Database (Denmark)
Lesur, Vincent; Olsen, Nils; Thomson, Alan W. P.
2011-01-01
After a brief review of the theoretical basis and difficulties that modelers are facing, we present three recent models of the geomagnetic field originating in the Earth’s core. All three modeling approaches are using recent observatory and near-Earth orbiting survey satellite data. In each case...... the specific aims and techniques used by the modelers are described together with a presentation of the main results achieved. The three different modeling approaches are giving similar results. For a snap shot of the core magnetic field at a given epoch and observed at the Earth’s surface, the differences...... only up to degree 8 or 9. For higher time derivatives of core field models, only the very first degrees are robustly derived....
Directory of Open Access Journals (Sweden)
A. M. Abd-Alla
2014-01-01
Full Text Available In this paper, the peristaltic flow of a Jeffrey fluid in an asymmetric channel has been investigated. Mathematical modeling is carried out by utilizing long wavelength and low Reynolds number assumptions. Closed form expressions for the pressure gradient, pressure rise, stream function, axial velocity, and shear stress on the channel walls have been computed numerically. Effects of the Hartmann number, the ratio of relaxation to retardation times, time-mean flow, the phase angle and the gravity field on the pressure gradient, pressure rise, streamline, axial velocity, and shear stress are discussed in detail and shown graphically. The results indicate that the effect of Hartmann number, ratio of relaxation to retardation times, time-mean flow, phase angle, and gravity field are very pronounced in the peristaltic transport phenomena. Comparison was made with the results obtained in the presence and absence of magnetic field and gravity field.
Discrete gravity as a topological field theory with light-like curvature defects
Wieland, Wolfgang
2017-05-01
I present a model of discrete gravity as a topological field theory with defects. The theory has no local degrees of freedom and the gravitational field is trivial everywhere except at a number of intersecting null surfaces. At these null surfaces, the gravitational field can be singular, representing a curvature defect propagating at the speed of light. The underlying action is local and it is studied in both its Lagrangian and Hamiltonian formulation. The canonically conjugate variables on the null surfaces are a spinor and a spinor-valued two-surface density, which are coupled to a topological field theory for the Lorentz connection in the bulk. I discuss the relevance of the model for non-perturbative approaches to quantum gravity, such as loop quantum gravity, where similar variables have recently appeared as well.
Internal Gravity Waves in the Magnetized Solar Atmosphere. I. Magnetic Field Effects
Vigeesh, G.; Jackiewicz, J.; Steiner, O.
2017-02-01
Observations of the solar atmosphere show that internal gravity waves are generated by overshooting convection, but are suppressed at locations of magnetic flux, which is thought to be the result of mode conversion into magnetoacoustic waves. Here, we present a study of the acoustic-gravity wave spectrum emerging from a realistic, self-consistent simulation of solar (magneto)convection. A magnetic field free, hydrodynamic simulation and a magnetohydrodynamic (MHD) simulation with an initial, vertical, homogeneous field of 50 G flux density were carried out and compared with each other to highlight the effect of magnetic fields on the internal gravity wave propagation in the Sun’s atmosphere. We find that the internal gravity waves are absent or partially reflected back into the lower layers in the presence of magnetic fields and argue that the suppression is due to the coupling of internal gravity waves to slow magnetoacoustic waves still within the high-β region of the upper photosphere. The conversion to Alfvén waves is highly unlikely in our model because there is no strongly inclined magnetic field present. We argue that the suppression of internal waves observed within magnetic flux concentrations may also be due to nonlinear breaking of internal waves due to vortex flows that are ubiquitously present in the upper photosphere and the chromosphere.
On the embedding of quantum field theory on curved spacetimes into loop quantum gravity
Energy Technology Data Exchange (ETDEWEB)
Stottmeister, Alexander
2015-07-15
The main theme of this thesis is an investigation into possible connections between loop quantum gravity and quantum field theory on curved spacetimes: On the one hand, we aim for the formulation of a general framework that allows for a derivation of quantum field theory on curved spacetimes in a semi-classical limit. On the other hand, we discuss representation-theoretical aspects of loop quantum gravity and quantum field theory on curved spacetimes as both of the latter presumably influence each other in the aforesaid semi-classical limit. Regarding the first point, we investigate the possible implementation of the Born-Oppenheimer approximation in the sense of space-adiabatic perturbation theory in models of loop quantum gravity-type. In the course of this, we argue for the need of a Weyl quantisation and an associated symbolic calculus for loop quantum gravity, which we then successfully define, at least to a certain extent. The compactness of the Lie groups, which models a la loop quantum gravity are based on, turns out to be a main obstacle to a fully satisfactory definition of a Weyl quantisation. Finally, we apply our findings to some toy models of linear scalar quantum fields on quantum cosmological spacetimes and discuss the implementation of space-adiabatic perturbation theory therein. In view of the second point, we start with a discussion of the microlocal spectrum condition for quantum fields on curved spacetimes and how it might be translated to a background-independent Hamiltonian quantum theory of gravity, like loop quantum gravity. The relevance of this lies in the fact that the microlocal spectrum condition selects a class of physically relevant states of the quantum matter fields and is, therefore, expected to play an important role in the aforesaid semi-classical limit of gravity-matter systems. Following this, we switch our perspective and analyse the representation theory of loop quantum gravity. We find some intriguing relations between the
DEFF Research Database (Denmark)
Finlay, Chris; Olsen, Nils; Gillet, Nicolas
We present a new ensemble of time-dependent magnetic field models constructed from satellite and observatory data spanning 1997-2013 that are compatible with prior information concerning the temporal spectrum of core field variations. These models allow sharper field changes compared to traditional....... We report spherical harmonic spectra, comparisons to observatory monthly means, and maps of the radial field at the core-mantle boundary, from the resulting ensemble of core field models. We find that inter-annual fluctuations in the external field (for example related to high solar-driven activity...
Buzanowicz, M. E.; Yue, J.; Russell, J. M., III; Sato, K.; Kohma, M.; Nakamura, T.
2015-12-01
Polar mesospheric clouds (PMCs) are high-altitude ice clouds that form in the cold summer mesopause region due to adiabatic cooling caused by an upwelling induced by the global meridional circulation, which is driven by gravity wave dissipation and forcing. Polar mesospheric summer echoes (PMSEs) are strong coherent echoes also observed in the polar summer mesosphere and are considered to be related to ionization and the small-scale structure associated with PMCs, with their origins thought to be strongly related. The peak PMSE height can be located slightly below the summer mesopause temperature minimum but above the PMC altitude. Upward propagating atmospheric gravity waves (AGWs) are usually considered to be the cause of the wave patterns seen in PMCs. Monitoring PMCs and PMSEs will provide important tools in detecting climate change in the upper atmosphere and a better understanding of the earth-climate system. The science goal I plan to accomplish is to investigate the possibility of a connection between gravity wave perturbation characteristics in PMCs from the AIM (Aeronomy of Ice in the Mesosphere) satellite and PMSE structures observed by PANSY (program of the Antarctic Syowa MST/IS radar). Data from the CIPS instrument onboard AIM, PANSY, and AIRS (Atmospheric Infrared Sounder) will be used. AIM provides a two-dimensional horizontal view of the atmosphere dynamics embedded in PMCs, while PANSY provides a vertical view of PMSEs and gravity waves with high temporal resolution. The combination of AIM and PANSY will provide a three-dimensional view of the atmosphere, AGWs, PMCs and PMSEs. AIRS provides information about AGWs in the stratosphere. Wave analysis of the Fast Fourier Transform or a wavelet analysis will be used to complete the science goal. AIRS will be used to examine how lower atmosphere meteorology may impact the PMC and PMSE structures.
Directory of Open Access Journals (Sweden)
Kewei Song
2014-01-01
Full Text Available Magnetothermal free convection of air in a square enclosure under a nonuniform magnetic field provided by a permanent neodymium-iron-boron magnet is numerically studied. The natural convection under the gravity field alone is also studied for comparison. The physical fields of magnetizing force, velocity, and temperature as well as the local distribution characteristic of Nusselt number are all presented in this paper. The results show that the buoyancy convection of air in the square enclosure under magnetic field is quite different from that under the gravity field. The local value of Nusselt number under the magnetic field supplied by a permanent magnet with a residual magnetic flux density of about 4.5 Tesla can reach a high value of about three times larger than the maximum local value of Nusselt number under the gravity field. Relatively uniform distributions of temperature gradient and Nusselt number can be obtained along the cold wall of the enclosure under the magnetic field. A permanent magnet with high magnetic energy product with Br reaching to 3.5 Tesla can play a comparative role on the averaged Nusselt number compared with that under the gravity environment.
Chen, Qiujie; Shen, Yunzhong; Chen, Wu; Zhang, Xingfu; Hsu, Houze
2016-06-01
The main contribution of this study is to improve the GRACE gravity field solution by taking errors of non-conservative acceleration and attitude observations into account. Unlike previous studies, the errors of the attitude and non-conservative acceleration data, and gravity field parameters, as well as accelerometer biases are estimated by means of weighted least squares adjustment. Then we compute a new time series of monthly gravity field models complete to degree and order 60 covering the period Jan. 2003 to Dec. 2012 from the twin GRACE satellites' data. The derived GRACE solution (called Tongji-GRACE02) is compared in terms of geoid degree variances and temporal mass changes with the other GRACE solutions, namely CSR RL05, GFZ RL05a, and JPL RL05. The results show that (1) the global mass signals of Tongji-GRACE02 are generally consistent with those of CSR RL05, GFZ RL05a, and JPL RL05; (2) compared to CSR RL05, the noise of Tongji-GRACE02 is reduced by about 21 % over ocean when only using 300 km Gaussian smoothing, and 60 % or more over deserts (Australia, Kalahari, Karakum and Thar) without using Gaussian smoothing and decorrelation filtering; and (3) for all examples, the noise reductions are more significant than signal reductions, no matter whether smoothing and filtering are applied or not. The comparison with GLDAS data supports that the signals of Tongji-GRACE02 over St. Lawrence River basin are close to those from CSR RL05, GFZ RL05a and JPL RL05, while the GLDAS result shows the best agreement with the Tongji-GRACE02 result.
Gravity, geoid and the oceanic lithosphere
Watts, A. B.
1985-01-01
Plate tectonics and its contribution to progress in studies of the Earth's gravitational field is discussed. In acquisition, the development of forced feedback accelerometers, satellite navigation, and satellite radar altimetry significantly improved the accuracy and coverage of gravity data over the oceans. In interpretation, gravity and geoid anomalies are used to determine information on the thermal and mechanical properties of the oceanic lithosphere and the forces that drive plate motions.
GRACE, time-varying gravity, Earth system dynamics and climate change
Wouters, B.; Bonin, J.A.; Chambers, D.P.; Riva, R.E.M.; Sasgen, I.; Wahr, J.
2014-01-01
Continuous observations of temporal variations in the Earth's gravity field have recently become available at an unprecedented resolution of a few hundreds of kilometers. The gravity field is a product of the Earth's mass distribution, and these data—provided by the satellites of the Gravity Recover
Quantum field theory II introductions to quantum gravity, supersymmetry and string theory
Manoukian, Edouard B
2016-01-01
This book takes a pedagogical approach to explaining quantum gravity, supersymmetry and string theory in a coherent way. It is aimed at graduate students and researchers in quantum field theory and high-energy physics. The first part of the book introduces quantum gravity, without requiring previous knowledge of general relativity (GR). The necessary geometrical aspects are derived afresh leading to explicit general Lagrangians for gravity, including that of general relativity. The quantum aspect of gravitation, as described by the graviton, is introduced and perturbative quantum GR is discussed. The Schwinger-DeWitt formalism is developed to compute the one-loop contribution to the theory and renormalizability aspects of the perturbative theory are also discussed. This follows by introducing only the very basics of a non-perturbative, background-independent, formulation of quantum gravity, referred to as “loop quantum gravity”, which gives rise to a quantization of space. In the second part the author in...
Discussions on the Study of Lunar Gravity Field%月球重力场研究的论述
Institute of Scientific and Technical Information of China (English)
杨宏伟; 赵文津; 吴珍汉
2011-01-01
月球重力场探测是了解月球内部结构构造最有效的手段之一,也是未来登陆点选择的重要依据.在众多方法中,卫星重力探测是进行全月球覆盖以及获得月球深部信息的重要方法.本文叙述了当前月球重力探测历史和重力模型发展过程,并对这些模型进行比较分析.在了解前沿研究方法的基础上讨论了月球重力位场解算的基本原理、高精度月球重力场获得的方法和各种月球重力归算方法,以及当前国际上利用月球重力场研究其内部结构构造的热点问题.最后对月球的典型重力异常特征进行了综合性的分析.%Lunar gravimetry is one of the most useful approaches to understanding the interior constitution and structure of the moon and also serves as a fundamental basis for choice of landing sites in future. Of varied methods, satellite gravimetry is an important means for covering the whole moon and obtaining deep information.This paper has described the history of lunar gravity exploration and the development of lunar gravity models, and analyzed and comparatively studied these models. Based on knowledge of forefront research methods, the authors deal with the principle for solution of lunar gravity coefficient model, approaches to acquiring lunar gravity model with high accuracy, varied tools for gravity field reductions, and current heated topics in the study of the interior structure of the moon. In addition, characteristics of typical gravity anomalies in the moon are comprehensively analyzed.
A GOCE-only global gravity field model by the space-wise approach
DEFF Research Database (Denmark)
Migliaccio, Federica; Reguzzoni, Mirko; Gatti, Andrea
2011-01-01
The global gravity field model computed by the spacewise approach is one of three official solutions delivered by ESA from the analysis of the GOCE data. The model consists of a set of spherical harmonic coefficients and the corresponding error covariance matrix. The main idea behind this approach...... the orbit to reduce the noise variance and correlation before gridding the data. In the first release of the space-wise approach, based on a period of about two months, some prior information coming from existing gravity field models entered into the solution especially at low degrees and low orders...... degrees; the second is an internally computed GOCE-only prior model to be used in place of the official quick-look model, thus removing the dependency on EIGEN5C especially in the polar gaps. Once the procedure to obtain a GOCE-only solution has been outlined, a new global gravity field model has been...
Comparison of different gravity field implied density models of the topography
Sedighi, Morteza; Tabatabaee, Seied; Najafi-Alamdari, Mehdi
2009-06-01
Density within the Earth crust varies between 1.0 and 3.0 g/cm3. The Bouguer gravity field measured in south Iran is analyzed using four different regional-residual separation techniques to obtain a residual map of the gravity field suitable for density modeling of topography. A density model of topography with radial and lateral distribution of density is required for an accurate determination of the geoid, e.g., in the Stokes-Helmert approach. The apparent density mapping technique is used to convert the four residual Bouguer anomaly fields into the corresponding four gravity im-plied subsurface density (GRADEN) models. Although all four density models showed good correlation with the geological density (GEODEN) model of the region, the GRADEN models obtained by high-pass filter-ing and GGM high-pass filtering show better numerical correlation with GEODEN model than the other models.
Novel symmetries in Weyl-invariant gravity with massive gauge field
Energy Technology Data Exchange (ETDEWEB)
Abhinav, K. [S.N. Bose National Centre for Basic Sciences, Salt Lake, Kolkata (India); Shukla, A.; Panigrahi, P.K. [Indian Institute of Science Education and Research Kolkata, Mohanpur (India)
2016-11-15
The background field method is used to linearize the Weyl-invariant scalar-tensor gravity, coupled with a Stueckelberg field. For a generic background metric, this action is found not to be invariant, under both a diffeomorphism and generalized Weyl symmetry, the latter being a combination of gauge and Weyl transformations. Interestingly, the quadratic Lagrangian, emerging from a background of Minkowski metric, respects both transformations independently. The Becchi-Rouet-Stora-Tyutin symmetry of scalar-tensor gravity coupled with a Stueckelberg-like massive gauge particle, possessing a diffeomorphism and generalized Weyl symmetry, reveals that in both cases negative-norm states with unphysical degrees of freedom do exist. We then show that, by combining diffeomorphism and generalized Weyl symmetries, all the ghost states decouple, thereby removing the unphysical redundancies of the theory. During this process, the scalar field does not represent any dynamic mode, yet modifies the usual harmonic gauge condition through non-minimal coupling with gravity. (orig.)
Time Lapse Gravity and Seismic Monitoring of CO2 Injection at the West Hastings Field, Texas
Ferguson, J. F.; Richards, T.; Klopping, F.; MacQueen, J.; Hosseini, S. A.
2015-12-01
Time lapse or 4D gravity and seismic reflection surveys are being conducted at the West Hastings Field near Houston, Texas to monitor the progress of CO2 injection. This Department of Energy supported CO2 sequestration experiment is conducted in conjunction with a Denbury Onshore, LLC tertiary recovery project. The reservoir is at a depth of 1.8 km in the Oligocene Frio sands and has been produced since the 1930s. Goals are an accounting and mapping of the injected CO2 and to determine if migration occurs along intra-reservoir faults. An integrated interpretation of the geophysical surveys will be made together with well logs and engineering data. Gravity monitoring of water versus gas replacement has been very successful, but liquid phase CO2 monitoring is problematic due to the smaller density contrast with respect to oil and water. This reservoir has a small volume to depth ratio and hence only a small gravity difference signal is expected on the surface. New borehole gravity technology introduced by Micro-g-Lacoste can make gravity measurements at near reservoir depths with a much higher signal to noise ratio. This method has been successfully evaluated on a simulation of the Hastings project. Field operations have been conducted for repeated surface and borehole gravity surveys beginning in 2013. The surface survey of 95 stations covers an area of 3 by 5 km and 22 borehole gravity logs are run in the interval above the Frio formation. 4D seismic reflection surveys are being made at 6 month intervals on the surface and in 3 VSP wells. CO2 injection into the targeted portion of the reservoir only began in early 2015 and monitoring will continue into 2017. To date only the baseline reservoir conditions have been assessed. The overall success of the gravity monitoring will not be determined until 2017.
Gravity field and isostatic state of Ethiopia and adjacent areas
Woldetinsae, G.; Götze, H.-J.
2005-01-01
Over 35,000 onshore and offshore gravity stations have been compiled in order to test isostatic models against geologic structures over a part of the Afro-Arabian shield. The area of Ethiopia covers an important part of this system because it contains the major section of the ≈5000 km Afro-Arabian rift and includes the transition between the Arabo-Nubian-Shield (ANS) and the Mozambique Belt (MB). Isostatic residual anomalies have been calculated using both Airy and Vening-Meinesz (flexural rigidity D = 10 22 Nm) models. The isostatic residual anomalies outline the major Precambrian belts, the Cenozoic rifts and associated major structures. Positive residual anomalies associated with the main Ethiopian Rift (MER) and Kenyan rift systems could be the expressions of an axial intrusive body and swarms of local faults and fractures. The residual anomalies indicate relative stability in the MER and increased tectonic activity in the areas of the Red Sea, Gulf of Aden and Afar. Near-zero isostatic residuals flank the MER and Kenya rifts and are found within the Danakil Alps and some plateau regions. The small mean isostatic residual anomaly (about 8 mGal) and the isostatic analysis show a slight positive bias indicating under compensation. The undercompensation may imply that there are upper crustal features that are not compensated regionally (probably supported by the rigidity of the lithosphere) and isostatic disequilibrium in the region. Therefore, the high topography of Ethiopia and East African plateau is partly compensated by thicker crust (broad negative isostatic regional anomaly) and partly by dynamic forces. The results of the qualitative interpretation form the basis of continuing three-dimensional gravity modelling and quantitative analysis that also integrates data from eastern Sudan.
Gravity Anomaly Assessment Using Ggms and Airborne Gravity Data Towards Bathymetry Estimation
Tugi, A.; Din, A. H. M.; Omar, K. M.; Mardi, A. S.; Som, Z. A. M.; Omar, A. H.; Yahaya, N. A. Z.; Yazid, N.
2016-09-01
The Earth's potential information is important for exploration of the Earth's gravity field. The techniques of measuring the Earth's gravity using the terrestrial and ship borne technique are time consuming and have limitation on the vast area. With the space-based measuring technique, these limitations can be overcome. The satellite gravity missions such as Challenging Mini-satellite Payload (CHAMP), Gravity Recovery and Climate Experiment (GRACE), and Gravity-Field and Steady-State Ocean Circulation Explorer Mission (GOCE) has introduced a better way in providing the information on the Earth's gravity field. From these satellite gravity missions, the Global Geopotential Models (GGMs) has been produced from the spherical harmonics coefficient data type. The information of the gravity anomaly can be used to predict the bathymetry because the gravity anomaly and bathymetry have relationships between each other. There are many GGMs that have been published and each of the models gives a different value of the Earth's gravity field information. Therefore, this study is conducted to assess the most reliable GGM for the Malaysian Seas. This study covered the area of the marine area on the South China Sea at Sabah extent. Seven GGMs have been selected from the three satellite gravity missions. The gravity anomalies derived from the GGMs are compared with the airborne gravity anomaly, in order to figure out the correlation (R2) and the root mean square error (RMSE) of the data. From these assessments, the most suitable GGMs for the study area is GOCE model, GO_CONS_GCF_2_TIMR4 with the R2 and RMSE value of 0.7899 and 9.886 mGal, respectively. This selected model will be used in the estimating the bathymetry for Malaysian Seas in future.
GRAVITY ANOMALY ASSESSMENT USING GGMS AND AIRBORNE GRAVITY DATA TOWARDS BATHYMETRY ESTIMATION
Directory of Open Access Journals (Sweden)
A. Tugi
2016-09-01
Full Text Available The Earth’s potential information is important for exploration of the Earth’s gravity field. The techniques of measuring the Earth’s gravity using the terrestrial and ship borne technique are time consuming and have limitation on the vast area. With the space-based measuring technique, these limitations can be overcome. The satellite gravity missions such as Challenging Mini-satellite Payload (CHAMP, Gravity Recovery and Climate Experiment (GRACE, and Gravity-Field and Steady-State Ocean Circulation Explorer Mission (GOCE has introduced a better way in providing the information on the Earth’s gravity field. From these satellite gravity missions, the Global Geopotential Models (GGMs has been produced from the spherical harmonics coefficient data type. The information of the gravity anomaly can be used to predict the bathymetry because the gravity anomaly and bathymetry have relationships between each other. There are many GGMs that have been published and each of the models gives a different value of the Earth’s gravity field information. Therefore, this study is conducted to assess the most reliable GGM for the Malaysian Seas. This study covered the area of the marine area on the South China Sea at Sabah extent. Seven GGMs have been selected from the three satellite gravity missions. The gravity anomalies derived from the GGMs are compared with the airborne gravity anomaly, in order to figure out the correlation (R2 and the root mean square error (RMSE of the data. From these assessments, the most suitable GGMs for the study area is GOCE model, GO_CONS_GCF_2_TIMR4 with the R2 and RMSE value of 0.7899 and 9.886 mGal, respectively. This selected model will be used in the estimating the bathymetry for Malaysian Seas in future.
Exact solutions for scalar field cosmology in f(R) gravity
Maharaj, S D; Chervon, S V; Nikolaev, A V
2016-01-01
We look for exact solutions in scalar field cosmology. To achieve this we use $f(R)$ modified gravity with a scalar field and do not specify the the form of the $f(R)$ function. In particular, we study Friedmann universe assuming that acceleration of the scalar curvature is negligible. We first present solutions for special cases and then the general solution. Using initial conditions which represent the universe at the present epoch, we evaluated the constants of integration. This allows for the comparison of the scale factor in the new solutions with that of the $\\Lambda CDM$ solution, thereby affecting the age of the universe in $f(R)$ gravity.
External field characterization using CHAMP satellite data for induction studies
Indian Academy of Sciences (India)
Praveen Kunagu; E Chandrasekhar
2013-06-01
Knowledge of external inducing source field morphology is essential for precise estimation of electromagnetic (EM) induction response. A better characterization of the external source field of magnetospheric origin can be achieved by decomposing it into outer and inner magnetospheric contributions, which are best represented in Geocentric Solar Magnetospheric (GSM) and Solar Magnetic (SM) reference frames, respectively. Thus we propose a spherical harmonic (SH) model to estimate the outer magnetospheric contribution, following the iterative reweighted least squares approach, using the vector magnetic data of the CHAMP satellite. The data covers almost a complete solar cycle from July 2001 to September 2010, spanning 54,474 orbits. The SH model, developed using orbit-averaged vector magnetic data, reveals the existence of a stable outer magnetospheric contribution of about 7.39 nT. This stable field was removed from the CHAMP data after transforming to SM frame. The residual field in the SM frame acts as a primary source for induction in the Earth. The analysis of this time-series using wavelet transformation showed a dominant 27-day periodicity of the geomagnetic field. Therefore, we calculated the inductive EM -response function in a least squares sense considering the 27-day period variation as the inducing signal. From the estimated -response, we have determined that the global depth to the perfect substitute conductor is about 1132 km and its conductivity is around 1.05 S/m.
A unified field theory II: Gravity interacting with a Yang-Mills and Higgs field
Gerhardt, Claus
2016-01-01
We quantize the interaction of gravity with a Yang-Mills and Higgs field using canonical quantization. Similar to the approach in a previous paper we discard the Wheeler-DeWitt equation and express the Hamilton constraint by the evolution equation of the mean curvature of the hypersurfaces in the foliation defined by the Hamiltonian setting. Expressing the time derivative of the mean curvature with the help of the Poisson brackets the canonical quantization of this equation leads to a wave equation in $Q=(0,\\infty)\\times \\cal{S}_o$, where $\\cal{S}_o$ is one of the Cauchy hypersurfaces in the Hamiltonian setting. The wave equation describes the interaction of an arbitrary Riemannian metric in $\\cal{S}_o$ and a given Yang-Mills and Higgs field. If the metric is complete $Q$ is globally hyperbolic. In case $\\cal{S}_o$ is compact we also prove a spectral resolution of the wave equation and establish sufficient conditions guaranteeing a mass gap.
Ferreira, Vagner G.; Montecino, Henry D. C.; Yakubu, Caleb I.; Heck, Bernhard
2016-01-01
Currently, various satellite processing centers produce extensive data, with different solutions of the same field being available. For instance, the Gravity Recovery and Climate Experiment (GRACE) has been monitoring terrestrial water storage (TWS) since April 2002, while the Center for Space Research (CSR), the Jet Propulsion Laboratory (JPL), the GeoForschungsZentrum (GFZ), and the Groupe de Recherche de Géodésie Spatiale (GRGS) provide individual monthly solutions in the form of Stokes coefficients. The inverted TWS maps (or the regionally averaged values) from these coefficients are being used in many applications; however, as no ground truth data exist, the uncertainties are unknown. Consequently, the purpose of this work is to assess the quality of each processing center by estimating their uncertainties using a generalized formulation of the three-cornered hat (TCH) method. Overall, the TCH results for the study period of August 2002 to June 2014 indicate that at a global scale, the CSR, GFZ, GRGS, and JPL presented uncertainties of 9.4, 13.7, 14.8, and 13.2 mm, respectively. At a basin scale, the overall good performance of the CSR was observed at 91 river basins. The TCH-based results were confirmed by a comparison with an ensemble solution from the four GRACE processing centers.
Abdul Fattah, R.; Meekes, S.; Bouman, J.; Ebbing, J.; Haagmans, R.
2014-01-01
A 3D basin modeling study was carried out to reconstruct the regional heat flow and source rock maturity in the Rub'al-Khali basin. Gravity gradient data from the GOCE satellite were used to model deep structures, such as the Moho interface. Tectonic heat flow was modeled using the GOCE-based Moho i
Directory of Open Access Journals (Sweden)
Yanping Cao
2015-01-01
Full Text Available Drought is a complex natural hazard which can have negative effects on agriculture, economy, and human life. In this paper, the primary goal is to explore the application of the Gravity Recovery and Climate Experiment (GRACE gravity satellite data for the quantitative investigation of the recent drought dynamic over the arid land of northwestern China, a region with scarce hydrological and meteorological observation datasets. The spatiotemporal characteristics of terrestrial water storage changes (TWSC were first evaluated based on the GRACE satellite data, and then validated against hydrological model simulations and precipitation data. A drought index, the total storage deficit index (TSDI, was derived on the basis of GRACE-recovered TWSC. The spatiotemporal distributions of drought events from 2003 to 2012 in the study region were obtained using the GRACE-derived TSDI. Results derived from TSDI time series indicated that, apart from four short-term (three months drought events, the study region experienced a severe long-term drought from May 2008 to December 2009. As shown in the spatial distribution of TSDI-derived drought conditions, this long-term drought mainly concentrated in the northwestern area of the entire region, where the terrestrial water storage was in heavy deficit. These drought characteristics, which were detected by TSDI, were consistent with local news reports and other researchers’ results. Furthermore, a comparison between TSDI and Standardized Precipitation Index (SPI implied that GRACE TSDI was a more reliable integrated drought indicator (monitoring agricultural and hydrological drought in terms of considering total terrestrial water storages for large regions. The GRACE-derived TSDI can therefore be used to characterize and monitor large-scale droughts in the arid regions, being of special value for areas with scarce observations.
Refinements in the Combined Adjustment of Satellite Altimetry and Gravity Anomaly Data
1977-07-12
of the areas covered by the GEOS-3 satellite when compared with the earlier reported results of the AFGL computer program SARRA ^(Short Arc Reduc...in the partial derivatives may be illustrated as follows. A small set of satellite altimetry data was adjusted by the AFGL program SARRA (Short Arc...1 l+2^(a/rf 2^(C cos mX + S sin mX)P ( sine ) n^2v m=0 nm nm nm i + h u>2r0r 3 co326/(kM) , (4.1) which yields dr (r0/r oo n )^n(a
Liquid Droplet Dynamics in Gravity Compensating High Magnetic Field
Bojarevics, V.; Easter, S.; Pericleous, K.
2012-01-01
Numerical models are used to investigate behavior of liquid droplets suspended in high DC magnetic fields of various configurations providing microgravity-like conditions. Using a DC field it is possible to create conditions with laminar viscosity and heat transfer to measure viscosity, surface tension, electrical and thermal conductivities, and heat capacity of a liquid sample. The oscillations in a high DC magnetic field are quite different for an electrically conducting droplet, like liquid silicon or metal. The droplet behavior in a high magnetic field is the subject of investigation in this paper. At the high values of magnetic field some oscillation modes are damped quickly, while others are modified with a considerable shift of the oscillating droplet frequencies and the damping constants from the non-magnetic case.
Holographic conductivity in the massive gravity with power-law Maxwell field
Dehyadegari, A.; Kord Zangeneh, M.; Sheykhi, A.
2017-10-01
We obtain a new class of topological black hole solutions in (n + 1)-dimensional massive gravity in the presence of the power-Maxwell electrodynamics. We calculate the conserved and thermodynamic quantities of the system and show that the first law of thermodynamics is satisfied on the horizon. Then, we investigate the holographic conductivity for the four and five dimensional black brane solutions. For completeness, we study the holographic conductivity for both massless (m = 0) and massive (m ≠ 0) gravities with power-Maxwell field. The massless gravity enjoys translational symmetry whereas the massive gravity violates it. For massless gravity, we observe that the real part of conductivity, Re [ σ ], decreases as charge q increases when frequency ω tends to zero, while the imaginary part of conductivity, Im [ σ ], diverges as ω → 0. For the massive gravity, we find that Im [ σ ] is zero at ω = 0 and becomes larger as q increases (temperature decreases), which is in contrast to the massless gravity. It also has a maximum value for ω ≠ 0 which increases with increasing q (with fixed p) or increasing p (with fixed q) for (2 + 1)-dimensional dual system, where p is the power parameter of the power-law Maxwell field. Interestingly, we observe that in contrast to the massless case, Re [ σ ] has a maximum value at ω = 0 (known as the Drude peak) for p = (n + 1) / 4 (conformally invariant electrodynamics) and this maximum increases with increasing q. In this case (m ≠ 0) and for different values of p, the real and imaginary parts of the conductivity has a relative extremum for ω ≠ 0. Finally, we show that for high frequencies, the real part of the holographic conductivity have the power law behavior in terms of frequency, ωa where a ∝ (n + 1 - 4 p). Some similar behaviors for high frequencies in possible dual CFT systems have been reported in experimental observations.
Improving GOCE cross-track gravity gradients
Siemes, Christian
2017-07-01
The GOCE gravity gradiometer measured highly accurate gravity gradients along the orbit during GOCE's mission lifetime from March 17, 2009, to November 11, 2013. These measurements contain unique information on the gravity field at a spatial resolution of 80 km half wavelength, which is not provided to the same accuracy level by any other satellite mission now and in the foreseeable future. Unfortunately, the gravity gradient in cross-track direction is heavily perturbed in the regions around the geomagnetic poles. We show in this paper that the perturbing effect can be modeled accurately as a quadratic function of the non-gravitational acceleration of the satellite in cross-track direction. Most importantly, we can remove the perturbation from the cross-track gravity gradient to a great extent, which significantly improves the accuracy of the latter and offers opportunities for better scientific exploitation of the GOCE gravity gradient data set.
Kennedy, Jeffrey R.; Ferre, Ty P.A.
2015-01-01
The relative gravimeter is the primary terrestrial instrument for measuring spatially and temporally varying gravitational fields. The background noise of the instrument—that is, non-linear drift and random tares—typically requires some form of least-squares network adjustment to integrate data collected during a campaign that may take several days to weeks. Here, we present an approach to remove the change in the observed relative-gravity differences caused by hydrologic or other transient processes during a single campaign, so that the adjusted gravity values can be referenced to a single epoch. The conceptual approach is an example of coupled hydrogeophysical inversion, by which a hydrologic model is used to inform and constrain the geophysical forward model. The hydrologic model simulates the spatial variation of the rate of change of gravity as either a linear function of distance from an infiltration source, or using a 3-D numerical groundwater model. The linear function can be included in and solved for as part of the network adjustment. Alternatively, the groundwater model is used to predict the change of gravity at each station through time, from which the accumulated gravity change is calculated and removed from the data prior to the network adjustment. Data from a field experiment conducted at an artificial-recharge facility are used to verify our approach. Maximum gravity change due to hydrology (observed using a superconducting gravimeter) during the relative-gravity field campaigns was up to 2.6 μGal d−1, each campaign was between 4 and 6 d and one month elapsed between campaigns. The maximum absolute difference in the estimated gravity change between two campaigns, two months apart, using the standard network adjustment method and the new approach, was 5.5 μGal. The maximum gravity change between the same two campaigns was 148 μGal, and spatial variation in gravity change revealed zones of preferential infiltration and areas of relatively
Kennedy, Jeffrey R.; Ferré, Ty P. A.
2016-02-01
The relative gravimeter is the primary terrestrial instrument for measuring spatially and temporally varying gravitational fields. The background noise of the instrument-that is, non-linear drift and random tares-typically requires some form of least-squares network adjustment to integrate data collected during a campaign that may take several days to weeks. Here, we present an approach to remove the change in the observed relative-gravity differences caused by hydrologic or other transient processes during a single campaign, so that the adjusted gravity values can be referenced to a single epoch. The conceptual approach is an example of coupled hydrogeophysical inversion, by which a hydrologic model is used to inform and constrain the geophysical forward model. The hydrologic model simulates the spatial variation of the rate of change of gravity as either a linear function of distance from an infiltration source, or using a 3-D numerical groundwater model. The linear function can be included in and solved for as part of the network adjustment. Alternatively, the groundwater model is used to predict the change of gravity at each station through time, from which the accumulated gravity change is calculated and removed from the data prior to the network adjustment. Data from a field experiment conducted at an artificial-recharge facility are used to verify our approach. Maximum gravity change due to hydrology (observed using a superconducting gravimeter) during the relative-gravity field campaigns was up to 2.6 μGal d-1, each campaign was between 4 and 6 d and one month elapsed between campaigns. The maximum absolute difference in the estimated gravity change between two campaigns, two months apart, using the standard network adjustment method and the new approach, was 5.5 μGal. The maximum gravity change between the same two campaigns was 148 μGal, and spatial variation in gravity change revealed zones of preferential infiltration and areas of relatively high
Directory of Open Access Journals (Sweden)
Xuezhong Yu
2017-01-01
Full Text Available The widely distributed E–W-trending magnetic anomaly stripes in the central basin and the N–E-trending magnetic anomaly stripes in the southwest sub-basin provide the most important evidence for Neogene expansion of the South China Sea. The expansion mechanism remains, however, controversial because of the lack of direct drilling data, non-systematic marine magnetic survey data, and irregular magnetic anomaly stripes with two obvious directions. For example, researchers have inferred different ages and episodes of expansion for the central basin and southwest sub-basin. Major controversy centers on the order of basinal expansion and the mechanism of expansion for the entire South China Sea basin. This study attempts to constrain these problems from a comprehensive analysis of the seafloor topography, magnetic anomaly stripes, regional aeromagnetic data, satellite gravity, and submarine geothermics. The mapped seafloor terrain shows that the central basin is a north-south rectangle that is relatively shallow with many seamounts, whereas the southwest sub-basin is wide in northeast, gradually narrows to the southwest, and is relatively deeper with fewer seamounts. Many magnetic anomaly stripes are present in the central basin with variable dimensions and directions that are dominantly EW-trending, followed by the NE-, NW- and NS-trending. Conversely such stripes are few in the southwest sub-basin and mainly NE-trending. Regional magnetic data suggest that the NW-trending Ailaoshan-Red River fault extends into the South China Sea, links with the central fault zone in the South China Sea, which extends further southward to Reed Tablemount. Satellite gravity data show that both the central basin and southwest sub-basin are composed of oceanic crust. The Changlong seamount is particularly visible in the southwest sub-basin and extends eastward to the Zhenbei seamount. Also a low gravity anomaly zone coincides with the central fault zone in the sub
Janiszewski, Stefan; Karch, Andreas
2013-02-22
We argue that generic nonrelativistic quantum field theories with a holographic description are dual to Hořava gravity. We construct explicit examples of this duality embedded in string theory by starting with relativistic dual pairs and taking a nonrelativistic scaling limit.
Quantum Gravity from the Point of View of Locally Covariant Quantum Field Theory
Brunetti, Romeo; Fredenhagen, Klaus; Rejzner, Katarzyna
2016-08-01
We construct perturbative quantum gravity in a generally covariant way. In particular our construction is background independent. It is based on the locally covariant approach to quantum field theory and the renormalized Batalin-Vilkovisky formalism. We do not touch the problem of nonrenormalizability and interpret the theory as an effective theory at large length scales.
A discussion on the most general torsion-gravity with electrodynamics for Dirac spinor matter fields
Fabbri, Luca
2014-01-01
We consider the most general torsional completion of gravity and electrodynamics with Dirac spinorial matter fields, showing that continuity and consistency constrain torsion to be completely antisymmetric and the model to be parity-invariant and described by either the least-order derivative model or the renormalizable model.
A Solvable Model in Two-Dimensional Gravity Coupled to a Nonlinear Matter Field
Institute of Scientific and Technical Information of China (English)
YAN Jun; WANG Shun-Jin; TAO Bi-You
2001-01-01
The two-dimensional gravity model with a coupling constant k = 4 and a vanishing cosmological constant coupled to a nonlinear matter field is investigated. We found that the classical equations of motion are exactly solvable and the static solutions of the induced metric and scalar curvature can be obtained analytically. These solutions may be used to describe the naked singularity at the origin.``
DEFF Research Database (Denmark)
Codello, Alessandro; Jain, Rajeev Kumar
2017-01-01
Following our previous work wherein the leading order effective action was computed in the covariant effective field theory of gravity, here we specialize the effective action to the FRW spacetime and obtain the effective Friedmann equations. In particular, we focus our attention on studying...
Validation of GOCE gravity field models by means of orbit residuals and geoid comparisons
Gruber, T.; Visser, P.N.A.M.; Ackermann, C.; Hosse, M.
2011-01-01
Three GOCE-based gravity field solutions have been computed by ESA’s high-level processing facility and were released to the user community. All models are accompanied by variance-covariance information resulting either from the least squares procedure or a Monte-Carlo approach. In order to obtain
Validation of GOCE gravity field models by means of orbit residuals and geoid comparisons
Gruber, T.; Visser, P.N.A.M.; Ackermann, C.; Hosse, M.
2011-01-01
Three GOCE-based gravity field solutions have been computed by ESA’s high-level processing facility and were released to the user community. All models are accompanied by variance-covariance information resulting either from the least squares procedure or a Monte-Carlo approach. In order to obtain i
DEFF Research Database (Denmark)
Andersen, Ole Baltazar; Jain, Maulik; Knudsen, Per
2014-01-01
The availability of Cryosat-2 with its coverage throughout the Arctic Ocean up to 88N is a quantum leap forward for altimetric gravity field modeling and here we have tried to quantify the improvement of Cryosat-2 to global and particularly Arctic altimetric gravity field modeling through a compa...
Group field theory as the second quantization of loop quantum gravity
Oriti, Daniele
2016-04-01
We construct a second quantized reformulation of canonical loop quantum gravity (LQG) at both kinematical and dynamical level, in terms of a Fock space of spin networks, and show in full generality that it leads directly to the group field theory (GFT) formalism. In particular, we show the correspondence between canonical LQG dynamics and GFT dynamics leading to a specific GFT model from any definition of quantum canonical dynamics of spin networks. We exemplify the correspondence of dynamics in the specific example of 3d quantum gravity. The correspondence between canonical LQG and covariant spin foam models is obtained via the GFT definition of the latter.
Group field theory as the 2nd quantization of Loop Quantum Gravity
Oriti, Daniele
2013-01-01
We construct a 2nd quantized reformulation of canonical Loop Quantum Gravity at both kinematical and dynamical level, in terms of a Fock space of spin networks, and show in full generality that it leads directly to the Group Field Theory formalism. In particular, we show the correspondence between canonical LQG dynamics and GFT dynamics leading to a specific GFT model from any definition of quantum canonical dynamics of spin networks. We exemplify the correspondence of dynamics in the specific example of 3d quantum gravity. The correspondence between canonical LQG and covariant spin foam models is obtained via the GFT definition of the latter.
A SEA FLOOR GRAVITY SURVEY OF THE SLEIPNER FIELD TO MONITOR CO2 MIGATION
Energy Technology Data Exchange (ETDEWEB)
Mark Zumberge
2003-06-13
At the Sleipner gas field, excess CO{sub 2} is sequestered and injected underground into a porous saline aquifer 1000 m below the seafloor. A high precision micro-gravity survey was carried out on the seafloor to monitor the injected CO{sub 2}. A repeatability of 5 {micro}Gal in the station averages was observed. This is considerably better than pre-survey expectations. These data will serve as the baseline for time-lapse gravity monitoring of the Sleipner CO{sub 2} injection site. Simple modeling of the first year data give inconclusive results, thus a more detailed approach is needed. Work towards this is underway.
Strong Magnetic field effects on Neutron Stars within $f(T)$ theory of gravity
Ganiou, M G; Houndjo, M J S; Tossa, J
2016-01-01
We investigate in this paper the structures of neutron stars under the strong magnetic field in the framework of $f(T)$ gravity where $T$ denotes the scalar torsion. The TOV equations in this theory of gravity have been considered and numerical resolution of these equations has been performed within perturbative approach taking into account the equation of state of neutron dense matter in magnetic field. We simplify the problem by considering the very strong magnetic field which affects considerably the dense matter; and for quadratic and cubic corrections to Teleparallel term, one finds that the mass of neutron stars can increase for different values of the perturbation parameter. The deviation from Teleparallel for different values of magnetic field is found out and this feature is very appreciable in the case of cubic correction. Our results are related to the hadronic particles description with very small hyperon contributions and the mass-radius evolution is consistency with the observational data.
On the source of cross-grain lineations in the central Pacific gravity field
McAdoo, David C.; Sandwell, David T.
1989-07-01
Subtle lineations in the marine gravity field of the central Pacific derived from Seasat altimeter data were observed by Haxby and Weissel (1986). They suggested that these "cross-grain" lineations were evidence of small-scale convection beneath the Pacific plate. We have examined these features by comparing multiple, collinear gravity and bathymetry profiles in the Fourier transform domain. Our nine gravity profiles were each obtained by stacking (averaging) three or more individual, repeat Geosat/ERM altimeter passes. Prior to stacking, the individual Geosat passes were fit to a cubic spline and then differentiated along track to produce along-track deflections of the vertical (or horizontal gravity). Corresponding bathymetric profiles were produced by projecting, onto Geosat ground tracks, bathymetric observations from six R/V Thomas Washington legs and three R/V Conrad legs that virtually coincide with these Geosat tracks. After Fourier transforming the resulting gravity and bathymetry profiles, we estimate admittances of gravity to bathymetry. These admittances are generally low; they also tend to be negative at very short wavelengths (λ<50 km). They are consistent with models of flexural isostatic compensation by a very thin lithosphere (approximately 2 km). They are not consistent with models of dynamic compensation. We suggest, therefore, that either (1) these cross-grain lineations began to form very near the East Pacific Rise or (2) they formed on older, anomalously weak lithosphere. We also suggest that the gravity lineations result primarily from loads beneath the seafloor in combination with, secondarily, loads on the seafloor. Depths of these subseafloor loads appear not to exceed significantly typical Moho depths.
GravityCam: ground-based wide-field high-resolution imaging and high-speed photometry
Dominik, Martin; Mackay, Craig; Steele, Iain; Snodgrass, Colin; Hirsch, Michael; Gråe Jørgensen, Uffe; Hundertmark, Markus; Rebolo, Rafael; Horne, Keith; Bridle, Sarah; Sicardy, Bruno; Bramich, Daniel; Alsubai, Khalid
2015-12-01
The image blurring by the Earth's atmosphere generally poses a substantial limitation to ground-based observations. While opportunities in space are scarce, lucky imaging can correct over a much larger patch of sky and with much fainter reference stars. We propose the first of a new kind of versatile instruments, "GravityCam", composed of ~100 EMCCDs, that will open up two entirely new windows to ground-based astronomy: (1) wide-field high-resolution imaging, and (2) wide-field high-speed photometry. Potential applications include (a) a gravitational microlensing survey going 4 magnitudes deeper than current efforts, and thereby gaining a factor 100 in mass at the same sensitivity, which means probing down to Lunar mass or even below, (b) extra-solar planet hunting via transits in galactic bulge fields, with high time resolution well-suited for transit timing variation studies, (c) variable stars in crowded fields, with sensitivity to very short periods, (d) asteroseismology with many bright stars in one pointing, (e) serendipitous occultations of stars by small solar system bodies, giving access to the small end of the Kuiper Belt size distribution and potentially leading to the first detection of true Oort cloud objects, while predicted occultations at high time resolution can reveal atmospheres, satellites, or rings, (f) general data mining of the high-speed variable sky (down to 40 ms cadence).
Science Instrument Support Electronics Systems for the Relativity Mission Satellite, Gravity Probe B
Bencze, W. J.; Brumley, R. W.; Buchman, S.; Clarke, B.; Hipkins, D. N.; Farley, R.; Shestople, P.; Meriwether, D.; Gray, C.
The Relativity Mission, Gravity Probe B (GP-B), uses four redundant high precision electrostatically suspended mechanical gyroscopes for measuring the relativistic precessions of the frame of reference in a 640 km polar orbit. The two precessions to be measured are predicted in General Relativity are the geodetic effect, 6.6 arcsec/year, and the frame dragging effect, 0.042 arcsec/year. The Science Instrument Support Electronics or Payload Electronics Package enables this measurement to be performed by providing the necessary control and monitoring functions for the Science Instrument Assembly that contains the four gyroscopes and reference star tracking telescope. This paper describes the overall architecture of the Payload Electronics system and the design and operation of its component parts: 1) the SQUID Readout electronics (SRE) for gyroscope orientation measurement, 2) The Gyroscope Suspension System (GSS) for gyroscope electrostatic suspension and spin axis alignment, 3) the Telescope Readout Electronics (TRE) for measurement of the reference star location, 4) the Experiment Control Unit (ECU) for heater, valve, and rotor electrostatic charge control and thermometry, 5) the custom GPS receiver for orbital position determination and time reference generation, and 6) the Gas Management Assembly (GMA) that controls and routes the gaseous helium used for initial gyroscope spin-up. Contingent upon a successful launch of Gravity Probe on April 17 2004, preliminary performance results will be presented along side the predicated performance estimates derived from system analysis and test on the ground prior to launch.
Aspects of Nonlocality in Quantum Field Theory, Quantum Gravity and Cosmology
Barvinsky, A. O.
2014-01-01
This paper contains a collection of essays on nonlocal phenomena in quantum field theory, gravity and cosmology. Mechanisms of nonlocal contributions to the quantum effective action are discussed within the covariant perturbation expansion in field strengths and spacetime curvatures and the nonperturbative method based on the late time asymptotics of the heat kernel. Euclidean version of the Schwinger-Keldysh technique for quantum expectation values is presented as a special rule of obtaining...
A field theoretic approach to the energy momentum tensor for theories coupled with gravity
Mukherjee, Pradip; Saha, Anirban; Roy, Amit Singha
2016-01-01
We provide a field-theoretic algorithm of obtaining energy momentum tensor (EMT) for gravitationally coupled theories. The method is based on an auxiliary field theory and equally applicable to both minimal and non-minimal coupling. The algorithm illuminates the connection between the EMT, obtained by functional variation of the metric, and local balance of energy and momentum. Our method is of cardinal value for the proper identification of the EMT in context of non-minimally coupled gravity...
Comment on "Perturbative method to solve fourth-order gravity field equations"
Campanelli, M
1995-01-01
We reconsider the cosmic string perturbative solution to the classical fourth-order gravity field equations, obtained in Ref.\\cite{CLA94}, and we obtain that static, cylindricaly symmetric gauge cosmic strings, with constant energy density, can contain only \\beta-terms in the first order corrections to the interior gravitational field, while the exact exterior solution is a conical spacetime with deficit angle D=8\\pi\\mu.
Covariant Effective Field Theory of Gravity I: Formalism and Curvature expansion
Codello, Alessandro
2015-01-01
We construct the covariant effective field theory of gravity as an expansion in inverse powers of the Planck mass, identifying the leading and next-to-leading quantum corrections. We determine the form of the effective action for the cases of pure gravity with cosmological constant as well as gravity coupled to matter. By means of heat kernel methods we renormalize and compute the leading quantum corrections to quadratic order in a curvature expansion. The final effective action in our covariant formalism is generally non-local and can be readily used to understand the phenomenology on different spacetimes. In particular, we point out that on curved backgrounds the observable leading quantum gravitational effects are less suppressed than on Minkowski spacetime.
Static and dynamic analysis of a massless scalar field coupled with a class of gravity theories
Kiem, Y H; Kiem, Youngjai; Park, Dahl
1995-01-01
General static solutions for a massless scalar field coupled to a class of effectively 2-d gravity theories continuously connecting spherically symmetric d-dimensional Einstein gravity (d >3) and the CGHS model are analytically obtained. They include black holes and point scalar charge solutions with naked singularities, and are used to give an analytic proof of no-hair theorem. Exact scattering solutions in s-wave 4-d Einstein gravity are constructed as a generalization of corresponding static solutions. They show the existence of black hole formation threshold for square pulse type incoming stress-energy flux, above which trapped surfaces are dynamically formed. The relationship between this behavior and the numerically studied phase transition in this system \\cite{choptuik} is discussed.
On the covariant formalism of the effective field theory of gravity and leading order corrections
DEFF Research Database (Denmark)
Codello, Alessandro; Jain, Rajeev Kumar
2016-01-01
We construct the covariant effective field theory of gravity as an expansion in inverse powers of the Planck mass, identifying the leading and next-to-leading quantum corrections. We determine the form of the effective action for the cases of pure gravity with cosmological constant as well...... as gravity coupled to matter. By means of heat kernel methods we renormalize and compute the leading quantum corrections to quadratic order in a curvature expansion. The final effective action in our covariant formalism is generally non-local and can be readily used to understand the phenomenology...... on different spacetimes. In particular, we point out that on curved backgrounds the observable leading quantum gravitational effects are less suppressed than on Minkowski spacetime....
On the covariant formalism of the effective field theory of gravity and leading order corrections
Codello, Alessandro; Jain, Rajeev Kumar
2016-11-01
We construct the covariant effective field theory of gravity as an expansion in inverse powers of the Planck mass, identifying the leading and next-to-leading quantum corrections. We determine the form of the effective action for the cases of pure gravity with cosmological constant as well as gravity coupled to matter. By means of heat kernel methods we renormalize and compute the leading quantum corrections to quadratic order in a curvature expansion. The final effective action in our covariant formalism is generally non-local and can be readily used to understand the phenomenology on different spacetimes. In particular, we point out that on curved backgrounds the observable leading quantum gravitational effects are less suppressed than on Minkowski spacetime.
Hα Surges Initiated by Newly-emerging Satellite Magnetic Fields
Wang, Jun-feng; Zhou, Tuan-hui; Ji, Hai-sheng
2014-01-01
On July 22, 2011 and in the active region NOAA 11259 there ap- peared the event of the ejection of solar atmospheric Hα surges. According to the full-disc Hα observations of the Big Bear Solar Observatory in United States, three consecutive surges at one and the same place in the north of the main spot of the active region were discovered. The trajectories of these three surges exhib- ited the figure of straight lines, and their integral configuration is like an inverted Eiffel Tower. The first two surges are quite similar, and in each of them there appeared two bright points in the northern part of the main spot. After several minutes, the surges appeared in the midst of bright points. When the bright- ness of the bright points attained the maximum value, the surges spouted out from the midst of bright points. And after reaching the maximum altitude, they quickly vanished. Before the ejection of the third surge took place, no bright points appeared. Besides, its maximal altitude is merely one half of that of the first two surges. Via a comparison with the SDO/HMI (Solar Dynamics Obser- vatory/Helioseismic and Magnetic Imager) data of radial magnetic fields, it is found that in more than one hour before the appearance of the first surge there emerged bipolar magnetic fields in the region of ejection. Besides, in several min- utes before the ejection of each Hα surge the magnetic fluxes of positive polarity diminished. Via our analysis it is found that there appeared reconnections be- tween the newly emerging satellite magnetic fields and the preexisting magnetic fields in the spot, and this caused the continuous ejections of Hα surges.
Gravity waves observation of wind field in stratosphere based on a Rayleigh Doppler lidar.
Zhao, Ruocan; Dou, Xiankang; Sun, Dongsong; Xue, Xianghui; Zheng, Jun; Han, Yuli; Chen, Tingdi; Wang, Guocheng; Zhou, Yingjie
2016-03-21
Simultaneous wind and temperature measurements in stratosphere with high time-spatial resolution for gravity waves study are scarce. In this paper we perform wind field gravity waves cases in the stratosphere observed by a mobile Rayleigh Doppler lidar. This lidar system with both wind and temperature measurements were implemented for atmosphere gravity waves research in the altitude region 15-60 km. Observations were carried out for two periods of time: 3 months started from November 4, 2014 in Xinzhou, China (38.425°N,112.729°E) and 2 months started from October 7, 2015 in Jiuquan, China (39.741°N, 98.495°E) . The mesoscale fluctuations of the horizontal wind velocity and the two dimensional spectra analysis of these fluctuations show the presence of dominant oscillatory modes with wavelength of 4-14 km and period of around 10 hours in several cases. The simultaneous temperature observations make it possible to identify gravity wave cases from the relationships between different variables: temperature and horizontal wind. The observed cases demonstrate the Rayleigh Doppler Lidar's capacity to study gravity waves.
Energy and angular momentum densities of stationary gravity fields
Lynden-Bell, D; Bicak, Jiri; 10.1103/PhysRevD.75.024040
2009-01-01
We give physical explanations of explicit invariant expressions for the energy and angular momentum densities of gravitational fields in stationary space-times. These expressions involve non-locally defined conformal factors. In certain coordinates these become locally defined in terms of the metric. These results are derived via expressions for total gravitational potential energy from the difference between the total energy and the mechanical energy. The latter involves kinetic energy seen in the frame of static observers. When in the axially symmetric case we consider zero angular momentum observers (who move orthogonally to surfaces of constant time), we find that the angular momentum they attribute to the gravitational field is solely due to their motion.
Sreejith, K. M.; Chaubey, A. K.; Mishra, Akhil; Kumar, Shravan; Rajawat, A. S.
2016-12-01
Marine gravity data derived from satellite altimeters are effective tools in mapping fine-scale tectonic features of the ocean basins such as pseudofaults, fracture zones and seamounts, particularly when the ocean basins are carpeted with thick sediments. We use high-resolution satellite-generated gravity and seismic reflection data to map boundaries of pseudofaults and transferred crust related to the Paleocene spreading ridge propagation in the Arabian and its conjugate Eastern Somali basins. The study has provided refinement in the position of previously reported pseudofaults and their spatial extensions in the conjugate basins. It is observed that the transferred crustal block bounded by inner pseudofault and failed spreading ridge is characterized by a gravity low and rugged basement. The refined satellite gravity image of the Arabian Basin also revealed three seamounts in close proximity to the pseudofaults, which were not reported earlier. In the Eastern Somali Basin, seamounts are aligned along NE-SW direction forming ∼300 km long seamount chain. Admittance analysis and Flexural model studies indicated that the seamount chain is isostatically compensated locally with Effective Elastic Thickness (Te) of 3-4 km. Based on the present results and published plate tectonic models, we interpret that the seamounts in the Arabian Basin are formed by spreading ridge propagation and are associated with pseudofaults, whereas the seamount chain in the Eastern Somali Basin might have probably originated due to melting and upwelling of upper mantle heterogeneities in advance of migrating/propagating paleo Carlsberg Ridge.
Santiago, L.; Guzman, A.
2007-05-01
We present a summary and comments on the laboratory and field course in potential field methods in Geophysical Engineering at UNAM. The one-semester course and laboratory and field exercises are an integral part of the curricula, and we comment on the education-learning processes from the viewpoint of the students. The field exercises are designed to assist students to gain empirical knowledge about field methodologies. The experience also allows conduct work as a team, permitting a greater understanding of the professional activities in exploration of natural resources. Access to other educational experiences and resources in universities and industry, including international opportunities are thought highly beneficial. The field training area is located in central Mexico in the Altiplano. The study area is characterized by Upper Cretaceous sedimentary formations, mainly limestones and lutites within the unconformity of El Doctor and Soyatal Formations. Area is located north of Cadereyta, State of Queretaro For data acquisition, profiles oriented E-W and N-S were used. In the neighborhood of Agua Salada bridge, Bouguer gravity values increase showing local maxima. Magnetics were used to locate discordant lithological contact. Gravity and magnetic measurements were taken throughout presumed contact so that through data processing a 3-D model could be obtained. Main purpose of exercise is practical, students compare gravity and magnetic responses with geologic situation characterizing this area. On the basis of field-collected data and mapping, processing was made in the laboratory, including interpretation, through standard algorithms of 2-D modeling. Our interpretations correlate well with surface geology, photographs of outcrops, and stratigraphy. Gravity and magnetics give us a 3-D image of the subsurface and stratigraphy of study area, including structural conditions. We could observe the presence of associated magnetic dipoles at unconformity plane
Preprocessing of gravity gradients at the GOCE high-level processing facility
Bouman, J.; Rispens, S.; Gruber, T.; Koop, R.; Schrama, E.; Visser, P.; Tscherning, C.C.; Veicherts, M.
2008-01-01
One of the products derived from the gravity field and steady-state ocean circulation explorer (GOCE) observations are the gravity gradients. These gravity gradients are provided in the gradiometer reference frame (GRF) and are calibrated in-flight using satellite shaking and star sensor data. To
Preprocessing of gravity gradients at the GOCE high-level processing facility
Bouman, J.; Rispens, S.; Gruber, T.; Koop, R.; Schrama, E.; Visser, P.; Tscherning, C.C.; Veicherts, M.
2008-01-01
One of the products derived from the gravity field and steady-state ocean circulation explorer (GOCE) observations are the gravity gradients. These gravity gradients are provided in the gradiometer reference frame (GRF) and are calibrated in-flight using satellite shaking and star sensor data. To us
A Combined Entropy/Phase-Field Approach to Gravity
Directory of Open Access Journals (Sweden)
Georg J. Schmitz
2017-03-01
Full Text Available Terms related to gradients of scalar fields are introduced as scalar products into the formulation of entropy. A Lagrange density is then formulated by adding constraints based on known conservation laws. Applying the Lagrange formalism to the resulting Lagrange density leads to the Poisson equation of gravitation and also includes terms which are related to the curvature of space. The formalism further leads to terms possibly explaining nonlinear extensions known from modified Newtonian dynamics approaches. The article concludes with a short discussion of the presented methodology and provides an outlook on other phenomena which might be dealt with using this new approach.
Representation of the Gravity Field of Irregularly Shaped Bodies
Reimond, Stefan; Baur, Oliver
2015-04-01
Exploratory space missions to small bodies in our solar system have gained importance over the last few decades. The well-renowned mission Rosetta set a milestone in space science history when it successfully lowered its mini-lab Philae onto the surface of Comet 67P/Churyumov-Gerasimenko in November 2014. Knowledge of the gravitational field of a small body, e.g. a comet or asteroid, is crucial in order to study a spacecraft's motion in its environment and to infer geophysical properties. Traditionally, the gravitational field of a body is modeled by means of spherical harmonics. For bodies of near-spherical shape (such as the Earth), this is an adequate method, because the reference figure, i.e. a sphere, snugly fits the body. For irregularly shaped bodies, however, the adoption of spherical harmonics might be a sub-optimal choice. As an alternative, oblate or prolate spheroidal harmonics (OH or PH, reference figure is an ellipsoid of revolution) or ellipsoidal harmonics (EH, reference figure is a tri-axial ellipsoid) should be considered. The latter will in general be the best choice in terms of aptness of the reference figure. The downside of EH, however, lies in the considerably increased (numerical) complexity of the computation of the base functions, i.e., the Lamé functions of the first and second kind. OH or PH represent a promising path down the middle. Elongated bodies (such as Asteroid 433 Eros) are often similarly well approximated by a prolate spheroid as by the corresponding tri-axial ellipsoid. Contracted bodies, on the other hand, can be described accordingly well by means of an oblate spheroid. We compare the SH, OH, PH and EH gravitational field parameterizations for different celestial bodies, including Rosetta's target comet 67P. The tasks are as follows: Based on the polyhedral representation of a body's shape model, the gravitational potential and acceleration vector is computed for evenly or irregularly distributed points inside or outside
Probing the Interior Dynamics of Jupiter and Saturn with Gravity and Magnetic Fields
Cao, H.; Stevenson, D. J.
2015-12-01
The inner working of solar system gas giant planets remain elusive after decades of exploration. One lasting debate concerns the nature of east-west zonal flows observed on the cloud level of these planets with amplitude on the order of 100 m/s: an observational fact is yet to be established about whether these flows are shallow atmospheric dynamics or surface expression of deep interior dynamics. There is a good chance that such an observational fact can be established within the next few years, given the upcoming gravity and magnetic field measurements to be carried out by the Juno mission and the Cassini Grand Finale. In this presentation, I will first describe a critical assessment of the applicability of the thermal wind equation (TWE) in calculating the gravity field associated with deep zonal flows. The TWE, which is a local diagnostic relation, captures the local density variations associated with the zonal flows while neglects the global shape change and density variations with non-local origins. Our analysis shows that the global corrections to the high degree gravity moments are small (less than a few tens of percent). Our analysis also shows that the applicability of the TWE in calculating the gravity moments does depend crucially on retaining the non-sphericity of the background density and gravity. Only when the background non-sphericity of the planet is taken into account in the calculation, the thermal wind equation (TWE) makes accurate enough prediction for the high-degree gravity moments associated with deep zonal flows (with errors less than a few tens of percent). I will then turn to the magnetic signals associated with deep zonal flows. Using mean field dynamo theory (MFDT), we show that detectable magnetic signals are expected: in the spatial domain, poloidal magnetic fields spatially correlated with deep zonal flows are expected; in the temporal domain, periodic oscillations of the poloidal magnetic field are expected. The period of the
Aspects of nonlocality in quantum field theory, quantum gravity and cosmology
Barvinsky, A. O.
2015-02-01
This paper contains a collection of essays on nonlocal phenomena in quantum field theory, gravity and cosmology. Mechanisms of nonlocal contributions to the quantum effective action are discussed within the covariant perturbation expansion in field strengths and spacetime curvatures. Euclidean version of the Schwinger-Keldysh technique for quantum expectation values is presented as a special rule of obtaining the nonlocal effective equations of motion for the mean quantum field from the Euclidean effective action. This rule is applied to a new model of ghost free nonlocal cosmology which can generate the de Sitter (dS) cosmological evolution at an arbitrary value of Λ — a model of dark energy with the dynamical scale selected by a kind of a scaling symmetry breaking mechanism. This model is shown to interpolate between the superhorizon phase of a scalar mediated gravity and the short distance general relativistic limit in a special metric frame related by a nonlocal conformal transformation to the original metric.
Friedmann inflation in Horava-Lifshitz gravity with a scalar field
Tawfik, Abdel Nasser; Dahab, Eiman Abou El
2016-01-01
We study Friedmann inflation in general Horava-Lifshitz (HL) gravity with detailed and non-detailed but also without the projectability conditions. Accordingly, we derive the modifications in the Friedmann equations due to single scalar field potentials describing power-law and minimal-supersymmetrically extended inflation. By implementing four types of the equations-of-state charactering the cosmic background geometry, the dependence of the tensorial and spectral density fluctuations and their ratio on the inflation field is determined. The latter characterizes the time evolution of the inflation field relative to the Hubble parameter. Furthermore, the ratio of tensorial-to-spectral density fluctuations is calculated in dependence on the spectral index. The resulting slow-roll parameters apparently differ from the ones deduced from the standard General Relativity (Friedmann gravity). We also observe that the tensorial-to-spectral density fluctuations continuously decrease when moving from non-detailed HL gra...
Noether Gauge Symmetry of Dirac Field in (2 + 1-Dimensional Gravity
Directory of Open Access Journals (Sweden)
Ganim Gecim
2015-01-01
Full Text Available We consider a gravitational theory including a Dirac field that is nonminimally coupled to gravity in 2 + 1 dimensions. Noether gauge symmetry approach can be used to fix the form of coupling function F(Ψ and the potential V(Ψ of the Dirac field and to obtain a constant of motion for the dynamical equations. In the context of (2 + 1-dimensional gravity, we investigate cosmological solutions of the field equations using these forms obtained by the existence of Noether gauge symmetry. In this picture, it is shown that, for the nonminimal coupling case, the cosmological solutions indicate both an early-time inflation and late-time acceleration for the universe.
3rd UK-QFT Meeting: Non-Perturbative Quantum Field Theory and Quantum Gravity
2014-01-01
The meeting aims to bringing together Students, Postdoctoral Researchers and Senior Scientists to discuss recent trends in advanced Quantum Field Theory and Quantum Gravity. The format of the meeting is a series of informal talks to allow for discussion and the exchange of ideas amongst participants. We plan for up to 8 slots for short presentations depending on demand and one final longer seminar given by Frank Saueressig (Mainz). This is the third meeting of its kind and details on the previous two can be found on the following: 1st UK-QFT Meeting: Non-perturbative aspects in field theory (KCL) 2nd UK-QFT Meeting: Advances in quantum field theory and gravity (Sussex)
On the stability conditions for theories of modified gravity in the presence of matter fields
De Felice, Antonio; Frusciante, Noemi; Papadomanolakis, Georgios
2017-03-01
We present a thorough stability analysis of modified gravity theories in the presence of matter fields. We use the Effective Field Theory framework for Dark Energy and Modified Gravity to retain a general approach for the gravity sector and a Sorkin-Schutz action for the matter one. Then, we work out the proper viability conditions to guarantee in the scalar sector the absence of ghosts, gradient and tachyonic instabilities. The absence of ghosts can be achieved by demanding a positive kinetic matrix, while the lack of a gradient instability is ensured by imposing a positive speed of propagation for all the scalar modes. In case of tachyonic instability, the mass eigenvalues have been studied and we work out the appropriate expressions. For the latter, an instability occurs only when the negative mass eigenvalue is much larger, in absolute value, than the Hubble parameter. We discuss the results for the minimally coupled quintessence model showing for a particular set of parameters two typical behaviours which in turn lead to a stable and an unstable configuration. Moreover, we find that the speeds of propagation of the scalar modes strongly depend on matter densities, for the beyond Horndeski theories. Our findings can be directly employed when testing modified gravity theories as they allow to identify the correct viability space.
Douch, K.; Panet, I.; Foulon, B.; Christophe, B.; Diament, M.; Métivier-Pajot, G.
2013-12-01
Recent space missions such as CHAMP, GRACE and GOCE have contributed to considerably improve the accuracy of global gravity field models down to a resolution of 90 km. Albeit the use of these new data has been very beneficial to many fields of geosciences, many geodetic and geophysical issues require higher resolution models. This is all the more true in coastal areas where the gravity field is poorly covered by current measurement systems. Here we put forward airborne gravity gradiometry as a convenient way to address these limitations. In this respect, we present a new airborne acceleration gradiometer, GREMLIT, which permits along with ancillary measurements to determine the horizontal gradients of the horizontal components of the gravitational field in the instrumental frame. GREMLIT is composed of a compact assembly of 4 planar electrostatic accelerometers based on ONERA recognized expertise in the field of inertial sensors. The 4 accelerometers are mounted on a controlled platform. With an expected accuracy below 1E for the acceleration gradients, we discuss the possibility to recover the local geoid in coastal areas with a precision better than 1cm. For that, our approach follows 2 steps. First we theoretically determine the necessary conditions to fulfill in order to meet the objective. Conversely, assuming that the latter conditions are met, we test in a second phase if the use of GREMLIT in an airborne survey enables to determine a 1cm accuracy geoid. To do so, we design numerical simulations in 2 case studies and compute the total error budget on the gravity gradients in the instrumental frame. Solutions to increase the signal to noise ratio are presented.
Liu, Mei; Gao, Hong; Shang, Peng; Zhou, Xianlong; Ashforth, Elizabeth; Zhuo, Ying; Chen, Difei; Ren, Biao; Liu, Zhiheng; Zhang, Lixin
2011-01-01
Diamagnetic levitation is a technique that uses a strong, spatially varying magnetic field to simulate an altered gravity environment, as in space. In this study, using Streptomyces avermitilis as the test organism, we investigate whether changes in magnetic field and altered gravity induce changes in morphology and secondary metabolism. We find that a strong magnetic field (12T) inhibit the morphological development of S. avermitilis in solid culture, and increase the production of secondary metabolites. S. avermitilis on solid medium was levitated at 0 g*, 1 g* and 2 g* in an altered gravity environment simulated by diamagnetic levitation and under a strong magnetic field, denoted by the asterix. The morphology was obtained by electromicroscopy. The production of the secondary metabolite, avermectin, was determined by OD(245 nm). The results showed that diamagnetic levitation could induce a physiological response in S. avermitilis. The difference between 1 g* and the control group grown without the strong magnetic field (1 g), showed that the magnetic field was a more dominant factor influencing changes in morphology and secondary metabolite production, than altered gravity. We have discovered that magnetic field, rather than altered gravity, is the dominant factor in altered gravity simulated by diamagnetic levitation, therefore care should to be taken in the interpretation of results when using diamagnetic levitation as a technique to simulate altered gravity. Hence, these results are significant, and timely to researchers considering the use of diamagnetic levitation to explore effects of weightlessness on living organisms and on physical phenomena.
Gauge Freedom and Relativity: A Unified Treatment of Electromagnetism, Gravity and the Dirac Field
Directory of Open Access Journals (Sweden)
Chafin C.
2015-01-01
Full Text Available The geometric properties of General Relativity are reconsi dered as a particular nonlin- ear interaction of fields on a flat background where the percei ved geometry and coordi- nates are “physical” entities that are interpolated by a pat chwork of observable bodies with a nonintuitive relationship to the underlying fields. T his more general notion of gauge in physics opens an important door to put all fields on a s imilar standing but requires a careful reconsideration of tensors in physics an d the conventional wisdom surrounding them. The meaning of the flat background and the i nduced conserved quantities are discussed and contrasted with the “observab le” positive definite energy and probability density in terms of the induced physical coo rdinates. In this context, the Dirac matrices are promoted to dynamic proto-gravity fields and the keeper of “phys- ical metric” information. Independent sister fields to the w avefunctions are utilized in a bilinear rather than a quadratic lagrangian in these fields . This construction greatly enlarges the gauge group so that now proving causal evolution, relative to the physical metric, for the gauge invariant functions of the fields requires both the stress-energy conservation and probability current conservation laws. T hrough a Higgs-like coupling term the proto-gravity fields generate a well defined physica l metric structure and gives the usual distinguishing of gravity from electromagnetism at low energies relative to the Higgs-like coupling. The flat background induces a full s et of conservation laws but results in the need to distinguish these quantities from those observed by recording devices and observers constructed from the fields.
Eccentric binaries of compact objects in strong-field gravity
Energy Technology Data Exchange (ETDEWEB)
Gold, Roman
2011-09-27
In this thesis we study the dynamics as well as the resulting gravitational radiation from eccentric binaries of compact objects in the non-linear regime of General Relativity. For this purpose we solve Einstein's field equation numerically in a 3+1 decomposition using the moving-puncture technique. We focus our study on very particular orbits, arising as a purely relativistic phenomenon of the two-body problem in General Relativity, which are associated with unstable circular orbits. They are governed by a fast, nearly circular revolution at a short distance followed by a slow, radial motion on a nearly elliptic trajectory. Due to the unique features of their orbital trajectories they are called zoom-whirl orbits. We analyze how the peculiar dynamics manifests itself in the emitted gravitational radiation and to which extent one can infer the orbital properties from observations of the gravitational waves. In the first part, we consider black hole binaries. We perform a comprehensive parameter study by varying the initial eccentricity, computing and characterizing the resulting gravitational waveforms. We address aspects, which can only be obtained from non-perturbative methods, and which are crucial to the astrophysical relevance of these orbits. In particular, our results imply a fairly low amount of fine-tuning necessary to spot zoom-whirl effects. We find whirl orbits for values of the eccentricities, which fall in disjunct intervals extending to rather low values. Furthermore, we show that whirl effects just before merger cause a signal with significant amplitude. In the second part, we investigate neutron star binaries on eccentric orbits in full General Relativity, which has not been studied so far. We explore their phenomenology and study the consequences for the matter after the neutron stars have merged. In these evolutions the merged neutron stars sooner or later collapse to form a black hole. During the collapse most of the matter is accreted on
Scalar-tensor gravity with a non-minimally coupled Higgs field and accelerating universe
Sim, Jonghyun; Lee, Tae Hoon
2016-03-01
We consider general couplings, including non-minimal derivative coupling, of a Higgs boson field to scalar-tensor gravity and calculate their contributions to the energy density and pressure in Friedmann-Robertson-Walker spacetime. In a special case where the kinetic term of the Higgs field is non-minimally coupled to the Einstein tensor, we seek de Sitter solutions for the cosmic scale factor and discuss the possibility that the late-time acceleration and the inflationary era of our universe can be described by means of scalar fields with self-interactions and the Yukawa potential.
Bianchi, Eugenio
The following sections are included: * Introduction * Topological Field Theory and Gravity * Classical Spinfoam Gravity: Degrees of Freedom and Foams * Unitary Representations of the Rotation and the Lorentz Group * Boundary Variables and the Loop Quantum Gravity Hilbert Space * Spinfoam Partition Function and the Vertex Amplitude * Cellular Quantum Geometry: A Single Atom of Space * Cellular Quantum Geometry: Coherent Spin-networks * Vertex-amplitude Asymptotics and Regge Gravity * Reconstructing a Semiclassical Spacetime * Conclusions * References
Gravity as a Higgs Field. I.the Geometric Equivalence Principle
Sardanashvily, G
1994-01-01
{\\it If gravity is a metric field by Einstein, it is a Higgs field.} Gravitation theory meets spontaneous symmetry breaking in accordance with the Equivalence Principle reformulated in the spirit of Klein-Chern geometries of invariants. In gravitation theory, the structure group of the principal linear frame bundle $LX$ over a world manifold $X^4$ is reducible to the connected Lorentz group $SO(3,1)$. The physical underlying reason of this reduction is Dirac fermion matter possessing only exact Lorentz symmetries. The associated Higgs field is a tetrad gravitational field $h$ represented by a global section of the quotient $\\Si$ of $LX$ by $SO(3,1)$. The feature of gravity as a Higgs field issues from the fact that, in the presence of different tetrad fields, Dirac fermion fields are described by spinor bundles associated with different reduced Lorentz subbundles of $LX$, and we have nonequivalent representations of cotangent vectors to $X^4$ by Dirac's matrices. It follows that a fermion field must be regard...
Boson Stars in a Theory of Complex Scalar Field coupled to Gravity
Kumar, Sanjeev; Kulshreshtha, Daya Shankar
2016-01-01
We study boson stars in a theory of complex scalar field coupled to Einstein gravity with the potential: $V(|\\Phi|) := m^{2} |\\Phi|^2 +2 \\lambda |\\Phi|$ (where $m^2$ and $\\lambda$ are positive constant parameters). This could be considered either as a theory of massive complex scalar field coupled to gravity in a conical potential or as a theory in the presence of a potential which is an overlap of a parabolic and a conical potential. We study our theory with positive as well as negative values of the cosmological constant $\\Lambda$. Boson stars are found to come in two types, having either ball-like or shell-like charge density. We have studied the properties of these solutions and have also determined their domains of existence for some specific values of the parameters of the theory. Similar solutions have also been obtained by Hartmann, Kleihaus, Kunz, and Schaffer, in a V-shaped scalar potential.
Group field theory as the 2nd quantization of Loop Quantum Gravity
Oriti, Daniele
2013-01-01
We construct a 2nd quantized reformulation of canonical Loop Quantum Gravity at both kinematical and dynamical level, in terms of a Fock space of spin networks, and show in full generality that it leads directly to the Group Field Theory formalism. In particular, we show the correspondence between canonical LQG dynamics and GFT dynamics leading to a specific GFT model from any definition of quantum canonical dynamics of spin networks. We exemplify the correspondence of dynamics in the specifi...
Nguyen, Viet Ai
2015-01-01
A new noncommutative spacetime of structure $ {\\cal M}^4 \\times Z_2 \\times Z_2$ is proposed. The generalized Hilbert-Einstein action contains gravity, all known interactions and Higgs field. This theory can also provide a unified geometric framework for multigravity, which might explain the existence of dark matter and inflationary cosmology. In other words, high energy physics has laid out the crude shape of the new spacetime, while cosmology will shed light to the more details of it.
Jutla, A.; Akanda, A. S.; Colwell, R. R.
2014-12-01
Prediction of conditions of an impending disease outbreak remains a challenge but is achievable if the associated and appropriate large scale hydroclimatic process can be estimated in advance. Outbreaks of diarrheal diseases such as cholera, are related to episodic seasonal variability in river discharge in the regions where water and sanitation infrastructure are inadequate and insufficient. However, forecasting river discharge, few months in advance, remains elusive where cholera outbreaks are frequent, probably due to non-availability of geophysical data as well as transboundary water stresses. Here, we show that satellite derived water storage from Gravity Recovery and Climate Experiment Forecasting (GRACE) sensors can provide reliable estimates on river discharge atleast two months in advance over regional scales. Bayesian regression models predicted flooding and drought conditions, a prerequisite for cholera outbreaks, in Bengal Delta with an overall accuracy of 70% for upto 60 days in advance without using any other ancillary ground based data. Forecasting of river discharge will have significant impacts on planning and designing intervention strategies for potential cholera outbreaks in the coastal regions where the disease remain endemic and often fatal.
GravityCam: wide-field, high-resolution imaging and high-speed photometry instrument
MacKay, Craig; Dominik, Martin; Steele, Iain
2016-08-01
The limits to the angular resolution achievable with conventional ground-based telescopes are unchanged over 70 years. Atmospheric turbulence limits image quality to typically 1 arcsec in practice. We have developed a new concept of ground-based imaging instrument called GravityCam capable of delivering significantly sharper images from the ground than is normally possible without adaptive optics. The acquisition of visible images at high speed without significant noise penalty has been made possible by advances in optical and near IR imaging technologies. Images are recorded at high speed and then aligned before combination and can yield a 3-5 fold improvement in image resolution. Very wide survey fields are possible with widefield telescope optics. We describe GravityCam and detail its application to accelerate greatly the rate of detection of Earth size planets by gravitational microlensing. GravityCam will also improve substantially the quality of weak shear studies of dark matter distribution in distant clusters of galaxies. The microlensing survey will also provide a vast dataset for asteroseismology studies. In addition, GravityCam promises to generate a unique data set that will help us understand of the population of the Kuiper belt and possibly the Oort cloud.
Bernknopf, R.; Kuwayama, Y.; Brookshire, D.; Macauley, M.; Zaitchik, B.; Pesko, S.; Vail, P.
2014-12-01
Determining how much to invest in earth observation technology depends in part on the value of information (VOI) that can be derived from the observations. We design a framework and then evaluate the value-in-use of the NASA Gravity Research and Climate Experiment (GRACE) for regional water use and reliability in the presence of drought. As a technology that allows measurement of water storage, the GRACE Data Assimilation System (DAS) provides information that is qualitatively different from that generated by other water data sources. It provides a global, reproducible grid of changes in surface and subsurface water resources on a frequent and regular basis. Major damages from recent events such as the 2012 Midwest drought and the ongoing drought in California motivate the need to understand the VOI from remotely sensed data such as that derived from GRACE DAS. Our conceptual framework models a dynamic risk management problem in agriculture. We base the framework on information from stakeholders and subject experts. The economic case for GRACE DAS involves providing better water availability information. In the model, individuals have a "willingness to pay" (wtp) for GRACE DAS - essentially, wtp is an expression of savings in reduced agricultural input costs and for costs that are influenced by regional policy decisions. Our hypothesis is that improvements in decision making can be achieved with GRACE DAS measurements of water storage relative to data collected from groundwater monitoring wells and soil moisture monitors that would be relied on in the absence of GRACE DAS. The VOI is estimated as a comparison of outcomes. The California wine grape industry has features that allow it to be a good case study and a basis for extrapolation to other economic sectors. We model water use in this sector as a sequential decision highlighting the attributes of GRACE DAS input as information for within-season production decisions as well as for longer-term water reliability.
Schrama, E.
1990-01-01
The concept of a Global Positioning System (GPS) receiver as a tracking facility and a gradiometer as a separate instrument on a low orbiting platform offers a unique tool to map the Earth's gravitational field with unprecedented accuracies. The former technique allows determination of the spacecraft's ephemeris at any epoch to within 3 to 10 cm, the latter permits the measurement of the tensor of second order derivatives of the gravity field to within 0.01 to 0.0001 Eotvos units depending on the type of gradiometer. First, a variety of error sources in gradiometry where emphasis is placed on the rotational problem pursuing as well a static as a dynamic approach is described. Next, an analytical technique is described and applied for an error analysis of gravity field parameters from gradiometer and GPS observation types. Results are discussed for various configurations proposed on Topex/Poseidon, Gravity Probe-B, and Aristoteles, indicating that GPS only solutions may be computed up to degree and order 35, 55, and 85 respectively, whereas a combined GPS/gradiometer experiment on Aristoteles may result in an acceptable solution up to degree and order 240.
Schrama, Ernst J. O.
1991-11-01
The concept of a Global Positioning System (GPS) receiver as a tracking facility and a gradiometer as a separate instrument on a low-orbiting platform offers a unique tool to map the earth's gravitational field with unprecedented accuracies. The former technique allows determination of the spacecraft's ephemeris at any epoch to within 3-10 cm, the latter permits the measurement of the tensor of second order derivatives of the gravity field to within 0.01 to 0.0001 Eotvos units depending on the type of gradiometer. First, a variety of error sources in gradiometry where emphasis is placed on the rotational problem pursuing as well a static as a dynamic approach is described. Next, an analytical technique is described and applied for an error analysis of gravity field parameters from gradiometer and GPS observation types. Results are discussed for various configurations proposed on Topex/Poseidon, Gravity Probe-B, and Aristoteles, indicating that GPS only solutions may be computed up to degree and order 35, 55, and 85, respectively, whereas a combined GPS/gradiometer experiment on Aristoteles may result in an acceptable solution up to degree and order 240.
Energy Technology Data Exchange (ETDEWEB)
Herman, Cila [Johns Hopkins University, Department of Mechanical Engineering, Baltimore, MD 21218 (United States); Iacona, Estelle [Johns Hopkins University, Department of Mechanical Engineering, Baltimore, MD 21218 (United States); Ecole Centrale, Laboratoire EM2C, Paris UPR 288 (France)
2004-10-01
A simple model for predicting bubble volume and shape at detachment in reduced gravity under the influence of electric fields is described in the paper. The model is based on relatively simple thermodynamic arguments and relies on and combines several models described in the literature. It accounts for the level of gravity and the magnitude of the electric field. For certain conditions of bubble development the properties of the bubble source are also considered. Computations were carried out for a uniform unperturbed electric field for a range of model parameters, and the significance of model assumptions and simplifications is discussed for the particular method of bubble formation. Experiments were conducted in terrestrial conditions and reduced gravity (during parabolic flights in NASA's KC-135 aircraft) by injecting air bubbles through an orifice into the electrically insulating working fluid, PF5052. Bubble shapes visualized experimentally were compared with model predictions. Measured data and model predictions show good agreement. The results suggest that the model can provide quick engineering estimates concerning bubble formation for a range of conditions (both for formation at an orifice and boiling) and such a model reduces the need for complex and expensive numerical simulations for certain applications. (orig.)
Invariant models in the inversion of gravity and magnetic fields and their derivatives
Ialongo, Simone; Fedi, Maurizio; Florio, Giovanni
2014-11-01
In potential field inversion problems we usually solve underdetermined systems and realistic solutions may be obtained by introducing a depth-weighting function in the objective function. The choice of the exponent of such power-law is crucial. It was suggested to determine it from the field-decay due to a single source-block; alternatively it has been defined as the structural index of the investigated source distribution. In both cases, when k-order derivatives of the potential field are considered, the depth-weighting exponent has to be increased by k with respect that of the potential field itself, in order to obtain consistent source model distributions. We show instead that invariant and realistic source-distribution models are obtained using the same depth-weighting exponent for the magnetic field and for its k-order derivatives. A similar behavior also occurs in the gravity case. In practice we found that the depth weighting-exponent is invariant for a given source-model and equal to that of the corresponding magnetic field, in the magnetic case, and of the 1st derivative of the gravity field, in the gravity case. In the case of the regularized inverse problem, with depth-weighting and general constraints, the mathematical demonstration of such invariance is difficult, because of its non-linearity, and of its variable form, due to the different constraints used. However, tests performed on a variety of synthetic cases seem to confirm the invariance of the depth-weighting exponent. A final consideration regards the role of the regularization parameter; we show that the regularization can severely affect the depth to the source because the estimated depth tends to increase proportionally with the size of the regularization parameter. Hence, some care is needed in handling the combined effect of the regularization parameter and depth weighting.
Galanti, Eli; Durante, Daniele; Finocchiaro, Stefano; Iess, Luciano; Kaspi, Yohai
2017-07-01
The upcoming Juno spacecraft measurements have the potential of improving our knowledge of Jupiter’s gravity field. The analysis of the Juno Doppler data will provide a very accurate reconstruction of spatial gravity variations, but these measurements will be very accurate only over a limited latitudinal range. In order to deduce the full gravity field of Jupiter, additional information needs to be incorporated into the analysis, especially regarding the Jovian flow structure and its depth, which can influence the measured gravity field. In this study we propose a new iterative method for the estimation of the Jupiter gravity field, using a simulated Juno trajectory, a trajectory estimation model, and an adjoint-based inverse model for the flow dynamics. We test this method both for zonal harmonics only and with a full gravity field including tesseral harmonics. The results show that this method can fit some of the gravitational harmonics better to the “measured” harmonics, mainly because of the added information from the dynamical model, which includes the flow structure. Thus, it is suggested that the method presented here has the potential of improving the accuracy of the expected gravity harmonics estimated from the Juno and Cassini radio science experiments.
Institute of Scientific and Technical Information of China (English)
郭金来; 胡敏; 赵齐乐; 郭道玉
2007-01-01
Based on the orbit integration and orbit fitting method, the influence of the characters of the gravity model, with different precisions, on the movement of low Earth orbit satellites was studied. The way and the effect of absorbing the influence of gravity model error on CHAMP and GRACE satellite orbits, using linear and periodical empirical acceleration models and the so-called "pseudo-stochastic pulses" model, were also analyzed.
Espindola, Juan Manuel; Lopez-Loera, Hector; Mena, Manuel; Zamora-Camacho, Araceli
2016-09-01
The Tuxtla Volcanic Field (TVF) is a basaltic volcanic field emerging from the plains of the western margin of the Gulf of Mexico in the Mexican State of Veracruz. Separated by hundreds of kilometers from the Trans-Mexican Volcanic Belt to the NW and the Chiapanecan Volcanic Arc to the SE, it stands detached not only in location but also in the composition of its rocks, which are predominantly alkaline. These characteristics make its origin somewhat puzzling. Furthermore, one of the large volcanoes of the field, San Martin Tuxtla, underwent an eruptive period in historical times (CE 1793). Such volcanic activity conveys particular importance to the study of the TVF from the perspective of volcanology and hazard assessment. Despite the above circumstances, few investigations about its internal structure have been reported. In this work, we present analyses of gravity and aeromagnetic data obtained from different sources. We present the complete Bouguer anomaly of the area and its separation into regional and residual components. The aeromagnetic data were processed to yield the reduction to the pole, the analytic signal, and the upward continuation to complete the interpretation of the gravity analyses. Three-dimensional density models of the regional and residual anomalies were obtained by inversion of the gravity signal adding the response of rectangular prisms at the nodes of a regular grid. We obtained a body with a somewhat flattened top at 16 km below sea level from the inversion of the regional. Three separate slender bodies with tops 6 km deep were obtained from the inversion of the residual. The gravity and magnetic anomalies, as well as the inferred source bodies that produce those geophysical anomalies, lie between the Sontecomapan and Catemaco faults, which are proposed as flower structures associated with an inferred deep-seated fault termed the Veracruz Fault. These fault systems along with magma intrusion at the lower crust are necessary features to
Gravitational waves induced by massless vector fields with non-minimal coupling to gravity
Feng, Kaixi
2016-01-01
In this paper, we calculate the contribution of the late time mode of a massless vector field to the power spectrum of the primordial gravitational wave using retarded Green's propagator. We consider a non-trivial coupling between gravity and the vector field. We find that the correction is scale-invariant and of order $\\frac{H^4}{M_P^4}$. The non-minimal coupling leads to a dependence of $\\frac{H^2}{M^2}$, which can amplify the correlation function up to the level of $\\frac{H^2}{M^2_P}$.
Mauro, Sebastiao; Fabbri, Alessandro; Shapiro, Ilya L
2015-01-01
We consider an auxiliary fields formulation for the general fourth-order gravity on an arbitrary curved background. The case of a Ricci-flat background is elaborated in full details and it is shown that there is an equivalence with the standard metric formulation. At the same time, using auxiliary fields helps to make perturbations to look simpler and the results more clear. As an application we reconsider the linear perturbations for the classical Schwarzschild solution. We also briefly discuss the relation to the effect of massive unphysical ghosts in the theory.
Mauro, Sebastião; Balbinot, Roberto; Fabbri, Alessandro; Shapiro, Ilya L.
2015-07-01
We consider an auxiliary fields formulation for the general fourth-order gravity on an arbitrary curved background. The case of a Ricci-flat background is elaborated in detail and it is shown that there is an equivalence with the standard metric formulation. At the same time, using auxiliary fields helps to make perturbations to look simpler and the results clearer. As an application we reconsider the linear perturbations for the classical Schwarzschild solution. We also briefly discuss the relation to the effect of massive unphysical ghosts in the theory.
On the stability conditions for theories of modified gravity coupled to matter fields
De Felice, Antonio; Papadomanolakis, Georgios
2016-01-01
We present a thorough stability analysis of modified gravity theories when the coupling to matter fields is considered. We use the Effective Field Theory framework for Dark Energy and Modified Gravity to retain a general approach for the gravity sector and a Sorkin-Schutz action for the matter one. Then, we work out the proper viability conditions to guarantee in the scalar sector the absence of ghosts, gradient and tachyonic instabilities. The absence of ghosts can be achieved by demanding a positive kinetic matrix, while the lack of a gradient instability is ensured by imposing a positive speed of propagation for all the scalar modes. In case of tachyonic instability, the mass eigenvalues have been studied and we work out the appropriate expressions. For the latter, an instability occurs only when the negative mass eigenvalue is much larger, in absolute value, than the Hubble parameter. We discuss the results for the minimally coupled quintessence model showing for a particular set of parameters two typical...
Repetitive precision gravity studies at the Cerro Prieto and Heber geothermal fields
Grannell, R. B.
1982-09-01
To study subsidence and mass removal, a precise gravity network was established on 60 permanent monuments in the Cerro Prieto geothermal field in early 1978, and repeated annually through early 1981; the survey was tied to two bedrock sites outside the limits of the current production zone. The looping technique of station occupation was utilized, in which occupation of the base was followed by occupation of several stations, followed by a return to the base. Use of two LaCoste and Romberg gravity meters, and replication of values within loops as well as entire loops, enhanced precision such that the median standard deviations of the base-to-station differences, reduced to observed gravity values, ranged from 7 to 15 microgals for individual surveys. The smaller values were obtained as field and data reduction techniques were improved and experience was gained. A similar survey was initiated in the Heber area just north of the Mexican border in early 1980. It too was established on permanent monuments, was tied to bedrock stations outside the geothermal area, and used multiple repetitions of values with two meters to achieve high precision.
Hauser, Jochem
2011-01-01
In 2006 Tajmar et al. reported on the measurements of extreme gravitomagnetic fields from small Nb rings at cryogenic temperatures that are about 18 orders of magnitude larger than gravitomagnetic fields obtained from GR (general relativity). Cifuolini in 2004 and the NASA-Stanford Gravity Probe-B experiment in 2007 confirmed the Lense-Thirring effect as predicted by GR (gravitomagnetic fields generated by a rotating massive body, i.e. Earth) within some 10%. In 2007 gravitomagnetic fields generated by a rotating cryogenic lead disk were measured by Graham et al. Though these measurements were not conclusive (the accuracy of the laser gyrometer was not sufficient to produce a standard deviation small enough) their experiment seems to have seen the same phenomenon reported earlier by Tajmar et al., termed parity violation. This means that gravitomagnetic fields produced by the cryogenic rotating ring or disk vary substantially and change sign for clockwise and counter-clockwise directions of rotation. The expe...
Spectator Higgs, large-scale gauge fields and the non-minimal coupling to gravity
Giovannini, Massimo
2016-01-01
Even if the Higgs field does not affect the evolution of the background geometry, its massive inhomogeneities induce large-scale gauge fields whose energy density depends on the slow-roll parameters, on the effective scalar mass and, last but not least, on the dimensionless coupling to the space-time curvature. Since the non-Abelian gauge modes are screened, the non-minimal coupling to gravity predominantly affects the evolution of the hypercharge and electromagnetic fields. While in the case of minimal coupling the obtained constraints are immaterial, as soon as the coupling increases beyond one fourth the produced fields become overcritical. We chart the whole parameter space of this qualitatively new set of bounds. Whenever the limits on the curvature coupling are enforced, the magnetic field may still be partially relevant for large-scale magnetogenesis and exceed $10^{-20}$ G for the benchmark scale of the protogalactic collapse.
Temporal variations of the gravity field and Earth precession-nutation
Bourda, G
2007-01-01
Due to the accuracy now reached by space geodetic techniques, and also considering some modelisations, the temporal variations of some Earth Gravity Field coefficients can be determined. They are due to Earth oceanic and solid tides, as well as geophysical reservoirs masses displacements. They can be related to the variations in the Earth's orientation parameters (through the inertia tensor). Then, we can try to improve our knowledge of the Earth Rotation with those space measurements of the Gravity variations. We have undertaken such a study, using data obtained with the combination of space geodetic techniques. In particular, we use CHAMP data that are more sensitive to such variations and that complete the ones already accumulated (for example with Starlette and LAGEOS I). In this first approach, we focus on the Earth precession nutation, trying to refine it by taking into account the temporal variations of the Earth dynamical flattening. The goal is mainly to understand how Geodesy can influence this fiel...
The IfE Global Gravity Field Model Recovered from GOCE Orbit and Gradiometer Data
Wu, Hu; Muiller, Jurgen; Brieden, Phillip
2015-03-01
An independent global gravity field model is computed from the GOCE orbit and gradiometer data using our own IfE software. We analysed the same data period that were considered for the first released GOCE models. The Acceleration Approach is applied to process the orbit data. The gravity gradients are processed in the framework of the remove-restore technique by which the low-frequency noise of the original gradients are removed. For the combined solution, the normal equations are summed by the Variance Component Estimation Approach. The result in terms of accumulated geoid height error calculated from the coefficient difference w.r.t. EGM2008 is about 11 cm at D/O 200, which corresponds to the accuracy level of the first released TIM and DIR solutions. This indicates that our IfE model has a comparable performance as the other official GOCE models.
C-metric solution for conformal gravity with a conformally coupled scalar field
Energy Technology Data Exchange (ETDEWEB)
Meng, Kun, E-mail: mengkun@tjpu.edu.cn [School of Science, Tianjin Polytechnic University, Tianjin 300387 (China); Zhao, Liu, E-mail: lzhao@nankai.edu.cn [School of Physics, Nankai University, Tianjin 300071 (China)
2017-02-15
The C-metric solution of conformal gravity with a conformally coupled scalar field is presented. The solution belongs to the class of Petrov type D spacetimes and is conformal to the standard AdS C-metric appeared in vacuum Einstein gravity. For all parameter ranges, we identify some of the physically interesting static regions and the corresponding coordinate ranges. The solution may contain a black hole event horizon, an acceleration horizon, either of which may be cut by the conformal infinity or be hidden behind the conformal infinity. Since the model is conformally invariant, we also discussed the possible effects of the conformal gauge choices on the structure of the spacetime.
Liu, Xiaolin; Zhao, Kun; Jiang, Chao; Wang, Yue; Shao, Lei; Zhang, Yajun; Shi, Feng
2015-07-28
Loading functional small molecules into nano-thin films is fundamental to various research fields such as membrane separation, molecular imprinting, interfacial reaction, drug delivery etc. Currently, a general demand for enhancing the loading rate without affecting the film structures exists in most infiltration phenomena. To handle this issue, we have introduced a process intensification method of a high gravity technique, which is a versatile energy form of mechanical field well-established in industry, into the investigations on diffusion/infiltration at the molecular level. By taking a polyelectrolyte multilayer as a model thin film and a photo-reactive molecule, 4,4'-diazostilbene-2,2'-disulfonic acid disodium salt (DAS), as a model small functional molecule, we have demonstrated remarkably accelerated adsorption/infiltration of DAS into a poly(allylamine hydrochloride) (PAH)/poly(acrylic acid) (PAA) multilayer by as high as 20-fold; meanwhile, both the film property of the multilayer and photoresponsive-crosslinking function of DAS were not disturbed. Furthermore, the infiltration of DAS and the surface morphology of the multilayer could be tuned based on their high dependence on the intensity of the high gravity field regarding different rotating speeds. The mechanism of the accelerated adsorption/infiltration under the high gravity field was interpreted by the increased turbulence of the diffusing layer with the thinned laminar boundary layer and the stepwise delivery of the local concentration gradient from the solution to the interior of the multilayer. The introduction of mechanical field provides a simple and versatile strategy to address the paradox of the contradictory loading amount and loading rate, and thus to promote applications of various membrane processes.
Local gravity field modeling using spherical radial basis functions and a genetic algorithm
Mahbuby, Hany; Safari, Abdolreza; Foroughi, Ismael
2017-05-01
Spherical Radial Basis Functions (SRBFs) can express the local gravity field model of the Earth if they are parameterized optimally on or below the Bjerhammar sphere. This parameterization is generally defined as the shape of the base functions, their number, center locations, bandwidths, and scale coefficients. The number/location and bandwidths of the base functions are the most important parameters for accurately representing the gravity field; once they are determined, the scale coefficients can then be computed accordingly. In this study, the point-mass kernel, as the simplest shape of SRBFs, is chosen to evaluate the synthesized free-air gravity anomalies over the rough area in Auvergne and GNSS/Leveling points (synthetic height anomalies) are used to validate the results. A two-step automatic approach is proposed to determine the optimum distribution of the base functions. First, the location of the base functions and their bandwidths are found using the genetic algorithm; second, the conjugate gradient least squares method is employed to estimate the scale coefficients. The proposed methodology shows promising results. On the one hand, when using the genetic algorithm, the base functions do not need to be set to a regular grid and they can move according to the roughness of topography. In this way, the models meet the desired accuracy with a low number of base functions. On the other hand, the conjugate gradient method removes the bias between derived quasigeoid heights from the model and from the GNSS/leveling points; this means there is no need for a corrector surface. The numerical test on the area of interest revealed an RMS of 0.48 mGal for the differences between predicted and observed gravity anomalies, and a corresponding 9 cm for the differences in GNSS/leveling points.